1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_sb.h" 26 #include "xfs_mount.h" 27 #include "xfs_da_format.h" 28 #include "xfs_da_btree.h" 29 #include "xfs_inode.h" 30 #include "xfs_dir2.h" 31 #include "xfs_ialloc.h" 32 #include "xfs_alloc.h" 33 #include "xfs_rtalloc.h" 34 #include "xfs_bmap.h" 35 #include "xfs_trans.h" 36 #include "xfs_trans_priv.h" 37 #include "xfs_log.h" 38 #include "xfs_error.h" 39 #include "xfs_quota.h" 40 #include "xfs_fsops.h" 41 #include "xfs_trace.h" 42 #include "xfs_icache.h" 43 #include "xfs_sysfs.h" 44 45 46 static DEFINE_MUTEX(xfs_uuid_table_mutex); 47 static int xfs_uuid_table_size; 48 static uuid_t *xfs_uuid_table; 49 50 void 51 xfs_uuid_table_free(void) 52 { 53 if (xfs_uuid_table_size == 0) 54 return; 55 kmem_free(xfs_uuid_table); 56 xfs_uuid_table = NULL; 57 xfs_uuid_table_size = 0; 58 } 59 60 /* 61 * See if the UUID is unique among mounted XFS filesystems. 62 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 63 */ 64 STATIC int 65 xfs_uuid_mount( 66 struct xfs_mount *mp) 67 { 68 uuid_t *uuid = &mp->m_sb.sb_uuid; 69 int hole, i; 70 71 if (mp->m_flags & XFS_MOUNT_NOUUID) 72 return 0; 73 74 if (uuid_is_nil(uuid)) { 75 xfs_warn(mp, "Filesystem has nil UUID - can't mount"); 76 return -EINVAL; 77 } 78 79 mutex_lock(&xfs_uuid_table_mutex); 80 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 81 if (uuid_is_nil(&xfs_uuid_table[i])) { 82 hole = i; 83 continue; 84 } 85 if (uuid_equal(uuid, &xfs_uuid_table[i])) 86 goto out_duplicate; 87 } 88 89 if (hole < 0) { 90 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 91 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 92 KM_SLEEP); 93 hole = xfs_uuid_table_size++; 94 } 95 xfs_uuid_table[hole] = *uuid; 96 mutex_unlock(&xfs_uuid_table_mutex); 97 98 return 0; 99 100 out_duplicate: 101 mutex_unlock(&xfs_uuid_table_mutex); 102 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 103 return -EINVAL; 104 } 105 106 STATIC void 107 xfs_uuid_unmount( 108 struct xfs_mount *mp) 109 { 110 uuid_t *uuid = &mp->m_sb.sb_uuid; 111 int i; 112 113 if (mp->m_flags & XFS_MOUNT_NOUUID) 114 return; 115 116 mutex_lock(&xfs_uuid_table_mutex); 117 for (i = 0; i < xfs_uuid_table_size; i++) { 118 if (uuid_is_nil(&xfs_uuid_table[i])) 119 continue; 120 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 121 continue; 122 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 123 break; 124 } 125 ASSERT(i < xfs_uuid_table_size); 126 mutex_unlock(&xfs_uuid_table_mutex); 127 } 128 129 130 STATIC void 131 __xfs_free_perag( 132 struct rcu_head *head) 133 { 134 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 135 136 ASSERT(atomic_read(&pag->pag_ref) == 0); 137 kmem_free(pag); 138 } 139 140 /* 141 * Free up the per-ag resources associated with the mount structure. 142 */ 143 STATIC void 144 xfs_free_perag( 145 xfs_mount_t *mp) 146 { 147 xfs_agnumber_t agno; 148 struct xfs_perag *pag; 149 150 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 151 spin_lock(&mp->m_perag_lock); 152 pag = radix_tree_delete(&mp->m_perag_tree, agno); 153 spin_unlock(&mp->m_perag_lock); 154 ASSERT(pag); 155 ASSERT(atomic_read(&pag->pag_ref) == 0); 156 call_rcu(&pag->rcu_head, __xfs_free_perag); 157 } 158 } 159 160 /* 161 * Check size of device based on the (data/realtime) block count. 162 * Note: this check is used by the growfs code as well as mount. 163 */ 164 int 165 xfs_sb_validate_fsb_count( 166 xfs_sb_t *sbp, 167 __uint64_t nblocks) 168 { 169 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 170 ASSERT(sbp->sb_blocklog >= BBSHIFT); 171 172 /* Limited by ULONG_MAX of page cache index */ 173 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 174 return -EFBIG; 175 return 0; 176 } 177 178 int 179 xfs_initialize_perag( 180 xfs_mount_t *mp, 181 xfs_agnumber_t agcount, 182 xfs_agnumber_t *maxagi) 183 { 184 xfs_agnumber_t index; 185 xfs_agnumber_t first_initialised = 0; 186 xfs_perag_t *pag; 187 int error = -ENOMEM; 188 189 /* 190 * Walk the current per-ag tree so we don't try to initialise AGs 191 * that already exist (growfs case). Allocate and insert all the 192 * AGs we don't find ready for initialisation. 193 */ 194 for (index = 0; index < agcount; index++) { 195 pag = xfs_perag_get(mp, index); 196 if (pag) { 197 xfs_perag_put(pag); 198 continue; 199 } 200 if (!first_initialised) 201 first_initialised = index; 202 203 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 204 if (!pag) 205 goto out_unwind; 206 pag->pag_agno = index; 207 pag->pag_mount = mp; 208 spin_lock_init(&pag->pag_ici_lock); 209 mutex_init(&pag->pag_ici_reclaim_lock); 210 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 211 spin_lock_init(&pag->pag_buf_lock); 212 pag->pag_buf_tree = RB_ROOT; 213 214 if (radix_tree_preload(GFP_NOFS)) 215 goto out_unwind; 216 217 spin_lock(&mp->m_perag_lock); 218 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 219 BUG(); 220 spin_unlock(&mp->m_perag_lock); 221 radix_tree_preload_end(); 222 error = -EEXIST; 223 goto out_unwind; 224 } 225 spin_unlock(&mp->m_perag_lock); 226 radix_tree_preload_end(); 227 } 228 229 index = xfs_set_inode_alloc(mp, agcount); 230 231 if (maxagi) 232 *maxagi = index; 233 return 0; 234 235 out_unwind: 236 kmem_free(pag); 237 for (; index > first_initialised; index--) { 238 pag = radix_tree_delete(&mp->m_perag_tree, index); 239 kmem_free(pag); 240 } 241 return error; 242 } 243 244 /* 245 * xfs_readsb 246 * 247 * Does the initial read of the superblock. 248 */ 249 int 250 xfs_readsb( 251 struct xfs_mount *mp, 252 int flags) 253 { 254 unsigned int sector_size; 255 struct xfs_buf *bp; 256 struct xfs_sb *sbp = &mp->m_sb; 257 int error; 258 int loud = !(flags & XFS_MFSI_QUIET); 259 const struct xfs_buf_ops *buf_ops; 260 261 ASSERT(mp->m_sb_bp == NULL); 262 ASSERT(mp->m_ddev_targp != NULL); 263 264 /* 265 * For the initial read, we must guess at the sector 266 * size based on the block device. It's enough to 267 * get the sb_sectsize out of the superblock and 268 * then reread with the proper length. 269 * We don't verify it yet, because it may not be complete. 270 */ 271 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 272 buf_ops = NULL; 273 274 /* 275 * Allocate a (locked) buffer to hold the superblock. 276 * This will be kept around at all times to optimize 277 * access to the superblock. 278 */ 279 reread: 280 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 281 BTOBB(sector_size), 0, &bp, buf_ops); 282 if (error) { 283 if (loud) 284 xfs_warn(mp, "SB validate failed with error %d.", error); 285 /* bad CRC means corrupted metadata */ 286 if (error == -EFSBADCRC) 287 error = -EFSCORRUPTED; 288 return error; 289 } 290 291 /* 292 * Initialize the mount structure from the superblock. 293 */ 294 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 295 296 /* 297 * If we haven't validated the superblock, do so now before we try 298 * to check the sector size and reread the superblock appropriately. 299 */ 300 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 301 if (loud) 302 xfs_warn(mp, "Invalid superblock magic number"); 303 error = -EINVAL; 304 goto release_buf; 305 } 306 307 /* 308 * We must be able to do sector-sized and sector-aligned IO. 309 */ 310 if (sector_size > sbp->sb_sectsize) { 311 if (loud) 312 xfs_warn(mp, "device supports %u byte sectors (not %u)", 313 sector_size, sbp->sb_sectsize); 314 error = -ENOSYS; 315 goto release_buf; 316 } 317 318 if (buf_ops == NULL) { 319 /* 320 * Re-read the superblock so the buffer is correctly sized, 321 * and properly verified. 322 */ 323 xfs_buf_relse(bp); 324 sector_size = sbp->sb_sectsize; 325 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 326 goto reread; 327 } 328 329 xfs_reinit_percpu_counters(mp); 330 331 /* no need to be quiet anymore, so reset the buf ops */ 332 bp->b_ops = &xfs_sb_buf_ops; 333 334 mp->m_sb_bp = bp; 335 xfs_buf_unlock(bp); 336 return 0; 337 338 release_buf: 339 xfs_buf_relse(bp); 340 return error; 341 } 342 343 /* 344 * Update alignment values based on mount options and sb values 345 */ 346 STATIC int 347 xfs_update_alignment(xfs_mount_t *mp) 348 { 349 xfs_sb_t *sbp = &(mp->m_sb); 350 351 if (mp->m_dalign) { 352 /* 353 * If stripe unit and stripe width are not multiples 354 * of the fs blocksize turn off alignment. 355 */ 356 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 357 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 358 xfs_warn(mp, 359 "alignment check failed: sunit/swidth vs. blocksize(%d)", 360 sbp->sb_blocksize); 361 return -EINVAL; 362 } else { 363 /* 364 * Convert the stripe unit and width to FSBs. 365 */ 366 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 367 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 368 xfs_warn(mp, 369 "alignment check failed: sunit/swidth vs. agsize(%d)", 370 sbp->sb_agblocks); 371 return -EINVAL; 372 } else if (mp->m_dalign) { 373 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 374 } else { 375 xfs_warn(mp, 376 "alignment check failed: sunit(%d) less than bsize(%d)", 377 mp->m_dalign, sbp->sb_blocksize); 378 return -EINVAL; 379 } 380 } 381 382 /* 383 * Update superblock with new values 384 * and log changes 385 */ 386 if (xfs_sb_version_hasdalign(sbp)) { 387 if (sbp->sb_unit != mp->m_dalign) { 388 sbp->sb_unit = mp->m_dalign; 389 mp->m_update_sb = true; 390 } 391 if (sbp->sb_width != mp->m_swidth) { 392 sbp->sb_width = mp->m_swidth; 393 mp->m_update_sb = true; 394 } 395 } else { 396 xfs_warn(mp, 397 "cannot change alignment: superblock does not support data alignment"); 398 return -EINVAL; 399 } 400 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 401 xfs_sb_version_hasdalign(&mp->m_sb)) { 402 mp->m_dalign = sbp->sb_unit; 403 mp->m_swidth = sbp->sb_width; 404 } 405 406 return 0; 407 } 408 409 /* 410 * Set the maximum inode count for this filesystem 411 */ 412 STATIC void 413 xfs_set_maxicount(xfs_mount_t *mp) 414 { 415 xfs_sb_t *sbp = &(mp->m_sb); 416 __uint64_t icount; 417 418 if (sbp->sb_imax_pct) { 419 /* 420 * Make sure the maximum inode count is a multiple 421 * of the units we allocate inodes in. 422 */ 423 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 424 do_div(icount, 100); 425 do_div(icount, mp->m_ialloc_blks); 426 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 427 sbp->sb_inopblog; 428 } else { 429 mp->m_maxicount = 0; 430 } 431 } 432 433 /* 434 * Set the default minimum read and write sizes unless 435 * already specified in a mount option. 436 * We use smaller I/O sizes when the file system 437 * is being used for NFS service (wsync mount option). 438 */ 439 STATIC void 440 xfs_set_rw_sizes(xfs_mount_t *mp) 441 { 442 xfs_sb_t *sbp = &(mp->m_sb); 443 int readio_log, writeio_log; 444 445 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 446 if (mp->m_flags & XFS_MOUNT_WSYNC) { 447 readio_log = XFS_WSYNC_READIO_LOG; 448 writeio_log = XFS_WSYNC_WRITEIO_LOG; 449 } else { 450 readio_log = XFS_READIO_LOG_LARGE; 451 writeio_log = XFS_WRITEIO_LOG_LARGE; 452 } 453 } else { 454 readio_log = mp->m_readio_log; 455 writeio_log = mp->m_writeio_log; 456 } 457 458 if (sbp->sb_blocklog > readio_log) { 459 mp->m_readio_log = sbp->sb_blocklog; 460 } else { 461 mp->m_readio_log = readio_log; 462 } 463 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 464 if (sbp->sb_blocklog > writeio_log) { 465 mp->m_writeio_log = sbp->sb_blocklog; 466 } else { 467 mp->m_writeio_log = writeio_log; 468 } 469 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 470 } 471 472 /* 473 * precalculate the low space thresholds for dynamic speculative preallocation. 474 */ 475 void 476 xfs_set_low_space_thresholds( 477 struct xfs_mount *mp) 478 { 479 int i; 480 481 for (i = 0; i < XFS_LOWSP_MAX; i++) { 482 __uint64_t space = mp->m_sb.sb_dblocks; 483 484 do_div(space, 100); 485 mp->m_low_space[i] = space * (i + 1); 486 } 487 } 488 489 490 /* 491 * Set whether we're using inode alignment. 492 */ 493 STATIC void 494 xfs_set_inoalignment(xfs_mount_t *mp) 495 { 496 if (xfs_sb_version_hasalign(&mp->m_sb) && 497 mp->m_sb.sb_inoalignmt >= 498 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 499 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 500 else 501 mp->m_inoalign_mask = 0; 502 /* 503 * If we are using stripe alignment, check whether 504 * the stripe unit is a multiple of the inode alignment 505 */ 506 if (mp->m_dalign && mp->m_inoalign_mask && 507 !(mp->m_dalign & mp->m_inoalign_mask)) 508 mp->m_sinoalign = mp->m_dalign; 509 else 510 mp->m_sinoalign = 0; 511 } 512 513 /* 514 * Check that the data (and log if separate) is an ok size. 515 */ 516 STATIC int 517 xfs_check_sizes( 518 struct xfs_mount *mp) 519 { 520 struct xfs_buf *bp; 521 xfs_daddr_t d; 522 int error; 523 524 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 525 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 526 xfs_warn(mp, "filesystem size mismatch detected"); 527 return -EFBIG; 528 } 529 error = xfs_buf_read_uncached(mp->m_ddev_targp, 530 d - XFS_FSS_TO_BB(mp, 1), 531 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 532 if (error) { 533 xfs_warn(mp, "last sector read failed"); 534 return error; 535 } 536 xfs_buf_relse(bp); 537 538 if (mp->m_logdev_targp == mp->m_ddev_targp) 539 return 0; 540 541 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 542 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 543 xfs_warn(mp, "log size mismatch detected"); 544 return -EFBIG; 545 } 546 error = xfs_buf_read_uncached(mp->m_logdev_targp, 547 d - XFS_FSB_TO_BB(mp, 1), 548 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 549 if (error) { 550 xfs_warn(mp, "log device read failed"); 551 return error; 552 } 553 xfs_buf_relse(bp); 554 return 0; 555 } 556 557 /* 558 * Clear the quotaflags in memory and in the superblock. 559 */ 560 int 561 xfs_mount_reset_sbqflags( 562 struct xfs_mount *mp) 563 { 564 mp->m_qflags = 0; 565 566 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 567 if (mp->m_sb.sb_qflags == 0) 568 return 0; 569 spin_lock(&mp->m_sb_lock); 570 mp->m_sb.sb_qflags = 0; 571 spin_unlock(&mp->m_sb_lock); 572 573 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 574 return 0; 575 576 return xfs_sync_sb(mp, false); 577 } 578 579 __uint64_t 580 xfs_default_resblks(xfs_mount_t *mp) 581 { 582 __uint64_t resblks; 583 584 /* 585 * We default to 5% or 8192 fsbs of space reserved, whichever is 586 * smaller. This is intended to cover concurrent allocation 587 * transactions when we initially hit enospc. These each require a 4 588 * block reservation. Hence by default we cover roughly 2000 concurrent 589 * allocation reservations. 590 */ 591 resblks = mp->m_sb.sb_dblocks; 592 do_div(resblks, 20); 593 resblks = min_t(__uint64_t, resblks, 8192); 594 return resblks; 595 } 596 597 /* 598 * This function does the following on an initial mount of a file system: 599 * - reads the superblock from disk and init the mount struct 600 * - if we're a 32-bit kernel, do a size check on the superblock 601 * so we don't mount terabyte filesystems 602 * - init mount struct realtime fields 603 * - allocate inode hash table for fs 604 * - init directory manager 605 * - perform recovery and init the log manager 606 */ 607 int 608 xfs_mountfs( 609 struct xfs_mount *mp) 610 { 611 struct xfs_sb *sbp = &(mp->m_sb); 612 struct xfs_inode *rip; 613 __uint64_t resblks; 614 uint quotamount = 0; 615 uint quotaflags = 0; 616 int error = 0; 617 618 xfs_sb_mount_common(mp, sbp); 619 620 /* 621 * Check for a mismatched features2 values. Older kernels read & wrote 622 * into the wrong sb offset for sb_features2 on some platforms due to 623 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 624 * which made older superblock reading/writing routines swap it as a 625 * 64-bit value. 626 * 627 * For backwards compatibility, we make both slots equal. 628 * 629 * If we detect a mismatched field, we OR the set bits into the existing 630 * features2 field in case it has already been modified; we don't want 631 * to lose any features. We then update the bad location with the ORed 632 * value so that older kernels will see any features2 flags. The 633 * superblock writeback code ensures the new sb_features2 is copied to 634 * sb_bad_features2 before it is logged or written to disk. 635 */ 636 if (xfs_sb_has_mismatched_features2(sbp)) { 637 xfs_warn(mp, "correcting sb_features alignment problem"); 638 sbp->sb_features2 |= sbp->sb_bad_features2; 639 mp->m_update_sb = true; 640 641 /* 642 * Re-check for ATTR2 in case it was found in bad_features2 643 * slot. 644 */ 645 if (xfs_sb_version_hasattr2(&mp->m_sb) && 646 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 647 mp->m_flags |= XFS_MOUNT_ATTR2; 648 } 649 650 if (xfs_sb_version_hasattr2(&mp->m_sb) && 651 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 652 xfs_sb_version_removeattr2(&mp->m_sb); 653 mp->m_update_sb = true; 654 655 /* update sb_versionnum for the clearing of the morebits */ 656 if (!sbp->sb_features2) 657 mp->m_update_sb = true; 658 } 659 660 /* always use v2 inodes by default now */ 661 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 662 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 663 mp->m_update_sb = true; 664 } 665 666 /* 667 * Check if sb_agblocks is aligned at stripe boundary 668 * If sb_agblocks is NOT aligned turn off m_dalign since 669 * allocator alignment is within an ag, therefore ag has 670 * to be aligned at stripe boundary. 671 */ 672 error = xfs_update_alignment(mp); 673 if (error) 674 goto out; 675 676 xfs_alloc_compute_maxlevels(mp); 677 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 678 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 679 xfs_ialloc_compute_maxlevels(mp); 680 681 xfs_set_maxicount(mp); 682 683 /* enable fail_at_unmount as default */ 684 mp->m_fail_unmount = 1; 685 686 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname); 687 if (error) 688 goto out; 689 690 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 691 &mp->m_kobj, "stats"); 692 if (error) 693 goto out_remove_sysfs; 694 695 error = xfs_error_sysfs_init(mp); 696 if (error) 697 goto out_del_stats; 698 699 700 error = xfs_uuid_mount(mp); 701 if (error) 702 goto out_remove_error_sysfs; 703 704 /* 705 * Set the minimum read and write sizes 706 */ 707 xfs_set_rw_sizes(mp); 708 709 /* set the low space thresholds for dynamic preallocation */ 710 xfs_set_low_space_thresholds(mp); 711 712 /* 713 * Set the inode cluster size. 714 * This may still be overridden by the file system 715 * block size if it is larger than the chosen cluster size. 716 * 717 * For v5 filesystems, scale the cluster size with the inode size to 718 * keep a constant ratio of inode per cluster buffer, but only if mkfs 719 * has set the inode alignment value appropriately for larger cluster 720 * sizes. 721 */ 722 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 723 if (xfs_sb_version_hascrc(&mp->m_sb)) { 724 int new_size = mp->m_inode_cluster_size; 725 726 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; 727 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) 728 mp->m_inode_cluster_size = new_size; 729 } 730 731 /* 732 * If enabled, sparse inode chunk alignment is expected to match the 733 * cluster size. Full inode chunk alignment must match the chunk size, 734 * but that is checked on sb read verification... 735 */ 736 if (xfs_sb_version_hassparseinodes(&mp->m_sb) && 737 mp->m_sb.sb_spino_align != 738 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) { 739 xfs_warn(mp, 740 "Sparse inode block alignment (%u) must match cluster size (%llu).", 741 mp->m_sb.sb_spino_align, 742 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)); 743 error = -EINVAL; 744 goto out_remove_uuid; 745 } 746 747 /* 748 * Set inode alignment fields 749 */ 750 xfs_set_inoalignment(mp); 751 752 /* 753 * Check that the data (and log if separate) is an ok size. 754 */ 755 error = xfs_check_sizes(mp); 756 if (error) 757 goto out_remove_uuid; 758 759 /* 760 * Initialize realtime fields in the mount structure 761 */ 762 error = xfs_rtmount_init(mp); 763 if (error) { 764 xfs_warn(mp, "RT mount failed"); 765 goto out_remove_uuid; 766 } 767 768 /* 769 * Copies the low order bits of the timestamp and the randomly 770 * set "sequence" number out of a UUID. 771 */ 772 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 773 774 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 775 776 error = xfs_da_mount(mp); 777 if (error) { 778 xfs_warn(mp, "Failed dir/attr init: %d", error); 779 goto out_remove_uuid; 780 } 781 782 /* 783 * Initialize the precomputed transaction reservations values. 784 */ 785 xfs_trans_init(mp); 786 787 /* 788 * Allocate and initialize the per-ag data. 789 */ 790 spin_lock_init(&mp->m_perag_lock); 791 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 792 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 793 if (error) { 794 xfs_warn(mp, "Failed per-ag init: %d", error); 795 goto out_free_dir; 796 } 797 798 if (!sbp->sb_logblocks) { 799 xfs_warn(mp, "no log defined"); 800 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 801 error = -EFSCORRUPTED; 802 goto out_free_perag; 803 } 804 805 /* 806 * Log's mount-time initialization. The first part of recovery can place 807 * some items on the AIL, to be handled when recovery is finished or 808 * cancelled. 809 */ 810 error = xfs_log_mount(mp, mp->m_logdev_targp, 811 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 812 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 813 if (error) { 814 xfs_warn(mp, "log mount failed"); 815 goto out_fail_wait; 816 } 817 818 /* 819 * Now the log is mounted, we know if it was an unclean shutdown or 820 * not. If it was, with the first phase of recovery has completed, we 821 * have consistent AG blocks on disk. We have not recovered EFIs yet, 822 * but they are recovered transactionally in the second recovery phase 823 * later. 824 * 825 * Hence we can safely re-initialise incore superblock counters from 826 * the per-ag data. These may not be correct if the filesystem was not 827 * cleanly unmounted, so we need to wait for recovery to finish before 828 * doing this. 829 * 830 * If the filesystem was cleanly unmounted, then we can trust the 831 * values in the superblock to be correct and we don't need to do 832 * anything here. 833 * 834 * If we are currently making the filesystem, the initialisation will 835 * fail as the perag data is in an undefined state. 836 */ 837 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 838 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 839 !mp->m_sb.sb_inprogress) { 840 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 841 if (error) 842 goto out_log_dealloc; 843 } 844 845 /* 846 * Get and sanity-check the root inode. 847 * Save the pointer to it in the mount structure. 848 */ 849 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip); 850 if (error) { 851 xfs_warn(mp, "failed to read root inode"); 852 goto out_log_dealloc; 853 } 854 855 ASSERT(rip != NULL); 856 857 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) { 858 xfs_warn(mp, "corrupted root inode %llu: not a directory", 859 (unsigned long long)rip->i_ino); 860 xfs_iunlock(rip, XFS_ILOCK_EXCL); 861 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 862 mp); 863 error = -EFSCORRUPTED; 864 goto out_rele_rip; 865 } 866 mp->m_rootip = rip; /* save it */ 867 868 xfs_iunlock(rip, XFS_ILOCK_EXCL); 869 870 /* 871 * Initialize realtime inode pointers in the mount structure 872 */ 873 error = xfs_rtmount_inodes(mp); 874 if (error) { 875 /* 876 * Free up the root inode. 877 */ 878 xfs_warn(mp, "failed to read RT inodes"); 879 goto out_rele_rip; 880 } 881 882 /* 883 * If this is a read-only mount defer the superblock updates until 884 * the next remount into writeable mode. Otherwise we would never 885 * perform the update e.g. for the root filesystem. 886 */ 887 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 888 error = xfs_sync_sb(mp, false); 889 if (error) { 890 xfs_warn(mp, "failed to write sb changes"); 891 goto out_rtunmount; 892 } 893 } 894 895 /* 896 * Initialise the XFS quota management subsystem for this mount 897 */ 898 if (XFS_IS_QUOTA_RUNNING(mp)) { 899 error = xfs_qm_newmount(mp, "amount, "aflags); 900 if (error) 901 goto out_rtunmount; 902 } else { 903 ASSERT(!XFS_IS_QUOTA_ON(mp)); 904 905 /* 906 * If a file system had quotas running earlier, but decided to 907 * mount without -o uquota/pquota/gquota options, revoke the 908 * quotachecked license. 909 */ 910 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 911 xfs_notice(mp, "resetting quota flags"); 912 error = xfs_mount_reset_sbqflags(mp); 913 if (error) 914 goto out_rtunmount; 915 } 916 } 917 918 /* 919 * Finish recovering the file system. This part needed to be delayed 920 * until after the root and real-time bitmap inodes were consistently 921 * read in. 922 */ 923 error = xfs_log_mount_finish(mp); 924 if (error) { 925 xfs_warn(mp, "log mount finish failed"); 926 goto out_rtunmount; 927 } 928 929 /* 930 * Complete the quota initialisation, post-log-replay component. 931 */ 932 if (quotamount) { 933 ASSERT(mp->m_qflags == 0); 934 mp->m_qflags = quotaflags; 935 936 xfs_qm_mount_quotas(mp); 937 } 938 939 /* 940 * Now we are mounted, reserve a small amount of unused space for 941 * privileged transactions. This is needed so that transaction 942 * space required for critical operations can dip into this pool 943 * when at ENOSPC. This is needed for operations like create with 944 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 945 * are not allowed to use this reserved space. 946 * 947 * This may drive us straight to ENOSPC on mount, but that implies 948 * we were already there on the last unmount. Warn if this occurs. 949 */ 950 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 951 resblks = xfs_default_resblks(mp); 952 error = xfs_reserve_blocks(mp, &resblks, NULL); 953 if (error) 954 xfs_warn(mp, 955 "Unable to allocate reserve blocks. Continuing without reserve pool."); 956 } 957 958 return 0; 959 960 out_rtunmount: 961 xfs_rtunmount_inodes(mp); 962 out_rele_rip: 963 IRELE(rip); 964 cancel_delayed_work_sync(&mp->m_reclaim_work); 965 xfs_reclaim_inodes(mp, SYNC_WAIT); 966 out_log_dealloc: 967 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 968 xfs_log_mount_cancel(mp); 969 out_fail_wait: 970 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 971 xfs_wait_buftarg(mp->m_logdev_targp); 972 xfs_wait_buftarg(mp->m_ddev_targp); 973 out_free_perag: 974 xfs_free_perag(mp); 975 out_free_dir: 976 xfs_da_unmount(mp); 977 out_remove_uuid: 978 xfs_uuid_unmount(mp); 979 out_remove_error_sysfs: 980 xfs_error_sysfs_del(mp); 981 out_del_stats: 982 xfs_sysfs_del(&mp->m_stats.xs_kobj); 983 out_remove_sysfs: 984 xfs_sysfs_del(&mp->m_kobj); 985 out: 986 return error; 987 } 988 989 /* 990 * This flushes out the inodes,dquots and the superblock, unmounts the 991 * log and makes sure that incore structures are freed. 992 */ 993 void 994 xfs_unmountfs( 995 struct xfs_mount *mp) 996 { 997 __uint64_t resblks; 998 int error; 999 1000 cancel_delayed_work_sync(&mp->m_eofblocks_work); 1001 1002 xfs_qm_unmount_quotas(mp); 1003 xfs_rtunmount_inodes(mp); 1004 IRELE(mp->m_rootip); 1005 1006 /* 1007 * We can potentially deadlock here if we have an inode cluster 1008 * that has been freed has its buffer still pinned in memory because 1009 * the transaction is still sitting in a iclog. The stale inodes 1010 * on that buffer will have their flush locks held until the 1011 * transaction hits the disk and the callbacks run. the inode 1012 * flush takes the flush lock unconditionally and with nothing to 1013 * push out the iclog we will never get that unlocked. hence we 1014 * need to force the log first. 1015 */ 1016 xfs_log_force(mp, XFS_LOG_SYNC); 1017 1018 /* 1019 * We now need to tell the world we are unmounting. This will allow 1020 * us to detect that the filesystem is going away and we should error 1021 * out anything that we have been retrying in the background. This will 1022 * prevent neverending retries in AIL pushing from hanging the unmount. 1023 */ 1024 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1025 1026 /* 1027 * Flush all pending changes from the AIL. 1028 */ 1029 xfs_ail_push_all_sync(mp->m_ail); 1030 1031 /* 1032 * And reclaim all inodes. At this point there should be no dirty 1033 * inodes and none should be pinned or locked, but use synchronous 1034 * reclaim just to be sure. We can stop background inode reclaim 1035 * here as well if it is still running. 1036 */ 1037 cancel_delayed_work_sync(&mp->m_reclaim_work); 1038 xfs_reclaim_inodes(mp, SYNC_WAIT); 1039 1040 xfs_qm_unmount(mp); 1041 1042 /* 1043 * Unreserve any blocks we have so that when we unmount we don't account 1044 * the reserved free space as used. This is really only necessary for 1045 * lazy superblock counting because it trusts the incore superblock 1046 * counters to be absolutely correct on clean unmount. 1047 * 1048 * We don't bother correcting this elsewhere for lazy superblock 1049 * counting because on mount of an unclean filesystem we reconstruct the 1050 * correct counter value and this is irrelevant. 1051 * 1052 * For non-lazy counter filesystems, this doesn't matter at all because 1053 * we only every apply deltas to the superblock and hence the incore 1054 * value does not matter.... 1055 */ 1056 resblks = 0; 1057 error = xfs_reserve_blocks(mp, &resblks, NULL); 1058 if (error) 1059 xfs_warn(mp, "Unable to free reserved block pool. " 1060 "Freespace may not be correct on next mount."); 1061 1062 error = xfs_log_sbcount(mp); 1063 if (error) 1064 xfs_warn(mp, "Unable to update superblock counters. " 1065 "Freespace may not be correct on next mount."); 1066 1067 1068 xfs_log_unmount(mp); 1069 xfs_da_unmount(mp); 1070 xfs_uuid_unmount(mp); 1071 1072 #if defined(DEBUG) 1073 xfs_errortag_clearall(mp, 0); 1074 #endif 1075 xfs_free_perag(mp); 1076 1077 xfs_error_sysfs_del(mp); 1078 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1079 xfs_sysfs_del(&mp->m_kobj); 1080 } 1081 1082 /* 1083 * Determine whether modifications can proceed. The caller specifies the minimum 1084 * freeze level for which modifications should not be allowed. This allows 1085 * certain operations to proceed while the freeze sequence is in progress, if 1086 * necessary. 1087 */ 1088 bool 1089 xfs_fs_writable( 1090 struct xfs_mount *mp, 1091 int level) 1092 { 1093 ASSERT(level > SB_UNFROZEN); 1094 if ((mp->m_super->s_writers.frozen >= level) || 1095 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY)) 1096 return false; 1097 1098 return true; 1099 } 1100 1101 /* 1102 * xfs_log_sbcount 1103 * 1104 * Sync the superblock counters to disk. 1105 * 1106 * Note this code can be called during the process of freezing, so we use the 1107 * transaction allocator that does not block when the transaction subsystem is 1108 * in its frozen state. 1109 */ 1110 int 1111 xfs_log_sbcount(xfs_mount_t *mp) 1112 { 1113 /* allow this to proceed during the freeze sequence... */ 1114 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE)) 1115 return 0; 1116 1117 /* 1118 * we don't need to do this if we are updating the superblock 1119 * counters on every modification. 1120 */ 1121 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1122 return 0; 1123 1124 return xfs_sync_sb(mp, true); 1125 } 1126 1127 /* 1128 * Deltas for the inode count are +/-64, hence we use a large batch size 1129 * of 128 so we don't need to take the counter lock on every update. 1130 */ 1131 #define XFS_ICOUNT_BATCH 128 1132 int 1133 xfs_mod_icount( 1134 struct xfs_mount *mp, 1135 int64_t delta) 1136 { 1137 __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH); 1138 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) { 1139 ASSERT(0); 1140 percpu_counter_add(&mp->m_icount, -delta); 1141 return -EINVAL; 1142 } 1143 return 0; 1144 } 1145 1146 int 1147 xfs_mod_ifree( 1148 struct xfs_mount *mp, 1149 int64_t delta) 1150 { 1151 percpu_counter_add(&mp->m_ifree, delta); 1152 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) { 1153 ASSERT(0); 1154 percpu_counter_add(&mp->m_ifree, -delta); 1155 return -EINVAL; 1156 } 1157 return 0; 1158 } 1159 1160 /* 1161 * Deltas for the block count can vary from 1 to very large, but lock contention 1162 * only occurs on frequent small block count updates such as in the delayed 1163 * allocation path for buffered writes (page a time updates). Hence we set 1164 * a large batch count (1024) to minimise global counter updates except when 1165 * we get near to ENOSPC and we have to be very accurate with our updates. 1166 */ 1167 #define XFS_FDBLOCKS_BATCH 1024 1168 int 1169 xfs_mod_fdblocks( 1170 struct xfs_mount *mp, 1171 int64_t delta, 1172 bool rsvd) 1173 { 1174 int64_t lcounter; 1175 long long res_used; 1176 s32 batch; 1177 1178 if (delta > 0) { 1179 /* 1180 * If the reserve pool is depleted, put blocks back into it 1181 * first. Most of the time the pool is full. 1182 */ 1183 if (likely(mp->m_resblks == mp->m_resblks_avail)) { 1184 percpu_counter_add(&mp->m_fdblocks, delta); 1185 return 0; 1186 } 1187 1188 spin_lock(&mp->m_sb_lock); 1189 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1190 1191 if (res_used > delta) { 1192 mp->m_resblks_avail += delta; 1193 } else { 1194 delta -= res_used; 1195 mp->m_resblks_avail = mp->m_resblks; 1196 percpu_counter_add(&mp->m_fdblocks, delta); 1197 } 1198 spin_unlock(&mp->m_sb_lock); 1199 return 0; 1200 } 1201 1202 /* 1203 * Taking blocks away, need to be more accurate the closer we 1204 * are to zero. 1205 * 1206 * If the counter has a value of less than 2 * max batch size, 1207 * then make everything serialise as we are real close to 1208 * ENOSPC. 1209 */ 1210 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, 1211 XFS_FDBLOCKS_BATCH) < 0) 1212 batch = 1; 1213 else 1214 batch = XFS_FDBLOCKS_BATCH; 1215 1216 __percpu_counter_add(&mp->m_fdblocks, delta, batch); 1217 if (__percpu_counter_compare(&mp->m_fdblocks, XFS_ALLOC_SET_ASIDE(mp), 1218 XFS_FDBLOCKS_BATCH) >= 0) { 1219 /* we had space! */ 1220 return 0; 1221 } 1222 1223 /* 1224 * lock up the sb for dipping into reserves before releasing the space 1225 * that took us to ENOSPC. 1226 */ 1227 spin_lock(&mp->m_sb_lock); 1228 percpu_counter_add(&mp->m_fdblocks, -delta); 1229 if (!rsvd) 1230 goto fdblocks_enospc; 1231 1232 lcounter = (long long)mp->m_resblks_avail + delta; 1233 if (lcounter >= 0) { 1234 mp->m_resblks_avail = lcounter; 1235 spin_unlock(&mp->m_sb_lock); 1236 return 0; 1237 } 1238 printk_once(KERN_WARNING 1239 "Filesystem \"%s\": reserve blocks depleted! " 1240 "Consider increasing reserve pool size.", 1241 mp->m_fsname); 1242 fdblocks_enospc: 1243 spin_unlock(&mp->m_sb_lock); 1244 return -ENOSPC; 1245 } 1246 1247 int 1248 xfs_mod_frextents( 1249 struct xfs_mount *mp, 1250 int64_t delta) 1251 { 1252 int64_t lcounter; 1253 int ret = 0; 1254 1255 spin_lock(&mp->m_sb_lock); 1256 lcounter = mp->m_sb.sb_frextents + delta; 1257 if (lcounter < 0) 1258 ret = -ENOSPC; 1259 else 1260 mp->m_sb.sb_frextents = lcounter; 1261 spin_unlock(&mp->m_sb_lock); 1262 return ret; 1263 } 1264 1265 /* 1266 * xfs_getsb() is called to obtain the buffer for the superblock. 1267 * The buffer is returned locked and read in from disk. 1268 * The buffer should be released with a call to xfs_brelse(). 1269 * 1270 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1271 * the superblock buffer if it can be locked without sleeping. 1272 * If it can't then we'll return NULL. 1273 */ 1274 struct xfs_buf * 1275 xfs_getsb( 1276 struct xfs_mount *mp, 1277 int flags) 1278 { 1279 struct xfs_buf *bp = mp->m_sb_bp; 1280 1281 if (!xfs_buf_trylock(bp)) { 1282 if (flags & XBF_TRYLOCK) 1283 return NULL; 1284 xfs_buf_lock(bp); 1285 } 1286 1287 xfs_buf_hold(bp); 1288 ASSERT(bp->b_flags & XBF_DONE); 1289 return bp; 1290 } 1291 1292 /* 1293 * Used to free the superblock along various error paths. 1294 */ 1295 void 1296 xfs_freesb( 1297 struct xfs_mount *mp) 1298 { 1299 struct xfs_buf *bp = mp->m_sb_bp; 1300 1301 xfs_buf_lock(bp); 1302 mp->m_sb_bp = NULL; 1303 xfs_buf_relse(bp); 1304 } 1305 1306 /* 1307 * If the underlying (data/log/rt) device is readonly, there are some 1308 * operations that cannot proceed. 1309 */ 1310 int 1311 xfs_dev_is_read_only( 1312 struct xfs_mount *mp, 1313 char *message) 1314 { 1315 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1316 xfs_readonly_buftarg(mp->m_logdev_targp) || 1317 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1318 xfs_notice(mp, "%s required on read-only device.", message); 1319 xfs_notice(mp, "write access unavailable, cannot proceed."); 1320 return -EROFS; 1321 } 1322 return 0; 1323 } 1324