xref: /openbmc/linux/fs/xfs/xfs_log_recover.c (revision f35e839a)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_alloc.h"
37 #include "xfs_ialloc.h"
38 #include "xfs_log_priv.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_log_recover.h"
41 #include "xfs_extfree_item.h"
42 #include "xfs_trans_priv.h"
43 #include "xfs_quota.h"
44 #include "xfs_utils.h"
45 #include "xfs_cksum.h"
46 #include "xfs_trace.h"
47 #include "xfs_icache.h"
48 
49 /* Need all the magic numbers and buffer ops structures from these headers */
50 #include "xfs_symlink.h"
51 #include "xfs_da_btree.h"
52 #include "xfs_dir2_format.h"
53 #include "xfs_dir2_priv.h"
54 #include "xfs_attr_leaf.h"
55 #include "xfs_attr_remote.h"
56 
57 STATIC int
58 xlog_find_zeroed(
59 	struct xlog	*,
60 	xfs_daddr_t	*);
61 STATIC int
62 xlog_clear_stale_blocks(
63 	struct xlog	*,
64 	xfs_lsn_t);
65 #if defined(DEBUG)
66 STATIC void
67 xlog_recover_check_summary(
68 	struct xlog *);
69 #else
70 #define	xlog_recover_check_summary(log)
71 #endif
72 
73 /*
74  * This structure is used during recovery to record the buf log items which
75  * have been canceled and should not be replayed.
76  */
77 struct xfs_buf_cancel {
78 	xfs_daddr_t		bc_blkno;
79 	uint			bc_len;
80 	int			bc_refcount;
81 	struct list_head	bc_list;
82 };
83 
84 /*
85  * Sector aligned buffer routines for buffer create/read/write/access
86  */
87 
88 /*
89  * Verify the given count of basic blocks is valid number of blocks
90  * to specify for an operation involving the given XFS log buffer.
91  * Returns nonzero if the count is valid, 0 otherwise.
92  */
93 
94 static inline int
95 xlog_buf_bbcount_valid(
96 	struct xlog	*log,
97 	int		bbcount)
98 {
99 	return bbcount > 0 && bbcount <= log->l_logBBsize;
100 }
101 
102 /*
103  * Allocate a buffer to hold log data.  The buffer needs to be able
104  * to map to a range of nbblks basic blocks at any valid (basic
105  * block) offset within the log.
106  */
107 STATIC xfs_buf_t *
108 xlog_get_bp(
109 	struct xlog	*log,
110 	int		nbblks)
111 {
112 	struct xfs_buf	*bp;
113 
114 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
115 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
116 			nbblks);
117 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
118 		return NULL;
119 	}
120 
121 	/*
122 	 * We do log I/O in units of log sectors (a power-of-2
123 	 * multiple of the basic block size), so we round up the
124 	 * requested size to accommodate the basic blocks required
125 	 * for complete log sectors.
126 	 *
127 	 * In addition, the buffer may be used for a non-sector-
128 	 * aligned block offset, in which case an I/O of the
129 	 * requested size could extend beyond the end of the
130 	 * buffer.  If the requested size is only 1 basic block it
131 	 * will never straddle a sector boundary, so this won't be
132 	 * an issue.  Nor will this be a problem if the log I/O is
133 	 * done in basic blocks (sector size 1).  But otherwise we
134 	 * extend the buffer by one extra log sector to ensure
135 	 * there's space to accommodate this possibility.
136 	 */
137 	if (nbblks > 1 && log->l_sectBBsize > 1)
138 		nbblks += log->l_sectBBsize;
139 	nbblks = round_up(nbblks, log->l_sectBBsize);
140 
141 	bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
142 	if (bp)
143 		xfs_buf_unlock(bp);
144 	return bp;
145 }
146 
147 STATIC void
148 xlog_put_bp(
149 	xfs_buf_t	*bp)
150 {
151 	xfs_buf_free(bp);
152 }
153 
154 /*
155  * Return the address of the start of the given block number's data
156  * in a log buffer.  The buffer covers a log sector-aligned region.
157  */
158 STATIC xfs_caddr_t
159 xlog_align(
160 	struct xlog	*log,
161 	xfs_daddr_t	blk_no,
162 	int		nbblks,
163 	struct xfs_buf	*bp)
164 {
165 	xfs_daddr_t	offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
166 
167 	ASSERT(offset + nbblks <= bp->b_length);
168 	return bp->b_addr + BBTOB(offset);
169 }
170 
171 
172 /*
173  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
174  */
175 STATIC int
176 xlog_bread_noalign(
177 	struct xlog	*log,
178 	xfs_daddr_t	blk_no,
179 	int		nbblks,
180 	struct xfs_buf	*bp)
181 {
182 	int		error;
183 
184 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
185 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
186 			nbblks);
187 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
188 		return EFSCORRUPTED;
189 	}
190 
191 	blk_no = round_down(blk_no, log->l_sectBBsize);
192 	nbblks = round_up(nbblks, log->l_sectBBsize);
193 
194 	ASSERT(nbblks > 0);
195 	ASSERT(nbblks <= bp->b_length);
196 
197 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
198 	XFS_BUF_READ(bp);
199 	bp->b_io_length = nbblks;
200 	bp->b_error = 0;
201 
202 	xfsbdstrat(log->l_mp, bp);
203 	error = xfs_buf_iowait(bp);
204 	if (error)
205 		xfs_buf_ioerror_alert(bp, __func__);
206 	return error;
207 }
208 
209 STATIC int
210 xlog_bread(
211 	struct xlog	*log,
212 	xfs_daddr_t	blk_no,
213 	int		nbblks,
214 	struct xfs_buf	*bp,
215 	xfs_caddr_t	*offset)
216 {
217 	int		error;
218 
219 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
220 	if (error)
221 		return error;
222 
223 	*offset = xlog_align(log, blk_no, nbblks, bp);
224 	return 0;
225 }
226 
227 /*
228  * Read at an offset into the buffer. Returns with the buffer in it's original
229  * state regardless of the result of the read.
230  */
231 STATIC int
232 xlog_bread_offset(
233 	struct xlog	*log,
234 	xfs_daddr_t	blk_no,		/* block to read from */
235 	int		nbblks,		/* blocks to read */
236 	struct xfs_buf	*bp,
237 	xfs_caddr_t	offset)
238 {
239 	xfs_caddr_t	orig_offset = bp->b_addr;
240 	int		orig_len = BBTOB(bp->b_length);
241 	int		error, error2;
242 
243 	error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
244 	if (error)
245 		return error;
246 
247 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
248 
249 	/* must reset buffer pointer even on error */
250 	error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
251 	if (error)
252 		return error;
253 	return error2;
254 }
255 
256 /*
257  * Write out the buffer at the given block for the given number of blocks.
258  * The buffer is kept locked across the write and is returned locked.
259  * This can only be used for synchronous log writes.
260  */
261 STATIC int
262 xlog_bwrite(
263 	struct xlog	*log,
264 	xfs_daddr_t	blk_no,
265 	int		nbblks,
266 	struct xfs_buf	*bp)
267 {
268 	int		error;
269 
270 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
271 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
272 			nbblks);
273 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
274 		return EFSCORRUPTED;
275 	}
276 
277 	blk_no = round_down(blk_no, log->l_sectBBsize);
278 	nbblks = round_up(nbblks, log->l_sectBBsize);
279 
280 	ASSERT(nbblks > 0);
281 	ASSERT(nbblks <= bp->b_length);
282 
283 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
284 	XFS_BUF_ZEROFLAGS(bp);
285 	xfs_buf_hold(bp);
286 	xfs_buf_lock(bp);
287 	bp->b_io_length = nbblks;
288 	bp->b_error = 0;
289 
290 	error = xfs_bwrite(bp);
291 	if (error)
292 		xfs_buf_ioerror_alert(bp, __func__);
293 	xfs_buf_relse(bp);
294 	return error;
295 }
296 
297 #ifdef DEBUG
298 /*
299  * dump debug superblock and log record information
300  */
301 STATIC void
302 xlog_header_check_dump(
303 	xfs_mount_t		*mp,
304 	xlog_rec_header_t	*head)
305 {
306 	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d\n",
307 		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
308 	xfs_debug(mp, "    log : uuid = %pU, fmt = %d\n",
309 		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
310 }
311 #else
312 #define xlog_header_check_dump(mp, head)
313 #endif
314 
315 /*
316  * check log record header for recovery
317  */
318 STATIC int
319 xlog_header_check_recover(
320 	xfs_mount_t		*mp,
321 	xlog_rec_header_t	*head)
322 {
323 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
324 
325 	/*
326 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
327 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
328 	 * a dirty log created in IRIX.
329 	 */
330 	if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
331 		xfs_warn(mp,
332 	"dirty log written in incompatible format - can't recover");
333 		xlog_header_check_dump(mp, head);
334 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
335 				 XFS_ERRLEVEL_HIGH, mp);
336 		return XFS_ERROR(EFSCORRUPTED);
337 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
338 		xfs_warn(mp,
339 	"dirty log entry has mismatched uuid - can't recover");
340 		xlog_header_check_dump(mp, head);
341 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
342 				 XFS_ERRLEVEL_HIGH, mp);
343 		return XFS_ERROR(EFSCORRUPTED);
344 	}
345 	return 0;
346 }
347 
348 /*
349  * read the head block of the log and check the header
350  */
351 STATIC int
352 xlog_header_check_mount(
353 	xfs_mount_t		*mp,
354 	xlog_rec_header_t	*head)
355 {
356 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
357 
358 	if (uuid_is_nil(&head->h_fs_uuid)) {
359 		/*
360 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
361 		 * h_fs_uuid is nil, we assume this log was last mounted
362 		 * by IRIX and continue.
363 		 */
364 		xfs_warn(mp, "nil uuid in log - IRIX style log");
365 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
366 		xfs_warn(mp, "log has mismatched uuid - can't recover");
367 		xlog_header_check_dump(mp, head);
368 		XFS_ERROR_REPORT("xlog_header_check_mount",
369 				 XFS_ERRLEVEL_HIGH, mp);
370 		return XFS_ERROR(EFSCORRUPTED);
371 	}
372 	return 0;
373 }
374 
375 STATIC void
376 xlog_recover_iodone(
377 	struct xfs_buf	*bp)
378 {
379 	if (bp->b_error) {
380 		/*
381 		 * We're not going to bother about retrying
382 		 * this during recovery. One strike!
383 		 */
384 		xfs_buf_ioerror_alert(bp, __func__);
385 		xfs_force_shutdown(bp->b_target->bt_mount,
386 					SHUTDOWN_META_IO_ERROR);
387 	}
388 	bp->b_iodone = NULL;
389 	xfs_buf_ioend(bp, 0);
390 }
391 
392 /*
393  * This routine finds (to an approximation) the first block in the physical
394  * log which contains the given cycle.  It uses a binary search algorithm.
395  * Note that the algorithm can not be perfect because the disk will not
396  * necessarily be perfect.
397  */
398 STATIC int
399 xlog_find_cycle_start(
400 	struct xlog	*log,
401 	struct xfs_buf	*bp,
402 	xfs_daddr_t	first_blk,
403 	xfs_daddr_t	*last_blk,
404 	uint		cycle)
405 {
406 	xfs_caddr_t	offset;
407 	xfs_daddr_t	mid_blk;
408 	xfs_daddr_t	end_blk;
409 	uint		mid_cycle;
410 	int		error;
411 
412 	end_blk = *last_blk;
413 	mid_blk = BLK_AVG(first_blk, end_blk);
414 	while (mid_blk != first_blk && mid_blk != end_blk) {
415 		error = xlog_bread(log, mid_blk, 1, bp, &offset);
416 		if (error)
417 			return error;
418 		mid_cycle = xlog_get_cycle(offset);
419 		if (mid_cycle == cycle)
420 			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
421 		else
422 			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
423 		mid_blk = BLK_AVG(first_blk, end_blk);
424 	}
425 	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
426 	       (mid_blk == end_blk && mid_blk-1 == first_blk));
427 
428 	*last_blk = end_blk;
429 
430 	return 0;
431 }
432 
433 /*
434  * Check that a range of blocks does not contain stop_on_cycle_no.
435  * Fill in *new_blk with the block offset where such a block is
436  * found, or with -1 (an invalid block number) if there is no such
437  * block in the range.  The scan needs to occur from front to back
438  * and the pointer into the region must be updated since a later
439  * routine will need to perform another test.
440  */
441 STATIC int
442 xlog_find_verify_cycle(
443 	struct xlog	*log,
444 	xfs_daddr_t	start_blk,
445 	int		nbblks,
446 	uint		stop_on_cycle_no,
447 	xfs_daddr_t	*new_blk)
448 {
449 	xfs_daddr_t	i, j;
450 	uint		cycle;
451 	xfs_buf_t	*bp;
452 	xfs_daddr_t	bufblks;
453 	xfs_caddr_t	buf = NULL;
454 	int		error = 0;
455 
456 	/*
457 	 * Greedily allocate a buffer big enough to handle the full
458 	 * range of basic blocks we'll be examining.  If that fails,
459 	 * try a smaller size.  We need to be able to read at least
460 	 * a log sector, or we're out of luck.
461 	 */
462 	bufblks = 1 << ffs(nbblks);
463 	while (bufblks > log->l_logBBsize)
464 		bufblks >>= 1;
465 	while (!(bp = xlog_get_bp(log, bufblks))) {
466 		bufblks >>= 1;
467 		if (bufblks < log->l_sectBBsize)
468 			return ENOMEM;
469 	}
470 
471 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
472 		int	bcount;
473 
474 		bcount = min(bufblks, (start_blk + nbblks - i));
475 
476 		error = xlog_bread(log, i, bcount, bp, &buf);
477 		if (error)
478 			goto out;
479 
480 		for (j = 0; j < bcount; j++) {
481 			cycle = xlog_get_cycle(buf);
482 			if (cycle == stop_on_cycle_no) {
483 				*new_blk = i+j;
484 				goto out;
485 			}
486 
487 			buf += BBSIZE;
488 		}
489 	}
490 
491 	*new_blk = -1;
492 
493 out:
494 	xlog_put_bp(bp);
495 	return error;
496 }
497 
498 /*
499  * Potentially backup over partial log record write.
500  *
501  * In the typical case, last_blk is the number of the block directly after
502  * a good log record.  Therefore, we subtract one to get the block number
503  * of the last block in the given buffer.  extra_bblks contains the number
504  * of blocks we would have read on a previous read.  This happens when the
505  * last log record is split over the end of the physical log.
506  *
507  * extra_bblks is the number of blocks potentially verified on a previous
508  * call to this routine.
509  */
510 STATIC int
511 xlog_find_verify_log_record(
512 	struct xlog		*log,
513 	xfs_daddr_t		start_blk,
514 	xfs_daddr_t		*last_blk,
515 	int			extra_bblks)
516 {
517 	xfs_daddr_t		i;
518 	xfs_buf_t		*bp;
519 	xfs_caddr_t		offset = NULL;
520 	xlog_rec_header_t	*head = NULL;
521 	int			error = 0;
522 	int			smallmem = 0;
523 	int			num_blks = *last_blk - start_blk;
524 	int			xhdrs;
525 
526 	ASSERT(start_blk != 0 || *last_blk != start_blk);
527 
528 	if (!(bp = xlog_get_bp(log, num_blks))) {
529 		if (!(bp = xlog_get_bp(log, 1)))
530 			return ENOMEM;
531 		smallmem = 1;
532 	} else {
533 		error = xlog_bread(log, start_blk, num_blks, bp, &offset);
534 		if (error)
535 			goto out;
536 		offset += ((num_blks - 1) << BBSHIFT);
537 	}
538 
539 	for (i = (*last_blk) - 1; i >= 0; i--) {
540 		if (i < start_blk) {
541 			/* valid log record not found */
542 			xfs_warn(log->l_mp,
543 		"Log inconsistent (didn't find previous header)");
544 			ASSERT(0);
545 			error = XFS_ERROR(EIO);
546 			goto out;
547 		}
548 
549 		if (smallmem) {
550 			error = xlog_bread(log, i, 1, bp, &offset);
551 			if (error)
552 				goto out;
553 		}
554 
555 		head = (xlog_rec_header_t *)offset;
556 
557 		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
558 			break;
559 
560 		if (!smallmem)
561 			offset -= BBSIZE;
562 	}
563 
564 	/*
565 	 * We hit the beginning of the physical log & still no header.  Return
566 	 * to caller.  If caller can handle a return of -1, then this routine
567 	 * will be called again for the end of the physical log.
568 	 */
569 	if (i == -1) {
570 		error = -1;
571 		goto out;
572 	}
573 
574 	/*
575 	 * We have the final block of the good log (the first block
576 	 * of the log record _before_ the head. So we check the uuid.
577 	 */
578 	if ((error = xlog_header_check_mount(log->l_mp, head)))
579 		goto out;
580 
581 	/*
582 	 * We may have found a log record header before we expected one.
583 	 * last_blk will be the 1st block # with a given cycle #.  We may end
584 	 * up reading an entire log record.  In this case, we don't want to
585 	 * reset last_blk.  Only when last_blk points in the middle of a log
586 	 * record do we update last_blk.
587 	 */
588 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
589 		uint	h_size = be32_to_cpu(head->h_size);
590 
591 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
592 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
593 			xhdrs++;
594 	} else {
595 		xhdrs = 1;
596 	}
597 
598 	if (*last_blk - i + extra_bblks !=
599 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
600 		*last_blk = i;
601 
602 out:
603 	xlog_put_bp(bp);
604 	return error;
605 }
606 
607 /*
608  * Head is defined to be the point of the log where the next log write
609  * write could go.  This means that incomplete LR writes at the end are
610  * eliminated when calculating the head.  We aren't guaranteed that previous
611  * LR have complete transactions.  We only know that a cycle number of
612  * current cycle number -1 won't be present in the log if we start writing
613  * from our current block number.
614  *
615  * last_blk contains the block number of the first block with a given
616  * cycle number.
617  *
618  * Return: zero if normal, non-zero if error.
619  */
620 STATIC int
621 xlog_find_head(
622 	struct xlog	*log,
623 	xfs_daddr_t	*return_head_blk)
624 {
625 	xfs_buf_t	*bp;
626 	xfs_caddr_t	offset;
627 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
628 	int		num_scan_bblks;
629 	uint		first_half_cycle, last_half_cycle;
630 	uint		stop_on_cycle;
631 	int		error, log_bbnum = log->l_logBBsize;
632 
633 	/* Is the end of the log device zeroed? */
634 	if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
635 		*return_head_blk = first_blk;
636 
637 		/* Is the whole lot zeroed? */
638 		if (!first_blk) {
639 			/* Linux XFS shouldn't generate totally zeroed logs -
640 			 * mkfs etc write a dummy unmount record to a fresh
641 			 * log so we can store the uuid in there
642 			 */
643 			xfs_warn(log->l_mp, "totally zeroed log");
644 		}
645 
646 		return 0;
647 	} else if (error) {
648 		xfs_warn(log->l_mp, "empty log check failed");
649 		return error;
650 	}
651 
652 	first_blk = 0;			/* get cycle # of 1st block */
653 	bp = xlog_get_bp(log, 1);
654 	if (!bp)
655 		return ENOMEM;
656 
657 	error = xlog_bread(log, 0, 1, bp, &offset);
658 	if (error)
659 		goto bp_err;
660 
661 	first_half_cycle = xlog_get_cycle(offset);
662 
663 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
664 	error = xlog_bread(log, last_blk, 1, bp, &offset);
665 	if (error)
666 		goto bp_err;
667 
668 	last_half_cycle = xlog_get_cycle(offset);
669 	ASSERT(last_half_cycle != 0);
670 
671 	/*
672 	 * If the 1st half cycle number is equal to the last half cycle number,
673 	 * then the entire log is stamped with the same cycle number.  In this
674 	 * case, head_blk can't be set to zero (which makes sense).  The below
675 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
676 	 * we set it to log_bbnum which is an invalid block number, but this
677 	 * value makes the math correct.  If head_blk doesn't changed through
678 	 * all the tests below, *head_blk is set to zero at the very end rather
679 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
680 	 * in a circular file.
681 	 */
682 	if (first_half_cycle == last_half_cycle) {
683 		/*
684 		 * In this case we believe that the entire log should have
685 		 * cycle number last_half_cycle.  We need to scan backwards
686 		 * from the end verifying that there are no holes still
687 		 * containing last_half_cycle - 1.  If we find such a hole,
688 		 * then the start of that hole will be the new head.  The
689 		 * simple case looks like
690 		 *        x | x ... | x - 1 | x
691 		 * Another case that fits this picture would be
692 		 *        x | x + 1 | x ... | x
693 		 * In this case the head really is somewhere at the end of the
694 		 * log, as one of the latest writes at the beginning was
695 		 * incomplete.
696 		 * One more case is
697 		 *        x | x + 1 | x ... | x - 1 | x
698 		 * This is really the combination of the above two cases, and
699 		 * the head has to end up at the start of the x-1 hole at the
700 		 * end of the log.
701 		 *
702 		 * In the 256k log case, we will read from the beginning to the
703 		 * end of the log and search for cycle numbers equal to x-1.
704 		 * We don't worry about the x+1 blocks that we encounter,
705 		 * because we know that they cannot be the head since the log
706 		 * started with x.
707 		 */
708 		head_blk = log_bbnum;
709 		stop_on_cycle = last_half_cycle - 1;
710 	} else {
711 		/*
712 		 * In this case we want to find the first block with cycle
713 		 * number matching last_half_cycle.  We expect the log to be
714 		 * some variation on
715 		 *        x + 1 ... | x ... | x
716 		 * The first block with cycle number x (last_half_cycle) will
717 		 * be where the new head belongs.  First we do a binary search
718 		 * for the first occurrence of last_half_cycle.  The binary
719 		 * search may not be totally accurate, so then we scan back
720 		 * from there looking for occurrences of last_half_cycle before
721 		 * us.  If that backwards scan wraps around the beginning of
722 		 * the log, then we look for occurrences of last_half_cycle - 1
723 		 * at the end of the log.  The cases we're looking for look
724 		 * like
725 		 *                               v binary search stopped here
726 		 *        x + 1 ... | x | x + 1 | x ... | x
727 		 *                   ^ but we want to locate this spot
728 		 * or
729 		 *        <---------> less than scan distance
730 		 *        x + 1 ... | x ... | x - 1 | x
731 		 *                           ^ we want to locate this spot
732 		 */
733 		stop_on_cycle = last_half_cycle;
734 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
735 						&head_blk, last_half_cycle)))
736 			goto bp_err;
737 	}
738 
739 	/*
740 	 * Now validate the answer.  Scan back some number of maximum possible
741 	 * blocks and make sure each one has the expected cycle number.  The
742 	 * maximum is determined by the total possible amount of buffering
743 	 * in the in-core log.  The following number can be made tighter if
744 	 * we actually look at the block size of the filesystem.
745 	 */
746 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
747 	if (head_blk >= num_scan_bblks) {
748 		/*
749 		 * We are guaranteed that the entire check can be performed
750 		 * in one buffer.
751 		 */
752 		start_blk = head_blk - num_scan_bblks;
753 		if ((error = xlog_find_verify_cycle(log,
754 						start_blk, num_scan_bblks,
755 						stop_on_cycle, &new_blk)))
756 			goto bp_err;
757 		if (new_blk != -1)
758 			head_blk = new_blk;
759 	} else {		/* need to read 2 parts of log */
760 		/*
761 		 * We are going to scan backwards in the log in two parts.
762 		 * First we scan the physical end of the log.  In this part
763 		 * of the log, we are looking for blocks with cycle number
764 		 * last_half_cycle - 1.
765 		 * If we find one, then we know that the log starts there, as
766 		 * we've found a hole that didn't get written in going around
767 		 * the end of the physical log.  The simple case for this is
768 		 *        x + 1 ... | x ... | x - 1 | x
769 		 *        <---------> less than scan distance
770 		 * If all of the blocks at the end of the log have cycle number
771 		 * last_half_cycle, then we check the blocks at the start of
772 		 * the log looking for occurrences of last_half_cycle.  If we
773 		 * find one, then our current estimate for the location of the
774 		 * first occurrence of last_half_cycle is wrong and we move
775 		 * back to the hole we've found.  This case looks like
776 		 *        x + 1 ... | x | x + 1 | x ...
777 		 *                               ^ binary search stopped here
778 		 * Another case we need to handle that only occurs in 256k
779 		 * logs is
780 		 *        x + 1 ... | x ... | x+1 | x ...
781 		 *                   ^ binary search stops here
782 		 * In a 256k log, the scan at the end of the log will see the
783 		 * x + 1 blocks.  We need to skip past those since that is
784 		 * certainly not the head of the log.  By searching for
785 		 * last_half_cycle-1 we accomplish that.
786 		 */
787 		ASSERT(head_blk <= INT_MAX &&
788 			(xfs_daddr_t) num_scan_bblks >= head_blk);
789 		start_blk = log_bbnum - (num_scan_bblks - head_blk);
790 		if ((error = xlog_find_verify_cycle(log, start_blk,
791 					num_scan_bblks - (int)head_blk,
792 					(stop_on_cycle - 1), &new_blk)))
793 			goto bp_err;
794 		if (new_blk != -1) {
795 			head_blk = new_blk;
796 			goto validate_head;
797 		}
798 
799 		/*
800 		 * Scan beginning of log now.  The last part of the physical
801 		 * log is good.  This scan needs to verify that it doesn't find
802 		 * the last_half_cycle.
803 		 */
804 		start_blk = 0;
805 		ASSERT(head_blk <= INT_MAX);
806 		if ((error = xlog_find_verify_cycle(log,
807 					start_blk, (int)head_blk,
808 					stop_on_cycle, &new_blk)))
809 			goto bp_err;
810 		if (new_blk != -1)
811 			head_blk = new_blk;
812 	}
813 
814 validate_head:
815 	/*
816 	 * Now we need to make sure head_blk is not pointing to a block in
817 	 * the middle of a log record.
818 	 */
819 	num_scan_bblks = XLOG_REC_SHIFT(log);
820 	if (head_blk >= num_scan_bblks) {
821 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
822 
823 		/* start ptr at last block ptr before head_blk */
824 		if ((error = xlog_find_verify_log_record(log, start_blk,
825 							&head_blk, 0)) == -1) {
826 			error = XFS_ERROR(EIO);
827 			goto bp_err;
828 		} else if (error)
829 			goto bp_err;
830 	} else {
831 		start_blk = 0;
832 		ASSERT(head_blk <= INT_MAX);
833 		if ((error = xlog_find_verify_log_record(log, start_blk,
834 							&head_blk, 0)) == -1) {
835 			/* We hit the beginning of the log during our search */
836 			start_blk = log_bbnum - (num_scan_bblks - head_blk);
837 			new_blk = log_bbnum;
838 			ASSERT(start_blk <= INT_MAX &&
839 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
840 			ASSERT(head_blk <= INT_MAX);
841 			if ((error = xlog_find_verify_log_record(log,
842 							start_blk, &new_blk,
843 							(int)head_blk)) == -1) {
844 				error = XFS_ERROR(EIO);
845 				goto bp_err;
846 			} else if (error)
847 				goto bp_err;
848 			if (new_blk != log_bbnum)
849 				head_blk = new_blk;
850 		} else if (error)
851 			goto bp_err;
852 	}
853 
854 	xlog_put_bp(bp);
855 	if (head_blk == log_bbnum)
856 		*return_head_blk = 0;
857 	else
858 		*return_head_blk = head_blk;
859 	/*
860 	 * When returning here, we have a good block number.  Bad block
861 	 * means that during a previous crash, we didn't have a clean break
862 	 * from cycle number N to cycle number N-1.  In this case, we need
863 	 * to find the first block with cycle number N-1.
864 	 */
865 	return 0;
866 
867  bp_err:
868 	xlog_put_bp(bp);
869 
870 	if (error)
871 		xfs_warn(log->l_mp, "failed to find log head");
872 	return error;
873 }
874 
875 /*
876  * Find the sync block number or the tail of the log.
877  *
878  * This will be the block number of the last record to have its
879  * associated buffers synced to disk.  Every log record header has
880  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
881  * to get a sync block number.  The only concern is to figure out which
882  * log record header to believe.
883  *
884  * The following algorithm uses the log record header with the largest
885  * lsn.  The entire log record does not need to be valid.  We only care
886  * that the header is valid.
887  *
888  * We could speed up search by using current head_blk buffer, but it is not
889  * available.
890  */
891 STATIC int
892 xlog_find_tail(
893 	struct xlog		*log,
894 	xfs_daddr_t		*head_blk,
895 	xfs_daddr_t		*tail_blk)
896 {
897 	xlog_rec_header_t	*rhead;
898 	xlog_op_header_t	*op_head;
899 	xfs_caddr_t		offset = NULL;
900 	xfs_buf_t		*bp;
901 	int			error, i, found;
902 	xfs_daddr_t		umount_data_blk;
903 	xfs_daddr_t		after_umount_blk;
904 	xfs_lsn_t		tail_lsn;
905 	int			hblks;
906 
907 	found = 0;
908 
909 	/*
910 	 * Find previous log record
911 	 */
912 	if ((error = xlog_find_head(log, head_blk)))
913 		return error;
914 
915 	bp = xlog_get_bp(log, 1);
916 	if (!bp)
917 		return ENOMEM;
918 	if (*head_blk == 0) {				/* special case */
919 		error = xlog_bread(log, 0, 1, bp, &offset);
920 		if (error)
921 			goto done;
922 
923 		if (xlog_get_cycle(offset) == 0) {
924 			*tail_blk = 0;
925 			/* leave all other log inited values alone */
926 			goto done;
927 		}
928 	}
929 
930 	/*
931 	 * Search backwards looking for log record header block
932 	 */
933 	ASSERT(*head_blk < INT_MAX);
934 	for (i = (int)(*head_blk) - 1; i >= 0; i--) {
935 		error = xlog_bread(log, i, 1, bp, &offset);
936 		if (error)
937 			goto done;
938 
939 		if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
940 			found = 1;
941 			break;
942 		}
943 	}
944 	/*
945 	 * If we haven't found the log record header block, start looking
946 	 * again from the end of the physical log.  XXXmiken: There should be
947 	 * a check here to make sure we didn't search more than N blocks in
948 	 * the previous code.
949 	 */
950 	if (!found) {
951 		for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
952 			error = xlog_bread(log, i, 1, bp, &offset);
953 			if (error)
954 				goto done;
955 
956 			if (*(__be32 *)offset ==
957 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
958 				found = 2;
959 				break;
960 			}
961 		}
962 	}
963 	if (!found) {
964 		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
965 		ASSERT(0);
966 		return XFS_ERROR(EIO);
967 	}
968 
969 	/* find blk_no of tail of log */
970 	rhead = (xlog_rec_header_t *)offset;
971 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
972 
973 	/*
974 	 * Reset log values according to the state of the log when we
975 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
976 	 * one because the next write starts a new cycle rather than
977 	 * continuing the cycle of the last good log record.  At this
978 	 * point we have guaranteed that all partial log records have been
979 	 * accounted for.  Therefore, we know that the last good log record
980 	 * written was complete and ended exactly on the end boundary
981 	 * of the physical log.
982 	 */
983 	log->l_prev_block = i;
984 	log->l_curr_block = (int)*head_blk;
985 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
986 	if (found == 2)
987 		log->l_curr_cycle++;
988 	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
989 	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
990 	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
991 					BBTOB(log->l_curr_block));
992 	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
993 					BBTOB(log->l_curr_block));
994 
995 	/*
996 	 * Look for unmount record.  If we find it, then we know there
997 	 * was a clean unmount.  Since 'i' could be the last block in
998 	 * the physical log, we convert to a log block before comparing
999 	 * to the head_blk.
1000 	 *
1001 	 * Save the current tail lsn to use to pass to
1002 	 * xlog_clear_stale_blocks() below.  We won't want to clear the
1003 	 * unmount record if there is one, so we pass the lsn of the
1004 	 * unmount record rather than the block after it.
1005 	 */
1006 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1007 		int	h_size = be32_to_cpu(rhead->h_size);
1008 		int	h_version = be32_to_cpu(rhead->h_version);
1009 
1010 		if ((h_version & XLOG_VERSION_2) &&
1011 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1012 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1013 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
1014 				hblks++;
1015 		} else {
1016 			hblks = 1;
1017 		}
1018 	} else {
1019 		hblks = 1;
1020 	}
1021 	after_umount_blk = (i + hblks + (int)
1022 		BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1023 	tail_lsn = atomic64_read(&log->l_tail_lsn);
1024 	if (*head_blk == after_umount_blk &&
1025 	    be32_to_cpu(rhead->h_num_logops) == 1) {
1026 		umount_data_blk = (i + hblks) % log->l_logBBsize;
1027 		error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1028 		if (error)
1029 			goto done;
1030 
1031 		op_head = (xlog_op_header_t *)offset;
1032 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1033 			/*
1034 			 * Set tail and last sync so that newly written
1035 			 * log records will point recovery to after the
1036 			 * current unmount record.
1037 			 */
1038 			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1039 					log->l_curr_cycle, after_umount_blk);
1040 			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1041 					log->l_curr_cycle, after_umount_blk);
1042 			*tail_blk = after_umount_blk;
1043 
1044 			/*
1045 			 * Note that the unmount was clean. If the unmount
1046 			 * was not clean, we need to know this to rebuild the
1047 			 * superblock counters from the perag headers if we
1048 			 * have a filesystem using non-persistent counters.
1049 			 */
1050 			log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1051 		}
1052 	}
1053 
1054 	/*
1055 	 * Make sure that there are no blocks in front of the head
1056 	 * with the same cycle number as the head.  This can happen
1057 	 * because we allow multiple outstanding log writes concurrently,
1058 	 * and the later writes might make it out before earlier ones.
1059 	 *
1060 	 * We use the lsn from before modifying it so that we'll never
1061 	 * overwrite the unmount record after a clean unmount.
1062 	 *
1063 	 * Do this only if we are going to recover the filesystem
1064 	 *
1065 	 * NOTE: This used to say "if (!readonly)"
1066 	 * However on Linux, we can & do recover a read-only filesystem.
1067 	 * We only skip recovery if NORECOVERY is specified on mount,
1068 	 * in which case we would not be here.
1069 	 *
1070 	 * But... if the -device- itself is readonly, just skip this.
1071 	 * We can't recover this device anyway, so it won't matter.
1072 	 */
1073 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1074 		error = xlog_clear_stale_blocks(log, tail_lsn);
1075 
1076 done:
1077 	xlog_put_bp(bp);
1078 
1079 	if (error)
1080 		xfs_warn(log->l_mp, "failed to locate log tail");
1081 	return error;
1082 }
1083 
1084 /*
1085  * Is the log zeroed at all?
1086  *
1087  * The last binary search should be changed to perform an X block read
1088  * once X becomes small enough.  You can then search linearly through
1089  * the X blocks.  This will cut down on the number of reads we need to do.
1090  *
1091  * If the log is partially zeroed, this routine will pass back the blkno
1092  * of the first block with cycle number 0.  It won't have a complete LR
1093  * preceding it.
1094  *
1095  * Return:
1096  *	0  => the log is completely written to
1097  *	-1 => use *blk_no as the first block of the log
1098  *	>0 => error has occurred
1099  */
1100 STATIC int
1101 xlog_find_zeroed(
1102 	struct xlog	*log,
1103 	xfs_daddr_t	*blk_no)
1104 {
1105 	xfs_buf_t	*bp;
1106 	xfs_caddr_t	offset;
1107 	uint	        first_cycle, last_cycle;
1108 	xfs_daddr_t	new_blk, last_blk, start_blk;
1109 	xfs_daddr_t     num_scan_bblks;
1110 	int	        error, log_bbnum = log->l_logBBsize;
1111 
1112 	*blk_no = 0;
1113 
1114 	/* check totally zeroed log */
1115 	bp = xlog_get_bp(log, 1);
1116 	if (!bp)
1117 		return ENOMEM;
1118 	error = xlog_bread(log, 0, 1, bp, &offset);
1119 	if (error)
1120 		goto bp_err;
1121 
1122 	first_cycle = xlog_get_cycle(offset);
1123 	if (first_cycle == 0) {		/* completely zeroed log */
1124 		*blk_no = 0;
1125 		xlog_put_bp(bp);
1126 		return -1;
1127 	}
1128 
1129 	/* check partially zeroed log */
1130 	error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1131 	if (error)
1132 		goto bp_err;
1133 
1134 	last_cycle = xlog_get_cycle(offset);
1135 	if (last_cycle != 0) {		/* log completely written to */
1136 		xlog_put_bp(bp);
1137 		return 0;
1138 	} else if (first_cycle != 1) {
1139 		/*
1140 		 * If the cycle of the last block is zero, the cycle of
1141 		 * the first block must be 1. If it's not, maybe we're
1142 		 * not looking at a log... Bail out.
1143 		 */
1144 		xfs_warn(log->l_mp,
1145 			"Log inconsistent or not a log (last==0, first!=1)");
1146 		return XFS_ERROR(EINVAL);
1147 	}
1148 
1149 	/* we have a partially zeroed log */
1150 	last_blk = log_bbnum-1;
1151 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1152 		goto bp_err;
1153 
1154 	/*
1155 	 * Validate the answer.  Because there is no way to guarantee that
1156 	 * the entire log is made up of log records which are the same size,
1157 	 * we scan over the defined maximum blocks.  At this point, the maximum
1158 	 * is not chosen to mean anything special.   XXXmiken
1159 	 */
1160 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1161 	ASSERT(num_scan_bblks <= INT_MAX);
1162 
1163 	if (last_blk < num_scan_bblks)
1164 		num_scan_bblks = last_blk;
1165 	start_blk = last_blk - num_scan_bblks;
1166 
1167 	/*
1168 	 * We search for any instances of cycle number 0 that occur before
1169 	 * our current estimate of the head.  What we're trying to detect is
1170 	 *        1 ... | 0 | 1 | 0...
1171 	 *                       ^ binary search ends here
1172 	 */
1173 	if ((error = xlog_find_verify_cycle(log, start_blk,
1174 					 (int)num_scan_bblks, 0, &new_blk)))
1175 		goto bp_err;
1176 	if (new_blk != -1)
1177 		last_blk = new_blk;
1178 
1179 	/*
1180 	 * Potentially backup over partial log record write.  We don't need
1181 	 * to search the end of the log because we know it is zero.
1182 	 */
1183 	if ((error = xlog_find_verify_log_record(log, start_blk,
1184 				&last_blk, 0)) == -1) {
1185 	    error = XFS_ERROR(EIO);
1186 	    goto bp_err;
1187 	} else if (error)
1188 	    goto bp_err;
1189 
1190 	*blk_no = last_blk;
1191 bp_err:
1192 	xlog_put_bp(bp);
1193 	if (error)
1194 		return error;
1195 	return -1;
1196 }
1197 
1198 /*
1199  * These are simple subroutines used by xlog_clear_stale_blocks() below
1200  * to initialize a buffer full of empty log record headers and write
1201  * them into the log.
1202  */
1203 STATIC void
1204 xlog_add_record(
1205 	struct xlog		*log,
1206 	xfs_caddr_t		buf,
1207 	int			cycle,
1208 	int			block,
1209 	int			tail_cycle,
1210 	int			tail_block)
1211 {
1212 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1213 
1214 	memset(buf, 0, BBSIZE);
1215 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1216 	recp->h_cycle = cpu_to_be32(cycle);
1217 	recp->h_version = cpu_to_be32(
1218 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1219 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1220 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1221 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1222 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1223 }
1224 
1225 STATIC int
1226 xlog_write_log_records(
1227 	struct xlog	*log,
1228 	int		cycle,
1229 	int		start_block,
1230 	int		blocks,
1231 	int		tail_cycle,
1232 	int		tail_block)
1233 {
1234 	xfs_caddr_t	offset;
1235 	xfs_buf_t	*bp;
1236 	int		balign, ealign;
1237 	int		sectbb = log->l_sectBBsize;
1238 	int		end_block = start_block + blocks;
1239 	int		bufblks;
1240 	int		error = 0;
1241 	int		i, j = 0;
1242 
1243 	/*
1244 	 * Greedily allocate a buffer big enough to handle the full
1245 	 * range of basic blocks to be written.  If that fails, try
1246 	 * a smaller size.  We need to be able to write at least a
1247 	 * log sector, or we're out of luck.
1248 	 */
1249 	bufblks = 1 << ffs(blocks);
1250 	while (bufblks > log->l_logBBsize)
1251 		bufblks >>= 1;
1252 	while (!(bp = xlog_get_bp(log, bufblks))) {
1253 		bufblks >>= 1;
1254 		if (bufblks < sectbb)
1255 			return ENOMEM;
1256 	}
1257 
1258 	/* We may need to do a read at the start to fill in part of
1259 	 * the buffer in the starting sector not covered by the first
1260 	 * write below.
1261 	 */
1262 	balign = round_down(start_block, sectbb);
1263 	if (balign != start_block) {
1264 		error = xlog_bread_noalign(log, start_block, 1, bp);
1265 		if (error)
1266 			goto out_put_bp;
1267 
1268 		j = start_block - balign;
1269 	}
1270 
1271 	for (i = start_block; i < end_block; i += bufblks) {
1272 		int		bcount, endcount;
1273 
1274 		bcount = min(bufblks, end_block - start_block);
1275 		endcount = bcount - j;
1276 
1277 		/* We may need to do a read at the end to fill in part of
1278 		 * the buffer in the final sector not covered by the write.
1279 		 * If this is the same sector as the above read, skip it.
1280 		 */
1281 		ealign = round_down(end_block, sectbb);
1282 		if (j == 0 && (start_block + endcount > ealign)) {
1283 			offset = bp->b_addr + BBTOB(ealign - start_block);
1284 			error = xlog_bread_offset(log, ealign, sectbb,
1285 							bp, offset);
1286 			if (error)
1287 				break;
1288 
1289 		}
1290 
1291 		offset = xlog_align(log, start_block, endcount, bp);
1292 		for (; j < endcount; j++) {
1293 			xlog_add_record(log, offset, cycle, i+j,
1294 					tail_cycle, tail_block);
1295 			offset += BBSIZE;
1296 		}
1297 		error = xlog_bwrite(log, start_block, endcount, bp);
1298 		if (error)
1299 			break;
1300 		start_block += endcount;
1301 		j = 0;
1302 	}
1303 
1304  out_put_bp:
1305 	xlog_put_bp(bp);
1306 	return error;
1307 }
1308 
1309 /*
1310  * This routine is called to blow away any incomplete log writes out
1311  * in front of the log head.  We do this so that we won't become confused
1312  * if we come up, write only a little bit more, and then crash again.
1313  * If we leave the partial log records out there, this situation could
1314  * cause us to think those partial writes are valid blocks since they
1315  * have the current cycle number.  We get rid of them by overwriting them
1316  * with empty log records with the old cycle number rather than the
1317  * current one.
1318  *
1319  * The tail lsn is passed in rather than taken from
1320  * the log so that we will not write over the unmount record after a
1321  * clean unmount in a 512 block log.  Doing so would leave the log without
1322  * any valid log records in it until a new one was written.  If we crashed
1323  * during that time we would not be able to recover.
1324  */
1325 STATIC int
1326 xlog_clear_stale_blocks(
1327 	struct xlog	*log,
1328 	xfs_lsn_t	tail_lsn)
1329 {
1330 	int		tail_cycle, head_cycle;
1331 	int		tail_block, head_block;
1332 	int		tail_distance, max_distance;
1333 	int		distance;
1334 	int		error;
1335 
1336 	tail_cycle = CYCLE_LSN(tail_lsn);
1337 	tail_block = BLOCK_LSN(tail_lsn);
1338 	head_cycle = log->l_curr_cycle;
1339 	head_block = log->l_curr_block;
1340 
1341 	/*
1342 	 * Figure out the distance between the new head of the log
1343 	 * and the tail.  We want to write over any blocks beyond the
1344 	 * head that we may have written just before the crash, but
1345 	 * we don't want to overwrite the tail of the log.
1346 	 */
1347 	if (head_cycle == tail_cycle) {
1348 		/*
1349 		 * The tail is behind the head in the physical log,
1350 		 * so the distance from the head to the tail is the
1351 		 * distance from the head to the end of the log plus
1352 		 * the distance from the beginning of the log to the
1353 		 * tail.
1354 		 */
1355 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1356 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1357 					 XFS_ERRLEVEL_LOW, log->l_mp);
1358 			return XFS_ERROR(EFSCORRUPTED);
1359 		}
1360 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1361 	} else {
1362 		/*
1363 		 * The head is behind the tail in the physical log,
1364 		 * so the distance from the head to the tail is just
1365 		 * the tail block minus the head block.
1366 		 */
1367 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1368 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1369 					 XFS_ERRLEVEL_LOW, log->l_mp);
1370 			return XFS_ERROR(EFSCORRUPTED);
1371 		}
1372 		tail_distance = tail_block - head_block;
1373 	}
1374 
1375 	/*
1376 	 * If the head is right up against the tail, we can't clear
1377 	 * anything.
1378 	 */
1379 	if (tail_distance <= 0) {
1380 		ASSERT(tail_distance == 0);
1381 		return 0;
1382 	}
1383 
1384 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1385 	/*
1386 	 * Take the smaller of the maximum amount of outstanding I/O
1387 	 * we could have and the distance to the tail to clear out.
1388 	 * We take the smaller so that we don't overwrite the tail and
1389 	 * we don't waste all day writing from the head to the tail
1390 	 * for no reason.
1391 	 */
1392 	max_distance = MIN(max_distance, tail_distance);
1393 
1394 	if ((head_block + max_distance) <= log->l_logBBsize) {
1395 		/*
1396 		 * We can stomp all the blocks we need to without
1397 		 * wrapping around the end of the log.  Just do it
1398 		 * in a single write.  Use the cycle number of the
1399 		 * current cycle minus one so that the log will look like:
1400 		 *     n ... | n - 1 ...
1401 		 */
1402 		error = xlog_write_log_records(log, (head_cycle - 1),
1403 				head_block, max_distance, tail_cycle,
1404 				tail_block);
1405 		if (error)
1406 			return error;
1407 	} else {
1408 		/*
1409 		 * We need to wrap around the end of the physical log in
1410 		 * order to clear all the blocks.  Do it in two separate
1411 		 * I/Os.  The first write should be from the head to the
1412 		 * end of the physical log, and it should use the current
1413 		 * cycle number minus one just like above.
1414 		 */
1415 		distance = log->l_logBBsize - head_block;
1416 		error = xlog_write_log_records(log, (head_cycle - 1),
1417 				head_block, distance, tail_cycle,
1418 				tail_block);
1419 
1420 		if (error)
1421 			return error;
1422 
1423 		/*
1424 		 * Now write the blocks at the start of the physical log.
1425 		 * This writes the remainder of the blocks we want to clear.
1426 		 * It uses the current cycle number since we're now on the
1427 		 * same cycle as the head so that we get:
1428 		 *    n ... n ... | n - 1 ...
1429 		 *    ^^^^^ blocks we're writing
1430 		 */
1431 		distance = max_distance - (log->l_logBBsize - head_block);
1432 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1433 				tail_cycle, tail_block);
1434 		if (error)
1435 			return error;
1436 	}
1437 
1438 	return 0;
1439 }
1440 
1441 /******************************************************************************
1442  *
1443  *		Log recover routines
1444  *
1445  ******************************************************************************
1446  */
1447 
1448 STATIC xlog_recover_t *
1449 xlog_recover_find_tid(
1450 	struct hlist_head	*head,
1451 	xlog_tid_t		tid)
1452 {
1453 	xlog_recover_t		*trans;
1454 
1455 	hlist_for_each_entry(trans, head, r_list) {
1456 		if (trans->r_log_tid == tid)
1457 			return trans;
1458 	}
1459 	return NULL;
1460 }
1461 
1462 STATIC void
1463 xlog_recover_new_tid(
1464 	struct hlist_head	*head,
1465 	xlog_tid_t		tid,
1466 	xfs_lsn_t		lsn)
1467 {
1468 	xlog_recover_t		*trans;
1469 
1470 	trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1471 	trans->r_log_tid   = tid;
1472 	trans->r_lsn	   = lsn;
1473 	INIT_LIST_HEAD(&trans->r_itemq);
1474 
1475 	INIT_HLIST_NODE(&trans->r_list);
1476 	hlist_add_head(&trans->r_list, head);
1477 }
1478 
1479 STATIC void
1480 xlog_recover_add_item(
1481 	struct list_head	*head)
1482 {
1483 	xlog_recover_item_t	*item;
1484 
1485 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1486 	INIT_LIST_HEAD(&item->ri_list);
1487 	list_add_tail(&item->ri_list, head);
1488 }
1489 
1490 STATIC int
1491 xlog_recover_add_to_cont_trans(
1492 	struct xlog		*log,
1493 	struct xlog_recover	*trans,
1494 	xfs_caddr_t		dp,
1495 	int			len)
1496 {
1497 	xlog_recover_item_t	*item;
1498 	xfs_caddr_t		ptr, old_ptr;
1499 	int			old_len;
1500 
1501 	if (list_empty(&trans->r_itemq)) {
1502 		/* finish copying rest of trans header */
1503 		xlog_recover_add_item(&trans->r_itemq);
1504 		ptr = (xfs_caddr_t) &trans->r_theader +
1505 				sizeof(xfs_trans_header_t) - len;
1506 		memcpy(ptr, dp, len); /* d, s, l */
1507 		return 0;
1508 	}
1509 	/* take the tail entry */
1510 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1511 
1512 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1513 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
1514 
1515 	ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1516 	memcpy(&ptr[old_len], dp, len); /* d, s, l */
1517 	item->ri_buf[item->ri_cnt-1].i_len += len;
1518 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1519 	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1520 	return 0;
1521 }
1522 
1523 /*
1524  * The next region to add is the start of a new region.  It could be
1525  * a whole region or it could be the first part of a new region.  Because
1526  * of this, the assumption here is that the type and size fields of all
1527  * format structures fit into the first 32 bits of the structure.
1528  *
1529  * This works because all regions must be 32 bit aligned.  Therefore, we
1530  * either have both fields or we have neither field.  In the case we have
1531  * neither field, the data part of the region is zero length.  We only have
1532  * a log_op_header and can throw away the header since a new one will appear
1533  * later.  If we have at least 4 bytes, then we can determine how many regions
1534  * will appear in the current log item.
1535  */
1536 STATIC int
1537 xlog_recover_add_to_trans(
1538 	struct xlog		*log,
1539 	struct xlog_recover	*trans,
1540 	xfs_caddr_t		dp,
1541 	int			len)
1542 {
1543 	xfs_inode_log_format_t	*in_f;			/* any will do */
1544 	xlog_recover_item_t	*item;
1545 	xfs_caddr_t		ptr;
1546 
1547 	if (!len)
1548 		return 0;
1549 	if (list_empty(&trans->r_itemq)) {
1550 		/* we need to catch log corruptions here */
1551 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1552 			xfs_warn(log->l_mp, "%s: bad header magic number",
1553 				__func__);
1554 			ASSERT(0);
1555 			return XFS_ERROR(EIO);
1556 		}
1557 		if (len == sizeof(xfs_trans_header_t))
1558 			xlog_recover_add_item(&trans->r_itemq);
1559 		memcpy(&trans->r_theader, dp, len); /* d, s, l */
1560 		return 0;
1561 	}
1562 
1563 	ptr = kmem_alloc(len, KM_SLEEP);
1564 	memcpy(ptr, dp, len);
1565 	in_f = (xfs_inode_log_format_t *)ptr;
1566 
1567 	/* take the tail entry */
1568 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1569 	if (item->ri_total != 0 &&
1570 	     item->ri_total == item->ri_cnt) {
1571 		/* tail item is in use, get a new one */
1572 		xlog_recover_add_item(&trans->r_itemq);
1573 		item = list_entry(trans->r_itemq.prev,
1574 					xlog_recover_item_t, ri_list);
1575 	}
1576 
1577 	if (item->ri_total == 0) {		/* first region to be added */
1578 		if (in_f->ilf_size == 0 ||
1579 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1580 			xfs_warn(log->l_mp,
1581 		"bad number of regions (%d) in inode log format",
1582 				  in_f->ilf_size);
1583 			ASSERT(0);
1584 			return XFS_ERROR(EIO);
1585 		}
1586 
1587 		item->ri_total = in_f->ilf_size;
1588 		item->ri_buf =
1589 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1590 				    KM_SLEEP);
1591 	}
1592 	ASSERT(item->ri_total > item->ri_cnt);
1593 	/* Description region is ri_buf[0] */
1594 	item->ri_buf[item->ri_cnt].i_addr = ptr;
1595 	item->ri_buf[item->ri_cnt].i_len  = len;
1596 	item->ri_cnt++;
1597 	trace_xfs_log_recover_item_add(log, trans, item, 0);
1598 	return 0;
1599 }
1600 
1601 /*
1602  * Sort the log items in the transaction. Cancelled buffers need
1603  * to be put first so they are processed before any items that might
1604  * modify the buffers. If they are cancelled, then the modifications
1605  * don't need to be replayed.
1606  */
1607 STATIC int
1608 xlog_recover_reorder_trans(
1609 	struct xlog		*log,
1610 	struct xlog_recover	*trans,
1611 	int			pass)
1612 {
1613 	xlog_recover_item_t	*item, *n;
1614 	LIST_HEAD(sort_list);
1615 
1616 	list_splice_init(&trans->r_itemq, &sort_list);
1617 	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1618 		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1619 
1620 		switch (ITEM_TYPE(item)) {
1621 		case XFS_LI_BUF:
1622 			if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1623 				trace_xfs_log_recover_item_reorder_head(log,
1624 							trans, item, pass);
1625 				list_move(&item->ri_list, &trans->r_itemq);
1626 				break;
1627 			}
1628 		case XFS_LI_INODE:
1629 		case XFS_LI_DQUOT:
1630 		case XFS_LI_QUOTAOFF:
1631 		case XFS_LI_EFD:
1632 		case XFS_LI_EFI:
1633 			trace_xfs_log_recover_item_reorder_tail(log,
1634 							trans, item, pass);
1635 			list_move_tail(&item->ri_list, &trans->r_itemq);
1636 			break;
1637 		default:
1638 			xfs_warn(log->l_mp,
1639 				"%s: unrecognized type of log operation",
1640 				__func__);
1641 			ASSERT(0);
1642 			return XFS_ERROR(EIO);
1643 		}
1644 	}
1645 	ASSERT(list_empty(&sort_list));
1646 	return 0;
1647 }
1648 
1649 /*
1650  * Build up the table of buf cancel records so that we don't replay
1651  * cancelled data in the second pass.  For buffer records that are
1652  * not cancel records, there is nothing to do here so we just return.
1653  *
1654  * If we get a cancel record which is already in the table, this indicates
1655  * that the buffer was cancelled multiple times.  In order to ensure
1656  * that during pass 2 we keep the record in the table until we reach its
1657  * last occurrence in the log, we keep a reference count in the cancel
1658  * record in the table to tell us how many times we expect to see this
1659  * record during the second pass.
1660  */
1661 STATIC int
1662 xlog_recover_buffer_pass1(
1663 	struct xlog			*log,
1664 	struct xlog_recover_item	*item)
1665 {
1666 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1667 	struct list_head	*bucket;
1668 	struct xfs_buf_cancel	*bcp;
1669 
1670 	/*
1671 	 * If this isn't a cancel buffer item, then just return.
1672 	 */
1673 	if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1674 		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1675 		return 0;
1676 	}
1677 
1678 	/*
1679 	 * Insert an xfs_buf_cancel record into the hash table of them.
1680 	 * If there is already an identical record, bump its reference count.
1681 	 */
1682 	bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1683 	list_for_each_entry(bcp, bucket, bc_list) {
1684 		if (bcp->bc_blkno == buf_f->blf_blkno &&
1685 		    bcp->bc_len == buf_f->blf_len) {
1686 			bcp->bc_refcount++;
1687 			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1688 			return 0;
1689 		}
1690 	}
1691 
1692 	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1693 	bcp->bc_blkno = buf_f->blf_blkno;
1694 	bcp->bc_len = buf_f->blf_len;
1695 	bcp->bc_refcount = 1;
1696 	list_add_tail(&bcp->bc_list, bucket);
1697 
1698 	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1699 	return 0;
1700 }
1701 
1702 /*
1703  * Check to see whether the buffer being recovered has a corresponding
1704  * entry in the buffer cancel record table.  If it does then return 1
1705  * so that it will be cancelled, otherwise return 0.  If the buffer is
1706  * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1707  * the refcount on the entry in the table and remove it from the table
1708  * if this is the last reference.
1709  *
1710  * We remove the cancel record from the table when we encounter its
1711  * last occurrence in the log so that if the same buffer is re-used
1712  * again after its last cancellation we actually replay the changes
1713  * made at that point.
1714  */
1715 STATIC int
1716 xlog_check_buffer_cancelled(
1717 	struct xlog		*log,
1718 	xfs_daddr_t		blkno,
1719 	uint			len,
1720 	ushort			flags)
1721 {
1722 	struct list_head	*bucket;
1723 	struct xfs_buf_cancel	*bcp;
1724 
1725 	if (log->l_buf_cancel_table == NULL) {
1726 		/*
1727 		 * There is nothing in the table built in pass one,
1728 		 * so this buffer must not be cancelled.
1729 		 */
1730 		ASSERT(!(flags & XFS_BLF_CANCEL));
1731 		return 0;
1732 	}
1733 
1734 	/*
1735 	 * Search for an entry in the  cancel table that matches our buffer.
1736 	 */
1737 	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1738 	list_for_each_entry(bcp, bucket, bc_list) {
1739 		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1740 			goto found;
1741 	}
1742 
1743 	/*
1744 	 * We didn't find a corresponding entry in the table, so return 0 so
1745 	 * that the buffer is NOT cancelled.
1746 	 */
1747 	ASSERT(!(flags & XFS_BLF_CANCEL));
1748 	return 0;
1749 
1750 found:
1751 	/*
1752 	 * We've go a match, so return 1 so that the recovery of this buffer
1753 	 * is cancelled.  If this buffer is actually a buffer cancel log
1754 	 * item, then decrement the refcount on the one in the table and
1755 	 * remove it if this is the last reference.
1756 	 */
1757 	if (flags & XFS_BLF_CANCEL) {
1758 		if (--bcp->bc_refcount == 0) {
1759 			list_del(&bcp->bc_list);
1760 			kmem_free(bcp);
1761 		}
1762 	}
1763 	return 1;
1764 }
1765 
1766 /*
1767  * Perform recovery for a buffer full of inodes.  In these buffers, the only
1768  * data which should be recovered is that which corresponds to the
1769  * di_next_unlinked pointers in the on disk inode structures.  The rest of the
1770  * data for the inodes is always logged through the inodes themselves rather
1771  * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1772  *
1773  * The only time when buffers full of inodes are fully recovered is when the
1774  * buffer is full of newly allocated inodes.  In this case the buffer will
1775  * not be marked as an inode buffer and so will be sent to
1776  * xlog_recover_do_reg_buffer() below during recovery.
1777  */
1778 STATIC int
1779 xlog_recover_do_inode_buffer(
1780 	struct xfs_mount	*mp,
1781 	xlog_recover_item_t	*item,
1782 	struct xfs_buf		*bp,
1783 	xfs_buf_log_format_t	*buf_f)
1784 {
1785 	int			i;
1786 	int			item_index = 0;
1787 	int			bit = 0;
1788 	int			nbits = 0;
1789 	int			reg_buf_offset = 0;
1790 	int			reg_buf_bytes = 0;
1791 	int			next_unlinked_offset;
1792 	int			inodes_per_buf;
1793 	xfs_agino_t		*logged_nextp;
1794 	xfs_agino_t		*buffer_nextp;
1795 
1796 	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1797 	bp->b_ops = &xfs_inode_buf_ops;
1798 
1799 	inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1800 	for (i = 0; i < inodes_per_buf; i++) {
1801 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1802 			offsetof(xfs_dinode_t, di_next_unlinked);
1803 
1804 		while (next_unlinked_offset >=
1805 		       (reg_buf_offset + reg_buf_bytes)) {
1806 			/*
1807 			 * The next di_next_unlinked field is beyond
1808 			 * the current logged region.  Find the next
1809 			 * logged region that contains or is beyond
1810 			 * the current di_next_unlinked field.
1811 			 */
1812 			bit += nbits;
1813 			bit = xfs_next_bit(buf_f->blf_data_map,
1814 					   buf_f->blf_map_size, bit);
1815 
1816 			/*
1817 			 * If there are no more logged regions in the
1818 			 * buffer, then we're done.
1819 			 */
1820 			if (bit == -1)
1821 				return 0;
1822 
1823 			nbits = xfs_contig_bits(buf_f->blf_data_map,
1824 						buf_f->blf_map_size, bit);
1825 			ASSERT(nbits > 0);
1826 			reg_buf_offset = bit << XFS_BLF_SHIFT;
1827 			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1828 			item_index++;
1829 		}
1830 
1831 		/*
1832 		 * If the current logged region starts after the current
1833 		 * di_next_unlinked field, then move on to the next
1834 		 * di_next_unlinked field.
1835 		 */
1836 		if (next_unlinked_offset < reg_buf_offset)
1837 			continue;
1838 
1839 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
1840 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1841 		ASSERT((reg_buf_offset + reg_buf_bytes) <=
1842 							BBTOB(bp->b_io_length));
1843 
1844 		/*
1845 		 * The current logged region contains a copy of the
1846 		 * current di_next_unlinked field.  Extract its value
1847 		 * and copy it to the buffer copy.
1848 		 */
1849 		logged_nextp = item->ri_buf[item_index].i_addr +
1850 				next_unlinked_offset - reg_buf_offset;
1851 		if (unlikely(*logged_nextp == 0)) {
1852 			xfs_alert(mp,
1853 		"Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1854 		"Trying to replay bad (0) inode di_next_unlinked field.",
1855 				item, bp);
1856 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1857 					 XFS_ERRLEVEL_LOW, mp);
1858 			return XFS_ERROR(EFSCORRUPTED);
1859 		}
1860 
1861 		buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1862 					      next_unlinked_offset);
1863 		*buffer_nextp = *logged_nextp;
1864 	}
1865 
1866 	return 0;
1867 }
1868 
1869 /*
1870  * Validate the recovered buffer is of the correct type and attach the
1871  * appropriate buffer operations to them for writeback. Magic numbers are in a
1872  * few places:
1873  *	the first 16 bits of the buffer (inode buffer, dquot buffer),
1874  *	the first 32 bits of the buffer (most blocks),
1875  *	inside a struct xfs_da_blkinfo at the start of the buffer.
1876  */
1877 static void
1878 xlog_recovery_validate_buf_type(
1879 	struct xfs_mount	*mp,
1880 	struct xfs_buf		*bp,
1881 	xfs_buf_log_format_t	*buf_f)
1882 {
1883 	struct xfs_da_blkinfo	*info = bp->b_addr;
1884 	__uint32_t		magic32;
1885 	__uint16_t		magic16;
1886 	__uint16_t		magicda;
1887 
1888 	magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
1889 	magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
1890 	magicda = be16_to_cpu(info->magic);
1891 	switch (xfs_blft_from_flags(buf_f)) {
1892 	case XFS_BLFT_BTREE_BUF:
1893 		switch (magic32) {
1894 		case XFS_ABTB_CRC_MAGIC:
1895 		case XFS_ABTC_CRC_MAGIC:
1896 		case XFS_ABTB_MAGIC:
1897 		case XFS_ABTC_MAGIC:
1898 			bp->b_ops = &xfs_allocbt_buf_ops;
1899 			break;
1900 		case XFS_IBT_CRC_MAGIC:
1901 		case XFS_IBT_MAGIC:
1902 			bp->b_ops = &xfs_inobt_buf_ops;
1903 			break;
1904 		case XFS_BMAP_CRC_MAGIC:
1905 		case XFS_BMAP_MAGIC:
1906 			bp->b_ops = &xfs_bmbt_buf_ops;
1907 			break;
1908 		default:
1909 			xfs_warn(mp, "Bad btree block magic!");
1910 			ASSERT(0);
1911 			break;
1912 		}
1913 		break;
1914 	case XFS_BLFT_AGF_BUF:
1915 		if (magic32 != XFS_AGF_MAGIC) {
1916 			xfs_warn(mp, "Bad AGF block magic!");
1917 			ASSERT(0);
1918 			break;
1919 		}
1920 		bp->b_ops = &xfs_agf_buf_ops;
1921 		break;
1922 	case XFS_BLFT_AGFL_BUF:
1923 		if (!xfs_sb_version_hascrc(&mp->m_sb))
1924 			break;
1925 		if (magic32 != XFS_AGFL_MAGIC) {
1926 			xfs_warn(mp, "Bad AGFL block magic!");
1927 			ASSERT(0);
1928 			break;
1929 		}
1930 		bp->b_ops = &xfs_agfl_buf_ops;
1931 		break;
1932 	case XFS_BLFT_AGI_BUF:
1933 		if (magic32 != XFS_AGI_MAGIC) {
1934 			xfs_warn(mp, "Bad AGI block magic!");
1935 			ASSERT(0);
1936 			break;
1937 		}
1938 		bp->b_ops = &xfs_agi_buf_ops;
1939 		break;
1940 	case XFS_BLFT_UDQUOT_BUF:
1941 	case XFS_BLFT_PDQUOT_BUF:
1942 	case XFS_BLFT_GDQUOT_BUF:
1943 #ifdef CONFIG_XFS_QUOTA
1944 		if (magic16 != XFS_DQUOT_MAGIC) {
1945 			xfs_warn(mp, "Bad DQUOT block magic!");
1946 			ASSERT(0);
1947 			break;
1948 		}
1949 		bp->b_ops = &xfs_dquot_buf_ops;
1950 #else
1951 		xfs_alert(mp,
1952 	"Trying to recover dquots without QUOTA support built in!");
1953 		ASSERT(0);
1954 #endif
1955 		break;
1956 	case XFS_BLFT_DINO_BUF:
1957 		/*
1958 		 * we get here with inode allocation buffers, not buffers that
1959 		 * track unlinked list changes.
1960 		 */
1961 		if (magic16 != XFS_DINODE_MAGIC) {
1962 			xfs_warn(mp, "Bad INODE block magic!");
1963 			ASSERT(0);
1964 			break;
1965 		}
1966 		bp->b_ops = &xfs_inode_buf_ops;
1967 		break;
1968 	case XFS_BLFT_SYMLINK_BUF:
1969 		if (magic32 != XFS_SYMLINK_MAGIC) {
1970 			xfs_warn(mp, "Bad symlink block magic!");
1971 			ASSERT(0);
1972 			break;
1973 		}
1974 		bp->b_ops = &xfs_symlink_buf_ops;
1975 		break;
1976 	case XFS_BLFT_DIR_BLOCK_BUF:
1977 		if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
1978 		    magic32 != XFS_DIR3_BLOCK_MAGIC) {
1979 			xfs_warn(mp, "Bad dir block magic!");
1980 			ASSERT(0);
1981 			break;
1982 		}
1983 		bp->b_ops = &xfs_dir3_block_buf_ops;
1984 		break;
1985 	case XFS_BLFT_DIR_DATA_BUF:
1986 		if (magic32 != XFS_DIR2_DATA_MAGIC &&
1987 		    magic32 != XFS_DIR3_DATA_MAGIC) {
1988 			xfs_warn(mp, "Bad dir data magic!");
1989 			ASSERT(0);
1990 			break;
1991 		}
1992 		bp->b_ops = &xfs_dir3_data_buf_ops;
1993 		break;
1994 	case XFS_BLFT_DIR_FREE_BUF:
1995 		if (magic32 != XFS_DIR2_FREE_MAGIC &&
1996 		    magic32 != XFS_DIR3_FREE_MAGIC) {
1997 			xfs_warn(mp, "Bad dir3 free magic!");
1998 			ASSERT(0);
1999 			break;
2000 		}
2001 		bp->b_ops = &xfs_dir3_free_buf_ops;
2002 		break;
2003 	case XFS_BLFT_DIR_LEAF1_BUF:
2004 		if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2005 		    magicda != XFS_DIR3_LEAF1_MAGIC) {
2006 			xfs_warn(mp, "Bad dir leaf1 magic!");
2007 			ASSERT(0);
2008 			break;
2009 		}
2010 		bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2011 		break;
2012 	case XFS_BLFT_DIR_LEAFN_BUF:
2013 		if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2014 		    magicda != XFS_DIR3_LEAFN_MAGIC) {
2015 			xfs_warn(mp, "Bad dir leafn magic!");
2016 			ASSERT(0);
2017 			break;
2018 		}
2019 		bp->b_ops = &xfs_dir3_leafn_buf_ops;
2020 		break;
2021 	case XFS_BLFT_DA_NODE_BUF:
2022 		if (magicda != XFS_DA_NODE_MAGIC &&
2023 		    magicda != XFS_DA3_NODE_MAGIC) {
2024 			xfs_warn(mp, "Bad da node magic!");
2025 			ASSERT(0);
2026 			break;
2027 		}
2028 		bp->b_ops = &xfs_da3_node_buf_ops;
2029 		break;
2030 	case XFS_BLFT_ATTR_LEAF_BUF:
2031 		if (magicda != XFS_ATTR_LEAF_MAGIC &&
2032 		    magicda != XFS_ATTR3_LEAF_MAGIC) {
2033 			xfs_warn(mp, "Bad attr leaf magic!");
2034 			ASSERT(0);
2035 			break;
2036 		}
2037 		bp->b_ops = &xfs_attr3_leaf_buf_ops;
2038 		break;
2039 	case XFS_BLFT_ATTR_RMT_BUF:
2040 		if (!xfs_sb_version_hascrc(&mp->m_sb))
2041 			break;
2042 		if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2043 			xfs_warn(mp, "Bad attr remote magic!");
2044 			ASSERT(0);
2045 			break;
2046 		}
2047 		bp->b_ops = &xfs_attr3_rmt_buf_ops;
2048 		break;
2049 	case XFS_BLFT_SB_BUF:
2050 		if (magic32 != XFS_SB_MAGIC) {
2051 			xfs_warn(mp, "Bad SB block magic!");
2052 			ASSERT(0);
2053 			break;
2054 		}
2055 		bp->b_ops = &xfs_sb_buf_ops;
2056 		break;
2057 	default:
2058 		xfs_warn(mp, "Unknown buffer type %d!",
2059 			 xfs_blft_from_flags(buf_f));
2060 		break;
2061 	}
2062 }
2063 
2064 /*
2065  * Perform a 'normal' buffer recovery.  Each logged region of the
2066  * buffer should be copied over the corresponding region in the
2067  * given buffer.  The bitmap in the buf log format structure indicates
2068  * where to place the logged data.
2069  */
2070 STATIC void
2071 xlog_recover_do_reg_buffer(
2072 	struct xfs_mount	*mp,
2073 	xlog_recover_item_t	*item,
2074 	struct xfs_buf		*bp,
2075 	xfs_buf_log_format_t	*buf_f)
2076 {
2077 	int			i;
2078 	int			bit;
2079 	int			nbits;
2080 	int                     error;
2081 
2082 	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2083 
2084 	bit = 0;
2085 	i = 1;  /* 0 is the buf format structure */
2086 	while (1) {
2087 		bit = xfs_next_bit(buf_f->blf_data_map,
2088 				   buf_f->blf_map_size, bit);
2089 		if (bit == -1)
2090 			break;
2091 		nbits = xfs_contig_bits(buf_f->blf_data_map,
2092 					buf_f->blf_map_size, bit);
2093 		ASSERT(nbits > 0);
2094 		ASSERT(item->ri_buf[i].i_addr != NULL);
2095 		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2096 		ASSERT(BBTOB(bp->b_io_length) >=
2097 		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2098 
2099 		/*
2100 		 * Do a sanity check if this is a dquot buffer. Just checking
2101 		 * the first dquot in the buffer should do. XXXThis is
2102 		 * probably a good thing to do for other buf types also.
2103 		 */
2104 		error = 0;
2105 		if (buf_f->blf_flags &
2106 		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2107 			if (item->ri_buf[i].i_addr == NULL) {
2108 				xfs_alert(mp,
2109 					"XFS: NULL dquot in %s.", __func__);
2110 				goto next;
2111 			}
2112 			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2113 				xfs_alert(mp,
2114 					"XFS: dquot too small (%d) in %s.",
2115 					item->ri_buf[i].i_len, __func__);
2116 				goto next;
2117 			}
2118 			error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
2119 					       -1, 0, XFS_QMOPT_DOWARN,
2120 					       "dquot_buf_recover");
2121 			if (error)
2122 				goto next;
2123 		}
2124 
2125 		memcpy(xfs_buf_offset(bp,
2126 			(uint)bit << XFS_BLF_SHIFT),	/* dest */
2127 			item->ri_buf[i].i_addr,		/* source */
2128 			nbits<<XFS_BLF_SHIFT);		/* length */
2129  next:
2130 		i++;
2131 		bit += nbits;
2132 	}
2133 
2134 	/* Shouldn't be any more regions */
2135 	ASSERT(i == item->ri_total);
2136 
2137 	xlog_recovery_validate_buf_type(mp, bp, buf_f);
2138 }
2139 
2140 /*
2141  * Do some primitive error checking on ondisk dquot data structures.
2142  */
2143 int
2144 xfs_qm_dqcheck(
2145 	struct xfs_mount *mp,
2146 	xfs_disk_dquot_t *ddq,
2147 	xfs_dqid_t	 id,
2148 	uint		 type,	  /* used only when IO_dorepair is true */
2149 	uint		 flags,
2150 	char		 *str)
2151 {
2152 	xfs_dqblk_t	 *d = (xfs_dqblk_t *)ddq;
2153 	int		errs = 0;
2154 
2155 	/*
2156 	 * We can encounter an uninitialized dquot buffer for 2 reasons:
2157 	 * 1. If we crash while deleting the quotainode(s), and those blks got
2158 	 *    used for user data. This is because we take the path of regular
2159 	 *    file deletion; however, the size field of quotainodes is never
2160 	 *    updated, so all the tricks that we play in itruncate_finish
2161 	 *    don't quite matter.
2162 	 *
2163 	 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2164 	 *    But the allocation will be replayed so we'll end up with an
2165 	 *    uninitialized quota block.
2166 	 *
2167 	 * This is all fine; things are still consistent, and we haven't lost
2168 	 * any quota information. Just don't complain about bad dquot blks.
2169 	 */
2170 	if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
2171 		if (flags & XFS_QMOPT_DOWARN)
2172 			xfs_alert(mp,
2173 			"%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2174 			str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
2175 		errs++;
2176 	}
2177 	if (ddq->d_version != XFS_DQUOT_VERSION) {
2178 		if (flags & XFS_QMOPT_DOWARN)
2179 			xfs_alert(mp,
2180 			"%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2181 			str, id, ddq->d_version, XFS_DQUOT_VERSION);
2182 		errs++;
2183 	}
2184 
2185 	if (ddq->d_flags != XFS_DQ_USER &&
2186 	    ddq->d_flags != XFS_DQ_PROJ &&
2187 	    ddq->d_flags != XFS_DQ_GROUP) {
2188 		if (flags & XFS_QMOPT_DOWARN)
2189 			xfs_alert(mp,
2190 			"%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2191 			str, id, ddq->d_flags);
2192 		errs++;
2193 	}
2194 
2195 	if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2196 		if (flags & XFS_QMOPT_DOWARN)
2197 			xfs_alert(mp,
2198 			"%s : ondisk-dquot 0x%p, ID mismatch: "
2199 			"0x%x expected, found id 0x%x",
2200 			str, ddq, id, be32_to_cpu(ddq->d_id));
2201 		errs++;
2202 	}
2203 
2204 	if (!errs && ddq->d_id) {
2205 		if (ddq->d_blk_softlimit &&
2206 		    be64_to_cpu(ddq->d_bcount) >
2207 				be64_to_cpu(ddq->d_blk_softlimit)) {
2208 			if (!ddq->d_btimer) {
2209 				if (flags & XFS_QMOPT_DOWARN)
2210 					xfs_alert(mp,
2211 			"%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
2212 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2213 				errs++;
2214 			}
2215 		}
2216 		if (ddq->d_ino_softlimit &&
2217 		    be64_to_cpu(ddq->d_icount) >
2218 				be64_to_cpu(ddq->d_ino_softlimit)) {
2219 			if (!ddq->d_itimer) {
2220 				if (flags & XFS_QMOPT_DOWARN)
2221 					xfs_alert(mp,
2222 			"%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
2223 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2224 				errs++;
2225 			}
2226 		}
2227 		if (ddq->d_rtb_softlimit &&
2228 		    be64_to_cpu(ddq->d_rtbcount) >
2229 				be64_to_cpu(ddq->d_rtb_softlimit)) {
2230 			if (!ddq->d_rtbtimer) {
2231 				if (flags & XFS_QMOPT_DOWARN)
2232 					xfs_alert(mp,
2233 			"%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
2234 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2235 				errs++;
2236 			}
2237 		}
2238 	}
2239 
2240 	if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2241 		return errs;
2242 
2243 	if (flags & XFS_QMOPT_DOWARN)
2244 		xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
2245 
2246 	/*
2247 	 * Typically, a repair is only requested by quotacheck.
2248 	 */
2249 	ASSERT(id != -1);
2250 	ASSERT(flags & XFS_QMOPT_DQREPAIR);
2251 	memset(d, 0, sizeof(xfs_dqblk_t));
2252 
2253 	d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2254 	d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2255 	d->dd_diskdq.d_flags = type;
2256 	d->dd_diskdq.d_id = cpu_to_be32(id);
2257 
2258 	return errs;
2259 }
2260 
2261 /*
2262  * Perform a dquot buffer recovery.
2263  * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2264  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2265  * Else, treat it as a regular buffer and do recovery.
2266  */
2267 STATIC void
2268 xlog_recover_do_dquot_buffer(
2269 	struct xfs_mount		*mp,
2270 	struct xlog			*log,
2271 	struct xlog_recover_item	*item,
2272 	struct xfs_buf			*bp,
2273 	struct xfs_buf_log_format	*buf_f)
2274 {
2275 	uint			type;
2276 
2277 	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2278 
2279 	/*
2280 	 * Filesystems are required to send in quota flags at mount time.
2281 	 */
2282 	if (mp->m_qflags == 0) {
2283 		return;
2284 	}
2285 
2286 	type = 0;
2287 	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2288 		type |= XFS_DQ_USER;
2289 	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2290 		type |= XFS_DQ_PROJ;
2291 	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2292 		type |= XFS_DQ_GROUP;
2293 	/*
2294 	 * This type of quotas was turned off, so ignore this buffer
2295 	 */
2296 	if (log->l_quotaoffs_flag & type)
2297 		return;
2298 
2299 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2300 }
2301 
2302 /*
2303  * This routine replays a modification made to a buffer at runtime.
2304  * There are actually two types of buffer, regular and inode, which
2305  * are handled differently.  Inode buffers are handled differently
2306  * in that we only recover a specific set of data from them, namely
2307  * the inode di_next_unlinked fields.  This is because all other inode
2308  * data is actually logged via inode records and any data we replay
2309  * here which overlaps that may be stale.
2310  *
2311  * When meta-data buffers are freed at run time we log a buffer item
2312  * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2313  * of the buffer in the log should not be replayed at recovery time.
2314  * This is so that if the blocks covered by the buffer are reused for
2315  * file data before we crash we don't end up replaying old, freed
2316  * meta-data into a user's file.
2317  *
2318  * To handle the cancellation of buffer log items, we make two passes
2319  * over the log during recovery.  During the first we build a table of
2320  * those buffers which have been cancelled, and during the second we
2321  * only replay those buffers which do not have corresponding cancel
2322  * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2323  * for more details on the implementation of the table of cancel records.
2324  */
2325 STATIC int
2326 xlog_recover_buffer_pass2(
2327 	struct xlog			*log,
2328 	struct list_head		*buffer_list,
2329 	struct xlog_recover_item	*item)
2330 {
2331 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2332 	xfs_mount_t		*mp = log->l_mp;
2333 	xfs_buf_t		*bp;
2334 	int			error;
2335 	uint			buf_flags;
2336 
2337 	/*
2338 	 * In this pass we only want to recover all the buffers which have
2339 	 * not been cancelled and are not cancellation buffers themselves.
2340 	 */
2341 	if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2342 			buf_f->blf_len, buf_f->blf_flags)) {
2343 		trace_xfs_log_recover_buf_cancel(log, buf_f);
2344 		return 0;
2345 	}
2346 
2347 	trace_xfs_log_recover_buf_recover(log, buf_f);
2348 
2349 	buf_flags = 0;
2350 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2351 		buf_flags |= XBF_UNMAPPED;
2352 
2353 	bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2354 			  buf_flags, NULL);
2355 	if (!bp)
2356 		return XFS_ERROR(ENOMEM);
2357 	error = bp->b_error;
2358 	if (error) {
2359 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2360 		xfs_buf_relse(bp);
2361 		return error;
2362 	}
2363 
2364 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2365 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2366 	} else if (buf_f->blf_flags &
2367 		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2368 		xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2369 	} else {
2370 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2371 	}
2372 	if (error)
2373 		return XFS_ERROR(error);
2374 
2375 	/*
2376 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2377 	 * slower when taking into account all the buffers to be flushed.
2378 	 *
2379 	 * Also make sure that only inode buffers with good sizes stay in
2380 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2381 	 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2382 	 * buffers in the log can be a different size if the log was generated
2383 	 * by an older kernel using unclustered inode buffers or a newer kernel
2384 	 * running with a different inode cluster size.  Regardless, if the
2385 	 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2386 	 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2387 	 * the buffer out of the buffer cache so that the buffer won't
2388 	 * overlap with future reads of those inodes.
2389 	 */
2390 	if (XFS_DINODE_MAGIC ==
2391 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2392 	    (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2393 			(__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2394 		xfs_buf_stale(bp);
2395 		error = xfs_bwrite(bp);
2396 	} else {
2397 		ASSERT(bp->b_target->bt_mount == mp);
2398 		bp->b_iodone = xlog_recover_iodone;
2399 		xfs_buf_delwri_queue(bp, buffer_list);
2400 	}
2401 
2402 	xfs_buf_relse(bp);
2403 	return error;
2404 }
2405 
2406 STATIC int
2407 xlog_recover_inode_pass2(
2408 	struct xlog			*log,
2409 	struct list_head		*buffer_list,
2410 	struct xlog_recover_item	*item)
2411 {
2412 	xfs_inode_log_format_t	*in_f;
2413 	xfs_mount_t		*mp = log->l_mp;
2414 	xfs_buf_t		*bp;
2415 	xfs_dinode_t		*dip;
2416 	int			len;
2417 	xfs_caddr_t		src;
2418 	xfs_caddr_t		dest;
2419 	int			error;
2420 	int			attr_index;
2421 	uint			fields;
2422 	xfs_icdinode_t		*dicp;
2423 	uint			isize;
2424 	int			need_free = 0;
2425 
2426 	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2427 		in_f = item->ri_buf[0].i_addr;
2428 	} else {
2429 		in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2430 		need_free = 1;
2431 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2432 		if (error)
2433 			goto error;
2434 	}
2435 
2436 	/*
2437 	 * Inode buffers can be freed, look out for it,
2438 	 * and do not replay the inode.
2439 	 */
2440 	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2441 					in_f->ilf_len, 0)) {
2442 		error = 0;
2443 		trace_xfs_log_recover_inode_cancel(log, in_f);
2444 		goto error;
2445 	}
2446 	trace_xfs_log_recover_inode_recover(log, in_f);
2447 
2448 	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2449 			  &xfs_inode_buf_ops);
2450 	if (!bp) {
2451 		error = ENOMEM;
2452 		goto error;
2453 	}
2454 	error = bp->b_error;
2455 	if (error) {
2456 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2457 		xfs_buf_relse(bp);
2458 		goto error;
2459 	}
2460 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2461 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2462 
2463 	/*
2464 	 * Make sure the place we're flushing out to really looks
2465 	 * like an inode!
2466 	 */
2467 	if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2468 		xfs_buf_relse(bp);
2469 		xfs_alert(mp,
2470 	"%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2471 			__func__, dip, bp, in_f->ilf_ino);
2472 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2473 				 XFS_ERRLEVEL_LOW, mp);
2474 		error = EFSCORRUPTED;
2475 		goto error;
2476 	}
2477 	dicp = item->ri_buf[1].i_addr;
2478 	if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2479 		xfs_buf_relse(bp);
2480 		xfs_alert(mp,
2481 			"%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2482 			__func__, item, in_f->ilf_ino);
2483 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2484 				 XFS_ERRLEVEL_LOW, mp);
2485 		error = EFSCORRUPTED;
2486 		goto error;
2487 	}
2488 
2489 	/* Skip replay when the on disk inode is newer than the log one */
2490 	if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2491 		/*
2492 		 * Deal with the wrap case, DI_MAX_FLUSH is less
2493 		 * than smaller numbers
2494 		 */
2495 		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2496 		    dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2497 			/* do nothing */
2498 		} else {
2499 			xfs_buf_relse(bp);
2500 			trace_xfs_log_recover_inode_skip(log, in_f);
2501 			error = 0;
2502 			goto error;
2503 		}
2504 	}
2505 	/* Take the opportunity to reset the flush iteration count */
2506 	dicp->di_flushiter = 0;
2507 
2508 	if (unlikely(S_ISREG(dicp->di_mode))) {
2509 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2510 		    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2511 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2512 					 XFS_ERRLEVEL_LOW, mp, dicp);
2513 			xfs_buf_relse(bp);
2514 			xfs_alert(mp,
2515 		"%s: Bad regular inode log record, rec ptr 0x%p, "
2516 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2517 				__func__, item, dip, bp, in_f->ilf_ino);
2518 			error = EFSCORRUPTED;
2519 			goto error;
2520 		}
2521 	} else if (unlikely(S_ISDIR(dicp->di_mode))) {
2522 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2523 		    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2524 		    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2525 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2526 					     XFS_ERRLEVEL_LOW, mp, dicp);
2527 			xfs_buf_relse(bp);
2528 			xfs_alert(mp,
2529 		"%s: Bad dir inode log record, rec ptr 0x%p, "
2530 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2531 				__func__, item, dip, bp, in_f->ilf_ino);
2532 			error = EFSCORRUPTED;
2533 			goto error;
2534 		}
2535 	}
2536 	if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2537 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2538 				     XFS_ERRLEVEL_LOW, mp, dicp);
2539 		xfs_buf_relse(bp);
2540 		xfs_alert(mp,
2541 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2542 	"dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2543 			__func__, item, dip, bp, in_f->ilf_ino,
2544 			dicp->di_nextents + dicp->di_anextents,
2545 			dicp->di_nblocks);
2546 		error = EFSCORRUPTED;
2547 		goto error;
2548 	}
2549 	if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2550 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2551 				     XFS_ERRLEVEL_LOW, mp, dicp);
2552 		xfs_buf_relse(bp);
2553 		xfs_alert(mp,
2554 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2555 	"dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2556 			item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2557 		error = EFSCORRUPTED;
2558 		goto error;
2559 	}
2560 	isize = xfs_icdinode_size(dicp->di_version);
2561 	if (unlikely(item->ri_buf[1].i_len > isize)) {
2562 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2563 				     XFS_ERRLEVEL_LOW, mp, dicp);
2564 		xfs_buf_relse(bp);
2565 		xfs_alert(mp,
2566 			"%s: Bad inode log record length %d, rec ptr 0x%p",
2567 			__func__, item->ri_buf[1].i_len, item);
2568 		error = EFSCORRUPTED;
2569 		goto error;
2570 	}
2571 
2572 	/* The core is in in-core format */
2573 	xfs_dinode_to_disk(dip, dicp);
2574 
2575 	/* the rest is in on-disk format */
2576 	if (item->ri_buf[1].i_len > isize) {
2577 		memcpy((char *)dip + isize,
2578 			item->ri_buf[1].i_addr + isize,
2579 			item->ri_buf[1].i_len - isize);
2580 	}
2581 
2582 	fields = in_f->ilf_fields;
2583 	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2584 	case XFS_ILOG_DEV:
2585 		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2586 		break;
2587 	case XFS_ILOG_UUID:
2588 		memcpy(XFS_DFORK_DPTR(dip),
2589 		       &in_f->ilf_u.ilfu_uuid,
2590 		       sizeof(uuid_t));
2591 		break;
2592 	}
2593 
2594 	if (in_f->ilf_size == 2)
2595 		goto write_inode_buffer;
2596 	len = item->ri_buf[2].i_len;
2597 	src = item->ri_buf[2].i_addr;
2598 	ASSERT(in_f->ilf_size <= 4);
2599 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2600 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
2601 	       (len == in_f->ilf_dsize));
2602 
2603 	switch (fields & XFS_ILOG_DFORK) {
2604 	case XFS_ILOG_DDATA:
2605 	case XFS_ILOG_DEXT:
2606 		memcpy(XFS_DFORK_DPTR(dip), src, len);
2607 		break;
2608 
2609 	case XFS_ILOG_DBROOT:
2610 		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2611 				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2612 				 XFS_DFORK_DSIZE(dip, mp));
2613 		break;
2614 
2615 	default:
2616 		/*
2617 		 * There are no data fork flags set.
2618 		 */
2619 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
2620 		break;
2621 	}
2622 
2623 	/*
2624 	 * If we logged any attribute data, recover it.  There may or
2625 	 * may not have been any other non-core data logged in this
2626 	 * transaction.
2627 	 */
2628 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2629 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2630 			attr_index = 3;
2631 		} else {
2632 			attr_index = 2;
2633 		}
2634 		len = item->ri_buf[attr_index].i_len;
2635 		src = item->ri_buf[attr_index].i_addr;
2636 		ASSERT(len == in_f->ilf_asize);
2637 
2638 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2639 		case XFS_ILOG_ADATA:
2640 		case XFS_ILOG_AEXT:
2641 			dest = XFS_DFORK_APTR(dip);
2642 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2643 			memcpy(dest, src, len);
2644 			break;
2645 
2646 		case XFS_ILOG_ABROOT:
2647 			dest = XFS_DFORK_APTR(dip);
2648 			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2649 					 len, (xfs_bmdr_block_t*)dest,
2650 					 XFS_DFORK_ASIZE(dip, mp));
2651 			break;
2652 
2653 		default:
2654 			xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2655 			ASSERT(0);
2656 			xfs_buf_relse(bp);
2657 			error = EIO;
2658 			goto error;
2659 		}
2660 	}
2661 
2662 write_inode_buffer:
2663 	/* re-generate the checksum. */
2664 	xfs_dinode_calc_crc(log->l_mp, dip);
2665 
2666 	ASSERT(bp->b_target->bt_mount == mp);
2667 	bp->b_iodone = xlog_recover_iodone;
2668 	xfs_buf_delwri_queue(bp, buffer_list);
2669 	xfs_buf_relse(bp);
2670 error:
2671 	if (need_free)
2672 		kmem_free(in_f);
2673 	return XFS_ERROR(error);
2674 }
2675 
2676 /*
2677  * Recover QUOTAOFF records. We simply make a note of it in the xlog
2678  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2679  * of that type.
2680  */
2681 STATIC int
2682 xlog_recover_quotaoff_pass1(
2683 	struct xlog			*log,
2684 	struct xlog_recover_item	*item)
2685 {
2686 	xfs_qoff_logformat_t	*qoff_f = item->ri_buf[0].i_addr;
2687 	ASSERT(qoff_f);
2688 
2689 	/*
2690 	 * The logitem format's flag tells us if this was user quotaoff,
2691 	 * group/project quotaoff or both.
2692 	 */
2693 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2694 		log->l_quotaoffs_flag |= XFS_DQ_USER;
2695 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2696 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2697 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2698 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2699 
2700 	return (0);
2701 }
2702 
2703 /*
2704  * Recover a dquot record
2705  */
2706 STATIC int
2707 xlog_recover_dquot_pass2(
2708 	struct xlog			*log,
2709 	struct list_head		*buffer_list,
2710 	struct xlog_recover_item	*item)
2711 {
2712 	xfs_mount_t		*mp = log->l_mp;
2713 	xfs_buf_t		*bp;
2714 	struct xfs_disk_dquot	*ddq, *recddq;
2715 	int			error;
2716 	xfs_dq_logformat_t	*dq_f;
2717 	uint			type;
2718 
2719 
2720 	/*
2721 	 * Filesystems are required to send in quota flags at mount time.
2722 	 */
2723 	if (mp->m_qflags == 0)
2724 		return (0);
2725 
2726 	recddq = item->ri_buf[1].i_addr;
2727 	if (recddq == NULL) {
2728 		xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2729 		return XFS_ERROR(EIO);
2730 	}
2731 	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2732 		xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2733 			item->ri_buf[1].i_len, __func__);
2734 		return XFS_ERROR(EIO);
2735 	}
2736 
2737 	/*
2738 	 * This type of quotas was turned off, so ignore this record.
2739 	 */
2740 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2741 	ASSERT(type);
2742 	if (log->l_quotaoffs_flag & type)
2743 		return (0);
2744 
2745 	/*
2746 	 * At this point we know that quota was _not_ turned off.
2747 	 * Since the mount flags are not indicating to us otherwise, this
2748 	 * must mean that quota is on, and the dquot needs to be replayed.
2749 	 * Remember that we may not have fully recovered the superblock yet,
2750 	 * so we can't do the usual trick of looking at the SB quota bits.
2751 	 *
2752 	 * The other possibility, of course, is that the quota subsystem was
2753 	 * removed since the last mount - ENOSYS.
2754 	 */
2755 	dq_f = item->ri_buf[0].i_addr;
2756 	ASSERT(dq_f);
2757 	error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2758 			   "xlog_recover_dquot_pass2 (log copy)");
2759 	if (error)
2760 		return XFS_ERROR(EIO);
2761 	ASSERT(dq_f->qlf_len == 1);
2762 
2763 	error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
2764 				   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
2765 				   NULL);
2766 	if (error)
2767 		return error;
2768 
2769 	ASSERT(bp);
2770 	ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2771 
2772 	/*
2773 	 * At least the magic num portion should be on disk because this
2774 	 * was among a chunk of dquots created earlier, and we did some
2775 	 * minimal initialization then.
2776 	 */
2777 	error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2778 			   "xlog_recover_dquot_pass2");
2779 	if (error) {
2780 		xfs_buf_relse(bp);
2781 		return XFS_ERROR(EIO);
2782 	}
2783 
2784 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
2785 
2786 	ASSERT(dq_f->qlf_size == 2);
2787 	ASSERT(bp->b_target->bt_mount == mp);
2788 	bp->b_iodone = xlog_recover_iodone;
2789 	xfs_buf_delwri_queue(bp, buffer_list);
2790 	xfs_buf_relse(bp);
2791 
2792 	return (0);
2793 }
2794 
2795 /*
2796  * This routine is called to create an in-core extent free intent
2797  * item from the efi format structure which was logged on disk.
2798  * It allocates an in-core efi, copies the extents from the format
2799  * structure into it, and adds the efi to the AIL with the given
2800  * LSN.
2801  */
2802 STATIC int
2803 xlog_recover_efi_pass2(
2804 	struct xlog			*log,
2805 	struct xlog_recover_item	*item,
2806 	xfs_lsn_t			lsn)
2807 {
2808 	int			error;
2809 	xfs_mount_t		*mp = log->l_mp;
2810 	xfs_efi_log_item_t	*efip;
2811 	xfs_efi_log_format_t	*efi_formatp;
2812 
2813 	efi_formatp = item->ri_buf[0].i_addr;
2814 
2815 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2816 	if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2817 					 &(efip->efi_format)))) {
2818 		xfs_efi_item_free(efip);
2819 		return error;
2820 	}
2821 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2822 
2823 	spin_lock(&log->l_ailp->xa_lock);
2824 	/*
2825 	 * xfs_trans_ail_update() drops the AIL lock.
2826 	 */
2827 	xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
2828 	return 0;
2829 }
2830 
2831 
2832 /*
2833  * This routine is called when an efd format structure is found in
2834  * a committed transaction in the log.  It's purpose is to cancel
2835  * the corresponding efi if it was still in the log.  To do this
2836  * it searches the AIL for the efi with an id equal to that in the
2837  * efd format structure.  If we find it, we remove the efi from the
2838  * AIL and free it.
2839  */
2840 STATIC int
2841 xlog_recover_efd_pass2(
2842 	struct xlog			*log,
2843 	struct xlog_recover_item	*item)
2844 {
2845 	xfs_efd_log_format_t	*efd_formatp;
2846 	xfs_efi_log_item_t	*efip = NULL;
2847 	xfs_log_item_t		*lip;
2848 	__uint64_t		efi_id;
2849 	struct xfs_ail_cursor	cur;
2850 	struct xfs_ail		*ailp = log->l_ailp;
2851 
2852 	efd_formatp = item->ri_buf[0].i_addr;
2853 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2854 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2855 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2856 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2857 	efi_id = efd_formatp->efd_efi_id;
2858 
2859 	/*
2860 	 * Search for the efi with the id in the efd format structure
2861 	 * in the AIL.
2862 	 */
2863 	spin_lock(&ailp->xa_lock);
2864 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2865 	while (lip != NULL) {
2866 		if (lip->li_type == XFS_LI_EFI) {
2867 			efip = (xfs_efi_log_item_t *)lip;
2868 			if (efip->efi_format.efi_id == efi_id) {
2869 				/*
2870 				 * xfs_trans_ail_delete() drops the
2871 				 * AIL lock.
2872 				 */
2873 				xfs_trans_ail_delete(ailp, lip,
2874 						     SHUTDOWN_CORRUPT_INCORE);
2875 				xfs_efi_item_free(efip);
2876 				spin_lock(&ailp->xa_lock);
2877 				break;
2878 			}
2879 		}
2880 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
2881 	}
2882 	xfs_trans_ail_cursor_done(ailp, &cur);
2883 	spin_unlock(&ailp->xa_lock);
2884 
2885 	return 0;
2886 }
2887 
2888 /*
2889  * Free up any resources allocated by the transaction
2890  *
2891  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2892  */
2893 STATIC void
2894 xlog_recover_free_trans(
2895 	struct xlog_recover	*trans)
2896 {
2897 	xlog_recover_item_t	*item, *n;
2898 	int			i;
2899 
2900 	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2901 		/* Free the regions in the item. */
2902 		list_del(&item->ri_list);
2903 		for (i = 0; i < item->ri_cnt; i++)
2904 			kmem_free(item->ri_buf[i].i_addr);
2905 		/* Free the item itself */
2906 		kmem_free(item->ri_buf);
2907 		kmem_free(item);
2908 	}
2909 	/* Free the transaction recover structure */
2910 	kmem_free(trans);
2911 }
2912 
2913 STATIC int
2914 xlog_recover_commit_pass1(
2915 	struct xlog			*log,
2916 	struct xlog_recover		*trans,
2917 	struct xlog_recover_item	*item)
2918 {
2919 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
2920 
2921 	switch (ITEM_TYPE(item)) {
2922 	case XFS_LI_BUF:
2923 		return xlog_recover_buffer_pass1(log, item);
2924 	case XFS_LI_QUOTAOFF:
2925 		return xlog_recover_quotaoff_pass1(log, item);
2926 	case XFS_LI_INODE:
2927 	case XFS_LI_EFI:
2928 	case XFS_LI_EFD:
2929 	case XFS_LI_DQUOT:
2930 		/* nothing to do in pass 1 */
2931 		return 0;
2932 	default:
2933 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2934 			__func__, ITEM_TYPE(item));
2935 		ASSERT(0);
2936 		return XFS_ERROR(EIO);
2937 	}
2938 }
2939 
2940 STATIC int
2941 xlog_recover_commit_pass2(
2942 	struct xlog			*log,
2943 	struct xlog_recover		*trans,
2944 	struct list_head		*buffer_list,
2945 	struct xlog_recover_item	*item)
2946 {
2947 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
2948 
2949 	switch (ITEM_TYPE(item)) {
2950 	case XFS_LI_BUF:
2951 		return xlog_recover_buffer_pass2(log, buffer_list, item);
2952 	case XFS_LI_INODE:
2953 		return xlog_recover_inode_pass2(log, buffer_list, item);
2954 	case XFS_LI_EFI:
2955 		return xlog_recover_efi_pass2(log, item, trans->r_lsn);
2956 	case XFS_LI_EFD:
2957 		return xlog_recover_efd_pass2(log, item);
2958 	case XFS_LI_DQUOT:
2959 		return xlog_recover_dquot_pass2(log, buffer_list, item);
2960 	case XFS_LI_QUOTAOFF:
2961 		/* nothing to do in pass2 */
2962 		return 0;
2963 	default:
2964 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2965 			__func__, ITEM_TYPE(item));
2966 		ASSERT(0);
2967 		return XFS_ERROR(EIO);
2968 	}
2969 }
2970 
2971 /*
2972  * Perform the transaction.
2973  *
2974  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2975  * EFIs and EFDs get queued up by adding entries into the AIL for them.
2976  */
2977 STATIC int
2978 xlog_recover_commit_trans(
2979 	struct xlog		*log,
2980 	struct xlog_recover	*trans,
2981 	int			pass)
2982 {
2983 	int			error = 0, error2;
2984 	xlog_recover_item_t	*item;
2985 	LIST_HEAD		(buffer_list);
2986 
2987 	hlist_del(&trans->r_list);
2988 
2989 	error = xlog_recover_reorder_trans(log, trans, pass);
2990 	if (error)
2991 		return error;
2992 
2993 	list_for_each_entry(item, &trans->r_itemq, ri_list) {
2994 		switch (pass) {
2995 		case XLOG_RECOVER_PASS1:
2996 			error = xlog_recover_commit_pass1(log, trans, item);
2997 			break;
2998 		case XLOG_RECOVER_PASS2:
2999 			error = xlog_recover_commit_pass2(log, trans,
3000 							  &buffer_list, item);
3001 			break;
3002 		default:
3003 			ASSERT(0);
3004 		}
3005 
3006 		if (error)
3007 			goto out;
3008 	}
3009 
3010 	xlog_recover_free_trans(trans);
3011 
3012 out:
3013 	error2 = xfs_buf_delwri_submit(&buffer_list);
3014 	return error ? error : error2;
3015 }
3016 
3017 STATIC int
3018 xlog_recover_unmount_trans(
3019 	struct xlog		*log,
3020 	struct xlog_recover	*trans)
3021 {
3022 	/* Do nothing now */
3023 	xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
3024 	return 0;
3025 }
3026 
3027 /*
3028  * There are two valid states of the r_state field.  0 indicates that the
3029  * transaction structure is in a normal state.  We have either seen the
3030  * start of the transaction or the last operation we added was not a partial
3031  * operation.  If the last operation we added to the transaction was a
3032  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3033  *
3034  * NOTE: skip LRs with 0 data length.
3035  */
3036 STATIC int
3037 xlog_recover_process_data(
3038 	struct xlog		*log,
3039 	struct hlist_head	rhash[],
3040 	struct xlog_rec_header	*rhead,
3041 	xfs_caddr_t		dp,
3042 	int			pass)
3043 {
3044 	xfs_caddr_t		lp;
3045 	int			num_logops;
3046 	xlog_op_header_t	*ohead;
3047 	xlog_recover_t		*trans;
3048 	xlog_tid_t		tid;
3049 	int			error;
3050 	unsigned long		hash;
3051 	uint			flags;
3052 
3053 	lp = dp + be32_to_cpu(rhead->h_len);
3054 	num_logops = be32_to_cpu(rhead->h_num_logops);
3055 
3056 	/* check the log format matches our own - else we can't recover */
3057 	if (xlog_header_check_recover(log->l_mp, rhead))
3058 		return (XFS_ERROR(EIO));
3059 
3060 	while ((dp < lp) && num_logops) {
3061 		ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
3062 		ohead = (xlog_op_header_t *)dp;
3063 		dp += sizeof(xlog_op_header_t);
3064 		if (ohead->oh_clientid != XFS_TRANSACTION &&
3065 		    ohead->oh_clientid != XFS_LOG) {
3066 			xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3067 					__func__, ohead->oh_clientid);
3068 			ASSERT(0);
3069 			return (XFS_ERROR(EIO));
3070 		}
3071 		tid = be32_to_cpu(ohead->oh_tid);
3072 		hash = XLOG_RHASH(tid);
3073 		trans = xlog_recover_find_tid(&rhash[hash], tid);
3074 		if (trans == NULL) {		   /* not found; add new tid */
3075 			if (ohead->oh_flags & XLOG_START_TRANS)
3076 				xlog_recover_new_tid(&rhash[hash], tid,
3077 					be64_to_cpu(rhead->h_lsn));
3078 		} else {
3079 			if (dp + be32_to_cpu(ohead->oh_len) > lp) {
3080 				xfs_warn(log->l_mp, "%s: bad length 0x%x",
3081 					__func__, be32_to_cpu(ohead->oh_len));
3082 				WARN_ON(1);
3083 				return (XFS_ERROR(EIO));
3084 			}
3085 			flags = ohead->oh_flags & ~XLOG_END_TRANS;
3086 			if (flags & XLOG_WAS_CONT_TRANS)
3087 				flags &= ~XLOG_CONTINUE_TRANS;
3088 			switch (flags) {
3089 			case XLOG_COMMIT_TRANS:
3090 				error = xlog_recover_commit_trans(log,
3091 								trans, pass);
3092 				break;
3093 			case XLOG_UNMOUNT_TRANS:
3094 				error = xlog_recover_unmount_trans(log, trans);
3095 				break;
3096 			case XLOG_WAS_CONT_TRANS:
3097 				error = xlog_recover_add_to_cont_trans(log,
3098 						trans, dp,
3099 						be32_to_cpu(ohead->oh_len));
3100 				break;
3101 			case XLOG_START_TRANS:
3102 				xfs_warn(log->l_mp, "%s: bad transaction",
3103 					__func__);
3104 				ASSERT(0);
3105 				error = XFS_ERROR(EIO);
3106 				break;
3107 			case 0:
3108 			case XLOG_CONTINUE_TRANS:
3109 				error = xlog_recover_add_to_trans(log, trans,
3110 						dp, be32_to_cpu(ohead->oh_len));
3111 				break;
3112 			default:
3113 				xfs_warn(log->l_mp, "%s: bad flag 0x%x",
3114 					__func__, flags);
3115 				ASSERT(0);
3116 				error = XFS_ERROR(EIO);
3117 				break;
3118 			}
3119 			if (error)
3120 				return error;
3121 		}
3122 		dp += be32_to_cpu(ohead->oh_len);
3123 		num_logops--;
3124 	}
3125 	return 0;
3126 }
3127 
3128 /*
3129  * Process an extent free intent item that was recovered from
3130  * the log.  We need to free the extents that it describes.
3131  */
3132 STATIC int
3133 xlog_recover_process_efi(
3134 	xfs_mount_t		*mp,
3135 	xfs_efi_log_item_t	*efip)
3136 {
3137 	xfs_efd_log_item_t	*efdp;
3138 	xfs_trans_t		*tp;
3139 	int			i;
3140 	int			error = 0;
3141 	xfs_extent_t		*extp;
3142 	xfs_fsblock_t		startblock_fsb;
3143 
3144 	ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
3145 
3146 	/*
3147 	 * First check the validity of the extents described by the
3148 	 * EFI.  If any are bad, then assume that all are bad and
3149 	 * just toss the EFI.
3150 	 */
3151 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3152 		extp = &(efip->efi_format.efi_extents[i]);
3153 		startblock_fsb = XFS_BB_TO_FSB(mp,
3154 				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
3155 		if ((startblock_fsb == 0) ||
3156 		    (extp->ext_len == 0) ||
3157 		    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3158 		    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3159 			/*
3160 			 * This will pull the EFI from the AIL and
3161 			 * free the memory associated with it.
3162 			 */
3163 			set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3164 			xfs_efi_release(efip, efip->efi_format.efi_nextents);
3165 			return XFS_ERROR(EIO);
3166 		}
3167 	}
3168 
3169 	tp = xfs_trans_alloc(mp, 0);
3170 	error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3171 	if (error)
3172 		goto abort_error;
3173 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3174 
3175 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3176 		extp = &(efip->efi_format.efi_extents[i]);
3177 		error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3178 		if (error)
3179 			goto abort_error;
3180 		xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3181 					 extp->ext_len);
3182 	}
3183 
3184 	set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3185 	error = xfs_trans_commit(tp, 0);
3186 	return error;
3187 
3188 abort_error:
3189 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3190 	return error;
3191 }
3192 
3193 /*
3194  * When this is called, all of the EFIs which did not have
3195  * corresponding EFDs should be in the AIL.  What we do now
3196  * is free the extents associated with each one.
3197  *
3198  * Since we process the EFIs in normal transactions, they
3199  * will be removed at some point after the commit.  This prevents
3200  * us from just walking down the list processing each one.
3201  * We'll use a flag in the EFI to skip those that we've already
3202  * processed and use the AIL iteration mechanism's generation
3203  * count to try to speed this up at least a bit.
3204  *
3205  * When we start, we know that the EFIs are the only things in
3206  * the AIL.  As we process them, however, other items are added
3207  * to the AIL.  Since everything added to the AIL must come after
3208  * everything already in the AIL, we stop processing as soon as
3209  * we see something other than an EFI in the AIL.
3210  */
3211 STATIC int
3212 xlog_recover_process_efis(
3213 	struct xlog	*log)
3214 {
3215 	xfs_log_item_t		*lip;
3216 	xfs_efi_log_item_t	*efip;
3217 	int			error = 0;
3218 	struct xfs_ail_cursor	cur;
3219 	struct xfs_ail		*ailp;
3220 
3221 	ailp = log->l_ailp;
3222 	spin_lock(&ailp->xa_lock);
3223 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3224 	while (lip != NULL) {
3225 		/*
3226 		 * We're done when we see something other than an EFI.
3227 		 * There should be no EFIs left in the AIL now.
3228 		 */
3229 		if (lip->li_type != XFS_LI_EFI) {
3230 #ifdef DEBUG
3231 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3232 				ASSERT(lip->li_type != XFS_LI_EFI);
3233 #endif
3234 			break;
3235 		}
3236 
3237 		/*
3238 		 * Skip EFIs that we've already processed.
3239 		 */
3240 		efip = (xfs_efi_log_item_t *)lip;
3241 		if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3242 			lip = xfs_trans_ail_cursor_next(ailp, &cur);
3243 			continue;
3244 		}
3245 
3246 		spin_unlock(&ailp->xa_lock);
3247 		error = xlog_recover_process_efi(log->l_mp, efip);
3248 		spin_lock(&ailp->xa_lock);
3249 		if (error)
3250 			goto out;
3251 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3252 	}
3253 out:
3254 	xfs_trans_ail_cursor_done(ailp, &cur);
3255 	spin_unlock(&ailp->xa_lock);
3256 	return error;
3257 }
3258 
3259 /*
3260  * This routine performs a transaction to null out a bad inode pointer
3261  * in an agi unlinked inode hash bucket.
3262  */
3263 STATIC void
3264 xlog_recover_clear_agi_bucket(
3265 	xfs_mount_t	*mp,
3266 	xfs_agnumber_t	agno,
3267 	int		bucket)
3268 {
3269 	xfs_trans_t	*tp;
3270 	xfs_agi_t	*agi;
3271 	xfs_buf_t	*agibp;
3272 	int		offset;
3273 	int		error;
3274 
3275 	tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3276 	error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3277 				  0, 0, 0);
3278 	if (error)
3279 		goto out_abort;
3280 
3281 	error = xfs_read_agi(mp, tp, agno, &agibp);
3282 	if (error)
3283 		goto out_abort;
3284 
3285 	agi = XFS_BUF_TO_AGI(agibp);
3286 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3287 	offset = offsetof(xfs_agi_t, agi_unlinked) +
3288 		 (sizeof(xfs_agino_t) * bucket);
3289 	xfs_trans_log_buf(tp, agibp, offset,
3290 			  (offset + sizeof(xfs_agino_t) - 1));
3291 
3292 	error = xfs_trans_commit(tp, 0);
3293 	if (error)
3294 		goto out_error;
3295 	return;
3296 
3297 out_abort:
3298 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3299 out_error:
3300 	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3301 	return;
3302 }
3303 
3304 STATIC xfs_agino_t
3305 xlog_recover_process_one_iunlink(
3306 	struct xfs_mount		*mp,
3307 	xfs_agnumber_t			agno,
3308 	xfs_agino_t			agino,
3309 	int				bucket)
3310 {
3311 	struct xfs_buf			*ibp;
3312 	struct xfs_dinode		*dip;
3313 	struct xfs_inode		*ip;
3314 	xfs_ino_t			ino;
3315 	int				error;
3316 
3317 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
3318 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3319 	if (error)
3320 		goto fail;
3321 
3322 	/*
3323 	 * Get the on disk inode to find the next inode in the bucket.
3324 	 */
3325 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
3326 	if (error)
3327 		goto fail_iput;
3328 
3329 	ASSERT(ip->i_d.di_nlink == 0);
3330 	ASSERT(ip->i_d.di_mode != 0);
3331 
3332 	/* setup for the next pass */
3333 	agino = be32_to_cpu(dip->di_next_unlinked);
3334 	xfs_buf_relse(ibp);
3335 
3336 	/*
3337 	 * Prevent any DMAPI event from being sent when the reference on
3338 	 * the inode is dropped.
3339 	 */
3340 	ip->i_d.di_dmevmask = 0;
3341 
3342 	IRELE(ip);
3343 	return agino;
3344 
3345  fail_iput:
3346 	IRELE(ip);
3347  fail:
3348 	/*
3349 	 * We can't read in the inode this bucket points to, or this inode
3350 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
3351 	 * some inodes and space, but at least we won't hang.
3352 	 *
3353 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3354 	 * clear the inode pointer in the bucket.
3355 	 */
3356 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
3357 	return NULLAGINO;
3358 }
3359 
3360 /*
3361  * xlog_iunlink_recover
3362  *
3363  * This is called during recovery to process any inodes which
3364  * we unlinked but not freed when the system crashed.  These
3365  * inodes will be on the lists in the AGI blocks.  What we do
3366  * here is scan all the AGIs and fully truncate and free any
3367  * inodes found on the lists.  Each inode is removed from the
3368  * lists when it has been fully truncated and is freed.  The
3369  * freeing of the inode and its removal from the list must be
3370  * atomic.
3371  */
3372 STATIC void
3373 xlog_recover_process_iunlinks(
3374 	struct xlog	*log)
3375 {
3376 	xfs_mount_t	*mp;
3377 	xfs_agnumber_t	agno;
3378 	xfs_agi_t	*agi;
3379 	xfs_buf_t	*agibp;
3380 	xfs_agino_t	agino;
3381 	int		bucket;
3382 	int		error;
3383 	uint		mp_dmevmask;
3384 
3385 	mp = log->l_mp;
3386 
3387 	/*
3388 	 * Prevent any DMAPI event from being sent while in this function.
3389 	 */
3390 	mp_dmevmask = mp->m_dmevmask;
3391 	mp->m_dmevmask = 0;
3392 
3393 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3394 		/*
3395 		 * Find the agi for this ag.
3396 		 */
3397 		error = xfs_read_agi(mp, NULL, agno, &agibp);
3398 		if (error) {
3399 			/*
3400 			 * AGI is b0rked. Don't process it.
3401 			 *
3402 			 * We should probably mark the filesystem as corrupt
3403 			 * after we've recovered all the ag's we can....
3404 			 */
3405 			continue;
3406 		}
3407 		/*
3408 		 * Unlock the buffer so that it can be acquired in the normal
3409 		 * course of the transaction to truncate and free each inode.
3410 		 * Because we are not racing with anyone else here for the AGI
3411 		 * buffer, we don't even need to hold it locked to read the
3412 		 * initial unlinked bucket entries out of the buffer. We keep
3413 		 * buffer reference though, so that it stays pinned in memory
3414 		 * while we need the buffer.
3415 		 */
3416 		agi = XFS_BUF_TO_AGI(agibp);
3417 		xfs_buf_unlock(agibp);
3418 
3419 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3420 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3421 			while (agino != NULLAGINO) {
3422 				agino = xlog_recover_process_one_iunlink(mp,
3423 							agno, agino, bucket);
3424 			}
3425 		}
3426 		xfs_buf_rele(agibp);
3427 	}
3428 
3429 	mp->m_dmevmask = mp_dmevmask;
3430 }
3431 
3432 /*
3433  * Upack the log buffer data and crc check it. If the check fails, issue a
3434  * warning if and only if the CRC in the header is non-zero. This makes the
3435  * check an advisory warning, and the zero CRC check will prevent failure
3436  * warnings from being emitted when upgrading the kernel from one that does not
3437  * add CRCs by default.
3438  *
3439  * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
3440  * corruption failure
3441  */
3442 STATIC int
3443 xlog_unpack_data_crc(
3444 	struct xlog_rec_header	*rhead,
3445 	xfs_caddr_t		dp,
3446 	struct xlog		*log)
3447 {
3448 	__le32			crc;
3449 
3450 	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
3451 	if (crc != rhead->h_crc) {
3452 		if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
3453 			xfs_alert(log->l_mp,
3454 		"log record CRC mismatch: found 0x%x, expected 0x%x.\n",
3455 					le32_to_cpu(rhead->h_crc),
3456 					le32_to_cpu(crc));
3457 			xfs_hex_dump(dp, 32);
3458 		}
3459 
3460 		/*
3461 		 * If we've detected a log record corruption, then we can't
3462 		 * recover past this point. Abort recovery if we are enforcing
3463 		 * CRC protection by punting an error back up the stack.
3464 		 */
3465 		if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
3466 			return EFSCORRUPTED;
3467 	}
3468 
3469 	return 0;
3470 }
3471 
3472 STATIC int
3473 xlog_unpack_data(
3474 	struct xlog_rec_header	*rhead,
3475 	xfs_caddr_t		dp,
3476 	struct xlog		*log)
3477 {
3478 	int			i, j, k;
3479 	int			error;
3480 
3481 	error = xlog_unpack_data_crc(rhead, dp, log);
3482 	if (error)
3483 		return error;
3484 
3485 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3486 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3487 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3488 		dp += BBSIZE;
3489 	}
3490 
3491 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3492 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3493 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3494 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3495 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3496 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3497 			dp += BBSIZE;
3498 		}
3499 	}
3500 
3501 	return 0;
3502 }
3503 
3504 STATIC int
3505 xlog_valid_rec_header(
3506 	struct xlog		*log,
3507 	struct xlog_rec_header	*rhead,
3508 	xfs_daddr_t		blkno)
3509 {
3510 	int			hlen;
3511 
3512 	if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
3513 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3514 				XFS_ERRLEVEL_LOW, log->l_mp);
3515 		return XFS_ERROR(EFSCORRUPTED);
3516 	}
3517 	if (unlikely(
3518 	    (!rhead->h_version ||
3519 	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3520 		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
3521 			__func__, be32_to_cpu(rhead->h_version));
3522 		return XFS_ERROR(EIO);
3523 	}
3524 
3525 	/* LR body must have data or it wouldn't have been written */
3526 	hlen = be32_to_cpu(rhead->h_len);
3527 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3528 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3529 				XFS_ERRLEVEL_LOW, log->l_mp);
3530 		return XFS_ERROR(EFSCORRUPTED);
3531 	}
3532 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3533 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3534 				XFS_ERRLEVEL_LOW, log->l_mp);
3535 		return XFS_ERROR(EFSCORRUPTED);
3536 	}
3537 	return 0;
3538 }
3539 
3540 /*
3541  * Read the log from tail to head and process the log records found.
3542  * Handle the two cases where the tail and head are in the same cycle
3543  * and where the active portion of the log wraps around the end of
3544  * the physical log separately.  The pass parameter is passed through
3545  * to the routines called to process the data and is not looked at
3546  * here.
3547  */
3548 STATIC int
3549 xlog_do_recovery_pass(
3550 	struct xlog		*log,
3551 	xfs_daddr_t		head_blk,
3552 	xfs_daddr_t		tail_blk,
3553 	int			pass)
3554 {
3555 	xlog_rec_header_t	*rhead;
3556 	xfs_daddr_t		blk_no;
3557 	xfs_caddr_t		offset;
3558 	xfs_buf_t		*hbp, *dbp;
3559 	int			error = 0, h_size;
3560 	int			bblks, split_bblks;
3561 	int			hblks, split_hblks, wrapped_hblks;
3562 	struct hlist_head	rhash[XLOG_RHASH_SIZE];
3563 
3564 	ASSERT(head_blk != tail_blk);
3565 
3566 	/*
3567 	 * Read the header of the tail block and get the iclog buffer size from
3568 	 * h_size.  Use this to tell how many sectors make up the log header.
3569 	 */
3570 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3571 		/*
3572 		 * When using variable length iclogs, read first sector of
3573 		 * iclog header and extract the header size from it.  Get a
3574 		 * new hbp that is the correct size.
3575 		 */
3576 		hbp = xlog_get_bp(log, 1);
3577 		if (!hbp)
3578 			return ENOMEM;
3579 
3580 		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3581 		if (error)
3582 			goto bread_err1;
3583 
3584 		rhead = (xlog_rec_header_t *)offset;
3585 		error = xlog_valid_rec_header(log, rhead, tail_blk);
3586 		if (error)
3587 			goto bread_err1;
3588 		h_size = be32_to_cpu(rhead->h_size);
3589 		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3590 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3591 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3592 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
3593 				hblks++;
3594 			xlog_put_bp(hbp);
3595 			hbp = xlog_get_bp(log, hblks);
3596 		} else {
3597 			hblks = 1;
3598 		}
3599 	} else {
3600 		ASSERT(log->l_sectBBsize == 1);
3601 		hblks = 1;
3602 		hbp = xlog_get_bp(log, 1);
3603 		h_size = XLOG_BIG_RECORD_BSIZE;
3604 	}
3605 
3606 	if (!hbp)
3607 		return ENOMEM;
3608 	dbp = xlog_get_bp(log, BTOBB(h_size));
3609 	if (!dbp) {
3610 		xlog_put_bp(hbp);
3611 		return ENOMEM;
3612 	}
3613 
3614 	memset(rhash, 0, sizeof(rhash));
3615 	if (tail_blk <= head_blk) {
3616 		for (blk_no = tail_blk; blk_no < head_blk; ) {
3617 			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3618 			if (error)
3619 				goto bread_err2;
3620 
3621 			rhead = (xlog_rec_header_t *)offset;
3622 			error = xlog_valid_rec_header(log, rhead, blk_no);
3623 			if (error)
3624 				goto bread_err2;
3625 
3626 			/* blocks in data section */
3627 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3628 			error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3629 					   &offset);
3630 			if (error)
3631 				goto bread_err2;
3632 
3633 			error = xlog_unpack_data(rhead, offset, log);
3634 			if (error)
3635 				goto bread_err2;
3636 
3637 			error = xlog_recover_process_data(log,
3638 						rhash, rhead, offset, pass);
3639 			if (error)
3640 				goto bread_err2;
3641 			blk_no += bblks + hblks;
3642 		}
3643 	} else {
3644 		/*
3645 		 * Perform recovery around the end of the physical log.
3646 		 * When the head is not on the same cycle number as the tail,
3647 		 * we can't do a sequential recovery as above.
3648 		 */
3649 		blk_no = tail_blk;
3650 		while (blk_no < log->l_logBBsize) {
3651 			/*
3652 			 * Check for header wrapping around physical end-of-log
3653 			 */
3654 			offset = hbp->b_addr;
3655 			split_hblks = 0;
3656 			wrapped_hblks = 0;
3657 			if (blk_no + hblks <= log->l_logBBsize) {
3658 				/* Read header in one read */
3659 				error = xlog_bread(log, blk_no, hblks, hbp,
3660 						   &offset);
3661 				if (error)
3662 					goto bread_err2;
3663 			} else {
3664 				/* This LR is split across physical log end */
3665 				if (blk_no != log->l_logBBsize) {
3666 					/* some data before physical log end */
3667 					ASSERT(blk_no <= INT_MAX);
3668 					split_hblks = log->l_logBBsize - (int)blk_no;
3669 					ASSERT(split_hblks > 0);
3670 					error = xlog_bread(log, blk_no,
3671 							   split_hblks, hbp,
3672 							   &offset);
3673 					if (error)
3674 						goto bread_err2;
3675 				}
3676 
3677 				/*
3678 				 * Note: this black magic still works with
3679 				 * large sector sizes (non-512) only because:
3680 				 * - we increased the buffer size originally
3681 				 *   by 1 sector giving us enough extra space
3682 				 *   for the second read;
3683 				 * - the log start is guaranteed to be sector
3684 				 *   aligned;
3685 				 * - we read the log end (LR header start)
3686 				 *   _first_, then the log start (LR header end)
3687 				 *   - order is important.
3688 				 */
3689 				wrapped_hblks = hblks - split_hblks;
3690 				error = xlog_bread_offset(log, 0,
3691 						wrapped_hblks, hbp,
3692 						offset + BBTOB(split_hblks));
3693 				if (error)
3694 					goto bread_err2;
3695 			}
3696 			rhead = (xlog_rec_header_t *)offset;
3697 			error = xlog_valid_rec_header(log, rhead,
3698 						split_hblks ? blk_no : 0);
3699 			if (error)
3700 				goto bread_err2;
3701 
3702 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3703 			blk_no += hblks;
3704 
3705 			/* Read in data for log record */
3706 			if (blk_no + bblks <= log->l_logBBsize) {
3707 				error = xlog_bread(log, blk_no, bblks, dbp,
3708 						   &offset);
3709 				if (error)
3710 					goto bread_err2;
3711 			} else {
3712 				/* This log record is split across the
3713 				 * physical end of log */
3714 				offset = dbp->b_addr;
3715 				split_bblks = 0;
3716 				if (blk_no != log->l_logBBsize) {
3717 					/* some data is before the physical
3718 					 * end of log */
3719 					ASSERT(!wrapped_hblks);
3720 					ASSERT(blk_no <= INT_MAX);
3721 					split_bblks =
3722 						log->l_logBBsize - (int)blk_no;
3723 					ASSERT(split_bblks > 0);
3724 					error = xlog_bread(log, blk_no,
3725 							split_bblks, dbp,
3726 							&offset);
3727 					if (error)
3728 						goto bread_err2;
3729 				}
3730 
3731 				/*
3732 				 * Note: this black magic still works with
3733 				 * large sector sizes (non-512) only because:
3734 				 * - we increased the buffer size originally
3735 				 *   by 1 sector giving us enough extra space
3736 				 *   for the second read;
3737 				 * - the log start is guaranteed to be sector
3738 				 *   aligned;
3739 				 * - we read the log end (LR header start)
3740 				 *   _first_, then the log start (LR header end)
3741 				 *   - order is important.
3742 				 */
3743 				error = xlog_bread_offset(log, 0,
3744 						bblks - split_bblks, dbp,
3745 						offset + BBTOB(split_bblks));
3746 				if (error)
3747 					goto bread_err2;
3748 			}
3749 
3750 			error = xlog_unpack_data(rhead, offset, log);
3751 			if (error)
3752 				goto bread_err2;
3753 
3754 			error = xlog_recover_process_data(log, rhash,
3755 							rhead, offset, pass);
3756 			if (error)
3757 				goto bread_err2;
3758 			blk_no += bblks;
3759 		}
3760 
3761 		ASSERT(blk_no >= log->l_logBBsize);
3762 		blk_no -= log->l_logBBsize;
3763 
3764 		/* read first part of physical log */
3765 		while (blk_no < head_blk) {
3766 			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3767 			if (error)
3768 				goto bread_err2;
3769 
3770 			rhead = (xlog_rec_header_t *)offset;
3771 			error = xlog_valid_rec_header(log, rhead, blk_no);
3772 			if (error)
3773 				goto bread_err2;
3774 
3775 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3776 			error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3777 					   &offset);
3778 			if (error)
3779 				goto bread_err2;
3780 
3781 			error = xlog_unpack_data(rhead, offset, log);
3782 			if (error)
3783 				goto bread_err2;
3784 
3785 			error = xlog_recover_process_data(log, rhash,
3786 							rhead, offset, pass);
3787 			if (error)
3788 				goto bread_err2;
3789 			blk_no += bblks + hblks;
3790 		}
3791 	}
3792 
3793  bread_err2:
3794 	xlog_put_bp(dbp);
3795  bread_err1:
3796 	xlog_put_bp(hbp);
3797 	return error;
3798 }
3799 
3800 /*
3801  * Do the recovery of the log.  We actually do this in two phases.
3802  * The two passes are necessary in order to implement the function
3803  * of cancelling a record written into the log.  The first pass
3804  * determines those things which have been cancelled, and the
3805  * second pass replays log items normally except for those which
3806  * have been cancelled.  The handling of the replay and cancellations
3807  * takes place in the log item type specific routines.
3808  *
3809  * The table of items which have cancel records in the log is allocated
3810  * and freed at this level, since only here do we know when all of
3811  * the log recovery has been completed.
3812  */
3813 STATIC int
3814 xlog_do_log_recovery(
3815 	struct xlog	*log,
3816 	xfs_daddr_t	head_blk,
3817 	xfs_daddr_t	tail_blk)
3818 {
3819 	int		error, i;
3820 
3821 	ASSERT(head_blk != tail_blk);
3822 
3823 	/*
3824 	 * First do a pass to find all of the cancelled buf log items.
3825 	 * Store them in the buf_cancel_table for use in the second pass.
3826 	 */
3827 	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3828 						 sizeof(struct list_head),
3829 						 KM_SLEEP);
3830 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3831 		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3832 
3833 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3834 				      XLOG_RECOVER_PASS1);
3835 	if (error != 0) {
3836 		kmem_free(log->l_buf_cancel_table);
3837 		log->l_buf_cancel_table = NULL;
3838 		return error;
3839 	}
3840 	/*
3841 	 * Then do a second pass to actually recover the items in the log.
3842 	 * When it is complete free the table of buf cancel items.
3843 	 */
3844 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3845 				      XLOG_RECOVER_PASS2);
3846 #ifdef DEBUG
3847 	if (!error) {
3848 		int	i;
3849 
3850 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3851 			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3852 	}
3853 #endif	/* DEBUG */
3854 
3855 	kmem_free(log->l_buf_cancel_table);
3856 	log->l_buf_cancel_table = NULL;
3857 
3858 	return error;
3859 }
3860 
3861 /*
3862  * Do the actual recovery
3863  */
3864 STATIC int
3865 xlog_do_recover(
3866 	struct xlog	*log,
3867 	xfs_daddr_t	head_blk,
3868 	xfs_daddr_t	tail_blk)
3869 {
3870 	int		error;
3871 	xfs_buf_t	*bp;
3872 	xfs_sb_t	*sbp;
3873 
3874 	/*
3875 	 * First replay the images in the log.
3876 	 */
3877 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
3878 	if (error)
3879 		return error;
3880 
3881 	/*
3882 	 * If IO errors happened during recovery, bail out.
3883 	 */
3884 	if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3885 		return (EIO);
3886 	}
3887 
3888 	/*
3889 	 * We now update the tail_lsn since much of the recovery has completed
3890 	 * and there may be space available to use.  If there were no extent
3891 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
3892 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3893 	 * lsn of the last known good LR on disk.  If there are extent frees
3894 	 * or iunlinks they will have some entries in the AIL; so we look at
3895 	 * the AIL to determine how to set the tail_lsn.
3896 	 */
3897 	xlog_assign_tail_lsn(log->l_mp);
3898 
3899 	/*
3900 	 * Now that we've finished replaying all buffer and inode
3901 	 * updates, re-read in the superblock and reverify it.
3902 	 */
3903 	bp = xfs_getsb(log->l_mp, 0);
3904 	XFS_BUF_UNDONE(bp);
3905 	ASSERT(!(XFS_BUF_ISWRITE(bp)));
3906 	XFS_BUF_READ(bp);
3907 	XFS_BUF_UNASYNC(bp);
3908 	bp->b_ops = &xfs_sb_buf_ops;
3909 	xfsbdstrat(log->l_mp, bp);
3910 	error = xfs_buf_iowait(bp);
3911 	if (error) {
3912 		xfs_buf_ioerror_alert(bp, __func__);
3913 		ASSERT(0);
3914 		xfs_buf_relse(bp);
3915 		return error;
3916 	}
3917 
3918 	/* Convert superblock from on-disk format */
3919 	sbp = &log->l_mp->m_sb;
3920 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3921 	ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3922 	ASSERT(xfs_sb_good_version(sbp));
3923 	xfs_buf_relse(bp);
3924 
3925 	/* We've re-read the superblock so re-initialize per-cpu counters */
3926 	xfs_icsb_reinit_counters(log->l_mp);
3927 
3928 	xlog_recover_check_summary(log);
3929 
3930 	/* Normal transactions can now occur */
3931 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3932 	return 0;
3933 }
3934 
3935 /*
3936  * Perform recovery and re-initialize some log variables in xlog_find_tail.
3937  *
3938  * Return error or zero.
3939  */
3940 int
3941 xlog_recover(
3942 	struct xlog	*log)
3943 {
3944 	xfs_daddr_t	head_blk, tail_blk;
3945 	int		error;
3946 
3947 	/* find the tail of the log */
3948 	if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3949 		return error;
3950 
3951 	if (tail_blk != head_blk) {
3952 		/* There used to be a comment here:
3953 		 *
3954 		 * disallow recovery on read-only mounts.  note -- mount
3955 		 * checks for ENOSPC and turns it into an intelligent
3956 		 * error message.
3957 		 * ...but this is no longer true.  Now, unless you specify
3958 		 * NORECOVERY (in which case this function would never be
3959 		 * called), we just go ahead and recover.  We do this all
3960 		 * under the vfs layer, so we can get away with it unless
3961 		 * the device itself is read-only, in which case we fail.
3962 		 */
3963 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3964 			return error;
3965 		}
3966 
3967 		/*
3968 		 * Version 5 superblock log feature mask validation. We know the
3969 		 * log is dirty so check if there are any unknown log features
3970 		 * in what we need to recover. If there are unknown features
3971 		 * (e.g. unsupported transactions, then simply reject the
3972 		 * attempt at recovery before touching anything.
3973 		 */
3974 		if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
3975 		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
3976 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
3977 			xfs_warn(log->l_mp,
3978 "Superblock has unknown incompatible log features (0x%x) enabled.\n"
3979 "The log can not be fully and/or safely recovered by this kernel.\n"
3980 "Please recover the log on a kernel that supports the unknown features.",
3981 				(log->l_mp->m_sb.sb_features_log_incompat &
3982 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
3983 			return EINVAL;
3984 		}
3985 
3986 		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3987 				log->l_mp->m_logname ? log->l_mp->m_logname
3988 						     : "internal");
3989 
3990 		error = xlog_do_recover(log, head_blk, tail_blk);
3991 		log->l_flags |= XLOG_RECOVERY_NEEDED;
3992 	}
3993 	return error;
3994 }
3995 
3996 /*
3997  * In the first part of recovery we replay inodes and buffers and build
3998  * up the list of extent free items which need to be processed.  Here
3999  * we process the extent free items and clean up the on disk unlinked
4000  * inode lists.  This is separated from the first part of recovery so
4001  * that the root and real-time bitmap inodes can be read in from disk in
4002  * between the two stages.  This is necessary so that we can free space
4003  * in the real-time portion of the file system.
4004  */
4005 int
4006 xlog_recover_finish(
4007 	struct xlog	*log)
4008 {
4009 	/*
4010 	 * Now we're ready to do the transactions needed for the
4011 	 * rest of recovery.  Start with completing all the extent
4012 	 * free intent records and then process the unlinked inode
4013 	 * lists.  At this point, we essentially run in normal mode
4014 	 * except that we're still performing recovery actions
4015 	 * rather than accepting new requests.
4016 	 */
4017 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
4018 		int	error;
4019 		error = xlog_recover_process_efis(log);
4020 		if (error) {
4021 			xfs_alert(log->l_mp, "Failed to recover EFIs");
4022 			return error;
4023 		}
4024 		/*
4025 		 * Sync the log to get all the EFIs out of the AIL.
4026 		 * This isn't absolutely necessary, but it helps in
4027 		 * case the unlink transactions would have problems
4028 		 * pushing the EFIs out of the way.
4029 		 */
4030 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
4031 
4032 		xlog_recover_process_iunlinks(log);
4033 
4034 		xlog_recover_check_summary(log);
4035 
4036 		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4037 				log->l_mp->m_logname ? log->l_mp->m_logname
4038 						     : "internal");
4039 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4040 	} else {
4041 		xfs_info(log->l_mp, "Ending clean mount");
4042 	}
4043 	return 0;
4044 }
4045 
4046 
4047 #if defined(DEBUG)
4048 /*
4049  * Read all of the agf and agi counters and check that they
4050  * are consistent with the superblock counters.
4051  */
4052 void
4053 xlog_recover_check_summary(
4054 	struct xlog	*log)
4055 {
4056 	xfs_mount_t	*mp;
4057 	xfs_agf_t	*agfp;
4058 	xfs_buf_t	*agfbp;
4059 	xfs_buf_t	*agibp;
4060 	xfs_agnumber_t	agno;
4061 	__uint64_t	freeblks;
4062 	__uint64_t	itotal;
4063 	__uint64_t	ifree;
4064 	int		error;
4065 
4066 	mp = log->l_mp;
4067 
4068 	freeblks = 0LL;
4069 	itotal = 0LL;
4070 	ifree = 0LL;
4071 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4072 		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4073 		if (error) {
4074 			xfs_alert(mp, "%s agf read failed agno %d error %d",
4075 						__func__, agno, error);
4076 		} else {
4077 			agfp = XFS_BUF_TO_AGF(agfbp);
4078 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
4079 				    be32_to_cpu(agfp->agf_flcount);
4080 			xfs_buf_relse(agfbp);
4081 		}
4082 
4083 		error = xfs_read_agi(mp, NULL, agno, &agibp);
4084 		if (error) {
4085 			xfs_alert(mp, "%s agi read failed agno %d error %d",
4086 						__func__, agno, error);
4087 		} else {
4088 			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
4089 
4090 			itotal += be32_to_cpu(agi->agi_count);
4091 			ifree += be32_to_cpu(agi->agi_freecount);
4092 			xfs_buf_relse(agibp);
4093 		}
4094 	}
4095 }
4096 #endif /* DEBUG */
4097