1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_inode.h" 16 #include "xfs_dir2.h" 17 #include "xfs_ialloc.h" 18 #include "xfs_alloc.h" 19 #include "xfs_rtalloc.h" 20 #include "xfs_bmap.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_priv.h" 23 #include "xfs_log.h" 24 #include "xfs_log_priv.h" 25 #include "xfs_error.h" 26 #include "xfs_quota.h" 27 #include "xfs_fsops.h" 28 #include "xfs_icache.h" 29 #include "xfs_sysfs.h" 30 #include "xfs_rmap_btree.h" 31 #include "xfs_refcount_btree.h" 32 #include "xfs_reflink.h" 33 #include "xfs_extent_busy.h" 34 #include "xfs_health.h" 35 #include "xfs_trace.h" 36 #include "xfs_ag.h" 37 38 static DEFINE_MUTEX(xfs_uuid_table_mutex); 39 static int xfs_uuid_table_size; 40 static uuid_t *xfs_uuid_table; 41 42 void 43 xfs_uuid_table_free(void) 44 { 45 if (xfs_uuid_table_size == 0) 46 return; 47 kmem_free(xfs_uuid_table); 48 xfs_uuid_table = NULL; 49 xfs_uuid_table_size = 0; 50 } 51 52 /* 53 * See if the UUID is unique among mounted XFS filesystems. 54 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 55 */ 56 STATIC int 57 xfs_uuid_mount( 58 struct xfs_mount *mp) 59 { 60 uuid_t *uuid = &mp->m_sb.sb_uuid; 61 int hole, i; 62 63 /* Publish UUID in struct super_block */ 64 uuid_copy(&mp->m_super->s_uuid, uuid); 65 66 if (xfs_has_nouuid(mp)) 67 return 0; 68 69 if (uuid_is_null(uuid)) { 70 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 71 return -EINVAL; 72 } 73 74 mutex_lock(&xfs_uuid_table_mutex); 75 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 76 if (uuid_is_null(&xfs_uuid_table[i])) { 77 hole = i; 78 continue; 79 } 80 if (uuid_equal(uuid, &xfs_uuid_table[i])) 81 goto out_duplicate; 82 } 83 84 if (hole < 0) { 85 xfs_uuid_table = krealloc(xfs_uuid_table, 86 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 87 GFP_KERNEL | __GFP_NOFAIL); 88 hole = xfs_uuid_table_size++; 89 } 90 xfs_uuid_table[hole] = *uuid; 91 mutex_unlock(&xfs_uuid_table_mutex); 92 93 return 0; 94 95 out_duplicate: 96 mutex_unlock(&xfs_uuid_table_mutex); 97 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 98 return -EINVAL; 99 } 100 101 STATIC void 102 xfs_uuid_unmount( 103 struct xfs_mount *mp) 104 { 105 uuid_t *uuid = &mp->m_sb.sb_uuid; 106 int i; 107 108 if (xfs_has_nouuid(mp)) 109 return; 110 111 mutex_lock(&xfs_uuid_table_mutex); 112 for (i = 0; i < xfs_uuid_table_size; i++) { 113 if (uuid_is_null(&xfs_uuid_table[i])) 114 continue; 115 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 116 continue; 117 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 118 break; 119 } 120 ASSERT(i < xfs_uuid_table_size); 121 mutex_unlock(&xfs_uuid_table_mutex); 122 } 123 124 /* 125 * Check size of device based on the (data/realtime) block count. 126 * Note: this check is used by the growfs code as well as mount. 127 */ 128 int 129 xfs_sb_validate_fsb_count( 130 xfs_sb_t *sbp, 131 uint64_t nblocks) 132 { 133 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 134 ASSERT(sbp->sb_blocklog >= BBSHIFT); 135 136 /* Limited by ULONG_MAX of page cache index */ 137 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 138 return -EFBIG; 139 return 0; 140 } 141 142 /* 143 * xfs_readsb 144 * 145 * Does the initial read of the superblock. 146 */ 147 int 148 xfs_readsb( 149 struct xfs_mount *mp, 150 int flags) 151 { 152 unsigned int sector_size; 153 struct xfs_buf *bp; 154 struct xfs_sb *sbp = &mp->m_sb; 155 int error; 156 int loud = !(flags & XFS_MFSI_QUIET); 157 const struct xfs_buf_ops *buf_ops; 158 159 ASSERT(mp->m_sb_bp == NULL); 160 ASSERT(mp->m_ddev_targp != NULL); 161 162 /* 163 * For the initial read, we must guess at the sector 164 * size based on the block device. It's enough to 165 * get the sb_sectsize out of the superblock and 166 * then reread with the proper length. 167 * We don't verify it yet, because it may not be complete. 168 */ 169 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 170 buf_ops = NULL; 171 172 /* 173 * Allocate a (locked) buffer to hold the superblock. This will be kept 174 * around at all times to optimize access to the superblock. Therefore, 175 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 176 * elevated. 177 */ 178 reread: 179 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 180 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 181 buf_ops); 182 if (error) { 183 if (loud) 184 xfs_warn(mp, "SB validate failed with error %d.", error); 185 /* bad CRC means corrupted metadata */ 186 if (error == -EFSBADCRC) 187 error = -EFSCORRUPTED; 188 return error; 189 } 190 191 /* 192 * Initialize the mount structure from the superblock. 193 */ 194 xfs_sb_from_disk(sbp, bp->b_addr); 195 196 /* 197 * If we haven't validated the superblock, do so now before we try 198 * to check the sector size and reread the superblock appropriately. 199 */ 200 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 201 if (loud) 202 xfs_warn(mp, "Invalid superblock magic number"); 203 error = -EINVAL; 204 goto release_buf; 205 } 206 207 /* 208 * We must be able to do sector-sized and sector-aligned IO. 209 */ 210 if (sector_size > sbp->sb_sectsize) { 211 if (loud) 212 xfs_warn(mp, "device supports %u byte sectors (not %u)", 213 sector_size, sbp->sb_sectsize); 214 error = -ENOSYS; 215 goto release_buf; 216 } 217 218 if (buf_ops == NULL) { 219 /* 220 * Re-read the superblock so the buffer is correctly sized, 221 * and properly verified. 222 */ 223 xfs_buf_relse(bp); 224 sector_size = sbp->sb_sectsize; 225 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 226 goto reread; 227 } 228 229 mp->m_features |= xfs_sb_version_to_features(sbp); 230 xfs_reinit_percpu_counters(mp); 231 232 /* no need to be quiet anymore, so reset the buf ops */ 233 bp->b_ops = &xfs_sb_buf_ops; 234 235 mp->m_sb_bp = bp; 236 xfs_buf_unlock(bp); 237 return 0; 238 239 release_buf: 240 xfs_buf_relse(bp); 241 return error; 242 } 243 244 /* 245 * If the sunit/swidth change would move the precomputed root inode value, we 246 * must reject the ondisk change because repair will stumble over that. 247 * However, we allow the mount to proceed because we never rejected this 248 * combination before. Returns true to update the sb, false otherwise. 249 */ 250 static inline int 251 xfs_check_new_dalign( 252 struct xfs_mount *mp, 253 int new_dalign, 254 bool *update_sb) 255 { 256 struct xfs_sb *sbp = &mp->m_sb; 257 xfs_ino_t calc_ino; 258 259 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign); 260 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino); 261 262 if (sbp->sb_rootino == calc_ino) { 263 *update_sb = true; 264 return 0; 265 } 266 267 xfs_warn(mp, 268 "Cannot change stripe alignment; would require moving root inode."); 269 270 /* 271 * XXX: Next time we add a new incompat feature, this should start 272 * returning -EINVAL to fail the mount. Until then, spit out a warning 273 * that we're ignoring the administrator's instructions. 274 */ 275 xfs_warn(mp, "Skipping superblock stripe alignment update."); 276 *update_sb = false; 277 return 0; 278 } 279 280 /* 281 * If we were provided with new sunit/swidth values as mount options, make sure 282 * that they pass basic alignment and superblock feature checks, and convert 283 * them into the same units (FSB) that everything else expects. This step 284 * /must/ be done before computing the inode geometry. 285 */ 286 STATIC int 287 xfs_validate_new_dalign( 288 struct xfs_mount *mp) 289 { 290 if (mp->m_dalign == 0) 291 return 0; 292 293 /* 294 * If stripe unit and stripe width are not multiples 295 * of the fs blocksize turn off alignment. 296 */ 297 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 298 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 299 xfs_warn(mp, 300 "alignment check failed: sunit/swidth vs. blocksize(%d)", 301 mp->m_sb.sb_blocksize); 302 return -EINVAL; 303 } 304 305 /* 306 * Convert the stripe unit and width to FSBs. 307 */ 308 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 309 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) { 310 xfs_warn(mp, 311 "alignment check failed: sunit/swidth vs. agsize(%d)", 312 mp->m_sb.sb_agblocks); 313 return -EINVAL; 314 } 315 316 if (!mp->m_dalign) { 317 xfs_warn(mp, 318 "alignment check failed: sunit(%d) less than bsize(%d)", 319 mp->m_dalign, mp->m_sb.sb_blocksize); 320 return -EINVAL; 321 } 322 323 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 324 325 if (!xfs_has_dalign(mp)) { 326 xfs_warn(mp, 327 "cannot change alignment: superblock does not support data alignment"); 328 return -EINVAL; 329 } 330 331 return 0; 332 } 333 334 /* Update alignment values based on mount options and sb values. */ 335 STATIC int 336 xfs_update_alignment( 337 struct xfs_mount *mp) 338 { 339 struct xfs_sb *sbp = &mp->m_sb; 340 341 if (mp->m_dalign) { 342 bool update_sb; 343 int error; 344 345 if (sbp->sb_unit == mp->m_dalign && 346 sbp->sb_width == mp->m_swidth) 347 return 0; 348 349 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb); 350 if (error || !update_sb) 351 return error; 352 353 sbp->sb_unit = mp->m_dalign; 354 sbp->sb_width = mp->m_swidth; 355 mp->m_update_sb = true; 356 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) { 357 mp->m_dalign = sbp->sb_unit; 358 mp->m_swidth = sbp->sb_width; 359 } 360 361 return 0; 362 } 363 364 /* 365 * precalculate the low space thresholds for dynamic speculative preallocation. 366 */ 367 void 368 xfs_set_low_space_thresholds( 369 struct xfs_mount *mp) 370 { 371 uint64_t dblocks = mp->m_sb.sb_dblocks; 372 uint64_t rtexts = mp->m_sb.sb_rextents; 373 int i; 374 375 do_div(dblocks, 100); 376 do_div(rtexts, 100); 377 378 for (i = 0; i < XFS_LOWSP_MAX; i++) { 379 mp->m_low_space[i] = dblocks * (i + 1); 380 mp->m_low_rtexts[i] = rtexts * (i + 1); 381 } 382 } 383 384 /* 385 * Check that the data (and log if separate) is an ok size. 386 */ 387 STATIC int 388 xfs_check_sizes( 389 struct xfs_mount *mp) 390 { 391 struct xfs_buf *bp; 392 xfs_daddr_t d; 393 int error; 394 395 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 396 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 397 xfs_warn(mp, "filesystem size mismatch detected"); 398 return -EFBIG; 399 } 400 error = xfs_buf_read_uncached(mp->m_ddev_targp, 401 d - XFS_FSS_TO_BB(mp, 1), 402 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 403 if (error) { 404 xfs_warn(mp, "last sector read failed"); 405 return error; 406 } 407 xfs_buf_relse(bp); 408 409 if (mp->m_logdev_targp == mp->m_ddev_targp) 410 return 0; 411 412 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 413 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 414 xfs_warn(mp, "log size mismatch detected"); 415 return -EFBIG; 416 } 417 error = xfs_buf_read_uncached(mp->m_logdev_targp, 418 d - XFS_FSB_TO_BB(mp, 1), 419 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 420 if (error) { 421 xfs_warn(mp, "log device read failed"); 422 return error; 423 } 424 xfs_buf_relse(bp); 425 return 0; 426 } 427 428 /* 429 * Clear the quotaflags in memory and in the superblock. 430 */ 431 int 432 xfs_mount_reset_sbqflags( 433 struct xfs_mount *mp) 434 { 435 mp->m_qflags = 0; 436 437 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 438 if (mp->m_sb.sb_qflags == 0) 439 return 0; 440 spin_lock(&mp->m_sb_lock); 441 mp->m_sb.sb_qflags = 0; 442 spin_unlock(&mp->m_sb_lock); 443 444 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 445 return 0; 446 447 return xfs_sync_sb(mp, false); 448 } 449 450 uint64_t 451 xfs_default_resblks(xfs_mount_t *mp) 452 { 453 uint64_t resblks; 454 455 /* 456 * We default to 5% or 8192 fsbs of space reserved, whichever is 457 * smaller. This is intended to cover concurrent allocation 458 * transactions when we initially hit enospc. These each require a 4 459 * block reservation. Hence by default we cover roughly 2000 concurrent 460 * allocation reservations. 461 */ 462 resblks = mp->m_sb.sb_dblocks; 463 do_div(resblks, 20); 464 resblks = min_t(uint64_t, resblks, 8192); 465 return resblks; 466 } 467 468 /* Ensure the summary counts are correct. */ 469 STATIC int 470 xfs_check_summary_counts( 471 struct xfs_mount *mp) 472 { 473 int error = 0; 474 475 /* 476 * The AG0 superblock verifier rejects in-progress filesystems, 477 * so we should never see the flag set this far into mounting. 478 */ 479 if (mp->m_sb.sb_inprogress) { 480 xfs_err(mp, "sb_inprogress set after log recovery??"); 481 WARN_ON(1); 482 return -EFSCORRUPTED; 483 } 484 485 /* 486 * Now the log is mounted, we know if it was an unclean shutdown or 487 * not. If it was, with the first phase of recovery has completed, we 488 * have consistent AG blocks on disk. We have not recovered EFIs yet, 489 * but they are recovered transactionally in the second recovery phase 490 * later. 491 * 492 * If the log was clean when we mounted, we can check the summary 493 * counters. If any of them are obviously incorrect, we can recompute 494 * them from the AGF headers in the next step. 495 */ 496 if (xfs_is_clean(mp) && 497 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || 498 !xfs_verify_icount(mp, mp->m_sb.sb_icount) || 499 mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) 500 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 501 502 /* 503 * We can safely re-initialise incore superblock counters from the 504 * per-ag data. These may not be correct if the filesystem was not 505 * cleanly unmounted, so we waited for recovery to finish before doing 506 * this. 507 * 508 * If the filesystem was cleanly unmounted or the previous check did 509 * not flag anything weird, then we can trust the values in the 510 * superblock to be correct and we don't need to do anything here. 511 * Otherwise, recalculate the summary counters. 512 */ 513 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) || 514 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) { 515 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); 516 if (error) 517 return error; 518 } 519 520 /* 521 * Older kernels misused sb_frextents to reflect both incore 522 * reservations made by running transactions and the actual count of 523 * free rt extents in the ondisk metadata. Transactions committed 524 * during runtime can therefore contain a superblock update that 525 * undercounts the number of free rt extents tracked in the rt bitmap. 526 * A clean unmount record will have the correct frextents value since 527 * there can be no other transactions running at that point. 528 * 529 * If we're mounting the rt volume after recovering the log, recompute 530 * frextents from the rtbitmap file to fix the inconsistency. 531 */ 532 if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) { 533 error = xfs_rtalloc_reinit_frextents(mp); 534 if (error) 535 return error; 536 } 537 538 return 0; 539 } 540 541 static void 542 xfs_unmount_check( 543 struct xfs_mount *mp) 544 { 545 if (xfs_is_shutdown(mp)) 546 return; 547 548 if (percpu_counter_sum(&mp->m_ifree) > 549 percpu_counter_sum(&mp->m_icount)) { 550 xfs_alert(mp, "ifree/icount mismatch at unmount"); 551 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 552 } 553 } 554 555 /* 556 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and 557 * internal inode structures can be sitting in the CIL and AIL at this point, 558 * so we need to unpin them, write them back and/or reclaim them before unmount 559 * can proceed. In other words, callers are required to have inactivated all 560 * inodes. 561 * 562 * An inode cluster that has been freed can have its buffer still pinned in 563 * memory because the transaction is still sitting in a iclog. The stale inodes 564 * on that buffer will be pinned to the buffer until the transaction hits the 565 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and 566 * may never see the pinned buffer, so nothing will push out the iclog and 567 * unpin the buffer. 568 * 569 * Hence we need to force the log to unpin everything first. However, log 570 * forces don't wait for the discards they issue to complete, so we have to 571 * explicitly wait for them to complete here as well. 572 * 573 * Then we can tell the world we are unmounting so that error handling knows 574 * that the filesystem is going away and we should error out anything that we 575 * have been retrying in the background. This will prevent never-ending 576 * retries in AIL pushing from hanging the unmount. 577 * 578 * Finally, we can push the AIL to clean all the remaining dirty objects, then 579 * reclaim the remaining inodes that are still in memory at this point in time. 580 */ 581 static void 582 xfs_unmount_flush_inodes( 583 struct xfs_mount *mp) 584 { 585 xfs_log_force(mp, XFS_LOG_SYNC); 586 xfs_extent_busy_wait_all(mp); 587 flush_workqueue(xfs_discard_wq); 588 589 set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate); 590 591 xfs_ail_push_all_sync(mp->m_ail); 592 xfs_inodegc_stop(mp); 593 cancel_delayed_work_sync(&mp->m_reclaim_work); 594 xfs_reclaim_inodes(mp); 595 xfs_health_unmount(mp); 596 } 597 598 static void 599 xfs_mount_setup_inode_geom( 600 struct xfs_mount *mp) 601 { 602 struct xfs_ino_geometry *igeo = M_IGEO(mp); 603 604 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp); 605 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp)); 606 607 xfs_ialloc_setup_geometry(mp); 608 } 609 610 /* Compute maximum possible height for per-AG btree types for this fs. */ 611 static inline void 612 xfs_agbtree_compute_maxlevels( 613 struct xfs_mount *mp) 614 { 615 unsigned int levels; 616 617 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels); 618 levels = max(levels, mp->m_rmap_maxlevels); 619 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels); 620 } 621 622 /* 623 * This function does the following on an initial mount of a file system: 624 * - reads the superblock from disk and init the mount struct 625 * - if we're a 32-bit kernel, do a size check on the superblock 626 * so we don't mount terabyte filesystems 627 * - init mount struct realtime fields 628 * - allocate inode hash table for fs 629 * - init directory manager 630 * - perform recovery and init the log manager 631 */ 632 int 633 xfs_mountfs( 634 struct xfs_mount *mp) 635 { 636 struct xfs_sb *sbp = &(mp->m_sb); 637 struct xfs_inode *rip; 638 struct xfs_ino_geometry *igeo = M_IGEO(mp); 639 uint64_t resblks; 640 uint quotamount = 0; 641 uint quotaflags = 0; 642 int error = 0; 643 644 xfs_sb_mount_common(mp, sbp); 645 646 /* 647 * Check for a mismatched features2 values. Older kernels read & wrote 648 * into the wrong sb offset for sb_features2 on some platforms due to 649 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 650 * which made older superblock reading/writing routines swap it as a 651 * 64-bit value. 652 * 653 * For backwards compatibility, we make both slots equal. 654 * 655 * If we detect a mismatched field, we OR the set bits into the existing 656 * features2 field in case it has already been modified; we don't want 657 * to lose any features. We then update the bad location with the ORed 658 * value so that older kernels will see any features2 flags. The 659 * superblock writeback code ensures the new sb_features2 is copied to 660 * sb_bad_features2 before it is logged or written to disk. 661 */ 662 if (xfs_sb_has_mismatched_features2(sbp)) { 663 xfs_warn(mp, "correcting sb_features alignment problem"); 664 sbp->sb_features2 |= sbp->sb_bad_features2; 665 mp->m_update_sb = true; 666 } 667 668 669 /* always use v2 inodes by default now */ 670 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 671 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 672 mp->m_features |= XFS_FEAT_NLINK; 673 mp->m_update_sb = true; 674 } 675 676 /* 677 * If we were given new sunit/swidth options, do some basic validation 678 * checks and convert the incore dalign and swidth values to the 679 * same units (FSB) that everything else uses. This /must/ happen 680 * before computing the inode geometry. 681 */ 682 error = xfs_validate_new_dalign(mp); 683 if (error) 684 goto out; 685 686 xfs_alloc_compute_maxlevels(mp); 687 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 688 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 689 xfs_mount_setup_inode_geom(mp); 690 xfs_rmapbt_compute_maxlevels(mp); 691 xfs_refcountbt_compute_maxlevels(mp); 692 693 xfs_agbtree_compute_maxlevels(mp); 694 695 /* 696 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks 697 * is NOT aligned turn off m_dalign since allocator alignment is within 698 * an ag, therefore ag has to be aligned at stripe boundary. Note that 699 * we must compute the free space and rmap btree geometry before doing 700 * this. 701 */ 702 error = xfs_update_alignment(mp); 703 if (error) 704 goto out; 705 706 /* enable fail_at_unmount as default */ 707 mp->m_fail_unmount = true; 708 709 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, 710 NULL, mp->m_super->s_id); 711 if (error) 712 goto out; 713 714 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 715 &mp->m_kobj, "stats"); 716 if (error) 717 goto out_remove_sysfs; 718 719 error = xfs_error_sysfs_init(mp); 720 if (error) 721 goto out_del_stats; 722 723 error = xfs_errortag_init(mp); 724 if (error) 725 goto out_remove_error_sysfs; 726 727 error = xfs_uuid_mount(mp); 728 if (error) 729 goto out_remove_errortag; 730 731 /* 732 * Update the preferred write size based on the information from the 733 * on-disk superblock. 734 */ 735 mp->m_allocsize_log = 736 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log); 737 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog); 738 739 /* set the low space thresholds for dynamic preallocation */ 740 xfs_set_low_space_thresholds(mp); 741 742 /* 743 * If enabled, sparse inode chunk alignment is expected to match the 744 * cluster size. Full inode chunk alignment must match the chunk size, 745 * but that is checked on sb read verification... 746 */ 747 if (xfs_has_sparseinodes(mp) && 748 mp->m_sb.sb_spino_align != 749 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) { 750 xfs_warn(mp, 751 "Sparse inode block alignment (%u) must match cluster size (%llu).", 752 mp->m_sb.sb_spino_align, 753 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)); 754 error = -EINVAL; 755 goto out_remove_uuid; 756 } 757 758 /* 759 * Check that the data (and log if separate) is an ok size. 760 */ 761 error = xfs_check_sizes(mp); 762 if (error) 763 goto out_remove_uuid; 764 765 /* 766 * Initialize realtime fields in the mount structure 767 */ 768 error = xfs_rtmount_init(mp); 769 if (error) { 770 xfs_warn(mp, "RT mount failed"); 771 goto out_remove_uuid; 772 } 773 774 /* 775 * Copies the low order bits of the timestamp and the randomly 776 * set "sequence" number out of a UUID. 777 */ 778 mp->m_fixedfsid[0] = 779 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 780 get_unaligned_be16(&sbp->sb_uuid.b[4]); 781 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 782 783 error = xfs_da_mount(mp); 784 if (error) { 785 xfs_warn(mp, "Failed dir/attr init: %d", error); 786 goto out_remove_uuid; 787 } 788 789 /* 790 * Initialize the precomputed transaction reservations values. 791 */ 792 xfs_trans_init(mp); 793 794 /* 795 * Allocate and initialize the per-ag data. 796 */ 797 error = xfs_initialize_perag(mp, sbp->sb_agcount, mp->m_sb.sb_dblocks, 798 &mp->m_maxagi); 799 if (error) { 800 xfs_warn(mp, "Failed per-ag init: %d", error); 801 goto out_free_dir; 802 } 803 804 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) { 805 xfs_warn(mp, "no log defined"); 806 error = -EFSCORRUPTED; 807 goto out_free_perag; 808 } 809 810 error = xfs_inodegc_register_shrinker(mp); 811 if (error) 812 goto out_fail_wait; 813 814 /* 815 * Log's mount-time initialization. The first part of recovery can place 816 * some items on the AIL, to be handled when recovery is finished or 817 * cancelled. 818 */ 819 error = xfs_log_mount(mp, mp->m_logdev_targp, 820 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 821 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 822 if (error) { 823 xfs_warn(mp, "log mount failed"); 824 goto out_inodegc_shrinker; 825 } 826 827 /* Enable background inode inactivation workers. */ 828 xfs_inodegc_start(mp); 829 xfs_blockgc_start(mp); 830 831 /* 832 * Now that we've recovered any pending superblock feature bit 833 * additions, we can finish setting up the attr2 behaviour for the 834 * mount. The noattr2 option overrides the superblock flag, so only 835 * check the superblock feature flag if the mount option is not set. 836 */ 837 if (xfs_has_noattr2(mp)) { 838 mp->m_features &= ~XFS_FEAT_ATTR2; 839 } else if (!xfs_has_attr2(mp) && 840 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) { 841 mp->m_features |= XFS_FEAT_ATTR2; 842 } 843 844 /* 845 * Get and sanity-check the root inode. 846 * Save the pointer to it in the mount structure. 847 */ 848 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, 849 XFS_ILOCK_EXCL, &rip); 850 if (error) { 851 xfs_warn(mp, 852 "Failed to read root inode 0x%llx, error %d", 853 sbp->sb_rootino, -error); 854 goto out_log_dealloc; 855 } 856 857 ASSERT(rip != NULL); 858 859 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) { 860 xfs_warn(mp, "corrupted root inode %llu: not a directory", 861 (unsigned long long)rip->i_ino); 862 xfs_iunlock(rip, XFS_ILOCK_EXCL); 863 error = -EFSCORRUPTED; 864 goto out_rele_rip; 865 } 866 mp->m_rootip = rip; /* save it */ 867 868 xfs_iunlock(rip, XFS_ILOCK_EXCL); 869 870 /* 871 * Initialize realtime inode pointers in the mount structure 872 */ 873 error = xfs_rtmount_inodes(mp); 874 if (error) { 875 /* 876 * Free up the root inode. 877 */ 878 xfs_warn(mp, "failed to read RT inodes"); 879 goto out_rele_rip; 880 } 881 882 /* Make sure the summary counts are ok. */ 883 error = xfs_check_summary_counts(mp); 884 if (error) 885 goto out_rtunmount; 886 887 /* 888 * If this is a read-only mount defer the superblock updates until 889 * the next remount into writeable mode. Otherwise we would never 890 * perform the update e.g. for the root filesystem. 891 */ 892 if (mp->m_update_sb && !xfs_is_readonly(mp)) { 893 error = xfs_sync_sb(mp, false); 894 if (error) { 895 xfs_warn(mp, "failed to write sb changes"); 896 goto out_rtunmount; 897 } 898 } 899 900 /* 901 * Initialise the XFS quota management subsystem for this mount 902 */ 903 if (XFS_IS_QUOTA_ON(mp)) { 904 error = xfs_qm_newmount(mp, "amount, "aflags); 905 if (error) 906 goto out_rtunmount; 907 } else { 908 /* 909 * If a file system had quotas running earlier, but decided to 910 * mount without -o uquota/pquota/gquota options, revoke the 911 * quotachecked license. 912 */ 913 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 914 xfs_notice(mp, "resetting quota flags"); 915 error = xfs_mount_reset_sbqflags(mp); 916 if (error) 917 goto out_rtunmount; 918 } 919 } 920 921 /* 922 * Finish recovering the file system. This part needed to be delayed 923 * until after the root and real-time bitmap inodes were consistently 924 * read in. Temporarily create per-AG space reservations for metadata 925 * btree shape changes because space freeing transactions (for inode 926 * inactivation) require the per-AG reservation in lieu of reserving 927 * blocks. 928 */ 929 error = xfs_fs_reserve_ag_blocks(mp); 930 if (error && error == -ENOSPC) 931 xfs_warn(mp, 932 "ENOSPC reserving per-AG metadata pool, log recovery may fail."); 933 error = xfs_log_mount_finish(mp); 934 xfs_fs_unreserve_ag_blocks(mp); 935 if (error) { 936 xfs_warn(mp, "log mount finish failed"); 937 goto out_rtunmount; 938 } 939 940 /* 941 * Now the log is fully replayed, we can transition to full read-only 942 * mode for read-only mounts. This will sync all the metadata and clean 943 * the log so that the recovery we just performed does not have to be 944 * replayed again on the next mount. 945 * 946 * We use the same quiesce mechanism as the rw->ro remount, as they are 947 * semantically identical operations. 948 */ 949 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp)) 950 xfs_log_clean(mp); 951 952 /* 953 * Complete the quota initialisation, post-log-replay component. 954 */ 955 if (quotamount) { 956 ASSERT(mp->m_qflags == 0); 957 mp->m_qflags = quotaflags; 958 959 xfs_qm_mount_quotas(mp); 960 } 961 962 /* 963 * Now we are mounted, reserve a small amount of unused space for 964 * privileged transactions. This is needed so that transaction 965 * space required for critical operations can dip into this pool 966 * when at ENOSPC. This is needed for operations like create with 967 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 968 * are not allowed to use this reserved space. 969 * 970 * This may drive us straight to ENOSPC on mount, but that implies 971 * we were already there on the last unmount. Warn if this occurs. 972 */ 973 if (!xfs_is_readonly(mp)) { 974 resblks = xfs_default_resblks(mp); 975 error = xfs_reserve_blocks(mp, &resblks, NULL); 976 if (error) 977 xfs_warn(mp, 978 "Unable to allocate reserve blocks. Continuing without reserve pool."); 979 980 /* Reserve AG blocks for future btree expansion. */ 981 error = xfs_fs_reserve_ag_blocks(mp); 982 if (error && error != -ENOSPC) 983 goto out_agresv; 984 } 985 986 return 0; 987 988 out_agresv: 989 xfs_fs_unreserve_ag_blocks(mp); 990 xfs_qm_unmount_quotas(mp); 991 out_rtunmount: 992 xfs_rtunmount_inodes(mp); 993 out_rele_rip: 994 xfs_irele(rip); 995 /* Clean out dquots that might be in memory after quotacheck. */ 996 xfs_qm_unmount(mp); 997 998 /* 999 * Inactivate all inodes that might still be in memory after a log 1000 * intent recovery failure so that reclaim can free them. Metadata 1001 * inodes and the root directory shouldn't need inactivation, but the 1002 * mount failed for some reason, so pull down all the state and flee. 1003 */ 1004 xfs_inodegc_flush(mp); 1005 1006 /* 1007 * Flush all inode reclamation work and flush the log. 1008 * We have to do this /after/ rtunmount and qm_unmount because those 1009 * two will have scheduled delayed reclaim for the rt/quota inodes. 1010 * 1011 * This is slightly different from the unmountfs call sequence 1012 * because we could be tearing down a partially set up mount. In 1013 * particular, if log_mount_finish fails we bail out without calling 1014 * qm_unmount_quotas and therefore rely on qm_unmount to release the 1015 * quota inodes. 1016 */ 1017 xfs_unmount_flush_inodes(mp); 1018 out_log_dealloc: 1019 xfs_log_mount_cancel(mp); 1020 out_inodegc_shrinker: 1021 unregister_shrinker(&mp->m_inodegc_shrinker); 1022 out_fail_wait: 1023 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1024 xfs_buftarg_drain(mp->m_logdev_targp); 1025 xfs_buftarg_drain(mp->m_ddev_targp); 1026 out_free_perag: 1027 xfs_free_perag(mp); 1028 out_free_dir: 1029 xfs_da_unmount(mp); 1030 out_remove_uuid: 1031 xfs_uuid_unmount(mp); 1032 out_remove_errortag: 1033 xfs_errortag_del(mp); 1034 out_remove_error_sysfs: 1035 xfs_error_sysfs_del(mp); 1036 out_del_stats: 1037 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1038 out_remove_sysfs: 1039 xfs_sysfs_del(&mp->m_kobj); 1040 out: 1041 return error; 1042 } 1043 1044 /* 1045 * This flushes out the inodes,dquots and the superblock, unmounts the 1046 * log and makes sure that incore structures are freed. 1047 */ 1048 void 1049 xfs_unmountfs( 1050 struct xfs_mount *mp) 1051 { 1052 uint64_t resblks; 1053 int error; 1054 1055 /* 1056 * Perform all on-disk metadata updates required to inactivate inodes 1057 * that the VFS evicted earlier in the unmount process. Freeing inodes 1058 * and discarding CoW fork preallocations can cause shape changes to 1059 * the free inode and refcount btrees, respectively, so we must finish 1060 * this before we discard the metadata space reservations. Metadata 1061 * inodes and the root directory do not require inactivation. 1062 */ 1063 xfs_inodegc_flush(mp); 1064 1065 xfs_blockgc_stop(mp); 1066 xfs_fs_unreserve_ag_blocks(mp); 1067 xfs_qm_unmount_quotas(mp); 1068 xfs_rtunmount_inodes(mp); 1069 xfs_irele(mp->m_rootip); 1070 1071 xfs_unmount_flush_inodes(mp); 1072 1073 xfs_qm_unmount(mp); 1074 1075 /* 1076 * Unreserve any blocks we have so that when we unmount we don't account 1077 * the reserved free space as used. This is really only necessary for 1078 * lazy superblock counting because it trusts the incore superblock 1079 * counters to be absolutely correct on clean unmount. 1080 * 1081 * We don't bother correcting this elsewhere for lazy superblock 1082 * counting because on mount of an unclean filesystem we reconstruct the 1083 * correct counter value and this is irrelevant. 1084 * 1085 * For non-lazy counter filesystems, this doesn't matter at all because 1086 * we only every apply deltas to the superblock and hence the incore 1087 * value does not matter.... 1088 */ 1089 resblks = 0; 1090 error = xfs_reserve_blocks(mp, &resblks, NULL); 1091 if (error) 1092 xfs_warn(mp, "Unable to free reserved block pool. " 1093 "Freespace may not be correct on next mount."); 1094 xfs_unmount_check(mp); 1095 1096 xfs_log_unmount(mp); 1097 xfs_da_unmount(mp); 1098 xfs_uuid_unmount(mp); 1099 1100 #if defined(DEBUG) 1101 xfs_errortag_clearall(mp); 1102 #endif 1103 unregister_shrinker(&mp->m_inodegc_shrinker); 1104 xfs_free_perag(mp); 1105 1106 xfs_errortag_del(mp); 1107 xfs_error_sysfs_del(mp); 1108 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1109 xfs_sysfs_del(&mp->m_kobj); 1110 } 1111 1112 /* 1113 * Determine whether modifications can proceed. The caller specifies the minimum 1114 * freeze level for which modifications should not be allowed. This allows 1115 * certain operations to proceed while the freeze sequence is in progress, if 1116 * necessary. 1117 */ 1118 bool 1119 xfs_fs_writable( 1120 struct xfs_mount *mp, 1121 int level) 1122 { 1123 ASSERT(level > SB_UNFROZEN); 1124 if ((mp->m_super->s_writers.frozen >= level) || 1125 xfs_is_shutdown(mp) || xfs_is_readonly(mp)) 1126 return false; 1127 1128 return true; 1129 } 1130 1131 /* Adjust m_fdblocks or m_frextents. */ 1132 int 1133 xfs_mod_freecounter( 1134 struct xfs_mount *mp, 1135 struct percpu_counter *counter, 1136 int64_t delta, 1137 bool rsvd) 1138 { 1139 int64_t lcounter; 1140 long long res_used; 1141 uint64_t set_aside = 0; 1142 s32 batch; 1143 bool has_resv_pool; 1144 1145 ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents); 1146 has_resv_pool = (counter == &mp->m_fdblocks); 1147 if (rsvd) 1148 ASSERT(has_resv_pool); 1149 1150 if (delta > 0) { 1151 /* 1152 * If the reserve pool is depleted, put blocks back into it 1153 * first. Most of the time the pool is full. 1154 */ 1155 if (likely(!has_resv_pool || 1156 mp->m_resblks == mp->m_resblks_avail)) { 1157 percpu_counter_add(counter, delta); 1158 return 0; 1159 } 1160 1161 spin_lock(&mp->m_sb_lock); 1162 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1163 1164 if (res_used > delta) { 1165 mp->m_resblks_avail += delta; 1166 } else { 1167 delta -= res_used; 1168 mp->m_resblks_avail = mp->m_resblks; 1169 percpu_counter_add(counter, delta); 1170 } 1171 spin_unlock(&mp->m_sb_lock); 1172 return 0; 1173 } 1174 1175 /* 1176 * Taking blocks away, need to be more accurate the closer we 1177 * are to zero. 1178 * 1179 * If the counter has a value of less than 2 * max batch size, 1180 * then make everything serialise as we are real close to 1181 * ENOSPC. 1182 */ 1183 if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH, 1184 XFS_FDBLOCKS_BATCH) < 0) 1185 batch = 1; 1186 else 1187 batch = XFS_FDBLOCKS_BATCH; 1188 1189 /* 1190 * Set aside allocbt blocks because these blocks are tracked as free 1191 * space but not available for allocation. Technically this means that a 1192 * single reservation cannot consume all remaining free space, but the 1193 * ratio of allocbt blocks to usable free blocks should be rather small. 1194 * The tradeoff without this is that filesystems that maintain high 1195 * perag block reservations can over reserve physical block availability 1196 * and fail physical allocation, which leads to much more serious 1197 * problems (i.e. transaction abort, pagecache discards, etc.) than 1198 * slightly premature -ENOSPC. 1199 */ 1200 if (has_resv_pool) 1201 set_aside = xfs_fdblocks_unavailable(mp); 1202 percpu_counter_add_batch(counter, delta, batch); 1203 if (__percpu_counter_compare(counter, set_aside, 1204 XFS_FDBLOCKS_BATCH) >= 0) { 1205 /* we had space! */ 1206 return 0; 1207 } 1208 1209 /* 1210 * lock up the sb for dipping into reserves before releasing the space 1211 * that took us to ENOSPC. 1212 */ 1213 spin_lock(&mp->m_sb_lock); 1214 percpu_counter_add(counter, -delta); 1215 if (!has_resv_pool || !rsvd) 1216 goto fdblocks_enospc; 1217 1218 lcounter = (long long)mp->m_resblks_avail + delta; 1219 if (lcounter >= 0) { 1220 mp->m_resblks_avail = lcounter; 1221 spin_unlock(&mp->m_sb_lock); 1222 return 0; 1223 } 1224 xfs_warn_once(mp, 1225 "Reserve blocks depleted! Consider increasing reserve pool size."); 1226 1227 fdblocks_enospc: 1228 spin_unlock(&mp->m_sb_lock); 1229 return -ENOSPC; 1230 } 1231 1232 /* 1233 * Used to free the superblock along various error paths. 1234 */ 1235 void 1236 xfs_freesb( 1237 struct xfs_mount *mp) 1238 { 1239 struct xfs_buf *bp = mp->m_sb_bp; 1240 1241 xfs_buf_lock(bp); 1242 mp->m_sb_bp = NULL; 1243 xfs_buf_relse(bp); 1244 } 1245 1246 /* 1247 * If the underlying (data/log/rt) device is readonly, there are some 1248 * operations that cannot proceed. 1249 */ 1250 int 1251 xfs_dev_is_read_only( 1252 struct xfs_mount *mp, 1253 char *message) 1254 { 1255 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1256 xfs_readonly_buftarg(mp->m_logdev_targp) || 1257 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1258 xfs_notice(mp, "%s required on read-only device.", message); 1259 xfs_notice(mp, "write access unavailable, cannot proceed."); 1260 return -EROFS; 1261 } 1262 return 0; 1263 } 1264 1265 /* Force the summary counters to be recalculated at next mount. */ 1266 void 1267 xfs_force_summary_recalc( 1268 struct xfs_mount *mp) 1269 { 1270 if (!xfs_has_lazysbcount(mp)) 1271 return; 1272 1273 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 1274 } 1275 1276 /* 1277 * Enable a log incompat feature flag in the primary superblock. The caller 1278 * cannot have any other transactions in progress. 1279 */ 1280 int 1281 xfs_add_incompat_log_feature( 1282 struct xfs_mount *mp, 1283 uint32_t feature) 1284 { 1285 struct xfs_dsb *dsb; 1286 int error; 1287 1288 ASSERT(hweight32(feature) == 1); 1289 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 1290 1291 /* 1292 * Force the log to disk and kick the background AIL thread to reduce 1293 * the chances that the bwrite will stall waiting for the AIL to unpin 1294 * the primary superblock buffer. This isn't a data integrity 1295 * operation, so we don't need a synchronous push. 1296 */ 1297 error = xfs_log_force(mp, XFS_LOG_SYNC); 1298 if (error) 1299 return error; 1300 xfs_ail_push_all(mp->m_ail); 1301 1302 /* 1303 * Lock the primary superblock buffer to serialize all callers that 1304 * are trying to set feature bits. 1305 */ 1306 xfs_buf_lock(mp->m_sb_bp); 1307 xfs_buf_hold(mp->m_sb_bp); 1308 1309 if (xfs_is_shutdown(mp)) { 1310 error = -EIO; 1311 goto rele; 1312 } 1313 1314 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature)) 1315 goto rele; 1316 1317 /* 1318 * Write the primary superblock to disk immediately, because we need 1319 * the log_incompat bit to be set in the primary super now to protect 1320 * the log items that we're going to commit later. 1321 */ 1322 dsb = mp->m_sb_bp->b_addr; 1323 xfs_sb_to_disk(dsb, &mp->m_sb); 1324 dsb->sb_features_log_incompat |= cpu_to_be32(feature); 1325 error = xfs_bwrite(mp->m_sb_bp); 1326 if (error) 1327 goto shutdown; 1328 1329 /* 1330 * Add the feature bits to the incore superblock before we unlock the 1331 * buffer. 1332 */ 1333 xfs_sb_add_incompat_log_features(&mp->m_sb, feature); 1334 xfs_buf_relse(mp->m_sb_bp); 1335 1336 /* Log the superblock to disk. */ 1337 return xfs_sync_sb(mp, false); 1338 shutdown: 1339 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1340 rele: 1341 xfs_buf_relse(mp->m_sb_bp); 1342 return error; 1343 } 1344 1345 /* 1346 * Clear all the log incompat flags from the superblock. 1347 * 1348 * The caller cannot be in a transaction, must ensure that the log does not 1349 * contain any log items protected by any log incompat bit, and must ensure 1350 * that there are no other threads that depend on the state of the log incompat 1351 * feature flags in the primary super. 1352 * 1353 * Returns true if the superblock is dirty. 1354 */ 1355 bool 1356 xfs_clear_incompat_log_features( 1357 struct xfs_mount *mp) 1358 { 1359 bool ret = false; 1360 1361 if (!xfs_has_crc(mp) || 1362 !xfs_sb_has_incompat_log_feature(&mp->m_sb, 1363 XFS_SB_FEAT_INCOMPAT_LOG_ALL) || 1364 xfs_is_shutdown(mp)) 1365 return false; 1366 1367 /* 1368 * Update the incore superblock. We synchronize on the primary super 1369 * buffer lock to be consistent with the add function, though at least 1370 * in theory this shouldn't be necessary. 1371 */ 1372 xfs_buf_lock(mp->m_sb_bp); 1373 xfs_buf_hold(mp->m_sb_bp); 1374 1375 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, 1376 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) { 1377 xfs_sb_remove_incompat_log_features(&mp->m_sb); 1378 ret = true; 1379 } 1380 1381 xfs_buf_relse(mp->m_sb_bp); 1382 return ret; 1383 } 1384 1385 /* 1386 * Update the in-core delayed block counter. 1387 * 1388 * We prefer to update the counter without having to take a spinlock for every 1389 * counter update (i.e. batching). Each change to delayed allocation 1390 * reservations can change can easily exceed the default percpu counter 1391 * batching, so we use a larger batch factor here. 1392 * 1393 * Note that we don't currently have any callers requiring fast summation 1394 * (e.g. percpu_counter_read) so we can use a big batch value here. 1395 */ 1396 #define XFS_DELALLOC_BATCH (4096) 1397 void 1398 xfs_mod_delalloc( 1399 struct xfs_mount *mp, 1400 int64_t delta) 1401 { 1402 percpu_counter_add_batch(&mp->m_delalloc_blks, delta, 1403 XFS_DELALLOC_BATCH); 1404 } 1405