1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_inode.h" 16 #include "xfs_dir2.h" 17 #include "xfs_ialloc.h" 18 #include "xfs_alloc.h" 19 #include "xfs_rtalloc.h" 20 #include "xfs_bmap.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_priv.h" 23 #include "xfs_log.h" 24 #include "xfs_error.h" 25 #include "xfs_quota.h" 26 #include "xfs_fsops.h" 27 #include "xfs_icache.h" 28 #include "xfs_sysfs.h" 29 #include "xfs_rmap_btree.h" 30 #include "xfs_refcount_btree.h" 31 #include "xfs_reflink.h" 32 #include "xfs_extent_busy.h" 33 #include "xfs_health.h" 34 #include "xfs_trace.h" 35 36 static DEFINE_MUTEX(xfs_uuid_table_mutex); 37 static int xfs_uuid_table_size; 38 static uuid_t *xfs_uuid_table; 39 40 void 41 xfs_uuid_table_free(void) 42 { 43 if (xfs_uuid_table_size == 0) 44 return; 45 kmem_free(xfs_uuid_table); 46 xfs_uuid_table = NULL; 47 xfs_uuid_table_size = 0; 48 } 49 50 /* 51 * See if the UUID is unique among mounted XFS filesystems. 52 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 53 */ 54 STATIC int 55 xfs_uuid_mount( 56 struct xfs_mount *mp) 57 { 58 uuid_t *uuid = &mp->m_sb.sb_uuid; 59 int hole, i; 60 61 /* Publish UUID in struct super_block */ 62 uuid_copy(&mp->m_super->s_uuid, uuid); 63 64 if (mp->m_flags & XFS_MOUNT_NOUUID) 65 return 0; 66 67 if (uuid_is_null(uuid)) { 68 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 69 return -EINVAL; 70 } 71 72 mutex_lock(&xfs_uuid_table_mutex); 73 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 74 if (uuid_is_null(&xfs_uuid_table[i])) { 75 hole = i; 76 continue; 77 } 78 if (uuid_equal(uuid, &xfs_uuid_table[i])) 79 goto out_duplicate; 80 } 81 82 if (hole < 0) { 83 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 84 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 85 0); 86 hole = xfs_uuid_table_size++; 87 } 88 xfs_uuid_table[hole] = *uuid; 89 mutex_unlock(&xfs_uuid_table_mutex); 90 91 return 0; 92 93 out_duplicate: 94 mutex_unlock(&xfs_uuid_table_mutex); 95 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 96 return -EINVAL; 97 } 98 99 STATIC void 100 xfs_uuid_unmount( 101 struct xfs_mount *mp) 102 { 103 uuid_t *uuid = &mp->m_sb.sb_uuid; 104 int i; 105 106 if (mp->m_flags & XFS_MOUNT_NOUUID) 107 return; 108 109 mutex_lock(&xfs_uuid_table_mutex); 110 for (i = 0; i < xfs_uuid_table_size; i++) { 111 if (uuid_is_null(&xfs_uuid_table[i])) 112 continue; 113 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 114 continue; 115 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 116 break; 117 } 118 ASSERT(i < xfs_uuid_table_size); 119 mutex_unlock(&xfs_uuid_table_mutex); 120 } 121 122 123 STATIC void 124 __xfs_free_perag( 125 struct rcu_head *head) 126 { 127 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 128 129 ASSERT(atomic_read(&pag->pag_ref) == 0); 130 kmem_free(pag); 131 } 132 133 /* 134 * Free up the per-ag resources associated with the mount structure. 135 */ 136 STATIC void 137 xfs_free_perag( 138 xfs_mount_t *mp) 139 { 140 xfs_agnumber_t agno; 141 struct xfs_perag *pag; 142 143 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 144 spin_lock(&mp->m_perag_lock); 145 pag = radix_tree_delete(&mp->m_perag_tree, agno); 146 spin_unlock(&mp->m_perag_lock); 147 ASSERT(pag); 148 ASSERT(atomic_read(&pag->pag_ref) == 0); 149 xfs_iunlink_destroy(pag); 150 xfs_buf_hash_destroy(pag); 151 mutex_destroy(&pag->pag_ici_reclaim_lock); 152 call_rcu(&pag->rcu_head, __xfs_free_perag); 153 } 154 } 155 156 /* 157 * Check size of device based on the (data/realtime) block count. 158 * Note: this check is used by the growfs code as well as mount. 159 */ 160 int 161 xfs_sb_validate_fsb_count( 162 xfs_sb_t *sbp, 163 uint64_t nblocks) 164 { 165 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 166 ASSERT(sbp->sb_blocklog >= BBSHIFT); 167 168 /* Limited by ULONG_MAX of page cache index */ 169 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 170 return -EFBIG; 171 return 0; 172 } 173 174 int 175 xfs_initialize_perag( 176 xfs_mount_t *mp, 177 xfs_agnumber_t agcount, 178 xfs_agnumber_t *maxagi) 179 { 180 xfs_agnumber_t index; 181 xfs_agnumber_t first_initialised = NULLAGNUMBER; 182 xfs_perag_t *pag; 183 int error = -ENOMEM; 184 185 /* 186 * Walk the current per-ag tree so we don't try to initialise AGs 187 * that already exist (growfs case). Allocate and insert all the 188 * AGs we don't find ready for initialisation. 189 */ 190 for (index = 0; index < agcount; index++) { 191 pag = xfs_perag_get(mp, index); 192 if (pag) { 193 xfs_perag_put(pag); 194 continue; 195 } 196 197 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 198 if (!pag) 199 goto out_unwind_new_pags; 200 pag->pag_agno = index; 201 pag->pag_mount = mp; 202 spin_lock_init(&pag->pag_ici_lock); 203 mutex_init(&pag->pag_ici_reclaim_lock); 204 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 205 if (xfs_buf_hash_init(pag)) 206 goto out_free_pag; 207 init_waitqueue_head(&pag->pagb_wait); 208 spin_lock_init(&pag->pagb_lock); 209 pag->pagb_count = 0; 210 pag->pagb_tree = RB_ROOT; 211 212 if (radix_tree_preload(GFP_NOFS)) 213 goto out_hash_destroy; 214 215 spin_lock(&mp->m_perag_lock); 216 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 217 WARN_ON_ONCE(1); 218 spin_unlock(&mp->m_perag_lock); 219 radix_tree_preload_end(); 220 error = -EEXIST; 221 goto out_hash_destroy; 222 } 223 spin_unlock(&mp->m_perag_lock); 224 radix_tree_preload_end(); 225 /* first new pag is fully initialized */ 226 if (first_initialised == NULLAGNUMBER) 227 first_initialised = index; 228 error = xfs_iunlink_init(pag); 229 if (error) 230 goto out_hash_destroy; 231 spin_lock_init(&pag->pag_state_lock); 232 } 233 234 index = xfs_set_inode_alloc(mp, agcount); 235 236 if (maxagi) 237 *maxagi = index; 238 239 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); 240 return 0; 241 242 out_hash_destroy: 243 xfs_buf_hash_destroy(pag); 244 out_free_pag: 245 mutex_destroy(&pag->pag_ici_reclaim_lock); 246 kmem_free(pag); 247 out_unwind_new_pags: 248 /* unwind any prior newly initialized pags */ 249 for (index = first_initialised; index < agcount; index++) { 250 pag = radix_tree_delete(&mp->m_perag_tree, index); 251 if (!pag) 252 break; 253 xfs_buf_hash_destroy(pag); 254 xfs_iunlink_destroy(pag); 255 mutex_destroy(&pag->pag_ici_reclaim_lock); 256 kmem_free(pag); 257 } 258 return error; 259 } 260 261 /* 262 * xfs_readsb 263 * 264 * Does the initial read of the superblock. 265 */ 266 int 267 xfs_readsb( 268 struct xfs_mount *mp, 269 int flags) 270 { 271 unsigned int sector_size; 272 struct xfs_buf *bp; 273 struct xfs_sb *sbp = &mp->m_sb; 274 int error; 275 int loud = !(flags & XFS_MFSI_QUIET); 276 const struct xfs_buf_ops *buf_ops; 277 278 ASSERT(mp->m_sb_bp == NULL); 279 ASSERT(mp->m_ddev_targp != NULL); 280 281 /* 282 * For the initial read, we must guess at the sector 283 * size based on the block device. It's enough to 284 * get the sb_sectsize out of the superblock and 285 * then reread with the proper length. 286 * We don't verify it yet, because it may not be complete. 287 */ 288 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 289 buf_ops = NULL; 290 291 /* 292 * Allocate a (locked) buffer to hold the superblock. This will be kept 293 * around at all times to optimize access to the superblock. Therefore, 294 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 295 * elevated. 296 */ 297 reread: 298 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 299 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 300 buf_ops); 301 if (error) { 302 if (loud) 303 xfs_warn(mp, "SB validate failed with error %d.", error); 304 /* bad CRC means corrupted metadata */ 305 if (error == -EFSBADCRC) 306 error = -EFSCORRUPTED; 307 return error; 308 } 309 310 /* 311 * Initialize the mount structure from the superblock. 312 */ 313 xfs_sb_from_disk(sbp, bp->b_addr); 314 315 /* 316 * If we haven't validated the superblock, do so now before we try 317 * to check the sector size and reread the superblock appropriately. 318 */ 319 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 320 if (loud) 321 xfs_warn(mp, "Invalid superblock magic number"); 322 error = -EINVAL; 323 goto release_buf; 324 } 325 326 /* 327 * We must be able to do sector-sized and sector-aligned IO. 328 */ 329 if (sector_size > sbp->sb_sectsize) { 330 if (loud) 331 xfs_warn(mp, "device supports %u byte sectors (not %u)", 332 sector_size, sbp->sb_sectsize); 333 error = -ENOSYS; 334 goto release_buf; 335 } 336 337 if (buf_ops == NULL) { 338 /* 339 * Re-read the superblock so the buffer is correctly sized, 340 * and properly verified. 341 */ 342 xfs_buf_relse(bp); 343 sector_size = sbp->sb_sectsize; 344 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 345 goto reread; 346 } 347 348 xfs_reinit_percpu_counters(mp); 349 350 /* no need to be quiet anymore, so reset the buf ops */ 351 bp->b_ops = &xfs_sb_buf_ops; 352 353 mp->m_sb_bp = bp; 354 xfs_buf_unlock(bp); 355 return 0; 356 357 release_buf: 358 xfs_buf_relse(bp); 359 return error; 360 } 361 362 /* 363 * If the sunit/swidth change would move the precomputed root inode value, we 364 * must reject the ondisk change because repair will stumble over that. 365 * However, we allow the mount to proceed because we never rejected this 366 * combination before. Returns true to update the sb, false otherwise. 367 */ 368 static inline int 369 xfs_check_new_dalign( 370 struct xfs_mount *mp, 371 int new_dalign, 372 bool *update_sb) 373 { 374 struct xfs_sb *sbp = &mp->m_sb; 375 xfs_ino_t calc_ino; 376 377 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign); 378 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino); 379 380 if (sbp->sb_rootino == calc_ino) { 381 *update_sb = true; 382 return 0; 383 } 384 385 xfs_warn(mp, 386 "Cannot change stripe alignment; would require moving root inode."); 387 388 /* 389 * XXX: Next time we add a new incompat feature, this should start 390 * returning -EINVAL to fail the mount. Until then, spit out a warning 391 * that we're ignoring the administrator's instructions. 392 */ 393 xfs_warn(mp, "Skipping superblock stripe alignment update."); 394 *update_sb = false; 395 return 0; 396 } 397 398 /* 399 * If we were provided with new sunit/swidth values as mount options, make sure 400 * that they pass basic alignment and superblock feature checks, and convert 401 * them into the same units (FSB) that everything else expects. This step 402 * /must/ be done before computing the inode geometry. 403 */ 404 STATIC int 405 xfs_validate_new_dalign( 406 struct xfs_mount *mp) 407 { 408 if (mp->m_dalign == 0) 409 return 0; 410 411 /* 412 * If stripe unit and stripe width are not multiples 413 * of the fs blocksize turn off alignment. 414 */ 415 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 416 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 417 xfs_warn(mp, 418 "alignment check failed: sunit/swidth vs. blocksize(%d)", 419 mp->m_sb.sb_blocksize); 420 return -EINVAL; 421 } else { 422 /* 423 * Convert the stripe unit and width to FSBs. 424 */ 425 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 426 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) { 427 xfs_warn(mp, 428 "alignment check failed: sunit/swidth vs. agsize(%d)", 429 mp->m_sb.sb_agblocks); 430 return -EINVAL; 431 } else if (mp->m_dalign) { 432 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 433 } else { 434 xfs_warn(mp, 435 "alignment check failed: sunit(%d) less than bsize(%d)", 436 mp->m_dalign, mp->m_sb.sb_blocksize); 437 return -EINVAL; 438 } 439 } 440 441 if (!xfs_sb_version_hasdalign(&mp->m_sb)) { 442 xfs_warn(mp, 443 "cannot change alignment: superblock does not support data alignment"); 444 return -EINVAL; 445 } 446 447 return 0; 448 } 449 450 /* Update alignment values based on mount options and sb values. */ 451 STATIC int 452 xfs_update_alignment( 453 struct xfs_mount *mp) 454 { 455 struct xfs_sb *sbp = &mp->m_sb; 456 457 if (mp->m_dalign) { 458 bool update_sb; 459 int error; 460 461 if (sbp->sb_unit == mp->m_dalign && 462 sbp->sb_width == mp->m_swidth) 463 return 0; 464 465 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb); 466 if (error || !update_sb) 467 return error; 468 469 sbp->sb_unit = mp->m_dalign; 470 sbp->sb_width = mp->m_swidth; 471 mp->m_update_sb = true; 472 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 473 xfs_sb_version_hasdalign(&mp->m_sb)) { 474 mp->m_dalign = sbp->sb_unit; 475 mp->m_swidth = sbp->sb_width; 476 } 477 478 return 0; 479 } 480 481 /* 482 * precalculate the low space thresholds for dynamic speculative preallocation. 483 */ 484 void 485 xfs_set_low_space_thresholds( 486 struct xfs_mount *mp) 487 { 488 int i; 489 490 for (i = 0; i < XFS_LOWSP_MAX; i++) { 491 uint64_t space = mp->m_sb.sb_dblocks; 492 493 do_div(space, 100); 494 mp->m_low_space[i] = space * (i + 1); 495 } 496 } 497 498 /* 499 * Check that the data (and log if separate) is an ok size. 500 */ 501 STATIC int 502 xfs_check_sizes( 503 struct xfs_mount *mp) 504 { 505 struct xfs_buf *bp; 506 xfs_daddr_t d; 507 int error; 508 509 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 510 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 511 xfs_warn(mp, "filesystem size mismatch detected"); 512 return -EFBIG; 513 } 514 error = xfs_buf_read_uncached(mp->m_ddev_targp, 515 d - XFS_FSS_TO_BB(mp, 1), 516 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 517 if (error) { 518 xfs_warn(mp, "last sector read failed"); 519 return error; 520 } 521 xfs_buf_relse(bp); 522 523 if (mp->m_logdev_targp == mp->m_ddev_targp) 524 return 0; 525 526 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 527 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 528 xfs_warn(mp, "log size mismatch detected"); 529 return -EFBIG; 530 } 531 error = xfs_buf_read_uncached(mp->m_logdev_targp, 532 d - XFS_FSB_TO_BB(mp, 1), 533 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 534 if (error) { 535 xfs_warn(mp, "log device read failed"); 536 return error; 537 } 538 xfs_buf_relse(bp); 539 return 0; 540 } 541 542 /* 543 * Clear the quotaflags in memory and in the superblock. 544 */ 545 int 546 xfs_mount_reset_sbqflags( 547 struct xfs_mount *mp) 548 { 549 mp->m_qflags = 0; 550 551 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 552 if (mp->m_sb.sb_qflags == 0) 553 return 0; 554 spin_lock(&mp->m_sb_lock); 555 mp->m_sb.sb_qflags = 0; 556 spin_unlock(&mp->m_sb_lock); 557 558 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 559 return 0; 560 561 return xfs_sync_sb(mp, false); 562 } 563 564 uint64_t 565 xfs_default_resblks(xfs_mount_t *mp) 566 { 567 uint64_t resblks; 568 569 /* 570 * We default to 5% or 8192 fsbs of space reserved, whichever is 571 * smaller. This is intended to cover concurrent allocation 572 * transactions when we initially hit enospc. These each require a 4 573 * block reservation. Hence by default we cover roughly 2000 concurrent 574 * allocation reservations. 575 */ 576 resblks = mp->m_sb.sb_dblocks; 577 do_div(resblks, 20); 578 resblks = min_t(uint64_t, resblks, 8192); 579 return resblks; 580 } 581 582 /* Ensure the summary counts are correct. */ 583 STATIC int 584 xfs_check_summary_counts( 585 struct xfs_mount *mp) 586 { 587 /* 588 * The AG0 superblock verifier rejects in-progress filesystems, 589 * so we should never see the flag set this far into mounting. 590 */ 591 if (mp->m_sb.sb_inprogress) { 592 xfs_err(mp, "sb_inprogress set after log recovery??"); 593 WARN_ON(1); 594 return -EFSCORRUPTED; 595 } 596 597 /* 598 * Now the log is mounted, we know if it was an unclean shutdown or 599 * not. If it was, with the first phase of recovery has completed, we 600 * have consistent AG blocks on disk. We have not recovered EFIs yet, 601 * but they are recovered transactionally in the second recovery phase 602 * later. 603 * 604 * If the log was clean when we mounted, we can check the summary 605 * counters. If any of them are obviously incorrect, we can recompute 606 * them from the AGF headers in the next step. 607 */ 608 if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 609 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || 610 !xfs_verify_icount(mp, mp->m_sb.sb_icount) || 611 mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) 612 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 613 614 /* 615 * We can safely re-initialise incore superblock counters from the 616 * per-ag data. These may not be correct if the filesystem was not 617 * cleanly unmounted, so we waited for recovery to finish before doing 618 * this. 619 * 620 * If the filesystem was cleanly unmounted or the previous check did 621 * not flag anything weird, then we can trust the values in the 622 * superblock to be correct and we don't need to do anything here. 623 * Otherwise, recalculate the summary counters. 624 */ 625 if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) || 626 XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) && 627 !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) 628 return 0; 629 630 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); 631 } 632 633 /* 634 * This function does the following on an initial mount of a file system: 635 * - reads the superblock from disk and init the mount struct 636 * - if we're a 32-bit kernel, do a size check on the superblock 637 * so we don't mount terabyte filesystems 638 * - init mount struct realtime fields 639 * - allocate inode hash table for fs 640 * - init directory manager 641 * - perform recovery and init the log manager 642 */ 643 int 644 xfs_mountfs( 645 struct xfs_mount *mp) 646 { 647 struct xfs_sb *sbp = &(mp->m_sb); 648 struct xfs_inode *rip; 649 struct xfs_ino_geometry *igeo = M_IGEO(mp); 650 uint64_t resblks; 651 uint quotamount = 0; 652 uint quotaflags = 0; 653 int error = 0; 654 655 xfs_sb_mount_common(mp, sbp); 656 657 /* 658 * Check for a mismatched features2 values. Older kernels read & wrote 659 * into the wrong sb offset for sb_features2 on some platforms due to 660 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 661 * which made older superblock reading/writing routines swap it as a 662 * 64-bit value. 663 * 664 * For backwards compatibility, we make both slots equal. 665 * 666 * If we detect a mismatched field, we OR the set bits into the existing 667 * features2 field in case it has already been modified; we don't want 668 * to lose any features. We then update the bad location with the ORed 669 * value so that older kernels will see any features2 flags. The 670 * superblock writeback code ensures the new sb_features2 is copied to 671 * sb_bad_features2 before it is logged or written to disk. 672 */ 673 if (xfs_sb_has_mismatched_features2(sbp)) { 674 xfs_warn(mp, "correcting sb_features alignment problem"); 675 sbp->sb_features2 |= sbp->sb_bad_features2; 676 mp->m_update_sb = true; 677 678 /* 679 * Re-check for ATTR2 in case it was found in bad_features2 680 * slot. 681 */ 682 if (xfs_sb_version_hasattr2(&mp->m_sb) && 683 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 684 mp->m_flags |= XFS_MOUNT_ATTR2; 685 } 686 687 if (xfs_sb_version_hasattr2(&mp->m_sb) && 688 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 689 xfs_sb_version_removeattr2(&mp->m_sb); 690 mp->m_update_sb = true; 691 692 /* update sb_versionnum for the clearing of the morebits */ 693 if (!sbp->sb_features2) 694 mp->m_update_sb = true; 695 } 696 697 /* always use v2 inodes by default now */ 698 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 699 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 700 mp->m_update_sb = true; 701 } 702 703 /* 704 * If we were given new sunit/swidth options, do some basic validation 705 * checks and convert the incore dalign and swidth values to the 706 * same units (FSB) that everything else uses. This /must/ happen 707 * before computing the inode geometry. 708 */ 709 error = xfs_validate_new_dalign(mp); 710 if (error) 711 goto out; 712 713 xfs_alloc_compute_maxlevels(mp); 714 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 715 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 716 xfs_ialloc_setup_geometry(mp); 717 xfs_rmapbt_compute_maxlevels(mp); 718 xfs_refcountbt_compute_maxlevels(mp); 719 720 /* 721 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks 722 * is NOT aligned turn off m_dalign since allocator alignment is within 723 * an ag, therefore ag has to be aligned at stripe boundary. Note that 724 * we must compute the free space and rmap btree geometry before doing 725 * this. 726 */ 727 error = xfs_update_alignment(mp); 728 if (error) 729 goto out; 730 731 /* enable fail_at_unmount as default */ 732 mp->m_fail_unmount = true; 733 734 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, 735 NULL, mp->m_super->s_id); 736 if (error) 737 goto out; 738 739 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 740 &mp->m_kobj, "stats"); 741 if (error) 742 goto out_remove_sysfs; 743 744 error = xfs_error_sysfs_init(mp); 745 if (error) 746 goto out_del_stats; 747 748 error = xfs_errortag_init(mp); 749 if (error) 750 goto out_remove_error_sysfs; 751 752 error = xfs_uuid_mount(mp); 753 if (error) 754 goto out_remove_errortag; 755 756 /* 757 * Update the preferred write size based on the information from the 758 * on-disk superblock. 759 */ 760 mp->m_allocsize_log = 761 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log); 762 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog); 763 764 /* set the low space thresholds for dynamic preallocation */ 765 xfs_set_low_space_thresholds(mp); 766 767 /* 768 * If enabled, sparse inode chunk alignment is expected to match the 769 * cluster size. Full inode chunk alignment must match the chunk size, 770 * but that is checked on sb read verification... 771 */ 772 if (xfs_sb_version_hassparseinodes(&mp->m_sb) && 773 mp->m_sb.sb_spino_align != 774 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) { 775 xfs_warn(mp, 776 "Sparse inode block alignment (%u) must match cluster size (%llu).", 777 mp->m_sb.sb_spino_align, 778 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)); 779 error = -EINVAL; 780 goto out_remove_uuid; 781 } 782 783 /* 784 * Check that the data (and log if separate) is an ok size. 785 */ 786 error = xfs_check_sizes(mp); 787 if (error) 788 goto out_remove_uuid; 789 790 /* 791 * Initialize realtime fields in the mount structure 792 */ 793 error = xfs_rtmount_init(mp); 794 if (error) { 795 xfs_warn(mp, "RT mount failed"); 796 goto out_remove_uuid; 797 } 798 799 /* 800 * Copies the low order bits of the timestamp and the randomly 801 * set "sequence" number out of a UUID. 802 */ 803 mp->m_fixedfsid[0] = 804 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 805 get_unaligned_be16(&sbp->sb_uuid.b[4]); 806 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 807 808 error = xfs_da_mount(mp); 809 if (error) { 810 xfs_warn(mp, "Failed dir/attr init: %d", error); 811 goto out_remove_uuid; 812 } 813 814 /* 815 * Initialize the precomputed transaction reservations values. 816 */ 817 xfs_trans_init(mp); 818 819 /* 820 * Allocate and initialize the per-ag data. 821 */ 822 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 823 if (error) { 824 xfs_warn(mp, "Failed per-ag init: %d", error); 825 goto out_free_dir; 826 } 827 828 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) { 829 xfs_warn(mp, "no log defined"); 830 error = -EFSCORRUPTED; 831 goto out_free_perag; 832 } 833 834 /* 835 * Log's mount-time initialization. The first part of recovery can place 836 * some items on the AIL, to be handled when recovery is finished or 837 * cancelled. 838 */ 839 error = xfs_log_mount(mp, mp->m_logdev_targp, 840 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 841 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 842 if (error) { 843 xfs_warn(mp, "log mount failed"); 844 goto out_fail_wait; 845 } 846 847 /* Make sure the summary counts are ok. */ 848 error = xfs_check_summary_counts(mp); 849 if (error) 850 goto out_log_dealloc; 851 852 /* 853 * Get and sanity-check the root inode. 854 * Save the pointer to it in the mount structure. 855 */ 856 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, 857 XFS_ILOCK_EXCL, &rip); 858 if (error) { 859 xfs_warn(mp, 860 "Failed to read root inode 0x%llx, error %d", 861 sbp->sb_rootino, -error); 862 goto out_log_dealloc; 863 } 864 865 ASSERT(rip != NULL); 866 867 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) { 868 xfs_warn(mp, "corrupted root inode %llu: not a directory", 869 (unsigned long long)rip->i_ino); 870 xfs_iunlock(rip, XFS_ILOCK_EXCL); 871 error = -EFSCORRUPTED; 872 goto out_rele_rip; 873 } 874 mp->m_rootip = rip; /* save it */ 875 876 xfs_iunlock(rip, XFS_ILOCK_EXCL); 877 878 /* 879 * Initialize realtime inode pointers in the mount structure 880 */ 881 error = xfs_rtmount_inodes(mp); 882 if (error) { 883 /* 884 * Free up the root inode. 885 */ 886 xfs_warn(mp, "failed to read RT inodes"); 887 goto out_rele_rip; 888 } 889 890 /* 891 * If this is a read-only mount defer the superblock updates until 892 * the next remount into writeable mode. Otherwise we would never 893 * perform the update e.g. for the root filesystem. 894 */ 895 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 896 error = xfs_sync_sb(mp, false); 897 if (error) { 898 xfs_warn(mp, "failed to write sb changes"); 899 goto out_rtunmount; 900 } 901 } 902 903 /* 904 * Initialise the XFS quota management subsystem for this mount 905 */ 906 if (XFS_IS_QUOTA_RUNNING(mp)) { 907 error = xfs_qm_newmount(mp, "amount, "aflags); 908 if (error) 909 goto out_rtunmount; 910 } else { 911 ASSERT(!XFS_IS_QUOTA_ON(mp)); 912 913 /* 914 * If a file system had quotas running earlier, but decided to 915 * mount without -o uquota/pquota/gquota options, revoke the 916 * quotachecked license. 917 */ 918 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 919 xfs_notice(mp, "resetting quota flags"); 920 error = xfs_mount_reset_sbqflags(mp); 921 if (error) 922 goto out_rtunmount; 923 } 924 } 925 926 /* 927 * Finish recovering the file system. This part needed to be delayed 928 * until after the root and real-time bitmap inodes were consistently 929 * read in. 930 */ 931 error = xfs_log_mount_finish(mp); 932 if (error) { 933 xfs_warn(mp, "log mount finish failed"); 934 goto out_rtunmount; 935 } 936 937 /* 938 * Now the log is fully replayed, we can transition to full read-only 939 * mode for read-only mounts. This will sync all the metadata and clean 940 * the log so that the recovery we just performed does not have to be 941 * replayed again on the next mount. 942 * 943 * We use the same quiesce mechanism as the rw->ro remount, as they are 944 * semantically identical operations. 945 */ 946 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) == 947 XFS_MOUNT_RDONLY) { 948 xfs_quiesce_attr(mp); 949 } 950 951 /* 952 * Complete the quota initialisation, post-log-replay component. 953 */ 954 if (quotamount) { 955 ASSERT(mp->m_qflags == 0); 956 mp->m_qflags = quotaflags; 957 958 xfs_qm_mount_quotas(mp); 959 } 960 961 /* 962 * Now we are mounted, reserve a small amount of unused space for 963 * privileged transactions. This is needed so that transaction 964 * space required for critical operations can dip into this pool 965 * when at ENOSPC. This is needed for operations like create with 966 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 967 * are not allowed to use this reserved space. 968 * 969 * This may drive us straight to ENOSPC on mount, but that implies 970 * we were already there on the last unmount. Warn if this occurs. 971 */ 972 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 973 resblks = xfs_default_resblks(mp); 974 error = xfs_reserve_blocks(mp, &resblks, NULL); 975 if (error) 976 xfs_warn(mp, 977 "Unable to allocate reserve blocks. Continuing without reserve pool."); 978 979 /* Recover any CoW blocks that never got remapped. */ 980 error = xfs_reflink_recover_cow(mp); 981 if (error) { 982 xfs_err(mp, 983 "Error %d recovering leftover CoW allocations.", error); 984 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 985 goto out_quota; 986 } 987 988 /* Reserve AG blocks for future btree expansion. */ 989 error = xfs_fs_reserve_ag_blocks(mp); 990 if (error && error != -ENOSPC) 991 goto out_agresv; 992 } 993 994 return 0; 995 996 out_agresv: 997 xfs_fs_unreserve_ag_blocks(mp); 998 out_quota: 999 xfs_qm_unmount_quotas(mp); 1000 out_rtunmount: 1001 xfs_rtunmount_inodes(mp); 1002 out_rele_rip: 1003 xfs_irele(rip); 1004 /* Clean out dquots that might be in memory after quotacheck. */ 1005 xfs_qm_unmount(mp); 1006 /* 1007 * Cancel all delayed reclaim work and reclaim the inodes directly. 1008 * We have to do this /after/ rtunmount and qm_unmount because those 1009 * two will have scheduled delayed reclaim for the rt/quota inodes. 1010 * 1011 * This is slightly different from the unmountfs call sequence 1012 * because we could be tearing down a partially set up mount. In 1013 * particular, if log_mount_finish fails we bail out without calling 1014 * qm_unmount_quotas and therefore rely on qm_unmount to release the 1015 * quota inodes. 1016 */ 1017 cancel_delayed_work_sync(&mp->m_reclaim_work); 1018 xfs_reclaim_inodes(mp, SYNC_WAIT); 1019 xfs_health_unmount(mp); 1020 out_log_dealloc: 1021 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1022 xfs_log_mount_cancel(mp); 1023 out_fail_wait: 1024 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1025 xfs_wait_buftarg(mp->m_logdev_targp); 1026 xfs_wait_buftarg(mp->m_ddev_targp); 1027 out_free_perag: 1028 xfs_free_perag(mp); 1029 out_free_dir: 1030 xfs_da_unmount(mp); 1031 out_remove_uuid: 1032 xfs_uuid_unmount(mp); 1033 out_remove_errortag: 1034 xfs_errortag_del(mp); 1035 out_remove_error_sysfs: 1036 xfs_error_sysfs_del(mp); 1037 out_del_stats: 1038 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1039 out_remove_sysfs: 1040 xfs_sysfs_del(&mp->m_kobj); 1041 out: 1042 return error; 1043 } 1044 1045 /* 1046 * This flushes out the inodes,dquots and the superblock, unmounts the 1047 * log and makes sure that incore structures are freed. 1048 */ 1049 void 1050 xfs_unmountfs( 1051 struct xfs_mount *mp) 1052 { 1053 uint64_t resblks; 1054 int error; 1055 1056 xfs_stop_block_reaping(mp); 1057 xfs_fs_unreserve_ag_blocks(mp); 1058 xfs_qm_unmount_quotas(mp); 1059 xfs_rtunmount_inodes(mp); 1060 xfs_irele(mp->m_rootip); 1061 1062 /* 1063 * We can potentially deadlock here if we have an inode cluster 1064 * that has been freed has its buffer still pinned in memory because 1065 * the transaction is still sitting in a iclog. The stale inodes 1066 * on that buffer will have their flush locks held until the 1067 * transaction hits the disk and the callbacks run. the inode 1068 * flush takes the flush lock unconditionally and with nothing to 1069 * push out the iclog we will never get that unlocked. hence we 1070 * need to force the log first. 1071 */ 1072 xfs_log_force(mp, XFS_LOG_SYNC); 1073 1074 /* 1075 * Wait for all busy extents to be freed, including completion of 1076 * any discard operation. 1077 */ 1078 xfs_extent_busy_wait_all(mp); 1079 flush_workqueue(xfs_discard_wq); 1080 1081 /* 1082 * We now need to tell the world we are unmounting. This will allow 1083 * us to detect that the filesystem is going away and we should error 1084 * out anything that we have been retrying in the background. This will 1085 * prevent neverending retries in AIL pushing from hanging the unmount. 1086 */ 1087 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1088 1089 /* 1090 * Flush all pending changes from the AIL. 1091 */ 1092 xfs_ail_push_all_sync(mp->m_ail); 1093 1094 /* 1095 * And reclaim all inodes. At this point there should be no dirty 1096 * inodes and none should be pinned or locked, but use synchronous 1097 * reclaim just to be sure. We can stop background inode reclaim 1098 * here as well if it is still running. 1099 */ 1100 cancel_delayed_work_sync(&mp->m_reclaim_work); 1101 xfs_reclaim_inodes(mp, SYNC_WAIT); 1102 xfs_health_unmount(mp); 1103 1104 xfs_qm_unmount(mp); 1105 1106 /* 1107 * Unreserve any blocks we have so that when we unmount we don't account 1108 * the reserved free space as used. This is really only necessary for 1109 * lazy superblock counting because it trusts the incore superblock 1110 * counters to be absolutely correct on clean unmount. 1111 * 1112 * We don't bother correcting this elsewhere for lazy superblock 1113 * counting because on mount of an unclean filesystem we reconstruct the 1114 * correct counter value and this is irrelevant. 1115 * 1116 * For non-lazy counter filesystems, this doesn't matter at all because 1117 * we only every apply deltas to the superblock and hence the incore 1118 * value does not matter.... 1119 */ 1120 resblks = 0; 1121 error = xfs_reserve_blocks(mp, &resblks, NULL); 1122 if (error) 1123 xfs_warn(mp, "Unable to free reserved block pool. " 1124 "Freespace may not be correct on next mount."); 1125 1126 error = xfs_log_sbcount(mp); 1127 if (error) 1128 xfs_warn(mp, "Unable to update superblock counters. " 1129 "Freespace may not be correct on next mount."); 1130 1131 1132 xfs_log_unmount(mp); 1133 xfs_da_unmount(mp); 1134 xfs_uuid_unmount(mp); 1135 1136 #if defined(DEBUG) 1137 xfs_errortag_clearall(mp); 1138 #endif 1139 xfs_free_perag(mp); 1140 1141 xfs_errortag_del(mp); 1142 xfs_error_sysfs_del(mp); 1143 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1144 xfs_sysfs_del(&mp->m_kobj); 1145 } 1146 1147 /* 1148 * Determine whether modifications can proceed. The caller specifies the minimum 1149 * freeze level for which modifications should not be allowed. This allows 1150 * certain operations to proceed while the freeze sequence is in progress, if 1151 * necessary. 1152 */ 1153 bool 1154 xfs_fs_writable( 1155 struct xfs_mount *mp, 1156 int level) 1157 { 1158 ASSERT(level > SB_UNFROZEN); 1159 if ((mp->m_super->s_writers.frozen >= level) || 1160 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY)) 1161 return false; 1162 1163 return true; 1164 } 1165 1166 /* 1167 * xfs_log_sbcount 1168 * 1169 * Sync the superblock counters to disk. 1170 * 1171 * Note this code can be called during the process of freezing, so we use the 1172 * transaction allocator that does not block when the transaction subsystem is 1173 * in its frozen state. 1174 */ 1175 int 1176 xfs_log_sbcount(xfs_mount_t *mp) 1177 { 1178 /* allow this to proceed during the freeze sequence... */ 1179 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE)) 1180 return 0; 1181 1182 /* 1183 * we don't need to do this if we are updating the superblock 1184 * counters on every modification. 1185 */ 1186 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1187 return 0; 1188 1189 return xfs_sync_sb(mp, true); 1190 } 1191 1192 /* 1193 * Deltas for the inode count are +/-64, hence we use a large batch size 1194 * of 128 so we don't need to take the counter lock on every update. 1195 */ 1196 #define XFS_ICOUNT_BATCH 128 1197 int 1198 xfs_mod_icount( 1199 struct xfs_mount *mp, 1200 int64_t delta) 1201 { 1202 percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH); 1203 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) { 1204 ASSERT(0); 1205 percpu_counter_add(&mp->m_icount, -delta); 1206 return -EINVAL; 1207 } 1208 return 0; 1209 } 1210 1211 int 1212 xfs_mod_ifree( 1213 struct xfs_mount *mp, 1214 int64_t delta) 1215 { 1216 percpu_counter_add(&mp->m_ifree, delta); 1217 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) { 1218 ASSERT(0); 1219 percpu_counter_add(&mp->m_ifree, -delta); 1220 return -EINVAL; 1221 } 1222 return 0; 1223 } 1224 1225 /* 1226 * Deltas for the block count can vary from 1 to very large, but lock contention 1227 * only occurs on frequent small block count updates such as in the delayed 1228 * allocation path for buffered writes (page a time updates). Hence we set 1229 * a large batch count (1024) to minimise global counter updates except when 1230 * we get near to ENOSPC and we have to be very accurate with our updates. 1231 */ 1232 #define XFS_FDBLOCKS_BATCH 1024 1233 int 1234 xfs_mod_fdblocks( 1235 struct xfs_mount *mp, 1236 int64_t delta, 1237 bool rsvd) 1238 { 1239 int64_t lcounter; 1240 long long res_used; 1241 s32 batch; 1242 1243 if (delta > 0) { 1244 /* 1245 * If the reserve pool is depleted, put blocks back into it 1246 * first. Most of the time the pool is full. 1247 */ 1248 if (likely(mp->m_resblks == mp->m_resblks_avail)) { 1249 percpu_counter_add(&mp->m_fdblocks, delta); 1250 return 0; 1251 } 1252 1253 spin_lock(&mp->m_sb_lock); 1254 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1255 1256 if (res_used > delta) { 1257 mp->m_resblks_avail += delta; 1258 } else { 1259 delta -= res_used; 1260 mp->m_resblks_avail = mp->m_resblks; 1261 percpu_counter_add(&mp->m_fdblocks, delta); 1262 } 1263 spin_unlock(&mp->m_sb_lock); 1264 return 0; 1265 } 1266 1267 /* 1268 * Taking blocks away, need to be more accurate the closer we 1269 * are to zero. 1270 * 1271 * If the counter has a value of less than 2 * max batch size, 1272 * then make everything serialise as we are real close to 1273 * ENOSPC. 1274 */ 1275 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, 1276 XFS_FDBLOCKS_BATCH) < 0) 1277 batch = 1; 1278 else 1279 batch = XFS_FDBLOCKS_BATCH; 1280 1281 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch); 1282 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside, 1283 XFS_FDBLOCKS_BATCH) >= 0) { 1284 /* we had space! */ 1285 return 0; 1286 } 1287 1288 /* 1289 * lock up the sb for dipping into reserves before releasing the space 1290 * that took us to ENOSPC. 1291 */ 1292 spin_lock(&mp->m_sb_lock); 1293 percpu_counter_add(&mp->m_fdblocks, -delta); 1294 if (!rsvd) 1295 goto fdblocks_enospc; 1296 1297 lcounter = (long long)mp->m_resblks_avail + delta; 1298 if (lcounter >= 0) { 1299 mp->m_resblks_avail = lcounter; 1300 spin_unlock(&mp->m_sb_lock); 1301 return 0; 1302 } 1303 printk_once(KERN_WARNING 1304 "Filesystem \"%s\": reserve blocks depleted! " 1305 "Consider increasing reserve pool size.", 1306 mp->m_super->s_id); 1307 fdblocks_enospc: 1308 spin_unlock(&mp->m_sb_lock); 1309 return -ENOSPC; 1310 } 1311 1312 int 1313 xfs_mod_frextents( 1314 struct xfs_mount *mp, 1315 int64_t delta) 1316 { 1317 int64_t lcounter; 1318 int ret = 0; 1319 1320 spin_lock(&mp->m_sb_lock); 1321 lcounter = mp->m_sb.sb_frextents + delta; 1322 if (lcounter < 0) 1323 ret = -ENOSPC; 1324 else 1325 mp->m_sb.sb_frextents = lcounter; 1326 spin_unlock(&mp->m_sb_lock); 1327 return ret; 1328 } 1329 1330 /* 1331 * xfs_getsb() is called to obtain the buffer for the superblock. 1332 * The buffer is returned locked and read in from disk. 1333 * The buffer should be released with a call to xfs_brelse(). 1334 */ 1335 struct xfs_buf * 1336 xfs_getsb( 1337 struct xfs_mount *mp) 1338 { 1339 struct xfs_buf *bp = mp->m_sb_bp; 1340 1341 xfs_buf_lock(bp); 1342 xfs_buf_hold(bp); 1343 ASSERT(bp->b_flags & XBF_DONE); 1344 return bp; 1345 } 1346 1347 /* 1348 * Used to free the superblock along various error paths. 1349 */ 1350 void 1351 xfs_freesb( 1352 struct xfs_mount *mp) 1353 { 1354 struct xfs_buf *bp = mp->m_sb_bp; 1355 1356 xfs_buf_lock(bp); 1357 mp->m_sb_bp = NULL; 1358 xfs_buf_relse(bp); 1359 } 1360 1361 /* 1362 * If the underlying (data/log/rt) device is readonly, there are some 1363 * operations that cannot proceed. 1364 */ 1365 int 1366 xfs_dev_is_read_only( 1367 struct xfs_mount *mp, 1368 char *message) 1369 { 1370 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1371 xfs_readonly_buftarg(mp->m_logdev_targp) || 1372 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1373 xfs_notice(mp, "%s required on read-only device.", message); 1374 xfs_notice(mp, "write access unavailable, cannot proceed."); 1375 return -EROFS; 1376 } 1377 return 0; 1378 } 1379 1380 /* Force the summary counters to be recalculated at next mount. */ 1381 void 1382 xfs_force_summary_recalc( 1383 struct xfs_mount *mp) 1384 { 1385 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1386 return; 1387 1388 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 1389 } 1390 1391 /* 1392 * Update the in-core delayed block counter. 1393 * 1394 * We prefer to update the counter without having to take a spinlock for every 1395 * counter update (i.e. batching). Each change to delayed allocation 1396 * reservations can change can easily exceed the default percpu counter 1397 * batching, so we use a larger batch factor here. 1398 * 1399 * Note that we don't currently have any callers requiring fast summation 1400 * (e.g. percpu_counter_read) so we can use a big batch value here. 1401 */ 1402 #define XFS_DELALLOC_BATCH (4096) 1403 void 1404 xfs_mod_delalloc( 1405 struct xfs_mount *mp, 1406 int64_t delta) 1407 { 1408 percpu_counter_add_batch(&mp->m_delalloc_blks, delta, 1409 XFS_DELALLOC_BATCH); 1410 } 1411