xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision 1c2dd16a)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_da_format.h"
29 #include "xfs_da_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_dir2.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
35 #include "xfs_bmap.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_log.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_sysfs.h"
45 #include "xfs_rmap_btree.h"
46 #include "xfs_refcount_btree.h"
47 #include "xfs_reflink.h"
48 #include "xfs_extent_busy.h"
49 
50 
51 static DEFINE_MUTEX(xfs_uuid_table_mutex);
52 static int xfs_uuid_table_size;
53 static uuid_t *xfs_uuid_table;
54 
55 void
56 xfs_uuid_table_free(void)
57 {
58 	if (xfs_uuid_table_size == 0)
59 		return;
60 	kmem_free(xfs_uuid_table);
61 	xfs_uuid_table = NULL;
62 	xfs_uuid_table_size = 0;
63 }
64 
65 /*
66  * See if the UUID is unique among mounted XFS filesystems.
67  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
68  */
69 STATIC int
70 xfs_uuid_mount(
71 	struct xfs_mount	*mp)
72 {
73 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
74 	int			hole, i;
75 
76 	if (mp->m_flags & XFS_MOUNT_NOUUID)
77 		return 0;
78 
79 	if (uuid_is_nil(uuid)) {
80 		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
81 		return -EINVAL;
82 	}
83 
84 	mutex_lock(&xfs_uuid_table_mutex);
85 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
86 		if (uuid_is_nil(&xfs_uuid_table[i])) {
87 			hole = i;
88 			continue;
89 		}
90 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
91 			goto out_duplicate;
92 	}
93 
94 	if (hole < 0) {
95 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
96 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
97 			KM_SLEEP);
98 		hole = xfs_uuid_table_size++;
99 	}
100 	xfs_uuid_table[hole] = *uuid;
101 	mutex_unlock(&xfs_uuid_table_mutex);
102 
103 	return 0;
104 
105  out_duplicate:
106 	mutex_unlock(&xfs_uuid_table_mutex);
107 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
108 	return -EINVAL;
109 }
110 
111 STATIC void
112 xfs_uuid_unmount(
113 	struct xfs_mount	*mp)
114 {
115 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
116 	int			i;
117 
118 	if (mp->m_flags & XFS_MOUNT_NOUUID)
119 		return;
120 
121 	mutex_lock(&xfs_uuid_table_mutex);
122 	for (i = 0; i < xfs_uuid_table_size; i++) {
123 		if (uuid_is_nil(&xfs_uuid_table[i]))
124 			continue;
125 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
126 			continue;
127 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
128 		break;
129 	}
130 	ASSERT(i < xfs_uuid_table_size);
131 	mutex_unlock(&xfs_uuid_table_mutex);
132 }
133 
134 
135 STATIC void
136 __xfs_free_perag(
137 	struct rcu_head	*head)
138 {
139 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
140 
141 	ASSERT(atomic_read(&pag->pag_ref) == 0);
142 	kmem_free(pag);
143 }
144 
145 /*
146  * Free up the per-ag resources associated with the mount structure.
147  */
148 STATIC void
149 xfs_free_perag(
150 	xfs_mount_t	*mp)
151 {
152 	xfs_agnumber_t	agno;
153 	struct xfs_perag *pag;
154 
155 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
156 		spin_lock(&mp->m_perag_lock);
157 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
158 		spin_unlock(&mp->m_perag_lock);
159 		ASSERT(pag);
160 		ASSERT(atomic_read(&pag->pag_ref) == 0);
161 		xfs_buf_hash_destroy(pag);
162 		call_rcu(&pag->rcu_head, __xfs_free_perag);
163 	}
164 }
165 
166 /*
167  * Check size of device based on the (data/realtime) block count.
168  * Note: this check is used by the growfs code as well as mount.
169  */
170 int
171 xfs_sb_validate_fsb_count(
172 	xfs_sb_t	*sbp,
173 	__uint64_t	nblocks)
174 {
175 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
176 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
177 
178 	/* Limited by ULONG_MAX of page cache index */
179 	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
180 		return -EFBIG;
181 	return 0;
182 }
183 
184 int
185 xfs_initialize_perag(
186 	xfs_mount_t	*mp,
187 	xfs_agnumber_t	agcount,
188 	xfs_agnumber_t	*maxagi)
189 {
190 	xfs_agnumber_t	index;
191 	xfs_agnumber_t	first_initialised = NULLAGNUMBER;
192 	xfs_perag_t	*pag;
193 	int		error = -ENOMEM;
194 
195 	/*
196 	 * Walk the current per-ag tree so we don't try to initialise AGs
197 	 * that already exist (growfs case). Allocate and insert all the
198 	 * AGs we don't find ready for initialisation.
199 	 */
200 	for (index = 0; index < agcount; index++) {
201 		pag = xfs_perag_get(mp, index);
202 		if (pag) {
203 			xfs_perag_put(pag);
204 			continue;
205 		}
206 
207 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
208 		if (!pag)
209 			goto out_unwind_new_pags;
210 		pag->pag_agno = index;
211 		pag->pag_mount = mp;
212 		spin_lock_init(&pag->pag_ici_lock);
213 		mutex_init(&pag->pag_ici_reclaim_lock);
214 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
215 		if (xfs_buf_hash_init(pag))
216 			goto out_free_pag;
217 		init_waitqueue_head(&pag->pagb_wait);
218 
219 		if (radix_tree_preload(GFP_NOFS))
220 			goto out_hash_destroy;
221 
222 		spin_lock(&mp->m_perag_lock);
223 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
224 			BUG();
225 			spin_unlock(&mp->m_perag_lock);
226 			radix_tree_preload_end();
227 			error = -EEXIST;
228 			goto out_hash_destroy;
229 		}
230 		spin_unlock(&mp->m_perag_lock);
231 		radix_tree_preload_end();
232 		/* first new pag is fully initialized */
233 		if (first_initialised == NULLAGNUMBER)
234 			first_initialised = index;
235 	}
236 
237 	index = xfs_set_inode_alloc(mp, agcount);
238 
239 	if (maxagi)
240 		*maxagi = index;
241 
242 	mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
243 	return 0;
244 
245 out_hash_destroy:
246 	xfs_buf_hash_destroy(pag);
247 out_free_pag:
248 	kmem_free(pag);
249 out_unwind_new_pags:
250 	/* unwind any prior newly initialized pags */
251 	for (index = first_initialised; index < agcount; index++) {
252 		pag = radix_tree_delete(&mp->m_perag_tree, index);
253 		if (!pag)
254 			break;
255 		xfs_buf_hash_destroy(pag);
256 		kmem_free(pag);
257 	}
258 	return error;
259 }
260 
261 /*
262  * xfs_readsb
263  *
264  * Does the initial read of the superblock.
265  */
266 int
267 xfs_readsb(
268 	struct xfs_mount *mp,
269 	int		flags)
270 {
271 	unsigned int	sector_size;
272 	struct xfs_buf	*bp;
273 	struct xfs_sb	*sbp = &mp->m_sb;
274 	int		error;
275 	int		loud = !(flags & XFS_MFSI_QUIET);
276 	const struct xfs_buf_ops *buf_ops;
277 
278 	ASSERT(mp->m_sb_bp == NULL);
279 	ASSERT(mp->m_ddev_targp != NULL);
280 
281 	/*
282 	 * For the initial read, we must guess at the sector
283 	 * size based on the block device.  It's enough to
284 	 * get the sb_sectsize out of the superblock and
285 	 * then reread with the proper length.
286 	 * We don't verify it yet, because it may not be complete.
287 	 */
288 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
289 	buf_ops = NULL;
290 
291 	/*
292 	 * Allocate a (locked) buffer to hold the superblock. This will be kept
293 	 * around at all times to optimize access to the superblock. Therefore,
294 	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
295 	 * elevated.
296 	 */
297 reread:
298 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
299 				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
300 				      buf_ops);
301 	if (error) {
302 		if (loud)
303 			xfs_warn(mp, "SB validate failed with error %d.", error);
304 		/* bad CRC means corrupted metadata */
305 		if (error == -EFSBADCRC)
306 			error = -EFSCORRUPTED;
307 		return error;
308 	}
309 
310 	/*
311 	 * Initialize the mount structure from the superblock.
312 	 */
313 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
314 
315 	/*
316 	 * If we haven't validated the superblock, do so now before we try
317 	 * to check the sector size and reread the superblock appropriately.
318 	 */
319 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
320 		if (loud)
321 			xfs_warn(mp, "Invalid superblock magic number");
322 		error = -EINVAL;
323 		goto release_buf;
324 	}
325 
326 	/*
327 	 * We must be able to do sector-sized and sector-aligned IO.
328 	 */
329 	if (sector_size > sbp->sb_sectsize) {
330 		if (loud)
331 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
332 				sector_size, sbp->sb_sectsize);
333 		error = -ENOSYS;
334 		goto release_buf;
335 	}
336 
337 	if (buf_ops == NULL) {
338 		/*
339 		 * Re-read the superblock so the buffer is correctly sized,
340 		 * and properly verified.
341 		 */
342 		xfs_buf_relse(bp);
343 		sector_size = sbp->sb_sectsize;
344 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
345 		goto reread;
346 	}
347 
348 	xfs_reinit_percpu_counters(mp);
349 
350 	/* no need to be quiet anymore, so reset the buf ops */
351 	bp->b_ops = &xfs_sb_buf_ops;
352 
353 	mp->m_sb_bp = bp;
354 	xfs_buf_unlock(bp);
355 	return 0;
356 
357 release_buf:
358 	xfs_buf_relse(bp);
359 	return error;
360 }
361 
362 /*
363  * Update alignment values based on mount options and sb values
364  */
365 STATIC int
366 xfs_update_alignment(xfs_mount_t *mp)
367 {
368 	xfs_sb_t	*sbp = &(mp->m_sb);
369 
370 	if (mp->m_dalign) {
371 		/*
372 		 * If stripe unit and stripe width are not multiples
373 		 * of the fs blocksize turn off alignment.
374 		 */
375 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
376 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
377 			xfs_warn(mp,
378 		"alignment check failed: sunit/swidth vs. blocksize(%d)",
379 				sbp->sb_blocksize);
380 			return -EINVAL;
381 		} else {
382 			/*
383 			 * Convert the stripe unit and width to FSBs.
384 			 */
385 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
386 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
387 				xfs_warn(mp,
388 			"alignment check failed: sunit/swidth vs. agsize(%d)",
389 					 sbp->sb_agblocks);
390 				return -EINVAL;
391 			} else if (mp->m_dalign) {
392 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
393 			} else {
394 				xfs_warn(mp,
395 			"alignment check failed: sunit(%d) less than bsize(%d)",
396 					 mp->m_dalign, sbp->sb_blocksize);
397 				return -EINVAL;
398 			}
399 		}
400 
401 		/*
402 		 * Update superblock with new values
403 		 * and log changes
404 		 */
405 		if (xfs_sb_version_hasdalign(sbp)) {
406 			if (sbp->sb_unit != mp->m_dalign) {
407 				sbp->sb_unit = mp->m_dalign;
408 				mp->m_update_sb = true;
409 			}
410 			if (sbp->sb_width != mp->m_swidth) {
411 				sbp->sb_width = mp->m_swidth;
412 				mp->m_update_sb = true;
413 			}
414 		} else {
415 			xfs_warn(mp,
416 	"cannot change alignment: superblock does not support data alignment");
417 			return -EINVAL;
418 		}
419 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
420 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
421 			mp->m_dalign = sbp->sb_unit;
422 			mp->m_swidth = sbp->sb_width;
423 	}
424 
425 	return 0;
426 }
427 
428 /*
429  * Set the maximum inode count for this filesystem
430  */
431 STATIC void
432 xfs_set_maxicount(xfs_mount_t *mp)
433 {
434 	xfs_sb_t	*sbp = &(mp->m_sb);
435 	__uint64_t	icount;
436 
437 	if (sbp->sb_imax_pct) {
438 		/*
439 		 * Make sure the maximum inode count is a multiple
440 		 * of the units we allocate inodes in.
441 		 */
442 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
443 		do_div(icount, 100);
444 		do_div(icount, mp->m_ialloc_blks);
445 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
446 				   sbp->sb_inopblog;
447 	} else {
448 		mp->m_maxicount = 0;
449 	}
450 }
451 
452 /*
453  * Set the default minimum read and write sizes unless
454  * already specified in a mount option.
455  * We use smaller I/O sizes when the file system
456  * is being used for NFS service (wsync mount option).
457  */
458 STATIC void
459 xfs_set_rw_sizes(xfs_mount_t *mp)
460 {
461 	xfs_sb_t	*sbp = &(mp->m_sb);
462 	int		readio_log, writeio_log;
463 
464 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
465 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
466 			readio_log = XFS_WSYNC_READIO_LOG;
467 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
468 		} else {
469 			readio_log = XFS_READIO_LOG_LARGE;
470 			writeio_log = XFS_WRITEIO_LOG_LARGE;
471 		}
472 	} else {
473 		readio_log = mp->m_readio_log;
474 		writeio_log = mp->m_writeio_log;
475 	}
476 
477 	if (sbp->sb_blocklog > readio_log) {
478 		mp->m_readio_log = sbp->sb_blocklog;
479 	} else {
480 		mp->m_readio_log = readio_log;
481 	}
482 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
483 	if (sbp->sb_blocklog > writeio_log) {
484 		mp->m_writeio_log = sbp->sb_blocklog;
485 	} else {
486 		mp->m_writeio_log = writeio_log;
487 	}
488 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
489 }
490 
491 /*
492  * precalculate the low space thresholds for dynamic speculative preallocation.
493  */
494 void
495 xfs_set_low_space_thresholds(
496 	struct xfs_mount	*mp)
497 {
498 	int i;
499 
500 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
501 		__uint64_t space = mp->m_sb.sb_dblocks;
502 
503 		do_div(space, 100);
504 		mp->m_low_space[i] = space * (i + 1);
505 	}
506 }
507 
508 
509 /*
510  * Set whether we're using inode alignment.
511  */
512 STATIC void
513 xfs_set_inoalignment(xfs_mount_t *mp)
514 {
515 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
516 		mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
517 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
518 	else
519 		mp->m_inoalign_mask = 0;
520 	/*
521 	 * If we are using stripe alignment, check whether
522 	 * the stripe unit is a multiple of the inode alignment
523 	 */
524 	if (mp->m_dalign && mp->m_inoalign_mask &&
525 	    !(mp->m_dalign & mp->m_inoalign_mask))
526 		mp->m_sinoalign = mp->m_dalign;
527 	else
528 		mp->m_sinoalign = 0;
529 }
530 
531 /*
532  * Check that the data (and log if separate) is an ok size.
533  */
534 STATIC int
535 xfs_check_sizes(
536 	struct xfs_mount *mp)
537 {
538 	struct xfs_buf	*bp;
539 	xfs_daddr_t	d;
540 	int		error;
541 
542 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
543 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
544 		xfs_warn(mp, "filesystem size mismatch detected");
545 		return -EFBIG;
546 	}
547 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
548 					d - XFS_FSS_TO_BB(mp, 1),
549 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
550 	if (error) {
551 		xfs_warn(mp, "last sector read failed");
552 		return error;
553 	}
554 	xfs_buf_relse(bp);
555 
556 	if (mp->m_logdev_targp == mp->m_ddev_targp)
557 		return 0;
558 
559 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
560 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
561 		xfs_warn(mp, "log size mismatch detected");
562 		return -EFBIG;
563 	}
564 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
565 					d - XFS_FSB_TO_BB(mp, 1),
566 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
567 	if (error) {
568 		xfs_warn(mp, "log device read failed");
569 		return error;
570 	}
571 	xfs_buf_relse(bp);
572 	return 0;
573 }
574 
575 /*
576  * Clear the quotaflags in memory and in the superblock.
577  */
578 int
579 xfs_mount_reset_sbqflags(
580 	struct xfs_mount	*mp)
581 {
582 	mp->m_qflags = 0;
583 
584 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
585 	if (mp->m_sb.sb_qflags == 0)
586 		return 0;
587 	spin_lock(&mp->m_sb_lock);
588 	mp->m_sb.sb_qflags = 0;
589 	spin_unlock(&mp->m_sb_lock);
590 
591 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
592 		return 0;
593 
594 	return xfs_sync_sb(mp, false);
595 }
596 
597 __uint64_t
598 xfs_default_resblks(xfs_mount_t *mp)
599 {
600 	__uint64_t resblks;
601 
602 	/*
603 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
604 	 * smaller.  This is intended to cover concurrent allocation
605 	 * transactions when we initially hit enospc. These each require a 4
606 	 * block reservation. Hence by default we cover roughly 2000 concurrent
607 	 * allocation reservations.
608 	 */
609 	resblks = mp->m_sb.sb_dblocks;
610 	do_div(resblks, 20);
611 	resblks = min_t(__uint64_t, resblks, 8192);
612 	return resblks;
613 }
614 
615 /*
616  * This function does the following on an initial mount of a file system:
617  *	- reads the superblock from disk and init the mount struct
618  *	- if we're a 32-bit kernel, do a size check on the superblock
619  *		so we don't mount terabyte filesystems
620  *	- init mount struct realtime fields
621  *	- allocate inode hash table for fs
622  *	- init directory manager
623  *	- perform recovery and init the log manager
624  */
625 int
626 xfs_mountfs(
627 	struct xfs_mount	*mp)
628 {
629 	struct xfs_sb		*sbp = &(mp->m_sb);
630 	struct xfs_inode	*rip;
631 	__uint64_t		resblks;
632 	uint			quotamount = 0;
633 	uint			quotaflags = 0;
634 	int			error = 0;
635 
636 	xfs_sb_mount_common(mp, sbp);
637 
638 	/*
639 	 * Check for a mismatched features2 values.  Older kernels read & wrote
640 	 * into the wrong sb offset for sb_features2 on some platforms due to
641 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
642 	 * which made older superblock reading/writing routines swap it as a
643 	 * 64-bit value.
644 	 *
645 	 * For backwards compatibility, we make both slots equal.
646 	 *
647 	 * If we detect a mismatched field, we OR the set bits into the existing
648 	 * features2 field in case it has already been modified; we don't want
649 	 * to lose any features.  We then update the bad location with the ORed
650 	 * value so that older kernels will see any features2 flags. The
651 	 * superblock writeback code ensures the new sb_features2 is copied to
652 	 * sb_bad_features2 before it is logged or written to disk.
653 	 */
654 	if (xfs_sb_has_mismatched_features2(sbp)) {
655 		xfs_warn(mp, "correcting sb_features alignment problem");
656 		sbp->sb_features2 |= sbp->sb_bad_features2;
657 		mp->m_update_sb = true;
658 
659 		/*
660 		 * Re-check for ATTR2 in case it was found in bad_features2
661 		 * slot.
662 		 */
663 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
664 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
665 			mp->m_flags |= XFS_MOUNT_ATTR2;
666 	}
667 
668 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
669 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
670 		xfs_sb_version_removeattr2(&mp->m_sb);
671 		mp->m_update_sb = true;
672 
673 		/* update sb_versionnum for the clearing of the morebits */
674 		if (!sbp->sb_features2)
675 			mp->m_update_sb = true;
676 	}
677 
678 	/* always use v2 inodes by default now */
679 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
680 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
681 		mp->m_update_sb = true;
682 	}
683 
684 	/*
685 	 * Check if sb_agblocks is aligned at stripe boundary
686 	 * If sb_agblocks is NOT aligned turn off m_dalign since
687 	 * allocator alignment is within an ag, therefore ag has
688 	 * to be aligned at stripe boundary.
689 	 */
690 	error = xfs_update_alignment(mp);
691 	if (error)
692 		goto out;
693 
694 	xfs_alloc_compute_maxlevels(mp);
695 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
696 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
697 	xfs_ialloc_compute_maxlevels(mp);
698 	xfs_rmapbt_compute_maxlevels(mp);
699 	xfs_refcountbt_compute_maxlevels(mp);
700 
701 	xfs_set_maxicount(mp);
702 
703 	/* enable fail_at_unmount as default */
704 	mp->m_fail_unmount = 1;
705 
706 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
707 	if (error)
708 		goto out;
709 
710 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
711 			       &mp->m_kobj, "stats");
712 	if (error)
713 		goto out_remove_sysfs;
714 
715 	error = xfs_error_sysfs_init(mp);
716 	if (error)
717 		goto out_del_stats;
718 
719 
720 	error = xfs_uuid_mount(mp);
721 	if (error)
722 		goto out_remove_error_sysfs;
723 
724 	/*
725 	 * Set the minimum read and write sizes
726 	 */
727 	xfs_set_rw_sizes(mp);
728 
729 	/* set the low space thresholds for dynamic preallocation */
730 	xfs_set_low_space_thresholds(mp);
731 
732 	/*
733 	 * Set the inode cluster size.
734 	 * This may still be overridden by the file system
735 	 * block size if it is larger than the chosen cluster size.
736 	 *
737 	 * For v5 filesystems, scale the cluster size with the inode size to
738 	 * keep a constant ratio of inode per cluster buffer, but only if mkfs
739 	 * has set the inode alignment value appropriately for larger cluster
740 	 * sizes.
741 	 */
742 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
743 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
744 		int	new_size = mp->m_inode_cluster_size;
745 
746 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
747 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
748 			mp->m_inode_cluster_size = new_size;
749 	}
750 
751 	/*
752 	 * If enabled, sparse inode chunk alignment is expected to match the
753 	 * cluster size. Full inode chunk alignment must match the chunk size,
754 	 * but that is checked on sb read verification...
755 	 */
756 	if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
757 	    mp->m_sb.sb_spino_align !=
758 			XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
759 		xfs_warn(mp,
760 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
761 			 mp->m_sb.sb_spino_align,
762 			 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
763 		error = -EINVAL;
764 		goto out_remove_uuid;
765 	}
766 
767 	/*
768 	 * Set inode alignment fields
769 	 */
770 	xfs_set_inoalignment(mp);
771 
772 	/*
773 	 * Check that the data (and log if separate) is an ok size.
774 	 */
775 	error = xfs_check_sizes(mp);
776 	if (error)
777 		goto out_remove_uuid;
778 
779 	/*
780 	 * Initialize realtime fields in the mount structure
781 	 */
782 	error = xfs_rtmount_init(mp);
783 	if (error) {
784 		xfs_warn(mp, "RT mount failed");
785 		goto out_remove_uuid;
786 	}
787 
788 	/*
789 	 *  Copies the low order bits of the timestamp and the randomly
790 	 *  set "sequence" number out of a UUID.
791 	 */
792 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
793 
794 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
795 
796 	error = xfs_da_mount(mp);
797 	if (error) {
798 		xfs_warn(mp, "Failed dir/attr init: %d", error);
799 		goto out_remove_uuid;
800 	}
801 
802 	/*
803 	 * Initialize the precomputed transaction reservations values.
804 	 */
805 	xfs_trans_init(mp);
806 
807 	/*
808 	 * Allocate and initialize the per-ag data.
809 	 */
810 	spin_lock_init(&mp->m_perag_lock);
811 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
812 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
813 	if (error) {
814 		xfs_warn(mp, "Failed per-ag init: %d", error);
815 		goto out_free_dir;
816 	}
817 
818 	if (!sbp->sb_logblocks) {
819 		xfs_warn(mp, "no log defined");
820 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
821 		error = -EFSCORRUPTED;
822 		goto out_free_perag;
823 	}
824 
825 	/*
826 	 * Log's mount-time initialization. The first part of recovery can place
827 	 * some items on the AIL, to be handled when recovery is finished or
828 	 * cancelled.
829 	 */
830 	error = xfs_log_mount(mp, mp->m_logdev_targp,
831 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
832 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
833 	if (error) {
834 		xfs_warn(mp, "log mount failed");
835 		goto out_fail_wait;
836 	}
837 
838 	/*
839 	 * Now the log is mounted, we know if it was an unclean shutdown or
840 	 * not. If it was, with the first phase of recovery has completed, we
841 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
842 	 * but they are recovered transactionally in the second recovery phase
843 	 * later.
844 	 *
845 	 * Hence we can safely re-initialise incore superblock counters from
846 	 * the per-ag data. These may not be correct if the filesystem was not
847 	 * cleanly unmounted, so we need to wait for recovery to finish before
848 	 * doing this.
849 	 *
850 	 * If the filesystem was cleanly unmounted, then we can trust the
851 	 * values in the superblock to be correct and we don't need to do
852 	 * anything here.
853 	 *
854 	 * If we are currently making the filesystem, the initialisation will
855 	 * fail as the perag data is in an undefined state.
856 	 */
857 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
858 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
859 	     !mp->m_sb.sb_inprogress) {
860 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
861 		if (error)
862 			goto out_log_dealloc;
863 	}
864 
865 	/*
866 	 * Get and sanity-check the root inode.
867 	 * Save the pointer to it in the mount structure.
868 	 */
869 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
870 	if (error) {
871 		xfs_warn(mp, "failed to read root inode");
872 		goto out_log_dealloc;
873 	}
874 
875 	ASSERT(rip != NULL);
876 
877 	if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
878 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
879 			(unsigned long long)rip->i_ino);
880 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
881 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
882 				 mp);
883 		error = -EFSCORRUPTED;
884 		goto out_rele_rip;
885 	}
886 	mp->m_rootip = rip;	/* save it */
887 
888 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
889 
890 	/*
891 	 * Initialize realtime inode pointers in the mount structure
892 	 */
893 	error = xfs_rtmount_inodes(mp);
894 	if (error) {
895 		/*
896 		 * Free up the root inode.
897 		 */
898 		xfs_warn(mp, "failed to read RT inodes");
899 		goto out_rele_rip;
900 	}
901 
902 	/*
903 	 * If this is a read-only mount defer the superblock updates until
904 	 * the next remount into writeable mode.  Otherwise we would never
905 	 * perform the update e.g. for the root filesystem.
906 	 */
907 	if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
908 		error = xfs_sync_sb(mp, false);
909 		if (error) {
910 			xfs_warn(mp, "failed to write sb changes");
911 			goto out_rtunmount;
912 		}
913 	}
914 
915 	/*
916 	 * Initialise the XFS quota management subsystem for this mount
917 	 */
918 	if (XFS_IS_QUOTA_RUNNING(mp)) {
919 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
920 		if (error)
921 			goto out_rtunmount;
922 	} else {
923 		ASSERT(!XFS_IS_QUOTA_ON(mp));
924 
925 		/*
926 		 * If a file system had quotas running earlier, but decided to
927 		 * mount without -o uquota/pquota/gquota options, revoke the
928 		 * quotachecked license.
929 		 */
930 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
931 			xfs_notice(mp, "resetting quota flags");
932 			error = xfs_mount_reset_sbqflags(mp);
933 			if (error)
934 				goto out_rtunmount;
935 		}
936 	}
937 
938 	/*
939 	 * During the second phase of log recovery, we need iget and
940 	 * iput to behave like they do for an active filesystem.
941 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
942 	 * of inodes before we're done replaying log items on those
943 	 * inodes.
944 	 */
945 	mp->m_super->s_flags |= MS_ACTIVE;
946 
947 	/*
948 	 * Finish recovering the file system.  This part needed to be delayed
949 	 * until after the root and real-time bitmap inodes were consistently
950 	 * read in.
951 	 */
952 	error = xfs_log_mount_finish(mp);
953 	if (error) {
954 		xfs_warn(mp, "log mount finish failed");
955 		goto out_rtunmount;
956 	}
957 
958 	/*
959 	 * Now the log is fully replayed, we can transition to full read-only
960 	 * mode for read-only mounts. This will sync all the metadata and clean
961 	 * the log so that the recovery we just performed does not have to be
962 	 * replayed again on the next mount.
963 	 *
964 	 * We use the same quiesce mechanism as the rw->ro remount, as they are
965 	 * semantically identical operations.
966 	 */
967 	if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
968 							XFS_MOUNT_RDONLY) {
969 		xfs_quiesce_attr(mp);
970 	}
971 
972 	/*
973 	 * Complete the quota initialisation, post-log-replay component.
974 	 */
975 	if (quotamount) {
976 		ASSERT(mp->m_qflags == 0);
977 		mp->m_qflags = quotaflags;
978 
979 		xfs_qm_mount_quotas(mp);
980 	}
981 
982 	/*
983 	 * Now we are mounted, reserve a small amount of unused space for
984 	 * privileged transactions. This is needed so that transaction
985 	 * space required for critical operations can dip into this pool
986 	 * when at ENOSPC. This is needed for operations like create with
987 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
988 	 * are not allowed to use this reserved space.
989 	 *
990 	 * This may drive us straight to ENOSPC on mount, but that implies
991 	 * we were already there on the last unmount. Warn if this occurs.
992 	 */
993 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
994 		resblks = xfs_default_resblks(mp);
995 		error = xfs_reserve_blocks(mp, &resblks, NULL);
996 		if (error)
997 			xfs_warn(mp,
998 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
999 
1000 		/* Recover any CoW blocks that never got remapped. */
1001 		error = xfs_reflink_recover_cow(mp);
1002 		if (error) {
1003 			xfs_err(mp,
1004 	"Error %d recovering leftover CoW allocations.", error);
1005 			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1006 			goto out_quota;
1007 		}
1008 
1009 		/* Reserve AG blocks for future btree expansion. */
1010 		error = xfs_fs_reserve_ag_blocks(mp);
1011 		if (error && error != -ENOSPC)
1012 			goto out_agresv;
1013 	}
1014 
1015 	return 0;
1016 
1017  out_agresv:
1018 	xfs_fs_unreserve_ag_blocks(mp);
1019  out_quota:
1020 	xfs_qm_unmount_quotas(mp);
1021  out_rtunmount:
1022 	mp->m_super->s_flags &= ~MS_ACTIVE;
1023 	xfs_rtunmount_inodes(mp);
1024  out_rele_rip:
1025 	IRELE(rip);
1026 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1027 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1028  out_log_dealloc:
1029 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1030 	xfs_log_mount_cancel(mp);
1031  out_fail_wait:
1032 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1033 		xfs_wait_buftarg(mp->m_logdev_targp);
1034 	xfs_wait_buftarg(mp->m_ddev_targp);
1035  out_free_perag:
1036 	xfs_free_perag(mp);
1037  out_free_dir:
1038 	xfs_da_unmount(mp);
1039  out_remove_uuid:
1040 	xfs_uuid_unmount(mp);
1041  out_remove_error_sysfs:
1042 	xfs_error_sysfs_del(mp);
1043  out_del_stats:
1044 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1045  out_remove_sysfs:
1046 	xfs_sysfs_del(&mp->m_kobj);
1047  out:
1048 	return error;
1049 }
1050 
1051 /*
1052  * This flushes out the inodes,dquots and the superblock, unmounts the
1053  * log and makes sure that incore structures are freed.
1054  */
1055 void
1056 xfs_unmountfs(
1057 	struct xfs_mount	*mp)
1058 {
1059 	__uint64_t		resblks;
1060 	int			error;
1061 
1062 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
1063 	cancel_delayed_work_sync(&mp->m_cowblocks_work);
1064 
1065 	xfs_fs_unreserve_ag_blocks(mp);
1066 	xfs_qm_unmount_quotas(mp);
1067 	xfs_rtunmount_inodes(mp);
1068 	IRELE(mp->m_rootip);
1069 
1070 	/*
1071 	 * We can potentially deadlock here if we have an inode cluster
1072 	 * that has been freed has its buffer still pinned in memory because
1073 	 * the transaction is still sitting in a iclog. The stale inodes
1074 	 * on that buffer will have their flush locks held until the
1075 	 * transaction hits the disk and the callbacks run. the inode
1076 	 * flush takes the flush lock unconditionally and with nothing to
1077 	 * push out the iclog we will never get that unlocked. hence we
1078 	 * need to force the log first.
1079 	 */
1080 	xfs_log_force(mp, XFS_LOG_SYNC);
1081 
1082 	/*
1083 	 * Wait for all busy extents to be freed, including completion of
1084 	 * any discard operation.
1085 	 */
1086 	xfs_extent_busy_wait_all(mp);
1087 	flush_workqueue(xfs_discard_wq);
1088 
1089 	/*
1090 	 * We now need to tell the world we are unmounting. This will allow
1091 	 * us to detect that the filesystem is going away and we should error
1092 	 * out anything that we have been retrying in the background. This will
1093 	 * prevent neverending retries in AIL pushing from hanging the unmount.
1094 	 */
1095 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1096 
1097 	/*
1098 	 * Flush all pending changes from the AIL.
1099 	 */
1100 	xfs_ail_push_all_sync(mp->m_ail);
1101 
1102 	/*
1103 	 * And reclaim all inodes.  At this point there should be no dirty
1104 	 * inodes and none should be pinned or locked, but use synchronous
1105 	 * reclaim just to be sure. We can stop background inode reclaim
1106 	 * here as well if it is still running.
1107 	 */
1108 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1109 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1110 
1111 	xfs_qm_unmount(mp);
1112 
1113 	/*
1114 	 * Unreserve any blocks we have so that when we unmount we don't account
1115 	 * the reserved free space as used. This is really only necessary for
1116 	 * lazy superblock counting because it trusts the incore superblock
1117 	 * counters to be absolutely correct on clean unmount.
1118 	 *
1119 	 * We don't bother correcting this elsewhere for lazy superblock
1120 	 * counting because on mount of an unclean filesystem we reconstruct the
1121 	 * correct counter value and this is irrelevant.
1122 	 *
1123 	 * For non-lazy counter filesystems, this doesn't matter at all because
1124 	 * we only every apply deltas to the superblock and hence the incore
1125 	 * value does not matter....
1126 	 */
1127 	resblks = 0;
1128 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1129 	if (error)
1130 		xfs_warn(mp, "Unable to free reserved block pool. "
1131 				"Freespace may not be correct on next mount.");
1132 
1133 	error = xfs_log_sbcount(mp);
1134 	if (error)
1135 		xfs_warn(mp, "Unable to update superblock counters. "
1136 				"Freespace may not be correct on next mount.");
1137 
1138 
1139 	xfs_log_unmount(mp);
1140 	xfs_da_unmount(mp);
1141 	xfs_uuid_unmount(mp);
1142 
1143 #if defined(DEBUG)
1144 	xfs_errortag_clearall(mp, 0);
1145 #endif
1146 	xfs_free_perag(mp);
1147 
1148 	xfs_error_sysfs_del(mp);
1149 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1150 	xfs_sysfs_del(&mp->m_kobj);
1151 }
1152 
1153 /*
1154  * Determine whether modifications can proceed. The caller specifies the minimum
1155  * freeze level for which modifications should not be allowed. This allows
1156  * certain operations to proceed while the freeze sequence is in progress, if
1157  * necessary.
1158  */
1159 bool
1160 xfs_fs_writable(
1161 	struct xfs_mount	*mp,
1162 	int			level)
1163 {
1164 	ASSERT(level > SB_UNFROZEN);
1165 	if ((mp->m_super->s_writers.frozen >= level) ||
1166 	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1167 		return false;
1168 
1169 	return true;
1170 }
1171 
1172 /*
1173  * xfs_log_sbcount
1174  *
1175  * Sync the superblock counters to disk.
1176  *
1177  * Note this code can be called during the process of freezing, so we use the
1178  * transaction allocator that does not block when the transaction subsystem is
1179  * in its frozen state.
1180  */
1181 int
1182 xfs_log_sbcount(xfs_mount_t *mp)
1183 {
1184 	/* allow this to proceed during the freeze sequence... */
1185 	if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1186 		return 0;
1187 
1188 	/*
1189 	 * we don't need to do this if we are updating the superblock
1190 	 * counters on every modification.
1191 	 */
1192 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1193 		return 0;
1194 
1195 	return xfs_sync_sb(mp, true);
1196 }
1197 
1198 /*
1199  * Deltas for the inode count are +/-64, hence we use a large batch size
1200  * of 128 so we don't need to take the counter lock on every update.
1201  */
1202 #define XFS_ICOUNT_BATCH	128
1203 int
1204 xfs_mod_icount(
1205 	struct xfs_mount	*mp,
1206 	int64_t			delta)
1207 {
1208 	__percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1209 	if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1210 		ASSERT(0);
1211 		percpu_counter_add(&mp->m_icount, -delta);
1212 		return -EINVAL;
1213 	}
1214 	return 0;
1215 }
1216 
1217 int
1218 xfs_mod_ifree(
1219 	struct xfs_mount	*mp,
1220 	int64_t			delta)
1221 {
1222 	percpu_counter_add(&mp->m_ifree, delta);
1223 	if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1224 		ASSERT(0);
1225 		percpu_counter_add(&mp->m_ifree, -delta);
1226 		return -EINVAL;
1227 	}
1228 	return 0;
1229 }
1230 
1231 /*
1232  * Deltas for the block count can vary from 1 to very large, but lock contention
1233  * only occurs on frequent small block count updates such as in the delayed
1234  * allocation path for buffered writes (page a time updates). Hence we set
1235  * a large batch count (1024) to minimise global counter updates except when
1236  * we get near to ENOSPC and we have to be very accurate with our updates.
1237  */
1238 #define XFS_FDBLOCKS_BATCH	1024
1239 int
1240 xfs_mod_fdblocks(
1241 	struct xfs_mount	*mp,
1242 	int64_t			delta,
1243 	bool			rsvd)
1244 {
1245 	int64_t			lcounter;
1246 	long long		res_used;
1247 	s32			batch;
1248 
1249 	if (delta > 0) {
1250 		/*
1251 		 * If the reserve pool is depleted, put blocks back into it
1252 		 * first. Most of the time the pool is full.
1253 		 */
1254 		if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1255 			percpu_counter_add(&mp->m_fdblocks, delta);
1256 			return 0;
1257 		}
1258 
1259 		spin_lock(&mp->m_sb_lock);
1260 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1261 
1262 		if (res_used > delta) {
1263 			mp->m_resblks_avail += delta;
1264 		} else {
1265 			delta -= res_used;
1266 			mp->m_resblks_avail = mp->m_resblks;
1267 			percpu_counter_add(&mp->m_fdblocks, delta);
1268 		}
1269 		spin_unlock(&mp->m_sb_lock);
1270 		return 0;
1271 	}
1272 
1273 	/*
1274 	 * Taking blocks away, need to be more accurate the closer we
1275 	 * are to zero.
1276 	 *
1277 	 * If the counter has a value of less than 2 * max batch size,
1278 	 * then make everything serialise as we are real close to
1279 	 * ENOSPC.
1280 	 */
1281 	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1282 				     XFS_FDBLOCKS_BATCH) < 0)
1283 		batch = 1;
1284 	else
1285 		batch = XFS_FDBLOCKS_BATCH;
1286 
1287 	__percpu_counter_add(&mp->m_fdblocks, delta, batch);
1288 	if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1289 				     XFS_FDBLOCKS_BATCH) >= 0) {
1290 		/* we had space! */
1291 		return 0;
1292 	}
1293 
1294 	/*
1295 	 * lock up the sb for dipping into reserves before releasing the space
1296 	 * that took us to ENOSPC.
1297 	 */
1298 	spin_lock(&mp->m_sb_lock);
1299 	percpu_counter_add(&mp->m_fdblocks, -delta);
1300 	if (!rsvd)
1301 		goto fdblocks_enospc;
1302 
1303 	lcounter = (long long)mp->m_resblks_avail + delta;
1304 	if (lcounter >= 0) {
1305 		mp->m_resblks_avail = lcounter;
1306 		spin_unlock(&mp->m_sb_lock);
1307 		return 0;
1308 	}
1309 	printk_once(KERN_WARNING
1310 		"Filesystem \"%s\": reserve blocks depleted! "
1311 		"Consider increasing reserve pool size.",
1312 		mp->m_fsname);
1313 fdblocks_enospc:
1314 	spin_unlock(&mp->m_sb_lock);
1315 	return -ENOSPC;
1316 }
1317 
1318 int
1319 xfs_mod_frextents(
1320 	struct xfs_mount	*mp,
1321 	int64_t			delta)
1322 {
1323 	int64_t			lcounter;
1324 	int			ret = 0;
1325 
1326 	spin_lock(&mp->m_sb_lock);
1327 	lcounter = mp->m_sb.sb_frextents + delta;
1328 	if (lcounter < 0)
1329 		ret = -ENOSPC;
1330 	else
1331 		mp->m_sb.sb_frextents = lcounter;
1332 	spin_unlock(&mp->m_sb_lock);
1333 	return ret;
1334 }
1335 
1336 /*
1337  * xfs_getsb() is called to obtain the buffer for the superblock.
1338  * The buffer is returned locked and read in from disk.
1339  * The buffer should be released with a call to xfs_brelse().
1340  *
1341  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1342  * the superblock buffer if it can be locked without sleeping.
1343  * If it can't then we'll return NULL.
1344  */
1345 struct xfs_buf *
1346 xfs_getsb(
1347 	struct xfs_mount	*mp,
1348 	int			flags)
1349 {
1350 	struct xfs_buf		*bp = mp->m_sb_bp;
1351 
1352 	if (!xfs_buf_trylock(bp)) {
1353 		if (flags & XBF_TRYLOCK)
1354 			return NULL;
1355 		xfs_buf_lock(bp);
1356 	}
1357 
1358 	xfs_buf_hold(bp);
1359 	ASSERT(bp->b_flags & XBF_DONE);
1360 	return bp;
1361 }
1362 
1363 /*
1364  * Used to free the superblock along various error paths.
1365  */
1366 void
1367 xfs_freesb(
1368 	struct xfs_mount	*mp)
1369 {
1370 	struct xfs_buf		*bp = mp->m_sb_bp;
1371 
1372 	xfs_buf_lock(bp);
1373 	mp->m_sb_bp = NULL;
1374 	xfs_buf_relse(bp);
1375 }
1376 
1377 /*
1378  * If the underlying (data/log/rt) device is readonly, there are some
1379  * operations that cannot proceed.
1380  */
1381 int
1382 xfs_dev_is_read_only(
1383 	struct xfs_mount	*mp,
1384 	char			*message)
1385 {
1386 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1387 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1388 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1389 		xfs_notice(mp, "%s required on read-only device.", message);
1390 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1391 		return -EROFS;
1392 	}
1393 	return 0;
1394 }
1395