1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_inode.h" 16 #include "xfs_dir2.h" 17 #include "xfs_ialloc.h" 18 #include "xfs_alloc.h" 19 #include "xfs_rtalloc.h" 20 #include "xfs_bmap.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_priv.h" 23 #include "xfs_log.h" 24 #include "xfs_error.h" 25 #include "xfs_quota.h" 26 #include "xfs_fsops.h" 27 #include "xfs_icache.h" 28 #include "xfs_sysfs.h" 29 #include "xfs_rmap_btree.h" 30 #include "xfs_refcount_btree.h" 31 #include "xfs_reflink.h" 32 #include "xfs_extent_busy.h" 33 #include "xfs_health.h" 34 #include "xfs_trace.h" 35 #include "xfs_ag.h" 36 37 static DEFINE_MUTEX(xfs_uuid_table_mutex); 38 static int xfs_uuid_table_size; 39 static uuid_t *xfs_uuid_table; 40 41 void 42 xfs_uuid_table_free(void) 43 { 44 if (xfs_uuid_table_size == 0) 45 return; 46 kmem_free(xfs_uuid_table); 47 xfs_uuid_table = NULL; 48 xfs_uuid_table_size = 0; 49 } 50 51 /* 52 * See if the UUID is unique among mounted XFS filesystems. 53 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 54 */ 55 STATIC int 56 xfs_uuid_mount( 57 struct xfs_mount *mp) 58 { 59 uuid_t *uuid = &mp->m_sb.sb_uuid; 60 int hole, i; 61 62 /* Publish UUID in struct super_block */ 63 uuid_copy(&mp->m_super->s_uuid, uuid); 64 65 if (xfs_has_nouuid(mp)) 66 return 0; 67 68 if (uuid_is_null(uuid)) { 69 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 70 return -EINVAL; 71 } 72 73 mutex_lock(&xfs_uuid_table_mutex); 74 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 75 if (uuid_is_null(&xfs_uuid_table[i])) { 76 hole = i; 77 continue; 78 } 79 if (uuid_equal(uuid, &xfs_uuid_table[i])) 80 goto out_duplicate; 81 } 82 83 if (hole < 0) { 84 xfs_uuid_table = krealloc(xfs_uuid_table, 85 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 86 GFP_KERNEL | __GFP_NOFAIL); 87 hole = xfs_uuid_table_size++; 88 } 89 xfs_uuid_table[hole] = *uuid; 90 mutex_unlock(&xfs_uuid_table_mutex); 91 92 return 0; 93 94 out_duplicate: 95 mutex_unlock(&xfs_uuid_table_mutex); 96 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 97 return -EINVAL; 98 } 99 100 STATIC void 101 xfs_uuid_unmount( 102 struct xfs_mount *mp) 103 { 104 uuid_t *uuid = &mp->m_sb.sb_uuid; 105 int i; 106 107 if (xfs_has_nouuid(mp)) 108 return; 109 110 mutex_lock(&xfs_uuid_table_mutex); 111 for (i = 0; i < xfs_uuid_table_size; i++) { 112 if (uuid_is_null(&xfs_uuid_table[i])) 113 continue; 114 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 115 continue; 116 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 117 break; 118 } 119 ASSERT(i < xfs_uuid_table_size); 120 mutex_unlock(&xfs_uuid_table_mutex); 121 } 122 123 /* 124 * Check size of device based on the (data/realtime) block count. 125 * Note: this check is used by the growfs code as well as mount. 126 */ 127 int 128 xfs_sb_validate_fsb_count( 129 xfs_sb_t *sbp, 130 uint64_t nblocks) 131 { 132 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 133 ASSERT(sbp->sb_blocklog >= BBSHIFT); 134 135 /* Limited by ULONG_MAX of page cache index */ 136 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 137 return -EFBIG; 138 return 0; 139 } 140 141 /* 142 * xfs_readsb 143 * 144 * Does the initial read of the superblock. 145 */ 146 int 147 xfs_readsb( 148 struct xfs_mount *mp, 149 int flags) 150 { 151 unsigned int sector_size; 152 struct xfs_buf *bp; 153 struct xfs_sb *sbp = &mp->m_sb; 154 int error; 155 int loud = !(flags & XFS_MFSI_QUIET); 156 const struct xfs_buf_ops *buf_ops; 157 158 ASSERT(mp->m_sb_bp == NULL); 159 ASSERT(mp->m_ddev_targp != NULL); 160 161 /* 162 * For the initial read, we must guess at the sector 163 * size based on the block device. It's enough to 164 * get the sb_sectsize out of the superblock and 165 * then reread with the proper length. 166 * We don't verify it yet, because it may not be complete. 167 */ 168 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 169 buf_ops = NULL; 170 171 /* 172 * Allocate a (locked) buffer to hold the superblock. This will be kept 173 * around at all times to optimize access to the superblock. Therefore, 174 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 175 * elevated. 176 */ 177 reread: 178 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 179 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 180 buf_ops); 181 if (error) { 182 if (loud) 183 xfs_warn(mp, "SB validate failed with error %d.", error); 184 /* bad CRC means corrupted metadata */ 185 if (error == -EFSBADCRC) 186 error = -EFSCORRUPTED; 187 return error; 188 } 189 190 /* 191 * Initialize the mount structure from the superblock. 192 */ 193 xfs_sb_from_disk(sbp, bp->b_addr); 194 195 /* 196 * If we haven't validated the superblock, do so now before we try 197 * to check the sector size and reread the superblock appropriately. 198 */ 199 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 200 if (loud) 201 xfs_warn(mp, "Invalid superblock magic number"); 202 error = -EINVAL; 203 goto release_buf; 204 } 205 206 /* 207 * We must be able to do sector-sized and sector-aligned IO. 208 */ 209 if (sector_size > sbp->sb_sectsize) { 210 if (loud) 211 xfs_warn(mp, "device supports %u byte sectors (not %u)", 212 sector_size, sbp->sb_sectsize); 213 error = -ENOSYS; 214 goto release_buf; 215 } 216 217 if (buf_ops == NULL) { 218 /* 219 * Re-read the superblock so the buffer is correctly sized, 220 * and properly verified. 221 */ 222 xfs_buf_relse(bp); 223 sector_size = sbp->sb_sectsize; 224 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 225 goto reread; 226 } 227 228 mp->m_features |= xfs_sb_version_to_features(sbp); 229 xfs_reinit_percpu_counters(mp); 230 231 /* no need to be quiet anymore, so reset the buf ops */ 232 bp->b_ops = &xfs_sb_buf_ops; 233 234 mp->m_sb_bp = bp; 235 xfs_buf_unlock(bp); 236 return 0; 237 238 release_buf: 239 xfs_buf_relse(bp); 240 return error; 241 } 242 243 /* 244 * If the sunit/swidth change would move the precomputed root inode value, we 245 * must reject the ondisk change because repair will stumble over that. 246 * However, we allow the mount to proceed because we never rejected this 247 * combination before. Returns true to update the sb, false otherwise. 248 */ 249 static inline int 250 xfs_check_new_dalign( 251 struct xfs_mount *mp, 252 int new_dalign, 253 bool *update_sb) 254 { 255 struct xfs_sb *sbp = &mp->m_sb; 256 xfs_ino_t calc_ino; 257 258 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign); 259 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino); 260 261 if (sbp->sb_rootino == calc_ino) { 262 *update_sb = true; 263 return 0; 264 } 265 266 xfs_warn(mp, 267 "Cannot change stripe alignment; would require moving root inode."); 268 269 /* 270 * XXX: Next time we add a new incompat feature, this should start 271 * returning -EINVAL to fail the mount. Until then, spit out a warning 272 * that we're ignoring the administrator's instructions. 273 */ 274 xfs_warn(mp, "Skipping superblock stripe alignment update."); 275 *update_sb = false; 276 return 0; 277 } 278 279 /* 280 * If we were provided with new sunit/swidth values as mount options, make sure 281 * that they pass basic alignment and superblock feature checks, and convert 282 * them into the same units (FSB) that everything else expects. This step 283 * /must/ be done before computing the inode geometry. 284 */ 285 STATIC int 286 xfs_validate_new_dalign( 287 struct xfs_mount *mp) 288 { 289 if (mp->m_dalign == 0) 290 return 0; 291 292 /* 293 * If stripe unit and stripe width are not multiples 294 * of the fs blocksize turn off alignment. 295 */ 296 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 297 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 298 xfs_warn(mp, 299 "alignment check failed: sunit/swidth vs. blocksize(%d)", 300 mp->m_sb.sb_blocksize); 301 return -EINVAL; 302 } else { 303 /* 304 * Convert the stripe unit and width to FSBs. 305 */ 306 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 307 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) { 308 xfs_warn(mp, 309 "alignment check failed: sunit/swidth vs. agsize(%d)", 310 mp->m_sb.sb_agblocks); 311 return -EINVAL; 312 } else if (mp->m_dalign) { 313 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 314 } else { 315 xfs_warn(mp, 316 "alignment check failed: sunit(%d) less than bsize(%d)", 317 mp->m_dalign, mp->m_sb.sb_blocksize); 318 return -EINVAL; 319 } 320 } 321 322 if (!xfs_has_dalign(mp)) { 323 xfs_warn(mp, 324 "cannot change alignment: superblock does not support data alignment"); 325 return -EINVAL; 326 } 327 328 return 0; 329 } 330 331 /* Update alignment values based on mount options and sb values. */ 332 STATIC int 333 xfs_update_alignment( 334 struct xfs_mount *mp) 335 { 336 struct xfs_sb *sbp = &mp->m_sb; 337 338 if (mp->m_dalign) { 339 bool update_sb; 340 int error; 341 342 if (sbp->sb_unit == mp->m_dalign && 343 sbp->sb_width == mp->m_swidth) 344 return 0; 345 346 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb); 347 if (error || !update_sb) 348 return error; 349 350 sbp->sb_unit = mp->m_dalign; 351 sbp->sb_width = mp->m_swidth; 352 mp->m_update_sb = true; 353 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) { 354 mp->m_dalign = sbp->sb_unit; 355 mp->m_swidth = sbp->sb_width; 356 } 357 358 return 0; 359 } 360 361 /* 362 * precalculate the low space thresholds for dynamic speculative preallocation. 363 */ 364 void 365 xfs_set_low_space_thresholds( 366 struct xfs_mount *mp) 367 { 368 uint64_t dblocks = mp->m_sb.sb_dblocks; 369 uint64_t rtexts = mp->m_sb.sb_rextents; 370 int i; 371 372 do_div(dblocks, 100); 373 do_div(rtexts, 100); 374 375 for (i = 0; i < XFS_LOWSP_MAX; i++) { 376 mp->m_low_space[i] = dblocks * (i + 1); 377 mp->m_low_rtexts[i] = rtexts * (i + 1); 378 } 379 } 380 381 /* 382 * Check that the data (and log if separate) is an ok size. 383 */ 384 STATIC int 385 xfs_check_sizes( 386 struct xfs_mount *mp) 387 { 388 struct xfs_buf *bp; 389 xfs_daddr_t d; 390 int error; 391 392 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 393 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 394 xfs_warn(mp, "filesystem size mismatch detected"); 395 return -EFBIG; 396 } 397 error = xfs_buf_read_uncached(mp->m_ddev_targp, 398 d - XFS_FSS_TO_BB(mp, 1), 399 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 400 if (error) { 401 xfs_warn(mp, "last sector read failed"); 402 return error; 403 } 404 xfs_buf_relse(bp); 405 406 if (mp->m_logdev_targp == mp->m_ddev_targp) 407 return 0; 408 409 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 410 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 411 xfs_warn(mp, "log size mismatch detected"); 412 return -EFBIG; 413 } 414 error = xfs_buf_read_uncached(mp->m_logdev_targp, 415 d - XFS_FSB_TO_BB(mp, 1), 416 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 417 if (error) { 418 xfs_warn(mp, "log device read failed"); 419 return error; 420 } 421 xfs_buf_relse(bp); 422 return 0; 423 } 424 425 /* 426 * Clear the quotaflags in memory and in the superblock. 427 */ 428 int 429 xfs_mount_reset_sbqflags( 430 struct xfs_mount *mp) 431 { 432 mp->m_qflags = 0; 433 434 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 435 if (mp->m_sb.sb_qflags == 0) 436 return 0; 437 spin_lock(&mp->m_sb_lock); 438 mp->m_sb.sb_qflags = 0; 439 spin_unlock(&mp->m_sb_lock); 440 441 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 442 return 0; 443 444 return xfs_sync_sb(mp, false); 445 } 446 447 uint64_t 448 xfs_default_resblks(xfs_mount_t *mp) 449 { 450 uint64_t resblks; 451 452 /* 453 * We default to 5% or 8192 fsbs of space reserved, whichever is 454 * smaller. This is intended to cover concurrent allocation 455 * transactions when we initially hit enospc. These each require a 4 456 * block reservation. Hence by default we cover roughly 2000 concurrent 457 * allocation reservations. 458 */ 459 resblks = mp->m_sb.sb_dblocks; 460 do_div(resblks, 20); 461 resblks = min_t(uint64_t, resblks, 8192); 462 return resblks; 463 } 464 465 /* Ensure the summary counts are correct. */ 466 STATIC int 467 xfs_check_summary_counts( 468 struct xfs_mount *mp) 469 { 470 /* 471 * The AG0 superblock verifier rejects in-progress filesystems, 472 * so we should never see the flag set this far into mounting. 473 */ 474 if (mp->m_sb.sb_inprogress) { 475 xfs_err(mp, "sb_inprogress set after log recovery??"); 476 WARN_ON(1); 477 return -EFSCORRUPTED; 478 } 479 480 /* 481 * Now the log is mounted, we know if it was an unclean shutdown or 482 * not. If it was, with the first phase of recovery has completed, we 483 * have consistent AG blocks on disk. We have not recovered EFIs yet, 484 * but they are recovered transactionally in the second recovery phase 485 * later. 486 * 487 * If the log was clean when we mounted, we can check the summary 488 * counters. If any of them are obviously incorrect, we can recompute 489 * them from the AGF headers in the next step. 490 */ 491 if (xfs_is_clean(mp) && 492 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || 493 !xfs_verify_icount(mp, mp->m_sb.sb_icount) || 494 mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) 495 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 496 497 /* 498 * We can safely re-initialise incore superblock counters from the 499 * per-ag data. These may not be correct if the filesystem was not 500 * cleanly unmounted, so we waited for recovery to finish before doing 501 * this. 502 * 503 * If the filesystem was cleanly unmounted or the previous check did 504 * not flag anything weird, then we can trust the values in the 505 * superblock to be correct and we don't need to do anything here. 506 * Otherwise, recalculate the summary counters. 507 */ 508 if ((!xfs_has_lazysbcount(mp) || xfs_is_clean(mp)) && 509 !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) 510 return 0; 511 512 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); 513 } 514 515 /* 516 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and 517 * internal inode structures can be sitting in the CIL and AIL at this point, 518 * so we need to unpin them, write them back and/or reclaim them before unmount 519 * can proceed. In other words, callers are required to have inactivated all 520 * inodes. 521 * 522 * An inode cluster that has been freed can have its buffer still pinned in 523 * memory because the transaction is still sitting in a iclog. The stale inodes 524 * on that buffer will be pinned to the buffer until the transaction hits the 525 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and 526 * may never see the pinned buffer, so nothing will push out the iclog and 527 * unpin the buffer. 528 * 529 * Hence we need to force the log to unpin everything first. However, log 530 * forces don't wait for the discards they issue to complete, so we have to 531 * explicitly wait for them to complete here as well. 532 * 533 * Then we can tell the world we are unmounting so that error handling knows 534 * that the filesystem is going away and we should error out anything that we 535 * have been retrying in the background. This will prevent never-ending 536 * retries in AIL pushing from hanging the unmount. 537 * 538 * Finally, we can push the AIL to clean all the remaining dirty objects, then 539 * reclaim the remaining inodes that are still in memory at this point in time. 540 */ 541 static void 542 xfs_unmount_flush_inodes( 543 struct xfs_mount *mp) 544 { 545 xfs_log_force(mp, XFS_LOG_SYNC); 546 xfs_extent_busy_wait_all(mp); 547 flush_workqueue(xfs_discard_wq); 548 549 set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate); 550 551 xfs_ail_push_all_sync(mp->m_ail); 552 xfs_inodegc_stop(mp); 553 cancel_delayed_work_sync(&mp->m_reclaim_work); 554 xfs_reclaim_inodes(mp); 555 xfs_health_unmount(mp); 556 } 557 558 static void 559 xfs_mount_setup_inode_geom( 560 struct xfs_mount *mp) 561 { 562 struct xfs_ino_geometry *igeo = M_IGEO(mp); 563 564 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp); 565 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp)); 566 567 xfs_ialloc_setup_geometry(mp); 568 } 569 570 /* 571 * This function does the following on an initial mount of a file system: 572 * - reads the superblock from disk and init the mount struct 573 * - if we're a 32-bit kernel, do a size check on the superblock 574 * so we don't mount terabyte filesystems 575 * - init mount struct realtime fields 576 * - allocate inode hash table for fs 577 * - init directory manager 578 * - perform recovery and init the log manager 579 */ 580 int 581 xfs_mountfs( 582 struct xfs_mount *mp) 583 { 584 struct xfs_sb *sbp = &(mp->m_sb); 585 struct xfs_inode *rip; 586 struct xfs_ino_geometry *igeo = M_IGEO(mp); 587 uint64_t resblks; 588 uint quotamount = 0; 589 uint quotaflags = 0; 590 int error = 0; 591 592 xfs_sb_mount_common(mp, sbp); 593 594 /* 595 * Check for a mismatched features2 values. Older kernels read & wrote 596 * into the wrong sb offset for sb_features2 on some platforms due to 597 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 598 * which made older superblock reading/writing routines swap it as a 599 * 64-bit value. 600 * 601 * For backwards compatibility, we make both slots equal. 602 * 603 * If we detect a mismatched field, we OR the set bits into the existing 604 * features2 field in case it has already been modified; we don't want 605 * to lose any features. We then update the bad location with the ORed 606 * value so that older kernels will see any features2 flags. The 607 * superblock writeback code ensures the new sb_features2 is copied to 608 * sb_bad_features2 before it is logged or written to disk. 609 */ 610 if (xfs_sb_has_mismatched_features2(sbp)) { 611 xfs_warn(mp, "correcting sb_features alignment problem"); 612 sbp->sb_features2 |= sbp->sb_bad_features2; 613 mp->m_update_sb = true; 614 } 615 616 617 /* always use v2 inodes by default now */ 618 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 619 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 620 mp->m_features |= XFS_FEAT_NLINK; 621 mp->m_update_sb = true; 622 } 623 624 /* 625 * If we were given new sunit/swidth options, do some basic validation 626 * checks and convert the incore dalign and swidth values to the 627 * same units (FSB) that everything else uses. This /must/ happen 628 * before computing the inode geometry. 629 */ 630 error = xfs_validate_new_dalign(mp); 631 if (error) 632 goto out; 633 634 xfs_alloc_compute_maxlevels(mp); 635 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 636 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 637 xfs_mount_setup_inode_geom(mp); 638 xfs_rmapbt_compute_maxlevels(mp); 639 xfs_refcountbt_compute_maxlevels(mp); 640 641 /* 642 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks 643 * is NOT aligned turn off m_dalign since allocator alignment is within 644 * an ag, therefore ag has to be aligned at stripe boundary. Note that 645 * we must compute the free space and rmap btree geometry before doing 646 * this. 647 */ 648 error = xfs_update_alignment(mp); 649 if (error) 650 goto out; 651 652 /* enable fail_at_unmount as default */ 653 mp->m_fail_unmount = true; 654 655 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, 656 NULL, mp->m_super->s_id); 657 if (error) 658 goto out; 659 660 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 661 &mp->m_kobj, "stats"); 662 if (error) 663 goto out_remove_sysfs; 664 665 error = xfs_error_sysfs_init(mp); 666 if (error) 667 goto out_del_stats; 668 669 error = xfs_errortag_init(mp); 670 if (error) 671 goto out_remove_error_sysfs; 672 673 error = xfs_uuid_mount(mp); 674 if (error) 675 goto out_remove_errortag; 676 677 /* 678 * Update the preferred write size based on the information from the 679 * on-disk superblock. 680 */ 681 mp->m_allocsize_log = 682 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log); 683 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog); 684 685 /* set the low space thresholds for dynamic preallocation */ 686 xfs_set_low_space_thresholds(mp); 687 688 /* 689 * If enabled, sparse inode chunk alignment is expected to match the 690 * cluster size. Full inode chunk alignment must match the chunk size, 691 * but that is checked on sb read verification... 692 */ 693 if (xfs_has_sparseinodes(mp) && 694 mp->m_sb.sb_spino_align != 695 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) { 696 xfs_warn(mp, 697 "Sparse inode block alignment (%u) must match cluster size (%llu).", 698 mp->m_sb.sb_spino_align, 699 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)); 700 error = -EINVAL; 701 goto out_remove_uuid; 702 } 703 704 /* 705 * Check that the data (and log if separate) is an ok size. 706 */ 707 error = xfs_check_sizes(mp); 708 if (error) 709 goto out_remove_uuid; 710 711 /* 712 * Initialize realtime fields in the mount structure 713 */ 714 error = xfs_rtmount_init(mp); 715 if (error) { 716 xfs_warn(mp, "RT mount failed"); 717 goto out_remove_uuid; 718 } 719 720 /* 721 * Copies the low order bits of the timestamp and the randomly 722 * set "sequence" number out of a UUID. 723 */ 724 mp->m_fixedfsid[0] = 725 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 726 get_unaligned_be16(&sbp->sb_uuid.b[4]); 727 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 728 729 error = xfs_da_mount(mp); 730 if (error) { 731 xfs_warn(mp, "Failed dir/attr init: %d", error); 732 goto out_remove_uuid; 733 } 734 735 /* 736 * Initialize the precomputed transaction reservations values. 737 */ 738 xfs_trans_init(mp); 739 740 /* 741 * Allocate and initialize the per-ag data. 742 */ 743 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 744 if (error) { 745 xfs_warn(mp, "Failed per-ag init: %d", error); 746 goto out_free_dir; 747 } 748 749 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) { 750 xfs_warn(mp, "no log defined"); 751 error = -EFSCORRUPTED; 752 goto out_free_perag; 753 } 754 755 error = xfs_inodegc_register_shrinker(mp); 756 if (error) 757 goto out_fail_wait; 758 759 /* 760 * Log's mount-time initialization. The first part of recovery can place 761 * some items on the AIL, to be handled when recovery is finished or 762 * cancelled. 763 */ 764 error = xfs_log_mount(mp, mp->m_logdev_targp, 765 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 766 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 767 if (error) { 768 xfs_warn(mp, "log mount failed"); 769 goto out_inodegc_shrinker; 770 } 771 772 /* Make sure the summary counts are ok. */ 773 error = xfs_check_summary_counts(mp); 774 if (error) 775 goto out_log_dealloc; 776 777 /* Enable background inode inactivation workers. */ 778 xfs_inodegc_start(mp); 779 xfs_blockgc_start(mp); 780 781 /* 782 * Now that we've recovered any pending superblock feature bit 783 * additions, we can finish setting up the attr2 behaviour for the 784 * mount. The noattr2 option overrides the superblock flag, so only 785 * check the superblock feature flag if the mount option is not set. 786 */ 787 if (xfs_has_noattr2(mp)) { 788 mp->m_features &= ~XFS_FEAT_ATTR2; 789 } else if (!xfs_has_attr2(mp) && 790 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) { 791 mp->m_features |= XFS_FEAT_ATTR2; 792 } 793 794 /* 795 * Get and sanity-check the root inode. 796 * Save the pointer to it in the mount structure. 797 */ 798 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, 799 XFS_ILOCK_EXCL, &rip); 800 if (error) { 801 xfs_warn(mp, 802 "Failed to read root inode 0x%llx, error %d", 803 sbp->sb_rootino, -error); 804 goto out_log_dealloc; 805 } 806 807 ASSERT(rip != NULL); 808 809 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) { 810 xfs_warn(mp, "corrupted root inode %llu: not a directory", 811 (unsigned long long)rip->i_ino); 812 xfs_iunlock(rip, XFS_ILOCK_EXCL); 813 error = -EFSCORRUPTED; 814 goto out_rele_rip; 815 } 816 mp->m_rootip = rip; /* save it */ 817 818 xfs_iunlock(rip, XFS_ILOCK_EXCL); 819 820 /* 821 * Initialize realtime inode pointers in the mount structure 822 */ 823 error = xfs_rtmount_inodes(mp); 824 if (error) { 825 /* 826 * Free up the root inode. 827 */ 828 xfs_warn(mp, "failed to read RT inodes"); 829 goto out_rele_rip; 830 } 831 832 /* 833 * If this is a read-only mount defer the superblock updates until 834 * the next remount into writeable mode. Otherwise we would never 835 * perform the update e.g. for the root filesystem. 836 */ 837 if (mp->m_update_sb && !xfs_is_readonly(mp)) { 838 error = xfs_sync_sb(mp, false); 839 if (error) { 840 xfs_warn(mp, "failed to write sb changes"); 841 goto out_rtunmount; 842 } 843 } 844 845 /* 846 * Initialise the XFS quota management subsystem for this mount 847 */ 848 if (XFS_IS_QUOTA_ON(mp)) { 849 error = xfs_qm_newmount(mp, "amount, "aflags); 850 if (error) 851 goto out_rtunmount; 852 } else { 853 /* 854 * If a file system had quotas running earlier, but decided to 855 * mount without -o uquota/pquota/gquota options, revoke the 856 * quotachecked license. 857 */ 858 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 859 xfs_notice(mp, "resetting quota flags"); 860 error = xfs_mount_reset_sbqflags(mp); 861 if (error) 862 goto out_rtunmount; 863 } 864 } 865 866 /* 867 * Finish recovering the file system. This part needed to be delayed 868 * until after the root and real-time bitmap inodes were consistently 869 * read in. Temporarily create per-AG space reservations for metadata 870 * btree shape changes because space freeing transactions (for inode 871 * inactivation) require the per-AG reservation in lieu of reserving 872 * blocks. 873 */ 874 error = xfs_fs_reserve_ag_blocks(mp); 875 if (error && error == -ENOSPC) 876 xfs_warn(mp, 877 "ENOSPC reserving per-AG metadata pool, log recovery may fail."); 878 error = xfs_log_mount_finish(mp); 879 xfs_fs_unreserve_ag_blocks(mp); 880 if (error) { 881 xfs_warn(mp, "log mount finish failed"); 882 goto out_rtunmount; 883 } 884 885 /* 886 * Now the log is fully replayed, we can transition to full read-only 887 * mode for read-only mounts. This will sync all the metadata and clean 888 * the log so that the recovery we just performed does not have to be 889 * replayed again on the next mount. 890 * 891 * We use the same quiesce mechanism as the rw->ro remount, as they are 892 * semantically identical operations. 893 */ 894 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp)) 895 xfs_log_clean(mp); 896 897 /* 898 * Complete the quota initialisation, post-log-replay component. 899 */ 900 if (quotamount) { 901 ASSERT(mp->m_qflags == 0); 902 mp->m_qflags = quotaflags; 903 904 xfs_qm_mount_quotas(mp); 905 } 906 907 /* 908 * Now we are mounted, reserve a small amount of unused space for 909 * privileged transactions. This is needed so that transaction 910 * space required for critical operations can dip into this pool 911 * when at ENOSPC. This is needed for operations like create with 912 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 913 * are not allowed to use this reserved space. 914 * 915 * This may drive us straight to ENOSPC on mount, but that implies 916 * we were already there on the last unmount. Warn if this occurs. 917 */ 918 if (!xfs_is_readonly(mp)) { 919 resblks = xfs_default_resblks(mp); 920 error = xfs_reserve_blocks(mp, &resblks, NULL); 921 if (error) 922 xfs_warn(mp, 923 "Unable to allocate reserve blocks. Continuing without reserve pool."); 924 925 /* Recover any CoW blocks that never got remapped. */ 926 error = xfs_reflink_recover_cow(mp); 927 if (error) { 928 xfs_err(mp, 929 "Error %d recovering leftover CoW allocations.", error); 930 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 931 goto out_quota; 932 } 933 934 /* Reserve AG blocks for future btree expansion. */ 935 error = xfs_fs_reserve_ag_blocks(mp); 936 if (error && error != -ENOSPC) 937 goto out_agresv; 938 } 939 940 return 0; 941 942 out_agresv: 943 xfs_fs_unreserve_ag_blocks(mp); 944 out_quota: 945 xfs_qm_unmount_quotas(mp); 946 out_rtunmount: 947 xfs_rtunmount_inodes(mp); 948 out_rele_rip: 949 xfs_irele(rip); 950 /* Clean out dquots that might be in memory after quotacheck. */ 951 xfs_qm_unmount(mp); 952 953 /* 954 * Inactivate all inodes that might still be in memory after a log 955 * intent recovery failure so that reclaim can free them. Metadata 956 * inodes and the root directory shouldn't need inactivation, but the 957 * mount failed for some reason, so pull down all the state and flee. 958 */ 959 xfs_inodegc_flush(mp); 960 961 /* 962 * Flush all inode reclamation work and flush the log. 963 * We have to do this /after/ rtunmount and qm_unmount because those 964 * two will have scheduled delayed reclaim for the rt/quota inodes. 965 * 966 * This is slightly different from the unmountfs call sequence 967 * because we could be tearing down a partially set up mount. In 968 * particular, if log_mount_finish fails we bail out without calling 969 * qm_unmount_quotas and therefore rely on qm_unmount to release the 970 * quota inodes. 971 */ 972 xfs_unmount_flush_inodes(mp); 973 out_log_dealloc: 974 xfs_log_mount_cancel(mp); 975 out_inodegc_shrinker: 976 unregister_shrinker(&mp->m_inodegc_shrinker); 977 out_fail_wait: 978 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 979 xfs_buftarg_drain(mp->m_logdev_targp); 980 xfs_buftarg_drain(mp->m_ddev_targp); 981 out_free_perag: 982 xfs_free_perag(mp); 983 out_free_dir: 984 xfs_da_unmount(mp); 985 out_remove_uuid: 986 xfs_uuid_unmount(mp); 987 out_remove_errortag: 988 xfs_errortag_del(mp); 989 out_remove_error_sysfs: 990 xfs_error_sysfs_del(mp); 991 out_del_stats: 992 xfs_sysfs_del(&mp->m_stats.xs_kobj); 993 out_remove_sysfs: 994 xfs_sysfs_del(&mp->m_kobj); 995 out: 996 return error; 997 } 998 999 /* 1000 * This flushes out the inodes,dquots and the superblock, unmounts the 1001 * log and makes sure that incore structures are freed. 1002 */ 1003 void 1004 xfs_unmountfs( 1005 struct xfs_mount *mp) 1006 { 1007 uint64_t resblks; 1008 int error; 1009 1010 /* 1011 * Perform all on-disk metadata updates required to inactivate inodes 1012 * that the VFS evicted earlier in the unmount process. Freeing inodes 1013 * and discarding CoW fork preallocations can cause shape changes to 1014 * the free inode and refcount btrees, respectively, so we must finish 1015 * this before we discard the metadata space reservations. Metadata 1016 * inodes and the root directory do not require inactivation. 1017 */ 1018 xfs_inodegc_flush(mp); 1019 1020 xfs_blockgc_stop(mp); 1021 xfs_fs_unreserve_ag_blocks(mp); 1022 xfs_qm_unmount_quotas(mp); 1023 xfs_rtunmount_inodes(mp); 1024 xfs_irele(mp->m_rootip); 1025 1026 xfs_unmount_flush_inodes(mp); 1027 1028 xfs_qm_unmount(mp); 1029 1030 /* 1031 * Unreserve any blocks we have so that when we unmount we don't account 1032 * the reserved free space as used. This is really only necessary for 1033 * lazy superblock counting because it trusts the incore superblock 1034 * counters to be absolutely correct on clean unmount. 1035 * 1036 * We don't bother correcting this elsewhere for lazy superblock 1037 * counting because on mount of an unclean filesystem we reconstruct the 1038 * correct counter value and this is irrelevant. 1039 * 1040 * For non-lazy counter filesystems, this doesn't matter at all because 1041 * we only every apply deltas to the superblock and hence the incore 1042 * value does not matter.... 1043 */ 1044 resblks = 0; 1045 error = xfs_reserve_blocks(mp, &resblks, NULL); 1046 if (error) 1047 xfs_warn(mp, "Unable to free reserved block pool. " 1048 "Freespace may not be correct on next mount."); 1049 1050 xfs_log_unmount(mp); 1051 xfs_da_unmount(mp); 1052 xfs_uuid_unmount(mp); 1053 1054 #if defined(DEBUG) 1055 xfs_errortag_clearall(mp); 1056 #endif 1057 unregister_shrinker(&mp->m_inodegc_shrinker); 1058 xfs_free_perag(mp); 1059 1060 xfs_errortag_del(mp); 1061 xfs_error_sysfs_del(mp); 1062 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1063 xfs_sysfs_del(&mp->m_kobj); 1064 } 1065 1066 /* 1067 * Determine whether modifications can proceed. The caller specifies the minimum 1068 * freeze level for which modifications should not be allowed. This allows 1069 * certain operations to proceed while the freeze sequence is in progress, if 1070 * necessary. 1071 */ 1072 bool 1073 xfs_fs_writable( 1074 struct xfs_mount *mp, 1075 int level) 1076 { 1077 ASSERT(level > SB_UNFROZEN); 1078 if ((mp->m_super->s_writers.frozen >= level) || 1079 xfs_is_shutdown(mp) || xfs_is_readonly(mp)) 1080 return false; 1081 1082 return true; 1083 } 1084 1085 int 1086 xfs_mod_fdblocks( 1087 struct xfs_mount *mp, 1088 int64_t delta, 1089 bool rsvd) 1090 { 1091 int64_t lcounter; 1092 long long res_used; 1093 s32 batch; 1094 uint64_t set_aside; 1095 1096 if (delta > 0) { 1097 /* 1098 * If the reserve pool is depleted, put blocks back into it 1099 * first. Most of the time the pool is full. 1100 */ 1101 if (likely(mp->m_resblks == mp->m_resblks_avail)) { 1102 percpu_counter_add(&mp->m_fdblocks, delta); 1103 return 0; 1104 } 1105 1106 spin_lock(&mp->m_sb_lock); 1107 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1108 1109 if (res_used > delta) { 1110 mp->m_resblks_avail += delta; 1111 } else { 1112 delta -= res_used; 1113 mp->m_resblks_avail = mp->m_resblks; 1114 percpu_counter_add(&mp->m_fdblocks, delta); 1115 } 1116 spin_unlock(&mp->m_sb_lock); 1117 return 0; 1118 } 1119 1120 /* 1121 * Taking blocks away, need to be more accurate the closer we 1122 * are to zero. 1123 * 1124 * If the counter has a value of less than 2 * max batch size, 1125 * then make everything serialise as we are real close to 1126 * ENOSPC. 1127 */ 1128 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, 1129 XFS_FDBLOCKS_BATCH) < 0) 1130 batch = 1; 1131 else 1132 batch = XFS_FDBLOCKS_BATCH; 1133 1134 /* 1135 * Set aside allocbt blocks because these blocks are tracked as free 1136 * space but not available for allocation. Technically this means that a 1137 * single reservation cannot consume all remaining free space, but the 1138 * ratio of allocbt blocks to usable free blocks should be rather small. 1139 * The tradeoff without this is that filesystems that maintain high 1140 * perag block reservations can over reserve physical block availability 1141 * and fail physical allocation, which leads to much more serious 1142 * problems (i.e. transaction abort, pagecache discards, etc.) than 1143 * slightly premature -ENOSPC. 1144 */ 1145 set_aside = mp->m_alloc_set_aside + atomic64_read(&mp->m_allocbt_blks); 1146 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch); 1147 if (__percpu_counter_compare(&mp->m_fdblocks, set_aside, 1148 XFS_FDBLOCKS_BATCH) >= 0) { 1149 /* we had space! */ 1150 return 0; 1151 } 1152 1153 /* 1154 * lock up the sb for dipping into reserves before releasing the space 1155 * that took us to ENOSPC. 1156 */ 1157 spin_lock(&mp->m_sb_lock); 1158 percpu_counter_add(&mp->m_fdblocks, -delta); 1159 if (!rsvd) 1160 goto fdblocks_enospc; 1161 1162 lcounter = (long long)mp->m_resblks_avail + delta; 1163 if (lcounter >= 0) { 1164 mp->m_resblks_avail = lcounter; 1165 spin_unlock(&mp->m_sb_lock); 1166 return 0; 1167 } 1168 xfs_warn_once(mp, 1169 "Reserve blocks depleted! Consider increasing reserve pool size."); 1170 1171 fdblocks_enospc: 1172 spin_unlock(&mp->m_sb_lock); 1173 return -ENOSPC; 1174 } 1175 1176 int 1177 xfs_mod_frextents( 1178 struct xfs_mount *mp, 1179 int64_t delta) 1180 { 1181 int64_t lcounter; 1182 int ret = 0; 1183 1184 spin_lock(&mp->m_sb_lock); 1185 lcounter = mp->m_sb.sb_frextents + delta; 1186 if (lcounter < 0) 1187 ret = -ENOSPC; 1188 else 1189 mp->m_sb.sb_frextents = lcounter; 1190 spin_unlock(&mp->m_sb_lock); 1191 return ret; 1192 } 1193 1194 /* 1195 * Used to free the superblock along various error paths. 1196 */ 1197 void 1198 xfs_freesb( 1199 struct xfs_mount *mp) 1200 { 1201 struct xfs_buf *bp = mp->m_sb_bp; 1202 1203 xfs_buf_lock(bp); 1204 mp->m_sb_bp = NULL; 1205 xfs_buf_relse(bp); 1206 } 1207 1208 /* 1209 * If the underlying (data/log/rt) device is readonly, there are some 1210 * operations that cannot proceed. 1211 */ 1212 int 1213 xfs_dev_is_read_only( 1214 struct xfs_mount *mp, 1215 char *message) 1216 { 1217 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1218 xfs_readonly_buftarg(mp->m_logdev_targp) || 1219 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1220 xfs_notice(mp, "%s required on read-only device.", message); 1221 xfs_notice(mp, "write access unavailable, cannot proceed."); 1222 return -EROFS; 1223 } 1224 return 0; 1225 } 1226 1227 /* Force the summary counters to be recalculated at next mount. */ 1228 void 1229 xfs_force_summary_recalc( 1230 struct xfs_mount *mp) 1231 { 1232 if (!xfs_has_lazysbcount(mp)) 1233 return; 1234 1235 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 1236 } 1237 1238 /* 1239 * Enable a log incompat feature flag in the primary superblock. The caller 1240 * cannot have any other transactions in progress. 1241 */ 1242 int 1243 xfs_add_incompat_log_feature( 1244 struct xfs_mount *mp, 1245 uint32_t feature) 1246 { 1247 struct xfs_dsb *dsb; 1248 int error; 1249 1250 ASSERT(hweight32(feature) == 1); 1251 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 1252 1253 /* 1254 * Force the log to disk and kick the background AIL thread to reduce 1255 * the chances that the bwrite will stall waiting for the AIL to unpin 1256 * the primary superblock buffer. This isn't a data integrity 1257 * operation, so we don't need a synchronous push. 1258 */ 1259 error = xfs_log_force(mp, XFS_LOG_SYNC); 1260 if (error) 1261 return error; 1262 xfs_ail_push_all(mp->m_ail); 1263 1264 /* 1265 * Lock the primary superblock buffer to serialize all callers that 1266 * are trying to set feature bits. 1267 */ 1268 xfs_buf_lock(mp->m_sb_bp); 1269 xfs_buf_hold(mp->m_sb_bp); 1270 1271 if (xfs_is_shutdown(mp)) { 1272 error = -EIO; 1273 goto rele; 1274 } 1275 1276 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature)) 1277 goto rele; 1278 1279 /* 1280 * Write the primary superblock to disk immediately, because we need 1281 * the log_incompat bit to be set in the primary super now to protect 1282 * the log items that we're going to commit later. 1283 */ 1284 dsb = mp->m_sb_bp->b_addr; 1285 xfs_sb_to_disk(dsb, &mp->m_sb); 1286 dsb->sb_features_log_incompat |= cpu_to_be32(feature); 1287 error = xfs_bwrite(mp->m_sb_bp); 1288 if (error) 1289 goto shutdown; 1290 1291 /* 1292 * Add the feature bits to the incore superblock before we unlock the 1293 * buffer. 1294 */ 1295 xfs_sb_add_incompat_log_features(&mp->m_sb, feature); 1296 xfs_buf_relse(mp->m_sb_bp); 1297 1298 /* Log the superblock to disk. */ 1299 return xfs_sync_sb(mp, false); 1300 shutdown: 1301 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1302 rele: 1303 xfs_buf_relse(mp->m_sb_bp); 1304 return error; 1305 } 1306 1307 /* 1308 * Clear all the log incompat flags from the superblock. 1309 * 1310 * The caller cannot be in a transaction, must ensure that the log does not 1311 * contain any log items protected by any log incompat bit, and must ensure 1312 * that there are no other threads that depend on the state of the log incompat 1313 * feature flags in the primary super. 1314 * 1315 * Returns true if the superblock is dirty. 1316 */ 1317 bool 1318 xfs_clear_incompat_log_features( 1319 struct xfs_mount *mp) 1320 { 1321 bool ret = false; 1322 1323 if (!xfs_has_crc(mp) || 1324 !xfs_sb_has_incompat_log_feature(&mp->m_sb, 1325 XFS_SB_FEAT_INCOMPAT_LOG_ALL) || 1326 xfs_is_shutdown(mp)) 1327 return false; 1328 1329 /* 1330 * Update the incore superblock. We synchronize on the primary super 1331 * buffer lock to be consistent with the add function, though at least 1332 * in theory this shouldn't be necessary. 1333 */ 1334 xfs_buf_lock(mp->m_sb_bp); 1335 xfs_buf_hold(mp->m_sb_bp); 1336 1337 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, 1338 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) { 1339 xfs_info(mp, "Clearing log incompat feature flags."); 1340 xfs_sb_remove_incompat_log_features(&mp->m_sb); 1341 ret = true; 1342 } 1343 1344 xfs_buf_relse(mp->m_sb_bp); 1345 return ret; 1346 } 1347 1348 /* 1349 * Update the in-core delayed block counter. 1350 * 1351 * We prefer to update the counter without having to take a spinlock for every 1352 * counter update (i.e. batching). Each change to delayed allocation 1353 * reservations can change can easily exceed the default percpu counter 1354 * batching, so we use a larger batch factor here. 1355 * 1356 * Note that we don't currently have any callers requiring fast summation 1357 * (e.g. percpu_counter_read) so we can use a big batch value here. 1358 */ 1359 #define XFS_DELALLOC_BATCH (4096) 1360 void 1361 xfs_mod_delalloc( 1362 struct xfs_mount *mp, 1363 int64_t delta) 1364 { 1365 percpu_counter_add_batch(&mp->m_delalloc_blks, delta, 1366 XFS_DELALLOC_BATCH); 1367 } 1368