1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_sb.h" 26 #include "xfs_mount.h" 27 #include "xfs_defer.h" 28 #include "xfs_da_format.h" 29 #include "xfs_da_btree.h" 30 #include "xfs_inode.h" 31 #include "xfs_dir2.h" 32 #include "xfs_ialloc.h" 33 #include "xfs_alloc.h" 34 #include "xfs_rtalloc.h" 35 #include "xfs_bmap.h" 36 #include "xfs_trans.h" 37 #include "xfs_trans_priv.h" 38 #include "xfs_log.h" 39 #include "xfs_error.h" 40 #include "xfs_quota.h" 41 #include "xfs_fsops.h" 42 #include "xfs_trace.h" 43 #include "xfs_icache.h" 44 #include "xfs_sysfs.h" 45 #include "xfs_rmap_btree.h" 46 #include "xfs_refcount_btree.h" 47 #include "xfs_reflink.h" 48 #include "xfs_extent_busy.h" 49 50 51 static DEFINE_MUTEX(xfs_uuid_table_mutex); 52 static int xfs_uuid_table_size; 53 static uuid_t *xfs_uuid_table; 54 55 void 56 xfs_uuid_table_free(void) 57 { 58 if (xfs_uuid_table_size == 0) 59 return; 60 kmem_free(xfs_uuid_table); 61 xfs_uuid_table = NULL; 62 xfs_uuid_table_size = 0; 63 } 64 65 /* 66 * See if the UUID is unique among mounted XFS filesystems. 67 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 68 */ 69 STATIC int 70 xfs_uuid_mount( 71 struct xfs_mount *mp) 72 { 73 uuid_t *uuid = &mp->m_sb.sb_uuid; 74 int hole, i; 75 76 if (mp->m_flags & XFS_MOUNT_NOUUID) 77 return 0; 78 79 if (uuid_is_nil(uuid)) { 80 xfs_warn(mp, "Filesystem has nil UUID - can't mount"); 81 return -EINVAL; 82 } 83 84 mutex_lock(&xfs_uuid_table_mutex); 85 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 86 if (uuid_is_nil(&xfs_uuid_table[i])) { 87 hole = i; 88 continue; 89 } 90 if (uuid_equal(uuid, &xfs_uuid_table[i])) 91 goto out_duplicate; 92 } 93 94 if (hole < 0) { 95 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 96 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 97 KM_SLEEP); 98 hole = xfs_uuid_table_size++; 99 } 100 xfs_uuid_table[hole] = *uuid; 101 mutex_unlock(&xfs_uuid_table_mutex); 102 103 return 0; 104 105 out_duplicate: 106 mutex_unlock(&xfs_uuid_table_mutex); 107 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 108 return -EINVAL; 109 } 110 111 STATIC void 112 xfs_uuid_unmount( 113 struct xfs_mount *mp) 114 { 115 uuid_t *uuid = &mp->m_sb.sb_uuid; 116 int i; 117 118 if (mp->m_flags & XFS_MOUNT_NOUUID) 119 return; 120 121 mutex_lock(&xfs_uuid_table_mutex); 122 for (i = 0; i < xfs_uuid_table_size; i++) { 123 if (uuid_is_nil(&xfs_uuid_table[i])) 124 continue; 125 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 126 continue; 127 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 128 break; 129 } 130 ASSERT(i < xfs_uuid_table_size); 131 mutex_unlock(&xfs_uuid_table_mutex); 132 } 133 134 135 STATIC void 136 __xfs_free_perag( 137 struct rcu_head *head) 138 { 139 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 140 141 ASSERT(atomic_read(&pag->pag_ref) == 0); 142 kmem_free(pag); 143 } 144 145 /* 146 * Free up the per-ag resources associated with the mount structure. 147 */ 148 STATIC void 149 xfs_free_perag( 150 xfs_mount_t *mp) 151 { 152 xfs_agnumber_t agno; 153 struct xfs_perag *pag; 154 155 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 156 spin_lock(&mp->m_perag_lock); 157 pag = radix_tree_delete(&mp->m_perag_tree, agno); 158 spin_unlock(&mp->m_perag_lock); 159 ASSERT(pag); 160 ASSERT(atomic_read(&pag->pag_ref) == 0); 161 xfs_buf_hash_destroy(pag); 162 call_rcu(&pag->rcu_head, __xfs_free_perag); 163 } 164 } 165 166 /* 167 * Check size of device based on the (data/realtime) block count. 168 * Note: this check is used by the growfs code as well as mount. 169 */ 170 int 171 xfs_sb_validate_fsb_count( 172 xfs_sb_t *sbp, 173 __uint64_t nblocks) 174 { 175 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 176 ASSERT(sbp->sb_blocklog >= BBSHIFT); 177 178 /* Limited by ULONG_MAX of page cache index */ 179 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 180 return -EFBIG; 181 return 0; 182 } 183 184 int 185 xfs_initialize_perag( 186 xfs_mount_t *mp, 187 xfs_agnumber_t agcount, 188 xfs_agnumber_t *maxagi) 189 { 190 xfs_agnumber_t index; 191 xfs_agnumber_t first_initialised = NULLAGNUMBER; 192 xfs_perag_t *pag; 193 int error = -ENOMEM; 194 195 /* 196 * Walk the current per-ag tree so we don't try to initialise AGs 197 * that already exist (growfs case). Allocate and insert all the 198 * AGs we don't find ready for initialisation. 199 */ 200 for (index = 0; index < agcount; index++) { 201 pag = xfs_perag_get(mp, index); 202 if (pag) { 203 xfs_perag_put(pag); 204 continue; 205 } 206 207 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 208 if (!pag) 209 goto out_unwind_new_pags; 210 pag->pag_agno = index; 211 pag->pag_mount = mp; 212 spin_lock_init(&pag->pag_ici_lock); 213 mutex_init(&pag->pag_ici_reclaim_lock); 214 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 215 if (xfs_buf_hash_init(pag)) 216 goto out_free_pag; 217 init_waitqueue_head(&pag->pagb_wait); 218 219 if (radix_tree_preload(GFP_NOFS)) 220 goto out_hash_destroy; 221 222 spin_lock(&mp->m_perag_lock); 223 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 224 BUG(); 225 spin_unlock(&mp->m_perag_lock); 226 radix_tree_preload_end(); 227 error = -EEXIST; 228 goto out_hash_destroy; 229 } 230 spin_unlock(&mp->m_perag_lock); 231 radix_tree_preload_end(); 232 /* first new pag is fully initialized */ 233 if (first_initialised == NULLAGNUMBER) 234 first_initialised = index; 235 } 236 237 index = xfs_set_inode_alloc(mp, agcount); 238 239 if (maxagi) 240 *maxagi = index; 241 242 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); 243 return 0; 244 245 out_hash_destroy: 246 xfs_buf_hash_destroy(pag); 247 out_free_pag: 248 kmem_free(pag); 249 out_unwind_new_pags: 250 /* unwind any prior newly initialized pags */ 251 for (index = first_initialised; index < agcount; index++) { 252 pag = radix_tree_delete(&mp->m_perag_tree, index); 253 if (!pag) 254 break; 255 xfs_buf_hash_destroy(pag); 256 kmem_free(pag); 257 } 258 return error; 259 } 260 261 /* 262 * xfs_readsb 263 * 264 * Does the initial read of the superblock. 265 */ 266 int 267 xfs_readsb( 268 struct xfs_mount *mp, 269 int flags) 270 { 271 unsigned int sector_size; 272 struct xfs_buf *bp; 273 struct xfs_sb *sbp = &mp->m_sb; 274 int error; 275 int loud = !(flags & XFS_MFSI_QUIET); 276 const struct xfs_buf_ops *buf_ops; 277 278 ASSERT(mp->m_sb_bp == NULL); 279 ASSERT(mp->m_ddev_targp != NULL); 280 281 /* 282 * For the initial read, we must guess at the sector 283 * size based on the block device. It's enough to 284 * get the sb_sectsize out of the superblock and 285 * then reread with the proper length. 286 * We don't verify it yet, because it may not be complete. 287 */ 288 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 289 buf_ops = NULL; 290 291 /* 292 * Allocate a (locked) buffer to hold the superblock. This will be kept 293 * around at all times to optimize access to the superblock. Therefore, 294 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 295 * elevated. 296 */ 297 reread: 298 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 299 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 300 buf_ops); 301 if (error) { 302 if (loud) 303 xfs_warn(mp, "SB validate failed with error %d.", error); 304 /* bad CRC means corrupted metadata */ 305 if (error == -EFSBADCRC) 306 error = -EFSCORRUPTED; 307 return error; 308 } 309 310 /* 311 * Initialize the mount structure from the superblock. 312 */ 313 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 314 315 /* 316 * If we haven't validated the superblock, do so now before we try 317 * to check the sector size and reread the superblock appropriately. 318 */ 319 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 320 if (loud) 321 xfs_warn(mp, "Invalid superblock magic number"); 322 error = -EINVAL; 323 goto release_buf; 324 } 325 326 /* 327 * We must be able to do sector-sized and sector-aligned IO. 328 */ 329 if (sector_size > sbp->sb_sectsize) { 330 if (loud) 331 xfs_warn(mp, "device supports %u byte sectors (not %u)", 332 sector_size, sbp->sb_sectsize); 333 error = -ENOSYS; 334 goto release_buf; 335 } 336 337 if (buf_ops == NULL) { 338 /* 339 * Re-read the superblock so the buffer is correctly sized, 340 * and properly verified. 341 */ 342 xfs_buf_relse(bp); 343 sector_size = sbp->sb_sectsize; 344 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 345 goto reread; 346 } 347 348 xfs_reinit_percpu_counters(mp); 349 350 /* no need to be quiet anymore, so reset the buf ops */ 351 bp->b_ops = &xfs_sb_buf_ops; 352 353 mp->m_sb_bp = bp; 354 xfs_buf_unlock(bp); 355 return 0; 356 357 release_buf: 358 xfs_buf_relse(bp); 359 return error; 360 } 361 362 /* 363 * Update alignment values based on mount options and sb values 364 */ 365 STATIC int 366 xfs_update_alignment(xfs_mount_t *mp) 367 { 368 xfs_sb_t *sbp = &(mp->m_sb); 369 370 if (mp->m_dalign) { 371 /* 372 * If stripe unit and stripe width are not multiples 373 * of the fs blocksize turn off alignment. 374 */ 375 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 376 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 377 xfs_warn(mp, 378 "alignment check failed: sunit/swidth vs. blocksize(%d)", 379 sbp->sb_blocksize); 380 return -EINVAL; 381 } else { 382 /* 383 * Convert the stripe unit and width to FSBs. 384 */ 385 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 386 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 387 xfs_warn(mp, 388 "alignment check failed: sunit/swidth vs. agsize(%d)", 389 sbp->sb_agblocks); 390 return -EINVAL; 391 } else if (mp->m_dalign) { 392 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 393 } else { 394 xfs_warn(mp, 395 "alignment check failed: sunit(%d) less than bsize(%d)", 396 mp->m_dalign, sbp->sb_blocksize); 397 return -EINVAL; 398 } 399 } 400 401 /* 402 * Update superblock with new values 403 * and log changes 404 */ 405 if (xfs_sb_version_hasdalign(sbp)) { 406 if (sbp->sb_unit != mp->m_dalign) { 407 sbp->sb_unit = mp->m_dalign; 408 mp->m_update_sb = true; 409 } 410 if (sbp->sb_width != mp->m_swidth) { 411 sbp->sb_width = mp->m_swidth; 412 mp->m_update_sb = true; 413 } 414 } else { 415 xfs_warn(mp, 416 "cannot change alignment: superblock does not support data alignment"); 417 return -EINVAL; 418 } 419 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 420 xfs_sb_version_hasdalign(&mp->m_sb)) { 421 mp->m_dalign = sbp->sb_unit; 422 mp->m_swidth = sbp->sb_width; 423 } 424 425 return 0; 426 } 427 428 /* 429 * Set the maximum inode count for this filesystem 430 */ 431 STATIC void 432 xfs_set_maxicount(xfs_mount_t *mp) 433 { 434 xfs_sb_t *sbp = &(mp->m_sb); 435 __uint64_t icount; 436 437 if (sbp->sb_imax_pct) { 438 /* 439 * Make sure the maximum inode count is a multiple 440 * of the units we allocate inodes in. 441 */ 442 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 443 do_div(icount, 100); 444 do_div(icount, mp->m_ialloc_blks); 445 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 446 sbp->sb_inopblog; 447 } else { 448 mp->m_maxicount = 0; 449 } 450 } 451 452 /* 453 * Set the default minimum read and write sizes unless 454 * already specified in a mount option. 455 * We use smaller I/O sizes when the file system 456 * is being used for NFS service (wsync mount option). 457 */ 458 STATIC void 459 xfs_set_rw_sizes(xfs_mount_t *mp) 460 { 461 xfs_sb_t *sbp = &(mp->m_sb); 462 int readio_log, writeio_log; 463 464 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 465 if (mp->m_flags & XFS_MOUNT_WSYNC) { 466 readio_log = XFS_WSYNC_READIO_LOG; 467 writeio_log = XFS_WSYNC_WRITEIO_LOG; 468 } else { 469 readio_log = XFS_READIO_LOG_LARGE; 470 writeio_log = XFS_WRITEIO_LOG_LARGE; 471 } 472 } else { 473 readio_log = mp->m_readio_log; 474 writeio_log = mp->m_writeio_log; 475 } 476 477 if (sbp->sb_blocklog > readio_log) { 478 mp->m_readio_log = sbp->sb_blocklog; 479 } else { 480 mp->m_readio_log = readio_log; 481 } 482 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 483 if (sbp->sb_blocklog > writeio_log) { 484 mp->m_writeio_log = sbp->sb_blocklog; 485 } else { 486 mp->m_writeio_log = writeio_log; 487 } 488 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 489 } 490 491 /* 492 * precalculate the low space thresholds for dynamic speculative preallocation. 493 */ 494 void 495 xfs_set_low_space_thresholds( 496 struct xfs_mount *mp) 497 { 498 int i; 499 500 for (i = 0; i < XFS_LOWSP_MAX; i++) { 501 __uint64_t space = mp->m_sb.sb_dblocks; 502 503 do_div(space, 100); 504 mp->m_low_space[i] = space * (i + 1); 505 } 506 } 507 508 509 /* 510 * Set whether we're using inode alignment. 511 */ 512 STATIC void 513 xfs_set_inoalignment(xfs_mount_t *mp) 514 { 515 if (xfs_sb_version_hasalign(&mp->m_sb) && 516 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp)) 517 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 518 else 519 mp->m_inoalign_mask = 0; 520 /* 521 * If we are using stripe alignment, check whether 522 * the stripe unit is a multiple of the inode alignment 523 */ 524 if (mp->m_dalign && mp->m_inoalign_mask && 525 !(mp->m_dalign & mp->m_inoalign_mask)) 526 mp->m_sinoalign = mp->m_dalign; 527 else 528 mp->m_sinoalign = 0; 529 } 530 531 /* 532 * Check that the data (and log if separate) is an ok size. 533 */ 534 STATIC int 535 xfs_check_sizes( 536 struct xfs_mount *mp) 537 { 538 struct xfs_buf *bp; 539 xfs_daddr_t d; 540 int error; 541 542 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 543 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 544 xfs_warn(mp, "filesystem size mismatch detected"); 545 return -EFBIG; 546 } 547 error = xfs_buf_read_uncached(mp->m_ddev_targp, 548 d - XFS_FSS_TO_BB(mp, 1), 549 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 550 if (error) { 551 xfs_warn(mp, "last sector read failed"); 552 return error; 553 } 554 xfs_buf_relse(bp); 555 556 if (mp->m_logdev_targp == mp->m_ddev_targp) 557 return 0; 558 559 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 560 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 561 xfs_warn(mp, "log size mismatch detected"); 562 return -EFBIG; 563 } 564 error = xfs_buf_read_uncached(mp->m_logdev_targp, 565 d - XFS_FSB_TO_BB(mp, 1), 566 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 567 if (error) { 568 xfs_warn(mp, "log device read failed"); 569 return error; 570 } 571 xfs_buf_relse(bp); 572 return 0; 573 } 574 575 /* 576 * Clear the quotaflags in memory and in the superblock. 577 */ 578 int 579 xfs_mount_reset_sbqflags( 580 struct xfs_mount *mp) 581 { 582 mp->m_qflags = 0; 583 584 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 585 if (mp->m_sb.sb_qflags == 0) 586 return 0; 587 spin_lock(&mp->m_sb_lock); 588 mp->m_sb.sb_qflags = 0; 589 spin_unlock(&mp->m_sb_lock); 590 591 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 592 return 0; 593 594 return xfs_sync_sb(mp, false); 595 } 596 597 __uint64_t 598 xfs_default_resblks(xfs_mount_t *mp) 599 { 600 __uint64_t resblks; 601 602 /* 603 * We default to 5% or 8192 fsbs of space reserved, whichever is 604 * smaller. This is intended to cover concurrent allocation 605 * transactions when we initially hit enospc. These each require a 4 606 * block reservation. Hence by default we cover roughly 2000 concurrent 607 * allocation reservations. 608 */ 609 resblks = mp->m_sb.sb_dblocks; 610 do_div(resblks, 20); 611 resblks = min_t(__uint64_t, resblks, 8192); 612 return resblks; 613 } 614 615 /* 616 * This function does the following on an initial mount of a file system: 617 * - reads the superblock from disk and init the mount struct 618 * - if we're a 32-bit kernel, do a size check on the superblock 619 * so we don't mount terabyte filesystems 620 * - init mount struct realtime fields 621 * - allocate inode hash table for fs 622 * - init directory manager 623 * - perform recovery and init the log manager 624 */ 625 int 626 xfs_mountfs( 627 struct xfs_mount *mp) 628 { 629 struct xfs_sb *sbp = &(mp->m_sb); 630 struct xfs_inode *rip; 631 __uint64_t resblks; 632 uint quotamount = 0; 633 uint quotaflags = 0; 634 int error = 0; 635 636 xfs_sb_mount_common(mp, sbp); 637 638 /* 639 * Check for a mismatched features2 values. Older kernels read & wrote 640 * into the wrong sb offset for sb_features2 on some platforms due to 641 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 642 * which made older superblock reading/writing routines swap it as a 643 * 64-bit value. 644 * 645 * For backwards compatibility, we make both slots equal. 646 * 647 * If we detect a mismatched field, we OR the set bits into the existing 648 * features2 field in case it has already been modified; we don't want 649 * to lose any features. We then update the bad location with the ORed 650 * value so that older kernels will see any features2 flags. The 651 * superblock writeback code ensures the new sb_features2 is copied to 652 * sb_bad_features2 before it is logged or written to disk. 653 */ 654 if (xfs_sb_has_mismatched_features2(sbp)) { 655 xfs_warn(mp, "correcting sb_features alignment problem"); 656 sbp->sb_features2 |= sbp->sb_bad_features2; 657 mp->m_update_sb = true; 658 659 /* 660 * Re-check for ATTR2 in case it was found in bad_features2 661 * slot. 662 */ 663 if (xfs_sb_version_hasattr2(&mp->m_sb) && 664 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 665 mp->m_flags |= XFS_MOUNT_ATTR2; 666 } 667 668 if (xfs_sb_version_hasattr2(&mp->m_sb) && 669 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 670 xfs_sb_version_removeattr2(&mp->m_sb); 671 mp->m_update_sb = true; 672 673 /* update sb_versionnum for the clearing of the morebits */ 674 if (!sbp->sb_features2) 675 mp->m_update_sb = true; 676 } 677 678 /* always use v2 inodes by default now */ 679 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 680 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 681 mp->m_update_sb = true; 682 } 683 684 /* 685 * Check if sb_agblocks is aligned at stripe boundary 686 * If sb_agblocks is NOT aligned turn off m_dalign since 687 * allocator alignment is within an ag, therefore ag has 688 * to be aligned at stripe boundary. 689 */ 690 error = xfs_update_alignment(mp); 691 if (error) 692 goto out; 693 694 xfs_alloc_compute_maxlevels(mp); 695 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 696 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 697 xfs_ialloc_compute_maxlevels(mp); 698 xfs_rmapbt_compute_maxlevels(mp); 699 xfs_refcountbt_compute_maxlevels(mp); 700 701 xfs_set_maxicount(mp); 702 703 /* enable fail_at_unmount as default */ 704 mp->m_fail_unmount = 1; 705 706 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname); 707 if (error) 708 goto out; 709 710 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 711 &mp->m_kobj, "stats"); 712 if (error) 713 goto out_remove_sysfs; 714 715 error = xfs_error_sysfs_init(mp); 716 if (error) 717 goto out_del_stats; 718 719 720 error = xfs_uuid_mount(mp); 721 if (error) 722 goto out_remove_error_sysfs; 723 724 /* 725 * Set the minimum read and write sizes 726 */ 727 xfs_set_rw_sizes(mp); 728 729 /* set the low space thresholds for dynamic preallocation */ 730 xfs_set_low_space_thresholds(mp); 731 732 /* 733 * Set the inode cluster size. 734 * This may still be overridden by the file system 735 * block size if it is larger than the chosen cluster size. 736 * 737 * For v5 filesystems, scale the cluster size with the inode size to 738 * keep a constant ratio of inode per cluster buffer, but only if mkfs 739 * has set the inode alignment value appropriately for larger cluster 740 * sizes. 741 */ 742 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 743 if (xfs_sb_version_hascrc(&mp->m_sb)) { 744 int new_size = mp->m_inode_cluster_size; 745 746 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; 747 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) 748 mp->m_inode_cluster_size = new_size; 749 } 750 751 /* 752 * If enabled, sparse inode chunk alignment is expected to match the 753 * cluster size. Full inode chunk alignment must match the chunk size, 754 * but that is checked on sb read verification... 755 */ 756 if (xfs_sb_version_hassparseinodes(&mp->m_sb) && 757 mp->m_sb.sb_spino_align != 758 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) { 759 xfs_warn(mp, 760 "Sparse inode block alignment (%u) must match cluster size (%llu).", 761 mp->m_sb.sb_spino_align, 762 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)); 763 error = -EINVAL; 764 goto out_remove_uuid; 765 } 766 767 /* 768 * Set inode alignment fields 769 */ 770 xfs_set_inoalignment(mp); 771 772 /* 773 * Check that the data (and log if separate) is an ok size. 774 */ 775 error = xfs_check_sizes(mp); 776 if (error) 777 goto out_remove_uuid; 778 779 /* 780 * Initialize realtime fields in the mount structure 781 */ 782 error = xfs_rtmount_init(mp); 783 if (error) { 784 xfs_warn(mp, "RT mount failed"); 785 goto out_remove_uuid; 786 } 787 788 /* 789 * Copies the low order bits of the timestamp and the randomly 790 * set "sequence" number out of a UUID. 791 */ 792 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 793 794 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 795 796 error = xfs_da_mount(mp); 797 if (error) { 798 xfs_warn(mp, "Failed dir/attr init: %d", error); 799 goto out_remove_uuid; 800 } 801 802 /* 803 * Initialize the precomputed transaction reservations values. 804 */ 805 xfs_trans_init(mp); 806 807 /* 808 * Allocate and initialize the per-ag data. 809 */ 810 spin_lock_init(&mp->m_perag_lock); 811 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 812 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 813 if (error) { 814 xfs_warn(mp, "Failed per-ag init: %d", error); 815 goto out_free_dir; 816 } 817 818 if (!sbp->sb_logblocks) { 819 xfs_warn(mp, "no log defined"); 820 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 821 error = -EFSCORRUPTED; 822 goto out_free_perag; 823 } 824 825 /* 826 * Log's mount-time initialization. The first part of recovery can place 827 * some items on the AIL, to be handled when recovery is finished or 828 * cancelled. 829 */ 830 error = xfs_log_mount(mp, mp->m_logdev_targp, 831 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 832 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 833 if (error) { 834 xfs_warn(mp, "log mount failed"); 835 goto out_fail_wait; 836 } 837 838 /* 839 * Now the log is mounted, we know if it was an unclean shutdown or 840 * not. If it was, with the first phase of recovery has completed, we 841 * have consistent AG blocks on disk. We have not recovered EFIs yet, 842 * but they are recovered transactionally in the second recovery phase 843 * later. 844 * 845 * Hence we can safely re-initialise incore superblock counters from 846 * the per-ag data. These may not be correct if the filesystem was not 847 * cleanly unmounted, so we need to wait for recovery to finish before 848 * doing this. 849 * 850 * If the filesystem was cleanly unmounted, then we can trust the 851 * values in the superblock to be correct and we don't need to do 852 * anything here. 853 * 854 * If we are currently making the filesystem, the initialisation will 855 * fail as the perag data is in an undefined state. 856 */ 857 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 858 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 859 !mp->m_sb.sb_inprogress) { 860 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 861 if (error) 862 goto out_log_dealloc; 863 } 864 865 /* 866 * Get and sanity-check the root inode. 867 * Save the pointer to it in the mount structure. 868 */ 869 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip); 870 if (error) { 871 xfs_warn(mp, "failed to read root inode"); 872 goto out_log_dealloc; 873 } 874 875 ASSERT(rip != NULL); 876 877 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) { 878 xfs_warn(mp, "corrupted root inode %llu: not a directory", 879 (unsigned long long)rip->i_ino); 880 xfs_iunlock(rip, XFS_ILOCK_EXCL); 881 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 882 mp); 883 error = -EFSCORRUPTED; 884 goto out_rele_rip; 885 } 886 mp->m_rootip = rip; /* save it */ 887 888 xfs_iunlock(rip, XFS_ILOCK_EXCL); 889 890 /* 891 * Initialize realtime inode pointers in the mount structure 892 */ 893 error = xfs_rtmount_inodes(mp); 894 if (error) { 895 /* 896 * Free up the root inode. 897 */ 898 xfs_warn(mp, "failed to read RT inodes"); 899 goto out_rele_rip; 900 } 901 902 /* 903 * If this is a read-only mount defer the superblock updates until 904 * the next remount into writeable mode. Otherwise we would never 905 * perform the update e.g. for the root filesystem. 906 */ 907 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 908 error = xfs_sync_sb(mp, false); 909 if (error) { 910 xfs_warn(mp, "failed to write sb changes"); 911 goto out_rtunmount; 912 } 913 } 914 915 /* 916 * Initialise the XFS quota management subsystem for this mount 917 */ 918 if (XFS_IS_QUOTA_RUNNING(mp)) { 919 error = xfs_qm_newmount(mp, "amount, "aflags); 920 if (error) 921 goto out_rtunmount; 922 } else { 923 ASSERT(!XFS_IS_QUOTA_ON(mp)); 924 925 /* 926 * If a file system had quotas running earlier, but decided to 927 * mount without -o uquota/pquota/gquota options, revoke the 928 * quotachecked license. 929 */ 930 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 931 xfs_notice(mp, "resetting quota flags"); 932 error = xfs_mount_reset_sbqflags(mp); 933 if (error) 934 goto out_rtunmount; 935 } 936 } 937 938 /* 939 * During the second phase of log recovery, we need iget and 940 * iput to behave like they do for an active filesystem. 941 * xfs_fs_drop_inode needs to be able to prevent the deletion 942 * of inodes before we're done replaying log items on those 943 * inodes. 944 */ 945 mp->m_super->s_flags |= MS_ACTIVE; 946 947 /* 948 * Finish recovering the file system. This part needed to be delayed 949 * until after the root and real-time bitmap inodes were consistently 950 * read in. 951 */ 952 error = xfs_log_mount_finish(mp); 953 if (error) { 954 xfs_warn(mp, "log mount finish failed"); 955 goto out_rtunmount; 956 } 957 958 /* 959 * Now the log is fully replayed, we can transition to full read-only 960 * mode for read-only mounts. This will sync all the metadata and clean 961 * the log so that the recovery we just performed does not have to be 962 * replayed again on the next mount. 963 * 964 * We use the same quiesce mechanism as the rw->ro remount, as they are 965 * semantically identical operations. 966 */ 967 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) == 968 XFS_MOUNT_RDONLY) { 969 xfs_quiesce_attr(mp); 970 } 971 972 /* 973 * Complete the quota initialisation, post-log-replay component. 974 */ 975 if (quotamount) { 976 ASSERT(mp->m_qflags == 0); 977 mp->m_qflags = quotaflags; 978 979 xfs_qm_mount_quotas(mp); 980 } 981 982 /* 983 * Now we are mounted, reserve a small amount of unused space for 984 * privileged transactions. This is needed so that transaction 985 * space required for critical operations can dip into this pool 986 * when at ENOSPC. This is needed for operations like create with 987 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 988 * are not allowed to use this reserved space. 989 * 990 * This may drive us straight to ENOSPC on mount, but that implies 991 * we were already there on the last unmount. Warn if this occurs. 992 */ 993 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 994 resblks = xfs_default_resblks(mp); 995 error = xfs_reserve_blocks(mp, &resblks, NULL); 996 if (error) 997 xfs_warn(mp, 998 "Unable to allocate reserve blocks. Continuing without reserve pool."); 999 1000 /* Recover any CoW blocks that never got remapped. */ 1001 error = xfs_reflink_recover_cow(mp); 1002 if (error) { 1003 xfs_err(mp, 1004 "Error %d recovering leftover CoW allocations.", error); 1005 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1006 goto out_quota; 1007 } 1008 1009 /* Reserve AG blocks for future btree expansion. */ 1010 error = xfs_fs_reserve_ag_blocks(mp); 1011 if (error && error != -ENOSPC) 1012 goto out_agresv; 1013 } 1014 1015 return 0; 1016 1017 out_agresv: 1018 xfs_fs_unreserve_ag_blocks(mp); 1019 out_quota: 1020 xfs_qm_unmount_quotas(mp); 1021 out_rtunmount: 1022 mp->m_super->s_flags &= ~MS_ACTIVE; 1023 xfs_rtunmount_inodes(mp); 1024 out_rele_rip: 1025 IRELE(rip); 1026 cancel_delayed_work_sync(&mp->m_reclaim_work); 1027 xfs_reclaim_inodes(mp, SYNC_WAIT); 1028 out_log_dealloc: 1029 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1030 xfs_log_mount_cancel(mp); 1031 out_fail_wait: 1032 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1033 xfs_wait_buftarg(mp->m_logdev_targp); 1034 xfs_wait_buftarg(mp->m_ddev_targp); 1035 out_free_perag: 1036 xfs_free_perag(mp); 1037 out_free_dir: 1038 xfs_da_unmount(mp); 1039 out_remove_uuid: 1040 xfs_uuid_unmount(mp); 1041 out_remove_error_sysfs: 1042 xfs_error_sysfs_del(mp); 1043 out_del_stats: 1044 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1045 out_remove_sysfs: 1046 xfs_sysfs_del(&mp->m_kobj); 1047 out: 1048 return error; 1049 } 1050 1051 /* 1052 * This flushes out the inodes,dquots and the superblock, unmounts the 1053 * log and makes sure that incore structures are freed. 1054 */ 1055 void 1056 xfs_unmountfs( 1057 struct xfs_mount *mp) 1058 { 1059 __uint64_t resblks; 1060 int error; 1061 1062 cancel_delayed_work_sync(&mp->m_eofblocks_work); 1063 cancel_delayed_work_sync(&mp->m_cowblocks_work); 1064 1065 xfs_fs_unreserve_ag_blocks(mp); 1066 xfs_qm_unmount_quotas(mp); 1067 xfs_rtunmount_inodes(mp); 1068 IRELE(mp->m_rootip); 1069 1070 /* 1071 * We can potentially deadlock here if we have an inode cluster 1072 * that has been freed has its buffer still pinned in memory because 1073 * the transaction is still sitting in a iclog. The stale inodes 1074 * on that buffer will have their flush locks held until the 1075 * transaction hits the disk and the callbacks run. the inode 1076 * flush takes the flush lock unconditionally and with nothing to 1077 * push out the iclog we will never get that unlocked. hence we 1078 * need to force the log first. 1079 */ 1080 xfs_log_force(mp, XFS_LOG_SYNC); 1081 1082 /* 1083 * Wait for all busy extents to be freed, including completion of 1084 * any discard operation. 1085 */ 1086 xfs_extent_busy_wait_all(mp); 1087 flush_workqueue(xfs_discard_wq); 1088 1089 /* 1090 * We now need to tell the world we are unmounting. This will allow 1091 * us to detect that the filesystem is going away and we should error 1092 * out anything that we have been retrying in the background. This will 1093 * prevent neverending retries in AIL pushing from hanging the unmount. 1094 */ 1095 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1096 1097 /* 1098 * Flush all pending changes from the AIL. 1099 */ 1100 xfs_ail_push_all_sync(mp->m_ail); 1101 1102 /* 1103 * And reclaim all inodes. At this point there should be no dirty 1104 * inodes and none should be pinned or locked, but use synchronous 1105 * reclaim just to be sure. We can stop background inode reclaim 1106 * here as well if it is still running. 1107 */ 1108 cancel_delayed_work_sync(&mp->m_reclaim_work); 1109 xfs_reclaim_inodes(mp, SYNC_WAIT); 1110 1111 xfs_qm_unmount(mp); 1112 1113 /* 1114 * Unreserve any blocks we have so that when we unmount we don't account 1115 * the reserved free space as used. This is really only necessary for 1116 * lazy superblock counting because it trusts the incore superblock 1117 * counters to be absolutely correct on clean unmount. 1118 * 1119 * We don't bother correcting this elsewhere for lazy superblock 1120 * counting because on mount of an unclean filesystem we reconstruct the 1121 * correct counter value and this is irrelevant. 1122 * 1123 * For non-lazy counter filesystems, this doesn't matter at all because 1124 * we only every apply deltas to the superblock and hence the incore 1125 * value does not matter.... 1126 */ 1127 resblks = 0; 1128 error = xfs_reserve_blocks(mp, &resblks, NULL); 1129 if (error) 1130 xfs_warn(mp, "Unable to free reserved block pool. " 1131 "Freespace may not be correct on next mount."); 1132 1133 error = xfs_log_sbcount(mp); 1134 if (error) 1135 xfs_warn(mp, "Unable to update superblock counters. " 1136 "Freespace may not be correct on next mount."); 1137 1138 1139 xfs_log_unmount(mp); 1140 xfs_da_unmount(mp); 1141 xfs_uuid_unmount(mp); 1142 1143 #if defined(DEBUG) 1144 xfs_errortag_clearall(mp, 0); 1145 #endif 1146 xfs_free_perag(mp); 1147 1148 xfs_error_sysfs_del(mp); 1149 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1150 xfs_sysfs_del(&mp->m_kobj); 1151 } 1152 1153 /* 1154 * Determine whether modifications can proceed. The caller specifies the minimum 1155 * freeze level for which modifications should not be allowed. This allows 1156 * certain operations to proceed while the freeze sequence is in progress, if 1157 * necessary. 1158 */ 1159 bool 1160 xfs_fs_writable( 1161 struct xfs_mount *mp, 1162 int level) 1163 { 1164 ASSERT(level > SB_UNFROZEN); 1165 if ((mp->m_super->s_writers.frozen >= level) || 1166 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY)) 1167 return false; 1168 1169 return true; 1170 } 1171 1172 /* 1173 * xfs_log_sbcount 1174 * 1175 * Sync the superblock counters to disk. 1176 * 1177 * Note this code can be called during the process of freezing, so we use the 1178 * transaction allocator that does not block when the transaction subsystem is 1179 * in its frozen state. 1180 */ 1181 int 1182 xfs_log_sbcount(xfs_mount_t *mp) 1183 { 1184 /* allow this to proceed during the freeze sequence... */ 1185 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE)) 1186 return 0; 1187 1188 /* 1189 * we don't need to do this if we are updating the superblock 1190 * counters on every modification. 1191 */ 1192 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1193 return 0; 1194 1195 return xfs_sync_sb(mp, true); 1196 } 1197 1198 /* 1199 * Deltas for the inode count are +/-64, hence we use a large batch size 1200 * of 128 so we don't need to take the counter lock on every update. 1201 */ 1202 #define XFS_ICOUNT_BATCH 128 1203 int 1204 xfs_mod_icount( 1205 struct xfs_mount *mp, 1206 int64_t delta) 1207 { 1208 __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH); 1209 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) { 1210 ASSERT(0); 1211 percpu_counter_add(&mp->m_icount, -delta); 1212 return -EINVAL; 1213 } 1214 return 0; 1215 } 1216 1217 int 1218 xfs_mod_ifree( 1219 struct xfs_mount *mp, 1220 int64_t delta) 1221 { 1222 percpu_counter_add(&mp->m_ifree, delta); 1223 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) { 1224 ASSERT(0); 1225 percpu_counter_add(&mp->m_ifree, -delta); 1226 return -EINVAL; 1227 } 1228 return 0; 1229 } 1230 1231 /* 1232 * Deltas for the block count can vary from 1 to very large, but lock contention 1233 * only occurs on frequent small block count updates such as in the delayed 1234 * allocation path for buffered writes (page a time updates). Hence we set 1235 * a large batch count (1024) to minimise global counter updates except when 1236 * we get near to ENOSPC and we have to be very accurate with our updates. 1237 */ 1238 #define XFS_FDBLOCKS_BATCH 1024 1239 int 1240 xfs_mod_fdblocks( 1241 struct xfs_mount *mp, 1242 int64_t delta, 1243 bool rsvd) 1244 { 1245 int64_t lcounter; 1246 long long res_used; 1247 s32 batch; 1248 1249 if (delta > 0) { 1250 /* 1251 * If the reserve pool is depleted, put blocks back into it 1252 * first. Most of the time the pool is full. 1253 */ 1254 if (likely(mp->m_resblks == mp->m_resblks_avail)) { 1255 percpu_counter_add(&mp->m_fdblocks, delta); 1256 return 0; 1257 } 1258 1259 spin_lock(&mp->m_sb_lock); 1260 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1261 1262 if (res_used > delta) { 1263 mp->m_resblks_avail += delta; 1264 } else { 1265 delta -= res_used; 1266 mp->m_resblks_avail = mp->m_resblks; 1267 percpu_counter_add(&mp->m_fdblocks, delta); 1268 } 1269 spin_unlock(&mp->m_sb_lock); 1270 return 0; 1271 } 1272 1273 /* 1274 * Taking blocks away, need to be more accurate the closer we 1275 * are to zero. 1276 * 1277 * If the counter has a value of less than 2 * max batch size, 1278 * then make everything serialise as we are real close to 1279 * ENOSPC. 1280 */ 1281 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, 1282 XFS_FDBLOCKS_BATCH) < 0) 1283 batch = 1; 1284 else 1285 batch = XFS_FDBLOCKS_BATCH; 1286 1287 __percpu_counter_add(&mp->m_fdblocks, delta, batch); 1288 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside, 1289 XFS_FDBLOCKS_BATCH) >= 0) { 1290 /* we had space! */ 1291 return 0; 1292 } 1293 1294 /* 1295 * lock up the sb for dipping into reserves before releasing the space 1296 * that took us to ENOSPC. 1297 */ 1298 spin_lock(&mp->m_sb_lock); 1299 percpu_counter_add(&mp->m_fdblocks, -delta); 1300 if (!rsvd) 1301 goto fdblocks_enospc; 1302 1303 lcounter = (long long)mp->m_resblks_avail + delta; 1304 if (lcounter >= 0) { 1305 mp->m_resblks_avail = lcounter; 1306 spin_unlock(&mp->m_sb_lock); 1307 return 0; 1308 } 1309 printk_once(KERN_WARNING 1310 "Filesystem \"%s\": reserve blocks depleted! " 1311 "Consider increasing reserve pool size.", 1312 mp->m_fsname); 1313 fdblocks_enospc: 1314 spin_unlock(&mp->m_sb_lock); 1315 return -ENOSPC; 1316 } 1317 1318 int 1319 xfs_mod_frextents( 1320 struct xfs_mount *mp, 1321 int64_t delta) 1322 { 1323 int64_t lcounter; 1324 int ret = 0; 1325 1326 spin_lock(&mp->m_sb_lock); 1327 lcounter = mp->m_sb.sb_frextents + delta; 1328 if (lcounter < 0) 1329 ret = -ENOSPC; 1330 else 1331 mp->m_sb.sb_frextents = lcounter; 1332 spin_unlock(&mp->m_sb_lock); 1333 return ret; 1334 } 1335 1336 /* 1337 * xfs_getsb() is called to obtain the buffer for the superblock. 1338 * The buffer is returned locked and read in from disk. 1339 * The buffer should be released with a call to xfs_brelse(). 1340 * 1341 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1342 * the superblock buffer if it can be locked without sleeping. 1343 * If it can't then we'll return NULL. 1344 */ 1345 struct xfs_buf * 1346 xfs_getsb( 1347 struct xfs_mount *mp, 1348 int flags) 1349 { 1350 struct xfs_buf *bp = mp->m_sb_bp; 1351 1352 if (!xfs_buf_trylock(bp)) { 1353 if (flags & XBF_TRYLOCK) 1354 return NULL; 1355 xfs_buf_lock(bp); 1356 } 1357 1358 xfs_buf_hold(bp); 1359 ASSERT(bp->b_flags & XBF_DONE); 1360 return bp; 1361 } 1362 1363 /* 1364 * Used to free the superblock along various error paths. 1365 */ 1366 void 1367 xfs_freesb( 1368 struct xfs_mount *mp) 1369 { 1370 struct xfs_buf *bp = mp->m_sb_bp; 1371 1372 xfs_buf_lock(bp); 1373 mp->m_sb_bp = NULL; 1374 xfs_buf_relse(bp); 1375 } 1376 1377 /* 1378 * If the underlying (data/log/rt) device is readonly, there are some 1379 * operations that cannot proceed. 1380 */ 1381 int 1382 xfs_dev_is_read_only( 1383 struct xfs_mount *mp, 1384 char *message) 1385 { 1386 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1387 xfs_readonly_buftarg(mp->m_logdev_targp) || 1388 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1389 xfs_notice(mp, "%s required on read-only device.", message); 1390 xfs_notice(mp, "write access unavailable, cannot proceed."); 1391 return -EROFS; 1392 } 1393 return 0; 1394 } 1395