xref: /openbmc/linux/fs/xfs/xfs_log_recover.c (revision f42b3800)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_imap.h"
40 #include "xfs_alloc.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_log_priv.h"
43 #include "xfs_buf_item.h"
44 #include "xfs_log_recover.h"
45 #include "xfs_extfree_item.h"
46 #include "xfs_trans_priv.h"
47 #include "xfs_quota.h"
48 #include "xfs_rw.h"
49 #include "xfs_utils.h"
50 
51 STATIC int	xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
52 STATIC int	xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
53 STATIC void	xlog_recover_insert_item_backq(xlog_recover_item_t **q,
54 					       xlog_recover_item_t *item);
55 #if defined(DEBUG)
56 STATIC void	xlog_recover_check_summary(xlog_t *);
57 STATIC void	xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
58 #else
59 #define	xlog_recover_check_summary(log)
60 #define	xlog_recover_check_ail(mp, lip, gen)
61 #endif
62 
63 
64 /*
65  * Sector aligned buffer routines for buffer create/read/write/access
66  */
67 
68 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs)	\
69 	( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
70 	((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
71 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno)	((bno) & ~(log)->l_sectbb_mask)
72 
73 xfs_buf_t *
74 xlog_get_bp(
75 	xlog_t		*log,
76 	int		num_bblks)
77 {
78 	ASSERT(num_bblks > 0);
79 
80 	if (log->l_sectbb_log) {
81 		if (num_bblks > 1)
82 			num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
83 		num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
84 	}
85 	return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
86 }
87 
88 void
89 xlog_put_bp(
90 	xfs_buf_t	*bp)
91 {
92 	xfs_buf_free(bp);
93 }
94 
95 
96 /*
97  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
98  */
99 int
100 xlog_bread(
101 	xlog_t		*log,
102 	xfs_daddr_t	blk_no,
103 	int		nbblks,
104 	xfs_buf_t	*bp)
105 {
106 	int		error;
107 
108 	if (log->l_sectbb_log) {
109 		blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
110 		nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
111 	}
112 
113 	ASSERT(nbblks > 0);
114 	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
115 	ASSERT(bp);
116 
117 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
118 	XFS_BUF_READ(bp);
119 	XFS_BUF_BUSY(bp);
120 	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
121 	XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
122 
123 	xfsbdstrat(log->l_mp, bp);
124 	error = xfs_iowait(bp);
125 	if (error)
126 		xfs_ioerror_alert("xlog_bread", log->l_mp,
127 				  bp, XFS_BUF_ADDR(bp));
128 	return error;
129 }
130 
131 /*
132  * Write out the buffer at the given block for the given number of blocks.
133  * The buffer is kept locked across the write and is returned locked.
134  * This can only be used for synchronous log writes.
135  */
136 STATIC int
137 xlog_bwrite(
138 	xlog_t		*log,
139 	xfs_daddr_t	blk_no,
140 	int		nbblks,
141 	xfs_buf_t	*bp)
142 {
143 	int		error;
144 
145 	if (log->l_sectbb_log) {
146 		blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
147 		nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
148 	}
149 
150 	ASSERT(nbblks > 0);
151 	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
152 
153 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
154 	XFS_BUF_ZEROFLAGS(bp);
155 	XFS_BUF_BUSY(bp);
156 	XFS_BUF_HOLD(bp);
157 	XFS_BUF_PSEMA(bp, PRIBIO);
158 	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
159 	XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
160 
161 	if ((error = xfs_bwrite(log->l_mp, bp)))
162 		xfs_ioerror_alert("xlog_bwrite", log->l_mp,
163 				  bp, XFS_BUF_ADDR(bp));
164 	return error;
165 }
166 
167 STATIC xfs_caddr_t
168 xlog_align(
169 	xlog_t		*log,
170 	xfs_daddr_t	blk_no,
171 	int		nbblks,
172 	xfs_buf_t	*bp)
173 {
174 	xfs_caddr_t	ptr;
175 
176 	if (!log->l_sectbb_log)
177 		return XFS_BUF_PTR(bp);
178 
179 	ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
180 	ASSERT(XFS_BUF_SIZE(bp) >=
181 		BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
182 	return ptr;
183 }
184 
185 #ifdef DEBUG
186 /*
187  * dump debug superblock and log record information
188  */
189 STATIC void
190 xlog_header_check_dump(
191 	xfs_mount_t		*mp,
192 	xlog_rec_header_t	*head)
193 {
194 	int			b;
195 
196 	cmn_err(CE_DEBUG, "%s:  SB : uuid = ", __func__);
197 	for (b = 0; b < 16; b++)
198 		cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
199 	cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
200 	cmn_err(CE_DEBUG, "    log : uuid = ");
201 	for (b = 0; b < 16; b++)
202 		cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
203 	cmn_err(CE_DEBUG, ", fmt = %d\n", be32_to_cpu(head->h_fmt));
204 }
205 #else
206 #define xlog_header_check_dump(mp, head)
207 #endif
208 
209 /*
210  * check log record header for recovery
211  */
212 STATIC int
213 xlog_header_check_recover(
214 	xfs_mount_t		*mp,
215 	xlog_rec_header_t	*head)
216 {
217 	ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
218 
219 	/*
220 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
221 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
222 	 * a dirty log created in IRIX.
223 	 */
224 	if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
225 		xlog_warn(
226 	"XFS: dirty log written in incompatible format - can't recover");
227 		xlog_header_check_dump(mp, head);
228 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
229 				 XFS_ERRLEVEL_HIGH, mp);
230 		return XFS_ERROR(EFSCORRUPTED);
231 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
232 		xlog_warn(
233 	"XFS: dirty log entry has mismatched uuid - can't recover");
234 		xlog_header_check_dump(mp, head);
235 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
236 				 XFS_ERRLEVEL_HIGH, mp);
237 		return XFS_ERROR(EFSCORRUPTED);
238 	}
239 	return 0;
240 }
241 
242 /*
243  * read the head block of the log and check the header
244  */
245 STATIC int
246 xlog_header_check_mount(
247 	xfs_mount_t		*mp,
248 	xlog_rec_header_t	*head)
249 {
250 	ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
251 
252 	if (uuid_is_nil(&head->h_fs_uuid)) {
253 		/*
254 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
255 		 * h_fs_uuid is nil, we assume this log was last mounted
256 		 * by IRIX and continue.
257 		 */
258 		xlog_warn("XFS: nil uuid in log - IRIX style log");
259 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
260 		xlog_warn("XFS: log has mismatched uuid - can't recover");
261 		xlog_header_check_dump(mp, head);
262 		XFS_ERROR_REPORT("xlog_header_check_mount",
263 				 XFS_ERRLEVEL_HIGH, mp);
264 		return XFS_ERROR(EFSCORRUPTED);
265 	}
266 	return 0;
267 }
268 
269 STATIC void
270 xlog_recover_iodone(
271 	struct xfs_buf	*bp)
272 {
273 	xfs_mount_t	*mp;
274 
275 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
276 
277 	if (XFS_BUF_GETERROR(bp)) {
278 		/*
279 		 * We're not going to bother about retrying
280 		 * this during recovery. One strike!
281 		 */
282 		mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
283 		xfs_ioerror_alert("xlog_recover_iodone",
284 				  mp, bp, XFS_BUF_ADDR(bp));
285 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
286 	}
287 	XFS_BUF_SET_FSPRIVATE(bp, NULL);
288 	XFS_BUF_CLR_IODONE_FUNC(bp);
289 	xfs_biodone(bp);
290 }
291 
292 /*
293  * This routine finds (to an approximation) the first block in the physical
294  * log which contains the given cycle.  It uses a binary search algorithm.
295  * Note that the algorithm can not be perfect because the disk will not
296  * necessarily be perfect.
297  */
298 STATIC int
299 xlog_find_cycle_start(
300 	xlog_t		*log,
301 	xfs_buf_t	*bp,
302 	xfs_daddr_t	first_blk,
303 	xfs_daddr_t	*last_blk,
304 	uint		cycle)
305 {
306 	xfs_caddr_t	offset;
307 	xfs_daddr_t	mid_blk;
308 	uint		mid_cycle;
309 	int		error;
310 
311 	mid_blk = BLK_AVG(first_blk, *last_blk);
312 	while (mid_blk != first_blk && mid_blk != *last_blk) {
313 		if ((error = xlog_bread(log, mid_blk, 1, bp)))
314 			return error;
315 		offset = xlog_align(log, mid_blk, 1, bp);
316 		mid_cycle = xlog_get_cycle(offset);
317 		if (mid_cycle == cycle) {
318 			*last_blk = mid_blk;
319 			/* last_half_cycle == mid_cycle */
320 		} else {
321 			first_blk = mid_blk;
322 			/* first_half_cycle == mid_cycle */
323 		}
324 		mid_blk = BLK_AVG(first_blk, *last_blk);
325 	}
326 	ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
327 	       (mid_blk == *last_blk && mid_blk-1 == first_blk));
328 
329 	return 0;
330 }
331 
332 /*
333  * Check that the range of blocks does not contain the cycle number
334  * given.  The scan needs to occur from front to back and the ptr into the
335  * region must be updated since a later routine will need to perform another
336  * test.  If the region is completely good, we end up returning the same
337  * last block number.
338  *
339  * Set blkno to -1 if we encounter no errors.  This is an invalid block number
340  * since we don't ever expect logs to get this large.
341  */
342 STATIC int
343 xlog_find_verify_cycle(
344 	xlog_t		*log,
345 	xfs_daddr_t	start_blk,
346 	int		nbblks,
347 	uint		stop_on_cycle_no,
348 	xfs_daddr_t	*new_blk)
349 {
350 	xfs_daddr_t	i, j;
351 	uint		cycle;
352 	xfs_buf_t	*bp;
353 	xfs_daddr_t	bufblks;
354 	xfs_caddr_t	buf = NULL;
355 	int		error = 0;
356 
357 	bufblks = 1 << ffs(nbblks);
358 
359 	while (!(bp = xlog_get_bp(log, bufblks))) {
360 		/* can't get enough memory to do everything in one big buffer */
361 		bufblks >>= 1;
362 		if (bufblks <= log->l_sectbb_log)
363 			return ENOMEM;
364 	}
365 
366 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
367 		int	bcount;
368 
369 		bcount = min(bufblks, (start_blk + nbblks - i));
370 
371 		if ((error = xlog_bread(log, i, bcount, bp)))
372 			goto out;
373 
374 		buf = xlog_align(log, i, bcount, bp);
375 		for (j = 0; j < bcount; j++) {
376 			cycle = xlog_get_cycle(buf);
377 			if (cycle == stop_on_cycle_no) {
378 				*new_blk = i+j;
379 				goto out;
380 			}
381 
382 			buf += BBSIZE;
383 		}
384 	}
385 
386 	*new_blk = -1;
387 
388 out:
389 	xlog_put_bp(bp);
390 	return error;
391 }
392 
393 /*
394  * Potentially backup over partial log record write.
395  *
396  * In the typical case, last_blk is the number of the block directly after
397  * a good log record.  Therefore, we subtract one to get the block number
398  * of the last block in the given buffer.  extra_bblks contains the number
399  * of blocks we would have read on a previous read.  This happens when the
400  * last log record is split over the end of the physical log.
401  *
402  * extra_bblks is the number of blocks potentially verified on a previous
403  * call to this routine.
404  */
405 STATIC int
406 xlog_find_verify_log_record(
407 	xlog_t			*log,
408 	xfs_daddr_t		start_blk,
409 	xfs_daddr_t		*last_blk,
410 	int			extra_bblks)
411 {
412 	xfs_daddr_t		i;
413 	xfs_buf_t		*bp;
414 	xfs_caddr_t		offset = NULL;
415 	xlog_rec_header_t	*head = NULL;
416 	int			error = 0;
417 	int			smallmem = 0;
418 	int			num_blks = *last_blk - start_blk;
419 	int			xhdrs;
420 
421 	ASSERT(start_blk != 0 || *last_blk != start_blk);
422 
423 	if (!(bp = xlog_get_bp(log, num_blks))) {
424 		if (!(bp = xlog_get_bp(log, 1)))
425 			return ENOMEM;
426 		smallmem = 1;
427 	} else {
428 		if ((error = xlog_bread(log, start_blk, num_blks, bp)))
429 			goto out;
430 		offset = xlog_align(log, start_blk, num_blks, bp);
431 		offset += ((num_blks - 1) << BBSHIFT);
432 	}
433 
434 	for (i = (*last_blk) - 1; i >= 0; i--) {
435 		if (i < start_blk) {
436 			/* valid log record not found */
437 			xlog_warn(
438 		"XFS: Log inconsistent (didn't find previous header)");
439 			ASSERT(0);
440 			error = XFS_ERROR(EIO);
441 			goto out;
442 		}
443 
444 		if (smallmem) {
445 			if ((error = xlog_bread(log, i, 1, bp)))
446 				goto out;
447 			offset = xlog_align(log, i, 1, bp);
448 		}
449 
450 		head = (xlog_rec_header_t *)offset;
451 
452 		if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
453 			break;
454 
455 		if (!smallmem)
456 			offset -= BBSIZE;
457 	}
458 
459 	/*
460 	 * We hit the beginning of the physical log & still no header.  Return
461 	 * to caller.  If caller can handle a return of -1, then this routine
462 	 * will be called again for the end of the physical log.
463 	 */
464 	if (i == -1) {
465 		error = -1;
466 		goto out;
467 	}
468 
469 	/*
470 	 * We have the final block of the good log (the first block
471 	 * of the log record _before_ the head. So we check the uuid.
472 	 */
473 	if ((error = xlog_header_check_mount(log->l_mp, head)))
474 		goto out;
475 
476 	/*
477 	 * We may have found a log record header before we expected one.
478 	 * last_blk will be the 1st block # with a given cycle #.  We may end
479 	 * up reading an entire log record.  In this case, we don't want to
480 	 * reset last_blk.  Only when last_blk points in the middle of a log
481 	 * record do we update last_blk.
482 	 */
483 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
484 		uint	h_size = be32_to_cpu(head->h_size);
485 
486 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
487 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
488 			xhdrs++;
489 	} else {
490 		xhdrs = 1;
491 	}
492 
493 	if (*last_blk - i + extra_bblks !=
494 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
495 		*last_blk = i;
496 
497 out:
498 	xlog_put_bp(bp);
499 	return error;
500 }
501 
502 /*
503  * Head is defined to be the point of the log where the next log write
504  * write could go.  This means that incomplete LR writes at the end are
505  * eliminated when calculating the head.  We aren't guaranteed that previous
506  * LR have complete transactions.  We only know that a cycle number of
507  * current cycle number -1 won't be present in the log if we start writing
508  * from our current block number.
509  *
510  * last_blk contains the block number of the first block with a given
511  * cycle number.
512  *
513  * Return: zero if normal, non-zero if error.
514  */
515 STATIC int
516 xlog_find_head(
517 	xlog_t 		*log,
518 	xfs_daddr_t	*return_head_blk)
519 {
520 	xfs_buf_t	*bp;
521 	xfs_caddr_t	offset;
522 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
523 	int		num_scan_bblks;
524 	uint		first_half_cycle, last_half_cycle;
525 	uint		stop_on_cycle;
526 	int		error, log_bbnum = log->l_logBBsize;
527 
528 	/* Is the end of the log device zeroed? */
529 	if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
530 		*return_head_blk = first_blk;
531 
532 		/* Is the whole lot zeroed? */
533 		if (!first_blk) {
534 			/* Linux XFS shouldn't generate totally zeroed logs -
535 			 * mkfs etc write a dummy unmount record to a fresh
536 			 * log so we can store the uuid in there
537 			 */
538 			xlog_warn("XFS: totally zeroed log");
539 		}
540 
541 		return 0;
542 	} else if (error) {
543 		xlog_warn("XFS: empty log check failed");
544 		return error;
545 	}
546 
547 	first_blk = 0;			/* get cycle # of 1st block */
548 	bp = xlog_get_bp(log, 1);
549 	if (!bp)
550 		return ENOMEM;
551 	if ((error = xlog_bread(log, 0, 1, bp)))
552 		goto bp_err;
553 	offset = xlog_align(log, 0, 1, bp);
554 	first_half_cycle = xlog_get_cycle(offset);
555 
556 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
557 	if ((error = xlog_bread(log, last_blk, 1, bp)))
558 		goto bp_err;
559 	offset = xlog_align(log, last_blk, 1, bp);
560 	last_half_cycle = xlog_get_cycle(offset);
561 	ASSERT(last_half_cycle != 0);
562 
563 	/*
564 	 * If the 1st half cycle number is equal to the last half cycle number,
565 	 * then the entire log is stamped with the same cycle number.  In this
566 	 * case, head_blk can't be set to zero (which makes sense).  The below
567 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
568 	 * we set it to log_bbnum which is an invalid block number, but this
569 	 * value makes the math correct.  If head_blk doesn't changed through
570 	 * all the tests below, *head_blk is set to zero at the very end rather
571 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
572 	 * in a circular file.
573 	 */
574 	if (first_half_cycle == last_half_cycle) {
575 		/*
576 		 * In this case we believe that the entire log should have
577 		 * cycle number last_half_cycle.  We need to scan backwards
578 		 * from the end verifying that there are no holes still
579 		 * containing last_half_cycle - 1.  If we find such a hole,
580 		 * then the start of that hole will be the new head.  The
581 		 * simple case looks like
582 		 *        x | x ... | x - 1 | x
583 		 * Another case that fits this picture would be
584 		 *        x | x + 1 | x ... | x
585 		 * In this case the head really is somewhere at the end of the
586 		 * log, as one of the latest writes at the beginning was
587 		 * incomplete.
588 		 * One more case is
589 		 *        x | x + 1 | x ... | x - 1 | x
590 		 * This is really the combination of the above two cases, and
591 		 * the head has to end up at the start of the x-1 hole at the
592 		 * end of the log.
593 		 *
594 		 * In the 256k log case, we will read from the beginning to the
595 		 * end of the log and search for cycle numbers equal to x-1.
596 		 * We don't worry about the x+1 blocks that we encounter,
597 		 * because we know that they cannot be the head since the log
598 		 * started with x.
599 		 */
600 		head_blk = log_bbnum;
601 		stop_on_cycle = last_half_cycle - 1;
602 	} else {
603 		/*
604 		 * In this case we want to find the first block with cycle
605 		 * number matching last_half_cycle.  We expect the log to be
606 		 * some variation on
607 		 *        x + 1 ... | x ...
608 		 * The first block with cycle number x (last_half_cycle) will
609 		 * be where the new head belongs.  First we do a binary search
610 		 * for the first occurrence of last_half_cycle.  The binary
611 		 * search may not be totally accurate, so then we scan back
612 		 * from there looking for occurrences of last_half_cycle before
613 		 * us.  If that backwards scan wraps around the beginning of
614 		 * the log, then we look for occurrences of last_half_cycle - 1
615 		 * at the end of the log.  The cases we're looking for look
616 		 * like
617 		 *        x + 1 ... | x | x + 1 | x ...
618 		 *                               ^ binary search stopped here
619 		 * or
620 		 *        x + 1 ... | x ... | x - 1 | x
621 		 *        <---------> less than scan distance
622 		 */
623 		stop_on_cycle = last_half_cycle;
624 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
625 						&head_blk, last_half_cycle)))
626 			goto bp_err;
627 	}
628 
629 	/*
630 	 * Now validate the answer.  Scan back some number of maximum possible
631 	 * blocks and make sure each one has the expected cycle number.  The
632 	 * maximum is determined by the total possible amount of buffering
633 	 * in the in-core log.  The following number can be made tighter if
634 	 * we actually look at the block size of the filesystem.
635 	 */
636 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
637 	if (head_blk >= num_scan_bblks) {
638 		/*
639 		 * We are guaranteed that the entire check can be performed
640 		 * in one buffer.
641 		 */
642 		start_blk = head_blk - num_scan_bblks;
643 		if ((error = xlog_find_verify_cycle(log,
644 						start_blk, num_scan_bblks,
645 						stop_on_cycle, &new_blk)))
646 			goto bp_err;
647 		if (new_blk != -1)
648 			head_blk = new_blk;
649 	} else {		/* need to read 2 parts of log */
650 		/*
651 		 * We are going to scan backwards in the log in two parts.
652 		 * First we scan the physical end of the log.  In this part
653 		 * of the log, we are looking for blocks with cycle number
654 		 * last_half_cycle - 1.
655 		 * If we find one, then we know that the log starts there, as
656 		 * we've found a hole that didn't get written in going around
657 		 * the end of the physical log.  The simple case for this is
658 		 *        x + 1 ... | x ... | x - 1 | x
659 		 *        <---------> less than scan distance
660 		 * If all of the blocks at the end of the log have cycle number
661 		 * last_half_cycle, then we check the blocks at the start of
662 		 * the log looking for occurrences of last_half_cycle.  If we
663 		 * find one, then our current estimate for the location of the
664 		 * first occurrence of last_half_cycle is wrong and we move
665 		 * back to the hole we've found.  This case looks like
666 		 *        x + 1 ... | x | x + 1 | x ...
667 		 *                               ^ binary search stopped here
668 		 * Another case we need to handle that only occurs in 256k
669 		 * logs is
670 		 *        x + 1 ... | x ... | x+1 | x ...
671 		 *                   ^ binary search stops here
672 		 * In a 256k log, the scan at the end of the log will see the
673 		 * x + 1 blocks.  We need to skip past those since that is
674 		 * certainly not the head of the log.  By searching for
675 		 * last_half_cycle-1 we accomplish that.
676 		 */
677 		start_blk = log_bbnum - num_scan_bblks + head_blk;
678 		ASSERT(head_blk <= INT_MAX &&
679 			(xfs_daddr_t) num_scan_bblks - head_blk >= 0);
680 		if ((error = xlog_find_verify_cycle(log, start_blk,
681 					num_scan_bblks - (int)head_blk,
682 					(stop_on_cycle - 1), &new_blk)))
683 			goto bp_err;
684 		if (new_blk != -1) {
685 			head_blk = new_blk;
686 			goto bad_blk;
687 		}
688 
689 		/*
690 		 * Scan beginning of log now.  The last part of the physical
691 		 * log is good.  This scan needs to verify that it doesn't find
692 		 * the last_half_cycle.
693 		 */
694 		start_blk = 0;
695 		ASSERT(head_blk <= INT_MAX);
696 		if ((error = xlog_find_verify_cycle(log,
697 					start_blk, (int)head_blk,
698 					stop_on_cycle, &new_blk)))
699 			goto bp_err;
700 		if (new_blk != -1)
701 			head_blk = new_blk;
702 	}
703 
704  bad_blk:
705 	/*
706 	 * Now we need to make sure head_blk is not pointing to a block in
707 	 * the middle of a log record.
708 	 */
709 	num_scan_bblks = XLOG_REC_SHIFT(log);
710 	if (head_blk >= num_scan_bblks) {
711 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
712 
713 		/* start ptr at last block ptr before head_blk */
714 		if ((error = xlog_find_verify_log_record(log, start_blk,
715 							&head_blk, 0)) == -1) {
716 			error = XFS_ERROR(EIO);
717 			goto bp_err;
718 		} else if (error)
719 			goto bp_err;
720 	} else {
721 		start_blk = 0;
722 		ASSERT(head_blk <= INT_MAX);
723 		if ((error = xlog_find_verify_log_record(log, start_blk,
724 							&head_blk, 0)) == -1) {
725 			/* We hit the beginning of the log during our search */
726 			start_blk = log_bbnum - num_scan_bblks + head_blk;
727 			new_blk = log_bbnum;
728 			ASSERT(start_blk <= INT_MAX &&
729 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
730 			ASSERT(head_blk <= INT_MAX);
731 			if ((error = xlog_find_verify_log_record(log,
732 							start_blk, &new_blk,
733 							(int)head_blk)) == -1) {
734 				error = XFS_ERROR(EIO);
735 				goto bp_err;
736 			} else if (error)
737 				goto bp_err;
738 			if (new_blk != log_bbnum)
739 				head_blk = new_blk;
740 		} else if (error)
741 			goto bp_err;
742 	}
743 
744 	xlog_put_bp(bp);
745 	if (head_blk == log_bbnum)
746 		*return_head_blk = 0;
747 	else
748 		*return_head_blk = head_blk;
749 	/*
750 	 * When returning here, we have a good block number.  Bad block
751 	 * means that during a previous crash, we didn't have a clean break
752 	 * from cycle number N to cycle number N-1.  In this case, we need
753 	 * to find the first block with cycle number N-1.
754 	 */
755 	return 0;
756 
757  bp_err:
758 	xlog_put_bp(bp);
759 
760 	if (error)
761 	    xlog_warn("XFS: failed to find log head");
762 	return error;
763 }
764 
765 /*
766  * Find the sync block number or the tail of the log.
767  *
768  * This will be the block number of the last record to have its
769  * associated buffers synced to disk.  Every log record header has
770  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
771  * to get a sync block number.  The only concern is to figure out which
772  * log record header to believe.
773  *
774  * The following algorithm uses the log record header with the largest
775  * lsn.  The entire log record does not need to be valid.  We only care
776  * that the header is valid.
777  *
778  * We could speed up search by using current head_blk buffer, but it is not
779  * available.
780  */
781 int
782 xlog_find_tail(
783 	xlog_t			*log,
784 	xfs_daddr_t		*head_blk,
785 	xfs_daddr_t		*tail_blk)
786 {
787 	xlog_rec_header_t	*rhead;
788 	xlog_op_header_t	*op_head;
789 	xfs_caddr_t		offset = NULL;
790 	xfs_buf_t		*bp;
791 	int			error, i, found;
792 	xfs_daddr_t		umount_data_blk;
793 	xfs_daddr_t		after_umount_blk;
794 	xfs_lsn_t		tail_lsn;
795 	int			hblks;
796 
797 	found = 0;
798 
799 	/*
800 	 * Find previous log record
801 	 */
802 	if ((error = xlog_find_head(log, head_blk)))
803 		return error;
804 
805 	bp = xlog_get_bp(log, 1);
806 	if (!bp)
807 		return ENOMEM;
808 	if (*head_blk == 0) {				/* special case */
809 		if ((error = xlog_bread(log, 0, 1, bp)))
810 			goto bread_err;
811 		offset = xlog_align(log, 0, 1, bp);
812 		if (xlog_get_cycle(offset) == 0) {
813 			*tail_blk = 0;
814 			/* leave all other log inited values alone */
815 			goto exit;
816 		}
817 	}
818 
819 	/*
820 	 * Search backwards looking for log record header block
821 	 */
822 	ASSERT(*head_blk < INT_MAX);
823 	for (i = (int)(*head_blk) - 1; i >= 0; i--) {
824 		if ((error = xlog_bread(log, i, 1, bp)))
825 			goto bread_err;
826 		offset = xlog_align(log, i, 1, bp);
827 		if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
828 			found = 1;
829 			break;
830 		}
831 	}
832 	/*
833 	 * If we haven't found the log record header block, start looking
834 	 * again from the end of the physical log.  XXXmiken: There should be
835 	 * a check here to make sure we didn't search more than N blocks in
836 	 * the previous code.
837 	 */
838 	if (!found) {
839 		for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
840 			if ((error = xlog_bread(log, i, 1, bp)))
841 				goto bread_err;
842 			offset = xlog_align(log, i, 1, bp);
843 			if (XLOG_HEADER_MAGIC_NUM ==
844 			    be32_to_cpu(*(__be32 *)offset)) {
845 				found = 2;
846 				break;
847 			}
848 		}
849 	}
850 	if (!found) {
851 		xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
852 		ASSERT(0);
853 		return XFS_ERROR(EIO);
854 	}
855 
856 	/* find blk_no of tail of log */
857 	rhead = (xlog_rec_header_t *)offset;
858 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
859 
860 	/*
861 	 * Reset log values according to the state of the log when we
862 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
863 	 * one because the next write starts a new cycle rather than
864 	 * continuing the cycle of the last good log record.  At this
865 	 * point we have guaranteed that all partial log records have been
866 	 * accounted for.  Therefore, we know that the last good log record
867 	 * written was complete and ended exactly on the end boundary
868 	 * of the physical log.
869 	 */
870 	log->l_prev_block = i;
871 	log->l_curr_block = (int)*head_blk;
872 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
873 	if (found == 2)
874 		log->l_curr_cycle++;
875 	log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
876 	log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
877 	log->l_grant_reserve_cycle = log->l_curr_cycle;
878 	log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
879 	log->l_grant_write_cycle = log->l_curr_cycle;
880 	log->l_grant_write_bytes = BBTOB(log->l_curr_block);
881 
882 	/*
883 	 * Look for unmount record.  If we find it, then we know there
884 	 * was a clean unmount.  Since 'i' could be the last block in
885 	 * the physical log, we convert to a log block before comparing
886 	 * to the head_blk.
887 	 *
888 	 * Save the current tail lsn to use to pass to
889 	 * xlog_clear_stale_blocks() below.  We won't want to clear the
890 	 * unmount record if there is one, so we pass the lsn of the
891 	 * unmount record rather than the block after it.
892 	 */
893 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
894 		int	h_size = be32_to_cpu(rhead->h_size);
895 		int	h_version = be32_to_cpu(rhead->h_version);
896 
897 		if ((h_version & XLOG_VERSION_2) &&
898 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
899 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
900 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
901 				hblks++;
902 		} else {
903 			hblks = 1;
904 		}
905 	} else {
906 		hblks = 1;
907 	}
908 	after_umount_blk = (i + hblks + (int)
909 		BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
910 	tail_lsn = log->l_tail_lsn;
911 	if (*head_blk == after_umount_blk &&
912 	    be32_to_cpu(rhead->h_num_logops) == 1) {
913 		umount_data_blk = (i + hblks) % log->l_logBBsize;
914 		if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
915 			goto bread_err;
916 		}
917 		offset = xlog_align(log, umount_data_blk, 1, bp);
918 		op_head = (xlog_op_header_t *)offset;
919 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
920 			/*
921 			 * Set tail and last sync so that newly written
922 			 * log records will point recovery to after the
923 			 * current unmount record.
924 			 */
925 			log->l_tail_lsn =
926 				xlog_assign_lsn(log->l_curr_cycle,
927 						after_umount_blk);
928 			log->l_last_sync_lsn =
929 				xlog_assign_lsn(log->l_curr_cycle,
930 						after_umount_blk);
931 			*tail_blk = after_umount_blk;
932 
933 			/*
934 			 * Note that the unmount was clean. If the unmount
935 			 * was not clean, we need to know this to rebuild the
936 			 * superblock counters from the perag headers if we
937 			 * have a filesystem using non-persistent counters.
938 			 */
939 			log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
940 		}
941 	}
942 
943 	/*
944 	 * Make sure that there are no blocks in front of the head
945 	 * with the same cycle number as the head.  This can happen
946 	 * because we allow multiple outstanding log writes concurrently,
947 	 * and the later writes might make it out before earlier ones.
948 	 *
949 	 * We use the lsn from before modifying it so that we'll never
950 	 * overwrite the unmount record after a clean unmount.
951 	 *
952 	 * Do this only if we are going to recover the filesystem
953 	 *
954 	 * NOTE: This used to say "if (!readonly)"
955 	 * However on Linux, we can & do recover a read-only filesystem.
956 	 * We only skip recovery if NORECOVERY is specified on mount,
957 	 * in which case we would not be here.
958 	 *
959 	 * But... if the -device- itself is readonly, just skip this.
960 	 * We can't recover this device anyway, so it won't matter.
961 	 */
962 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
963 		error = xlog_clear_stale_blocks(log, tail_lsn);
964 	}
965 
966 bread_err:
967 exit:
968 	xlog_put_bp(bp);
969 
970 	if (error)
971 		xlog_warn("XFS: failed to locate log tail");
972 	return error;
973 }
974 
975 /*
976  * Is the log zeroed at all?
977  *
978  * The last binary search should be changed to perform an X block read
979  * once X becomes small enough.  You can then search linearly through
980  * the X blocks.  This will cut down on the number of reads we need to do.
981  *
982  * If the log is partially zeroed, this routine will pass back the blkno
983  * of the first block with cycle number 0.  It won't have a complete LR
984  * preceding it.
985  *
986  * Return:
987  *	0  => the log is completely written to
988  *	-1 => use *blk_no as the first block of the log
989  *	>0 => error has occurred
990  */
991 STATIC int
992 xlog_find_zeroed(
993 	xlog_t		*log,
994 	xfs_daddr_t	*blk_no)
995 {
996 	xfs_buf_t	*bp;
997 	xfs_caddr_t	offset;
998 	uint	        first_cycle, last_cycle;
999 	xfs_daddr_t	new_blk, last_blk, start_blk;
1000 	xfs_daddr_t     num_scan_bblks;
1001 	int	        error, log_bbnum = log->l_logBBsize;
1002 
1003 	*blk_no = 0;
1004 
1005 	/* check totally zeroed log */
1006 	bp = xlog_get_bp(log, 1);
1007 	if (!bp)
1008 		return ENOMEM;
1009 	if ((error = xlog_bread(log, 0, 1, bp)))
1010 		goto bp_err;
1011 	offset = xlog_align(log, 0, 1, bp);
1012 	first_cycle = xlog_get_cycle(offset);
1013 	if (first_cycle == 0) {		/* completely zeroed log */
1014 		*blk_no = 0;
1015 		xlog_put_bp(bp);
1016 		return -1;
1017 	}
1018 
1019 	/* check partially zeroed log */
1020 	if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1021 		goto bp_err;
1022 	offset = xlog_align(log, log_bbnum-1, 1, bp);
1023 	last_cycle = xlog_get_cycle(offset);
1024 	if (last_cycle != 0) {		/* log completely written to */
1025 		xlog_put_bp(bp);
1026 		return 0;
1027 	} else if (first_cycle != 1) {
1028 		/*
1029 		 * If the cycle of the last block is zero, the cycle of
1030 		 * the first block must be 1. If it's not, maybe we're
1031 		 * not looking at a log... Bail out.
1032 		 */
1033 		xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1034 		return XFS_ERROR(EINVAL);
1035 	}
1036 
1037 	/* we have a partially zeroed log */
1038 	last_blk = log_bbnum-1;
1039 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1040 		goto bp_err;
1041 
1042 	/*
1043 	 * Validate the answer.  Because there is no way to guarantee that
1044 	 * the entire log is made up of log records which are the same size,
1045 	 * we scan over the defined maximum blocks.  At this point, the maximum
1046 	 * is not chosen to mean anything special.   XXXmiken
1047 	 */
1048 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1049 	ASSERT(num_scan_bblks <= INT_MAX);
1050 
1051 	if (last_blk < num_scan_bblks)
1052 		num_scan_bblks = last_blk;
1053 	start_blk = last_blk - num_scan_bblks;
1054 
1055 	/*
1056 	 * We search for any instances of cycle number 0 that occur before
1057 	 * our current estimate of the head.  What we're trying to detect is
1058 	 *        1 ... | 0 | 1 | 0...
1059 	 *                       ^ binary search ends here
1060 	 */
1061 	if ((error = xlog_find_verify_cycle(log, start_blk,
1062 					 (int)num_scan_bblks, 0, &new_blk)))
1063 		goto bp_err;
1064 	if (new_blk != -1)
1065 		last_blk = new_blk;
1066 
1067 	/*
1068 	 * Potentially backup over partial log record write.  We don't need
1069 	 * to search the end of the log because we know it is zero.
1070 	 */
1071 	if ((error = xlog_find_verify_log_record(log, start_blk,
1072 				&last_blk, 0)) == -1) {
1073 	    error = XFS_ERROR(EIO);
1074 	    goto bp_err;
1075 	} else if (error)
1076 	    goto bp_err;
1077 
1078 	*blk_no = last_blk;
1079 bp_err:
1080 	xlog_put_bp(bp);
1081 	if (error)
1082 		return error;
1083 	return -1;
1084 }
1085 
1086 /*
1087  * These are simple subroutines used by xlog_clear_stale_blocks() below
1088  * to initialize a buffer full of empty log record headers and write
1089  * them into the log.
1090  */
1091 STATIC void
1092 xlog_add_record(
1093 	xlog_t			*log,
1094 	xfs_caddr_t		buf,
1095 	int			cycle,
1096 	int			block,
1097 	int			tail_cycle,
1098 	int			tail_block)
1099 {
1100 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1101 
1102 	memset(buf, 0, BBSIZE);
1103 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1104 	recp->h_cycle = cpu_to_be32(cycle);
1105 	recp->h_version = cpu_to_be32(
1106 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1107 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1108 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1109 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1110 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1111 }
1112 
1113 STATIC int
1114 xlog_write_log_records(
1115 	xlog_t		*log,
1116 	int		cycle,
1117 	int		start_block,
1118 	int		blocks,
1119 	int		tail_cycle,
1120 	int		tail_block)
1121 {
1122 	xfs_caddr_t	offset;
1123 	xfs_buf_t	*bp;
1124 	int		balign, ealign;
1125 	int		sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1126 	int		end_block = start_block + blocks;
1127 	int		bufblks;
1128 	int		error = 0;
1129 	int		i, j = 0;
1130 
1131 	bufblks = 1 << ffs(blocks);
1132 	while (!(bp = xlog_get_bp(log, bufblks))) {
1133 		bufblks >>= 1;
1134 		if (bufblks <= log->l_sectbb_log)
1135 			return ENOMEM;
1136 	}
1137 
1138 	/* We may need to do a read at the start to fill in part of
1139 	 * the buffer in the starting sector not covered by the first
1140 	 * write below.
1141 	 */
1142 	balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1143 	if (balign != start_block) {
1144 		if ((error = xlog_bread(log, start_block, 1, bp))) {
1145 			xlog_put_bp(bp);
1146 			return error;
1147 		}
1148 		j = start_block - balign;
1149 	}
1150 
1151 	for (i = start_block; i < end_block; i += bufblks) {
1152 		int		bcount, endcount;
1153 
1154 		bcount = min(bufblks, end_block - start_block);
1155 		endcount = bcount - j;
1156 
1157 		/* We may need to do a read at the end to fill in part of
1158 		 * the buffer in the final sector not covered by the write.
1159 		 * If this is the same sector as the above read, skip it.
1160 		 */
1161 		ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1162 		if (j == 0 && (start_block + endcount > ealign)) {
1163 			offset = XFS_BUF_PTR(bp);
1164 			balign = BBTOB(ealign - start_block);
1165 			error = XFS_BUF_SET_PTR(bp, offset + balign,
1166 						BBTOB(sectbb));
1167 			if (!error)
1168 				error = xlog_bread(log, ealign, sectbb, bp);
1169 			if (!error)
1170 				error = XFS_BUF_SET_PTR(bp, offset, bufblks);
1171 			if (error)
1172 				break;
1173 		}
1174 
1175 		offset = xlog_align(log, start_block, endcount, bp);
1176 		for (; j < endcount; j++) {
1177 			xlog_add_record(log, offset, cycle, i+j,
1178 					tail_cycle, tail_block);
1179 			offset += BBSIZE;
1180 		}
1181 		error = xlog_bwrite(log, start_block, endcount, bp);
1182 		if (error)
1183 			break;
1184 		start_block += endcount;
1185 		j = 0;
1186 	}
1187 	xlog_put_bp(bp);
1188 	return error;
1189 }
1190 
1191 /*
1192  * This routine is called to blow away any incomplete log writes out
1193  * in front of the log head.  We do this so that we won't become confused
1194  * if we come up, write only a little bit more, and then crash again.
1195  * If we leave the partial log records out there, this situation could
1196  * cause us to think those partial writes are valid blocks since they
1197  * have the current cycle number.  We get rid of them by overwriting them
1198  * with empty log records with the old cycle number rather than the
1199  * current one.
1200  *
1201  * The tail lsn is passed in rather than taken from
1202  * the log so that we will not write over the unmount record after a
1203  * clean unmount in a 512 block log.  Doing so would leave the log without
1204  * any valid log records in it until a new one was written.  If we crashed
1205  * during that time we would not be able to recover.
1206  */
1207 STATIC int
1208 xlog_clear_stale_blocks(
1209 	xlog_t		*log,
1210 	xfs_lsn_t	tail_lsn)
1211 {
1212 	int		tail_cycle, head_cycle;
1213 	int		tail_block, head_block;
1214 	int		tail_distance, max_distance;
1215 	int		distance;
1216 	int		error;
1217 
1218 	tail_cycle = CYCLE_LSN(tail_lsn);
1219 	tail_block = BLOCK_LSN(tail_lsn);
1220 	head_cycle = log->l_curr_cycle;
1221 	head_block = log->l_curr_block;
1222 
1223 	/*
1224 	 * Figure out the distance between the new head of the log
1225 	 * and the tail.  We want to write over any blocks beyond the
1226 	 * head that we may have written just before the crash, but
1227 	 * we don't want to overwrite the tail of the log.
1228 	 */
1229 	if (head_cycle == tail_cycle) {
1230 		/*
1231 		 * The tail is behind the head in the physical log,
1232 		 * so the distance from the head to the tail is the
1233 		 * distance from the head to the end of the log plus
1234 		 * the distance from the beginning of the log to the
1235 		 * tail.
1236 		 */
1237 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1238 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1239 					 XFS_ERRLEVEL_LOW, log->l_mp);
1240 			return XFS_ERROR(EFSCORRUPTED);
1241 		}
1242 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1243 	} else {
1244 		/*
1245 		 * The head is behind the tail in the physical log,
1246 		 * so the distance from the head to the tail is just
1247 		 * the tail block minus the head block.
1248 		 */
1249 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1250 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1251 					 XFS_ERRLEVEL_LOW, log->l_mp);
1252 			return XFS_ERROR(EFSCORRUPTED);
1253 		}
1254 		tail_distance = tail_block - head_block;
1255 	}
1256 
1257 	/*
1258 	 * If the head is right up against the tail, we can't clear
1259 	 * anything.
1260 	 */
1261 	if (tail_distance <= 0) {
1262 		ASSERT(tail_distance == 0);
1263 		return 0;
1264 	}
1265 
1266 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1267 	/*
1268 	 * Take the smaller of the maximum amount of outstanding I/O
1269 	 * we could have and the distance to the tail to clear out.
1270 	 * We take the smaller so that we don't overwrite the tail and
1271 	 * we don't waste all day writing from the head to the tail
1272 	 * for no reason.
1273 	 */
1274 	max_distance = MIN(max_distance, tail_distance);
1275 
1276 	if ((head_block + max_distance) <= log->l_logBBsize) {
1277 		/*
1278 		 * We can stomp all the blocks we need to without
1279 		 * wrapping around the end of the log.  Just do it
1280 		 * in a single write.  Use the cycle number of the
1281 		 * current cycle minus one so that the log will look like:
1282 		 *     n ... | n - 1 ...
1283 		 */
1284 		error = xlog_write_log_records(log, (head_cycle - 1),
1285 				head_block, max_distance, tail_cycle,
1286 				tail_block);
1287 		if (error)
1288 			return error;
1289 	} else {
1290 		/*
1291 		 * We need to wrap around the end of the physical log in
1292 		 * order to clear all the blocks.  Do it in two separate
1293 		 * I/Os.  The first write should be from the head to the
1294 		 * end of the physical log, and it should use the current
1295 		 * cycle number minus one just like above.
1296 		 */
1297 		distance = log->l_logBBsize - head_block;
1298 		error = xlog_write_log_records(log, (head_cycle - 1),
1299 				head_block, distance, tail_cycle,
1300 				tail_block);
1301 
1302 		if (error)
1303 			return error;
1304 
1305 		/*
1306 		 * Now write the blocks at the start of the physical log.
1307 		 * This writes the remainder of the blocks we want to clear.
1308 		 * It uses the current cycle number since we're now on the
1309 		 * same cycle as the head so that we get:
1310 		 *    n ... n ... | n - 1 ...
1311 		 *    ^^^^^ blocks we're writing
1312 		 */
1313 		distance = max_distance - (log->l_logBBsize - head_block);
1314 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1315 				tail_cycle, tail_block);
1316 		if (error)
1317 			return error;
1318 	}
1319 
1320 	return 0;
1321 }
1322 
1323 /******************************************************************************
1324  *
1325  *		Log recover routines
1326  *
1327  ******************************************************************************
1328  */
1329 
1330 STATIC xlog_recover_t *
1331 xlog_recover_find_tid(
1332 	xlog_recover_t		*q,
1333 	xlog_tid_t		tid)
1334 {
1335 	xlog_recover_t		*p = q;
1336 
1337 	while (p != NULL) {
1338 		if (p->r_log_tid == tid)
1339 		    break;
1340 		p = p->r_next;
1341 	}
1342 	return p;
1343 }
1344 
1345 STATIC void
1346 xlog_recover_put_hashq(
1347 	xlog_recover_t		**q,
1348 	xlog_recover_t		*trans)
1349 {
1350 	trans->r_next = *q;
1351 	*q = trans;
1352 }
1353 
1354 STATIC void
1355 xlog_recover_add_item(
1356 	xlog_recover_item_t	**itemq)
1357 {
1358 	xlog_recover_item_t	*item;
1359 
1360 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1361 	xlog_recover_insert_item_backq(itemq, item);
1362 }
1363 
1364 STATIC int
1365 xlog_recover_add_to_cont_trans(
1366 	xlog_recover_t		*trans,
1367 	xfs_caddr_t		dp,
1368 	int			len)
1369 {
1370 	xlog_recover_item_t	*item;
1371 	xfs_caddr_t		ptr, old_ptr;
1372 	int			old_len;
1373 
1374 	item = trans->r_itemq;
1375 	if (item == NULL) {
1376 		/* finish copying rest of trans header */
1377 		xlog_recover_add_item(&trans->r_itemq);
1378 		ptr = (xfs_caddr_t) &trans->r_theader +
1379 				sizeof(xfs_trans_header_t) - len;
1380 		memcpy(ptr, dp, len); /* d, s, l */
1381 		return 0;
1382 	}
1383 	item = item->ri_prev;
1384 
1385 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1386 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
1387 
1388 	ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1389 	memcpy(&ptr[old_len], dp, len); /* d, s, l */
1390 	item->ri_buf[item->ri_cnt-1].i_len += len;
1391 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1392 	return 0;
1393 }
1394 
1395 /*
1396  * The next region to add is the start of a new region.  It could be
1397  * a whole region or it could be the first part of a new region.  Because
1398  * of this, the assumption here is that the type and size fields of all
1399  * format structures fit into the first 32 bits of the structure.
1400  *
1401  * This works because all regions must be 32 bit aligned.  Therefore, we
1402  * either have both fields or we have neither field.  In the case we have
1403  * neither field, the data part of the region is zero length.  We only have
1404  * a log_op_header and can throw away the header since a new one will appear
1405  * later.  If we have at least 4 bytes, then we can determine how many regions
1406  * will appear in the current log item.
1407  */
1408 STATIC int
1409 xlog_recover_add_to_trans(
1410 	xlog_recover_t		*trans,
1411 	xfs_caddr_t		dp,
1412 	int			len)
1413 {
1414 	xfs_inode_log_format_t	*in_f;			/* any will do */
1415 	xlog_recover_item_t	*item;
1416 	xfs_caddr_t		ptr;
1417 
1418 	if (!len)
1419 		return 0;
1420 	item = trans->r_itemq;
1421 	if (item == NULL) {
1422 		ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
1423 		if (len == sizeof(xfs_trans_header_t))
1424 			xlog_recover_add_item(&trans->r_itemq);
1425 		memcpy(&trans->r_theader, dp, len); /* d, s, l */
1426 		return 0;
1427 	}
1428 
1429 	ptr = kmem_alloc(len, KM_SLEEP);
1430 	memcpy(ptr, dp, len);
1431 	in_f = (xfs_inode_log_format_t *)ptr;
1432 
1433 	if (item->ri_prev->ri_total != 0 &&
1434 	     item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1435 		xlog_recover_add_item(&trans->r_itemq);
1436 	}
1437 	item = trans->r_itemq;
1438 	item = item->ri_prev;
1439 
1440 	if (item->ri_total == 0) {		/* first region to be added */
1441 		item->ri_total	= in_f->ilf_size;
1442 		ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
1443 		item->ri_buf = kmem_zalloc((item->ri_total *
1444 					    sizeof(xfs_log_iovec_t)), KM_SLEEP);
1445 	}
1446 	ASSERT(item->ri_total > item->ri_cnt);
1447 	/* Description region is ri_buf[0] */
1448 	item->ri_buf[item->ri_cnt].i_addr = ptr;
1449 	item->ri_buf[item->ri_cnt].i_len  = len;
1450 	item->ri_cnt++;
1451 	return 0;
1452 }
1453 
1454 STATIC void
1455 xlog_recover_new_tid(
1456 	xlog_recover_t		**q,
1457 	xlog_tid_t		tid,
1458 	xfs_lsn_t		lsn)
1459 {
1460 	xlog_recover_t		*trans;
1461 
1462 	trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1463 	trans->r_log_tid   = tid;
1464 	trans->r_lsn	   = lsn;
1465 	xlog_recover_put_hashq(q, trans);
1466 }
1467 
1468 STATIC int
1469 xlog_recover_unlink_tid(
1470 	xlog_recover_t		**q,
1471 	xlog_recover_t		*trans)
1472 {
1473 	xlog_recover_t		*tp;
1474 	int			found = 0;
1475 
1476 	ASSERT(trans != NULL);
1477 	if (trans == *q) {
1478 		*q = (*q)->r_next;
1479 	} else {
1480 		tp = *q;
1481 		while (tp) {
1482 			if (tp->r_next == trans) {
1483 				found = 1;
1484 				break;
1485 			}
1486 			tp = tp->r_next;
1487 		}
1488 		if (!found) {
1489 			xlog_warn(
1490 			     "XFS: xlog_recover_unlink_tid: trans not found");
1491 			ASSERT(0);
1492 			return XFS_ERROR(EIO);
1493 		}
1494 		tp->r_next = tp->r_next->r_next;
1495 	}
1496 	return 0;
1497 }
1498 
1499 STATIC void
1500 xlog_recover_insert_item_backq(
1501 	xlog_recover_item_t	**q,
1502 	xlog_recover_item_t	*item)
1503 {
1504 	if (*q == NULL) {
1505 		item->ri_prev = item->ri_next = item;
1506 		*q = item;
1507 	} else {
1508 		item->ri_next		= *q;
1509 		item->ri_prev		= (*q)->ri_prev;
1510 		(*q)->ri_prev		= item;
1511 		item->ri_prev->ri_next	= item;
1512 	}
1513 }
1514 
1515 STATIC void
1516 xlog_recover_insert_item_frontq(
1517 	xlog_recover_item_t	**q,
1518 	xlog_recover_item_t	*item)
1519 {
1520 	xlog_recover_insert_item_backq(q, item);
1521 	*q = item;
1522 }
1523 
1524 STATIC int
1525 xlog_recover_reorder_trans(
1526 	xlog_recover_t		*trans)
1527 {
1528 	xlog_recover_item_t	*first_item, *itemq, *itemq_next;
1529 	xfs_buf_log_format_t	*buf_f;
1530 	ushort			flags = 0;
1531 
1532 	first_item = itemq = trans->r_itemq;
1533 	trans->r_itemq = NULL;
1534 	do {
1535 		itemq_next = itemq->ri_next;
1536 		buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1537 
1538 		switch (ITEM_TYPE(itemq)) {
1539 		case XFS_LI_BUF:
1540 			flags = buf_f->blf_flags;
1541 			if (!(flags & XFS_BLI_CANCEL)) {
1542 				xlog_recover_insert_item_frontq(&trans->r_itemq,
1543 								itemq);
1544 				break;
1545 			}
1546 		case XFS_LI_INODE:
1547 		case XFS_LI_DQUOT:
1548 		case XFS_LI_QUOTAOFF:
1549 		case XFS_LI_EFD:
1550 		case XFS_LI_EFI:
1551 			xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1552 			break;
1553 		default:
1554 			xlog_warn(
1555 	"XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1556 			ASSERT(0);
1557 			return XFS_ERROR(EIO);
1558 		}
1559 		itemq = itemq_next;
1560 	} while (first_item != itemq);
1561 	return 0;
1562 }
1563 
1564 /*
1565  * Build up the table of buf cancel records so that we don't replay
1566  * cancelled data in the second pass.  For buffer records that are
1567  * not cancel records, there is nothing to do here so we just return.
1568  *
1569  * If we get a cancel record which is already in the table, this indicates
1570  * that the buffer was cancelled multiple times.  In order to ensure
1571  * that during pass 2 we keep the record in the table until we reach its
1572  * last occurrence in the log, we keep a reference count in the cancel
1573  * record in the table to tell us how many times we expect to see this
1574  * record during the second pass.
1575  */
1576 STATIC void
1577 xlog_recover_do_buffer_pass1(
1578 	xlog_t			*log,
1579 	xfs_buf_log_format_t	*buf_f)
1580 {
1581 	xfs_buf_cancel_t	*bcp;
1582 	xfs_buf_cancel_t	*nextp;
1583 	xfs_buf_cancel_t	*prevp;
1584 	xfs_buf_cancel_t	**bucket;
1585 	xfs_daddr_t		blkno = 0;
1586 	uint			len = 0;
1587 	ushort			flags = 0;
1588 
1589 	switch (buf_f->blf_type) {
1590 	case XFS_LI_BUF:
1591 		blkno = buf_f->blf_blkno;
1592 		len = buf_f->blf_len;
1593 		flags = buf_f->blf_flags;
1594 		break;
1595 	}
1596 
1597 	/*
1598 	 * If this isn't a cancel buffer item, then just return.
1599 	 */
1600 	if (!(flags & XFS_BLI_CANCEL))
1601 		return;
1602 
1603 	/*
1604 	 * Insert an xfs_buf_cancel record into the hash table of
1605 	 * them.  If there is already an identical record, bump
1606 	 * its reference count.
1607 	 */
1608 	bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1609 					  XLOG_BC_TABLE_SIZE];
1610 	/*
1611 	 * If the hash bucket is empty then just insert a new record into
1612 	 * the bucket.
1613 	 */
1614 	if (*bucket == NULL) {
1615 		bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1616 						     KM_SLEEP);
1617 		bcp->bc_blkno = blkno;
1618 		bcp->bc_len = len;
1619 		bcp->bc_refcount = 1;
1620 		bcp->bc_next = NULL;
1621 		*bucket = bcp;
1622 		return;
1623 	}
1624 
1625 	/*
1626 	 * The hash bucket is not empty, so search for duplicates of our
1627 	 * record.  If we find one them just bump its refcount.  If not
1628 	 * then add us at the end of the list.
1629 	 */
1630 	prevp = NULL;
1631 	nextp = *bucket;
1632 	while (nextp != NULL) {
1633 		if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1634 			nextp->bc_refcount++;
1635 			return;
1636 		}
1637 		prevp = nextp;
1638 		nextp = nextp->bc_next;
1639 	}
1640 	ASSERT(prevp != NULL);
1641 	bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1642 					     KM_SLEEP);
1643 	bcp->bc_blkno = blkno;
1644 	bcp->bc_len = len;
1645 	bcp->bc_refcount = 1;
1646 	bcp->bc_next = NULL;
1647 	prevp->bc_next = bcp;
1648 }
1649 
1650 /*
1651  * Check to see whether the buffer being recovered has a corresponding
1652  * entry in the buffer cancel record table.  If it does then return 1
1653  * so that it will be cancelled, otherwise return 0.  If the buffer is
1654  * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1655  * the refcount on the entry in the table and remove it from the table
1656  * if this is the last reference.
1657  *
1658  * We remove the cancel record from the table when we encounter its
1659  * last occurrence in the log so that if the same buffer is re-used
1660  * again after its last cancellation we actually replay the changes
1661  * made at that point.
1662  */
1663 STATIC int
1664 xlog_check_buffer_cancelled(
1665 	xlog_t			*log,
1666 	xfs_daddr_t		blkno,
1667 	uint			len,
1668 	ushort			flags)
1669 {
1670 	xfs_buf_cancel_t	*bcp;
1671 	xfs_buf_cancel_t	*prevp;
1672 	xfs_buf_cancel_t	**bucket;
1673 
1674 	if (log->l_buf_cancel_table == NULL) {
1675 		/*
1676 		 * There is nothing in the table built in pass one,
1677 		 * so this buffer must not be cancelled.
1678 		 */
1679 		ASSERT(!(flags & XFS_BLI_CANCEL));
1680 		return 0;
1681 	}
1682 
1683 	bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1684 					  XLOG_BC_TABLE_SIZE];
1685 	bcp = *bucket;
1686 	if (bcp == NULL) {
1687 		/*
1688 		 * There is no corresponding entry in the table built
1689 		 * in pass one, so this buffer has not been cancelled.
1690 		 */
1691 		ASSERT(!(flags & XFS_BLI_CANCEL));
1692 		return 0;
1693 	}
1694 
1695 	/*
1696 	 * Search for an entry in the buffer cancel table that
1697 	 * matches our buffer.
1698 	 */
1699 	prevp = NULL;
1700 	while (bcp != NULL) {
1701 		if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1702 			/*
1703 			 * We've go a match, so return 1 so that the
1704 			 * recovery of this buffer is cancelled.
1705 			 * If this buffer is actually a buffer cancel
1706 			 * log item, then decrement the refcount on the
1707 			 * one in the table and remove it if this is the
1708 			 * last reference.
1709 			 */
1710 			if (flags & XFS_BLI_CANCEL) {
1711 				bcp->bc_refcount--;
1712 				if (bcp->bc_refcount == 0) {
1713 					if (prevp == NULL) {
1714 						*bucket = bcp->bc_next;
1715 					} else {
1716 						prevp->bc_next = bcp->bc_next;
1717 					}
1718 					kmem_free(bcp,
1719 						  sizeof(xfs_buf_cancel_t));
1720 				}
1721 			}
1722 			return 1;
1723 		}
1724 		prevp = bcp;
1725 		bcp = bcp->bc_next;
1726 	}
1727 	/*
1728 	 * We didn't find a corresponding entry in the table, so
1729 	 * return 0 so that the buffer is NOT cancelled.
1730 	 */
1731 	ASSERT(!(flags & XFS_BLI_CANCEL));
1732 	return 0;
1733 }
1734 
1735 STATIC int
1736 xlog_recover_do_buffer_pass2(
1737 	xlog_t			*log,
1738 	xfs_buf_log_format_t	*buf_f)
1739 {
1740 	xfs_daddr_t		blkno = 0;
1741 	ushort			flags = 0;
1742 	uint			len = 0;
1743 
1744 	switch (buf_f->blf_type) {
1745 	case XFS_LI_BUF:
1746 		blkno = buf_f->blf_blkno;
1747 		flags = buf_f->blf_flags;
1748 		len = buf_f->blf_len;
1749 		break;
1750 	}
1751 
1752 	return xlog_check_buffer_cancelled(log, blkno, len, flags);
1753 }
1754 
1755 /*
1756  * Perform recovery for a buffer full of inodes.  In these buffers,
1757  * the only data which should be recovered is that which corresponds
1758  * to the di_next_unlinked pointers in the on disk inode structures.
1759  * The rest of the data for the inodes is always logged through the
1760  * inodes themselves rather than the inode buffer and is recovered
1761  * in xlog_recover_do_inode_trans().
1762  *
1763  * The only time when buffers full of inodes are fully recovered is
1764  * when the buffer is full of newly allocated inodes.  In this case
1765  * the buffer will not be marked as an inode buffer and so will be
1766  * sent to xlog_recover_do_reg_buffer() below during recovery.
1767  */
1768 STATIC int
1769 xlog_recover_do_inode_buffer(
1770 	xfs_mount_t		*mp,
1771 	xlog_recover_item_t	*item,
1772 	xfs_buf_t		*bp,
1773 	xfs_buf_log_format_t	*buf_f)
1774 {
1775 	int			i;
1776 	int			item_index;
1777 	int			bit;
1778 	int			nbits;
1779 	int			reg_buf_offset;
1780 	int			reg_buf_bytes;
1781 	int			next_unlinked_offset;
1782 	int			inodes_per_buf;
1783 	xfs_agino_t		*logged_nextp;
1784 	xfs_agino_t		*buffer_nextp;
1785 	unsigned int		*data_map = NULL;
1786 	unsigned int		map_size = 0;
1787 
1788 	switch (buf_f->blf_type) {
1789 	case XFS_LI_BUF:
1790 		data_map = buf_f->blf_data_map;
1791 		map_size = buf_f->blf_map_size;
1792 		break;
1793 	}
1794 	/*
1795 	 * Set the variables corresponding to the current region to
1796 	 * 0 so that we'll initialize them on the first pass through
1797 	 * the loop.
1798 	 */
1799 	reg_buf_offset = 0;
1800 	reg_buf_bytes = 0;
1801 	bit = 0;
1802 	nbits = 0;
1803 	item_index = 0;
1804 	inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1805 	for (i = 0; i < inodes_per_buf; i++) {
1806 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1807 			offsetof(xfs_dinode_t, di_next_unlinked);
1808 
1809 		while (next_unlinked_offset >=
1810 		       (reg_buf_offset + reg_buf_bytes)) {
1811 			/*
1812 			 * The next di_next_unlinked field is beyond
1813 			 * the current logged region.  Find the next
1814 			 * logged region that contains or is beyond
1815 			 * the current di_next_unlinked field.
1816 			 */
1817 			bit += nbits;
1818 			bit = xfs_next_bit(data_map, map_size, bit);
1819 
1820 			/*
1821 			 * If there are no more logged regions in the
1822 			 * buffer, then we're done.
1823 			 */
1824 			if (bit == -1) {
1825 				return 0;
1826 			}
1827 
1828 			nbits = xfs_contig_bits(data_map, map_size,
1829 							 bit);
1830 			ASSERT(nbits > 0);
1831 			reg_buf_offset = bit << XFS_BLI_SHIFT;
1832 			reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1833 			item_index++;
1834 		}
1835 
1836 		/*
1837 		 * If the current logged region starts after the current
1838 		 * di_next_unlinked field, then move on to the next
1839 		 * di_next_unlinked field.
1840 		 */
1841 		if (next_unlinked_offset < reg_buf_offset) {
1842 			continue;
1843 		}
1844 
1845 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
1846 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1847 		ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1848 
1849 		/*
1850 		 * The current logged region contains a copy of the
1851 		 * current di_next_unlinked field.  Extract its value
1852 		 * and copy it to the buffer copy.
1853 		 */
1854 		logged_nextp = (xfs_agino_t *)
1855 			       ((char *)(item->ri_buf[item_index].i_addr) +
1856 				(next_unlinked_offset - reg_buf_offset));
1857 		if (unlikely(*logged_nextp == 0)) {
1858 			xfs_fs_cmn_err(CE_ALERT, mp,
1859 				"bad inode buffer log record (ptr = 0x%p, bp = 0x%p).  XFS trying to replay bad (0) inode di_next_unlinked field",
1860 				item, bp);
1861 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1862 					 XFS_ERRLEVEL_LOW, mp);
1863 			return XFS_ERROR(EFSCORRUPTED);
1864 		}
1865 
1866 		buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1867 					      next_unlinked_offset);
1868 		*buffer_nextp = *logged_nextp;
1869 	}
1870 
1871 	return 0;
1872 }
1873 
1874 /*
1875  * Perform a 'normal' buffer recovery.  Each logged region of the
1876  * buffer should be copied over the corresponding region in the
1877  * given buffer.  The bitmap in the buf log format structure indicates
1878  * where to place the logged data.
1879  */
1880 /*ARGSUSED*/
1881 STATIC void
1882 xlog_recover_do_reg_buffer(
1883 	xlog_recover_item_t	*item,
1884 	xfs_buf_t		*bp,
1885 	xfs_buf_log_format_t	*buf_f)
1886 {
1887 	int			i;
1888 	int			bit;
1889 	int			nbits;
1890 	unsigned int		*data_map = NULL;
1891 	unsigned int		map_size = 0;
1892 	int                     error;
1893 
1894 	switch (buf_f->blf_type) {
1895 	case XFS_LI_BUF:
1896 		data_map = buf_f->blf_data_map;
1897 		map_size = buf_f->blf_map_size;
1898 		break;
1899 	}
1900 	bit = 0;
1901 	i = 1;  /* 0 is the buf format structure */
1902 	while (1) {
1903 		bit = xfs_next_bit(data_map, map_size, bit);
1904 		if (bit == -1)
1905 			break;
1906 		nbits = xfs_contig_bits(data_map, map_size, bit);
1907 		ASSERT(nbits > 0);
1908 		ASSERT(item->ri_buf[i].i_addr != NULL);
1909 		ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1910 		ASSERT(XFS_BUF_COUNT(bp) >=
1911 		       ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1912 
1913 		/*
1914 		 * Do a sanity check if this is a dquot buffer. Just checking
1915 		 * the first dquot in the buffer should do. XXXThis is
1916 		 * probably a good thing to do for other buf types also.
1917 		 */
1918 		error = 0;
1919 		if (buf_f->blf_flags &
1920 		   (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1921 			error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1922 					       item->ri_buf[i].i_addr,
1923 					       -1, 0, XFS_QMOPT_DOWARN,
1924 					       "dquot_buf_recover");
1925 		}
1926 		if (!error)
1927 			memcpy(xfs_buf_offset(bp,
1928 				(uint)bit << XFS_BLI_SHIFT),	/* dest */
1929 				item->ri_buf[i].i_addr,		/* source */
1930 				nbits<<XFS_BLI_SHIFT);		/* length */
1931 		i++;
1932 		bit += nbits;
1933 	}
1934 
1935 	/* Shouldn't be any more regions */
1936 	ASSERT(i == item->ri_total);
1937 }
1938 
1939 /*
1940  * Do some primitive error checking on ondisk dquot data structures.
1941  */
1942 int
1943 xfs_qm_dqcheck(
1944 	xfs_disk_dquot_t *ddq,
1945 	xfs_dqid_t	 id,
1946 	uint		 type,	  /* used only when IO_dorepair is true */
1947 	uint		 flags,
1948 	char		 *str)
1949 {
1950 	xfs_dqblk_t	 *d = (xfs_dqblk_t *)ddq;
1951 	int		errs = 0;
1952 
1953 	/*
1954 	 * We can encounter an uninitialized dquot buffer for 2 reasons:
1955 	 * 1. If we crash while deleting the quotainode(s), and those blks got
1956 	 *    used for user data. This is because we take the path of regular
1957 	 *    file deletion; however, the size field of quotainodes is never
1958 	 *    updated, so all the tricks that we play in itruncate_finish
1959 	 *    don't quite matter.
1960 	 *
1961 	 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1962 	 *    But the allocation will be replayed so we'll end up with an
1963 	 *    uninitialized quota block.
1964 	 *
1965 	 * This is all fine; things are still consistent, and we haven't lost
1966 	 * any quota information. Just don't complain about bad dquot blks.
1967 	 */
1968 	if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1969 		if (flags & XFS_QMOPT_DOWARN)
1970 			cmn_err(CE_ALERT,
1971 			"%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1972 			str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1973 		errs++;
1974 	}
1975 	if (ddq->d_version != XFS_DQUOT_VERSION) {
1976 		if (flags & XFS_QMOPT_DOWARN)
1977 			cmn_err(CE_ALERT,
1978 			"%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1979 			str, id, ddq->d_version, XFS_DQUOT_VERSION);
1980 		errs++;
1981 	}
1982 
1983 	if (ddq->d_flags != XFS_DQ_USER &&
1984 	    ddq->d_flags != XFS_DQ_PROJ &&
1985 	    ddq->d_flags != XFS_DQ_GROUP) {
1986 		if (flags & XFS_QMOPT_DOWARN)
1987 			cmn_err(CE_ALERT,
1988 			"%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1989 			str, id, ddq->d_flags);
1990 		errs++;
1991 	}
1992 
1993 	if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1994 		if (flags & XFS_QMOPT_DOWARN)
1995 			cmn_err(CE_ALERT,
1996 			"%s : ondisk-dquot 0x%p, ID mismatch: "
1997 			"0x%x expected, found id 0x%x",
1998 			str, ddq, id, be32_to_cpu(ddq->d_id));
1999 		errs++;
2000 	}
2001 
2002 	if (!errs && ddq->d_id) {
2003 		if (ddq->d_blk_softlimit &&
2004 		    be64_to_cpu(ddq->d_bcount) >=
2005 				be64_to_cpu(ddq->d_blk_softlimit)) {
2006 			if (!ddq->d_btimer) {
2007 				if (flags & XFS_QMOPT_DOWARN)
2008 					cmn_err(CE_ALERT,
2009 					"%s : Dquot ID 0x%x (0x%p) "
2010 					"BLK TIMER NOT STARTED",
2011 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2012 				errs++;
2013 			}
2014 		}
2015 		if (ddq->d_ino_softlimit &&
2016 		    be64_to_cpu(ddq->d_icount) >=
2017 				be64_to_cpu(ddq->d_ino_softlimit)) {
2018 			if (!ddq->d_itimer) {
2019 				if (flags & XFS_QMOPT_DOWARN)
2020 					cmn_err(CE_ALERT,
2021 					"%s : Dquot ID 0x%x (0x%p) "
2022 					"INODE TIMER NOT STARTED",
2023 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2024 				errs++;
2025 			}
2026 		}
2027 		if (ddq->d_rtb_softlimit &&
2028 		    be64_to_cpu(ddq->d_rtbcount) >=
2029 				be64_to_cpu(ddq->d_rtb_softlimit)) {
2030 			if (!ddq->d_rtbtimer) {
2031 				if (flags & XFS_QMOPT_DOWARN)
2032 					cmn_err(CE_ALERT,
2033 					"%s : Dquot ID 0x%x (0x%p) "
2034 					"RTBLK TIMER NOT STARTED",
2035 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2036 				errs++;
2037 			}
2038 		}
2039 	}
2040 
2041 	if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2042 		return errs;
2043 
2044 	if (flags & XFS_QMOPT_DOWARN)
2045 		cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2046 
2047 	/*
2048 	 * Typically, a repair is only requested by quotacheck.
2049 	 */
2050 	ASSERT(id != -1);
2051 	ASSERT(flags & XFS_QMOPT_DQREPAIR);
2052 	memset(d, 0, sizeof(xfs_dqblk_t));
2053 
2054 	d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2055 	d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2056 	d->dd_diskdq.d_flags = type;
2057 	d->dd_diskdq.d_id = cpu_to_be32(id);
2058 
2059 	return errs;
2060 }
2061 
2062 /*
2063  * Perform a dquot buffer recovery.
2064  * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2065  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2066  * Else, treat it as a regular buffer and do recovery.
2067  */
2068 STATIC void
2069 xlog_recover_do_dquot_buffer(
2070 	xfs_mount_t		*mp,
2071 	xlog_t			*log,
2072 	xlog_recover_item_t	*item,
2073 	xfs_buf_t		*bp,
2074 	xfs_buf_log_format_t	*buf_f)
2075 {
2076 	uint			type;
2077 
2078 	/*
2079 	 * Filesystems are required to send in quota flags at mount time.
2080 	 */
2081 	if (mp->m_qflags == 0) {
2082 		return;
2083 	}
2084 
2085 	type = 0;
2086 	if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2087 		type |= XFS_DQ_USER;
2088 	if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2089 		type |= XFS_DQ_PROJ;
2090 	if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2091 		type |= XFS_DQ_GROUP;
2092 	/*
2093 	 * This type of quotas was turned off, so ignore this buffer
2094 	 */
2095 	if (log->l_quotaoffs_flag & type)
2096 		return;
2097 
2098 	xlog_recover_do_reg_buffer(item, bp, buf_f);
2099 }
2100 
2101 /*
2102  * This routine replays a modification made to a buffer at runtime.
2103  * There are actually two types of buffer, regular and inode, which
2104  * are handled differently.  Inode buffers are handled differently
2105  * in that we only recover a specific set of data from them, namely
2106  * the inode di_next_unlinked fields.  This is because all other inode
2107  * data is actually logged via inode records and any data we replay
2108  * here which overlaps that may be stale.
2109  *
2110  * When meta-data buffers are freed at run time we log a buffer item
2111  * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2112  * of the buffer in the log should not be replayed at recovery time.
2113  * This is so that if the blocks covered by the buffer are reused for
2114  * file data before we crash we don't end up replaying old, freed
2115  * meta-data into a user's file.
2116  *
2117  * To handle the cancellation of buffer log items, we make two passes
2118  * over the log during recovery.  During the first we build a table of
2119  * those buffers which have been cancelled, and during the second we
2120  * only replay those buffers which do not have corresponding cancel
2121  * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2122  * for more details on the implementation of the table of cancel records.
2123  */
2124 STATIC int
2125 xlog_recover_do_buffer_trans(
2126 	xlog_t			*log,
2127 	xlog_recover_item_t	*item,
2128 	int			pass)
2129 {
2130 	xfs_buf_log_format_t	*buf_f;
2131 	xfs_mount_t		*mp;
2132 	xfs_buf_t		*bp;
2133 	int			error;
2134 	int			cancel;
2135 	xfs_daddr_t		blkno;
2136 	int			len;
2137 	ushort			flags;
2138 
2139 	buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2140 
2141 	if (pass == XLOG_RECOVER_PASS1) {
2142 		/*
2143 		 * In this pass we're only looking for buf items
2144 		 * with the XFS_BLI_CANCEL bit set.
2145 		 */
2146 		xlog_recover_do_buffer_pass1(log, buf_f);
2147 		return 0;
2148 	} else {
2149 		/*
2150 		 * In this pass we want to recover all the buffers
2151 		 * which have not been cancelled and are not
2152 		 * cancellation buffers themselves.  The routine
2153 		 * we call here will tell us whether or not to
2154 		 * continue with the replay of this buffer.
2155 		 */
2156 		cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2157 		if (cancel) {
2158 			return 0;
2159 		}
2160 	}
2161 	switch (buf_f->blf_type) {
2162 	case XFS_LI_BUF:
2163 		blkno = buf_f->blf_blkno;
2164 		len = buf_f->blf_len;
2165 		flags = buf_f->blf_flags;
2166 		break;
2167 	default:
2168 		xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2169 			"xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2170 			buf_f->blf_type, log->l_mp->m_logname ?
2171 			log->l_mp->m_logname : "internal");
2172 		XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2173 				 XFS_ERRLEVEL_LOW, log->l_mp);
2174 		return XFS_ERROR(EFSCORRUPTED);
2175 	}
2176 
2177 	mp = log->l_mp;
2178 	if (flags & XFS_BLI_INODE_BUF) {
2179 		bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2180 								XFS_BUF_LOCK);
2181 	} else {
2182 		bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2183 	}
2184 	if (XFS_BUF_ISERROR(bp)) {
2185 		xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2186 				  bp, blkno);
2187 		error = XFS_BUF_GETERROR(bp);
2188 		xfs_buf_relse(bp);
2189 		return error;
2190 	}
2191 
2192 	error = 0;
2193 	if (flags & XFS_BLI_INODE_BUF) {
2194 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2195 	} else if (flags &
2196 		  (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
2197 		xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2198 	} else {
2199 		xlog_recover_do_reg_buffer(item, bp, buf_f);
2200 	}
2201 	if (error)
2202 		return XFS_ERROR(error);
2203 
2204 	/*
2205 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2206 	 * slower when taking into account all the buffers to be flushed.
2207 	 *
2208 	 * Also make sure that only inode buffers with good sizes stay in
2209 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2210 	 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2211 	 * buffers in the log can be a different size if the log was generated
2212 	 * by an older kernel using unclustered inode buffers or a newer kernel
2213 	 * running with a different inode cluster size.  Regardless, if the
2214 	 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2215 	 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2216 	 * the buffer out of the buffer cache so that the buffer won't
2217 	 * overlap with future reads of those inodes.
2218 	 */
2219 	if (XFS_DINODE_MAGIC ==
2220 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2221 	    (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2222 			(__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2223 		XFS_BUF_STALE(bp);
2224 		error = xfs_bwrite(mp, bp);
2225 	} else {
2226 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2227 		       XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2228 		XFS_BUF_SET_FSPRIVATE(bp, mp);
2229 		XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2230 		xfs_bdwrite(mp, bp);
2231 	}
2232 
2233 	return (error);
2234 }
2235 
2236 STATIC int
2237 xlog_recover_do_inode_trans(
2238 	xlog_t			*log,
2239 	xlog_recover_item_t	*item,
2240 	int			pass)
2241 {
2242 	xfs_inode_log_format_t	*in_f;
2243 	xfs_mount_t		*mp;
2244 	xfs_buf_t		*bp;
2245 	xfs_imap_t		imap;
2246 	xfs_dinode_t		*dip;
2247 	xfs_ino_t		ino;
2248 	int			len;
2249 	xfs_caddr_t		src;
2250 	xfs_caddr_t		dest;
2251 	int			error;
2252 	int			attr_index;
2253 	uint			fields;
2254 	xfs_icdinode_t		*dicp;
2255 	int			need_free = 0;
2256 
2257 	if (pass == XLOG_RECOVER_PASS1) {
2258 		return 0;
2259 	}
2260 
2261 	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2262 		in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2263 	} else {
2264 		in_f = (xfs_inode_log_format_t *)kmem_alloc(
2265 			sizeof(xfs_inode_log_format_t), KM_SLEEP);
2266 		need_free = 1;
2267 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2268 		if (error)
2269 			goto error;
2270 	}
2271 	ino = in_f->ilf_ino;
2272 	mp = log->l_mp;
2273 	if (ITEM_TYPE(item) == XFS_LI_INODE) {
2274 		imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
2275 		imap.im_len = in_f->ilf_len;
2276 		imap.im_boffset = in_f->ilf_boffset;
2277 	} else {
2278 		/*
2279 		 * It's an old inode format record.  We don't know where
2280 		 * its cluster is located on disk, and we can't allow
2281 		 * xfs_imap() to figure it out because the inode btrees
2282 		 * are not ready to be used.  Therefore do not pass the
2283 		 * XFS_IMAP_LOOKUP flag to xfs_imap().  This will give
2284 		 * us only the single block in which the inode lives
2285 		 * rather than its cluster, so we must make sure to
2286 		 * invalidate the buffer when we write it out below.
2287 		 */
2288 		imap.im_blkno = 0;
2289 		error = xfs_imap(log->l_mp, NULL, ino, &imap, 0);
2290 		if (error)
2291 			goto error;
2292 	}
2293 
2294 	/*
2295 	 * Inode buffers can be freed, look out for it,
2296 	 * and do not replay the inode.
2297 	 */
2298 	if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) {
2299 		error = 0;
2300 		goto error;
2301 	}
2302 
2303 	bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
2304 								XFS_BUF_LOCK);
2305 	if (XFS_BUF_ISERROR(bp)) {
2306 		xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2307 				  bp, imap.im_blkno);
2308 		error = XFS_BUF_GETERROR(bp);
2309 		xfs_buf_relse(bp);
2310 		goto error;
2311 	}
2312 	error = 0;
2313 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2314 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
2315 
2316 	/*
2317 	 * Make sure the place we're flushing out to really looks
2318 	 * like an inode!
2319 	 */
2320 	if (unlikely(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC)) {
2321 		xfs_buf_relse(bp);
2322 		xfs_fs_cmn_err(CE_ALERT, mp,
2323 			"xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2324 			dip, bp, ino);
2325 		XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2326 				 XFS_ERRLEVEL_LOW, mp);
2327 		error = EFSCORRUPTED;
2328 		goto error;
2329 	}
2330 	dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
2331 	if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2332 		xfs_buf_relse(bp);
2333 		xfs_fs_cmn_err(CE_ALERT, mp,
2334 			"xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2335 			item, ino);
2336 		XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2337 				 XFS_ERRLEVEL_LOW, mp);
2338 		error = EFSCORRUPTED;
2339 		goto error;
2340 	}
2341 
2342 	/* Skip replay when the on disk inode is newer than the log one */
2343 	if (dicp->di_flushiter < be16_to_cpu(dip->di_core.di_flushiter)) {
2344 		/*
2345 		 * Deal with the wrap case, DI_MAX_FLUSH is less
2346 		 * than smaller numbers
2347 		 */
2348 		if (be16_to_cpu(dip->di_core.di_flushiter) == DI_MAX_FLUSH &&
2349 		    dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2350 			/* do nothing */
2351 		} else {
2352 			xfs_buf_relse(bp);
2353 			error = 0;
2354 			goto error;
2355 		}
2356 	}
2357 	/* Take the opportunity to reset the flush iteration count */
2358 	dicp->di_flushiter = 0;
2359 
2360 	if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2361 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2362 		    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2363 			XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2364 					 XFS_ERRLEVEL_LOW, mp, dicp);
2365 			xfs_buf_relse(bp);
2366 			xfs_fs_cmn_err(CE_ALERT, mp,
2367 				"xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2368 				item, dip, bp, ino);
2369 			error = EFSCORRUPTED;
2370 			goto error;
2371 		}
2372 	} else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2373 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2374 		    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2375 		    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2376 			XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2377 					     XFS_ERRLEVEL_LOW, mp, dicp);
2378 			xfs_buf_relse(bp);
2379 			xfs_fs_cmn_err(CE_ALERT, mp,
2380 				"xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2381 				item, dip, bp, ino);
2382 			error = EFSCORRUPTED;
2383 			goto error;
2384 		}
2385 	}
2386 	if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2387 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2388 				     XFS_ERRLEVEL_LOW, mp, dicp);
2389 		xfs_buf_relse(bp);
2390 		xfs_fs_cmn_err(CE_ALERT, mp,
2391 			"xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2392 			item, dip, bp, ino,
2393 			dicp->di_nextents + dicp->di_anextents,
2394 			dicp->di_nblocks);
2395 		error = EFSCORRUPTED;
2396 		goto error;
2397 	}
2398 	if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2399 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2400 				     XFS_ERRLEVEL_LOW, mp, dicp);
2401 		xfs_buf_relse(bp);
2402 		xfs_fs_cmn_err(CE_ALERT, mp,
2403 			"xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2404 			item, dip, bp, ino, dicp->di_forkoff);
2405 		error = EFSCORRUPTED;
2406 		goto error;
2407 	}
2408 	if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
2409 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2410 				     XFS_ERRLEVEL_LOW, mp, dicp);
2411 		xfs_buf_relse(bp);
2412 		xfs_fs_cmn_err(CE_ALERT, mp,
2413 			"xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2414 			item->ri_buf[1].i_len, item);
2415 		error = EFSCORRUPTED;
2416 		goto error;
2417 	}
2418 
2419 	/* The core is in in-core format */
2420 	xfs_dinode_to_disk(&dip->di_core,
2421 		(xfs_icdinode_t *)item->ri_buf[1].i_addr);
2422 
2423 	/* the rest is in on-disk format */
2424 	if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
2425 		memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
2426 			item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
2427 			item->ri_buf[1].i_len  - sizeof(xfs_dinode_core_t));
2428 	}
2429 
2430 	fields = in_f->ilf_fields;
2431 	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2432 	case XFS_ILOG_DEV:
2433 		dip->di_u.di_dev = cpu_to_be32(in_f->ilf_u.ilfu_rdev);
2434 		break;
2435 	case XFS_ILOG_UUID:
2436 		dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
2437 		break;
2438 	}
2439 
2440 	if (in_f->ilf_size == 2)
2441 		goto write_inode_buffer;
2442 	len = item->ri_buf[2].i_len;
2443 	src = item->ri_buf[2].i_addr;
2444 	ASSERT(in_f->ilf_size <= 4);
2445 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2446 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
2447 	       (len == in_f->ilf_dsize));
2448 
2449 	switch (fields & XFS_ILOG_DFORK) {
2450 	case XFS_ILOG_DDATA:
2451 	case XFS_ILOG_DEXT:
2452 		memcpy(&dip->di_u, src, len);
2453 		break;
2454 
2455 	case XFS_ILOG_DBROOT:
2456 		xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2457 				 &(dip->di_u.di_bmbt),
2458 				 XFS_DFORK_DSIZE(dip, mp));
2459 		break;
2460 
2461 	default:
2462 		/*
2463 		 * There are no data fork flags set.
2464 		 */
2465 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
2466 		break;
2467 	}
2468 
2469 	/*
2470 	 * If we logged any attribute data, recover it.  There may or
2471 	 * may not have been any other non-core data logged in this
2472 	 * transaction.
2473 	 */
2474 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2475 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2476 			attr_index = 3;
2477 		} else {
2478 			attr_index = 2;
2479 		}
2480 		len = item->ri_buf[attr_index].i_len;
2481 		src = item->ri_buf[attr_index].i_addr;
2482 		ASSERT(len == in_f->ilf_asize);
2483 
2484 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2485 		case XFS_ILOG_ADATA:
2486 		case XFS_ILOG_AEXT:
2487 			dest = XFS_DFORK_APTR(dip);
2488 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2489 			memcpy(dest, src, len);
2490 			break;
2491 
2492 		case XFS_ILOG_ABROOT:
2493 			dest = XFS_DFORK_APTR(dip);
2494 			xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2495 					 (xfs_bmdr_block_t*)dest,
2496 					 XFS_DFORK_ASIZE(dip, mp));
2497 			break;
2498 
2499 		default:
2500 			xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2501 			ASSERT(0);
2502 			xfs_buf_relse(bp);
2503 			error = EIO;
2504 			goto error;
2505 		}
2506 	}
2507 
2508 write_inode_buffer:
2509 	if (ITEM_TYPE(item) == XFS_LI_INODE) {
2510 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2511 		       XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2512 		XFS_BUF_SET_FSPRIVATE(bp, mp);
2513 		XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2514 		xfs_bdwrite(mp, bp);
2515 	} else {
2516 		XFS_BUF_STALE(bp);
2517 		error = xfs_bwrite(mp, bp);
2518 	}
2519 
2520 error:
2521 	if (need_free)
2522 		kmem_free(in_f, sizeof(*in_f));
2523 	return XFS_ERROR(error);
2524 }
2525 
2526 /*
2527  * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2528  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2529  * of that type.
2530  */
2531 STATIC int
2532 xlog_recover_do_quotaoff_trans(
2533 	xlog_t			*log,
2534 	xlog_recover_item_t	*item,
2535 	int			pass)
2536 {
2537 	xfs_qoff_logformat_t	*qoff_f;
2538 
2539 	if (pass == XLOG_RECOVER_PASS2) {
2540 		return (0);
2541 	}
2542 
2543 	qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2544 	ASSERT(qoff_f);
2545 
2546 	/*
2547 	 * The logitem format's flag tells us if this was user quotaoff,
2548 	 * group/project quotaoff or both.
2549 	 */
2550 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2551 		log->l_quotaoffs_flag |= XFS_DQ_USER;
2552 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2553 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2554 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2555 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2556 
2557 	return (0);
2558 }
2559 
2560 /*
2561  * Recover a dquot record
2562  */
2563 STATIC int
2564 xlog_recover_do_dquot_trans(
2565 	xlog_t			*log,
2566 	xlog_recover_item_t	*item,
2567 	int			pass)
2568 {
2569 	xfs_mount_t		*mp;
2570 	xfs_buf_t		*bp;
2571 	struct xfs_disk_dquot	*ddq, *recddq;
2572 	int			error;
2573 	xfs_dq_logformat_t	*dq_f;
2574 	uint			type;
2575 
2576 	if (pass == XLOG_RECOVER_PASS1) {
2577 		return 0;
2578 	}
2579 	mp = log->l_mp;
2580 
2581 	/*
2582 	 * Filesystems are required to send in quota flags at mount time.
2583 	 */
2584 	if (mp->m_qflags == 0)
2585 		return (0);
2586 
2587 	recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2588 	ASSERT(recddq);
2589 	/*
2590 	 * This type of quotas was turned off, so ignore this record.
2591 	 */
2592 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2593 	ASSERT(type);
2594 	if (log->l_quotaoffs_flag & type)
2595 		return (0);
2596 
2597 	/*
2598 	 * At this point we know that quota was _not_ turned off.
2599 	 * Since the mount flags are not indicating to us otherwise, this
2600 	 * must mean that quota is on, and the dquot needs to be replayed.
2601 	 * Remember that we may not have fully recovered the superblock yet,
2602 	 * so we can't do the usual trick of looking at the SB quota bits.
2603 	 *
2604 	 * The other possibility, of course, is that the quota subsystem was
2605 	 * removed since the last mount - ENOSYS.
2606 	 */
2607 	dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2608 	ASSERT(dq_f);
2609 	if ((error = xfs_qm_dqcheck(recddq,
2610 			   dq_f->qlf_id,
2611 			   0, XFS_QMOPT_DOWARN,
2612 			   "xlog_recover_do_dquot_trans (log copy)"))) {
2613 		return XFS_ERROR(EIO);
2614 	}
2615 	ASSERT(dq_f->qlf_len == 1);
2616 
2617 	error = xfs_read_buf(mp, mp->m_ddev_targp,
2618 			     dq_f->qlf_blkno,
2619 			     XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2620 			     0, &bp);
2621 	if (error) {
2622 		xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2623 				  bp, dq_f->qlf_blkno);
2624 		return error;
2625 	}
2626 	ASSERT(bp);
2627 	ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2628 
2629 	/*
2630 	 * At least the magic num portion should be on disk because this
2631 	 * was among a chunk of dquots created earlier, and we did some
2632 	 * minimal initialization then.
2633 	 */
2634 	if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2635 			   "xlog_recover_do_dquot_trans")) {
2636 		xfs_buf_relse(bp);
2637 		return XFS_ERROR(EIO);
2638 	}
2639 
2640 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
2641 
2642 	ASSERT(dq_f->qlf_size == 2);
2643 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2644 	       XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2645 	XFS_BUF_SET_FSPRIVATE(bp, mp);
2646 	XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2647 	xfs_bdwrite(mp, bp);
2648 
2649 	return (0);
2650 }
2651 
2652 /*
2653  * This routine is called to create an in-core extent free intent
2654  * item from the efi format structure which was logged on disk.
2655  * It allocates an in-core efi, copies the extents from the format
2656  * structure into it, and adds the efi to the AIL with the given
2657  * LSN.
2658  */
2659 STATIC int
2660 xlog_recover_do_efi_trans(
2661 	xlog_t			*log,
2662 	xlog_recover_item_t	*item,
2663 	xfs_lsn_t		lsn,
2664 	int			pass)
2665 {
2666 	int			error;
2667 	xfs_mount_t		*mp;
2668 	xfs_efi_log_item_t	*efip;
2669 	xfs_efi_log_format_t	*efi_formatp;
2670 
2671 	if (pass == XLOG_RECOVER_PASS1) {
2672 		return 0;
2673 	}
2674 
2675 	efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2676 
2677 	mp = log->l_mp;
2678 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2679 	if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2680 					 &(efip->efi_format)))) {
2681 		xfs_efi_item_free(efip);
2682 		return error;
2683 	}
2684 	efip->efi_next_extent = efi_formatp->efi_nextents;
2685 	efip->efi_flags |= XFS_EFI_COMMITTED;
2686 
2687 	spin_lock(&mp->m_ail_lock);
2688 	/*
2689 	 * xfs_trans_update_ail() drops the AIL lock.
2690 	 */
2691 	xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn);
2692 	return 0;
2693 }
2694 
2695 
2696 /*
2697  * This routine is called when an efd format structure is found in
2698  * a committed transaction in the log.  It's purpose is to cancel
2699  * the corresponding efi if it was still in the log.  To do this
2700  * it searches the AIL for the efi with an id equal to that in the
2701  * efd format structure.  If we find it, we remove the efi from the
2702  * AIL and free it.
2703  */
2704 STATIC void
2705 xlog_recover_do_efd_trans(
2706 	xlog_t			*log,
2707 	xlog_recover_item_t	*item,
2708 	int			pass)
2709 {
2710 	xfs_mount_t		*mp;
2711 	xfs_efd_log_format_t	*efd_formatp;
2712 	xfs_efi_log_item_t	*efip = NULL;
2713 	xfs_log_item_t		*lip;
2714 	int			gen;
2715 	__uint64_t		efi_id;
2716 
2717 	if (pass == XLOG_RECOVER_PASS1) {
2718 		return;
2719 	}
2720 
2721 	efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2722 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2723 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2724 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2725 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2726 	efi_id = efd_formatp->efd_efi_id;
2727 
2728 	/*
2729 	 * Search for the efi with the id in the efd format structure
2730 	 * in the AIL.
2731 	 */
2732 	mp = log->l_mp;
2733 	spin_lock(&mp->m_ail_lock);
2734 	lip = xfs_trans_first_ail(mp, &gen);
2735 	while (lip != NULL) {
2736 		if (lip->li_type == XFS_LI_EFI) {
2737 			efip = (xfs_efi_log_item_t *)lip;
2738 			if (efip->efi_format.efi_id == efi_id) {
2739 				/*
2740 				 * xfs_trans_delete_ail() drops the
2741 				 * AIL lock.
2742 				 */
2743 				xfs_trans_delete_ail(mp, lip);
2744 				xfs_efi_item_free(efip);
2745 				return;
2746 			}
2747 		}
2748 		lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
2749 	}
2750 	spin_unlock(&mp->m_ail_lock);
2751 }
2752 
2753 /*
2754  * Perform the transaction
2755  *
2756  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2757  * EFIs and EFDs get queued up by adding entries into the AIL for them.
2758  */
2759 STATIC int
2760 xlog_recover_do_trans(
2761 	xlog_t			*log,
2762 	xlog_recover_t		*trans,
2763 	int			pass)
2764 {
2765 	int			error = 0;
2766 	xlog_recover_item_t	*item, *first_item;
2767 
2768 	if ((error = xlog_recover_reorder_trans(trans)))
2769 		return error;
2770 	first_item = item = trans->r_itemq;
2771 	do {
2772 		/*
2773 		 * we don't need to worry about the block number being
2774 		 * truncated in > 1 TB buffers because in user-land,
2775 		 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
2776 		 * the blknos will get through the user-mode buffer
2777 		 * cache properly.  The only bad case is o32 kernels
2778 		 * where xfs_daddr_t is 32-bits but mount will warn us
2779 		 * off a > 1 TB filesystem before we get here.
2780 		 */
2781 		if ((ITEM_TYPE(item) == XFS_LI_BUF)) {
2782 			if  ((error = xlog_recover_do_buffer_trans(log, item,
2783 								 pass)))
2784 				break;
2785 		} else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
2786 			if ((error = xlog_recover_do_inode_trans(log, item,
2787 								pass)))
2788 				break;
2789 		} else if (ITEM_TYPE(item) == XFS_LI_EFI) {
2790 			if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2791 						  pass)))
2792 				break;
2793 		} else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2794 			xlog_recover_do_efd_trans(log, item, pass);
2795 		} else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2796 			if ((error = xlog_recover_do_dquot_trans(log, item,
2797 								   pass)))
2798 					break;
2799 		} else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2800 			if ((error = xlog_recover_do_quotaoff_trans(log, item,
2801 								   pass)))
2802 					break;
2803 		} else {
2804 			xlog_warn("XFS: xlog_recover_do_trans");
2805 			ASSERT(0);
2806 			error = XFS_ERROR(EIO);
2807 			break;
2808 		}
2809 		item = item->ri_next;
2810 	} while (first_item != item);
2811 
2812 	return error;
2813 }
2814 
2815 /*
2816  * Free up any resources allocated by the transaction
2817  *
2818  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2819  */
2820 STATIC void
2821 xlog_recover_free_trans(
2822 	xlog_recover_t		*trans)
2823 {
2824 	xlog_recover_item_t	*first_item, *item, *free_item;
2825 	int			i;
2826 
2827 	item = first_item = trans->r_itemq;
2828 	do {
2829 		free_item = item;
2830 		item = item->ri_next;
2831 		 /* Free the regions in the item. */
2832 		for (i = 0; i < free_item->ri_cnt; i++) {
2833 			kmem_free(free_item->ri_buf[i].i_addr,
2834 				  free_item->ri_buf[i].i_len);
2835 		}
2836 		/* Free the item itself */
2837 		kmem_free(free_item->ri_buf,
2838 			  (free_item->ri_total * sizeof(xfs_log_iovec_t)));
2839 		kmem_free(free_item, sizeof(xlog_recover_item_t));
2840 	} while (first_item != item);
2841 	/* Free the transaction recover structure */
2842 	kmem_free(trans, sizeof(xlog_recover_t));
2843 }
2844 
2845 STATIC int
2846 xlog_recover_commit_trans(
2847 	xlog_t			*log,
2848 	xlog_recover_t		**q,
2849 	xlog_recover_t		*trans,
2850 	int			pass)
2851 {
2852 	int			error;
2853 
2854 	if ((error = xlog_recover_unlink_tid(q, trans)))
2855 		return error;
2856 	if ((error = xlog_recover_do_trans(log, trans, pass)))
2857 		return error;
2858 	xlog_recover_free_trans(trans);			/* no error */
2859 	return 0;
2860 }
2861 
2862 STATIC int
2863 xlog_recover_unmount_trans(
2864 	xlog_recover_t		*trans)
2865 {
2866 	/* Do nothing now */
2867 	xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2868 	return 0;
2869 }
2870 
2871 /*
2872  * There are two valid states of the r_state field.  0 indicates that the
2873  * transaction structure is in a normal state.  We have either seen the
2874  * start of the transaction or the last operation we added was not a partial
2875  * operation.  If the last operation we added to the transaction was a
2876  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2877  *
2878  * NOTE: skip LRs with 0 data length.
2879  */
2880 STATIC int
2881 xlog_recover_process_data(
2882 	xlog_t			*log,
2883 	xlog_recover_t		*rhash[],
2884 	xlog_rec_header_t	*rhead,
2885 	xfs_caddr_t		dp,
2886 	int			pass)
2887 {
2888 	xfs_caddr_t		lp;
2889 	int			num_logops;
2890 	xlog_op_header_t	*ohead;
2891 	xlog_recover_t		*trans;
2892 	xlog_tid_t		tid;
2893 	int			error;
2894 	unsigned long		hash;
2895 	uint			flags;
2896 
2897 	lp = dp + be32_to_cpu(rhead->h_len);
2898 	num_logops = be32_to_cpu(rhead->h_num_logops);
2899 
2900 	/* check the log format matches our own - else we can't recover */
2901 	if (xlog_header_check_recover(log->l_mp, rhead))
2902 		return (XFS_ERROR(EIO));
2903 
2904 	while ((dp < lp) && num_logops) {
2905 		ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2906 		ohead = (xlog_op_header_t *)dp;
2907 		dp += sizeof(xlog_op_header_t);
2908 		if (ohead->oh_clientid != XFS_TRANSACTION &&
2909 		    ohead->oh_clientid != XFS_LOG) {
2910 			xlog_warn(
2911 		"XFS: xlog_recover_process_data: bad clientid");
2912 			ASSERT(0);
2913 			return (XFS_ERROR(EIO));
2914 		}
2915 		tid = be32_to_cpu(ohead->oh_tid);
2916 		hash = XLOG_RHASH(tid);
2917 		trans = xlog_recover_find_tid(rhash[hash], tid);
2918 		if (trans == NULL) {		   /* not found; add new tid */
2919 			if (ohead->oh_flags & XLOG_START_TRANS)
2920 				xlog_recover_new_tid(&rhash[hash], tid,
2921 					be64_to_cpu(rhead->h_lsn));
2922 		} else {
2923 			if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2924 				xlog_warn(
2925 			"XFS: xlog_recover_process_data: bad length");
2926 				WARN_ON(1);
2927 				return (XFS_ERROR(EIO));
2928 			}
2929 			flags = ohead->oh_flags & ~XLOG_END_TRANS;
2930 			if (flags & XLOG_WAS_CONT_TRANS)
2931 				flags &= ~XLOG_CONTINUE_TRANS;
2932 			switch (flags) {
2933 			case XLOG_COMMIT_TRANS:
2934 				error = xlog_recover_commit_trans(log,
2935 						&rhash[hash], trans, pass);
2936 				break;
2937 			case XLOG_UNMOUNT_TRANS:
2938 				error = xlog_recover_unmount_trans(trans);
2939 				break;
2940 			case XLOG_WAS_CONT_TRANS:
2941 				error = xlog_recover_add_to_cont_trans(trans,
2942 						dp, be32_to_cpu(ohead->oh_len));
2943 				break;
2944 			case XLOG_START_TRANS:
2945 				xlog_warn(
2946 			"XFS: xlog_recover_process_data: bad transaction");
2947 				ASSERT(0);
2948 				error = XFS_ERROR(EIO);
2949 				break;
2950 			case 0:
2951 			case XLOG_CONTINUE_TRANS:
2952 				error = xlog_recover_add_to_trans(trans,
2953 						dp, be32_to_cpu(ohead->oh_len));
2954 				break;
2955 			default:
2956 				xlog_warn(
2957 			"XFS: xlog_recover_process_data: bad flag");
2958 				ASSERT(0);
2959 				error = XFS_ERROR(EIO);
2960 				break;
2961 			}
2962 			if (error)
2963 				return error;
2964 		}
2965 		dp += be32_to_cpu(ohead->oh_len);
2966 		num_logops--;
2967 	}
2968 	return 0;
2969 }
2970 
2971 /*
2972  * Process an extent free intent item that was recovered from
2973  * the log.  We need to free the extents that it describes.
2974  */
2975 STATIC int
2976 xlog_recover_process_efi(
2977 	xfs_mount_t		*mp,
2978 	xfs_efi_log_item_t	*efip)
2979 {
2980 	xfs_efd_log_item_t	*efdp;
2981 	xfs_trans_t		*tp;
2982 	int			i;
2983 	int			error = 0;
2984 	xfs_extent_t		*extp;
2985 	xfs_fsblock_t		startblock_fsb;
2986 
2987 	ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
2988 
2989 	/*
2990 	 * First check the validity of the extents described by the
2991 	 * EFI.  If any are bad, then assume that all are bad and
2992 	 * just toss the EFI.
2993 	 */
2994 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2995 		extp = &(efip->efi_format.efi_extents[i]);
2996 		startblock_fsb = XFS_BB_TO_FSB(mp,
2997 				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
2998 		if ((startblock_fsb == 0) ||
2999 		    (extp->ext_len == 0) ||
3000 		    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3001 		    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3002 			/*
3003 			 * This will pull the EFI from the AIL and
3004 			 * free the memory associated with it.
3005 			 */
3006 			xfs_efi_release(efip, efip->efi_format.efi_nextents);
3007 			return XFS_ERROR(EIO);
3008 		}
3009 	}
3010 
3011 	tp = xfs_trans_alloc(mp, 0);
3012 	error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3013 	if (error)
3014 		goto abort_error;
3015 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3016 
3017 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3018 		extp = &(efip->efi_format.efi_extents[i]);
3019 		error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3020 		if (error)
3021 			goto abort_error;
3022 		xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3023 					 extp->ext_len);
3024 	}
3025 
3026 	efip->efi_flags |= XFS_EFI_RECOVERED;
3027 	error = xfs_trans_commit(tp, 0);
3028 	return error;
3029 
3030 abort_error:
3031 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3032 	return error;
3033 }
3034 
3035 /*
3036  * Verify that once we've encountered something other than an EFI
3037  * in the AIL that there are no more EFIs in the AIL.
3038  */
3039 #if defined(DEBUG)
3040 STATIC void
3041 xlog_recover_check_ail(
3042 	xfs_mount_t		*mp,
3043 	xfs_log_item_t		*lip,
3044 	int			gen)
3045 {
3046 	int			orig_gen = gen;
3047 
3048 	do {
3049 		ASSERT(lip->li_type != XFS_LI_EFI);
3050 		lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3051 		/*
3052 		 * The check will be bogus if we restart from the
3053 		 * beginning of the AIL, so ASSERT that we don't.
3054 		 * We never should since we're holding the AIL lock
3055 		 * the entire time.
3056 		 */
3057 		ASSERT(gen == orig_gen);
3058 	} while (lip != NULL);
3059 }
3060 #endif	/* DEBUG */
3061 
3062 /*
3063  * When this is called, all of the EFIs which did not have
3064  * corresponding EFDs should be in the AIL.  What we do now
3065  * is free the extents associated with each one.
3066  *
3067  * Since we process the EFIs in normal transactions, they
3068  * will be removed at some point after the commit.  This prevents
3069  * us from just walking down the list processing each one.
3070  * We'll use a flag in the EFI to skip those that we've already
3071  * processed and use the AIL iteration mechanism's generation
3072  * count to try to speed this up at least a bit.
3073  *
3074  * When we start, we know that the EFIs are the only things in
3075  * the AIL.  As we process them, however, other items are added
3076  * to the AIL.  Since everything added to the AIL must come after
3077  * everything already in the AIL, we stop processing as soon as
3078  * we see something other than an EFI in the AIL.
3079  */
3080 STATIC int
3081 xlog_recover_process_efis(
3082 	xlog_t			*log)
3083 {
3084 	xfs_log_item_t		*lip;
3085 	xfs_efi_log_item_t	*efip;
3086 	int			gen;
3087 	xfs_mount_t		*mp;
3088 	int			error = 0;
3089 
3090 	mp = log->l_mp;
3091 	spin_lock(&mp->m_ail_lock);
3092 
3093 	lip = xfs_trans_first_ail(mp, &gen);
3094 	while (lip != NULL) {
3095 		/*
3096 		 * We're done when we see something other than an EFI.
3097 		 */
3098 		if (lip->li_type != XFS_LI_EFI) {
3099 			xlog_recover_check_ail(mp, lip, gen);
3100 			break;
3101 		}
3102 
3103 		/*
3104 		 * Skip EFIs that we've already processed.
3105 		 */
3106 		efip = (xfs_efi_log_item_t *)lip;
3107 		if (efip->efi_flags & XFS_EFI_RECOVERED) {
3108 			lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3109 			continue;
3110 		}
3111 
3112 		spin_unlock(&mp->m_ail_lock);
3113 		error = xlog_recover_process_efi(mp, efip);
3114 		if (error)
3115 			return error;
3116 		spin_lock(&mp->m_ail_lock);
3117 		lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3118 	}
3119 	spin_unlock(&mp->m_ail_lock);
3120 	return error;
3121 }
3122 
3123 /*
3124  * This routine performs a transaction to null out a bad inode pointer
3125  * in an agi unlinked inode hash bucket.
3126  */
3127 STATIC void
3128 xlog_recover_clear_agi_bucket(
3129 	xfs_mount_t	*mp,
3130 	xfs_agnumber_t	agno,
3131 	int		bucket)
3132 {
3133 	xfs_trans_t	*tp;
3134 	xfs_agi_t	*agi;
3135 	xfs_buf_t	*agibp;
3136 	int		offset;
3137 	int		error;
3138 
3139 	tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3140 	error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
3141 	if (!error)
3142 		error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3143 				   XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3144 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
3145 	if (error)
3146 		goto out_abort;
3147 
3148 	error = EINVAL;
3149 	agi = XFS_BUF_TO_AGI(agibp);
3150 	if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC)
3151 		goto out_abort;
3152 
3153 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3154 	offset = offsetof(xfs_agi_t, agi_unlinked) +
3155 		 (sizeof(xfs_agino_t) * bucket);
3156 	xfs_trans_log_buf(tp, agibp, offset,
3157 			  (offset + sizeof(xfs_agino_t) - 1));
3158 
3159 	error = xfs_trans_commit(tp, 0);
3160 	if (error)
3161 		goto out_error;
3162 	return;
3163 
3164 out_abort:
3165 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3166 out_error:
3167 	xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3168 			"failed to clear agi %d. Continuing.", agno);
3169 	return;
3170 }
3171 
3172 /*
3173  * xlog_iunlink_recover
3174  *
3175  * This is called during recovery to process any inodes which
3176  * we unlinked but not freed when the system crashed.  These
3177  * inodes will be on the lists in the AGI blocks.  What we do
3178  * here is scan all the AGIs and fully truncate and free any
3179  * inodes found on the lists.  Each inode is removed from the
3180  * lists when it has been fully truncated and is freed.  The
3181  * freeing of the inode and its removal from the list must be
3182  * atomic.
3183  */
3184 void
3185 xlog_recover_process_iunlinks(
3186 	xlog_t		*log)
3187 {
3188 	xfs_mount_t	*mp;
3189 	xfs_agnumber_t	agno;
3190 	xfs_agi_t	*agi;
3191 	xfs_buf_t	*agibp;
3192 	xfs_buf_t	*ibp;
3193 	xfs_dinode_t	*dip;
3194 	xfs_inode_t	*ip;
3195 	xfs_agino_t	agino;
3196 	xfs_ino_t	ino;
3197 	int		bucket;
3198 	int		error;
3199 	uint		mp_dmevmask;
3200 
3201 	mp = log->l_mp;
3202 
3203 	/*
3204 	 * Prevent any DMAPI event from being sent while in this function.
3205 	 */
3206 	mp_dmevmask = mp->m_dmevmask;
3207 	mp->m_dmevmask = 0;
3208 
3209 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3210 		/*
3211 		 * Find the agi for this ag.
3212 		 */
3213 		agibp = xfs_buf_read(mp->m_ddev_targp,
3214 				XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3215 				XFS_FSS_TO_BB(mp, 1), 0);
3216 		if (XFS_BUF_ISERROR(agibp)) {
3217 			xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
3218 				log->l_mp, agibp,
3219 				XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
3220 		}
3221 		agi = XFS_BUF_TO_AGI(agibp);
3222 		ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum));
3223 
3224 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3225 
3226 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3227 			while (agino != NULLAGINO) {
3228 
3229 				/*
3230 				 * Release the agi buffer so that it can
3231 				 * be acquired in the normal course of the
3232 				 * transaction to truncate and free the inode.
3233 				 */
3234 				xfs_buf_relse(agibp);
3235 
3236 				ino = XFS_AGINO_TO_INO(mp, agno, agino);
3237 				error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3238 				ASSERT(error || (ip != NULL));
3239 
3240 				if (!error) {
3241 					/*
3242 					 * Get the on disk inode to find the
3243 					 * next inode in the bucket.
3244 					 */
3245 					error = xfs_itobp(mp, NULL, ip, &dip,
3246 							&ibp, 0, 0,
3247 							XFS_BUF_LOCK);
3248 					ASSERT(error || (dip != NULL));
3249 				}
3250 
3251 				if (!error) {
3252 					ASSERT(ip->i_d.di_nlink == 0);
3253 
3254 					/* setup for the next pass */
3255 					agino = be32_to_cpu(
3256 							dip->di_next_unlinked);
3257 					xfs_buf_relse(ibp);
3258 					/*
3259 					 * Prevent any DMAPI event from
3260 					 * being sent when the
3261 					 * reference on the inode is
3262 					 * dropped.
3263 					 */
3264 					ip->i_d.di_dmevmask = 0;
3265 
3266 					/*
3267 					 * If this is a new inode, handle
3268 					 * it specially.  Otherwise,
3269 					 * just drop our reference to the
3270 					 * inode.  If there are no
3271 					 * other references, this will
3272 					 * send the inode to
3273 					 * xfs_inactive() which will
3274 					 * truncate the file and free
3275 					 * the inode.
3276 					 */
3277 					if (ip->i_d.di_mode == 0)
3278 						xfs_iput_new(ip, 0);
3279 					else
3280 						IRELE(ip);
3281 				} else {
3282 					/*
3283 					 * We can't read in the inode
3284 					 * this bucket points to, or
3285 					 * this inode is messed up.  Just
3286 					 * ditch this bucket of inodes.  We
3287 					 * will lose some inodes and space,
3288 					 * but at least we won't hang.  Call
3289 					 * xlog_recover_clear_agi_bucket()
3290 					 * to perform a transaction to clear
3291 					 * the inode pointer in the bucket.
3292 					 */
3293 					xlog_recover_clear_agi_bucket(mp, agno,
3294 							bucket);
3295 
3296 					agino = NULLAGINO;
3297 				}
3298 
3299 				/*
3300 				 * Reacquire the agibuffer and continue around
3301 				 * the loop.
3302 				 */
3303 				agibp = xfs_buf_read(mp->m_ddev_targp,
3304 						XFS_AG_DADDR(mp, agno,
3305 							XFS_AGI_DADDR(mp)),
3306 						XFS_FSS_TO_BB(mp, 1), 0);
3307 				if (XFS_BUF_ISERROR(agibp)) {
3308 					xfs_ioerror_alert(
3309 				"xlog_recover_process_iunlinks(#2)",
3310 						log->l_mp, agibp,
3311 						XFS_AG_DADDR(mp, agno,
3312 							XFS_AGI_DADDR(mp)));
3313 				}
3314 				agi = XFS_BUF_TO_AGI(agibp);
3315 				ASSERT(XFS_AGI_MAGIC == be32_to_cpu(
3316 					agi->agi_magicnum));
3317 			}
3318 		}
3319 
3320 		/*
3321 		 * Release the buffer for the current agi so we can
3322 		 * go on to the next one.
3323 		 */
3324 		xfs_buf_relse(agibp);
3325 	}
3326 
3327 	mp->m_dmevmask = mp_dmevmask;
3328 }
3329 
3330 
3331 #ifdef DEBUG
3332 STATIC void
3333 xlog_pack_data_checksum(
3334 	xlog_t		*log,
3335 	xlog_in_core_t	*iclog,
3336 	int		size)
3337 {
3338 	int		i;
3339 	__be32		*up;
3340 	uint		chksum = 0;
3341 
3342 	up = (__be32 *)iclog->ic_datap;
3343 	/* divide length by 4 to get # words */
3344 	for (i = 0; i < (size >> 2); i++) {
3345 		chksum ^= be32_to_cpu(*up);
3346 		up++;
3347 	}
3348 	iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3349 }
3350 #else
3351 #define xlog_pack_data_checksum(log, iclog, size)
3352 #endif
3353 
3354 /*
3355  * Stamp cycle number in every block
3356  */
3357 void
3358 xlog_pack_data(
3359 	xlog_t			*log,
3360 	xlog_in_core_t		*iclog,
3361 	int			roundoff)
3362 {
3363 	int			i, j, k;
3364 	int			size = iclog->ic_offset + roundoff;
3365 	__be32			cycle_lsn;
3366 	xfs_caddr_t		dp;
3367 	xlog_in_core_2_t	*xhdr;
3368 
3369 	xlog_pack_data_checksum(log, iclog, size);
3370 
3371 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3372 
3373 	dp = iclog->ic_datap;
3374 	for (i = 0; i < BTOBB(size) &&
3375 		i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3376 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3377 		*(__be32 *)dp = cycle_lsn;
3378 		dp += BBSIZE;
3379 	}
3380 
3381 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3382 		xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
3383 		for ( ; i < BTOBB(size); i++) {
3384 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3385 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3386 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3387 			*(__be32 *)dp = cycle_lsn;
3388 			dp += BBSIZE;
3389 		}
3390 
3391 		for (i = 1; i < log->l_iclog_heads; i++) {
3392 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3393 		}
3394 	}
3395 }
3396 
3397 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3398 STATIC void
3399 xlog_unpack_data_checksum(
3400 	xlog_rec_header_t	*rhead,
3401 	xfs_caddr_t		dp,
3402 	xlog_t			*log)
3403 {
3404 	__be32			*up = (__be32 *)dp;
3405 	uint			chksum = 0;
3406 	int			i;
3407 
3408 	/* divide length by 4 to get # words */
3409 	for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
3410 		chksum ^= be32_to_cpu(*up);
3411 		up++;
3412 	}
3413 	if (chksum != be32_to_cpu(rhead->h_chksum)) {
3414 	    if (rhead->h_chksum ||
3415 		((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3416 		    cmn_err(CE_DEBUG,
3417 			"XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
3418 			    be32_to_cpu(rhead->h_chksum), chksum);
3419 		    cmn_err(CE_DEBUG,
3420 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3421 		    if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3422 			    cmn_err(CE_DEBUG,
3423 				"XFS: LogR this is a LogV2 filesystem\n");
3424 		    }
3425 		    log->l_flags |= XLOG_CHKSUM_MISMATCH;
3426 	    }
3427 	}
3428 }
3429 #else
3430 #define xlog_unpack_data_checksum(rhead, dp, log)
3431 #endif
3432 
3433 STATIC void
3434 xlog_unpack_data(
3435 	xlog_rec_header_t	*rhead,
3436 	xfs_caddr_t		dp,
3437 	xlog_t			*log)
3438 {
3439 	int			i, j, k;
3440 	xlog_in_core_2_t	*xhdr;
3441 
3442 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3443 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3444 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3445 		dp += BBSIZE;
3446 	}
3447 
3448 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3449 		xhdr = (xlog_in_core_2_t *)rhead;
3450 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3451 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3452 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3453 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3454 			dp += BBSIZE;
3455 		}
3456 	}
3457 
3458 	xlog_unpack_data_checksum(rhead, dp, log);
3459 }
3460 
3461 STATIC int
3462 xlog_valid_rec_header(
3463 	xlog_t			*log,
3464 	xlog_rec_header_t	*rhead,
3465 	xfs_daddr_t		blkno)
3466 {
3467 	int			hlen;
3468 
3469 	if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
3470 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3471 				XFS_ERRLEVEL_LOW, log->l_mp);
3472 		return XFS_ERROR(EFSCORRUPTED);
3473 	}
3474 	if (unlikely(
3475 	    (!rhead->h_version ||
3476 	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3477 		xlog_warn("XFS: %s: unrecognised log version (%d).",
3478 			__func__, be32_to_cpu(rhead->h_version));
3479 		return XFS_ERROR(EIO);
3480 	}
3481 
3482 	/* LR body must have data or it wouldn't have been written */
3483 	hlen = be32_to_cpu(rhead->h_len);
3484 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3485 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3486 				XFS_ERRLEVEL_LOW, log->l_mp);
3487 		return XFS_ERROR(EFSCORRUPTED);
3488 	}
3489 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3490 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3491 				XFS_ERRLEVEL_LOW, log->l_mp);
3492 		return XFS_ERROR(EFSCORRUPTED);
3493 	}
3494 	return 0;
3495 }
3496 
3497 /*
3498  * Read the log from tail to head and process the log records found.
3499  * Handle the two cases where the tail and head are in the same cycle
3500  * and where the active portion of the log wraps around the end of
3501  * the physical log separately.  The pass parameter is passed through
3502  * to the routines called to process the data and is not looked at
3503  * here.
3504  */
3505 STATIC int
3506 xlog_do_recovery_pass(
3507 	xlog_t			*log,
3508 	xfs_daddr_t		head_blk,
3509 	xfs_daddr_t		tail_blk,
3510 	int			pass)
3511 {
3512 	xlog_rec_header_t	*rhead;
3513 	xfs_daddr_t		blk_no;
3514 	xfs_caddr_t		bufaddr, offset;
3515 	xfs_buf_t		*hbp, *dbp;
3516 	int			error = 0, h_size;
3517 	int			bblks, split_bblks;
3518 	int			hblks, split_hblks, wrapped_hblks;
3519 	xlog_recover_t		*rhash[XLOG_RHASH_SIZE];
3520 
3521 	ASSERT(head_blk != tail_blk);
3522 
3523 	/*
3524 	 * Read the header of the tail block and get the iclog buffer size from
3525 	 * h_size.  Use this to tell how many sectors make up the log header.
3526 	 */
3527 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3528 		/*
3529 		 * When using variable length iclogs, read first sector of
3530 		 * iclog header and extract the header size from it.  Get a
3531 		 * new hbp that is the correct size.
3532 		 */
3533 		hbp = xlog_get_bp(log, 1);
3534 		if (!hbp)
3535 			return ENOMEM;
3536 		if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3537 			goto bread_err1;
3538 		offset = xlog_align(log, tail_blk, 1, hbp);
3539 		rhead = (xlog_rec_header_t *)offset;
3540 		error = xlog_valid_rec_header(log, rhead, tail_blk);
3541 		if (error)
3542 			goto bread_err1;
3543 		h_size = be32_to_cpu(rhead->h_size);
3544 		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3545 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3546 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3547 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
3548 				hblks++;
3549 			xlog_put_bp(hbp);
3550 			hbp = xlog_get_bp(log, hblks);
3551 		} else {
3552 			hblks = 1;
3553 		}
3554 	} else {
3555 		ASSERT(log->l_sectbb_log == 0);
3556 		hblks = 1;
3557 		hbp = xlog_get_bp(log, 1);
3558 		h_size = XLOG_BIG_RECORD_BSIZE;
3559 	}
3560 
3561 	if (!hbp)
3562 		return ENOMEM;
3563 	dbp = xlog_get_bp(log, BTOBB(h_size));
3564 	if (!dbp) {
3565 		xlog_put_bp(hbp);
3566 		return ENOMEM;
3567 	}
3568 
3569 	memset(rhash, 0, sizeof(rhash));
3570 	if (tail_blk <= head_blk) {
3571 		for (blk_no = tail_blk; blk_no < head_blk; ) {
3572 			if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3573 				goto bread_err2;
3574 			offset = xlog_align(log, blk_no, hblks, hbp);
3575 			rhead = (xlog_rec_header_t *)offset;
3576 			error = xlog_valid_rec_header(log, rhead, blk_no);
3577 			if (error)
3578 				goto bread_err2;
3579 
3580 			/* blocks in data section */
3581 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3582 			error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3583 			if (error)
3584 				goto bread_err2;
3585 			offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3586 			xlog_unpack_data(rhead, offset, log);
3587 			if ((error = xlog_recover_process_data(log,
3588 						rhash, rhead, offset, pass)))
3589 				goto bread_err2;
3590 			blk_no += bblks + hblks;
3591 		}
3592 	} else {
3593 		/*
3594 		 * Perform recovery around the end of the physical log.
3595 		 * When the head is not on the same cycle number as the tail,
3596 		 * we can't do a sequential recovery as above.
3597 		 */
3598 		blk_no = tail_blk;
3599 		while (blk_no < log->l_logBBsize) {
3600 			/*
3601 			 * Check for header wrapping around physical end-of-log
3602 			 */
3603 			offset = NULL;
3604 			split_hblks = 0;
3605 			wrapped_hblks = 0;
3606 			if (blk_no + hblks <= log->l_logBBsize) {
3607 				/* Read header in one read */
3608 				error = xlog_bread(log, blk_no, hblks, hbp);
3609 				if (error)
3610 					goto bread_err2;
3611 				offset = xlog_align(log, blk_no, hblks, hbp);
3612 			} else {
3613 				/* This LR is split across physical log end */
3614 				if (blk_no != log->l_logBBsize) {
3615 					/* some data before physical log end */
3616 					ASSERT(blk_no <= INT_MAX);
3617 					split_hblks = log->l_logBBsize - (int)blk_no;
3618 					ASSERT(split_hblks > 0);
3619 					if ((error = xlog_bread(log, blk_no,
3620 							split_hblks, hbp)))
3621 						goto bread_err2;
3622 					offset = xlog_align(log, blk_no,
3623 							split_hblks, hbp);
3624 				}
3625 				/*
3626 				 * Note: this black magic still works with
3627 				 * large sector sizes (non-512) only because:
3628 				 * - we increased the buffer size originally
3629 				 *   by 1 sector giving us enough extra space
3630 				 *   for the second read;
3631 				 * - the log start is guaranteed to be sector
3632 				 *   aligned;
3633 				 * - we read the log end (LR header start)
3634 				 *   _first_, then the log start (LR header end)
3635 				 *   - order is important.
3636 				 */
3637 				wrapped_hblks = hblks - split_hblks;
3638 				bufaddr = XFS_BUF_PTR(hbp);
3639 				error = XFS_BUF_SET_PTR(hbp,
3640 						bufaddr + BBTOB(split_hblks),
3641 						BBTOB(hblks - split_hblks));
3642 				if (!error)
3643 					error = xlog_bread(log, 0,
3644 							wrapped_hblks, hbp);
3645 				if (!error)
3646 					error = XFS_BUF_SET_PTR(hbp, bufaddr,
3647 							BBTOB(hblks));
3648 				if (error)
3649 					goto bread_err2;
3650 				if (!offset)
3651 					offset = xlog_align(log, 0,
3652 							wrapped_hblks, hbp);
3653 			}
3654 			rhead = (xlog_rec_header_t *)offset;
3655 			error = xlog_valid_rec_header(log, rhead,
3656 						split_hblks ? blk_no : 0);
3657 			if (error)
3658 				goto bread_err2;
3659 
3660 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3661 			blk_no += hblks;
3662 
3663 			/* Read in data for log record */
3664 			if (blk_no + bblks <= log->l_logBBsize) {
3665 				error = xlog_bread(log, blk_no, bblks, dbp);
3666 				if (error)
3667 					goto bread_err2;
3668 				offset = xlog_align(log, blk_no, bblks, dbp);
3669 			} else {
3670 				/* This log record is split across the
3671 				 * physical end of log */
3672 				offset = NULL;
3673 				split_bblks = 0;
3674 				if (blk_no != log->l_logBBsize) {
3675 					/* some data is before the physical
3676 					 * end of log */
3677 					ASSERT(!wrapped_hblks);
3678 					ASSERT(blk_no <= INT_MAX);
3679 					split_bblks =
3680 						log->l_logBBsize - (int)blk_no;
3681 					ASSERT(split_bblks > 0);
3682 					if ((error = xlog_bread(log, blk_no,
3683 							split_bblks, dbp)))
3684 						goto bread_err2;
3685 					offset = xlog_align(log, blk_no,
3686 							split_bblks, dbp);
3687 				}
3688 				/*
3689 				 * Note: this black magic still works with
3690 				 * large sector sizes (non-512) only because:
3691 				 * - we increased the buffer size originally
3692 				 *   by 1 sector giving us enough extra space
3693 				 *   for the second read;
3694 				 * - the log start is guaranteed to be sector
3695 				 *   aligned;
3696 				 * - we read the log end (LR header start)
3697 				 *   _first_, then the log start (LR header end)
3698 				 *   - order is important.
3699 				 */
3700 				bufaddr = XFS_BUF_PTR(dbp);
3701 				error = XFS_BUF_SET_PTR(dbp,
3702 						bufaddr + BBTOB(split_bblks),
3703 						BBTOB(bblks - split_bblks));
3704 				if (!error)
3705 					error = xlog_bread(log, wrapped_hblks,
3706 							bblks - split_bblks,
3707 							dbp);
3708 				if (!error)
3709 					error = XFS_BUF_SET_PTR(dbp, bufaddr,
3710 							h_size);
3711 				if (error)
3712 					goto bread_err2;
3713 				if (!offset)
3714 					offset = xlog_align(log, wrapped_hblks,
3715 						bblks - split_bblks, dbp);
3716 			}
3717 			xlog_unpack_data(rhead, offset, log);
3718 			if ((error = xlog_recover_process_data(log, rhash,
3719 							rhead, offset, pass)))
3720 				goto bread_err2;
3721 			blk_no += bblks;
3722 		}
3723 
3724 		ASSERT(blk_no >= log->l_logBBsize);
3725 		blk_no -= log->l_logBBsize;
3726 
3727 		/* read first part of physical log */
3728 		while (blk_no < head_blk) {
3729 			if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3730 				goto bread_err2;
3731 			offset = xlog_align(log, blk_no, hblks, hbp);
3732 			rhead = (xlog_rec_header_t *)offset;
3733 			error = xlog_valid_rec_header(log, rhead, blk_no);
3734 			if (error)
3735 				goto bread_err2;
3736 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3737 			if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3738 				goto bread_err2;
3739 			offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3740 			xlog_unpack_data(rhead, offset, log);
3741 			if ((error = xlog_recover_process_data(log, rhash,
3742 							rhead, offset, pass)))
3743 				goto bread_err2;
3744 			blk_no += bblks + hblks;
3745 		}
3746 	}
3747 
3748  bread_err2:
3749 	xlog_put_bp(dbp);
3750  bread_err1:
3751 	xlog_put_bp(hbp);
3752 	return error;
3753 }
3754 
3755 /*
3756  * Do the recovery of the log.  We actually do this in two phases.
3757  * The two passes are necessary in order to implement the function
3758  * of cancelling a record written into the log.  The first pass
3759  * determines those things which have been cancelled, and the
3760  * second pass replays log items normally except for those which
3761  * have been cancelled.  The handling of the replay and cancellations
3762  * takes place in the log item type specific routines.
3763  *
3764  * The table of items which have cancel records in the log is allocated
3765  * and freed at this level, since only here do we know when all of
3766  * the log recovery has been completed.
3767  */
3768 STATIC int
3769 xlog_do_log_recovery(
3770 	xlog_t		*log,
3771 	xfs_daddr_t	head_blk,
3772 	xfs_daddr_t	tail_blk)
3773 {
3774 	int		error;
3775 
3776 	ASSERT(head_blk != tail_blk);
3777 
3778 	/*
3779 	 * First do a pass to find all of the cancelled buf log items.
3780 	 * Store them in the buf_cancel_table for use in the second pass.
3781 	 */
3782 	log->l_buf_cancel_table =
3783 		(xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3784 						 sizeof(xfs_buf_cancel_t*),
3785 						 KM_SLEEP);
3786 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3787 				      XLOG_RECOVER_PASS1);
3788 	if (error != 0) {
3789 		kmem_free(log->l_buf_cancel_table,
3790 			  XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3791 		log->l_buf_cancel_table = NULL;
3792 		return error;
3793 	}
3794 	/*
3795 	 * Then do a second pass to actually recover the items in the log.
3796 	 * When it is complete free the table of buf cancel items.
3797 	 */
3798 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3799 				      XLOG_RECOVER_PASS2);
3800 #ifdef DEBUG
3801 	if (!error) {
3802 		int	i;
3803 
3804 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3805 			ASSERT(log->l_buf_cancel_table[i] == NULL);
3806 	}
3807 #endif	/* DEBUG */
3808 
3809 	kmem_free(log->l_buf_cancel_table,
3810 		  XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3811 	log->l_buf_cancel_table = NULL;
3812 
3813 	return error;
3814 }
3815 
3816 /*
3817  * Do the actual recovery
3818  */
3819 STATIC int
3820 xlog_do_recover(
3821 	xlog_t		*log,
3822 	xfs_daddr_t	head_blk,
3823 	xfs_daddr_t	tail_blk)
3824 {
3825 	int		error;
3826 	xfs_buf_t	*bp;
3827 	xfs_sb_t	*sbp;
3828 
3829 	/*
3830 	 * First replay the images in the log.
3831 	 */
3832 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
3833 	if (error) {
3834 		return error;
3835 	}
3836 
3837 	XFS_bflush(log->l_mp->m_ddev_targp);
3838 
3839 	/*
3840 	 * If IO errors happened during recovery, bail out.
3841 	 */
3842 	if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3843 		return (EIO);
3844 	}
3845 
3846 	/*
3847 	 * We now update the tail_lsn since much of the recovery has completed
3848 	 * and there may be space available to use.  If there were no extent
3849 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
3850 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3851 	 * lsn of the last known good LR on disk.  If there are extent frees
3852 	 * or iunlinks they will have some entries in the AIL; so we look at
3853 	 * the AIL to determine how to set the tail_lsn.
3854 	 */
3855 	xlog_assign_tail_lsn(log->l_mp);
3856 
3857 	/*
3858 	 * Now that we've finished replaying all buffer and inode
3859 	 * updates, re-read in the superblock.
3860 	 */
3861 	bp = xfs_getsb(log->l_mp, 0);
3862 	XFS_BUF_UNDONE(bp);
3863 	ASSERT(!(XFS_BUF_ISWRITE(bp)));
3864 	ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3865 	XFS_BUF_READ(bp);
3866 	XFS_BUF_UNASYNC(bp);
3867 	xfsbdstrat(log->l_mp, bp);
3868 	error = xfs_iowait(bp);
3869 	if (error) {
3870 		xfs_ioerror_alert("xlog_do_recover",
3871 				  log->l_mp, bp, XFS_BUF_ADDR(bp));
3872 		ASSERT(0);
3873 		xfs_buf_relse(bp);
3874 		return error;
3875 	}
3876 
3877 	/* Convert superblock from on-disk format */
3878 	sbp = &log->l_mp->m_sb;
3879 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3880 	ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3881 	ASSERT(xfs_sb_good_version(sbp));
3882 	xfs_buf_relse(bp);
3883 
3884 	/* We've re-read the superblock so re-initialize per-cpu counters */
3885 	xfs_icsb_reinit_counters(log->l_mp);
3886 
3887 	xlog_recover_check_summary(log);
3888 
3889 	/* Normal transactions can now occur */
3890 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3891 	return 0;
3892 }
3893 
3894 /*
3895  * Perform recovery and re-initialize some log variables in xlog_find_tail.
3896  *
3897  * Return error or zero.
3898  */
3899 int
3900 xlog_recover(
3901 	xlog_t		*log)
3902 {
3903 	xfs_daddr_t	head_blk, tail_blk;
3904 	int		error;
3905 
3906 	/* find the tail of the log */
3907 	if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3908 		return error;
3909 
3910 	if (tail_blk != head_blk) {
3911 		/* There used to be a comment here:
3912 		 *
3913 		 * disallow recovery on read-only mounts.  note -- mount
3914 		 * checks for ENOSPC and turns it into an intelligent
3915 		 * error message.
3916 		 * ...but this is no longer true.  Now, unless you specify
3917 		 * NORECOVERY (in which case this function would never be
3918 		 * called), we just go ahead and recover.  We do this all
3919 		 * under the vfs layer, so we can get away with it unless
3920 		 * the device itself is read-only, in which case we fail.
3921 		 */
3922 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3923 			return error;
3924 		}
3925 
3926 		cmn_err(CE_NOTE,
3927 			"Starting XFS recovery on filesystem: %s (logdev: %s)",
3928 			log->l_mp->m_fsname, log->l_mp->m_logname ?
3929 			log->l_mp->m_logname : "internal");
3930 
3931 		error = xlog_do_recover(log, head_blk, tail_blk);
3932 		log->l_flags |= XLOG_RECOVERY_NEEDED;
3933 	}
3934 	return error;
3935 }
3936 
3937 /*
3938  * In the first part of recovery we replay inodes and buffers and build
3939  * up the list of extent free items which need to be processed.  Here
3940  * we process the extent free items and clean up the on disk unlinked
3941  * inode lists.  This is separated from the first part of recovery so
3942  * that the root and real-time bitmap inodes can be read in from disk in
3943  * between the two stages.  This is necessary so that we can free space
3944  * in the real-time portion of the file system.
3945  */
3946 int
3947 xlog_recover_finish(
3948 	xlog_t		*log,
3949 	int		mfsi_flags)
3950 {
3951 	/*
3952 	 * Now we're ready to do the transactions needed for the
3953 	 * rest of recovery.  Start with completing all the extent
3954 	 * free intent records and then process the unlinked inode
3955 	 * lists.  At this point, we essentially run in normal mode
3956 	 * except that we're still performing recovery actions
3957 	 * rather than accepting new requests.
3958 	 */
3959 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3960 		int	error;
3961 		error = xlog_recover_process_efis(log);
3962 		if (error) {
3963 			cmn_err(CE_ALERT,
3964 				"Failed to recover EFIs on filesystem: %s",
3965 				log->l_mp->m_fsname);
3966 			return error;
3967 		}
3968 		/*
3969 		 * Sync the log to get all the EFIs out of the AIL.
3970 		 * This isn't absolutely necessary, but it helps in
3971 		 * case the unlink transactions would have problems
3972 		 * pushing the EFIs out of the way.
3973 		 */
3974 		xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3975 			      (XFS_LOG_FORCE | XFS_LOG_SYNC));
3976 
3977 		if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) {
3978 			xlog_recover_process_iunlinks(log);
3979 		}
3980 
3981 		xlog_recover_check_summary(log);
3982 
3983 		cmn_err(CE_NOTE,
3984 			"Ending XFS recovery on filesystem: %s (logdev: %s)",
3985 			log->l_mp->m_fsname, log->l_mp->m_logname ?
3986 			log->l_mp->m_logname : "internal");
3987 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3988 	} else {
3989 		cmn_err(CE_DEBUG,
3990 			"!Ending clean XFS mount for filesystem: %s\n",
3991 			log->l_mp->m_fsname);
3992 	}
3993 	return 0;
3994 }
3995 
3996 
3997 #if defined(DEBUG)
3998 /*
3999  * Read all of the agf and agi counters and check that they
4000  * are consistent with the superblock counters.
4001  */
4002 void
4003 xlog_recover_check_summary(
4004 	xlog_t		*log)
4005 {
4006 	xfs_mount_t	*mp;
4007 	xfs_agf_t	*agfp;
4008 	xfs_agi_t	*agip;
4009 	xfs_buf_t	*agfbp;
4010 	xfs_buf_t	*agibp;
4011 	xfs_daddr_t	agfdaddr;
4012 	xfs_daddr_t	agidaddr;
4013 	xfs_buf_t	*sbbp;
4014 #ifdef XFS_LOUD_RECOVERY
4015 	xfs_sb_t	*sbp;
4016 #endif
4017 	xfs_agnumber_t	agno;
4018 	__uint64_t	freeblks;
4019 	__uint64_t	itotal;
4020 	__uint64_t	ifree;
4021 
4022 	mp = log->l_mp;
4023 
4024 	freeblks = 0LL;
4025 	itotal = 0LL;
4026 	ifree = 0LL;
4027 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4028 		agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
4029 		agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
4030 				XFS_FSS_TO_BB(mp, 1), 0);
4031 		if (XFS_BUF_ISERROR(agfbp)) {
4032 			xfs_ioerror_alert("xlog_recover_check_summary(agf)",
4033 						mp, agfbp, agfdaddr);
4034 		}
4035 		agfp = XFS_BUF_TO_AGF(agfbp);
4036 		ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum));
4037 		ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum)));
4038 		ASSERT(be32_to_cpu(agfp->agf_seqno) == agno);
4039 
4040 		freeblks += be32_to_cpu(agfp->agf_freeblks) +
4041 			    be32_to_cpu(agfp->agf_flcount);
4042 		xfs_buf_relse(agfbp);
4043 
4044 		agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
4045 		agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
4046 				XFS_FSS_TO_BB(mp, 1), 0);
4047 		if (XFS_BUF_ISERROR(agibp)) {
4048 			xfs_ioerror_alert("xlog_recover_check_summary(agi)",
4049 					  mp, agibp, agidaddr);
4050 		}
4051 		agip = XFS_BUF_TO_AGI(agibp);
4052 		ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum));
4053 		ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum)));
4054 		ASSERT(be32_to_cpu(agip->agi_seqno) == agno);
4055 
4056 		itotal += be32_to_cpu(agip->agi_count);
4057 		ifree += be32_to_cpu(agip->agi_freecount);
4058 		xfs_buf_relse(agibp);
4059 	}
4060 
4061 	sbbp = xfs_getsb(mp, 0);
4062 #ifdef XFS_LOUD_RECOVERY
4063 	sbp = &mp->m_sb;
4064 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
4065 	cmn_err(CE_NOTE,
4066 		"xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4067 		sbp->sb_icount, itotal);
4068 	cmn_err(CE_NOTE,
4069 		"xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4070 		sbp->sb_ifree, ifree);
4071 	cmn_err(CE_NOTE,
4072 		"xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4073 		sbp->sb_fdblocks, freeblks);
4074 #if 0
4075 	/*
4076 	 * This is turned off until I account for the allocation
4077 	 * btree blocks which live in free space.
4078 	 */
4079 	ASSERT(sbp->sb_icount == itotal);
4080 	ASSERT(sbp->sb_ifree == ifree);
4081 	ASSERT(sbp->sb_fdblocks == freeblks);
4082 #endif
4083 #endif
4084 	xfs_buf_relse(sbbp);
4085 }
4086 #endif /* DEBUG */
4087