1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_mount.h" 28 #include "xfs_error.h" 29 #include "xfs_bmap_btree.h" 30 #include "xfs_alloc_btree.h" 31 #include "xfs_ialloc_btree.h" 32 #include "xfs_btree.h" 33 #include "xfs_dinode.h" 34 #include "xfs_inode.h" 35 #include "xfs_inode_item.h" 36 #include "xfs_alloc.h" 37 #include "xfs_ialloc.h" 38 #include "xfs_log_priv.h" 39 #include "xfs_buf_item.h" 40 #include "xfs_log_recover.h" 41 #include "xfs_extfree_item.h" 42 #include "xfs_trans_priv.h" 43 #include "xfs_quota.h" 44 #include "xfs_utils.h" 45 #include "xfs_cksum.h" 46 #include "xfs_trace.h" 47 #include "xfs_icache.h" 48 49 /* Need all the magic numbers and buffer ops structures from these headers */ 50 #include "xfs_symlink.h" 51 #include "xfs_da_btree.h" 52 #include "xfs_dir2_format.h" 53 #include "xfs_dir2_priv.h" 54 #include "xfs_attr_leaf.h" 55 #include "xfs_attr_remote.h" 56 57 STATIC int 58 xlog_find_zeroed( 59 struct xlog *, 60 xfs_daddr_t *); 61 STATIC int 62 xlog_clear_stale_blocks( 63 struct xlog *, 64 xfs_lsn_t); 65 #if defined(DEBUG) 66 STATIC void 67 xlog_recover_check_summary( 68 struct xlog *); 69 #else 70 #define xlog_recover_check_summary(log) 71 #endif 72 73 /* 74 * This structure is used during recovery to record the buf log items which 75 * have been canceled and should not be replayed. 76 */ 77 struct xfs_buf_cancel { 78 xfs_daddr_t bc_blkno; 79 uint bc_len; 80 int bc_refcount; 81 struct list_head bc_list; 82 }; 83 84 /* 85 * Sector aligned buffer routines for buffer create/read/write/access 86 */ 87 88 /* 89 * Verify the given count of basic blocks is valid number of blocks 90 * to specify for an operation involving the given XFS log buffer. 91 * Returns nonzero if the count is valid, 0 otherwise. 92 */ 93 94 static inline int 95 xlog_buf_bbcount_valid( 96 struct xlog *log, 97 int bbcount) 98 { 99 return bbcount > 0 && bbcount <= log->l_logBBsize; 100 } 101 102 /* 103 * Allocate a buffer to hold log data. The buffer needs to be able 104 * to map to a range of nbblks basic blocks at any valid (basic 105 * block) offset within the log. 106 */ 107 STATIC xfs_buf_t * 108 xlog_get_bp( 109 struct xlog *log, 110 int nbblks) 111 { 112 struct xfs_buf *bp; 113 114 if (!xlog_buf_bbcount_valid(log, nbblks)) { 115 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 116 nbblks); 117 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 118 return NULL; 119 } 120 121 /* 122 * We do log I/O in units of log sectors (a power-of-2 123 * multiple of the basic block size), so we round up the 124 * requested size to accommodate the basic blocks required 125 * for complete log sectors. 126 * 127 * In addition, the buffer may be used for a non-sector- 128 * aligned block offset, in which case an I/O of the 129 * requested size could extend beyond the end of the 130 * buffer. If the requested size is only 1 basic block it 131 * will never straddle a sector boundary, so this won't be 132 * an issue. Nor will this be a problem if the log I/O is 133 * done in basic blocks (sector size 1). But otherwise we 134 * extend the buffer by one extra log sector to ensure 135 * there's space to accommodate this possibility. 136 */ 137 if (nbblks > 1 && log->l_sectBBsize > 1) 138 nbblks += log->l_sectBBsize; 139 nbblks = round_up(nbblks, log->l_sectBBsize); 140 141 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0); 142 if (bp) 143 xfs_buf_unlock(bp); 144 return bp; 145 } 146 147 STATIC void 148 xlog_put_bp( 149 xfs_buf_t *bp) 150 { 151 xfs_buf_free(bp); 152 } 153 154 /* 155 * Return the address of the start of the given block number's data 156 * in a log buffer. The buffer covers a log sector-aligned region. 157 */ 158 STATIC xfs_caddr_t 159 xlog_align( 160 struct xlog *log, 161 xfs_daddr_t blk_no, 162 int nbblks, 163 struct xfs_buf *bp) 164 { 165 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1); 166 167 ASSERT(offset + nbblks <= bp->b_length); 168 return bp->b_addr + BBTOB(offset); 169 } 170 171 172 /* 173 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 174 */ 175 STATIC int 176 xlog_bread_noalign( 177 struct xlog *log, 178 xfs_daddr_t blk_no, 179 int nbblks, 180 struct xfs_buf *bp) 181 { 182 int error; 183 184 if (!xlog_buf_bbcount_valid(log, nbblks)) { 185 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 186 nbblks); 187 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 188 return EFSCORRUPTED; 189 } 190 191 blk_no = round_down(blk_no, log->l_sectBBsize); 192 nbblks = round_up(nbblks, log->l_sectBBsize); 193 194 ASSERT(nbblks > 0); 195 ASSERT(nbblks <= bp->b_length); 196 197 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 198 XFS_BUF_READ(bp); 199 bp->b_io_length = nbblks; 200 bp->b_error = 0; 201 202 xfsbdstrat(log->l_mp, bp); 203 error = xfs_buf_iowait(bp); 204 if (error) 205 xfs_buf_ioerror_alert(bp, __func__); 206 return error; 207 } 208 209 STATIC int 210 xlog_bread( 211 struct xlog *log, 212 xfs_daddr_t blk_no, 213 int nbblks, 214 struct xfs_buf *bp, 215 xfs_caddr_t *offset) 216 { 217 int error; 218 219 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 220 if (error) 221 return error; 222 223 *offset = xlog_align(log, blk_no, nbblks, bp); 224 return 0; 225 } 226 227 /* 228 * Read at an offset into the buffer. Returns with the buffer in it's original 229 * state regardless of the result of the read. 230 */ 231 STATIC int 232 xlog_bread_offset( 233 struct xlog *log, 234 xfs_daddr_t blk_no, /* block to read from */ 235 int nbblks, /* blocks to read */ 236 struct xfs_buf *bp, 237 xfs_caddr_t offset) 238 { 239 xfs_caddr_t orig_offset = bp->b_addr; 240 int orig_len = BBTOB(bp->b_length); 241 int error, error2; 242 243 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks)); 244 if (error) 245 return error; 246 247 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 248 249 /* must reset buffer pointer even on error */ 250 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len); 251 if (error) 252 return error; 253 return error2; 254 } 255 256 /* 257 * Write out the buffer at the given block for the given number of blocks. 258 * The buffer is kept locked across the write and is returned locked. 259 * This can only be used for synchronous log writes. 260 */ 261 STATIC int 262 xlog_bwrite( 263 struct xlog *log, 264 xfs_daddr_t blk_no, 265 int nbblks, 266 struct xfs_buf *bp) 267 { 268 int error; 269 270 if (!xlog_buf_bbcount_valid(log, nbblks)) { 271 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 272 nbblks); 273 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 274 return EFSCORRUPTED; 275 } 276 277 blk_no = round_down(blk_no, log->l_sectBBsize); 278 nbblks = round_up(nbblks, log->l_sectBBsize); 279 280 ASSERT(nbblks > 0); 281 ASSERT(nbblks <= bp->b_length); 282 283 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 284 XFS_BUF_ZEROFLAGS(bp); 285 xfs_buf_hold(bp); 286 xfs_buf_lock(bp); 287 bp->b_io_length = nbblks; 288 bp->b_error = 0; 289 290 error = xfs_bwrite(bp); 291 if (error) 292 xfs_buf_ioerror_alert(bp, __func__); 293 xfs_buf_relse(bp); 294 return error; 295 } 296 297 #ifdef DEBUG 298 /* 299 * dump debug superblock and log record information 300 */ 301 STATIC void 302 xlog_header_check_dump( 303 xfs_mount_t *mp, 304 xlog_rec_header_t *head) 305 { 306 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n", 307 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 308 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n", 309 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 310 } 311 #else 312 #define xlog_header_check_dump(mp, head) 313 #endif 314 315 /* 316 * check log record header for recovery 317 */ 318 STATIC int 319 xlog_header_check_recover( 320 xfs_mount_t *mp, 321 xlog_rec_header_t *head) 322 { 323 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 324 325 /* 326 * IRIX doesn't write the h_fmt field and leaves it zeroed 327 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 328 * a dirty log created in IRIX. 329 */ 330 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) { 331 xfs_warn(mp, 332 "dirty log written in incompatible format - can't recover"); 333 xlog_header_check_dump(mp, head); 334 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 335 XFS_ERRLEVEL_HIGH, mp); 336 return XFS_ERROR(EFSCORRUPTED); 337 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 338 xfs_warn(mp, 339 "dirty log entry has mismatched uuid - can't recover"); 340 xlog_header_check_dump(mp, head); 341 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 342 XFS_ERRLEVEL_HIGH, mp); 343 return XFS_ERROR(EFSCORRUPTED); 344 } 345 return 0; 346 } 347 348 /* 349 * read the head block of the log and check the header 350 */ 351 STATIC int 352 xlog_header_check_mount( 353 xfs_mount_t *mp, 354 xlog_rec_header_t *head) 355 { 356 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 357 358 if (uuid_is_nil(&head->h_fs_uuid)) { 359 /* 360 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 361 * h_fs_uuid is nil, we assume this log was last mounted 362 * by IRIX and continue. 363 */ 364 xfs_warn(mp, "nil uuid in log - IRIX style log"); 365 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 366 xfs_warn(mp, "log has mismatched uuid - can't recover"); 367 xlog_header_check_dump(mp, head); 368 XFS_ERROR_REPORT("xlog_header_check_mount", 369 XFS_ERRLEVEL_HIGH, mp); 370 return XFS_ERROR(EFSCORRUPTED); 371 } 372 return 0; 373 } 374 375 STATIC void 376 xlog_recover_iodone( 377 struct xfs_buf *bp) 378 { 379 if (bp->b_error) { 380 /* 381 * We're not going to bother about retrying 382 * this during recovery. One strike! 383 */ 384 xfs_buf_ioerror_alert(bp, __func__); 385 xfs_force_shutdown(bp->b_target->bt_mount, 386 SHUTDOWN_META_IO_ERROR); 387 } 388 bp->b_iodone = NULL; 389 xfs_buf_ioend(bp, 0); 390 } 391 392 /* 393 * This routine finds (to an approximation) the first block in the physical 394 * log which contains the given cycle. It uses a binary search algorithm. 395 * Note that the algorithm can not be perfect because the disk will not 396 * necessarily be perfect. 397 */ 398 STATIC int 399 xlog_find_cycle_start( 400 struct xlog *log, 401 struct xfs_buf *bp, 402 xfs_daddr_t first_blk, 403 xfs_daddr_t *last_blk, 404 uint cycle) 405 { 406 xfs_caddr_t offset; 407 xfs_daddr_t mid_blk; 408 xfs_daddr_t end_blk; 409 uint mid_cycle; 410 int error; 411 412 end_blk = *last_blk; 413 mid_blk = BLK_AVG(first_blk, end_blk); 414 while (mid_blk != first_blk && mid_blk != end_blk) { 415 error = xlog_bread(log, mid_blk, 1, bp, &offset); 416 if (error) 417 return error; 418 mid_cycle = xlog_get_cycle(offset); 419 if (mid_cycle == cycle) 420 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 421 else 422 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 423 mid_blk = BLK_AVG(first_blk, end_blk); 424 } 425 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 426 (mid_blk == end_blk && mid_blk-1 == first_blk)); 427 428 *last_blk = end_blk; 429 430 return 0; 431 } 432 433 /* 434 * Check that a range of blocks does not contain stop_on_cycle_no. 435 * Fill in *new_blk with the block offset where such a block is 436 * found, or with -1 (an invalid block number) if there is no such 437 * block in the range. The scan needs to occur from front to back 438 * and the pointer into the region must be updated since a later 439 * routine will need to perform another test. 440 */ 441 STATIC int 442 xlog_find_verify_cycle( 443 struct xlog *log, 444 xfs_daddr_t start_blk, 445 int nbblks, 446 uint stop_on_cycle_no, 447 xfs_daddr_t *new_blk) 448 { 449 xfs_daddr_t i, j; 450 uint cycle; 451 xfs_buf_t *bp; 452 xfs_daddr_t bufblks; 453 xfs_caddr_t buf = NULL; 454 int error = 0; 455 456 /* 457 * Greedily allocate a buffer big enough to handle the full 458 * range of basic blocks we'll be examining. If that fails, 459 * try a smaller size. We need to be able to read at least 460 * a log sector, or we're out of luck. 461 */ 462 bufblks = 1 << ffs(nbblks); 463 while (bufblks > log->l_logBBsize) 464 bufblks >>= 1; 465 while (!(bp = xlog_get_bp(log, bufblks))) { 466 bufblks >>= 1; 467 if (bufblks < log->l_sectBBsize) 468 return ENOMEM; 469 } 470 471 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 472 int bcount; 473 474 bcount = min(bufblks, (start_blk + nbblks - i)); 475 476 error = xlog_bread(log, i, bcount, bp, &buf); 477 if (error) 478 goto out; 479 480 for (j = 0; j < bcount; j++) { 481 cycle = xlog_get_cycle(buf); 482 if (cycle == stop_on_cycle_no) { 483 *new_blk = i+j; 484 goto out; 485 } 486 487 buf += BBSIZE; 488 } 489 } 490 491 *new_blk = -1; 492 493 out: 494 xlog_put_bp(bp); 495 return error; 496 } 497 498 /* 499 * Potentially backup over partial log record write. 500 * 501 * In the typical case, last_blk is the number of the block directly after 502 * a good log record. Therefore, we subtract one to get the block number 503 * of the last block in the given buffer. extra_bblks contains the number 504 * of blocks we would have read on a previous read. This happens when the 505 * last log record is split over the end of the physical log. 506 * 507 * extra_bblks is the number of blocks potentially verified on a previous 508 * call to this routine. 509 */ 510 STATIC int 511 xlog_find_verify_log_record( 512 struct xlog *log, 513 xfs_daddr_t start_blk, 514 xfs_daddr_t *last_blk, 515 int extra_bblks) 516 { 517 xfs_daddr_t i; 518 xfs_buf_t *bp; 519 xfs_caddr_t offset = NULL; 520 xlog_rec_header_t *head = NULL; 521 int error = 0; 522 int smallmem = 0; 523 int num_blks = *last_blk - start_blk; 524 int xhdrs; 525 526 ASSERT(start_blk != 0 || *last_blk != start_blk); 527 528 if (!(bp = xlog_get_bp(log, num_blks))) { 529 if (!(bp = xlog_get_bp(log, 1))) 530 return ENOMEM; 531 smallmem = 1; 532 } else { 533 error = xlog_bread(log, start_blk, num_blks, bp, &offset); 534 if (error) 535 goto out; 536 offset += ((num_blks - 1) << BBSHIFT); 537 } 538 539 for (i = (*last_blk) - 1; i >= 0; i--) { 540 if (i < start_blk) { 541 /* valid log record not found */ 542 xfs_warn(log->l_mp, 543 "Log inconsistent (didn't find previous header)"); 544 ASSERT(0); 545 error = XFS_ERROR(EIO); 546 goto out; 547 } 548 549 if (smallmem) { 550 error = xlog_bread(log, i, 1, bp, &offset); 551 if (error) 552 goto out; 553 } 554 555 head = (xlog_rec_header_t *)offset; 556 557 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 558 break; 559 560 if (!smallmem) 561 offset -= BBSIZE; 562 } 563 564 /* 565 * We hit the beginning of the physical log & still no header. Return 566 * to caller. If caller can handle a return of -1, then this routine 567 * will be called again for the end of the physical log. 568 */ 569 if (i == -1) { 570 error = -1; 571 goto out; 572 } 573 574 /* 575 * We have the final block of the good log (the first block 576 * of the log record _before_ the head. So we check the uuid. 577 */ 578 if ((error = xlog_header_check_mount(log->l_mp, head))) 579 goto out; 580 581 /* 582 * We may have found a log record header before we expected one. 583 * last_blk will be the 1st block # with a given cycle #. We may end 584 * up reading an entire log record. In this case, we don't want to 585 * reset last_blk. Only when last_blk points in the middle of a log 586 * record do we update last_blk. 587 */ 588 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 589 uint h_size = be32_to_cpu(head->h_size); 590 591 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 592 if (h_size % XLOG_HEADER_CYCLE_SIZE) 593 xhdrs++; 594 } else { 595 xhdrs = 1; 596 } 597 598 if (*last_blk - i + extra_bblks != 599 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 600 *last_blk = i; 601 602 out: 603 xlog_put_bp(bp); 604 return error; 605 } 606 607 /* 608 * Head is defined to be the point of the log where the next log write 609 * write could go. This means that incomplete LR writes at the end are 610 * eliminated when calculating the head. We aren't guaranteed that previous 611 * LR have complete transactions. We only know that a cycle number of 612 * current cycle number -1 won't be present in the log if we start writing 613 * from our current block number. 614 * 615 * last_blk contains the block number of the first block with a given 616 * cycle number. 617 * 618 * Return: zero if normal, non-zero if error. 619 */ 620 STATIC int 621 xlog_find_head( 622 struct xlog *log, 623 xfs_daddr_t *return_head_blk) 624 { 625 xfs_buf_t *bp; 626 xfs_caddr_t offset; 627 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 628 int num_scan_bblks; 629 uint first_half_cycle, last_half_cycle; 630 uint stop_on_cycle; 631 int error, log_bbnum = log->l_logBBsize; 632 633 /* Is the end of the log device zeroed? */ 634 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) { 635 *return_head_blk = first_blk; 636 637 /* Is the whole lot zeroed? */ 638 if (!first_blk) { 639 /* Linux XFS shouldn't generate totally zeroed logs - 640 * mkfs etc write a dummy unmount record to a fresh 641 * log so we can store the uuid in there 642 */ 643 xfs_warn(log->l_mp, "totally zeroed log"); 644 } 645 646 return 0; 647 } else if (error) { 648 xfs_warn(log->l_mp, "empty log check failed"); 649 return error; 650 } 651 652 first_blk = 0; /* get cycle # of 1st block */ 653 bp = xlog_get_bp(log, 1); 654 if (!bp) 655 return ENOMEM; 656 657 error = xlog_bread(log, 0, 1, bp, &offset); 658 if (error) 659 goto bp_err; 660 661 first_half_cycle = xlog_get_cycle(offset); 662 663 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 664 error = xlog_bread(log, last_blk, 1, bp, &offset); 665 if (error) 666 goto bp_err; 667 668 last_half_cycle = xlog_get_cycle(offset); 669 ASSERT(last_half_cycle != 0); 670 671 /* 672 * If the 1st half cycle number is equal to the last half cycle number, 673 * then the entire log is stamped with the same cycle number. In this 674 * case, head_blk can't be set to zero (which makes sense). The below 675 * math doesn't work out properly with head_blk equal to zero. Instead, 676 * we set it to log_bbnum which is an invalid block number, but this 677 * value makes the math correct. If head_blk doesn't changed through 678 * all the tests below, *head_blk is set to zero at the very end rather 679 * than log_bbnum. In a sense, log_bbnum and zero are the same block 680 * in a circular file. 681 */ 682 if (first_half_cycle == last_half_cycle) { 683 /* 684 * In this case we believe that the entire log should have 685 * cycle number last_half_cycle. We need to scan backwards 686 * from the end verifying that there are no holes still 687 * containing last_half_cycle - 1. If we find such a hole, 688 * then the start of that hole will be the new head. The 689 * simple case looks like 690 * x | x ... | x - 1 | x 691 * Another case that fits this picture would be 692 * x | x + 1 | x ... | x 693 * In this case the head really is somewhere at the end of the 694 * log, as one of the latest writes at the beginning was 695 * incomplete. 696 * One more case is 697 * x | x + 1 | x ... | x - 1 | x 698 * This is really the combination of the above two cases, and 699 * the head has to end up at the start of the x-1 hole at the 700 * end of the log. 701 * 702 * In the 256k log case, we will read from the beginning to the 703 * end of the log and search for cycle numbers equal to x-1. 704 * We don't worry about the x+1 blocks that we encounter, 705 * because we know that they cannot be the head since the log 706 * started with x. 707 */ 708 head_blk = log_bbnum; 709 stop_on_cycle = last_half_cycle - 1; 710 } else { 711 /* 712 * In this case we want to find the first block with cycle 713 * number matching last_half_cycle. We expect the log to be 714 * some variation on 715 * x + 1 ... | x ... | x 716 * The first block with cycle number x (last_half_cycle) will 717 * be where the new head belongs. First we do a binary search 718 * for the first occurrence of last_half_cycle. The binary 719 * search may not be totally accurate, so then we scan back 720 * from there looking for occurrences of last_half_cycle before 721 * us. If that backwards scan wraps around the beginning of 722 * the log, then we look for occurrences of last_half_cycle - 1 723 * at the end of the log. The cases we're looking for look 724 * like 725 * v binary search stopped here 726 * x + 1 ... | x | x + 1 | x ... | x 727 * ^ but we want to locate this spot 728 * or 729 * <---------> less than scan distance 730 * x + 1 ... | x ... | x - 1 | x 731 * ^ we want to locate this spot 732 */ 733 stop_on_cycle = last_half_cycle; 734 if ((error = xlog_find_cycle_start(log, bp, first_blk, 735 &head_blk, last_half_cycle))) 736 goto bp_err; 737 } 738 739 /* 740 * Now validate the answer. Scan back some number of maximum possible 741 * blocks and make sure each one has the expected cycle number. The 742 * maximum is determined by the total possible amount of buffering 743 * in the in-core log. The following number can be made tighter if 744 * we actually look at the block size of the filesystem. 745 */ 746 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 747 if (head_blk >= num_scan_bblks) { 748 /* 749 * We are guaranteed that the entire check can be performed 750 * in one buffer. 751 */ 752 start_blk = head_blk - num_scan_bblks; 753 if ((error = xlog_find_verify_cycle(log, 754 start_blk, num_scan_bblks, 755 stop_on_cycle, &new_blk))) 756 goto bp_err; 757 if (new_blk != -1) 758 head_blk = new_blk; 759 } else { /* need to read 2 parts of log */ 760 /* 761 * We are going to scan backwards in the log in two parts. 762 * First we scan the physical end of the log. In this part 763 * of the log, we are looking for blocks with cycle number 764 * last_half_cycle - 1. 765 * If we find one, then we know that the log starts there, as 766 * we've found a hole that didn't get written in going around 767 * the end of the physical log. The simple case for this is 768 * x + 1 ... | x ... | x - 1 | x 769 * <---------> less than scan distance 770 * If all of the blocks at the end of the log have cycle number 771 * last_half_cycle, then we check the blocks at the start of 772 * the log looking for occurrences of last_half_cycle. If we 773 * find one, then our current estimate for the location of the 774 * first occurrence of last_half_cycle is wrong and we move 775 * back to the hole we've found. This case looks like 776 * x + 1 ... | x | x + 1 | x ... 777 * ^ binary search stopped here 778 * Another case we need to handle that only occurs in 256k 779 * logs is 780 * x + 1 ... | x ... | x+1 | x ... 781 * ^ binary search stops here 782 * In a 256k log, the scan at the end of the log will see the 783 * x + 1 blocks. We need to skip past those since that is 784 * certainly not the head of the log. By searching for 785 * last_half_cycle-1 we accomplish that. 786 */ 787 ASSERT(head_blk <= INT_MAX && 788 (xfs_daddr_t) num_scan_bblks >= head_blk); 789 start_blk = log_bbnum - (num_scan_bblks - head_blk); 790 if ((error = xlog_find_verify_cycle(log, start_blk, 791 num_scan_bblks - (int)head_blk, 792 (stop_on_cycle - 1), &new_blk))) 793 goto bp_err; 794 if (new_blk != -1) { 795 head_blk = new_blk; 796 goto validate_head; 797 } 798 799 /* 800 * Scan beginning of log now. The last part of the physical 801 * log is good. This scan needs to verify that it doesn't find 802 * the last_half_cycle. 803 */ 804 start_blk = 0; 805 ASSERT(head_blk <= INT_MAX); 806 if ((error = xlog_find_verify_cycle(log, 807 start_blk, (int)head_blk, 808 stop_on_cycle, &new_blk))) 809 goto bp_err; 810 if (new_blk != -1) 811 head_blk = new_blk; 812 } 813 814 validate_head: 815 /* 816 * Now we need to make sure head_blk is not pointing to a block in 817 * the middle of a log record. 818 */ 819 num_scan_bblks = XLOG_REC_SHIFT(log); 820 if (head_blk >= num_scan_bblks) { 821 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 822 823 /* start ptr at last block ptr before head_blk */ 824 if ((error = xlog_find_verify_log_record(log, start_blk, 825 &head_blk, 0)) == -1) { 826 error = XFS_ERROR(EIO); 827 goto bp_err; 828 } else if (error) 829 goto bp_err; 830 } else { 831 start_blk = 0; 832 ASSERT(head_blk <= INT_MAX); 833 if ((error = xlog_find_verify_log_record(log, start_blk, 834 &head_blk, 0)) == -1) { 835 /* We hit the beginning of the log during our search */ 836 start_blk = log_bbnum - (num_scan_bblks - head_blk); 837 new_blk = log_bbnum; 838 ASSERT(start_blk <= INT_MAX && 839 (xfs_daddr_t) log_bbnum-start_blk >= 0); 840 ASSERT(head_blk <= INT_MAX); 841 if ((error = xlog_find_verify_log_record(log, 842 start_blk, &new_blk, 843 (int)head_blk)) == -1) { 844 error = XFS_ERROR(EIO); 845 goto bp_err; 846 } else if (error) 847 goto bp_err; 848 if (new_blk != log_bbnum) 849 head_blk = new_blk; 850 } else if (error) 851 goto bp_err; 852 } 853 854 xlog_put_bp(bp); 855 if (head_blk == log_bbnum) 856 *return_head_blk = 0; 857 else 858 *return_head_blk = head_blk; 859 /* 860 * When returning here, we have a good block number. Bad block 861 * means that during a previous crash, we didn't have a clean break 862 * from cycle number N to cycle number N-1. In this case, we need 863 * to find the first block with cycle number N-1. 864 */ 865 return 0; 866 867 bp_err: 868 xlog_put_bp(bp); 869 870 if (error) 871 xfs_warn(log->l_mp, "failed to find log head"); 872 return error; 873 } 874 875 /* 876 * Find the sync block number or the tail of the log. 877 * 878 * This will be the block number of the last record to have its 879 * associated buffers synced to disk. Every log record header has 880 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 881 * to get a sync block number. The only concern is to figure out which 882 * log record header to believe. 883 * 884 * The following algorithm uses the log record header with the largest 885 * lsn. The entire log record does not need to be valid. We only care 886 * that the header is valid. 887 * 888 * We could speed up search by using current head_blk buffer, but it is not 889 * available. 890 */ 891 STATIC int 892 xlog_find_tail( 893 struct xlog *log, 894 xfs_daddr_t *head_blk, 895 xfs_daddr_t *tail_blk) 896 { 897 xlog_rec_header_t *rhead; 898 xlog_op_header_t *op_head; 899 xfs_caddr_t offset = NULL; 900 xfs_buf_t *bp; 901 int error, i, found; 902 xfs_daddr_t umount_data_blk; 903 xfs_daddr_t after_umount_blk; 904 xfs_lsn_t tail_lsn; 905 int hblks; 906 907 found = 0; 908 909 /* 910 * Find previous log record 911 */ 912 if ((error = xlog_find_head(log, head_blk))) 913 return error; 914 915 bp = xlog_get_bp(log, 1); 916 if (!bp) 917 return ENOMEM; 918 if (*head_blk == 0) { /* special case */ 919 error = xlog_bread(log, 0, 1, bp, &offset); 920 if (error) 921 goto done; 922 923 if (xlog_get_cycle(offset) == 0) { 924 *tail_blk = 0; 925 /* leave all other log inited values alone */ 926 goto done; 927 } 928 } 929 930 /* 931 * Search backwards looking for log record header block 932 */ 933 ASSERT(*head_blk < INT_MAX); 934 for (i = (int)(*head_blk) - 1; i >= 0; i--) { 935 error = xlog_bread(log, i, 1, bp, &offset); 936 if (error) 937 goto done; 938 939 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 940 found = 1; 941 break; 942 } 943 } 944 /* 945 * If we haven't found the log record header block, start looking 946 * again from the end of the physical log. XXXmiken: There should be 947 * a check here to make sure we didn't search more than N blocks in 948 * the previous code. 949 */ 950 if (!found) { 951 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) { 952 error = xlog_bread(log, i, 1, bp, &offset); 953 if (error) 954 goto done; 955 956 if (*(__be32 *)offset == 957 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 958 found = 2; 959 break; 960 } 961 } 962 } 963 if (!found) { 964 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); 965 ASSERT(0); 966 return XFS_ERROR(EIO); 967 } 968 969 /* find blk_no of tail of log */ 970 rhead = (xlog_rec_header_t *)offset; 971 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 972 973 /* 974 * Reset log values according to the state of the log when we 975 * crashed. In the case where head_blk == 0, we bump curr_cycle 976 * one because the next write starts a new cycle rather than 977 * continuing the cycle of the last good log record. At this 978 * point we have guaranteed that all partial log records have been 979 * accounted for. Therefore, we know that the last good log record 980 * written was complete and ended exactly on the end boundary 981 * of the physical log. 982 */ 983 log->l_prev_block = i; 984 log->l_curr_block = (int)*head_blk; 985 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 986 if (found == 2) 987 log->l_curr_cycle++; 988 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); 989 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); 990 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, 991 BBTOB(log->l_curr_block)); 992 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, 993 BBTOB(log->l_curr_block)); 994 995 /* 996 * Look for unmount record. If we find it, then we know there 997 * was a clean unmount. Since 'i' could be the last block in 998 * the physical log, we convert to a log block before comparing 999 * to the head_blk. 1000 * 1001 * Save the current tail lsn to use to pass to 1002 * xlog_clear_stale_blocks() below. We won't want to clear the 1003 * unmount record if there is one, so we pass the lsn of the 1004 * unmount record rather than the block after it. 1005 */ 1006 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1007 int h_size = be32_to_cpu(rhead->h_size); 1008 int h_version = be32_to_cpu(rhead->h_version); 1009 1010 if ((h_version & XLOG_VERSION_2) && 1011 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 1012 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 1013 if (h_size % XLOG_HEADER_CYCLE_SIZE) 1014 hblks++; 1015 } else { 1016 hblks = 1; 1017 } 1018 } else { 1019 hblks = 1; 1020 } 1021 after_umount_blk = (i + hblks + (int) 1022 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize; 1023 tail_lsn = atomic64_read(&log->l_tail_lsn); 1024 if (*head_blk == after_umount_blk && 1025 be32_to_cpu(rhead->h_num_logops) == 1) { 1026 umount_data_blk = (i + hblks) % log->l_logBBsize; 1027 error = xlog_bread(log, umount_data_blk, 1, bp, &offset); 1028 if (error) 1029 goto done; 1030 1031 op_head = (xlog_op_header_t *)offset; 1032 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 1033 /* 1034 * Set tail and last sync so that newly written 1035 * log records will point recovery to after the 1036 * current unmount record. 1037 */ 1038 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1039 log->l_curr_cycle, after_umount_blk); 1040 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1041 log->l_curr_cycle, after_umount_blk); 1042 *tail_blk = after_umount_blk; 1043 1044 /* 1045 * Note that the unmount was clean. If the unmount 1046 * was not clean, we need to know this to rebuild the 1047 * superblock counters from the perag headers if we 1048 * have a filesystem using non-persistent counters. 1049 */ 1050 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 1051 } 1052 } 1053 1054 /* 1055 * Make sure that there are no blocks in front of the head 1056 * with the same cycle number as the head. This can happen 1057 * because we allow multiple outstanding log writes concurrently, 1058 * and the later writes might make it out before earlier ones. 1059 * 1060 * We use the lsn from before modifying it so that we'll never 1061 * overwrite the unmount record after a clean unmount. 1062 * 1063 * Do this only if we are going to recover the filesystem 1064 * 1065 * NOTE: This used to say "if (!readonly)" 1066 * However on Linux, we can & do recover a read-only filesystem. 1067 * We only skip recovery if NORECOVERY is specified on mount, 1068 * in which case we would not be here. 1069 * 1070 * But... if the -device- itself is readonly, just skip this. 1071 * We can't recover this device anyway, so it won't matter. 1072 */ 1073 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) 1074 error = xlog_clear_stale_blocks(log, tail_lsn); 1075 1076 done: 1077 xlog_put_bp(bp); 1078 1079 if (error) 1080 xfs_warn(log->l_mp, "failed to locate log tail"); 1081 return error; 1082 } 1083 1084 /* 1085 * Is the log zeroed at all? 1086 * 1087 * The last binary search should be changed to perform an X block read 1088 * once X becomes small enough. You can then search linearly through 1089 * the X blocks. This will cut down on the number of reads we need to do. 1090 * 1091 * If the log is partially zeroed, this routine will pass back the blkno 1092 * of the first block with cycle number 0. It won't have a complete LR 1093 * preceding it. 1094 * 1095 * Return: 1096 * 0 => the log is completely written to 1097 * -1 => use *blk_no as the first block of the log 1098 * >0 => error has occurred 1099 */ 1100 STATIC int 1101 xlog_find_zeroed( 1102 struct xlog *log, 1103 xfs_daddr_t *blk_no) 1104 { 1105 xfs_buf_t *bp; 1106 xfs_caddr_t offset; 1107 uint first_cycle, last_cycle; 1108 xfs_daddr_t new_blk, last_blk, start_blk; 1109 xfs_daddr_t num_scan_bblks; 1110 int error, log_bbnum = log->l_logBBsize; 1111 1112 *blk_no = 0; 1113 1114 /* check totally zeroed log */ 1115 bp = xlog_get_bp(log, 1); 1116 if (!bp) 1117 return ENOMEM; 1118 error = xlog_bread(log, 0, 1, bp, &offset); 1119 if (error) 1120 goto bp_err; 1121 1122 first_cycle = xlog_get_cycle(offset); 1123 if (first_cycle == 0) { /* completely zeroed log */ 1124 *blk_no = 0; 1125 xlog_put_bp(bp); 1126 return -1; 1127 } 1128 1129 /* check partially zeroed log */ 1130 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset); 1131 if (error) 1132 goto bp_err; 1133 1134 last_cycle = xlog_get_cycle(offset); 1135 if (last_cycle != 0) { /* log completely written to */ 1136 xlog_put_bp(bp); 1137 return 0; 1138 } else if (first_cycle != 1) { 1139 /* 1140 * If the cycle of the last block is zero, the cycle of 1141 * the first block must be 1. If it's not, maybe we're 1142 * not looking at a log... Bail out. 1143 */ 1144 xfs_warn(log->l_mp, 1145 "Log inconsistent or not a log (last==0, first!=1)"); 1146 return XFS_ERROR(EINVAL); 1147 } 1148 1149 /* we have a partially zeroed log */ 1150 last_blk = log_bbnum-1; 1151 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1152 goto bp_err; 1153 1154 /* 1155 * Validate the answer. Because there is no way to guarantee that 1156 * the entire log is made up of log records which are the same size, 1157 * we scan over the defined maximum blocks. At this point, the maximum 1158 * is not chosen to mean anything special. XXXmiken 1159 */ 1160 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1161 ASSERT(num_scan_bblks <= INT_MAX); 1162 1163 if (last_blk < num_scan_bblks) 1164 num_scan_bblks = last_blk; 1165 start_blk = last_blk - num_scan_bblks; 1166 1167 /* 1168 * We search for any instances of cycle number 0 that occur before 1169 * our current estimate of the head. What we're trying to detect is 1170 * 1 ... | 0 | 1 | 0... 1171 * ^ binary search ends here 1172 */ 1173 if ((error = xlog_find_verify_cycle(log, start_blk, 1174 (int)num_scan_bblks, 0, &new_blk))) 1175 goto bp_err; 1176 if (new_blk != -1) 1177 last_blk = new_blk; 1178 1179 /* 1180 * Potentially backup over partial log record write. We don't need 1181 * to search the end of the log because we know it is zero. 1182 */ 1183 if ((error = xlog_find_verify_log_record(log, start_blk, 1184 &last_blk, 0)) == -1) { 1185 error = XFS_ERROR(EIO); 1186 goto bp_err; 1187 } else if (error) 1188 goto bp_err; 1189 1190 *blk_no = last_blk; 1191 bp_err: 1192 xlog_put_bp(bp); 1193 if (error) 1194 return error; 1195 return -1; 1196 } 1197 1198 /* 1199 * These are simple subroutines used by xlog_clear_stale_blocks() below 1200 * to initialize a buffer full of empty log record headers and write 1201 * them into the log. 1202 */ 1203 STATIC void 1204 xlog_add_record( 1205 struct xlog *log, 1206 xfs_caddr_t buf, 1207 int cycle, 1208 int block, 1209 int tail_cycle, 1210 int tail_block) 1211 { 1212 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1213 1214 memset(buf, 0, BBSIZE); 1215 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1216 recp->h_cycle = cpu_to_be32(cycle); 1217 recp->h_version = cpu_to_be32( 1218 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1219 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1220 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1221 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1222 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1223 } 1224 1225 STATIC int 1226 xlog_write_log_records( 1227 struct xlog *log, 1228 int cycle, 1229 int start_block, 1230 int blocks, 1231 int tail_cycle, 1232 int tail_block) 1233 { 1234 xfs_caddr_t offset; 1235 xfs_buf_t *bp; 1236 int balign, ealign; 1237 int sectbb = log->l_sectBBsize; 1238 int end_block = start_block + blocks; 1239 int bufblks; 1240 int error = 0; 1241 int i, j = 0; 1242 1243 /* 1244 * Greedily allocate a buffer big enough to handle the full 1245 * range of basic blocks to be written. If that fails, try 1246 * a smaller size. We need to be able to write at least a 1247 * log sector, or we're out of luck. 1248 */ 1249 bufblks = 1 << ffs(blocks); 1250 while (bufblks > log->l_logBBsize) 1251 bufblks >>= 1; 1252 while (!(bp = xlog_get_bp(log, bufblks))) { 1253 bufblks >>= 1; 1254 if (bufblks < sectbb) 1255 return ENOMEM; 1256 } 1257 1258 /* We may need to do a read at the start to fill in part of 1259 * the buffer in the starting sector not covered by the first 1260 * write below. 1261 */ 1262 balign = round_down(start_block, sectbb); 1263 if (balign != start_block) { 1264 error = xlog_bread_noalign(log, start_block, 1, bp); 1265 if (error) 1266 goto out_put_bp; 1267 1268 j = start_block - balign; 1269 } 1270 1271 for (i = start_block; i < end_block; i += bufblks) { 1272 int bcount, endcount; 1273 1274 bcount = min(bufblks, end_block - start_block); 1275 endcount = bcount - j; 1276 1277 /* We may need to do a read at the end to fill in part of 1278 * the buffer in the final sector not covered by the write. 1279 * If this is the same sector as the above read, skip it. 1280 */ 1281 ealign = round_down(end_block, sectbb); 1282 if (j == 0 && (start_block + endcount > ealign)) { 1283 offset = bp->b_addr + BBTOB(ealign - start_block); 1284 error = xlog_bread_offset(log, ealign, sectbb, 1285 bp, offset); 1286 if (error) 1287 break; 1288 1289 } 1290 1291 offset = xlog_align(log, start_block, endcount, bp); 1292 for (; j < endcount; j++) { 1293 xlog_add_record(log, offset, cycle, i+j, 1294 tail_cycle, tail_block); 1295 offset += BBSIZE; 1296 } 1297 error = xlog_bwrite(log, start_block, endcount, bp); 1298 if (error) 1299 break; 1300 start_block += endcount; 1301 j = 0; 1302 } 1303 1304 out_put_bp: 1305 xlog_put_bp(bp); 1306 return error; 1307 } 1308 1309 /* 1310 * This routine is called to blow away any incomplete log writes out 1311 * in front of the log head. We do this so that we won't become confused 1312 * if we come up, write only a little bit more, and then crash again. 1313 * If we leave the partial log records out there, this situation could 1314 * cause us to think those partial writes are valid blocks since they 1315 * have the current cycle number. We get rid of them by overwriting them 1316 * with empty log records with the old cycle number rather than the 1317 * current one. 1318 * 1319 * The tail lsn is passed in rather than taken from 1320 * the log so that we will not write over the unmount record after a 1321 * clean unmount in a 512 block log. Doing so would leave the log without 1322 * any valid log records in it until a new one was written. If we crashed 1323 * during that time we would not be able to recover. 1324 */ 1325 STATIC int 1326 xlog_clear_stale_blocks( 1327 struct xlog *log, 1328 xfs_lsn_t tail_lsn) 1329 { 1330 int tail_cycle, head_cycle; 1331 int tail_block, head_block; 1332 int tail_distance, max_distance; 1333 int distance; 1334 int error; 1335 1336 tail_cycle = CYCLE_LSN(tail_lsn); 1337 tail_block = BLOCK_LSN(tail_lsn); 1338 head_cycle = log->l_curr_cycle; 1339 head_block = log->l_curr_block; 1340 1341 /* 1342 * Figure out the distance between the new head of the log 1343 * and the tail. We want to write over any blocks beyond the 1344 * head that we may have written just before the crash, but 1345 * we don't want to overwrite the tail of the log. 1346 */ 1347 if (head_cycle == tail_cycle) { 1348 /* 1349 * The tail is behind the head in the physical log, 1350 * so the distance from the head to the tail is the 1351 * distance from the head to the end of the log plus 1352 * the distance from the beginning of the log to the 1353 * tail. 1354 */ 1355 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1356 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1357 XFS_ERRLEVEL_LOW, log->l_mp); 1358 return XFS_ERROR(EFSCORRUPTED); 1359 } 1360 tail_distance = tail_block + (log->l_logBBsize - head_block); 1361 } else { 1362 /* 1363 * The head is behind the tail in the physical log, 1364 * so the distance from the head to the tail is just 1365 * the tail block minus the head block. 1366 */ 1367 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1368 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1369 XFS_ERRLEVEL_LOW, log->l_mp); 1370 return XFS_ERROR(EFSCORRUPTED); 1371 } 1372 tail_distance = tail_block - head_block; 1373 } 1374 1375 /* 1376 * If the head is right up against the tail, we can't clear 1377 * anything. 1378 */ 1379 if (tail_distance <= 0) { 1380 ASSERT(tail_distance == 0); 1381 return 0; 1382 } 1383 1384 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1385 /* 1386 * Take the smaller of the maximum amount of outstanding I/O 1387 * we could have and the distance to the tail to clear out. 1388 * We take the smaller so that we don't overwrite the tail and 1389 * we don't waste all day writing from the head to the tail 1390 * for no reason. 1391 */ 1392 max_distance = MIN(max_distance, tail_distance); 1393 1394 if ((head_block + max_distance) <= log->l_logBBsize) { 1395 /* 1396 * We can stomp all the blocks we need to without 1397 * wrapping around the end of the log. Just do it 1398 * in a single write. Use the cycle number of the 1399 * current cycle minus one so that the log will look like: 1400 * n ... | n - 1 ... 1401 */ 1402 error = xlog_write_log_records(log, (head_cycle - 1), 1403 head_block, max_distance, tail_cycle, 1404 tail_block); 1405 if (error) 1406 return error; 1407 } else { 1408 /* 1409 * We need to wrap around the end of the physical log in 1410 * order to clear all the blocks. Do it in two separate 1411 * I/Os. The first write should be from the head to the 1412 * end of the physical log, and it should use the current 1413 * cycle number minus one just like above. 1414 */ 1415 distance = log->l_logBBsize - head_block; 1416 error = xlog_write_log_records(log, (head_cycle - 1), 1417 head_block, distance, tail_cycle, 1418 tail_block); 1419 1420 if (error) 1421 return error; 1422 1423 /* 1424 * Now write the blocks at the start of the physical log. 1425 * This writes the remainder of the blocks we want to clear. 1426 * It uses the current cycle number since we're now on the 1427 * same cycle as the head so that we get: 1428 * n ... n ... | n - 1 ... 1429 * ^^^^^ blocks we're writing 1430 */ 1431 distance = max_distance - (log->l_logBBsize - head_block); 1432 error = xlog_write_log_records(log, head_cycle, 0, distance, 1433 tail_cycle, tail_block); 1434 if (error) 1435 return error; 1436 } 1437 1438 return 0; 1439 } 1440 1441 /****************************************************************************** 1442 * 1443 * Log recover routines 1444 * 1445 ****************************************************************************** 1446 */ 1447 1448 STATIC xlog_recover_t * 1449 xlog_recover_find_tid( 1450 struct hlist_head *head, 1451 xlog_tid_t tid) 1452 { 1453 xlog_recover_t *trans; 1454 1455 hlist_for_each_entry(trans, head, r_list) { 1456 if (trans->r_log_tid == tid) 1457 return trans; 1458 } 1459 return NULL; 1460 } 1461 1462 STATIC void 1463 xlog_recover_new_tid( 1464 struct hlist_head *head, 1465 xlog_tid_t tid, 1466 xfs_lsn_t lsn) 1467 { 1468 xlog_recover_t *trans; 1469 1470 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP); 1471 trans->r_log_tid = tid; 1472 trans->r_lsn = lsn; 1473 INIT_LIST_HEAD(&trans->r_itemq); 1474 1475 INIT_HLIST_NODE(&trans->r_list); 1476 hlist_add_head(&trans->r_list, head); 1477 } 1478 1479 STATIC void 1480 xlog_recover_add_item( 1481 struct list_head *head) 1482 { 1483 xlog_recover_item_t *item; 1484 1485 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 1486 INIT_LIST_HEAD(&item->ri_list); 1487 list_add_tail(&item->ri_list, head); 1488 } 1489 1490 STATIC int 1491 xlog_recover_add_to_cont_trans( 1492 struct xlog *log, 1493 struct xlog_recover *trans, 1494 xfs_caddr_t dp, 1495 int len) 1496 { 1497 xlog_recover_item_t *item; 1498 xfs_caddr_t ptr, old_ptr; 1499 int old_len; 1500 1501 if (list_empty(&trans->r_itemq)) { 1502 /* finish copying rest of trans header */ 1503 xlog_recover_add_item(&trans->r_itemq); 1504 ptr = (xfs_caddr_t) &trans->r_theader + 1505 sizeof(xfs_trans_header_t) - len; 1506 memcpy(ptr, dp, len); /* d, s, l */ 1507 return 0; 1508 } 1509 /* take the tail entry */ 1510 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 1511 1512 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 1513 old_len = item->ri_buf[item->ri_cnt-1].i_len; 1514 1515 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP); 1516 memcpy(&ptr[old_len], dp, len); /* d, s, l */ 1517 item->ri_buf[item->ri_cnt-1].i_len += len; 1518 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 1519 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 1520 return 0; 1521 } 1522 1523 /* 1524 * The next region to add is the start of a new region. It could be 1525 * a whole region or it could be the first part of a new region. Because 1526 * of this, the assumption here is that the type and size fields of all 1527 * format structures fit into the first 32 bits of the structure. 1528 * 1529 * This works because all regions must be 32 bit aligned. Therefore, we 1530 * either have both fields or we have neither field. In the case we have 1531 * neither field, the data part of the region is zero length. We only have 1532 * a log_op_header and can throw away the header since a new one will appear 1533 * later. If we have at least 4 bytes, then we can determine how many regions 1534 * will appear in the current log item. 1535 */ 1536 STATIC int 1537 xlog_recover_add_to_trans( 1538 struct xlog *log, 1539 struct xlog_recover *trans, 1540 xfs_caddr_t dp, 1541 int len) 1542 { 1543 xfs_inode_log_format_t *in_f; /* any will do */ 1544 xlog_recover_item_t *item; 1545 xfs_caddr_t ptr; 1546 1547 if (!len) 1548 return 0; 1549 if (list_empty(&trans->r_itemq)) { 1550 /* we need to catch log corruptions here */ 1551 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 1552 xfs_warn(log->l_mp, "%s: bad header magic number", 1553 __func__); 1554 ASSERT(0); 1555 return XFS_ERROR(EIO); 1556 } 1557 if (len == sizeof(xfs_trans_header_t)) 1558 xlog_recover_add_item(&trans->r_itemq); 1559 memcpy(&trans->r_theader, dp, len); /* d, s, l */ 1560 return 0; 1561 } 1562 1563 ptr = kmem_alloc(len, KM_SLEEP); 1564 memcpy(ptr, dp, len); 1565 in_f = (xfs_inode_log_format_t *)ptr; 1566 1567 /* take the tail entry */ 1568 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 1569 if (item->ri_total != 0 && 1570 item->ri_total == item->ri_cnt) { 1571 /* tail item is in use, get a new one */ 1572 xlog_recover_add_item(&trans->r_itemq); 1573 item = list_entry(trans->r_itemq.prev, 1574 xlog_recover_item_t, ri_list); 1575 } 1576 1577 if (item->ri_total == 0) { /* first region to be added */ 1578 if (in_f->ilf_size == 0 || 1579 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 1580 xfs_warn(log->l_mp, 1581 "bad number of regions (%d) in inode log format", 1582 in_f->ilf_size); 1583 ASSERT(0); 1584 return XFS_ERROR(EIO); 1585 } 1586 1587 item->ri_total = in_f->ilf_size; 1588 item->ri_buf = 1589 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 1590 KM_SLEEP); 1591 } 1592 ASSERT(item->ri_total > item->ri_cnt); 1593 /* Description region is ri_buf[0] */ 1594 item->ri_buf[item->ri_cnt].i_addr = ptr; 1595 item->ri_buf[item->ri_cnt].i_len = len; 1596 item->ri_cnt++; 1597 trace_xfs_log_recover_item_add(log, trans, item, 0); 1598 return 0; 1599 } 1600 1601 /* 1602 * Sort the log items in the transaction. Cancelled buffers need 1603 * to be put first so they are processed before any items that might 1604 * modify the buffers. If they are cancelled, then the modifications 1605 * don't need to be replayed. 1606 */ 1607 STATIC int 1608 xlog_recover_reorder_trans( 1609 struct xlog *log, 1610 struct xlog_recover *trans, 1611 int pass) 1612 { 1613 xlog_recover_item_t *item, *n; 1614 LIST_HEAD(sort_list); 1615 1616 list_splice_init(&trans->r_itemq, &sort_list); 1617 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1618 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1619 1620 switch (ITEM_TYPE(item)) { 1621 case XFS_LI_BUF: 1622 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 1623 trace_xfs_log_recover_item_reorder_head(log, 1624 trans, item, pass); 1625 list_move(&item->ri_list, &trans->r_itemq); 1626 break; 1627 } 1628 case XFS_LI_INODE: 1629 case XFS_LI_DQUOT: 1630 case XFS_LI_QUOTAOFF: 1631 case XFS_LI_EFD: 1632 case XFS_LI_EFI: 1633 trace_xfs_log_recover_item_reorder_tail(log, 1634 trans, item, pass); 1635 list_move_tail(&item->ri_list, &trans->r_itemq); 1636 break; 1637 default: 1638 xfs_warn(log->l_mp, 1639 "%s: unrecognized type of log operation", 1640 __func__); 1641 ASSERT(0); 1642 return XFS_ERROR(EIO); 1643 } 1644 } 1645 ASSERT(list_empty(&sort_list)); 1646 return 0; 1647 } 1648 1649 /* 1650 * Build up the table of buf cancel records so that we don't replay 1651 * cancelled data in the second pass. For buffer records that are 1652 * not cancel records, there is nothing to do here so we just return. 1653 * 1654 * If we get a cancel record which is already in the table, this indicates 1655 * that the buffer was cancelled multiple times. In order to ensure 1656 * that during pass 2 we keep the record in the table until we reach its 1657 * last occurrence in the log, we keep a reference count in the cancel 1658 * record in the table to tell us how many times we expect to see this 1659 * record during the second pass. 1660 */ 1661 STATIC int 1662 xlog_recover_buffer_pass1( 1663 struct xlog *log, 1664 struct xlog_recover_item *item) 1665 { 1666 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1667 struct list_head *bucket; 1668 struct xfs_buf_cancel *bcp; 1669 1670 /* 1671 * If this isn't a cancel buffer item, then just return. 1672 */ 1673 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 1674 trace_xfs_log_recover_buf_not_cancel(log, buf_f); 1675 return 0; 1676 } 1677 1678 /* 1679 * Insert an xfs_buf_cancel record into the hash table of them. 1680 * If there is already an identical record, bump its reference count. 1681 */ 1682 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno); 1683 list_for_each_entry(bcp, bucket, bc_list) { 1684 if (bcp->bc_blkno == buf_f->blf_blkno && 1685 bcp->bc_len == buf_f->blf_len) { 1686 bcp->bc_refcount++; 1687 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f); 1688 return 0; 1689 } 1690 } 1691 1692 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP); 1693 bcp->bc_blkno = buf_f->blf_blkno; 1694 bcp->bc_len = buf_f->blf_len; 1695 bcp->bc_refcount = 1; 1696 list_add_tail(&bcp->bc_list, bucket); 1697 1698 trace_xfs_log_recover_buf_cancel_add(log, buf_f); 1699 return 0; 1700 } 1701 1702 /* 1703 * Check to see whether the buffer being recovered has a corresponding 1704 * entry in the buffer cancel record table. If it does then return 1 1705 * so that it will be cancelled, otherwise return 0. If the buffer is 1706 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement 1707 * the refcount on the entry in the table and remove it from the table 1708 * if this is the last reference. 1709 * 1710 * We remove the cancel record from the table when we encounter its 1711 * last occurrence in the log so that if the same buffer is re-used 1712 * again after its last cancellation we actually replay the changes 1713 * made at that point. 1714 */ 1715 STATIC int 1716 xlog_check_buffer_cancelled( 1717 struct xlog *log, 1718 xfs_daddr_t blkno, 1719 uint len, 1720 ushort flags) 1721 { 1722 struct list_head *bucket; 1723 struct xfs_buf_cancel *bcp; 1724 1725 if (log->l_buf_cancel_table == NULL) { 1726 /* 1727 * There is nothing in the table built in pass one, 1728 * so this buffer must not be cancelled. 1729 */ 1730 ASSERT(!(flags & XFS_BLF_CANCEL)); 1731 return 0; 1732 } 1733 1734 /* 1735 * Search for an entry in the cancel table that matches our buffer. 1736 */ 1737 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); 1738 list_for_each_entry(bcp, bucket, bc_list) { 1739 if (bcp->bc_blkno == blkno && bcp->bc_len == len) 1740 goto found; 1741 } 1742 1743 /* 1744 * We didn't find a corresponding entry in the table, so return 0 so 1745 * that the buffer is NOT cancelled. 1746 */ 1747 ASSERT(!(flags & XFS_BLF_CANCEL)); 1748 return 0; 1749 1750 found: 1751 /* 1752 * We've go a match, so return 1 so that the recovery of this buffer 1753 * is cancelled. If this buffer is actually a buffer cancel log 1754 * item, then decrement the refcount on the one in the table and 1755 * remove it if this is the last reference. 1756 */ 1757 if (flags & XFS_BLF_CANCEL) { 1758 if (--bcp->bc_refcount == 0) { 1759 list_del(&bcp->bc_list); 1760 kmem_free(bcp); 1761 } 1762 } 1763 return 1; 1764 } 1765 1766 /* 1767 * Perform recovery for a buffer full of inodes. In these buffers, the only 1768 * data which should be recovered is that which corresponds to the 1769 * di_next_unlinked pointers in the on disk inode structures. The rest of the 1770 * data for the inodes is always logged through the inodes themselves rather 1771 * than the inode buffer and is recovered in xlog_recover_inode_pass2(). 1772 * 1773 * The only time when buffers full of inodes are fully recovered is when the 1774 * buffer is full of newly allocated inodes. In this case the buffer will 1775 * not be marked as an inode buffer and so will be sent to 1776 * xlog_recover_do_reg_buffer() below during recovery. 1777 */ 1778 STATIC int 1779 xlog_recover_do_inode_buffer( 1780 struct xfs_mount *mp, 1781 xlog_recover_item_t *item, 1782 struct xfs_buf *bp, 1783 xfs_buf_log_format_t *buf_f) 1784 { 1785 int i; 1786 int item_index = 0; 1787 int bit = 0; 1788 int nbits = 0; 1789 int reg_buf_offset = 0; 1790 int reg_buf_bytes = 0; 1791 int next_unlinked_offset; 1792 int inodes_per_buf; 1793 xfs_agino_t *logged_nextp; 1794 xfs_agino_t *buffer_nextp; 1795 1796 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); 1797 bp->b_ops = &xfs_inode_buf_ops; 1798 1799 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog; 1800 for (i = 0; i < inodes_per_buf; i++) { 1801 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 1802 offsetof(xfs_dinode_t, di_next_unlinked); 1803 1804 while (next_unlinked_offset >= 1805 (reg_buf_offset + reg_buf_bytes)) { 1806 /* 1807 * The next di_next_unlinked field is beyond 1808 * the current logged region. Find the next 1809 * logged region that contains or is beyond 1810 * the current di_next_unlinked field. 1811 */ 1812 bit += nbits; 1813 bit = xfs_next_bit(buf_f->blf_data_map, 1814 buf_f->blf_map_size, bit); 1815 1816 /* 1817 * If there are no more logged regions in the 1818 * buffer, then we're done. 1819 */ 1820 if (bit == -1) 1821 return 0; 1822 1823 nbits = xfs_contig_bits(buf_f->blf_data_map, 1824 buf_f->blf_map_size, bit); 1825 ASSERT(nbits > 0); 1826 reg_buf_offset = bit << XFS_BLF_SHIFT; 1827 reg_buf_bytes = nbits << XFS_BLF_SHIFT; 1828 item_index++; 1829 } 1830 1831 /* 1832 * If the current logged region starts after the current 1833 * di_next_unlinked field, then move on to the next 1834 * di_next_unlinked field. 1835 */ 1836 if (next_unlinked_offset < reg_buf_offset) 1837 continue; 1838 1839 ASSERT(item->ri_buf[item_index].i_addr != NULL); 1840 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); 1841 ASSERT((reg_buf_offset + reg_buf_bytes) <= 1842 BBTOB(bp->b_io_length)); 1843 1844 /* 1845 * The current logged region contains a copy of the 1846 * current di_next_unlinked field. Extract its value 1847 * and copy it to the buffer copy. 1848 */ 1849 logged_nextp = item->ri_buf[item_index].i_addr + 1850 next_unlinked_offset - reg_buf_offset; 1851 if (unlikely(*logged_nextp == 0)) { 1852 xfs_alert(mp, 1853 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). " 1854 "Trying to replay bad (0) inode di_next_unlinked field.", 1855 item, bp); 1856 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 1857 XFS_ERRLEVEL_LOW, mp); 1858 return XFS_ERROR(EFSCORRUPTED); 1859 } 1860 1861 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp, 1862 next_unlinked_offset); 1863 *buffer_nextp = *logged_nextp; 1864 } 1865 1866 return 0; 1867 } 1868 1869 /* 1870 * Validate the recovered buffer is of the correct type and attach the 1871 * appropriate buffer operations to them for writeback. Magic numbers are in a 1872 * few places: 1873 * the first 16 bits of the buffer (inode buffer, dquot buffer), 1874 * the first 32 bits of the buffer (most blocks), 1875 * inside a struct xfs_da_blkinfo at the start of the buffer. 1876 */ 1877 static void 1878 xlog_recovery_validate_buf_type( 1879 struct xfs_mount *mp, 1880 struct xfs_buf *bp, 1881 xfs_buf_log_format_t *buf_f) 1882 { 1883 struct xfs_da_blkinfo *info = bp->b_addr; 1884 __uint32_t magic32; 1885 __uint16_t magic16; 1886 __uint16_t magicda; 1887 1888 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr); 1889 magic16 = be16_to_cpu(*(__be16*)bp->b_addr); 1890 magicda = be16_to_cpu(info->magic); 1891 switch (xfs_blft_from_flags(buf_f)) { 1892 case XFS_BLFT_BTREE_BUF: 1893 switch (magic32) { 1894 case XFS_ABTB_CRC_MAGIC: 1895 case XFS_ABTC_CRC_MAGIC: 1896 case XFS_ABTB_MAGIC: 1897 case XFS_ABTC_MAGIC: 1898 bp->b_ops = &xfs_allocbt_buf_ops; 1899 break; 1900 case XFS_IBT_CRC_MAGIC: 1901 case XFS_IBT_MAGIC: 1902 bp->b_ops = &xfs_inobt_buf_ops; 1903 break; 1904 case XFS_BMAP_CRC_MAGIC: 1905 case XFS_BMAP_MAGIC: 1906 bp->b_ops = &xfs_bmbt_buf_ops; 1907 break; 1908 default: 1909 xfs_warn(mp, "Bad btree block magic!"); 1910 ASSERT(0); 1911 break; 1912 } 1913 break; 1914 case XFS_BLFT_AGF_BUF: 1915 if (magic32 != XFS_AGF_MAGIC) { 1916 xfs_warn(mp, "Bad AGF block magic!"); 1917 ASSERT(0); 1918 break; 1919 } 1920 bp->b_ops = &xfs_agf_buf_ops; 1921 break; 1922 case XFS_BLFT_AGFL_BUF: 1923 if (!xfs_sb_version_hascrc(&mp->m_sb)) 1924 break; 1925 if (magic32 != XFS_AGFL_MAGIC) { 1926 xfs_warn(mp, "Bad AGFL block magic!"); 1927 ASSERT(0); 1928 break; 1929 } 1930 bp->b_ops = &xfs_agfl_buf_ops; 1931 break; 1932 case XFS_BLFT_AGI_BUF: 1933 if (magic32 != XFS_AGI_MAGIC) { 1934 xfs_warn(mp, "Bad AGI block magic!"); 1935 ASSERT(0); 1936 break; 1937 } 1938 bp->b_ops = &xfs_agi_buf_ops; 1939 break; 1940 case XFS_BLFT_UDQUOT_BUF: 1941 case XFS_BLFT_PDQUOT_BUF: 1942 case XFS_BLFT_GDQUOT_BUF: 1943 #ifdef CONFIG_XFS_QUOTA 1944 if (magic16 != XFS_DQUOT_MAGIC) { 1945 xfs_warn(mp, "Bad DQUOT block magic!"); 1946 ASSERT(0); 1947 break; 1948 } 1949 bp->b_ops = &xfs_dquot_buf_ops; 1950 #else 1951 xfs_alert(mp, 1952 "Trying to recover dquots without QUOTA support built in!"); 1953 ASSERT(0); 1954 #endif 1955 break; 1956 case XFS_BLFT_DINO_BUF: 1957 /* 1958 * we get here with inode allocation buffers, not buffers that 1959 * track unlinked list changes. 1960 */ 1961 if (magic16 != XFS_DINODE_MAGIC) { 1962 xfs_warn(mp, "Bad INODE block magic!"); 1963 ASSERT(0); 1964 break; 1965 } 1966 bp->b_ops = &xfs_inode_buf_ops; 1967 break; 1968 case XFS_BLFT_SYMLINK_BUF: 1969 if (magic32 != XFS_SYMLINK_MAGIC) { 1970 xfs_warn(mp, "Bad symlink block magic!"); 1971 ASSERT(0); 1972 break; 1973 } 1974 bp->b_ops = &xfs_symlink_buf_ops; 1975 break; 1976 case XFS_BLFT_DIR_BLOCK_BUF: 1977 if (magic32 != XFS_DIR2_BLOCK_MAGIC && 1978 magic32 != XFS_DIR3_BLOCK_MAGIC) { 1979 xfs_warn(mp, "Bad dir block magic!"); 1980 ASSERT(0); 1981 break; 1982 } 1983 bp->b_ops = &xfs_dir3_block_buf_ops; 1984 break; 1985 case XFS_BLFT_DIR_DATA_BUF: 1986 if (magic32 != XFS_DIR2_DATA_MAGIC && 1987 magic32 != XFS_DIR3_DATA_MAGIC) { 1988 xfs_warn(mp, "Bad dir data magic!"); 1989 ASSERT(0); 1990 break; 1991 } 1992 bp->b_ops = &xfs_dir3_data_buf_ops; 1993 break; 1994 case XFS_BLFT_DIR_FREE_BUF: 1995 if (magic32 != XFS_DIR2_FREE_MAGIC && 1996 magic32 != XFS_DIR3_FREE_MAGIC) { 1997 xfs_warn(mp, "Bad dir3 free magic!"); 1998 ASSERT(0); 1999 break; 2000 } 2001 bp->b_ops = &xfs_dir3_free_buf_ops; 2002 break; 2003 case XFS_BLFT_DIR_LEAF1_BUF: 2004 if (magicda != XFS_DIR2_LEAF1_MAGIC && 2005 magicda != XFS_DIR3_LEAF1_MAGIC) { 2006 xfs_warn(mp, "Bad dir leaf1 magic!"); 2007 ASSERT(0); 2008 break; 2009 } 2010 bp->b_ops = &xfs_dir3_leaf1_buf_ops; 2011 break; 2012 case XFS_BLFT_DIR_LEAFN_BUF: 2013 if (magicda != XFS_DIR2_LEAFN_MAGIC && 2014 magicda != XFS_DIR3_LEAFN_MAGIC) { 2015 xfs_warn(mp, "Bad dir leafn magic!"); 2016 ASSERT(0); 2017 break; 2018 } 2019 bp->b_ops = &xfs_dir3_leafn_buf_ops; 2020 break; 2021 case XFS_BLFT_DA_NODE_BUF: 2022 if (magicda != XFS_DA_NODE_MAGIC && 2023 magicda != XFS_DA3_NODE_MAGIC) { 2024 xfs_warn(mp, "Bad da node magic!"); 2025 ASSERT(0); 2026 break; 2027 } 2028 bp->b_ops = &xfs_da3_node_buf_ops; 2029 break; 2030 case XFS_BLFT_ATTR_LEAF_BUF: 2031 if (magicda != XFS_ATTR_LEAF_MAGIC && 2032 magicda != XFS_ATTR3_LEAF_MAGIC) { 2033 xfs_warn(mp, "Bad attr leaf magic!"); 2034 ASSERT(0); 2035 break; 2036 } 2037 bp->b_ops = &xfs_attr3_leaf_buf_ops; 2038 break; 2039 case XFS_BLFT_ATTR_RMT_BUF: 2040 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2041 break; 2042 if (magic32 != XFS_ATTR3_RMT_MAGIC) { 2043 xfs_warn(mp, "Bad attr remote magic!"); 2044 ASSERT(0); 2045 break; 2046 } 2047 bp->b_ops = &xfs_attr3_rmt_buf_ops; 2048 break; 2049 case XFS_BLFT_SB_BUF: 2050 if (magic32 != XFS_SB_MAGIC) { 2051 xfs_warn(mp, "Bad SB block magic!"); 2052 ASSERT(0); 2053 break; 2054 } 2055 bp->b_ops = &xfs_sb_buf_ops; 2056 break; 2057 default: 2058 xfs_warn(mp, "Unknown buffer type %d!", 2059 xfs_blft_from_flags(buf_f)); 2060 break; 2061 } 2062 } 2063 2064 /* 2065 * Perform a 'normal' buffer recovery. Each logged region of the 2066 * buffer should be copied over the corresponding region in the 2067 * given buffer. The bitmap in the buf log format structure indicates 2068 * where to place the logged data. 2069 */ 2070 STATIC void 2071 xlog_recover_do_reg_buffer( 2072 struct xfs_mount *mp, 2073 xlog_recover_item_t *item, 2074 struct xfs_buf *bp, 2075 xfs_buf_log_format_t *buf_f) 2076 { 2077 int i; 2078 int bit; 2079 int nbits; 2080 int error; 2081 2082 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); 2083 2084 bit = 0; 2085 i = 1; /* 0 is the buf format structure */ 2086 while (1) { 2087 bit = xfs_next_bit(buf_f->blf_data_map, 2088 buf_f->blf_map_size, bit); 2089 if (bit == -1) 2090 break; 2091 nbits = xfs_contig_bits(buf_f->blf_data_map, 2092 buf_f->blf_map_size, bit); 2093 ASSERT(nbits > 0); 2094 ASSERT(item->ri_buf[i].i_addr != NULL); 2095 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); 2096 ASSERT(BBTOB(bp->b_io_length) >= 2097 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); 2098 2099 /* 2100 * Do a sanity check if this is a dquot buffer. Just checking 2101 * the first dquot in the buffer should do. XXXThis is 2102 * probably a good thing to do for other buf types also. 2103 */ 2104 error = 0; 2105 if (buf_f->blf_flags & 2106 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2107 if (item->ri_buf[i].i_addr == NULL) { 2108 xfs_alert(mp, 2109 "XFS: NULL dquot in %s.", __func__); 2110 goto next; 2111 } 2112 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) { 2113 xfs_alert(mp, 2114 "XFS: dquot too small (%d) in %s.", 2115 item->ri_buf[i].i_len, __func__); 2116 goto next; 2117 } 2118 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr, 2119 -1, 0, XFS_QMOPT_DOWARN, 2120 "dquot_buf_recover"); 2121 if (error) 2122 goto next; 2123 } 2124 2125 memcpy(xfs_buf_offset(bp, 2126 (uint)bit << XFS_BLF_SHIFT), /* dest */ 2127 item->ri_buf[i].i_addr, /* source */ 2128 nbits<<XFS_BLF_SHIFT); /* length */ 2129 next: 2130 i++; 2131 bit += nbits; 2132 } 2133 2134 /* Shouldn't be any more regions */ 2135 ASSERT(i == item->ri_total); 2136 2137 xlog_recovery_validate_buf_type(mp, bp, buf_f); 2138 } 2139 2140 /* 2141 * Do some primitive error checking on ondisk dquot data structures. 2142 */ 2143 int 2144 xfs_qm_dqcheck( 2145 struct xfs_mount *mp, 2146 xfs_disk_dquot_t *ddq, 2147 xfs_dqid_t id, 2148 uint type, /* used only when IO_dorepair is true */ 2149 uint flags, 2150 char *str) 2151 { 2152 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq; 2153 int errs = 0; 2154 2155 /* 2156 * We can encounter an uninitialized dquot buffer for 2 reasons: 2157 * 1. If we crash while deleting the quotainode(s), and those blks got 2158 * used for user data. This is because we take the path of regular 2159 * file deletion; however, the size field of quotainodes is never 2160 * updated, so all the tricks that we play in itruncate_finish 2161 * don't quite matter. 2162 * 2163 * 2. We don't play the quota buffers when there's a quotaoff logitem. 2164 * But the allocation will be replayed so we'll end up with an 2165 * uninitialized quota block. 2166 * 2167 * This is all fine; things are still consistent, and we haven't lost 2168 * any quota information. Just don't complain about bad dquot blks. 2169 */ 2170 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) { 2171 if (flags & XFS_QMOPT_DOWARN) 2172 xfs_alert(mp, 2173 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x", 2174 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC); 2175 errs++; 2176 } 2177 if (ddq->d_version != XFS_DQUOT_VERSION) { 2178 if (flags & XFS_QMOPT_DOWARN) 2179 xfs_alert(mp, 2180 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x", 2181 str, id, ddq->d_version, XFS_DQUOT_VERSION); 2182 errs++; 2183 } 2184 2185 if (ddq->d_flags != XFS_DQ_USER && 2186 ddq->d_flags != XFS_DQ_PROJ && 2187 ddq->d_flags != XFS_DQ_GROUP) { 2188 if (flags & XFS_QMOPT_DOWARN) 2189 xfs_alert(mp, 2190 "%s : XFS dquot ID 0x%x, unknown flags 0x%x", 2191 str, id, ddq->d_flags); 2192 errs++; 2193 } 2194 2195 if (id != -1 && id != be32_to_cpu(ddq->d_id)) { 2196 if (flags & XFS_QMOPT_DOWARN) 2197 xfs_alert(mp, 2198 "%s : ondisk-dquot 0x%p, ID mismatch: " 2199 "0x%x expected, found id 0x%x", 2200 str, ddq, id, be32_to_cpu(ddq->d_id)); 2201 errs++; 2202 } 2203 2204 if (!errs && ddq->d_id) { 2205 if (ddq->d_blk_softlimit && 2206 be64_to_cpu(ddq->d_bcount) > 2207 be64_to_cpu(ddq->d_blk_softlimit)) { 2208 if (!ddq->d_btimer) { 2209 if (flags & XFS_QMOPT_DOWARN) 2210 xfs_alert(mp, 2211 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED", 2212 str, (int)be32_to_cpu(ddq->d_id), ddq); 2213 errs++; 2214 } 2215 } 2216 if (ddq->d_ino_softlimit && 2217 be64_to_cpu(ddq->d_icount) > 2218 be64_to_cpu(ddq->d_ino_softlimit)) { 2219 if (!ddq->d_itimer) { 2220 if (flags & XFS_QMOPT_DOWARN) 2221 xfs_alert(mp, 2222 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED", 2223 str, (int)be32_to_cpu(ddq->d_id), ddq); 2224 errs++; 2225 } 2226 } 2227 if (ddq->d_rtb_softlimit && 2228 be64_to_cpu(ddq->d_rtbcount) > 2229 be64_to_cpu(ddq->d_rtb_softlimit)) { 2230 if (!ddq->d_rtbtimer) { 2231 if (flags & XFS_QMOPT_DOWARN) 2232 xfs_alert(mp, 2233 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED", 2234 str, (int)be32_to_cpu(ddq->d_id), ddq); 2235 errs++; 2236 } 2237 } 2238 } 2239 2240 if (!errs || !(flags & XFS_QMOPT_DQREPAIR)) 2241 return errs; 2242 2243 if (flags & XFS_QMOPT_DOWARN) 2244 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id); 2245 2246 /* 2247 * Typically, a repair is only requested by quotacheck. 2248 */ 2249 ASSERT(id != -1); 2250 ASSERT(flags & XFS_QMOPT_DQREPAIR); 2251 memset(d, 0, sizeof(xfs_dqblk_t)); 2252 2253 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC); 2254 d->dd_diskdq.d_version = XFS_DQUOT_VERSION; 2255 d->dd_diskdq.d_flags = type; 2256 d->dd_diskdq.d_id = cpu_to_be32(id); 2257 2258 return errs; 2259 } 2260 2261 /* 2262 * Perform a dquot buffer recovery. 2263 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type 2264 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2265 * Else, treat it as a regular buffer and do recovery. 2266 */ 2267 STATIC void 2268 xlog_recover_do_dquot_buffer( 2269 struct xfs_mount *mp, 2270 struct xlog *log, 2271 struct xlog_recover_item *item, 2272 struct xfs_buf *bp, 2273 struct xfs_buf_log_format *buf_f) 2274 { 2275 uint type; 2276 2277 trace_xfs_log_recover_buf_dquot_buf(log, buf_f); 2278 2279 /* 2280 * Filesystems are required to send in quota flags at mount time. 2281 */ 2282 if (mp->m_qflags == 0) { 2283 return; 2284 } 2285 2286 type = 0; 2287 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) 2288 type |= XFS_DQ_USER; 2289 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) 2290 type |= XFS_DQ_PROJ; 2291 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) 2292 type |= XFS_DQ_GROUP; 2293 /* 2294 * This type of quotas was turned off, so ignore this buffer 2295 */ 2296 if (log->l_quotaoffs_flag & type) 2297 return; 2298 2299 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2300 } 2301 2302 /* 2303 * This routine replays a modification made to a buffer at runtime. 2304 * There are actually two types of buffer, regular and inode, which 2305 * are handled differently. Inode buffers are handled differently 2306 * in that we only recover a specific set of data from them, namely 2307 * the inode di_next_unlinked fields. This is because all other inode 2308 * data is actually logged via inode records and any data we replay 2309 * here which overlaps that may be stale. 2310 * 2311 * When meta-data buffers are freed at run time we log a buffer item 2312 * with the XFS_BLF_CANCEL bit set to indicate that previous copies 2313 * of the buffer in the log should not be replayed at recovery time. 2314 * This is so that if the blocks covered by the buffer are reused for 2315 * file data before we crash we don't end up replaying old, freed 2316 * meta-data into a user's file. 2317 * 2318 * To handle the cancellation of buffer log items, we make two passes 2319 * over the log during recovery. During the first we build a table of 2320 * those buffers which have been cancelled, and during the second we 2321 * only replay those buffers which do not have corresponding cancel 2322 * records in the table. See xlog_recover_do_buffer_pass[1,2] above 2323 * for more details on the implementation of the table of cancel records. 2324 */ 2325 STATIC int 2326 xlog_recover_buffer_pass2( 2327 struct xlog *log, 2328 struct list_head *buffer_list, 2329 struct xlog_recover_item *item) 2330 { 2331 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2332 xfs_mount_t *mp = log->l_mp; 2333 xfs_buf_t *bp; 2334 int error; 2335 uint buf_flags; 2336 2337 /* 2338 * In this pass we only want to recover all the buffers which have 2339 * not been cancelled and are not cancellation buffers themselves. 2340 */ 2341 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno, 2342 buf_f->blf_len, buf_f->blf_flags)) { 2343 trace_xfs_log_recover_buf_cancel(log, buf_f); 2344 return 0; 2345 } 2346 2347 trace_xfs_log_recover_buf_recover(log, buf_f); 2348 2349 buf_flags = 0; 2350 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) 2351 buf_flags |= XBF_UNMAPPED; 2352 2353 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, 2354 buf_flags, NULL); 2355 if (!bp) 2356 return XFS_ERROR(ENOMEM); 2357 error = bp->b_error; 2358 if (error) { 2359 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)"); 2360 xfs_buf_relse(bp); 2361 return error; 2362 } 2363 2364 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 2365 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2366 } else if (buf_f->blf_flags & 2367 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2368 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2369 } else { 2370 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2371 } 2372 if (error) 2373 return XFS_ERROR(error); 2374 2375 /* 2376 * Perform delayed write on the buffer. Asynchronous writes will be 2377 * slower when taking into account all the buffers to be flushed. 2378 * 2379 * Also make sure that only inode buffers with good sizes stay in 2380 * the buffer cache. The kernel moves inodes in buffers of 1 block 2381 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode 2382 * buffers in the log can be a different size if the log was generated 2383 * by an older kernel using unclustered inode buffers or a newer kernel 2384 * running with a different inode cluster size. Regardless, if the 2385 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE) 2386 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep 2387 * the buffer out of the buffer cache so that the buffer won't 2388 * overlap with future reads of those inodes. 2389 */ 2390 if (XFS_DINODE_MAGIC == 2391 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && 2392 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize, 2393 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) { 2394 xfs_buf_stale(bp); 2395 error = xfs_bwrite(bp); 2396 } else { 2397 ASSERT(bp->b_target->bt_mount == mp); 2398 bp->b_iodone = xlog_recover_iodone; 2399 xfs_buf_delwri_queue(bp, buffer_list); 2400 } 2401 2402 xfs_buf_relse(bp); 2403 return error; 2404 } 2405 2406 STATIC int 2407 xlog_recover_inode_pass2( 2408 struct xlog *log, 2409 struct list_head *buffer_list, 2410 struct xlog_recover_item *item) 2411 { 2412 xfs_inode_log_format_t *in_f; 2413 xfs_mount_t *mp = log->l_mp; 2414 xfs_buf_t *bp; 2415 xfs_dinode_t *dip; 2416 int len; 2417 xfs_caddr_t src; 2418 xfs_caddr_t dest; 2419 int error; 2420 int attr_index; 2421 uint fields; 2422 xfs_icdinode_t *dicp; 2423 uint isize; 2424 int need_free = 0; 2425 2426 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) { 2427 in_f = item->ri_buf[0].i_addr; 2428 } else { 2429 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP); 2430 need_free = 1; 2431 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 2432 if (error) 2433 goto error; 2434 } 2435 2436 /* 2437 * Inode buffers can be freed, look out for it, 2438 * and do not replay the inode. 2439 */ 2440 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, 2441 in_f->ilf_len, 0)) { 2442 error = 0; 2443 trace_xfs_log_recover_inode_cancel(log, in_f); 2444 goto error; 2445 } 2446 trace_xfs_log_recover_inode_recover(log, in_f); 2447 2448 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0, 2449 &xfs_inode_buf_ops); 2450 if (!bp) { 2451 error = ENOMEM; 2452 goto error; 2453 } 2454 error = bp->b_error; 2455 if (error) { 2456 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)"); 2457 xfs_buf_relse(bp); 2458 goto error; 2459 } 2460 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 2461 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset); 2462 2463 /* 2464 * Make sure the place we're flushing out to really looks 2465 * like an inode! 2466 */ 2467 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) { 2468 xfs_buf_relse(bp); 2469 xfs_alert(mp, 2470 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld", 2471 __func__, dip, bp, in_f->ilf_ino); 2472 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)", 2473 XFS_ERRLEVEL_LOW, mp); 2474 error = EFSCORRUPTED; 2475 goto error; 2476 } 2477 dicp = item->ri_buf[1].i_addr; 2478 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { 2479 xfs_buf_relse(bp); 2480 xfs_alert(mp, 2481 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld", 2482 __func__, item, in_f->ilf_ino); 2483 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)", 2484 XFS_ERRLEVEL_LOW, mp); 2485 error = EFSCORRUPTED; 2486 goto error; 2487 } 2488 2489 /* Skip replay when the on disk inode is newer than the log one */ 2490 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) { 2491 /* 2492 * Deal with the wrap case, DI_MAX_FLUSH is less 2493 * than smaller numbers 2494 */ 2495 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && 2496 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) { 2497 /* do nothing */ 2498 } else { 2499 xfs_buf_relse(bp); 2500 trace_xfs_log_recover_inode_skip(log, in_f); 2501 error = 0; 2502 goto error; 2503 } 2504 } 2505 /* Take the opportunity to reset the flush iteration count */ 2506 dicp->di_flushiter = 0; 2507 2508 if (unlikely(S_ISREG(dicp->di_mode))) { 2509 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2510 (dicp->di_format != XFS_DINODE_FMT_BTREE)) { 2511 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)", 2512 XFS_ERRLEVEL_LOW, mp, dicp); 2513 xfs_buf_relse(bp); 2514 xfs_alert(mp, 2515 "%s: Bad regular inode log record, rec ptr 0x%p, " 2516 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2517 __func__, item, dip, bp, in_f->ilf_ino); 2518 error = EFSCORRUPTED; 2519 goto error; 2520 } 2521 } else if (unlikely(S_ISDIR(dicp->di_mode))) { 2522 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2523 (dicp->di_format != XFS_DINODE_FMT_BTREE) && 2524 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { 2525 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)", 2526 XFS_ERRLEVEL_LOW, mp, dicp); 2527 xfs_buf_relse(bp); 2528 xfs_alert(mp, 2529 "%s: Bad dir inode log record, rec ptr 0x%p, " 2530 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2531 __func__, item, dip, bp, in_f->ilf_ino); 2532 error = EFSCORRUPTED; 2533 goto error; 2534 } 2535 } 2536 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ 2537 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)", 2538 XFS_ERRLEVEL_LOW, mp, dicp); 2539 xfs_buf_relse(bp); 2540 xfs_alert(mp, 2541 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 2542 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", 2543 __func__, item, dip, bp, in_f->ilf_ino, 2544 dicp->di_nextents + dicp->di_anextents, 2545 dicp->di_nblocks); 2546 error = EFSCORRUPTED; 2547 goto error; 2548 } 2549 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { 2550 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)", 2551 XFS_ERRLEVEL_LOW, mp, dicp); 2552 xfs_buf_relse(bp); 2553 xfs_alert(mp, 2554 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 2555 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__, 2556 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff); 2557 error = EFSCORRUPTED; 2558 goto error; 2559 } 2560 isize = xfs_icdinode_size(dicp->di_version); 2561 if (unlikely(item->ri_buf[1].i_len > isize)) { 2562 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)", 2563 XFS_ERRLEVEL_LOW, mp, dicp); 2564 xfs_buf_relse(bp); 2565 xfs_alert(mp, 2566 "%s: Bad inode log record length %d, rec ptr 0x%p", 2567 __func__, item->ri_buf[1].i_len, item); 2568 error = EFSCORRUPTED; 2569 goto error; 2570 } 2571 2572 /* The core is in in-core format */ 2573 xfs_dinode_to_disk(dip, dicp); 2574 2575 /* the rest is in on-disk format */ 2576 if (item->ri_buf[1].i_len > isize) { 2577 memcpy((char *)dip + isize, 2578 item->ri_buf[1].i_addr + isize, 2579 item->ri_buf[1].i_len - isize); 2580 } 2581 2582 fields = in_f->ilf_fields; 2583 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { 2584 case XFS_ILOG_DEV: 2585 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); 2586 break; 2587 case XFS_ILOG_UUID: 2588 memcpy(XFS_DFORK_DPTR(dip), 2589 &in_f->ilf_u.ilfu_uuid, 2590 sizeof(uuid_t)); 2591 break; 2592 } 2593 2594 if (in_f->ilf_size == 2) 2595 goto write_inode_buffer; 2596 len = item->ri_buf[2].i_len; 2597 src = item->ri_buf[2].i_addr; 2598 ASSERT(in_f->ilf_size <= 4); 2599 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 2600 ASSERT(!(fields & XFS_ILOG_DFORK) || 2601 (len == in_f->ilf_dsize)); 2602 2603 switch (fields & XFS_ILOG_DFORK) { 2604 case XFS_ILOG_DDATA: 2605 case XFS_ILOG_DEXT: 2606 memcpy(XFS_DFORK_DPTR(dip), src, len); 2607 break; 2608 2609 case XFS_ILOG_DBROOT: 2610 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, 2611 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), 2612 XFS_DFORK_DSIZE(dip, mp)); 2613 break; 2614 2615 default: 2616 /* 2617 * There are no data fork flags set. 2618 */ 2619 ASSERT((fields & XFS_ILOG_DFORK) == 0); 2620 break; 2621 } 2622 2623 /* 2624 * If we logged any attribute data, recover it. There may or 2625 * may not have been any other non-core data logged in this 2626 * transaction. 2627 */ 2628 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 2629 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 2630 attr_index = 3; 2631 } else { 2632 attr_index = 2; 2633 } 2634 len = item->ri_buf[attr_index].i_len; 2635 src = item->ri_buf[attr_index].i_addr; 2636 ASSERT(len == in_f->ilf_asize); 2637 2638 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 2639 case XFS_ILOG_ADATA: 2640 case XFS_ILOG_AEXT: 2641 dest = XFS_DFORK_APTR(dip); 2642 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 2643 memcpy(dest, src, len); 2644 break; 2645 2646 case XFS_ILOG_ABROOT: 2647 dest = XFS_DFORK_APTR(dip); 2648 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, 2649 len, (xfs_bmdr_block_t*)dest, 2650 XFS_DFORK_ASIZE(dip, mp)); 2651 break; 2652 2653 default: 2654 xfs_warn(log->l_mp, "%s: Invalid flag", __func__); 2655 ASSERT(0); 2656 xfs_buf_relse(bp); 2657 error = EIO; 2658 goto error; 2659 } 2660 } 2661 2662 write_inode_buffer: 2663 /* re-generate the checksum. */ 2664 xfs_dinode_calc_crc(log->l_mp, dip); 2665 2666 ASSERT(bp->b_target->bt_mount == mp); 2667 bp->b_iodone = xlog_recover_iodone; 2668 xfs_buf_delwri_queue(bp, buffer_list); 2669 xfs_buf_relse(bp); 2670 error: 2671 if (need_free) 2672 kmem_free(in_f); 2673 return XFS_ERROR(error); 2674 } 2675 2676 /* 2677 * Recover QUOTAOFF records. We simply make a note of it in the xlog 2678 * structure, so that we know not to do any dquot item or dquot buffer recovery, 2679 * of that type. 2680 */ 2681 STATIC int 2682 xlog_recover_quotaoff_pass1( 2683 struct xlog *log, 2684 struct xlog_recover_item *item) 2685 { 2686 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr; 2687 ASSERT(qoff_f); 2688 2689 /* 2690 * The logitem format's flag tells us if this was user quotaoff, 2691 * group/project quotaoff or both. 2692 */ 2693 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 2694 log->l_quotaoffs_flag |= XFS_DQ_USER; 2695 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 2696 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 2697 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 2698 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 2699 2700 return (0); 2701 } 2702 2703 /* 2704 * Recover a dquot record 2705 */ 2706 STATIC int 2707 xlog_recover_dquot_pass2( 2708 struct xlog *log, 2709 struct list_head *buffer_list, 2710 struct xlog_recover_item *item) 2711 { 2712 xfs_mount_t *mp = log->l_mp; 2713 xfs_buf_t *bp; 2714 struct xfs_disk_dquot *ddq, *recddq; 2715 int error; 2716 xfs_dq_logformat_t *dq_f; 2717 uint type; 2718 2719 2720 /* 2721 * Filesystems are required to send in quota flags at mount time. 2722 */ 2723 if (mp->m_qflags == 0) 2724 return (0); 2725 2726 recddq = item->ri_buf[1].i_addr; 2727 if (recddq == NULL) { 2728 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__); 2729 return XFS_ERROR(EIO); 2730 } 2731 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) { 2732 xfs_alert(log->l_mp, "dquot too small (%d) in %s.", 2733 item->ri_buf[1].i_len, __func__); 2734 return XFS_ERROR(EIO); 2735 } 2736 2737 /* 2738 * This type of quotas was turned off, so ignore this record. 2739 */ 2740 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 2741 ASSERT(type); 2742 if (log->l_quotaoffs_flag & type) 2743 return (0); 2744 2745 /* 2746 * At this point we know that quota was _not_ turned off. 2747 * Since the mount flags are not indicating to us otherwise, this 2748 * must mean that quota is on, and the dquot needs to be replayed. 2749 * Remember that we may not have fully recovered the superblock yet, 2750 * so we can't do the usual trick of looking at the SB quota bits. 2751 * 2752 * The other possibility, of course, is that the quota subsystem was 2753 * removed since the last mount - ENOSYS. 2754 */ 2755 dq_f = item->ri_buf[0].i_addr; 2756 ASSERT(dq_f); 2757 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2758 "xlog_recover_dquot_pass2 (log copy)"); 2759 if (error) 2760 return XFS_ERROR(EIO); 2761 ASSERT(dq_f->qlf_len == 1); 2762 2763 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno, 2764 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp, 2765 NULL); 2766 if (error) 2767 return error; 2768 2769 ASSERT(bp); 2770 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset); 2771 2772 /* 2773 * At least the magic num portion should be on disk because this 2774 * was among a chunk of dquots created earlier, and we did some 2775 * minimal initialization then. 2776 */ 2777 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2778 "xlog_recover_dquot_pass2"); 2779 if (error) { 2780 xfs_buf_relse(bp); 2781 return XFS_ERROR(EIO); 2782 } 2783 2784 memcpy(ddq, recddq, item->ri_buf[1].i_len); 2785 2786 ASSERT(dq_f->qlf_size == 2); 2787 ASSERT(bp->b_target->bt_mount == mp); 2788 bp->b_iodone = xlog_recover_iodone; 2789 xfs_buf_delwri_queue(bp, buffer_list); 2790 xfs_buf_relse(bp); 2791 2792 return (0); 2793 } 2794 2795 /* 2796 * This routine is called to create an in-core extent free intent 2797 * item from the efi format structure which was logged on disk. 2798 * It allocates an in-core efi, copies the extents from the format 2799 * structure into it, and adds the efi to the AIL with the given 2800 * LSN. 2801 */ 2802 STATIC int 2803 xlog_recover_efi_pass2( 2804 struct xlog *log, 2805 struct xlog_recover_item *item, 2806 xfs_lsn_t lsn) 2807 { 2808 int error; 2809 xfs_mount_t *mp = log->l_mp; 2810 xfs_efi_log_item_t *efip; 2811 xfs_efi_log_format_t *efi_formatp; 2812 2813 efi_formatp = item->ri_buf[0].i_addr; 2814 2815 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 2816 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]), 2817 &(efip->efi_format)))) { 2818 xfs_efi_item_free(efip); 2819 return error; 2820 } 2821 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 2822 2823 spin_lock(&log->l_ailp->xa_lock); 2824 /* 2825 * xfs_trans_ail_update() drops the AIL lock. 2826 */ 2827 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn); 2828 return 0; 2829 } 2830 2831 2832 /* 2833 * This routine is called when an efd format structure is found in 2834 * a committed transaction in the log. It's purpose is to cancel 2835 * the corresponding efi if it was still in the log. To do this 2836 * it searches the AIL for the efi with an id equal to that in the 2837 * efd format structure. If we find it, we remove the efi from the 2838 * AIL and free it. 2839 */ 2840 STATIC int 2841 xlog_recover_efd_pass2( 2842 struct xlog *log, 2843 struct xlog_recover_item *item) 2844 { 2845 xfs_efd_log_format_t *efd_formatp; 2846 xfs_efi_log_item_t *efip = NULL; 2847 xfs_log_item_t *lip; 2848 __uint64_t efi_id; 2849 struct xfs_ail_cursor cur; 2850 struct xfs_ail *ailp = log->l_ailp; 2851 2852 efd_formatp = item->ri_buf[0].i_addr; 2853 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 2854 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 2855 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 2856 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 2857 efi_id = efd_formatp->efd_efi_id; 2858 2859 /* 2860 * Search for the efi with the id in the efd format structure 2861 * in the AIL. 2862 */ 2863 spin_lock(&ailp->xa_lock); 2864 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 2865 while (lip != NULL) { 2866 if (lip->li_type == XFS_LI_EFI) { 2867 efip = (xfs_efi_log_item_t *)lip; 2868 if (efip->efi_format.efi_id == efi_id) { 2869 /* 2870 * xfs_trans_ail_delete() drops the 2871 * AIL lock. 2872 */ 2873 xfs_trans_ail_delete(ailp, lip, 2874 SHUTDOWN_CORRUPT_INCORE); 2875 xfs_efi_item_free(efip); 2876 spin_lock(&ailp->xa_lock); 2877 break; 2878 } 2879 } 2880 lip = xfs_trans_ail_cursor_next(ailp, &cur); 2881 } 2882 xfs_trans_ail_cursor_done(ailp, &cur); 2883 spin_unlock(&ailp->xa_lock); 2884 2885 return 0; 2886 } 2887 2888 /* 2889 * Free up any resources allocated by the transaction 2890 * 2891 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 2892 */ 2893 STATIC void 2894 xlog_recover_free_trans( 2895 struct xlog_recover *trans) 2896 { 2897 xlog_recover_item_t *item, *n; 2898 int i; 2899 2900 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 2901 /* Free the regions in the item. */ 2902 list_del(&item->ri_list); 2903 for (i = 0; i < item->ri_cnt; i++) 2904 kmem_free(item->ri_buf[i].i_addr); 2905 /* Free the item itself */ 2906 kmem_free(item->ri_buf); 2907 kmem_free(item); 2908 } 2909 /* Free the transaction recover structure */ 2910 kmem_free(trans); 2911 } 2912 2913 STATIC int 2914 xlog_recover_commit_pass1( 2915 struct xlog *log, 2916 struct xlog_recover *trans, 2917 struct xlog_recover_item *item) 2918 { 2919 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1); 2920 2921 switch (ITEM_TYPE(item)) { 2922 case XFS_LI_BUF: 2923 return xlog_recover_buffer_pass1(log, item); 2924 case XFS_LI_QUOTAOFF: 2925 return xlog_recover_quotaoff_pass1(log, item); 2926 case XFS_LI_INODE: 2927 case XFS_LI_EFI: 2928 case XFS_LI_EFD: 2929 case XFS_LI_DQUOT: 2930 /* nothing to do in pass 1 */ 2931 return 0; 2932 default: 2933 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 2934 __func__, ITEM_TYPE(item)); 2935 ASSERT(0); 2936 return XFS_ERROR(EIO); 2937 } 2938 } 2939 2940 STATIC int 2941 xlog_recover_commit_pass2( 2942 struct xlog *log, 2943 struct xlog_recover *trans, 2944 struct list_head *buffer_list, 2945 struct xlog_recover_item *item) 2946 { 2947 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2); 2948 2949 switch (ITEM_TYPE(item)) { 2950 case XFS_LI_BUF: 2951 return xlog_recover_buffer_pass2(log, buffer_list, item); 2952 case XFS_LI_INODE: 2953 return xlog_recover_inode_pass2(log, buffer_list, item); 2954 case XFS_LI_EFI: 2955 return xlog_recover_efi_pass2(log, item, trans->r_lsn); 2956 case XFS_LI_EFD: 2957 return xlog_recover_efd_pass2(log, item); 2958 case XFS_LI_DQUOT: 2959 return xlog_recover_dquot_pass2(log, buffer_list, item); 2960 case XFS_LI_QUOTAOFF: 2961 /* nothing to do in pass2 */ 2962 return 0; 2963 default: 2964 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 2965 __func__, ITEM_TYPE(item)); 2966 ASSERT(0); 2967 return XFS_ERROR(EIO); 2968 } 2969 } 2970 2971 /* 2972 * Perform the transaction. 2973 * 2974 * If the transaction modifies a buffer or inode, do it now. Otherwise, 2975 * EFIs and EFDs get queued up by adding entries into the AIL for them. 2976 */ 2977 STATIC int 2978 xlog_recover_commit_trans( 2979 struct xlog *log, 2980 struct xlog_recover *trans, 2981 int pass) 2982 { 2983 int error = 0, error2; 2984 xlog_recover_item_t *item; 2985 LIST_HEAD (buffer_list); 2986 2987 hlist_del(&trans->r_list); 2988 2989 error = xlog_recover_reorder_trans(log, trans, pass); 2990 if (error) 2991 return error; 2992 2993 list_for_each_entry(item, &trans->r_itemq, ri_list) { 2994 switch (pass) { 2995 case XLOG_RECOVER_PASS1: 2996 error = xlog_recover_commit_pass1(log, trans, item); 2997 break; 2998 case XLOG_RECOVER_PASS2: 2999 error = xlog_recover_commit_pass2(log, trans, 3000 &buffer_list, item); 3001 break; 3002 default: 3003 ASSERT(0); 3004 } 3005 3006 if (error) 3007 goto out; 3008 } 3009 3010 xlog_recover_free_trans(trans); 3011 3012 out: 3013 error2 = xfs_buf_delwri_submit(&buffer_list); 3014 return error ? error : error2; 3015 } 3016 3017 STATIC int 3018 xlog_recover_unmount_trans( 3019 struct xlog *log, 3020 struct xlog_recover *trans) 3021 { 3022 /* Do nothing now */ 3023 xfs_warn(log->l_mp, "%s: Unmount LR", __func__); 3024 return 0; 3025 } 3026 3027 /* 3028 * There are two valid states of the r_state field. 0 indicates that the 3029 * transaction structure is in a normal state. We have either seen the 3030 * start of the transaction or the last operation we added was not a partial 3031 * operation. If the last operation we added to the transaction was a 3032 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 3033 * 3034 * NOTE: skip LRs with 0 data length. 3035 */ 3036 STATIC int 3037 xlog_recover_process_data( 3038 struct xlog *log, 3039 struct hlist_head rhash[], 3040 struct xlog_rec_header *rhead, 3041 xfs_caddr_t dp, 3042 int pass) 3043 { 3044 xfs_caddr_t lp; 3045 int num_logops; 3046 xlog_op_header_t *ohead; 3047 xlog_recover_t *trans; 3048 xlog_tid_t tid; 3049 int error; 3050 unsigned long hash; 3051 uint flags; 3052 3053 lp = dp + be32_to_cpu(rhead->h_len); 3054 num_logops = be32_to_cpu(rhead->h_num_logops); 3055 3056 /* check the log format matches our own - else we can't recover */ 3057 if (xlog_header_check_recover(log->l_mp, rhead)) 3058 return (XFS_ERROR(EIO)); 3059 3060 while ((dp < lp) && num_logops) { 3061 ASSERT(dp + sizeof(xlog_op_header_t) <= lp); 3062 ohead = (xlog_op_header_t *)dp; 3063 dp += sizeof(xlog_op_header_t); 3064 if (ohead->oh_clientid != XFS_TRANSACTION && 3065 ohead->oh_clientid != XFS_LOG) { 3066 xfs_warn(log->l_mp, "%s: bad clientid 0x%x", 3067 __func__, ohead->oh_clientid); 3068 ASSERT(0); 3069 return (XFS_ERROR(EIO)); 3070 } 3071 tid = be32_to_cpu(ohead->oh_tid); 3072 hash = XLOG_RHASH(tid); 3073 trans = xlog_recover_find_tid(&rhash[hash], tid); 3074 if (trans == NULL) { /* not found; add new tid */ 3075 if (ohead->oh_flags & XLOG_START_TRANS) 3076 xlog_recover_new_tid(&rhash[hash], tid, 3077 be64_to_cpu(rhead->h_lsn)); 3078 } else { 3079 if (dp + be32_to_cpu(ohead->oh_len) > lp) { 3080 xfs_warn(log->l_mp, "%s: bad length 0x%x", 3081 __func__, be32_to_cpu(ohead->oh_len)); 3082 WARN_ON(1); 3083 return (XFS_ERROR(EIO)); 3084 } 3085 flags = ohead->oh_flags & ~XLOG_END_TRANS; 3086 if (flags & XLOG_WAS_CONT_TRANS) 3087 flags &= ~XLOG_CONTINUE_TRANS; 3088 switch (flags) { 3089 case XLOG_COMMIT_TRANS: 3090 error = xlog_recover_commit_trans(log, 3091 trans, pass); 3092 break; 3093 case XLOG_UNMOUNT_TRANS: 3094 error = xlog_recover_unmount_trans(log, trans); 3095 break; 3096 case XLOG_WAS_CONT_TRANS: 3097 error = xlog_recover_add_to_cont_trans(log, 3098 trans, dp, 3099 be32_to_cpu(ohead->oh_len)); 3100 break; 3101 case XLOG_START_TRANS: 3102 xfs_warn(log->l_mp, "%s: bad transaction", 3103 __func__); 3104 ASSERT(0); 3105 error = XFS_ERROR(EIO); 3106 break; 3107 case 0: 3108 case XLOG_CONTINUE_TRANS: 3109 error = xlog_recover_add_to_trans(log, trans, 3110 dp, be32_to_cpu(ohead->oh_len)); 3111 break; 3112 default: 3113 xfs_warn(log->l_mp, "%s: bad flag 0x%x", 3114 __func__, flags); 3115 ASSERT(0); 3116 error = XFS_ERROR(EIO); 3117 break; 3118 } 3119 if (error) 3120 return error; 3121 } 3122 dp += be32_to_cpu(ohead->oh_len); 3123 num_logops--; 3124 } 3125 return 0; 3126 } 3127 3128 /* 3129 * Process an extent free intent item that was recovered from 3130 * the log. We need to free the extents that it describes. 3131 */ 3132 STATIC int 3133 xlog_recover_process_efi( 3134 xfs_mount_t *mp, 3135 xfs_efi_log_item_t *efip) 3136 { 3137 xfs_efd_log_item_t *efdp; 3138 xfs_trans_t *tp; 3139 int i; 3140 int error = 0; 3141 xfs_extent_t *extp; 3142 xfs_fsblock_t startblock_fsb; 3143 3144 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)); 3145 3146 /* 3147 * First check the validity of the extents described by the 3148 * EFI. If any are bad, then assume that all are bad and 3149 * just toss the EFI. 3150 */ 3151 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3152 extp = &(efip->efi_format.efi_extents[i]); 3153 startblock_fsb = XFS_BB_TO_FSB(mp, 3154 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 3155 if ((startblock_fsb == 0) || 3156 (extp->ext_len == 0) || 3157 (startblock_fsb >= mp->m_sb.sb_dblocks) || 3158 (extp->ext_len >= mp->m_sb.sb_agblocks)) { 3159 /* 3160 * This will pull the EFI from the AIL and 3161 * free the memory associated with it. 3162 */ 3163 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); 3164 xfs_efi_release(efip, efip->efi_format.efi_nextents); 3165 return XFS_ERROR(EIO); 3166 } 3167 } 3168 3169 tp = xfs_trans_alloc(mp, 0); 3170 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0); 3171 if (error) 3172 goto abort_error; 3173 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 3174 3175 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3176 extp = &(efip->efi_format.efi_extents[i]); 3177 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len); 3178 if (error) 3179 goto abort_error; 3180 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start, 3181 extp->ext_len); 3182 } 3183 3184 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); 3185 error = xfs_trans_commit(tp, 0); 3186 return error; 3187 3188 abort_error: 3189 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3190 return error; 3191 } 3192 3193 /* 3194 * When this is called, all of the EFIs which did not have 3195 * corresponding EFDs should be in the AIL. What we do now 3196 * is free the extents associated with each one. 3197 * 3198 * Since we process the EFIs in normal transactions, they 3199 * will be removed at some point after the commit. This prevents 3200 * us from just walking down the list processing each one. 3201 * We'll use a flag in the EFI to skip those that we've already 3202 * processed and use the AIL iteration mechanism's generation 3203 * count to try to speed this up at least a bit. 3204 * 3205 * When we start, we know that the EFIs are the only things in 3206 * the AIL. As we process them, however, other items are added 3207 * to the AIL. Since everything added to the AIL must come after 3208 * everything already in the AIL, we stop processing as soon as 3209 * we see something other than an EFI in the AIL. 3210 */ 3211 STATIC int 3212 xlog_recover_process_efis( 3213 struct xlog *log) 3214 { 3215 xfs_log_item_t *lip; 3216 xfs_efi_log_item_t *efip; 3217 int error = 0; 3218 struct xfs_ail_cursor cur; 3219 struct xfs_ail *ailp; 3220 3221 ailp = log->l_ailp; 3222 spin_lock(&ailp->xa_lock); 3223 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3224 while (lip != NULL) { 3225 /* 3226 * We're done when we see something other than an EFI. 3227 * There should be no EFIs left in the AIL now. 3228 */ 3229 if (lip->li_type != XFS_LI_EFI) { 3230 #ifdef DEBUG 3231 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 3232 ASSERT(lip->li_type != XFS_LI_EFI); 3233 #endif 3234 break; 3235 } 3236 3237 /* 3238 * Skip EFIs that we've already processed. 3239 */ 3240 efip = (xfs_efi_log_item_t *)lip; 3241 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) { 3242 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3243 continue; 3244 } 3245 3246 spin_unlock(&ailp->xa_lock); 3247 error = xlog_recover_process_efi(log->l_mp, efip); 3248 spin_lock(&ailp->xa_lock); 3249 if (error) 3250 goto out; 3251 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3252 } 3253 out: 3254 xfs_trans_ail_cursor_done(ailp, &cur); 3255 spin_unlock(&ailp->xa_lock); 3256 return error; 3257 } 3258 3259 /* 3260 * This routine performs a transaction to null out a bad inode pointer 3261 * in an agi unlinked inode hash bucket. 3262 */ 3263 STATIC void 3264 xlog_recover_clear_agi_bucket( 3265 xfs_mount_t *mp, 3266 xfs_agnumber_t agno, 3267 int bucket) 3268 { 3269 xfs_trans_t *tp; 3270 xfs_agi_t *agi; 3271 xfs_buf_t *agibp; 3272 int offset; 3273 int error; 3274 3275 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); 3276 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 3277 0, 0, 0); 3278 if (error) 3279 goto out_abort; 3280 3281 error = xfs_read_agi(mp, tp, agno, &agibp); 3282 if (error) 3283 goto out_abort; 3284 3285 agi = XFS_BUF_TO_AGI(agibp); 3286 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 3287 offset = offsetof(xfs_agi_t, agi_unlinked) + 3288 (sizeof(xfs_agino_t) * bucket); 3289 xfs_trans_log_buf(tp, agibp, offset, 3290 (offset + sizeof(xfs_agino_t) - 1)); 3291 3292 error = xfs_trans_commit(tp, 0); 3293 if (error) 3294 goto out_error; 3295 return; 3296 3297 out_abort: 3298 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3299 out_error: 3300 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); 3301 return; 3302 } 3303 3304 STATIC xfs_agino_t 3305 xlog_recover_process_one_iunlink( 3306 struct xfs_mount *mp, 3307 xfs_agnumber_t agno, 3308 xfs_agino_t agino, 3309 int bucket) 3310 { 3311 struct xfs_buf *ibp; 3312 struct xfs_dinode *dip; 3313 struct xfs_inode *ip; 3314 xfs_ino_t ino; 3315 int error; 3316 3317 ino = XFS_AGINO_TO_INO(mp, agno, agino); 3318 error = xfs_iget(mp, NULL, ino, 0, 0, &ip); 3319 if (error) 3320 goto fail; 3321 3322 /* 3323 * Get the on disk inode to find the next inode in the bucket. 3324 */ 3325 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0); 3326 if (error) 3327 goto fail_iput; 3328 3329 ASSERT(ip->i_d.di_nlink == 0); 3330 ASSERT(ip->i_d.di_mode != 0); 3331 3332 /* setup for the next pass */ 3333 agino = be32_to_cpu(dip->di_next_unlinked); 3334 xfs_buf_relse(ibp); 3335 3336 /* 3337 * Prevent any DMAPI event from being sent when the reference on 3338 * the inode is dropped. 3339 */ 3340 ip->i_d.di_dmevmask = 0; 3341 3342 IRELE(ip); 3343 return agino; 3344 3345 fail_iput: 3346 IRELE(ip); 3347 fail: 3348 /* 3349 * We can't read in the inode this bucket points to, or this inode 3350 * is messed up. Just ditch this bucket of inodes. We will lose 3351 * some inodes and space, but at least we won't hang. 3352 * 3353 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 3354 * clear the inode pointer in the bucket. 3355 */ 3356 xlog_recover_clear_agi_bucket(mp, agno, bucket); 3357 return NULLAGINO; 3358 } 3359 3360 /* 3361 * xlog_iunlink_recover 3362 * 3363 * This is called during recovery to process any inodes which 3364 * we unlinked but not freed when the system crashed. These 3365 * inodes will be on the lists in the AGI blocks. What we do 3366 * here is scan all the AGIs and fully truncate and free any 3367 * inodes found on the lists. Each inode is removed from the 3368 * lists when it has been fully truncated and is freed. The 3369 * freeing of the inode and its removal from the list must be 3370 * atomic. 3371 */ 3372 STATIC void 3373 xlog_recover_process_iunlinks( 3374 struct xlog *log) 3375 { 3376 xfs_mount_t *mp; 3377 xfs_agnumber_t agno; 3378 xfs_agi_t *agi; 3379 xfs_buf_t *agibp; 3380 xfs_agino_t agino; 3381 int bucket; 3382 int error; 3383 uint mp_dmevmask; 3384 3385 mp = log->l_mp; 3386 3387 /* 3388 * Prevent any DMAPI event from being sent while in this function. 3389 */ 3390 mp_dmevmask = mp->m_dmevmask; 3391 mp->m_dmevmask = 0; 3392 3393 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3394 /* 3395 * Find the agi for this ag. 3396 */ 3397 error = xfs_read_agi(mp, NULL, agno, &agibp); 3398 if (error) { 3399 /* 3400 * AGI is b0rked. Don't process it. 3401 * 3402 * We should probably mark the filesystem as corrupt 3403 * after we've recovered all the ag's we can.... 3404 */ 3405 continue; 3406 } 3407 /* 3408 * Unlock the buffer so that it can be acquired in the normal 3409 * course of the transaction to truncate and free each inode. 3410 * Because we are not racing with anyone else here for the AGI 3411 * buffer, we don't even need to hold it locked to read the 3412 * initial unlinked bucket entries out of the buffer. We keep 3413 * buffer reference though, so that it stays pinned in memory 3414 * while we need the buffer. 3415 */ 3416 agi = XFS_BUF_TO_AGI(agibp); 3417 xfs_buf_unlock(agibp); 3418 3419 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 3420 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 3421 while (agino != NULLAGINO) { 3422 agino = xlog_recover_process_one_iunlink(mp, 3423 agno, agino, bucket); 3424 } 3425 } 3426 xfs_buf_rele(agibp); 3427 } 3428 3429 mp->m_dmevmask = mp_dmevmask; 3430 } 3431 3432 /* 3433 * Upack the log buffer data and crc check it. If the check fails, issue a 3434 * warning if and only if the CRC in the header is non-zero. This makes the 3435 * check an advisory warning, and the zero CRC check will prevent failure 3436 * warnings from being emitted when upgrading the kernel from one that does not 3437 * add CRCs by default. 3438 * 3439 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log 3440 * corruption failure 3441 */ 3442 STATIC int 3443 xlog_unpack_data_crc( 3444 struct xlog_rec_header *rhead, 3445 xfs_caddr_t dp, 3446 struct xlog *log) 3447 { 3448 __le32 crc; 3449 3450 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); 3451 if (crc != rhead->h_crc) { 3452 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) { 3453 xfs_alert(log->l_mp, 3454 "log record CRC mismatch: found 0x%x, expected 0x%x.\n", 3455 le32_to_cpu(rhead->h_crc), 3456 le32_to_cpu(crc)); 3457 xfs_hex_dump(dp, 32); 3458 } 3459 3460 /* 3461 * If we've detected a log record corruption, then we can't 3462 * recover past this point. Abort recovery if we are enforcing 3463 * CRC protection by punting an error back up the stack. 3464 */ 3465 if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) 3466 return EFSCORRUPTED; 3467 } 3468 3469 return 0; 3470 } 3471 3472 STATIC int 3473 xlog_unpack_data( 3474 struct xlog_rec_header *rhead, 3475 xfs_caddr_t dp, 3476 struct xlog *log) 3477 { 3478 int i, j, k; 3479 int error; 3480 3481 error = xlog_unpack_data_crc(rhead, dp, log); 3482 if (error) 3483 return error; 3484 3485 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 3486 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3487 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 3488 dp += BBSIZE; 3489 } 3490 3491 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3492 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 3493 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 3494 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3495 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3496 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 3497 dp += BBSIZE; 3498 } 3499 } 3500 3501 return 0; 3502 } 3503 3504 STATIC int 3505 xlog_valid_rec_header( 3506 struct xlog *log, 3507 struct xlog_rec_header *rhead, 3508 xfs_daddr_t blkno) 3509 { 3510 int hlen; 3511 3512 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) { 3513 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 3514 XFS_ERRLEVEL_LOW, log->l_mp); 3515 return XFS_ERROR(EFSCORRUPTED); 3516 } 3517 if (unlikely( 3518 (!rhead->h_version || 3519 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { 3520 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", 3521 __func__, be32_to_cpu(rhead->h_version)); 3522 return XFS_ERROR(EIO); 3523 } 3524 3525 /* LR body must have data or it wouldn't have been written */ 3526 hlen = be32_to_cpu(rhead->h_len); 3527 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 3528 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 3529 XFS_ERRLEVEL_LOW, log->l_mp); 3530 return XFS_ERROR(EFSCORRUPTED); 3531 } 3532 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 3533 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 3534 XFS_ERRLEVEL_LOW, log->l_mp); 3535 return XFS_ERROR(EFSCORRUPTED); 3536 } 3537 return 0; 3538 } 3539 3540 /* 3541 * Read the log from tail to head and process the log records found. 3542 * Handle the two cases where the tail and head are in the same cycle 3543 * and where the active portion of the log wraps around the end of 3544 * the physical log separately. The pass parameter is passed through 3545 * to the routines called to process the data and is not looked at 3546 * here. 3547 */ 3548 STATIC int 3549 xlog_do_recovery_pass( 3550 struct xlog *log, 3551 xfs_daddr_t head_blk, 3552 xfs_daddr_t tail_blk, 3553 int pass) 3554 { 3555 xlog_rec_header_t *rhead; 3556 xfs_daddr_t blk_no; 3557 xfs_caddr_t offset; 3558 xfs_buf_t *hbp, *dbp; 3559 int error = 0, h_size; 3560 int bblks, split_bblks; 3561 int hblks, split_hblks, wrapped_hblks; 3562 struct hlist_head rhash[XLOG_RHASH_SIZE]; 3563 3564 ASSERT(head_blk != tail_blk); 3565 3566 /* 3567 * Read the header of the tail block and get the iclog buffer size from 3568 * h_size. Use this to tell how many sectors make up the log header. 3569 */ 3570 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3571 /* 3572 * When using variable length iclogs, read first sector of 3573 * iclog header and extract the header size from it. Get a 3574 * new hbp that is the correct size. 3575 */ 3576 hbp = xlog_get_bp(log, 1); 3577 if (!hbp) 3578 return ENOMEM; 3579 3580 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 3581 if (error) 3582 goto bread_err1; 3583 3584 rhead = (xlog_rec_header_t *)offset; 3585 error = xlog_valid_rec_header(log, rhead, tail_blk); 3586 if (error) 3587 goto bread_err1; 3588 h_size = be32_to_cpu(rhead->h_size); 3589 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 3590 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 3591 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 3592 if (h_size % XLOG_HEADER_CYCLE_SIZE) 3593 hblks++; 3594 xlog_put_bp(hbp); 3595 hbp = xlog_get_bp(log, hblks); 3596 } else { 3597 hblks = 1; 3598 } 3599 } else { 3600 ASSERT(log->l_sectBBsize == 1); 3601 hblks = 1; 3602 hbp = xlog_get_bp(log, 1); 3603 h_size = XLOG_BIG_RECORD_BSIZE; 3604 } 3605 3606 if (!hbp) 3607 return ENOMEM; 3608 dbp = xlog_get_bp(log, BTOBB(h_size)); 3609 if (!dbp) { 3610 xlog_put_bp(hbp); 3611 return ENOMEM; 3612 } 3613 3614 memset(rhash, 0, sizeof(rhash)); 3615 if (tail_blk <= head_blk) { 3616 for (blk_no = tail_blk; blk_no < head_blk; ) { 3617 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 3618 if (error) 3619 goto bread_err2; 3620 3621 rhead = (xlog_rec_header_t *)offset; 3622 error = xlog_valid_rec_header(log, rhead, blk_no); 3623 if (error) 3624 goto bread_err2; 3625 3626 /* blocks in data section */ 3627 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3628 error = xlog_bread(log, blk_no + hblks, bblks, dbp, 3629 &offset); 3630 if (error) 3631 goto bread_err2; 3632 3633 error = xlog_unpack_data(rhead, offset, log); 3634 if (error) 3635 goto bread_err2; 3636 3637 error = xlog_recover_process_data(log, 3638 rhash, rhead, offset, pass); 3639 if (error) 3640 goto bread_err2; 3641 blk_no += bblks + hblks; 3642 } 3643 } else { 3644 /* 3645 * Perform recovery around the end of the physical log. 3646 * When the head is not on the same cycle number as the tail, 3647 * we can't do a sequential recovery as above. 3648 */ 3649 blk_no = tail_blk; 3650 while (blk_no < log->l_logBBsize) { 3651 /* 3652 * Check for header wrapping around physical end-of-log 3653 */ 3654 offset = hbp->b_addr; 3655 split_hblks = 0; 3656 wrapped_hblks = 0; 3657 if (blk_no + hblks <= log->l_logBBsize) { 3658 /* Read header in one read */ 3659 error = xlog_bread(log, blk_no, hblks, hbp, 3660 &offset); 3661 if (error) 3662 goto bread_err2; 3663 } else { 3664 /* This LR is split across physical log end */ 3665 if (blk_no != log->l_logBBsize) { 3666 /* some data before physical log end */ 3667 ASSERT(blk_no <= INT_MAX); 3668 split_hblks = log->l_logBBsize - (int)blk_no; 3669 ASSERT(split_hblks > 0); 3670 error = xlog_bread(log, blk_no, 3671 split_hblks, hbp, 3672 &offset); 3673 if (error) 3674 goto bread_err2; 3675 } 3676 3677 /* 3678 * Note: this black magic still works with 3679 * large sector sizes (non-512) only because: 3680 * - we increased the buffer size originally 3681 * by 1 sector giving us enough extra space 3682 * for the second read; 3683 * - the log start is guaranteed to be sector 3684 * aligned; 3685 * - we read the log end (LR header start) 3686 * _first_, then the log start (LR header end) 3687 * - order is important. 3688 */ 3689 wrapped_hblks = hblks - split_hblks; 3690 error = xlog_bread_offset(log, 0, 3691 wrapped_hblks, hbp, 3692 offset + BBTOB(split_hblks)); 3693 if (error) 3694 goto bread_err2; 3695 } 3696 rhead = (xlog_rec_header_t *)offset; 3697 error = xlog_valid_rec_header(log, rhead, 3698 split_hblks ? blk_no : 0); 3699 if (error) 3700 goto bread_err2; 3701 3702 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3703 blk_no += hblks; 3704 3705 /* Read in data for log record */ 3706 if (blk_no + bblks <= log->l_logBBsize) { 3707 error = xlog_bread(log, blk_no, bblks, dbp, 3708 &offset); 3709 if (error) 3710 goto bread_err2; 3711 } else { 3712 /* This log record is split across the 3713 * physical end of log */ 3714 offset = dbp->b_addr; 3715 split_bblks = 0; 3716 if (blk_no != log->l_logBBsize) { 3717 /* some data is before the physical 3718 * end of log */ 3719 ASSERT(!wrapped_hblks); 3720 ASSERT(blk_no <= INT_MAX); 3721 split_bblks = 3722 log->l_logBBsize - (int)blk_no; 3723 ASSERT(split_bblks > 0); 3724 error = xlog_bread(log, blk_no, 3725 split_bblks, dbp, 3726 &offset); 3727 if (error) 3728 goto bread_err2; 3729 } 3730 3731 /* 3732 * Note: this black magic still works with 3733 * large sector sizes (non-512) only because: 3734 * - we increased the buffer size originally 3735 * by 1 sector giving us enough extra space 3736 * for the second read; 3737 * - the log start is guaranteed to be sector 3738 * aligned; 3739 * - we read the log end (LR header start) 3740 * _first_, then the log start (LR header end) 3741 * - order is important. 3742 */ 3743 error = xlog_bread_offset(log, 0, 3744 bblks - split_bblks, dbp, 3745 offset + BBTOB(split_bblks)); 3746 if (error) 3747 goto bread_err2; 3748 } 3749 3750 error = xlog_unpack_data(rhead, offset, log); 3751 if (error) 3752 goto bread_err2; 3753 3754 error = xlog_recover_process_data(log, rhash, 3755 rhead, offset, pass); 3756 if (error) 3757 goto bread_err2; 3758 blk_no += bblks; 3759 } 3760 3761 ASSERT(blk_no >= log->l_logBBsize); 3762 blk_no -= log->l_logBBsize; 3763 3764 /* read first part of physical log */ 3765 while (blk_no < head_blk) { 3766 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 3767 if (error) 3768 goto bread_err2; 3769 3770 rhead = (xlog_rec_header_t *)offset; 3771 error = xlog_valid_rec_header(log, rhead, blk_no); 3772 if (error) 3773 goto bread_err2; 3774 3775 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3776 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 3777 &offset); 3778 if (error) 3779 goto bread_err2; 3780 3781 error = xlog_unpack_data(rhead, offset, log); 3782 if (error) 3783 goto bread_err2; 3784 3785 error = xlog_recover_process_data(log, rhash, 3786 rhead, offset, pass); 3787 if (error) 3788 goto bread_err2; 3789 blk_no += bblks + hblks; 3790 } 3791 } 3792 3793 bread_err2: 3794 xlog_put_bp(dbp); 3795 bread_err1: 3796 xlog_put_bp(hbp); 3797 return error; 3798 } 3799 3800 /* 3801 * Do the recovery of the log. We actually do this in two phases. 3802 * The two passes are necessary in order to implement the function 3803 * of cancelling a record written into the log. The first pass 3804 * determines those things which have been cancelled, and the 3805 * second pass replays log items normally except for those which 3806 * have been cancelled. The handling of the replay and cancellations 3807 * takes place in the log item type specific routines. 3808 * 3809 * The table of items which have cancel records in the log is allocated 3810 * and freed at this level, since only here do we know when all of 3811 * the log recovery has been completed. 3812 */ 3813 STATIC int 3814 xlog_do_log_recovery( 3815 struct xlog *log, 3816 xfs_daddr_t head_blk, 3817 xfs_daddr_t tail_blk) 3818 { 3819 int error, i; 3820 3821 ASSERT(head_blk != tail_blk); 3822 3823 /* 3824 * First do a pass to find all of the cancelled buf log items. 3825 * Store them in the buf_cancel_table for use in the second pass. 3826 */ 3827 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * 3828 sizeof(struct list_head), 3829 KM_SLEEP); 3830 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3831 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); 3832 3833 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3834 XLOG_RECOVER_PASS1); 3835 if (error != 0) { 3836 kmem_free(log->l_buf_cancel_table); 3837 log->l_buf_cancel_table = NULL; 3838 return error; 3839 } 3840 /* 3841 * Then do a second pass to actually recover the items in the log. 3842 * When it is complete free the table of buf cancel items. 3843 */ 3844 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3845 XLOG_RECOVER_PASS2); 3846 #ifdef DEBUG 3847 if (!error) { 3848 int i; 3849 3850 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3851 ASSERT(list_empty(&log->l_buf_cancel_table[i])); 3852 } 3853 #endif /* DEBUG */ 3854 3855 kmem_free(log->l_buf_cancel_table); 3856 log->l_buf_cancel_table = NULL; 3857 3858 return error; 3859 } 3860 3861 /* 3862 * Do the actual recovery 3863 */ 3864 STATIC int 3865 xlog_do_recover( 3866 struct xlog *log, 3867 xfs_daddr_t head_blk, 3868 xfs_daddr_t tail_blk) 3869 { 3870 int error; 3871 xfs_buf_t *bp; 3872 xfs_sb_t *sbp; 3873 3874 /* 3875 * First replay the images in the log. 3876 */ 3877 error = xlog_do_log_recovery(log, head_blk, tail_blk); 3878 if (error) 3879 return error; 3880 3881 /* 3882 * If IO errors happened during recovery, bail out. 3883 */ 3884 if (XFS_FORCED_SHUTDOWN(log->l_mp)) { 3885 return (EIO); 3886 } 3887 3888 /* 3889 * We now update the tail_lsn since much of the recovery has completed 3890 * and there may be space available to use. If there were no extent 3891 * or iunlinks, we can free up the entire log and set the tail_lsn to 3892 * be the last_sync_lsn. This was set in xlog_find_tail to be the 3893 * lsn of the last known good LR on disk. If there are extent frees 3894 * or iunlinks they will have some entries in the AIL; so we look at 3895 * the AIL to determine how to set the tail_lsn. 3896 */ 3897 xlog_assign_tail_lsn(log->l_mp); 3898 3899 /* 3900 * Now that we've finished replaying all buffer and inode 3901 * updates, re-read in the superblock and reverify it. 3902 */ 3903 bp = xfs_getsb(log->l_mp, 0); 3904 XFS_BUF_UNDONE(bp); 3905 ASSERT(!(XFS_BUF_ISWRITE(bp))); 3906 XFS_BUF_READ(bp); 3907 XFS_BUF_UNASYNC(bp); 3908 bp->b_ops = &xfs_sb_buf_ops; 3909 xfsbdstrat(log->l_mp, bp); 3910 error = xfs_buf_iowait(bp); 3911 if (error) { 3912 xfs_buf_ioerror_alert(bp, __func__); 3913 ASSERT(0); 3914 xfs_buf_relse(bp); 3915 return error; 3916 } 3917 3918 /* Convert superblock from on-disk format */ 3919 sbp = &log->l_mp->m_sb; 3920 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 3921 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); 3922 ASSERT(xfs_sb_good_version(sbp)); 3923 xfs_buf_relse(bp); 3924 3925 /* We've re-read the superblock so re-initialize per-cpu counters */ 3926 xfs_icsb_reinit_counters(log->l_mp); 3927 3928 xlog_recover_check_summary(log); 3929 3930 /* Normal transactions can now occur */ 3931 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 3932 return 0; 3933 } 3934 3935 /* 3936 * Perform recovery and re-initialize some log variables in xlog_find_tail. 3937 * 3938 * Return error or zero. 3939 */ 3940 int 3941 xlog_recover( 3942 struct xlog *log) 3943 { 3944 xfs_daddr_t head_blk, tail_blk; 3945 int error; 3946 3947 /* find the tail of the log */ 3948 if ((error = xlog_find_tail(log, &head_blk, &tail_blk))) 3949 return error; 3950 3951 if (tail_blk != head_blk) { 3952 /* There used to be a comment here: 3953 * 3954 * disallow recovery on read-only mounts. note -- mount 3955 * checks for ENOSPC and turns it into an intelligent 3956 * error message. 3957 * ...but this is no longer true. Now, unless you specify 3958 * NORECOVERY (in which case this function would never be 3959 * called), we just go ahead and recover. We do this all 3960 * under the vfs layer, so we can get away with it unless 3961 * the device itself is read-only, in which case we fail. 3962 */ 3963 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 3964 return error; 3965 } 3966 3967 /* 3968 * Version 5 superblock log feature mask validation. We know the 3969 * log is dirty so check if there are any unknown log features 3970 * in what we need to recover. If there are unknown features 3971 * (e.g. unsupported transactions, then simply reject the 3972 * attempt at recovery before touching anything. 3973 */ 3974 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 && 3975 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, 3976 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { 3977 xfs_warn(log->l_mp, 3978 "Superblock has unknown incompatible log features (0x%x) enabled.\n" 3979 "The log can not be fully and/or safely recovered by this kernel.\n" 3980 "Please recover the log on a kernel that supports the unknown features.", 3981 (log->l_mp->m_sb.sb_features_log_incompat & 3982 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 3983 return EINVAL; 3984 } 3985 3986 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", 3987 log->l_mp->m_logname ? log->l_mp->m_logname 3988 : "internal"); 3989 3990 error = xlog_do_recover(log, head_blk, tail_blk); 3991 log->l_flags |= XLOG_RECOVERY_NEEDED; 3992 } 3993 return error; 3994 } 3995 3996 /* 3997 * In the first part of recovery we replay inodes and buffers and build 3998 * up the list of extent free items which need to be processed. Here 3999 * we process the extent free items and clean up the on disk unlinked 4000 * inode lists. This is separated from the first part of recovery so 4001 * that the root and real-time bitmap inodes can be read in from disk in 4002 * between the two stages. This is necessary so that we can free space 4003 * in the real-time portion of the file system. 4004 */ 4005 int 4006 xlog_recover_finish( 4007 struct xlog *log) 4008 { 4009 /* 4010 * Now we're ready to do the transactions needed for the 4011 * rest of recovery. Start with completing all the extent 4012 * free intent records and then process the unlinked inode 4013 * lists. At this point, we essentially run in normal mode 4014 * except that we're still performing recovery actions 4015 * rather than accepting new requests. 4016 */ 4017 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 4018 int error; 4019 error = xlog_recover_process_efis(log); 4020 if (error) { 4021 xfs_alert(log->l_mp, "Failed to recover EFIs"); 4022 return error; 4023 } 4024 /* 4025 * Sync the log to get all the EFIs out of the AIL. 4026 * This isn't absolutely necessary, but it helps in 4027 * case the unlink transactions would have problems 4028 * pushing the EFIs out of the way. 4029 */ 4030 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 4031 4032 xlog_recover_process_iunlinks(log); 4033 4034 xlog_recover_check_summary(log); 4035 4036 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", 4037 log->l_mp->m_logname ? log->l_mp->m_logname 4038 : "internal"); 4039 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 4040 } else { 4041 xfs_info(log->l_mp, "Ending clean mount"); 4042 } 4043 return 0; 4044 } 4045 4046 4047 #if defined(DEBUG) 4048 /* 4049 * Read all of the agf and agi counters and check that they 4050 * are consistent with the superblock counters. 4051 */ 4052 void 4053 xlog_recover_check_summary( 4054 struct xlog *log) 4055 { 4056 xfs_mount_t *mp; 4057 xfs_agf_t *agfp; 4058 xfs_buf_t *agfbp; 4059 xfs_buf_t *agibp; 4060 xfs_agnumber_t agno; 4061 __uint64_t freeblks; 4062 __uint64_t itotal; 4063 __uint64_t ifree; 4064 int error; 4065 4066 mp = log->l_mp; 4067 4068 freeblks = 0LL; 4069 itotal = 0LL; 4070 ifree = 0LL; 4071 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 4072 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 4073 if (error) { 4074 xfs_alert(mp, "%s agf read failed agno %d error %d", 4075 __func__, agno, error); 4076 } else { 4077 agfp = XFS_BUF_TO_AGF(agfbp); 4078 freeblks += be32_to_cpu(agfp->agf_freeblks) + 4079 be32_to_cpu(agfp->agf_flcount); 4080 xfs_buf_relse(agfbp); 4081 } 4082 4083 error = xfs_read_agi(mp, NULL, agno, &agibp); 4084 if (error) { 4085 xfs_alert(mp, "%s agi read failed agno %d error %d", 4086 __func__, agno, error); 4087 } else { 4088 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 4089 4090 itotal += be32_to_cpu(agi->agi_count); 4091 ifree += be32_to_cpu(agi->agi_freecount); 4092 xfs_buf_relse(agibp); 4093 } 4094 } 4095 } 4096 #endif /* DEBUG */ 4097