1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_sb.h" 26 #include "xfs_mount.h" 27 #include "xfs_da_format.h" 28 #include "xfs_da_btree.h" 29 #include "xfs_inode.h" 30 #include "xfs_dir2.h" 31 #include "xfs_ialloc.h" 32 #include "xfs_alloc.h" 33 #include "xfs_rtalloc.h" 34 #include "xfs_bmap.h" 35 #include "xfs_trans.h" 36 #include "xfs_trans_priv.h" 37 #include "xfs_log.h" 38 #include "xfs_error.h" 39 #include "xfs_quota.h" 40 #include "xfs_fsops.h" 41 #include "xfs_trace.h" 42 #include "xfs_icache.h" 43 #include "xfs_sysfs.h" 44 45 46 #ifdef HAVE_PERCPU_SB 47 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, 48 int); 49 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t, 50 int); 51 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); 52 #else 53 54 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0) 55 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0) 56 #endif 57 58 static DEFINE_MUTEX(xfs_uuid_table_mutex); 59 static int xfs_uuid_table_size; 60 static uuid_t *xfs_uuid_table; 61 62 /* 63 * See if the UUID is unique among mounted XFS filesystems. 64 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 65 */ 66 STATIC int 67 xfs_uuid_mount( 68 struct xfs_mount *mp) 69 { 70 uuid_t *uuid = &mp->m_sb.sb_uuid; 71 int hole, i; 72 73 if (mp->m_flags & XFS_MOUNT_NOUUID) 74 return 0; 75 76 if (uuid_is_nil(uuid)) { 77 xfs_warn(mp, "Filesystem has nil UUID - can't mount"); 78 return -EINVAL; 79 } 80 81 mutex_lock(&xfs_uuid_table_mutex); 82 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 83 if (uuid_is_nil(&xfs_uuid_table[i])) { 84 hole = i; 85 continue; 86 } 87 if (uuid_equal(uuid, &xfs_uuid_table[i])) 88 goto out_duplicate; 89 } 90 91 if (hole < 0) { 92 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 93 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 94 xfs_uuid_table_size * sizeof(*xfs_uuid_table), 95 KM_SLEEP); 96 hole = xfs_uuid_table_size++; 97 } 98 xfs_uuid_table[hole] = *uuid; 99 mutex_unlock(&xfs_uuid_table_mutex); 100 101 return 0; 102 103 out_duplicate: 104 mutex_unlock(&xfs_uuid_table_mutex); 105 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 106 return -EINVAL; 107 } 108 109 STATIC void 110 xfs_uuid_unmount( 111 struct xfs_mount *mp) 112 { 113 uuid_t *uuid = &mp->m_sb.sb_uuid; 114 int i; 115 116 if (mp->m_flags & XFS_MOUNT_NOUUID) 117 return; 118 119 mutex_lock(&xfs_uuid_table_mutex); 120 for (i = 0; i < xfs_uuid_table_size; i++) { 121 if (uuid_is_nil(&xfs_uuid_table[i])) 122 continue; 123 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 124 continue; 125 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 126 break; 127 } 128 ASSERT(i < xfs_uuid_table_size); 129 mutex_unlock(&xfs_uuid_table_mutex); 130 } 131 132 133 STATIC void 134 __xfs_free_perag( 135 struct rcu_head *head) 136 { 137 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 138 139 ASSERT(atomic_read(&pag->pag_ref) == 0); 140 kmem_free(pag); 141 } 142 143 /* 144 * Free up the per-ag resources associated with the mount structure. 145 */ 146 STATIC void 147 xfs_free_perag( 148 xfs_mount_t *mp) 149 { 150 xfs_agnumber_t agno; 151 struct xfs_perag *pag; 152 153 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 154 spin_lock(&mp->m_perag_lock); 155 pag = radix_tree_delete(&mp->m_perag_tree, agno); 156 spin_unlock(&mp->m_perag_lock); 157 ASSERT(pag); 158 ASSERT(atomic_read(&pag->pag_ref) == 0); 159 call_rcu(&pag->rcu_head, __xfs_free_perag); 160 } 161 } 162 163 /* 164 * Check size of device based on the (data/realtime) block count. 165 * Note: this check is used by the growfs code as well as mount. 166 */ 167 int 168 xfs_sb_validate_fsb_count( 169 xfs_sb_t *sbp, 170 __uint64_t nblocks) 171 { 172 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 173 ASSERT(sbp->sb_blocklog >= BBSHIFT); 174 175 /* Limited by ULONG_MAX of page cache index */ 176 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 177 return -EFBIG; 178 return 0; 179 } 180 181 int 182 xfs_initialize_perag( 183 xfs_mount_t *mp, 184 xfs_agnumber_t agcount, 185 xfs_agnumber_t *maxagi) 186 { 187 xfs_agnumber_t index; 188 xfs_agnumber_t first_initialised = 0; 189 xfs_perag_t *pag; 190 xfs_agino_t agino; 191 xfs_ino_t ino; 192 xfs_sb_t *sbp = &mp->m_sb; 193 int error = -ENOMEM; 194 195 /* 196 * Walk the current per-ag tree so we don't try to initialise AGs 197 * that already exist (growfs case). Allocate and insert all the 198 * AGs we don't find ready for initialisation. 199 */ 200 for (index = 0; index < agcount; index++) { 201 pag = xfs_perag_get(mp, index); 202 if (pag) { 203 xfs_perag_put(pag); 204 continue; 205 } 206 if (!first_initialised) 207 first_initialised = index; 208 209 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 210 if (!pag) 211 goto out_unwind; 212 pag->pag_agno = index; 213 pag->pag_mount = mp; 214 spin_lock_init(&pag->pag_ici_lock); 215 mutex_init(&pag->pag_ici_reclaim_lock); 216 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 217 spin_lock_init(&pag->pag_buf_lock); 218 pag->pag_buf_tree = RB_ROOT; 219 220 if (radix_tree_preload(GFP_NOFS)) 221 goto out_unwind; 222 223 spin_lock(&mp->m_perag_lock); 224 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 225 BUG(); 226 spin_unlock(&mp->m_perag_lock); 227 radix_tree_preload_end(); 228 error = -EEXIST; 229 goto out_unwind; 230 } 231 spin_unlock(&mp->m_perag_lock); 232 radix_tree_preload_end(); 233 } 234 235 /* 236 * If we mount with the inode64 option, or no inode overflows 237 * the legacy 32-bit address space clear the inode32 option. 238 */ 239 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); 240 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 241 242 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32) 243 mp->m_flags |= XFS_MOUNT_32BITINODES; 244 else 245 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 246 247 if (mp->m_flags & XFS_MOUNT_32BITINODES) 248 index = xfs_set_inode32(mp, agcount); 249 else 250 index = xfs_set_inode64(mp, agcount); 251 252 if (maxagi) 253 *maxagi = index; 254 return 0; 255 256 out_unwind: 257 kmem_free(pag); 258 for (; index > first_initialised; index--) { 259 pag = radix_tree_delete(&mp->m_perag_tree, index); 260 kmem_free(pag); 261 } 262 return error; 263 } 264 265 /* 266 * xfs_readsb 267 * 268 * Does the initial read of the superblock. 269 */ 270 int 271 xfs_readsb( 272 struct xfs_mount *mp, 273 int flags) 274 { 275 unsigned int sector_size; 276 struct xfs_buf *bp; 277 struct xfs_sb *sbp = &mp->m_sb; 278 int error; 279 int loud = !(flags & XFS_MFSI_QUIET); 280 const struct xfs_buf_ops *buf_ops; 281 282 ASSERT(mp->m_sb_bp == NULL); 283 ASSERT(mp->m_ddev_targp != NULL); 284 285 /* 286 * For the initial read, we must guess at the sector 287 * size based on the block device. It's enough to 288 * get the sb_sectsize out of the superblock and 289 * then reread with the proper length. 290 * We don't verify it yet, because it may not be complete. 291 */ 292 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 293 buf_ops = NULL; 294 295 /* 296 * Allocate a (locked) buffer to hold the superblock. 297 * This will be kept around at all times to optimize 298 * access to the superblock. 299 */ 300 reread: 301 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 302 BTOBB(sector_size), 0, &bp, buf_ops); 303 if (error) { 304 if (loud) 305 xfs_warn(mp, "SB validate failed with error %d.", error); 306 /* bad CRC means corrupted metadata */ 307 if (error == -EFSBADCRC) 308 error = -EFSCORRUPTED; 309 return error; 310 } 311 312 /* 313 * Initialize the mount structure from the superblock. 314 */ 315 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 316 317 /* 318 * If we haven't validated the superblock, do so now before we try 319 * to check the sector size and reread the superblock appropriately. 320 */ 321 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 322 if (loud) 323 xfs_warn(mp, "Invalid superblock magic number"); 324 error = -EINVAL; 325 goto release_buf; 326 } 327 328 /* 329 * We must be able to do sector-sized and sector-aligned IO. 330 */ 331 if (sector_size > sbp->sb_sectsize) { 332 if (loud) 333 xfs_warn(mp, "device supports %u byte sectors (not %u)", 334 sector_size, sbp->sb_sectsize); 335 error = -ENOSYS; 336 goto release_buf; 337 } 338 339 if (buf_ops == NULL) { 340 /* 341 * Re-read the superblock so the buffer is correctly sized, 342 * and properly verified. 343 */ 344 xfs_buf_relse(bp); 345 sector_size = sbp->sb_sectsize; 346 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 347 goto reread; 348 } 349 350 /* Initialize per-cpu counters */ 351 xfs_icsb_reinit_counters(mp); 352 353 /* no need to be quiet anymore, so reset the buf ops */ 354 bp->b_ops = &xfs_sb_buf_ops; 355 356 mp->m_sb_bp = bp; 357 xfs_buf_unlock(bp); 358 return 0; 359 360 release_buf: 361 xfs_buf_relse(bp); 362 return error; 363 } 364 365 /* 366 * Update alignment values based on mount options and sb values 367 */ 368 STATIC int 369 xfs_update_alignment(xfs_mount_t *mp) 370 { 371 xfs_sb_t *sbp = &(mp->m_sb); 372 373 if (mp->m_dalign) { 374 /* 375 * If stripe unit and stripe width are not multiples 376 * of the fs blocksize turn off alignment. 377 */ 378 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 379 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 380 xfs_warn(mp, 381 "alignment check failed: sunit/swidth vs. blocksize(%d)", 382 sbp->sb_blocksize); 383 return -EINVAL; 384 } else { 385 /* 386 * Convert the stripe unit and width to FSBs. 387 */ 388 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 389 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 390 xfs_warn(mp, 391 "alignment check failed: sunit/swidth vs. agsize(%d)", 392 sbp->sb_agblocks); 393 return -EINVAL; 394 } else if (mp->m_dalign) { 395 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 396 } else { 397 xfs_warn(mp, 398 "alignment check failed: sunit(%d) less than bsize(%d)", 399 mp->m_dalign, sbp->sb_blocksize); 400 return -EINVAL; 401 } 402 } 403 404 /* 405 * Update superblock with new values 406 * and log changes 407 */ 408 if (xfs_sb_version_hasdalign(sbp)) { 409 if (sbp->sb_unit != mp->m_dalign) { 410 sbp->sb_unit = mp->m_dalign; 411 mp->m_update_sb = true; 412 } 413 if (sbp->sb_width != mp->m_swidth) { 414 sbp->sb_width = mp->m_swidth; 415 mp->m_update_sb = true; 416 } 417 } else { 418 xfs_warn(mp, 419 "cannot change alignment: superblock does not support data alignment"); 420 return -EINVAL; 421 } 422 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 423 xfs_sb_version_hasdalign(&mp->m_sb)) { 424 mp->m_dalign = sbp->sb_unit; 425 mp->m_swidth = sbp->sb_width; 426 } 427 428 return 0; 429 } 430 431 /* 432 * Set the maximum inode count for this filesystem 433 */ 434 STATIC void 435 xfs_set_maxicount(xfs_mount_t *mp) 436 { 437 xfs_sb_t *sbp = &(mp->m_sb); 438 __uint64_t icount; 439 440 if (sbp->sb_imax_pct) { 441 /* 442 * Make sure the maximum inode count is a multiple 443 * of the units we allocate inodes in. 444 */ 445 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 446 do_div(icount, 100); 447 do_div(icount, mp->m_ialloc_blks); 448 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 449 sbp->sb_inopblog; 450 } else { 451 mp->m_maxicount = 0; 452 } 453 } 454 455 /* 456 * Set the default minimum read and write sizes unless 457 * already specified in a mount option. 458 * We use smaller I/O sizes when the file system 459 * is being used for NFS service (wsync mount option). 460 */ 461 STATIC void 462 xfs_set_rw_sizes(xfs_mount_t *mp) 463 { 464 xfs_sb_t *sbp = &(mp->m_sb); 465 int readio_log, writeio_log; 466 467 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 468 if (mp->m_flags & XFS_MOUNT_WSYNC) { 469 readio_log = XFS_WSYNC_READIO_LOG; 470 writeio_log = XFS_WSYNC_WRITEIO_LOG; 471 } else { 472 readio_log = XFS_READIO_LOG_LARGE; 473 writeio_log = XFS_WRITEIO_LOG_LARGE; 474 } 475 } else { 476 readio_log = mp->m_readio_log; 477 writeio_log = mp->m_writeio_log; 478 } 479 480 if (sbp->sb_blocklog > readio_log) { 481 mp->m_readio_log = sbp->sb_blocklog; 482 } else { 483 mp->m_readio_log = readio_log; 484 } 485 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 486 if (sbp->sb_blocklog > writeio_log) { 487 mp->m_writeio_log = sbp->sb_blocklog; 488 } else { 489 mp->m_writeio_log = writeio_log; 490 } 491 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 492 } 493 494 /* 495 * precalculate the low space thresholds for dynamic speculative preallocation. 496 */ 497 void 498 xfs_set_low_space_thresholds( 499 struct xfs_mount *mp) 500 { 501 int i; 502 503 for (i = 0; i < XFS_LOWSP_MAX; i++) { 504 __uint64_t space = mp->m_sb.sb_dblocks; 505 506 do_div(space, 100); 507 mp->m_low_space[i] = space * (i + 1); 508 } 509 } 510 511 512 /* 513 * Set whether we're using inode alignment. 514 */ 515 STATIC void 516 xfs_set_inoalignment(xfs_mount_t *mp) 517 { 518 if (xfs_sb_version_hasalign(&mp->m_sb) && 519 mp->m_sb.sb_inoalignmt >= 520 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 521 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 522 else 523 mp->m_inoalign_mask = 0; 524 /* 525 * If we are using stripe alignment, check whether 526 * the stripe unit is a multiple of the inode alignment 527 */ 528 if (mp->m_dalign && mp->m_inoalign_mask && 529 !(mp->m_dalign & mp->m_inoalign_mask)) 530 mp->m_sinoalign = mp->m_dalign; 531 else 532 mp->m_sinoalign = 0; 533 } 534 535 /* 536 * Check that the data (and log if separate) is an ok size. 537 */ 538 STATIC int 539 xfs_check_sizes( 540 struct xfs_mount *mp) 541 { 542 struct xfs_buf *bp; 543 xfs_daddr_t d; 544 int error; 545 546 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 547 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 548 xfs_warn(mp, "filesystem size mismatch detected"); 549 return -EFBIG; 550 } 551 error = xfs_buf_read_uncached(mp->m_ddev_targp, 552 d - XFS_FSS_TO_BB(mp, 1), 553 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 554 if (error) { 555 xfs_warn(mp, "last sector read failed"); 556 return error; 557 } 558 xfs_buf_relse(bp); 559 560 if (mp->m_logdev_targp == mp->m_ddev_targp) 561 return 0; 562 563 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 564 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 565 xfs_warn(mp, "log size mismatch detected"); 566 return -EFBIG; 567 } 568 error = xfs_buf_read_uncached(mp->m_logdev_targp, 569 d - XFS_FSB_TO_BB(mp, 1), 570 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 571 if (error) { 572 xfs_warn(mp, "log device read failed"); 573 return error; 574 } 575 xfs_buf_relse(bp); 576 return 0; 577 } 578 579 /* 580 * Clear the quotaflags in memory and in the superblock. 581 */ 582 int 583 xfs_mount_reset_sbqflags( 584 struct xfs_mount *mp) 585 { 586 mp->m_qflags = 0; 587 588 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 589 if (mp->m_sb.sb_qflags == 0) 590 return 0; 591 spin_lock(&mp->m_sb_lock); 592 mp->m_sb.sb_qflags = 0; 593 spin_unlock(&mp->m_sb_lock); 594 595 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 596 return 0; 597 598 return xfs_sync_sb(mp, false); 599 } 600 601 __uint64_t 602 xfs_default_resblks(xfs_mount_t *mp) 603 { 604 __uint64_t resblks; 605 606 /* 607 * We default to 5% or 8192 fsbs of space reserved, whichever is 608 * smaller. This is intended to cover concurrent allocation 609 * transactions when we initially hit enospc. These each require a 4 610 * block reservation. Hence by default we cover roughly 2000 concurrent 611 * allocation reservations. 612 */ 613 resblks = mp->m_sb.sb_dblocks; 614 do_div(resblks, 20); 615 resblks = min_t(__uint64_t, resblks, 8192); 616 return resblks; 617 } 618 619 /* 620 * This function does the following on an initial mount of a file system: 621 * - reads the superblock from disk and init the mount struct 622 * - if we're a 32-bit kernel, do a size check on the superblock 623 * so we don't mount terabyte filesystems 624 * - init mount struct realtime fields 625 * - allocate inode hash table for fs 626 * - init directory manager 627 * - perform recovery and init the log manager 628 */ 629 int 630 xfs_mountfs( 631 xfs_mount_t *mp) 632 { 633 xfs_sb_t *sbp = &(mp->m_sb); 634 xfs_inode_t *rip; 635 __uint64_t resblks; 636 uint quotamount = 0; 637 uint quotaflags = 0; 638 int error = 0; 639 640 xfs_sb_mount_common(mp, sbp); 641 642 /* 643 * Check for a mismatched features2 values. Older kernels read & wrote 644 * into the wrong sb offset for sb_features2 on some platforms due to 645 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 646 * which made older superblock reading/writing routines swap it as a 647 * 64-bit value. 648 * 649 * For backwards compatibility, we make both slots equal. 650 * 651 * If we detect a mismatched field, we OR the set bits into the existing 652 * features2 field in case it has already been modified; we don't want 653 * to lose any features. We then update the bad location with the ORed 654 * value so that older kernels will see any features2 flags. The 655 * superblock writeback code ensures the new sb_features2 is copied to 656 * sb_bad_features2 before it is logged or written to disk. 657 */ 658 if (xfs_sb_has_mismatched_features2(sbp)) { 659 xfs_warn(mp, "correcting sb_features alignment problem"); 660 sbp->sb_features2 |= sbp->sb_bad_features2; 661 mp->m_update_sb = true; 662 663 /* 664 * Re-check for ATTR2 in case it was found in bad_features2 665 * slot. 666 */ 667 if (xfs_sb_version_hasattr2(&mp->m_sb) && 668 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 669 mp->m_flags |= XFS_MOUNT_ATTR2; 670 } 671 672 if (xfs_sb_version_hasattr2(&mp->m_sb) && 673 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 674 xfs_sb_version_removeattr2(&mp->m_sb); 675 mp->m_update_sb = true; 676 677 /* update sb_versionnum for the clearing of the morebits */ 678 if (!sbp->sb_features2) 679 mp->m_update_sb = true; 680 } 681 682 /* always use v2 inodes by default now */ 683 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 684 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 685 mp->m_update_sb = true; 686 } 687 688 /* 689 * Check if sb_agblocks is aligned at stripe boundary 690 * If sb_agblocks is NOT aligned turn off m_dalign since 691 * allocator alignment is within an ag, therefore ag has 692 * to be aligned at stripe boundary. 693 */ 694 error = xfs_update_alignment(mp); 695 if (error) 696 goto out; 697 698 xfs_alloc_compute_maxlevels(mp); 699 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 700 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 701 xfs_ialloc_compute_maxlevels(mp); 702 703 xfs_set_maxicount(mp); 704 705 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname); 706 if (error) 707 goto out; 708 709 error = xfs_uuid_mount(mp); 710 if (error) 711 goto out_remove_sysfs; 712 713 /* 714 * Set the minimum read and write sizes 715 */ 716 xfs_set_rw_sizes(mp); 717 718 /* set the low space thresholds for dynamic preallocation */ 719 xfs_set_low_space_thresholds(mp); 720 721 /* 722 * Set the inode cluster size. 723 * This may still be overridden by the file system 724 * block size if it is larger than the chosen cluster size. 725 * 726 * For v5 filesystems, scale the cluster size with the inode size to 727 * keep a constant ratio of inode per cluster buffer, but only if mkfs 728 * has set the inode alignment value appropriately for larger cluster 729 * sizes. 730 */ 731 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 732 if (xfs_sb_version_hascrc(&mp->m_sb)) { 733 int new_size = mp->m_inode_cluster_size; 734 735 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; 736 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) 737 mp->m_inode_cluster_size = new_size; 738 } 739 740 /* 741 * Set inode alignment fields 742 */ 743 xfs_set_inoalignment(mp); 744 745 /* 746 * Check that the data (and log if separate) is an ok size. 747 */ 748 error = xfs_check_sizes(mp); 749 if (error) 750 goto out_remove_uuid; 751 752 /* 753 * Initialize realtime fields in the mount structure 754 */ 755 error = xfs_rtmount_init(mp); 756 if (error) { 757 xfs_warn(mp, "RT mount failed"); 758 goto out_remove_uuid; 759 } 760 761 /* 762 * Copies the low order bits of the timestamp and the randomly 763 * set "sequence" number out of a UUID. 764 */ 765 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 766 767 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 768 769 error = xfs_da_mount(mp); 770 if (error) { 771 xfs_warn(mp, "Failed dir/attr init: %d", error); 772 goto out_remove_uuid; 773 } 774 775 /* 776 * Initialize the precomputed transaction reservations values. 777 */ 778 xfs_trans_init(mp); 779 780 /* 781 * Allocate and initialize the per-ag data. 782 */ 783 spin_lock_init(&mp->m_perag_lock); 784 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 785 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 786 if (error) { 787 xfs_warn(mp, "Failed per-ag init: %d", error); 788 goto out_free_dir; 789 } 790 791 if (!sbp->sb_logblocks) { 792 xfs_warn(mp, "no log defined"); 793 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 794 error = -EFSCORRUPTED; 795 goto out_free_perag; 796 } 797 798 /* 799 * log's mount-time initialization. Perform 1st part recovery if needed 800 */ 801 error = xfs_log_mount(mp, mp->m_logdev_targp, 802 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 803 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 804 if (error) { 805 xfs_warn(mp, "log mount failed"); 806 goto out_fail_wait; 807 } 808 809 /* 810 * Now the log is mounted, we know if it was an unclean shutdown or 811 * not. If it was, with the first phase of recovery has completed, we 812 * have consistent AG blocks on disk. We have not recovered EFIs yet, 813 * but they are recovered transactionally in the second recovery phase 814 * later. 815 * 816 * Hence we can safely re-initialise incore superblock counters from 817 * the per-ag data. These may not be correct if the filesystem was not 818 * cleanly unmounted, so we need to wait for recovery to finish before 819 * doing this. 820 * 821 * If the filesystem was cleanly unmounted, then we can trust the 822 * values in the superblock to be correct and we don't need to do 823 * anything here. 824 * 825 * If we are currently making the filesystem, the initialisation will 826 * fail as the perag data is in an undefined state. 827 */ 828 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 829 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 830 !mp->m_sb.sb_inprogress) { 831 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 832 if (error) 833 goto out_log_dealloc; 834 } 835 836 /* 837 * Get and sanity-check the root inode. 838 * Save the pointer to it in the mount structure. 839 */ 840 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip); 841 if (error) { 842 xfs_warn(mp, "failed to read root inode"); 843 goto out_log_dealloc; 844 } 845 846 ASSERT(rip != NULL); 847 848 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) { 849 xfs_warn(mp, "corrupted root inode %llu: not a directory", 850 (unsigned long long)rip->i_ino); 851 xfs_iunlock(rip, XFS_ILOCK_EXCL); 852 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 853 mp); 854 error = -EFSCORRUPTED; 855 goto out_rele_rip; 856 } 857 mp->m_rootip = rip; /* save it */ 858 859 xfs_iunlock(rip, XFS_ILOCK_EXCL); 860 861 /* 862 * Initialize realtime inode pointers in the mount structure 863 */ 864 error = xfs_rtmount_inodes(mp); 865 if (error) { 866 /* 867 * Free up the root inode. 868 */ 869 xfs_warn(mp, "failed to read RT inodes"); 870 goto out_rele_rip; 871 } 872 873 /* 874 * If this is a read-only mount defer the superblock updates until 875 * the next remount into writeable mode. Otherwise we would never 876 * perform the update e.g. for the root filesystem. 877 */ 878 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 879 error = xfs_sync_sb(mp, false); 880 if (error) { 881 xfs_warn(mp, "failed to write sb changes"); 882 goto out_rtunmount; 883 } 884 } 885 886 /* 887 * Initialise the XFS quota management subsystem for this mount 888 */ 889 if (XFS_IS_QUOTA_RUNNING(mp)) { 890 error = xfs_qm_newmount(mp, "amount, "aflags); 891 if (error) 892 goto out_rtunmount; 893 } else { 894 ASSERT(!XFS_IS_QUOTA_ON(mp)); 895 896 /* 897 * If a file system had quotas running earlier, but decided to 898 * mount without -o uquota/pquota/gquota options, revoke the 899 * quotachecked license. 900 */ 901 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 902 xfs_notice(mp, "resetting quota flags"); 903 error = xfs_mount_reset_sbqflags(mp); 904 if (error) 905 goto out_rtunmount; 906 } 907 } 908 909 /* 910 * Finish recovering the file system. This part needed to be 911 * delayed until after the root and real-time bitmap inodes 912 * were consistently read in. 913 */ 914 error = xfs_log_mount_finish(mp); 915 if (error) { 916 xfs_warn(mp, "log mount finish failed"); 917 goto out_rtunmount; 918 } 919 920 /* 921 * Complete the quota initialisation, post-log-replay component. 922 */ 923 if (quotamount) { 924 ASSERT(mp->m_qflags == 0); 925 mp->m_qflags = quotaflags; 926 927 xfs_qm_mount_quotas(mp); 928 } 929 930 /* 931 * Now we are mounted, reserve a small amount of unused space for 932 * privileged transactions. This is needed so that transaction 933 * space required for critical operations can dip into this pool 934 * when at ENOSPC. This is needed for operations like create with 935 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 936 * are not allowed to use this reserved space. 937 * 938 * This may drive us straight to ENOSPC on mount, but that implies 939 * we were already there on the last unmount. Warn if this occurs. 940 */ 941 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 942 resblks = xfs_default_resblks(mp); 943 error = xfs_reserve_blocks(mp, &resblks, NULL); 944 if (error) 945 xfs_warn(mp, 946 "Unable to allocate reserve blocks. Continuing without reserve pool."); 947 } 948 949 return 0; 950 951 out_rtunmount: 952 xfs_rtunmount_inodes(mp); 953 out_rele_rip: 954 IRELE(rip); 955 out_log_dealloc: 956 xfs_log_unmount(mp); 957 out_fail_wait: 958 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 959 xfs_wait_buftarg(mp->m_logdev_targp); 960 xfs_wait_buftarg(mp->m_ddev_targp); 961 out_free_perag: 962 xfs_free_perag(mp); 963 out_free_dir: 964 xfs_da_unmount(mp); 965 out_remove_uuid: 966 xfs_uuid_unmount(mp); 967 out_remove_sysfs: 968 xfs_sysfs_del(&mp->m_kobj); 969 out: 970 return error; 971 } 972 973 /* 974 * This flushes out the inodes,dquots and the superblock, unmounts the 975 * log and makes sure that incore structures are freed. 976 */ 977 void 978 xfs_unmountfs( 979 struct xfs_mount *mp) 980 { 981 __uint64_t resblks; 982 int error; 983 984 cancel_delayed_work_sync(&mp->m_eofblocks_work); 985 986 xfs_qm_unmount_quotas(mp); 987 xfs_rtunmount_inodes(mp); 988 IRELE(mp->m_rootip); 989 990 /* 991 * We can potentially deadlock here if we have an inode cluster 992 * that has been freed has its buffer still pinned in memory because 993 * the transaction is still sitting in a iclog. The stale inodes 994 * on that buffer will have their flush locks held until the 995 * transaction hits the disk and the callbacks run. the inode 996 * flush takes the flush lock unconditionally and with nothing to 997 * push out the iclog we will never get that unlocked. hence we 998 * need to force the log first. 999 */ 1000 xfs_log_force(mp, XFS_LOG_SYNC); 1001 1002 /* 1003 * Flush all pending changes from the AIL. 1004 */ 1005 xfs_ail_push_all_sync(mp->m_ail); 1006 1007 /* 1008 * And reclaim all inodes. At this point there should be no dirty 1009 * inodes and none should be pinned or locked, but use synchronous 1010 * reclaim just to be sure. We can stop background inode reclaim 1011 * here as well if it is still running. 1012 */ 1013 cancel_delayed_work_sync(&mp->m_reclaim_work); 1014 xfs_reclaim_inodes(mp, SYNC_WAIT); 1015 1016 xfs_qm_unmount(mp); 1017 1018 /* 1019 * Unreserve any blocks we have so that when we unmount we don't account 1020 * the reserved free space as used. This is really only necessary for 1021 * lazy superblock counting because it trusts the incore superblock 1022 * counters to be absolutely correct on clean unmount. 1023 * 1024 * We don't bother correcting this elsewhere for lazy superblock 1025 * counting because on mount of an unclean filesystem we reconstruct the 1026 * correct counter value and this is irrelevant. 1027 * 1028 * For non-lazy counter filesystems, this doesn't matter at all because 1029 * we only every apply deltas to the superblock and hence the incore 1030 * value does not matter.... 1031 */ 1032 resblks = 0; 1033 error = xfs_reserve_blocks(mp, &resblks, NULL); 1034 if (error) 1035 xfs_warn(mp, "Unable to free reserved block pool. " 1036 "Freespace may not be correct on next mount."); 1037 1038 error = xfs_log_sbcount(mp); 1039 if (error) 1040 xfs_warn(mp, "Unable to update superblock counters. " 1041 "Freespace may not be correct on next mount."); 1042 1043 xfs_log_unmount(mp); 1044 xfs_da_unmount(mp); 1045 xfs_uuid_unmount(mp); 1046 1047 #if defined(DEBUG) 1048 xfs_errortag_clearall(mp, 0); 1049 #endif 1050 xfs_free_perag(mp); 1051 1052 xfs_sysfs_del(&mp->m_kobj); 1053 } 1054 1055 /* 1056 * Determine whether modifications can proceed. The caller specifies the minimum 1057 * freeze level for which modifications should not be allowed. This allows 1058 * certain operations to proceed while the freeze sequence is in progress, if 1059 * necessary. 1060 */ 1061 bool 1062 xfs_fs_writable( 1063 struct xfs_mount *mp, 1064 int level) 1065 { 1066 ASSERT(level > SB_UNFROZEN); 1067 if ((mp->m_super->s_writers.frozen >= level) || 1068 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY)) 1069 return false; 1070 1071 return true; 1072 } 1073 1074 /* 1075 * xfs_log_sbcount 1076 * 1077 * Sync the superblock counters to disk. 1078 * 1079 * Note this code can be called during the process of freezing, so we use the 1080 * transaction allocator that does not block when the transaction subsystem is 1081 * in its frozen state. 1082 */ 1083 int 1084 xfs_log_sbcount(xfs_mount_t *mp) 1085 { 1086 /* allow this to proceed during the freeze sequence... */ 1087 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE)) 1088 return 0; 1089 1090 xfs_icsb_sync_counters(mp, 0); 1091 1092 /* 1093 * we don't need to do this if we are updating the superblock 1094 * counters on every modification. 1095 */ 1096 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1097 return 0; 1098 1099 return xfs_sync_sb(mp, true); 1100 } 1101 1102 /* 1103 * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply 1104 * a delta to a specified field in the in-core superblock. Simply 1105 * switch on the field indicated and apply the delta to that field. 1106 * Fields are not allowed to dip below zero, so if the delta would 1107 * do this do not apply it and return EINVAL. 1108 * 1109 * The m_sb_lock must be held when this routine is called. 1110 */ 1111 STATIC int 1112 xfs_mod_incore_sb_unlocked( 1113 xfs_mount_t *mp, 1114 xfs_sb_field_t field, 1115 int64_t delta, 1116 int rsvd) 1117 { 1118 int scounter; /* short counter for 32 bit fields */ 1119 long long lcounter; /* long counter for 64 bit fields */ 1120 long long res_used, rem; 1121 1122 /* 1123 * With the in-core superblock spin lock held, switch 1124 * on the indicated field. Apply the delta to the 1125 * proper field. If the fields value would dip below 1126 * 0, then do not apply the delta and return EINVAL. 1127 */ 1128 switch (field) { 1129 case XFS_SBS_ICOUNT: 1130 lcounter = (long long)mp->m_sb.sb_icount; 1131 lcounter += delta; 1132 if (lcounter < 0) { 1133 ASSERT(0); 1134 return -EINVAL; 1135 } 1136 mp->m_sb.sb_icount = lcounter; 1137 return 0; 1138 case XFS_SBS_IFREE: 1139 lcounter = (long long)mp->m_sb.sb_ifree; 1140 lcounter += delta; 1141 if (lcounter < 0) { 1142 ASSERT(0); 1143 return -EINVAL; 1144 } 1145 mp->m_sb.sb_ifree = lcounter; 1146 return 0; 1147 case XFS_SBS_FDBLOCKS: 1148 lcounter = (long long) 1149 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1150 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1151 1152 if (delta > 0) { /* Putting blocks back */ 1153 if (res_used > delta) { 1154 mp->m_resblks_avail += delta; 1155 } else { 1156 rem = delta - res_used; 1157 mp->m_resblks_avail = mp->m_resblks; 1158 lcounter += rem; 1159 } 1160 } else { /* Taking blocks away */ 1161 lcounter += delta; 1162 if (lcounter >= 0) { 1163 mp->m_sb.sb_fdblocks = lcounter + 1164 XFS_ALLOC_SET_ASIDE(mp); 1165 return 0; 1166 } 1167 1168 /* 1169 * We are out of blocks, use any available reserved 1170 * blocks if were allowed to. 1171 */ 1172 if (!rsvd) 1173 return -ENOSPC; 1174 1175 lcounter = (long long)mp->m_resblks_avail + delta; 1176 if (lcounter >= 0) { 1177 mp->m_resblks_avail = lcounter; 1178 return 0; 1179 } 1180 printk_once(KERN_WARNING 1181 "Filesystem \"%s\": reserve blocks depleted! " 1182 "Consider increasing reserve pool size.", 1183 mp->m_fsname); 1184 return -ENOSPC; 1185 } 1186 1187 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1188 return 0; 1189 case XFS_SBS_FREXTENTS: 1190 lcounter = (long long)mp->m_sb.sb_frextents; 1191 lcounter += delta; 1192 if (lcounter < 0) { 1193 return -ENOSPC; 1194 } 1195 mp->m_sb.sb_frextents = lcounter; 1196 return 0; 1197 case XFS_SBS_DBLOCKS: 1198 lcounter = (long long)mp->m_sb.sb_dblocks; 1199 lcounter += delta; 1200 if (lcounter < 0) { 1201 ASSERT(0); 1202 return -EINVAL; 1203 } 1204 mp->m_sb.sb_dblocks = lcounter; 1205 return 0; 1206 case XFS_SBS_AGCOUNT: 1207 scounter = mp->m_sb.sb_agcount; 1208 scounter += delta; 1209 if (scounter < 0) { 1210 ASSERT(0); 1211 return -EINVAL; 1212 } 1213 mp->m_sb.sb_agcount = scounter; 1214 return 0; 1215 case XFS_SBS_IMAX_PCT: 1216 scounter = mp->m_sb.sb_imax_pct; 1217 scounter += delta; 1218 if (scounter < 0) { 1219 ASSERT(0); 1220 return -EINVAL; 1221 } 1222 mp->m_sb.sb_imax_pct = scounter; 1223 return 0; 1224 case XFS_SBS_REXTSIZE: 1225 scounter = mp->m_sb.sb_rextsize; 1226 scounter += delta; 1227 if (scounter < 0) { 1228 ASSERT(0); 1229 return -EINVAL; 1230 } 1231 mp->m_sb.sb_rextsize = scounter; 1232 return 0; 1233 case XFS_SBS_RBMBLOCKS: 1234 scounter = mp->m_sb.sb_rbmblocks; 1235 scounter += delta; 1236 if (scounter < 0) { 1237 ASSERT(0); 1238 return -EINVAL; 1239 } 1240 mp->m_sb.sb_rbmblocks = scounter; 1241 return 0; 1242 case XFS_SBS_RBLOCKS: 1243 lcounter = (long long)mp->m_sb.sb_rblocks; 1244 lcounter += delta; 1245 if (lcounter < 0) { 1246 ASSERT(0); 1247 return -EINVAL; 1248 } 1249 mp->m_sb.sb_rblocks = lcounter; 1250 return 0; 1251 case XFS_SBS_REXTENTS: 1252 lcounter = (long long)mp->m_sb.sb_rextents; 1253 lcounter += delta; 1254 if (lcounter < 0) { 1255 ASSERT(0); 1256 return -EINVAL; 1257 } 1258 mp->m_sb.sb_rextents = lcounter; 1259 return 0; 1260 case XFS_SBS_REXTSLOG: 1261 scounter = mp->m_sb.sb_rextslog; 1262 scounter += delta; 1263 if (scounter < 0) { 1264 ASSERT(0); 1265 return -EINVAL; 1266 } 1267 mp->m_sb.sb_rextslog = scounter; 1268 return 0; 1269 default: 1270 ASSERT(0); 1271 return -EINVAL; 1272 } 1273 } 1274 1275 /* 1276 * xfs_mod_incore_sb() is used to change a field in the in-core 1277 * superblock structure by the specified delta. This modification 1278 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked() 1279 * routine to do the work. 1280 */ 1281 int 1282 xfs_mod_incore_sb( 1283 struct xfs_mount *mp, 1284 xfs_sb_field_t field, 1285 int64_t delta, 1286 int rsvd) 1287 { 1288 int status; 1289 1290 #ifdef HAVE_PERCPU_SB 1291 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS); 1292 #endif 1293 spin_lock(&mp->m_sb_lock); 1294 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1295 spin_unlock(&mp->m_sb_lock); 1296 1297 return status; 1298 } 1299 1300 /* 1301 * Change more than one field in the in-core superblock structure at a time. 1302 * 1303 * The fields and changes to those fields are specified in the array of 1304 * xfs_mod_sb structures passed in. Either all of the specified deltas 1305 * will be applied or none of them will. If any modified field dips below 0, 1306 * then all modifications will be backed out and EINVAL will be returned. 1307 * 1308 * Note that this function may not be used for the superblock values that 1309 * are tracked with the in-memory per-cpu counters - a direct call to 1310 * xfs_icsb_modify_counters is required for these. 1311 */ 1312 int 1313 xfs_mod_incore_sb_batch( 1314 struct xfs_mount *mp, 1315 xfs_mod_sb_t *msb, 1316 uint nmsb, 1317 int rsvd) 1318 { 1319 xfs_mod_sb_t *msbp; 1320 int error = 0; 1321 1322 /* 1323 * Loop through the array of mod structures and apply each individually. 1324 * If any fail, then back out all those which have already been applied. 1325 * Do all of this within the scope of the m_sb_lock so that all of the 1326 * changes will be atomic. 1327 */ 1328 spin_lock(&mp->m_sb_lock); 1329 for (msbp = msb; msbp < (msb + nmsb); msbp++) { 1330 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT || 1331 msbp->msb_field > XFS_SBS_FDBLOCKS); 1332 1333 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 1334 msbp->msb_delta, rsvd); 1335 if (error) 1336 goto unwind; 1337 } 1338 spin_unlock(&mp->m_sb_lock); 1339 return 0; 1340 1341 unwind: 1342 while (--msbp >= msb) { 1343 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 1344 -msbp->msb_delta, rsvd); 1345 ASSERT(error == 0); 1346 } 1347 spin_unlock(&mp->m_sb_lock); 1348 return error; 1349 } 1350 1351 /* 1352 * xfs_getsb() is called to obtain the buffer for the superblock. 1353 * The buffer is returned locked and read in from disk. 1354 * The buffer should be released with a call to xfs_brelse(). 1355 * 1356 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1357 * the superblock buffer if it can be locked without sleeping. 1358 * If it can't then we'll return NULL. 1359 */ 1360 struct xfs_buf * 1361 xfs_getsb( 1362 struct xfs_mount *mp, 1363 int flags) 1364 { 1365 struct xfs_buf *bp = mp->m_sb_bp; 1366 1367 if (!xfs_buf_trylock(bp)) { 1368 if (flags & XBF_TRYLOCK) 1369 return NULL; 1370 xfs_buf_lock(bp); 1371 } 1372 1373 xfs_buf_hold(bp); 1374 ASSERT(XFS_BUF_ISDONE(bp)); 1375 return bp; 1376 } 1377 1378 /* 1379 * Used to free the superblock along various error paths. 1380 */ 1381 void 1382 xfs_freesb( 1383 struct xfs_mount *mp) 1384 { 1385 struct xfs_buf *bp = mp->m_sb_bp; 1386 1387 xfs_buf_lock(bp); 1388 mp->m_sb_bp = NULL; 1389 xfs_buf_relse(bp); 1390 } 1391 1392 /* 1393 * If the underlying (data/log/rt) device is readonly, there are some 1394 * operations that cannot proceed. 1395 */ 1396 int 1397 xfs_dev_is_read_only( 1398 struct xfs_mount *mp, 1399 char *message) 1400 { 1401 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1402 xfs_readonly_buftarg(mp->m_logdev_targp) || 1403 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1404 xfs_notice(mp, "%s required on read-only device.", message); 1405 xfs_notice(mp, "write access unavailable, cannot proceed."); 1406 return -EROFS; 1407 } 1408 return 0; 1409 } 1410 1411 #ifdef HAVE_PERCPU_SB 1412 /* 1413 * Per-cpu incore superblock counters 1414 * 1415 * Simple concept, difficult implementation 1416 * 1417 * Basically, replace the incore superblock counters with a distributed per cpu 1418 * counter for contended fields (e.g. free block count). 1419 * 1420 * Difficulties arise in that the incore sb is used for ENOSPC checking, and 1421 * hence needs to be accurately read when we are running low on space. Hence 1422 * there is a method to enable and disable the per-cpu counters based on how 1423 * much "stuff" is available in them. 1424 * 1425 * Basically, a counter is enabled if there is enough free resource to justify 1426 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local 1427 * ENOSPC), then we disable the counters to synchronise all callers and 1428 * re-distribute the available resources. 1429 * 1430 * If, once we redistributed the available resources, we still get a failure, 1431 * we disable the per-cpu counter and go through the slow path. 1432 * 1433 * The slow path is the current xfs_mod_incore_sb() function. This means that 1434 * when we disable a per-cpu counter, we need to drain its resources back to 1435 * the global superblock. We do this after disabling the counter to prevent 1436 * more threads from queueing up on the counter. 1437 * 1438 * Essentially, this means that we still need a lock in the fast path to enable 1439 * synchronisation between the global counters and the per-cpu counters. This 1440 * is not a problem because the lock will be local to a CPU almost all the time 1441 * and have little contention except when we get to ENOSPC conditions. 1442 * 1443 * Basically, this lock becomes a barrier that enables us to lock out the fast 1444 * path while we do things like enabling and disabling counters and 1445 * synchronising the counters. 1446 * 1447 * Locking rules: 1448 * 1449 * 1. m_sb_lock before picking up per-cpu locks 1450 * 2. per-cpu locks always picked up via for_each_online_cpu() order 1451 * 3. accurate counter sync requires m_sb_lock + per cpu locks 1452 * 4. modifying per-cpu counters requires holding per-cpu lock 1453 * 5. modifying global counters requires holding m_sb_lock 1454 * 6. enabling or disabling a counter requires holding the m_sb_lock 1455 * and _none_ of the per-cpu locks. 1456 * 1457 * Disabled counters are only ever re-enabled by a balance operation 1458 * that results in more free resources per CPU than a given threshold. 1459 * To ensure counters don't remain disabled, they are rebalanced when 1460 * the global resource goes above a higher threshold (i.e. some hysteresis 1461 * is present to prevent thrashing). 1462 */ 1463 1464 #ifdef CONFIG_HOTPLUG_CPU 1465 /* 1466 * hot-plug CPU notifier support. 1467 * 1468 * We need a notifier per filesystem as we need to be able to identify 1469 * the filesystem to balance the counters out. This is achieved by 1470 * having a notifier block embedded in the xfs_mount_t and doing pointer 1471 * magic to get the mount pointer from the notifier block address. 1472 */ 1473 STATIC int 1474 xfs_icsb_cpu_notify( 1475 struct notifier_block *nfb, 1476 unsigned long action, 1477 void *hcpu) 1478 { 1479 xfs_icsb_cnts_t *cntp; 1480 xfs_mount_t *mp; 1481 1482 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); 1483 cntp = (xfs_icsb_cnts_t *) 1484 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); 1485 switch (action) { 1486 case CPU_UP_PREPARE: 1487 case CPU_UP_PREPARE_FROZEN: 1488 /* Easy Case - initialize the area and locks, and 1489 * then rebalance when online does everything else for us. */ 1490 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1491 break; 1492 case CPU_ONLINE: 1493 case CPU_ONLINE_FROZEN: 1494 xfs_icsb_lock(mp); 1495 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 1496 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 1497 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 1498 xfs_icsb_unlock(mp); 1499 break; 1500 case CPU_DEAD: 1501 case CPU_DEAD_FROZEN: 1502 /* Disable all the counters, then fold the dead cpu's 1503 * count into the total on the global superblock and 1504 * re-enable the counters. */ 1505 xfs_icsb_lock(mp); 1506 spin_lock(&mp->m_sb_lock); 1507 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT); 1508 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); 1509 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); 1510 1511 mp->m_sb.sb_icount += cntp->icsb_icount; 1512 mp->m_sb.sb_ifree += cntp->icsb_ifree; 1513 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; 1514 1515 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1516 1517 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0); 1518 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0); 1519 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0); 1520 spin_unlock(&mp->m_sb_lock); 1521 xfs_icsb_unlock(mp); 1522 break; 1523 } 1524 1525 return NOTIFY_OK; 1526 } 1527 #endif /* CONFIG_HOTPLUG_CPU */ 1528 1529 int 1530 xfs_icsb_init_counters( 1531 xfs_mount_t *mp) 1532 { 1533 xfs_icsb_cnts_t *cntp; 1534 int i; 1535 1536 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); 1537 if (mp->m_sb_cnts == NULL) 1538 return -ENOMEM; 1539 1540 for_each_online_cpu(i) { 1541 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 1542 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1543 } 1544 1545 mutex_init(&mp->m_icsb_mutex); 1546 1547 /* 1548 * start with all counters disabled so that the 1549 * initial balance kicks us off correctly 1550 */ 1551 mp->m_icsb_counters = -1; 1552 1553 #ifdef CONFIG_HOTPLUG_CPU 1554 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; 1555 mp->m_icsb_notifier.priority = 0; 1556 register_hotcpu_notifier(&mp->m_icsb_notifier); 1557 #endif /* CONFIG_HOTPLUG_CPU */ 1558 1559 return 0; 1560 } 1561 1562 void 1563 xfs_icsb_reinit_counters( 1564 xfs_mount_t *mp) 1565 { 1566 xfs_icsb_lock(mp); 1567 /* 1568 * start with all counters disabled so that the 1569 * initial balance kicks us off correctly 1570 */ 1571 mp->m_icsb_counters = -1; 1572 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 1573 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 1574 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 1575 xfs_icsb_unlock(mp); 1576 } 1577 1578 void 1579 xfs_icsb_destroy_counters( 1580 xfs_mount_t *mp) 1581 { 1582 if (mp->m_sb_cnts) { 1583 unregister_hotcpu_notifier(&mp->m_icsb_notifier); 1584 free_percpu(mp->m_sb_cnts); 1585 } 1586 mutex_destroy(&mp->m_icsb_mutex); 1587 } 1588 1589 STATIC void 1590 xfs_icsb_lock_cntr( 1591 xfs_icsb_cnts_t *icsbp) 1592 { 1593 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { 1594 ndelay(1000); 1595 } 1596 } 1597 1598 STATIC void 1599 xfs_icsb_unlock_cntr( 1600 xfs_icsb_cnts_t *icsbp) 1601 { 1602 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); 1603 } 1604 1605 1606 STATIC void 1607 xfs_icsb_lock_all_counters( 1608 xfs_mount_t *mp) 1609 { 1610 xfs_icsb_cnts_t *cntp; 1611 int i; 1612 1613 for_each_online_cpu(i) { 1614 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 1615 xfs_icsb_lock_cntr(cntp); 1616 } 1617 } 1618 1619 STATIC void 1620 xfs_icsb_unlock_all_counters( 1621 xfs_mount_t *mp) 1622 { 1623 xfs_icsb_cnts_t *cntp; 1624 int i; 1625 1626 for_each_online_cpu(i) { 1627 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 1628 xfs_icsb_unlock_cntr(cntp); 1629 } 1630 } 1631 1632 STATIC void 1633 xfs_icsb_count( 1634 xfs_mount_t *mp, 1635 xfs_icsb_cnts_t *cnt, 1636 int flags) 1637 { 1638 xfs_icsb_cnts_t *cntp; 1639 int i; 1640 1641 memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); 1642 1643 if (!(flags & XFS_ICSB_LAZY_COUNT)) 1644 xfs_icsb_lock_all_counters(mp); 1645 1646 for_each_online_cpu(i) { 1647 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 1648 cnt->icsb_icount += cntp->icsb_icount; 1649 cnt->icsb_ifree += cntp->icsb_ifree; 1650 cnt->icsb_fdblocks += cntp->icsb_fdblocks; 1651 } 1652 1653 if (!(flags & XFS_ICSB_LAZY_COUNT)) 1654 xfs_icsb_unlock_all_counters(mp); 1655 } 1656 1657 STATIC int 1658 xfs_icsb_counter_disabled( 1659 xfs_mount_t *mp, 1660 xfs_sb_field_t field) 1661 { 1662 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 1663 return test_bit(field, &mp->m_icsb_counters); 1664 } 1665 1666 STATIC void 1667 xfs_icsb_disable_counter( 1668 xfs_mount_t *mp, 1669 xfs_sb_field_t field) 1670 { 1671 xfs_icsb_cnts_t cnt; 1672 1673 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 1674 1675 /* 1676 * If we are already disabled, then there is nothing to do 1677 * here. We check before locking all the counters to avoid 1678 * the expensive lock operation when being called in the 1679 * slow path and the counter is already disabled. This is 1680 * safe because the only time we set or clear this state is under 1681 * the m_icsb_mutex. 1682 */ 1683 if (xfs_icsb_counter_disabled(mp, field)) 1684 return; 1685 1686 xfs_icsb_lock_all_counters(mp); 1687 if (!test_and_set_bit(field, &mp->m_icsb_counters)) { 1688 /* drain back to superblock */ 1689 1690 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT); 1691 switch(field) { 1692 case XFS_SBS_ICOUNT: 1693 mp->m_sb.sb_icount = cnt.icsb_icount; 1694 break; 1695 case XFS_SBS_IFREE: 1696 mp->m_sb.sb_ifree = cnt.icsb_ifree; 1697 break; 1698 case XFS_SBS_FDBLOCKS: 1699 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 1700 break; 1701 default: 1702 BUG(); 1703 } 1704 } 1705 1706 xfs_icsb_unlock_all_counters(mp); 1707 } 1708 1709 STATIC void 1710 xfs_icsb_enable_counter( 1711 xfs_mount_t *mp, 1712 xfs_sb_field_t field, 1713 uint64_t count, 1714 uint64_t resid) 1715 { 1716 xfs_icsb_cnts_t *cntp; 1717 int i; 1718 1719 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 1720 1721 xfs_icsb_lock_all_counters(mp); 1722 for_each_online_cpu(i) { 1723 cntp = per_cpu_ptr(mp->m_sb_cnts, i); 1724 switch (field) { 1725 case XFS_SBS_ICOUNT: 1726 cntp->icsb_icount = count + resid; 1727 break; 1728 case XFS_SBS_IFREE: 1729 cntp->icsb_ifree = count + resid; 1730 break; 1731 case XFS_SBS_FDBLOCKS: 1732 cntp->icsb_fdblocks = count + resid; 1733 break; 1734 default: 1735 BUG(); 1736 break; 1737 } 1738 resid = 0; 1739 } 1740 clear_bit(field, &mp->m_icsb_counters); 1741 xfs_icsb_unlock_all_counters(mp); 1742 } 1743 1744 void 1745 xfs_icsb_sync_counters_locked( 1746 xfs_mount_t *mp, 1747 int flags) 1748 { 1749 xfs_icsb_cnts_t cnt; 1750 1751 xfs_icsb_count(mp, &cnt, flags); 1752 1753 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT)) 1754 mp->m_sb.sb_icount = cnt.icsb_icount; 1755 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) 1756 mp->m_sb.sb_ifree = cnt.icsb_ifree; 1757 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) 1758 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 1759 } 1760 1761 /* 1762 * Accurate update of per-cpu counters to incore superblock 1763 */ 1764 void 1765 xfs_icsb_sync_counters( 1766 xfs_mount_t *mp, 1767 int flags) 1768 { 1769 spin_lock(&mp->m_sb_lock); 1770 xfs_icsb_sync_counters_locked(mp, flags); 1771 spin_unlock(&mp->m_sb_lock); 1772 } 1773 1774 /* 1775 * Balance and enable/disable counters as necessary. 1776 * 1777 * Thresholds for re-enabling counters are somewhat magic. inode counts are 1778 * chosen to be the same number as single on disk allocation chunk per CPU, and 1779 * free blocks is something far enough zero that we aren't going thrash when we 1780 * get near ENOSPC. We also need to supply a minimum we require per cpu to 1781 * prevent looping endlessly when xfs_alloc_space asks for more than will 1782 * be distributed to a single CPU but each CPU has enough blocks to be 1783 * reenabled. 1784 * 1785 * Note that we can be called when counters are already disabled. 1786 * xfs_icsb_disable_counter() optimises the counter locking in this case to 1787 * prevent locking every per-cpu counter needlessly. 1788 */ 1789 1790 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64 1791 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ 1792 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) 1793 STATIC void 1794 xfs_icsb_balance_counter_locked( 1795 xfs_mount_t *mp, 1796 xfs_sb_field_t field, 1797 int min_per_cpu) 1798 { 1799 uint64_t count, resid; 1800 int weight = num_online_cpus(); 1801 uint64_t min = (uint64_t)min_per_cpu; 1802 1803 /* disable counter and sync counter */ 1804 xfs_icsb_disable_counter(mp, field); 1805 1806 /* update counters - first CPU gets residual*/ 1807 switch (field) { 1808 case XFS_SBS_ICOUNT: 1809 count = mp->m_sb.sb_icount; 1810 resid = do_div(count, weight); 1811 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 1812 return; 1813 break; 1814 case XFS_SBS_IFREE: 1815 count = mp->m_sb.sb_ifree; 1816 resid = do_div(count, weight); 1817 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 1818 return; 1819 break; 1820 case XFS_SBS_FDBLOCKS: 1821 count = mp->m_sb.sb_fdblocks; 1822 resid = do_div(count, weight); 1823 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) 1824 return; 1825 break; 1826 default: 1827 BUG(); 1828 count = resid = 0; /* quiet, gcc */ 1829 break; 1830 } 1831 1832 xfs_icsb_enable_counter(mp, field, count, resid); 1833 } 1834 1835 STATIC void 1836 xfs_icsb_balance_counter( 1837 xfs_mount_t *mp, 1838 xfs_sb_field_t fields, 1839 int min_per_cpu) 1840 { 1841 spin_lock(&mp->m_sb_lock); 1842 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu); 1843 spin_unlock(&mp->m_sb_lock); 1844 } 1845 1846 int 1847 xfs_icsb_modify_counters( 1848 xfs_mount_t *mp, 1849 xfs_sb_field_t field, 1850 int64_t delta, 1851 int rsvd) 1852 { 1853 xfs_icsb_cnts_t *icsbp; 1854 long long lcounter; /* long counter for 64 bit fields */ 1855 int ret = 0; 1856 1857 might_sleep(); 1858 again: 1859 preempt_disable(); 1860 icsbp = this_cpu_ptr(mp->m_sb_cnts); 1861 1862 /* 1863 * if the counter is disabled, go to slow path 1864 */ 1865 if (unlikely(xfs_icsb_counter_disabled(mp, field))) 1866 goto slow_path; 1867 xfs_icsb_lock_cntr(icsbp); 1868 if (unlikely(xfs_icsb_counter_disabled(mp, field))) { 1869 xfs_icsb_unlock_cntr(icsbp); 1870 goto slow_path; 1871 } 1872 1873 switch (field) { 1874 case XFS_SBS_ICOUNT: 1875 lcounter = icsbp->icsb_icount; 1876 lcounter += delta; 1877 if (unlikely(lcounter < 0)) 1878 goto balance_counter; 1879 icsbp->icsb_icount = lcounter; 1880 break; 1881 1882 case XFS_SBS_IFREE: 1883 lcounter = icsbp->icsb_ifree; 1884 lcounter += delta; 1885 if (unlikely(lcounter < 0)) 1886 goto balance_counter; 1887 icsbp->icsb_ifree = lcounter; 1888 break; 1889 1890 case XFS_SBS_FDBLOCKS: 1891 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); 1892 1893 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1894 lcounter += delta; 1895 if (unlikely(lcounter < 0)) 1896 goto balance_counter; 1897 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1898 break; 1899 default: 1900 BUG(); 1901 break; 1902 } 1903 xfs_icsb_unlock_cntr(icsbp); 1904 preempt_enable(); 1905 return 0; 1906 1907 slow_path: 1908 preempt_enable(); 1909 1910 /* 1911 * serialise with a mutex so we don't burn lots of cpu on 1912 * the superblock lock. We still need to hold the superblock 1913 * lock, however, when we modify the global structures. 1914 */ 1915 xfs_icsb_lock(mp); 1916 1917 /* 1918 * Now running atomically. 1919 * 1920 * If the counter is enabled, someone has beaten us to rebalancing. 1921 * Drop the lock and try again in the fast path.... 1922 */ 1923 if (!(xfs_icsb_counter_disabled(mp, field))) { 1924 xfs_icsb_unlock(mp); 1925 goto again; 1926 } 1927 1928 /* 1929 * The counter is currently disabled. Because we are 1930 * running atomically here, we know a rebalance cannot 1931 * be in progress. Hence we can go straight to operating 1932 * on the global superblock. We do not call xfs_mod_incore_sb() 1933 * here even though we need to get the m_sb_lock. Doing so 1934 * will cause us to re-enter this function and deadlock. 1935 * Hence we get the m_sb_lock ourselves and then call 1936 * xfs_mod_incore_sb_unlocked() as the unlocked path operates 1937 * directly on the global counters. 1938 */ 1939 spin_lock(&mp->m_sb_lock); 1940 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1941 spin_unlock(&mp->m_sb_lock); 1942 1943 /* 1944 * Now that we've modified the global superblock, we 1945 * may be able to re-enable the distributed counters 1946 * (e.g. lots of space just got freed). After that 1947 * we are done. 1948 */ 1949 if (ret != -ENOSPC) 1950 xfs_icsb_balance_counter(mp, field, 0); 1951 xfs_icsb_unlock(mp); 1952 return ret; 1953 1954 balance_counter: 1955 xfs_icsb_unlock_cntr(icsbp); 1956 preempt_enable(); 1957 1958 /* 1959 * We may have multiple threads here if multiple per-cpu 1960 * counters run dry at the same time. This will mean we can 1961 * do more balances than strictly necessary but it is not 1962 * the common slowpath case. 1963 */ 1964 xfs_icsb_lock(mp); 1965 1966 /* 1967 * running atomically. 1968 * 1969 * This will leave the counter in the correct state for future 1970 * accesses. After the rebalance, we simply try again and our retry 1971 * will either succeed through the fast path or slow path without 1972 * another balance operation being required. 1973 */ 1974 xfs_icsb_balance_counter(mp, field, delta); 1975 xfs_icsb_unlock(mp); 1976 goto again; 1977 } 1978 1979 #endif 1980