xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision 034f90b3)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_dir2.h"
31 #include "xfs_ialloc.h"
32 #include "xfs_alloc.h"
33 #include "xfs_rtalloc.h"
34 #include "xfs_bmap.h"
35 #include "xfs_trans.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_log.h"
38 #include "xfs_error.h"
39 #include "xfs_quota.h"
40 #include "xfs_fsops.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_sysfs.h"
44 
45 
46 #ifdef HAVE_PERCPU_SB
47 STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
48 						int);
49 STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
50 						int);
51 STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
52 #else
53 
54 #define xfs_icsb_balance_counter(mp, a, b)		do { } while (0)
55 #define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0)
56 #endif
57 
58 static DEFINE_MUTEX(xfs_uuid_table_mutex);
59 static int xfs_uuid_table_size;
60 static uuid_t *xfs_uuid_table;
61 
62 /*
63  * See if the UUID is unique among mounted XFS filesystems.
64  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
65  */
66 STATIC int
67 xfs_uuid_mount(
68 	struct xfs_mount	*mp)
69 {
70 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
71 	int			hole, i;
72 
73 	if (mp->m_flags & XFS_MOUNT_NOUUID)
74 		return 0;
75 
76 	if (uuid_is_nil(uuid)) {
77 		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
78 		return -EINVAL;
79 	}
80 
81 	mutex_lock(&xfs_uuid_table_mutex);
82 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
83 		if (uuid_is_nil(&xfs_uuid_table[i])) {
84 			hole = i;
85 			continue;
86 		}
87 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
88 			goto out_duplicate;
89 	}
90 
91 	if (hole < 0) {
92 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
93 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
94 			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
95 			KM_SLEEP);
96 		hole = xfs_uuid_table_size++;
97 	}
98 	xfs_uuid_table[hole] = *uuid;
99 	mutex_unlock(&xfs_uuid_table_mutex);
100 
101 	return 0;
102 
103  out_duplicate:
104 	mutex_unlock(&xfs_uuid_table_mutex);
105 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
106 	return -EINVAL;
107 }
108 
109 STATIC void
110 xfs_uuid_unmount(
111 	struct xfs_mount	*mp)
112 {
113 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
114 	int			i;
115 
116 	if (mp->m_flags & XFS_MOUNT_NOUUID)
117 		return;
118 
119 	mutex_lock(&xfs_uuid_table_mutex);
120 	for (i = 0; i < xfs_uuid_table_size; i++) {
121 		if (uuid_is_nil(&xfs_uuid_table[i]))
122 			continue;
123 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
124 			continue;
125 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
126 		break;
127 	}
128 	ASSERT(i < xfs_uuid_table_size);
129 	mutex_unlock(&xfs_uuid_table_mutex);
130 }
131 
132 
133 STATIC void
134 __xfs_free_perag(
135 	struct rcu_head	*head)
136 {
137 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
138 
139 	ASSERT(atomic_read(&pag->pag_ref) == 0);
140 	kmem_free(pag);
141 }
142 
143 /*
144  * Free up the per-ag resources associated with the mount structure.
145  */
146 STATIC void
147 xfs_free_perag(
148 	xfs_mount_t	*mp)
149 {
150 	xfs_agnumber_t	agno;
151 	struct xfs_perag *pag;
152 
153 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
154 		spin_lock(&mp->m_perag_lock);
155 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
156 		spin_unlock(&mp->m_perag_lock);
157 		ASSERT(pag);
158 		ASSERT(atomic_read(&pag->pag_ref) == 0);
159 		call_rcu(&pag->rcu_head, __xfs_free_perag);
160 	}
161 }
162 
163 /*
164  * Check size of device based on the (data/realtime) block count.
165  * Note: this check is used by the growfs code as well as mount.
166  */
167 int
168 xfs_sb_validate_fsb_count(
169 	xfs_sb_t	*sbp,
170 	__uint64_t	nblocks)
171 {
172 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
173 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
174 
175 	/* Limited by ULONG_MAX of page cache index */
176 	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
177 		return -EFBIG;
178 	return 0;
179 }
180 
181 int
182 xfs_initialize_perag(
183 	xfs_mount_t	*mp,
184 	xfs_agnumber_t	agcount,
185 	xfs_agnumber_t	*maxagi)
186 {
187 	xfs_agnumber_t	index;
188 	xfs_agnumber_t	first_initialised = 0;
189 	xfs_perag_t	*pag;
190 	xfs_agino_t	agino;
191 	xfs_ino_t	ino;
192 	xfs_sb_t	*sbp = &mp->m_sb;
193 	int		error = -ENOMEM;
194 
195 	/*
196 	 * Walk the current per-ag tree so we don't try to initialise AGs
197 	 * that already exist (growfs case). Allocate and insert all the
198 	 * AGs we don't find ready for initialisation.
199 	 */
200 	for (index = 0; index < agcount; index++) {
201 		pag = xfs_perag_get(mp, index);
202 		if (pag) {
203 			xfs_perag_put(pag);
204 			continue;
205 		}
206 		if (!first_initialised)
207 			first_initialised = index;
208 
209 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
210 		if (!pag)
211 			goto out_unwind;
212 		pag->pag_agno = index;
213 		pag->pag_mount = mp;
214 		spin_lock_init(&pag->pag_ici_lock);
215 		mutex_init(&pag->pag_ici_reclaim_lock);
216 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
217 		spin_lock_init(&pag->pag_buf_lock);
218 		pag->pag_buf_tree = RB_ROOT;
219 
220 		if (radix_tree_preload(GFP_NOFS))
221 			goto out_unwind;
222 
223 		spin_lock(&mp->m_perag_lock);
224 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
225 			BUG();
226 			spin_unlock(&mp->m_perag_lock);
227 			radix_tree_preload_end();
228 			error = -EEXIST;
229 			goto out_unwind;
230 		}
231 		spin_unlock(&mp->m_perag_lock);
232 		radix_tree_preload_end();
233 	}
234 
235 	/*
236 	 * If we mount with the inode64 option, or no inode overflows
237 	 * the legacy 32-bit address space clear the inode32 option.
238 	 */
239 	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
240 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
241 
242 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
243 		mp->m_flags |= XFS_MOUNT_32BITINODES;
244 	else
245 		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
246 
247 	if (mp->m_flags & XFS_MOUNT_32BITINODES)
248 		index = xfs_set_inode32(mp, agcount);
249 	else
250 		index = xfs_set_inode64(mp, agcount);
251 
252 	if (maxagi)
253 		*maxagi = index;
254 	return 0;
255 
256 out_unwind:
257 	kmem_free(pag);
258 	for (; index > first_initialised; index--) {
259 		pag = radix_tree_delete(&mp->m_perag_tree, index);
260 		kmem_free(pag);
261 	}
262 	return error;
263 }
264 
265 /*
266  * xfs_readsb
267  *
268  * Does the initial read of the superblock.
269  */
270 int
271 xfs_readsb(
272 	struct xfs_mount *mp,
273 	int		flags)
274 {
275 	unsigned int	sector_size;
276 	struct xfs_buf	*bp;
277 	struct xfs_sb	*sbp = &mp->m_sb;
278 	int		error;
279 	int		loud = !(flags & XFS_MFSI_QUIET);
280 	const struct xfs_buf_ops *buf_ops;
281 
282 	ASSERT(mp->m_sb_bp == NULL);
283 	ASSERT(mp->m_ddev_targp != NULL);
284 
285 	/*
286 	 * For the initial read, we must guess at the sector
287 	 * size based on the block device.  It's enough to
288 	 * get the sb_sectsize out of the superblock and
289 	 * then reread with the proper length.
290 	 * We don't verify it yet, because it may not be complete.
291 	 */
292 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
293 	buf_ops = NULL;
294 
295 	/*
296 	 * Allocate a (locked) buffer to hold the superblock.
297 	 * This will be kept around at all times to optimize
298 	 * access to the superblock.
299 	 */
300 reread:
301 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
302 				   BTOBB(sector_size), 0, &bp, buf_ops);
303 	if (error) {
304 		if (loud)
305 			xfs_warn(mp, "SB validate failed with error %d.", error);
306 		/* bad CRC means corrupted metadata */
307 		if (error == -EFSBADCRC)
308 			error = -EFSCORRUPTED;
309 		return error;
310 	}
311 
312 	/*
313 	 * Initialize the mount structure from the superblock.
314 	 */
315 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
316 
317 	/*
318 	 * If we haven't validated the superblock, do so now before we try
319 	 * to check the sector size and reread the superblock appropriately.
320 	 */
321 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
322 		if (loud)
323 			xfs_warn(mp, "Invalid superblock magic number");
324 		error = -EINVAL;
325 		goto release_buf;
326 	}
327 
328 	/*
329 	 * We must be able to do sector-sized and sector-aligned IO.
330 	 */
331 	if (sector_size > sbp->sb_sectsize) {
332 		if (loud)
333 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
334 				sector_size, sbp->sb_sectsize);
335 		error = -ENOSYS;
336 		goto release_buf;
337 	}
338 
339 	if (buf_ops == NULL) {
340 		/*
341 		 * Re-read the superblock so the buffer is correctly sized,
342 		 * and properly verified.
343 		 */
344 		xfs_buf_relse(bp);
345 		sector_size = sbp->sb_sectsize;
346 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
347 		goto reread;
348 	}
349 
350 	/* Initialize per-cpu counters */
351 	xfs_icsb_reinit_counters(mp);
352 
353 	/* no need to be quiet anymore, so reset the buf ops */
354 	bp->b_ops = &xfs_sb_buf_ops;
355 
356 	mp->m_sb_bp = bp;
357 	xfs_buf_unlock(bp);
358 	return 0;
359 
360 release_buf:
361 	xfs_buf_relse(bp);
362 	return error;
363 }
364 
365 /*
366  * Update alignment values based on mount options and sb values
367  */
368 STATIC int
369 xfs_update_alignment(xfs_mount_t *mp)
370 {
371 	xfs_sb_t	*sbp = &(mp->m_sb);
372 
373 	if (mp->m_dalign) {
374 		/*
375 		 * If stripe unit and stripe width are not multiples
376 		 * of the fs blocksize turn off alignment.
377 		 */
378 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
379 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
380 			xfs_warn(mp,
381 		"alignment check failed: sunit/swidth vs. blocksize(%d)",
382 				sbp->sb_blocksize);
383 			return -EINVAL;
384 		} else {
385 			/*
386 			 * Convert the stripe unit and width to FSBs.
387 			 */
388 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
389 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
390 				xfs_warn(mp,
391 			"alignment check failed: sunit/swidth vs. agsize(%d)",
392 					 sbp->sb_agblocks);
393 				return -EINVAL;
394 			} else if (mp->m_dalign) {
395 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
396 			} else {
397 				xfs_warn(mp,
398 			"alignment check failed: sunit(%d) less than bsize(%d)",
399 					 mp->m_dalign, sbp->sb_blocksize);
400 				return -EINVAL;
401 			}
402 		}
403 
404 		/*
405 		 * Update superblock with new values
406 		 * and log changes
407 		 */
408 		if (xfs_sb_version_hasdalign(sbp)) {
409 			if (sbp->sb_unit != mp->m_dalign) {
410 				sbp->sb_unit = mp->m_dalign;
411 				mp->m_update_sb = true;
412 			}
413 			if (sbp->sb_width != mp->m_swidth) {
414 				sbp->sb_width = mp->m_swidth;
415 				mp->m_update_sb = true;
416 			}
417 		} else {
418 			xfs_warn(mp,
419 	"cannot change alignment: superblock does not support data alignment");
420 			return -EINVAL;
421 		}
422 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
423 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
424 			mp->m_dalign = sbp->sb_unit;
425 			mp->m_swidth = sbp->sb_width;
426 	}
427 
428 	return 0;
429 }
430 
431 /*
432  * Set the maximum inode count for this filesystem
433  */
434 STATIC void
435 xfs_set_maxicount(xfs_mount_t *mp)
436 {
437 	xfs_sb_t	*sbp = &(mp->m_sb);
438 	__uint64_t	icount;
439 
440 	if (sbp->sb_imax_pct) {
441 		/*
442 		 * Make sure the maximum inode count is a multiple
443 		 * of the units we allocate inodes in.
444 		 */
445 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
446 		do_div(icount, 100);
447 		do_div(icount, mp->m_ialloc_blks);
448 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
449 				   sbp->sb_inopblog;
450 	} else {
451 		mp->m_maxicount = 0;
452 	}
453 }
454 
455 /*
456  * Set the default minimum read and write sizes unless
457  * already specified in a mount option.
458  * We use smaller I/O sizes when the file system
459  * is being used for NFS service (wsync mount option).
460  */
461 STATIC void
462 xfs_set_rw_sizes(xfs_mount_t *mp)
463 {
464 	xfs_sb_t	*sbp = &(mp->m_sb);
465 	int		readio_log, writeio_log;
466 
467 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
468 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
469 			readio_log = XFS_WSYNC_READIO_LOG;
470 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
471 		} else {
472 			readio_log = XFS_READIO_LOG_LARGE;
473 			writeio_log = XFS_WRITEIO_LOG_LARGE;
474 		}
475 	} else {
476 		readio_log = mp->m_readio_log;
477 		writeio_log = mp->m_writeio_log;
478 	}
479 
480 	if (sbp->sb_blocklog > readio_log) {
481 		mp->m_readio_log = sbp->sb_blocklog;
482 	} else {
483 		mp->m_readio_log = readio_log;
484 	}
485 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
486 	if (sbp->sb_blocklog > writeio_log) {
487 		mp->m_writeio_log = sbp->sb_blocklog;
488 	} else {
489 		mp->m_writeio_log = writeio_log;
490 	}
491 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
492 }
493 
494 /*
495  * precalculate the low space thresholds for dynamic speculative preallocation.
496  */
497 void
498 xfs_set_low_space_thresholds(
499 	struct xfs_mount	*mp)
500 {
501 	int i;
502 
503 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
504 		__uint64_t space = mp->m_sb.sb_dblocks;
505 
506 		do_div(space, 100);
507 		mp->m_low_space[i] = space * (i + 1);
508 	}
509 }
510 
511 
512 /*
513  * Set whether we're using inode alignment.
514  */
515 STATIC void
516 xfs_set_inoalignment(xfs_mount_t *mp)
517 {
518 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
519 	    mp->m_sb.sb_inoalignmt >=
520 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
521 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
522 	else
523 		mp->m_inoalign_mask = 0;
524 	/*
525 	 * If we are using stripe alignment, check whether
526 	 * the stripe unit is a multiple of the inode alignment
527 	 */
528 	if (mp->m_dalign && mp->m_inoalign_mask &&
529 	    !(mp->m_dalign & mp->m_inoalign_mask))
530 		mp->m_sinoalign = mp->m_dalign;
531 	else
532 		mp->m_sinoalign = 0;
533 }
534 
535 /*
536  * Check that the data (and log if separate) is an ok size.
537  */
538 STATIC int
539 xfs_check_sizes(
540 	struct xfs_mount *mp)
541 {
542 	struct xfs_buf	*bp;
543 	xfs_daddr_t	d;
544 	int		error;
545 
546 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
547 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
548 		xfs_warn(mp, "filesystem size mismatch detected");
549 		return -EFBIG;
550 	}
551 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
552 					d - XFS_FSS_TO_BB(mp, 1),
553 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
554 	if (error) {
555 		xfs_warn(mp, "last sector read failed");
556 		return error;
557 	}
558 	xfs_buf_relse(bp);
559 
560 	if (mp->m_logdev_targp == mp->m_ddev_targp)
561 		return 0;
562 
563 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
564 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
565 		xfs_warn(mp, "log size mismatch detected");
566 		return -EFBIG;
567 	}
568 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
569 					d - XFS_FSB_TO_BB(mp, 1),
570 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
571 	if (error) {
572 		xfs_warn(mp, "log device read failed");
573 		return error;
574 	}
575 	xfs_buf_relse(bp);
576 	return 0;
577 }
578 
579 /*
580  * Clear the quotaflags in memory and in the superblock.
581  */
582 int
583 xfs_mount_reset_sbqflags(
584 	struct xfs_mount	*mp)
585 {
586 	mp->m_qflags = 0;
587 
588 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
589 	if (mp->m_sb.sb_qflags == 0)
590 		return 0;
591 	spin_lock(&mp->m_sb_lock);
592 	mp->m_sb.sb_qflags = 0;
593 	spin_unlock(&mp->m_sb_lock);
594 
595 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
596 		return 0;
597 
598 	return xfs_sync_sb(mp, false);
599 }
600 
601 __uint64_t
602 xfs_default_resblks(xfs_mount_t *mp)
603 {
604 	__uint64_t resblks;
605 
606 	/*
607 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
608 	 * smaller.  This is intended to cover concurrent allocation
609 	 * transactions when we initially hit enospc. These each require a 4
610 	 * block reservation. Hence by default we cover roughly 2000 concurrent
611 	 * allocation reservations.
612 	 */
613 	resblks = mp->m_sb.sb_dblocks;
614 	do_div(resblks, 20);
615 	resblks = min_t(__uint64_t, resblks, 8192);
616 	return resblks;
617 }
618 
619 /*
620  * This function does the following on an initial mount of a file system:
621  *	- reads the superblock from disk and init the mount struct
622  *	- if we're a 32-bit kernel, do a size check on the superblock
623  *		so we don't mount terabyte filesystems
624  *	- init mount struct realtime fields
625  *	- allocate inode hash table for fs
626  *	- init directory manager
627  *	- perform recovery and init the log manager
628  */
629 int
630 xfs_mountfs(
631 	xfs_mount_t	*mp)
632 {
633 	xfs_sb_t	*sbp = &(mp->m_sb);
634 	xfs_inode_t	*rip;
635 	__uint64_t	resblks;
636 	uint		quotamount = 0;
637 	uint		quotaflags = 0;
638 	int		error = 0;
639 
640 	xfs_sb_mount_common(mp, sbp);
641 
642 	/*
643 	 * Check for a mismatched features2 values.  Older kernels read & wrote
644 	 * into the wrong sb offset for sb_features2 on some platforms due to
645 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
646 	 * which made older superblock reading/writing routines swap it as a
647 	 * 64-bit value.
648 	 *
649 	 * For backwards compatibility, we make both slots equal.
650 	 *
651 	 * If we detect a mismatched field, we OR the set bits into the existing
652 	 * features2 field in case it has already been modified; we don't want
653 	 * to lose any features.  We then update the bad location with the ORed
654 	 * value so that older kernels will see any features2 flags. The
655 	 * superblock writeback code ensures the new sb_features2 is copied to
656 	 * sb_bad_features2 before it is logged or written to disk.
657 	 */
658 	if (xfs_sb_has_mismatched_features2(sbp)) {
659 		xfs_warn(mp, "correcting sb_features alignment problem");
660 		sbp->sb_features2 |= sbp->sb_bad_features2;
661 		mp->m_update_sb = true;
662 
663 		/*
664 		 * Re-check for ATTR2 in case it was found in bad_features2
665 		 * slot.
666 		 */
667 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
668 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
669 			mp->m_flags |= XFS_MOUNT_ATTR2;
670 	}
671 
672 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
673 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
674 		xfs_sb_version_removeattr2(&mp->m_sb);
675 		mp->m_update_sb = true;
676 
677 		/* update sb_versionnum for the clearing of the morebits */
678 		if (!sbp->sb_features2)
679 			mp->m_update_sb = true;
680 	}
681 
682 	/* always use v2 inodes by default now */
683 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
684 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
685 		mp->m_update_sb = true;
686 	}
687 
688 	/*
689 	 * Check if sb_agblocks is aligned at stripe boundary
690 	 * If sb_agblocks is NOT aligned turn off m_dalign since
691 	 * allocator alignment is within an ag, therefore ag has
692 	 * to be aligned at stripe boundary.
693 	 */
694 	error = xfs_update_alignment(mp);
695 	if (error)
696 		goto out;
697 
698 	xfs_alloc_compute_maxlevels(mp);
699 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
700 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
701 	xfs_ialloc_compute_maxlevels(mp);
702 
703 	xfs_set_maxicount(mp);
704 
705 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
706 	if (error)
707 		goto out;
708 
709 	error = xfs_uuid_mount(mp);
710 	if (error)
711 		goto out_remove_sysfs;
712 
713 	/*
714 	 * Set the minimum read and write sizes
715 	 */
716 	xfs_set_rw_sizes(mp);
717 
718 	/* set the low space thresholds for dynamic preallocation */
719 	xfs_set_low_space_thresholds(mp);
720 
721 	/*
722 	 * Set the inode cluster size.
723 	 * This may still be overridden by the file system
724 	 * block size if it is larger than the chosen cluster size.
725 	 *
726 	 * For v5 filesystems, scale the cluster size with the inode size to
727 	 * keep a constant ratio of inode per cluster buffer, but only if mkfs
728 	 * has set the inode alignment value appropriately for larger cluster
729 	 * sizes.
730 	 */
731 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
732 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
733 		int	new_size = mp->m_inode_cluster_size;
734 
735 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
736 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
737 			mp->m_inode_cluster_size = new_size;
738 	}
739 
740 	/*
741 	 * Set inode alignment fields
742 	 */
743 	xfs_set_inoalignment(mp);
744 
745 	/*
746 	 * Check that the data (and log if separate) is an ok size.
747 	 */
748 	error = xfs_check_sizes(mp);
749 	if (error)
750 		goto out_remove_uuid;
751 
752 	/*
753 	 * Initialize realtime fields in the mount structure
754 	 */
755 	error = xfs_rtmount_init(mp);
756 	if (error) {
757 		xfs_warn(mp, "RT mount failed");
758 		goto out_remove_uuid;
759 	}
760 
761 	/*
762 	 *  Copies the low order bits of the timestamp and the randomly
763 	 *  set "sequence" number out of a UUID.
764 	 */
765 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
766 
767 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
768 
769 	error = xfs_da_mount(mp);
770 	if (error) {
771 		xfs_warn(mp, "Failed dir/attr init: %d", error);
772 		goto out_remove_uuid;
773 	}
774 
775 	/*
776 	 * Initialize the precomputed transaction reservations values.
777 	 */
778 	xfs_trans_init(mp);
779 
780 	/*
781 	 * Allocate and initialize the per-ag data.
782 	 */
783 	spin_lock_init(&mp->m_perag_lock);
784 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
785 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
786 	if (error) {
787 		xfs_warn(mp, "Failed per-ag init: %d", error);
788 		goto out_free_dir;
789 	}
790 
791 	if (!sbp->sb_logblocks) {
792 		xfs_warn(mp, "no log defined");
793 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
794 		error = -EFSCORRUPTED;
795 		goto out_free_perag;
796 	}
797 
798 	/*
799 	 * log's mount-time initialization. Perform 1st part recovery if needed
800 	 */
801 	error = xfs_log_mount(mp, mp->m_logdev_targp,
802 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
803 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
804 	if (error) {
805 		xfs_warn(mp, "log mount failed");
806 		goto out_fail_wait;
807 	}
808 
809 	/*
810 	 * Now the log is mounted, we know if it was an unclean shutdown or
811 	 * not. If it was, with the first phase of recovery has completed, we
812 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
813 	 * but they are recovered transactionally in the second recovery phase
814 	 * later.
815 	 *
816 	 * Hence we can safely re-initialise incore superblock counters from
817 	 * the per-ag data. These may not be correct if the filesystem was not
818 	 * cleanly unmounted, so we need to wait for recovery to finish before
819 	 * doing this.
820 	 *
821 	 * If the filesystem was cleanly unmounted, then we can trust the
822 	 * values in the superblock to be correct and we don't need to do
823 	 * anything here.
824 	 *
825 	 * If we are currently making the filesystem, the initialisation will
826 	 * fail as the perag data is in an undefined state.
827 	 */
828 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
829 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
830 	     !mp->m_sb.sb_inprogress) {
831 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
832 		if (error)
833 			goto out_log_dealloc;
834 	}
835 
836 	/*
837 	 * Get and sanity-check the root inode.
838 	 * Save the pointer to it in the mount structure.
839 	 */
840 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
841 	if (error) {
842 		xfs_warn(mp, "failed to read root inode");
843 		goto out_log_dealloc;
844 	}
845 
846 	ASSERT(rip != NULL);
847 
848 	if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
849 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
850 			(unsigned long long)rip->i_ino);
851 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
852 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
853 				 mp);
854 		error = -EFSCORRUPTED;
855 		goto out_rele_rip;
856 	}
857 	mp->m_rootip = rip;	/* save it */
858 
859 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
860 
861 	/*
862 	 * Initialize realtime inode pointers in the mount structure
863 	 */
864 	error = xfs_rtmount_inodes(mp);
865 	if (error) {
866 		/*
867 		 * Free up the root inode.
868 		 */
869 		xfs_warn(mp, "failed to read RT inodes");
870 		goto out_rele_rip;
871 	}
872 
873 	/*
874 	 * If this is a read-only mount defer the superblock updates until
875 	 * the next remount into writeable mode.  Otherwise we would never
876 	 * perform the update e.g. for the root filesystem.
877 	 */
878 	if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
879 		error = xfs_sync_sb(mp, false);
880 		if (error) {
881 			xfs_warn(mp, "failed to write sb changes");
882 			goto out_rtunmount;
883 		}
884 	}
885 
886 	/*
887 	 * Initialise the XFS quota management subsystem for this mount
888 	 */
889 	if (XFS_IS_QUOTA_RUNNING(mp)) {
890 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
891 		if (error)
892 			goto out_rtunmount;
893 	} else {
894 		ASSERT(!XFS_IS_QUOTA_ON(mp));
895 
896 		/*
897 		 * If a file system had quotas running earlier, but decided to
898 		 * mount without -o uquota/pquota/gquota options, revoke the
899 		 * quotachecked license.
900 		 */
901 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
902 			xfs_notice(mp, "resetting quota flags");
903 			error = xfs_mount_reset_sbqflags(mp);
904 			if (error)
905 				goto out_rtunmount;
906 		}
907 	}
908 
909 	/*
910 	 * Finish recovering the file system.  This part needed to be
911 	 * delayed until after the root and real-time bitmap inodes
912 	 * were consistently read in.
913 	 */
914 	error = xfs_log_mount_finish(mp);
915 	if (error) {
916 		xfs_warn(mp, "log mount finish failed");
917 		goto out_rtunmount;
918 	}
919 
920 	/*
921 	 * Complete the quota initialisation, post-log-replay component.
922 	 */
923 	if (quotamount) {
924 		ASSERT(mp->m_qflags == 0);
925 		mp->m_qflags = quotaflags;
926 
927 		xfs_qm_mount_quotas(mp);
928 	}
929 
930 	/*
931 	 * Now we are mounted, reserve a small amount of unused space for
932 	 * privileged transactions. This is needed so that transaction
933 	 * space required for critical operations can dip into this pool
934 	 * when at ENOSPC. This is needed for operations like create with
935 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
936 	 * are not allowed to use this reserved space.
937 	 *
938 	 * This may drive us straight to ENOSPC on mount, but that implies
939 	 * we were already there on the last unmount. Warn if this occurs.
940 	 */
941 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
942 		resblks = xfs_default_resblks(mp);
943 		error = xfs_reserve_blocks(mp, &resblks, NULL);
944 		if (error)
945 			xfs_warn(mp,
946 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
947 	}
948 
949 	return 0;
950 
951  out_rtunmount:
952 	xfs_rtunmount_inodes(mp);
953  out_rele_rip:
954 	IRELE(rip);
955  out_log_dealloc:
956 	xfs_log_unmount(mp);
957  out_fail_wait:
958 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
959 		xfs_wait_buftarg(mp->m_logdev_targp);
960 	xfs_wait_buftarg(mp->m_ddev_targp);
961  out_free_perag:
962 	xfs_free_perag(mp);
963  out_free_dir:
964 	xfs_da_unmount(mp);
965  out_remove_uuid:
966 	xfs_uuid_unmount(mp);
967  out_remove_sysfs:
968 	xfs_sysfs_del(&mp->m_kobj);
969  out:
970 	return error;
971 }
972 
973 /*
974  * This flushes out the inodes,dquots and the superblock, unmounts the
975  * log and makes sure that incore structures are freed.
976  */
977 void
978 xfs_unmountfs(
979 	struct xfs_mount	*mp)
980 {
981 	__uint64_t		resblks;
982 	int			error;
983 
984 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
985 
986 	xfs_qm_unmount_quotas(mp);
987 	xfs_rtunmount_inodes(mp);
988 	IRELE(mp->m_rootip);
989 
990 	/*
991 	 * We can potentially deadlock here if we have an inode cluster
992 	 * that has been freed has its buffer still pinned in memory because
993 	 * the transaction is still sitting in a iclog. The stale inodes
994 	 * on that buffer will have their flush locks held until the
995 	 * transaction hits the disk and the callbacks run. the inode
996 	 * flush takes the flush lock unconditionally and with nothing to
997 	 * push out the iclog we will never get that unlocked. hence we
998 	 * need to force the log first.
999 	 */
1000 	xfs_log_force(mp, XFS_LOG_SYNC);
1001 
1002 	/*
1003 	 * Flush all pending changes from the AIL.
1004 	 */
1005 	xfs_ail_push_all_sync(mp->m_ail);
1006 
1007 	/*
1008 	 * And reclaim all inodes.  At this point there should be no dirty
1009 	 * inodes and none should be pinned or locked, but use synchronous
1010 	 * reclaim just to be sure. We can stop background inode reclaim
1011 	 * here as well if it is still running.
1012 	 */
1013 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1014 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1015 
1016 	xfs_qm_unmount(mp);
1017 
1018 	/*
1019 	 * Unreserve any blocks we have so that when we unmount we don't account
1020 	 * the reserved free space as used. This is really only necessary for
1021 	 * lazy superblock counting because it trusts the incore superblock
1022 	 * counters to be absolutely correct on clean unmount.
1023 	 *
1024 	 * We don't bother correcting this elsewhere for lazy superblock
1025 	 * counting because on mount of an unclean filesystem we reconstruct the
1026 	 * correct counter value and this is irrelevant.
1027 	 *
1028 	 * For non-lazy counter filesystems, this doesn't matter at all because
1029 	 * we only every apply deltas to the superblock and hence the incore
1030 	 * value does not matter....
1031 	 */
1032 	resblks = 0;
1033 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1034 	if (error)
1035 		xfs_warn(mp, "Unable to free reserved block pool. "
1036 				"Freespace may not be correct on next mount.");
1037 
1038 	error = xfs_log_sbcount(mp);
1039 	if (error)
1040 		xfs_warn(mp, "Unable to update superblock counters. "
1041 				"Freespace may not be correct on next mount.");
1042 
1043 	xfs_log_unmount(mp);
1044 	xfs_da_unmount(mp);
1045 	xfs_uuid_unmount(mp);
1046 
1047 #if defined(DEBUG)
1048 	xfs_errortag_clearall(mp, 0);
1049 #endif
1050 	xfs_free_perag(mp);
1051 
1052 	xfs_sysfs_del(&mp->m_kobj);
1053 }
1054 
1055 /*
1056  * Determine whether modifications can proceed. The caller specifies the minimum
1057  * freeze level for which modifications should not be allowed. This allows
1058  * certain operations to proceed while the freeze sequence is in progress, if
1059  * necessary.
1060  */
1061 bool
1062 xfs_fs_writable(
1063 	struct xfs_mount	*mp,
1064 	int			level)
1065 {
1066 	ASSERT(level > SB_UNFROZEN);
1067 	if ((mp->m_super->s_writers.frozen >= level) ||
1068 	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1069 		return false;
1070 
1071 	return true;
1072 }
1073 
1074 /*
1075  * xfs_log_sbcount
1076  *
1077  * Sync the superblock counters to disk.
1078  *
1079  * Note this code can be called during the process of freezing, so we use the
1080  * transaction allocator that does not block when the transaction subsystem is
1081  * in its frozen state.
1082  */
1083 int
1084 xfs_log_sbcount(xfs_mount_t *mp)
1085 {
1086 	/* allow this to proceed during the freeze sequence... */
1087 	if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1088 		return 0;
1089 
1090 	xfs_icsb_sync_counters(mp, 0);
1091 
1092 	/*
1093 	 * we don't need to do this if we are updating the superblock
1094 	 * counters on every modification.
1095 	 */
1096 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1097 		return 0;
1098 
1099 	return xfs_sync_sb(mp, true);
1100 }
1101 
1102 /*
1103  * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply
1104  * a delta to a specified field in the in-core superblock.  Simply
1105  * switch on the field indicated and apply the delta to that field.
1106  * Fields are not allowed to dip below zero, so if the delta would
1107  * do this do not apply it and return EINVAL.
1108  *
1109  * The m_sb_lock must be held when this routine is called.
1110  */
1111 STATIC int
1112 xfs_mod_incore_sb_unlocked(
1113 	xfs_mount_t	*mp,
1114 	xfs_sb_field_t	field,
1115 	int64_t		delta,
1116 	int		rsvd)
1117 {
1118 	int		scounter;	/* short counter for 32 bit fields */
1119 	long long	lcounter;	/* long counter for 64 bit fields */
1120 	long long	res_used, rem;
1121 
1122 	/*
1123 	 * With the in-core superblock spin lock held, switch
1124 	 * on the indicated field.  Apply the delta to the
1125 	 * proper field.  If the fields value would dip below
1126 	 * 0, then do not apply the delta and return EINVAL.
1127 	 */
1128 	switch (field) {
1129 	case XFS_SBS_ICOUNT:
1130 		lcounter = (long long)mp->m_sb.sb_icount;
1131 		lcounter += delta;
1132 		if (lcounter < 0) {
1133 			ASSERT(0);
1134 			return -EINVAL;
1135 		}
1136 		mp->m_sb.sb_icount = lcounter;
1137 		return 0;
1138 	case XFS_SBS_IFREE:
1139 		lcounter = (long long)mp->m_sb.sb_ifree;
1140 		lcounter += delta;
1141 		if (lcounter < 0) {
1142 			ASSERT(0);
1143 			return -EINVAL;
1144 		}
1145 		mp->m_sb.sb_ifree = lcounter;
1146 		return 0;
1147 	case XFS_SBS_FDBLOCKS:
1148 		lcounter = (long long)
1149 			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1150 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1151 
1152 		if (delta > 0) {		/* Putting blocks back */
1153 			if (res_used > delta) {
1154 				mp->m_resblks_avail += delta;
1155 			} else {
1156 				rem = delta - res_used;
1157 				mp->m_resblks_avail = mp->m_resblks;
1158 				lcounter += rem;
1159 			}
1160 		} else {				/* Taking blocks away */
1161 			lcounter += delta;
1162 			if (lcounter >= 0) {
1163 				mp->m_sb.sb_fdblocks = lcounter +
1164 							XFS_ALLOC_SET_ASIDE(mp);
1165 				return 0;
1166 			}
1167 
1168 			/*
1169 			 * We are out of blocks, use any available reserved
1170 			 * blocks if were allowed to.
1171 			 */
1172 			if (!rsvd)
1173 				return -ENOSPC;
1174 
1175 			lcounter = (long long)mp->m_resblks_avail + delta;
1176 			if (lcounter >= 0) {
1177 				mp->m_resblks_avail = lcounter;
1178 				return 0;
1179 			}
1180 			printk_once(KERN_WARNING
1181 				"Filesystem \"%s\": reserve blocks depleted! "
1182 				"Consider increasing reserve pool size.",
1183 				mp->m_fsname);
1184 			return -ENOSPC;
1185 		}
1186 
1187 		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1188 		return 0;
1189 	case XFS_SBS_FREXTENTS:
1190 		lcounter = (long long)mp->m_sb.sb_frextents;
1191 		lcounter += delta;
1192 		if (lcounter < 0) {
1193 			return -ENOSPC;
1194 		}
1195 		mp->m_sb.sb_frextents = lcounter;
1196 		return 0;
1197 	case XFS_SBS_DBLOCKS:
1198 		lcounter = (long long)mp->m_sb.sb_dblocks;
1199 		lcounter += delta;
1200 		if (lcounter < 0) {
1201 			ASSERT(0);
1202 			return -EINVAL;
1203 		}
1204 		mp->m_sb.sb_dblocks = lcounter;
1205 		return 0;
1206 	case XFS_SBS_AGCOUNT:
1207 		scounter = mp->m_sb.sb_agcount;
1208 		scounter += delta;
1209 		if (scounter < 0) {
1210 			ASSERT(0);
1211 			return -EINVAL;
1212 		}
1213 		mp->m_sb.sb_agcount = scounter;
1214 		return 0;
1215 	case XFS_SBS_IMAX_PCT:
1216 		scounter = mp->m_sb.sb_imax_pct;
1217 		scounter += delta;
1218 		if (scounter < 0) {
1219 			ASSERT(0);
1220 			return -EINVAL;
1221 		}
1222 		mp->m_sb.sb_imax_pct = scounter;
1223 		return 0;
1224 	case XFS_SBS_REXTSIZE:
1225 		scounter = mp->m_sb.sb_rextsize;
1226 		scounter += delta;
1227 		if (scounter < 0) {
1228 			ASSERT(0);
1229 			return -EINVAL;
1230 		}
1231 		mp->m_sb.sb_rextsize = scounter;
1232 		return 0;
1233 	case XFS_SBS_RBMBLOCKS:
1234 		scounter = mp->m_sb.sb_rbmblocks;
1235 		scounter += delta;
1236 		if (scounter < 0) {
1237 			ASSERT(0);
1238 			return -EINVAL;
1239 		}
1240 		mp->m_sb.sb_rbmblocks = scounter;
1241 		return 0;
1242 	case XFS_SBS_RBLOCKS:
1243 		lcounter = (long long)mp->m_sb.sb_rblocks;
1244 		lcounter += delta;
1245 		if (lcounter < 0) {
1246 			ASSERT(0);
1247 			return -EINVAL;
1248 		}
1249 		mp->m_sb.sb_rblocks = lcounter;
1250 		return 0;
1251 	case XFS_SBS_REXTENTS:
1252 		lcounter = (long long)mp->m_sb.sb_rextents;
1253 		lcounter += delta;
1254 		if (lcounter < 0) {
1255 			ASSERT(0);
1256 			return -EINVAL;
1257 		}
1258 		mp->m_sb.sb_rextents = lcounter;
1259 		return 0;
1260 	case XFS_SBS_REXTSLOG:
1261 		scounter = mp->m_sb.sb_rextslog;
1262 		scounter += delta;
1263 		if (scounter < 0) {
1264 			ASSERT(0);
1265 			return -EINVAL;
1266 		}
1267 		mp->m_sb.sb_rextslog = scounter;
1268 		return 0;
1269 	default:
1270 		ASSERT(0);
1271 		return -EINVAL;
1272 	}
1273 }
1274 
1275 /*
1276  * xfs_mod_incore_sb() is used to change a field in the in-core
1277  * superblock structure by the specified delta.  This modification
1278  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1279  * routine to do the work.
1280  */
1281 int
1282 xfs_mod_incore_sb(
1283 	struct xfs_mount	*mp,
1284 	xfs_sb_field_t		field,
1285 	int64_t			delta,
1286 	int			rsvd)
1287 {
1288 	int			status;
1289 
1290 #ifdef HAVE_PERCPU_SB
1291 	ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1292 #endif
1293 	spin_lock(&mp->m_sb_lock);
1294 	status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1295 	spin_unlock(&mp->m_sb_lock);
1296 
1297 	return status;
1298 }
1299 
1300 /*
1301  * Change more than one field in the in-core superblock structure at a time.
1302  *
1303  * The fields and changes to those fields are specified in the array of
1304  * xfs_mod_sb structures passed in.  Either all of the specified deltas
1305  * will be applied or none of them will.  If any modified field dips below 0,
1306  * then all modifications will be backed out and EINVAL will be returned.
1307  *
1308  * Note that this function may not be used for the superblock values that
1309  * are tracked with the in-memory per-cpu counters - a direct call to
1310  * xfs_icsb_modify_counters is required for these.
1311  */
1312 int
1313 xfs_mod_incore_sb_batch(
1314 	struct xfs_mount	*mp,
1315 	xfs_mod_sb_t		*msb,
1316 	uint			nmsb,
1317 	int			rsvd)
1318 {
1319 	xfs_mod_sb_t		*msbp;
1320 	int			error = 0;
1321 
1322 	/*
1323 	 * Loop through the array of mod structures and apply each individually.
1324 	 * If any fail, then back out all those which have already been applied.
1325 	 * Do all of this within the scope of the m_sb_lock so that all of the
1326 	 * changes will be atomic.
1327 	 */
1328 	spin_lock(&mp->m_sb_lock);
1329 	for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1330 		ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1331 		       msbp->msb_field > XFS_SBS_FDBLOCKS);
1332 
1333 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1334 						   msbp->msb_delta, rsvd);
1335 		if (error)
1336 			goto unwind;
1337 	}
1338 	spin_unlock(&mp->m_sb_lock);
1339 	return 0;
1340 
1341 unwind:
1342 	while (--msbp >= msb) {
1343 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1344 						   -msbp->msb_delta, rsvd);
1345 		ASSERT(error == 0);
1346 	}
1347 	spin_unlock(&mp->m_sb_lock);
1348 	return error;
1349 }
1350 
1351 /*
1352  * xfs_getsb() is called to obtain the buffer for the superblock.
1353  * The buffer is returned locked and read in from disk.
1354  * The buffer should be released with a call to xfs_brelse().
1355  *
1356  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1357  * the superblock buffer if it can be locked without sleeping.
1358  * If it can't then we'll return NULL.
1359  */
1360 struct xfs_buf *
1361 xfs_getsb(
1362 	struct xfs_mount	*mp,
1363 	int			flags)
1364 {
1365 	struct xfs_buf		*bp = mp->m_sb_bp;
1366 
1367 	if (!xfs_buf_trylock(bp)) {
1368 		if (flags & XBF_TRYLOCK)
1369 			return NULL;
1370 		xfs_buf_lock(bp);
1371 	}
1372 
1373 	xfs_buf_hold(bp);
1374 	ASSERT(XFS_BUF_ISDONE(bp));
1375 	return bp;
1376 }
1377 
1378 /*
1379  * Used to free the superblock along various error paths.
1380  */
1381 void
1382 xfs_freesb(
1383 	struct xfs_mount	*mp)
1384 {
1385 	struct xfs_buf		*bp = mp->m_sb_bp;
1386 
1387 	xfs_buf_lock(bp);
1388 	mp->m_sb_bp = NULL;
1389 	xfs_buf_relse(bp);
1390 }
1391 
1392 /*
1393  * If the underlying (data/log/rt) device is readonly, there are some
1394  * operations that cannot proceed.
1395  */
1396 int
1397 xfs_dev_is_read_only(
1398 	struct xfs_mount	*mp,
1399 	char			*message)
1400 {
1401 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1402 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1403 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1404 		xfs_notice(mp, "%s required on read-only device.", message);
1405 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1406 		return -EROFS;
1407 	}
1408 	return 0;
1409 }
1410 
1411 #ifdef HAVE_PERCPU_SB
1412 /*
1413  * Per-cpu incore superblock counters
1414  *
1415  * Simple concept, difficult implementation
1416  *
1417  * Basically, replace the incore superblock counters with a distributed per cpu
1418  * counter for contended fields (e.g.  free block count).
1419  *
1420  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1421  * hence needs to be accurately read when we are running low on space. Hence
1422  * there is a method to enable and disable the per-cpu counters based on how
1423  * much "stuff" is available in them.
1424  *
1425  * Basically, a counter is enabled if there is enough free resource to justify
1426  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1427  * ENOSPC), then we disable the counters to synchronise all callers and
1428  * re-distribute the available resources.
1429  *
1430  * If, once we redistributed the available resources, we still get a failure,
1431  * we disable the per-cpu counter and go through the slow path.
1432  *
1433  * The slow path is the current xfs_mod_incore_sb() function.  This means that
1434  * when we disable a per-cpu counter, we need to drain its resources back to
1435  * the global superblock. We do this after disabling the counter to prevent
1436  * more threads from queueing up on the counter.
1437  *
1438  * Essentially, this means that we still need a lock in the fast path to enable
1439  * synchronisation between the global counters and the per-cpu counters. This
1440  * is not a problem because the lock will be local to a CPU almost all the time
1441  * and have little contention except when we get to ENOSPC conditions.
1442  *
1443  * Basically, this lock becomes a barrier that enables us to lock out the fast
1444  * path while we do things like enabling and disabling counters and
1445  * synchronising the counters.
1446  *
1447  * Locking rules:
1448  *
1449  * 	1. m_sb_lock before picking up per-cpu locks
1450  * 	2. per-cpu locks always picked up via for_each_online_cpu() order
1451  * 	3. accurate counter sync requires m_sb_lock + per cpu locks
1452  * 	4. modifying per-cpu counters requires holding per-cpu lock
1453  * 	5. modifying global counters requires holding m_sb_lock
1454  *	6. enabling or disabling a counter requires holding the m_sb_lock
1455  *	   and _none_ of the per-cpu locks.
1456  *
1457  * Disabled counters are only ever re-enabled by a balance operation
1458  * that results in more free resources per CPU than a given threshold.
1459  * To ensure counters don't remain disabled, they are rebalanced when
1460  * the global resource goes above a higher threshold (i.e. some hysteresis
1461  * is present to prevent thrashing).
1462  */
1463 
1464 #ifdef CONFIG_HOTPLUG_CPU
1465 /*
1466  * hot-plug CPU notifier support.
1467  *
1468  * We need a notifier per filesystem as we need to be able to identify
1469  * the filesystem to balance the counters out. This is achieved by
1470  * having a notifier block embedded in the xfs_mount_t and doing pointer
1471  * magic to get the mount pointer from the notifier block address.
1472  */
1473 STATIC int
1474 xfs_icsb_cpu_notify(
1475 	struct notifier_block *nfb,
1476 	unsigned long action,
1477 	void *hcpu)
1478 {
1479 	xfs_icsb_cnts_t *cntp;
1480 	xfs_mount_t	*mp;
1481 
1482 	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1483 	cntp = (xfs_icsb_cnts_t *)
1484 			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1485 	switch (action) {
1486 	case CPU_UP_PREPARE:
1487 	case CPU_UP_PREPARE_FROZEN:
1488 		/* Easy Case - initialize the area and locks, and
1489 		 * then rebalance when online does everything else for us. */
1490 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1491 		break;
1492 	case CPU_ONLINE:
1493 	case CPU_ONLINE_FROZEN:
1494 		xfs_icsb_lock(mp);
1495 		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1496 		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1497 		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1498 		xfs_icsb_unlock(mp);
1499 		break;
1500 	case CPU_DEAD:
1501 	case CPU_DEAD_FROZEN:
1502 		/* Disable all the counters, then fold the dead cpu's
1503 		 * count into the total on the global superblock and
1504 		 * re-enable the counters. */
1505 		xfs_icsb_lock(mp);
1506 		spin_lock(&mp->m_sb_lock);
1507 		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1508 		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1509 		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1510 
1511 		mp->m_sb.sb_icount += cntp->icsb_icount;
1512 		mp->m_sb.sb_ifree += cntp->icsb_ifree;
1513 		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1514 
1515 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1516 
1517 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1518 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1519 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1520 		spin_unlock(&mp->m_sb_lock);
1521 		xfs_icsb_unlock(mp);
1522 		break;
1523 	}
1524 
1525 	return NOTIFY_OK;
1526 }
1527 #endif /* CONFIG_HOTPLUG_CPU */
1528 
1529 int
1530 xfs_icsb_init_counters(
1531 	xfs_mount_t	*mp)
1532 {
1533 	xfs_icsb_cnts_t *cntp;
1534 	int		i;
1535 
1536 	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
1537 	if (mp->m_sb_cnts == NULL)
1538 		return -ENOMEM;
1539 
1540 	for_each_online_cpu(i) {
1541 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1542 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1543 	}
1544 
1545 	mutex_init(&mp->m_icsb_mutex);
1546 
1547 	/*
1548 	 * start with all counters disabled so that the
1549 	 * initial balance kicks us off correctly
1550 	 */
1551 	mp->m_icsb_counters = -1;
1552 
1553 #ifdef CONFIG_HOTPLUG_CPU
1554 	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
1555 	mp->m_icsb_notifier.priority = 0;
1556 	register_hotcpu_notifier(&mp->m_icsb_notifier);
1557 #endif /* CONFIG_HOTPLUG_CPU */
1558 
1559 	return 0;
1560 }
1561 
1562 void
1563 xfs_icsb_reinit_counters(
1564 	xfs_mount_t	*mp)
1565 {
1566 	xfs_icsb_lock(mp);
1567 	/*
1568 	 * start with all counters disabled so that the
1569 	 * initial balance kicks us off correctly
1570 	 */
1571 	mp->m_icsb_counters = -1;
1572 	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1573 	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1574 	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1575 	xfs_icsb_unlock(mp);
1576 }
1577 
1578 void
1579 xfs_icsb_destroy_counters(
1580 	xfs_mount_t	*mp)
1581 {
1582 	if (mp->m_sb_cnts) {
1583 		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
1584 		free_percpu(mp->m_sb_cnts);
1585 	}
1586 	mutex_destroy(&mp->m_icsb_mutex);
1587 }
1588 
1589 STATIC void
1590 xfs_icsb_lock_cntr(
1591 	xfs_icsb_cnts_t	*icsbp)
1592 {
1593 	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
1594 		ndelay(1000);
1595 	}
1596 }
1597 
1598 STATIC void
1599 xfs_icsb_unlock_cntr(
1600 	xfs_icsb_cnts_t	*icsbp)
1601 {
1602 	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
1603 }
1604 
1605 
1606 STATIC void
1607 xfs_icsb_lock_all_counters(
1608 	xfs_mount_t	*mp)
1609 {
1610 	xfs_icsb_cnts_t *cntp;
1611 	int		i;
1612 
1613 	for_each_online_cpu(i) {
1614 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1615 		xfs_icsb_lock_cntr(cntp);
1616 	}
1617 }
1618 
1619 STATIC void
1620 xfs_icsb_unlock_all_counters(
1621 	xfs_mount_t	*mp)
1622 {
1623 	xfs_icsb_cnts_t *cntp;
1624 	int		i;
1625 
1626 	for_each_online_cpu(i) {
1627 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1628 		xfs_icsb_unlock_cntr(cntp);
1629 	}
1630 }
1631 
1632 STATIC void
1633 xfs_icsb_count(
1634 	xfs_mount_t	*mp,
1635 	xfs_icsb_cnts_t	*cnt,
1636 	int		flags)
1637 {
1638 	xfs_icsb_cnts_t *cntp;
1639 	int		i;
1640 
1641 	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
1642 
1643 	if (!(flags & XFS_ICSB_LAZY_COUNT))
1644 		xfs_icsb_lock_all_counters(mp);
1645 
1646 	for_each_online_cpu(i) {
1647 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1648 		cnt->icsb_icount += cntp->icsb_icount;
1649 		cnt->icsb_ifree += cntp->icsb_ifree;
1650 		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
1651 	}
1652 
1653 	if (!(flags & XFS_ICSB_LAZY_COUNT))
1654 		xfs_icsb_unlock_all_counters(mp);
1655 }
1656 
1657 STATIC int
1658 xfs_icsb_counter_disabled(
1659 	xfs_mount_t	*mp,
1660 	xfs_sb_field_t	field)
1661 {
1662 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1663 	return test_bit(field, &mp->m_icsb_counters);
1664 }
1665 
1666 STATIC void
1667 xfs_icsb_disable_counter(
1668 	xfs_mount_t	*mp,
1669 	xfs_sb_field_t	field)
1670 {
1671 	xfs_icsb_cnts_t	cnt;
1672 
1673 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1674 
1675 	/*
1676 	 * If we are already disabled, then there is nothing to do
1677 	 * here. We check before locking all the counters to avoid
1678 	 * the expensive lock operation when being called in the
1679 	 * slow path and the counter is already disabled. This is
1680 	 * safe because the only time we set or clear this state is under
1681 	 * the m_icsb_mutex.
1682 	 */
1683 	if (xfs_icsb_counter_disabled(mp, field))
1684 		return;
1685 
1686 	xfs_icsb_lock_all_counters(mp);
1687 	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
1688 		/* drain back to superblock */
1689 
1690 		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
1691 		switch(field) {
1692 		case XFS_SBS_ICOUNT:
1693 			mp->m_sb.sb_icount = cnt.icsb_icount;
1694 			break;
1695 		case XFS_SBS_IFREE:
1696 			mp->m_sb.sb_ifree = cnt.icsb_ifree;
1697 			break;
1698 		case XFS_SBS_FDBLOCKS:
1699 			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1700 			break;
1701 		default:
1702 			BUG();
1703 		}
1704 	}
1705 
1706 	xfs_icsb_unlock_all_counters(mp);
1707 }
1708 
1709 STATIC void
1710 xfs_icsb_enable_counter(
1711 	xfs_mount_t	*mp,
1712 	xfs_sb_field_t	field,
1713 	uint64_t	count,
1714 	uint64_t	resid)
1715 {
1716 	xfs_icsb_cnts_t	*cntp;
1717 	int		i;
1718 
1719 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1720 
1721 	xfs_icsb_lock_all_counters(mp);
1722 	for_each_online_cpu(i) {
1723 		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
1724 		switch (field) {
1725 		case XFS_SBS_ICOUNT:
1726 			cntp->icsb_icount = count + resid;
1727 			break;
1728 		case XFS_SBS_IFREE:
1729 			cntp->icsb_ifree = count + resid;
1730 			break;
1731 		case XFS_SBS_FDBLOCKS:
1732 			cntp->icsb_fdblocks = count + resid;
1733 			break;
1734 		default:
1735 			BUG();
1736 			break;
1737 		}
1738 		resid = 0;
1739 	}
1740 	clear_bit(field, &mp->m_icsb_counters);
1741 	xfs_icsb_unlock_all_counters(mp);
1742 }
1743 
1744 void
1745 xfs_icsb_sync_counters_locked(
1746 	xfs_mount_t	*mp,
1747 	int		flags)
1748 {
1749 	xfs_icsb_cnts_t	cnt;
1750 
1751 	xfs_icsb_count(mp, &cnt, flags);
1752 
1753 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
1754 		mp->m_sb.sb_icount = cnt.icsb_icount;
1755 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
1756 		mp->m_sb.sb_ifree = cnt.icsb_ifree;
1757 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
1758 		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1759 }
1760 
1761 /*
1762  * Accurate update of per-cpu counters to incore superblock
1763  */
1764 void
1765 xfs_icsb_sync_counters(
1766 	xfs_mount_t	*mp,
1767 	int		flags)
1768 {
1769 	spin_lock(&mp->m_sb_lock);
1770 	xfs_icsb_sync_counters_locked(mp, flags);
1771 	spin_unlock(&mp->m_sb_lock);
1772 }
1773 
1774 /*
1775  * Balance and enable/disable counters as necessary.
1776  *
1777  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
1778  * chosen to be the same number as single on disk allocation chunk per CPU, and
1779  * free blocks is something far enough zero that we aren't going thrash when we
1780  * get near ENOSPC. We also need to supply a minimum we require per cpu to
1781  * prevent looping endlessly when xfs_alloc_space asks for more than will
1782  * be distributed to a single CPU but each CPU has enough blocks to be
1783  * reenabled.
1784  *
1785  * Note that we can be called when counters are already disabled.
1786  * xfs_icsb_disable_counter() optimises the counter locking in this case to
1787  * prevent locking every per-cpu counter needlessly.
1788  */
1789 
1790 #define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
1791 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
1792 		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
1793 STATIC void
1794 xfs_icsb_balance_counter_locked(
1795 	xfs_mount_t	*mp,
1796 	xfs_sb_field_t  field,
1797 	int		min_per_cpu)
1798 {
1799 	uint64_t	count, resid;
1800 	int		weight = num_online_cpus();
1801 	uint64_t	min = (uint64_t)min_per_cpu;
1802 
1803 	/* disable counter and sync counter */
1804 	xfs_icsb_disable_counter(mp, field);
1805 
1806 	/* update counters  - first CPU gets residual*/
1807 	switch (field) {
1808 	case XFS_SBS_ICOUNT:
1809 		count = mp->m_sb.sb_icount;
1810 		resid = do_div(count, weight);
1811 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1812 			return;
1813 		break;
1814 	case XFS_SBS_IFREE:
1815 		count = mp->m_sb.sb_ifree;
1816 		resid = do_div(count, weight);
1817 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1818 			return;
1819 		break;
1820 	case XFS_SBS_FDBLOCKS:
1821 		count = mp->m_sb.sb_fdblocks;
1822 		resid = do_div(count, weight);
1823 		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
1824 			return;
1825 		break;
1826 	default:
1827 		BUG();
1828 		count = resid = 0;	/* quiet, gcc */
1829 		break;
1830 	}
1831 
1832 	xfs_icsb_enable_counter(mp, field, count, resid);
1833 }
1834 
1835 STATIC void
1836 xfs_icsb_balance_counter(
1837 	xfs_mount_t	*mp,
1838 	xfs_sb_field_t  fields,
1839 	int		min_per_cpu)
1840 {
1841 	spin_lock(&mp->m_sb_lock);
1842 	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
1843 	spin_unlock(&mp->m_sb_lock);
1844 }
1845 
1846 int
1847 xfs_icsb_modify_counters(
1848 	xfs_mount_t	*mp,
1849 	xfs_sb_field_t	field,
1850 	int64_t		delta,
1851 	int		rsvd)
1852 {
1853 	xfs_icsb_cnts_t	*icsbp;
1854 	long long	lcounter;	/* long counter for 64 bit fields */
1855 	int		ret = 0;
1856 
1857 	might_sleep();
1858 again:
1859 	preempt_disable();
1860 	icsbp = this_cpu_ptr(mp->m_sb_cnts);
1861 
1862 	/*
1863 	 * if the counter is disabled, go to slow path
1864 	 */
1865 	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
1866 		goto slow_path;
1867 	xfs_icsb_lock_cntr(icsbp);
1868 	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
1869 		xfs_icsb_unlock_cntr(icsbp);
1870 		goto slow_path;
1871 	}
1872 
1873 	switch (field) {
1874 	case XFS_SBS_ICOUNT:
1875 		lcounter = icsbp->icsb_icount;
1876 		lcounter += delta;
1877 		if (unlikely(lcounter < 0))
1878 			goto balance_counter;
1879 		icsbp->icsb_icount = lcounter;
1880 		break;
1881 
1882 	case XFS_SBS_IFREE:
1883 		lcounter = icsbp->icsb_ifree;
1884 		lcounter += delta;
1885 		if (unlikely(lcounter < 0))
1886 			goto balance_counter;
1887 		icsbp->icsb_ifree = lcounter;
1888 		break;
1889 
1890 	case XFS_SBS_FDBLOCKS:
1891 		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
1892 
1893 		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1894 		lcounter += delta;
1895 		if (unlikely(lcounter < 0))
1896 			goto balance_counter;
1897 		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1898 		break;
1899 	default:
1900 		BUG();
1901 		break;
1902 	}
1903 	xfs_icsb_unlock_cntr(icsbp);
1904 	preempt_enable();
1905 	return 0;
1906 
1907 slow_path:
1908 	preempt_enable();
1909 
1910 	/*
1911 	 * serialise with a mutex so we don't burn lots of cpu on
1912 	 * the superblock lock. We still need to hold the superblock
1913 	 * lock, however, when we modify the global structures.
1914 	 */
1915 	xfs_icsb_lock(mp);
1916 
1917 	/*
1918 	 * Now running atomically.
1919 	 *
1920 	 * If the counter is enabled, someone has beaten us to rebalancing.
1921 	 * Drop the lock and try again in the fast path....
1922 	 */
1923 	if (!(xfs_icsb_counter_disabled(mp, field))) {
1924 		xfs_icsb_unlock(mp);
1925 		goto again;
1926 	}
1927 
1928 	/*
1929 	 * The counter is currently disabled. Because we are
1930 	 * running atomically here, we know a rebalance cannot
1931 	 * be in progress. Hence we can go straight to operating
1932 	 * on the global superblock. We do not call xfs_mod_incore_sb()
1933 	 * here even though we need to get the m_sb_lock. Doing so
1934 	 * will cause us to re-enter this function and deadlock.
1935 	 * Hence we get the m_sb_lock ourselves and then call
1936 	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
1937 	 * directly on the global counters.
1938 	 */
1939 	spin_lock(&mp->m_sb_lock);
1940 	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1941 	spin_unlock(&mp->m_sb_lock);
1942 
1943 	/*
1944 	 * Now that we've modified the global superblock, we
1945 	 * may be able to re-enable the distributed counters
1946 	 * (e.g. lots of space just got freed). After that
1947 	 * we are done.
1948 	 */
1949 	if (ret != -ENOSPC)
1950 		xfs_icsb_balance_counter(mp, field, 0);
1951 	xfs_icsb_unlock(mp);
1952 	return ret;
1953 
1954 balance_counter:
1955 	xfs_icsb_unlock_cntr(icsbp);
1956 	preempt_enable();
1957 
1958 	/*
1959 	 * We may have multiple threads here if multiple per-cpu
1960 	 * counters run dry at the same time. This will mean we can
1961 	 * do more balances than strictly necessary but it is not
1962 	 * the common slowpath case.
1963 	 */
1964 	xfs_icsb_lock(mp);
1965 
1966 	/*
1967 	 * running atomically.
1968 	 *
1969 	 * This will leave the counter in the correct state for future
1970 	 * accesses. After the rebalance, we simply try again and our retry
1971 	 * will either succeed through the fast path or slow path without
1972 	 * another balance operation being required.
1973 	 */
1974 	xfs_icsb_balance_counter(mp, field, delta);
1975 	xfs_icsb_unlock(mp);
1976 	goto again;
1977 }
1978 
1979 #endif
1980