xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision 110e6f26)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_dir2.h"
31 #include "xfs_ialloc.h"
32 #include "xfs_alloc.h"
33 #include "xfs_rtalloc.h"
34 #include "xfs_bmap.h"
35 #include "xfs_trans.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_log.h"
38 #include "xfs_error.h"
39 #include "xfs_quota.h"
40 #include "xfs_fsops.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_sysfs.h"
44 
45 
46 static DEFINE_MUTEX(xfs_uuid_table_mutex);
47 static int xfs_uuid_table_size;
48 static uuid_t *xfs_uuid_table;
49 
50 void
51 xfs_uuid_table_free(void)
52 {
53 	if (xfs_uuid_table_size == 0)
54 		return;
55 	kmem_free(xfs_uuid_table);
56 	xfs_uuid_table = NULL;
57 	xfs_uuid_table_size = 0;
58 }
59 
60 /*
61  * See if the UUID is unique among mounted XFS filesystems.
62  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
63  */
64 STATIC int
65 xfs_uuid_mount(
66 	struct xfs_mount	*mp)
67 {
68 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
69 	int			hole, i;
70 
71 	if (mp->m_flags & XFS_MOUNT_NOUUID)
72 		return 0;
73 
74 	if (uuid_is_nil(uuid)) {
75 		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
76 		return -EINVAL;
77 	}
78 
79 	mutex_lock(&xfs_uuid_table_mutex);
80 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
81 		if (uuid_is_nil(&xfs_uuid_table[i])) {
82 			hole = i;
83 			continue;
84 		}
85 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
86 			goto out_duplicate;
87 	}
88 
89 	if (hole < 0) {
90 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
91 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
92 			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
93 			KM_SLEEP);
94 		hole = xfs_uuid_table_size++;
95 	}
96 	xfs_uuid_table[hole] = *uuid;
97 	mutex_unlock(&xfs_uuid_table_mutex);
98 
99 	return 0;
100 
101  out_duplicate:
102 	mutex_unlock(&xfs_uuid_table_mutex);
103 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
104 	return -EINVAL;
105 }
106 
107 STATIC void
108 xfs_uuid_unmount(
109 	struct xfs_mount	*mp)
110 {
111 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
112 	int			i;
113 
114 	if (mp->m_flags & XFS_MOUNT_NOUUID)
115 		return;
116 
117 	mutex_lock(&xfs_uuid_table_mutex);
118 	for (i = 0; i < xfs_uuid_table_size; i++) {
119 		if (uuid_is_nil(&xfs_uuid_table[i]))
120 			continue;
121 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
122 			continue;
123 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
124 		break;
125 	}
126 	ASSERT(i < xfs_uuid_table_size);
127 	mutex_unlock(&xfs_uuid_table_mutex);
128 }
129 
130 
131 STATIC void
132 __xfs_free_perag(
133 	struct rcu_head	*head)
134 {
135 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
136 
137 	ASSERT(atomic_read(&pag->pag_ref) == 0);
138 	kmem_free(pag);
139 }
140 
141 /*
142  * Free up the per-ag resources associated with the mount structure.
143  */
144 STATIC void
145 xfs_free_perag(
146 	xfs_mount_t	*mp)
147 {
148 	xfs_agnumber_t	agno;
149 	struct xfs_perag *pag;
150 
151 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
152 		spin_lock(&mp->m_perag_lock);
153 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
154 		spin_unlock(&mp->m_perag_lock);
155 		ASSERT(pag);
156 		ASSERT(atomic_read(&pag->pag_ref) == 0);
157 		call_rcu(&pag->rcu_head, __xfs_free_perag);
158 	}
159 }
160 
161 /*
162  * Check size of device based on the (data/realtime) block count.
163  * Note: this check is used by the growfs code as well as mount.
164  */
165 int
166 xfs_sb_validate_fsb_count(
167 	xfs_sb_t	*sbp,
168 	__uint64_t	nblocks)
169 {
170 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
171 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
172 
173 	/* Limited by ULONG_MAX of page cache index */
174 	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
175 		return -EFBIG;
176 	return 0;
177 }
178 
179 int
180 xfs_initialize_perag(
181 	xfs_mount_t	*mp,
182 	xfs_agnumber_t	agcount,
183 	xfs_agnumber_t	*maxagi)
184 {
185 	xfs_agnumber_t	index;
186 	xfs_agnumber_t	first_initialised = 0;
187 	xfs_perag_t	*pag;
188 	int		error = -ENOMEM;
189 
190 	/*
191 	 * Walk the current per-ag tree so we don't try to initialise AGs
192 	 * that already exist (growfs case). Allocate and insert all the
193 	 * AGs we don't find ready for initialisation.
194 	 */
195 	for (index = 0; index < agcount; index++) {
196 		pag = xfs_perag_get(mp, index);
197 		if (pag) {
198 			xfs_perag_put(pag);
199 			continue;
200 		}
201 		if (!first_initialised)
202 			first_initialised = index;
203 
204 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
205 		if (!pag)
206 			goto out_unwind;
207 		pag->pag_agno = index;
208 		pag->pag_mount = mp;
209 		spin_lock_init(&pag->pag_ici_lock);
210 		mutex_init(&pag->pag_ici_reclaim_lock);
211 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
212 		spin_lock_init(&pag->pag_buf_lock);
213 		pag->pag_buf_tree = RB_ROOT;
214 
215 		if (radix_tree_preload(GFP_NOFS))
216 			goto out_unwind;
217 
218 		spin_lock(&mp->m_perag_lock);
219 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
220 			BUG();
221 			spin_unlock(&mp->m_perag_lock);
222 			radix_tree_preload_end();
223 			error = -EEXIST;
224 			goto out_unwind;
225 		}
226 		spin_unlock(&mp->m_perag_lock);
227 		radix_tree_preload_end();
228 	}
229 
230 	index = xfs_set_inode_alloc(mp, agcount);
231 
232 	if (maxagi)
233 		*maxagi = index;
234 	return 0;
235 
236 out_unwind:
237 	kmem_free(pag);
238 	for (; index > first_initialised; index--) {
239 		pag = radix_tree_delete(&mp->m_perag_tree, index);
240 		kmem_free(pag);
241 	}
242 	return error;
243 }
244 
245 /*
246  * xfs_readsb
247  *
248  * Does the initial read of the superblock.
249  */
250 int
251 xfs_readsb(
252 	struct xfs_mount *mp,
253 	int		flags)
254 {
255 	unsigned int	sector_size;
256 	struct xfs_buf	*bp;
257 	struct xfs_sb	*sbp = &mp->m_sb;
258 	int		error;
259 	int		loud = !(flags & XFS_MFSI_QUIET);
260 	const struct xfs_buf_ops *buf_ops;
261 
262 	ASSERT(mp->m_sb_bp == NULL);
263 	ASSERT(mp->m_ddev_targp != NULL);
264 
265 	/*
266 	 * For the initial read, we must guess at the sector
267 	 * size based on the block device.  It's enough to
268 	 * get the sb_sectsize out of the superblock and
269 	 * then reread with the proper length.
270 	 * We don't verify it yet, because it may not be complete.
271 	 */
272 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
273 	buf_ops = NULL;
274 
275 	/*
276 	 * Allocate a (locked) buffer to hold the superblock.
277 	 * This will be kept around at all times to optimize
278 	 * access to the superblock.
279 	 */
280 reread:
281 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
282 				   BTOBB(sector_size), 0, &bp, buf_ops);
283 	if (error) {
284 		if (loud)
285 			xfs_warn(mp, "SB validate failed with error %d.", error);
286 		/* bad CRC means corrupted metadata */
287 		if (error == -EFSBADCRC)
288 			error = -EFSCORRUPTED;
289 		return error;
290 	}
291 
292 	/*
293 	 * Initialize the mount structure from the superblock.
294 	 */
295 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
296 
297 	/*
298 	 * If we haven't validated the superblock, do so now before we try
299 	 * to check the sector size and reread the superblock appropriately.
300 	 */
301 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
302 		if (loud)
303 			xfs_warn(mp, "Invalid superblock magic number");
304 		error = -EINVAL;
305 		goto release_buf;
306 	}
307 
308 	/*
309 	 * We must be able to do sector-sized and sector-aligned IO.
310 	 */
311 	if (sector_size > sbp->sb_sectsize) {
312 		if (loud)
313 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
314 				sector_size, sbp->sb_sectsize);
315 		error = -ENOSYS;
316 		goto release_buf;
317 	}
318 
319 	if (buf_ops == NULL) {
320 		/*
321 		 * Re-read the superblock so the buffer is correctly sized,
322 		 * and properly verified.
323 		 */
324 		xfs_buf_relse(bp);
325 		sector_size = sbp->sb_sectsize;
326 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
327 		goto reread;
328 	}
329 
330 	xfs_reinit_percpu_counters(mp);
331 
332 	/* no need to be quiet anymore, so reset the buf ops */
333 	bp->b_ops = &xfs_sb_buf_ops;
334 
335 	mp->m_sb_bp = bp;
336 	xfs_buf_unlock(bp);
337 	return 0;
338 
339 release_buf:
340 	xfs_buf_relse(bp);
341 	return error;
342 }
343 
344 /*
345  * Update alignment values based on mount options and sb values
346  */
347 STATIC int
348 xfs_update_alignment(xfs_mount_t *mp)
349 {
350 	xfs_sb_t	*sbp = &(mp->m_sb);
351 
352 	if (mp->m_dalign) {
353 		/*
354 		 * If stripe unit and stripe width are not multiples
355 		 * of the fs blocksize turn off alignment.
356 		 */
357 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
358 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
359 			xfs_warn(mp,
360 		"alignment check failed: sunit/swidth vs. blocksize(%d)",
361 				sbp->sb_blocksize);
362 			return -EINVAL;
363 		} else {
364 			/*
365 			 * Convert the stripe unit and width to FSBs.
366 			 */
367 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
368 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
369 				xfs_warn(mp,
370 			"alignment check failed: sunit/swidth vs. agsize(%d)",
371 					 sbp->sb_agblocks);
372 				return -EINVAL;
373 			} else if (mp->m_dalign) {
374 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
375 			} else {
376 				xfs_warn(mp,
377 			"alignment check failed: sunit(%d) less than bsize(%d)",
378 					 mp->m_dalign, sbp->sb_blocksize);
379 				return -EINVAL;
380 			}
381 		}
382 
383 		/*
384 		 * Update superblock with new values
385 		 * and log changes
386 		 */
387 		if (xfs_sb_version_hasdalign(sbp)) {
388 			if (sbp->sb_unit != mp->m_dalign) {
389 				sbp->sb_unit = mp->m_dalign;
390 				mp->m_update_sb = true;
391 			}
392 			if (sbp->sb_width != mp->m_swidth) {
393 				sbp->sb_width = mp->m_swidth;
394 				mp->m_update_sb = true;
395 			}
396 		} else {
397 			xfs_warn(mp,
398 	"cannot change alignment: superblock does not support data alignment");
399 			return -EINVAL;
400 		}
401 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
402 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
403 			mp->m_dalign = sbp->sb_unit;
404 			mp->m_swidth = sbp->sb_width;
405 	}
406 
407 	return 0;
408 }
409 
410 /*
411  * Set the maximum inode count for this filesystem
412  */
413 STATIC void
414 xfs_set_maxicount(xfs_mount_t *mp)
415 {
416 	xfs_sb_t	*sbp = &(mp->m_sb);
417 	__uint64_t	icount;
418 
419 	if (sbp->sb_imax_pct) {
420 		/*
421 		 * Make sure the maximum inode count is a multiple
422 		 * of the units we allocate inodes in.
423 		 */
424 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
425 		do_div(icount, 100);
426 		do_div(icount, mp->m_ialloc_blks);
427 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
428 				   sbp->sb_inopblog;
429 	} else {
430 		mp->m_maxicount = 0;
431 	}
432 }
433 
434 /*
435  * Set the default minimum read and write sizes unless
436  * already specified in a mount option.
437  * We use smaller I/O sizes when the file system
438  * is being used for NFS service (wsync mount option).
439  */
440 STATIC void
441 xfs_set_rw_sizes(xfs_mount_t *mp)
442 {
443 	xfs_sb_t	*sbp = &(mp->m_sb);
444 	int		readio_log, writeio_log;
445 
446 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
447 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
448 			readio_log = XFS_WSYNC_READIO_LOG;
449 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
450 		} else {
451 			readio_log = XFS_READIO_LOG_LARGE;
452 			writeio_log = XFS_WRITEIO_LOG_LARGE;
453 		}
454 	} else {
455 		readio_log = mp->m_readio_log;
456 		writeio_log = mp->m_writeio_log;
457 	}
458 
459 	if (sbp->sb_blocklog > readio_log) {
460 		mp->m_readio_log = sbp->sb_blocklog;
461 	} else {
462 		mp->m_readio_log = readio_log;
463 	}
464 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
465 	if (sbp->sb_blocklog > writeio_log) {
466 		mp->m_writeio_log = sbp->sb_blocklog;
467 	} else {
468 		mp->m_writeio_log = writeio_log;
469 	}
470 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
471 }
472 
473 /*
474  * precalculate the low space thresholds for dynamic speculative preallocation.
475  */
476 void
477 xfs_set_low_space_thresholds(
478 	struct xfs_mount	*mp)
479 {
480 	int i;
481 
482 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
483 		__uint64_t space = mp->m_sb.sb_dblocks;
484 
485 		do_div(space, 100);
486 		mp->m_low_space[i] = space * (i + 1);
487 	}
488 }
489 
490 
491 /*
492  * Set whether we're using inode alignment.
493  */
494 STATIC void
495 xfs_set_inoalignment(xfs_mount_t *mp)
496 {
497 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
498 	    mp->m_sb.sb_inoalignmt >=
499 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
500 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
501 	else
502 		mp->m_inoalign_mask = 0;
503 	/*
504 	 * If we are using stripe alignment, check whether
505 	 * the stripe unit is a multiple of the inode alignment
506 	 */
507 	if (mp->m_dalign && mp->m_inoalign_mask &&
508 	    !(mp->m_dalign & mp->m_inoalign_mask))
509 		mp->m_sinoalign = mp->m_dalign;
510 	else
511 		mp->m_sinoalign = 0;
512 }
513 
514 /*
515  * Check that the data (and log if separate) is an ok size.
516  */
517 STATIC int
518 xfs_check_sizes(
519 	struct xfs_mount *mp)
520 {
521 	struct xfs_buf	*bp;
522 	xfs_daddr_t	d;
523 	int		error;
524 
525 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
526 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
527 		xfs_warn(mp, "filesystem size mismatch detected");
528 		return -EFBIG;
529 	}
530 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
531 					d - XFS_FSS_TO_BB(mp, 1),
532 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
533 	if (error) {
534 		xfs_warn(mp, "last sector read failed");
535 		return error;
536 	}
537 	xfs_buf_relse(bp);
538 
539 	if (mp->m_logdev_targp == mp->m_ddev_targp)
540 		return 0;
541 
542 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
543 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
544 		xfs_warn(mp, "log size mismatch detected");
545 		return -EFBIG;
546 	}
547 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
548 					d - XFS_FSB_TO_BB(mp, 1),
549 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
550 	if (error) {
551 		xfs_warn(mp, "log device read failed");
552 		return error;
553 	}
554 	xfs_buf_relse(bp);
555 	return 0;
556 }
557 
558 /*
559  * Clear the quotaflags in memory and in the superblock.
560  */
561 int
562 xfs_mount_reset_sbqflags(
563 	struct xfs_mount	*mp)
564 {
565 	mp->m_qflags = 0;
566 
567 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
568 	if (mp->m_sb.sb_qflags == 0)
569 		return 0;
570 	spin_lock(&mp->m_sb_lock);
571 	mp->m_sb.sb_qflags = 0;
572 	spin_unlock(&mp->m_sb_lock);
573 
574 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
575 		return 0;
576 
577 	return xfs_sync_sb(mp, false);
578 }
579 
580 __uint64_t
581 xfs_default_resblks(xfs_mount_t *mp)
582 {
583 	__uint64_t resblks;
584 
585 	/*
586 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
587 	 * smaller.  This is intended to cover concurrent allocation
588 	 * transactions when we initially hit enospc. These each require a 4
589 	 * block reservation. Hence by default we cover roughly 2000 concurrent
590 	 * allocation reservations.
591 	 */
592 	resblks = mp->m_sb.sb_dblocks;
593 	do_div(resblks, 20);
594 	resblks = min_t(__uint64_t, resblks, 8192);
595 	return resblks;
596 }
597 
598 /*
599  * This function does the following on an initial mount of a file system:
600  *	- reads the superblock from disk and init the mount struct
601  *	- if we're a 32-bit kernel, do a size check on the superblock
602  *		so we don't mount terabyte filesystems
603  *	- init mount struct realtime fields
604  *	- allocate inode hash table for fs
605  *	- init directory manager
606  *	- perform recovery and init the log manager
607  */
608 int
609 xfs_mountfs(
610 	struct xfs_mount	*mp)
611 {
612 	struct xfs_sb		*sbp = &(mp->m_sb);
613 	struct xfs_inode	*rip;
614 	__uint64_t		resblks;
615 	uint			quotamount = 0;
616 	uint			quotaflags = 0;
617 	int			error = 0;
618 
619 	xfs_sb_mount_common(mp, sbp);
620 
621 	/*
622 	 * Check for a mismatched features2 values.  Older kernels read & wrote
623 	 * into the wrong sb offset for sb_features2 on some platforms due to
624 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
625 	 * which made older superblock reading/writing routines swap it as a
626 	 * 64-bit value.
627 	 *
628 	 * For backwards compatibility, we make both slots equal.
629 	 *
630 	 * If we detect a mismatched field, we OR the set bits into the existing
631 	 * features2 field in case it has already been modified; we don't want
632 	 * to lose any features.  We then update the bad location with the ORed
633 	 * value so that older kernels will see any features2 flags. The
634 	 * superblock writeback code ensures the new sb_features2 is copied to
635 	 * sb_bad_features2 before it is logged or written to disk.
636 	 */
637 	if (xfs_sb_has_mismatched_features2(sbp)) {
638 		xfs_warn(mp, "correcting sb_features alignment problem");
639 		sbp->sb_features2 |= sbp->sb_bad_features2;
640 		mp->m_update_sb = true;
641 
642 		/*
643 		 * Re-check for ATTR2 in case it was found in bad_features2
644 		 * slot.
645 		 */
646 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
647 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
648 			mp->m_flags |= XFS_MOUNT_ATTR2;
649 	}
650 
651 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
652 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
653 		xfs_sb_version_removeattr2(&mp->m_sb);
654 		mp->m_update_sb = true;
655 
656 		/* update sb_versionnum for the clearing of the morebits */
657 		if (!sbp->sb_features2)
658 			mp->m_update_sb = true;
659 	}
660 
661 	/* always use v2 inodes by default now */
662 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
663 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
664 		mp->m_update_sb = true;
665 	}
666 
667 	/*
668 	 * Check if sb_agblocks is aligned at stripe boundary
669 	 * If sb_agblocks is NOT aligned turn off m_dalign since
670 	 * allocator alignment is within an ag, therefore ag has
671 	 * to be aligned at stripe boundary.
672 	 */
673 	error = xfs_update_alignment(mp);
674 	if (error)
675 		goto out;
676 
677 	xfs_alloc_compute_maxlevels(mp);
678 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
679 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
680 	xfs_ialloc_compute_maxlevels(mp);
681 
682 	xfs_set_maxicount(mp);
683 
684 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
685 	if (error)
686 		goto out;
687 
688 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
689 			       &mp->m_kobj, "stats");
690 	if (error)
691 		goto out_remove_sysfs;
692 
693 	error = xfs_uuid_mount(mp);
694 	if (error)
695 		goto out_del_stats;
696 
697 	/*
698 	 * Set the minimum read and write sizes
699 	 */
700 	xfs_set_rw_sizes(mp);
701 
702 	/* set the low space thresholds for dynamic preallocation */
703 	xfs_set_low_space_thresholds(mp);
704 
705 	/*
706 	 * Set the inode cluster size.
707 	 * This may still be overridden by the file system
708 	 * block size if it is larger than the chosen cluster size.
709 	 *
710 	 * For v5 filesystems, scale the cluster size with the inode size to
711 	 * keep a constant ratio of inode per cluster buffer, but only if mkfs
712 	 * has set the inode alignment value appropriately for larger cluster
713 	 * sizes.
714 	 */
715 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
716 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
717 		int	new_size = mp->m_inode_cluster_size;
718 
719 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
720 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
721 			mp->m_inode_cluster_size = new_size;
722 	}
723 
724 	/*
725 	 * If enabled, sparse inode chunk alignment is expected to match the
726 	 * cluster size. Full inode chunk alignment must match the chunk size,
727 	 * but that is checked on sb read verification...
728 	 */
729 	if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
730 	    mp->m_sb.sb_spino_align !=
731 			XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
732 		xfs_warn(mp,
733 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
734 			 mp->m_sb.sb_spino_align,
735 			 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
736 		error = -EINVAL;
737 		goto out_remove_uuid;
738 	}
739 
740 	/*
741 	 * Set inode alignment fields
742 	 */
743 	xfs_set_inoalignment(mp);
744 
745 	/*
746 	 * Check that the data (and log if separate) is an ok size.
747 	 */
748 	error = xfs_check_sizes(mp);
749 	if (error)
750 		goto out_remove_uuid;
751 
752 	/*
753 	 * Initialize realtime fields in the mount structure
754 	 */
755 	error = xfs_rtmount_init(mp);
756 	if (error) {
757 		xfs_warn(mp, "RT mount failed");
758 		goto out_remove_uuid;
759 	}
760 
761 	/*
762 	 *  Copies the low order bits of the timestamp and the randomly
763 	 *  set "sequence" number out of a UUID.
764 	 */
765 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
766 
767 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
768 
769 	error = xfs_da_mount(mp);
770 	if (error) {
771 		xfs_warn(mp, "Failed dir/attr init: %d", error);
772 		goto out_remove_uuid;
773 	}
774 
775 	/*
776 	 * Initialize the precomputed transaction reservations values.
777 	 */
778 	xfs_trans_init(mp);
779 
780 	/*
781 	 * Allocate and initialize the per-ag data.
782 	 */
783 	spin_lock_init(&mp->m_perag_lock);
784 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
785 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
786 	if (error) {
787 		xfs_warn(mp, "Failed per-ag init: %d", error);
788 		goto out_free_dir;
789 	}
790 
791 	if (!sbp->sb_logblocks) {
792 		xfs_warn(mp, "no log defined");
793 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
794 		error = -EFSCORRUPTED;
795 		goto out_free_perag;
796 	}
797 
798 	/*
799 	 * Log's mount-time initialization. The first part of recovery can place
800 	 * some items on the AIL, to be handled when recovery is finished or
801 	 * cancelled.
802 	 */
803 	error = xfs_log_mount(mp, mp->m_logdev_targp,
804 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
805 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
806 	if (error) {
807 		xfs_warn(mp, "log mount failed");
808 		goto out_fail_wait;
809 	}
810 
811 	/*
812 	 * Now the log is mounted, we know if it was an unclean shutdown or
813 	 * not. If it was, with the first phase of recovery has completed, we
814 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
815 	 * but they are recovered transactionally in the second recovery phase
816 	 * later.
817 	 *
818 	 * Hence we can safely re-initialise incore superblock counters from
819 	 * the per-ag data. These may not be correct if the filesystem was not
820 	 * cleanly unmounted, so we need to wait for recovery to finish before
821 	 * doing this.
822 	 *
823 	 * If the filesystem was cleanly unmounted, then we can trust the
824 	 * values in the superblock to be correct and we don't need to do
825 	 * anything here.
826 	 *
827 	 * If we are currently making the filesystem, the initialisation will
828 	 * fail as the perag data is in an undefined state.
829 	 */
830 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
831 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
832 	     !mp->m_sb.sb_inprogress) {
833 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
834 		if (error)
835 			goto out_log_dealloc;
836 	}
837 
838 	/*
839 	 * Get and sanity-check the root inode.
840 	 * Save the pointer to it in the mount structure.
841 	 */
842 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
843 	if (error) {
844 		xfs_warn(mp, "failed to read root inode");
845 		goto out_log_dealloc;
846 	}
847 
848 	ASSERT(rip != NULL);
849 
850 	if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
851 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
852 			(unsigned long long)rip->i_ino);
853 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
854 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
855 				 mp);
856 		error = -EFSCORRUPTED;
857 		goto out_rele_rip;
858 	}
859 	mp->m_rootip = rip;	/* save it */
860 
861 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
862 
863 	/*
864 	 * Initialize realtime inode pointers in the mount structure
865 	 */
866 	error = xfs_rtmount_inodes(mp);
867 	if (error) {
868 		/*
869 		 * Free up the root inode.
870 		 */
871 		xfs_warn(mp, "failed to read RT inodes");
872 		goto out_rele_rip;
873 	}
874 
875 	/*
876 	 * If this is a read-only mount defer the superblock updates until
877 	 * the next remount into writeable mode.  Otherwise we would never
878 	 * perform the update e.g. for the root filesystem.
879 	 */
880 	if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
881 		error = xfs_sync_sb(mp, false);
882 		if (error) {
883 			xfs_warn(mp, "failed to write sb changes");
884 			goto out_rtunmount;
885 		}
886 	}
887 
888 	/*
889 	 * Initialise the XFS quota management subsystem for this mount
890 	 */
891 	if (XFS_IS_QUOTA_RUNNING(mp)) {
892 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
893 		if (error)
894 			goto out_rtunmount;
895 	} else {
896 		ASSERT(!XFS_IS_QUOTA_ON(mp));
897 
898 		/*
899 		 * If a file system had quotas running earlier, but decided to
900 		 * mount without -o uquota/pquota/gquota options, revoke the
901 		 * quotachecked license.
902 		 */
903 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
904 			xfs_notice(mp, "resetting quota flags");
905 			error = xfs_mount_reset_sbqflags(mp);
906 			if (error)
907 				goto out_rtunmount;
908 		}
909 	}
910 
911 	/*
912 	 * Finish recovering the file system.  This part needed to be delayed
913 	 * until after the root and real-time bitmap inodes were consistently
914 	 * read in.
915 	 */
916 	error = xfs_log_mount_finish(mp);
917 	if (error) {
918 		xfs_warn(mp, "log mount finish failed");
919 		goto out_rtunmount;
920 	}
921 
922 	/*
923 	 * Complete the quota initialisation, post-log-replay component.
924 	 */
925 	if (quotamount) {
926 		ASSERT(mp->m_qflags == 0);
927 		mp->m_qflags = quotaflags;
928 
929 		xfs_qm_mount_quotas(mp);
930 	}
931 
932 	/*
933 	 * Now we are mounted, reserve a small amount of unused space for
934 	 * privileged transactions. This is needed so that transaction
935 	 * space required for critical operations can dip into this pool
936 	 * when at ENOSPC. This is needed for operations like create with
937 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
938 	 * are not allowed to use this reserved space.
939 	 *
940 	 * This may drive us straight to ENOSPC on mount, but that implies
941 	 * we were already there on the last unmount. Warn if this occurs.
942 	 */
943 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
944 		resblks = xfs_default_resblks(mp);
945 		error = xfs_reserve_blocks(mp, &resblks, NULL);
946 		if (error)
947 			xfs_warn(mp,
948 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
949 	}
950 
951 	return 0;
952 
953  out_rtunmount:
954 	xfs_rtunmount_inodes(mp);
955  out_rele_rip:
956 	IRELE(rip);
957 	cancel_delayed_work_sync(&mp->m_reclaim_work);
958 	xfs_reclaim_inodes(mp, SYNC_WAIT);
959  out_log_dealloc:
960 	xfs_log_mount_cancel(mp);
961  out_fail_wait:
962 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
963 		xfs_wait_buftarg(mp->m_logdev_targp);
964 	xfs_wait_buftarg(mp->m_ddev_targp);
965  out_free_perag:
966 	xfs_free_perag(mp);
967  out_free_dir:
968 	xfs_da_unmount(mp);
969  out_remove_uuid:
970 	xfs_uuid_unmount(mp);
971  out_del_stats:
972 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
973  out_remove_sysfs:
974 	xfs_sysfs_del(&mp->m_kobj);
975  out:
976 	return error;
977 }
978 
979 /*
980  * This flushes out the inodes,dquots and the superblock, unmounts the
981  * log and makes sure that incore structures are freed.
982  */
983 void
984 xfs_unmountfs(
985 	struct xfs_mount	*mp)
986 {
987 	__uint64_t		resblks;
988 	int			error;
989 
990 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
991 
992 	xfs_qm_unmount_quotas(mp);
993 	xfs_rtunmount_inodes(mp);
994 	IRELE(mp->m_rootip);
995 
996 	/*
997 	 * We can potentially deadlock here if we have an inode cluster
998 	 * that has been freed has its buffer still pinned in memory because
999 	 * the transaction is still sitting in a iclog. The stale inodes
1000 	 * on that buffer will have their flush locks held until the
1001 	 * transaction hits the disk and the callbacks run. the inode
1002 	 * flush takes the flush lock unconditionally and with nothing to
1003 	 * push out the iclog we will never get that unlocked. hence we
1004 	 * need to force the log first.
1005 	 */
1006 	xfs_log_force(mp, XFS_LOG_SYNC);
1007 
1008 	/*
1009 	 * Flush all pending changes from the AIL.
1010 	 */
1011 	xfs_ail_push_all_sync(mp->m_ail);
1012 
1013 	/*
1014 	 * And reclaim all inodes.  At this point there should be no dirty
1015 	 * inodes and none should be pinned or locked, but use synchronous
1016 	 * reclaim just to be sure. We can stop background inode reclaim
1017 	 * here as well if it is still running.
1018 	 */
1019 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1020 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1021 
1022 	xfs_qm_unmount(mp);
1023 
1024 	/*
1025 	 * Unreserve any blocks we have so that when we unmount we don't account
1026 	 * the reserved free space as used. This is really only necessary for
1027 	 * lazy superblock counting because it trusts the incore superblock
1028 	 * counters to be absolutely correct on clean unmount.
1029 	 *
1030 	 * We don't bother correcting this elsewhere for lazy superblock
1031 	 * counting because on mount of an unclean filesystem we reconstruct the
1032 	 * correct counter value and this is irrelevant.
1033 	 *
1034 	 * For non-lazy counter filesystems, this doesn't matter at all because
1035 	 * we only every apply deltas to the superblock and hence the incore
1036 	 * value does not matter....
1037 	 */
1038 	resblks = 0;
1039 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1040 	if (error)
1041 		xfs_warn(mp, "Unable to free reserved block pool. "
1042 				"Freespace may not be correct on next mount.");
1043 
1044 	error = xfs_log_sbcount(mp);
1045 	if (error)
1046 		xfs_warn(mp, "Unable to update superblock counters. "
1047 				"Freespace may not be correct on next mount.");
1048 
1049 
1050 	xfs_log_unmount(mp);
1051 	xfs_da_unmount(mp);
1052 	xfs_uuid_unmount(mp);
1053 
1054 #if defined(DEBUG)
1055 	xfs_errortag_clearall(mp, 0);
1056 #endif
1057 	xfs_free_perag(mp);
1058 
1059 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1060 	xfs_sysfs_del(&mp->m_kobj);
1061 }
1062 
1063 /*
1064  * Determine whether modifications can proceed. The caller specifies the minimum
1065  * freeze level for which modifications should not be allowed. This allows
1066  * certain operations to proceed while the freeze sequence is in progress, if
1067  * necessary.
1068  */
1069 bool
1070 xfs_fs_writable(
1071 	struct xfs_mount	*mp,
1072 	int			level)
1073 {
1074 	ASSERT(level > SB_UNFROZEN);
1075 	if ((mp->m_super->s_writers.frozen >= level) ||
1076 	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1077 		return false;
1078 
1079 	return true;
1080 }
1081 
1082 /*
1083  * xfs_log_sbcount
1084  *
1085  * Sync the superblock counters to disk.
1086  *
1087  * Note this code can be called during the process of freezing, so we use the
1088  * transaction allocator that does not block when the transaction subsystem is
1089  * in its frozen state.
1090  */
1091 int
1092 xfs_log_sbcount(xfs_mount_t *mp)
1093 {
1094 	/* allow this to proceed during the freeze sequence... */
1095 	if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1096 		return 0;
1097 
1098 	/*
1099 	 * we don't need to do this if we are updating the superblock
1100 	 * counters on every modification.
1101 	 */
1102 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1103 		return 0;
1104 
1105 	return xfs_sync_sb(mp, true);
1106 }
1107 
1108 /*
1109  * Deltas for the inode count are +/-64, hence we use a large batch size
1110  * of 128 so we don't need to take the counter lock on every update.
1111  */
1112 #define XFS_ICOUNT_BATCH	128
1113 int
1114 xfs_mod_icount(
1115 	struct xfs_mount	*mp,
1116 	int64_t			delta)
1117 {
1118 	__percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1119 	if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1120 		ASSERT(0);
1121 		percpu_counter_add(&mp->m_icount, -delta);
1122 		return -EINVAL;
1123 	}
1124 	return 0;
1125 }
1126 
1127 int
1128 xfs_mod_ifree(
1129 	struct xfs_mount	*mp,
1130 	int64_t			delta)
1131 {
1132 	percpu_counter_add(&mp->m_ifree, delta);
1133 	if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1134 		ASSERT(0);
1135 		percpu_counter_add(&mp->m_ifree, -delta);
1136 		return -EINVAL;
1137 	}
1138 	return 0;
1139 }
1140 
1141 /*
1142  * Deltas for the block count can vary from 1 to very large, but lock contention
1143  * only occurs on frequent small block count updates such as in the delayed
1144  * allocation path for buffered writes (page a time updates). Hence we set
1145  * a large batch count (1024) to minimise global counter updates except when
1146  * we get near to ENOSPC and we have to be very accurate with our updates.
1147  */
1148 #define XFS_FDBLOCKS_BATCH	1024
1149 int
1150 xfs_mod_fdblocks(
1151 	struct xfs_mount	*mp,
1152 	int64_t			delta,
1153 	bool			rsvd)
1154 {
1155 	int64_t			lcounter;
1156 	long long		res_used;
1157 	s32			batch;
1158 
1159 	if (delta > 0) {
1160 		/*
1161 		 * If the reserve pool is depleted, put blocks back into it
1162 		 * first. Most of the time the pool is full.
1163 		 */
1164 		if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1165 			percpu_counter_add(&mp->m_fdblocks, delta);
1166 			return 0;
1167 		}
1168 
1169 		spin_lock(&mp->m_sb_lock);
1170 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1171 
1172 		if (res_used > delta) {
1173 			mp->m_resblks_avail += delta;
1174 		} else {
1175 			delta -= res_used;
1176 			mp->m_resblks_avail = mp->m_resblks;
1177 			percpu_counter_add(&mp->m_fdblocks, delta);
1178 		}
1179 		spin_unlock(&mp->m_sb_lock);
1180 		return 0;
1181 	}
1182 
1183 	/*
1184 	 * Taking blocks away, need to be more accurate the closer we
1185 	 * are to zero.
1186 	 *
1187 	 * If the counter has a value of less than 2 * max batch size,
1188 	 * then make everything serialise as we are real close to
1189 	 * ENOSPC.
1190 	 */
1191 	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1192 				     XFS_FDBLOCKS_BATCH) < 0)
1193 		batch = 1;
1194 	else
1195 		batch = XFS_FDBLOCKS_BATCH;
1196 
1197 	__percpu_counter_add(&mp->m_fdblocks, delta, batch);
1198 	if (__percpu_counter_compare(&mp->m_fdblocks, XFS_ALLOC_SET_ASIDE(mp),
1199 				     XFS_FDBLOCKS_BATCH) >= 0) {
1200 		/* we had space! */
1201 		return 0;
1202 	}
1203 
1204 	/*
1205 	 * lock up the sb for dipping into reserves before releasing the space
1206 	 * that took us to ENOSPC.
1207 	 */
1208 	spin_lock(&mp->m_sb_lock);
1209 	percpu_counter_add(&mp->m_fdblocks, -delta);
1210 	if (!rsvd)
1211 		goto fdblocks_enospc;
1212 
1213 	lcounter = (long long)mp->m_resblks_avail + delta;
1214 	if (lcounter >= 0) {
1215 		mp->m_resblks_avail = lcounter;
1216 		spin_unlock(&mp->m_sb_lock);
1217 		return 0;
1218 	}
1219 	printk_once(KERN_WARNING
1220 		"Filesystem \"%s\": reserve blocks depleted! "
1221 		"Consider increasing reserve pool size.",
1222 		mp->m_fsname);
1223 fdblocks_enospc:
1224 	spin_unlock(&mp->m_sb_lock);
1225 	return -ENOSPC;
1226 }
1227 
1228 int
1229 xfs_mod_frextents(
1230 	struct xfs_mount	*mp,
1231 	int64_t			delta)
1232 {
1233 	int64_t			lcounter;
1234 	int			ret = 0;
1235 
1236 	spin_lock(&mp->m_sb_lock);
1237 	lcounter = mp->m_sb.sb_frextents + delta;
1238 	if (lcounter < 0)
1239 		ret = -ENOSPC;
1240 	else
1241 		mp->m_sb.sb_frextents = lcounter;
1242 	spin_unlock(&mp->m_sb_lock);
1243 	return ret;
1244 }
1245 
1246 /*
1247  * xfs_getsb() is called to obtain the buffer for the superblock.
1248  * The buffer is returned locked and read in from disk.
1249  * The buffer should be released with a call to xfs_brelse().
1250  *
1251  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1252  * the superblock buffer if it can be locked without sleeping.
1253  * If it can't then we'll return NULL.
1254  */
1255 struct xfs_buf *
1256 xfs_getsb(
1257 	struct xfs_mount	*mp,
1258 	int			flags)
1259 {
1260 	struct xfs_buf		*bp = mp->m_sb_bp;
1261 
1262 	if (!xfs_buf_trylock(bp)) {
1263 		if (flags & XBF_TRYLOCK)
1264 			return NULL;
1265 		xfs_buf_lock(bp);
1266 	}
1267 
1268 	xfs_buf_hold(bp);
1269 	ASSERT(bp->b_flags & XBF_DONE);
1270 	return bp;
1271 }
1272 
1273 /*
1274  * Used to free the superblock along various error paths.
1275  */
1276 void
1277 xfs_freesb(
1278 	struct xfs_mount	*mp)
1279 {
1280 	struct xfs_buf		*bp = mp->m_sb_bp;
1281 
1282 	xfs_buf_lock(bp);
1283 	mp->m_sb_bp = NULL;
1284 	xfs_buf_relse(bp);
1285 }
1286 
1287 /*
1288  * If the underlying (data/log/rt) device is readonly, there are some
1289  * operations that cannot proceed.
1290  */
1291 int
1292 xfs_dev_is_read_only(
1293 	struct xfs_mount	*mp,
1294 	char			*message)
1295 {
1296 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1297 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1298 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1299 		xfs_notice(mp, "%s required on read-only device.", message);
1300 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1301 		return -EROFS;
1302 	}
1303 	return 0;
1304 }
1305