1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_trans.h" 18 #include "xfs_log.h" 19 #include "xfs_log_priv.h" 20 #include "xfs_log_recover.h" 21 #include "xfs_inode_item.h" 22 #include "xfs_extfree_item.h" 23 #include "xfs_trans_priv.h" 24 #include "xfs_alloc.h" 25 #include "xfs_ialloc.h" 26 #include "xfs_quota.h" 27 #include "xfs_trace.h" 28 #include "xfs_icache.h" 29 #include "xfs_bmap_btree.h" 30 #include "xfs_error.h" 31 #include "xfs_dir2.h" 32 #include "xfs_rmap_item.h" 33 #include "xfs_buf_item.h" 34 #include "xfs_refcount_item.h" 35 #include "xfs_bmap_item.h" 36 37 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) 38 39 STATIC int 40 xlog_find_zeroed( 41 struct xlog *, 42 xfs_daddr_t *); 43 STATIC int 44 xlog_clear_stale_blocks( 45 struct xlog *, 46 xfs_lsn_t); 47 #if defined(DEBUG) 48 STATIC void 49 xlog_recover_check_summary( 50 struct xlog *); 51 #else 52 #define xlog_recover_check_summary(log) 53 #endif 54 STATIC int 55 xlog_do_recovery_pass( 56 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *); 57 58 /* 59 * This structure is used during recovery to record the buf log items which 60 * have been canceled and should not be replayed. 61 */ 62 struct xfs_buf_cancel { 63 xfs_daddr_t bc_blkno; 64 uint bc_len; 65 int bc_refcount; 66 struct list_head bc_list; 67 }; 68 69 /* 70 * Sector aligned buffer routines for buffer create/read/write/access 71 */ 72 73 /* 74 * Verify the log-relative block number and length in basic blocks are valid for 75 * an operation involving the given XFS log buffer. Returns true if the fields 76 * are valid, false otherwise. 77 */ 78 static inline bool 79 xlog_verify_bno( 80 struct xlog *log, 81 xfs_daddr_t blk_no, 82 int bbcount) 83 { 84 if (blk_no < 0 || blk_no >= log->l_logBBsize) 85 return false; 86 if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize) 87 return false; 88 return true; 89 } 90 91 /* 92 * Allocate a buffer to hold log data. The buffer needs to be able to map to 93 * a range of nbblks basic blocks at any valid offset within the log. 94 */ 95 static char * 96 xlog_alloc_buffer( 97 struct xlog *log, 98 int nbblks) 99 { 100 /* 101 * Pass log block 0 since we don't have an addr yet, buffer will be 102 * verified on read. 103 */ 104 if (!xlog_verify_bno(log, 0, nbblks)) { 105 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 106 nbblks); 107 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 108 return NULL; 109 } 110 111 /* 112 * We do log I/O in units of log sectors (a power-of-2 multiple of the 113 * basic block size), so we round up the requested size to accommodate 114 * the basic blocks required for complete log sectors. 115 * 116 * In addition, the buffer may be used for a non-sector-aligned block 117 * offset, in which case an I/O of the requested size could extend 118 * beyond the end of the buffer. If the requested size is only 1 basic 119 * block it will never straddle a sector boundary, so this won't be an 120 * issue. Nor will this be a problem if the log I/O is done in basic 121 * blocks (sector size 1). But otherwise we extend the buffer by one 122 * extra log sector to ensure there's space to accommodate this 123 * possibility. 124 */ 125 if (nbblks > 1 && log->l_sectBBsize > 1) 126 nbblks += log->l_sectBBsize; 127 nbblks = round_up(nbblks, log->l_sectBBsize); 128 return kmem_alloc_large(BBTOB(nbblks), KM_MAYFAIL); 129 } 130 131 /* 132 * Return the address of the start of the given block number's data 133 * in a log buffer. The buffer covers a log sector-aligned region. 134 */ 135 static inline unsigned int 136 xlog_align( 137 struct xlog *log, 138 xfs_daddr_t blk_no) 139 { 140 return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1)); 141 } 142 143 static int 144 xlog_do_io( 145 struct xlog *log, 146 xfs_daddr_t blk_no, 147 unsigned int nbblks, 148 char *data, 149 unsigned int op) 150 { 151 int error; 152 153 if (!xlog_verify_bno(log, blk_no, nbblks)) { 154 xfs_warn(log->l_mp, 155 "Invalid log block/length (0x%llx, 0x%x) for buffer", 156 blk_no, nbblks); 157 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 158 return -EFSCORRUPTED; 159 } 160 161 blk_no = round_down(blk_no, log->l_sectBBsize); 162 nbblks = round_up(nbblks, log->l_sectBBsize); 163 ASSERT(nbblks > 0); 164 165 error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no, 166 BBTOB(nbblks), data, op); 167 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) { 168 xfs_alert(log->l_mp, 169 "log recovery %s I/O error at daddr 0x%llx len %d error %d", 170 op == REQ_OP_WRITE ? "write" : "read", 171 blk_no, nbblks, error); 172 } 173 return error; 174 } 175 176 STATIC int 177 xlog_bread_noalign( 178 struct xlog *log, 179 xfs_daddr_t blk_no, 180 int nbblks, 181 char *data) 182 { 183 return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ); 184 } 185 186 STATIC int 187 xlog_bread( 188 struct xlog *log, 189 xfs_daddr_t blk_no, 190 int nbblks, 191 char *data, 192 char **offset) 193 { 194 int error; 195 196 error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ); 197 if (!error) 198 *offset = data + xlog_align(log, blk_no); 199 return error; 200 } 201 202 STATIC int 203 xlog_bwrite( 204 struct xlog *log, 205 xfs_daddr_t blk_no, 206 int nbblks, 207 char *data) 208 { 209 return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE); 210 } 211 212 #ifdef DEBUG 213 /* 214 * dump debug superblock and log record information 215 */ 216 STATIC void 217 xlog_header_check_dump( 218 xfs_mount_t *mp, 219 xlog_rec_header_t *head) 220 { 221 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d", 222 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 223 xfs_debug(mp, " log : uuid = %pU, fmt = %d", 224 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 225 } 226 #else 227 #define xlog_header_check_dump(mp, head) 228 #endif 229 230 /* 231 * check log record header for recovery 232 */ 233 STATIC int 234 xlog_header_check_recover( 235 xfs_mount_t *mp, 236 xlog_rec_header_t *head) 237 { 238 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 239 240 /* 241 * IRIX doesn't write the h_fmt field and leaves it zeroed 242 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 243 * a dirty log created in IRIX. 244 */ 245 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) { 246 xfs_warn(mp, 247 "dirty log written in incompatible format - can't recover"); 248 xlog_header_check_dump(mp, head); 249 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 250 XFS_ERRLEVEL_HIGH, mp); 251 return -EFSCORRUPTED; 252 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 253 xfs_warn(mp, 254 "dirty log entry has mismatched uuid - can't recover"); 255 xlog_header_check_dump(mp, head); 256 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 257 XFS_ERRLEVEL_HIGH, mp); 258 return -EFSCORRUPTED; 259 } 260 return 0; 261 } 262 263 /* 264 * read the head block of the log and check the header 265 */ 266 STATIC int 267 xlog_header_check_mount( 268 xfs_mount_t *mp, 269 xlog_rec_header_t *head) 270 { 271 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 272 273 if (uuid_is_null(&head->h_fs_uuid)) { 274 /* 275 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 276 * h_fs_uuid is null, we assume this log was last mounted 277 * by IRIX and continue. 278 */ 279 xfs_warn(mp, "null uuid in log - IRIX style log"); 280 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 281 xfs_warn(mp, "log has mismatched uuid - can't recover"); 282 xlog_header_check_dump(mp, head); 283 XFS_ERROR_REPORT("xlog_header_check_mount", 284 XFS_ERRLEVEL_HIGH, mp); 285 return -EFSCORRUPTED; 286 } 287 return 0; 288 } 289 290 STATIC void 291 xlog_recover_iodone( 292 struct xfs_buf *bp) 293 { 294 if (bp->b_error) { 295 /* 296 * We're not going to bother about retrying 297 * this during recovery. One strike! 298 */ 299 if (!XFS_FORCED_SHUTDOWN(bp->b_mount)) { 300 xfs_buf_ioerror_alert(bp, __func__); 301 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR); 302 } 303 } 304 305 /* 306 * On v5 supers, a bli could be attached to update the metadata LSN. 307 * Clean it up. 308 */ 309 if (bp->b_log_item) 310 xfs_buf_item_relse(bp); 311 ASSERT(bp->b_log_item == NULL); 312 313 bp->b_iodone = NULL; 314 xfs_buf_ioend(bp); 315 } 316 317 /* 318 * This routine finds (to an approximation) the first block in the physical 319 * log which contains the given cycle. It uses a binary search algorithm. 320 * Note that the algorithm can not be perfect because the disk will not 321 * necessarily be perfect. 322 */ 323 STATIC int 324 xlog_find_cycle_start( 325 struct xlog *log, 326 char *buffer, 327 xfs_daddr_t first_blk, 328 xfs_daddr_t *last_blk, 329 uint cycle) 330 { 331 char *offset; 332 xfs_daddr_t mid_blk; 333 xfs_daddr_t end_blk; 334 uint mid_cycle; 335 int error; 336 337 end_blk = *last_blk; 338 mid_blk = BLK_AVG(first_blk, end_blk); 339 while (mid_blk != first_blk && mid_blk != end_blk) { 340 error = xlog_bread(log, mid_blk, 1, buffer, &offset); 341 if (error) 342 return error; 343 mid_cycle = xlog_get_cycle(offset); 344 if (mid_cycle == cycle) 345 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 346 else 347 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 348 mid_blk = BLK_AVG(first_blk, end_blk); 349 } 350 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 351 (mid_blk == end_blk && mid_blk-1 == first_blk)); 352 353 *last_blk = end_blk; 354 355 return 0; 356 } 357 358 /* 359 * Check that a range of blocks does not contain stop_on_cycle_no. 360 * Fill in *new_blk with the block offset where such a block is 361 * found, or with -1 (an invalid block number) if there is no such 362 * block in the range. The scan needs to occur from front to back 363 * and the pointer into the region must be updated since a later 364 * routine will need to perform another test. 365 */ 366 STATIC int 367 xlog_find_verify_cycle( 368 struct xlog *log, 369 xfs_daddr_t start_blk, 370 int nbblks, 371 uint stop_on_cycle_no, 372 xfs_daddr_t *new_blk) 373 { 374 xfs_daddr_t i, j; 375 uint cycle; 376 char *buffer; 377 xfs_daddr_t bufblks; 378 char *buf = NULL; 379 int error = 0; 380 381 /* 382 * Greedily allocate a buffer big enough to handle the full 383 * range of basic blocks we'll be examining. If that fails, 384 * try a smaller size. We need to be able to read at least 385 * a log sector, or we're out of luck. 386 */ 387 bufblks = 1 << ffs(nbblks); 388 while (bufblks > log->l_logBBsize) 389 bufblks >>= 1; 390 while (!(buffer = xlog_alloc_buffer(log, bufblks))) { 391 bufblks >>= 1; 392 if (bufblks < log->l_sectBBsize) 393 return -ENOMEM; 394 } 395 396 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 397 int bcount; 398 399 bcount = min(bufblks, (start_blk + nbblks - i)); 400 401 error = xlog_bread(log, i, bcount, buffer, &buf); 402 if (error) 403 goto out; 404 405 for (j = 0; j < bcount; j++) { 406 cycle = xlog_get_cycle(buf); 407 if (cycle == stop_on_cycle_no) { 408 *new_blk = i+j; 409 goto out; 410 } 411 412 buf += BBSIZE; 413 } 414 } 415 416 *new_blk = -1; 417 418 out: 419 kmem_free(buffer); 420 return error; 421 } 422 423 /* 424 * Potentially backup over partial log record write. 425 * 426 * In the typical case, last_blk is the number of the block directly after 427 * a good log record. Therefore, we subtract one to get the block number 428 * of the last block in the given buffer. extra_bblks contains the number 429 * of blocks we would have read on a previous read. This happens when the 430 * last log record is split over the end of the physical log. 431 * 432 * extra_bblks is the number of blocks potentially verified on a previous 433 * call to this routine. 434 */ 435 STATIC int 436 xlog_find_verify_log_record( 437 struct xlog *log, 438 xfs_daddr_t start_blk, 439 xfs_daddr_t *last_blk, 440 int extra_bblks) 441 { 442 xfs_daddr_t i; 443 char *buffer; 444 char *offset = NULL; 445 xlog_rec_header_t *head = NULL; 446 int error = 0; 447 int smallmem = 0; 448 int num_blks = *last_blk - start_blk; 449 int xhdrs; 450 451 ASSERT(start_blk != 0 || *last_blk != start_blk); 452 453 buffer = xlog_alloc_buffer(log, num_blks); 454 if (!buffer) { 455 buffer = xlog_alloc_buffer(log, 1); 456 if (!buffer) 457 return -ENOMEM; 458 smallmem = 1; 459 } else { 460 error = xlog_bread(log, start_blk, num_blks, buffer, &offset); 461 if (error) 462 goto out; 463 offset += ((num_blks - 1) << BBSHIFT); 464 } 465 466 for (i = (*last_blk) - 1; i >= 0; i--) { 467 if (i < start_blk) { 468 /* valid log record not found */ 469 xfs_warn(log->l_mp, 470 "Log inconsistent (didn't find previous header)"); 471 ASSERT(0); 472 error = -EIO; 473 goto out; 474 } 475 476 if (smallmem) { 477 error = xlog_bread(log, i, 1, buffer, &offset); 478 if (error) 479 goto out; 480 } 481 482 head = (xlog_rec_header_t *)offset; 483 484 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 485 break; 486 487 if (!smallmem) 488 offset -= BBSIZE; 489 } 490 491 /* 492 * We hit the beginning of the physical log & still no header. Return 493 * to caller. If caller can handle a return of -1, then this routine 494 * will be called again for the end of the physical log. 495 */ 496 if (i == -1) { 497 error = 1; 498 goto out; 499 } 500 501 /* 502 * We have the final block of the good log (the first block 503 * of the log record _before_ the head. So we check the uuid. 504 */ 505 if ((error = xlog_header_check_mount(log->l_mp, head))) 506 goto out; 507 508 /* 509 * We may have found a log record header before we expected one. 510 * last_blk will be the 1st block # with a given cycle #. We may end 511 * up reading an entire log record. In this case, we don't want to 512 * reset last_blk. Only when last_blk points in the middle of a log 513 * record do we update last_blk. 514 */ 515 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 516 uint h_size = be32_to_cpu(head->h_size); 517 518 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 519 if (h_size % XLOG_HEADER_CYCLE_SIZE) 520 xhdrs++; 521 } else { 522 xhdrs = 1; 523 } 524 525 if (*last_blk - i + extra_bblks != 526 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 527 *last_blk = i; 528 529 out: 530 kmem_free(buffer); 531 return error; 532 } 533 534 /* 535 * Head is defined to be the point of the log where the next log write 536 * could go. This means that incomplete LR writes at the end are 537 * eliminated when calculating the head. We aren't guaranteed that previous 538 * LR have complete transactions. We only know that a cycle number of 539 * current cycle number -1 won't be present in the log if we start writing 540 * from our current block number. 541 * 542 * last_blk contains the block number of the first block with a given 543 * cycle number. 544 * 545 * Return: zero if normal, non-zero if error. 546 */ 547 STATIC int 548 xlog_find_head( 549 struct xlog *log, 550 xfs_daddr_t *return_head_blk) 551 { 552 char *buffer; 553 char *offset; 554 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 555 int num_scan_bblks; 556 uint first_half_cycle, last_half_cycle; 557 uint stop_on_cycle; 558 int error, log_bbnum = log->l_logBBsize; 559 560 /* Is the end of the log device zeroed? */ 561 error = xlog_find_zeroed(log, &first_blk); 562 if (error < 0) { 563 xfs_warn(log->l_mp, "empty log check failed"); 564 return error; 565 } 566 if (error == 1) { 567 *return_head_blk = first_blk; 568 569 /* Is the whole lot zeroed? */ 570 if (!first_blk) { 571 /* Linux XFS shouldn't generate totally zeroed logs - 572 * mkfs etc write a dummy unmount record to a fresh 573 * log so we can store the uuid in there 574 */ 575 xfs_warn(log->l_mp, "totally zeroed log"); 576 } 577 578 return 0; 579 } 580 581 first_blk = 0; /* get cycle # of 1st block */ 582 buffer = xlog_alloc_buffer(log, 1); 583 if (!buffer) 584 return -ENOMEM; 585 586 error = xlog_bread(log, 0, 1, buffer, &offset); 587 if (error) 588 goto out_free_buffer; 589 590 first_half_cycle = xlog_get_cycle(offset); 591 592 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 593 error = xlog_bread(log, last_blk, 1, buffer, &offset); 594 if (error) 595 goto out_free_buffer; 596 597 last_half_cycle = xlog_get_cycle(offset); 598 ASSERT(last_half_cycle != 0); 599 600 /* 601 * If the 1st half cycle number is equal to the last half cycle number, 602 * then the entire log is stamped with the same cycle number. In this 603 * case, head_blk can't be set to zero (which makes sense). The below 604 * math doesn't work out properly with head_blk equal to zero. Instead, 605 * we set it to log_bbnum which is an invalid block number, but this 606 * value makes the math correct. If head_blk doesn't changed through 607 * all the tests below, *head_blk is set to zero at the very end rather 608 * than log_bbnum. In a sense, log_bbnum and zero are the same block 609 * in a circular file. 610 */ 611 if (first_half_cycle == last_half_cycle) { 612 /* 613 * In this case we believe that the entire log should have 614 * cycle number last_half_cycle. We need to scan backwards 615 * from the end verifying that there are no holes still 616 * containing last_half_cycle - 1. If we find such a hole, 617 * then the start of that hole will be the new head. The 618 * simple case looks like 619 * x | x ... | x - 1 | x 620 * Another case that fits this picture would be 621 * x | x + 1 | x ... | x 622 * In this case the head really is somewhere at the end of the 623 * log, as one of the latest writes at the beginning was 624 * incomplete. 625 * One more case is 626 * x | x + 1 | x ... | x - 1 | x 627 * This is really the combination of the above two cases, and 628 * the head has to end up at the start of the x-1 hole at the 629 * end of the log. 630 * 631 * In the 256k log case, we will read from the beginning to the 632 * end of the log and search for cycle numbers equal to x-1. 633 * We don't worry about the x+1 blocks that we encounter, 634 * because we know that they cannot be the head since the log 635 * started with x. 636 */ 637 head_blk = log_bbnum; 638 stop_on_cycle = last_half_cycle - 1; 639 } else { 640 /* 641 * In this case we want to find the first block with cycle 642 * number matching last_half_cycle. We expect the log to be 643 * some variation on 644 * x + 1 ... | x ... | x 645 * The first block with cycle number x (last_half_cycle) will 646 * be where the new head belongs. First we do a binary search 647 * for the first occurrence of last_half_cycle. The binary 648 * search may not be totally accurate, so then we scan back 649 * from there looking for occurrences of last_half_cycle before 650 * us. If that backwards scan wraps around the beginning of 651 * the log, then we look for occurrences of last_half_cycle - 1 652 * at the end of the log. The cases we're looking for look 653 * like 654 * v binary search stopped here 655 * x + 1 ... | x | x + 1 | x ... | x 656 * ^ but we want to locate this spot 657 * or 658 * <---------> less than scan distance 659 * x + 1 ... | x ... | x - 1 | x 660 * ^ we want to locate this spot 661 */ 662 stop_on_cycle = last_half_cycle; 663 error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk, 664 last_half_cycle); 665 if (error) 666 goto out_free_buffer; 667 } 668 669 /* 670 * Now validate the answer. Scan back some number of maximum possible 671 * blocks and make sure each one has the expected cycle number. The 672 * maximum is determined by the total possible amount of buffering 673 * in the in-core log. The following number can be made tighter if 674 * we actually look at the block size of the filesystem. 675 */ 676 num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log)); 677 if (head_blk >= num_scan_bblks) { 678 /* 679 * We are guaranteed that the entire check can be performed 680 * in one buffer. 681 */ 682 start_blk = head_blk - num_scan_bblks; 683 if ((error = xlog_find_verify_cycle(log, 684 start_blk, num_scan_bblks, 685 stop_on_cycle, &new_blk))) 686 goto out_free_buffer; 687 if (new_blk != -1) 688 head_blk = new_blk; 689 } else { /* need to read 2 parts of log */ 690 /* 691 * We are going to scan backwards in the log in two parts. 692 * First we scan the physical end of the log. In this part 693 * of the log, we are looking for blocks with cycle number 694 * last_half_cycle - 1. 695 * If we find one, then we know that the log starts there, as 696 * we've found a hole that didn't get written in going around 697 * the end of the physical log. The simple case for this is 698 * x + 1 ... | x ... | x - 1 | x 699 * <---------> less than scan distance 700 * If all of the blocks at the end of the log have cycle number 701 * last_half_cycle, then we check the blocks at the start of 702 * the log looking for occurrences of last_half_cycle. If we 703 * find one, then our current estimate for the location of the 704 * first occurrence of last_half_cycle is wrong and we move 705 * back to the hole we've found. This case looks like 706 * x + 1 ... | x | x + 1 | x ... 707 * ^ binary search stopped here 708 * Another case we need to handle that only occurs in 256k 709 * logs is 710 * x + 1 ... | x ... | x+1 | x ... 711 * ^ binary search stops here 712 * In a 256k log, the scan at the end of the log will see the 713 * x + 1 blocks. We need to skip past those since that is 714 * certainly not the head of the log. By searching for 715 * last_half_cycle-1 we accomplish that. 716 */ 717 ASSERT(head_blk <= INT_MAX && 718 (xfs_daddr_t) num_scan_bblks >= head_blk); 719 start_blk = log_bbnum - (num_scan_bblks - head_blk); 720 if ((error = xlog_find_verify_cycle(log, start_blk, 721 num_scan_bblks - (int)head_blk, 722 (stop_on_cycle - 1), &new_blk))) 723 goto out_free_buffer; 724 if (new_blk != -1) { 725 head_blk = new_blk; 726 goto validate_head; 727 } 728 729 /* 730 * Scan beginning of log now. The last part of the physical 731 * log is good. This scan needs to verify that it doesn't find 732 * the last_half_cycle. 733 */ 734 start_blk = 0; 735 ASSERT(head_blk <= INT_MAX); 736 if ((error = xlog_find_verify_cycle(log, 737 start_blk, (int)head_blk, 738 stop_on_cycle, &new_blk))) 739 goto out_free_buffer; 740 if (new_blk != -1) 741 head_blk = new_blk; 742 } 743 744 validate_head: 745 /* 746 * Now we need to make sure head_blk is not pointing to a block in 747 * the middle of a log record. 748 */ 749 num_scan_bblks = XLOG_REC_SHIFT(log); 750 if (head_blk >= num_scan_bblks) { 751 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 752 753 /* start ptr at last block ptr before head_blk */ 754 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 755 if (error == 1) 756 error = -EIO; 757 if (error) 758 goto out_free_buffer; 759 } else { 760 start_blk = 0; 761 ASSERT(head_blk <= INT_MAX); 762 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 763 if (error < 0) 764 goto out_free_buffer; 765 if (error == 1) { 766 /* We hit the beginning of the log during our search */ 767 start_blk = log_bbnum - (num_scan_bblks - head_blk); 768 new_blk = log_bbnum; 769 ASSERT(start_blk <= INT_MAX && 770 (xfs_daddr_t) log_bbnum-start_blk >= 0); 771 ASSERT(head_blk <= INT_MAX); 772 error = xlog_find_verify_log_record(log, start_blk, 773 &new_blk, (int)head_blk); 774 if (error == 1) 775 error = -EIO; 776 if (error) 777 goto out_free_buffer; 778 if (new_blk != log_bbnum) 779 head_blk = new_blk; 780 } else if (error) 781 goto out_free_buffer; 782 } 783 784 kmem_free(buffer); 785 if (head_blk == log_bbnum) 786 *return_head_blk = 0; 787 else 788 *return_head_blk = head_blk; 789 /* 790 * When returning here, we have a good block number. Bad block 791 * means that during a previous crash, we didn't have a clean break 792 * from cycle number N to cycle number N-1. In this case, we need 793 * to find the first block with cycle number N-1. 794 */ 795 return 0; 796 797 out_free_buffer: 798 kmem_free(buffer); 799 if (error) 800 xfs_warn(log->l_mp, "failed to find log head"); 801 return error; 802 } 803 804 /* 805 * Seek backwards in the log for log record headers. 806 * 807 * Given a starting log block, walk backwards until we find the provided number 808 * of records or hit the provided tail block. The return value is the number of 809 * records encountered or a negative error code. The log block and buffer 810 * pointer of the last record seen are returned in rblk and rhead respectively. 811 */ 812 STATIC int 813 xlog_rseek_logrec_hdr( 814 struct xlog *log, 815 xfs_daddr_t head_blk, 816 xfs_daddr_t tail_blk, 817 int count, 818 char *buffer, 819 xfs_daddr_t *rblk, 820 struct xlog_rec_header **rhead, 821 bool *wrapped) 822 { 823 int i; 824 int error; 825 int found = 0; 826 char *offset = NULL; 827 xfs_daddr_t end_blk; 828 829 *wrapped = false; 830 831 /* 832 * Walk backwards from the head block until we hit the tail or the first 833 * block in the log. 834 */ 835 end_blk = head_blk > tail_blk ? tail_blk : 0; 836 for (i = (int) head_blk - 1; i >= end_blk; i--) { 837 error = xlog_bread(log, i, 1, buffer, &offset); 838 if (error) 839 goto out_error; 840 841 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 842 *rblk = i; 843 *rhead = (struct xlog_rec_header *) offset; 844 if (++found == count) 845 break; 846 } 847 } 848 849 /* 850 * If we haven't hit the tail block or the log record header count, 851 * start looking again from the end of the physical log. Note that 852 * callers can pass head == tail if the tail is not yet known. 853 */ 854 if (tail_blk >= head_blk && found != count) { 855 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) { 856 error = xlog_bread(log, i, 1, buffer, &offset); 857 if (error) 858 goto out_error; 859 860 if (*(__be32 *)offset == 861 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 862 *wrapped = true; 863 *rblk = i; 864 *rhead = (struct xlog_rec_header *) offset; 865 if (++found == count) 866 break; 867 } 868 } 869 } 870 871 return found; 872 873 out_error: 874 return error; 875 } 876 877 /* 878 * Seek forward in the log for log record headers. 879 * 880 * Given head and tail blocks, walk forward from the tail block until we find 881 * the provided number of records or hit the head block. The return value is the 882 * number of records encountered or a negative error code. The log block and 883 * buffer pointer of the last record seen are returned in rblk and rhead 884 * respectively. 885 */ 886 STATIC int 887 xlog_seek_logrec_hdr( 888 struct xlog *log, 889 xfs_daddr_t head_blk, 890 xfs_daddr_t tail_blk, 891 int count, 892 char *buffer, 893 xfs_daddr_t *rblk, 894 struct xlog_rec_header **rhead, 895 bool *wrapped) 896 { 897 int i; 898 int error; 899 int found = 0; 900 char *offset = NULL; 901 xfs_daddr_t end_blk; 902 903 *wrapped = false; 904 905 /* 906 * Walk forward from the tail block until we hit the head or the last 907 * block in the log. 908 */ 909 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1; 910 for (i = (int) tail_blk; i <= end_blk; i++) { 911 error = xlog_bread(log, i, 1, buffer, &offset); 912 if (error) 913 goto out_error; 914 915 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 916 *rblk = i; 917 *rhead = (struct xlog_rec_header *) offset; 918 if (++found == count) 919 break; 920 } 921 } 922 923 /* 924 * If we haven't hit the head block or the log record header count, 925 * start looking again from the start of the physical log. 926 */ 927 if (tail_blk > head_blk && found != count) { 928 for (i = 0; i < (int) head_blk; i++) { 929 error = xlog_bread(log, i, 1, buffer, &offset); 930 if (error) 931 goto out_error; 932 933 if (*(__be32 *)offset == 934 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 935 *wrapped = true; 936 *rblk = i; 937 *rhead = (struct xlog_rec_header *) offset; 938 if (++found == count) 939 break; 940 } 941 } 942 } 943 944 return found; 945 946 out_error: 947 return error; 948 } 949 950 /* 951 * Calculate distance from head to tail (i.e., unused space in the log). 952 */ 953 static inline int 954 xlog_tail_distance( 955 struct xlog *log, 956 xfs_daddr_t head_blk, 957 xfs_daddr_t tail_blk) 958 { 959 if (head_blk < tail_blk) 960 return tail_blk - head_blk; 961 962 return tail_blk + (log->l_logBBsize - head_blk); 963 } 964 965 /* 966 * Verify the log tail. This is particularly important when torn or incomplete 967 * writes have been detected near the front of the log and the head has been 968 * walked back accordingly. 969 * 970 * We also have to handle the case where the tail was pinned and the head 971 * blocked behind the tail right before a crash. If the tail had been pushed 972 * immediately prior to the crash and the subsequent checkpoint was only 973 * partially written, it's possible it overwrote the last referenced tail in the 974 * log with garbage. This is not a coherency problem because the tail must have 975 * been pushed before it can be overwritten, but appears as log corruption to 976 * recovery because we have no way to know the tail was updated if the 977 * subsequent checkpoint didn't write successfully. 978 * 979 * Therefore, CRC check the log from tail to head. If a failure occurs and the 980 * offending record is within max iclog bufs from the head, walk the tail 981 * forward and retry until a valid tail is found or corruption is detected out 982 * of the range of a possible overwrite. 983 */ 984 STATIC int 985 xlog_verify_tail( 986 struct xlog *log, 987 xfs_daddr_t head_blk, 988 xfs_daddr_t *tail_blk, 989 int hsize) 990 { 991 struct xlog_rec_header *thead; 992 char *buffer; 993 xfs_daddr_t first_bad; 994 int error = 0; 995 bool wrapped; 996 xfs_daddr_t tmp_tail; 997 xfs_daddr_t orig_tail = *tail_blk; 998 999 buffer = xlog_alloc_buffer(log, 1); 1000 if (!buffer) 1001 return -ENOMEM; 1002 1003 /* 1004 * Make sure the tail points to a record (returns positive count on 1005 * success). 1006 */ 1007 error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer, 1008 &tmp_tail, &thead, &wrapped); 1009 if (error < 0) 1010 goto out; 1011 if (*tail_blk != tmp_tail) 1012 *tail_blk = tmp_tail; 1013 1014 /* 1015 * Run a CRC check from the tail to the head. We can't just check 1016 * MAX_ICLOGS records past the tail because the tail may point to stale 1017 * blocks cleared during the search for the head/tail. These blocks are 1018 * overwritten with zero-length records and thus record count is not a 1019 * reliable indicator of the iclog state before a crash. 1020 */ 1021 first_bad = 0; 1022 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 1023 XLOG_RECOVER_CRCPASS, &first_bad); 1024 while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 1025 int tail_distance; 1026 1027 /* 1028 * Is corruption within range of the head? If so, retry from 1029 * the next record. Otherwise return an error. 1030 */ 1031 tail_distance = xlog_tail_distance(log, head_blk, first_bad); 1032 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize)) 1033 break; 1034 1035 /* skip to the next record; returns positive count on success */ 1036 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, 1037 buffer, &tmp_tail, &thead, &wrapped); 1038 if (error < 0) 1039 goto out; 1040 1041 *tail_blk = tmp_tail; 1042 first_bad = 0; 1043 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 1044 XLOG_RECOVER_CRCPASS, &first_bad); 1045 } 1046 1047 if (!error && *tail_blk != orig_tail) 1048 xfs_warn(log->l_mp, 1049 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx", 1050 orig_tail, *tail_blk); 1051 out: 1052 kmem_free(buffer); 1053 return error; 1054 } 1055 1056 /* 1057 * Detect and trim torn writes from the head of the log. 1058 * 1059 * Storage without sector atomicity guarantees can result in torn writes in the 1060 * log in the event of a crash. Our only means to detect this scenario is via 1061 * CRC verification. While we can't always be certain that CRC verification 1062 * failure is due to a torn write vs. an unrelated corruption, we do know that 1063 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at 1064 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of 1065 * the log and treat failures in this range as torn writes as a matter of 1066 * policy. In the event of CRC failure, the head is walked back to the last good 1067 * record in the log and the tail is updated from that record and verified. 1068 */ 1069 STATIC int 1070 xlog_verify_head( 1071 struct xlog *log, 1072 xfs_daddr_t *head_blk, /* in/out: unverified head */ 1073 xfs_daddr_t *tail_blk, /* out: tail block */ 1074 char *buffer, 1075 xfs_daddr_t *rhead_blk, /* start blk of last record */ 1076 struct xlog_rec_header **rhead, /* ptr to last record */ 1077 bool *wrapped) /* last rec. wraps phys. log */ 1078 { 1079 struct xlog_rec_header *tmp_rhead; 1080 char *tmp_buffer; 1081 xfs_daddr_t first_bad; 1082 xfs_daddr_t tmp_rhead_blk; 1083 int found; 1084 int error; 1085 bool tmp_wrapped; 1086 1087 /* 1088 * Check the head of the log for torn writes. Search backwards from the 1089 * head until we hit the tail or the maximum number of log record I/Os 1090 * that could have been in flight at one time. Use a temporary buffer so 1091 * we don't trash the rhead/buffer pointers from the caller. 1092 */ 1093 tmp_buffer = xlog_alloc_buffer(log, 1); 1094 if (!tmp_buffer) 1095 return -ENOMEM; 1096 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk, 1097 XLOG_MAX_ICLOGS, tmp_buffer, 1098 &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped); 1099 kmem_free(tmp_buffer); 1100 if (error < 0) 1101 return error; 1102 1103 /* 1104 * Now run a CRC verification pass over the records starting at the 1105 * block found above to the current head. If a CRC failure occurs, the 1106 * log block of the first bad record is saved in first_bad. 1107 */ 1108 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk, 1109 XLOG_RECOVER_CRCPASS, &first_bad); 1110 if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 1111 /* 1112 * We've hit a potential torn write. Reset the error and warn 1113 * about it. 1114 */ 1115 error = 0; 1116 xfs_warn(log->l_mp, 1117 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.", 1118 first_bad, *head_blk); 1119 1120 /* 1121 * Get the header block and buffer pointer for the last good 1122 * record before the bad record. 1123 * 1124 * Note that xlog_find_tail() clears the blocks at the new head 1125 * (i.e., the records with invalid CRC) if the cycle number 1126 * matches the the current cycle. 1127 */ 1128 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, 1129 buffer, rhead_blk, rhead, wrapped); 1130 if (found < 0) 1131 return found; 1132 if (found == 0) /* XXX: right thing to do here? */ 1133 return -EIO; 1134 1135 /* 1136 * Reset the head block to the starting block of the first bad 1137 * log record and set the tail block based on the last good 1138 * record. 1139 * 1140 * Bail out if the updated head/tail match as this indicates 1141 * possible corruption outside of the acceptable 1142 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair... 1143 */ 1144 *head_blk = first_bad; 1145 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn)); 1146 if (*head_blk == *tail_blk) { 1147 ASSERT(0); 1148 return 0; 1149 } 1150 } 1151 if (error) 1152 return error; 1153 1154 return xlog_verify_tail(log, *head_blk, tail_blk, 1155 be32_to_cpu((*rhead)->h_size)); 1156 } 1157 1158 /* 1159 * We need to make sure we handle log wrapping properly, so we can't use the 1160 * calculated logbno directly. Make sure it wraps to the correct bno inside the 1161 * log. 1162 * 1163 * The log is limited to 32 bit sizes, so we use the appropriate modulus 1164 * operation here and cast it back to a 64 bit daddr on return. 1165 */ 1166 static inline xfs_daddr_t 1167 xlog_wrap_logbno( 1168 struct xlog *log, 1169 xfs_daddr_t bno) 1170 { 1171 int mod; 1172 1173 div_s64_rem(bno, log->l_logBBsize, &mod); 1174 return mod; 1175 } 1176 1177 /* 1178 * Check whether the head of the log points to an unmount record. In other 1179 * words, determine whether the log is clean. If so, update the in-core state 1180 * appropriately. 1181 */ 1182 static int 1183 xlog_check_unmount_rec( 1184 struct xlog *log, 1185 xfs_daddr_t *head_blk, 1186 xfs_daddr_t *tail_blk, 1187 struct xlog_rec_header *rhead, 1188 xfs_daddr_t rhead_blk, 1189 char *buffer, 1190 bool *clean) 1191 { 1192 struct xlog_op_header *op_head; 1193 xfs_daddr_t umount_data_blk; 1194 xfs_daddr_t after_umount_blk; 1195 int hblks; 1196 int error; 1197 char *offset; 1198 1199 *clean = false; 1200 1201 /* 1202 * Look for unmount record. If we find it, then we know there was a 1203 * clean unmount. Since 'i' could be the last block in the physical 1204 * log, we convert to a log block before comparing to the head_blk. 1205 * 1206 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks() 1207 * below. We won't want to clear the unmount record if there is one, so 1208 * we pass the lsn of the unmount record rather than the block after it. 1209 */ 1210 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1211 int h_size = be32_to_cpu(rhead->h_size); 1212 int h_version = be32_to_cpu(rhead->h_version); 1213 1214 if ((h_version & XLOG_VERSION_2) && 1215 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 1216 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 1217 if (h_size % XLOG_HEADER_CYCLE_SIZE) 1218 hblks++; 1219 } else { 1220 hblks = 1; 1221 } 1222 } else { 1223 hblks = 1; 1224 } 1225 1226 after_umount_blk = xlog_wrap_logbno(log, 1227 rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len))); 1228 1229 if (*head_blk == after_umount_blk && 1230 be32_to_cpu(rhead->h_num_logops) == 1) { 1231 umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks); 1232 error = xlog_bread(log, umount_data_blk, 1, buffer, &offset); 1233 if (error) 1234 return error; 1235 1236 op_head = (struct xlog_op_header *)offset; 1237 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 1238 /* 1239 * Set tail and last sync so that newly written log 1240 * records will point recovery to after the current 1241 * unmount record. 1242 */ 1243 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1244 log->l_curr_cycle, after_umount_blk); 1245 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1246 log->l_curr_cycle, after_umount_blk); 1247 *tail_blk = after_umount_blk; 1248 1249 *clean = true; 1250 } 1251 } 1252 1253 return 0; 1254 } 1255 1256 static void 1257 xlog_set_state( 1258 struct xlog *log, 1259 xfs_daddr_t head_blk, 1260 struct xlog_rec_header *rhead, 1261 xfs_daddr_t rhead_blk, 1262 bool bump_cycle) 1263 { 1264 /* 1265 * Reset log values according to the state of the log when we 1266 * crashed. In the case where head_blk == 0, we bump curr_cycle 1267 * one because the next write starts a new cycle rather than 1268 * continuing the cycle of the last good log record. At this 1269 * point we have guaranteed that all partial log records have been 1270 * accounted for. Therefore, we know that the last good log record 1271 * written was complete and ended exactly on the end boundary 1272 * of the physical log. 1273 */ 1274 log->l_prev_block = rhead_blk; 1275 log->l_curr_block = (int)head_blk; 1276 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 1277 if (bump_cycle) 1278 log->l_curr_cycle++; 1279 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); 1280 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); 1281 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, 1282 BBTOB(log->l_curr_block)); 1283 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, 1284 BBTOB(log->l_curr_block)); 1285 } 1286 1287 /* 1288 * Find the sync block number or the tail of the log. 1289 * 1290 * This will be the block number of the last record to have its 1291 * associated buffers synced to disk. Every log record header has 1292 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 1293 * to get a sync block number. The only concern is to figure out which 1294 * log record header to believe. 1295 * 1296 * The following algorithm uses the log record header with the largest 1297 * lsn. The entire log record does not need to be valid. We only care 1298 * that the header is valid. 1299 * 1300 * We could speed up search by using current head_blk buffer, but it is not 1301 * available. 1302 */ 1303 STATIC int 1304 xlog_find_tail( 1305 struct xlog *log, 1306 xfs_daddr_t *head_blk, 1307 xfs_daddr_t *tail_blk) 1308 { 1309 xlog_rec_header_t *rhead; 1310 char *offset = NULL; 1311 char *buffer; 1312 int error; 1313 xfs_daddr_t rhead_blk; 1314 xfs_lsn_t tail_lsn; 1315 bool wrapped = false; 1316 bool clean = false; 1317 1318 /* 1319 * Find previous log record 1320 */ 1321 if ((error = xlog_find_head(log, head_blk))) 1322 return error; 1323 ASSERT(*head_blk < INT_MAX); 1324 1325 buffer = xlog_alloc_buffer(log, 1); 1326 if (!buffer) 1327 return -ENOMEM; 1328 if (*head_blk == 0) { /* special case */ 1329 error = xlog_bread(log, 0, 1, buffer, &offset); 1330 if (error) 1331 goto done; 1332 1333 if (xlog_get_cycle(offset) == 0) { 1334 *tail_blk = 0; 1335 /* leave all other log inited values alone */ 1336 goto done; 1337 } 1338 } 1339 1340 /* 1341 * Search backwards through the log looking for the log record header 1342 * block. This wraps all the way back around to the head so something is 1343 * seriously wrong if we can't find it. 1344 */ 1345 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer, 1346 &rhead_blk, &rhead, &wrapped); 1347 if (error < 0) 1348 return error; 1349 if (!error) { 1350 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); 1351 return -EIO; 1352 } 1353 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 1354 1355 /* 1356 * Set the log state based on the current head record. 1357 */ 1358 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped); 1359 tail_lsn = atomic64_read(&log->l_tail_lsn); 1360 1361 /* 1362 * Look for an unmount record at the head of the log. This sets the log 1363 * state to determine whether recovery is necessary. 1364 */ 1365 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead, 1366 rhead_blk, buffer, &clean); 1367 if (error) 1368 goto done; 1369 1370 /* 1371 * Verify the log head if the log is not clean (e.g., we have anything 1372 * but an unmount record at the head). This uses CRC verification to 1373 * detect and trim torn writes. If discovered, CRC failures are 1374 * considered torn writes and the log head is trimmed accordingly. 1375 * 1376 * Note that we can only run CRC verification when the log is dirty 1377 * because there's no guarantee that the log data behind an unmount 1378 * record is compatible with the current architecture. 1379 */ 1380 if (!clean) { 1381 xfs_daddr_t orig_head = *head_blk; 1382 1383 error = xlog_verify_head(log, head_blk, tail_blk, buffer, 1384 &rhead_blk, &rhead, &wrapped); 1385 if (error) 1386 goto done; 1387 1388 /* update in-core state again if the head changed */ 1389 if (*head_blk != orig_head) { 1390 xlog_set_state(log, *head_blk, rhead, rhead_blk, 1391 wrapped); 1392 tail_lsn = atomic64_read(&log->l_tail_lsn); 1393 error = xlog_check_unmount_rec(log, head_blk, tail_blk, 1394 rhead, rhead_blk, buffer, 1395 &clean); 1396 if (error) 1397 goto done; 1398 } 1399 } 1400 1401 /* 1402 * Note that the unmount was clean. If the unmount was not clean, we 1403 * need to know this to rebuild the superblock counters from the perag 1404 * headers if we have a filesystem using non-persistent counters. 1405 */ 1406 if (clean) 1407 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 1408 1409 /* 1410 * Make sure that there are no blocks in front of the head 1411 * with the same cycle number as the head. This can happen 1412 * because we allow multiple outstanding log writes concurrently, 1413 * and the later writes might make it out before earlier ones. 1414 * 1415 * We use the lsn from before modifying it so that we'll never 1416 * overwrite the unmount record after a clean unmount. 1417 * 1418 * Do this only if we are going to recover the filesystem 1419 * 1420 * NOTE: This used to say "if (!readonly)" 1421 * However on Linux, we can & do recover a read-only filesystem. 1422 * We only skip recovery if NORECOVERY is specified on mount, 1423 * in which case we would not be here. 1424 * 1425 * But... if the -device- itself is readonly, just skip this. 1426 * We can't recover this device anyway, so it won't matter. 1427 */ 1428 if (!xfs_readonly_buftarg(log->l_targ)) 1429 error = xlog_clear_stale_blocks(log, tail_lsn); 1430 1431 done: 1432 kmem_free(buffer); 1433 1434 if (error) 1435 xfs_warn(log->l_mp, "failed to locate log tail"); 1436 return error; 1437 } 1438 1439 /* 1440 * Is the log zeroed at all? 1441 * 1442 * The last binary search should be changed to perform an X block read 1443 * once X becomes small enough. You can then search linearly through 1444 * the X blocks. This will cut down on the number of reads we need to do. 1445 * 1446 * If the log is partially zeroed, this routine will pass back the blkno 1447 * of the first block with cycle number 0. It won't have a complete LR 1448 * preceding it. 1449 * 1450 * Return: 1451 * 0 => the log is completely written to 1452 * 1 => use *blk_no as the first block of the log 1453 * <0 => error has occurred 1454 */ 1455 STATIC int 1456 xlog_find_zeroed( 1457 struct xlog *log, 1458 xfs_daddr_t *blk_no) 1459 { 1460 char *buffer; 1461 char *offset; 1462 uint first_cycle, last_cycle; 1463 xfs_daddr_t new_blk, last_blk, start_blk; 1464 xfs_daddr_t num_scan_bblks; 1465 int error, log_bbnum = log->l_logBBsize; 1466 1467 *blk_no = 0; 1468 1469 /* check totally zeroed log */ 1470 buffer = xlog_alloc_buffer(log, 1); 1471 if (!buffer) 1472 return -ENOMEM; 1473 error = xlog_bread(log, 0, 1, buffer, &offset); 1474 if (error) 1475 goto out_free_buffer; 1476 1477 first_cycle = xlog_get_cycle(offset); 1478 if (first_cycle == 0) { /* completely zeroed log */ 1479 *blk_no = 0; 1480 kmem_free(buffer); 1481 return 1; 1482 } 1483 1484 /* check partially zeroed log */ 1485 error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset); 1486 if (error) 1487 goto out_free_buffer; 1488 1489 last_cycle = xlog_get_cycle(offset); 1490 if (last_cycle != 0) { /* log completely written to */ 1491 kmem_free(buffer); 1492 return 0; 1493 } 1494 1495 /* we have a partially zeroed log */ 1496 last_blk = log_bbnum-1; 1497 error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0); 1498 if (error) 1499 goto out_free_buffer; 1500 1501 /* 1502 * Validate the answer. Because there is no way to guarantee that 1503 * the entire log is made up of log records which are the same size, 1504 * we scan over the defined maximum blocks. At this point, the maximum 1505 * is not chosen to mean anything special. XXXmiken 1506 */ 1507 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1508 ASSERT(num_scan_bblks <= INT_MAX); 1509 1510 if (last_blk < num_scan_bblks) 1511 num_scan_bblks = last_blk; 1512 start_blk = last_blk - num_scan_bblks; 1513 1514 /* 1515 * We search for any instances of cycle number 0 that occur before 1516 * our current estimate of the head. What we're trying to detect is 1517 * 1 ... | 0 | 1 | 0... 1518 * ^ binary search ends here 1519 */ 1520 if ((error = xlog_find_verify_cycle(log, start_blk, 1521 (int)num_scan_bblks, 0, &new_blk))) 1522 goto out_free_buffer; 1523 if (new_blk != -1) 1524 last_blk = new_blk; 1525 1526 /* 1527 * Potentially backup over partial log record write. We don't need 1528 * to search the end of the log because we know it is zero. 1529 */ 1530 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0); 1531 if (error == 1) 1532 error = -EIO; 1533 if (error) 1534 goto out_free_buffer; 1535 1536 *blk_no = last_blk; 1537 out_free_buffer: 1538 kmem_free(buffer); 1539 if (error) 1540 return error; 1541 return 1; 1542 } 1543 1544 /* 1545 * These are simple subroutines used by xlog_clear_stale_blocks() below 1546 * to initialize a buffer full of empty log record headers and write 1547 * them into the log. 1548 */ 1549 STATIC void 1550 xlog_add_record( 1551 struct xlog *log, 1552 char *buf, 1553 int cycle, 1554 int block, 1555 int tail_cycle, 1556 int tail_block) 1557 { 1558 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1559 1560 memset(buf, 0, BBSIZE); 1561 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1562 recp->h_cycle = cpu_to_be32(cycle); 1563 recp->h_version = cpu_to_be32( 1564 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1565 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1566 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1567 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1568 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1569 } 1570 1571 STATIC int 1572 xlog_write_log_records( 1573 struct xlog *log, 1574 int cycle, 1575 int start_block, 1576 int blocks, 1577 int tail_cycle, 1578 int tail_block) 1579 { 1580 char *offset; 1581 char *buffer; 1582 int balign, ealign; 1583 int sectbb = log->l_sectBBsize; 1584 int end_block = start_block + blocks; 1585 int bufblks; 1586 int error = 0; 1587 int i, j = 0; 1588 1589 /* 1590 * Greedily allocate a buffer big enough to handle the full 1591 * range of basic blocks to be written. If that fails, try 1592 * a smaller size. We need to be able to write at least a 1593 * log sector, or we're out of luck. 1594 */ 1595 bufblks = 1 << ffs(blocks); 1596 while (bufblks > log->l_logBBsize) 1597 bufblks >>= 1; 1598 while (!(buffer = xlog_alloc_buffer(log, bufblks))) { 1599 bufblks >>= 1; 1600 if (bufblks < sectbb) 1601 return -ENOMEM; 1602 } 1603 1604 /* We may need to do a read at the start to fill in part of 1605 * the buffer in the starting sector not covered by the first 1606 * write below. 1607 */ 1608 balign = round_down(start_block, sectbb); 1609 if (balign != start_block) { 1610 error = xlog_bread_noalign(log, start_block, 1, buffer); 1611 if (error) 1612 goto out_free_buffer; 1613 1614 j = start_block - balign; 1615 } 1616 1617 for (i = start_block; i < end_block; i += bufblks) { 1618 int bcount, endcount; 1619 1620 bcount = min(bufblks, end_block - start_block); 1621 endcount = bcount - j; 1622 1623 /* We may need to do a read at the end to fill in part of 1624 * the buffer in the final sector not covered by the write. 1625 * If this is the same sector as the above read, skip it. 1626 */ 1627 ealign = round_down(end_block, sectbb); 1628 if (j == 0 && (start_block + endcount > ealign)) { 1629 error = xlog_bread_noalign(log, ealign, sectbb, 1630 buffer + BBTOB(ealign - start_block)); 1631 if (error) 1632 break; 1633 1634 } 1635 1636 offset = buffer + xlog_align(log, start_block); 1637 for (; j < endcount; j++) { 1638 xlog_add_record(log, offset, cycle, i+j, 1639 tail_cycle, tail_block); 1640 offset += BBSIZE; 1641 } 1642 error = xlog_bwrite(log, start_block, endcount, buffer); 1643 if (error) 1644 break; 1645 start_block += endcount; 1646 j = 0; 1647 } 1648 1649 out_free_buffer: 1650 kmem_free(buffer); 1651 return error; 1652 } 1653 1654 /* 1655 * This routine is called to blow away any incomplete log writes out 1656 * in front of the log head. We do this so that we won't become confused 1657 * if we come up, write only a little bit more, and then crash again. 1658 * If we leave the partial log records out there, this situation could 1659 * cause us to think those partial writes are valid blocks since they 1660 * have the current cycle number. We get rid of them by overwriting them 1661 * with empty log records with the old cycle number rather than the 1662 * current one. 1663 * 1664 * The tail lsn is passed in rather than taken from 1665 * the log so that we will not write over the unmount record after a 1666 * clean unmount in a 512 block log. Doing so would leave the log without 1667 * any valid log records in it until a new one was written. If we crashed 1668 * during that time we would not be able to recover. 1669 */ 1670 STATIC int 1671 xlog_clear_stale_blocks( 1672 struct xlog *log, 1673 xfs_lsn_t tail_lsn) 1674 { 1675 int tail_cycle, head_cycle; 1676 int tail_block, head_block; 1677 int tail_distance, max_distance; 1678 int distance; 1679 int error; 1680 1681 tail_cycle = CYCLE_LSN(tail_lsn); 1682 tail_block = BLOCK_LSN(tail_lsn); 1683 head_cycle = log->l_curr_cycle; 1684 head_block = log->l_curr_block; 1685 1686 /* 1687 * Figure out the distance between the new head of the log 1688 * and the tail. We want to write over any blocks beyond the 1689 * head that we may have written just before the crash, but 1690 * we don't want to overwrite the tail of the log. 1691 */ 1692 if (head_cycle == tail_cycle) { 1693 /* 1694 * The tail is behind the head in the physical log, 1695 * so the distance from the head to the tail is the 1696 * distance from the head to the end of the log plus 1697 * the distance from the beginning of the log to the 1698 * tail. 1699 */ 1700 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1701 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1702 XFS_ERRLEVEL_LOW, log->l_mp); 1703 return -EFSCORRUPTED; 1704 } 1705 tail_distance = tail_block + (log->l_logBBsize - head_block); 1706 } else { 1707 /* 1708 * The head is behind the tail in the physical log, 1709 * so the distance from the head to the tail is just 1710 * the tail block minus the head block. 1711 */ 1712 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1713 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1714 XFS_ERRLEVEL_LOW, log->l_mp); 1715 return -EFSCORRUPTED; 1716 } 1717 tail_distance = tail_block - head_block; 1718 } 1719 1720 /* 1721 * If the head is right up against the tail, we can't clear 1722 * anything. 1723 */ 1724 if (tail_distance <= 0) { 1725 ASSERT(tail_distance == 0); 1726 return 0; 1727 } 1728 1729 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1730 /* 1731 * Take the smaller of the maximum amount of outstanding I/O 1732 * we could have and the distance to the tail to clear out. 1733 * We take the smaller so that we don't overwrite the tail and 1734 * we don't waste all day writing from the head to the tail 1735 * for no reason. 1736 */ 1737 max_distance = min(max_distance, tail_distance); 1738 1739 if ((head_block + max_distance) <= log->l_logBBsize) { 1740 /* 1741 * We can stomp all the blocks we need to without 1742 * wrapping around the end of the log. Just do it 1743 * in a single write. Use the cycle number of the 1744 * current cycle minus one so that the log will look like: 1745 * n ... | n - 1 ... 1746 */ 1747 error = xlog_write_log_records(log, (head_cycle - 1), 1748 head_block, max_distance, tail_cycle, 1749 tail_block); 1750 if (error) 1751 return error; 1752 } else { 1753 /* 1754 * We need to wrap around the end of the physical log in 1755 * order to clear all the blocks. Do it in two separate 1756 * I/Os. The first write should be from the head to the 1757 * end of the physical log, and it should use the current 1758 * cycle number minus one just like above. 1759 */ 1760 distance = log->l_logBBsize - head_block; 1761 error = xlog_write_log_records(log, (head_cycle - 1), 1762 head_block, distance, tail_cycle, 1763 tail_block); 1764 1765 if (error) 1766 return error; 1767 1768 /* 1769 * Now write the blocks at the start of the physical log. 1770 * This writes the remainder of the blocks we want to clear. 1771 * It uses the current cycle number since we're now on the 1772 * same cycle as the head so that we get: 1773 * n ... n ... | n - 1 ... 1774 * ^^^^^ blocks we're writing 1775 */ 1776 distance = max_distance - (log->l_logBBsize - head_block); 1777 error = xlog_write_log_records(log, head_cycle, 0, distance, 1778 tail_cycle, tail_block); 1779 if (error) 1780 return error; 1781 } 1782 1783 return 0; 1784 } 1785 1786 /****************************************************************************** 1787 * 1788 * Log recover routines 1789 * 1790 ****************************************************************************** 1791 */ 1792 1793 /* 1794 * Sort the log items in the transaction. 1795 * 1796 * The ordering constraints are defined by the inode allocation and unlink 1797 * behaviour. The rules are: 1798 * 1799 * 1. Every item is only logged once in a given transaction. Hence it 1800 * represents the last logged state of the item. Hence ordering is 1801 * dependent on the order in which operations need to be performed so 1802 * required initial conditions are always met. 1803 * 1804 * 2. Cancelled buffers are recorded in pass 1 in a separate table and 1805 * there's nothing to replay from them so we can simply cull them 1806 * from the transaction. However, we can't do that until after we've 1807 * replayed all the other items because they may be dependent on the 1808 * cancelled buffer and replaying the cancelled buffer can remove it 1809 * form the cancelled buffer table. Hence they have tobe done last. 1810 * 1811 * 3. Inode allocation buffers must be replayed before inode items that 1812 * read the buffer and replay changes into it. For filesystems using the 1813 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get 1814 * treated the same as inode allocation buffers as they create and 1815 * initialise the buffers directly. 1816 * 1817 * 4. Inode unlink buffers must be replayed after inode items are replayed. 1818 * This ensures that inodes are completely flushed to the inode buffer 1819 * in a "free" state before we remove the unlinked inode list pointer. 1820 * 1821 * Hence the ordering needs to be inode allocation buffers first, inode items 1822 * second, inode unlink buffers third and cancelled buffers last. 1823 * 1824 * But there's a problem with that - we can't tell an inode allocation buffer 1825 * apart from a regular buffer, so we can't separate them. We can, however, 1826 * tell an inode unlink buffer from the others, and so we can separate them out 1827 * from all the other buffers and move them to last. 1828 * 1829 * Hence, 4 lists, in order from head to tail: 1830 * - buffer_list for all buffers except cancelled/inode unlink buffers 1831 * - item_list for all non-buffer items 1832 * - inode_buffer_list for inode unlink buffers 1833 * - cancel_list for the cancelled buffers 1834 * 1835 * Note that we add objects to the tail of the lists so that first-to-last 1836 * ordering is preserved within the lists. Adding objects to the head of the 1837 * list means when we traverse from the head we walk them in last-to-first 1838 * order. For cancelled buffers and inode unlink buffers this doesn't matter, 1839 * but for all other items there may be specific ordering that we need to 1840 * preserve. 1841 */ 1842 STATIC int 1843 xlog_recover_reorder_trans( 1844 struct xlog *log, 1845 struct xlog_recover *trans, 1846 int pass) 1847 { 1848 xlog_recover_item_t *item, *n; 1849 int error = 0; 1850 LIST_HEAD(sort_list); 1851 LIST_HEAD(cancel_list); 1852 LIST_HEAD(buffer_list); 1853 LIST_HEAD(inode_buffer_list); 1854 LIST_HEAD(inode_list); 1855 1856 list_splice_init(&trans->r_itemq, &sort_list); 1857 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1858 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1859 1860 switch (ITEM_TYPE(item)) { 1861 case XFS_LI_ICREATE: 1862 list_move_tail(&item->ri_list, &buffer_list); 1863 break; 1864 case XFS_LI_BUF: 1865 if (buf_f->blf_flags & XFS_BLF_CANCEL) { 1866 trace_xfs_log_recover_item_reorder_head(log, 1867 trans, item, pass); 1868 list_move(&item->ri_list, &cancel_list); 1869 break; 1870 } 1871 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 1872 list_move(&item->ri_list, &inode_buffer_list); 1873 break; 1874 } 1875 list_move_tail(&item->ri_list, &buffer_list); 1876 break; 1877 case XFS_LI_INODE: 1878 case XFS_LI_DQUOT: 1879 case XFS_LI_QUOTAOFF: 1880 case XFS_LI_EFD: 1881 case XFS_LI_EFI: 1882 case XFS_LI_RUI: 1883 case XFS_LI_RUD: 1884 case XFS_LI_CUI: 1885 case XFS_LI_CUD: 1886 case XFS_LI_BUI: 1887 case XFS_LI_BUD: 1888 trace_xfs_log_recover_item_reorder_tail(log, 1889 trans, item, pass); 1890 list_move_tail(&item->ri_list, &inode_list); 1891 break; 1892 default: 1893 xfs_warn(log->l_mp, 1894 "%s: unrecognized type of log operation", 1895 __func__); 1896 ASSERT(0); 1897 /* 1898 * return the remaining items back to the transaction 1899 * item list so they can be freed in caller. 1900 */ 1901 if (!list_empty(&sort_list)) 1902 list_splice_init(&sort_list, &trans->r_itemq); 1903 error = -EIO; 1904 goto out; 1905 } 1906 } 1907 out: 1908 ASSERT(list_empty(&sort_list)); 1909 if (!list_empty(&buffer_list)) 1910 list_splice(&buffer_list, &trans->r_itemq); 1911 if (!list_empty(&inode_list)) 1912 list_splice_tail(&inode_list, &trans->r_itemq); 1913 if (!list_empty(&inode_buffer_list)) 1914 list_splice_tail(&inode_buffer_list, &trans->r_itemq); 1915 if (!list_empty(&cancel_list)) 1916 list_splice_tail(&cancel_list, &trans->r_itemq); 1917 return error; 1918 } 1919 1920 /* 1921 * Build up the table of buf cancel records so that we don't replay 1922 * cancelled data in the second pass. For buffer records that are 1923 * not cancel records, there is nothing to do here so we just return. 1924 * 1925 * If we get a cancel record which is already in the table, this indicates 1926 * that the buffer was cancelled multiple times. In order to ensure 1927 * that during pass 2 we keep the record in the table until we reach its 1928 * last occurrence in the log, we keep a reference count in the cancel 1929 * record in the table to tell us how many times we expect to see this 1930 * record during the second pass. 1931 */ 1932 STATIC int 1933 xlog_recover_buffer_pass1( 1934 struct xlog *log, 1935 struct xlog_recover_item *item) 1936 { 1937 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1938 struct list_head *bucket; 1939 struct xfs_buf_cancel *bcp; 1940 1941 /* 1942 * If this isn't a cancel buffer item, then just return. 1943 */ 1944 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 1945 trace_xfs_log_recover_buf_not_cancel(log, buf_f); 1946 return 0; 1947 } 1948 1949 /* 1950 * Insert an xfs_buf_cancel record into the hash table of them. 1951 * If there is already an identical record, bump its reference count. 1952 */ 1953 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno); 1954 list_for_each_entry(bcp, bucket, bc_list) { 1955 if (bcp->bc_blkno == buf_f->blf_blkno && 1956 bcp->bc_len == buf_f->blf_len) { 1957 bcp->bc_refcount++; 1958 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f); 1959 return 0; 1960 } 1961 } 1962 1963 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP); 1964 bcp->bc_blkno = buf_f->blf_blkno; 1965 bcp->bc_len = buf_f->blf_len; 1966 bcp->bc_refcount = 1; 1967 list_add_tail(&bcp->bc_list, bucket); 1968 1969 trace_xfs_log_recover_buf_cancel_add(log, buf_f); 1970 return 0; 1971 } 1972 1973 /* 1974 * Check to see whether the buffer being recovered has a corresponding 1975 * entry in the buffer cancel record table. If it is, return the cancel 1976 * buffer structure to the caller. 1977 */ 1978 STATIC struct xfs_buf_cancel * 1979 xlog_peek_buffer_cancelled( 1980 struct xlog *log, 1981 xfs_daddr_t blkno, 1982 uint len, 1983 unsigned short flags) 1984 { 1985 struct list_head *bucket; 1986 struct xfs_buf_cancel *bcp; 1987 1988 if (!log->l_buf_cancel_table) { 1989 /* empty table means no cancelled buffers in the log */ 1990 ASSERT(!(flags & XFS_BLF_CANCEL)); 1991 return NULL; 1992 } 1993 1994 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); 1995 list_for_each_entry(bcp, bucket, bc_list) { 1996 if (bcp->bc_blkno == blkno && bcp->bc_len == len) 1997 return bcp; 1998 } 1999 2000 /* 2001 * We didn't find a corresponding entry in the table, so return 0 so 2002 * that the buffer is NOT cancelled. 2003 */ 2004 ASSERT(!(flags & XFS_BLF_CANCEL)); 2005 return NULL; 2006 } 2007 2008 /* 2009 * If the buffer is being cancelled then return 1 so that it will be cancelled, 2010 * otherwise return 0. If the buffer is actually a buffer cancel item 2011 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the 2012 * table and remove it from the table if this is the last reference. 2013 * 2014 * We remove the cancel record from the table when we encounter its last 2015 * occurrence in the log so that if the same buffer is re-used again after its 2016 * last cancellation we actually replay the changes made at that point. 2017 */ 2018 STATIC int 2019 xlog_check_buffer_cancelled( 2020 struct xlog *log, 2021 xfs_daddr_t blkno, 2022 uint len, 2023 unsigned short flags) 2024 { 2025 struct xfs_buf_cancel *bcp; 2026 2027 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags); 2028 if (!bcp) 2029 return 0; 2030 2031 /* 2032 * We've go a match, so return 1 so that the recovery of this buffer 2033 * is cancelled. If this buffer is actually a buffer cancel log 2034 * item, then decrement the refcount on the one in the table and 2035 * remove it if this is the last reference. 2036 */ 2037 if (flags & XFS_BLF_CANCEL) { 2038 if (--bcp->bc_refcount == 0) { 2039 list_del(&bcp->bc_list); 2040 kmem_free(bcp); 2041 } 2042 } 2043 return 1; 2044 } 2045 2046 /* 2047 * Perform recovery for a buffer full of inodes. In these buffers, the only 2048 * data which should be recovered is that which corresponds to the 2049 * di_next_unlinked pointers in the on disk inode structures. The rest of the 2050 * data for the inodes is always logged through the inodes themselves rather 2051 * than the inode buffer and is recovered in xlog_recover_inode_pass2(). 2052 * 2053 * The only time when buffers full of inodes are fully recovered is when the 2054 * buffer is full of newly allocated inodes. In this case the buffer will 2055 * not be marked as an inode buffer and so will be sent to 2056 * xlog_recover_do_reg_buffer() below during recovery. 2057 */ 2058 STATIC int 2059 xlog_recover_do_inode_buffer( 2060 struct xfs_mount *mp, 2061 xlog_recover_item_t *item, 2062 struct xfs_buf *bp, 2063 xfs_buf_log_format_t *buf_f) 2064 { 2065 int i; 2066 int item_index = 0; 2067 int bit = 0; 2068 int nbits = 0; 2069 int reg_buf_offset = 0; 2070 int reg_buf_bytes = 0; 2071 int next_unlinked_offset; 2072 int inodes_per_buf; 2073 xfs_agino_t *logged_nextp; 2074 xfs_agino_t *buffer_nextp; 2075 2076 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); 2077 2078 /* 2079 * Post recovery validation only works properly on CRC enabled 2080 * filesystems. 2081 */ 2082 if (xfs_sb_version_hascrc(&mp->m_sb)) 2083 bp->b_ops = &xfs_inode_buf_ops; 2084 2085 inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog; 2086 for (i = 0; i < inodes_per_buf; i++) { 2087 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 2088 offsetof(xfs_dinode_t, di_next_unlinked); 2089 2090 while (next_unlinked_offset >= 2091 (reg_buf_offset + reg_buf_bytes)) { 2092 /* 2093 * The next di_next_unlinked field is beyond 2094 * the current logged region. Find the next 2095 * logged region that contains or is beyond 2096 * the current di_next_unlinked field. 2097 */ 2098 bit += nbits; 2099 bit = xfs_next_bit(buf_f->blf_data_map, 2100 buf_f->blf_map_size, bit); 2101 2102 /* 2103 * If there are no more logged regions in the 2104 * buffer, then we're done. 2105 */ 2106 if (bit == -1) 2107 return 0; 2108 2109 nbits = xfs_contig_bits(buf_f->blf_data_map, 2110 buf_f->blf_map_size, bit); 2111 ASSERT(nbits > 0); 2112 reg_buf_offset = bit << XFS_BLF_SHIFT; 2113 reg_buf_bytes = nbits << XFS_BLF_SHIFT; 2114 item_index++; 2115 } 2116 2117 /* 2118 * If the current logged region starts after the current 2119 * di_next_unlinked field, then move on to the next 2120 * di_next_unlinked field. 2121 */ 2122 if (next_unlinked_offset < reg_buf_offset) 2123 continue; 2124 2125 ASSERT(item->ri_buf[item_index].i_addr != NULL); 2126 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); 2127 ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length)); 2128 2129 /* 2130 * The current logged region contains a copy of the 2131 * current di_next_unlinked field. Extract its value 2132 * and copy it to the buffer copy. 2133 */ 2134 logged_nextp = item->ri_buf[item_index].i_addr + 2135 next_unlinked_offset - reg_buf_offset; 2136 if (unlikely(*logged_nextp == 0)) { 2137 xfs_alert(mp, 2138 "Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). " 2139 "Trying to replay bad (0) inode di_next_unlinked field.", 2140 item, bp); 2141 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 2142 XFS_ERRLEVEL_LOW, mp); 2143 return -EFSCORRUPTED; 2144 } 2145 2146 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset); 2147 *buffer_nextp = *logged_nextp; 2148 2149 /* 2150 * If necessary, recalculate the CRC in the on-disk inode. We 2151 * have to leave the inode in a consistent state for whoever 2152 * reads it next.... 2153 */ 2154 xfs_dinode_calc_crc(mp, 2155 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); 2156 2157 } 2158 2159 return 0; 2160 } 2161 2162 /* 2163 * V5 filesystems know the age of the buffer on disk being recovered. We can 2164 * have newer objects on disk than we are replaying, and so for these cases we 2165 * don't want to replay the current change as that will make the buffer contents 2166 * temporarily invalid on disk. 2167 * 2168 * The magic number might not match the buffer type we are going to recover 2169 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence 2170 * extract the LSN of the existing object in the buffer based on it's current 2171 * magic number. If we don't recognise the magic number in the buffer, then 2172 * return a LSN of -1 so that the caller knows it was an unrecognised block and 2173 * so can recover the buffer. 2174 * 2175 * Note: we cannot rely solely on magic number matches to determine that the 2176 * buffer has a valid LSN - we also need to verify that it belongs to this 2177 * filesystem, so we need to extract the object's LSN and compare it to that 2178 * which we read from the superblock. If the UUIDs don't match, then we've got a 2179 * stale metadata block from an old filesystem instance that we need to recover 2180 * over the top of. 2181 */ 2182 static xfs_lsn_t 2183 xlog_recover_get_buf_lsn( 2184 struct xfs_mount *mp, 2185 struct xfs_buf *bp) 2186 { 2187 uint32_t magic32; 2188 uint16_t magic16; 2189 uint16_t magicda; 2190 void *blk = bp->b_addr; 2191 uuid_t *uuid; 2192 xfs_lsn_t lsn = -1; 2193 2194 /* v4 filesystems always recover immediately */ 2195 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2196 goto recover_immediately; 2197 2198 magic32 = be32_to_cpu(*(__be32 *)blk); 2199 switch (magic32) { 2200 case XFS_ABTB_CRC_MAGIC: 2201 case XFS_ABTC_CRC_MAGIC: 2202 case XFS_ABTB_MAGIC: 2203 case XFS_ABTC_MAGIC: 2204 case XFS_RMAP_CRC_MAGIC: 2205 case XFS_REFC_CRC_MAGIC: 2206 case XFS_IBT_CRC_MAGIC: 2207 case XFS_IBT_MAGIC: { 2208 struct xfs_btree_block *btb = blk; 2209 2210 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn); 2211 uuid = &btb->bb_u.s.bb_uuid; 2212 break; 2213 } 2214 case XFS_BMAP_CRC_MAGIC: 2215 case XFS_BMAP_MAGIC: { 2216 struct xfs_btree_block *btb = blk; 2217 2218 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn); 2219 uuid = &btb->bb_u.l.bb_uuid; 2220 break; 2221 } 2222 case XFS_AGF_MAGIC: 2223 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn); 2224 uuid = &((struct xfs_agf *)blk)->agf_uuid; 2225 break; 2226 case XFS_AGFL_MAGIC: 2227 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn); 2228 uuid = &((struct xfs_agfl *)blk)->agfl_uuid; 2229 break; 2230 case XFS_AGI_MAGIC: 2231 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn); 2232 uuid = &((struct xfs_agi *)blk)->agi_uuid; 2233 break; 2234 case XFS_SYMLINK_MAGIC: 2235 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn); 2236 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid; 2237 break; 2238 case XFS_DIR3_BLOCK_MAGIC: 2239 case XFS_DIR3_DATA_MAGIC: 2240 case XFS_DIR3_FREE_MAGIC: 2241 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn); 2242 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid; 2243 break; 2244 case XFS_ATTR3_RMT_MAGIC: 2245 /* 2246 * Remote attr blocks are written synchronously, rather than 2247 * being logged. That means they do not contain a valid LSN 2248 * (i.e. transactionally ordered) in them, and hence any time we 2249 * see a buffer to replay over the top of a remote attribute 2250 * block we should simply do so. 2251 */ 2252 goto recover_immediately; 2253 case XFS_SB_MAGIC: 2254 /* 2255 * superblock uuids are magic. We may or may not have a 2256 * sb_meta_uuid on disk, but it will be set in the in-core 2257 * superblock. We set the uuid pointer for verification 2258 * according to the superblock feature mask to ensure we check 2259 * the relevant UUID in the superblock. 2260 */ 2261 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn); 2262 if (xfs_sb_version_hasmetauuid(&mp->m_sb)) 2263 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid; 2264 else 2265 uuid = &((struct xfs_dsb *)blk)->sb_uuid; 2266 break; 2267 default: 2268 break; 2269 } 2270 2271 if (lsn != (xfs_lsn_t)-1) { 2272 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid)) 2273 goto recover_immediately; 2274 return lsn; 2275 } 2276 2277 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic); 2278 switch (magicda) { 2279 case XFS_DIR3_LEAF1_MAGIC: 2280 case XFS_DIR3_LEAFN_MAGIC: 2281 case XFS_DA3_NODE_MAGIC: 2282 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn); 2283 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid; 2284 break; 2285 default: 2286 break; 2287 } 2288 2289 if (lsn != (xfs_lsn_t)-1) { 2290 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid)) 2291 goto recover_immediately; 2292 return lsn; 2293 } 2294 2295 /* 2296 * We do individual object checks on dquot and inode buffers as they 2297 * have their own individual LSN records. Also, we could have a stale 2298 * buffer here, so we have to at least recognise these buffer types. 2299 * 2300 * A notd complexity here is inode unlinked list processing - it logs 2301 * the inode directly in the buffer, but we don't know which inodes have 2302 * been modified, and there is no global buffer LSN. Hence we need to 2303 * recover all inode buffer types immediately. This problem will be 2304 * fixed by logical logging of the unlinked list modifications. 2305 */ 2306 magic16 = be16_to_cpu(*(__be16 *)blk); 2307 switch (magic16) { 2308 case XFS_DQUOT_MAGIC: 2309 case XFS_DINODE_MAGIC: 2310 goto recover_immediately; 2311 default: 2312 break; 2313 } 2314 2315 /* unknown buffer contents, recover immediately */ 2316 2317 recover_immediately: 2318 return (xfs_lsn_t)-1; 2319 2320 } 2321 2322 /* 2323 * Validate the recovered buffer is of the correct type and attach the 2324 * appropriate buffer operations to them for writeback. Magic numbers are in a 2325 * few places: 2326 * the first 16 bits of the buffer (inode buffer, dquot buffer), 2327 * the first 32 bits of the buffer (most blocks), 2328 * inside a struct xfs_da_blkinfo at the start of the buffer. 2329 */ 2330 static void 2331 xlog_recover_validate_buf_type( 2332 struct xfs_mount *mp, 2333 struct xfs_buf *bp, 2334 xfs_buf_log_format_t *buf_f, 2335 xfs_lsn_t current_lsn) 2336 { 2337 struct xfs_da_blkinfo *info = bp->b_addr; 2338 uint32_t magic32; 2339 uint16_t magic16; 2340 uint16_t magicda; 2341 char *warnmsg = NULL; 2342 2343 /* 2344 * We can only do post recovery validation on items on CRC enabled 2345 * fielsystems as we need to know when the buffer was written to be able 2346 * to determine if we should have replayed the item. If we replay old 2347 * metadata over a newer buffer, then it will enter a temporarily 2348 * inconsistent state resulting in verification failures. Hence for now 2349 * just avoid the verification stage for non-crc filesystems 2350 */ 2351 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2352 return; 2353 2354 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr); 2355 magic16 = be16_to_cpu(*(__be16*)bp->b_addr); 2356 magicda = be16_to_cpu(info->magic); 2357 switch (xfs_blft_from_flags(buf_f)) { 2358 case XFS_BLFT_BTREE_BUF: 2359 switch (magic32) { 2360 case XFS_ABTB_CRC_MAGIC: 2361 case XFS_ABTB_MAGIC: 2362 bp->b_ops = &xfs_bnobt_buf_ops; 2363 break; 2364 case XFS_ABTC_CRC_MAGIC: 2365 case XFS_ABTC_MAGIC: 2366 bp->b_ops = &xfs_cntbt_buf_ops; 2367 break; 2368 case XFS_IBT_CRC_MAGIC: 2369 case XFS_IBT_MAGIC: 2370 bp->b_ops = &xfs_inobt_buf_ops; 2371 break; 2372 case XFS_FIBT_CRC_MAGIC: 2373 case XFS_FIBT_MAGIC: 2374 bp->b_ops = &xfs_finobt_buf_ops; 2375 break; 2376 case XFS_BMAP_CRC_MAGIC: 2377 case XFS_BMAP_MAGIC: 2378 bp->b_ops = &xfs_bmbt_buf_ops; 2379 break; 2380 case XFS_RMAP_CRC_MAGIC: 2381 bp->b_ops = &xfs_rmapbt_buf_ops; 2382 break; 2383 case XFS_REFC_CRC_MAGIC: 2384 bp->b_ops = &xfs_refcountbt_buf_ops; 2385 break; 2386 default: 2387 warnmsg = "Bad btree block magic!"; 2388 break; 2389 } 2390 break; 2391 case XFS_BLFT_AGF_BUF: 2392 if (magic32 != XFS_AGF_MAGIC) { 2393 warnmsg = "Bad AGF block magic!"; 2394 break; 2395 } 2396 bp->b_ops = &xfs_agf_buf_ops; 2397 break; 2398 case XFS_BLFT_AGFL_BUF: 2399 if (magic32 != XFS_AGFL_MAGIC) { 2400 warnmsg = "Bad AGFL block magic!"; 2401 break; 2402 } 2403 bp->b_ops = &xfs_agfl_buf_ops; 2404 break; 2405 case XFS_BLFT_AGI_BUF: 2406 if (magic32 != XFS_AGI_MAGIC) { 2407 warnmsg = "Bad AGI block magic!"; 2408 break; 2409 } 2410 bp->b_ops = &xfs_agi_buf_ops; 2411 break; 2412 case XFS_BLFT_UDQUOT_BUF: 2413 case XFS_BLFT_PDQUOT_BUF: 2414 case XFS_BLFT_GDQUOT_BUF: 2415 #ifdef CONFIG_XFS_QUOTA 2416 if (magic16 != XFS_DQUOT_MAGIC) { 2417 warnmsg = "Bad DQUOT block magic!"; 2418 break; 2419 } 2420 bp->b_ops = &xfs_dquot_buf_ops; 2421 #else 2422 xfs_alert(mp, 2423 "Trying to recover dquots without QUOTA support built in!"); 2424 ASSERT(0); 2425 #endif 2426 break; 2427 case XFS_BLFT_DINO_BUF: 2428 if (magic16 != XFS_DINODE_MAGIC) { 2429 warnmsg = "Bad INODE block magic!"; 2430 break; 2431 } 2432 bp->b_ops = &xfs_inode_buf_ops; 2433 break; 2434 case XFS_BLFT_SYMLINK_BUF: 2435 if (magic32 != XFS_SYMLINK_MAGIC) { 2436 warnmsg = "Bad symlink block magic!"; 2437 break; 2438 } 2439 bp->b_ops = &xfs_symlink_buf_ops; 2440 break; 2441 case XFS_BLFT_DIR_BLOCK_BUF: 2442 if (magic32 != XFS_DIR2_BLOCK_MAGIC && 2443 magic32 != XFS_DIR3_BLOCK_MAGIC) { 2444 warnmsg = "Bad dir block magic!"; 2445 break; 2446 } 2447 bp->b_ops = &xfs_dir3_block_buf_ops; 2448 break; 2449 case XFS_BLFT_DIR_DATA_BUF: 2450 if (magic32 != XFS_DIR2_DATA_MAGIC && 2451 magic32 != XFS_DIR3_DATA_MAGIC) { 2452 warnmsg = "Bad dir data magic!"; 2453 break; 2454 } 2455 bp->b_ops = &xfs_dir3_data_buf_ops; 2456 break; 2457 case XFS_BLFT_DIR_FREE_BUF: 2458 if (magic32 != XFS_DIR2_FREE_MAGIC && 2459 magic32 != XFS_DIR3_FREE_MAGIC) { 2460 warnmsg = "Bad dir3 free magic!"; 2461 break; 2462 } 2463 bp->b_ops = &xfs_dir3_free_buf_ops; 2464 break; 2465 case XFS_BLFT_DIR_LEAF1_BUF: 2466 if (magicda != XFS_DIR2_LEAF1_MAGIC && 2467 magicda != XFS_DIR3_LEAF1_MAGIC) { 2468 warnmsg = "Bad dir leaf1 magic!"; 2469 break; 2470 } 2471 bp->b_ops = &xfs_dir3_leaf1_buf_ops; 2472 break; 2473 case XFS_BLFT_DIR_LEAFN_BUF: 2474 if (magicda != XFS_DIR2_LEAFN_MAGIC && 2475 magicda != XFS_DIR3_LEAFN_MAGIC) { 2476 warnmsg = "Bad dir leafn magic!"; 2477 break; 2478 } 2479 bp->b_ops = &xfs_dir3_leafn_buf_ops; 2480 break; 2481 case XFS_BLFT_DA_NODE_BUF: 2482 if (magicda != XFS_DA_NODE_MAGIC && 2483 magicda != XFS_DA3_NODE_MAGIC) { 2484 warnmsg = "Bad da node magic!"; 2485 break; 2486 } 2487 bp->b_ops = &xfs_da3_node_buf_ops; 2488 break; 2489 case XFS_BLFT_ATTR_LEAF_BUF: 2490 if (magicda != XFS_ATTR_LEAF_MAGIC && 2491 magicda != XFS_ATTR3_LEAF_MAGIC) { 2492 warnmsg = "Bad attr leaf magic!"; 2493 break; 2494 } 2495 bp->b_ops = &xfs_attr3_leaf_buf_ops; 2496 break; 2497 case XFS_BLFT_ATTR_RMT_BUF: 2498 if (magic32 != XFS_ATTR3_RMT_MAGIC) { 2499 warnmsg = "Bad attr remote magic!"; 2500 break; 2501 } 2502 bp->b_ops = &xfs_attr3_rmt_buf_ops; 2503 break; 2504 case XFS_BLFT_SB_BUF: 2505 if (magic32 != XFS_SB_MAGIC) { 2506 warnmsg = "Bad SB block magic!"; 2507 break; 2508 } 2509 bp->b_ops = &xfs_sb_buf_ops; 2510 break; 2511 #ifdef CONFIG_XFS_RT 2512 case XFS_BLFT_RTBITMAP_BUF: 2513 case XFS_BLFT_RTSUMMARY_BUF: 2514 /* no magic numbers for verification of RT buffers */ 2515 bp->b_ops = &xfs_rtbuf_ops; 2516 break; 2517 #endif /* CONFIG_XFS_RT */ 2518 default: 2519 xfs_warn(mp, "Unknown buffer type %d!", 2520 xfs_blft_from_flags(buf_f)); 2521 break; 2522 } 2523 2524 /* 2525 * Nothing else to do in the case of a NULL current LSN as this means 2526 * the buffer is more recent than the change in the log and will be 2527 * skipped. 2528 */ 2529 if (current_lsn == NULLCOMMITLSN) 2530 return; 2531 2532 if (warnmsg) { 2533 xfs_warn(mp, warnmsg); 2534 ASSERT(0); 2535 } 2536 2537 /* 2538 * We must update the metadata LSN of the buffer as it is written out to 2539 * ensure that older transactions never replay over this one and corrupt 2540 * the buffer. This can occur if log recovery is interrupted at some 2541 * point after the current transaction completes, at which point a 2542 * subsequent mount starts recovery from the beginning. 2543 * 2544 * Write verifiers update the metadata LSN from log items attached to 2545 * the buffer. Therefore, initialize a bli purely to carry the LSN to 2546 * the verifier. We'll clean it up in our ->iodone() callback. 2547 */ 2548 if (bp->b_ops) { 2549 struct xfs_buf_log_item *bip; 2550 2551 ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone); 2552 bp->b_iodone = xlog_recover_iodone; 2553 xfs_buf_item_init(bp, mp); 2554 bip = bp->b_log_item; 2555 bip->bli_item.li_lsn = current_lsn; 2556 } 2557 } 2558 2559 /* 2560 * Perform a 'normal' buffer recovery. Each logged region of the 2561 * buffer should be copied over the corresponding region in the 2562 * given buffer. The bitmap in the buf log format structure indicates 2563 * where to place the logged data. 2564 */ 2565 STATIC void 2566 xlog_recover_do_reg_buffer( 2567 struct xfs_mount *mp, 2568 xlog_recover_item_t *item, 2569 struct xfs_buf *bp, 2570 xfs_buf_log_format_t *buf_f, 2571 xfs_lsn_t current_lsn) 2572 { 2573 int i; 2574 int bit; 2575 int nbits; 2576 xfs_failaddr_t fa; 2577 2578 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); 2579 2580 bit = 0; 2581 i = 1; /* 0 is the buf format structure */ 2582 while (1) { 2583 bit = xfs_next_bit(buf_f->blf_data_map, 2584 buf_f->blf_map_size, bit); 2585 if (bit == -1) 2586 break; 2587 nbits = xfs_contig_bits(buf_f->blf_data_map, 2588 buf_f->blf_map_size, bit); 2589 ASSERT(nbits > 0); 2590 ASSERT(item->ri_buf[i].i_addr != NULL); 2591 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); 2592 ASSERT(BBTOB(bp->b_length) >= 2593 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); 2594 2595 /* 2596 * The dirty regions logged in the buffer, even though 2597 * contiguous, may span multiple chunks. This is because the 2598 * dirty region may span a physical page boundary in a buffer 2599 * and hence be split into two separate vectors for writing into 2600 * the log. Hence we need to trim nbits back to the length of 2601 * the current region being copied out of the log. 2602 */ 2603 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT)) 2604 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT; 2605 2606 /* 2607 * Do a sanity check if this is a dquot buffer. Just checking 2608 * the first dquot in the buffer should do. XXXThis is 2609 * probably a good thing to do for other buf types also. 2610 */ 2611 fa = NULL; 2612 if (buf_f->blf_flags & 2613 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2614 if (item->ri_buf[i].i_addr == NULL) { 2615 xfs_alert(mp, 2616 "XFS: NULL dquot in %s.", __func__); 2617 goto next; 2618 } 2619 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) { 2620 xfs_alert(mp, 2621 "XFS: dquot too small (%d) in %s.", 2622 item->ri_buf[i].i_len, __func__); 2623 goto next; 2624 } 2625 fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr, 2626 -1, 0); 2627 if (fa) { 2628 xfs_alert(mp, 2629 "dquot corrupt at %pS trying to replay into block 0x%llx", 2630 fa, bp->b_bn); 2631 goto next; 2632 } 2633 } 2634 2635 memcpy(xfs_buf_offset(bp, 2636 (uint)bit << XFS_BLF_SHIFT), /* dest */ 2637 item->ri_buf[i].i_addr, /* source */ 2638 nbits<<XFS_BLF_SHIFT); /* length */ 2639 next: 2640 i++; 2641 bit += nbits; 2642 } 2643 2644 /* Shouldn't be any more regions */ 2645 ASSERT(i == item->ri_total); 2646 2647 xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn); 2648 } 2649 2650 /* 2651 * Perform a dquot buffer recovery. 2652 * Simple algorithm: if we have found a QUOTAOFF log item of the same type 2653 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2654 * Else, treat it as a regular buffer and do recovery. 2655 * 2656 * Return false if the buffer was tossed and true if we recovered the buffer to 2657 * indicate to the caller if the buffer needs writing. 2658 */ 2659 STATIC bool 2660 xlog_recover_do_dquot_buffer( 2661 struct xfs_mount *mp, 2662 struct xlog *log, 2663 struct xlog_recover_item *item, 2664 struct xfs_buf *bp, 2665 struct xfs_buf_log_format *buf_f) 2666 { 2667 uint type; 2668 2669 trace_xfs_log_recover_buf_dquot_buf(log, buf_f); 2670 2671 /* 2672 * Filesystems are required to send in quota flags at mount time. 2673 */ 2674 if (!mp->m_qflags) 2675 return false; 2676 2677 type = 0; 2678 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) 2679 type |= XFS_DQ_USER; 2680 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) 2681 type |= XFS_DQ_PROJ; 2682 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) 2683 type |= XFS_DQ_GROUP; 2684 /* 2685 * This type of quotas was turned off, so ignore this buffer 2686 */ 2687 if (log->l_quotaoffs_flag & type) 2688 return false; 2689 2690 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN); 2691 return true; 2692 } 2693 2694 /* 2695 * This routine replays a modification made to a buffer at runtime. 2696 * There are actually two types of buffer, regular and inode, which 2697 * are handled differently. Inode buffers are handled differently 2698 * in that we only recover a specific set of data from them, namely 2699 * the inode di_next_unlinked fields. This is because all other inode 2700 * data is actually logged via inode records and any data we replay 2701 * here which overlaps that may be stale. 2702 * 2703 * When meta-data buffers are freed at run time we log a buffer item 2704 * with the XFS_BLF_CANCEL bit set to indicate that previous copies 2705 * of the buffer in the log should not be replayed at recovery time. 2706 * This is so that if the blocks covered by the buffer are reused for 2707 * file data before we crash we don't end up replaying old, freed 2708 * meta-data into a user's file. 2709 * 2710 * To handle the cancellation of buffer log items, we make two passes 2711 * over the log during recovery. During the first we build a table of 2712 * those buffers which have been cancelled, and during the second we 2713 * only replay those buffers which do not have corresponding cancel 2714 * records in the table. See xlog_recover_buffer_pass[1,2] above 2715 * for more details on the implementation of the table of cancel records. 2716 */ 2717 STATIC int 2718 xlog_recover_buffer_pass2( 2719 struct xlog *log, 2720 struct list_head *buffer_list, 2721 struct xlog_recover_item *item, 2722 xfs_lsn_t current_lsn) 2723 { 2724 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2725 xfs_mount_t *mp = log->l_mp; 2726 xfs_buf_t *bp; 2727 int error; 2728 uint buf_flags; 2729 xfs_lsn_t lsn; 2730 2731 /* 2732 * In this pass we only want to recover all the buffers which have 2733 * not been cancelled and are not cancellation buffers themselves. 2734 */ 2735 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno, 2736 buf_f->blf_len, buf_f->blf_flags)) { 2737 trace_xfs_log_recover_buf_cancel(log, buf_f); 2738 return 0; 2739 } 2740 2741 trace_xfs_log_recover_buf_recover(log, buf_f); 2742 2743 buf_flags = 0; 2744 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) 2745 buf_flags |= XBF_UNMAPPED; 2746 2747 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, 2748 buf_flags, NULL); 2749 if (!bp) 2750 return -ENOMEM; 2751 error = bp->b_error; 2752 if (error) { 2753 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)"); 2754 goto out_release; 2755 } 2756 2757 /* 2758 * Recover the buffer only if we get an LSN from it and it's less than 2759 * the lsn of the transaction we are replaying. 2760 * 2761 * Note that we have to be extremely careful of readahead here. 2762 * Readahead does not attach verfiers to the buffers so if we don't 2763 * actually do any replay after readahead because of the LSN we found 2764 * in the buffer if more recent than that current transaction then we 2765 * need to attach the verifier directly. Failure to do so can lead to 2766 * future recovery actions (e.g. EFI and unlinked list recovery) can 2767 * operate on the buffers and they won't get the verifier attached. This 2768 * can lead to blocks on disk having the correct content but a stale 2769 * CRC. 2770 * 2771 * It is safe to assume these clean buffers are currently up to date. 2772 * If the buffer is dirtied by a later transaction being replayed, then 2773 * the verifier will be reset to match whatever recover turns that 2774 * buffer into. 2775 */ 2776 lsn = xlog_recover_get_buf_lsn(mp, bp); 2777 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 2778 trace_xfs_log_recover_buf_skip(log, buf_f); 2779 xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN); 2780 goto out_release; 2781 } 2782 2783 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 2784 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2785 if (error) 2786 goto out_release; 2787 } else if (buf_f->blf_flags & 2788 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2789 bool dirty; 2790 2791 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2792 if (!dirty) 2793 goto out_release; 2794 } else { 2795 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn); 2796 } 2797 2798 /* 2799 * Perform delayed write on the buffer. Asynchronous writes will be 2800 * slower when taking into account all the buffers to be flushed. 2801 * 2802 * Also make sure that only inode buffers with good sizes stay in 2803 * the buffer cache. The kernel moves inodes in buffers of 1 block 2804 * or inode_cluster_size bytes, whichever is bigger. The inode 2805 * buffers in the log can be a different size if the log was generated 2806 * by an older kernel using unclustered inode buffers or a newer kernel 2807 * running with a different inode cluster size. Regardless, if the 2808 * the inode buffer size isn't max(blocksize, inode_cluster_size) 2809 * for *our* value of inode_cluster_size, then we need to keep 2810 * the buffer out of the buffer cache so that the buffer won't 2811 * overlap with future reads of those inodes. 2812 */ 2813 if (XFS_DINODE_MAGIC == 2814 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && 2815 (BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) { 2816 xfs_buf_stale(bp); 2817 error = xfs_bwrite(bp); 2818 } else { 2819 ASSERT(bp->b_mount == mp); 2820 bp->b_iodone = xlog_recover_iodone; 2821 xfs_buf_delwri_queue(bp, buffer_list); 2822 } 2823 2824 out_release: 2825 xfs_buf_relse(bp); 2826 return error; 2827 } 2828 2829 /* 2830 * Inode fork owner changes 2831 * 2832 * If we have been told that we have to reparent the inode fork, it's because an 2833 * extent swap operation on a CRC enabled filesystem has been done and we are 2834 * replaying it. We need to walk the BMBT of the appropriate fork and change the 2835 * owners of it. 2836 * 2837 * The complexity here is that we don't have an inode context to work with, so 2838 * after we've replayed the inode we need to instantiate one. This is where the 2839 * fun begins. 2840 * 2841 * We are in the middle of log recovery, so we can't run transactions. That 2842 * means we cannot use cache coherent inode instantiation via xfs_iget(), as 2843 * that will result in the corresponding iput() running the inode through 2844 * xfs_inactive(). If we've just replayed an inode core that changes the link 2845 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run 2846 * transactions (bad!). 2847 * 2848 * So, to avoid this, we instantiate an inode directly from the inode core we've 2849 * just recovered. We have the buffer still locked, and all we really need to 2850 * instantiate is the inode core and the forks being modified. We can do this 2851 * manually, then run the inode btree owner change, and then tear down the 2852 * xfs_inode without having to run any transactions at all. 2853 * 2854 * Also, because we don't have a transaction context available here but need to 2855 * gather all the buffers we modify for writeback so we pass the buffer_list 2856 * instead for the operation to use. 2857 */ 2858 2859 STATIC int 2860 xfs_recover_inode_owner_change( 2861 struct xfs_mount *mp, 2862 struct xfs_dinode *dip, 2863 struct xfs_inode_log_format *in_f, 2864 struct list_head *buffer_list) 2865 { 2866 struct xfs_inode *ip; 2867 int error; 2868 2869 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)); 2870 2871 ip = xfs_inode_alloc(mp, in_f->ilf_ino); 2872 if (!ip) 2873 return -ENOMEM; 2874 2875 /* instantiate the inode */ 2876 xfs_inode_from_disk(ip, dip); 2877 ASSERT(ip->i_d.di_version >= 3); 2878 2879 error = xfs_iformat_fork(ip, dip); 2880 if (error) 2881 goto out_free_ip; 2882 2883 if (!xfs_inode_verify_forks(ip)) { 2884 error = -EFSCORRUPTED; 2885 goto out_free_ip; 2886 } 2887 2888 if (in_f->ilf_fields & XFS_ILOG_DOWNER) { 2889 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT); 2890 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK, 2891 ip->i_ino, buffer_list); 2892 if (error) 2893 goto out_free_ip; 2894 } 2895 2896 if (in_f->ilf_fields & XFS_ILOG_AOWNER) { 2897 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT); 2898 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK, 2899 ip->i_ino, buffer_list); 2900 if (error) 2901 goto out_free_ip; 2902 } 2903 2904 out_free_ip: 2905 xfs_inode_free(ip); 2906 return error; 2907 } 2908 2909 STATIC int 2910 xlog_recover_inode_pass2( 2911 struct xlog *log, 2912 struct list_head *buffer_list, 2913 struct xlog_recover_item *item, 2914 xfs_lsn_t current_lsn) 2915 { 2916 struct xfs_inode_log_format *in_f; 2917 xfs_mount_t *mp = log->l_mp; 2918 xfs_buf_t *bp; 2919 xfs_dinode_t *dip; 2920 int len; 2921 char *src; 2922 char *dest; 2923 int error; 2924 int attr_index; 2925 uint fields; 2926 struct xfs_log_dinode *ldip; 2927 uint isize; 2928 int need_free = 0; 2929 2930 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { 2931 in_f = item->ri_buf[0].i_addr; 2932 } else { 2933 in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), KM_SLEEP); 2934 need_free = 1; 2935 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 2936 if (error) 2937 goto error; 2938 } 2939 2940 /* 2941 * Inode buffers can be freed, look out for it, 2942 * and do not replay the inode. 2943 */ 2944 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, 2945 in_f->ilf_len, 0)) { 2946 error = 0; 2947 trace_xfs_log_recover_inode_cancel(log, in_f); 2948 goto error; 2949 } 2950 trace_xfs_log_recover_inode_recover(log, in_f); 2951 2952 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0, 2953 &xfs_inode_buf_ops); 2954 if (!bp) { 2955 error = -ENOMEM; 2956 goto error; 2957 } 2958 error = bp->b_error; 2959 if (error) { 2960 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)"); 2961 goto out_release; 2962 } 2963 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 2964 dip = xfs_buf_offset(bp, in_f->ilf_boffset); 2965 2966 /* 2967 * Make sure the place we're flushing out to really looks 2968 * like an inode! 2969 */ 2970 if (unlikely(!xfs_verify_magic16(bp, dip->di_magic))) { 2971 xfs_alert(mp, 2972 "%s: Bad inode magic number, dip = "PTR_FMT", dino bp = "PTR_FMT", ino = %Ld", 2973 __func__, dip, bp, in_f->ilf_ino); 2974 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)", 2975 XFS_ERRLEVEL_LOW, mp); 2976 error = -EFSCORRUPTED; 2977 goto out_release; 2978 } 2979 ldip = item->ri_buf[1].i_addr; 2980 if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) { 2981 xfs_alert(mp, 2982 "%s: Bad inode log record, rec ptr "PTR_FMT", ino %Ld", 2983 __func__, item, in_f->ilf_ino); 2984 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)", 2985 XFS_ERRLEVEL_LOW, mp); 2986 error = -EFSCORRUPTED; 2987 goto out_release; 2988 } 2989 2990 /* 2991 * If the inode has an LSN in it, recover the inode only if it's less 2992 * than the lsn of the transaction we are replaying. Note: we still 2993 * need to replay an owner change even though the inode is more recent 2994 * than the transaction as there is no guarantee that all the btree 2995 * blocks are more recent than this transaction, too. 2996 */ 2997 if (dip->di_version >= 3) { 2998 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn); 2999 3000 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 3001 trace_xfs_log_recover_inode_skip(log, in_f); 3002 error = 0; 3003 goto out_owner_change; 3004 } 3005 } 3006 3007 /* 3008 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes 3009 * are transactional and if ordering is necessary we can determine that 3010 * more accurately by the LSN field in the V3 inode core. Don't trust 3011 * the inode versions we might be changing them here - use the 3012 * superblock flag to determine whether we need to look at di_flushiter 3013 * to skip replay when the on disk inode is newer than the log one 3014 */ 3015 if (!xfs_sb_version_hascrc(&mp->m_sb) && 3016 ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) { 3017 /* 3018 * Deal with the wrap case, DI_MAX_FLUSH is less 3019 * than smaller numbers 3020 */ 3021 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && 3022 ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) { 3023 /* do nothing */ 3024 } else { 3025 trace_xfs_log_recover_inode_skip(log, in_f); 3026 error = 0; 3027 goto out_release; 3028 } 3029 } 3030 3031 /* Take the opportunity to reset the flush iteration count */ 3032 ldip->di_flushiter = 0; 3033 3034 if (unlikely(S_ISREG(ldip->di_mode))) { 3035 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) && 3036 (ldip->di_format != XFS_DINODE_FMT_BTREE)) { 3037 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)", 3038 XFS_ERRLEVEL_LOW, mp, ldip, 3039 sizeof(*ldip)); 3040 xfs_alert(mp, 3041 "%s: Bad regular inode log record, rec ptr "PTR_FMT", " 3042 "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld", 3043 __func__, item, dip, bp, in_f->ilf_ino); 3044 error = -EFSCORRUPTED; 3045 goto out_release; 3046 } 3047 } else if (unlikely(S_ISDIR(ldip->di_mode))) { 3048 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) && 3049 (ldip->di_format != XFS_DINODE_FMT_BTREE) && 3050 (ldip->di_format != XFS_DINODE_FMT_LOCAL)) { 3051 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)", 3052 XFS_ERRLEVEL_LOW, mp, ldip, 3053 sizeof(*ldip)); 3054 xfs_alert(mp, 3055 "%s: Bad dir inode log record, rec ptr "PTR_FMT", " 3056 "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld", 3057 __func__, item, dip, bp, in_f->ilf_ino); 3058 error = -EFSCORRUPTED; 3059 goto out_release; 3060 } 3061 } 3062 if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){ 3063 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)", 3064 XFS_ERRLEVEL_LOW, mp, ldip, 3065 sizeof(*ldip)); 3066 xfs_alert(mp, 3067 "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", " 3068 "dino bp "PTR_FMT", ino %Ld, total extents = %d, nblocks = %Ld", 3069 __func__, item, dip, bp, in_f->ilf_ino, 3070 ldip->di_nextents + ldip->di_anextents, 3071 ldip->di_nblocks); 3072 error = -EFSCORRUPTED; 3073 goto out_release; 3074 } 3075 if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) { 3076 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)", 3077 XFS_ERRLEVEL_LOW, mp, ldip, 3078 sizeof(*ldip)); 3079 xfs_alert(mp, 3080 "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", " 3081 "dino bp "PTR_FMT", ino %Ld, forkoff 0x%x", __func__, 3082 item, dip, bp, in_f->ilf_ino, ldip->di_forkoff); 3083 error = -EFSCORRUPTED; 3084 goto out_release; 3085 } 3086 isize = xfs_log_dinode_size(ldip->di_version); 3087 if (unlikely(item->ri_buf[1].i_len > isize)) { 3088 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)", 3089 XFS_ERRLEVEL_LOW, mp, ldip, 3090 sizeof(*ldip)); 3091 xfs_alert(mp, 3092 "%s: Bad inode log record length %d, rec ptr "PTR_FMT, 3093 __func__, item->ri_buf[1].i_len, item); 3094 error = -EFSCORRUPTED; 3095 goto out_release; 3096 } 3097 3098 /* recover the log dinode inode into the on disk inode */ 3099 xfs_log_dinode_to_disk(ldip, dip); 3100 3101 fields = in_f->ilf_fields; 3102 if (fields & XFS_ILOG_DEV) 3103 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); 3104 3105 if (in_f->ilf_size == 2) 3106 goto out_owner_change; 3107 len = item->ri_buf[2].i_len; 3108 src = item->ri_buf[2].i_addr; 3109 ASSERT(in_f->ilf_size <= 4); 3110 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 3111 ASSERT(!(fields & XFS_ILOG_DFORK) || 3112 (len == in_f->ilf_dsize)); 3113 3114 switch (fields & XFS_ILOG_DFORK) { 3115 case XFS_ILOG_DDATA: 3116 case XFS_ILOG_DEXT: 3117 memcpy(XFS_DFORK_DPTR(dip), src, len); 3118 break; 3119 3120 case XFS_ILOG_DBROOT: 3121 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, 3122 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), 3123 XFS_DFORK_DSIZE(dip, mp)); 3124 break; 3125 3126 default: 3127 /* 3128 * There are no data fork flags set. 3129 */ 3130 ASSERT((fields & XFS_ILOG_DFORK) == 0); 3131 break; 3132 } 3133 3134 /* 3135 * If we logged any attribute data, recover it. There may or 3136 * may not have been any other non-core data logged in this 3137 * transaction. 3138 */ 3139 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 3140 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 3141 attr_index = 3; 3142 } else { 3143 attr_index = 2; 3144 } 3145 len = item->ri_buf[attr_index].i_len; 3146 src = item->ri_buf[attr_index].i_addr; 3147 ASSERT(len == in_f->ilf_asize); 3148 3149 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 3150 case XFS_ILOG_ADATA: 3151 case XFS_ILOG_AEXT: 3152 dest = XFS_DFORK_APTR(dip); 3153 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 3154 memcpy(dest, src, len); 3155 break; 3156 3157 case XFS_ILOG_ABROOT: 3158 dest = XFS_DFORK_APTR(dip); 3159 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, 3160 len, (xfs_bmdr_block_t*)dest, 3161 XFS_DFORK_ASIZE(dip, mp)); 3162 break; 3163 3164 default: 3165 xfs_warn(log->l_mp, "%s: Invalid flag", __func__); 3166 ASSERT(0); 3167 error = -EIO; 3168 goto out_release; 3169 } 3170 } 3171 3172 out_owner_change: 3173 /* Recover the swapext owner change unless inode has been deleted */ 3174 if ((in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) && 3175 (dip->di_mode != 0)) 3176 error = xfs_recover_inode_owner_change(mp, dip, in_f, 3177 buffer_list); 3178 /* re-generate the checksum. */ 3179 xfs_dinode_calc_crc(log->l_mp, dip); 3180 3181 ASSERT(bp->b_mount == mp); 3182 bp->b_iodone = xlog_recover_iodone; 3183 xfs_buf_delwri_queue(bp, buffer_list); 3184 3185 out_release: 3186 xfs_buf_relse(bp); 3187 error: 3188 if (need_free) 3189 kmem_free(in_f); 3190 return error; 3191 } 3192 3193 /* 3194 * Recover QUOTAOFF records. We simply make a note of it in the xlog 3195 * structure, so that we know not to do any dquot item or dquot buffer recovery, 3196 * of that type. 3197 */ 3198 STATIC int 3199 xlog_recover_quotaoff_pass1( 3200 struct xlog *log, 3201 struct xlog_recover_item *item) 3202 { 3203 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr; 3204 ASSERT(qoff_f); 3205 3206 /* 3207 * The logitem format's flag tells us if this was user quotaoff, 3208 * group/project quotaoff or both. 3209 */ 3210 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 3211 log->l_quotaoffs_flag |= XFS_DQ_USER; 3212 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 3213 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 3214 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 3215 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 3216 3217 return 0; 3218 } 3219 3220 /* 3221 * Recover a dquot record 3222 */ 3223 STATIC int 3224 xlog_recover_dquot_pass2( 3225 struct xlog *log, 3226 struct list_head *buffer_list, 3227 struct xlog_recover_item *item, 3228 xfs_lsn_t current_lsn) 3229 { 3230 xfs_mount_t *mp = log->l_mp; 3231 xfs_buf_t *bp; 3232 struct xfs_disk_dquot *ddq, *recddq; 3233 xfs_failaddr_t fa; 3234 int error; 3235 xfs_dq_logformat_t *dq_f; 3236 uint type; 3237 3238 3239 /* 3240 * Filesystems are required to send in quota flags at mount time. 3241 */ 3242 if (mp->m_qflags == 0) 3243 return 0; 3244 3245 recddq = item->ri_buf[1].i_addr; 3246 if (recddq == NULL) { 3247 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__); 3248 return -EIO; 3249 } 3250 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) { 3251 xfs_alert(log->l_mp, "dquot too small (%d) in %s.", 3252 item->ri_buf[1].i_len, __func__); 3253 return -EIO; 3254 } 3255 3256 /* 3257 * This type of quotas was turned off, so ignore this record. 3258 */ 3259 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 3260 ASSERT(type); 3261 if (log->l_quotaoffs_flag & type) 3262 return 0; 3263 3264 /* 3265 * At this point we know that quota was _not_ turned off. 3266 * Since the mount flags are not indicating to us otherwise, this 3267 * must mean that quota is on, and the dquot needs to be replayed. 3268 * Remember that we may not have fully recovered the superblock yet, 3269 * so we can't do the usual trick of looking at the SB quota bits. 3270 * 3271 * The other possibility, of course, is that the quota subsystem was 3272 * removed since the last mount - ENOSYS. 3273 */ 3274 dq_f = item->ri_buf[0].i_addr; 3275 ASSERT(dq_f); 3276 fa = xfs_dquot_verify(mp, recddq, dq_f->qlf_id, 0); 3277 if (fa) { 3278 xfs_alert(mp, "corrupt dquot ID 0x%x in log at %pS", 3279 dq_f->qlf_id, fa); 3280 return -EIO; 3281 } 3282 ASSERT(dq_f->qlf_len == 1); 3283 3284 /* 3285 * At this point we are assuming that the dquots have been allocated 3286 * and hence the buffer has valid dquots stamped in it. It should, 3287 * therefore, pass verifier validation. If the dquot is bad, then the 3288 * we'll return an error here, so we don't need to specifically check 3289 * the dquot in the buffer after the verifier has run. 3290 */ 3291 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno, 3292 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp, 3293 &xfs_dquot_buf_ops); 3294 if (error) 3295 return error; 3296 3297 ASSERT(bp); 3298 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset); 3299 3300 /* 3301 * If the dquot has an LSN in it, recover the dquot only if it's less 3302 * than the lsn of the transaction we are replaying. 3303 */ 3304 if (xfs_sb_version_hascrc(&mp->m_sb)) { 3305 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq; 3306 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn); 3307 3308 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 3309 goto out_release; 3310 } 3311 } 3312 3313 memcpy(ddq, recddq, item->ri_buf[1].i_len); 3314 if (xfs_sb_version_hascrc(&mp->m_sb)) { 3315 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk), 3316 XFS_DQUOT_CRC_OFF); 3317 } 3318 3319 ASSERT(dq_f->qlf_size == 2); 3320 ASSERT(bp->b_mount == mp); 3321 bp->b_iodone = xlog_recover_iodone; 3322 xfs_buf_delwri_queue(bp, buffer_list); 3323 3324 out_release: 3325 xfs_buf_relse(bp); 3326 return 0; 3327 } 3328 3329 /* 3330 * This routine is called to create an in-core extent free intent 3331 * item from the efi format structure which was logged on disk. 3332 * It allocates an in-core efi, copies the extents from the format 3333 * structure into it, and adds the efi to the AIL with the given 3334 * LSN. 3335 */ 3336 STATIC int 3337 xlog_recover_efi_pass2( 3338 struct xlog *log, 3339 struct xlog_recover_item *item, 3340 xfs_lsn_t lsn) 3341 { 3342 int error; 3343 struct xfs_mount *mp = log->l_mp; 3344 struct xfs_efi_log_item *efip; 3345 struct xfs_efi_log_format *efi_formatp; 3346 3347 efi_formatp = item->ri_buf[0].i_addr; 3348 3349 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 3350 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); 3351 if (error) { 3352 xfs_efi_item_free(efip); 3353 return error; 3354 } 3355 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 3356 3357 spin_lock(&log->l_ailp->ail_lock); 3358 /* 3359 * The EFI has two references. One for the EFD and one for EFI to ensure 3360 * it makes it into the AIL. Insert the EFI into the AIL directly and 3361 * drop the EFI reference. Note that xfs_trans_ail_update() drops the 3362 * AIL lock. 3363 */ 3364 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn); 3365 xfs_efi_release(efip); 3366 return 0; 3367 } 3368 3369 3370 /* 3371 * This routine is called when an EFD format structure is found in a committed 3372 * transaction in the log. Its purpose is to cancel the corresponding EFI if it 3373 * was still in the log. To do this it searches the AIL for the EFI with an id 3374 * equal to that in the EFD format structure. If we find it we drop the EFD 3375 * reference, which removes the EFI from the AIL and frees it. 3376 */ 3377 STATIC int 3378 xlog_recover_efd_pass2( 3379 struct xlog *log, 3380 struct xlog_recover_item *item) 3381 { 3382 xfs_efd_log_format_t *efd_formatp; 3383 xfs_efi_log_item_t *efip = NULL; 3384 struct xfs_log_item *lip; 3385 uint64_t efi_id; 3386 struct xfs_ail_cursor cur; 3387 struct xfs_ail *ailp = log->l_ailp; 3388 3389 efd_formatp = item->ri_buf[0].i_addr; 3390 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 3391 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 3392 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 3393 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 3394 efi_id = efd_formatp->efd_efi_id; 3395 3396 /* 3397 * Search for the EFI with the id in the EFD format structure in the 3398 * AIL. 3399 */ 3400 spin_lock(&ailp->ail_lock); 3401 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3402 while (lip != NULL) { 3403 if (lip->li_type == XFS_LI_EFI) { 3404 efip = (xfs_efi_log_item_t *)lip; 3405 if (efip->efi_format.efi_id == efi_id) { 3406 /* 3407 * Drop the EFD reference to the EFI. This 3408 * removes the EFI from the AIL and frees it. 3409 */ 3410 spin_unlock(&ailp->ail_lock); 3411 xfs_efi_release(efip); 3412 spin_lock(&ailp->ail_lock); 3413 break; 3414 } 3415 } 3416 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3417 } 3418 3419 xfs_trans_ail_cursor_done(&cur); 3420 spin_unlock(&ailp->ail_lock); 3421 3422 return 0; 3423 } 3424 3425 /* 3426 * This routine is called to create an in-core extent rmap update 3427 * item from the rui format structure which was logged on disk. 3428 * It allocates an in-core rui, copies the extents from the format 3429 * structure into it, and adds the rui to the AIL with the given 3430 * LSN. 3431 */ 3432 STATIC int 3433 xlog_recover_rui_pass2( 3434 struct xlog *log, 3435 struct xlog_recover_item *item, 3436 xfs_lsn_t lsn) 3437 { 3438 int error; 3439 struct xfs_mount *mp = log->l_mp; 3440 struct xfs_rui_log_item *ruip; 3441 struct xfs_rui_log_format *rui_formatp; 3442 3443 rui_formatp = item->ri_buf[0].i_addr; 3444 3445 ruip = xfs_rui_init(mp, rui_formatp->rui_nextents); 3446 error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format); 3447 if (error) { 3448 xfs_rui_item_free(ruip); 3449 return error; 3450 } 3451 atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents); 3452 3453 spin_lock(&log->l_ailp->ail_lock); 3454 /* 3455 * The RUI has two references. One for the RUD and one for RUI to ensure 3456 * it makes it into the AIL. Insert the RUI into the AIL directly and 3457 * drop the RUI reference. Note that xfs_trans_ail_update() drops the 3458 * AIL lock. 3459 */ 3460 xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn); 3461 xfs_rui_release(ruip); 3462 return 0; 3463 } 3464 3465 3466 /* 3467 * This routine is called when an RUD format structure is found in a committed 3468 * transaction in the log. Its purpose is to cancel the corresponding RUI if it 3469 * was still in the log. To do this it searches the AIL for the RUI with an id 3470 * equal to that in the RUD format structure. If we find it we drop the RUD 3471 * reference, which removes the RUI from the AIL and frees it. 3472 */ 3473 STATIC int 3474 xlog_recover_rud_pass2( 3475 struct xlog *log, 3476 struct xlog_recover_item *item) 3477 { 3478 struct xfs_rud_log_format *rud_formatp; 3479 struct xfs_rui_log_item *ruip = NULL; 3480 struct xfs_log_item *lip; 3481 uint64_t rui_id; 3482 struct xfs_ail_cursor cur; 3483 struct xfs_ail *ailp = log->l_ailp; 3484 3485 rud_formatp = item->ri_buf[0].i_addr; 3486 ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format)); 3487 rui_id = rud_formatp->rud_rui_id; 3488 3489 /* 3490 * Search for the RUI with the id in the RUD format structure in the 3491 * AIL. 3492 */ 3493 spin_lock(&ailp->ail_lock); 3494 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3495 while (lip != NULL) { 3496 if (lip->li_type == XFS_LI_RUI) { 3497 ruip = (struct xfs_rui_log_item *)lip; 3498 if (ruip->rui_format.rui_id == rui_id) { 3499 /* 3500 * Drop the RUD reference to the RUI. This 3501 * removes the RUI from the AIL and frees it. 3502 */ 3503 spin_unlock(&ailp->ail_lock); 3504 xfs_rui_release(ruip); 3505 spin_lock(&ailp->ail_lock); 3506 break; 3507 } 3508 } 3509 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3510 } 3511 3512 xfs_trans_ail_cursor_done(&cur); 3513 spin_unlock(&ailp->ail_lock); 3514 3515 return 0; 3516 } 3517 3518 /* 3519 * Copy an CUI format buffer from the given buf, and into the destination 3520 * CUI format structure. The CUI/CUD items were designed not to need any 3521 * special alignment handling. 3522 */ 3523 static int 3524 xfs_cui_copy_format( 3525 struct xfs_log_iovec *buf, 3526 struct xfs_cui_log_format *dst_cui_fmt) 3527 { 3528 struct xfs_cui_log_format *src_cui_fmt; 3529 uint len; 3530 3531 src_cui_fmt = buf->i_addr; 3532 len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents); 3533 3534 if (buf->i_len == len) { 3535 memcpy(dst_cui_fmt, src_cui_fmt, len); 3536 return 0; 3537 } 3538 return -EFSCORRUPTED; 3539 } 3540 3541 /* 3542 * This routine is called to create an in-core extent refcount update 3543 * item from the cui format structure which was logged on disk. 3544 * It allocates an in-core cui, copies the extents from the format 3545 * structure into it, and adds the cui to the AIL with the given 3546 * LSN. 3547 */ 3548 STATIC int 3549 xlog_recover_cui_pass2( 3550 struct xlog *log, 3551 struct xlog_recover_item *item, 3552 xfs_lsn_t lsn) 3553 { 3554 int error; 3555 struct xfs_mount *mp = log->l_mp; 3556 struct xfs_cui_log_item *cuip; 3557 struct xfs_cui_log_format *cui_formatp; 3558 3559 cui_formatp = item->ri_buf[0].i_addr; 3560 3561 cuip = xfs_cui_init(mp, cui_formatp->cui_nextents); 3562 error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format); 3563 if (error) { 3564 xfs_cui_item_free(cuip); 3565 return error; 3566 } 3567 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents); 3568 3569 spin_lock(&log->l_ailp->ail_lock); 3570 /* 3571 * The CUI has two references. One for the CUD and one for CUI to ensure 3572 * it makes it into the AIL. Insert the CUI into the AIL directly and 3573 * drop the CUI reference. Note that xfs_trans_ail_update() drops the 3574 * AIL lock. 3575 */ 3576 xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn); 3577 xfs_cui_release(cuip); 3578 return 0; 3579 } 3580 3581 3582 /* 3583 * This routine is called when an CUD format structure is found in a committed 3584 * transaction in the log. Its purpose is to cancel the corresponding CUI if it 3585 * was still in the log. To do this it searches the AIL for the CUI with an id 3586 * equal to that in the CUD format structure. If we find it we drop the CUD 3587 * reference, which removes the CUI from the AIL and frees it. 3588 */ 3589 STATIC int 3590 xlog_recover_cud_pass2( 3591 struct xlog *log, 3592 struct xlog_recover_item *item) 3593 { 3594 struct xfs_cud_log_format *cud_formatp; 3595 struct xfs_cui_log_item *cuip = NULL; 3596 struct xfs_log_item *lip; 3597 uint64_t cui_id; 3598 struct xfs_ail_cursor cur; 3599 struct xfs_ail *ailp = log->l_ailp; 3600 3601 cud_formatp = item->ri_buf[0].i_addr; 3602 if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) 3603 return -EFSCORRUPTED; 3604 cui_id = cud_formatp->cud_cui_id; 3605 3606 /* 3607 * Search for the CUI with the id in the CUD format structure in the 3608 * AIL. 3609 */ 3610 spin_lock(&ailp->ail_lock); 3611 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3612 while (lip != NULL) { 3613 if (lip->li_type == XFS_LI_CUI) { 3614 cuip = (struct xfs_cui_log_item *)lip; 3615 if (cuip->cui_format.cui_id == cui_id) { 3616 /* 3617 * Drop the CUD reference to the CUI. This 3618 * removes the CUI from the AIL and frees it. 3619 */ 3620 spin_unlock(&ailp->ail_lock); 3621 xfs_cui_release(cuip); 3622 spin_lock(&ailp->ail_lock); 3623 break; 3624 } 3625 } 3626 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3627 } 3628 3629 xfs_trans_ail_cursor_done(&cur); 3630 spin_unlock(&ailp->ail_lock); 3631 3632 return 0; 3633 } 3634 3635 /* 3636 * Copy an BUI format buffer from the given buf, and into the destination 3637 * BUI format structure. The BUI/BUD items were designed not to need any 3638 * special alignment handling. 3639 */ 3640 static int 3641 xfs_bui_copy_format( 3642 struct xfs_log_iovec *buf, 3643 struct xfs_bui_log_format *dst_bui_fmt) 3644 { 3645 struct xfs_bui_log_format *src_bui_fmt; 3646 uint len; 3647 3648 src_bui_fmt = buf->i_addr; 3649 len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents); 3650 3651 if (buf->i_len == len) { 3652 memcpy(dst_bui_fmt, src_bui_fmt, len); 3653 return 0; 3654 } 3655 return -EFSCORRUPTED; 3656 } 3657 3658 /* 3659 * This routine is called to create an in-core extent bmap update 3660 * item from the bui format structure which was logged on disk. 3661 * It allocates an in-core bui, copies the extents from the format 3662 * structure into it, and adds the bui to the AIL with the given 3663 * LSN. 3664 */ 3665 STATIC int 3666 xlog_recover_bui_pass2( 3667 struct xlog *log, 3668 struct xlog_recover_item *item, 3669 xfs_lsn_t lsn) 3670 { 3671 int error; 3672 struct xfs_mount *mp = log->l_mp; 3673 struct xfs_bui_log_item *buip; 3674 struct xfs_bui_log_format *bui_formatp; 3675 3676 bui_formatp = item->ri_buf[0].i_addr; 3677 3678 if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS) 3679 return -EFSCORRUPTED; 3680 buip = xfs_bui_init(mp); 3681 error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format); 3682 if (error) { 3683 xfs_bui_item_free(buip); 3684 return error; 3685 } 3686 atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents); 3687 3688 spin_lock(&log->l_ailp->ail_lock); 3689 /* 3690 * The RUI has two references. One for the RUD and one for RUI to ensure 3691 * it makes it into the AIL. Insert the RUI into the AIL directly and 3692 * drop the RUI reference. Note that xfs_trans_ail_update() drops the 3693 * AIL lock. 3694 */ 3695 xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn); 3696 xfs_bui_release(buip); 3697 return 0; 3698 } 3699 3700 3701 /* 3702 * This routine is called when an BUD format structure is found in a committed 3703 * transaction in the log. Its purpose is to cancel the corresponding BUI if it 3704 * was still in the log. To do this it searches the AIL for the BUI with an id 3705 * equal to that in the BUD format structure. If we find it we drop the BUD 3706 * reference, which removes the BUI from the AIL and frees it. 3707 */ 3708 STATIC int 3709 xlog_recover_bud_pass2( 3710 struct xlog *log, 3711 struct xlog_recover_item *item) 3712 { 3713 struct xfs_bud_log_format *bud_formatp; 3714 struct xfs_bui_log_item *buip = NULL; 3715 struct xfs_log_item *lip; 3716 uint64_t bui_id; 3717 struct xfs_ail_cursor cur; 3718 struct xfs_ail *ailp = log->l_ailp; 3719 3720 bud_formatp = item->ri_buf[0].i_addr; 3721 if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format)) 3722 return -EFSCORRUPTED; 3723 bui_id = bud_formatp->bud_bui_id; 3724 3725 /* 3726 * Search for the BUI with the id in the BUD format structure in the 3727 * AIL. 3728 */ 3729 spin_lock(&ailp->ail_lock); 3730 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3731 while (lip != NULL) { 3732 if (lip->li_type == XFS_LI_BUI) { 3733 buip = (struct xfs_bui_log_item *)lip; 3734 if (buip->bui_format.bui_id == bui_id) { 3735 /* 3736 * Drop the BUD reference to the BUI. This 3737 * removes the BUI from the AIL and frees it. 3738 */ 3739 spin_unlock(&ailp->ail_lock); 3740 xfs_bui_release(buip); 3741 spin_lock(&ailp->ail_lock); 3742 break; 3743 } 3744 } 3745 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3746 } 3747 3748 xfs_trans_ail_cursor_done(&cur); 3749 spin_unlock(&ailp->ail_lock); 3750 3751 return 0; 3752 } 3753 3754 /* 3755 * This routine is called when an inode create format structure is found in a 3756 * committed transaction in the log. It's purpose is to initialise the inodes 3757 * being allocated on disk. This requires us to get inode cluster buffers that 3758 * match the range to be initialised, stamped with inode templates and written 3759 * by delayed write so that subsequent modifications will hit the cached buffer 3760 * and only need writing out at the end of recovery. 3761 */ 3762 STATIC int 3763 xlog_recover_do_icreate_pass2( 3764 struct xlog *log, 3765 struct list_head *buffer_list, 3766 xlog_recover_item_t *item) 3767 { 3768 struct xfs_mount *mp = log->l_mp; 3769 struct xfs_icreate_log *icl; 3770 struct xfs_ino_geometry *igeo = M_IGEO(mp); 3771 xfs_agnumber_t agno; 3772 xfs_agblock_t agbno; 3773 unsigned int count; 3774 unsigned int isize; 3775 xfs_agblock_t length; 3776 int bb_per_cluster; 3777 int cancel_count; 3778 int nbufs; 3779 int i; 3780 3781 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr; 3782 if (icl->icl_type != XFS_LI_ICREATE) { 3783 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type"); 3784 return -EINVAL; 3785 } 3786 3787 if (icl->icl_size != 1) { 3788 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size"); 3789 return -EINVAL; 3790 } 3791 3792 agno = be32_to_cpu(icl->icl_ag); 3793 if (agno >= mp->m_sb.sb_agcount) { 3794 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno"); 3795 return -EINVAL; 3796 } 3797 agbno = be32_to_cpu(icl->icl_agbno); 3798 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) { 3799 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno"); 3800 return -EINVAL; 3801 } 3802 isize = be32_to_cpu(icl->icl_isize); 3803 if (isize != mp->m_sb.sb_inodesize) { 3804 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize"); 3805 return -EINVAL; 3806 } 3807 count = be32_to_cpu(icl->icl_count); 3808 if (!count) { 3809 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count"); 3810 return -EINVAL; 3811 } 3812 length = be32_to_cpu(icl->icl_length); 3813 if (!length || length >= mp->m_sb.sb_agblocks) { 3814 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length"); 3815 return -EINVAL; 3816 } 3817 3818 /* 3819 * The inode chunk is either full or sparse and we only support 3820 * m_ino_geo.ialloc_min_blks sized sparse allocations at this time. 3821 */ 3822 if (length != igeo->ialloc_blks && 3823 length != igeo->ialloc_min_blks) { 3824 xfs_warn(log->l_mp, 3825 "%s: unsupported chunk length", __FUNCTION__); 3826 return -EINVAL; 3827 } 3828 3829 /* verify inode count is consistent with extent length */ 3830 if ((count >> mp->m_sb.sb_inopblog) != length) { 3831 xfs_warn(log->l_mp, 3832 "%s: inconsistent inode count and chunk length", 3833 __FUNCTION__); 3834 return -EINVAL; 3835 } 3836 3837 /* 3838 * The icreate transaction can cover multiple cluster buffers and these 3839 * buffers could have been freed and reused. Check the individual 3840 * buffers for cancellation so we don't overwrite anything written after 3841 * a cancellation. 3842 */ 3843 bb_per_cluster = XFS_FSB_TO_BB(mp, igeo->blocks_per_cluster); 3844 nbufs = length / igeo->blocks_per_cluster; 3845 for (i = 0, cancel_count = 0; i < nbufs; i++) { 3846 xfs_daddr_t daddr; 3847 3848 daddr = XFS_AGB_TO_DADDR(mp, agno, 3849 agbno + i * igeo->blocks_per_cluster); 3850 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0)) 3851 cancel_count++; 3852 } 3853 3854 /* 3855 * We currently only use icreate for a single allocation at a time. This 3856 * means we should expect either all or none of the buffers to be 3857 * cancelled. Be conservative and skip replay if at least one buffer is 3858 * cancelled, but warn the user that something is awry if the buffers 3859 * are not consistent. 3860 * 3861 * XXX: This must be refined to only skip cancelled clusters once we use 3862 * icreate for multiple chunk allocations. 3863 */ 3864 ASSERT(!cancel_count || cancel_count == nbufs); 3865 if (cancel_count) { 3866 if (cancel_count != nbufs) 3867 xfs_warn(mp, 3868 "WARNING: partial inode chunk cancellation, skipped icreate."); 3869 trace_xfs_log_recover_icreate_cancel(log, icl); 3870 return 0; 3871 } 3872 3873 trace_xfs_log_recover_icreate_recover(log, icl); 3874 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno, 3875 length, be32_to_cpu(icl->icl_gen)); 3876 } 3877 3878 STATIC void 3879 xlog_recover_buffer_ra_pass2( 3880 struct xlog *log, 3881 struct xlog_recover_item *item) 3882 { 3883 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr; 3884 struct xfs_mount *mp = log->l_mp; 3885 3886 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno, 3887 buf_f->blf_len, buf_f->blf_flags)) { 3888 return; 3889 } 3890 3891 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno, 3892 buf_f->blf_len, NULL); 3893 } 3894 3895 STATIC void 3896 xlog_recover_inode_ra_pass2( 3897 struct xlog *log, 3898 struct xlog_recover_item *item) 3899 { 3900 struct xfs_inode_log_format ilf_buf; 3901 struct xfs_inode_log_format *ilfp; 3902 struct xfs_mount *mp = log->l_mp; 3903 int error; 3904 3905 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { 3906 ilfp = item->ri_buf[0].i_addr; 3907 } else { 3908 ilfp = &ilf_buf; 3909 memset(ilfp, 0, sizeof(*ilfp)); 3910 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp); 3911 if (error) 3912 return; 3913 } 3914 3915 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0)) 3916 return; 3917 3918 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno, 3919 ilfp->ilf_len, &xfs_inode_buf_ra_ops); 3920 } 3921 3922 STATIC void 3923 xlog_recover_dquot_ra_pass2( 3924 struct xlog *log, 3925 struct xlog_recover_item *item) 3926 { 3927 struct xfs_mount *mp = log->l_mp; 3928 struct xfs_disk_dquot *recddq; 3929 struct xfs_dq_logformat *dq_f; 3930 uint type; 3931 int len; 3932 3933 3934 if (mp->m_qflags == 0) 3935 return; 3936 3937 recddq = item->ri_buf[1].i_addr; 3938 if (recddq == NULL) 3939 return; 3940 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot)) 3941 return; 3942 3943 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 3944 ASSERT(type); 3945 if (log->l_quotaoffs_flag & type) 3946 return; 3947 3948 dq_f = item->ri_buf[0].i_addr; 3949 ASSERT(dq_f); 3950 ASSERT(dq_f->qlf_len == 1); 3951 3952 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len); 3953 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0)) 3954 return; 3955 3956 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len, 3957 &xfs_dquot_buf_ra_ops); 3958 } 3959 3960 STATIC void 3961 xlog_recover_ra_pass2( 3962 struct xlog *log, 3963 struct xlog_recover_item *item) 3964 { 3965 switch (ITEM_TYPE(item)) { 3966 case XFS_LI_BUF: 3967 xlog_recover_buffer_ra_pass2(log, item); 3968 break; 3969 case XFS_LI_INODE: 3970 xlog_recover_inode_ra_pass2(log, item); 3971 break; 3972 case XFS_LI_DQUOT: 3973 xlog_recover_dquot_ra_pass2(log, item); 3974 break; 3975 case XFS_LI_EFI: 3976 case XFS_LI_EFD: 3977 case XFS_LI_QUOTAOFF: 3978 case XFS_LI_RUI: 3979 case XFS_LI_RUD: 3980 case XFS_LI_CUI: 3981 case XFS_LI_CUD: 3982 case XFS_LI_BUI: 3983 case XFS_LI_BUD: 3984 default: 3985 break; 3986 } 3987 } 3988 3989 STATIC int 3990 xlog_recover_commit_pass1( 3991 struct xlog *log, 3992 struct xlog_recover *trans, 3993 struct xlog_recover_item *item) 3994 { 3995 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1); 3996 3997 switch (ITEM_TYPE(item)) { 3998 case XFS_LI_BUF: 3999 return xlog_recover_buffer_pass1(log, item); 4000 case XFS_LI_QUOTAOFF: 4001 return xlog_recover_quotaoff_pass1(log, item); 4002 case XFS_LI_INODE: 4003 case XFS_LI_EFI: 4004 case XFS_LI_EFD: 4005 case XFS_LI_DQUOT: 4006 case XFS_LI_ICREATE: 4007 case XFS_LI_RUI: 4008 case XFS_LI_RUD: 4009 case XFS_LI_CUI: 4010 case XFS_LI_CUD: 4011 case XFS_LI_BUI: 4012 case XFS_LI_BUD: 4013 /* nothing to do in pass 1 */ 4014 return 0; 4015 default: 4016 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 4017 __func__, ITEM_TYPE(item)); 4018 ASSERT(0); 4019 return -EIO; 4020 } 4021 } 4022 4023 STATIC int 4024 xlog_recover_commit_pass2( 4025 struct xlog *log, 4026 struct xlog_recover *trans, 4027 struct list_head *buffer_list, 4028 struct xlog_recover_item *item) 4029 { 4030 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2); 4031 4032 switch (ITEM_TYPE(item)) { 4033 case XFS_LI_BUF: 4034 return xlog_recover_buffer_pass2(log, buffer_list, item, 4035 trans->r_lsn); 4036 case XFS_LI_INODE: 4037 return xlog_recover_inode_pass2(log, buffer_list, item, 4038 trans->r_lsn); 4039 case XFS_LI_EFI: 4040 return xlog_recover_efi_pass2(log, item, trans->r_lsn); 4041 case XFS_LI_EFD: 4042 return xlog_recover_efd_pass2(log, item); 4043 case XFS_LI_RUI: 4044 return xlog_recover_rui_pass2(log, item, trans->r_lsn); 4045 case XFS_LI_RUD: 4046 return xlog_recover_rud_pass2(log, item); 4047 case XFS_LI_CUI: 4048 return xlog_recover_cui_pass2(log, item, trans->r_lsn); 4049 case XFS_LI_CUD: 4050 return xlog_recover_cud_pass2(log, item); 4051 case XFS_LI_BUI: 4052 return xlog_recover_bui_pass2(log, item, trans->r_lsn); 4053 case XFS_LI_BUD: 4054 return xlog_recover_bud_pass2(log, item); 4055 case XFS_LI_DQUOT: 4056 return xlog_recover_dquot_pass2(log, buffer_list, item, 4057 trans->r_lsn); 4058 case XFS_LI_ICREATE: 4059 return xlog_recover_do_icreate_pass2(log, buffer_list, item); 4060 case XFS_LI_QUOTAOFF: 4061 /* nothing to do in pass2 */ 4062 return 0; 4063 default: 4064 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 4065 __func__, ITEM_TYPE(item)); 4066 ASSERT(0); 4067 return -EIO; 4068 } 4069 } 4070 4071 STATIC int 4072 xlog_recover_items_pass2( 4073 struct xlog *log, 4074 struct xlog_recover *trans, 4075 struct list_head *buffer_list, 4076 struct list_head *item_list) 4077 { 4078 struct xlog_recover_item *item; 4079 int error = 0; 4080 4081 list_for_each_entry(item, item_list, ri_list) { 4082 error = xlog_recover_commit_pass2(log, trans, 4083 buffer_list, item); 4084 if (error) 4085 return error; 4086 } 4087 4088 return error; 4089 } 4090 4091 /* 4092 * Perform the transaction. 4093 * 4094 * If the transaction modifies a buffer or inode, do it now. Otherwise, 4095 * EFIs and EFDs get queued up by adding entries into the AIL for them. 4096 */ 4097 STATIC int 4098 xlog_recover_commit_trans( 4099 struct xlog *log, 4100 struct xlog_recover *trans, 4101 int pass, 4102 struct list_head *buffer_list) 4103 { 4104 int error = 0; 4105 int items_queued = 0; 4106 struct xlog_recover_item *item; 4107 struct xlog_recover_item *next; 4108 LIST_HEAD (ra_list); 4109 LIST_HEAD (done_list); 4110 4111 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100 4112 4113 hlist_del_init(&trans->r_list); 4114 4115 error = xlog_recover_reorder_trans(log, trans, pass); 4116 if (error) 4117 return error; 4118 4119 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) { 4120 switch (pass) { 4121 case XLOG_RECOVER_PASS1: 4122 error = xlog_recover_commit_pass1(log, trans, item); 4123 break; 4124 case XLOG_RECOVER_PASS2: 4125 xlog_recover_ra_pass2(log, item); 4126 list_move_tail(&item->ri_list, &ra_list); 4127 items_queued++; 4128 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) { 4129 error = xlog_recover_items_pass2(log, trans, 4130 buffer_list, &ra_list); 4131 list_splice_tail_init(&ra_list, &done_list); 4132 items_queued = 0; 4133 } 4134 4135 break; 4136 default: 4137 ASSERT(0); 4138 } 4139 4140 if (error) 4141 goto out; 4142 } 4143 4144 out: 4145 if (!list_empty(&ra_list)) { 4146 if (!error) 4147 error = xlog_recover_items_pass2(log, trans, 4148 buffer_list, &ra_list); 4149 list_splice_tail_init(&ra_list, &done_list); 4150 } 4151 4152 if (!list_empty(&done_list)) 4153 list_splice_init(&done_list, &trans->r_itemq); 4154 4155 return error; 4156 } 4157 4158 STATIC void 4159 xlog_recover_add_item( 4160 struct list_head *head) 4161 { 4162 xlog_recover_item_t *item; 4163 4164 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 4165 INIT_LIST_HEAD(&item->ri_list); 4166 list_add_tail(&item->ri_list, head); 4167 } 4168 4169 STATIC int 4170 xlog_recover_add_to_cont_trans( 4171 struct xlog *log, 4172 struct xlog_recover *trans, 4173 char *dp, 4174 int len) 4175 { 4176 xlog_recover_item_t *item; 4177 char *ptr, *old_ptr; 4178 int old_len; 4179 4180 /* 4181 * If the transaction is empty, the header was split across this and the 4182 * previous record. Copy the rest of the header. 4183 */ 4184 if (list_empty(&trans->r_itemq)) { 4185 ASSERT(len <= sizeof(struct xfs_trans_header)); 4186 if (len > sizeof(struct xfs_trans_header)) { 4187 xfs_warn(log->l_mp, "%s: bad header length", __func__); 4188 return -EIO; 4189 } 4190 4191 xlog_recover_add_item(&trans->r_itemq); 4192 ptr = (char *)&trans->r_theader + 4193 sizeof(struct xfs_trans_header) - len; 4194 memcpy(ptr, dp, len); 4195 return 0; 4196 } 4197 4198 /* take the tail entry */ 4199 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 4200 4201 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 4202 old_len = item->ri_buf[item->ri_cnt-1].i_len; 4203 4204 ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP); 4205 memcpy(&ptr[old_len], dp, len); 4206 item->ri_buf[item->ri_cnt-1].i_len += len; 4207 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 4208 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 4209 return 0; 4210 } 4211 4212 /* 4213 * The next region to add is the start of a new region. It could be 4214 * a whole region or it could be the first part of a new region. Because 4215 * of this, the assumption here is that the type and size fields of all 4216 * format structures fit into the first 32 bits of the structure. 4217 * 4218 * This works because all regions must be 32 bit aligned. Therefore, we 4219 * either have both fields or we have neither field. In the case we have 4220 * neither field, the data part of the region is zero length. We only have 4221 * a log_op_header and can throw away the header since a new one will appear 4222 * later. If we have at least 4 bytes, then we can determine how many regions 4223 * will appear in the current log item. 4224 */ 4225 STATIC int 4226 xlog_recover_add_to_trans( 4227 struct xlog *log, 4228 struct xlog_recover *trans, 4229 char *dp, 4230 int len) 4231 { 4232 struct xfs_inode_log_format *in_f; /* any will do */ 4233 xlog_recover_item_t *item; 4234 char *ptr; 4235 4236 if (!len) 4237 return 0; 4238 if (list_empty(&trans->r_itemq)) { 4239 /* we need to catch log corruptions here */ 4240 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 4241 xfs_warn(log->l_mp, "%s: bad header magic number", 4242 __func__); 4243 ASSERT(0); 4244 return -EIO; 4245 } 4246 4247 if (len > sizeof(struct xfs_trans_header)) { 4248 xfs_warn(log->l_mp, "%s: bad header length", __func__); 4249 ASSERT(0); 4250 return -EIO; 4251 } 4252 4253 /* 4254 * The transaction header can be arbitrarily split across op 4255 * records. If we don't have the whole thing here, copy what we 4256 * do have and handle the rest in the next record. 4257 */ 4258 if (len == sizeof(struct xfs_trans_header)) 4259 xlog_recover_add_item(&trans->r_itemq); 4260 memcpy(&trans->r_theader, dp, len); 4261 return 0; 4262 } 4263 4264 ptr = kmem_alloc(len, KM_SLEEP); 4265 memcpy(ptr, dp, len); 4266 in_f = (struct xfs_inode_log_format *)ptr; 4267 4268 /* take the tail entry */ 4269 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 4270 if (item->ri_total != 0 && 4271 item->ri_total == item->ri_cnt) { 4272 /* tail item is in use, get a new one */ 4273 xlog_recover_add_item(&trans->r_itemq); 4274 item = list_entry(trans->r_itemq.prev, 4275 xlog_recover_item_t, ri_list); 4276 } 4277 4278 if (item->ri_total == 0) { /* first region to be added */ 4279 if (in_f->ilf_size == 0 || 4280 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 4281 xfs_warn(log->l_mp, 4282 "bad number of regions (%d) in inode log format", 4283 in_f->ilf_size); 4284 ASSERT(0); 4285 kmem_free(ptr); 4286 return -EIO; 4287 } 4288 4289 item->ri_total = in_f->ilf_size; 4290 item->ri_buf = 4291 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 4292 KM_SLEEP); 4293 } 4294 ASSERT(item->ri_total > item->ri_cnt); 4295 /* Description region is ri_buf[0] */ 4296 item->ri_buf[item->ri_cnt].i_addr = ptr; 4297 item->ri_buf[item->ri_cnt].i_len = len; 4298 item->ri_cnt++; 4299 trace_xfs_log_recover_item_add(log, trans, item, 0); 4300 return 0; 4301 } 4302 4303 /* 4304 * Free up any resources allocated by the transaction 4305 * 4306 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 4307 */ 4308 STATIC void 4309 xlog_recover_free_trans( 4310 struct xlog_recover *trans) 4311 { 4312 xlog_recover_item_t *item, *n; 4313 int i; 4314 4315 hlist_del_init(&trans->r_list); 4316 4317 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 4318 /* Free the regions in the item. */ 4319 list_del(&item->ri_list); 4320 for (i = 0; i < item->ri_cnt; i++) 4321 kmem_free(item->ri_buf[i].i_addr); 4322 /* Free the item itself */ 4323 kmem_free(item->ri_buf); 4324 kmem_free(item); 4325 } 4326 /* Free the transaction recover structure */ 4327 kmem_free(trans); 4328 } 4329 4330 /* 4331 * On error or completion, trans is freed. 4332 */ 4333 STATIC int 4334 xlog_recovery_process_trans( 4335 struct xlog *log, 4336 struct xlog_recover *trans, 4337 char *dp, 4338 unsigned int len, 4339 unsigned int flags, 4340 int pass, 4341 struct list_head *buffer_list) 4342 { 4343 int error = 0; 4344 bool freeit = false; 4345 4346 /* mask off ophdr transaction container flags */ 4347 flags &= ~XLOG_END_TRANS; 4348 if (flags & XLOG_WAS_CONT_TRANS) 4349 flags &= ~XLOG_CONTINUE_TRANS; 4350 4351 /* 4352 * Callees must not free the trans structure. We'll decide if we need to 4353 * free it or not based on the operation being done and it's result. 4354 */ 4355 switch (flags) { 4356 /* expected flag values */ 4357 case 0: 4358 case XLOG_CONTINUE_TRANS: 4359 error = xlog_recover_add_to_trans(log, trans, dp, len); 4360 break; 4361 case XLOG_WAS_CONT_TRANS: 4362 error = xlog_recover_add_to_cont_trans(log, trans, dp, len); 4363 break; 4364 case XLOG_COMMIT_TRANS: 4365 error = xlog_recover_commit_trans(log, trans, pass, 4366 buffer_list); 4367 /* success or fail, we are now done with this transaction. */ 4368 freeit = true; 4369 break; 4370 4371 /* unexpected flag values */ 4372 case XLOG_UNMOUNT_TRANS: 4373 /* just skip trans */ 4374 xfs_warn(log->l_mp, "%s: Unmount LR", __func__); 4375 freeit = true; 4376 break; 4377 case XLOG_START_TRANS: 4378 default: 4379 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags); 4380 ASSERT(0); 4381 error = -EIO; 4382 break; 4383 } 4384 if (error || freeit) 4385 xlog_recover_free_trans(trans); 4386 return error; 4387 } 4388 4389 /* 4390 * Lookup the transaction recovery structure associated with the ID in the 4391 * current ophdr. If the transaction doesn't exist and the start flag is set in 4392 * the ophdr, then allocate a new transaction for future ID matches to find. 4393 * Either way, return what we found during the lookup - an existing transaction 4394 * or nothing. 4395 */ 4396 STATIC struct xlog_recover * 4397 xlog_recover_ophdr_to_trans( 4398 struct hlist_head rhash[], 4399 struct xlog_rec_header *rhead, 4400 struct xlog_op_header *ohead) 4401 { 4402 struct xlog_recover *trans; 4403 xlog_tid_t tid; 4404 struct hlist_head *rhp; 4405 4406 tid = be32_to_cpu(ohead->oh_tid); 4407 rhp = &rhash[XLOG_RHASH(tid)]; 4408 hlist_for_each_entry(trans, rhp, r_list) { 4409 if (trans->r_log_tid == tid) 4410 return trans; 4411 } 4412 4413 /* 4414 * skip over non-start transaction headers - we could be 4415 * processing slack space before the next transaction starts 4416 */ 4417 if (!(ohead->oh_flags & XLOG_START_TRANS)) 4418 return NULL; 4419 4420 ASSERT(be32_to_cpu(ohead->oh_len) == 0); 4421 4422 /* 4423 * This is a new transaction so allocate a new recovery container to 4424 * hold the recovery ops that will follow. 4425 */ 4426 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP); 4427 trans->r_log_tid = tid; 4428 trans->r_lsn = be64_to_cpu(rhead->h_lsn); 4429 INIT_LIST_HEAD(&trans->r_itemq); 4430 INIT_HLIST_NODE(&trans->r_list); 4431 hlist_add_head(&trans->r_list, rhp); 4432 4433 /* 4434 * Nothing more to do for this ophdr. Items to be added to this new 4435 * transaction will be in subsequent ophdr containers. 4436 */ 4437 return NULL; 4438 } 4439 4440 STATIC int 4441 xlog_recover_process_ophdr( 4442 struct xlog *log, 4443 struct hlist_head rhash[], 4444 struct xlog_rec_header *rhead, 4445 struct xlog_op_header *ohead, 4446 char *dp, 4447 char *end, 4448 int pass, 4449 struct list_head *buffer_list) 4450 { 4451 struct xlog_recover *trans; 4452 unsigned int len; 4453 int error; 4454 4455 /* Do we understand who wrote this op? */ 4456 if (ohead->oh_clientid != XFS_TRANSACTION && 4457 ohead->oh_clientid != XFS_LOG) { 4458 xfs_warn(log->l_mp, "%s: bad clientid 0x%x", 4459 __func__, ohead->oh_clientid); 4460 ASSERT(0); 4461 return -EIO; 4462 } 4463 4464 /* 4465 * Check the ophdr contains all the data it is supposed to contain. 4466 */ 4467 len = be32_to_cpu(ohead->oh_len); 4468 if (dp + len > end) { 4469 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len); 4470 WARN_ON(1); 4471 return -EIO; 4472 } 4473 4474 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead); 4475 if (!trans) { 4476 /* nothing to do, so skip over this ophdr */ 4477 return 0; 4478 } 4479 4480 /* 4481 * The recovered buffer queue is drained only once we know that all 4482 * recovery items for the current LSN have been processed. This is 4483 * required because: 4484 * 4485 * - Buffer write submission updates the metadata LSN of the buffer. 4486 * - Log recovery skips items with a metadata LSN >= the current LSN of 4487 * the recovery item. 4488 * - Separate recovery items against the same metadata buffer can share 4489 * a current LSN. I.e., consider that the LSN of a recovery item is 4490 * defined as the starting LSN of the first record in which its 4491 * transaction appears, that a record can hold multiple transactions, 4492 * and/or that a transaction can span multiple records. 4493 * 4494 * In other words, we are allowed to submit a buffer from log recovery 4495 * once per current LSN. Otherwise, we may incorrectly skip recovery 4496 * items and cause corruption. 4497 * 4498 * We don't know up front whether buffers are updated multiple times per 4499 * LSN. Therefore, track the current LSN of each commit log record as it 4500 * is processed and drain the queue when it changes. Use commit records 4501 * because they are ordered correctly by the logging code. 4502 */ 4503 if (log->l_recovery_lsn != trans->r_lsn && 4504 ohead->oh_flags & XLOG_COMMIT_TRANS) { 4505 error = xfs_buf_delwri_submit(buffer_list); 4506 if (error) 4507 return error; 4508 log->l_recovery_lsn = trans->r_lsn; 4509 } 4510 4511 return xlog_recovery_process_trans(log, trans, dp, len, 4512 ohead->oh_flags, pass, buffer_list); 4513 } 4514 4515 /* 4516 * There are two valid states of the r_state field. 0 indicates that the 4517 * transaction structure is in a normal state. We have either seen the 4518 * start of the transaction or the last operation we added was not a partial 4519 * operation. If the last operation we added to the transaction was a 4520 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 4521 * 4522 * NOTE: skip LRs with 0 data length. 4523 */ 4524 STATIC int 4525 xlog_recover_process_data( 4526 struct xlog *log, 4527 struct hlist_head rhash[], 4528 struct xlog_rec_header *rhead, 4529 char *dp, 4530 int pass, 4531 struct list_head *buffer_list) 4532 { 4533 struct xlog_op_header *ohead; 4534 char *end; 4535 int num_logops; 4536 int error; 4537 4538 end = dp + be32_to_cpu(rhead->h_len); 4539 num_logops = be32_to_cpu(rhead->h_num_logops); 4540 4541 /* check the log format matches our own - else we can't recover */ 4542 if (xlog_header_check_recover(log->l_mp, rhead)) 4543 return -EIO; 4544 4545 trace_xfs_log_recover_record(log, rhead, pass); 4546 while ((dp < end) && num_logops) { 4547 4548 ohead = (struct xlog_op_header *)dp; 4549 dp += sizeof(*ohead); 4550 ASSERT(dp <= end); 4551 4552 /* errors will abort recovery */ 4553 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead, 4554 dp, end, pass, buffer_list); 4555 if (error) 4556 return error; 4557 4558 dp += be32_to_cpu(ohead->oh_len); 4559 num_logops--; 4560 } 4561 return 0; 4562 } 4563 4564 /* Recover the EFI if necessary. */ 4565 STATIC int 4566 xlog_recover_process_efi( 4567 struct xfs_mount *mp, 4568 struct xfs_ail *ailp, 4569 struct xfs_log_item *lip) 4570 { 4571 struct xfs_efi_log_item *efip; 4572 int error; 4573 4574 /* 4575 * Skip EFIs that we've already processed. 4576 */ 4577 efip = container_of(lip, struct xfs_efi_log_item, efi_item); 4578 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) 4579 return 0; 4580 4581 spin_unlock(&ailp->ail_lock); 4582 error = xfs_efi_recover(mp, efip); 4583 spin_lock(&ailp->ail_lock); 4584 4585 return error; 4586 } 4587 4588 /* Release the EFI since we're cancelling everything. */ 4589 STATIC void 4590 xlog_recover_cancel_efi( 4591 struct xfs_mount *mp, 4592 struct xfs_ail *ailp, 4593 struct xfs_log_item *lip) 4594 { 4595 struct xfs_efi_log_item *efip; 4596 4597 efip = container_of(lip, struct xfs_efi_log_item, efi_item); 4598 4599 spin_unlock(&ailp->ail_lock); 4600 xfs_efi_release(efip); 4601 spin_lock(&ailp->ail_lock); 4602 } 4603 4604 /* Recover the RUI if necessary. */ 4605 STATIC int 4606 xlog_recover_process_rui( 4607 struct xfs_mount *mp, 4608 struct xfs_ail *ailp, 4609 struct xfs_log_item *lip) 4610 { 4611 struct xfs_rui_log_item *ruip; 4612 int error; 4613 4614 /* 4615 * Skip RUIs that we've already processed. 4616 */ 4617 ruip = container_of(lip, struct xfs_rui_log_item, rui_item); 4618 if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags)) 4619 return 0; 4620 4621 spin_unlock(&ailp->ail_lock); 4622 error = xfs_rui_recover(mp, ruip); 4623 spin_lock(&ailp->ail_lock); 4624 4625 return error; 4626 } 4627 4628 /* Release the RUI since we're cancelling everything. */ 4629 STATIC void 4630 xlog_recover_cancel_rui( 4631 struct xfs_mount *mp, 4632 struct xfs_ail *ailp, 4633 struct xfs_log_item *lip) 4634 { 4635 struct xfs_rui_log_item *ruip; 4636 4637 ruip = container_of(lip, struct xfs_rui_log_item, rui_item); 4638 4639 spin_unlock(&ailp->ail_lock); 4640 xfs_rui_release(ruip); 4641 spin_lock(&ailp->ail_lock); 4642 } 4643 4644 /* Recover the CUI if necessary. */ 4645 STATIC int 4646 xlog_recover_process_cui( 4647 struct xfs_trans *parent_tp, 4648 struct xfs_ail *ailp, 4649 struct xfs_log_item *lip) 4650 { 4651 struct xfs_cui_log_item *cuip; 4652 int error; 4653 4654 /* 4655 * Skip CUIs that we've already processed. 4656 */ 4657 cuip = container_of(lip, struct xfs_cui_log_item, cui_item); 4658 if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags)) 4659 return 0; 4660 4661 spin_unlock(&ailp->ail_lock); 4662 error = xfs_cui_recover(parent_tp, cuip); 4663 spin_lock(&ailp->ail_lock); 4664 4665 return error; 4666 } 4667 4668 /* Release the CUI since we're cancelling everything. */ 4669 STATIC void 4670 xlog_recover_cancel_cui( 4671 struct xfs_mount *mp, 4672 struct xfs_ail *ailp, 4673 struct xfs_log_item *lip) 4674 { 4675 struct xfs_cui_log_item *cuip; 4676 4677 cuip = container_of(lip, struct xfs_cui_log_item, cui_item); 4678 4679 spin_unlock(&ailp->ail_lock); 4680 xfs_cui_release(cuip); 4681 spin_lock(&ailp->ail_lock); 4682 } 4683 4684 /* Recover the BUI if necessary. */ 4685 STATIC int 4686 xlog_recover_process_bui( 4687 struct xfs_trans *parent_tp, 4688 struct xfs_ail *ailp, 4689 struct xfs_log_item *lip) 4690 { 4691 struct xfs_bui_log_item *buip; 4692 int error; 4693 4694 /* 4695 * Skip BUIs that we've already processed. 4696 */ 4697 buip = container_of(lip, struct xfs_bui_log_item, bui_item); 4698 if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags)) 4699 return 0; 4700 4701 spin_unlock(&ailp->ail_lock); 4702 error = xfs_bui_recover(parent_tp, buip); 4703 spin_lock(&ailp->ail_lock); 4704 4705 return error; 4706 } 4707 4708 /* Release the BUI since we're cancelling everything. */ 4709 STATIC void 4710 xlog_recover_cancel_bui( 4711 struct xfs_mount *mp, 4712 struct xfs_ail *ailp, 4713 struct xfs_log_item *lip) 4714 { 4715 struct xfs_bui_log_item *buip; 4716 4717 buip = container_of(lip, struct xfs_bui_log_item, bui_item); 4718 4719 spin_unlock(&ailp->ail_lock); 4720 xfs_bui_release(buip); 4721 spin_lock(&ailp->ail_lock); 4722 } 4723 4724 /* Is this log item a deferred action intent? */ 4725 static inline bool xlog_item_is_intent(struct xfs_log_item *lip) 4726 { 4727 switch (lip->li_type) { 4728 case XFS_LI_EFI: 4729 case XFS_LI_RUI: 4730 case XFS_LI_CUI: 4731 case XFS_LI_BUI: 4732 return true; 4733 default: 4734 return false; 4735 } 4736 } 4737 4738 /* Take all the collected deferred ops and finish them in order. */ 4739 static int 4740 xlog_finish_defer_ops( 4741 struct xfs_trans *parent_tp) 4742 { 4743 struct xfs_mount *mp = parent_tp->t_mountp; 4744 struct xfs_trans *tp; 4745 int64_t freeblks; 4746 uint resblks; 4747 int error; 4748 4749 /* 4750 * We're finishing the defer_ops that accumulated as a result of 4751 * recovering unfinished intent items during log recovery. We 4752 * reserve an itruncate transaction because it is the largest 4753 * permanent transaction type. Since we're the only user of the fs 4754 * right now, take 93% (15/16) of the available free blocks. Use 4755 * weird math to avoid a 64-bit division. 4756 */ 4757 freeblks = percpu_counter_sum(&mp->m_fdblocks); 4758 if (freeblks <= 0) 4759 return -ENOSPC; 4760 resblks = min_t(int64_t, UINT_MAX, freeblks); 4761 resblks = (resblks * 15) >> 4; 4762 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks, 4763 0, XFS_TRANS_RESERVE, &tp); 4764 if (error) 4765 return error; 4766 /* transfer all collected dfops to this transaction */ 4767 xfs_defer_move(tp, parent_tp); 4768 4769 return xfs_trans_commit(tp); 4770 } 4771 4772 /* 4773 * When this is called, all of the log intent items which did not have 4774 * corresponding log done items should be in the AIL. What we do now 4775 * is update the data structures associated with each one. 4776 * 4777 * Since we process the log intent items in normal transactions, they 4778 * will be removed at some point after the commit. This prevents us 4779 * from just walking down the list processing each one. We'll use a 4780 * flag in the intent item to skip those that we've already processed 4781 * and use the AIL iteration mechanism's generation count to try to 4782 * speed this up at least a bit. 4783 * 4784 * When we start, we know that the intents are the only things in the 4785 * AIL. As we process them, however, other items are added to the 4786 * AIL. 4787 */ 4788 STATIC int 4789 xlog_recover_process_intents( 4790 struct xlog *log) 4791 { 4792 struct xfs_trans *parent_tp; 4793 struct xfs_ail_cursor cur; 4794 struct xfs_log_item *lip; 4795 struct xfs_ail *ailp; 4796 int error; 4797 #if defined(DEBUG) || defined(XFS_WARN) 4798 xfs_lsn_t last_lsn; 4799 #endif 4800 4801 /* 4802 * The intent recovery handlers commit transactions to complete recovery 4803 * for individual intents, but any new deferred operations that are 4804 * queued during that process are held off until the very end. The 4805 * purpose of this transaction is to serve as a container for deferred 4806 * operations. Each intent recovery handler must transfer dfops here 4807 * before its local transaction commits, and we'll finish the entire 4808 * list below. 4809 */ 4810 error = xfs_trans_alloc_empty(log->l_mp, &parent_tp); 4811 if (error) 4812 return error; 4813 4814 ailp = log->l_ailp; 4815 spin_lock(&ailp->ail_lock); 4816 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 4817 #if defined(DEBUG) || defined(XFS_WARN) 4818 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block); 4819 #endif 4820 while (lip != NULL) { 4821 /* 4822 * We're done when we see something other than an intent. 4823 * There should be no intents left in the AIL now. 4824 */ 4825 if (!xlog_item_is_intent(lip)) { 4826 #ifdef DEBUG 4827 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 4828 ASSERT(!xlog_item_is_intent(lip)); 4829 #endif 4830 break; 4831 } 4832 4833 /* 4834 * We should never see a redo item with a LSN higher than 4835 * the last transaction we found in the log at the start 4836 * of recovery. 4837 */ 4838 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0); 4839 4840 /* 4841 * NOTE: If your intent processing routine can create more 4842 * deferred ops, you /must/ attach them to the dfops in this 4843 * routine or else those subsequent intents will get 4844 * replayed in the wrong order! 4845 */ 4846 switch (lip->li_type) { 4847 case XFS_LI_EFI: 4848 error = xlog_recover_process_efi(log->l_mp, ailp, lip); 4849 break; 4850 case XFS_LI_RUI: 4851 error = xlog_recover_process_rui(log->l_mp, ailp, lip); 4852 break; 4853 case XFS_LI_CUI: 4854 error = xlog_recover_process_cui(parent_tp, ailp, lip); 4855 break; 4856 case XFS_LI_BUI: 4857 error = xlog_recover_process_bui(parent_tp, ailp, lip); 4858 break; 4859 } 4860 if (error) 4861 goto out; 4862 lip = xfs_trans_ail_cursor_next(ailp, &cur); 4863 } 4864 out: 4865 xfs_trans_ail_cursor_done(&cur); 4866 spin_unlock(&ailp->ail_lock); 4867 if (!error) 4868 error = xlog_finish_defer_ops(parent_tp); 4869 xfs_trans_cancel(parent_tp); 4870 4871 return error; 4872 } 4873 4874 /* 4875 * A cancel occurs when the mount has failed and we're bailing out. 4876 * Release all pending log intent items so they don't pin the AIL. 4877 */ 4878 STATIC void 4879 xlog_recover_cancel_intents( 4880 struct xlog *log) 4881 { 4882 struct xfs_log_item *lip; 4883 struct xfs_ail_cursor cur; 4884 struct xfs_ail *ailp; 4885 4886 ailp = log->l_ailp; 4887 spin_lock(&ailp->ail_lock); 4888 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 4889 while (lip != NULL) { 4890 /* 4891 * We're done when we see something other than an intent. 4892 * There should be no intents left in the AIL now. 4893 */ 4894 if (!xlog_item_is_intent(lip)) { 4895 #ifdef DEBUG 4896 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 4897 ASSERT(!xlog_item_is_intent(lip)); 4898 #endif 4899 break; 4900 } 4901 4902 switch (lip->li_type) { 4903 case XFS_LI_EFI: 4904 xlog_recover_cancel_efi(log->l_mp, ailp, lip); 4905 break; 4906 case XFS_LI_RUI: 4907 xlog_recover_cancel_rui(log->l_mp, ailp, lip); 4908 break; 4909 case XFS_LI_CUI: 4910 xlog_recover_cancel_cui(log->l_mp, ailp, lip); 4911 break; 4912 case XFS_LI_BUI: 4913 xlog_recover_cancel_bui(log->l_mp, ailp, lip); 4914 break; 4915 } 4916 4917 lip = xfs_trans_ail_cursor_next(ailp, &cur); 4918 } 4919 4920 xfs_trans_ail_cursor_done(&cur); 4921 spin_unlock(&ailp->ail_lock); 4922 } 4923 4924 /* 4925 * This routine performs a transaction to null out a bad inode pointer 4926 * in an agi unlinked inode hash bucket. 4927 */ 4928 STATIC void 4929 xlog_recover_clear_agi_bucket( 4930 xfs_mount_t *mp, 4931 xfs_agnumber_t agno, 4932 int bucket) 4933 { 4934 xfs_trans_t *tp; 4935 xfs_agi_t *agi; 4936 xfs_buf_t *agibp; 4937 int offset; 4938 int error; 4939 4940 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp); 4941 if (error) 4942 goto out_error; 4943 4944 error = xfs_read_agi(mp, tp, agno, &agibp); 4945 if (error) 4946 goto out_abort; 4947 4948 agi = XFS_BUF_TO_AGI(agibp); 4949 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 4950 offset = offsetof(xfs_agi_t, agi_unlinked) + 4951 (sizeof(xfs_agino_t) * bucket); 4952 xfs_trans_log_buf(tp, agibp, offset, 4953 (offset + sizeof(xfs_agino_t) - 1)); 4954 4955 error = xfs_trans_commit(tp); 4956 if (error) 4957 goto out_error; 4958 return; 4959 4960 out_abort: 4961 xfs_trans_cancel(tp); 4962 out_error: 4963 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); 4964 return; 4965 } 4966 4967 STATIC xfs_agino_t 4968 xlog_recover_process_one_iunlink( 4969 struct xfs_mount *mp, 4970 xfs_agnumber_t agno, 4971 xfs_agino_t agino, 4972 int bucket) 4973 { 4974 struct xfs_buf *ibp; 4975 struct xfs_dinode *dip; 4976 struct xfs_inode *ip; 4977 xfs_ino_t ino; 4978 int error; 4979 4980 ino = XFS_AGINO_TO_INO(mp, agno, agino); 4981 error = xfs_iget(mp, NULL, ino, 0, 0, &ip); 4982 if (error) 4983 goto fail; 4984 4985 /* 4986 * Get the on disk inode to find the next inode in the bucket. 4987 */ 4988 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0); 4989 if (error) 4990 goto fail_iput; 4991 4992 xfs_iflags_clear(ip, XFS_IRECOVERY); 4993 ASSERT(VFS_I(ip)->i_nlink == 0); 4994 ASSERT(VFS_I(ip)->i_mode != 0); 4995 4996 /* setup for the next pass */ 4997 agino = be32_to_cpu(dip->di_next_unlinked); 4998 xfs_buf_relse(ibp); 4999 5000 /* 5001 * Prevent any DMAPI event from being sent when the reference on 5002 * the inode is dropped. 5003 */ 5004 ip->i_d.di_dmevmask = 0; 5005 5006 xfs_irele(ip); 5007 return agino; 5008 5009 fail_iput: 5010 xfs_irele(ip); 5011 fail: 5012 /* 5013 * We can't read in the inode this bucket points to, or this inode 5014 * is messed up. Just ditch this bucket of inodes. We will lose 5015 * some inodes and space, but at least we won't hang. 5016 * 5017 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 5018 * clear the inode pointer in the bucket. 5019 */ 5020 xlog_recover_clear_agi_bucket(mp, agno, bucket); 5021 return NULLAGINO; 5022 } 5023 5024 /* 5025 * xlog_iunlink_recover 5026 * 5027 * This is called during recovery to process any inodes which 5028 * we unlinked but not freed when the system crashed. These 5029 * inodes will be on the lists in the AGI blocks. What we do 5030 * here is scan all the AGIs and fully truncate and free any 5031 * inodes found on the lists. Each inode is removed from the 5032 * lists when it has been fully truncated and is freed. The 5033 * freeing of the inode and its removal from the list must be 5034 * atomic. 5035 */ 5036 STATIC void 5037 xlog_recover_process_iunlinks( 5038 struct xlog *log) 5039 { 5040 xfs_mount_t *mp; 5041 xfs_agnumber_t agno; 5042 xfs_agi_t *agi; 5043 xfs_buf_t *agibp; 5044 xfs_agino_t agino; 5045 int bucket; 5046 int error; 5047 5048 mp = log->l_mp; 5049 5050 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 5051 /* 5052 * Find the agi for this ag. 5053 */ 5054 error = xfs_read_agi(mp, NULL, agno, &agibp); 5055 if (error) { 5056 /* 5057 * AGI is b0rked. Don't process it. 5058 * 5059 * We should probably mark the filesystem as corrupt 5060 * after we've recovered all the ag's we can.... 5061 */ 5062 continue; 5063 } 5064 /* 5065 * Unlock the buffer so that it can be acquired in the normal 5066 * course of the transaction to truncate and free each inode. 5067 * Because we are not racing with anyone else here for the AGI 5068 * buffer, we don't even need to hold it locked to read the 5069 * initial unlinked bucket entries out of the buffer. We keep 5070 * buffer reference though, so that it stays pinned in memory 5071 * while we need the buffer. 5072 */ 5073 agi = XFS_BUF_TO_AGI(agibp); 5074 xfs_buf_unlock(agibp); 5075 5076 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 5077 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 5078 while (agino != NULLAGINO) { 5079 agino = xlog_recover_process_one_iunlink(mp, 5080 agno, agino, bucket); 5081 } 5082 } 5083 xfs_buf_rele(agibp); 5084 } 5085 } 5086 5087 STATIC void 5088 xlog_unpack_data( 5089 struct xlog_rec_header *rhead, 5090 char *dp, 5091 struct xlog *log) 5092 { 5093 int i, j, k; 5094 5095 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 5096 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 5097 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 5098 dp += BBSIZE; 5099 } 5100 5101 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 5102 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 5103 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 5104 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 5105 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 5106 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 5107 dp += BBSIZE; 5108 } 5109 } 5110 } 5111 5112 /* 5113 * CRC check, unpack and process a log record. 5114 */ 5115 STATIC int 5116 xlog_recover_process( 5117 struct xlog *log, 5118 struct hlist_head rhash[], 5119 struct xlog_rec_header *rhead, 5120 char *dp, 5121 int pass, 5122 struct list_head *buffer_list) 5123 { 5124 __le32 old_crc = rhead->h_crc; 5125 __le32 crc; 5126 5127 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); 5128 5129 /* 5130 * Nothing else to do if this is a CRC verification pass. Just return 5131 * if this a record with a non-zero crc. Unfortunately, mkfs always 5132 * sets old_crc to 0 so we must consider this valid even on v5 supers. 5133 * Otherwise, return EFSBADCRC on failure so the callers up the stack 5134 * know precisely what failed. 5135 */ 5136 if (pass == XLOG_RECOVER_CRCPASS) { 5137 if (old_crc && crc != old_crc) 5138 return -EFSBADCRC; 5139 return 0; 5140 } 5141 5142 /* 5143 * We're in the normal recovery path. Issue a warning if and only if the 5144 * CRC in the header is non-zero. This is an advisory warning and the 5145 * zero CRC check prevents warnings from being emitted when upgrading 5146 * the kernel from one that does not add CRCs by default. 5147 */ 5148 if (crc != old_crc) { 5149 if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) { 5150 xfs_alert(log->l_mp, 5151 "log record CRC mismatch: found 0x%x, expected 0x%x.", 5152 le32_to_cpu(old_crc), 5153 le32_to_cpu(crc)); 5154 xfs_hex_dump(dp, 32); 5155 } 5156 5157 /* 5158 * If the filesystem is CRC enabled, this mismatch becomes a 5159 * fatal log corruption failure. 5160 */ 5161 if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) 5162 return -EFSCORRUPTED; 5163 } 5164 5165 xlog_unpack_data(rhead, dp, log); 5166 5167 return xlog_recover_process_data(log, rhash, rhead, dp, pass, 5168 buffer_list); 5169 } 5170 5171 STATIC int 5172 xlog_valid_rec_header( 5173 struct xlog *log, 5174 struct xlog_rec_header *rhead, 5175 xfs_daddr_t blkno) 5176 { 5177 int hlen; 5178 5179 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) { 5180 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 5181 XFS_ERRLEVEL_LOW, log->l_mp); 5182 return -EFSCORRUPTED; 5183 } 5184 if (unlikely( 5185 (!rhead->h_version || 5186 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { 5187 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", 5188 __func__, be32_to_cpu(rhead->h_version)); 5189 return -EIO; 5190 } 5191 5192 /* LR body must have data or it wouldn't have been written */ 5193 hlen = be32_to_cpu(rhead->h_len); 5194 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 5195 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 5196 XFS_ERRLEVEL_LOW, log->l_mp); 5197 return -EFSCORRUPTED; 5198 } 5199 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 5200 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 5201 XFS_ERRLEVEL_LOW, log->l_mp); 5202 return -EFSCORRUPTED; 5203 } 5204 return 0; 5205 } 5206 5207 /* 5208 * Read the log from tail to head and process the log records found. 5209 * Handle the two cases where the tail and head are in the same cycle 5210 * and where the active portion of the log wraps around the end of 5211 * the physical log separately. The pass parameter is passed through 5212 * to the routines called to process the data and is not looked at 5213 * here. 5214 */ 5215 STATIC int 5216 xlog_do_recovery_pass( 5217 struct xlog *log, 5218 xfs_daddr_t head_blk, 5219 xfs_daddr_t tail_blk, 5220 int pass, 5221 xfs_daddr_t *first_bad) /* out: first bad log rec */ 5222 { 5223 xlog_rec_header_t *rhead; 5224 xfs_daddr_t blk_no, rblk_no; 5225 xfs_daddr_t rhead_blk; 5226 char *offset; 5227 char *hbp, *dbp; 5228 int error = 0, h_size, h_len; 5229 int error2 = 0; 5230 int bblks, split_bblks; 5231 int hblks, split_hblks, wrapped_hblks; 5232 int i; 5233 struct hlist_head rhash[XLOG_RHASH_SIZE]; 5234 LIST_HEAD (buffer_list); 5235 5236 ASSERT(head_blk != tail_blk); 5237 blk_no = rhead_blk = tail_blk; 5238 5239 for (i = 0; i < XLOG_RHASH_SIZE; i++) 5240 INIT_HLIST_HEAD(&rhash[i]); 5241 5242 /* 5243 * Read the header of the tail block and get the iclog buffer size from 5244 * h_size. Use this to tell how many sectors make up the log header. 5245 */ 5246 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 5247 /* 5248 * When using variable length iclogs, read first sector of 5249 * iclog header and extract the header size from it. Get a 5250 * new hbp that is the correct size. 5251 */ 5252 hbp = xlog_alloc_buffer(log, 1); 5253 if (!hbp) 5254 return -ENOMEM; 5255 5256 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 5257 if (error) 5258 goto bread_err1; 5259 5260 rhead = (xlog_rec_header_t *)offset; 5261 error = xlog_valid_rec_header(log, rhead, tail_blk); 5262 if (error) 5263 goto bread_err1; 5264 5265 /* 5266 * xfsprogs has a bug where record length is based on lsunit but 5267 * h_size (iclog size) is hardcoded to 32k. Now that we 5268 * unconditionally CRC verify the unmount record, this means the 5269 * log buffer can be too small for the record and cause an 5270 * overrun. 5271 * 5272 * Detect this condition here. Use lsunit for the buffer size as 5273 * long as this looks like the mkfs case. Otherwise, return an 5274 * error to avoid a buffer overrun. 5275 */ 5276 h_size = be32_to_cpu(rhead->h_size); 5277 h_len = be32_to_cpu(rhead->h_len); 5278 if (h_len > h_size) { 5279 if (h_len <= log->l_mp->m_logbsize && 5280 be32_to_cpu(rhead->h_num_logops) == 1) { 5281 xfs_warn(log->l_mp, 5282 "invalid iclog size (%d bytes), using lsunit (%d bytes)", 5283 h_size, log->l_mp->m_logbsize); 5284 h_size = log->l_mp->m_logbsize; 5285 } else 5286 return -EFSCORRUPTED; 5287 } 5288 5289 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 5290 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 5291 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 5292 if (h_size % XLOG_HEADER_CYCLE_SIZE) 5293 hblks++; 5294 kmem_free(hbp); 5295 hbp = xlog_alloc_buffer(log, hblks); 5296 } else { 5297 hblks = 1; 5298 } 5299 } else { 5300 ASSERT(log->l_sectBBsize == 1); 5301 hblks = 1; 5302 hbp = xlog_alloc_buffer(log, 1); 5303 h_size = XLOG_BIG_RECORD_BSIZE; 5304 } 5305 5306 if (!hbp) 5307 return -ENOMEM; 5308 dbp = xlog_alloc_buffer(log, BTOBB(h_size)); 5309 if (!dbp) { 5310 kmem_free(hbp); 5311 return -ENOMEM; 5312 } 5313 5314 memset(rhash, 0, sizeof(rhash)); 5315 if (tail_blk > head_blk) { 5316 /* 5317 * Perform recovery around the end of the physical log. 5318 * When the head is not on the same cycle number as the tail, 5319 * we can't do a sequential recovery. 5320 */ 5321 while (blk_no < log->l_logBBsize) { 5322 /* 5323 * Check for header wrapping around physical end-of-log 5324 */ 5325 offset = hbp; 5326 split_hblks = 0; 5327 wrapped_hblks = 0; 5328 if (blk_no + hblks <= log->l_logBBsize) { 5329 /* Read header in one read */ 5330 error = xlog_bread(log, blk_no, hblks, hbp, 5331 &offset); 5332 if (error) 5333 goto bread_err2; 5334 } else { 5335 /* This LR is split across physical log end */ 5336 if (blk_no != log->l_logBBsize) { 5337 /* some data before physical log end */ 5338 ASSERT(blk_no <= INT_MAX); 5339 split_hblks = log->l_logBBsize - (int)blk_no; 5340 ASSERT(split_hblks > 0); 5341 error = xlog_bread(log, blk_no, 5342 split_hblks, hbp, 5343 &offset); 5344 if (error) 5345 goto bread_err2; 5346 } 5347 5348 /* 5349 * Note: this black magic still works with 5350 * large sector sizes (non-512) only because: 5351 * - we increased the buffer size originally 5352 * by 1 sector giving us enough extra space 5353 * for the second read; 5354 * - the log start is guaranteed to be sector 5355 * aligned; 5356 * - we read the log end (LR header start) 5357 * _first_, then the log start (LR header end) 5358 * - order is important. 5359 */ 5360 wrapped_hblks = hblks - split_hblks; 5361 error = xlog_bread_noalign(log, 0, 5362 wrapped_hblks, 5363 offset + BBTOB(split_hblks)); 5364 if (error) 5365 goto bread_err2; 5366 } 5367 rhead = (xlog_rec_header_t *)offset; 5368 error = xlog_valid_rec_header(log, rhead, 5369 split_hblks ? blk_no : 0); 5370 if (error) 5371 goto bread_err2; 5372 5373 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 5374 blk_no += hblks; 5375 5376 /* 5377 * Read the log record data in multiple reads if it 5378 * wraps around the end of the log. Note that if the 5379 * header already wrapped, blk_no could point past the 5380 * end of the log. The record data is contiguous in 5381 * that case. 5382 */ 5383 if (blk_no + bblks <= log->l_logBBsize || 5384 blk_no >= log->l_logBBsize) { 5385 rblk_no = xlog_wrap_logbno(log, blk_no); 5386 error = xlog_bread(log, rblk_no, bblks, dbp, 5387 &offset); 5388 if (error) 5389 goto bread_err2; 5390 } else { 5391 /* This log record is split across the 5392 * physical end of log */ 5393 offset = dbp; 5394 split_bblks = 0; 5395 if (blk_no != log->l_logBBsize) { 5396 /* some data is before the physical 5397 * end of log */ 5398 ASSERT(!wrapped_hblks); 5399 ASSERT(blk_no <= INT_MAX); 5400 split_bblks = 5401 log->l_logBBsize - (int)blk_no; 5402 ASSERT(split_bblks > 0); 5403 error = xlog_bread(log, blk_no, 5404 split_bblks, dbp, 5405 &offset); 5406 if (error) 5407 goto bread_err2; 5408 } 5409 5410 /* 5411 * Note: this black magic still works with 5412 * large sector sizes (non-512) only because: 5413 * - we increased the buffer size originally 5414 * by 1 sector giving us enough extra space 5415 * for the second read; 5416 * - the log start is guaranteed to be sector 5417 * aligned; 5418 * - we read the log end (LR header start) 5419 * _first_, then the log start (LR header end) 5420 * - order is important. 5421 */ 5422 error = xlog_bread_noalign(log, 0, 5423 bblks - split_bblks, 5424 offset + BBTOB(split_bblks)); 5425 if (error) 5426 goto bread_err2; 5427 } 5428 5429 error = xlog_recover_process(log, rhash, rhead, offset, 5430 pass, &buffer_list); 5431 if (error) 5432 goto bread_err2; 5433 5434 blk_no += bblks; 5435 rhead_blk = blk_no; 5436 } 5437 5438 ASSERT(blk_no >= log->l_logBBsize); 5439 blk_no -= log->l_logBBsize; 5440 rhead_blk = blk_no; 5441 } 5442 5443 /* read first part of physical log */ 5444 while (blk_no < head_blk) { 5445 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 5446 if (error) 5447 goto bread_err2; 5448 5449 rhead = (xlog_rec_header_t *)offset; 5450 error = xlog_valid_rec_header(log, rhead, blk_no); 5451 if (error) 5452 goto bread_err2; 5453 5454 /* blocks in data section */ 5455 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 5456 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 5457 &offset); 5458 if (error) 5459 goto bread_err2; 5460 5461 error = xlog_recover_process(log, rhash, rhead, offset, pass, 5462 &buffer_list); 5463 if (error) 5464 goto bread_err2; 5465 5466 blk_no += bblks + hblks; 5467 rhead_blk = blk_no; 5468 } 5469 5470 bread_err2: 5471 kmem_free(dbp); 5472 bread_err1: 5473 kmem_free(hbp); 5474 5475 /* 5476 * Submit buffers that have been added from the last record processed, 5477 * regardless of error status. 5478 */ 5479 if (!list_empty(&buffer_list)) 5480 error2 = xfs_buf_delwri_submit(&buffer_list); 5481 5482 if (error && first_bad) 5483 *first_bad = rhead_blk; 5484 5485 /* 5486 * Transactions are freed at commit time but transactions without commit 5487 * records on disk are never committed. Free any that may be left in the 5488 * hash table. 5489 */ 5490 for (i = 0; i < XLOG_RHASH_SIZE; i++) { 5491 struct hlist_node *tmp; 5492 struct xlog_recover *trans; 5493 5494 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list) 5495 xlog_recover_free_trans(trans); 5496 } 5497 5498 return error ? error : error2; 5499 } 5500 5501 /* 5502 * Do the recovery of the log. We actually do this in two phases. 5503 * The two passes are necessary in order to implement the function 5504 * of cancelling a record written into the log. The first pass 5505 * determines those things which have been cancelled, and the 5506 * second pass replays log items normally except for those which 5507 * have been cancelled. The handling of the replay and cancellations 5508 * takes place in the log item type specific routines. 5509 * 5510 * The table of items which have cancel records in the log is allocated 5511 * and freed at this level, since only here do we know when all of 5512 * the log recovery has been completed. 5513 */ 5514 STATIC int 5515 xlog_do_log_recovery( 5516 struct xlog *log, 5517 xfs_daddr_t head_blk, 5518 xfs_daddr_t tail_blk) 5519 { 5520 int error, i; 5521 5522 ASSERT(head_blk != tail_blk); 5523 5524 /* 5525 * First do a pass to find all of the cancelled buf log items. 5526 * Store them in the buf_cancel_table for use in the second pass. 5527 */ 5528 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * 5529 sizeof(struct list_head), 5530 KM_SLEEP); 5531 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 5532 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); 5533 5534 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 5535 XLOG_RECOVER_PASS1, NULL); 5536 if (error != 0) { 5537 kmem_free(log->l_buf_cancel_table); 5538 log->l_buf_cancel_table = NULL; 5539 return error; 5540 } 5541 /* 5542 * Then do a second pass to actually recover the items in the log. 5543 * When it is complete free the table of buf cancel items. 5544 */ 5545 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 5546 XLOG_RECOVER_PASS2, NULL); 5547 #ifdef DEBUG 5548 if (!error) { 5549 int i; 5550 5551 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 5552 ASSERT(list_empty(&log->l_buf_cancel_table[i])); 5553 } 5554 #endif /* DEBUG */ 5555 5556 kmem_free(log->l_buf_cancel_table); 5557 log->l_buf_cancel_table = NULL; 5558 5559 return error; 5560 } 5561 5562 /* 5563 * Do the actual recovery 5564 */ 5565 STATIC int 5566 xlog_do_recover( 5567 struct xlog *log, 5568 xfs_daddr_t head_blk, 5569 xfs_daddr_t tail_blk) 5570 { 5571 struct xfs_mount *mp = log->l_mp; 5572 int error; 5573 xfs_buf_t *bp; 5574 xfs_sb_t *sbp; 5575 5576 trace_xfs_log_recover(log, head_blk, tail_blk); 5577 5578 /* 5579 * First replay the images in the log. 5580 */ 5581 error = xlog_do_log_recovery(log, head_blk, tail_blk); 5582 if (error) 5583 return error; 5584 5585 /* 5586 * If IO errors happened during recovery, bail out. 5587 */ 5588 if (XFS_FORCED_SHUTDOWN(mp)) { 5589 return -EIO; 5590 } 5591 5592 /* 5593 * We now update the tail_lsn since much of the recovery has completed 5594 * and there may be space available to use. If there were no extent 5595 * or iunlinks, we can free up the entire log and set the tail_lsn to 5596 * be the last_sync_lsn. This was set in xlog_find_tail to be the 5597 * lsn of the last known good LR on disk. If there are extent frees 5598 * or iunlinks they will have some entries in the AIL; so we look at 5599 * the AIL to determine how to set the tail_lsn. 5600 */ 5601 xlog_assign_tail_lsn(mp); 5602 5603 /* 5604 * Now that we've finished replaying all buffer and inode 5605 * updates, re-read in the superblock and reverify it. 5606 */ 5607 bp = xfs_getsb(mp); 5608 bp->b_flags &= ~(XBF_DONE | XBF_ASYNC); 5609 ASSERT(!(bp->b_flags & XBF_WRITE)); 5610 bp->b_flags |= XBF_READ; 5611 bp->b_ops = &xfs_sb_buf_ops; 5612 5613 error = xfs_buf_submit(bp); 5614 if (error) { 5615 if (!XFS_FORCED_SHUTDOWN(mp)) { 5616 xfs_buf_ioerror_alert(bp, __func__); 5617 ASSERT(0); 5618 } 5619 xfs_buf_relse(bp); 5620 return error; 5621 } 5622 5623 /* Convert superblock from on-disk format */ 5624 sbp = &mp->m_sb; 5625 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 5626 xfs_buf_relse(bp); 5627 5628 /* re-initialise in-core superblock and geometry structures */ 5629 xfs_reinit_percpu_counters(mp); 5630 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 5631 if (error) { 5632 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error); 5633 return error; 5634 } 5635 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp); 5636 5637 xlog_recover_check_summary(log); 5638 5639 /* Normal transactions can now occur */ 5640 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 5641 return 0; 5642 } 5643 5644 /* 5645 * Perform recovery and re-initialize some log variables in xlog_find_tail. 5646 * 5647 * Return error or zero. 5648 */ 5649 int 5650 xlog_recover( 5651 struct xlog *log) 5652 { 5653 xfs_daddr_t head_blk, tail_blk; 5654 int error; 5655 5656 /* find the tail of the log */ 5657 error = xlog_find_tail(log, &head_blk, &tail_blk); 5658 if (error) 5659 return error; 5660 5661 /* 5662 * The superblock was read before the log was available and thus the LSN 5663 * could not be verified. Check the superblock LSN against the current 5664 * LSN now that it's known. 5665 */ 5666 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) && 5667 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn)) 5668 return -EINVAL; 5669 5670 if (tail_blk != head_blk) { 5671 /* There used to be a comment here: 5672 * 5673 * disallow recovery on read-only mounts. note -- mount 5674 * checks for ENOSPC and turns it into an intelligent 5675 * error message. 5676 * ...but this is no longer true. Now, unless you specify 5677 * NORECOVERY (in which case this function would never be 5678 * called), we just go ahead and recover. We do this all 5679 * under the vfs layer, so we can get away with it unless 5680 * the device itself is read-only, in which case we fail. 5681 */ 5682 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 5683 return error; 5684 } 5685 5686 /* 5687 * Version 5 superblock log feature mask validation. We know the 5688 * log is dirty so check if there are any unknown log features 5689 * in what we need to recover. If there are unknown features 5690 * (e.g. unsupported transactions, then simply reject the 5691 * attempt at recovery before touching anything. 5692 */ 5693 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 && 5694 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, 5695 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { 5696 xfs_warn(log->l_mp, 5697 "Superblock has unknown incompatible log features (0x%x) enabled.", 5698 (log->l_mp->m_sb.sb_features_log_incompat & 5699 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 5700 xfs_warn(log->l_mp, 5701 "The log can not be fully and/or safely recovered by this kernel."); 5702 xfs_warn(log->l_mp, 5703 "Please recover the log on a kernel that supports the unknown features."); 5704 return -EINVAL; 5705 } 5706 5707 /* 5708 * Delay log recovery if the debug hook is set. This is debug 5709 * instrumention to coordinate simulation of I/O failures with 5710 * log recovery. 5711 */ 5712 if (xfs_globals.log_recovery_delay) { 5713 xfs_notice(log->l_mp, 5714 "Delaying log recovery for %d seconds.", 5715 xfs_globals.log_recovery_delay); 5716 msleep(xfs_globals.log_recovery_delay * 1000); 5717 } 5718 5719 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", 5720 log->l_mp->m_logname ? log->l_mp->m_logname 5721 : "internal"); 5722 5723 error = xlog_do_recover(log, head_blk, tail_blk); 5724 log->l_flags |= XLOG_RECOVERY_NEEDED; 5725 } 5726 return error; 5727 } 5728 5729 /* 5730 * In the first part of recovery we replay inodes and buffers and build 5731 * up the list of extent free items which need to be processed. Here 5732 * we process the extent free items and clean up the on disk unlinked 5733 * inode lists. This is separated from the first part of recovery so 5734 * that the root and real-time bitmap inodes can be read in from disk in 5735 * between the two stages. This is necessary so that we can free space 5736 * in the real-time portion of the file system. 5737 */ 5738 int 5739 xlog_recover_finish( 5740 struct xlog *log) 5741 { 5742 /* 5743 * Now we're ready to do the transactions needed for the 5744 * rest of recovery. Start with completing all the extent 5745 * free intent records and then process the unlinked inode 5746 * lists. At this point, we essentially run in normal mode 5747 * except that we're still performing recovery actions 5748 * rather than accepting new requests. 5749 */ 5750 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 5751 int error; 5752 error = xlog_recover_process_intents(log); 5753 if (error) { 5754 xfs_alert(log->l_mp, "Failed to recover intents"); 5755 return error; 5756 } 5757 5758 /* 5759 * Sync the log to get all the intents out of the AIL. 5760 * This isn't absolutely necessary, but it helps in 5761 * case the unlink transactions would have problems 5762 * pushing the intents out of the way. 5763 */ 5764 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 5765 5766 xlog_recover_process_iunlinks(log); 5767 5768 xlog_recover_check_summary(log); 5769 5770 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", 5771 log->l_mp->m_logname ? log->l_mp->m_logname 5772 : "internal"); 5773 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 5774 } else { 5775 xfs_info(log->l_mp, "Ending clean mount"); 5776 } 5777 return 0; 5778 } 5779 5780 void 5781 xlog_recover_cancel( 5782 struct xlog *log) 5783 { 5784 if (log->l_flags & XLOG_RECOVERY_NEEDED) 5785 xlog_recover_cancel_intents(log); 5786 } 5787 5788 #if defined(DEBUG) 5789 /* 5790 * Read all of the agf and agi counters and check that they 5791 * are consistent with the superblock counters. 5792 */ 5793 STATIC void 5794 xlog_recover_check_summary( 5795 struct xlog *log) 5796 { 5797 xfs_mount_t *mp; 5798 xfs_agf_t *agfp; 5799 xfs_buf_t *agfbp; 5800 xfs_buf_t *agibp; 5801 xfs_agnumber_t agno; 5802 uint64_t freeblks; 5803 uint64_t itotal; 5804 uint64_t ifree; 5805 int error; 5806 5807 mp = log->l_mp; 5808 5809 freeblks = 0LL; 5810 itotal = 0LL; 5811 ifree = 0LL; 5812 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 5813 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 5814 if (error) { 5815 xfs_alert(mp, "%s agf read failed agno %d error %d", 5816 __func__, agno, error); 5817 } else { 5818 agfp = XFS_BUF_TO_AGF(agfbp); 5819 freeblks += be32_to_cpu(agfp->agf_freeblks) + 5820 be32_to_cpu(agfp->agf_flcount); 5821 xfs_buf_relse(agfbp); 5822 } 5823 5824 error = xfs_read_agi(mp, NULL, agno, &agibp); 5825 if (error) { 5826 xfs_alert(mp, "%s agi read failed agno %d error %d", 5827 __func__, agno, error); 5828 } else { 5829 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 5830 5831 itotal += be32_to_cpu(agi->agi_count); 5832 ifree += be32_to_cpu(agi->agi_freecount); 5833 xfs_buf_relse(agibp); 5834 } 5835 } 5836 } 5837 #endif /* DEBUG */ 5838