xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision 0d456bad)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_dir2.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_btree.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_alloc.h"
38 #include "xfs_rtalloc.h"
39 #include "xfs_bmap.h"
40 #include "xfs_error.h"
41 #include "xfs_quota.h"
42 #include "xfs_fsops.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
45 #include "xfs_icache.h"
46 
47 
48 #ifdef HAVE_PERCPU_SB
49 STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
50 						int);
51 STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
52 						int);
53 STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
54 #else
55 
56 #define xfs_icsb_balance_counter(mp, a, b)		do { } while (0)
57 #define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0)
58 #endif
59 
60 static const struct {
61 	short offset;
62 	short type;	/* 0 = integer
63 			 * 1 = binary / string (no translation)
64 			 */
65 } xfs_sb_info[] = {
66     { offsetof(xfs_sb_t, sb_magicnum),   0 },
67     { offsetof(xfs_sb_t, sb_blocksize),  0 },
68     { offsetof(xfs_sb_t, sb_dblocks),    0 },
69     { offsetof(xfs_sb_t, sb_rblocks),    0 },
70     { offsetof(xfs_sb_t, sb_rextents),   0 },
71     { offsetof(xfs_sb_t, sb_uuid),       1 },
72     { offsetof(xfs_sb_t, sb_logstart),   0 },
73     { offsetof(xfs_sb_t, sb_rootino),    0 },
74     { offsetof(xfs_sb_t, sb_rbmino),     0 },
75     { offsetof(xfs_sb_t, sb_rsumino),    0 },
76     { offsetof(xfs_sb_t, sb_rextsize),   0 },
77     { offsetof(xfs_sb_t, sb_agblocks),   0 },
78     { offsetof(xfs_sb_t, sb_agcount),    0 },
79     { offsetof(xfs_sb_t, sb_rbmblocks),  0 },
80     { offsetof(xfs_sb_t, sb_logblocks),  0 },
81     { offsetof(xfs_sb_t, sb_versionnum), 0 },
82     { offsetof(xfs_sb_t, sb_sectsize),   0 },
83     { offsetof(xfs_sb_t, sb_inodesize),  0 },
84     { offsetof(xfs_sb_t, sb_inopblock),  0 },
85     { offsetof(xfs_sb_t, sb_fname[0]),   1 },
86     { offsetof(xfs_sb_t, sb_blocklog),   0 },
87     { offsetof(xfs_sb_t, sb_sectlog),    0 },
88     { offsetof(xfs_sb_t, sb_inodelog),   0 },
89     { offsetof(xfs_sb_t, sb_inopblog),   0 },
90     { offsetof(xfs_sb_t, sb_agblklog),   0 },
91     { offsetof(xfs_sb_t, sb_rextslog),   0 },
92     { offsetof(xfs_sb_t, sb_inprogress), 0 },
93     { offsetof(xfs_sb_t, sb_imax_pct),   0 },
94     { offsetof(xfs_sb_t, sb_icount),     0 },
95     { offsetof(xfs_sb_t, sb_ifree),      0 },
96     { offsetof(xfs_sb_t, sb_fdblocks),   0 },
97     { offsetof(xfs_sb_t, sb_frextents),  0 },
98     { offsetof(xfs_sb_t, sb_uquotino),   0 },
99     { offsetof(xfs_sb_t, sb_gquotino),   0 },
100     { offsetof(xfs_sb_t, sb_qflags),     0 },
101     { offsetof(xfs_sb_t, sb_flags),      0 },
102     { offsetof(xfs_sb_t, sb_shared_vn),  0 },
103     { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
104     { offsetof(xfs_sb_t, sb_unit),	 0 },
105     { offsetof(xfs_sb_t, sb_width),	 0 },
106     { offsetof(xfs_sb_t, sb_dirblklog),	 0 },
107     { offsetof(xfs_sb_t, sb_logsectlog), 0 },
108     { offsetof(xfs_sb_t, sb_logsectsize),0 },
109     { offsetof(xfs_sb_t, sb_logsunit),	 0 },
110     { offsetof(xfs_sb_t, sb_features2),	 0 },
111     { offsetof(xfs_sb_t, sb_bad_features2), 0 },
112     { sizeof(xfs_sb_t),			 0 }
113 };
114 
115 static DEFINE_MUTEX(xfs_uuid_table_mutex);
116 static int xfs_uuid_table_size;
117 static uuid_t *xfs_uuid_table;
118 
119 /*
120  * See if the UUID is unique among mounted XFS filesystems.
121  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
122  */
123 STATIC int
124 xfs_uuid_mount(
125 	struct xfs_mount	*mp)
126 {
127 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
128 	int			hole, i;
129 
130 	if (mp->m_flags & XFS_MOUNT_NOUUID)
131 		return 0;
132 
133 	if (uuid_is_nil(uuid)) {
134 		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
135 		return XFS_ERROR(EINVAL);
136 	}
137 
138 	mutex_lock(&xfs_uuid_table_mutex);
139 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
140 		if (uuid_is_nil(&xfs_uuid_table[i])) {
141 			hole = i;
142 			continue;
143 		}
144 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
145 			goto out_duplicate;
146 	}
147 
148 	if (hole < 0) {
149 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
150 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
151 			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
152 			KM_SLEEP);
153 		hole = xfs_uuid_table_size++;
154 	}
155 	xfs_uuid_table[hole] = *uuid;
156 	mutex_unlock(&xfs_uuid_table_mutex);
157 
158 	return 0;
159 
160  out_duplicate:
161 	mutex_unlock(&xfs_uuid_table_mutex);
162 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
163 	return XFS_ERROR(EINVAL);
164 }
165 
166 STATIC void
167 xfs_uuid_unmount(
168 	struct xfs_mount	*mp)
169 {
170 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
171 	int			i;
172 
173 	if (mp->m_flags & XFS_MOUNT_NOUUID)
174 		return;
175 
176 	mutex_lock(&xfs_uuid_table_mutex);
177 	for (i = 0; i < xfs_uuid_table_size; i++) {
178 		if (uuid_is_nil(&xfs_uuid_table[i]))
179 			continue;
180 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
181 			continue;
182 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
183 		break;
184 	}
185 	ASSERT(i < xfs_uuid_table_size);
186 	mutex_unlock(&xfs_uuid_table_mutex);
187 }
188 
189 
190 /*
191  * Reference counting access wrappers to the perag structures.
192  * Because we never free per-ag structures, the only thing we
193  * have to protect against changes is the tree structure itself.
194  */
195 struct xfs_perag *
196 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
197 {
198 	struct xfs_perag	*pag;
199 	int			ref = 0;
200 
201 	rcu_read_lock();
202 	pag = radix_tree_lookup(&mp->m_perag_tree, agno);
203 	if (pag) {
204 		ASSERT(atomic_read(&pag->pag_ref) >= 0);
205 		ref = atomic_inc_return(&pag->pag_ref);
206 	}
207 	rcu_read_unlock();
208 	trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
209 	return pag;
210 }
211 
212 /*
213  * search from @first to find the next perag with the given tag set.
214  */
215 struct xfs_perag *
216 xfs_perag_get_tag(
217 	struct xfs_mount	*mp,
218 	xfs_agnumber_t		first,
219 	int			tag)
220 {
221 	struct xfs_perag	*pag;
222 	int			found;
223 	int			ref;
224 
225 	rcu_read_lock();
226 	found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
227 					(void **)&pag, first, 1, tag);
228 	if (found <= 0) {
229 		rcu_read_unlock();
230 		return NULL;
231 	}
232 	ref = atomic_inc_return(&pag->pag_ref);
233 	rcu_read_unlock();
234 	trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
235 	return pag;
236 }
237 
238 void
239 xfs_perag_put(struct xfs_perag *pag)
240 {
241 	int	ref;
242 
243 	ASSERT(atomic_read(&pag->pag_ref) > 0);
244 	ref = atomic_dec_return(&pag->pag_ref);
245 	trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
246 }
247 
248 STATIC void
249 __xfs_free_perag(
250 	struct rcu_head	*head)
251 {
252 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
253 
254 	ASSERT(atomic_read(&pag->pag_ref) == 0);
255 	kmem_free(pag);
256 }
257 
258 /*
259  * Free up the per-ag resources associated with the mount structure.
260  */
261 STATIC void
262 xfs_free_perag(
263 	xfs_mount_t	*mp)
264 {
265 	xfs_agnumber_t	agno;
266 	struct xfs_perag *pag;
267 
268 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
269 		spin_lock(&mp->m_perag_lock);
270 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
271 		spin_unlock(&mp->m_perag_lock);
272 		ASSERT(pag);
273 		ASSERT(atomic_read(&pag->pag_ref) == 0);
274 		call_rcu(&pag->rcu_head, __xfs_free_perag);
275 	}
276 }
277 
278 /*
279  * Check size of device based on the (data/realtime) block count.
280  * Note: this check is used by the growfs code as well as mount.
281  */
282 int
283 xfs_sb_validate_fsb_count(
284 	xfs_sb_t	*sbp,
285 	__uint64_t	nblocks)
286 {
287 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
288 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
289 
290 #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
291 	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
292 		return EFBIG;
293 #else                  /* Limited by UINT_MAX of sectors */
294 	if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
295 		return EFBIG;
296 #endif
297 	return 0;
298 }
299 
300 /*
301  * Check the validity of the SB found.
302  */
303 STATIC int
304 xfs_mount_validate_sb(
305 	xfs_mount_t	*mp,
306 	xfs_sb_t	*sbp,
307 	bool		check_inprogress)
308 {
309 
310 	/*
311 	 * If the log device and data device have the
312 	 * same device number, the log is internal.
313 	 * Consequently, the sb_logstart should be non-zero.  If
314 	 * we have a zero sb_logstart in this case, we may be trying to mount
315 	 * a volume filesystem in a non-volume manner.
316 	 */
317 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
318 		xfs_warn(mp, "bad magic number");
319 		return XFS_ERROR(EWRONGFS);
320 	}
321 
322 	if (!xfs_sb_good_version(sbp)) {
323 		xfs_warn(mp, "bad version");
324 		return XFS_ERROR(EWRONGFS);
325 	}
326 
327 	if (unlikely(
328 	    sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
329 		xfs_warn(mp,
330 		"filesystem is marked as having an external log; "
331 		"specify logdev on the mount command line.");
332 		return XFS_ERROR(EINVAL);
333 	}
334 
335 	if (unlikely(
336 	    sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
337 		xfs_warn(mp,
338 		"filesystem is marked as having an internal log; "
339 		"do not specify logdev on the mount command line.");
340 		return XFS_ERROR(EINVAL);
341 	}
342 
343 	/*
344 	 * More sanity checking.  Most of these were stolen directly from
345 	 * xfs_repair.
346 	 */
347 	if (unlikely(
348 	    sbp->sb_agcount <= 0					||
349 	    sbp->sb_sectsize < XFS_MIN_SECTORSIZE			||
350 	    sbp->sb_sectsize > XFS_MAX_SECTORSIZE			||
351 	    sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG			||
352 	    sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG			||
353 	    sbp->sb_sectsize != (1 << sbp->sb_sectlog)			||
354 	    sbp->sb_blocksize < XFS_MIN_BLOCKSIZE			||
355 	    sbp->sb_blocksize > XFS_MAX_BLOCKSIZE			||
356 	    sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG			||
357 	    sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG			||
358 	    sbp->sb_blocksize != (1 << sbp->sb_blocklog)		||
359 	    sbp->sb_inodesize < XFS_DINODE_MIN_SIZE			||
360 	    sbp->sb_inodesize > XFS_DINODE_MAX_SIZE			||
361 	    sbp->sb_inodelog < XFS_DINODE_MIN_LOG			||
362 	    sbp->sb_inodelog > XFS_DINODE_MAX_LOG			||
363 	    sbp->sb_inodesize != (1 << sbp->sb_inodelog)		||
364 	    (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)	||
365 	    (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)	||
366 	    (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)	||
367 	    (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */)	||
368 	    sbp->sb_dblocks == 0					||
369 	    sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp)			||
370 	    sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp))) {
371 		XFS_CORRUPTION_ERROR("SB sanity check failed",
372 				XFS_ERRLEVEL_LOW, mp, sbp);
373 		return XFS_ERROR(EFSCORRUPTED);
374 	}
375 
376 	/*
377 	 * Until this is fixed only page-sized or smaller data blocks work.
378 	 */
379 	if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
380 		xfs_warn(mp,
381 		"File system with blocksize %d bytes. "
382 		"Only pagesize (%ld) or less will currently work.",
383 				sbp->sb_blocksize, PAGE_SIZE);
384 		return XFS_ERROR(ENOSYS);
385 	}
386 
387 	/*
388 	 * Currently only very few inode sizes are supported.
389 	 */
390 	switch (sbp->sb_inodesize) {
391 	case 256:
392 	case 512:
393 	case 1024:
394 	case 2048:
395 		break;
396 	default:
397 		xfs_warn(mp, "inode size of %d bytes not supported",
398 				sbp->sb_inodesize);
399 		return XFS_ERROR(ENOSYS);
400 	}
401 
402 	if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
403 	    xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
404 		xfs_warn(mp,
405 		"file system too large to be mounted on this system.");
406 		return XFS_ERROR(EFBIG);
407 	}
408 
409 	if (check_inprogress && sbp->sb_inprogress) {
410 		xfs_warn(mp, "Offline file system operation in progress!");
411 		return XFS_ERROR(EFSCORRUPTED);
412 	}
413 
414 	/*
415 	 * Version 1 directory format has never worked on Linux.
416 	 */
417 	if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
418 		xfs_warn(mp, "file system using version 1 directory format");
419 		return XFS_ERROR(ENOSYS);
420 	}
421 
422 	return 0;
423 }
424 
425 int
426 xfs_initialize_perag(
427 	xfs_mount_t	*mp,
428 	xfs_agnumber_t	agcount,
429 	xfs_agnumber_t	*maxagi)
430 {
431 	xfs_agnumber_t	index;
432 	xfs_agnumber_t	first_initialised = 0;
433 	xfs_perag_t	*pag;
434 	xfs_agino_t	agino;
435 	xfs_ino_t	ino;
436 	xfs_sb_t	*sbp = &mp->m_sb;
437 	int		error = -ENOMEM;
438 
439 	/*
440 	 * Walk the current per-ag tree so we don't try to initialise AGs
441 	 * that already exist (growfs case). Allocate and insert all the
442 	 * AGs we don't find ready for initialisation.
443 	 */
444 	for (index = 0; index < agcount; index++) {
445 		pag = xfs_perag_get(mp, index);
446 		if (pag) {
447 			xfs_perag_put(pag);
448 			continue;
449 		}
450 		if (!first_initialised)
451 			first_initialised = index;
452 
453 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
454 		if (!pag)
455 			goto out_unwind;
456 		pag->pag_agno = index;
457 		pag->pag_mount = mp;
458 		spin_lock_init(&pag->pag_ici_lock);
459 		mutex_init(&pag->pag_ici_reclaim_lock);
460 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
461 		spin_lock_init(&pag->pag_buf_lock);
462 		pag->pag_buf_tree = RB_ROOT;
463 
464 		if (radix_tree_preload(GFP_NOFS))
465 			goto out_unwind;
466 
467 		spin_lock(&mp->m_perag_lock);
468 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
469 			BUG();
470 			spin_unlock(&mp->m_perag_lock);
471 			radix_tree_preload_end();
472 			error = -EEXIST;
473 			goto out_unwind;
474 		}
475 		spin_unlock(&mp->m_perag_lock);
476 		radix_tree_preload_end();
477 	}
478 
479 	/*
480 	 * If we mount with the inode64 option, or no inode overflows
481 	 * the legacy 32-bit address space clear the inode32 option.
482 	 */
483 	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
484 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
485 
486 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
487 		mp->m_flags |= XFS_MOUNT_32BITINODES;
488 	else
489 		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
490 
491 	if (mp->m_flags & XFS_MOUNT_32BITINODES)
492 		index = xfs_set_inode32(mp);
493 	else
494 		index = xfs_set_inode64(mp);
495 
496 	if (maxagi)
497 		*maxagi = index;
498 	return 0;
499 
500 out_unwind:
501 	kmem_free(pag);
502 	for (; index > first_initialised; index--) {
503 		pag = radix_tree_delete(&mp->m_perag_tree, index);
504 		kmem_free(pag);
505 	}
506 	return error;
507 }
508 
509 void
510 xfs_sb_from_disk(
511 	struct xfs_sb	*to,
512 	xfs_dsb_t	*from)
513 {
514 	to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
515 	to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
516 	to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
517 	to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
518 	to->sb_rextents = be64_to_cpu(from->sb_rextents);
519 	memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
520 	to->sb_logstart = be64_to_cpu(from->sb_logstart);
521 	to->sb_rootino = be64_to_cpu(from->sb_rootino);
522 	to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
523 	to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
524 	to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
525 	to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
526 	to->sb_agcount = be32_to_cpu(from->sb_agcount);
527 	to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
528 	to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
529 	to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
530 	to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
531 	to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
532 	to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
533 	memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
534 	to->sb_blocklog = from->sb_blocklog;
535 	to->sb_sectlog = from->sb_sectlog;
536 	to->sb_inodelog = from->sb_inodelog;
537 	to->sb_inopblog = from->sb_inopblog;
538 	to->sb_agblklog = from->sb_agblklog;
539 	to->sb_rextslog = from->sb_rextslog;
540 	to->sb_inprogress = from->sb_inprogress;
541 	to->sb_imax_pct = from->sb_imax_pct;
542 	to->sb_icount = be64_to_cpu(from->sb_icount);
543 	to->sb_ifree = be64_to_cpu(from->sb_ifree);
544 	to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
545 	to->sb_frextents = be64_to_cpu(from->sb_frextents);
546 	to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
547 	to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
548 	to->sb_qflags = be16_to_cpu(from->sb_qflags);
549 	to->sb_flags = from->sb_flags;
550 	to->sb_shared_vn = from->sb_shared_vn;
551 	to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
552 	to->sb_unit = be32_to_cpu(from->sb_unit);
553 	to->sb_width = be32_to_cpu(from->sb_width);
554 	to->sb_dirblklog = from->sb_dirblklog;
555 	to->sb_logsectlog = from->sb_logsectlog;
556 	to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
557 	to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
558 	to->sb_features2 = be32_to_cpu(from->sb_features2);
559 	to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
560 }
561 
562 /*
563  * Copy in core superblock to ondisk one.
564  *
565  * The fields argument is mask of superblock fields to copy.
566  */
567 void
568 xfs_sb_to_disk(
569 	xfs_dsb_t	*to,
570 	xfs_sb_t	*from,
571 	__int64_t	fields)
572 {
573 	xfs_caddr_t	to_ptr = (xfs_caddr_t)to;
574 	xfs_caddr_t	from_ptr = (xfs_caddr_t)from;
575 	xfs_sb_field_t	f;
576 	int		first;
577 	int		size;
578 
579 	ASSERT(fields);
580 	if (!fields)
581 		return;
582 
583 	while (fields) {
584 		f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
585 		first = xfs_sb_info[f].offset;
586 		size = xfs_sb_info[f + 1].offset - first;
587 
588 		ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
589 
590 		if (size == 1 || xfs_sb_info[f].type == 1) {
591 			memcpy(to_ptr + first, from_ptr + first, size);
592 		} else {
593 			switch (size) {
594 			case 2:
595 				*(__be16 *)(to_ptr + first) =
596 					cpu_to_be16(*(__u16 *)(from_ptr + first));
597 				break;
598 			case 4:
599 				*(__be32 *)(to_ptr + first) =
600 					cpu_to_be32(*(__u32 *)(from_ptr + first));
601 				break;
602 			case 8:
603 				*(__be64 *)(to_ptr + first) =
604 					cpu_to_be64(*(__u64 *)(from_ptr + first));
605 				break;
606 			default:
607 				ASSERT(0);
608 			}
609 		}
610 
611 		fields &= ~(1LL << f);
612 	}
613 }
614 
615 static void
616 xfs_sb_verify(
617 	struct xfs_buf	*bp)
618 {
619 	struct xfs_mount *mp = bp->b_target->bt_mount;
620 	struct xfs_sb	sb;
621 	int		error;
622 
623 	xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp));
624 
625 	/*
626 	 * Only check the in progress field for the primary superblock as
627 	 * mkfs.xfs doesn't clear it from secondary superblocks.
628 	 */
629 	error = xfs_mount_validate_sb(mp, &sb, bp->b_bn == XFS_SB_DADDR);
630 	if (error)
631 		xfs_buf_ioerror(bp, error);
632 }
633 
634 static void
635 xfs_sb_read_verify(
636 	struct xfs_buf	*bp)
637 {
638 	xfs_sb_verify(bp);
639 }
640 
641 /*
642  * We may be probed for a filesystem match, so we may not want to emit
643  * messages when the superblock buffer is not actually an XFS superblock.
644  * If we find an XFS superblock, the run a normal, noisy mount because we are
645  * really going to mount it and want to know about errors.
646  */
647 static void
648 xfs_sb_quiet_read_verify(
649 	struct xfs_buf	*bp)
650 {
651 	struct xfs_sb	sb;
652 
653 	xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp));
654 
655 	if (sb.sb_magicnum == XFS_SB_MAGIC) {
656 		/* XFS filesystem, verify noisily! */
657 		xfs_sb_read_verify(bp);
658 		return;
659 	}
660 	/* quietly fail */
661 	xfs_buf_ioerror(bp, EFSCORRUPTED);
662 }
663 
664 static void
665 xfs_sb_write_verify(
666 	struct xfs_buf	*bp)
667 {
668 	xfs_sb_verify(bp);
669 }
670 
671 const struct xfs_buf_ops xfs_sb_buf_ops = {
672 	.verify_read = xfs_sb_read_verify,
673 	.verify_write = xfs_sb_write_verify,
674 };
675 
676 static const struct xfs_buf_ops xfs_sb_quiet_buf_ops = {
677 	.verify_read = xfs_sb_quiet_read_verify,
678 	.verify_write = xfs_sb_write_verify,
679 };
680 
681 /*
682  * xfs_readsb
683  *
684  * Does the initial read of the superblock.
685  */
686 int
687 xfs_readsb(xfs_mount_t *mp, int flags)
688 {
689 	unsigned int	sector_size;
690 	xfs_buf_t	*bp;
691 	int		error;
692 	int		loud = !(flags & XFS_MFSI_QUIET);
693 
694 	ASSERT(mp->m_sb_bp == NULL);
695 	ASSERT(mp->m_ddev_targp != NULL);
696 
697 	/*
698 	 * Allocate a (locked) buffer to hold the superblock.
699 	 * This will be kept around at all times to optimize
700 	 * access to the superblock.
701 	 */
702 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
703 
704 reread:
705 	bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
706 				   BTOBB(sector_size), 0,
707 				   loud ? &xfs_sb_buf_ops
708 				        : &xfs_sb_quiet_buf_ops);
709 	if (!bp) {
710 		if (loud)
711 			xfs_warn(mp, "SB buffer read failed");
712 		return EIO;
713 	}
714 	if (bp->b_error) {
715 		error = bp->b_error;
716 		if (loud)
717 			xfs_warn(mp, "SB validate failed");
718 		goto release_buf;
719 	}
720 
721 	/*
722 	 * Initialize the mount structure from the superblock.
723 	 */
724 	xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
725 
726 	/*
727 	 * We must be able to do sector-sized and sector-aligned IO.
728 	 */
729 	if (sector_size > mp->m_sb.sb_sectsize) {
730 		if (loud)
731 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
732 				sector_size, mp->m_sb.sb_sectsize);
733 		error = ENOSYS;
734 		goto release_buf;
735 	}
736 
737 	/*
738 	 * If device sector size is smaller than the superblock size,
739 	 * re-read the superblock so the buffer is correctly sized.
740 	 */
741 	if (sector_size < mp->m_sb.sb_sectsize) {
742 		xfs_buf_relse(bp);
743 		sector_size = mp->m_sb.sb_sectsize;
744 		goto reread;
745 	}
746 
747 	/* Initialize per-cpu counters */
748 	xfs_icsb_reinit_counters(mp);
749 
750 	mp->m_sb_bp = bp;
751 	xfs_buf_unlock(bp);
752 	return 0;
753 
754 release_buf:
755 	xfs_buf_relse(bp);
756 	return error;
757 }
758 
759 
760 /*
761  * xfs_mount_common
762  *
763  * Mount initialization code establishing various mount
764  * fields from the superblock associated with the given
765  * mount structure
766  */
767 STATIC void
768 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
769 {
770 	mp->m_agfrotor = mp->m_agirotor = 0;
771 	spin_lock_init(&mp->m_agirotor_lock);
772 	mp->m_maxagi = mp->m_sb.sb_agcount;
773 	mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
774 	mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
775 	mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
776 	mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
777 	mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
778 	mp->m_blockmask = sbp->sb_blocksize - 1;
779 	mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
780 	mp->m_blockwmask = mp->m_blockwsize - 1;
781 
782 	mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
783 	mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
784 	mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
785 	mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
786 
787 	mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
788 	mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
789 	mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
790 	mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
791 
792 	mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
793 	mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
794 	mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
795 	mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
796 
797 	mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
798 	mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
799 					sbp->sb_inopblock);
800 	mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
801 }
802 
803 /*
804  * xfs_initialize_perag_data
805  *
806  * Read in each per-ag structure so we can count up the number of
807  * allocated inodes, free inodes and used filesystem blocks as this
808  * information is no longer persistent in the superblock. Once we have
809  * this information, write it into the in-core superblock structure.
810  */
811 STATIC int
812 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
813 {
814 	xfs_agnumber_t	index;
815 	xfs_perag_t	*pag;
816 	xfs_sb_t	*sbp = &mp->m_sb;
817 	uint64_t	ifree = 0;
818 	uint64_t	ialloc = 0;
819 	uint64_t	bfree = 0;
820 	uint64_t	bfreelst = 0;
821 	uint64_t	btree = 0;
822 	int		error;
823 
824 	for (index = 0; index < agcount; index++) {
825 		/*
826 		 * read the agf, then the agi. This gets us
827 		 * all the information we need and populates the
828 		 * per-ag structures for us.
829 		 */
830 		error = xfs_alloc_pagf_init(mp, NULL, index, 0);
831 		if (error)
832 			return error;
833 
834 		error = xfs_ialloc_pagi_init(mp, NULL, index);
835 		if (error)
836 			return error;
837 		pag = xfs_perag_get(mp, index);
838 		ifree += pag->pagi_freecount;
839 		ialloc += pag->pagi_count;
840 		bfree += pag->pagf_freeblks;
841 		bfreelst += pag->pagf_flcount;
842 		btree += pag->pagf_btreeblks;
843 		xfs_perag_put(pag);
844 	}
845 	/*
846 	 * Overwrite incore superblock counters with just-read data
847 	 */
848 	spin_lock(&mp->m_sb_lock);
849 	sbp->sb_ifree = ifree;
850 	sbp->sb_icount = ialloc;
851 	sbp->sb_fdblocks = bfree + bfreelst + btree;
852 	spin_unlock(&mp->m_sb_lock);
853 
854 	/* Fixup the per-cpu counters as well. */
855 	xfs_icsb_reinit_counters(mp);
856 
857 	return 0;
858 }
859 
860 /*
861  * Update alignment values based on mount options and sb values
862  */
863 STATIC int
864 xfs_update_alignment(xfs_mount_t *mp)
865 {
866 	xfs_sb_t	*sbp = &(mp->m_sb);
867 
868 	if (mp->m_dalign) {
869 		/*
870 		 * If stripe unit and stripe width are not multiples
871 		 * of the fs blocksize turn off alignment.
872 		 */
873 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
874 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
875 			if (mp->m_flags & XFS_MOUNT_RETERR) {
876 				xfs_warn(mp, "alignment check failed: "
877 					 "(sunit/swidth vs. blocksize)");
878 				return XFS_ERROR(EINVAL);
879 			}
880 			mp->m_dalign = mp->m_swidth = 0;
881 		} else {
882 			/*
883 			 * Convert the stripe unit and width to FSBs.
884 			 */
885 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
886 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
887 				if (mp->m_flags & XFS_MOUNT_RETERR) {
888 					xfs_warn(mp, "alignment check failed: "
889 						 "(sunit/swidth vs. ag size)");
890 					return XFS_ERROR(EINVAL);
891 				}
892 				xfs_warn(mp,
893 		"stripe alignment turned off: sunit(%d)/swidth(%d) "
894 		"incompatible with agsize(%d)",
895 					mp->m_dalign, mp->m_swidth,
896 					sbp->sb_agblocks);
897 
898 				mp->m_dalign = 0;
899 				mp->m_swidth = 0;
900 			} else if (mp->m_dalign) {
901 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
902 			} else {
903 				if (mp->m_flags & XFS_MOUNT_RETERR) {
904 					xfs_warn(mp, "alignment check failed: "
905 						"sunit(%d) less than bsize(%d)",
906 						mp->m_dalign,
907 						mp->m_blockmask +1);
908 					return XFS_ERROR(EINVAL);
909 				}
910 				mp->m_swidth = 0;
911 			}
912 		}
913 
914 		/*
915 		 * Update superblock with new values
916 		 * and log changes
917 		 */
918 		if (xfs_sb_version_hasdalign(sbp)) {
919 			if (sbp->sb_unit != mp->m_dalign) {
920 				sbp->sb_unit = mp->m_dalign;
921 				mp->m_update_flags |= XFS_SB_UNIT;
922 			}
923 			if (sbp->sb_width != mp->m_swidth) {
924 				sbp->sb_width = mp->m_swidth;
925 				mp->m_update_flags |= XFS_SB_WIDTH;
926 			}
927 		}
928 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
929 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
930 			mp->m_dalign = sbp->sb_unit;
931 			mp->m_swidth = sbp->sb_width;
932 	}
933 
934 	return 0;
935 }
936 
937 /*
938  * Set the maximum inode count for this filesystem
939  */
940 STATIC void
941 xfs_set_maxicount(xfs_mount_t *mp)
942 {
943 	xfs_sb_t	*sbp = &(mp->m_sb);
944 	__uint64_t	icount;
945 
946 	if (sbp->sb_imax_pct) {
947 		/*
948 		 * Make sure the maximum inode count is a multiple
949 		 * of the units we allocate inodes in.
950 		 */
951 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
952 		do_div(icount, 100);
953 		do_div(icount, mp->m_ialloc_blks);
954 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
955 				   sbp->sb_inopblog;
956 	} else {
957 		mp->m_maxicount = 0;
958 	}
959 }
960 
961 /*
962  * Set the default minimum read and write sizes unless
963  * already specified in a mount option.
964  * We use smaller I/O sizes when the file system
965  * is being used for NFS service (wsync mount option).
966  */
967 STATIC void
968 xfs_set_rw_sizes(xfs_mount_t *mp)
969 {
970 	xfs_sb_t	*sbp = &(mp->m_sb);
971 	int		readio_log, writeio_log;
972 
973 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
974 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
975 			readio_log = XFS_WSYNC_READIO_LOG;
976 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
977 		} else {
978 			readio_log = XFS_READIO_LOG_LARGE;
979 			writeio_log = XFS_WRITEIO_LOG_LARGE;
980 		}
981 	} else {
982 		readio_log = mp->m_readio_log;
983 		writeio_log = mp->m_writeio_log;
984 	}
985 
986 	if (sbp->sb_blocklog > readio_log) {
987 		mp->m_readio_log = sbp->sb_blocklog;
988 	} else {
989 		mp->m_readio_log = readio_log;
990 	}
991 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
992 	if (sbp->sb_blocklog > writeio_log) {
993 		mp->m_writeio_log = sbp->sb_blocklog;
994 	} else {
995 		mp->m_writeio_log = writeio_log;
996 	}
997 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
998 }
999 
1000 /*
1001  * precalculate the low space thresholds for dynamic speculative preallocation.
1002  */
1003 void
1004 xfs_set_low_space_thresholds(
1005 	struct xfs_mount	*mp)
1006 {
1007 	int i;
1008 
1009 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
1010 		__uint64_t space = mp->m_sb.sb_dblocks;
1011 
1012 		do_div(space, 100);
1013 		mp->m_low_space[i] = space * (i + 1);
1014 	}
1015 }
1016 
1017 
1018 /*
1019  * Set whether we're using inode alignment.
1020  */
1021 STATIC void
1022 xfs_set_inoalignment(xfs_mount_t *mp)
1023 {
1024 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
1025 	    mp->m_sb.sb_inoalignmt >=
1026 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
1027 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
1028 	else
1029 		mp->m_inoalign_mask = 0;
1030 	/*
1031 	 * If we are using stripe alignment, check whether
1032 	 * the stripe unit is a multiple of the inode alignment
1033 	 */
1034 	if (mp->m_dalign && mp->m_inoalign_mask &&
1035 	    !(mp->m_dalign & mp->m_inoalign_mask))
1036 		mp->m_sinoalign = mp->m_dalign;
1037 	else
1038 		mp->m_sinoalign = 0;
1039 }
1040 
1041 /*
1042  * Check that the data (and log if separate) are an ok size.
1043  */
1044 STATIC int
1045 xfs_check_sizes(xfs_mount_t *mp)
1046 {
1047 	xfs_buf_t	*bp;
1048 	xfs_daddr_t	d;
1049 
1050 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
1051 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
1052 		xfs_warn(mp, "filesystem size mismatch detected");
1053 		return XFS_ERROR(EFBIG);
1054 	}
1055 	bp = xfs_buf_read_uncached(mp->m_ddev_targp,
1056 					d - XFS_FSS_TO_BB(mp, 1),
1057 					XFS_FSS_TO_BB(mp, 1), 0, NULL);
1058 	if (!bp) {
1059 		xfs_warn(mp, "last sector read failed");
1060 		return EIO;
1061 	}
1062 	xfs_buf_relse(bp);
1063 
1064 	if (mp->m_logdev_targp != mp->m_ddev_targp) {
1065 		d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1066 		if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
1067 			xfs_warn(mp, "log size mismatch detected");
1068 			return XFS_ERROR(EFBIG);
1069 		}
1070 		bp = xfs_buf_read_uncached(mp->m_logdev_targp,
1071 					d - XFS_FSB_TO_BB(mp, 1),
1072 					XFS_FSB_TO_BB(mp, 1), 0, NULL);
1073 		if (!bp) {
1074 			xfs_warn(mp, "log device read failed");
1075 			return EIO;
1076 		}
1077 		xfs_buf_relse(bp);
1078 	}
1079 	return 0;
1080 }
1081 
1082 /*
1083  * Clear the quotaflags in memory and in the superblock.
1084  */
1085 int
1086 xfs_mount_reset_sbqflags(
1087 	struct xfs_mount	*mp)
1088 {
1089 	int			error;
1090 	struct xfs_trans	*tp;
1091 
1092 	mp->m_qflags = 0;
1093 
1094 	/*
1095 	 * It is OK to look at sb_qflags here in mount path,
1096 	 * without m_sb_lock.
1097 	 */
1098 	if (mp->m_sb.sb_qflags == 0)
1099 		return 0;
1100 	spin_lock(&mp->m_sb_lock);
1101 	mp->m_sb.sb_qflags = 0;
1102 	spin_unlock(&mp->m_sb_lock);
1103 
1104 	/*
1105 	 * If the fs is readonly, let the incore superblock run
1106 	 * with quotas off but don't flush the update out to disk
1107 	 */
1108 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1109 		return 0;
1110 
1111 	tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1112 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1113 				      XFS_DEFAULT_LOG_COUNT);
1114 	if (error) {
1115 		xfs_trans_cancel(tp, 0);
1116 		xfs_alert(mp, "%s: Superblock update failed!", __func__);
1117 		return error;
1118 	}
1119 
1120 	xfs_mod_sb(tp, XFS_SB_QFLAGS);
1121 	return xfs_trans_commit(tp, 0);
1122 }
1123 
1124 __uint64_t
1125 xfs_default_resblks(xfs_mount_t *mp)
1126 {
1127 	__uint64_t resblks;
1128 
1129 	/*
1130 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
1131 	 * smaller.  This is intended to cover concurrent allocation
1132 	 * transactions when we initially hit enospc. These each require a 4
1133 	 * block reservation. Hence by default we cover roughly 2000 concurrent
1134 	 * allocation reservations.
1135 	 */
1136 	resblks = mp->m_sb.sb_dblocks;
1137 	do_div(resblks, 20);
1138 	resblks = min_t(__uint64_t, resblks, 8192);
1139 	return resblks;
1140 }
1141 
1142 /*
1143  * This function does the following on an initial mount of a file system:
1144  *	- reads the superblock from disk and init the mount struct
1145  *	- if we're a 32-bit kernel, do a size check on the superblock
1146  *		so we don't mount terabyte filesystems
1147  *	- init mount struct realtime fields
1148  *	- allocate inode hash table for fs
1149  *	- init directory manager
1150  *	- perform recovery and init the log manager
1151  */
1152 int
1153 xfs_mountfs(
1154 	xfs_mount_t	*mp)
1155 {
1156 	xfs_sb_t	*sbp = &(mp->m_sb);
1157 	xfs_inode_t	*rip;
1158 	__uint64_t	resblks;
1159 	uint		quotamount = 0;
1160 	uint		quotaflags = 0;
1161 	int		error = 0;
1162 
1163 	xfs_mount_common(mp, sbp);
1164 
1165 	/*
1166 	 * Check for a mismatched features2 values.  Older kernels
1167 	 * read & wrote into the wrong sb offset for sb_features2
1168 	 * on some platforms due to xfs_sb_t not being 64bit size aligned
1169 	 * when sb_features2 was added, which made older superblock
1170 	 * reading/writing routines swap it as a 64-bit value.
1171 	 *
1172 	 * For backwards compatibility, we make both slots equal.
1173 	 *
1174 	 * If we detect a mismatched field, we OR the set bits into the
1175 	 * existing features2 field in case it has already been modified; we
1176 	 * don't want to lose any features.  We then update the bad location
1177 	 * with the ORed value so that older kernels will see any features2
1178 	 * flags, and mark the two fields as needing updates once the
1179 	 * transaction subsystem is online.
1180 	 */
1181 	if (xfs_sb_has_mismatched_features2(sbp)) {
1182 		xfs_warn(mp, "correcting sb_features alignment problem");
1183 		sbp->sb_features2 |= sbp->sb_bad_features2;
1184 		sbp->sb_bad_features2 = sbp->sb_features2;
1185 		mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1186 
1187 		/*
1188 		 * Re-check for ATTR2 in case it was found in bad_features2
1189 		 * slot.
1190 		 */
1191 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1192 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
1193 			mp->m_flags |= XFS_MOUNT_ATTR2;
1194 	}
1195 
1196 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1197 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1198 		xfs_sb_version_removeattr2(&mp->m_sb);
1199 		mp->m_update_flags |= XFS_SB_FEATURES2;
1200 
1201 		/* update sb_versionnum for the clearing of the morebits */
1202 		if (!sbp->sb_features2)
1203 			mp->m_update_flags |= XFS_SB_VERSIONNUM;
1204 	}
1205 
1206 	/*
1207 	 * Check if sb_agblocks is aligned at stripe boundary
1208 	 * If sb_agblocks is NOT aligned turn off m_dalign since
1209 	 * allocator alignment is within an ag, therefore ag has
1210 	 * to be aligned at stripe boundary.
1211 	 */
1212 	error = xfs_update_alignment(mp);
1213 	if (error)
1214 		goto out;
1215 
1216 	xfs_alloc_compute_maxlevels(mp);
1217 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1218 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1219 	xfs_ialloc_compute_maxlevels(mp);
1220 
1221 	xfs_set_maxicount(mp);
1222 
1223 	error = xfs_uuid_mount(mp);
1224 	if (error)
1225 		goto out;
1226 
1227 	/*
1228 	 * Set the minimum read and write sizes
1229 	 */
1230 	xfs_set_rw_sizes(mp);
1231 
1232 	/* set the low space thresholds for dynamic preallocation */
1233 	xfs_set_low_space_thresholds(mp);
1234 
1235 	/*
1236 	 * Set the inode cluster size.
1237 	 * This may still be overridden by the file system
1238 	 * block size if it is larger than the chosen cluster size.
1239 	 */
1240 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1241 
1242 	/*
1243 	 * Set inode alignment fields
1244 	 */
1245 	xfs_set_inoalignment(mp);
1246 
1247 	/*
1248 	 * Check that the data (and log if separate) are an ok size.
1249 	 */
1250 	error = xfs_check_sizes(mp);
1251 	if (error)
1252 		goto out_remove_uuid;
1253 
1254 	/*
1255 	 * Initialize realtime fields in the mount structure
1256 	 */
1257 	error = xfs_rtmount_init(mp);
1258 	if (error) {
1259 		xfs_warn(mp, "RT mount failed");
1260 		goto out_remove_uuid;
1261 	}
1262 
1263 	/*
1264 	 *  Copies the low order bits of the timestamp and the randomly
1265 	 *  set "sequence" number out of a UUID.
1266 	 */
1267 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1268 
1269 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
1270 
1271 	xfs_dir_mount(mp);
1272 
1273 	/*
1274 	 * Initialize the attribute manager's entries.
1275 	 */
1276 	mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1277 
1278 	/*
1279 	 * Initialize the precomputed transaction reservations values.
1280 	 */
1281 	xfs_trans_init(mp);
1282 
1283 	/*
1284 	 * Allocate and initialize the per-ag data.
1285 	 */
1286 	spin_lock_init(&mp->m_perag_lock);
1287 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1288 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1289 	if (error) {
1290 		xfs_warn(mp, "Failed per-ag init: %d", error);
1291 		goto out_remove_uuid;
1292 	}
1293 
1294 	if (!sbp->sb_logblocks) {
1295 		xfs_warn(mp, "no log defined");
1296 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1297 		error = XFS_ERROR(EFSCORRUPTED);
1298 		goto out_free_perag;
1299 	}
1300 
1301 	/*
1302 	 * log's mount-time initialization. Perform 1st part recovery if needed
1303 	 */
1304 	error = xfs_log_mount(mp, mp->m_logdev_targp,
1305 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1306 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1307 	if (error) {
1308 		xfs_warn(mp, "log mount failed");
1309 		goto out_fail_wait;
1310 	}
1311 
1312 	/*
1313 	 * Now the log is mounted, we know if it was an unclean shutdown or
1314 	 * not. If it was, with the first phase of recovery has completed, we
1315 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1316 	 * but they are recovered transactionally in the second recovery phase
1317 	 * later.
1318 	 *
1319 	 * Hence we can safely re-initialise incore superblock counters from
1320 	 * the per-ag data. These may not be correct if the filesystem was not
1321 	 * cleanly unmounted, so we need to wait for recovery to finish before
1322 	 * doing this.
1323 	 *
1324 	 * If the filesystem was cleanly unmounted, then we can trust the
1325 	 * values in the superblock to be correct and we don't need to do
1326 	 * anything here.
1327 	 *
1328 	 * If we are currently making the filesystem, the initialisation will
1329 	 * fail as the perag data is in an undefined state.
1330 	 */
1331 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1332 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1333 	     !mp->m_sb.sb_inprogress) {
1334 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1335 		if (error)
1336 			goto out_fail_wait;
1337 	}
1338 
1339 	/*
1340 	 * Get and sanity-check the root inode.
1341 	 * Save the pointer to it in the mount structure.
1342 	 */
1343 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1344 	if (error) {
1345 		xfs_warn(mp, "failed to read root inode");
1346 		goto out_log_dealloc;
1347 	}
1348 
1349 	ASSERT(rip != NULL);
1350 
1351 	if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
1352 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
1353 			(unsigned long long)rip->i_ino);
1354 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
1355 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1356 				 mp);
1357 		error = XFS_ERROR(EFSCORRUPTED);
1358 		goto out_rele_rip;
1359 	}
1360 	mp->m_rootip = rip;	/* save it */
1361 
1362 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
1363 
1364 	/*
1365 	 * Initialize realtime inode pointers in the mount structure
1366 	 */
1367 	error = xfs_rtmount_inodes(mp);
1368 	if (error) {
1369 		/*
1370 		 * Free up the root inode.
1371 		 */
1372 		xfs_warn(mp, "failed to read RT inodes");
1373 		goto out_rele_rip;
1374 	}
1375 
1376 	/*
1377 	 * If this is a read-only mount defer the superblock updates until
1378 	 * the next remount into writeable mode.  Otherwise we would never
1379 	 * perform the update e.g. for the root filesystem.
1380 	 */
1381 	if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1382 		error = xfs_mount_log_sb(mp, mp->m_update_flags);
1383 		if (error) {
1384 			xfs_warn(mp, "failed to write sb changes");
1385 			goto out_rtunmount;
1386 		}
1387 	}
1388 
1389 	/*
1390 	 * Initialise the XFS quota management subsystem for this mount
1391 	 */
1392 	if (XFS_IS_QUOTA_RUNNING(mp)) {
1393 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1394 		if (error)
1395 			goto out_rtunmount;
1396 	} else {
1397 		ASSERT(!XFS_IS_QUOTA_ON(mp));
1398 
1399 		/*
1400 		 * If a file system had quotas running earlier, but decided to
1401 		 * mount without -o uquota/pquota/gquota options, revoke the
1402 		 * quotachecked license.
1403 		 */
1404 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1405 			xfs_notice(mp, "resetting quota flags");
1406 			error = xfs_mount_reset_sbqflags(mp);
1407 			if (error)
1408 				return error;
1409 		}
1410 	}
1411 
1412 	/*
1413 	 * Finish recovering the file system.  This part needed to be
1414 	 * delayed until after the root and real-time bitmap inodes
1415 	 * were consistently read in.
1416 	 */
1417 	error = xfs_log_mount_finish(mp);
1418 	if (error) {
1419 		xfs_warn(mp, "log mount finish failed");
1420 		goto out_rtunmount;
1421 	}
1422 
1423 	/*
1424 	 * Complete the quota initialisation, post-log-replay component.
1425 	 */
1426 	if (quotamount) {
1427 		ASSERT(mp->m_qflags == 0);
1428 		mp->m_qflags = quotaflags;
1429 
1430 		xfs_qm_mount_quotas(mp);
1431 	}
1432 
1433 	/*
1434 	 * Now we are mounted, reserve a small amount of unused space for
1435 	 * privileged transactions. This is needed so that transaction
1436 	 * space required for critical operations can dip into this pool
1437 	 * when at ENOSPC. This is needed for operations like create with
1438 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1439 	 * are not allowed to use this reserved space.
1440 	 *
1441 	 * This may drive us straight to ENOSPC on mount, but that implies
1442 	 * we were already there on the last unmount. Warn if this occurs.
1443 	 */
1444 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1445 		resblks = xfs_default_resblks(mp);
1446 		error = xfs_reserve_blocks(mp, &resblks, NULL);
1447 		if (error)
1448 			xfs_warn(mp,
1449 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
1450 	}
1451 
1452 	return 0;
1453 
1454  out_rtunmount:
1455 	xfs_rtunmount_inodes(mp);
1456  out_rele_rip:
1457 	IRELE(rip);
1458  out_log_dealloc:
1459 	xfs_log_unmount(mp);
1460  out_fail_wait:
1461 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1462 		xfs_wait_buftarg(mp->m_logdev_targp);
1463 	xfs_wait_buftarg(mp->m_ddev_targp);
1464  out_free_perag:
1465 	xfs_free_perag(mp);
1466  out_remove_uuid:
1467 	xfs_uuid_unmount(mp);
1468  out:
1469 	return error;
1470 }
1471 
1472 /*
1473  * This flushes out the inodes,dquots and the superblock, unmounts the
1474  * log and makes sure that incore structures are freed.
1475  */
1476 void
1477 xfs_unmountfs(
1478 	struct xfs_mount	*mp)
1479 {
1480 	__uint64_t		resblks;
1481 	int			error;
1482 
1483 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
1484 
1485 	xfs_qm_unmount_quotas(mp);
1486 	xfs_rtunmount_inodes(mp);
1487 	IRELE(mp->m_rootip);
1488 
1489 	/*
1490 	 * We can potentially deadlock here if we have an inode cluster
1491 	 * that has been freed has its buffer still pinned in memory because
1492 	 * the transaction is still sitting in a iclog. The stale inodes
1493 	 * on that buffer will have their flush locks held until the
1494 	 * transaction hits the disk and the callbacks run. the inode
1495 	 * flush takes the flush lock unconditionally and with nothing to
1496 	 * push out the iclog we will never get that unlocked. hence we
1497 	 * need to force the log first.
1498 	 */
1499 	xfs_log_force(mp, XFS_LOG_SYNC);
1500 
1501 	/*
1502 	 * Flush all pending changes from the AIL.
1503 	 */
1504 	xfs_ail_push_all_sync(mp->m_ail);
1505 
1506 	/*
1507 	 * And reclaim all inodes.  At this point there should be no dirty
1508 	 * inodes and none should be pinned or locked, but use synchronous
1509 	 * reclaim just to be sure. We can stop background inode reclaim
1510 	 * here as well if it is still running.
1511 	 */
1512 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1513 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1514 
1515 	xfs_qm_unmount(mp);
1516 
1517 	/*
1518 	 * Unreserve any blocks we have so that when we unmount we don't account
1519 	 * the reserved free space as used. This is really only necessary for
1520 	 * lazy superblock counting because it trusts the incore superblock
1521 	 * counters to be absolutely correct on clean unmount.
1522 	 *
1523 	 * We don't bother correcting this elsewhere for lazy superblock
1524 	 * counting because on mount of an unclean filesystem we reconstruct the
1525 	 * correct counter value and this is irrelevant.
1526 	 *
1527 	 * For non-lazy counter filesystems, this doesn't matter at all because
1528 	 * we only every apply deltas to the superblock and hence the incore
1529 	 * value does not matter....
1530 	 */
1531 	resblks = 0;
1532 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1533 	if (error)
1534 		xfs_warn(mp, "Unable to free reserved block pool. "
1535 				"Freespace may not be correct on next mount.");
1536 
1537 	error = xfs_log_sbcount(mp);
1538 	if (error)
1539 		xfs_warn(mp, "Unable to update superblock counters. "
1540 				"Freespace may not be correct on next mount.");
1541 
1542 	xfs_log_unmount(mp);
1543 	xfs_uuid_unmount(mp);
1544 
1545 #if defined(DEBUG)
1546 	xfs_errortag_clearall(mp, 0);
1547 #endif
1548 	xfs_free_perag(mp);
1549 }
1550 
1551 int
1552 xfs_fs_writable(xfs_mount_t *mp)
1553 {
1554 	return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1555 		(mp->m_flags & XFS_MOUNT_RDONLY));
1556 }
1557 
1558 /*
1559  * xfs_log_sbcount
1560  *
1561  * Sync the superblock counters to disk.
1562  *
1563  * Note this code can be called during the process of freezing, so
1564  * we may need to use the transaction allocator which does not
1565  * block when the transaction subsystem is in its frozen state.
1566  */
1567 int
1568 xfs_log_sbcount(xfs_mount_t *mp)
1569 {
1570 	xfs_trans_t	*tp;
1571 	int		error;
1572 
1573 	if (!xfs_fs_writable(mp))
1574 		return 0;
1575 
1576 	xfs_icsb_sync_counters(mp, 0);
1577 
1578 	/*
1579 	 * we don't need to do this if we are updating the superblock
1580 	 * counters on every modification.
1581 	 */
1582 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1583 		return 0;
1584 
1585 	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1586 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1587 					XFS_DEFAULT_LOG_COUNT);
1588 	if (error) {
1589 		xfs_trans_cancel(tp, 0);
1590 		return error;
1591 	}
1592 
1593 	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1594 	xfs_trans_set_sync(tp);
1595 	error = xfs_trans_commit(tp, 0);
1596 	return error;
1597 }
1598 
1599 /*
1600  * xfs_mod_sb() can be used to copy arbitrary changes to the
1601  * in-core superblock into the superblock buffer to be logged.
1602  * It does not provide the higher level of locking that is
1603  * needed to protect the in-core superblock from concurrent
1604  * access.
1605  */
1606 void
1607 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1608 {
1609 	xfs_buf_t	*bp;
1610 	int		first;
1611 	int		last;
1612 	xfs_mount_t	*mp;
1613 	xfs_sb_field_t	f;
1614 
1615 	ASSERT(fields);
1616 	if (!fields)
1617 		return;
1618 	mp = tp->t_mountp;
1619 	bp = xfs_trans_getsb(tp, mp, 0);
1620 	first = sizeof(xfs_sb_t);
1621 	last = 0;
1622 
1623 	/* translate/copy */
1624 
1625 	xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1626 
1627 	/* find modified range */
1628 	f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1629 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1630 	last = xfs_sb_info[f + 1].offset - 1;
1631 
1632 	f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1633 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1634 	first = xfs_sb_info[f].offset;
1635 
1636 	xfs_trans_log_buf(tp, bp, first, last);
1637 }
1638 
1639 
1640 /*
1641  * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1642  * a delta to a specified field in the in-core superblock.  Simply
1643  * switch on the field indicated and apply the delta to that field.
1644  * Fields are not allowed to dip below zero, so if the delta would
1645  * do this do not apply it and return EINVAL.
1646  *
1647  * The m_sb_lock must be held when this routine is called.
1648  */
1649 STATIC int
1650 xfs_mod_incore_sb_unlocked(
1651 	xfs_mount_t	*mp,
1652 	xfs_sb_field_t	field,
1653 	int64_t		delta,
1654 	int		rsvd)
1655 {
1656 	int		scounter;	/* short counter for 32 bit fields */
1657 	long long	lcounter;	/* long counter for 64 bit fields */
1658 	long long	res_used, rem;
1659 
1660 	/*
1661 	 * With the in-core superblock spin lock held, switch
1662 	 * on the indicated field.  Apply the delta to the
1663 	 * proper field.  If the fields value would dip below
1664 	 * 0, then do not apply the delta and return EINVAL.
1665 	 */
1666 	switch (field) {
1667 	case XFS_SBS_ICOUNT:
1668 		lcounter = (long long)mp->m_sb.sb_icount;
1669 		lcounter += delta;
1670 		if (lcounter < 0) {
1671 			ASSERT(0);
1672 			return XFS_ERROR(EINVAL);
1673 		}
1674 		mp->m_sb.sb_icount = lcounter;
1675 		return 0;
1676 	case XFS_SBS_IFREE:
1677 		lcounter = (long long)mp->m_sb.sb_ifree;
1678 		lcounter += delta;
1679 		if (lcounter < 0) {
1680 			ASSERT(0);
1681 			return XFS_ERROR(EINVAL);
1682 		}
1683 		mp->m_sb.sb_ifree = lcounter;
1684 		return 0;
1685 	case XFS_SBS_FDBLOCKS:
1686 		lcounter = (long long)
1687 			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1688 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1689 
1690 		if (delta > 0) {		/* Putting blocks back */
1691 			if (res_used > delta) {
1692 				mp->m_resblks_avail += delta;
1693 			} else {
1694 				rem = delta - res_used;
1695 				mp->m_resblks_avail = mp->m_resblks;
1696 				lcounter += rem;
1697 			}
1698 		} else {				/* Taking blocks away */
1699 			lcounter += delta;
1700 			if (lcounter >= 0) {
1701 				mp->m_sb.sb_fdblocks = lcounter +
1702 							XFS_ALLOC_SET_ASIDE(mp);
1703 				return 0;
1704 			}
1705 
1706 			/*
1707 			 * We are out of blocks, use any available reserved
1708 			 * blocks if were allowed to.
1709 			 */
1710 			if (!rsvd)
1711 				return XFS_ERROR(ENOSPC);
1712 
1713 			lcounter = (long long)mp->m_resblks_avail + delta;
1714 			if (lcounter >= 0) {
1715 				mp->m_resblks_avail = lcounter;
1716 				return 0;
1717 			}
1718 			printk_once(KERN_WARNING
1719 				"Filesystem \"%s\": reserve blocks depleted! "
1720 				"Consider increasing reserve pool size.",
1721 				mp->m_fsname);
1722 			return XFS_ERROR(ENOSPC);
1723 		}
1724 
1725 		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1726 		return 0;
1727 	case XFS_SBS_FREXTENTS:
1728 		lcounter = (long long)mp->m_sb.sb_frextents;
1729 		lcounter += delta;
1730 		if (lcounter < 0) {
1731 			return XFS_ERROR(ENOSPC);
1732 		}
1733 		mp->m_sb.sb_frextents = lcounter;
1734 		return 0;
1735 	case XFS_SBS_DBLOCKS:
1736 		lcounter = (long long)mp->m_sb.sb_dblocks;
1737 		lcounter += delta;
1738 		if (lcounter < 0) {
1739 			ASSERT(0);
1740 			return XFS_ERROR(EINVAL);
1741 		}
1742 		mp->m_sb.sb_dblocks = lcounter;
1743 		return 0;
1744 	case XFS_SBS_AGCOUNT:
1745 		scounter = mp->m_sb.sb_agcount;
1746 		scounter += delta;
1747 		if (scounter < 0) {
1748 			ASSERT(0);
1749 			return XFS_ERROR(EINVAL);
1750 		}
1751 		mp->m_sb.sb_agcount = scounter;
1752 		return 0;
1753 	case XFS_SBS_IMAX_PCT:
1754 		scounter = mp->m_sb.sb_imax_pct;
1755 		scounter += delta;
1756 		if (scounter < 0) {
1757 			ASSERT(0);
1758 			return XFS_ERROR(EINVAL);
1759 		}
1760 		mp->m_sb.sb_imax_pct = scounter;
1761 		return 0;
1762 	case XFS_SBS_REXTSIZE:
1763 		scounter = mp->m_sb.sb_rextsize;
1764 		scounter += delta;
1765 		if (scounter < 0) {
1766 			ASSERT(0);
1767 			return XFS_ERROR(EINVAL);
1768 		}
1769 		mp->m_sb.sb_rextsize = scounter;
1770 		return 0;
1771 	case XFS_SBS_RBMBLOCKS:
1772 		scounter = mp->m_sb.sb_rbmblocks;
1773 		scounter += delta;
1774 		if (scounter < 0) {
1775 			ASSERT(0);
1776 			return XFS_ERROR(EINVAL);
1777 		}
1778 		mp->m_sb.sb_rbmblocks = scounter;
1779 		return 0;
1780 	case XFS_SBS_RBLOCKS:
1781 		lcounter = (long long)mp->m_sb.sb_rblocks;
1782 		lcounter += delta;
1783 		if (lcounter < 0) {
1784 			ASSERT(0);
1785 			return XFS_ERROR(EINVAL);
1786 		}
1787 		mp->m_sb.sb_rblocks = lcounter;
1788 		return 0;
1789 	case XFS_SBS_REXTENTS:
1790 		lcounter = (long long)mp->m_sb.sb_rextents;
1791 		lcounter += delta;
1792 		if (lcounter < 0) {
1793 			ASSERT(0);
1794 			return XFS_ERROR(EINVAL);
1795 		}
1796 		mp->m_sb.sb_rextents = lcounter;
1797 		return 0;
1798 	case XFS_SBS_REXTSLOG:
1799 		scounter = mp->m_sb.sb_rextslog;
1800 		scounter += delta;
1801 		if (scounter < 0) {
1802 			ASSERT(0);
1803 			return XFS_ERROR(EINVAL);
1804 		}
1805 		mp->m_sb.sb_rextslog = scounter;
1806 		return 0;
1807 	default:
1808 		ASSERT(0);
1809 		return XFS_ERROR(EINVAL);
1810 	}
1811 }
1812 
1813 /*
1814  * xfs_mod_incore_sb() is used to change a field in the in-core
1815  * superblock structure by the specified delta.  This modification
1816  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1817  * routine to do the work.
1818  */
1819 int
1820 xfs_mod_incore_sb(
1821 	struct xfs_mount	*mp,
1822 	xfs_sb_field_t		field,
1823 	int64_t			delta,
1824 	int			rsvd)
1825 {
1826 	int			status;
1827 
1828 #ifdef HAVE_PERCPU_SB
1829 	ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1830 #endif
1831 	spin_lock(&mp->m_sb_lock);
1832 	status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1833 	spin_unlock(&mp->m_sb_lock);
1834 
1835 	return status;
1836 }
1837 
1838 /*
1839  * Change more than one field in the in-core superblock structure at a time.
1840  *
1841  * The fields and changes to those fields are specified in the array of
1842  * xfs_mod_sb structures passed in.  Either all of the specified deltas
1843  * will be applied or none of them will.  If any modified field dips below 0,
1844  * then all modifications will be backed out and EINVAL will be returned.
1845  *
1846  * Note that this function may not be used for the superblock values that
1847  * are tracked with the in-memory per-cpu counters - a direct call to
1848  * xfs_icsb_modify_counters is required for these.
1849  */
1850 int
1851 xfs_mod_incore_sb_batch(
1852 	struct xfs_mount	*mp,
1853 	xfs_mod_sb_t		*msb,
1854 	uint			nmsb,
1855 	int			rsvd)
1856 {
1857 	xfs_mod_sb_t		*msbp;
1858 	int			error = 0;
1859 
1860 	/*
1861 	 * Loop through the array of mod structures and apply each individually.
1862 	 * If any fail, then back out all those which have already been applied.
1863 	 * Do all of this within the scope of the m_sb_lock so that all of the
1864 	 * changes will be atomic.
1865 	 */
1866 	spin_lock(&mp->m_sb_lock);
1867 	for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1868 		ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1869 		       msbp->msb_field > XFS_SBS_FDBLOCKS);
1870 
1871 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1872 						   msbp->msb_delta, rsvd);
1873 		if (error)
1874 			goto unwind;
1875 	}
1876 	spin_unlock(&mp->m_sb_lock);
1877 	return 0;
1878 
1879 unwind:
1880 	while (--msbp >= msb) {
1881 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1882 						   -msbp->msb_delta, rsvd);
1883 		ASSERT(error == 0);
1884 	}
1885 	spin_unlock(&mp->m_sb_lock);
1886 	return error;
1887 }
1888 
1889 /*
1890  * xfs_getsb() is called to obtain the buffer for the superblock.
1891  * The buffer is returned locked and read in from disk.
1892  * The buffer should be released with a call to xfs_brelse().
1893  *
1894  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1895  * the superblock buffer if it can be locked without sleeping.
1896  * If it can't then we'll return NULL.
1897  */
1898 struct xfs_buf *
1899 xfs_getsb(
1900 	struct xfs_mount	*mp,
1901 	int			flags)
1902 {
1903 	struct xfs_buf		*bp = mp->m_sb_bp;
1904 
1905 	if (!xfs_buf_trylock(bp)) {
1906 		if (flags & XBF_TRYLOCK)
1907 			return NULL;
1908 		xfs_buf_lock(bp);
1909 	}
1910 
1911 	xfs_buf_hold(bp);
1912 	ASSERT(XFS_BUF_ISDONE(bp));
1913 	return bp;
1914 }
1915 
1916 /*
1917  * Used to free the superblock along various error paths.
1918  */
1919 void
1920 xfs_freesb(
1921 	struct xfs_mount	*mp)
1922 {
1923 	struct xfs_buf		*bp = mp->m_sb_bp;
1924 
1925 	xfs_buf_lock(bp);
1926 	mp->m_sb_bp = NULL;
1927 	xfs_buf_relse(bp);
1928 }
1929 
1930 /*
1931  * Used to log changes to the superblock unit and width fields which could
1932  * be altered by the mount options, as well as any potential sb_features2
1933  * fixup. Only the first superblock is updated.
1934  */
1935 int
1936 xfs_mount_log_sb(
1937 	xfs_mount_t	*mp,
1938 	__int64_t	fields)
1939 {
1940 	xfs_trans_t	*tp;
1941 	int		error;
1942 
1943 	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1944 			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1945 			 XFS_SB_VERSIONNUM));
1946 
1947 	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1948 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1949 				XFS_DEFAULT_LOG_COUNT);
1950 	if (error) {
1951 		xfs_trans_cancel(tp, 0);
1952 		return error;
1953 	}
1954 	xfs_mod_sb(tp, fields);
1955 	error = xfs_trans_commit(tp, 0);
1956 	return error;
1957 }
1958 
1959 /*
1960  * If the underlying (data/log/rt) device is readonly, there are some
1961  * operations that cannot proceed.
1962  */
1963 int
1964 xfs_dev_is_read_only(
1965 	struct xfs_mount	*mp,
1966 	char			*message)
1967 {
1968 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1969 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1970 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1971 		xfs_notice(mp, "%s required on read-only device.", message);
1972 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1973 		return EROFS;
1974 	}
1975 	return 0;
1976 }
1977 
1978 #ifdef HAVE_PERCPU_SB
1979 /*
1980  * Per-cpu incore superblock counters
1981  *
1982  * Simple concept, difficult implementation
1983  *
1984  * Basically, replace the incore superblock counters with a distributed per cpu
1985  * counter for contended fields (e.g.  free block count).
1986  *
1987  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1988  * hence needs to be accurately read when we are running low on space. Hence
1989  * there is a method to enable and disable the per-cpu counters based on how
1990  * much "stuff" is available in them.
1991  *
1992  * Basically, a counter is enabled if there is enough free resource to justify
1993  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1994  * ENOSPC), then we disable the counters to synchronise all callers and
1995  * re-distribute the available resources.
1996  *
1997  * If, once we redistributed the available resources, we still get a failure,
1998  * we disable the per-cpu counter and go through the slow path.
1999  *
2000  * The slow path is the current xfs_mod_incore_sb() function.  This means that
2001  * when we disable a per-cpu counter, we need to drain its resources back to
2002  * the global superblock. We do this after disabling the counter to prevent
2003  * more threads from queueing up on the counter.
2004  *
2005  * Essentially, this means that we still need a lock in the fast path to enable
2006  * synchronisation between the global counters and the per-cpu counters. This
2007  * is not a problem because the lock will be local to a CPU almost all the time
2008  * and have little contention except when we get to ENOSPC conditions.
2009  *
2010  * Basically, this lock becomes a barrier that enables us to lock out the fast
2011  * path while we do things like enabling and disabling counters and
2012  * synchronising the counters.
2013  *
2014  * Locking rules:
2015  *
2016  * 	1. m_sb_lock before picking up per-cpu locks
2017  * 	2. per-cpu locks always picked up via for_each_online_cpu() order
2018  * 	3. accurate counter sync requires m_sb_lock + per cpu locks
2019  * 	4. modifying per-cpu counters requires holding per-cpu lock
2020  * 	5. modifying global counters requires holding m_sb_lock
2021  *	6. enabling or disabling a counter requires holding the m_sb_lock
2022  *	   and _none_ of the per-cpu locks.
2023  *
2024  * Disabled counters are only ever re-enabled by a balance operation
2025  * that results in more free resources per CPU than a given threshold.
2026  * To ensure counters don't remain disabled, they are rebalanced when
2027  * the global resource goes above a higher threshold (i.e. some hysteresis
2028  * is present to prevent thrashing).
2029  */
2030 
2031 #ifdef CONFIG_HOTPLUG_CPU
2032 /*
2033  * hot-plug CPU notifier support.
2034  *
2035  * We need a notifier per filesystem as we need to be able to identify
2036  * the filesystem to balance the counters out. This is achieved by
2037  * having a notifier block embedded in the xfs_mount_t and doing pointer
2038  * magic to get the mount pointer from the notifier block address.
2039  */
2040 STATIC int
2041 xfs_icsb_cpu_notify(
2042 	struct notifier_block *nfb,
2043 	unsigned long action,
2044 	void *hcpu)
2045 {
2046 	xfs_icsb_cnts_t *cntp;
2047 	xfs_mount_t	*mp;
2048 
2049 	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2050 	cntp = (xfs_icsb_cnts_t *)
2051 			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2052 	switch (action) {
2053 	case CPU_UP_PREPARE:
2054 	case CPU_UP_PREPARE_FROZEN:
2055 		/* Easy Case - initialize the area and locks, and
2056 		 * then rebalance when online does everything else for us. */
2057 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2058 		break;
2059 	case CPU_ONLINE:
2060 	case CPU_ONLINE_FROZEN:
2061 		xfs_icsb_lock(mp);
2062 		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2063 		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2064 		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2065 		xfs_icsb_unlock(mp);
2066 		break;
2067 	case CPU_DEAD:
2068 	case CPU_DEAD_FROZEN:
2069 		/* Disable all the counters, then fold the dead cpu's
2070 		 * count into the total on the global superblock and
2071 		 * re-enable the counters. */
2072 		xfs_icsb_lock(mp);
2073 		spin_lock(&mp->m_sb_lock);
2074 		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2075 		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2076 		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2077 
2078 		mp->m_sb.sb_icount += cntp->icsb_icount;
2079 		mp->m_sb.sb_ifree += cntp->icsb_ifree;
2080 		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2081 
2082 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2083 
2084 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2085 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2086 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2087 		spin_unlock(&mp->m_sb_lock);
2088 		xfs_icsb_unlock(mp);
2089 		break;
2090 	}
2091 
2092 	return NOTIFY_OK;
2093 }
2094 #endif /* CONFIG_HOTPLUG_CPU */
2095 
2096 int
2097 xfs_icsb_init_counters(
2098 	xfs_mount_t	*mp)
2099 {
2100 	xfs_icsb_cnts_t *cntp;
2101 	int		i;
2102 
2103 	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2104 	if (mp->m_sb_cnts == NULL)
2105 		return -ENOMEM;
2106 
2107 #ifdef CONFIG_HOTPLUG_CPU
2108 	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2109 	mp->m_icsb_notifier.priority = 0;
2110 	register_hotcpu_notifier(&mp->m_icsb_notifier);
2111 #endif /* CONFIG_HOTPLUG_CPU */
2112 
2113 	for_each_online_cpu(i) {
2114 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2115 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2116 	}
2117 
2118 	mutex_init(&mp->m_icsb_mutex);
2119 
2120 	/*
2121 	 * start with all counters disabled so that the
2122 	 * initial balance kicks us off correctly
2123 	 */
2124 	mp->m_icsb_counters = -1;
2125 	return 0;
2126 }
2127 
2128 void
2129 xfs_icsb_reinit_counters(
2130 	xfs_mount_t	*mp)
2131 {
2132 	xfs_icsb_lock(mp);
2133 	/*
2134 	 * start with all counters disabled so that the
2135 	 * initial balance kicks us off correctly
2136 	 */
2137 	mp->m_icsb_counters = -1;
2138 	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2139 	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2140 	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2141 	xfs_icsb_unlock(mp);
2142 }
2143 
2144 void
2145 xfs_icsb_destroy_counters(
2146 	xfs_mount_t	*mp)
2147 {
2148 	if (mp->m_sb_cnts) {
2149 		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2150 		free_percpu(mp->m_sb_cnts);
2151 	}
2152 	mutex_destroy(&mp->m_icsb_mutex);
2153 }
2154 
2155 STATIC void
2156 xfs_icsb_lock_cntr(
2157 	xfs_icsb_cnts_t	*icsbp)
2158 {
2159 	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2160 		ndelay(1000);
2161 	}
2162 }
2163 
2164 STATIC void
2165 xfs_icsb_unlock_cntr(
2166 	xfs_icsb_cnts_t	*icsbp)
2167 {
2168 	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2169 }
2170 
2171 
2172 STATIC void
2173 xfs_icsb_lock_all_counters(
2174 	xfs_mount_t	*mp)
2175 {
2176 	xfs_icsb_cnts_t *cntp;
2177 	int		i;
2178 
2179 	for_each_online_cpu(i) {
2180 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2181 		xfs_icsb_lock_cntr(cntp);
2182 	}
2183 }
2184 
2185 STATIC void
2186 xfs_icsb_unlock_all_counters(
2187 	xfs_mount_t	*mp)
2188 {
2189 	xfs_icsb_cnts_t *cntp;
2190 	int		i;
2191 
2192 	for_each_online_cpu(i) {
2193 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2194 		xfs_icsb_unlock_cntr(cntp);
2195 	}
2196 }
2197 
2198 STATIC void
2199 xfs_icsb_count(
2200 	xfs_mount_t	*mp,
2201 	xfs_icsb_cnts_t	*cnt,
2202 	int		flags)
2203 {
2204 	xfs_icsb_cnts_t *cntp;
2205 	int		i;
2206 
2207 	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2208 
2209 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2210 		xfs_icsb_lock_all_counters(mp);
2211 
2212 	for_each_online_cpu(i) {
2213 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2214 		cnt->icsb_icount += cntp->icsb_icount;
2215 		cnt->icsb_ifree += cntp->icsb_ifree;
2216 		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2217 	}
2218 
2219 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2220 		xfs_icsb_unlock_all_counters(mp);
2221 }
2222 
2223 STATIC int
2224 xfs_icsb_counter_disabled(
2225 	xfs_mount_t	*mp,
2226 	xfs_sb_field_t	field)
2227 {
2228 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2229 	return test_bit(field, &mp->m_icsb_counters);
2230 }
2231 
2232 STATIC void
2233 xfs_icsb_disable_counter(
2234 	xfs_mount_t	*mp,
2235 	xfs_sb_field_t	field)
2236 {
2237 	xfs_icsb_cnts_t	cnt;
2238 
2239 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2240 
2241 	/*
2242 	 * If we are already disabled, then there is nothing to do
2243 	 * here. We check before locking all the counters to avoid
2244 	 * the expensive lock operation when being called in the
2245 	 * slow path and the counter is already disabled. This is
2246 	 * safe because the only time we set or clear this state is under
2247 	 * the m_icsb_mutex.
2248 	 */
2249 	if (xfs_icsb_counter_disabled(mp, field))
2250 		return;
2251 
2252 	xfs_icsb_lock_all_counters(mp);
2253 	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2254 		/* drain back to superblock */
2255 
2256 		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2257 		switch(field) {
2258 		case XFS_SBS_ICOUNT:
2259 			mp->m_sb.sb_icount = cnt.icsb_icount;
2260 			break;
2261 		case XFS_SBS_IFREE:
2262 			mp->m_sb.sb_ifree = cnt.icsb_ifree;
2263 			break;
2264 		case XFS_SBS_FDBLOCKS:
2265 			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2266 			break;
2267 		default:
2268 			BUG();
2269 		}
2270 	}
2271 
2272 	xfs_icsb_unlock_all_counters(mp);
2273 }
2274 
2275 STATIC void
2276 xfs_icsb_enable_counter(
2277 	xfs_mount_t	*mp,
2278 	xfs_sb_field_t	field,
2279 	uint64_t	count,
2280 	uint64_t	resid)
2281 {
2282 	xfs_icsb_cnts_t	*cntp;
2283 	int		i;
2284 
2285 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2286 
2287 	xfs_icsb_lock_all_counters(mp);
2288 	for_each_online_cpu(i) {
2289 		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2290 		switch (field) {
2291 		case XFS_SBS_ICOUNT:
2292 			cntp->icsb_icount = count + resid;
2293 			break;
2294 		case XFS_SBS_IFREE:
2295 			cntp->icsb_ifree = count + resid;
2296 			break;
2297 		case XFS_SBS_FDBLOCKS:
2298 			cntp->icsb_fdblocks = count + resid;
2299 			break;
2300 		default:
2301 			BUG();
2302 			break;
2303 		}
2304 		resid = 0;
2305 	}
2306 	clear_bit(field, &mp->m_icsb_counters);
2307 	xfs_icsb_unlock_all_counters(mp);
2308 }
2309 
2310 void
2311 xfs_icsb_sync_counters_locked(
2312 	xfs_mount_t	*mp,
2313 	int		flags)
2314 {
2315 	xfs_icsb_cnts_t	cnt;
2316 
2317 	xfs_icsb_count(mp, &cnt, flags);
2318 
2319 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2320 		mp->m_sb.sb_icount = cnt.icsb_icount;
2321 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2322 		mp->m_sb.sb_ifree = cnt.icsb_ifree;
2323 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2324 		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2325 }
2326 
2327 /*
2328  * Accurate update of per-cpu counters to incore superblock
2329  */
2330 void
2331 xfs_icsb_sync_counters(
2332 	xfs_mount_t	*mp,
2333 	int		flags)
2334 {
2335 	spin_lock(&mp->m_sb_lock);
2336 	xfs_icsb_sync_counters_locked(mp, flags);
2337 	spin_unlock(&mp->m_sb_lock);
2338 }
2339 
2340 /*
2341  * Balance and enable/disable counters as necessary.
2342  *
2343  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
2344  * chosen to be the same number as single on disk allocation chunk per CPU, and
2345  * free blocks is something far enough zero that we aren't going thrash when we
2346  * get near ENOSPC. We also need to supply a minimum we require per cpu to
2347  * prevent looping endlessly when xfs_alloc_space asks for more than will
2348  * be distributed to a single CPU but each CPU has enough blocks to be
2349  * reenabled.
2350  *
2351  * Note that we can be called when counters are already disabled.
2352  * xfs_icsb_disable_counter() optimises the counter locking in this case to
2353  * prevent locking every per-cpu counter needlessly.
2354  */
2355 
2356 #define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
2357 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2358 		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2359 STATIC void
2360 xfs_icsb_balance_counter_locked(
2361 	xfs_mount_t	*mp,
2362 	xfs_sb_field_t  field,
2363 	int		min_per_cpu)
2364 {
2365 	uint64_t	count, resid;
2366 	int		weight = num_online_cpus();
2367 	uint64_t	min = (uint64_t)min_per_cpu;
2368 
2369 	/* disable counter and sync counter */
2370 	xfs_icsb_disable_counter(mp, field);
2371 
2372 	/* update counters  - first CPU gets residual*/
2373 	switch (field) {
2374 	case XFS_SBS_ICOUNT:
2375 		count = mp->m_sb.sb_icount;
2376 		resid = do_div(count, weight);
2377 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2378 			return;
2379 		break;
2380 	case XFS_SBS_IFREE:
2381 		count = mp->m_sb.sb_ifree;
2382 		resid = do_div(count, weight);
2383 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2384 			return;
2385 		break;
2386 	case XFS_SBS_FDBLOCKS:
2387 		count = mp->m_sb.sb_fdblocks;
2388 		resid = do_div(count, weight);
2389 		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2390 			return;
2391 		break;
2392 	default:
2393 		BUG();
2394 		count = resid = 0;	/* quiet, gcc */
2395 		break;
2396 	}
2397 
2398 	xfs_icsb_enable_counter(mp, field, count, resid);
2399 }
2400 
2401 STATIC void
2402 xfs_icsb_balance_counter(
2403 	xfs_mount_t	*mp,
2404 	xfs_sb_field_t  fields,
2405 	int		min_per_cpu)
2406 {
2407 	spin_lock(&mp->m_sb_lock);
2408 	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2409 	spin_unlock(&mp->m_sb_lock);
2410 }
2411 
2412 int
2413 xfs_icsb_modify_counters(
2414 	xfs_mount_t	*mp,
2415 	xfs_sb_field_t	field,
2416 	int64_t		delta,
2417 	int		rsvd)
2418 {
2419 	xfs_icsb_cnts_t	*icsbp;
2420 	long long	lcounter;	/* long counter for 64 bit fields */
2421 	int		ret = 0;
2422 
2423 	might_sleep();
2424 again:
2425 	preempt_disable();
2426 	icsbp = this_cpu_ptr(mp->m_sb_cnts);
2427 
2428 	/*
2429 	 * if the counter is disabled, go to slow path
2430 	 */
2431 	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2432 		goto slow_path;
2433 	xfs_icsb_lock_cntr(icsbp);
2434 	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2435 		xfs_icsb_unlock_cntr(icsbp);
2436 		goto slow_path;
2437 	}
2438 
2439 	switch (field) {
2440 	case XFS_SBS_ICOUNT:
2441 		lcounter = icsbp->icsb_icount;
2442 		lcounter += delta;
2443 		if (unlikely(lcounter < 0))
2444 			goto balance_counter;
2445 		icsbp->icsb_icount = lcounter;
2446 		break;
2447 
2448 	case XFS_SBS_IFREE:
2449 		lcounter = icsbp->icsb_ifree;
2450 		lcounter += delta;
2451 		if (unlikely(lcounter < 0))
2452 			goto balance_counter;
2453 		icsbp->icsb_ifree = lcounter;
2454 		break;
2455 
2456 	case XFS_SBS_FDBLOCKS:
2457 		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2458 
2459 		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2460 		lcounter += delta;
2461 		if (unlikely(lcounter < 0))
2462 			goto balance_counter;
2463 		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2464 		break;
2465 	default:
2466 		BUG();
2467 		break;
2468 	}
2469 	xfs_icsb_unlock_cntr(icsbp);
2470 	preempt_enable();
2471 	return 0;
2472 
2473 slow_path:
2474 	preempt_enable();
2475 
2476 	/*
2477 	 * serialise with a mutex so we don't burn lots of cpu on
2478 	 * the superblock lock. We still need to hold the superblock
2479 	 * lock, however, when we modify the global structures.
2480 	 */
2481 	xfs_icsb_lock(mp);
2482 
2483 	/*
2484 	 * Now running atomically.
2485 	 *
2486 	 * If the counter is enabled, someone has beaten us to rebalancing.
2487 	 * Drop the lock and try again in the fast path....
2488 	 */
2489 	if (!(xfs_icsb_counter_disabled(mp, field))) {
2490 		xfs_icsb_unlock(mp);
2491 		goto again;
2492 	}
2493 
2494 	/*
2495 	 * The counter is currently disabled. Because we are
2496 	 * running atomically here, we know a rebalance cannot
2497 	 * be in progress. Hence we can go straight to operating
2498 	 * on the global superblock. We do not call xfs_mod_incore_sb()
2499 	 * here even though we need to get the m_sb_lock. Doing so
2500 	 * will cause us to re-enter this function and deadlock.
2501 	 * Hence we get the m_sb_lock ourselves and then call
2502 	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2503 	 * directly on the global counters.
2504 	 */
2505 	spin_lock(&mp->m_sb_lock);
2506 	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2507 	spin_unlock(&mp->m_sb_lock);
2508 
2509 	/*
2510 	 * Now that we've modified the global superblock, we
2511 	 * may be able to re-enable the distributed counters
2512 	 * (e.g. lots of space just got freed). After that
2513 	 * we are done.
2514 	 */
2515 	if (ret != ENOSPC)
2516 		xfs_icsb_balance_counter(mp, field, 0);
2517 	xfs_icsb_unlock(mp);
2518 	return ret;
2519 
2520 balance_counter:
2521 	xfs_icsb_unlock_cntr(icsbp);
2522 	preempt_enable();
2523 
2524 	/*
2525 	 * We may have multiple threads here if multiple per-cpu
2526 	 * counters run dry at the same time. This will mean we can
2527 	 * do more balances than strictly necessary but it is not
2528 	 * the common slowpath case.
2529 	 */
2530 	xfs_icsb_lock(mp);
2531 
2532 	/*
2533 	 * running atomically.
2534 	 *
2535 	 * This will leave the counter in the correct state for future
2536 	 * accesses. After the rebalance, we simply try again and our retry
2537 	 * will either succeed through the fast path or slow path without
2538 	 * another balance operation being required.
2539 	 */
2540 	xfs_icsb_balance_counter(mp, field, delta);
2541 	xfs_icsb_unlock(mp);
2542 	goto again;
2543 }
2544 
2545 #endif
2546