1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_sb.h" 26 #include "xfs_mount.h" 27 #include "xfs_da_format.h" 28 #include "xfs_da_btree.h" 29 #include "xfs_inode.h" 30 #include "xfs_dir2.h" 31 #include "xfs_ialloc.h" 32 #include "xfs_alloc.h" 33 #include "xfs_rtalloc.h" 34 #include "xfs_bmap.h" 35 #include "xfs_trans.h" 36 #include "xfs_trans_priv.h" 37 #include "xfs_log.h" 38 #include "xfs_error.h" 39 #include "xfs_quota.h" 40 #include "xfs_fsops.h" 41 #include "xfs_trace.h" 42 #include "xfs_icache.h" 43 #include "xfs_sysfs.h" 44 45 46 static DEFINE_MUTEX(xfs_uuid_table_mutex); 47 static int xfs_uuid_table_size; 48 static uuid_t *xfs_uuid_table; 49 50 void 51 xfs_uuid_table_free(void) 52 { 53 if (xfs_uuid_table_size == 0) 54 return; 55 kmem_free(xfs_uuid_table); 56 xfs_uuid_table = NULL; 57 xfs_uuid_table_size = 0; 58 } 59 60 /* 61 * See if the UUID is unique among mounted XFS filesystems. 62 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 63 */ 64 STATIC int 65 xfs_uuid_mount( 66 struct xfs_mount *mp) 67 { 68 uuid_t *uuid = &mp->m_sb.sb_uuid; 69 int hole, i; 70 71 if (mp->m_flags & XFS_MOUNT_NOUUID) 72 return 0; 73 74 if (uuid_is_nil(uuid)) { 75 xfs_warn(mp, "Filesystem has nil UUID - can't mount"); 76 return -EINVAL; 77 } 78 79 mutex_lock(&xfs_uuid_table_mutex); 80 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 81 if (uuid_is_nil(&xfs_uuid_table[i])) { 82 hole = i; 83 continue; 84 } 85 if (uuid_equal(uuid, &xfs_uuid_table[i])) 86 goto out_duplicate; 87 } 88 89 if (hole < 0) { 90 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 91 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 92 xfs_uuid_table_size * sizeof(*xfs_uuid_table), 93 KM_SLEEP); 94 hole = xfs_uuid_table_size++; 95 } 96 xfs_uuid_table[hole] = *uuid; 97 mutex_unlock(&xfs_uuid_table_mutex); 98 99 return 0; 100 101 out_duplicate: 102 mutex_unlock(&xfs_uuid_table_mutex); 103 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 104 return -EINVAL; 105 } 106 107 STATIC void 108 xfs_uuid_unmount( 109 struct xfs_mount *mp) 110 { 111 uuid_t *uuid = &mp->m_sb.sb_uuid; 112 int i; 113 114 if (mp->m_flags & XFS_MOUNT_NOUUID) 115 return; 116 117 mutex_lock(&xfs_uuid_table_mutex); 118 for (i = 0; i < xfs_uuid_table_size; i++) { 119 if (uuid_is_nil(&xfs_uuid_table[i])) 120 continue; 121 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 122 continue; 123 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 124 break; 125 } 126 ASSERT(i < xfs_uuid_table_size); 127 mutex_unlock(&xfs_uuid_table_mutex); 128 } 129 130 131 STATIC void 132 __xfs_free_perag( 133 struct rcu_head *head) 134 { 135 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 136 137 ASSERT(atomic_read(&pag->pag_ref) == 0); 138 kmem_free(pag); 139 } 140 141 /* 142 * Free up the per-ag resources associated with the mount structure. 143 */ 144 STATIC void 145 xfs_free_perag( 146 xfs_mount_t *mp) 147 { 148 xfs_agnumber_t agno; 149 struct xfs_perag *pag; 150 151 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 152 spin_lock(&mp->m_perag_lock); 153 pag = radix_tree_delete(&mp->m_perag_tree, agno); 154 spin_unlock(&mp->m_perag_lock); 155 ASSERT(pag); 156 ASSERT(atomic_read(&pag->pag_ref) == 0); 157 call_rcu(&pag->rcu_head, __xfs_free_perag); 158 } 159 } 160 161 /* 162 * Check size of device based on the (data/realtime) block count. 163 * Note: this check is used by the growfs code as well as mount. 164 */ 165 int 166 xfs_sb_validate_fsb_count( 167 xfs_sb_t *sbp, 168 __uint64_t nblocks) 169 { 170 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 171 ASSERT(sbp->sb_blocklog >= BBSHIFT); 172 173 /* Limited by ULONG_MAX of page cache index */ 174 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 175 return -EFBIG; 176 return 0; 177 } 178 179 int 180 xfs_initialize_perag( 181 xfs_mount_t *mp, 182 xfs_agnumber_t agcount, 183 xfs_agnumber_t *maxagi) 184 { 185 xfs_agnumber_t index; 186 xfs_agnumber_t first_initialised = 0; 187 xfs_perag_t *pag; 188 xfs_agino_t agino; 189 xfs_ino_t ino; 190 xfs_sb_t *sbp = &mp->m_sb; 191 int error = -ENOMEM; 192 193 /* 194 * Walk the current per-ag tree so we don't try to initialise AGs 195 * that already exist (growfs case). Allocate and insert all the 196 * AGs we don't find ready for initialisation. 197 */ 198 for (index = 0; index < agcount; index++) { 199 pag = xfs_perag_get(mp, index); 200 if (pag) { 201 xfs_perag_put(pag); 202 continue; 203 } 204 if (!first_initialised) 205 first_initialised = index; 206 207 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 208 if (!pag) 209 goto out_unwind; 210 pag->pag_agno = index; 211 pag->pag_mount = mp; 212 spin_lock_init(&pag->pag_ici_lock); 213 mutex_init(&pag->pag_ici_reclaim_lock); 214 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 215 spin_lock_init(&pag->pag_buf_lock); 216 pag->pag_buf_tree = RB_ROOT; 217 218 if (radix_tree_preload(GFP_NOFS)) 219 goto out_unwind; 220 221 spin_lock(&mp->m_perag_lock); 222 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 223 BUG(); 224 spin_unlock(&mp->m_perag_lock); 225 radix_tree_preload_end(); 226 error = -EEXIST; 227 goto out_unwind; 228 } 229 spin_unlock(&mp->m_perag_lock); 230 radix_tree_preload_end(); 231 } 232 233 /* 234 * If we mount with the inode64 option, or no inode overflows 235 * the legacy 32-bit address space clear the inode32 option. 236 */ 237 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); 238 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 239 240 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32) 241 mp->m_flags |= XFS_MOUNT_32BITINODES; 242 else 243 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 244 245 if (mp->m_flags & XFS_MOUNT_32BITINODES) 246 index = xfs_set_inode32(mp, agcount); 247 else 248 index = xfs_set_inode64(mp, agcount); 249 250 if (maxagi) 251 *maxagi = index; 252 return 0; 253 254 out_unwind: 255 kmem_free(pag); 256 for (; index > first_initialised; index--) { 257 pag = radix_tree_delete(&mp->m_perag_tree, index); 258 kmem_free(pag); 259 } 260 return error; 261 } 262 263 /* 264 * xfs_readsb 265 * 266 * Does the initial read of the superblock. 267 */ 268 int 269 xfs_readsb( 270 struct xfs_mount *mp, 271 int flags) 272 { 273 unsigned int sector_size; 274 struct xfs_buf *bp; 275 struct xfs_sb *sbp = &mp->m_sb; 276 int error; 277 int loud = !(flags & XFS_MFSI_QUIET); 278 const struct xfs_buf_ops *buf_ops; 279 280 ASSERT(mp->m_sb_bp == NULL); 281 ASSERT(mp->m_ddev_targp != NULL); 282 283 /* 284 * For the initial read, we must guess at the sector 285 * size based on the block device. It's enough to 286 * get the sb_sectsize out of the superblock and 287 * then reread with the proper length. 288 * We don't verify it yet, because it may not be complete. 289 */ 290 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 291 buf_ops = NULL; 292 293 /* 294 * Allocate a (locked) buffer to hold the superblock. 295 * This will be kept around at all times to optimize 296 * access to the superblock. 297 */ 298 reread: 299 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 300 BTOBB(sector_size), 0, &bp, buf_ops); 301 if (error) { 302 if (loud) 303 xfs_warn(mp, "SB validate failed with error %d.", error); 304 /* bad CRC means corrupted metadata */ 305 if (error == -EFSBADCRC) 306 error = -EFSCORRUPTED; 307 return error; 308 } 309 310 /* 311 * Initialize the mount structure from the superblock. 312 */ 313 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 314 315 /* 316 * If we haven't validated the superblock, do so now before we try 317 * to check the sector size and reread the superblock appropriately. 318 */ 319 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 320 if (loud) 321 xfs_warn(mp, "Invalid superblock magic number"); 322 error = -EINVAL; 323 goto release_buf; 324 } 325 326 /* 327 * We must be able to do sector-sized and sector-aligned IO. 328 */ 329 if (sector_size > sbp->sb_sectsize) { 330 if (loud) 331 xfs_warn(mp, "device supports %u byte sectors (not %u)", 332 sector_size, sbp->sb_sectsize); 333 error = -ENOSYS; 334 goto release_buf; 335 } 336 337 if (buf_ops == NULL) { 338 /* 339 * Re-read the superblock so the buffer is correctly sized, 340 * and properly verified. 341 */ 342 xfs_buf_relse(bp); 343 sector_size = sbp->sb_sectsize; 344 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 345 goto reread; 346 } 347 348 xfs_reinit_percpu_counters(mp); 349 350 /* no need to be quiet anymore, so reset the buf ops */ 351 bp->b_ops = &xfs_sb_buf_ops; 352 353 mp->m_sb_bp = bp; 354 xfs_buf_unlock(bp); 355 return 0; 356 357 release_buf: 358 xfs_buf_relse(bp); 359 return error; 360 } 361 362 /* 363 * Update alignment values based on mount options and sb values 364 */ 365 STATIC int 366 xfs_update_alignment(xfs_mount_t *mp) 367 { 368 xfs_sb_t *sbp = &(mp->m_sb); 369 370 if (mp->m_dalign) { 371 /* 372 * If stripe unit and stripe width are not multiples 373 * of the fs blocksize turn off alignment. 374 */ 375 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 376 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 377 xfs_warn(mp, 378 "alignment check failed: sunit/swidth vs. blocksize(%d)", 379 sbp->sb_blocksize); 380 return -EINVAL; 381 } else { 382 /* 383 * Convert the stripe unit and width to FSBs. 384 */ 385 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 386 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 387 xfs_warn(mp, 388 "alignment check failed: sunit/swidth vs. agsize(%d)", 389 sbp->sb_agblocks); 390 return -EINVAL; 391 } else if (mp->m_dalign) { 392 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 393 } else { 394 xfs_warn(mp, 395 "alignment check failed: sunit(%d) less than bsize(%d)", 396 mp->m_dalign, sbp->sb_blocksize); 397 return -EINVAL; 398 } 399 } 400 401 /* 402 * Update superblock with new values 403 * and log changes 404 */ 405 if (xfs_sb_version_hasdalign(sbp)) { 406 if (sbp->sb_unit != mp->m_dalign) { 407 sbp->sb_unit = mp->m_dalign; 408 mp->m_update_sb = true; 409 } 410 if (sbp->sb_width != mp->m_swidth) { 411 sbp->sb_width = mp->m_swidth; 412 mp->m_update_sb = true; 413 } 414 } else { 415 xfs_warn(mp, 416 "cannot change alignment: superblock does not support data alignment"); 417 return -EINVAL; 418 } 419 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 420 xfs_sb_version_hasdalign(&mp->m_sb)) { 421 mp->m_dalign = sbp->sb_unit; 422 mp->m_swidth = sbp->sb_width; 423 } 424 425 return 0; 426 } 427 428 /* 429 * Set the maximum inode count for this filesystem 430 */ 431 STATIC void 432 xfs_set_maxicount(xfs_mount_t *mp) 433 { 434 xfs_sb_t *sbp = &(mp->m_sb); 435 __uint64_t icount; 436 437 if (sbp->sb_imax_pct) { 438 /* 439 * Make sure the maximum inode count is a multiple 440 * of the units we allocate inodes in. 441 */ 442 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 443 do_div(icount, 100); 444 do_div(icount, mp->m_ialloc_blks); 445 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 446 sbp->sb_inopblog; 447 } else { 448 mp->m_maxicount = 0; 449 } 450 } 451 452 /* 453 * Set the default minimum read and write sizes unless 454 * already specified in a mount option. 455 * We use smaller I/O sizes when the file system 456 * is being used for NFS service (wsync mount option). 457 */ 458 STATIC void 459 xfs_set_rw_sizes(xfs_mount_t *mp) 460 { 461 xfs_sb_t *sbp = &(mp->m_sb); 462 int readio_log, writeio_log; 463 464 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 465 if (mp->m_flags & XFS_MOUNT_WSYNC) { 466 readio_log = XFS_WSYNC_READIO_LOG; 467 writeio_log = XFS_WSYNC_WRITEIO_LOG; 468 } else { 469 readio_log = XFS_READIO_LOG_LARGE; 470 writeio_log = XFS_WRITEIO_LOG_LARGE; 471 } 472 } else { 473 readio_log = mp->m_readio_log; 474 writeio_log = mp->m_writeio_log; 475 } 476 477 if (sbp->sb_blocklog > readio_log) { 478 mp->m_readio_log = sbp->sb_blocklog; 479 } else { 480 mp->m_readio_log = readio_log; 481 } 482 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 483 if (sbp->sb_blocklog > writeio_log) { 484 mp->m_writeio_log = sbp->sb_blocklog; 485 } else { 486 mp->m_writeio_log = writeio_log; 487 } 488 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 489 } 490 491 /* 492 * precalculate the low space thresholds for dynamic speculative preallocation. 493 */ 494 void 495 xfs_set_low_space_thresholds( 496 struct xfs_mount *mp) 497 { 498 int i; 499 500 for (i = 0; i < XFS_LOWSP_MAX; i++) { 501 __uint64_t space = mp->m_sb.sb_dblocks; 502 503 do_div(space, 100); 504 mp->m_low_space[i] = space * (i + 1); 505 } 506 } 507 508 509 /* 510 * Set whether we're using inode alignment. 511 */ 512 STATIC void 513 xfs_set_inoalignment(xfs_mount_t *mp) 514 { 515 if (xfs_sb_version_hasalign(&mp->m_sb) && 516 mp->m_sb.sb_inoalignmt >= 517 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 518 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 519 else 520 mp->m_inoalign_mask = 0; 521 /* 522 * If we are using stripe alignment, check whether 523 * the stripe unit is a multiple of the inode alignment 524 */ 525 if (mp->m_dalign && mp->m_inoalign_mask && 526 !(mp->m_dalign & mp->m_inoalign_mask)) 527 mp->m_sinoalign = mp->m_dalign; 528 else 529 mp->m_sinoalign = 0; 530 } 531 532 /* 533 * Check that the data (and log if separate) is an ok size. 534 */ 535 STATIC int 536 xfs_check_sizes( 537 struct xfs_mount *mp) 538 { 539 struct xfs_buf *bp; 540 xfs_daddr_t d; 541 int error; 542 543 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 544 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 545 xfs_warn(mp, "filesystem size mismatch detected"); 546 return -EFBIG; 547 } 548 error = xfs_buf_read_uncached(mp->m_ddev_targp, 549 d - XFS_FSS_TO_BB(mp, 1), 550 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 551 if (error) { 552 xfs_warn(mp, "last sector read failed"); 553 return error; 554 } 555 xfs_buf_relse(bp); 556 557 if (mp->m_logdev_targp == mp->m_ddev_targp) 558 return 0; 559 560 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 561 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 562 xfs_warn(mp, "log size mismatch detected"); 563 return -EFBIG; 564 } 565 error = xfs_buf_read_uncached(mp->m_logdev_targp, 566 d - XFS_FSB_TO_BB(mp, 1), 567 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 568 if (error) { 569 xfs_warn(mp, "log device read failed"); 570 return error; 571 } 572 xfs_buf_relse(bp); 573 return 0; 574 } 575 576 /* 577 * Clear the quotaflags in memory and in the superblock. 578 */ 579 int 580 xfs_mount_reset_sbqflags( 581 struct xfs_mount *mp) 582 { 583 mp->m_qflags = 0; 584 585 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 586 if (mp->m_sb.sb_qflags == 0) 587 return 0; 588 spin_lock(&mp->m_sb_lock); 589 mp->m_sb.sb_qflags = 0; 590 spin_unlock(&mp->m_sb_lock); 591 592 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 593 return 0; 594 595 return xfs_sync_sb(mp, false); 596 } 597 598 __uint64_t 599 xfs_default_resblks(xfs_mount_t *mp) 600 { 601 __uint64_t resblks; 602 603 /* 604 * We default to 5% or 8192 fsbs of space reserved, whichever is 605 * smaller. This is intended to cover concurrent allocation 606 * transactions when we initially hit enospc. These each require a 4 607 * block reservation. Hence by default we cover roughly 2000 concurrent 608 * allocation reservations. 609 */ 610 resblks = mp->m_sb.sb_dblocks; 611 do_div(resblks, 20); 612 resblks = min_t(__uint64_t, resblks, 8192); 613 return resblks; 614 } 615 616 /* 617 * This function does the following on an initial mount of a file system: 618 * - reads the superblock from disk and init the mount struct 619 * - if we're a 32-bit kernel, do a size check on the superblock 620 * so we don't mount terabyte filesystems 621 * - init mount struct realtime fields 622 * - allocate inode hash table for fs 623 * - init directory manager 624 * - perform recovery and init the log manager 625 */ 626 int 627 xfs_mountfs( 628 struct xfs_mount *mp) 629 { 630 struct xfs_sb *sbp = &(mp->m_sb); 631 struct xfs_inode *rip; 632 __uint64_t resblks; 633 uint quotamount = 0; 634 uint quotaflags = 0; 635 int error = 0; 636 637 xfs_sb_mount_common(mp, sbp); 638 639 /* 640 * Check for a mismatched features2 values. Older kernels read & wrote 641 * into the wrong sb offset for sb_features2 on some platforms due to 642 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 643 * which made older superblock reading/writing routines swap it as a 644 * 64-bit value. 645 * 646 * For backwards compatibility, we make both slots equal. 647 * 648 * If we detect a mismatched field, we OR the set bits into the existing 649 * features2 field in case it has already been modified; we don't want 650 * to lose any features. We then update the bad location with the ORed 651 * value so that older kernels will see any features2 flags. The 652 * superblock writeback code ensures the new sb_features2 is copied to 653 * sb_bad_features2 before it is logged or written to disk. 654 */ 655 if (xfs_sb_has_mismatched_features2(sbp)) { 656 xfs_warn(mp, "correcting sb_features alignment problem"); 657 sbp->sb_features2 |= sbp->sb_bad_features2; 658 mp->m_update_sb = true; 659 660 /* 661 * Re-check for ATTR2 in case it was found in bad_features2 662 * slot. 663 */ 664 if (xfs_sb_version_hasattr2(&mp->m_sb) && 665 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 666 mp->m_flags |= XFS_MOUNT_ATTR2; 667 } 668 669 if (xfs_sb_version_hasattr2(&mp->m_sb) && 670 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 671 xfs_sb_version_removeattr2(&mp->m_sb); 672 mp->m_update_sb = true; 673 674 /* update sb_versionnum for the clearing of the morebits */ 675 if (!sbp->sb_features2) 676 mp->m_update_sb = true; 677 } 678 679 /* always use v2 inodes by default now */ 680 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 681 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 682 mp->m_update_sb = true; 683 } 684 685 /* 686 * Check if sb_agblocks is aligned at stripe boundary 687 * If sb_agblocks is NOT aligned turn off m_dalign since 688 * allocator alignment is within an ag, therefore ag has 689 * to be aligned at stripe boundary. 690 */ 691 error = xfs_update_alignment(mp); 692 if (error) 693 goto out; 694 695 xfs_alloc_compute_maxlevels(mp); 696 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 697 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 698 xfs_ialloc_compute_maxlevels(mp); 699 700 xfs_set_maxicount(mp); 701 702 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname); 703 if (error) 704 goto out; 705 706 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 707 &mp->m_kobj, "stats"); 708 if (error) 709 goto out_remove_sysfs; 710 711 error = xfs_uuid_mount(mp); 712 if (error) 713 goto out_del_stats; 714 715 /* 716 * Set the minimum read and write sizes 717 */ 718 xfs_set_rw_sizes(mp); 719 720 /* set the low space thresholds for dynamic preallocation */ 721 xfs_set_low_space_thresholds(mp); 722 723 /* 724 * Set the inode cluster size. 725 * This may still be overridden by the file system 726 * block size if it is larger than the chosen cluster size. 727 * 728 * For v5 filesystems, scale the cluster size with the inode size to 729 * keep a constant ratio of inode per cluster buffer, but only if mkfs 730 * has set the inode alignment value appropriately for larger cluster 731 * sizes. 732 */ 733 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 734 if (xfs_sb_version_hascrc(&mp->m_sb)) { 735 int new_size = mp->m_inode_cluster_size; 736 737 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; 738 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) 739 mp->m_inode_cluster_size = new_size; 740 } 741 742 /* 743 * If enabled, sparse inode chunk alignment is expected to match the 744 * cluster size. Full inode chunk alignment must match the chunk size, 745 * but that is checked on sb read verification... 746 */ 747 if (xfs_sb_version_hassparseinodes(&mp->m_sb) && 748 mp->m_sb.sb_spino_align != 749 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) { 750 xfs_warn(mp, 751 "Sparse inode block alignment (%u) must match cluster size (%llu).", 752 mp->m_sb.sb_spino_align, 753 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)); 754 error = -EINVAL; 755 goto out_remove_uuid; 756 } 757 758 /* 759 * Set inode alignment fields 760 */ 761 xfs_set_inoalignment(mp); 762 763 /* 764 * Check that the data (and log if separate) is an ok size. 765 */ 766 error = xfs_check_sizes(mp); 767 if (error) 768 goto out_remove_uuid; 769 770 /* 771 * Initialize realtime fields in the mount structure 772 */ 773 error = xfs_rtmount_init(mp); 774 if (error) { 775 xfs_warn(mp, "RT mount failed"); 776 goto out_remove_uuid; 777 } 778 779 /* 780 * Copies the low order bits of the timestamp and the randomly 781 * set "sequence" number out of a UUID. 782 */ 783 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 784 785 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 786 787 error = xfs_da_mount(mp); 788 if (error) { 789 xfs_warn(mp, "Failed dir/attr init: %d", error); 790 goto out_remove_uuid; 791 } 792 793 /* 794 * Initialize the precomputed transaction reservations values. 795 */ 796 xfs_trans_init(mp); 797 798 /* 799 * Allocate and initialize the per-ag data. 800 */ 801 spin_lock_init(&mp->m_perag_lock); 802 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 803 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 804 if (error) { 805 xfs_warn(mp, "Failed per-ag init: %d", error); 806 goto out_free_dir; 807 } 808 809 if (!sbp->sb_logblocks) { 810 xfs_warn(mp, "no log defined"); 811 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 812 error = -EFSCORRUPTED; 813 goto out_free_perag; 814 } 815 816 /* 817 * Log's mount-time initialization. The first part of recovery can place 818 * some items on the AIL, to be handled when recovery is finished or 819 * cancelled. 820 */ 821 error = xfs_log_mount(mp, mp->m_logdev_targp, 822 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 823 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 824 if (error) { 825 xfs_warn(mp, "log mount failed"); 826 goto out_fail_wait; 827 } 828 829 /* 830 * Now the log is mounted, we know if it was an unclean shutdown or 831 * not. If it was, with the first phase of recovery has completed, we 832 * have consistent AG blocks on disk. We have not recovered EFIs yet, 833 * but they are recovered transactionally in the second recovery phase 834 * later. 835 * 836 * Hence we can safely re-initialise incore superblock counters from 837 * the per-ag data. These may not be correct if the filesystem was not 838 * cleanly unmounted, so we need to wait for recovery to finish before 839 * doing this. 840 * 841 * If the filesystem was cleanly unmounted, then we can trust the 842 * values in the superblock to be correct and we don't need to do 843 * anything here. 844 * 845 * If we are currently making the filesystem, the initialisation will 846 * fail as the perag data is in an undefined state. 847 */ 848 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 849 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 850 !mp->m_sb.sb_inprogress) { 851 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 852 if (error) 853 goto out_log_dealloc; 854 } 855 856 /* 857 * Get and sanity-check the root inode. 858 * Save the pointer to it in the mount structure. 859 */ 860 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip); 861 if (error) { 862 xfs_warn(mp, "failed to read root inode"); 863 goto out_log_dealloc; 864 } 865 866 ASSERT(rip != NULL); 867 868 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) { 869 xfs_warn(mp, "corrupted root inode %llu: not a directory", 870 (unsigned long long)rip->i_ino); 871 xfs_iunlock(rip, XFS_ILOCK_EXCL); 872 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 873 mp); 874 error = -EFSCORRUPTED; 875 goto out_rele_rip; 876 } 877 mp->m_rootip = rip; /* save it */ 878 879 xfs_iunlock(rip, XFS_ILOCK_EXCL); 880 881 /* 882 * Initialize realtime inode pointers in the mount structure 883 */ 884 error = xfs_rtmount_inodes(mp); 885 if (error) { 886 /* 887 * Free up the root inode. 888 */ 889 xfs_warn(mp, "failed to read RT inodes"); 890 goto out_rele_rip; 891 } 892 893 /* 894 * If this is a read-only mount defer the superblock updates until 895 * the next remount into writeable mode. Otherwise we would never 896 * perform the update e.g. for the root filesystem. 897 */ 898 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 899 error = xfs_sync_sb(mp, false); 900 if (error) { 901 xfs_warn(mp, "failed to write sb changes"); 902 goto out_rtunmount; 903 } 904 } 905 906 /* 907 * Initialise the XFS quota management subsystem for this mount 908 */ 909 if (XFS_IS_QUOTA_RUNNING(mp)) { 910 error = xfs_qm_newmount(mp, "amount, "aflags); 911 if (error) 912 goto out_rtunmount; 913 } else { 914 ASSERT(!XFS_IS_QUOTA_ON(mp)); 915 916 /* 917 * If a file system had quotas running earlier, but decided to 918 * mount without -o uquota/pquota/gquota options, revoke the 919 * quotachecked license. 920 */ 921 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 922 xfs_notice(mp, "resetting quota flags"); 923 error = xfs_mount_reset_sbqflags(mp); 924 if (error) 925 goto out_rtunmount; 926 } 927 } 928 929 /* 930 * Finish recovering the file system. This part needed to be delayed 931 * until after the root and real-time bitmap inodes were consistently 932 * read in. 933 */ 934 error = xfs_log_mount_finish(mp); 935 if (error) { 936 xfs_warn(mp, "log mount finish failed"); 937 goto out_rtunmount; 938 } 939 940 /* 941 * Complete the quota initialisation, post-log-replay component. 942 */ 943 if (quotamount) { 944 ASSERT(mp->m_qflags == 0); 945 mp->m_qflags = quotaflags; 946 947 xfs_qm_mount_quotas(mp); 948 } 949 950 /* 951 * Now we are mounted, reserve a small amount of unused space for 952 * privileged transactions. This is needed so that transaction 953 * space required for critical operations can dip into this pool 954 * when at ENOSPC. This is needed for operations like create with 955 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 956 * are not allowed to use this reserved space. 957 * 958 * This may drive us straight to ENOSPC on mount, but that implies 959 * we were already there on the last unmount. Warn if this occurs. 960 */ 961 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 962 resblks = xfs_default_resblks(mp); 963 error = xfs_reserve_blocks(mp, &resblks, NULL); 964 if (error) 965 xfs_warn(mp, 966 "Unable to allocate reserve blocks. Continuing without reserve pool."); 967 } 968 969 return 0; 970 971 out_rtunmount: 972 xfs_rtunmount_inodes(mp); 973 out_rele_rip: 974 IRELE(rip); 975 cancel_delayed_work_sync(&mp->m_reclaim_work); 976 xfs_reclaim_inodes(mp, SYNC_WAIT); 977 out_log_dealloc: 978 xfs_log_mount_cancel(mp); 979 out_fail_wait: 980 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 981 xfs_wait_buftarg(mp->m_logdev_targp); 982 xfs_wait_buftarg(mp->m_ddev_targp); 983 out_free_perag: 984 xfs_free_perag(mp); 985 out_free_dir: 986 xfs_da_unmount(mp); 987 out_remove_uuid: 988 xfs_uuid_unmount(mp); 989 out_del_stats: 990 xfs_sysfs_del(&mp->m_stats.xs_kobj); 991 out_remove_sysfs: 992 xfs_sysfs_del(&mp->m_kobj); 993 out: 994 return error; 995 } 996 997 /* 998 * This flushes out the inodes,dquots and the superblock, unmounts the 999 * log and makes sure that incore structures are freed. 1000 */ 1001 void 1002 xfs_unmountfs( 1003 struct xfs_mount *mp) 1004 { 1005 __uint64_t resblks; 1006 int error; 1007 1008 cancel_delayed_work_sync(&mp->m_eofblocks_work); 1009 1010 xfs_qm_unmount_quotas(mp); 1011 xfs_rtunmount_inodes(mp); 1012 IRELE(mp->m_rootip); 1013 1014 /* 1015 * We can potentially deadlock here if we have an inode cluster 1016 * that has been freed has its buffer still pinned in memory because 1017 * the transaction is still sitting in a iclog. The stale inodes 1018 * on that buffer will have their flush locks held until the 1019 * transaction hits the disk and the callbacks run. the inode 1020 * flush takes the flush lock unconditionally and with nothing to 1021 * push out the iclog we will never get that unlocked. hence we 1022 * need to force the log first. 1023 */ 1024 xfs_log_force(mp, XFS_LOG_SYNC); 1025 1026 /* 1027 * Flush all pending changes from the AIL. 1028 */ 1029 xfs_ail_push_all_sync(mp->m_ail); 1030 1031 /* 1032 * And reclaim all inodes. At this point there should be no dirty 1033 * inodes and none should be pinned or locked, but use synchronous 1034 * reclaim just to be sure. We can stop background inode reclaim 1035 * here as well if it is still running. 1036 */ 1037 cancel_delayed_work_sync(&mp->m_reclaim_work); 1038 xfs_reclaim_inodes(mp, SYNC_WAIT); 1039 1040 xfs_qm_unmount(mp); 1041 1042 /* 1043 * Unreserve any blocks we have so that when we unmount we don't account 1044 * the reserved free space as used. This is really only necessary for 1045 * lazy superblock counting because it trusts the incore superblock 1046 * counters to be absolutely correct on clean unmount. 1047 * 1048 * We don't bother correcting this elsewhere for lazy superblock 1049 * counting because on mount of an unclean filesystem we reconstruct the 1050 * correct counter value and this is irrelevant. 1051 * 1052 * For non-lazy counter filesystems, this doesn't matter at all because 1053 * we only every apply deltas to the superblock and hence the incore 1054 * value does not matter.... 1055 */ 1056 resblks = 0; 1057 error = xfs_reserve_blocks(mp, &resblks, NULL); 1058 if (error) 1059 xfs_warn(mp, "Unable to free reserved block pool. " 1060 "Freespace may not be correct on next mount."); 1061 1062 error = xfs_log_sbcount(mp); 1063 if (error) 1064 xfs_warn(mp, "Unable to update superblock counters. " 1065 "Freespace may not be correct on next mount."); 1066 1067 1068 xfs_log_unmount(mp); 1069 xfs_da_unmount(mp); 1070 xfs_uuid_unmount(mp); 1071 1072 #if defined(DEBUG) 1073 xfs_errortag_clearall(mp, 0); 1074 #endif 1075 xfs_free_perag(mp); 1076 1077 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1078 xfs_sysfs_del(&mp->m_kobj); 1079 } 1080 1081 /* 1082 * Determine whether modifications can proceed. The caller specifies the minimum 1083 * freeze level for which modifications should not be allowed. This allows 1084 * certain operations to proceed while the freeze sequence is in progress, if 1085 * necessary. 1086 */ 1087 bool 1088 xfs_fs_writable( 1089 struct xfs_mount *mp, 1090 int level) 1091 { 1092 ASSERT(level > SB_UNFROZEN); 1093 if ((mp->m_super->s_writers.frozen >= level) || 1094 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY)) 1095 return false; 1096 1097 return true; 1098 } 1099 1100 /* 1101 * xfs_log_sbcount 1102 * 1103 * Sync the superblock counters to disk. 1104 * 1105 * Note this code can be called during the process of freezing, so we use the 1106 * transaction allocator that does not block when the transaction subsystem is 1107 * in its frozen state. 1108 */ 1109 int 1110 xfs_log_sbcount(xfs_mount_t *mp) 1111 { 1112 /* allow this to proceed during the freeze sequence... */ 1113 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE)) 1114 return 0; 1115 1116 /* 1117 * we don't need to do this if we are updating the superblock 1118 * counters on every modification. 1119 */ 1120 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1121 return 0; 1122 1123 return xfs_sync_sb(mp, true); 1124 } 1125 1126 /* 1127 * Deltas for the inode count are +/-64, hence we use a large batch size 1128 * of 128 so we don't need to take the counter lock on every update. 1129 */ 1130 #define XFS_ICOUNT_BATCH 128 1131 int 1132 xfs_mod_icount( 1133 struct xfs_mount *mp, 1134 int64_t delta) 1135 { 1136 __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH); 1137 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) { 1138 ASSERT(0); 1139 percpu_counter_add(&mp->m_icount, -delta); 1140 return -EINVAL; 1141 } 1142 return 0; 1143 } 1144 1145 int 1146 xfs_mod_ifree( 1147 struct xfs_mount *mp, 1148 int64_t delta) 1149 { 1150 percpu_counter_add(&mp->m_ifree, delta); 1151 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) { 1152 ASSERT(0); 1153 percpu_counter_add(&mp->m_ifree, -delta); 1154 return -EINVAL; 1155 } 1156 return 0; 1157 } 1158 1159 /* 1160 * Deltas for the block count can vary from 1 to very large, but lock contention 1161 * only occurs on frequent small block count updates such as in the delayed 1162 * allocation path for buffered writes (page a time updates). Hence we set 1163 * a large batch count (1024) to minimise global counter updates except when 1164 * we get near to ENOSPC and we have to be very accurate with our updates. 1165 */ 1166 #define XFS_FDBLOCKS_BATCH 1024 1167 int 1168 xfs_mod_fdblocks( 1169 struct xfs_mount *mp, 1170 int64_t delta, 1171 bool rsvd) 1172 { 1173 int64_t lcounter; 1174 long long res_used; 1175 s32 batch; 1176 1177 if (delta > 0) { 1178 /* 1179 * If the reserve pool is depleted, put blocks back into it 1180 * first. Most of the time the pool is full. 1181 */ 1182 if (likely(mp->m_resblks == mp->m_resblks_avail)) { 1183 percpu_counter_add(&mp->m_fdblocks, delta); 1184 return 0; 1185 } 1186 1187 spin_lock(&mp->m_sb_lock); 1188 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1189 1190 if (res_used > delta) { 1191 mp->m_resblks_avail += delta; 1192 } else { 1193 delta -= res_used; 1194 mp->m_resblks_avail = mp->m_resblks; 1195 percpu_counter_add(&mp->m_fdblocks, delta); 1196 } 1197 spin_unlock(&mp->m_sb_lock); 1198 return 0; 1199 } 1200 1201 /* 1202 * Taking blocks away, need to be more accurate the closer we 1203 * are to zero. 1204 * 1205 * If the counter has a value of less than 2 * max batch size, 1206 * then make everything serialise as we are real close to 1207 * ENOSPC. 1208 */ 1209 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, 1210 XFS_FDBLOCKS_BATCH) < 0) 1211 batch = 1; 1212 else 1213 batch = XFS_FDBLOCKS_BATCH; 1214 1215 __percpu_counter_add(&mp->m_fdblocks, delta, batch); 1216 if (__percpu_counter_compare(&mp->m_fdblocks, XFS_ALLOC_SET_ASIDE(mp), 1217 XFS_FDBLOCKS_BATCH) >= 0) { 1218 /* we had space! */ 1219 return 0; 1220 } 1221 1222 /* 1223 * lock up the sb for dipping into reserves before releasing the space 1224 * that took us to ENOSPC. 1225 */ 1226 spin_lock(&mp->m_sb_lock); 1227 percpu_counter_add(&mp->m_fdblocks, -delta); 1228 if (!rsvd) 1229 goto fdblocks_enospc; 1230 1231 lcounter = (long long)mp->m_resblks_avail + delta; 1232 if (lcounter >= 0) { 1233 mp->m_resblks_avail = lcounter; 1234 spin_unlock(&mp->m_sb_lock); 1235 return 0; 1236 } 1237 printk_once(KERN_WARNING 1238 "Filesystem \"%s\": reserve blocks depleted! " 1239 "Consider increasing reserve pool size.", 1240 mp->m_fsname); 1241 fdblocks_enospc: 1242 spin_unlock(&mp->m_sb_lock); 1243 return -ENOSPC; 1244 } 1245 1246 int 1247 xfs_mod_frextents( 1248 struct xfs_mount *mp, 1249 int64_t delta) 1250 { 1251 int64_t lcounter; 1252 int ret = 0; 1253 1254 spin_lock(&mp->m_sb_lock); 1255 lcounter = mp->m_sb.sb_frextents + delta; 1256 if (lcounter < 0) 1257 ret = -ENOSPC; 1258 else 1259 mp->m_sb.sb_frextents = lcounter; 1260 spin_unlock(&mp->m_sb_lock); 1261 return ret; 1262 } 1263 1264 /* 1265 * xfs_getsb() is called to obtain the buffer for the superblock. 1266 * The buffer is returned locked and read in from disk. 1267 * The buffer should be released with a call to xfs_brelse(). 1268 * 1269 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1270 * the superblock buffer if it can be locked without sleeping. 1271 * If it can't then we'll return NULL. 1272 */ 1273 struct xfs_buf * 1274 xfs_getsb( 1275 struct xfs_mount *mp, 1276 int flags) 1277 { 1278 struct xfs_buf *bp = mp->m_sb_bp; 1279 1280 if (!xfs_buf_trylock(bp)) { 1281 if (flags & XBF_TRYLOCK) 1282 return NULL; 1283 xfs_buf_lock(bp); 1284 } 1285 1286 xfs_buf_hold(bp); 1287 ASSERT(XFS_BUF_ISDONE(bp)); 1288 return bp; 1289 } 1290 1291 /* 1292 * Used to free the superblock along various error paths. 1293 */ 1294 void 1295 xfs_freesb( 1296 struct xfs_mount *mp) 1297 { 1298 struct xfs_buf *bp = mp->m_sb_bp; 1299 1300 xfs_buf_lock(bp); 1301 mp->m_sb_bp = NULL; 1302 xfs_buf_relse(bp); 1303 } 1304 1305 /* 1306 * If the underlying (data/log/rt) device is readonly, there are some 1307 * operations that cannot proceed. 1308 */ 1309 int 1310 xfs_dev_is_read_only( 1311 struct xfs_mount *mp, 1312 char *message) 1313 { 1314 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1315 xfs_readonly_buftarg(mp->m_logdev_targp) || 1316 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1317 xfs_notice(mp, "%s required on read-only device.", message); 1318 xfs_notice(mp, "write access unavailable, cannot proceed."); 1319 return -EROFS; 1320 } 1321 return 0; 1322 } 1323