1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_inum.h" 26 #include "xfs_sb.h" 27 #include "xfs_ag.h" 28 #include "xfs_mount.h" 29 #include "xfs_da_format.h" 30 #include "xfs_inode.h" 31 #include "xfs_dir2.h" 32 #include "xfs_ialloc.h" 33 #include "xfs_alloc.h" 34 #include "xfs_rtalloc.h" 35 #include "xfs_bmap.h" 36 #include "xfs_trans.h" 37 #include "xfs_trans_priv.h" 38 #include "xfs_log.h" 39 #include "xfs_error.h" 40 #include "xfs_quota.h" 41 #include "xfs_fsops.h" 42 #include "xfs_trace.h" 43 #include "xfs_icache.h" 44 #include "xfs_dinode.h" 45 46 47 #ifdef HAVE_PERCPU_SB 48 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, 49 int); 50 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t, 51 int); 52 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); 53 #else 54 55 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0) 56 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0) 57 #endif 58 59 static DEFINE_MUTEX(xfs_uuid_table_mutex); 60 static int xfs_uuid_table_size; 61 static uuid_t *xfs_uuid_table; 62 63 /* 64 * See if the UUID is unique among mounted XFS filesystems. 65 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 66 */ 67 STATIC int 68 xfs_uuid_mount( 69 struct xfs_mount *mp) 70 { 71 uuid_t *uuid = &mp->m_sb.sb_uuid; 72 int hole, i; 73 74 if (mp->m_flags & XFS_MOUNT_NOUUID) 75 return 0; 76 77 if (uuid_is_nil(uuid)) { 78 xfs_warn(mp, "Filesystem has nil UUID - can't mount"); 79 return XFS_ERROR(EINVAL); 80 } 81 82 mutex_lock(&xfs_uuid_table_mutex); 83 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 84 if (uuid_is_nil(&xfs_uuid_table[i])) { 85 hole = i; 86 continue; 87 } 88 if (uuid_equal(uuid, &xfs_uuid_table[i])) 89 goto out_duplicate; 90 } 91 92 if (hole < 0) { 93 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 94 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 95 xfs_uuid_table_size * sizeof(*xfs_uuid_table), 96 KM_SLEEP); 97 hole = xfs_uuid_table_size++; 98 } 99 xfs_uuid_table[hole] = *uuid; 100 mutex_unlock(&xfs_uuid_table_mutex); 101 102 return 0; 103 104 out_duplicate: 105 mutex_unlock(&xfs_uuid_table_mutex); 106 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 107 return XFS_ERROR(EINVAL); 108 } 109 110 STATIC void 111 xfs_uuid_unmount( 112 struct xfs_mount *mp) 113 { 114 uuid_t *uuid = &mp->m_sb.sb_uuid; 115 int i; 116 117 if (mp->m_flags & XFS_MOUNT_NOUUID) 118 return; 119 120 mutex_lock(&xfs_uuid_table_mutex); 121 for (i = 0; i < xfs_uuid_table_size; i++) { 122 if (uuid_is_nil(&xfs_uuid_table[i])) 123 continue; 124 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 125 continue; 126 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 127 break; 128 } 129 ASSERT(i < xfs_uuid_table_size); 130 mutex_unlock(&xfs_uuid_table_mutex); 131 } 132 133 134 STATIC void 135 __xfs_free_perag( 136 struct rcu_head *head) 137 { 138 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 139 140 ASSERT(atomic_read(&pag->pag_ref) == 0); 141 kmem_free(pag); 142 } 143 144 /* 145 * Free up the per-ag resources associated with the mount structure. 146 */ 147 STATIC void 148 xfs_free_perag( 149 xfs_mount_t *mp) 150 { 151 xfs_agnumber_t agno; 152 struct xfs_perag *pag; 153 154 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 155 spin_lock(&mp->m_perag_lock); 156 pag = radix_tree_delete(&mp->m_perag_tree, agno); 157 spin_unlock(&mp->m_perag_lock); 158 ASSERT(pag); 159 ASSERT(atomic_read(&pag->pag_ref) == 0); 160 call_rcu(&pag->rcu_head, __xfs_free_perag); 161 } 162 } 163 164 /* 165 * Check size of device based on the (data/realtime) block count. 166 * Note: this check is used by the growfs code as well as mount. 167 */ 168 int 169 xfs_sb_validate_fsb_count( 170 xfs_sb_t *sbp, 171 __uint64_t nblocks) 172 { 173 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 174 ASSERT(sbp->sb_blocklog >= BBSHIFT); 175 176 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */ 177 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 178 return EFBIG; 179 #else /* Limited by UINT_MAX of sectors */ 180 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX) 181 return EFBIG; 182 #endif 183 return 0; 184 } 185 186 int 187 xfs_initialize_perag( 188 xfs_mount_t *mp, 189 xfs_agnumber_t agcount, 190 xfs_agnumber_t *maxagi) 191 { 192 xfs_agnumber_t index; 193 xfs_agnumber_t first_initialised = 0; 194 xfs_perag_t *pag; 195 xfs_agino_t agino; 196 xfs_ino_t ino; 197 xfs_sb_t *sbp = &mp->m_sb; 198 int error = -ENOMEM; 199 200 /* 201 * Walk the current per-ag tree so we don't try to initialise AGs 202 * that already exist (growfs case). Allocate and insert all the 203 * AGs we don't find ready for initialisation. 204 */ 205 for (index = 0; index < agcount; index++) { 206 pag = xfs_perag_get(mp, index); 207 if (pag) { 208 xfs_perag_put(pag); 209 continue; 210 } 211 if (!first_initialised) 212 first_initialised = index; 213 214 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 215 if (!pag) 216 goto out_unwind; 217 pag->pag_agno = index; 218 pag->pag_mount = mp; 219 spin_lock_init(&pag->pag_ici_lock); 220 mutex_init(&pag->pag_ici_reclaim_lock); 221 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 222 spin_lock_init(&pag->pag_buf_lock); 223 pag->pag_buf_tree = RB_ROOT; 224 225 if (radix_tree_preload(GFP_NOFS)) 226 goto out_unwind; 227 228 spin_lock(&mp->m_perag_lock); 229 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 230 BUG(); 231 spin_unlock(&mp->m_perag_lock); 232 radix_tree_preload_end(); 233 error = -EEXIST; 234 goto out_unwind; 235 } 236 spin_unlock(&mp->m_perag_lock); 237 radix_tree_preload_end(); 238 } 239 240 /* 241 * If we mount with the inode64 option, or no inode overflows 242 * the legacy 32-bit address space clear the inode32 option. 243 */ 244 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); 245 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 246 247 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32) 248 mp->m_flags |= XFS_MOUNT_32BITINODES; 249 else 250 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 251 252 if (mp->m_flags & XFS_MOUNT_32BITINODES) 253 index = xfs_set_inode32(mp); 254 else 255 index = xfs_set_inode64(mp); 256 257 if (maxagi) 258 *maxagi = index; 259 return 0; 260 261 out_unwind: 262 kmem_free(pag); 263 for (; index > first_initialised; index--) { 264 pag = radix_tree_delete(&mp->m_perag_tree, index); 265 kmem_free(pag); 266 } 267 return error; 268 } 269 270 /* 271 * xfs_readsb 272 * 273 * Does the initial read of the superblock. 274 */ 275 int 276 xfs_readsb( 277 struct xfs_mount *mp, 278 int flags) 279 { 280 unsigned int sector_size; 281 struct xfs_buf *bp; 282 struct xfs_sb *sbp = &mp->m_sb; 283 int error; 284 int loud = !(flags & XFS_MFSI_QUIET); 285 286 ASSERT(mp->m_sb_bp == NULL); 287 ASSERT(mp->m_ddev_targp != NULL); 288 289 /* 290 * Allocate a (locked) buffer to hold the superblock. 291 * This will be kept around at all times to optimize 292 * access to the superblock. 293 */ 294 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 295 296 reread: 297 bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 298 BTOBB(sector_size), 0, 299 loud ? &xfs_sb_buf_ops 300 : &xfs_sb_quiet_buf_ops); 301 if (!bp) { 302 if (loud) 303 xfs_warn(mp, "SB buffer read failed"); 304 return EIO; 305 } 306 if (bp->b_error) { 307 error = bp->b_error; 308 if (loud) 309 xfs_warn(mp, "SB validate failed with error %d.", error); 310 goto release_buf; 311 } 312 313 /* 314 * Initialize the mount structure from the superblock. 315 */ 316 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp)); 317 xfs_sb_quota_from_disk(&mp->m_sb); 318 319 /* 320 * We must be able to do sector-sized and sector-aligned IO. 321 */ 322 if (sector_size > sbp->sb_sectsize) { 323 if (loud) 324 xfs_warn(mp, "device supports %u byte sectors (not %u)", 325 sector_size, sbp->sb_sectsize); 326 error = ENOSYS; 327 goto release_buf; 328 } 329 330 /* 331 * If device sector size is smaller than the superblock size, 332 * re-read the superblock so the buffer is correctly sized. 333 */ 334 if (sector_size < sbp->sb_sectsize) { 335 xfs_buf_relse(bp); 336 sector_size = sbp->sb_sectsize; 337 goto reread; 338 } 339 340 /* Initialize per-cpu counters */ 341 xfs_icsb_reinit_counters(mp); 342 343 /* no need to be quiet anymore, so reset the buf ops */ 344 bp->b_ops = &xfs_sb_buf_ops; 345 346 mp->m_sb_bp = bp; 347 xfs_buf_unlock(bp); 348 return 0; 349 350 release_buf: 351 xfs_buf_relse(bp); 352 return error; 353 } 354 355 /* 356 * Update alignment values based on mount options and sb values 357 */ 358 STATIC int 359 xfs_update_alignment(xfs_mount_t *mp) 360 { 361 xfs_sb_t *sbp = &(mp->m_sb); 362 363 if (mp->m_dalign) { 364 /* 365 * If stripe unit and stripe width are not multiples 366 * of the fs blocksize turn off alignment. 367 */ 368 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 369 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 370 xfs_warn(mp, 371 "alignment check failed: sunit/swidth vs. blocksize(%d)", 372 sbp->sb_blocksize); 373 return XFS_ERROR(EINVAL); 374 } else { 375 /* 376 * Convert the stripe unit and width to FSBs. 377 */ 378 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 379 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 380 xfs_warn(mp, 381 "alignment check failed: sunit/swidth vs. agsize(%d)", 382 sbp->sb_agblocks); 383 return XFS_ERROR(EINVAL); 384 } else if (mp->m_dalign) { 385 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 386 } else { 387 xfs_warn(mp, 388 "alignment check failed: sunit(%d) less than bsize(%d)", 389 mp->m_dalign, sbp->sb_blocksize); 390 return XFS_ERROR(EINVAL); 391 } 392 } 393 394 /* 395 * Update superblock with new values 396 * and log changes 397 */ 398 if (xfs_sb_version_hasdalign(sbp)) { 399 if (sbp->sb_unit != mp->m_dalign) { 400 sbp->sb_unit = mp->m_dalign; 401 mp->m_update_flags |= XFS_SB_UNIT; 402 } 403 if (sbp->sb_width != mp->m_swidth) { 404 sbp->sb_width = mp->m_swidth; 405 mp->m_update_flags |= XFS_SB_WIDTH; 406 } 407 } else { 408 xfs_warn(mp, 409 "cannot change alignment: superblock does not support data alignment"); 410 return XFS_ERROR(EINVAL); 411 } 412 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 413 xfs_sb_version_hasdalign(&mp->m_sb)) { 414 mp->m_dalign = sbp->sb_unit; 415 mp->m_swidth = sbp->sb_width; 416 } 417 418 return 0; 419 } 420 421 /* 422 * Set the maximum inode count for this filesystem 423 */ 424 STATIC void 425 xfs_set_maxicount(xfs_mount_t *mp) 426 { 427 xfs_sb_t *sbp = &(mp->m_sb); 428 __uint64_t icount; 429 430 if (sbp->sb_imax_pct) { 431 /* 432 * Make sure the maximum inode count is a multiple 433 * of the units we allocate inodes in. 434 */ 435 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 436 do_div(icount, 100); 437 do_div(icount, mp->m_ialloc_blks); 438 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 439 sbp->sb_inopblog; 440 } else { 441 mp->m_maxicount = 0; 442 } 443 } 444 445 /* 446 * Set the default minimum read and write sizes unless 447 * already specified in a mount option. 448 * We use smaller I/O sizes when the file system 449 * is being used for NFS service (wsync mount option). 450 */ 451 STATIC void 452 xfs_set_rw_sizes(xfs_mount_t *mp) 453 { 454 xfs_sb_t *sbp = &(mp->m_sb); 455 int readio_log, writeio_log; 456 457 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 458 if (mp->m_flags & XFS_MOUNT_WSYNC) { 459 readio_log = XFS_WSYNC_READIO_LOG; 460 writeio_log = XFS_WSYNC_WRITEIO_LOG; 461 } else { 462 readio_log = XFS_READIO_LOG_LARGE; 463 writeio_log = XFS_WRITEIO_LOG_LARGE; 464 } 465 } else { 466 readio_log = mp->m_readio_log; 467 writeio_log = mp->m_writeio_log; 468 } 469 470 if (sbp->sb_blocklog > readio_log) { 471 mp->m_readio_log = sbp->sb_blocklog; 472 } else { 473 mp->m_readio_log = readio_log; 474 } 475 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 476 if (sbp->sb_blocklog > writeio_log) { 477 mp->m_writeio_log = sbp->sb_blocklog; 478 } else { 479 mp->m_writeio_log = writeio_log; 480 } 481 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 482 } 483 484 /* 485 * precalculate the low space thresholds for dynamic speculative preallocation. 486 */ 487 void 488 xfs_set_low_space_thresholds( 489 struct xfs_mount *mp) 490 { 491 int i; 492 493 for (i = 0; i < XFS_LOWSP_MAX; i++) { 494 __uint64_t space = mp->m_sb.sb_dblocks; 495 496 do_div(space, 100); 497 mp->m_low_space[i] = space * (i + 1); 498 } 499 } 500 501 502 /* 503 * Set whether we're using inode alignment. 504 */ 505 STATIC void 506 xfs_set_inoalignment(xfs_mount_t *mp) 507 { 508 if (xfs_sb_version_hasalign(&mp->m_sb) && 509 mp->m_sb.sb_inoalignmt >= 510 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 511 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 512 else 513 mp->m_inoalign_mask = 0; 514 /* 515 * If we are using stripe alignment, check whether 516 * the stripe unit is a multiple of the inode alignment 517 */ 518 if (mp->m_dalign && mp->m_inoalign_mask && 519 !(mp->m_dalign & mp->m_inoalign_mask)) 520 mp->m_sinoalign = mp->m_dalign; 521 else 522 mp->m_sinoalign = 0; 523 } 524 525 /* 526 * Check that the data (and log if separate) is an ok size. 527 */ 528 STATIC int 529 xfs_check_sizes(xfs_mount_t *mp) 530 { 531 xfs_buf_t *bp; 532 xfs_daddr_t d; 533 534 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 535 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 536 xfs_warn(mp, "filesystem size mismatch detected"); 537 return XFS_ERROR(EFBIG); 538 } 539 bp = xfs_buf_read_uncached(mp->m_ddev_targp, 540 d - XFS_FSS_TO_BB(mp, 1), 541 XFS_FSS_TO_BB(mp, 1), 0, NULL); 542 if (!bp) { 543 xfs_warn(mp, "last sector read failed"); 544 return EIO; 545 } 546 xfs_buf_relse(bp); 547 548 if (mp->m_logdev_targp != mp->m_ddev_targp) { 549 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 550 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 551 xfs_warn(mp, "log size mismatch detected"); 552 return XFS_ERROR(EFBIG); 553 } 554 bp = xfs_buf_read_uncached(mp->m_logdev_targp, 555 d - XFS_FSB_TO_BB(mp, 1), 556 XFS_FSB_TO_BB(mp, 1), 0, NULL); 557 if (!bp) { 558 xfs_warn(mp, "log device read failed"); 559 return EIO; 560 } 561 xfs_buf_relse(bp); 562 } 563 return 0; 564 } 565 566 /* 567 * Clear the quotaflags in memory and in the superblock. 568 */ 569 int 570 xfs_mount_reset_sbqflags( 571 struct xfs_mount *mp) 572 { 573 int error; 574 struct xfs_trans *tp; 575 576 mp->m_qflags = 0; 577 578 /* 579 * It is OK to look at sb_qflags here in mount path, 580 * without m_sb_lock. 581 */ 582 if (mp->m_sb.sb_qflags == 0) 583 return 0; 584 spin_lock(&mp->m_sb_lock); 585 mp->m_sb.sb_qflags = 0; 586 spin_unlock(&mp->m_sb_lock); 587 588 /* 589 * If the fs is readonly, let the incore superblock run 590 * with quotas off but don't flush the update out to disk 591 */ 592 if (mp->m_flags & XFS_MOUNT_RDONLY) 593 return 0; 594 595 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE); 596 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_qm_sbchange, 0, 0); 597 if (error) { 598 xfs_trans_cancel(tp, 0); 599 xfs_alert(mp, "%s: Superblock update failed!", __func__); 600 return error; 601 } 602 603 xfs_mod_sb(tp, XFS_SB_QFLAGS); 604 return xfs_trans_commit(tp, 0); 605 } 606 607 __uint64_t 608 xfs_default_resblks(xfs_mount_t *mp) 609 { 610 __uint64_t resblks; 611 612 /* 613 * We default to 5% or 8192 fsbs of space reserved, whichever is 614 * smaller. This is intended to cover concurrent allocation 615 * transactions when we initially hit enospc. These each require a 4 616 * block reservation. Hence by default we cover roughly 2000 concurrent 617 * allocation reservations. 618 */ 619 resblks = mp->m_sb.sb_dblocks; 620 do_div(resblks, 20); 621 resblks = min_t(__uint64_t, resblks, 8192); 622 return resblks; 623 } 624 625 /* 626 * This function does the following on an initial mount of a file system: 627 * - reads the superblock from disk and init the mount struct 628 * - if we're a 32-bit kernel, do a size check on the superblock 629 * so we don't mount terabyte filesystems 630 * - init mount struct realtime fields 631 * - allocate inode hash table for fs 632 * - init directory manager 633 * - perform recovery and init the log manager 634 */ 635 int 636 xfs_mountfs( 637 xfs_mount_t *mp) 638 { 639 xfs_sb_t *sbp = &(mp->m_sb); 640 xfs_inode_t *rip; 641 __uint64_t resblks; 642 uint quotamount = 0; 643 uint quotaflags = 0; 644 int error = 0; 645 646 xfs_sb_mount_common(mp, sbp); 647 648 /* 649 * Check for a mismatched features2 values. Older kernels 650 * read & wrote into the wrong sb offset for sb_features2 651 * on some platforms due to xfs_sb_t not being 64bit size aligned 652 * when sb_features2 was added, which made older superblock 653 * reading/writing routines swap it as a 64-bit value. 654 * 655 * For backwards compatibility, we make both slots equal. 656 * 657 * If we detect a mismatched field, we OR the set bits into the 658 * existing features2 field in case it has already been modified; we 659 * don't want to lose any features. We then update the bad location 660 * with the ORed value so that older kernels will see any features2 661 * flags, and mark the two fields as needing updates once the 662 * transaction subsystem is online. 663 */ 664 if (xfs_sb_has_mismatched_features2(sbp)) { 665 xfs_warn(mp, "correcting sb_features alignment problem"); 666 sbp->sb_features2 |= sbp->sb_bad_features2; 667 sbp->sb_bad_features2 = sbp->sb_features2; 668 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2; 669 670 /* 671 * Re-check for ATTR2 in case it was found in bad_features2 672 * slot. 673 */ 674 if (xfs_sb_version_hasattr2(&mp->m_sb) && 675 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 676 mp->m_flags |= XFS_MOUNT_ATTR2; 677 } 678 679 if (xfs_sb_version_hasattr2(&mp->m_sb) && 680 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 681 xfs_sb_version_removeattr2(&mp->m_sb); 682 mp->m_update_flags |= XFS_SB_FEATURES2; 683 684 /* update sb_versionnum for the clearing of the morebits */ 685 if (!sbp->sb_features2) 686 mp->m_update_flags |= XFS_SB_VERSIONNUM; 687 } 688 689 /* 690 * Check if sb_agblocks is aligned at stripe boundary 691 * If sb_agblocks is NOT aligned turn off m_dalign since 692 * allocator alignment is within an ag, therefore ag has 693 * to be aligned at stripe boundary. 694 */ 695 error = xfs_update_alignment(mp); 696 if (error) 697 goto out; 698 699 xfs_alloc_compute_maxlevels(mp); 700 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 701 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 702 xfs_ialloc_compute_maxlevels(mp); 703 704 xfs_set_maxicount(mp); 705 706 error = xfs_uuid_mount(mp); 707 if (error) 708 goto out; 709 710 /* 711 * Set the minimum read and write sizes 712 */ 713 xfs_set_rw_sizes(mp); 714 715 /* set the low space thresholds for dynamic preallocation */ 716 xfs_set_low_space_thresholds(mp); 717 718 /* 719 * Set the inode cluster size. 720 * This may still be overridden by the file system 721 * block size if it is larger than the chosen cluster size. 722 * 723 * For v5 filesystems, scale the cluster size with the inode size to 724 * keep a constant ratio of inode per cluster buffer, but only if mkfs 725 * has set the inode alignment value appropriately for larger cluster 726 * sizes. 727 */ 728 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 729 if (xfs_sb_version_hascrc(&mp->m_sb)) { 730 int new_size = mp->m_inode_cluster_size; 731 732 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; 733 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) 734 mp->m_inode_cluster_size = new_size; 735 xfs_info(mp, "Using inode cluster size of %d bytes", 736 mp->m_inode_cluster_size); 737 } 738 739 /* 740 * Set inode alignment fields 741 */ 742 xfs_set_inoalignment(mp); 743 744 /* 745 * Check that the data (and log if separate) is an ok size. 746 */ 747 error = xfs_check_sizes(mp); 748 if (error) 749 goto out_remove_uuid; 750 751 /* 752 * Initialize realtime fields in the mount structure 753 */ 754 error = xfs_rtmount_init(mp); 755 if (error) { 756 xfs_warn(mp, "RT mount failed"); 757 goto out_remove_uuid; 758 } 759 760 /* 761 * Copies the low order bits of the timestamp and the randomly 762 * set "sequence" number out of a UUID. 763 */ 764 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 765 766 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 767 768 xfs_dir_mount(mp); 769 770 /* 771 * Initialize the attribute manager's entries. 772 */ 773 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100; 774 775 /* 776 * Initialize the precomputed transaction reservations values. 777 */ 778 xfs_trans_init(mp); 779 780 /* 781 * Allocate and initialize the per-ag data. 782 */ 783 spin_lock_init(&mp->m_perag_lock); 784 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 785 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 786 if (error) { 787 xfs_warn(mp, "Failed per-ag init: %d", error); 788 goto out_remove_uuid; 789 } 790 791 if (!sbp->sb_logblocks) { 792 xfs_warn(mp, "no log defined"); 793 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 794 error = XFS_ERROR(EFSCORRUPTED); 795 goto out_free_perag; 796 } 797 798 /* 799 * log's mount-time initialization. Perform 1st part recovery if needed 800 */ 801 error = xfs_log_mount(mp, mp->m_logdev_targp, 802 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 803 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 804 if (error) { 805 xfs_warn(mp, "log mount failed"); 806 goto out_fail_wait; 807 } 808 809 /* 810 * Now the log is mounted, we know if it was an unclean shutdown or 811 * not. If it was, with the first phase of recovery has completed, we 812 * have consistent AG blocks on disk. We have not recovered EFIs yet, 813 * but they are recovered transactionally in the second recovery phase 814 * later. 815 * 816 * Hence we can safely re-initialise incore superblock counters from 817 * the per-ag data. These may not be correct if the filesystem was not 818 * cleanly unmounted, so we need to wait for recovery to finish before 819 * doing this. 820 * 821 * If the filesystem was cleanly unmounted, then we can trust the 822 * values in the superblock to be correct and we don't need to do 823 * anything here. 824 * 825 * If we are currently making the filesystem, the initialisation will 826 * fail as the perag data is in an undefined state. 827 */ 828 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 829 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 830 !mp->m_sb.sb_inprogress) { 831 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 832 if (error) 833 goto out_fail_wait; 834 } 835 836 /* 837 * Get and sanity-check the root inode. 838 * Save the pointer to it in the mount structure. 839 */ 840 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip); 841 if (error) { 842 xfs_warn(mp, "failed to read root inode"); 843 goto out_log_dealloc; 844 } 845 846 ASSERT(rip != NULL); 847 848 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) { 849 xfs_warn(mp, "corrupted root inode %llu: not a directory", 850 (unsigned long long)rip->i_ino); 851 xfs_iunlock(rip, XFS_ILOCK_EXCL); 852 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 853 mp); 854 error = XFS_ERROR(EFSCORRUPTED); 855 goto out_rele_rip; 856 } 857 mp->m_rootip = rip; /* save it */ 858 859 xfs_iunlock(rip, XFS_ILOCK_EXCL); 860 861 /* 862 * Initialize realtime inode pointers in the mount structure 863 */ 864 error = xfs_rtmount_inodes(mp); 865 if (error) { 866 /* 867 * Free up the root inode. 868 */ 869 xfs_warn(mp, "failed to read RT inodes"); 870 goto out_rele_rip; 871 } 872 873 /* 874 * If this is a read-only mount defer the superblock updates until 875 * the next remount into writeable mode. Otherwise we would never 876 * perform the update e.g. for the root filesystem. 877 */ 878 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 879 error = xfs_mount_log_sb(mp, mp->m_update_flags); 880 if (error) { 881 xfs_warn(mp, "failed to write sb changes"); 882 goto out_rtunmount; 883 } 884 } 885 886 /* 887 * Initialise the XFS quota management subsystem for this mount 888 */ 889 if (XFS_IS_QUOTA_RUNNING(mp)) { 890 error = xfs_qm_newmount(mp, "amount, "aflags); 891 if (error) 892 goto out_rtunmount; 893 } else { 894 ASSERT(!XFS_IS_QUOTA_ON(mp)); 895 896 /* 897 * If a file system had quotas running earlier, but decided to 898 * mount without -o uquota/pquota/gquota options, revoke the 899 * quotachecked license. 900 */ 901 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 902 xfs_notice(mp, "resetting quota flags"); 903 error = xfs_mount_reset_sbqflags(mp); 904 if (error) 905 return error; 906 } 907 } 908 909 /* 910 * Finish recovering the file system. This part needed to be 911 * delayed until after the root and real-time bitmap inodes 912 * were consistently read in. 913 */ 914 error = xfs_log_mount_finish(mp); 915 if (error) { 916 xfs_warn(mp, "log mount finish failed"); 917 goto out_rtunmount; 918 } 919 920 /* 921 * Complete the quota initialisation, post-log-replay component. 922 */ 923 if (quotamount) { 924 ASSERT(mp->m_qflags == 0); 925 mp->m_qflags = quotaflags; 926 927 xfs_qm_mount_quotas(mp); 928 } 929 930 /* 931 * Now we are mounted, reserve a small amount of unused space for 932 * privileged transactions. This is needed so that transaction 933 * space required for critical operations can dip into this pool 934 * when at ENOSPC. This is needed for operations like create with 935 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 936 * are not allowed to use this reserved space. 937 * 938 * This may drive us straight to ENOSPC on mount, but that implies 939 * we were already there on the last unmount. Warn if this occurs. 940 */ 941 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 942 resblks = xfs_default_resblks(mp); 943 error = xfs_reserve_blocks(mp, &resblks, NULL); 944 if (error) 945 xfs_warn(mp, 946 "Unable to allocate reserve blocks. Continuing without reserve pool."); 947 } 948 949 return 0; 950 951 out_rtunmount: 952 xfs_rtunmount_inodes(mp); 953 out_rele_rip: 954 IRELE(rip); 955 out_log_dealloc: 956 xfs_log_unmount(mp); 957 out_fail_wait: 958 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 959 xfs_wait_buftarg(mp->m_logdev_targp); 960 xfs_wait_buftarg(mp->m_ddev_targp); 961 out_free_perag: 962 xfs_free_perag(mp); 963 out_remove_uuid: 964 xfs_uuid_unmount(mp); 965 out: 966 return error; 967 } 968 969 /* 970 * This flushes out the inodes,dquots and the superblock, unmounts the 971 * log and makes sure that incore structures are freed. 972 */ 973 void 974 xfs_unmountfs( 975 struct xfs_mount *mp) 976 { 977 __uint64_t resblks; 978 int error; 979 980 cancel_delayed_work_sync(&mp->m_eofblocks_work); 981 982 xfs_qm_unmount_quotas(mp); 983 xfs_rtunmount_inodes(mp); 984 IRELE(mp->m_rootip); 985 986 /* 987 * We can potentially deadlock here if we have an inode cluster 988 * that has been freed has its buffer still pinned in memory because 989 * the transaction is still sitting in a iclog. The stale inodes 990 * on that buffer will have their flush locks held until the 991 * transaction hits the disk and the callbacks run. the inode 992 * flush takes the flush lock unconditionally and with nothing to 993 * push out the iclog we will never get that unlocked. hence we 994 * need to force the log first. 995 */ 996 xfs_log_force(mp, XFS_LOG_SYNC); 997 998 /* 999 * Flush all pending changes from the AIL. 1000 */ 1001 xfs_ail_push_all_sync(mp->m_ail); 1002 1003 /* 1004 * And reclaim all inodes. At this point there should be no dirty 1005 * inodes and none should be pinned or locked, but use synchronous 1006 * reclaim just to be sure. We can stop background inode reclaim 1007 * here as well if it is still running. 1008 */ 1009 cancel_delayed_work_sync(&mp->m_reclaim_work); 1010 xfs_reclaim_inodes(mp, SYNC_WAIT); 1011 1012 xfs_qm_unmount(mp); 1013 1014 /* 1015 * Unreserve any blocks we have so that when we unmount we don't account 1016 * the reserved free space as used. This is really only necessary for 1017 * lazy superblock counting because it trusts the incore superblock 1018 * counters to be absolutely correct on clean unmount. 1019 * 1020 * We don't bother correcting this elsewhere for lazy superblock 1021 * counting because on mount of an unclean filesystem we reconstruct the 1022 * correct counter value and this is irrelevant. 1023 * 1024 * For non-lazy counter filesystems, this doesn't matter at all because 1025 * we only every apply deltas to the superblock and hence the incore 1026 * value does not matter.... 1027 */ 1028 resblks = 0; 1029 error = xfs_reserve_blocks(mp, &resblks, NULL); 1030 if (error) 1031 xfs_warn(mp, "Unable to free reserved block pool. " 1032 "Freespace may not be correct on next mount."); 1033 1034 error = xfs_log_sbcount(mp); 1035 if (error) 1036 xfs_warn(mp, "Unable to update superblock counters. " 1037 "Freespace may not be correct on next mount."); 1038 1039 xfs_log_unmount(mp); 1040 xfs_uuid_unmount(mp); 1041 1042 #if defined(DEBUG) 1043 xfs_errortag_clearall(mp, 0); 1044 #endif 1045 xfs_free_perag(mp); 1046 } 1047 1048 int 1049 xfs_fs_writable(xfs_mount_t *mp) 1050 { 1051 return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) || 1052 (mp->m_flags & XFS_MOUNT_RDONLY)); 1053 } 1054 1055 /* 1056 * xfs_log_sbcount 1057 * 1058 * Sync the superblock counters to disk. 1059 * 1060 * Note this code can be called during the process of freezing, so 1061 * we may need to use the transaction allocator which does not 1062 * block when the transaction subsystem is in its frozen state. 1063 */ 1064 int 1065 xfs_log_sbcount(xfs_mount_t *mp) 1066 { 1067 xfs_trans_t *tp; 1068 int error; 1069 1070 if (!xfs_fs_writable(mp)) 1071 return 0; 1072 1073 xfs_icsb_sync_counters(mp, 0); 1074 1075 /* 1076 * we don't need to do this if we are updating the superblock 1077 * counters on every modification. 1078 */ 1079 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1080 return 0; 1081 1082 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP); 1083 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0); 1084 if (error) { 1085 xfs_trans_cancel(tp, 0); 1086 return error; 1087 } 1088 1089 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS); 1090 xfs_trans_set_sync(tp); 1091 error = xfs_trans_commit(tp, 0); 1092 return error; 1093 } 1094 1095 /* 1096 * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply 1097 * a delta to a specified field in the in-core superblock. Simply 1098 * switch on the field indicated and apply the delta to that field. 1099 * Fields are not allowed to dip below zero, so if the delta would 1100 * do this do not apply it and return EINVAL. 1101 * 1102 * The m_sb_lock must be held when this routine is called. 1103 */ 1104 STATIC int 1105 xfs_mod_incore_sb_unlocked( 1106 xfs_mount_t *mp, 1107 xfs_sb_field_t field, 1108 int64_t delta, 1109 int rsvd) 1110 { 1111 int scounter; /* short counter for 32 bit fields */ 1112 long long lcounter; /* long counter for 64 bit fields */ 1113 long long res_used, rem; 1114 1115 /* 1116 * With the in-core superblock spin lock held, switch 1117 * on the indicated field. Apply the delta to the 1118 * proper field. If the fields value would dip below 1119 * 0, then do not apply the delta and return EINVAL. 1120 */ 1121 switch (field) { 1122 case XFS_SBS_ICOUNT: 1123 lcounter = (long long)mp->m_sb.sb_icount; 1124 lcounter += delta; 1125 if (lcounter < 0) { 1126 ASSERT(0); 1127 return XFS_ERROR(EINVAL); 1128 } 1129 mp->m_sb.sb_icount = lcounter; 1130 return 0; 1131 case XFS_SBS_IFREE: 1132 lcounter = (long long)mp->m_sb.sb_ifree; 1133 lcounter += delta; 1134 if (lcounter < 0) { 1135 ASSERT(0); 1136 return XFS_ERROR(EINVAL); 1137 } 1138 mp->m_sb.sb_ifree = lcounter; 1139 return 0; 1140 case XFS_SBS_FDBLOCKS: 1141 lcounter = (long long) 1142 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1143 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1144 1145 if (delta > 0) { /* Putting blocks back */ 1146 if (res_used > delta) { 1147 mp->m_resblks_avail += delta; 1148 } else { 1149 rem = delta - res_used; 1150 mp->m_resblks_avail = mp->m_resblks; 1151 lcounter += rem; 1152 } 1153 } else { /* Taking blocks away */ 1154 lcounter += delta; 1155 if (lcounter >= 0) { 1156 mp->m_sb.sb_fdblocks = lcounter + 1157 XFS_ALLOC_SET_ASIDE(mp); 1158 return 0; 1159 } 1160 1161 /* 1162 * We are out of blocks, use any available reserved 1163 * blocks if were allowed to. 1164 */ 1165 if (!rsvd) 1166 return XFS_ERROR(ENOSPC); 1167 1168 lcounter = (long long)mp->m_resblks_avail + delta; 1169 if (lcounter >= 0) { 1170 mp->m_resblks_avail = lcounter; 1171 return 0; 1172 } 1173 printk_once(KERN_WARNING 1174 "Filesystem \"%s\": reserve blocks depleted! " 1175 "Consider increasing reserve pool size.", 1176 mp->m_fsname); 1177 return XFS_ERROR(ENOSPC); 1178 } 1179 1180 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1181 return 0; 1182 case XFS_SBS_FREXTENTS: 1183 lcounter = (long long)mp->m_sb.sb_frextents; 1184 lcounter += delta; 1185 if (lcounter < 0) { 1186 return XFS_ERROR(ENOSPC); 1187 } 1188 mp->m_sb.sb_frextents = lcounter; 1189 return 0; 1190 case XFS_SBS_DBLOCKS: 1191 lcounter = (long long)mp->m_sb.sb_dblocks; 1192 lcounter += delta; 1193 if (lcounter < 0) { 1194 ASSERT(0); 1195 return XFS_ERROR(EINVAL); 1196 } 1197 mp->m_sb.sb_dblocks = lcounter; 1198 return 0; 1199 case XFS_SBS_AGCOUNT: 1200 scounter = mp->m_sb.sb_agcount; 1201 scounter += delta; 1202 if (scounter < 0) { 1203 ASSERT(0); 1204 return XFS_ERROR(EINVAL); 1205 } 1206 mp->m_sb.sb_agcount = scounter; 1207 return 0; 1208 case XFS_SBS_IMAX_PCT: 1209 scounter = mp->m_sb.sb_imax_pct; 1210 scounter += delta; 1211 if (scounter < 0) { 1212 ASSERT(0); 1213 return XFS_ERROR(EINVAL); 1214 } 1215 mp->m_sb.sb_imax_pct = scounter; 1216 return 0; 1217 case XFS_SBS_REXTSIZE: 1218 scounter = mp->m_sb.sb_rextsize; 1219 scounter += delta; 1220 if (scounter < 0) { 1221 ASSERT(0); 1222 return XFS_ERROR(EINVAL); 1223 } 1224 mp->m_sb.sb_rextsize = scounter; 1225 return 0; 1226 case XFS_SBS_RBMBLOCKS: 1227 scounter = mp->m_sb.sb_rbmblocks; 1228 scounter += delta; 1229 if (scounter < 0) { 1230 ASSERT(0); 1231 return XFS_ERROR(EINVAL); 1232 } 1233 mp->m_sb.sb_rbmblocks = scounter; 1234 return 0; 1235 case XFS_SBS_RBLOCKS: 1236 lcounter = (long long)mp->m_sb.sb_rblocks; 1237 lcounter += delta; 1238 if (lcounter < 0) { 1239 ASSERT(0); 1240 return XFS_ERROR(EINVAL); 1241 } 1242 mp->m_sb.sb_rblocks = lcounter; 1243 return 0; 1244 case XFS_SBS_REXTENTS: 1245 lcounter = (long long)mp->m_sb.sb_rextents; 1246 lcounter += delta; 1247 if (lcounter < 0) { 1248 ASSERT(0); 1249 return XFS_ERROR(EINVAL); 1250 } 1251 mp->m_sb.sb_rextents = lcounter; 1252 return 0; 1253 case XFS_SBS_REXTSLOG: 1254 scounter = mp->m_sb.sb_rextslog; 1255 scounter += delta; 1256 if (scounter < 0) { 1257 ASSERT(0); 1258 return XFS_ERROR(EINVAL); 1259 } 1260 mp->m_sb.sb_rextslog = scounter; 1261 return 0; 1262 default: 1263 ASSERT(0); 1264 return XFS_ERROR(EINVAL); 1265 } 1266 } 1267 1268 /* 1269 * xfs_mod_incore_sb() is used to change a field in the in-core 1270 * superblock structure by the specified delta. This modification 1271 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked() 1272 * routine to do the work. 1273 */ 1274 int 1275 xfs_mod_incore_sb( 1276 struct xfs_mount *mp, 1277 xfs_sb_field_t field, 1278 int64_t delta, 1279 int rsvd) 1280 { 1281 int status; 1282 1283 #ifdef HAVE_PERCPU_SB 1284 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS); 1285 #endif 1286 spin_lock(&mp->m_sb_lock); 1287 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1288 spin_unlock(&mp->m_sb_lock); 1289 1290 return status; 1291 } 1292 1293 /* 1294 * Change more than one field in the in-core superblock structure at a time. 1295 * 1296 * The fields and changes to those fields are specified in the array of 1297 * xfs_mod_sb structures passed in. Either all of the specified deltas 1298 * will be applied or none of them will. If any modified field dips below 0, 1299 * then all modifications will be backed out and EINVAL will be returned. 1300 * 1301 * Note that this function may not be used for the superblock values that 1302 * are tracked with the in-memory per-cpu counters - a direct call to 1303 * xfs_icsb_modify_counters is required for these. 1304 */ 1305 int 1306 xfs_mod_incore_sb_batch( 1307 struct xfs_mount *mp, 1308 xfs_mod_sb_t *msb, 1309 uint nmsb, 1310 int rsvd) 1311 { 1312 xfs_mod_sb_t *msbp; 1313 int error = 0; 1314 1315 /* 1316 * Loop through the array of mod structures and apply each individually. 1317 * If any fail, then back out all those which have already been applied. 1318 * Do all of this within the scope of the m_sb_lock so that all of the 1319 * changes will be atomic. 1320 */ 1321 spin_lock(&mp->m_sb_lock); 1322 for (msbp = msb; msbp < (msb + nmsb); msbp++) { 1323 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT || 1324 msbp->msb_field > XFS_SBS_FDBLOCKS); 1325 1326 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 1327 msbp->msb_delta, rsvd); 1328 if (error) 1329 goto unwind; 1330 } 1331 spin_unlock(&mp->m_sb_lock); 1332 return 0; 1333 1334 unwind: 1335 while (--msbp >= msb) { 1336 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 1337 -msbp->msb_delta, rsvd); 1338 ASSERT(error == 0); 1339 } 1340 spin_unlock(&mp->m_sb_lock); 1341 return error; 1342 } 1343 1344 /* 1345 * xfs_getsb() is called to obtain the buffer for the superblock. 1346 * The buffer is returned locked and read in from disk. 1347 * The buffer should be released with a call to xfs_brelse(). 1348 * 1349 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1350 * the superblock buffer if it can be locked without sleeping. 1351 * If it can't then we'll return NULL. 1352 */ 1353 struct xfs_buf * 1354 xfs_getsb( 1355 struct xfs_mount *mp, 1356 int flags) 1357 { 1358 struct xfs_buf *bp = mp->m_sb_bp; 1359 1360 if (!xfs_buf_trylock(bp)) { 1361 if (flags & XBF_TRYLOCK) 1362 return NULL; 1363 xfs_buf_lock(bp); 1364 } 1365 1366 xfs_buf_hold(bp); 1367 ASSERT(XFS_BUF_ISDONE(bp)); 1368 return bp; 1369 } 1370 1371 /* 1372 * Used to free the superblock along various error paths. 1373 */ 1374 void 1375 xfs_freesb( 1376 struct xfs_mount *mp) 1377 { 1378 struct xfs_buf *bp = mp->m_sb_bp; 1379 1380 xfs_buf_lock(bp); 1381 mp->m_sb_bp = NULL; 1382 xfs_buf_relse(bp); 1383 } 1384 1385 /* 1386 * Used to log changes to the superblock unit and width fields which could 1387 * be altered by the mount options, as well as any potential sb_features2 1388 * fixup. Only the first superblock is updated. 1389 */ 1390 int 1391 xfs_mount_log_sb( 1392 xfs_mount_t *mp, 1393 __int64_t fields) 1394 { 1395 xfs_trans_t *tp; 1396 int error; 1397 1398 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID | 1399 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 | 1400 XFS_SB_VERSIONNUM)); 1401 1402 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT); 1403 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0); 1404 if (error) { 1405 xfs_trans_cancel(tp, 0); 1406 return error; 1407 } 1408 xfs_mod_sb(tp, fields); 1409 error = xfs_trans_commit(tp, 0); 1410 return error; 1411 } 1412 1413 /* 1414 * If the underlying (data/log/rt) device is readonly, there are some 1415 * operations that cannot proceed. 1416 */ 1417 int 1418 xfs_dev_is_read_only( 1419 struct xfs_mount *mp, 1420 char *message) 1421 { 1422 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1423 xfs_readonly_buftarg(mp->m_logdev_targp) || 1424 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1425 xfs_notice(mp, "%s required on read-only device.", message); 1426 xfs_notice(mp, "write access unavailable, cannot proceed."); 1427 return EROFS; 1428 } 1429 return 0; 1430 } 1431 1432 #ifdef HAVE_PERCPU_SB 1433 /* 1434 * Per-cpu incore superblock counters 1435 * 1436 * Simple concept, difficult implementation 1437 * 1438 * Basically, replace the incore superblock counters with a distributed per cpu 1439 * counter for contended fields (e.g. free block count). 1440 * 1441 * Difficulties arise in that the incore sb is used for ENOSPC checking, and 1442 * hence needs to be accurately read when we are running low on space. Hence 1443 * there is a method to enable and disable the per-cpu counters based on how 1444 * much "stuff" is available in them. 1445 * 1446 * Basically, a counter is enabled if there is enough free resource to justify 1447 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local 1448 * ENOSPC), then we disable the counters to synchronise all callers and 1449 * re-distribute the available resources. 1450 * 1451 * If, once we redistributed the available resources, we still get a failure, 1452 * we disable the per-cpu counter and go through the slow path. 1453 * 1454 * The slow path is the current xfs_mod_incore_sb() function. This means that 1455 * when we disable a per-cpu counter, we need to drain its resources back to 1456 * the global superblock. We do this after disabling the counter to prevent 1457 * more threads from queueing up on the counter. 1458 * 1459 * Essentially, this means that we still need a lock in the fast path to enable 1460 * synchronisation between the global counters and the per-cpu counters. This 1461 * is not a problem because the lock will be local to a CPU almost all the time 1462 * and have little contention except when we get to ENOSPC conditions. 1463 * 1464 * Basically, this lock becomes a barrier that enables us to lock out the fast 1465 * path while we do things like enabling and disabling counters and 1466 * synchronising the counters. 1467 * 1468 * Locking rules: 1469 * 1470 * 1. m_sb_lock before picking up per-cpu locks 1471 * 2. per-cpu locks always picked up via for_each_online_cpu() order 1472 * 3. accurate counter sync requires m_sb_lock + per cpu locks 1473 * 4. modifying per-cpu counters requires holding per-cpu lock 1474 * 5. modifying global counters requires holding m_sb_lock 1475 * 6. enabling or disabling a counter requires holding the m_sb_lock 1476 * and _none_ of the per-cpu locks. 1477 * 1478 * Disabled counters are only ever re-enabled by a balance operation 1479 * that results in more free resources per CPU than a given threshold. 1480 * To ensure counters don't remain disabled, they are rebalanced when 1481 * the global resource goes above a higher threshold (i.e. some hysteresis 1482 * is present to prevent thrashing). 1483 */ 1484 1485 #ifdef CONFIG_HOTPLUG_CPU 1486 /* 1487 * hot-plug CPU notifier support. 1488 * 1489 * We need a notifier per filesystem as we need to be able to identify 1490 * the filesystem to balance the counters out. This is achieved by 1491 * having a notifier block embedded in the xfs_mount_t and doing pointer 1492 * magic to get the mount pointer from the notifier block address. 1493 */ 1494 STATIC int 1495 xfs_icsb_cpu_notify( 1496 struct notifier_block *nfb, 1497 unsigned long action, 1498 void *hcpu) 1499 { 1500 xfs_icsb_cnts_t *cntp; 1501 xfs_mount_t *mp; 1502 1503 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); 1504 cntp = (xfs_icsb_cnts_t *) 1505 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); 1506 switch (action) { 1507 case CPU_UP_PREPARE: 1508 case CPU_UP_PREPARE_FROZEN: 1509 /* Easy Case - initialize the area and locks, and 1510 * then rebalance when online does everything else for us. */ 1511 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1512 break; 1513 case CPU_ONLINE: 1514 case CPU_ONLINE_FROZEN: 1515 xfs_icsb_lock(mp); 1516 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 1517 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 1518 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 1519 xfs_icsb_unlock(mp); 1520 break; 1521 case CPU_DEAD: 1522 case CPU_DEAD_FROZEN: 1523 /* Disable all the counters, then fold the dead cpu's 1524 * count into the total on the global superblock and 1525 * re-enable the counters. */ 1526 xfs_icsb_lock(mp); 1527 spin_lock(&mp->m_sb_lock); 1528 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT); 1529 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); 1530 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); 1531 1532 mp->m_sb.sb_icount += cntp->icsb_icount; 1533 mp->m_sb.sb_ifree += cntp->icsb_ifree; 1534 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; 1535 1536 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1537 1538 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0); 1539 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0); 1540 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0); 1541 spin_unlock(&mp->m_sb_lock); 1542 xfs_icsb_unlock(mp); 1543 break; 1544 } 1545 1546 return NOTIFY_OK; 1547 } 1548 #endif /* CONFIG_HOTPLUG_CPU */ 1549 1550 int 1551 xfs_icsb_init_counters( 1552 xfs_mount_t *mp) 1553 { 1554 xfs_icsb_cnts_t *cntp; 1555 int i; 1556 1557 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); 1558 if (mp->m_sb_cnts == NULL) 1559 return -ENOMEM; 1560 1561 for_each_online_cpu(i) { 1562 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 1563 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1564 } 1565 1566 mutex_init(&mp->m_icsb_mutex); 1567 1568 /* 1569 * start with all counters disabled so that the 1570 * initial balance kicks us off correctly 1571 */ 1572 mp->m_icsb_counters = -1; 1573 1574 #ifdef CONFIG_HOTPLUG_CPU 1575 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; 1576 mp->m_icsb_notifier.priority = 0; 1577 register_hotcpu_notifier(&mp->m_icsb_notifier); 1578 #endif /* CONFIG_HOTPLUG_CPU */ 1579 1580 return 0; 1581 } 1582 1583 void 1584 xfs_icsb_reinit_counters( 1585 xfs_mount_t *mp) 1586 { 1587 xfs_icsb_lock(mp); 1588 /* 1589 * start with all counters disabled so that the 1590 * initial balance kicks us off correctly 1591 */ 1592 mp->m_icsb_counters = -1; 1593 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 1594 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 1595 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 1596 xfs_icsb_unlock(mp); 1597 } 1598 1599 void 1600 xfs_icsb_destroy_counters( 1601 xfs_mount_t *mp) 1602 { 1603 if (mp->m_sb_cnts) { 1604 unregister_hotcpu_notifier(&mp->m_icsb_notifier); 1605 free_percpu(mp->m_sb_cnts); 1606 } 1607 mutex_destroy(&mp->m_icsb_mutex); 1608 } 1609 1610 STATIC void 1611 xfs_icsb_lock_cntr( 1612 xfs_icsb_cnts_t *icsbp) 1613 { 1614 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { 1615 ndelay(1000); 1616 } 1617 } 1618 1619 STATIC void 1620 xfs_icsb_unlock_cntr( 1621 xfs_icsb_cnts_t *icsbp) 1622 { 1623 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); 1624 } 1625 1626 1627 STATIC void 1628 xfs_icsb_lock_all_counters( 1629 xfs_mount_t *mp) 1630 { 1631 xfs_icsb_cnts_t *cntp; 1632 int i; 1633 1634 for_each_online_cpu(i) { 1635 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 1636 xfs_icsb_lock_cntr(cntp); 1637 } 1638 } 1639 1640 STATIC void 1641 xfs_icsb_unlock_all_counters( 1642 xfs_mount_t *mp) 1643 { 1644 xfs_icsb_cnts_t *cntp; 1645 int i; 1646 1647 for_each_online_cpu(i) { 1648 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 1649 xfs_icsb_unlock_cntr(cntp); 1650 } 1651 } 1652 1653 STATIC void 1654 xfs_icsb_count( 1655 xfs_mount_t *mp, 1656 xfs_icsb_cnts_t *cnt, 1657 int flags) 1658 { 1659 xfs_icsb_cnts_t *cntp; 1660 int i; 1661 1662 memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); 1663 1664 if (!(flags & XFS_ICSB_LAZY_COUNT)) 1665 xfs_icsb_lock_all_counters(mp); 1666 1667 for_each_online_cpu(i) { 1668 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 1669 cnt->icsb_icount += cntp->icsb_icount; 1670 cnt->icsb_ifree += cntp->icsb_ifree; 1671 cnt->icsb_fdblocks += cntp->icsb_fdblocks; 1672 } 1673 1674 if (!(flags & XFS_ICSB_LAZY_COUNT)) 1675 xfs_icsb_unlock_all_counters(mp); 1676 } 1677 1678 STATIC int 1679 xfs_icsb_counter_disabled( 1680 xfs_mount_t *mp, 1681 xfs_sb_field_t field) 1682 { 1683 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 1684 return test_bit(field, &mp->m_icsb_counters); 1685 } 1686 1687 STATIC void 1688 xfs_icsb_disable_counter( 1689 xfs_mount_t *mp, 1690 xfs_sb_field_t field) 1691 { 1692 xfs_icsb_cnts_t cnt; 1693 1694 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 1695 1696 /* 1697 * If we are already disabled, then there is nothing to do 1698 * here. We check before locking all the counters to avoid 1699 * the expensive lock operation when being called in the 1700 * slow path and the counter is already disabled. This is 1701 * safe because the only time we set or clear this state is under 1702 * the m_icsb_mutex. 1703 */ 1704 if (xfs_icsb_counter_disabled(mp, field)) 1705 return; 1706 1707 xfs_icsb_lock_all_counters(mp); 1708 if (!test_and_set_bit(field, &mp->m_icsb_counters)) { 1709 /* drain back to superblock */ 1710 1711 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT); 1712 switch(field) { 1713 case XFS_SBS_ICOUNT: 1714 mp->m_sb.sb_icount = cnt.icsb_icount; 1715 break; 1716 case XFS_SBS_IFREE: 1717 mp->m_sb.sb_ifree = cnt.icsb_ifree; 1718 break; 1719 case XFS_SBS_FDBLOCKS: 1720 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 1721 break; 1722 default: 1723 BUG(); 1724 } 1725 } 1726 1727 xfs_icsb_unlock_all_counters(mp); 1728 } 1729 1730 STATIC void 1731 xfs_icsb_enable_counter( 1732 xfs_mount_t *mp, 1733 xfs_sb_field_t field, 1734 uint64_t count, 1735 uint64_t resid) 1736 { 1737 xfs_icsb_cnts_t *cntp; 1738 int i; 1739 1740 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 1741 1742 xfs_icsb_lock_all_counters(mp); 1743 for_each_online_cpu(i) { 1744 cntp = per_cpu_ptr(mp->m_sb_cnts, i); 1745 switch (field) { 1746 case XFS_SBS_ICOUNT: 1747 cntp->icsb_icount = count + resid; 1748 break; 1749 case XFS_SBS_IFREE: 1750 cntp->icsb_ifree = count + resid; 1751 break; 1752 case XFS_SBS_FDBLOCKS: 1753 cntp->icsb_fdblocks = count + resid; 1754 break; 1755 default: 1756 BUG(); 1757 break; 1758 } 1759 resid = 0; 1760 } 1761 clear_bit(field, &mp->m_icsb_counters); 1762 xfs_icsb_unlock_all_counters(mp); 1763 } 1764 1765 void 1766 xfs_icsb_sync_counters_locked( 1767 xfs_mount_t *mp, 1768 int flags) 1769 { 1770 xfs_icsb_cnts_t cnt; 1771 1772 xfs_icsb_count(mp, &cnt, flags); 1773 1774 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT)) 1775 mp->m_sb.sb_icount = cnt.icsb_icount; 1776 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) 1777 mp->m_sb.sb_ifree = cnt.icsb_ifree; 1778 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) 1779 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 1780 } 1781 1782 /* 1783 * Accurate update of per-cpu counters to incore superblock 1784 */ 1785 void 1786 xfs_icsb_sync_counters( 1787 xfs_mount_t *mp, 1788 int flags) 1789 { 1790 spin_lock(&mp->m_sb_lock); 1791 xfs_icsb_sync_counters_locked(mp, flags); 1792 spin_unlock(&mp->m_sb_lock); 1793 } 1794 1795 /* 1796 * Balance and enable/disable counters as necessary. 1797 * 1798 * Thresholds for re-enabling counters are somewhat magic. inode counts are 1799 * chosen to be the same number as single on disk allocation chunk per CPU, and 1800 * free blocks is something far enough zero that we aren't going thrash when we 1801 * get near ENOSPC. We also need to supply a minimum we require per cpu to 1802 * prevent looping endlessly when xfs_alloc_space asks for more than will 1803 * be distributed to a single CPU but each CPU has enough blocks to be 1804 * reenabled. 1805 * 1806 * Note that we can be called when counters are already disabled. 1807 * xfs_icsb_disable_counter() optimises the counter locking in this case to 1808 * prevent locking every per-cpu counter needlessly. 1809 */ 1810 1811 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64 1812 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ 1813 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) 1814 STATIC void 1815 xfs_icsb_balance_counter_locked( 1816 xfs_mount_t *mp, 1817 xfs_sb_field_t field, 1818 int min_per_cpu) 1819 { 1820 uint64_t count, resid; 1821 int weight = num_online_cpus(); 1822 uint64_t min = (uint64_t)min_per_cpu; 1823 1824 /* disable counter and sync counter */ 1825 xfs_icsb_disable_counter(mp, field); 1826 1827 /* update counters - first CPU gets residual*/ 1828 switch (field) { 1829 case XFS_SBS_ICOUNT: 1830 count = mp->m_sb.sb_icount; 1831 resid = do_div(count, weight); 1832 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 1833 return; 1834 break; 1835 case XFS_SBS_IFREE: 1836 count = mp->m_sb.sb_ifree; 1837 resid = do_div(count, weight); 1838 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 1839 return; 1840 break; 1841 case XFS_SBS_FDBLOCKS: 1842 count = mp->m_sb.sb_fdblocks; 1843 resid = do_div(count, weight); 1844 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) 1845 return; 1846 break; 1847 default: 1848 BUG(); 1849 count = resid = 0; /* quiet, gcc */ 1850 break; 1851 } 1852 1853 xfs_icsb_enable_counter(mp, field, count, resid); 1854 } 1855 1856 STATIC void 1857 xfs_icsb_balance_counter( 1858 xfs_mount_t *mp, 1859 xfs_sb_field_t fields, 1860 int min_per_cpu) 1861 { 1862 spin_lock(&mp->m_sb_lock); 1863 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu); 1864 spin_unlock(&mp->m_sb_lock); 1865 } 1866 1867 int 1868 xfs_icsb_modify_counters( 1869 xfs_mount_t *mp, 1870 xfs_sb_field_t field, 1871 int64_t delta, 1872 int rsvd) 1873 { 1874 xfs_icsb_cnts_t *icsbp; 1875 long long lcounter; /* long counter for 64 bit fields */ 1876 int ret = 0; 1877 1878 might_sleep(); 1879 again: 1880 preempt_disable(); 1881 icsbp = this_cpu_ptr(mp->m_sb_cnts); 1882 1883 /* 1884 * if the counter is disabled, go to slow path 1885 */ 1886 if (unlikely(xfs_icsb_counter_disabled(mp, field))) 1887 goto slow_path; 1888 xfs_icsb_lock_cntr(icsbp); 1889 if (unlikely(xfs_icsb_counter_disabled(mp, field))) { 1890 xfs_icsb_unlock_cntr(icsbp); 1891 goto slow_path; 1892 } 1893 1894 switch (field) { 1895 case XFS_SBS_ICOUNT: 1896 lcounter = icsbp->icsb_icount; 1897 lcounter += delta; 1898 if (unlikely(lcounter < 0)) 1899 goto balance_counter; 1900 icsbp->icsb_icount = lcounter; 1901 break; 1902 1903 case XFS_SBS_IFREE: 1904 lcounter = icsbp->icsb_ifree; 1905 lcounter += delta; 1906 if (unlikely(lcounter < 0)) 1907 goto balance_counter; 1908 icsbp->icsb_ifree = lcounter; 1909 break; 1910 1911 case XFS_SBS_FDBLOCKS: 1912 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); 1913 1914 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1915 lcounter += delta; 1916 if (unlikely(lcounter < 0)) 1917 goto balance_counter; 1918 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1919 break; 1920 default: 1921 BUG(); 1922 break; 1923 } 1924 xfs_icsb_unlock_cntr(icsbp); 1925 preempt_enable(); 1926 return 0; 1927 1928 slow_path: 1929 preempt_enable(); 1930 1931 /* 1932 * serialise with a mutex so we don't burn lots of cpu on 1933 * the superblock lock. We still need to hold the superblock 1934 * lock, however, when we modify the global structures. 1935 */ 1936 xfs_icsb_lock(mp); 1937 1938 /* 1939 * Now running atomically. 1940 * 1941 * If the counter is enabled, someone has beaten us to rebalancing. 1942 * Drop the lock and try again in the fast path.... 1943 */ 1944 if (!(xfs_icsb_counter_disabled(mp, field))) { 1945 xfs_icsb_unlock(mp); 1946 goto again; 1947 } 1948 1949 /* 1950 * The counter is currently disabled. Because we are 1951 * running atomically here, we know a rebalance cannot 1952 * be in progress. Hence we can go straight to operating 1953 * on the global superblock. We do not call xfs_mod_incore_sb() 1954 * here even though we need to get the m_sb_lock. Doing so 1955 * will cause us to re-enter this function and deadlock. 1956 * Hence we get the m_sb_lock ourselves and then call 1957 * xfs_mod_incore_sb_unlocked() as the unlocked path operates 1958 * directly on the global counters. 1959 */ 1960 spin_lock(&mp->m_sb_lock); 1961 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1962 spin_unlock(&mp->m_sb_lock); 1963 1964 /* 1965 * Now that we've modified the global superblock, we 1966 * may be able to re-enable the distributed counters 1967 * (e.g. lots of space just got freed). After that 1968 * we are done. 1969 */ 1970 if (ret != ENOSPC) 1971 xfs_icsb_balance_counter(mp, field, 0); 1972 xfs_icsb_unlock(mp); 1973 return ret; 1974 1975 balance_counter: 1976 xfs_icsb_unlock_cntr(icsbp); 1977 preempt_enable(); 1978 1979 /* 1980 * We may have multiple threads here if multiple per-cpu 1981 * counters run dry at the same time. This will mean we can 1982 * do more balances than strictly necessary but it is not 1983 * the common slowpath case. 1984 */ 1985 xfs_icsb_lock(mp); 1986 1987 /* 1988 * running atomically. 1989 * 1990 * This will leave the counter in the correct state for future 1991 * accesses. After the rebalance, we simply try again and our retry 1992 * will either succeed through the fast path or slow path without 1993 * another balance operation being required. 1994 */ 1995 xfs_icsb_balance_counter(mp, field, delta); 1996 xfs_icsb_unlock(mp); 1997 goto again; 1998 } 1999 2000 #endif 2001