1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_mount.h" 28 #include "xfs_error.h" 29 #include "xfs_bmap_btree.h" 30 #include "xfs_alloc_btree.h" 31 #include "xfs_ialloc_btree.h" 32 #include "xfs_btree.h" 33 #include "xfs_dinode.h" 34 #include "xfs_inode.h" 35 #include "xfs_inode_item.h" 36 #include "xfs_alloc.h" 37 #include "xfs_ialloc.h" 38 #include "xfs_log_priv.h" 39 #include "xfs_buf_item.h" 40 #include "xfs_log_recover.h" 41 #include "xfs_extfree_item.h" 42 #include "xfs_trans_priv.h" 43 #include "xfs_quota.h" 44 #include "xfs_utils.h" 45 #include "xfs_cksum.h" 46 #include "xfs_trace.h" 47 #include "xfs_icache.h" 48 49 /* Need all the magic numbers and buffer ops structures from these headers */ 50 #include "xfs_symlink.h" 51 #include "xfs_da_btree.h" 52 #include "xfs_dir2_format.h" 53 #include "xfs_dir2_priv.h" 54 #include "xfs_attr_leaf.h" 55 #include "xfs_attr_remote.h" 56 57 STATIC int 58 xlog_find_zeroed( 59 struct xlog *, 60 xfs_daddr_t *); 61 STATIC int 62 xlog_clear_stale_blocks( 63 struct xlog *, 64 xfs_lsn_t); 65 #if defined(DEBUG) 66 STATIC void 67 xlog_recover_check_summary( 68 struct xlog *); 69 #else 70 #define xlog_recover_check_summary(log) 71 #endif 72 73 /* 74 * This structure is used during recovery to record the buf log items which 75 * have been canceled and should not be replayed. 76 */ 77 struct xfs_buf_cancel { 78 xfs_daddr_t bc_blkno; 79 uint bc_len; 80 int bc_refcount; 81 struct list_head bc_list; 82 }; 83 84 /* 85 * Sector aligned buffer routines for buffer create/read/write/access 86 */ 87 88 /* 89 * Verify the given count of basic blocks is valid number of blocks 90 * to specify for an operation involving the given XFS log buffer. 91 * Returns nonzero if the count is valid, 0 otherwise. 92 */ 93 94 static inline int 95 xlog_buf_bbcount_valid( 96 struct xlog *log, 97 int bbcount) 98 { 99 return bbcount > 0 && bbcount <= log->l_logBBsize; 100 } 101 102 /* 103 * Allocate a buffer to hold log data. The buffer needs to be able 104 * to map to a range of nbblks basic blocks at any valid (basic 105 * block) offset within the log. 106 */ 107 STATIC xfs_buf_t * 108 xlog_get_bp( 109 struct xlog *log, 110 int nbblks) 111 { 112 struct xfs_buf *bp; 113 114 if (!xlog_buf_bbcount_valid(log, nbblks)) { 115 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 116 nbblks); 117 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 118 return NULL; 119 } 120 121 /* 122 * We do log I/O in units of log sectors (a power-of-2 123 * multiple of the basic block size), so we round up the 124 * requested size to accommodate the basic blocks required 125 * for complete log sectors. 126 * 127 * In addition, the buffer may be used for a non-sector- 128 * aligned block offset, in which case an I/O of the 129 * requested size could extend beyond the end of the 130 * buffer. If the requested size is only 1 basic block it 131 * will never straddle a sector boundary, so this won't be 132 * an issue. Nor will this be a problem if the log I/O is 133 * done in basic blocks (sector size 1). But otherwise we 134 * extend the buffer by one extra log sector to ensure 135 * there's space to accommodate this possibility. 136 */ 137 if (nbblks > 1 && log->l_sectBBsize > 1) 138 nbblks += log->l_sectBBsize; 139 nbblks = round_up(nbblks, log->l_sectBBsize); 140 141 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0); 142 if (bp) 143 xfs_buf_unlock(bp); 144 return bp; 145 } 146 147 STATIC void 148 xlog_put_bp( 149 xfs_buf_t *bp) 150 { 151 xfs_buf_free(bp); 152 } 153 154 /* 155 * Return the address of the start of the given block number's data 156 * in a log buffer. The buffer covers a log sector-aligned region. 157 */ 158 STATIC xfs_caddr_t 159 xlog_align( 160 struct xlog *log, 161 xfs_daddr_t blk_no, 162 int nbblks, 163 struct xfs_buf *bp) 164 { 165 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1); 166 167 ASSERT(offset + nbblks <= bp->b_length); 168 return bp->b_addr + BBTOB(offset); 169 } 170 171 172 /* 173 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 174 */ 175 STATIC int 176 xlog_bread_noalign( 177 struct xlog *log, 178 xfs_daddr_t blk_no, 179 int nbblks, 180 struct xfs_buf *bp) 181 { 182 int error; 183 184 if (!xlog_buf_bbcount_valid(log, nbblks)) { 185 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 186 nbblks); 187 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 188 return EFSCORRUPTED; 189 } 190 191 blk_no = round_down(blk_no, log->l_sectBBsize); 192 nbblks = round_up(nbblks, log->l_sectBBsize); 193 194 ASSERT(nbblks > 0); 195 ASSERT(nbblks <= bp->b_length); 196 197 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 198 XFS_BUF_READ(bp); 199 bp->b_io_length = nbblks; 200 bp->b_error = 0; 201 202 xfsbdstrat(log->l_mp, bp); 203 error = xfs_buf_iowait(bp); 204 if (error) 205 xfs_buf_ioerror_alert(bp, __func__); 206 return error; 207 } 208 209 STATIC int 210 xlog_bread( 211 struct xlog *log, 212 xfs_daddr_t blk_no, 213 int nbblks, 214 struct xfs_buf *bp, 215 xfs_caddr_t *offset) 216 { 217 int error; 218 219 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 220 if (error) 221 return error; 222 223 *offset = xlog_align(log, blk_no, nbblks, bp); 224 return 0; 225 } 226 227 /* 228 * Read at an offset into the buffer. Returns with the buffer in it's original 229 * state regardless of the result of the read. 230 */ 231 STATIC int 232 xlog_bread_offset( 233 struct xlog *log, 234 xfs_daddr_t blk_no, /* block to read from */ 235 int nbblks, /* blocks to read */ 236 struct xfs_buf *bp, 237 xfs_caddr_t offset) 238 { 239 xfs_caddr_t orig_offset = bp->b_addr; 240 int orig_len = BBTOB(bp->b_length); 241 int error, error2; 242 243 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks)); 244 if (error) 245 return error; 246 247 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 248 249 /* must reset buffer pointer even on error */ 250 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len); 251 if (error) 252 return error; 253 return error2; 254 } 255 256 /* 257 * Write out the buffer at the given block for the given number of blocks. 258 * The buffer is kept locked across the write and is returned locked. 259 * This can only be used for synchronous log writes. 260 */ 261 STATIC int 262 xlog_bwrite( 263 struct xlog *log, 264 xfs_daddr_t blk_no, 265 int nbblks, 266 struct xfs_buf *bp) 267 { 268 int error; 269 270 if (!xlog_buf_bbcount_valid(log, nbblks)) { 271 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 272 nbblks); 273 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 274 return EFSCORRUPTED; 275 } 276 277 blk_no = round_down(blk_no, log->l_sectBBsize); 278 nbblks = round_up(nbblks, log->l_sectBBsize); 279 280 ASSERT(nbblks > 0); 281 ASSERT(nbblks <= bp->b_length); 282 283 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 284 XFS_BUF_ZEROFLAGS(bp); 285 xfs_buf_hold(bp); 286 xfs_buf_lock(bp); 287 bp->b_io_length = nbblks; 288 bp->b_error = 0; 289 290 error = xfs_bwrite(bp); 291 if (error) 292 xfs_buf_ioerror_alert(bp, __func__); 293 xfs_buf_relse(bp); 294 return error; 295 } 296 297 #ifdef DEBUG 298 /* 299 * dump debug superblock and log record information 300 */ 301 STATIC void 302 xlog_header_check_dump( 303 xfs_mount_t *mp, 304 xlog_rec_header_t *head) 305 { 306 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n", 307 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 308 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n", 309 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 310 } 311 #else 312 #define xlog_header_check_dump(mp, head) 313 #endif 314 315 /* 316 * check log record header for recovery 317 */ 318 STATIC int 319 xlog_header_check_recover( 320 xfs_mount_t *mp, 321 xlog_rec_header_t *head) 322 { 323 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 324 325 /* 326 * IRIX doesn't write the h_fmt field and leaves it zeroed 327 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 328 * a dirty log created in IRIX. 329 */ 330 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) { 331 xfs_warn(mp, 332 "dirty log written in incompatible format - can't recover"); 333 xlog_header_check_dump(mp, head); 334 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 335 XFS_ERRLEVEL_HIGH, mp); 336 return XFS_ERROR(EFSCORRUPTED); 337 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 338 xfs_warn(mp, 339 "dirty log entry has mismatched uuid - can't recover"); 340 xlog_header_check_dump(mp, head); 341 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 342 XFS_ERRLEVEL_HIGH, mp); 343 return XFS_ERROR(EFSCORRUPTED); 344 } 345 return 0; 346 } 347 348 /* 349 * read the head block of the log and check the header 350 */ 351 STATIC int 352 xlog_header_check_mount( 353 xfs_mount_t *mp, 354 xlog_rec_header_t *head) 355 { 356 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 357 358 if (uuid_is_nil(&head->h_fs_uuid)) { 359 /* 360 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 361 * h_fs_uuid is nil, we assume this log was last mounted 362 * by IRIX and continue. 363 */ 364 xfs_warn(mp, "nil uuid in log - IRIX style log"); 365 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 366 xfs_warn(mp, "log has mismatched uuid - can't recover"); 367 xlog_header_check_dump(mp, head); 368 XFS_ERROR_REPORT("xlog_header_check_mount", 369 XFS_ERRLEVEL_HIGH, mp); 370 return XFS_ERROR(EFSCORRUPTED); 371 } 372 return 0; 373 } 374 375 STATIC void 376 xlog_recover_iodone( 377 struct xfs_buf *bp) 378 { 379 if (bp->b_error) { 380 /* 381 * We're not going to bother about retrying 382 * this during recovery. One strike! 383 */ 384 xfs_buf_ioerror_alert(bp, __func__); 385 xfs_force_shutdown(bp->b_target->bt_mount, 386 SHUTDOWN_META_IO_ERROR); 387 } 388 bp->b_iodone = NULL; 389 xfs_buf_ioend(bp, 0); 390 } 391 392 /* 393 * This routine finds (to an approximation) the first block in the physical 394 * log which contains the given cycle. It uses a binary search algorithm. 395 * Note that the algorithm can not be perfect because the disk will not 396 * necessarily be perfect. 397 */ 398 STATIC int 399 xlog_find_cycle_start( 400 struct xlog *log, 401 struct xfs_buf *bp, 402 xfs_daddr_t first_blk, 403 xfs_daddr_t *last_blk, 404 uint cycle) 405 { 406 xfs_caddr_t offset; 407 xfs_daddr_t mid_blk; 408 xfs_daddr_t end_blk; 409 uint mid_cycle; 410 int error; 411 412 end_blk = *last_blk; 413 mid_blk = BLK_AVG(first_blk, end_blk); 414 while (mid_blk != first_blk && mid_blk != end_blk) { 415 error = xlog_bread(log, mid_blk, 1, bp, &offset); 416 if (error) 417 return error; 418 mid_cycle = xlog_get_cycle(offset); 419 if (mid_cycle == cycle) 420 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 421 else 422 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 423 mid_blk = BLK_AVG(first_blk, end_blk); 424 } 425 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 426 (mid_blk == end_blk && mid_blk-1 == first_blk)); 427 428 *last_blk = end_blk; 429 430 return 0; 431 } 432 433 /* 434 * Check that a range of blocks does not contain stop_on_cycle_no. 435 * Fill in *new_blk with the block offset where such a block is 436 * found, or with -1 (an invalid block number) if there is no such 437 * block in the range. The scan needs to occur from front to back 438 * and the pointer into the region must be updated since a later 439 * routine will need to perform another test. 440 */ 441 STATIC int 442 xlog_find_verify_cycle( 443 struct xlog *log, 444 xfs_daddr_t start_blk, 445 int nbblks, 446 uint stop_on_cycle_no, 447 xfs_daddr_t *new_blk) 448 { 449 xfs_daddr_t i, j; 450 uint cycle; 451 xfs_buf_t *bp; 452 xfs_daddr_t bufblks; 453 xfs_caddr_t buf = NULL; 454 int error = 0; 455 456 /* 457 * Greedily allocate a buffer big enough to handle the full 458 * range of basic blocks we'll be examining. If that fails, 459 * try a smaller size. We need to be able to read at least 460 * a log sector, or we're out of luck. 461 */ 462 bufblks = 1 << ffs(nbblks); 463 while (bufblks > log->l_logBBsize) 464 bufblks >>= 1; 465 while (!(bp = xlog_get_bp(log, bufblks))) { 466 bufblks >>= 1; 467 if (bufblks < log->l_sectBBsize) 468 return ENOMEM; 469 } 470 471 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 472 int bcount; 473 474 bcount = min(bufblks, (start_blk + nbblks - i)); 475 476 error = xlog_bread(log, i, bcount, bp, &buf); 477 if (error) 478 goto out; 479 480 for (j = 0; j < bcount; j++) { 481 cycle = xlog_get_cycle(buf); 482 if (cycle == stop_on_cycle_no) { 483 *new_blk = i+j; 484 goto out; 485 } 486 487 buf += BBSIZE; 488 } 489 } 490 491 *new_blk = -1; 492 493 out: 494 xlog_put_bp(bp); 495 return error; 496 } 497 498 /* 499 * Potentially backup over partial log record write. 500 * 501 * In the typical case, last_blk is the number of the block directly after 502 * a good log record. Therefore, we subtract one to get the block number 503 * of the last block in the given buffer. extra_bblks contains the number 504 * of blocks we would have read on a previous read. This happens when the 505 * last log record is split over the end of the physical log. 506 * 507 * extra_bblks is the number of blocks potentially verified on a previous 508 * call to this routine. 509 */ 510 STATIC int 511 xlog_find_verify_log_record( 512 struct xlog *log, 513 xfs_daddr_t start_blk, 514 xfs_daddr_t *last_blk, 515 int extra_bblks) 516 { 517 xfs_daddr_t i; 518 xfs_buf_t *bp; 519 xfs_caddr_t offset = NULL; 520 xlog_rec_header_t *head = NULL; 521 int error = 0; 522 int smallmem = 0; 523 int num_blks = *last_blk - start_blk; 524 int xhdrs; 525 526 ASSERT(start_blk != 0 || *last_blk != start_blk); 527 528 if (!(bp = xlog_get_bp(log, num_blks))) { 529 if (!(bp = xlog_get_bp(log, 1))) 530 return ENOMEM; 531 smallmem = 1; 532 } else { 533 error = xlog_bread(log, start_blk, num_blks, bp, &offset); 534 if (error) 535 goto out; 536 offset += ((num_blks - 1) << BBSHIFT); 537 } 538 539 for (i = (*last_blk) - 1; i >= 0; i--) { 540 if (i < start_blk) { 541 /* valid log record not found */ 542 xfs_warn(log->l_mp, 543 "Log inconsistent (didn't find previous header)"); 544 ASSERT(0); 545 error = XFS_ERROR(EIO); 546 goto out; 547 } 548 549 if (smallmem) { 550 error = xlog_bread(log, i, 1, bp, &offset); 551 if (error) 552 goto out; 553 } 554 555 head = (xlog_rec_header_t *)offset; 556 557 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 558 break; 559 560 if (!smallmem) 561 offset -= BBSIZE; 562 } 563 564 /* 565 * We hit the beginning of the physical log & still no header. Return 566 * to caller. If caller can handle a return of -1, then this routine 567 * will be called again for the end of the physical log. 568 */ 569 if (i == -1) { 570 error = -1; 571 goto out; 572 } 573 574 /* 575 * We have the final block of the good log (the first block 576 * of the log record _before_ the head. So we check the uuid. 577 */ 578 if ((error = xlog_header_check_mount(log->l_mp, head))) 579 goto out; 580 581 /* 582 * We may have found a log record header before we expected one. 583 * last_blk will be the 1st block # with a given cycle #. We may end 584 * up reading an entire log record. In this case, we don't want to 585 * reset last_blk. Only when last_blk points in the middle of a log 586 * record do we update last_blk. 587 */ 588 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 589 uint h_size = be32_to_cpu(head->h_size); 590 591 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 592 if (h_size % XLOG_HEADER_CYCLE_SIZE) 593 xhdrs++; 594 } else { 595 xhdrs = 1; 596 } 597 598 if (*last_blk - i + extra_bblks != 599 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 600 *last_blk = i; 601 602 out: 603 xlog_put_bp(bp); 604 return error; 605 } 606 607 /* 608 * Head is defined to be the point of the log where the next log write 609 * write could go. This means that incomplete LR writes at the end are 610 * eliminated when calculating the head. We aren't guaranteed that previous 611 * LR have complete transactions. We only know that a cycle number of 612 * current cycle number -1 won't be present in the log if we start writing 613 * from our current block number. 614 * 615 * last_blk contains the block number of the first block with a given 616 * cycle number. 617 * 618 * Return: zero if normal, non-zero if error. 619 */ 620 STATIC int 621 xlog_find_head( 622 struct xlog *log, 623 xfs_daddr_t *return_head_blk) 624 { 625 xfs_buf_t *bp; 626 xfs_caddr_t offset; 627 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 628 int num_scan_bblks; 629 uint first_half_cycle, last_half_cycle; 630 uint stop_on_cycle; 631 int error, log_bbnum = log->l_logBBsize; 632 633 /* Is the end of the log device zeroed? */ 634 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) { 635 *return_head_blk = first_blk; 636 637 /* Is the whole lot zeroed? */ 638 if (!first_blk) { 639 /* Linux XFS shouldn't generate totally zeroed logs - 640 * mkfs etc write a dummy unmount record to a fresh 641 * log so we can store the uuid in there 642 */ 643 xfs_warn(log->l_mp, "totally zeroed log"); 644 } 645 646 return 0; 647 } else if (error) { 648 xfs_warn(log->l_mp, "empty log check failed"); 649 return error; 650 } 651 652 first_blk = 0; /* get cycle # of 1st block */ 653 bp = xlog_get_bp(log, 1); 654 if (!bp) 655 return ENOMEM; 656 657 error = xlog_bread(log, 0, 1, bp, &offset); 658 if (error) 659 goto bp_err; 660 661 first_half_cycle = xlog_get_cycle(offset); 662 663 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 664 error = xlog_bread(log, last_blk, 1, bp, &offset); 665 if (error) 666 goto bp_err; 667 668 last_half_cycle = xlog_get_cycle(offset); 669 ASSERT(last_half_cycle != 0); 670 671 /* 672 * If the 1st half cycle number is equal to the last half cycle number, 673 * then the entire log is stamped with the same cycle number. In this 674 * case, head_blk can't be set to zero (which makes sense). The below 675 * math doesn't work out properly with head_blk equal to zero. Instead, 676 * we set it to log_bbnum which is an invalid block number, but this 677 * value makes the math correct. If head_blk doesn't changed through 678 * all the tests below, *head_blk is set to zero at the very end rather 679 * than log_bbnum. In a sense, log_bbnum and zero are the same block 680 * in a circular file. 681 */ 682 if (first_half_cycle == last_half_cycle) { 683 /* 684 * In this case we believe that the entire log should have 685 * cycle number last_half_cycle. We need to scan backwards 686 * from the end verifying that there are no holes still 687 * containing last_half_cycle - 1. If we find such a hole, 688 * then the start of that hole will be the new head. The 689 * simple case looks like 690 * x | x ... | x - 1 | x 691 * Another case that fits this picture would be 692 * x | x + 1 | x ... | x 693 * In this case the head really is somewhere at the end of the 694 * log, as one of the latest writes at the beginning was 695 * incomplete. 696 * One more case is 697 * x | x + 1 | x ... | x - 1 | x 698 * This is really the combination of the above two cases, and 699 * the head has to end up at the start of the x-1 hole at the 700 * end of the log. 701 * 702 * In the 256k log case, we will read from the beginning to the 703 * end of the log and search for cycle numbers equal to x-1. 704 * We don't worry about the x+1 blocks that we encounter, 705 * because we know that they cannot be the head since the log 706 * started with x. 707 */ 708 head_blk = log_bbnum; 709 stop_on_cycle = last_half_cycle - 1; 710 } else { 711 /* 712 * In this case we want to find the first block with cycle 713 * number matching last_half_cycle. We expect the log to be 714 * some variation on 715 * x + 1 ... | x ... | x 716 * The first block with cycle number x (last_half_cycle) will 717 * be where the new head belongs. First we do a binary search 718 * for the first occurrence of last_half_cycle. The binary 719 * search may not be totally accurate, so then we scan back 720 * from there looking for occurrences of last_half_cycle before 721 * us. If that backwards scan wraps around the beginning of 722 * the log, then we look for occurrences of last_half_cycle - 1 723 * at the end of the log. The cases we're looking for look 724 * like 725 * v binary search stopped here 726 * x + 1 ... | x | x + 1 | x ... | x 727 * ^ but we want to locate this spot 728 * or 729 * <---------> less than scan distance 730 * x + 1 ... | x ... | x - 1 | x 731 * ^ we want to locate this spot 732 */ 733 stop_on_cycle = last_half_cycle; 734 if ((error = xlog_find_cycle_start(log, bp, first_blk, 735 &head_blk, last_half_cycle))) 736 goto bp_err; 737 } 738 739 /* 740 * Now validate the answer. Scan back some number of maximum possible 741 * blocks and make sure each one has the expected cycle number. The 742 * maximum is determined by the total possible amount of buffering 743 * in the in-core log. The following number can be made tighter if 744 * we actually look at the block size of the filesystem. 745 */ 746 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 747 if (head_blk >= num_scan_bblks) { 748 /* 749 * We are guaranteed that the entire check can be performed 750 * in one buffer. 751 */ 752 start_blk = head_blk - num_scan_bblks; 753 if ((error = xlog_find_verify_cycle(log, 754 start_blk, num_scan_bblks, 755 stop_on_cycle, &new_blk))) 756 goto bp_err; 757 if (new_blk != -1) 758 head_blk = new_blk; 759 } else { /* need to read 2 parts of log */ 760 /* 761 * We are going to scan backwards in the log in two parts. 762 * First we scan the physical end of the log. In this part 763 * of the log, we are looking for blocks with cycle number 764 * last_half_cycle - 1. 765 * If we find one, then we know that the log starts there, as 766 * we've found a hole that didn't get written in going around 767 * the end of the physical log. The simple case for this is 768 * x + 1 ... | x ... | x - 1 | x 769 * <---------> less than scan distance 770 * If all of the blocks at the end of the log have cycle number 771 * last_half_cycle, then we check the blocks at the start of 772 * the log looking for occurrences of last_half_cycle. If we 773 * find one, then our current estimate for the location of the 774 * first occurrence of last_half_cycle is wrong and we move 775 * back to the hole we've found. This case looks like 776 * x + 1 ... | x | x + 1 | x ... 777 * ^ binary search stopped here 778 * Another case we need to handle that only occurs in 256k 779 * logs is 780 * x + 1 ... | x ... | x+1 | x ... 781 * ^ binary search stops here 782 * In a 256k log, the scan at the end of the log will see the 783 * x + 1 blocks. We need to skip past those since that is 784 * certainly not the head of the log. By searching for 785 * last_half_cycle-1 we accomplish that. 786 */ 787 ASSERT(head_blk <= INT_MAX && 788 (xfs_daddr_t) num_scan_bblks >= head_blk); 789 start_blk = log_bbnum - (num_scan_bblks - head_blk); 790 if ((error = xlog_find_verify_cycle(log, start_blk, 791 num_scan_bblks - (int)head_blk, 792 (stop_on_cycle - 1), &new_blk))) 793 goto bp_err; 794 if (new_blk != -1) { 795 head_blk = new_blk; 796 goto validate_head; 797 } 798 799 /* 800 * Scan beginning of log now. The last part of the physical 801 * log is good. This scan needs to verify that it doesn't find 802 * the last_half_cycle. 803 */ 804 start_blk = 0; 805 ASSERT(head_blk <= INT_MAX); 806 if ((error = xlog_find_verify_cycle(log, 807 start_blk, (int)head_blk, 808 stop_on_cycle, &new_blk))) 809 goto bp_err; 810 if (new_blk != -1) 811 head_blk = new_blk; 812 } 813 814 validate_head: 815 /* 816 * Now we need to make sure head_blk is not pointing to a block in 817 * the middle of a log record. 818 */ 819 num_scan_bblks = XLOG_REC_SHIFT(log); 820 if (head_blk >= num_scan_bblks) { 821 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 822 823 /* start ptr at last block ptr before head_blk */ 824 if ((error = xlog_find_verify_log_record(log, start_blk, 825 &head_blk, 0)) == -1) { 826 error = XFS_ERROR(EIO); 827 goto bp_err; 828 } else if (error) 829 goto bp_err; 830 } else { 831 start_blk = 0; 832 ASSERT(head_blk <= INT_MAX); 833 if ((error = xlog_find_verify_log_record(log, start_blk, 834 &head_blk, 0)) == -1) { 835 /* We hit the beginning of the log during our search */ 836 start_blk = log_bbnum - (num_scan_bblks - head_blk); 837 new_blk = log_bbnum; 838 ASSERT(start_blk <= INT_MAX && 839 (xfs_daddr_t) log_bbnum-start_blk >= 0); 840 ASSERT(head_blk <= INT_MAX); 841 if ((error = xlog_find_verify_log_record(log, 842 start_blk, &new_blk, 843 (int)head_blk)) == -1) { 844 error = XFS_ERROR(EIO); 845 goto bp_err; 846 } else if (error) 847 goto bp_err; 848 if (new_blk != log_bbnum) 849 head_blk = new_blk; 850 } else if (error) 851 goto bp_err; 852 } 853 854 xlog_put_bp(bp); 855 if (head_blk == log_bbnum) 856 *return_head_blk = 0; 857 else 858 *return_head_blk = head_blk; 859 /* 860 * When returning here, we have a good block number. Bad block 861 * means that during a previous crash, we didn't have a clean break 862 * from cycle number N to cycle number N-1. In this case, we need 863 * to find the first block with cycle number N-1. 864 */ 865 return 0; 866 867 bp_err: 868 xlog_put_bp(bp); 869 870 if (error) 871 xfs_warn(log->l_mp, "failed to find log head"); 872 return error; 873 } 874 875 /* 876 * Find the sync block number or the tail of the log. 877 * 878 * This will be the block number of the last record to have its 879 * associated buffers synced to disk. Every log record header has 880 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 881 * to get a sync block number. The only concern is to figure out which 882 * log record header to believe. 883 * 884 * The following algorithm uses the log record header with the largest 885 * lsn. The entire log record does not need to be valid. We only care 886 * that the header is valid. 887 * 888 * We could speed up search by using current head_blk buffer, but it is not 889 * available. 890 */ 891 STATIC int 892 xlog_find_tail( 893 struct xlog *log, 894 xfs_daddr_t *head_blk, 895 xfs_daddr_t *tail_blk) 896 { 897 xlog_rec_header_t *rhead; 898 xlog_op_header_t *op_head; 899 xfs_caddr_t offset = NULL; 900 xfs_buf_t *bp; 901 int error, i, found; 902 xfs_daddr_t umount_data_blk; 903 xfs_daddr_t after_umount_blk; 904 xfs_lsn_t tail_lsn; 905 int hblks; 906 907 found = 0; 908 909 /* 910 * Find previous log record 911 */ 912 if ((error = xlog_find_head(log, head_blk))) 913 return error; 914 915 bp = xlog_get_bp(log, 1); 916 if (!bp) 917 return ENOMEM; 918 if (*head_blk == 0) { /* special case */ 919 error = xlog_bread(log, 0, 1, bp, &offset); 920 if (error) 921 goto done; 922 923 if (xlog_get_cycle(offset) == 0) { 924 *tail_blk = 0; 925 /* leave all other log inited values alone */ 926 goto done; 927 } 928 } 929 930 /* 931 * Search backwards looking for log record header block 932 */ 933 ASSERT(*head_blk < INT_MAX); 934 for (i = (int)(*head_blk) - 1; i >= 0; i--) { 935 error = xlog_bread(log, i, 1, bp, &offset); 936 if (error) 937 goto done; 938 939 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 940 found = 1; 941 break; 942 } 943 } 944 /* 945 * If we haven't found the log record header block, start looking 946 * again from the end of the physical log. XXXmiken: There should be 947 * a check here to make sure we didn't search more than N blocks in 948 * the previous code. 949 */ 950 if (!found) { 951 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) { 952 error = xlog_bread(log, i, 1, bp, &offset); 953 if (error) 954 goto done; 955 956 if (*(__be32 *)offset == 957 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 958 found = 2; 959 break; 960 } 961 } 962 } 963 if (!found) { 964 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); 965 ASSERT(0); 966 return XFS_ERROR(EIO); 967 } 968 969 /* find blk_no of tail of log */ 970 rhead = (xlog_rec_header_t *)offset; 971 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 972 973 /* 974 * Reset log values according to the state of the log when we 975 * crashed. In the case where head_blk == 0, we bump curr_cycle 976 * one because the next write starts a new cycle rather than 977 * continuing the cycle of the last good log record. At this 978 * point we have guaranteed that all partial log records have been 979 * accounted for. Therefore, we know that the last good log record 980 * written was complete and ended exactly on the end boundary 981 * of the physical log. 982 */ 983 log->l_prev_block = i; 984 log->l_curr_block = (int)*head_blk; 985 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 986 if (found == 2) 987 log->l_curr_cycle++; 988 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); 989 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); 990 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, 991 BBTOB(log->l_curr_block)); 992 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, 993 BBTOB(log->l_curr_block)); 994 995 /* 996 * Look for unmount record. If we find it, then we know there 997 * was a clean unmount. Since 'i' could be the last block in 998 * the physical log, we convert to a log block before comparing 999 * to the head_blk. 1000 * 1001 * Save the current tail lsn to use to pass to 1002 * xlog_clear_stale_blocks() below. We won't want to clear the 1003 * unmount record if there is one, so we pass the lsn of the 1004 * unmount record rather than the block after it. 1005 */ 1006 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1007 int h_size = be32_to_cpu(rhead->h_size); 1008 int h_version = be32_to_cpu(rhead->h_version); 1009 1010 if ((h_version & XLOG_VERSION_2) && 1011 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 1012 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 1013 if (h_size % XLOG_HEADER_CYCLE_SIZE) 1014 hblks++; 1015 } else { 1016 hblks = 1; 1017 } 1018 } else { 1019 hblks = 1; 1020 } 1021 after_umount_blk = (i + hblks + (int) 1022 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize; 1023 tail_lsn = atomic64_read(&log->l_tail_lsn); 1024 if (*head_blk == after_umount_blk && 1025 be32_to_cpu(rhead->h_num_logops) == 1) { 1026 umount_data_blk = (i + hblks) % log->l_logBBsize; 1027 error = xlog_bread(log, umount_data_blk, 1, bp, &offset); 1028 if (error) 1029 goto done; 1030 1031 op_head = (xlog_op_header_t *)offset; 1032 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 1033 /* 1034 * Set tail and last sync so that newly written 1035 * log records will point recovery to after the 1036 * current unmount record. 1037 */ 1038 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1039 log->l_curr_cycle, after_umount_blk); 1040 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1041 log->l_curr_cycle, after_umount_blk); 1042 *tail_blk = after_umount_blk; 1043 1044 /* 1045 * Note that the unmount was clean. If the unmount 1046 * was not clean, we need to know this to rebuild the 1047 * superblock counters from the perag headers if we 1048 * have a filesystem using non-persistent counters. 1049 */ 1050 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 1051 } 1052 } 1053 1054 /* 1055 * Make sure that there are no blocks in front of the head 1056 * with the same cycle number as the head. This can happen 1057 * because we allow multiple outstanding log writes concurrently, 1058 * and the later writes might make it out before earlier ones. 1059 * 1060 * We use the lsn from before modifying it so that we'll never 1061 * overwrite the unmount record after a clean unmount. 1062 * 1063 * Do this only if we are going to recover the filesystem 1064 * 1065 * NOTE: This used to say "if (!readonly)" 1066 * However on Linux, we can & do recover a read-only filesystem. 1067 * We only skip recovery if NORECOVERY is specified on mount, 1068 * in which case we would not be here. 1069 * 1070 * But... if the -device- itself is readonly, just skip this. 1071 * We can't recover this device anyway, so it won't matter. 1072 */ 1073 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) 1074 error = xlog_clear_stale_blocks(log, tail_lsn); 1075 1076 done: 1077 xlog_put_bp(bp); 1078 1079 if (error) 1080 xfs_warn(log->l_mp, "failed to locate log tail"); 1081 return error; 1082 } 1083 1084 /* 1085 * Is the log zeroed at all? 1086 * 1087 * The last binary search should be changed to perform an X block read 1088 * once X becomes small enough. You can then search linearly through 1089 * the X blocks. This will cut down on the number of reads we need to do. 1090 * 1091 * If the log is partially zeroed, this routine will pass back the blkno 1092 * of the first block with cycle number 0. It won't have a complete LR 1093 * preceding it. 1094 * 1095 * Return: 1096 * 0 => the log is completely written to 1097 * -1 => use *blk_no as the first block of the log 1098 * >0 => error has occurred 1099 */ 1100 STATIC int 1101 xlog_find_zeroed( 1102 struct xlog *log, 1103 xfs_daddr_t *blk_no) 1104 { 1105 xfs_buf_t *bp; 1106 xfs_caddr_t offset; 1107 uint first_cycle, last_cycle; 1108 xfs_daddr_t new_blk, last_blk, start_blk; 1109 xfs_daddr_t num_scan_bblks; 1110 int error, log_bbnum = log->l_logBBsize; 1111 1112 *blk_no = 0; 1113 1114 /* check totally zeroed log */ 1115 bp = xlog_get_bp(log, 1); 1116 if (!bp) 1117 return ENOMEM; 1118 error = xlog_bread(log, 0, 1, bp, &offset); 1119 if (error) 1120 goto bp_err; 1121 1122 first_cycle = xlog_get_cycle(offset); 1123 if (first_cycle == 0) { /* completely zeroed log */ 1124 *blk_no = 0; 1125 xlog_put_bp(bp); 1126 return -1; 1127 } 1128 1129 /* check partially zeroed log */ 1130 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset); 1131 if (error) 1132 goto bp_err; 1133 1134 last_cycle = xlog_get_cycle(offset); 1135 if (last_cycle != 0) { /* log completely written to */ 1136 xlog_put_bp(bp); 1137 return 0; 1138 } else if (first_cycle != 1) { 1139 /* 1140 * If the cycle of the last block is zero, the cycle of 1141 * the first block must be 1. If it's not, maybe we're 1142 * not looking at a log... Bail out. 1143 */ 1144 xfs_warn(log->l_mp, 1145 "Log inconsistent or not a log (last==0, first!=1)"); 1146 return XFS_ERROR(EINVAL); 1147 } 1148 1149 /* we have a partially zeroed log */ 1150 last_blk = log_bbnum-1; 1151 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1152 goto bp_err; 1153 1154 /* 1155 * Validate the answer. Because there is no way to guarantee that 1156 * the entire log is made up of log records which are the same size, 1157 * we scan over the defined maximum blocks. At this point, the maximum 1158 * is not chosen to mean anything special. XXXmiken 1159 */ 1160 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1161 ASSERT(num_scan_bblks <= INT_MAX); 1162 1163 if (last_blk < num_scan_bblks) 1164 num_scan_bblks = last_blk; 1165 start_blk = last_blk - num_scan_bblks; 1166 1167 /* 1168 * We search for any instances of cycle number 0 that occur before 1169 * our current estimate of the head. What we're trying to detect is 1170 * 1 ... | 0 | 1 | 0... 1171 * ^ binary search ends here 1172 */ 1173 if ((error = xlog_find_verify_cycle(log, start_blk, 1174 (int)num_scan_bblks, 0, &new_blk))) 1175 goto bp_err; 1176 if (new_blk != -1) 1177 last_blk = new_blk; 1178 1179 /* 1180 * Potentially backup over partial log record write. We don't need 1181 * to search the end of the log because we know it is zero. 1182 */ 1183 if ((error = xlog_find_verify_log_record(log, start_blk, 1184 &last_blk, 0)) == -1) { 1185 error = XFS_ERROR(EIO); 1186 goto bp_err; 1187 } else if (error) 1188 goto bp_err; 1189 1190 *blk_no = last_blk; 1191 bp_err: 1192 xlog_put_bp(bp); 1193 if (error) 1194 return error; 1195 return -1; 1196 } 1197 1198 /* 1199 * These are simple subroutines used by xlog_clear_stale_blocks() below 1200 * to initialize a buffer full of empty log record headers and write 1201 * them into the log. 1202 */ 1203 STATIC void 1204 xlog_add_record( 1205 struct xlog *log, 1206 xfs_caddr_t buf, 1207 int cycle, 1208 int block, 1209 int tail_cycle, 1210 int tail_block) 1211 { 1212 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1213 1214 memset(buf, 0, BBSIZE); 1215 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1216 recp->h_cycle = cpu_to_be32(cycle); 1217 recp->h_version = cpu_to_be32( 1218 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1219 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1220 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1221 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1222 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1223 } 1224 1225 STATIC int 1226 xlog_write_log_records( 1227 struct xlog *log, 1228 int cycle, 1229 int start_block, 1230 int blocks, 1231 int tail_cycle, 1232 int tail_block) 1233 { 1234 xfs_caddr_t offset; 1235 xfs_buf_t *bp; 1236 int balign, ealign; 1237 int sectbb = log->l_sectBBsize; 1238 int end_block = start_block + blocks; 1239 int bufblks; 1240 int error = 0; 1241 int i, j = 0; 1242 1243 /* 1244 * Greedily allocate a buffer big enough to handle the full 1245 * range of basic blocks to be written. If that fails, try 1246 * a smaller size. We need to be able to write at least a 1247 * log sector, or we're out of luck. 1248 */ 1249 bufblks = 1 << ffs(blocks); 1250 while (bufblks > log->l_logBBsize) 1251 bufblks >>= 1; 1252 while (!(bp = xlog_get_bp(log, bufblks))) { 1253 bufblks >>= 1; 1254 if (bufblks < sectbb) 1255 return ENOMEM; 1256 } 1257 1258 /* We may need to do a read at the start to fill in part of 1259 * the buffer in the starting sector not covered by the first 1260 * write below. 1261 */ 1262 balign = round_down(start_block, sectbb); 1263 if (balign != start_block) { 1264 error = xlog_bread_noalign(log, start_block, 1, bp); 1265 if (error) 1266 goto out_put_bp; 1267 1268 j = start_block - balign; 1269 } 1270 1271 for (i = start_block; i < end_block; i += bufblks) { 1272 int bcount, endcount; 1273 1274 bcount = min(bufblks, end_block - start_block); 1275 endcount = bcount - j; 1276 1277 /* We may need to do a read at the end to fill in part of 1278 * the buffer in the final sector not covered by the write. 1279 * If this is the same sector as the above read, skip it. 1280 */ 1281 ealign = round_down(end_block, sectbb); 1282 if (j == 0 && (start_block + endcount > ealign)) { 1283 offset = bp->b_addr + BBTOB(ealign - start_block); 1284 error = xlog_bread_offset(log, ealign, sectbb, 1285 bp, offset); 1286 if (error) 1287 break; 1288 1289 } 1290 1291 offset = xlog_align(log, start_block, endcount, bp); 1292 for (; j < endcount; j++) { 1293 xlog_add_record(log, offset, cycle, i+j, 1294 tail_cycle, tail_block); 1295 offset += BBSIZE; 1296 } 1297 error = xlog_bwrite(log, start_block, endcount, bp); 1298 if (error) 1299 break; 1300 start_block += endcount; 1301 j = 0; 1302 } 1303 1304 out_put_bp: 1305 xlog_put_bp(bp); 1306 return error; 1307 } 1308 1309 /* 1310 * This routine is called to blow away any incomplete log writes out 1311 * in front of the log head. We do this so that we won't become confused 1312 * if we come up, write only a little bit more, and then crash again. 1313 * If we leave the partial log records out there, this situation could 1314 * cause us to think those partial writes are valid blocks since they 1315 * have the current cycle number. We get rid of them by overwriting them 1316 * with empty log records with the old cycle number rather than the 1317 * current one. 1318 * 1319 * The tail lsn is passed in rather than taken from 1320 * the log so that we will not write over the unmount record after a 1321 * clean unmount in a 512 block log. Doing so would leave the log without 1322 * any valid log records in it until a new one was written. If we crashed 1323 * during that time we would not be able to recover. 1324 */ 1325 STATIC int 1326 xlog_clear_stale_blocks( 1327 struct xlog *log, 1328 xfs_lsn_t tail_lsn) 1329 { 1330 int tail_cycle, head_cycle; 1331 int tail_block, head_block; 1332 int tail_distance, max_distance; 1333 int distance; 1334 int error; 1335 1336 tail_cycle = CYCLE_LSN(tail_lsn); 1337 tail_block = BLOCK_LSN(tail_lsn); 1338 head_cycle = log->l_curr_cycle; 1339 head_block = log->l_curr_block; 1340 1341 /* 1342 * Figure out the distance between the new head of the log 1343 * and the tail. We want to write over any blocks beyond the 1344 * head that we may have written just before the crash, but 1345 * we don't want to overwrite the tail of the log. 1346 */ 1347 if (head_cycle == tail_cycle) { 1348 /* 1349 * The tail is behind the head in the physical log, 1350 * so the distance from the head to the tail is the 1351 * distance from the head to the end of the log plus 1352 * the distance from the beginning of the log to the 1353 * tail. 1354 */ 1355 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1356 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1357 XFS_ERRLEVEL_LOW, log->l_mp); 1358 return XFS_ERROR(EFSCORRUPTED); 1359 } 1360 tail_distance = tail_block + (log->l_logBBsize - head_block); 1361 } else { 1362 /* 1363 * The head is behind the tail in the physical log, 1364 * so the distance from the head to the tail is just 1365 * the tail block minus the head block. 1366 */ 1367 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1368 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1369 XFS_ERRLEVEL_LOW, log->l_mp); 1370 return XFS_ERROR(EFSCORRUPTED); 1371 } 1372 tail_distance = tail_block - head_block; 1373 } 1374 1375 /* 1376 * If the head is right up against the tail, we can't clear 1377 * anything. 1378 */ 1379 if (tail_distance <= 0) { 1380 ASSERT(tail_distance == 0); 1381 return 0; 1382 } 1383 1384 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1385 /* 1386 * Take the smaller of the maximum amount of outstanding I/O 1387 * we could have and the distance to the tail to clear out. 1388 * We take the smaller so that we don't overwrite the tail and 1389 * we don't waste all day writing from the head to the tail 1390 * for no reason. 1391 */ 1392 max_distance = MIN(max_distance, tail_distance); 1393 1394 if ((head_block + max_distance) <= log->l_logBBsize) { 1395 /* 1396 * We can stomp all the blocks we need to without 1397 * wrapping around the end of the log. Just do it 1398 * in a single write. Use the cycle number of the 1399 * current cycle minus one so that the log will look like: 1400 * n ... | n - 1 ... 1401 */ 1402 error = xlog_write_log_records(log, (head_cycle - 1), 1403 head_block, max_distance, tail_cycle, 1404 tail_block); 1405 if (error) 1406 return error; 1407 } else { 1408 /* 1409 * We need to wrap around the end of the physical log in 1410 * order to clear all the blocks. Do it in two separate 1411 * I/Os. The first write should be from the head to the 1412 * end of the physical log, and it should use the current 1413 * cycle number minus one just like above. 1414 */ 1415 distance = log->l_logBBsize - head_block; 1416 error = xlog_write_log_records(log, (head_cycle - 1), 1417 head_block, distance, tail_cycle, 1418 tail_block); 1419 1420 if (error) 1421 return error; 1422 1423 /* 1424 * Now write the blocks at the start of the physical log. 1425 * This writes the remainder of the blocks we want to clear. 1426 * It uses the current cycle number since we're now on the 1427 * same cycle as the head so that we get: 1428 * n ... n ... | n - 1 ... 1429 * ^^^^^ blocks we're writing 1430 */ 1431 distance = max_distance - (log->l_logBBsize - head_block); 1432 error = xlog_write_log_records(log, head_cycle, 0, distance, 1433 tail_cycle, tail_block); 1434 if (error) 1435 return error; 1436 } 1437 1438 return 0; 1439 } 1440 1441 /****************************************************************************** 1442 * 1443 * Log recover routines 1444 * 1445 ****************************************************************************** 1446 */ 1447 1448 STATIC xlog_recover_t * 1449 xlog_recover_find_tid( 1450 struct hlist_head *head, 1451 xlog_tid_t tid) 1452 { 1453 xlog_recover_t *trans; 1454 1455 hlist_for_each_entry(trans, head, r_list) { 1456 if (trans->r_log_tid == tid) 1457 return trans; 1458 } 1459 return NULL; 1460 } 1461 1462 STATIC void 1463 xlog_recover_new_tid( 1464 struct hlist_head *head, 1465 xlog_tid_t tid, 1466 xfs_lsn_t lsn) 1467 { 1468 xlog_recover_t *trans; 1469 1470 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP); 1471 trans->r_log_tid = tid; 1472 trans->r_lsn = lsn; 1473 INIT_LIST_HEAD(&trans->r_itemq); 1474 1475 INIT_HLIST_NODE(&trans->r_list); 1476 hlist_add_head(&trans->r_list, head); 1477 } 1478 1479 STATIC void 1480 xlog_recover_add_item( 1481 struct list_head *head) 1482 { 1483 xlog_recover_item_t *item; 1484 1485 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 1486 INIT_LIST_HEAD(&item->ri_list); 1487 list_add_tail(&item->ri_list, head); 1488 } 1489 1490 STATIC int 1491 xlog_recover_add_to_cont_trans( 1492 struct xlog *log, 1493 struct xlog_recover *trans, 1494 xfs_caddr_t dp, 1495 int len) 1496 { 1497 xlog_recover_item_t *item; 1498 xfs_caddr_t ptr, old_ptr; 1499 int old_len; 1500 1501 if (list_empty(&trans->r_itemq)) { 1502 /* finish copying rest of trans header */ 1503 xlog_recover_add_item(&trans->r_itemq); 1504 ptr = (xfs_caddr_t) &trans->r_theader + 1505 sizeof(xfs_trans_header_t) - len; 1506 memcpy(ptr, dp, len); /* d, s, l */ 1507 return 0; 1508 } 1509 /* take the tail entry */ 1510 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 1511 1512 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 1513 old_len = item->ri_buf[item->ri_cnt-1].i_len; 1514 1515 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP); 1516 memcpy(&ptr[old_len], dp, len); /* d, s, l */ 1517 item->ri_buf[item->ri_cnt-1].i_len += len; 1518 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 1519 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 1520 return 0; 1521 } 1522 1523 /* 1524 * The next region to add is the start of a new region. It could be 1525 * a whole region or it could be the first part of a new region. Because 1526 * of this, the assumption here is that the type and size fields of all 1527 * format structures fit into the first 32 bits of the structure. 1528 * 1529 * This works because all regions must be 32 bit aligned. Therefore, we 1530 * either have both fields or we have neither field. In the case we have 1531 * neither field, the data part of the region is zero length. We only have 1532 * a log_op_header and can throw away the header since a new one will appear 1533 * later. If we have at least 4 bytes, then we can determine how many regions 1534 * will appear in the current log item. 1535 */ 1536 STATIC int 1537 xlog_recover_add_to_trans( 1538 struct xlog *log, 1539 struct xlog_recover *trans, 1540 xfs_caddr_t dp, 1541 int len) 1542 { 1543 xfs_inode_log_format_t *in_f; /* any will do */ 1544 xlog_recover_item_t *item; 1545 xfs_caddr_t ptr; 1546 1547 if (!len) 1548 return 0; 1549 if (list_empty(&trans->r_itemq)) { 1550 /* we need to catch log corruptions here */ 1551 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 1552 xfs_warn(log->l_mp, "%s: bad header magic number", 1553 __func__); 1554 ASSERT(0); 1555 return XFS_ERROR(EIO); 1556 } 1557 if (len == sizeof(xfs_trans_header_t)) 1558 xlog_recover_add_item(&trans->r_itemq); 1559 memcpy(&trans->r_theader, dp, len); /* d, s, l */ 1560 return 0; 1561 } 1562 1563 ptr = kmem_alloc(len, KM_SLEEP); 1564 memcpy(ptr, dp, len); 1565 in_f = (xfs_inode_log_format_t *)ptr; 1566 1567 /* take the tail entry */ 1568 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 1569 if (item->ri_total != 0 && 1570 item->ri_total == item->ri_cnt) { 1571 /* tail item is in use, get a new one */ 1572 xlog_recover_add_item(&trans->r_itemq); 1573 item = list_entry(trans->r_itemq.prev, 1574 xlog_recover_item_t, ri_list); 1575 } 1576 1577 if (item->ri_total == 0) { /* first region to be added */ 1578 if (in_f->ilf_size == 0 || 1579 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 1580 xfs_warn(log->l_mp, 1581 "bad number of regions (%d) in inode log format", 1582 in_f->ilf_size); 1583 ASSERT(0); 1584 return XFS_ERROR(EIO); 1585 } 1586 1587 item->ri_total = in_f->ilf_size; 1588 item->ri_buf = 1589 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 1590 KM_SLEEP); 1591 } 1592 ASSERT(item->ri_total > item->ri_cnt); 1593 /* Description region is ri_buf[0] */ 1594 item->ri_buf[item->ri_cnt].i_addr = ptr; 1595 item->ri_buf[item->ri_cnt].i_len = len; 1596 item->ri_cnt++; 1597 trace_xfs_log_recover_item_add(log, trans, item, 0); 1598 return 0; 1599 } 1600 1601 /* 1602 * Sort the log items in the transaction. 1603 * 1604 * The ordering constraints are defined by the inode allocation and unlink 1605 * behaviour. The rules are: 1606 * 1607 * 1. Every item is only logged once in a given transaction. Hence it 1608 * represents the last logged state of the item. Hence ordering is 1609 * dependent on the order in which operations need to be performed so 1610 * required initial conditions are always met. 1611 * 1612 * 2. Cancelled buffers are recorded in pass 1 in a separate table and 1613 * there's nothing to replay from them so we can simply cull them 1614 * from the transaction. However, we can't do that until after we've 1615 * replayed all the other items because they may be dependent on the 1616 * cancelled buffer and replaying the cancelled buffer can remove it 1617 * form the cancelled buffer table. Hence they have tobe done last. 1618 * 1619 * 3. Inode allocation buffers must be replayed before inode items that 1620 * read the buffer and replay changes into it. 1621 * 1622 * 4. Inode unlink buffers must be replayed after inode items are replayed. 1623 * This ensures that inodes are completely flushed to the inode buffer 1624 * in a "free" state before we remove the unlinked inode list pointer. 1625 * 1626 * Hence the ordering needs to be inode allocation buffers first, inode items 1627 * second, inode unlink buffers third and cancelled buffers last. 1628 * 1629 * But there's a problem with that - we can't tell an inode allocation buffer 1630 * apart from a regular buffer, so we can't separate them. We can, however, 1631 * tell an inode unlink buffer from the others, and so we can separate them out 1632 * from all the other buffers and move them to last. 1633 * 1634 * Hence, 4 lists, in order from head to tail: 1635 * - buffer_list for all buffers except cancelled/inode unlink buffers 1636 * - item_list for all non-buffer items 1637 * - inode_buffer_list for inode unlink buffers 1638 * - cancel_list for the cancelled buffers 1639 */ 1640 STATIC int 1641 xlog_recover_reorder_trans( 1642 struct xlog *log, 1643 struct xlog_recover *trans, 1644 int pass) 1645 { 1646 xlog_recover_item_t *item, *n; 1647 LIST_HEAD(sort_list); 1648 LIST_HEAD(cancel_list); 1649 LIST_HEAD(buffer_list); 1650 LIST_HEAD(inode_buffer_list); 1651 LIST_HEAD(inode_list); 1652 1653 list_splice_init(&trans->r_itemq, &sort_list); 1654 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1655 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1656 1657 switch (ITEM_TYPE(item)) { 1658 case XFS_LI_BUF: 1659 if (buf_f->blf_flags & XFS_BLF_CANCEL) { 1660 trace_xfs_log_recover_item_reorder_head(log, 1661 trans, item, pass); 1662 list_move(&item->ri_list, &cancel_list); 1663 break; 1664 } 1665 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 1666 list_move(&item->ri_list, &inode_buffer_list); 1667 break; 1668 } 1669 list_move_tail(&item->ri_list, &buffer_list); 1670 break; 1671 case XFS_LI_INODE: 1672 case XFS_LI_DQUOT: 1673 case XFS_LI_QUOTAOFF: 1674 case XFS_LI_EFD: 1675 case XFS_LI_EFI: 1676 trace_xfs_log_recover_item_reorder_tail(log, 1677 trans, item, pass); 1678 list_move_tail(&item->ri_list, &inode_list); 1679 break; 1680 default: 1681 xfs_warn(log->l_mp, 1682 "%s: unrecognized type of log operation", 1683 __func__); 1684 ASSERT(0); 1685 return XFS_ERROR(EIO); 1686 } 1687 } 1688 ASSERT(list_empty(&sort_list)); 1689 if (!list_empty(&buffer_list)) 1690 list_splice(&buffer_list, &trans->r_itemq); 1691 if (!list_empty(&inode_list)) 1692 list_splice_tail(&inode_list, &trans->r_itemq); 1693 if (!list_empty(&inode_buffer_list)) 1694 list_splice_tail(&inode_buffer_list, &trans->r_itemq); 1695 if (!list_empty(&cancel_list)) 1696 list_splice_tail(&cancel_list, &trans->r_itemq); 1697 return 0; 1698 } 1699 1700 /* 1701 * Build up the table of buf cancel records so that we don't replay 1702 * cancelled data in the second pass. For buffer records that are 1703 * not cancel records, there is nothing to do here so we just return. 1704 * 1705 * If we get a cancel record which is already in the table, this indicates 1706 * that the buffer was cancelled multiple times. In order to ensure 1707 * that during pass 2 we keep the record in the table until we reach its 1708 * last occurrence in the log, we keep a reference count in the cancel 1709 * record in the table to tell us how many times we expect to see this 1710 * record during the second pass. 1711 */ 1712 STATIC int 1713 xlog_recover_buffer_pass1( 1714 struct xlog *log, 1715 struct xlog_recover_item *item) 1716 { 1717 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1718 struct list_head *bucket; 1719 struct xfs_buf_cancel *bcp; 1720 1721 /* 1722 * If this isn't a cancel buffer item, then just return. 1723 */ 1724 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 1725 trace_xfs_log_recover_buf_not_cancel(log, buf_f); 1726 return 0; 1727 } 1728 1729 /* 1730 * Insert an xfs_buf_cancel record into the hash table of them. 1731 * If there is already an identical record, bump its reference count. 1732 */ 1733 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno); 1734 list_for_each_entry(bcp, bucket, bc_list) { 1735 if (bcp->bc_blkno == buf_f->blf_blkno && 1736 bcp->bc_len == buf_f->blf_len) { 1737 bcp->bc_refcount++; 1738 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f); 1739 return 0; 1740 } 1741 } 1742 1743 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP); 1744 bcp->bc_blkno = buf_f->blf_blkno; 1745 bcp->bc_len = buf_f->blf_len; 1746 bcp->bc_refcount = 1; 1747 list_add_tail(&bcp->bc_list, bucket); 1748 1749 trace_xfs_log_recover_buf_cancel_add(log, buf_f); 1750 return 0; 1751 } 1752 1753 /* 1754 * Check to see whether the buffer being recovered has a corresponding 1755 * entry in the buffer cancel record table. If it does then return 1 1756 * so that it will be cancelled, otherwise return 0. If the buffer is 1757 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement 1758 * the refcount on the entry in the table and remove it from the table 1759 * if this is the last reference. 1760 * 1761 * We remove the cancel record from the table when we encounter its 1762 * last occurrence in the log so that if the same buffer is re-used 1763 * again after its last cancellation we actually replay the changes 1764 * made at that point. 1765 */ 1766 STATIC int 1767 xlog_check_buffer_cancelled( 1768 struct xlog *log, 1769 xfs_daddr_t blkno, 1770 uint len, 1771 ushort flags) 1772 { 1773 struct list_head *bucket; 1774 struct xfs_buf_cancel *bcp; 1775 1776 if (log->l_buf_cancel_table == NULL) { 1777 /* 1778 * There is nothing in the table built in pass one, 1779 * so this buffer must not be cancelled. 1780 */ 1781 ASSERT(!(flags & XFS_BLF_CANCEL)); 1782 return 0; 1783 } 1784 1785 /* 1786 * Search for an entry in the cancel table that matches our buffer. 1787 */ 1788 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); 1789 list_for_each_entry(bcp, bucket, bc_list) { 1790 if (bcp->bc_blkno == blkno && bcp->bc_len == len) 1791 goto found; 1792 } 1793 1794 /* 1795 * We didn't find a corresponding entry in the table, so return 0 so 1796 * that the buffer is NOT cancelled. 1797 */ 1798 ASSERT(!(flags & XFS_BLF_CANCEL)); 1799 return 0; 1800 1801 found: 1802 /* 1803 * We've go a match, so return 1 so that the recovery of this buffer 1804 * is cancelled. If this buffer is actually a buffer cancel log 1805 * item, then decrement the refcount on the one in the table and 1806 * remove it if this is the last reference. 1807 */ 1808 if (flags & XFS_BLF_CANCEL) { 1809 if (--bcp->bc_refcount == 0) { 1810 list_del(&bcp->bc_list); 1811 kmem_free(bcp); 1812 } 1813 } 1814 return 1; 1815 } 1816 1817 /* 1818 * Perform recovery for a buffer full of inodes. In these buffers, the only 1819 * data which should be recovered is that which corresponds to the 1820 * di_next_unlinked pointers in the on disk inode structures. The rest of the 1821 * data for the inodes is always logged through the inodes themselves rather 1822 * than the inode buffer and is recovered in xlog_recover_inode_pass2(). 1823 * 1824 * The only time when buffers full of inodes are fully recovered is when the 1825 * buffer is full of newly allocated inodes. In this case the buffer will 1826 * not be marked as an inode buffer and so will be sent to 1827 * xlog_recover_do_reg_buffer() below during recovery. 1828 */ 1829 STATIC int 1830 xlog_recover_do_inode_buffer( 1831 struct xfs_mount *mp, 1832 xlog_recover_item_t *item, 1833 struct xfs_buf *bp, 1834 xfs_buf_log_format_t *buf_f) 1835 { 1836 int i; 1837 int item_index = 0; 1838 int bit = 0; 1839 int nbits = 0; 1840 int reg_buf_offset = 0; 1841 int reg_buf_bytes = 0; 1842 int next_unlinked_offset; 1843 int inodes_per_buf; 1844 xfs_agino_t *logged_nextp; 1845 xfs_agino_t *buffer_nextp; 1846 1847 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); 1848 bp->b_ops = &xfs_inode_buf_ops; 1849 1850 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog; 1851 for (i = 0; i < inodes_per_buf; i++) { 1852 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 1853 offsetof(xfs_dinode_t, di_next_unlinked); 1854 1855 while (next_unlinked_offset >= 1856 (reg_buf_offset + reg_buf_bytes)) { 1857 /* 1858 * The next di_next_unlinked field is beyond 1859 * the current logged region. Find the next 1860 * logged region that contains or is beyond 1861 * the current di_next_unlinked field. 1862 */ 1863 bit += nbits; 1864 bit = xfs_next_bit(buf_f->blf_data_map, 1865 buf_f->blf_map_size, bit); 1866 1867 /* 1868 * If there are no more logged regions in the 1869 * buffer, then we're done. 1870 */ 1871 if (bit == -1) 1872 return 0; 1873 1874 nbits = xfs_contig_bits(buf_f->blf_data_map, 1875 buf_f->blf_map_size, bit); 1876 ASSERT(nbits > 0); 1877 reg_buf_offset = bit << XFS_BLF_SHIFT; 1878 reg_buf_bytes = nbits << XFS_BLF_SHIFT; 1879 item_index++; 1880 } 1881 1882 /* 1883 * If the current logged region starts after the current 1884 * di_next_unlinked field, then move on to the next 1885 * di_next_unlinked field. 1886 */ 1887 if (next_unlinked_offset < reg_buf_offset) 1888 continue; 1889 1890 ASSERT(item->ri_buf[item_index].i_addr != NULL); 1891 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); 1892 ASSERT((reg_buf_offset + reg_buf_bytes) <= 1893 BBTOB(bp->b_io_length)); 1894 1895 /* 1896 * The current logged region contains a copy of the 1897 * current di_next_unlinked field. Extract its value 1898 * and copy it to the buffer copy. 1899 */ 1900 logged_nextp = item->ri_buf[item_index].i_addr + 1901 next_unlinked_offset - reg_buf_offset; 1902 if (unlikely(*logged_nextp == 0)) { 1903 xfs_alert(mp, 1904 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). " 1905 "Trying to replay bad (0) inode di_next_unlinked field.", 1906 item, bp); 1907 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 1908 XFS_ERRLEVEL_LOW, mp); 1909 return XFS_ERROR(EFSCORRUPTED); 1910 } 1911 1912 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp, 1913 next_unlinked_offset); 1914 *buffer_nextp = *logged_nextp; 1915 1916 /* 1917 * If necessary, recalculate the CRC in the on-disk inode. We 1918 * have to leave the inode in a consistent state for whoever 1919 * reads it next.... 1920 */ 1921 xfs_dinode_calc_crc(mp, (struct xfs_dinode *) 1922 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); 1923 1924 } 1925 1926 return 0; 1927 } 1928 1929 /* 1930 * Validate the recovered buffer is of the correct type and attach the 1931 * appropriate buffer operations to them for writeback. Magic numbers are in a 1932 * few places: 1933 * the first 16 bits of the buffer (inode buffer, dquot buffer), 1934 * the first 32 bits of the buffer (most blocks), 1935 * inside a struct xfs_da_blkinfo at the start of the buffer. 1936 */ 1937 static void 1938 xlog_recovery_validate_buf_type( 1939 struct xfs_mount *mp, 1940 struct xfs_buf *bp, 1941 xfs_buf_log_format_t *buf_f) 1942 { 1943 struct xfs_da_blkinfo *info = bp->b_addr; 1944 __uint32_t magic32; 1945 __uint16_t magic16; 1946 __uint16_t magicda; 1947 1948 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr); 1949 magic16 = be16_to_cpu(*(__be16*)bp->b_addr); 1950 magicda = be16_to_cpu(info->magic); 1951 switch (xfs_blft_from_flags(buf_f)) { 1952 case XFS_BLFT_BTREE_BUF: 1953 switch (magic32) { 1954 case XFS_ABTB_CRC_MAGIC: 1955 case XFS_ABTC_CRC_MAGIC: 1956 case XFS_ABTB_MAGIC: 1957 case XFS_ABTC_MAGIC: 1958 bp->b_ops = &xfs_allocbt_buf_ops; 1959 break; 1960 case XFS_IBT_CRC_MAGIC: 1961 case XFS_IBT_MAGIC: 1962 bp->b_ops = &xfs_inobt_buf_ops; 1963 break; 1964 case XFS_BMAP_CRC_MAGIC: 1965 case XFS_BMAP_MAGIC: 1966 bp->b_ops = &xfs_bmbt_buf_ops; 1967 break; 1968 default: 1969 xfs_warn(mp, "Bad btree block magic!"); 1970 ASSERT(0); 1971 break; 1972 } 1973 break; 1974 case XFS_BLFT_AGF_BUF: 1975 if (magic32 != XFS_AGF_MAGIC) { 1976 xfs_warn(mp, "Bad AGF block magic!"); 1977 ASSERT(0); 1978 break; 1979 } 1980 bp->b_ops = &xfs_agf_buf_ops; 1981 break; 1982 case XFS_BLFT_AGFL_BUF: 1983 if (!xfs_sb_version_hascrc(&mp->m_sb)) 1984 break; 1985 if (magic32 != XFS_AGFL_MAGIC) { 1986 xfs_warn(mp, "Bad AGFL block magic!"); 1987 ASSERT(0); 1988 break; 1989 } 1990 bp->b_ops = &xfs_agfl_buf_ops; 1991 break; 1992 case XFS_BLFT_AGI_BUF: 1993 if (magic32 != XFS_AGI_MAGIC) { 1994 xfs_warn(mp, "Bad AGI block magic!"); 1995 ASSERT(0); 1996 break; 1997 } 1998 bp->b_ops = &xfs_agi_buf_ops; 1999 break; 2000 case XFS_BLFT_UDQUOT_BUF: 2001 case XFS_BLFT_PDQUOT_BUF: 2002 case XFS_BLFT_GDQUOT_BUF: 2003 #ifdef CONFIG_XFS_QUOTA 2004 if (magic16 != XFS_DQUOT_MAGIC) { 2005 xfs_warn(mp, "Bad DQUOT block magic!"); 2006 ASSERT(0); 2007 break; 2008 } 2009 bp->b_ops = &xfs_dquot_buf_ops; 2010 #else 2011 xfs_alert(mp, 2012 "Trying to recover dquots without QUOTA support built in!"); 2013 ASSERT(0); 2014 #endif 2015 break; 2016 case XFS_BLFT_DINO_BUF: 2017 /* 2018 * we get here with inode allocation buffers, not buffers that 2019 * track unlinked list changes. 2020 */ 2021 if (magic16 != XFS_DINODE_MAGIC) { 2022 xfs_warn(mp, "Bad INODE block magic!"); 2023 ASSERT(0); 2024 break; 2025 } 2026 bp->b_ops = &xfs_inode_buf_ops; 2027 break; 2028 case XFS_BLFT_SYMLINK_BUF: 2029 if (magic32 != XFS_SYMLINK_MAGIC) { 2030 xfs_warn(mp, "Bad symlink block magic!"); 2031 ASSERT(0); 2032 break; 2033 } 2034 bp->b_ops = &xfs_symlink_buf_ops; 2035 break; 2036 case XFS_BLFT_DIR_BLOCK_BUF: 2037 if (magic32 != XFS_DIR2_BLOCK_MAGIC && 2038 magic32 != XFS_DIR3_BLOCK_MAGIC) { 2039 xfs_warn(mp, "Bad dir block magic!"); 2040 ASSERT(0); 2041 break; 2042 } 2043 bp->b_ops = &xfs_dir3_block_buf_ops; 2044 break; 2045 case XFS_BLFT_DIR_DATA_BUF: 2046 if (magic32 != XFS_DIR2_DATA_MAGIC && 2047 magic32 != XFS_DIR3_DATA_MAGIC) { 2048 xfs_warn(mp, "Bad dir data magic!"); 2049 ASSERT(0); 2050 break; 2051 } 2052 bp->b_ops = &xfs_dir3_data_buf_ops; 2053 break; 2054 case XFS_BLFT_DIR_FREE_BUF: 2055 if (magic32 != XFS_DIR2_FREE_MAGIC && 2056 magic32 != XFS_DIR3_FREE_MAGIC) { 2057 xfs_warn(mp, "Bad dir3 free magic!"); 2058 ASSERT(0); 2059 break; 2060 } 2061 bp->b_ops = &xfs_dir3_free_buf_ops; 2062 break; 2063 case XFS_BLFT_DIR_LEAF1_BUF: 2064 if (magicda != XFS_DIR2_LEAF1_MAGIC && 2065 magicda != XFS_DIR3_LEAF1_MAGIC) { 2066 xfs_warn(mp, "Bad dir leaf1 magic!"); 2067 ASSERT(0); 2068 break; 2069 } 2070 bp->b_ops = &xfs_dir3_leaf1_buf_ops; 2071 break; 2072 case XFS_BLFT_DIR_LEAFN_BUF: 2073 if (magicda != XFS_DIR2_LEAFN_MAGIC && 2074 magicda != XFS_DIR3_LEAFN_MAGIC) { 2075 xfs_warn(mp, "Bad dir leafn magic!"); 2076 ASSERT(0); 2077 break; 2078 } 2079 bp->b_ops = &xfs_dir3_leafn_buf_ops; 2080 break; 2081 case XFS_BLFT_DA_NODE_BUF: 2082 if (magicda != XFS_DA_NODE_MAGIC && 2083 magicda != XFS_DA3_NODE_MAGIC) { 2084 xfs_warn(mp, "Bad da node magic!"); 2085 ASSERT(0); 2086 break; 2087 } 2088 bp->b_ops = &xfs_da3_node_buf_ops; 2089 break; 2090 case XFS_BLFT_ATTR_LEAF_BUF: 2091 if (magicda != XFS_ATTR_LEAF_MAGIC && 2092 magicda != XFS_ATTR3_LEAF_MAGIC) { 2093 xfs_warn(mp, "Bad attr leaf magic!"); 2094 ASSERT(0); 2095 break; 2096 } 2097 bp->b_ops = &xfs_attr3_leaf_buf_ops; 2098 break; 2099 case XFS_BLFT_ATTR_RMT_BUF: 2100 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2101 break; 2102 if (magic32 != XFS_ATTR3_RMT_MAGIC) { 2103 xfs_warn(mp, "Bad attr remote magic!"); 2104 ASSERT(0); 2105 break; 2106 } 2107 bp->b_ops = &xfs_attr3_rmt_buf_ops; 2108 break; 2109 case XFS_BLFT_SB_BUF: 2110 if (magic32 != XFS_SB_MAGIC) { 2111 xfs_warn(mp, "Bad SB block magic!"); 2112 ASSERT(0); 2113 break; 2114 } 2115 bp->b_ops = &xfs_sb_buf_ops; 2116 break; 2117 default: 2118 xfs_warn(mp, "Unknown buffer type %d!", 2119 xfs_blft_from_flags(buf_f)); 2120 break; 2121 } 2122 } 2123 2124 /* 2125 * Perform a 'normal' buffer recovery. Each logged region of the 2126 * buffer should be copied over the corresponding region in the 2127 * given buffer. The bitmap in the buf log format structure indicates 2128 * where to place the logged data. 2129 */ 2130 STATIC void 2131 xlog_recover_do_reg_buffer( 2132 struct xfs_mount *mp, 2133 xlog_recover_item_t *item, 2134 struct xfs_buf *bp, 2135 xfs_buf_log_format_t *buf_f) 2136 { 2137 int i; 2138 int bit; 2139 int nbits; 2140 int error; 2141 2142 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); 2143 2144 bit = 0; 2145 i = 1; /* 0 is the buf format structure */ 2146 while (1) { 2147 bit = xfs_next_bit(buf_f->blf_data_map, 2148 buf_f->blf_map_size, bit); 2149 if (bit == -1) 2150 break; 2151 nbits = xfs_contig_bits(buf_f->blf_data_map, 2152 buf_f->blf_map_size, bit); 2153 ASSERT(nbits > 0); 2154 ASSERT(item->ri_buf[i].i_addr != NULL); 2155 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); 2156 ASSERT(BBTOB(bp->b_io_length) >= 2157 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); 2158 2159 /* 2160 * The dirty regions logged in the buffer, even though 2161 * contiguous, may span multiple chunks. This is because the 2162 * dirty region may span a physical page boundary in a buffer 2163 * and hence be split into two separate vectors for writing into 2164 * the log. Hence we need to trim nbits back to the length of 2165 * the current region being copied out of the log. 2166 */ 2167 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT)) 2168 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT; 2169 2170 /* 2171 * Do a sanity check if this is a dquot buffer. Just checking 2172 * the first dquot in the buffer should do. XXXThis is 2173 * probably a good thing to do for other buf types also. 2174 */ 2175 error = 0; 2176 if (buf_f->blf_flags & 2177 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2178 if (item->ri_buf[i].i_addr == NULL) { 2179 xfs_alert(mp, 2180 "XFS: NULL dquot in %s.", __func__); 2181 goto next; 2182 } 2183 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) { 2184 xfs_alert(mp, 2185 "XFS: dquot too small (%d) in %s.", 2186 item->ri_buf[i].i_len, __func__); 2187 goto next; 2188 } 2189 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr, 2190 -1, 0, XFS_QMOPT_DOWARN, 2191 "dquot_buf_recover"); 2192 if (error) 2193 goto next; 2194 } 2195 2196 memcpy(xfs_buf_offset(bp, 2197 (uint)bit << XFS_BLF_SHIFT), /* dest */ 2198 item->ri_buf[i].i_addr, /* source */ 2199 nbits<<XFS_BLF_SHIFT); /* length */ 2200 next: 2201 i++; 2202 bit += nbits; 2203 } 2204 2205 /* Shouldn't be any more regions */ 2206 ASSERT(i == item->ri_total); 2207 2208 xlog_recovery_validate_buf_type(mp, bp, buf_f); 2209 } 2210 2211 /* 2212 * Do some primitive error checking on ondisk dquot data structures. 2213 */ 2214 int 2215 xfs_qm_dqcheck( 2216 struct xfs_mount *mp, 2217 xfs_disk_dquot_t *ddq, 2218 xfs_dqid_t id, 2219 uint type, /* used only when IO_dorepair is true */ 2220 uint flags, 2221 char *str) 2222 { 2223 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq; 2224 int errs = 0; 2225 2226 /* 2227 * We can encounter an uninitialized dquot buffer for 2 reasons: 2228 * 1. If we crash while deleting the quotainode(s), and those blks got 2229 * used for user data. This is because we take the path of regular 2230 * file deletion; however, the size field of quotainodes is never 2231 * updated, so all the tricks that we play in itruncate_finish 2232 * don't quite matter. 2233 * 2234 * 2. We don't play the quota buffers when there's a quotaoff logitem. 2235 * But the allocation will be replayed so we'll end up with an 2236 * uninitialized quota block. 2237 * 2238 * This is all fine; things are still consistent, and we haven't lost 2239 * any quota information. Just don't complain about bad dquot blks. 2240 */ 2241 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) { 2242 if (flags & XFS_QMOPT_DOWARN) 2243 xfs_alert(mp, 2244 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x", 2245 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC); 2246 errs++; 2247 } 2248 if (ddq->d_version != XFS_DQUOT_VERSION) { 2249 if (flags & XFS_QMOPT_DOWARN) 2250 xfs_alert(mp, 2251 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x", 2252 str, id, ddq->d_version, XFS_DQUOT_VERSION); 2253 errs++; 2254 } 2255 2256 if (ddq->d_flags != XFS_DQ_USER && 2257 ddq->d_flags != XFS_DQ_PROJ && 2258 ddq->d_flags != XFS_DQ_GROUP) { 2259 if (flags & XFS_QMOPT_DOWARN) 2260 xfs_alert(mp, 2261 "%s : XFS dquot ID 0x%x, unknown flags 0x%x", 2262 str, id, ddq->d_flags); 2263 errs++; 2264 } 2265 2266 if (id != -1 && id != be32_to_cpu(ddq->d_id)) { 2267 if (flags & XFS_QMOPT_DOWARN) 2268 xfs_alert(mp, 2269 "%s : ondisk-dquot 0x%p, ID mismatch: " 2270 "0x%x expected, found id 0x%x", 2271 str, ddq, id, be32_to_cpu(ddq->d_id)); 2272 errs++; 2273 } 2274 2275 if (!errs && ddq->d_id) { 2276 if (ddq->d_blk_softlimit && 2277 be64_to_cpu(ddq->d_bcount) > 2278 be64_to_cpu(ddq->d_blk_softlimit)) { 2279 if (!ddq->d_btimer) { 2280 if (flags & XFS_QMOPT_DOWARN) 2281 xfs_alert(mp, 2282 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED", 2283 str, (int)be32_to_cpu(ddq->d_id), ddq); 2284 errs++; 2285 } 2286 } 2287 if (ddq->d_ino_softlimit && 2288 be64_to_cpu(ddq->d_icount) > 2289 be64_to_cpu(ddq->d_ino_softlimit)) { 2290 if (!ddq->d_itimer) { 2291 if (flags & XFS_QMOPT_DOWARN) 2292 xfs_alert(mp, 2293 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED", 2294 str, (int)be32_to_cpu(ddq->d_id), ddq); 2295 errs++; 2296 } 2297 } 2298 if (ddq->d_rtb_softlimit && 2299 be64_to_cpu(ddq->d_rtbcount) > 2300 be64_to_cpu(ddq->d_rtb_softlimit)) { 2301 if (!ddq->d_rtbtimer) { 2302 if (flags & XFS_QMOPT_DOWARN) 2303 xfs_alert(mp, 2304 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED", 2305 str, (int)be32_to_cpu(ddq->d_id), ddq); 2306 errs++; 2307 } 2308 } 2309 } 2310 2311 if (!errs || !(flags & XFS_QMOPT_DQREPAIR)) 2312 return errs; 2313 2314 if (flags & XFS_QMOPT_DOWARN) 2315 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id); 2316 2317 /* 2318 * Typically, a repair is only requested by quotacheck. 2319 */ 2320 ASSERT(id != -1); 2321 ASSERT(flags & XFS_QMOPT_DQREPAIR); 2322 memset(d, 0, sizeof(xfs_dqblk_t)); 2323 2324 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC); 2325 d->dd_diskdq.d_version = XFS_DQUOT_VERSION; 2326 d->dd_diskdq.d_flags = type; 2327 d->dd_diskdq.d_id = cpu_to_be32(id); 2328 2329 if (xfs_sb_version_hascrc(&mp->m_sb)) { 2330 uuid_copy(&d->dd_uuid, &mp->m_sb.sb_uuid); 2331 xfs_update_cksum((char *)d, sizeof(struct xfs_dqblk), 2332 XFS_DQUOT_CRC_OFF); 2333 } 2334 2335 return errs; 2336 } 2337 2338 /* 2339 * Perform a dquot buffer recovery. 2340 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type 2341 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2342 * Else, treat it as a regular buffer and do recovery. 2343 */ 2344 STATIC void 2345 xlog_recover_do_dquot_buffer( 2346 struct xfs_mount *mp, 2347 struct xlog *log, 2348 struct xlog_recover_item *item, 2349 struct xfs_buf *bp, 2350 struct xfs_buf_log_format *buf_f) 2351 { 2352 uint type; 2353 2354 trace_xfs_log_recover_buf_dquot_buf(log, buf_f); 2355 2356 /* 2357 * Filesystems are required to send in quota flags at mount time. 2358 */ 2359 if (mp->m_qflags == 0) { 2360 return; 2361 } 2362 2363 type = 0; 2364 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) 2365 type |= XFS_DQ_USER; 2366 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) 2367 type |= XFS_DQ_PROJ; 2368 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) 2369 type |= XFS_DQ_GROUP; 2370 /* 2371 * This type of quotas was turned off, so ignore this buffer 2372 */ 2373 if (log->l_quotaoffs_flag & type) 2374 return; 2375 2376 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2377 } 2378 2379 /* 2380 * This routine replays a modification made to a buffer at runtime. 2381 * There are actually two types of buffer, regular and inode, which 2382 * are handled differently. Inode buffers are handled differently 2383 * in that we only recover a specific set of data from them, namely 2384 * the inode di_next_unlinked fields. This is because all other inode 2385 * data is actually logged via inode records and any data we replay 2386 * here which overlaps that may be stale. 2387 * 2388 * When meta-data buffers are freed at run time we log a buffer item 2389 * with the XFS_BLF_CANCEL bit set to indicate that previous copies 2390 * of the buffer in the log should not be replayed at recovery time. 2391 * This is so that if the blocks covered by the buffer are reused for 2392 * file data before we crash we don't end up replaying old, freed 2393 * meta-data into a user's file. 2394 * 2395 * To handle the cancellation of buffer log items, we make two passes 2396 * over the log during recovery. During the first we build a table of 2397 * those buffers which have been cancelled, and during the second we 2398 * only replay those buffers which do not have corresponding cancel 2399 * records in the table. See xlog_recover_do_buffer_pass[1,2] above 2400 * for more details on the implementation of the table of cancel records. 2401 */ 2402 STATIC int 2403 xlog_recover_buffer_pass2( 2404 struct xlog *log, 2405 struct list_head *buffer_list, 2406 struct xlog_recover_item *item) 2407 { 2408 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2409 xfs_mount_t *mp = log->l_mp; 2410 xfs_buf_t *bp; 2411 int error; 2412 uint buf_flags; 2413 2414 /* 2415 * In this pass we only want to recover all the buffers which have 2416 * not been cancelled and are not cancellation buffers themselves. 2417 */ 2418 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno, 2419 buf_f->blf_len, buf_f->blf_flags)) { 2420 trace_xfs_log_recover_buf_cancel(log, buf_f); 2421 return 0; 2422 } 2423 2424 trace_xfs_log_recover_buf_recover(log, buf_f); 2425 2426 buf_flags = 0; 2427 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) 2428 buf_flags |= XBF_UNMAPPED; 2429 2430 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, 2431 buf_flags, NULL); 2432 if (!bp) 2433 return XFS_ERROR(ENOMEM); 2434 error = bp->b_error; 2435 if (error) { 2436 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)"); 2437 xfs_buf_relse(bp); 2438 return error; 2439 } 2440 2441 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 2442 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2443 } else if (buf_f->blf_flags & 2444 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2445 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2446 } else { 2447 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2448 } 2449 if (error) 2450 return XFS_ERROR(error); 2451 2452 /* 2453 * Perform delayed write on the buffer. Asynchronous writes will be 2454 * slower when taking into account all the buffers to be flushed. 2455 * 2456 * Also make sure that only inode buffers with good sizes stay in 2457 * the buffer cache. The kernel moves inodes in buffers of 1 block 2458 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode 2459 * buffers in the log can be a different size if the log was generated 2460 * by an older kernel using unclustered inode buffers or a newer kernel 2461 * running with a different inode cluster size. Regardless, if the 2462 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE) 2463 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep 2464 * the buffer out of the buffer cache so that the buffer won't 2465 * overlap with future reads of those inodes. 2466 */ 2467 if (XFS_DINODE_MAGIC == 2468 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && 2469 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize, 2470 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) { 2471 xfs_buf_stale(bp); 2472 error = xfs_bwrite(bp); 2473 } else { 2474 ASSERT(bp->b_target->bt_mount == mp); 2475 bp->b_iodone = xlog_recover_iodone; 2476 xfs_buf_delwri_queue(bp, buffer_list); 2477 } 2478 2479 xfs_buf_relse(bp); 2480 return error; 2481 } 2482 2483 STATIC int 2484 xlog_recover_inode_pass2( 2485 struct xlog *log, 2486 struct list_head *buffer_list, 2487 struct xlog_recover_item *item) 2488 { 2489 xfs_inode_log_format_t *in_f; 2490 xfs_mount_t *mp = log->l_mp; 2491 xfs_buf_t *bp; 2492 xfs_dinode_t *dip; 2493 int len; 2494 xfs_caddr_t src; 2495 xfs_caddr_t dest; 2496 int error; 2497 int attr_index; 2498 uint fields; 2499 xfs_icdinode_t *dicp; 2500 uint isize; 2501 int need_free = 0; 2502 2503 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) { 2504 in_f = item->ri_buf[0].i_addr; 2505 } else { 2506 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP); 2507 need_free = 1; 2508 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 2509 if (error) 2510 goto error; 2511 } 2512 2513 /* 2514 * Inode buffers can be freed, look out for it, 2515 * and do not replay the inode. 2516 */ 2517 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, 2518 in_f->ilf_len, 0)) { 2519 error = 0; 2520 trace_xfs_log_recover_inode_cancel(log, in_f); 2521 goto error; 2522 } 2523 trace_xfs_log_recover_inode_recover(log, in_f); 2524 2525 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0, 2526 &xfs_inode_buf_ops); 2527 if (!bp) { 2528 error = ENOMEM; 2529 goto error; 2530 } 2531 error = bp->b_error; 2532 if (error) { 2533 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)"); 2534 xfs_buf_relse(bp); 2535 goto error; 2536 } 2537 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 2538 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset); 2539 2540 /* 2541 * Make sure the place we're flushing out to really looks 2542 * like an inode! 2543 */ 2544 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) { 2545 xfs_buf_relse(bp); 2546 xfs_alert(mp, 2547 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld", 2548 __func__, dip, bp, in_f->ilf_ino); 2549 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)", 2550 XFS_ERRLEVEL_LOW, mp); 2551 error = EFSCORRUPTED; 2552 goto error; 2553 } 2554 dicp = item->ri_buf[1].i_addr; 2555 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { 2556 xfs_buf_relse(bp); 2557 xfs_alert(mp, 2558 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld", 2559 __func__, item, in_f->ilf_ino); 2560 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)", 2561 XFS_ERRLEVEL_LOW, mp); 2562 error = EFSCORRUPTED; 2563 goto error; 2564 } 2565 2566 /* Skip replay when the on disk inode is newer than the log one */ 2567 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) { 2568 /* 2569 * Deal with the wrap case, DI_MAX_FLUSH is less 2570 * than smaller numbers 2571 */ 2572 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && 2573 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) { 2574 /* do nothing */ 2575 } else { 2576 xfs_buf_relse(bp); 2577 trace_xfs_log_recover_inode_skip(log, in_f); 2578 error = 0; 2579 goto error; 2580 } 2581 } 2582 /* Take the opportunity to reset the flush iteration count */ 2583 dicp->di_flushiter = 0; 2584 2585 if (unlikely(S_ISREG(dicp->di_mode))) { 2586 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2587 (dicp->di_format != XFS_DINODE_FMT_BTREE)) { 2588 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)", 2589 XFS_ERRLEVEL_LOW, mp, dicp); 2590 xfs_buf_relse(bp); 2591 xfs_alert(mp, 2592 "%s: Bad regular inode log record, rec ptr 0x%p, " 2593 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2594 __func__, item, dip, bp, in_f->ilf_ino); 2595 error = EFSCORRUPTED; 2596 goto error; 2597 } 2598 } else if (unlikely(S_ISDIR(dicp->di_mode))) { 2599 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2600 (dicp->di_format != XFS_DINODE_FMT_BTREE) && 2601 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { 2602 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)", 2603 XFS_ERRLEVEL_LOW, mp, dicp); 2604 xfs_buf_relse(bp); 2605 xfs_alert(mp, 2606 "%s: Bad dir inode log record, rec ptr 0x%p, " 2607 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2608 __func__, item, dip, bp, in_f->ilf_ino); 2609 error = EFSCORRUPTED; 2610 goto error; 2611 } 2612 } 2613 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ 2614 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)", 2615 XFS_ERRLEVEL_LOW, mp, dicp); 2616 xfs_buf_relse(bp); 2617 xfs_alert(mp, 2618 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 2619 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", 2620 __func__, item, dip, bp, in_f->ilf_ino, 2621 dicp->di_nextents + dicp->di_anextents, 2622 dicp->di_nblocks); 2623 error = EFSCORRUPTED; 2624 goto error; 2625 } 2626 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { 2627 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)", 2628 XFS_ERRLEVEL_LOW, mp, dicp); 2629 xfs_buf_relse(bp); 2630 xfs_alert(mp, 2631 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 2632 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__, 2633 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff); 2634 error = EFSCORRUPTED; 2635 goto error; 2636 } 2637 isize = xfs_icdinode_size(dicp->di_version); 2638 if (unlikely(item->ri_buf[1].i_len > isize)) { 2639 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)", 2640 XFS_ERRLEVEL_LOW, mp, dicp); 2641 xfs_buf_relse(bp); 2642 xfs_alert(mp, 2643 "%s: Bad inode log record length %d, rec ptr 0x%p", 2644 __func__, item->ri_buf[1].i_len, item); 2645 error = EFSCORRUPTED; 2646 goto error; 2647 } 2648 2649 /* The core is in in-core format */ 2650 xfs_dinode_to_disk(dip, dicp); 2651 2652 /* the rest is in on-disk format */ 2653 if (item->ri_buf[1].i_len > isize) { 2654 memcpy((char *)dip + isize, 2655 item->ri_buf[1].i_addr + isize, 2656 item->ri_buf[1].i_len - isize); 2657 } 2658 2659 fields = in_f->ilf_fields; 2660 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { 2661 case XFS_ILOG_DEV: 2662 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); 2663 break; 2664 case XFS_ILOG_UUID: 2665 memcpy(XFS_DFORK_DPTR(dip), 2666 &in_f->ilf_u.ilfu_uuid, 2667 sizeof(uuid_t)); 2668 break; 2669 } 2670 2671 if (in_f->ilf_size == 2) 2672 goto write_inode_buffer; 2673 len = item->ri_buf[2].i_len; 2674 src = item->ri_buf[2].i_addr; 2675 ASSERT(in_f->ilf_size <= 4); 2676 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 2677 ASSERT(!(fields & XFS_ILOG_DFORK) || 2678 (len == in_f->ilf_dsize)); 2679 2680 switch (fields & XFS_ILOG_DFORK) { 2681 case XFS_ILOG_DDATA: 2682 case XFS_ILOG_DEXT: 2683 memcpy(XFS_DFORK_DPTR(dip), src, len); 2684 break; 2685 2686 case XFS_ILOG_DBROOT: 2687 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, 2688 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), 2689 XFS_DFORK_DSIZE(dip, mp)); 2690 break; 2691 2692 default: 2693 /* 2694 * There are no data fork flags set. 2695 */ 2696 ASSERT((fields & XFS_ILOG_DFORK) == 0); 2697 break; 2698 } 2699 2700 /* 2701 * If we logged any attribute data, recover it. There may or 2702 * may not have been any other non-core data logged in this 2703 * transaction. 2704 */ 2705 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 2706 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 2707 attr_index = 3; 2708 } else { 2709 attr_index = 2; 2710 } 2711 len = item->ri_buf[attr_index].i_len; 2712 src = item->ri_buf[attr_index].i_addr; 2713 ASSERT(len == in_f->ilf_asize); 2714 2715 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 2716 case XFS_ILOG_ADATA: 2717 case XFS_ILOG_AEXT: 2718 dest = XFS_DFORK_APTR(dip); 2719 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 2720 memcpy(dest, src, len); 2721 break; 2722 2723 case XFS_ILOG_ABROOT: 2724 dest = XFS_DFORK_APTR(dip); 2725 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, 2726 len, (xfs_bmdr_block_t*)dest, 2727 XFS_DFORK_ASIZE(dip, mp)); 2728 break; 2729 2730 default: 2731 xfs_warn(log->l_mp, "%s: Invalid flag", __func__); 2732 ASSERT(0); 2733 xfs_buf_relse(bp); 2734 error = EIO; 2735 goto error; 2736 } 2737 } 2738 2739 write_inode_buffer: 2740 /* re-generate the checksum. */ 2741 xfs_dinode_calc_crc(log->l_mp, dip); 2742 2743 ASSERT(bp->b_target->bt_mount == mp); 2744 bp->b_iodone = xlog_recover_iodone; 2745 xfs_buf_delwri_queue(bp, buffer_list); 2746 xfs_buf_relse(bp); 2747 error: 2748 if (need_free) 2749 kmem_free(in_f); 2750 return XFS_ERROR(error); 2751 } 2752 2753 /* 2754 * Recover QUOTAOFF records. We simply make a note of it in the xlog 2755 * structure, so that we know not to do any dquot item or dquot buffer recovery, 2756 * of that type. 2757 */ 2758 STATIC int 2759 xlog_recover_quotaoff_pass1( 2760 struct xlog *log, 2761 struct xlog_recover_item *item) 2762 { 2763 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr; 2764 ASSERT(qoff_f); 2765 2766 /* 2767 * The logitem format's flag tells us if this was user quotaoff, 2768 * group/project quotaoff or both. 2769 */ 2770 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 2771 log->l_quotaoffs_flag |= XFS_DQ_USER; 2772 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 2773 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 2774 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 2775 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 2776 2777 return (0); 2778 } 2779 2780 /* 2781 * Recover a dquot record 2782 */ 2783 STATIC int 2784 xlog_recover_dquot_pass2( 2785 struct xlog *log, 2786 struct list_head *buffer_list, 2787 struct xlog_recover_item *item) 2788 { 2789 xfs_mount_t *mp = log->l_mp; 2790 xfs_buf_t *bp; 2791 struct xfs_disk_dquot *ddq, *recddq; 2792 int error; 2793 xfs_dq_logformat_t *dq_f; 2794 uint type; 2795 2796 2797 /* 2798 * Filesystems are required to send in quota flags at mount time. 2799 */ 2800 if (mp->m_qflags == 0) 2801 return (0); 2802 2803 recddq = item->ri_buf[1].i_addr; 2804 if (recddq == NULL) { 2805 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__); 2806 return XFS_ERROR(EIO); 2807 } 2808 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) { 2809 xfs_alert(log->l_mp, "dquot too small (%d) in %s.", 2810 item->ri_buf[1].i_len, __func__); 2811 return XFS_ERROR(EIO); 2812 } 2813 2814 /* 2815 * This type of quotas was turned off, so ignore this record. 2816 */ 2817 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 2818 ASSERT(type); 2819 if (log->l_quotaoffs_flag & type) 2820 return (0); 2821 2822 /* 2823 * At this point we know that quota was _not_ turned off. 2824 * Since the mount flags are not indicating to us otherwise, this 2825 * must mean that quota is on, and the dquot needs to be replayed. 2826 * Remember that we may not have fully recovered the superblock yet, 2827 * so we can't do the usual trick of looking at the SB quota bits. 2828 * 2829 * The other possibility, of course, is that the quota subsystem was 2830 * removed since the last mount - ENOSYS. 2831 */ 2832 dq_f = item->ri_buf[0].i_addr; 2833 ASSERT(dq_f); 2834 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2835 "xlog_recover_dquot_pass2 (log copy)"); 2836 if (error) 2837 return XFS_ERROR(EIO); 2838 ASSERT(dq_f->qlf_len == 1); 2839 2840 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno, 2841 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp, 2842 NULL); 2843 if (error) 2844 return error; 2845 2846 ASSERT(bp); 2847 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset); 2848 2849 /* 2850 * At least the magic num portion should be on disk because this 2851 * was among a chunk of dquots created earlier, and we did some 2852 * minimal initialization then. 2853 */ 2854 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2855 "xlog_recover_dquot_pass2"); 2856 if (error) { 2857 xfs_buf_relse(bp); 2858 return XFS_ERROR(EIO); 2859 } 2860 2861 memcpy(ddq, recddq, item->ri_buf[1].i_len); 2862 if (xfs_sb_version_hascrc(&mp->m_sb)) { 2863 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk), 2864 XFS_DQUOT_CRC_OFF); 2865 } 2866 2867 ASSERT(dq_f->qlf_size == 2); 2868 ASSERT(bp->b_target->bt_mount == mp); 2869 bp->b_iodone = xlog_recover_iodone; 2870 xfs_buf_delwri_queue(bp, buffer_list); 2871 xfs_buf_relse(bp); 2872 2873 return (0); 2874 } 2875 2876 /* 2877 * This routine is called to create an in-core extent free intent 2878 * item from the efi format structure which was logged on disk. 2879 * It allocates an in-core efi, copies the extents from the format 2880 * structure into it, and adds the efi to the AIL with the given 2881 * LSN. 2882 */ 2883 STATIC int 2884 xlog_recover_efi_pass2( 2885 struct xlog *log, 2886 struct xlog_recover_item *item, 2887 xfs_lsn_t lsn) 2888 { 2889 int error; 2890 xfs_mount_t *mp = log->l_mp; 2891 xfs_efi_log_item_t *efip; 2892 xfs_efi_log_format_t *efi_formatp; 2893 2894 efi_formatp = item->ri_buf[0].i_addr; 2895 2896 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 2897 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]), 2898 &(efip->efi_format)))) { 2899 xfs_efi_item_free(efip); 2900 return error; 2901 } 2902 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 2903 2904 spin_lock(&log->l_ailp->xa_lock); 2905 /* 2906 * xfs_trans_ail_update() drops the AIL lock. 2907 */ 2908 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn); 2909 return 0; 2910 } 2911 2912 2913 /* 2914 * This routine is called when an efd format structure is found in 2915 * a committed transaction in the log. It's purpose is to cancel 2916 * the corresponding efi if it was still in the log. To do this 2917 * it searches the AIL for the efi with an id equal to that in the 2918 * efd format structure. If we find it, we remove the efi from the 2919 * AIL and free it. 2920 */ 2921 STATIC int 2922 xlog_recover_efd_pass2( 2923 struct xlog *log, 2924 struct xlog_recover_item *item) 2925 { 2926 xfs_efd_log_format_t *efd_formatp; 2927 xfs_efi_log_item_t *efip = NULL; 2928 xfs_log_item_t *lip; 2929 __uint64_t efi_id; 2930 struct xfs_ail_cursor cur; 2931 struct xfs_ail *ailp = log->l_ailp; 2932 2933 efd_formatp = item->ri_buf[0].i_addr; 2934 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 2935 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 2936 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 2937 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 2938 efi_id = efd_formatp->efd_efi_id; 2939 2940 /* 2941 * Search for the efi with the id in the efd format structure 2942 * in the AIL. 2943 */ 2944 spin_lock(&ailp->xa_lock); 2945 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 2946 while (lip != NULL) { 2947 if (lip->li_type == XFS_LI_EFI) { 2948 efip = (xfs_efi_log_item_t *)lip; 2949 if (efip->efi_format.efi_id == efi_id) { 2950 /* 2951 * xfs_trans_ail_delete() drops the 2952 * AIL lock. 2953 */ 2954 xfs_trans_ail_delete(ailp, lip, 2955 SHUTDOWN_CORRUPT_INCORE); 2956 xfs_efi_item_free(efip); 2957 spin_lock(&ailp->xa_lock); 2958 break; 2959 } 2960 } 2961 lip = xfs_trans_ail_cursor_next(ailp, &cur); 2962 } 2963 xfs_trans_ail_cursor_done(ailp, &cur); 2964 spin_unlock(&ailp->xa_lock); 2965 2966 return 0; 2967 } 2968 2969 /* 2970 * Free up any resources allocated by the transaction 2971 * 2972 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 2973 */ 2974 STATIC void 2975 xlog_recover_free_trans( 2976 struct xlog_recover *trans) 2977 { 2978 xlog_recover_item_t *item, *n; 2979 int i; 2980 2981 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 2982 /* Free the regions in the item. */ 2983 list_del(&item->ri_list); 2984 for (i = 0; i < item->ri_cnt; i++) 2985 kmem_free(item->ri_buf[i].i_addr); 2986 /* Free the item itself */ 2987 kmem_free(item->ri_buf); 2988 kmem_free(item); 2989 } 2990 /* Free the transaction recover structure */ 2991 kmem_free(trans); 2992 } 2993 2994 STATIC int 2995 xlog_recover_commit_pass1( 2996 struct xlog *log, 2997 struct xlog_recover *trans, 2998 struct xlog_recover_item *item) 2999 { 3000 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1); 3001 3002 switch (ITEM_TYPE(item)) { 3003 case XFS_LI_BUF: 3004 return xlog_recover_buffer_pass1(log, item); 3005 case XFS_LI_QUOTAOFF: 3006 return xlog_recover_quotaoff_pass1(log, item); 3007 case XFS_LI_INODE: 3008 case XFS_LI_EFI: 3009 case XFS_LI_EFD: 3010 case XFS_LI_DQUOT: 3011 /* nothing to do in pass 1 */ 3012 return 0; 3013 default: 3014 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 3015 __func__, ITEM_TYPE(item)); 3016 ASSERT(0); 3017 return XFS_ERROR(EIO); 3018 } 3019 } 3020 3021 STATIC int 3022 xlog_recover_commit_pass2( 3023 struct xlog *log, 3024 struct xlog_recover *trans, 3025 struct list_head *buffer_list, 3026 struct xlog_recover_item *item) 3027 { 3028 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2); 3029 3030 switch (ITEM_TYPE(item)) { 3031 case XFS_LI_BUF: 3032 return xlog_recover_buffer_pass2(log, buffer_list, item); 3033 case XFS_LI_INODE: 3034 return xlog_recover_inode_pass2(log, buffer_list, item); 3035 case XFS_LI_EFI: 3036 return xlog_recover_efi_pass2(log, item, trans->r_lsn); 3037 case XFS_LI_EFD: 3038 return xlog_recover_efd_pass2(log, item); 3039 case XFS_LI_DQUOT: 3040 return xlog_recover_dquot_pass2(log, buffer_list, item); 3041 case XFS_LI_QUOTAOFF: 3042 /* nothing to do in pass2 */ 3043 return 0; 3044 default: 3045 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 3046 __func__, ITEM_TYPE(item)); 3047 ASSERT(0); 3048 return XFS_ERROR(EIO); 3049 } 3050 } 3051 3052 /* 3053 * Perform the transaction. 3054 * 3055 * If the transaction modifies a buffer or inode, do it now. Otherwise, 3056 * EFIs and EFDs get queued up by adding entries into the AIL for them. 3057 */ 3058 STATIC int 3059 xlog_recover_commit_trans( 3060 struct xlog *log, 3061 struct xlog_recover *trans, 3062 int pass) 3063 { 3064 int error = 0, error2; 3065 xlog_recover_item_t *item; 3066 LIST_HEAD (buffer_list); 3067 3068 hlist_del(&trans->r_list); 3069 3070 error = xlog_recover_reorder_trans(log, trans, pass); 3071 if (error) 3072 return error; 3073 3074 list_for_each_entry(item, &trans->r_itemq, ri_list) { 3075 switch (pass) { 3076 case XLOG_RECOVER_PASS1: 3077 error = xlog_recover_commit_pass1(log, trans, item); 3078 break; 3079 case XLOG_RECOVER_PASS2: 3080 error = xlog_recover_commit_pass2(log, trans, 3081 &buffer_list, item); 3082 break; 3083 default: 3084 ASSERT(0); 3085 } 3086 3087 if (error) 3088 goto out; 3089 } 3090 3091 xlog_recover_free_trans(trans); 3092 3093 out: 3094 error2 = xfs_buf_delwri_submit(&buffer_list); 3095 return error ? error : error2; 3096 } 3097 3098 STATIC int 3099 xlog_recover_unmount_trans( 3100 struct xlog *log, 3101 struct xlog_recover *trans) 3102 { 3103 /* Do nothing now */ 3104 xfs_warn(log->l_mp, "%s: Unmount LR", __func__); 3105 return 0; 3106 } 3107 3108 /* 3109 * There are two valid states of the r_state field. 0 indicates that the 3110 * transaction structure is in a normal state. We have either seen the 3111 * start of the transaction or the last operation we added was not a partial 3112 * operation. If the last operation we added to the transaction was a 3113 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 3114 * 3115 * NOTE: skip LRs with 0 data length. 3116 */ 3117 STATIC int 3118 xlog_recover_process_data( 3119 struct xlog *log, 3120 struct hlist_head rhash[], 3121 struct xlog_rec_header *rhead, 3122 xfs_caddr_t dp, 3123 int pass) 3124 { 3125 xfs_caddr_t lp; 3126 int num_logops; 3127 xlog_op_header_t *ohead; 3128 xlog_recover_t *trans; 3129 xlog_tid_t tid; 3130 int error; 3131 unsigned long hash; 3132 uint flags; 3133 3134 lp = dp + be32_to_cpu(rhead->h_len); 3135 num_logops = be32_to_cpu(rhead->h_num_logops); 3136 3137 /* check the log format matches our own - else we can't recover */ 3138 if (xlog_header_check_recover(log->l_mp, rhead)) 3139 return (XFS_ERROR(EIO)); 3140 3141 while ((dp < lp) && num_logops) { 3142 ASSERT(dp + sizeof(xlog_op_header_t) <= lp); 3143 ohead = (xlog_op_header_t *)dp; 3144 dp += sizeof(xlog_op_header_t); 3145 if (ohead->oh_clientid != XFS_TRANSACTION && 3146 ohead->oh_clientid != XFS_LOG) { 3147 xfs_warn(log->l_mp, "%s: bad clientid 0x%x", 3148 __func__, ohead->oh_clientid); 3149 ASSERT(0); 3150 return (XFS_ERROR(EIO)); 3151 } 3152 tid = be32_to_cpu(ohead->oh_tid); 3153 hash = XLOG_RHASH(tid); 3154 trans = xlog_recover_find_tid(&rhash[hash], tid); 3155 if (trans == NULL) { /* not found; add new tid */ 3156 if (ohead->oh_flags & XLOG_START_TRANS) 3157 xlog_recover_new_tid(&rhash[hash], tid, 3158 be64_to_cpu(rhead->h_lsn)); 3159 } else { 3160 if (dp + be32_to_cpu(ohead->oh_len) > lp) { 3161 xfs_warn(log->l_mp, "%s: bad length 0x%x", 3162 __func__, be32_to_cpu(ohead->oh_len)); 3163 WARN_ON(1); 3164 return (XFS_ERROR(EIO)); 3165 } 3166 flags = ohead->oh_flags & ~XLOG_END_TRANS; 3167 if (flags & XLOG_WAS_CONT_TRANS) 3168 flags &= ~XLOG_CONTINUE_TRANS; 3169 switch (flags) { 3170 case XLOG_COMMIT_TRANS: 3171 error = xlog_recover_commit_trans(log, 3172 trans, pass); 3173 break; 3174 case XLOG_UNMOUNT_TRANS: 3175 error = xlog_recover_unmount_trans(log, trans); 3176 break; 3177 case XLOG_WAS_CONT_TRANS: 3178 error = xlog_recover_add_to_cont_trans(log, 3179 trans, dp, 3180 be32_to_cpu(ohead->oh_len)); 3181 break; 3182 case XLOG_START_TRANS: 3183 xfs_warn(log->l_mp, "%s: bad transaction", 3184 __func__); 3185 ASSERT(0); 3186 error = XFS_ERROR(EIO); 3187 break; 3188 case 0: 3189 case XLOG_CONTINUE_TRANS: 3190 error = xlog_recover_add_to_trans(log, trans, 3191 dp, be32_to_cpu(ohead->oh_len)); 3192 break; 3193 default: 3194 xfs_warn(log->l_mp, "%s: bad flag 0x%x", 3195 __func__, flags); 3196 ASSERT(0); 3197 error = XFS_ERROR(EIO); 3198 break; 3199 } 3200 if (error) 3201 return error; 3202 } 3203 dp += be32_to_cpu(ohead->oh_len); 3204 num_logops--; 3205 } 3206 return 0; 3207 } 3208 3209 /* 3210 * Process an extent free intent item that was recovered from 3211 * the log. We need to free the extents that it describes. 3212 */ 3213 STATIC int 3214 xlog_recover_process_efi( 3215 xfs_mount_t *mp, 3216 xfs_efi_log_item_t *efip) 3217 { 3218 xfs_efd_log_item_t *efdp; 3219 xfs_trans_t *tp; 3220 int i; 3221 int error = 0; 3222 xfs_extent_t *extp; 3223 xfs_fsblock_t startblock_fsb; 3224 3225 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)); 3226 3227 /* 3228 * First check the validity of the extents described by the 3229 * EFI. If any are bad, then assume that all are bad and 3230 * just toss the EFI. 3231 */ 3232 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3233 extp = &(efip->efi_format.efi_extents[i]); 3234 startblock_fsb = XFS_BB_TO_FSB(mp, 3235 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 3236 if ((startblock_fsb == 0) || 3237 (extp->ext_len == 0) || 3238 (startblock_fsb >= mp->m_sb.sb_dblocks) || 3239 (extp->ext_len >= mp->m_sb.sb_agblocks)) { 3240 /* 3241 * This will pull the EFI from the AIL and 3242 * free the memory associated with it. 3243 */ 3244 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); 3245 xfs_efi_release(efip, efip->efi_format.efi_nextents); 3246 return XFS_ERROR(EIO); 3247 } 3248 } 3249 3250 tp = xfs_trans_alloc(mp, 0); 3251 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0); 3252 if (error) 3253 goto abort_error; 3254 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 3255 3256 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3257 extp = &(efip->efi_format.efi_extents[i]); 3258 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len); 3259 if (error) 3260 goto abort_error; 3261 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start, 3262 extp->ext_len); 3263 } 3264 3265 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); 3266 error = xfs_trans_commit(tp, 0); 3267 return error; 3268 3269 abort_error: 3270 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3271 return error; 3272 } 3273 3274 /* 3275 * When this is called, all of the EFIs which did not have 3276 * corresponding EFDs should be in the AIL. What we do now 3277 * is free the extents associated with each one. 3278 * 3279 * Since we process the EFIs in normal transactions, they 3280 * will be removed at some point after the commit. This prevents 3281 * us from just walking down the list processing each one. 3282 * We'll use a flag in the EFI to skip those that we've already 3283 * processed and use the AIL iteration mechanism's generation 3284 * count to try to speed this up at least a bit. 3285 * 3286 * When we start, we know that the EFIs are the only things in 3287 * the AIL. As we process them, however, other items are added 3288 * to the AIL. Since everything added to the AIL must come after 3289 * everything already in the AIL, we stop processing as soon as 3290 * we see something other than an EFI in the AIL. 3291 */ 3292 STATIC int 3293 xlog_recover_process_efis( 3294 struct xlog *log) 3295 { 3296 xfs_log_item_t *lip; 3297 xfs_efi_log_item_t *efip; 3298 int error = 0; 3299 struct xfs_ail_cursor cur; 3300 struct xfs_ail *ailp; 3301 3302 ailp = log->l_ailp; 3303 spin_lock(&ailp->xa_lock); 3304 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3305 while (lip != NULL) { 3306 /* 3307 * We're done when we see something other than an EFI. 3308 * There should be no EFIs left in the AIL now. 3309 */ 3310 if (lip->li_type != XFS_LI_EFI) { 3311 #ifdef DEBUG 3312 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 3313 ASSERT(lip->li_type != XFS_LI_EFI); 3314 #endif 3315 break; 3316 } 3317 3318 /* 3319 * Skip EFIs that we've already processed. 3320 */ 3321 efip = (xfs_efi_log_item_t *)lip; 3322 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) { 3323 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3324 continue; 3325 } 3326 3327 spin_unlock(&ailp->xa_lock); 3328 error = xlog_recover_process_efi(log->l_mp, efip); 3329 spin_lock(&ailp->xa_lock); 3330 if (error) 3331 goto out; 3332 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3333 } 3334 out: 3335 xfs_trans_ail_cursor_done(ailp, &cur); 3336 spin_unlock(&ailp->xa_lock); 3337 return error; 3338 } 3339 3340 /* 3341 * This routine performs a transaction to null out a bad inode pointer 3342 * in an agi unlinked inode hash bucket. 3343 */ 3344 STATIC void 3345 xlog_recover_clear_agi_bucket( 3346 xfs_mount_t *mp, 3347 xfs_agnumber_t agno, 3348 int bucket) 3349 { 3350 xfs_trans_t *tp; 3351 xfs_agi_t *agi; 3352 xfs_buf_t *agibp; 3353 int offset; 3354 int error; 3355 3356 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); 3357 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 3358 0, 0, 0); 3359 if (error) 3360 goto out_abort; 3361 3362 error = xfs_read_agi(mp, tp, agno, &agibp); 3363 if (error) 3364 goto out_abort; 3365 3366 agi = XFS_BUF_TO_AGI(agibp); 3367 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 3368 offset = offsetof(xfs_agi_t, agi_unlinked) + 3369 (sizeof(xfs_agino_t) * bucket); 3370 xfs_trans_log_buf(tp, agibp, offset, 3371 (offset + sizeof(xfs_agino_t) - 1)); 3372 3373 error = xfs_trans_commit(tp, 0); 3374 if (error) 3375 goto out_error; 3376 return; 3377 3378 out_abort: 3379 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3380 out_error: 3381 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); 3382 return; 3383 } 3384 3385 STATIC xfs_agino_t 3386 xlog_recover_process_one_iunlink( 3387 struct xfs_mount *mp, 3388 xfs_agnumber_t agno, 3389 xfs_agino_t agino, 3390 int bucket) 3391 { 3392 struct xfs_buf *ibp; 3393 struct xfs_dinode *dip; 3394 struct xfs_inode *ip; 3395 xfs_ino_t ino; 3396 int error; 3397 3398 ino = XFS_AGINO_TO_INO(mp, agno, agino); 3399 error = xfs_iget(mp, NULL, ino, 0, 0, &ip); 3400 if (error) 3401 goto fail; 3402 3403 /* 3404 * Get the on disk inode to find the next inode in the bucket. 3405 */ 3406 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0); 3407 if (error) 3408 goto fail_iput; 3409 3410 ASSERT(ip->i_d.di_nlink == 0); 3411 ASSERT(ip->i_d.di_mode != 0); 3412 3413 /* setup for the next pass */ 3414 agino = be32_to_cpu(dip->di_next_unlinked); 3415 xfs_buf_relse(ibp); 3416 3417 /* 3418 * Prevent any DMAPI event from being sent when the reference on 3419 * the inode is dropped. 3420 */ 3421 ip->i_d.di_dmevmask = 0; 3422 3423 IRELE(ip); 3424 return agino; 3425 3426 fail_iput: 3427 IRELE(ip); 3428 fail: 3429 /* 3430 * We can't read in the inode this bucket points to, or this inode 3431 * is messed up. Just ditch this bucket of inodes. We will lose 3432 * some inodes and space, but at least we won't hang. 3433 * 3434 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 3435 * clear the inode pointer in the bucket. 3436 */ 3437 xlog_recover_clear_agi_bucket(mp, agno, bucket); 3438 return NULLAGINO; 3439 } 3440 3441 /* 3442 * xlog_iunlink_recover 3443 * 3444 * This is called during recovery to process any inodes which 3445 * we unlinked but not freed when the system crashed. These 3446 * inodes will be on the lists in the AGI blocks. What we do 3447 * here is scan all the AGIs and fully truncate and free any 3448 * inodes found on the lists. Each inode is removed from the 3449 * lists when it has been fully truncated and is freed. The 3450 * freeing of the inode and its removal from the list must be 3451 * atomic. 3452 */ 3453 STATIC void 3454 xlog_recover_process_iunlinks( 3455 struct xlog *log) 3456 { 3457 xfs_mount_t *mp; 3458 xfs_agnumber_t agno; 3459 xfs_agi_t *agi; 3460 xfs_buf_t *agibp; 3461 xfs_agino_t agino; 3462 int bucket; 3463 int error; 3464 uint mp_dmevmask; 3465 3466 mp = log->l_mp; 3467 3468 /* 3469 * Prevent any DMAPI event from being sent while in this function. 3470 */ 3471 mp_dmevmask = mp->m_dmevmask; 3472 mp->m_dmevmask = 0; 3473 3474 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3475 /* 3476 * Find the agi for this ag. 3477 */ 3478 error = xfs_read_agi(mp, NULL, agno, &agibp); 3479 if (error) { 3480 /* 3481 * AGI is b0rked. Don't process it. 3482 * 3483 * We should probably mark the filesystem as corrupt 3484 * after we've recovered all the ag's we can.... 3485 */ 3486 continue; 3487 } 3488 /* 3489 * Unlock the buffer so that it can be acquired in the normal 3490 * course of the transaction to truncate and free each inode. 3491 * Because we are not racing with anyone else here for the AGI 3492 * buffer, we don't even need to hold it locked to read the 3493 * initial unlinked bucket entries out of the buffer. We keep 3494 * buffer reference though, so that it stays pinned in memory 3495 * while we need the buffer. 3496 */ 3497 agi = XFS_BUF_TO_AGI(agibp); 3498 xfs_buf_unlock(agibp); 3499 3500 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 3501 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 3502 while (agino != NULLAGINO) { 3503 agino = xlog_recover_process_one_iunlink(mp, 3504 agno, agino, bucket); 3505 } 3506 } 3507 xfs_buf_rele(agibp); 3508 } 3509 3510 mp->m_dmevmask = mp_dmevmask; 3511 } 3512 3513 /* 3514 * Upack the log buffer data and crc check it. If the check fails, issue a 3515 * warning if and only if the CRC in the header is non-zero. This makes the 3516 * check an advisory warning, and the zero CRC check will prevent failure 3517 * warnings from being emitted when upgrading the kernel from one that does not 3518 * add CRCs by default. 3519 * 3520 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log 3521 * corruption failure 3522 */ 3523 STATIC int 3524 xlog_unpack_data_crc( 3525 struct xlog_rec_header *rhead, 3526 xfs_caddr_t dp, 3527 struct xlog *log) 3528 { 3529 __le32 crc; 3530 3531 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); 3532 if (crc != rhead->h_crc) { 3533 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) { 3534 xfs_alert(log->l_mp, 3535 "log record CRC mismatch: found 0x%x, expected 0x%x.\n", 3536 le32_to_cpu(rhead->h_crc), 3537 le32_to_cpu(crc)); 3538 xfs_hex_dump(dp, 32); 3539 } 3540 3541 /* 3542 * If we've detected a log record corruption, then we can't 3543 * recover past this point. Abort recovery if we are enforcing 3544 * CRC protection by punting an error back up the stack. 3545 */ 3546 if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) 3547 return EFSCORRUPTED; 3548 } 3549 3550 return 0; 3551 } 3552 3553 STATIC int 3554 xlog_unpack_data( 3555 struct xlog_rec_header *rhead, 3556 xfs_caddr_t dp, 3557 struct xlog *log) 3558 { 3559 int i, j, k; 3560 int error; 3561 3562 error = xlog_unpack_data_crc(rhead, dp, log); 3563 if (error) 3564 return error; 3565 3566 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 3567 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3568 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 3569 dp += BBSIZE; 3570 } 3571 3572 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3573 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 3574 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 3575 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3576 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3577 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 3578 dp += BBSIZE; 3579 } 3580 } 3581 3582 return 0; 3583 } 3584 3585 STATIC int 3586 xlog_valid_rec_header( 3587 struct xlog *log, 3588 struct xlog_rec_header *rhead, 3589 xfs_daddr_t blkno) 3590 { 3591 int hlen; 3592 3593 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) { 3594 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 3595 XFS_ERRLEVEL_LOW, log->l_mp); 3596 return XFS_ERROR(EFSCORRUPTED); 3597 } 3598 if (unlikely( 3599 (!rhead->h_version || 3600 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { 3601 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", 3602 __func__, be32_to_cpu(rhead->h_version)); 3603 return XFS_ERROR(EIO); 3604 } 3605 3606 /* LR body must have data or it wouldn't have been written */ 3607 hlen = be32_to_cpu(rhead->h_len); 3608 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 3609 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 3610 XFS_ERRLEVEL_LOW, log->l_mp); 3611 return XFS_ERROR(EFSCORRUPTED); 3612 } 3613 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 3614 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 3615 XFS_ERRLEVEL_LOW, log->l_mp); 3616 return XFS_ERROR(EFSCORRUPTED); 3617 } 3618 return 0; 3619 } 3620 3621 /* 3622 * Read the log from tail to head and process the log records found. 3623 * Handle the two cases where the tail and head are in the same cycle 3624 * and where the active portion of the log wraps around the end of 3625 * the physical log separately. The pass parameter is passed through 3626 * to the routines called to process the data and is not looked at 3627 * here. 3628 */ 3629 STATIC int 3630 xlog_do_recovery_pass( 3631 struct xlog *log, 3632 xfs_daddr_t head_blk, 3633 xfs_daddr_t tail_blk, 3634 int pass) 3635 { 3636 xlog_rec_header_t *rhead; 3637 xfs_daddr_t blk_no; 3638 xfs_caddr_t offset; 3639 xfs_buf_t *hbp, *dbp; 3640 int error = 0, h_size; 3641 int bblks, split_bblks; 3642 int hblks, split_hblks, wrapped_hblks; 3643 struct hlist_head rhash[XLOG_RHASH_SIZE]; 3644 3645 ASSERT(head_blk != tail_blk); 3646 3647 /* 3648 * Read the header of the tail block and get the iclog buffer size from 3649 * h_size. Use this to tell how many sectors make up the log header. 3650 */ 3651 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3652 /* 3653 * When using variable length iclogs, read first sector of 3654 * iclog header and extract the header size from it. Get a 3655 * new hbp that is the correct size. 3656 */ 3657 hbp = xlog_get_bp(log, 1); 3658 if (!hbp) 3659 return ENOMEM; 3660 3661 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 3662 if (error) 3663 goto bread_err1; 3664 3665 rhead = (xlog_rec_header_t *)offset; 3666 error = xlog_valid_rec_header(log, rhead, tail_blk); 3667 if (error) 3668 goto bread_err1; 3669 h_size = be32_to_cpu(rhead->h_size); 3670 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 3671 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 3672 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 3673 if (h_size % XLOG_HEADER_CYCLE_SIZE) 3674 hblks++; 3675 xlog_put_bp(hbp); 3676 hbp = xlog_get_bp(log, hblks); 3677 } else { 3678 hblks = 1; 3679 } 3680 } else { 3681 ASSERT(log->l_sectBBsize == 1); 3682 hblks = 1; 3683 hbp = xlog_get_bp(log, 1); 3684 h_size = XLOG_BIG_RECORD_BSIZE; 3685 } 3686 3687 if (!hbp) 3688 return ENOMEM; 3689 dbp = xlog_get_bp(log, BTOBB(h_size)); 3690 if (!dbp) { 3691 xlog_put_bp(hbp); 3692 return ENOMEM; 3693 } 3694 3695 memset(rhash, 0, sizeof(rhash)); 3696 if (tail_blk <= head_blk) { 3697 for (blk_no = tail_blk; blk_no < head_blk; ) { 3698 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 3699 if (error) 3700 goto bread_err2; 3701 3702 rhead = (xlog_rec_header_t *)offset; 3703 error = xlog_valid_rec_header(log, rhead, blk_no); 3704 if (error) 3705 goto bread_err2; 3706 3707 /* blocks in data section */ 3708 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3709 error = xlog_bread(log, blk_no + hblks, bblks, dbp, 3710 &offset); 3711 if (error) 3712 goto bread_err2; 3713 3714 error = xlog_unpack_data(rhead, offset, log); 3715 if (error) 3716 goto bread_err2; 3717 3718 error = xlog_recover_process_data(log, 3719 rhash, rhead, offset, pass); 3720 if (error) 3721 goto bread_err2; 3722 blk_no += bblks + hblks; 3723 } 3724 } else { 3725 /* 3726 * Perform recovery around the end of the physical log. 3727 * When the head is not on the same cycle number as the tail, 3728 * we can't do a sequential recovery as above. 3729 */ 3730 blk_no = tail_blk; 3731 while (blk_no < log->l_logBBsize) { 3732 /* 3733 * Check for header wrapping around physical end-of-log 3734 */ 3735 offset = hbp->b_addr; 3736 split_hblks = 0; 3737 wrapped_hblks = 0; 3738 if (blk_no + hblks <= log->l_logBBsize) { 3739 /* Read header in one read */ 3740 error = xlog_bread(log, blk_no, hblks, hbp, 3741 &offset); 3742 if (error) 3743 goto bread_err2; 3744 } else { 3745 /* This LR is split across physical log end */ 3746 if (blk_no != log->l_logBBsize) { 3747 /* some data before physical log end */ 3748 ASSERT(blk_no <= INT_MAX); 3749 split_hblks = log->l_logBBsize - (int)blk_no; 3750 ASSERT(split_hblks > 0); 3751 error = xlog_bread(log, blk_no, 3752 split_hblks, hbp, 3753 &offset); 3754 if (error) 3755 goto bread_err2; 3756 } 3757 3758 /* 3759 * Note: this black magic still works with 3760 * large sector sizes (non-512) only because: 3761 * - we increased the buffer size originally 3762 * by 1 sector giving us enough extra space 3763 * for the second read; 3764 * - the log start is guaranteed to be sector 3765 * aligned; 3766 * - we read the log end (LR header start) 3767 * _first_, then the log start (LR header end) 3768 * - order is important. 3769 */ 3770 wrapped_hblks = hblks - split_hblks; 3771 error = xlog_bread_offset(log, 0, 3772 wrapped_hblks, hbp, 3773 offset + BBTOB(split_hblks)); 3774 if (error) 3775 goto bread_err2; 3776 } 3777 rhead = (xlog_rec_header_t *)offset; 3778 error = xlog_valid_rec_header(log, rhead, 3779 split_hblks ? blk_no : 0); 3780 if (error) 3781 goto bread_err2; 3782 3783 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3784 blk_no += hblks; 3785 3786 /* Read in data for log record */ 3787 if (blk_no + bblks <= log->l_logBBsize) { 3788 error = xlog_bread(log, blk_no, bblks, dbp, 3789 &offset); 3790 if (error) 3791 goto bread_err2; 3792 } else { 3793 /* This log record is split across the 3794 * physical end of log */ 3795 offset = dbp->b_addr; 3796 split_bblks = 0; 3797 if (blk_no != log->l_logBBsize) { 3798 /* some data is before the physical 3799 * end of log */ 3800 ASSERT(!wrapped_hblks); 3801 ASSERT(blk_no <= INT_MAX); 3802 split_bblks = 3803 log->l_logBBsize - (int)blk_no; 3804 ASSERT(split_bblks > 0); 3805 error = xlog_bread(log, blk_no, 3806 split_bblks, dbp, 3807 &offset); 3808 if (error) 3809 goto bread_err2; 3810 } 3811 3812 /* 3813 * Note: this black magic still works with 3814 * large sector sizes (non-512) only because: 3815 * - we increased the buffer size originally 3816 * by 1 sector giving us enough extra space 3817 * for the second read; 3818 * - the log start is guaranteed to be sector 3819 * aligned; 3820 * - we read the log end (LR header start) 3821 * _first_, then the log start (LR header end) 3822 * - order is important. 3823 */ 3824 error = xlog_bread_offset(log, 0, 3825 bblks - split_bblks, dbp, 3826 offset + BBTOB(split_bblks)); 3827 if (error) 3828 goto bread_err2; 3829 } 3830 3831 error = xlog_unpack_data(rhead, offset, log); 3832 if (error) 3833 goto bread_err2; 3834 3835 error = xlog_recover_process_data(log, rhash, 3836 rhead, offset, pass); 3837 if (error) 3838 goto bread_err2; 3839 blk_no += bblks; 3840 } 3841 3842 ASSERT(blk_no >= log->l_logBBsize); 3843 blk_no -= log->l_logBBsize; 3844 3845 /* read first part of physical log */ 3846 while (blk_no < head_blk) { 3847 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 3848 if (error) 3849 goto bread_err2; 3850 3851 rhead = (xlog_rec_header_t *)offset; 3852 error = xlog_valid_rec_header(log, rhead, blk_no); 3853 if (error) 3854 goto bread_err2; 3855 3856 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3857 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 3858 &offset); 3859 if (error) 3860 goto bread_err2; 3861 3862 error = xlog_unpack_data(rhead, offset, log); 3863 if (error) 3864 goto bread_err2; 3865 3866 error = xlog_recover_process_data(log, rhash, 3867 rhead, offset, pass); 3868 if (error) 3869 goto bread_err2; 3870 blk_no += bblks + hblks; 3871 } 3872 } 3873 3874 bread_err2: 3875 xlog_put_bp(dbp); 3876 bread_err1: 3877 xlog_put_bp(hbp); 3878 return error; 3879 } 3880 3881 /* 3882 * Do the recovery of the log. We actually do this in two phases. 3883 * The two passes are necessary in order to implement the function 3884 * of cancelling a record written into the log. The first pass 3885 * determines those things which have been cancelled, and the 3886 * second pass replays log items normally except for those which 3887 * have been cancelled. The handling of the replay and cancellations 3888 * takes place in the log item type specific routines. 3889 * 3890 * The table of items which have cancel records in the log is allocated 3891 * and freed at this level, since only here do we know when all of 3892 * the log recovery has been completed. 3893 */ 3894 STATIC int 3895 xlog_do_log_recovery( 3896 struct xlog *log, 3897 xfs_daddr_t head_blk, 3898 xfs_daddr_t tail_blk) 3899 { 3900 int error, i; 3901 3902 ASSERT(head_blk != tail_blk); 3903 3904 /* 3905 * First do a pass to find all of the cancelled buf log items. 3906 * Store them in the buf_cancel_table for use in the second pass. 3907 */ 3908 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * 3909 sizeof(struct list_head), 3910 KM_SLEEP); 3911 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3912 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); 3913 3914 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3915 XLOG_RECOVER_PASS1); 3916 if (error != 0) { 3917 kmem_free(log->l_buf_cancel_table); 3918 log->l_buf_cancel_table = NULL; 3919 return error; 3920 } 3921 /* 3922 * Then do a second pass to actually recover the items in the log. 3923 * When it is complete free the table of buf cancel items. 3924 */ 3925 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3926 XLOG_RECOVER_PASS2); 3927 #ifdef DEBUG 3928 if (!error) { 3929 int i; 3930 3931 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3932 ASSERT(list_empty(&log->l_buf_cancel_table[i])); 3933 } 3934 #endif /* DEBUG */ 3935 3936 kmem_free(log->l_buf_cancel_table); 3937 log->l_buf_cancel_table = NULL; 3938 3939 return error; 3940 } 3941 3942 /* 3943 * Do the actual recovery 3944 */ 3945 STATIC int 3946 xlog_do_recover( 3947 struct xlog *log, 3948 xfs_daddr_t head_blk, 3949 xfs_daddr_t tail_blk) 3950 { 3951 int error; 3952 xfs_buf_t *bp; 3953 xfs_sb_t *sbp; 3954 3955 /* 3956 * First replay the images in the log. 3957 */ 3958 error = xlog_do_log_recovery(log, head_blk, tail_blk); 3959 if (error) 3960 return error; 3961 3962 /* 3963 * If IO errors happened during recovery, bail out. 3964 */ 3965 if (XFS_FORCED_SHUTDOWN(log->l_mp)) { 3966 return (EIO); 3967 } 3968 3969 /* 3970 * We now update the tail_lsn since much of the recovery has completed 3971 * and there may be space available to use. If there were no extent 3972 * or iunlinks, we can free up the entire log and set the tail_lsn to 3973 * be the last_sync_lsn. This was set in xlog_find_tail to be the 3974 * lsn of the last known good LR on disk. If there are extent frees 3975 * or iunlinks they will have some entries in the AIL; so we look at 3976 * the AIL to determine how to set the tail_lsn. 3977 */ 3978 xlog_assign_tail_lsn(log->l_mp); 3979 3980 /* 3981 * Now that we've finished replaying all buffer and inode 3982 * updates, re-read in the superblock and reverify it. 3983 */ 3984 bp = xfs_getsb(log->l_mp, 0); 3985 XFS_BUF_UNDONE(bp); 3986 ASSERT(!(XFS_BUF_ISWRITE(bp))); 3987 XFS_BUF_READ(bp); 3988 XFS_BUF_UNASYNC(bp); 3989 bp->b_ops = &xfs_sb_buf_ops; 3990 xfsbdstrat(log->l_mp, bp); 3991 error = xfs_buf_iowait(bp); 3992 if (error) { 3993 xfs_buf_ioerror_alert(bp, __func__); 3994 ASSERT(0); 3995 xfs_buf_relse(bp); 3996 return error; 3997 } 3998 3999 /* Convert superblock from on-disk format */ 4000 sbp = &log->l_mp->m_sb; 4001 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 4002 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); 4003 ASSERT(xfs_sb_good_version(sbp)); 4004 xfs_buf_relse(bp); 4005 4006 /* We've re-read the superblock so re-initialize per-cpu counters */ 4007 xfs_icsb_reinit_counters(log->l_mp); 4008 4009 xlog_recover_check_summary(log); 4010 4011 /* Normal transactions can now occur */ 4012 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 4013 return 0; 4014 } 4015 4016 /* 4017 * Perform recovery and re-initialize some log variables in xlog_find_tail. 4018 * 4019 * Return error or zero. 4020 */ 4021 int 4022 xlog_recover( 4023 struct xlog *log) 4024 { 4025 xfs_daddr_t head_blk, tail_blk; 4026 int error; 4027 4028 /* find the tail of the log */ 4029 if ((error = xlog_find_tail(log, &head_blk, &tail_blk))) 4030 return error; 4031 4032 if (tail_blk != head_blk) { 4033 /* There used to be a comment here: 4034 * 4035 * disallow recovery on read-only mounts. note -- mount 4036 * checks for ENOSPC and turns it into an intelligent 4037 * error message. 4038 * ...but this is no longer true. Now, unless you specify 4039 * NORECOVERY (in which case this function would never be 4040 * called), we just go ahead and recover. We do this all 4041 * under the vfs layer, so we can get away with it unless 4042 * the device itself is read-only, in which case we fail. 4043 */ 4044 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 4045 return error; 4046 } 4047 4048 /* 4049 * Version 5 superblock log feature mask validation. We know the 4050 * log is dirty so check if there are any unknown log features 4051 * in what we need to recover. If there are unknown features 4052 * (e.g. unsupported transactions, then simply reject the 4053 * attempt at recovery before touching anything. 4054 */ 4055 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 && 4056 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, 4057 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { 4058 xfs_warn(log->l_mp, 4059 "Superblock has unknown incompatible log features (0x%x) enabled.\n" 4060 "The log can not be fully and/or safely recovered by this kernel.\n" 4061 "Please recover the log on a kernel that supports the unknown features.", 4062 (log->l_mp->m_sb.sb_features_log_incompat & 4063 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 4064 return EINVAL; 4065 } 4066 4067 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", 4068 log->l_mp->m_logname ? log->l_mp->m_logname 4069 : "internal"); 4070 4071 error = xlog_do_recover(log, head_blk, tail_blk); 4072 log->l_flags |= XLOG_RECOVERY_NEEDED; 4073 } 4074 return error; 4075 } 4076 4077 /* 4078 * In the first part of recovery we replay inodes and buffers and build 4079 * up the list of extent free items which need to be processed. Here 4080 * we process the extent free items and clean up the on disk unlinked 4081 * inode lists. This is separated from the first part of recovery so 4082 * that the root and real-time bitmap inodes can be read in from disk in 4083 * between the two stages. This is necessary so that we can free space 4084 * in the real-time portion of the file system. 4085 */ 4086 int 4087 xlog_recover_finish( 4088 struct xlog *log) 4089 { 4090 /* 4091 * Now we're ready to do the transactions needed for the 4092 * rest of recovery. Start with completing all the extent 4093 * free intent records and then process the unlinked inode 4094 * lists. At this point, we essentially run in normal mode 4095 * except that we're still performing recovery actions 4096 * rather than accepting new requests. 4097 */ 4098 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 4099 int error; 4100 error = xlog_recover_process_efis(log); 4101 if (error) { 4102 xfs_alert(log->l_mp, "Failed to recover EFIs"); 4103 return error; 4104 } 4105 /* 4106 * Sync the log to get all the EFIs out of the AIL. 4107 * This isn't absolutely necessary, but it helps in 4108 * case the unlink transactions would have problems 4109 * pushing the EFIs out of the way. 4110 */ 4111 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 4112 4113 xlog_recover_process_iunlinks(log); 4114 4115 xlog_recover_check_summary(log); 4116 4117 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", 4118 log->l_mp->m_logname ? log->l_mp->m_logname 4119 : "internal"); 4120 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 4121 } else { 4122 xfs_info(log->l_mp, "Ending clean mount"); 4123 } 4124 return 0; 4125 } 4126 4127 4128 #if defined(DEBUG) 4129 /* 4130 * Read all of the agf and agi counters and check that they 4131 * are consistent with the superblock counters. 4132 */ 4133 void 4134 xlog_recover_check_summary( 4135 struct xlog *log) 4136 { 4137 xfs_mount_t *mp; 4138 xfs_agf_t *agfp; 4139 xfs_buf_t *agfbp; 4140 xfs_buf_t *agibp; 4141 xfs_agnumber_t agno; 4142 __uint64_t freeblks; 4143 __uint64_t itotal; 4144 __uint64_t ifree; 4145 int error; 4146 4147 mp = log->l_mp; 4148 4149 freeblks = 0LL; 4150 itotal = 0LL; 4151 ifree = 0LL; 4152 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 4153 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 4154 if (error) { 4155 xfs_alert(mp, "%s agf read failed agno %d error %d", 4156 __func__, agno, error); 4157 } else { 4158 agfp = XFS_BUF_TO_AGF(agfbp); 4159 freeblks += be32_to_cpu(agfp->agf_freeblks) + 4160 be32_to_cpu(agfp->agf_flcount); 4161 xfs_buf_relse(agfbp); 4162 } 4163 4164 error = xfs_read_agi(mp, NULL, agno, &agibp); 4165 if (error) { 4166 xfs_alert(mp, "%s agi read failed agno %d error %d", 4167 __func__, agno, error); 4168 } else { 4169 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 4170 4171 itotal += be32_to_cpu(agi->agi_count); 4172 ifree += be32_to_cpu(agi->agi_freecount); 4173 xfs_buf_relse(agibp); 4174 } 4175 } 4176 } 4177 #endif /* DEBUG */ 4178