xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision 0e17c50f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_error.h"
25 #include "xfs_quota.h"
26 #include "xfs_fsops.h"
27 #include "xfs_icache.h"
28 #include "xfs_sysfs.h"
29 #include "xfs_rmap_btree.h"
30 #include "xfs_refcount_btree.h"
31 #include "xfs_reflink.h"
32 #include "xfs_extent_busy.h"
33 #include "xfs_health.h"
34 #include "xfs_trace.h"
35 
36 static DEFINE_MUTEX(xfs_uuid_table_mutex);
37 static int xfs_uuid_table_size;
38 static uuid_t *xfs_uuid_table;
39 
40 void
41 xfs_uuid_table_free(void)
42 {
43 	if (xfs_uuid_table_size == 0)
44 		return;
45 	kmem_free(xfs_uuid_table);
46 	xfs_uuid_table = NULL;
47 	xfs_uuid_table_size = 0;
48 }
49 
50 /*
51  * See if the UUID is unique among mounted XFS filesystems.
52  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
53  */
54 STATIC int
55 xfs_uuid_mount(
56 	struct xfs_mount	*mp)
57 {
58 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
59 	int			hole, i;
60 
61 	/* Publish UUID in struct super_block */
62 	uuid_copy(&mp->m_super->s_uuid, uuid);
63 
64 	if (mp->m_flags & XFS_MOUNT_NOUUID)
65 		return 0;
66 
67 	if (uuid_is_null(uuid)) {
68 		xfs_warn(mp, "Filesystem has null UUID - can't mount");
69 		return -EINVAL;
70 	}
71 
72 	mutex_lock(&xfs_uuid_table_mutex);
73 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
74 		if (uuid_is_null(&xfs_uuid_table[i])) {
75 			hole = i;
76 			continue;
77 		}
78 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
79 			goto out_duplicate;
80 	}
81 
82 	if (hole < 0) {
83 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
84 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
85 			0);
86 		hole = xfs_uuid_table_size++;
87 	}
88 	xfs_uuid_table[hole] = *uuid;
89 	mutex_unlock(&xfs_uuid_table_mutex);
90 
91 	return 0;
92 
93  out_duplicate:
94 	mutex_unlock(&xfs_uuid_table_mutex);
95 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
96 	return -EINVAL;
97 }
98 
99 STATIC void
100 xfs_uuid_unmount(
101 	struct xfs_mount	*mp)
102 {
103 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
104 	int			i;
105 
106 	if (mp->m_flags & XFS_MOUNT_NOUUID)
107 		return;
108 
109 	mutex_lock(&xfs_uuid_table_mutex);
110 	for (i = 0; i < xfs_uuid_table_size; i++) {
111 		if (uuid_is_null(&xfs_uuid_table[i]))
112 			continue;
113 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
114 			continue;
115 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
116 		break;
117 	}
118 	ASSERT(i < xfs_uuid_table_size);
119 	mutex_unlock(&xfs_uuid_table_mutex);
120 }
121 
122 
123 STATIC void
124 __xfs_free_perag(
125 	struct rcu_head	*head)
126 {
127 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
128 
129 	ASSERT(atomic_read(&pag->pag_ref) == 0);
130 	kmem_free(pag);
131 }
132 
133 /*
134  * Free up the per-ag resources associated with the mount structure.
135  */
136 STATIC void
137 xfs_free_perag(
138 	xfs_mount_t	*mp)
139 {
140 	xfs_agnumber_t	agno;
141 	struct xfs_perag *pag;
142 
143 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
144 		spin_lock(&mp->m_perag_lock);
145 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
146 		spin_unlock(&mp->m_perag_lock);
147 		ASSERT(pag);
148 		ASSERT(atomic_read(&pag->pag_ref) == 0);
149 		xfs_iunlink_destroy(pag);
150 		xfs_buf_hash_destroy(pag);
151 		mutex_destroy(&pag->pag_ici_reclaim_lock);
152 		call_rcu(&pag->rcu_head, __xfs_free_perag);
153 	}
154 }
155 
156 /*
157  * Check size of device based on the (data/realtime) block count.
158  * Note: this check is used by the growfs code as well as mount.
159  */
160 int
161 xfs_sb_validate_fsb_count(
162 	xfs_sb_t	*sbp,
163 	uint64_t	nblocks)
164 {
165 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
166 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
167 
168 	/* Limited by ULONG_MAX of page cache index */
169 	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
170 		return -EFBIG;
171 	return 0;
172 }
173 
174 int
175 xfs_initialize_perag(
176 	xfs_mount_t	*mp,
177 	xfs_agnumber_t	agcount,
178 	xfs_agnumber_t	*maxagi)
179 {
180 	xfs_agnumber_t	index;
181 	xfs_agnumber_t	first_initialised = NULLAGNUMBER;
182 	xfs_perag_t	*pag;
183 	int		error = -ENOMEM;
184 
185 	/*
186 	 * Walk the current per-ag tree so we don't try to initialise AGs
187 	 * that already exist (growfs case). Allocate and insert all the
188 	 * AGs we don't find ready for initialisation.
189 	 */
190 	for (index = 0; index < agcount; index++) {
191 		pag = xfs_perag_get(mp, index);
192 		if (pag) {
193 			xfs_perag_put(pag);
194 			continue;
195 		}
196 
197 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
198 		if (!pag)
199 			goto out_unwind_new_pags;
200 		pag->pag_agno = index;
201 		pag->pag_mount = mp;
202 		spin_lock_init(&pag->pag_ici_lock);
203 		mutex_init(&pag->pag_ici_reclaim_lock);
204 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
205 		if (xfs_buf_hash_init(pag))
206 			goto out_free_pag;
207 		init_waitqueue_head(&pag->pagb_wait);
208 		spin_lock_init(&pag->pagb_lock);
209 		pag->pagb_count = 0;
210 		pag->pagb_tree = RB_ROOT;
211 
212 		if (radix_tree_preload(GFP_NOFS))
213 			goto out_hash_destroy;
214 
215 		spin_lock(&mp->m_perag_lock);
216 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
217 			WARN_ON_ONCE(1);
218 			spin_unlock(&mp->m_perag_lock);
219 			radix_tree_preload_end();
220 			error = -EEXIST;
221 			goto out_hash_destroy;
222 		}
223 		spin_unlock(&mp->m_perag_lock);
224 		radix_tree_preload_end();
225 		/* first new pag is fully initialized */
226 		if (first_initialised == NULLAGNUMBER)
227 			first_initialised = index;
228 		error = xfs_iunlink_init(pag);
229 		if (error)
230 			goto out_hash_destroy;
231 		spin_lock_init(&pag->pag_state_lock);
232 	}
233 
234 	index = xfs_set_inode_alloc(mp, agcount);
235 
236 	if (maxagi)
237 		*maxagi = index;
238 
239 	mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
240 	return 0;
241 
242 out_hash_destroy:
243 	xfs_buf_hash_destroy(pag);
244 out_free_pag:
245 	mutex_destroy(&pag->pag_ici_reclaim_lock);
246 	kmem_free(pag);
247 out_unwind_new_pags:
248 	/* unwind any prior newly initialized pags */
249 	for (index = first_initialised; index < agcount; index++) {
250 		pag = radix_tree_delete(&mp->m_perag_tree, index);
251 		if (!pag)
252 			break;
253 		xfs_buf_hash_destroy(pag);
254 		xfs_iunlink_destroy(pag);
255 		mutex_destroy(&pag->pag_ici_reclaim_lock);
256 		kmem_free(pag);
257 	}
258 	return error;
259 }
260 
261 /*
262  * xfs_readsb
263  *
264  * Does the initial read of the superblock.
265  */
266 int
267 xfs_readsb(
268 	struct xfs_mount *mp,
269 	int		flags)
270 {
271 	unsigned int	sector_size;
272 	struct xfs_buf	*bp;
273 	struct xfs_sb	*sbp = &mp->m_sb;
274 	int		error;
275 	int		loud = !(flags & XFS_MFSI_QUIET);
276 	const struct xfs_buf_ops *buf_ops;
277 
278 	ASSERT(mp->m_sb_bp == NULL);
279 	ASSERT(mp->m_ddev_targp != NULL);
280 
281 	/*
282 	 * For the initial read, we must guess at the sector
283 	 * size based on the block device.  It's enough to
284 	 * get the sb_sectsize out of the superblock and
285 	 * then reread with the proper length.
286 	 * We don't verify it yet, because it may not be complete.
287 	 */
288 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
289 	buf_ops = NULL;
290 
291 	/*
292 	 * Allocate a (locked) buffer to hold the superblock. This will be kept
293 	 * around at all times to optimize access to the superblock. Therefore,
294 	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
295 	 * elevated.
296 	 */
297 reread:
298 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
299 				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
300 				      buf_ops);
301 	if (error) {
302 		if (loud)
303 			xfs_warn(mp, "SB validate failed with error %d.", error);
304 		/* bad CRC means corrupted metadata */
305 		if (error == -EFSBADCRC)
306 			error = -EFSCORRUPTED;
307 		return error;
308 	}
309 
310 	/*
311 	 * Initialize the mount structure from the superblock.
312 	 */
313 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
314 
315 	/*
316 	 * If we haven't validated the superblock, do so now before we try
317 	 * to check the sector size and reread the superblock appropriately.
318 	 */
319 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
320 		if (loud)
321 			xfs_warn(mp, "Invalid superblock magic number");
322 		error = -EINVAL;
323 		goto release_buf;
324 	}
325 
326 	/*
327 	 * We must be able to do sector-sized and sector-aligned IO.
328 	 */
329 	if (sector_size > sbp->sb_sectsize) {
330 		if (loud)
331 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
332 				sector_size, sbp->sb_sectsize);
333 		error = -ENOSYS;
334 		goto release_buf;
335 	}
336 
337 	if (buf_ops == NULL) {
338 		/*
339 		 * Re-read the superblock so the buffer is correctly sized,
340 		 * and properly verified.
341 		 */
342 		xfs_buf_relse(bp);
343 		sector_size = sbp->sb_sectsize;
344 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
345 		goto reread;
346 	}
347 
348 	xfs_reinit_percpu_counters(mp);
349 
350 	/* no need to be quiet anymore, so reset the buf ops */
351 	bp->b_ops = &xfs_sb_buf_ops;
352 
353 	mp->m_sb_bp = bp;
354 	xfs_buf_unlock(bp);
355 	return 0;
356 
357 release_buf:
358 	xfs_buf_relse(bp);
359 	return error;
360 }
361 
362 /*
363  * If the sunit/swidth change would move the precomputed root inode value, we
364  * must reject the ondisk change because repair will stumble over that.
365  * However, we allow the mount to proceed because we never rejected this
366  * combination before.  Returns true to update the sb, false otherwise.
367  */
368 static inline int
369 xfs_check_new_dalign(
370 	struct xfs_mount	*mp,
371 	int			new_dalign,
372 	bool			*update_sb)
373 {
374 	struct xfs_sb		*sbp = &mp->m_sb;
375 	xfs_ino_t		calc_ino;
376 
377 	calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
378 	trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
379 
380 	if (sbp->sb_rootino == calc_ino) {
381 		*update_sb = true;
382 		return 0;
383 	}
384 
385 	xfs_warn(mp,
386 "Cannot change stripe alignment; would require moving root inode.");
387 
388 	/*
389 	 * XXX: Next time we add a new incompat feature, this should start
390 	 * returning -EINVAL to fail the mount.  Until then, spit out a warning
391 	 * that we're ignoring the administrator's instructions.
392 	 */
393 	xfs_warn(mp, "Skipping superblock stripe alignment update.");
394 	*update_sb = false;
395 	return 0;
396 }
397 
398 /*
399  * If we were provided with new sunit/swidth values as mount options, make sure
400  * that they pass basic alignment and superblock feature checks, and convert
401  * them into the same units (FSB) that everything else expects.  This step
402  * /must/ be done before computing the inode geometry.
403  */
404 STATIC int
405 xfs_validate_new_dalign(
406 	struct xfs_mount	*mp)
407 {
408 	if (mp->m_dalign == 0)
409 		return 0;
410 
411 	/*
412 	 * If stripe unit and stripe width are not multiples
413 	 * of the fs blocksize turn off alignment.
414 	 */
415 	if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
416 	    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
417 		xfs_warn(mp,
418 	"alignment check failed: sunit/swidth vs. blocksize(%d)",
419 			mp->m_sb.sb_blocksize);
420 		return -EINVAL;
421 	} else {
422 		/*
423 		 * Convert the stripe unit and width to FSBs.
424 		 */
425 		mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
426 		if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
427 			xfs_warn(mp,
428 		"alignment check failed: sunit/swidth vs. agsize(%d)",
429 				 mp->m_sb.sb_agblocks);
430 			return -EINVAL;
431 		} else if (mp->m_dalign) {
432 			mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
433 		} else {
434 			xfs_warn(mp,
435 		"alignment check failed: sunit(%d) less than bsize(%d)",
436 				 mp->m_dalign, mp->m_sb.sb_blocksize);
437 			return -EINVAL;
438 		}
439 	}
440 
441 	if (!xfs_sb_version_hasdalign(&mp->m_sb)) {
442 		xfs_warn(mp,
443 "cannot change alignment: superblock does not support data alignment");
444 		return -EINVAL;
445 	}
446 
447 	return 0;
448 }
449 
450 /* Update alignment values based on mount options and sb values. */
451 STATIC int
452 xfs_update_alignment(
453 	struct xfs_mount	*mp)
454 {
455 	struct xfs_sb		*sbp = &mp->m_sb;
456 
457 	if (mp->m_dalign) {
458 		bool		update_sb;
459 		int		error;
460 
461 		if (sbp->sb_unit == mp->m_dalign &&
462 		    sbp->sb_width == mp->m_swidth)
463 			return 0;
464 
465 		error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
466 		if (error || !update_sb)
467 			return error;
468 
469 		sbp->sb_unit = mp->m_dalign;
470 		sbp->sb_width = mp->m_swidth;
471 		mp->m_update_sb = true;
472 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
473 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
474 		mp->m_dalign = sbp->sb_unit;
475 		mp->m_swidth = sbp->sb_width;
476 	}
477 
478 	return 0;
479 }
480 
481 /*
482  * precalculate the low space thresholds for dynamic speculative preallocation.
483  */
484 void
485 xfs_set_low_space_thresholds(
486 	struct xfs_mount	*mp)
487 {
488 	int i;
489 
490 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
491 		uint64_t space = mp->m_sb.sb_dblocks;
492 
493 		do_div(space, 100);
494 		mp->m_low_space[i] = space * (i + 1);
495 	}
496 }
497 
498 /*
499  * Check that the data (and log if separate) is an ok size.
500  */
501 STATIC int
502 xfs_check_sizes(
503 	struct xfs_mount *mp)
504 {
505 	struct xfs_buf	*bp;
506 	xfs_daddr_t	d;
507 	int		error;
508 
509 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
510 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
511 		xfs_warn(mp, "filesystem size mismatch detected");
512 		return -EFBIG;
513 	}
514 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
515 					d - XFS_FSS_TO_BB(mp, 1),
516 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
517 	if (error) {
518 		xfs_warn(mp, "last sector read failed");
519 		return error;
520 	}
521 	xfs_buf_relse(bp);
522 
523 	if (mp->m_logdev_targp == mp->m_ddev_targp)
524 		return 0;
525 
526 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
527 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
528 		xfs_warn(mp, "log size mismatch detected");
529 		return -EFBIG;
530 	}
531 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
532 					d - XFS_FSB_TO_BB(mp, 1),
533 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
534 	if (error) {
535 		xfs_warn(mp, "log device read failed");
536 		return error;
537 	}
538 	xfs_buf_relse(bp);
539 	return 0;
540 }
541 
542 /*
543  * Clear the quotaflags in memory and in the superblock.
544  */
545 int
546 xfs_mount_reset_sbqflags(
547 	struct xfs_mount	*mp)
548 {
549 	mp->m_qflags = 0;
550 
551 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
552 	if (mp->m_sb.sb_qflags == 0)
553 		return 0;
554 	spin_lock(&mp->m_sb_lock);
555 	mp->m_sb.sb_qflags = 0;
556 	spin_unlock(&mp->m_sb_lock);
557 
558 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
559 		return 0;
560 
561 	return xfs_sync_sb(mp, false);
562 }
563 
564 uint64_t
565 xfs_default_resblks(xfs_mount_t *mp)
566 {
567 	uint64_t resblks;
568 
569 	/*
570 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
571 	 * smaller.  This is intended to cover concurrent allocation
572 	 * transactions when we initially hit enospc. These each require a 4
573 	 * block reservation. Hence by default we cover roughly 2000 concurrent
574 	 * allocation reservations.
575 	 */
576 	resblks = mp->m_sb.sb_dblocks;
577 	do_div(resblks, 20);
578 	resblks = min_t(uint64_t, resblks, 8192);
579 	return resblks;
580 }
581 
582 /* Ensure the summary counts are correct. */
583 STATIC int
584 xfs_check_summary_counts(
585 	struct xfs_mount	*mp)
586 {
587 	/*
588 	 * The AG0 superblock verifier rejects in-progress filesystems,
589 	 * so we should never see the flag set this far into mounting.
590 	 */
591 	if (mp->m_sb.sb_inprogress) {
592 		xfs_err(mp, "sb_inprogress set after log recovery??");
593 		WARN_ON(1);
594 		return -EFSCORRUPTED;
595 	}
596 
597 	/*
598 	 * Now the log is mounted, we know if it was an unclean shutdown or
599 	 * not. If it was, with the first phase of recovery has completed, we
600 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
601 	 * but they are recovered transactionally in the second recovery phase
602 	 * later.
603 	 *
604 	 * If the log was clean when we mounted, we can check the summary
605 	 * counters.  If any of them are obviously incorrect, we can recompute
606 	 * them from the AGF headers in the next step.
607 	 */
608 	if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
609 	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
610 	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
611 	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
612 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
613 
614 	/*
615 	 * We can safely re-initialise incore superblock counters from the
616 	 * per-ag data. These may not be correct if the filesystem was not
617 	 * cleanly unmounted, so we waited for recovery to finish before doing
618 	 * this.
619 	 *
620 	 * If the filesystem was cleanly unmounted or the previous check did
621 	 * not flag anything weird, then we can trust the values in the
622 	 * superblock to be correct and we don't need to do anything here.
623 	 * Otherwise, recalculate the summary counters.
624 	 */
625 	if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) ||
626 	     XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) &&
627 	    !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
628 		return 0;
629 
630 	return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
631 }
632 
633 /*
634  * This function does the following on an initial mount of a file system:
635  *	- reads the superblock from disk and init the mount struct
636  *	- if we're a 32-bit kernel, do a size check on the superblock
637  *		so we don't mount terabyte filesystems
638  *	- init mount struct realtime fields
639  *	- allocate inode hash table for fs
640  *	- init directory manager
641  *	- perform recovery and init the log manager
642  */
643 int
644 xfs_mountfs(
645 	struct xfs_mount	*mp)
646 {
647 	struct xfs_sb		*sbp = &(mp->m_sb);
648 	struct xfs_inode	*rip;
649 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
650 	uint64_t		resblks;
651 	uint			quotamount = 0;
652 	uint			quotaflags = 0;
653 	int			error = 0;
654 
655 	xfs_sb_mount_common(mp, sbp);
656 
657 	/*
658 	 * Check for a mismatched features2 values.  Older kernels read & wrote
659 	 * into the wrong sb offset for sb_features2 on some platforms due to
660 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
661 	 * which made older superblock reading/writing routines swap it as a
662 	 * 64-bit value.
663 	 *
664 	 * For backwards compatibility, we make both slots equal.
665 	 *
666 	 * If we detect a mismatched field, we OR the set bits into the existing
667 	 * features2 field in case it has already been modified; we don't want
668 	 * to lose any features.  We then update the bad location with the ORed
669 	 * value so that older kernels will see any features2 flags. The
670 	 * superblock writeback code ensures the new sb_features2 is copied to
671 	 * sb_bad_features2 before it is logged or written to disk.
672 	 */
673 	if (xfs_sb_has_mismatched_features2(sbp)) {
674 		xfs_warn(mp, "correcting sb_features alignment problem");
675 		sbp->sb_features2 |= sbp->sb_bad_features2;
676 		mp->m_update_sb = true;
677 
678 		/*
679 		 * Re-check for ATTR2 in case it was found in bad_features2
680 		 * slot.
681 		 */
682 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
683 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
684 			mp->m_flags |= XFS_MOUNT_ATTR2;
685 	}
686 
687 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
688 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
689 		xfs_sb_version_removeattr2(&mp->m_sb);
690 		mp->m_update_sb = true;
691 
692 		/* update sb_versionnum for the clearing of the morebits */
693 		if (!sbp->sb_features2)
694 			mp->m_update_sb = true;
695 	}
696 
697 	/* always use v2 inodes by default now */
698 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
699 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
700 		mp->m_update_sb = true;
701 	}
702 
703 	/*
704 	 * If we were given new sunit/swidth options, do some basic validation
705 	 * checks and convert the incore dalign and swidth values to the
706 	 * same units (FSB) that everything else uses.  This /must/ happen
707 	 * before computing the inode geometry.
708 	 */
709 	error = xfs_validate_new_dalign(mp);
710 	if (error)
711 		goto out;
712 
713 	xfs_alloc_compute_maxlevels(mp);
714 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
715 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
716 	xfs_ialloc_setup_geometry(mp);
717 	xfs_rmapbt_compute_maxlevels(mp);
718 	xfs_refcountbt_compute_maxlevels(mp);
719 
720 	/*
721 	 * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks
722 	 * is NOT aligned turn off m_dalign since allocator alignment is within
723 	 * an ag, therefore ag has to be aligned at stripe boundary.  Note that
724 	 * we must compute the free space and rmap btree geometry before doing
725 	 * this.
726 	 */
727 	error = xfs_update_alignment(mp);
728 	if (error)
729 		goto out;
730 
731 	/* enable fail_at_unmount as default */
732 	mp->m_fail_unmount = true;
733 
734 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
735 			       NULL, mp->m_super->s_id);
736 	if (error)
737 		goto out;
738 
739 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
740 			       &mp->m_kobj, "stats");
741 	if (error)
742 		goto out_remove_sysfs;
743 
744 	error = xfs_error_sysfs_init(mp);
745 	if (error)
746 		goto out_del_stats;
747 
748 	error = xfs_errortag_init(mp);
749 	if (error)
750 		goto out_remove_error_sysfs;
751 
752 	error = xfs_uuid_mount(mp);
753 	if (error)
754 		goto out_remove_errortag;
755 
756 	/*
757 	 * Update the preferred write size based on the information from the
758 	 * on-disk superblock.
759 	 */
760 	mp->m_allocsize_log =
761 		max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
762 	mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
763 
764 	/* set the low space thresholds for dynamic preallocation */
765 	xfs_set_low_space_thresholds(mp);
766 
767 	/*
768 	 * If enabled, sparse inode chunk alignment is expected to match the
769 	 * cluster size. Full inode chunk alignment must match the chunk size,
770 	 * but that is checked on sb read verification...
771 	 */
772 	if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
773 	    mp->m_sb.sb_spino_align !=
774 			XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
775 		xfs_warn(mp,
776 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
777 			 mp->m_sb.sb_spino_align,
778 			 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
779 		error = -EINVAL;
780 		goto out_remove_uuid;
781 	}
782 
783 	/*
784 	 * Check that the data (and log if separate) is an ok size.
785 	 */
786 	error = xfs_check_sizes(mp);
787 	if (error)
788 		goto out_remove_uuid;
789 
790 	/*
791 	 * Initialize realtime fields in the mount structure
792 	 */
793 	error = xfs_rtmount_init(mp);
794 	if (error) {
795 		xfs_warn(mp, "RT mount failed");
796 		goto out_remove_uuid;
797 	}
798 
799 	/*
800 	 *  Copies the low order bits of the timestamp and the randomly
801 	 *  set "sequence" number out of a UUID.
802 	 */
803 	mp->m_fixedfsid[0] =
804 		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
805 		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
806 	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
807 
808 	error = xfs_da_mount(mp);
809 	if (error) {
810 		xfs_warn(mp, "Failed dir/attr init: %d", error);
811 		goto out_remove_uuid;
812 	}
813 
814 	/*
815 	 * Initialize the precomputed transaction reservations values.
816 	 */
817 	xfs_trans_init(mp);
818 
819 	/*
820 	 * Allocate and initialize the per-ag data.
821 	 */
822 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
823 	if (error) {
824 		xfs_warn(mp, "Failed per-ag init: %d", error);
825 		goto out_free_dir;
826 	}
827 
828 	if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
829 		xfs_warn(mp, "no log defined");
830 		error = -EFSCORRUPTED;
831 		goto out_free_perag;
832 	}
833 
834 	/*
835 	 * Log's mount-time initialization. The first part of recovery can place
836 	 * some items on the AIL, to be handled when recovery is finished or
837 	 * cancelled.
838 	 */
839 	error = xfs_log_mount(mp, mp->m_logdev_targp,
840 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
841 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
842 	if (error) {
843 		xfs_warn(mp, "log mount failed");
844 		goto out_fail_wait;
845 	}
846 
847 	/* Make sure the summary counts are ok. */
848 	error = xfs_check_summary_counts(mp);
849 	if (error)
850 		goto out_log_dealloc;
851 
852 	/*
853 	 * Get and sanity-check the root inode.
854 	 * Save the pointer to it in the mount structure.
855 	 */
856 	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
857 			 XFS_ILOCK_EXCL, &rip);
858 	if (error) {
859 		xfs_warn(mp,
860 			"Failed to read root inode 0x%llx, error %d",
861 			sbp->sb_rootino, -error);
862 		goto out_log_dealloc;
863 	}
864 
865 	ASSERT(rip != NULL);
866 
867 	if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
868 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
869 			(unsigned long long)rip->i_ino);
870 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
871 		error = -EFSCORRUPTED;
872 		goto out_rele_rip;
873 	}
874 	mp->m_rootip = rip;	/* save it */
875 
876 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
877 
878 	/*
879 	 * Initialize realtime inode pointers in the mount structure
880 	 */
881 	error = xfs_rtmount_inodes(mp);
882 	if (error) {
883 		/*
884 		 * Free up the root inode.
885 		 */
886 		xfs_warn(mp, "failed to read RT inodes");
887 		goto out_rele_rip;
888 	}
889 
890 	/*
891 	 * If this is a read-only mount defer the superblock updates until
892 	 * the next remount into writeable mode.  Otherwise we would never
893 	 * perform the update e.g. for the root filesystem.
894 	 */
895 	if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
896 		error = xfs_sync_sb(mp, false);
897 		if (error) {
898 			xfs_warn(mp, "failed to write sb changes");
899 			goto out_rtunmount;
900 		}
901 	}
902 
903 	/*
904 	 * Initialise the XFS quota management subsystem for this mount
905 	 */
906 	if (XFS_IS_QUOTA_RUNNING(mp)) {
907 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
908 		if (error)
909 			goto out_rtunmount;
910 	} else {
911 		ASSERT(!XFS_IS_QUOTA_ON(mp));
912 
913 		/*
914 		 * If a file system had quotas running earlier, but decided to
915 		 * mount without -o uquota/pquota/gquota options, revoke the
916 		 * quotachecked license.
917 		 */
918 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
919 			xfs_notice(mp, "resetting quota flags");
920 			error = xfs_mount_reset_sbqflags(mp);
921 			if (error)
922 				goto out_rtunmount;
923 		}
924 	}
925 
926 	/*
927 	 * Finish recovering the file system.  This part needed to be delayed
928 	 * until after the root and real-time bitmap inodes were consistently
929 	 * read in.
930 	 */
931 	error = xfs_log_mount_finish(mp);
932 	if (error) {
933 		xfs_warn(mp, "log mount finish failed");
934 		goto out_rtunmount;
935 	}
936 
937 	/*
938 	 * Now the log is fully replayed, we can transition to full read-only
939 	 * mode for read-only mounts. This will sync all the metadata and clean
940 	 * the log so that the recovery we just performed does not have to be
941 	 * replayed again on the next mount.
942 	 *
943 	 * We use the same quiesce mechanism as the rw->ro remount, as they are
944 	 * semantically identical operations.
945 	 */
946 	if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
947 							XFS_MOUNT_RDONLY) {
948 		xfs_quiesce_attr(mp);
949 	}
950 
951 	/*
952 	 * Complete the quota initialisation, post-log-replay component.
953 	 */
954 	if (quotamount) {
955 		ASSERT(mp->m_qflags == 0);
956 		mp->m_qflags = quotaflags;
957 
958 		xfs_qm_mount_quotas(mp);
959 	}
960 
961 	/*
962 	 * Now we are mounted, reserve a small amount of unused space for
963 	 * privileged transactions. This is needed so that transaction
964 	 * space required for critical operations can dip into this pool
965 	 * when at ENOSPC. This is needed for operations like create with
966 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
967 	 * are not allowed to use this reserved space.
968 	 *
969 	 * This may drive us straight to ENOSPC on mount, but that implies
970 	 * we were already there on the last unmount. Warn if this occurs.
971 	 */
972 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
973 		resblks = xfs_default_resblks(mp);
974 		error = xfs_reserve_blocks(mp, &resblks, NULL);
975 		if (error)
976 			xfs_warn(mp,
977 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
978 
979 		/* Recover any CoW blocks that never got remapped. */
980 		error = xfs_reflink_recover_cow(mp);
981 		if (error) {
982 			xfs_err(mp,
983 	"Error %d recovering leftover CoW allocations.", error);
984 			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
985 			goto out_quota;
986 		}
987 
988 		/* Reserve AG blocks for future btree expansion. */
989 		error = xfs_fs_reserve_ag_blocks(mp);
990 		if (error && error != -ENOSPC)
991 			goto out_agresv;
992 	}
993 
994 	return 0;
995 
996  out_agresv:
997 	xfs_fs_unreserve_ag_blocks(mp);
998  out_quota:
999 	xfs_qm_unmount_quotas(mp);
1000  out_rtunmount:
1001 	xfs_rtunmount_inodes(mp);
1002  out_rele_rip:
1003 	xfs_irele(rip);
1004 	/* Clean out dquots that might be in memory after quotacheck. */
1005 	xfs_qm_unmount(mp);
1006 	/*
1007 	 * Cancel all delayed reclaim work and reclaim the inodes directly.
1008 	 * We have to do this /after/ rtunmount and qm_unmount because those
1009 	 * two will have scheduled delayed reclaim for the rt/quota inodes.
1010 	 *
1011 	 * This is slightly different from the unmountfs call sequence
1012 	 * because we could be tearing down a partially set up mount.  In
1013 	 * particular, if log_mount_finish fails we bail out without calling
1014 	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1015 	 * quota inodes.
1016 	 */
1017 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1018 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1019 	xfs_health_unmount(mp);
1020  out_log_dealloc:
1021 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1022 	xfs_log_mount_cancel(mp);
1023  out_fail_wait:
1024 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1025 		xfs_wait_buftarg(mp->m_logdev_targp);
1026 	xfs_wait_buftarg(mp->m_ddev_targp);
1027  out_free_perag:
1028 	xfs_free_perag(mp);
1029  out_free_dir:
1030 	xfs_da_unmount(mp);
1031  out_remove_uuid:
1032 	xfs_uuid_unmount(mp);
1033  out_remove_errortag:
1034 	xfs_errortag_del(mp);
1035  out_remove_error_sysfs:
1036 	xfs_error_sysfs_del(mp);
1037  out_del_stats:
1038 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1039  out_remove_sysfs:
1040 	xfs_sysfs_del(&mp->m_kobj);
1041  out:
1042 	return error;
1043 }
1044 
1045 /*
1046  * This flushes out the inodes,dquots and the superblock, unmounts the
1047  * log and makes sure that incore structures are freed.
1048  */
1049 void
1050 xfs_unmountfs(
1051 	struct xfs_mount	*mp)
1052 {
1053 	uint64_t		resblks;
1054 	int			error;
1055 
1056 	xfs_stop_block_reaping(mp);
1057 	xfs_fs_unreserve_ag_blocks(mp);
1058 	xfs_qm_unmount_quotas(mp);
1059 	xfs_rtunmount_inodes(mp);
1060 	xfs_irele(mp->m_rootip);
1061 
1062 	/*
1063 	 * We can potentially deadlock here if we have an inode cluster
1064 	 * that has been freed has its buffer still pinned in memory because
1065 	 * the transaction is still sitting in a iclog. The stale inodes
1066 	 * on that buffer will have their flush locks held until the
1067 	 * transaction hits the disk and the callbacks run. the inode
1068 	 * flush takes the flush lock unconditionally and with nothing to
1069 	 * push out the iclog we will never get that unlocked. hence we
1070 	 * need to force the log first.
1071 	 */
1072 	xfs_log_force(mp, XFS_LOG_SYNC);
1073 
1074 	/*
1075 	 * Wait for all busy extents to be freed, including completion of
1076 	 * any discard operation.
1077 	 */
1078 	xfs_extent_busy_wait_all(mp);
1079 	flush_workqueue(xfs_discard_wq);
1080 
1081 	/*
1082 	 * We now need to tell the world we are unmounting. This will allow
1083 	 * us to detect that the filesystem is going away and we should error
1084 	 * out anything that we have been retrying in the background. This will
1085 	 * prevent neverending retries in AIL pushing from hanging the unmount.
1086 	 */
1087 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1088 
1089 	/*
1090 	 * Flush all pending changes from the AIL.
1091 	 */
1092 	xfs_ail_push_all_sync(mp->m_ail);
1093 
1094 	/*
1095 	 * And reclaim all inodes.  At this point there should be no dirty
1096 	 * inodes and none should be pinned or locked, but use synchronous
1097 	 * reclaim just to be sure. We can stop background inode reclaim
1098 	 * here as well if it is still running.
1099 	 */
1100 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1101 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1102 	xfs_health_unmount(mp);
1103 
1104 	xfs_qm_unmount(mp);
1105 
1106 	/*
1107 	 * Unreserve any blocks we have so that when we unmount we don't account
1108 	 * the reserved free space as used. This is really only necessary for
1109 	 * lazy superblock counting because it trusts the incore superblock
1110 	 * counters to be absolutely correct on clean unmount.
1111 	 *
1112 	 * We don't bother correcting this elsewhere for lazy superblock
1113 	 * counting because on mount of an unclean filesystem we reconstruct the
1114 	 * correct counter value and this is irrelevant.
1115 	 *
1116 	 * For non-lazy counter filesystems, this doesn't matter at all because
1117 	 * we only every apply deltas to the superblock and hence the incore
1118 	 * value does not matter....
1119 	 */
1120 	resblks = 0;
1121 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1122 	if (error)
1123 		xfs_warn(mp, "Unable to free reserved block pool. "
1124 				"Freespace may not be correct on next mount.");
1125 
1126 	error = xfs_log_sbcount(mp);
1127 	if (error)
1128 		xfs_warn(mp, "Unable to update superblock counters. "
1129 				"Freespace may not be correct on next mount.");
1130 
1131 
1132 	xfs_log_unmount(mp);
1133 	xfs_da_unmount(mp);
1134 	xfs_uuid_unmount(mp);
1135 
1136 #if defined(DEBUG)
1137 	xfs_errortag_clearall(mp);
1138 #endif
1139 	xfs_free_perag(mp);
1140 
1141 	xfs_errortag_del(mp);
1142 	xfs_error_sysfs_del(mp);
1143 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1144 	xfs_sysfs_del(&mp->m_kobj);
1145 }
1146 
1147 /*
1148  * Determine whether modifications can proceed. The caller specifies the minimum
1149  * freeze level for which modifications should not be allowed. This allows
1150  * certain operations to proceed while the freeze sequence is in progress, if
1151  * necessary.
1152  */
1153 bool
1154 xfs_fs_writable(
1155 	struct xfs_mount	*mp,
1156 	int			level)
1157 {
1158 	ASSERT(level > SB_UNFROZEN);
1159 	if ((mp->m_super->s_writers.frozen >= level) ||
1160 	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1161 		return false;
1162 
1163 	return true;
1164 }
1165 
1166 /*
1167  * xfs_log_sbcount
1168  *
1169  * Sync the superblock counters to disk.
1170  *
1171  * Note this code can be called during the process of freezing, so we use the
1172  * transaction allocator that does not block when the transaction subsystem is
1173  * in its frozen state.
1174  */
1175 int
1176 xfs_log_sbcount(xfs_mount_t *mp)
1177 {
1178 	/* allow this to proceed during the freeze sequence... */
1179 	if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1180 		return 0;
1181 
1182 	/*
1183 	 * we don't need to do this if we are updating the superblock
1184 	 * counters on every modification.
1185 	 */
1186 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1187 		return 0;
1188 
1189 	return xfs_sync_sb(mp, true);
1190 }
1191 
1192 /*
1193  * Deltas for the inode count are +/-64, hence we use a large batch size
1194  * of 128 so we don't need to take the counter lock on every update.
1195  */
1196 #define XFS_ICOUNT_BATCH	128
1197 int
1198 xfs_mod_icount(
1199 	struct xfs_mount	*mp,
1200 	int64_t			delta)
1201 {
1202 	percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1203 	if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1204 		ASSERT(0);
1205 		percpu_counter_add(&mp->m_icount, -delta);
1206 		return -EINVAL;
1207 	}
1208 	return 0;
1209 }
1210 
1211 int
1212 xfs_mod_ifree(
1213 	struct xfs_mount	*mp,
1214 	int64_t			delta)
1215 {
1216 	percpu_counter_add(&mp->m_ifree, delta);
1217 	if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1218 		ASSERT(0);
1219 		percpu_counter_add(&mp->m_ifree, -delta);
1220 		return -EINVAL;
1221 	}
1222 	return 0;
1223 }
1224 
1225 /*
1226  * Deltas for the block count can vary from 1 to very large, but lock contention
1227  * only occurs on frequent small block count updates such as in the delayed
1228  * allocation path for buffered writes (page a time updates). Hence we set
1229  * a large batch count (1024) to minimise global counter updates except when
1230  * we get near to ENOSPC and we have to be very accurate with our updates.
1231  */
1232 #define XFS_FDBLOCKS_BATCH	1024
1233 int
1234 xfs_mod_fdblocks(
1235 	struct xfs_mount	*mp,
1236 	int64_t			delta,
1237 	bool			rsvd)
1238 {
1239 	int64_t			lcounter;
1240 	long long		res_used;
1241 	s32			batch;
1242 
1243 	if (delta > 0) {
1244 		/*
1245 		 * If the reserve pool is depleted, put blocks back into it
1246 		 * first. Most of the time the pool is full.
1247 		 */
1248 		if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1249 			percpu_counter_add(&mp->m_fdblocks, delta);
1250 			return 0;
1251 		}
1252 
1253 		spin_lock(&mp->m_sb_lock);
1254 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1255 
1256 		if (res_used > delta) {
1257 			mp->m_resblks_avail += delta;
1258 		} else {
1259 			delta -= res_used;
1260 			mp->m_resblks_avail = mp->m_resblks;
1261 			percpu_counter_add(&mp->m_fdblocks, delta);
1262 		}
1263 		spin_unlock(&mp->m_sb_lock);
1264 		return 0;
1265 	}
1266 
1267 	/*
1268 	 * Taking blocks away, need to be more accurate the closer we
1269 	 * are to zero.
1270 	 *
1271 	 * If the counter has a value of less than 2 * max batch size,
1272 	 * then make everything serialise as we are real close to
1273 	 * ENOSPC.
1274 	 */
1275 	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1276 				     XFS_FDBLOCKS_BATCH) < 0)
1277 		batch = 1;
1278 	else
1279 		batch = XFS_FDBLOCKS_BATCH;
1280 
1281 	percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1282 	if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1283 				     XFS_FDBLOCKS_BATCH) >= 0) {
1284 		/* we had space! */
1285 		return 0;
1286 	}
1287 
1288 	/*
1289 	 * lock up the sb for dipping into reserves before releasing the space
1290 	 * that took us to ENOSPC.
1291 	 */
1292 	spin_lock(&mp->m_sb_lock);
1293 	percpu_counter_add(&mp->m_fdblocks, -delta);
1294 	if (!rsvd)
1295 		goto fdblocks_enospc;
1296 
1297 	lcounter = (long long)mp->m_resblks_avail + delta;
1298 	if (lcounter >= 0) {
1299 		mp->m_resblks_avail = lcounter;
1300 		spin_unlock(&mp->m_sb_lock);
1301 		return 0;
1302 	}
1303 	printk_once(KERN_WARNING
1304 		"Filesystem \"%s\": reserve blocks depleted! "
1305 		"Consider increasing reserve pool size.",
1306 		mp->m_super->s_id);
1307 fdblocks_enospc:
1308 	spin_unlock(&mp->m_sb_lock);
1309 	return -ENOSPC;
1310 }
1311 
1312 int
1313 xfs_mod_frextents(
1314 	struct xfs_mount	*mp,
1315 	int64_t			delta)
1316 {
1317 	int64_t			lcounter;
1318 	int			ret = 0;
1319 
1320 	spin_lock(&mp->m_sb_lock);
1321 	lcounter = mp->m_sb.sb_frextents + delta;
1322 	if (lcounter < 0)
1323 		ret = -ENOSPC;
1324 	else
1325 		mp->m_sb.sb_frextents = lcounter;
1326 	spin_unlock(&mp->m_sb_lock);
1327 	return ret;
1328 }
1329 
1330 /*
1331  * xfs_getsb() is called to obtain the buffer for the superblock.
1332  * The buffer is returned locked and read in from disk.
1333  * The buffer should be released with a call to xfs_brelse().
1334  */
1335 struct xfs_buf *
1336 xfs_getsb(
1337 	struct xfs_mount	*mp)
1338 {
1339 	struct xfs_buf		*bp = mp->m_sb_bp;
1340 
1341 	xfs_buf_lock(bp);
1342 	xfs_buf_hold(bp);
1343 	ASSERT(bp->b_flags & XBF_DONE);
1344 	return bp;
1345 }
1346 
1347 /*
1348  * Used to free the superblock along various error paths.
1349  */
1350 void
1351 xfs_freesb(
1352 	struct xfs_mount	*mp)
1353 {
1354 	struct xfs_buf		*bp = mp->m_sb_bp;
1355 
1356 	xfs_buf_lock(bp);
1357 	mp->m_sb_bp = NULL;
1358 	xfs_buf_relse(bp);
1359 }
1360 
1361 /*
1362  * If the underlying (data/log/rt) device is readonly, there are some
1363  * operations that cannot proceed.
1364  */
1365 int
1366 xfs_dev_is_read_only(
1367 	struct xfs_mount	*mp,
1368 	char			*message)
1369 {
1370 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1371 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1372 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1373 		xfs_notice(mp, "%s required on read-only device.", message);
1374 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1375 		return -EROFS;
1376 	}
1377 	return 0;
1378 }
1379 
1380 /* Force the summary counters to be recalculated at next mount. */
1381 void
1382 xfs_force_summary_recalc(
1383 	struct xfs_mount	*mp)
1384 {
1385 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1386 		return;
1387 
1388 	xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1389 }
1390 
1391 /*
1392  * Update the in-core delayed block counter.
1393  *
1394  * We prefer to update the counter without having to take a spinlock for every
1395  * counter update (i.e. batching).  Each change to delayed allocation
1396  * reservations can change can easily exceed the default percpu counter
1397  * batching, so we use a larger batch factor here.
1398  *
1399  * Note that we don't currently have any callers requiring fast summation
1400  * (e.g. percpu_counter_read) so we can use a big batch value here.
1401  */
1402 #define XFS_DELALLOC_BATCH	(4096)
1403 void
1404 xfs_mod_delalloc(
1405 	struct xfs_mount	*mp,
1406 	int64_t			delta)
1407 {
1408 	percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1409 			XFS_DELALLOC_BATCH);
1410 }
1411