xref: /openbmc/linux/fs/xfs/xfs_log_recover.c (revision db181ce0)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_inum.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_da_format.h"
30 #include "xfs_inode.h"
31 #include "xfs_trans.h"
32 #include "xfs_log.h"
33 #include "xfs_log_priv.h"
34 #include "xfs_log_recover.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_extfree_item.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_alloc.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_quota.h"
41 #include "xfs_cksum.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_bmap_btree.h"
45 #include "xfs_dinode.h"
46 #include "xfs_error.h"
47 #include "xfs_dir2.h"
48 
49 #define BLK_AVG(blk1, blk2)	((blk1+blk2) >> 1)
50 
51 STATIC int
52 xlog_find_zeroed(
53 	struct xlog	*,
54 	xfs_daddr_t	*);
55 STATIC int
56 xlog_clear_stale_blocks(
57 	struct xlog	*,
58 	xfs_lsn_t);
59 #if defined(DEBUG)
60 STATIC void
61 xlog_recover_check_summary(
62 	struct xlog *);
63 #else
64 #define	xlog_recover_check_summary(log)
65 #endif
66 
67 /*
68  * This structure is used during recovery to record the buf log items which
69  * have been canceled and should not be replayed.
70  */
71 struct xfs_buf_cancel {
72 	xfs_daddr_t		bc_blkno;
73 	uint			bc_len;
74 	int			bc_refcount;
75 	struct list_head	bc_list;
76 };
77 
78 /*
79  * Sector aligned buffer routines for buffer create/read/write/access
80  */
81 
82 /*
83  * Verify the given count of basic blocks is valid number of blocks
84  * to specify for an operation involving the given XFS log buffer.
85  * Returns nonzero if the count is valid, 0 otherwise.
86  */
87 
88 static inline int
89 xlog_buf_bbcount_valid(
90 	struct xlog	*log,
91 	int		bbcount)
92 {
93 	return bbcount > 0 && bbcount <= log->l_logBBsize;
94 }
95 
96 /*
97  * Allocate a buffer to hold log data.  The buffer needs to be able
98  * to map to a range of nbblks basic blocks at any valid (basic
99  * block) offset within the log.
100  */
101 STATIC xfs_buf_t *
102 xlog_get_bp(
103 	struct xlog	*log,
104 	int		nbblks)
105 {
106 	struct xfs_buf	*bp;
107 
108 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
109 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
110 			nbblks);
111 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
112 		return NULL;
113 	}
114 
115 	/*
116 	 * We do log I/O in units of log sectors (a power-of-2
117 	 * multiple of the basic block size), so we round up the
118 	 * requested size to accommodate the basic blocks required
119 	 * for complete log sectors.
120 	 *
121 	 * In addition, the buffer may be used for a non-sector-
122 	 * aligned block offset, in which case an I/O of the
123 	 * requested size could extend beyond the end of the
124 	 * buffer.  If the requested size is only 1 basic block it
125 	 * will never straddle a sector boundary, so this won't be
126 	 * an issue.  Nor will this be a problem if the log I/O is
127 	 * done in basic blocks (sector size 1).  But otherwise we
128 	 * extend the buffer by one extra log sector to ensure
129 	 * there's space to accommodate this possibility.
130 	 */
131 	if (nbblks > 1 && log->l_sectBBsize > 1)
132 		nbblks += log->l_sectBBsize;
133 	nbblks = round_up(nbblks, log->l_sectBBsize);
134 
135 	bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
136 	if (bp)
137 		xfs_buf_unlock(bp);
138 	return bp;
139 }
140 
141 STATIC void
142 xlog_put_bp(
143 	xfs_buf_t	*bp)
144 {
145 	xfs_buf_free(bp);
146 }
147 
148 /*
149  * Return the address of the start of the given block number's data
150  * in a log buffer.  The buffer covers a log sector-aligned region.
151  */
152 STATIC xfs_caddr_t
153 xlog_align(
154 	struct xlog	*log,
155 	xfs_daddr_t	blk_no,
156 	int		nbblks,
157 	struct xfs_buf	*bp)
158 {
159 	xfs_daddr_t	offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
160 
161 	ASSERT(offset + nbblks <= bp->b_length);
162 	return bp->b_addr + BBTOB(offset);
163 }
164 
165 
166 /*
167  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
168  */
169 STATIC int
170 xlog_bread_noalign(
171 	struct xlog	*log,
172 	xfs_daddr_t	blk_no,
173 	int		nbblks,
174 	struct xfs_buf	*bp)
175 {
176 	int		error;
177 
178 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
179 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
180 			nbblks);
181 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
182 		return EFSCORRUPTED;
183 	}
184 
185 	blk_no = round_down(blk_no, log->l_sectBBsize);
186 	nbblks = round_up(nbblks, log->l_sectBBsize);
187 
188 	ASSERT(nbblks > 0);
189 	ASSERT(nbblks <= bp->b_length);
190 
191 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
192 	XFS_BUF_READ(bp);
193 	bp->b_io_length = nbblks;
194 	bp->b_error = 0;
195 
196 	if (XFS_FORCED_SHUTDOWN(log->l_mp))
197 		return XFS_ERROR(EIO);
198 
199 	xfs_buf_iorequest(bp);
200 	error = xfs_buf_iowait(bp);
201 	if (error)
202 		xfs_buf_ioerror_alert(bp, __func__);
203 	return error;
204 }
205 
206 STATIC int
207 xlog_bread(
208 	struct xlog	*log,
209 	xfs_daddr_t	blk_no,
210 	int		nbblks,
211 	struct xfs_buf	*bp,
212 	xfs_caddr_t	*offset)
213 {
214 	int		error;
215 
216 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
217 	if (error)
218 		return error;
219 
220 	*offset = xlog_align(log, blk_no, nbblks, bp);
221 	return 0;
222 }
223 
224 /*
225  * Read at an offset into the buffer. Returns with the buffer in it's original
226  * state regardless of the result of the read.
227  */
228 STATIC int
229 xlog_bread_offset(
230 	struct xlog	*log,
231 	xfs_daddr_t	blk_no,		/* block to read from */
232 	int		nbblks,		/* blocks to read */
233 	struct xfs_buf	*bp,
234 	xfs_caddr_t	offset)
235 {
236 	xfs_caddr_t	orig_offset = bp->b_addr;
237 	int		orig_len = BBTOB(bp->b_length);
238 	int		error, error2;
239 
240 	error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
241 	if (error)
242 		return error;
243 
244 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
245 
246 	/* must reset buffer pointer even on error */
247 	error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
248 	if (error)
249 		return error;
250 	return error2;
251 }
252 
253 /*
254  * Write out the buffer at the given block for the given number of blocks.
255  * The buffer is kept locked across the write and is returned locked.
256  * This can only be used for synchronous log writes.
257  */
258 STATIC int
259 xlog_bwrite(
260 	struct xlog	*log,
261 	xfs_daddr_t	blk_no,
262 	int		nbblks,
263 	struct xfs_buf	*bp)
264 {
265 	int		error;
266 
267 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
268 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
269 			nbblks);
270 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
271 		return EFSCORRUPTED;
272 	}
273 
274 	blk_no = round_down(blk_no, log->l_sectBBsize);
275 	nbblks = round_up(nbblks, log->l_sectBBsize);
276 
277 	ASSERT(nbblks > 0);
278 	ASSERT(nbblks <= bp->b_length);
279 
280 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
281 	XFS_BUF_ZEROFLAGS(bp);
282 	xfs_buf_hold(bp);
283 	xfs_buf_lock(bp);
284 	bp->b_io_length = nbblks;
285 	bp->b_error = 0;
286 
287 	error = xfs_bwrite(bp);
288 	if (error)
289 		xfs_buf_ioerror_alert(bp, __func__);
290 	xfs_buf_relse(bp);
291 	return error;
292 }
293 
294 #ifdef DEBUG
295 /*
296  * dump debug superblock and log record information
297  */
298 STATIC void
299 xlog_header_check_dump(
300 	xfs_mount_t		*mp,
301 	xlog_rec_header_t	*head)
302 {
303 	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
304 		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
305 	xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
306 		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
307 }
308 #else
309 #define xlog_header_check_dump(mp, head)
310 #endif
311 
312 /*
313  * check log record header for recovery
314  */
315 STATIC int
316 xlog_header_check_recover(
317 	xfs_mount_t		*mp,
318 	xlog_rec_header_t	*head)
319 {
320 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
321 
322 	/*
323 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
324 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
325 	 * a dirty log created in IRIX.
326 	 */
327 	if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
328 		xfs_warn(mp,
329 	"dirty log written in incompatible format - can't recover");
330 		xlog_header_check_dump(mp, head);
331 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
332 				 XFS_ERRLEVEL_HIGH, mp);
333 		return XFS_ERROR(EFSCORRUPTED);
334 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
335 		xfs_warn(mp,
336 	"dirty log entry has mismatched uuid - can't recover");
337 		xlog_header_check_dump(mp, head);
338 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
339 				 XFS_ERRLEVEL_HIGH, mp);
340 		return XFS_ERROR(EFSCORRUPTED);
341 	}
342 	return 0;
343 }
344 
345 /*
346  * read the head block of the log and check the header
347  */
348 STATIC int
349 xlog_header_check_mount(
350 	xfs_mount_t		*mp,
351 	xlog_rec_header_t	*head)
352 {
353 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
354 
355 	if (uuid_is_nil(&head->h_fs_uuid)) {
356 		/*
357 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
358 		 * h_fs_uuid is nil, we assume this log was last mounted
359 		 * by IRIX and continue.
360 		 */
361 		xfs_warn(mp, "nil uuid in log - IRIX style log");
362 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
363 		xfs_warn(mp, "log has mismatched uuid - can't recover");
364 		xlog_header_check_dump(mp, head);
365 		XFS_ERROR_REPORT("xlog_header_check_mount",
366 				 XFS_ERRLEVEL_HIGH, mp);
367 		return XFS_ERROR(EFSCORRUPTED);
368 	}
369 	return 0;
370 }
371 
372 STATIC void
373 xlog_recover_iodone(
374 	struct xfs_buf	*bp)
375 {
376 	if (bp->b_error) {
377 		/*
378 		 * We're not going to bother about retrying
379 		 * this during recovery. One strike!
380 		 */
381 		xfs_buf_ioerror_alert(bp, __func__);
382 		xfs_force_shutdown(bp->b_target->bt_mount,
383 					SHUTDOWN_META_IO_ERROR);
384 	}
385 	bp->b_iodone = NULL;
386 	xfs_buf_ioend(bp, 0);
387 }
388 
389 /*
390  * This routine finds (to an approximation) the first block in the physical
391  * log which contains the given cycle.  It uses a binary search algorithm.
392  * Note that the algorithm can not be perfect because the disk will not
393  * necessarily be perfect.
394  */
395 STATIC int
396 xlog_find_cycle_start(
397 	struct xlog	*log,
398 	struct xfs_buf	*bp,
399 	xfs_daddr_t	first_blk,
400 	xfs_daddr_t	*last_blk,
401 	uint		cycle)
402 {
403 	xfs_caddr_t	offset;
404 	xfs_daddr_t	mid_blk;
405 	xfs_daddr_t	end_blk;
406 	uint		mid_cycle;
407 	int		error;
408 
409 	end_blk = *last_blk;
410 	mid_blk = BLK_AVG(first_blk, end_blk);
411 	while (mid_blk != first_blk && mid_blk != end_blk) {
412 		error = xlog_bread(log, mid_blk, 1, bp, &offset);
413 		if (error)
414 			return error;
415 		mid_cycle = xlog_get_cycle(offset);
416 		if (mid_cycle == cycle)
417 			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
418 		else
419 			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
420 		mid_blk = BLK_AVG(first_blk, end_blk);
421 	}
422 	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
423 	       (mid_blk == end_blk && mid_blk-1 == first_blk));
424 
425 	*last_blk = end_blk;
426 
427 	return 0;
428 }
429 
430 /*
431  * Check that a range of blocks does not contain stop_on_cycle_no.
432  * Fill in *new_blk with the block offset where such a block is
433  * found, or with -1 (an invalid block number) if there is no such
434  * block in the range.  The scan needs to occur from front to back
435  * and the pointer into the region must be updated since a later
436  * routine will need to perform another test.
437  */
438 STATIC int
439 xlog_find_verify_cycle(
440 	struct xlog	*log,
441 	xfs_daddr_t	start_blk,
442 	int		nbblks,
443 	uint		stop_on_cycle_no,
444 	xfs_daddr_t	*new_blk)
445 {
446 	xfs_daddr_t	i, j;
447 	uint		cycle;
448 	xfs_buf_t	*bp;
449 	xfs_daddr_t	bufblks;
450 	xfs_caddr_t	buf = NULL;
451 	int		error = 0;
452 
453 	/*
454 	 * Greedily allocate a buffer big enough to handle the full
455 	 * range of basic blocks we'll be examining.  If that fails,
456 	 * try a smaller size.  We need to be able to read at least
457 	 * a log sector, or we're out of luck.
458 	 */
459 	bufblks = 1 << ffs(nbblks);
460 	while (bufblks > log->l_logBBsize)
461 		bufblks >>= 1;
462 	while (!(bp = xlog_get_bp(log, bufblks))) {
463 		bufblks >>= 1;
464 		if (bufblks < log->l_sectBBsize)
465 			return ENOMEM;
466 	}
467 
468 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
469 		int	bcount;
470 
471 		bcount = min(bufblks, (start_blk + nbblks - i));
472 
473 		error = xlog_bread(log, i, bcount, bp, &buf);
474 		if (error)
475 			goto out;
476 
477 		for (j = 0; j < bcount; j++) {
478 			cycle = xlog_get_cycle(buf);
479 			if (cycle == stop_on_cycle_no) {
480 				*new_blk = i+j;
481 				goto out;
482 			}
483 
484 			buf += BBSIZE;
485 		}
486 	}
487 
488 	*new_blk = -1;
489 
490 out:
491 	xlog_put_bp(bp);
492 	return error;
493 }
494 
495 /*
496  * Potentially backup over partial log record write.
497  *
498  * In the typical case, last_blk is the number of the block directly after
499  * a good log record.  Therefore, we subtract one to get the block number
500  * of the last block in the given buffer.  extra_bblks contains the number
501  * of blocks we would have read on a previous read.  This happens when the
502  * last log record is split over the end of the physical log.
503  *
504  * extra_bblks is the number of blocks potentially verified on a previous
505  * call to this routine.
506  */
507 STATIC int
508 xlog_find_verify_log_record(
509 	struct xlog		*log,
510 	xfs_daddr_t		start_blk,
511 	xfs_daddr_t		*last_blk,
512 	int			extra_bblks)
513 {
514 	xfs_daddr_t		i;
515 	xfs_buf_t		*bp;
516 	xfs_caddr_t		offset = NULL;
517 	xlog_rec_header_t	*head = NULL;
518 	int			error = 0;
519 	int			smallmem = 0;
520 	int			num_blks = *last_blk - start_blk;
521 	int			xhdrs;
522 
523 	ASSERT(start_blk != 0 || *last_blk != start_blk);
524 
525 	if (!(bp = xlog_get_bp(log, num_blks))) {
526 		if (!(bp = xlog_get_bp(log, 1)))
527 			return ENOMEM;
528 		smallmem = 1;
529 	} else {
530 		error = xlog_bread(log, start_blk, num_blks, bp, &offset);
531 		if (error)
532 			goto out;
533 		offset += ((num_blks - 1) << BBSHIFT);
534 	}
535 
536 	for (i = (*last_blk) - 1; i >= 0; i--) {
537 		if (i < start_blk) {
538 			/* valid log record not found */
539 			xfs_warn(log->l_mp,
540 		"Log inconsistent (didn't find previous header)");
541 			ASSERT(0);
542 			error = XFS_ERROR(EIO);
543 			goto out;
544 		}
545 
546 		if (smallmem) {
547 			error = xlog_bread(log, i, 1, bp, &offset);
548 			if (error)
549 				goto out;
550 		}
551 
552 		head = (xlog_rec_header_t *)offset;
553 
554 		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
555 			break;
556 
557 		if (!smallmem)
558 			offset -= BBSIZE;
559 	}
560 
561 	/*
562 	 * We hit the beginning of the physical log & still no header.  Return
563 	 * to caller.  If caller can handle a return of -1, then this routine
564 	 * will be called again for the end of the physical log.
565 	 */
566 	if (i == -1) {
567 		error = -1;
568 		goto out;
569 	}
570 
571 	/*
572 	 * We have the final block of the good log (the first block
573 	 * of the log record _before_ the head. So we check the uuid.
574 	 */
575 	if ((error = xlog_header_check_mount(log->l_mp, head)))
576 		goto out;
577 
578 	/*
579 	 * We may have found a log record header before we expected one.
580 	 * last_blk will be the 1st block # with a given cycle #.  We may end
581 	 * up reading an entire log record.  In this case, we don't want to
582 	 * reset last_blk.  Only when last_blk points in the middle of a log
583 	 * record do we update last_blk.
584 	 */
585 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
586 		uint	h_size = be32_to_cpu(head->h_size);
587 
588 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
589 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
590 			xhdrs++;
591 	} else {
592 		xhdrs = 1;
593 	}
594 
595 	if (*last_blk - i + extra_bblks !=
596 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
597 		*last_blk = i;
598 
599 out:
600 	xlog_put_bp(bp);
601 	return error;
602 }
603 
604 /*
605  * Head is defined to be the point of the log where the next log write
606  * could go.  This means that incomplete LR writes at the end are
607  * eliminated when calculating the head.  We aren't guaranteed that previous
608  * LR have complete transactions.  We only know that a cycle number of
609  * current cycle number -1 won't be present in the log if we start writing
610  * from our current block number.
611  *
612  * last_blk contains the block number of the first block with a given
613  * cycle number.
614  *
615  * Return: zero if normal, non-zero if error.
616  */
617 STATIC int
618 xlog_find_head(
619 	struct xlog	*log,
620 	xfs_daddr_t	*return_head_blk)
621 {
622 	xfs_buf_t	*bp;
623 	xfs_caddr_t	offset;
624 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
625 	int		num_scan_bblks;
626 	uint		first_half_cycle, last_half_cycle;
627 	uint		stop_on_cycle;
628 	int		error, log_bbnum = log->l_logBBsize;
629 
630 	/* Is the end of the log device zeroed? */
631 	if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
632 		*return_head_blk = first_blk;
633 
634 		/* Is the whole lot zeroed? */
635 		if (!first_blk) {
636 			/* Linux XFS shouldn't generate totally zeroed logs -
637 			 * mkfs etc write a dummy unmount record to a fresh
638 			 * log so we can store the uuid in there
639 			 */
640 			xfs_warn(log->l_mp, "totally zeroed log");
641 		}
642 
643 		return 0;
644 	} else if (error) {
645 		xfs_warn(log->l_mp, "empty log check failed");
646 		return error;
647 	}
648 
649 	first_blk = 0;			/* get cycle # of 1st block */
650 	bp = xlog_get_bp(log, 1);
651 	if (!bp)
652 		return ENOMEM;
653 
654 	error = xlog_bread(log, 0, 1, bp, &offset);
655 	if (error)
656 		goto bp_err;
657 
658 	first_half_cycle = xlog_get_cycle(offset);
659 
660 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
661 	error = xlog_bread(log, last_blk, 1, bp, &offset);
662 	if (error)
663 		goto bp_err;
664 
665 	last_half_cycle = xlog_get_cycle(offset);
666 	ASSERT(last_half_cycle != 0);
667 
668 	/*
669 	 * If the 1st half cycle number is equal to the last half cycle number,
670 	 * then the entire log is stamped with the same cycle number.  In this
671 	 * case, head_blk can't be set to zero (which makes sense).  The below
672 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
673 	 * we set it to log_bbnum which is an invalid block number, but this
674 	 * value makes the math correct.  If head_blk doesn't changed through
675 	 * all the tests below, *head_blk is set to zero at the very end rather
676 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
677 	 * in a circular file.
678 	 */
679 	if (first_half_cycle == last_half_cycle) {
680 		/*
681 		 * In this case we believe that the entire log should have
682 		 * cycle number last_half_cycle.  We need to scan backwards
683 		 * from the end verifying that there are no holes still
684 		 * containing last_half_cycle - 1.  If we find such a hole,
685 		 * then the start of that hole will be the new head.  The
686 		 * simple case looks like
687 		 *        x | x ... | x - 1 | x
688 		 * Another case that fits this picture would be
689 		 *        x | x + 1 | x ... | x
690 		 * In this case the head really is somewhere at the end of the
691 		 * log, as one of the latest writes at the beginning was
692 		 * incomplete.
693 		 * One more case is
694 		 *        x | x + 1 | x ... | x - 1 | x
695 		 * This is really the combination of the above two cases, and
696 		 * the head has to end up at the start of the x-1 hole at the
697 		 * end of the log.
698 		 *
699 		 * In the 256k log case, we will read from the beginning to the
700 		 * end of the log and search for cycle numbers equal to x-1.
701 		 * We don't worry about the x+1 blocks that we encounter,
702 		 * because we know that they cannot be the head since the log
703 		 * started with x.
704 		 */
705 		head_blk = log_bbnum;
706 		stop_on_cycle = last_half_cycle - 1;
707 	} else {
708 		/*
709 		 * In this case we want to find the first block with cycle
710 		 * number matching last_half_cycle.  We expect the log to be
711 		 * some variation on
712 		 *        x + 1 ... | x ... | x
713 		 * The first block with cycle number x (last_half_cycle) will
714 		 * be where the new head belongs.  First we do a binary search
715 		 * for the first occurrence of last_half_cycle.  The binary
716 		 * search may not be totally accurate, so then we scan back
717 		 * from there looking for occurrences of last_half_cycle before
718 		 * us.  If that backwards scan wraps around the beginning of
719 		 * the log, then we look for occurrences of last_half_cycle - 1
720 		 * at the end of the log.  The cases we're looking for look
721 		 * like
722 		 *                               v binary search stopped here
723 		 *        x + 1 ... | x | x + 1 | x ... | x
724 		 *                   ^ but we want to locate this spot
725 		 * or
726 		 *        <---------> less than scan distance
727 		 *        x + 1 ... | x ... | x - 1 | x
728 		 *                           ^ we want to locate this spot
729 		 */
730 		stop_on_cycle = last_half_cycle;
731 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
732 						&head_blk, last_half_cycle)))
733 			goto bp_err;
734 	}
735 
736 	/*
737 	 * Now validate the answer.  Scan back some number of maximum possible
738 	 * blocks and make sure each one has the expected cycle number.  The
739 	 * maximum is determined by the total possible amount of buffering
740 	 * in the in-core log.  The following number can be made tighter if
741 	 * we actually look at the block size of the filesystem.
742 	 */
743 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
744 	if (head_blk >= num_scan_bblks) {
745 		/*
746 		 * We are guaranteed that the entire check can be performed
747 		 * in one buffer.
748 		 */
749 		start_blk = head_blk - num_scan_bblks;
750 		if ((error = xlog_find_verify_cycle(log,
751 						start_blk, num_scan_bblks,
752 						stop_on_cycle, &new_blk)))
753 			goto bp_err;
754 		if (new_blk != -1)
755 			head_blk = new_blk;
756 	} else {		/* need to read 2 parts of log */
757 		/*
758 		 * We are going to scan backwards in the log in two parts.
759 		 * First we scan the physical end of the log.  In this part
760 		 * of the log, we are looking for blocks with cycle number
761 		 * last_half_cycle - 1.
762 		 * If we find one, then we know that the log starts there, as
763 		 * we've found a hole that didn't get written in going around
764 		 * the end of the physical log.  The simple case for this is
765 		 *        x + 1 ... | x ... | x - 1 | x
766 		 *        <---------> less than scan distance
767 		 * If all of the blocks at the end of the log have cycle number
768 		 * last_half_cycle, then we check the blocks at the start of
769 		 * the log looking for occurrences of last_half_cycle.  If we
770 		 * find one, then our current estimate for the location of the
771 		 * first occurrence of last_half_cycle is wrong and we move
772 		 * back to the hole we've found.  This case looks like
773 		 *        x + 1 ... | x | x + 1 | x ...
774 		 *                               ^ binary search stopped here
775 		 * Another case we need to handle that only occurs in 256k
776 		 * logs is
777 		 *        x + 1 ... | x ... | x+1 | x ...
778 		 *                   ^ binary search stops here
779 		 * In a 256k log, the scan at the end of the log will see the
780 		 * x + 1 blocks.  We need to skip past those since that is
781 		 * certainly not the head of the log.  By searching for
782 		 * last_half_cycle-1 we accomplish that.
783 		 */
784 		ASSERT(head_blk <= INT_MAX &&
785 			(xfs_daddr_t) num_scan_bblks >= head_blk);
786 		start_blk = log_bbnum - (num_scan_bblks - head_blk);
787 		if ((error = xlog_find_verify_cycle(log, start_blk,
788 					num_scan_bblks - (int)head_blk,
789 					(stop_on_cycle - 1), &new_blk)))
790 			goto bp_err;
791 		if (new_blk != -1) {
792 			head_blk = new_blk;
793 			goto validate_head;
794 		}
795 
796 		/*
797 		 * Scan beginning of log now.  The last part of the physical
798 		 * log is good.  This scan needs to verify that it doesn't find
799 		 * the last_half_cycle.
800 		 */
801 		start_blk = 0;
802 		ASSERT(head_blk <= INT_MAX);
803 		if ((error = xlog_find_verify_cycle(log,
804 					start_blk, (int)head_blk,
805 					stop_on_cycle, &new_blk)))
806 			goto bp_err;
807 		if (new_blk != -1)
808 			head_blk = new_blk;
809 	}
810 
811 validate_head:
812 	/*
813 	 * Now we need to make sure head_blk is not pointing to a block in
814 	 * the middle of a log record.
815 	 */
816 	num_scan_bblks = XLOG_REC_SHIFT(log);
817 	if (head_blk >= num_scan_bblks) {
818 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
819 
820 		/* start ptr at last block ptr before head_blk */
821 		if ((error = xlog_find_verify_log_record(log, start_blk,
822 							&head_blk, 0)) == -1) {
823 			error = XFS_ERROR(EIO);
824 			goto bp_err;
825 		} else if (error)
826 			goto bp_err;
827 	} else {
828 		start_blk = 0;
829 		ASSERT(head_blk <= INT_MAX);
830 		if ((error = xlog_find_verify_log_record(log, start_blk,
831 							&head_blk, 0)) == -1) {
832 			/* We hit the beginning of the log during our search */
833 			start_blk = log_bbnum - (num_scan_bblks - head_blk);
834 			new_blk = log_bbnum;
835 			ASSERT(start_blk <= INT_MAX &&
836 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
837 			ASSERT(head_blk <= INT_MAX);
838 			if ((error = xlog_find_verify_log_record(log,
839 							start_blk, &new_blk,
840 							(int)head_blk)) == -1) {
841 				error = XFS_ERROR(EIO);
842 				goto bp_err;
843 			} else if (error)
844 				goto bp_err;
845 			if (new_blk != log_bbnum)
846 				head_blk = new_blk;
847 		} else if (error)
848 			goto bp_err;
849 	}
850 
851 	xlog_put_bp(bp);
852 	if (head_blk == log_bbnum)
853 		*return_head_blk = 0;
854 	else
855 		*return_head_blk = head_blk;
856 	/*
857 	 * When returning here, we have a good block number.  Bad block
858 	 * means that during a previous crash, we didn't have a clean break
859 	 * from cycle number N to cycle number N-1.  In this case, we need
860 	 * to find the first block with cycle number N-1.
861 	 */
862 	return 0;
863 
864  bp_err:
865 	xlog_put_bp(bp);
866 
867 	if (error)
868 		xfs_warn(log->l_mp, "failed to find log head");
869 	return error;
870 }
871 
872 /*
873  * Find the sync block number or the tail of the log.
874  *
875  * This will be the block number of the last record to have its
876  * associated buffers synced to disk.  Every log record header has
877  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
878  * to get a sync block number.  The only concern is to figure out which
879  * log record header to believe.
880  *
881  * The following algorithm uses the log record header with the largest
882  * lsn.  The entire log record does not need to be valid.  We only care
883  * that the header is valid.
884  *
885  * We could speed up search by using current head_blk buffer, but it is not
886  * available.
887  */
888 STATIC int
889 xlog_find_tail(
890 	struct xlog		*log,
891 	xfs_daddr_t		*head_blk,
892 	xfs_daddr_t		*tail_blk)
893 {
894 	xlog_rec_header_t	*rhead;
895 	xlog_op_header_t	*op_head;
896 	xfs_caddr_t		offset = NULL;
897 	xfs_buf_t		*bp;
898 	int			error, i, found;
899 	xfs_daddr_t		umount_data_blk;
900 	xfs_daddr_t		after_umount_blk;
901 	xfs_lsn_t		tail_lsn;
902 	int			hblks;
903 
904 	found = 0;
905 
906 	/*
907 	 * Find previous log record
908 	 */
909 	if ((error = xlog_find_head(log, head_blk)))
910 		return error;
911 
912 	bp = xlog_get_bp(log, 1);
913 	if (!bp)
914 		return ENOMEM;
915 	if (*head_blk == 0) {				/* special case */
916 		error = xlog_bread(log, 0, 1, bp, &offset);
917 		if (error)
918 			goto done;
919 
920 		if (xlog_get_cycle(offset) == 0) {
921 			*tail_blk = 0;
922 			/* leave all other log inited values alone */
923 			goto done;
924 		}
925 	}
926 
927 	/*
928 	 * Search backwards looking for log record header block
929 	 */
930 	ASSERT(*head_blk < INT_MAX);
931 	for (i = (int)(*head_blk) - 1; i >= 0; i--) {
932 		error = xlog_bread(log, i, 1, bp, &offset);
933 		if (error)
934 			goto done;
935 
936 		if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
937 			found = 1;
938 			break;
939 		}
940 	}
941 	/*
942 	 * If we haven't found the log record header block, start looking
943 	 * again from the end of the physical log.  XXXmiken: There should be
944 	 * a check here to make sure we didn't search more than N blocks in
945 	 * the previous code.
946 	 */
947 	if (!found) {
948 		for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
949 			error = xlog_bread(log, i, 1, bp, &offset);
950 			if (error)
951 				goto done;
952 
953 			if (*(__be32 *)offset ==
954 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
955 				found = 2;
956 				break;
957 			}
958 		}
959 	}
960 	if (!found) {
961 		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
962 		xlog_put_bp(bp);
963 		ASSERT(0);
964 		return XFS_ERROR(EIO);
965 	}
966 
967 	/* find blk_no of tail of log */
968 	rhead = (xlog_rec_header_t *)offset;
969 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
970 
971 	/*
972 	 * Reset log values according to the state of the log when we
973 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
974 	 * one because the next write starts a new cycle rather than
975 	 * continuing the cycle of the last good log record.  At this
976 	 * point we have guaranteed that all partial log records have been
977 	 * accounted for.  Therefore, we know that the last good log record
978 	 * written was complete and ended exactly on the end boundary
979 	 * of the physical log.
980 	 */
981 	log->l_prev_block = i;
982 	log->l_curr_block = (int)*head_blk;
983 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
984 	if (found == 2)
985 		log->l_curr_cycle++;
986 	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
987 	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
988 	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
989 					BBTOB(log->l_curr_block));
990 	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
991 					BBTOB(log->l_curr_block));
992 
993 	/*
994 	 * Look for unmount record.  If we find it, then we know there
995 	 * was a clean unmount.  Since 'i' could be the last block in
996 	 * the physical log, we convert to a log block before comparing
997 	 * to the head_blk.
998 	 *
999 	 * Save the current tail lsn to use to pass to
1000 	 * xlog_clear_stale_blocks() below.  We won't want to clear the
1001 	 * unmount record if there is one, so we pass the lsn of the
1002 	 * unmount record rather than the block after it.
1003 	 */
1004 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1005 		int	h_size = be32_to_cpu(rhead->h_size);
1006 		int	h_version = be32_to_cpu(rhead->h_version);
1007 
1008 		if ((h_version & XLOG_VERSION_2) &&
1009 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1010 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1011 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
1012 				hblks++;
1013 		} else {
1014 			hblks = 1;
1015 		}
1016 	} else {
1017 		hblks = 1;
1018 	}
1019 	after_umount_blk = (i + hblks + (int)
1020 		BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1021 	tail_lsn = atomic64_read(&log->l_tail_lsn);
1022 	if (*head_blk == after_umount_blk &&
1023 	    be32_to_cpu(rhead->h_num_logops) == 1) {
1024 		umount_data_blk = (i + hblks) % log->l_logBBsize;
1025 		error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1026 		if (error)
1027 			goto done;
1028 
1029 		op_head = (xlog_op_header_t *)offset;
1030 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1031 			/*
1032 			 * Set tail and last sync so that newly written
1033 			 * log records will point recovery to after the
1034 			 * current unmount record.
1035 			 */
1036 			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1037 					log->l_curr_cycle, after_umount_blk);
1038 			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1039 					log->l_curr_cycle, after_umount_blk);
1040 			*tail_blk = after_umount_blk;
1041 
1042 			/*
1043 			 * Note that the unmount was clean. If the unmount
1044 			 * was not clean, we need to know this to rebuild the
1045 			 * superblock counters from the perag headers if we
1046 			 * have a filesystem using non-persistent counters.
1047 			 */
1048 			log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1049 		}
1050 	}
1051 
1052 	/*
1053 	 * Make sure that there are no blocks in front of the head
1054 	 * with the same cycle number as the head.  This can happen
1055 	 * because we allow multiple outstanding log writes concurrently,
1056 	 * and the later writes might make it out before earlier ones.
1057 	 *
1058 	 * We use the lsn from before modifying it so that we'll never
1059 	 * overwrite the unmount record after a clean unmount.
1060 	 *
1061 	 * Do this only if we are going to recover the filesystem
1062 	 *
1063 	 * NOTE: This used to say "if (!readonly)"
1064 	 * However on Linux, we can & do recover a read-only filesystem.
1065 	 * We only skip recovery if NORECOVERY is specified on mount,
1066 	 * in which case we would not be here.
1067 	 *
1068 	 * But... if the -device- itself is readonly, just skip this.
1069 	 * We can't recover this device anyway, so it won't matter.
1070 	 */
1071 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1072 		error = xlog_clear_stale_blocks(log, tail_lsn);
1073 
1074 done:
1075 	xlog_put_bp(bp);
1076 
1077 	if (error)
1078 		xfs_warn(log->l_mp, "failed to locate log tail");
1079 	return error;
1080 }
1081 
1082 /*
1083  * Is the log zeroed at all?
1084  *
1085  * The last binary search should be changed to perform an X block read
1086  * once X becomes small enough.  You can then search linearly through
1087  * the X blocks.  This will cut down on the number of reads we need to do.
1088  *
1089  * If the log is partially zeroed, this routine will pass back the blkno
1090  * of the first block with cycle number 0.  It won't have a complete LR
1091  * preceding it.
1092  *
1093  * Return:
1094  *	0  => the log is completely written to
1095  *	-1 => use *blk_no as the first block of the log
1096  *	>0 => error has occurred
1097  */
1098 STATIC int
1099 xlog_find_zeroed(
1100 	struct xlog	*log,
1101 	xfs_daddr_t	*blk_no)
1102 {
1103 	xfs_buf_t	*bp;
1104 	xfs_caddr_t	offset;
1105 	uint	        first_cycle, last_cycle;
1106 	xfs_daddr_t	new_blk, last_blk, start_blk;
1107 	xfs_daddr_t     num_scan_bblks;
1108 	int	        error, log_bbnum = log->l_logBBsize;
1109 
1110 	*blk_no = 0;
1111 
1112 	/* check totally zeroed log */
1113 	bp = xlog_get_bp(log, 1);
1114 	if (!bp)
1115 		return ENOMEM;
1116 	error = xlog_bread(log, 0, 1, bp, &offset);
1117 	if (error)
1118 		goto bp_err;
1119 
1120 	first_cycle = xlog_get_cycle(offset);
1121 	if (first_cycle == 0) {		/* completely zeroed log */
1122 		*blk_no = 0;
1123 		xlog_put_bp(bp);
1124 		return -1;
1125 	}
1126 
1127 	/* check partially zeroed log */
1128 	error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1129 	if (error)
1130 		goto bp_err;
1131 
1132 	last_cycle = xlog_get_cycle(offset);
1133 	if (last_cycle != 0) {		/* log completely written to */
1134 		xlog_put_bp(bp);
1135 		return 0;
1136 	} else if (first_cycle != 1) {
1137 		/*
1138 		 * If the cycle of the last block is zero, the cycle of
1139 		 * the first block must be 1. If it's not, maybe we're
1140 		 * not looking at a log... Bail out.
1141 		 */
1142 		xfs_warn(log->l_mp,
1143 			"Log inconsistent or not a log (last==0, first!=1)");
1144 		error = XFS_ERROR(EINVAL);
1145 		goto bp_err;
1146 	}
1147 
1148 	/* we have a partially zeroed log */
1149 	last_blk = log_bbnum-1;
1150 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1151 		goto bp_err;
1152 
1153 	/*
1154 	 * Validate the answer.  Because there is no way to guarantee that
1155 	 * the entire log is made up of log records which are the same size,
1156 	 * we scan over the defined maximum blocks.  At this point, the maximum
1157 	 * is not chosen to mean anything special.   XXXmiken
1158 	 */
1159 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1160 	ASSERT(num_scan_bblks <= INT_MAX);
1161 
1162 	if (last_blk < num_scan_bblks)
1163 		num_scan_bblks = last_blk;
1164 	start_blk = last_blk - num_scan_bblks;
1165 
1166 	/*
1167 	 * We search for any instances of cycle number 0 that occur before
1168 	 * our current estimate of the head.  What we're trying to detect is
1169 	 *        1 ... | 0 | 1 | 0...
1170 	 *                       ^ binary search ends here
1171 	 */
1172 	if ((error = xlog_find_verify_cycle(log, start_blk,
1173 					 (int)num_scan_bblks, 0, &new_blk)))
1174 		goto bp_err;
1175 	if (new_blk != -1)
1176 		last_blk = new_blk;
1177 
1178 	/*
1179 	 * Potentially backup over partial log record write.  We don't need
1180 	 * to search the end of the log because we know it is zero.
1181 	 */
1182 	if ((error = xlog_find_verify_log_record(log, start_blk,
1183 				&last_blk, 0)) == -1) {
1184 	    error = XFS_ERROR(EIO);
1185 	    goto bp_err;
1186 	} else if (error)
1187 	    goto bp_err;
1188 
1189 	*blk_no = last_blk;
1190 bp_err:
1191 	xlog_put_bp(bp);
1192 	if (error)
1193 		return error;
1194 	return -1;
1195 }
1196 
1197 /*
1198  * These are simple subroutines used by xlog_clear_stale_blocks() below
1199  * to initialize a buffer full of empty log record headers and write
1200  * them into the log.
1201  */
1202 STATIC void
1203 xlog_add_record(
1204 	struct xlog		*log,
1205 	xfs_caddr_t		buf,
1206 	int			cycle,
1207 	int			block,
1208 	int			tail_cycle,
1209 	int			tail_block)
1210 {
1211 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1212 
1213 	memset(buf, 0, BBSIZE);
1214 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1215 	recp->h_cycle = cpu_to_be32(cycle);
1216 	recp->h_version = cpu_to_be32(
1217 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1218 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1219 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1220 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1221 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1222 }
1223 
1224 STATIC int
1225 xlog_write_log_records(
1226 	struct xlog	*log,
1227 	int		cycle,
1228 	int		start_block,
1229 	int		blocks,
1230 	int		tail_cycle,
1231 	int		tail_block)
1232 {
1233 	xfs_caddr_t	offset;
1234 	xfs_buf_t	*bp;
1235 	int		balign, ealign;
1236 	int		sectbb = log->l_sectBBsize;
1237 	int		end_block = start_block + blocks;
1238 	int		bufblks;
1239 	int		error = 0;
1240 	int		i, j = 0;
1241 
1242 	/*
1243 	 * Greedily allocate a buffer big enough to handle the full
1244 	 * range of basic blocks to be written.  If that fails, try
1245 	 * a smaller size.  We need to be able to write at least a
1246 	 * log sector, or we're out of luck.
1247 	 */
1248 	bufblks = 1 << ffs(blocks);
1249 	while (bufblks > log->l_logBBsize)
1250 		bufblks >>= 1;
1251 	while (!(bp = xlog_get_bp(log, bufblks))) {
1252 		bufblks >>= 1;
1253 		if (bufblks < sectbb)
1254 			return ENOMEM;
1255 	}
1256 
1257 	/* We may need to do a read at the start to fill in part of
1258 	 * the buffer in the starting sector not covered by the first
1259 	 * write below.
1260 	 */
1261 	balign = round_down(start_block, sectbb);
1262 	if (balign != start_block) {
1263 		error = xlog_bread_noalign(log, start_block, 1, bp);
1264 		if (error)
1265 			goto out_put_bp;
1266 
1267 		j = start_block - balign;
1268 	}
1269 
1270 	for (i = start_block; i < end_block; i += bufblks) {
1271 		int		bcount, endcount;
1272 
1273 		bcount = min(bufblks, end_block - start_block);
1274 		endcount = bcount - j;
1275 
1276 		/* We may need to do a read at the end to fill in part of
1277 		 * the buffer in the final sector not covered by the write.
1278 		 * If this is the same sector as the above read, skip it.
1279 		 */
1280 		ealign = round_down(end_block, sectbb);
1281 		if (j == 0 && (start_block + endcount > ealign)) {
1282 			offset = bp->b_addr + BBTOB(ealign - start_block);
1283 			error = xlog_bread_offset(log, ealign, sectbb,
1284 							bp, offset);
1285 			if (error)
1286 				break;
1287 
1288 		}
1289 
1290 		offset = xlog_align(log, start_block, endcount, bp);
1291 		for (; j < endcount; j++) {
1292 			xlog_add_record(log, offset, cycle, i+j,
1293 					tail_cycle, tail_block);
1294 			offset += BBSIZE;
1295 		}
1296 		error = xlog_bwrite(log, start_block, endcount, bp);
1297 		if (error)
1298 			break;
1299 		start_block += endcount;
1300 		j = 0;
1301 	}
1302 
1303  out_put_bp:
1304 	xlog_put_bp(bp);
1305 	return error;
1306 }
1307 
1308 /*
1309  * This routine is called to blow away any incomplete log writes out
1310  * in front of the log head.  We do this so that we won't become confused
1311  * if we come up, write only a little bit more, and then crash again.
1312  * If we leave the partial log records out there, this situation could
1313  * cause us to think those partial writes are valid blocks since they
1314  * have the current cycle number.  We get rid of them by overwriting them
1315  * with empty log records with the old cycle number rather than the
1316  * current one.
1317  *
1318  * The tail lsn is passed in rather than taken from
1319  * the log so that we will not write over the unmount record after a
1320  * clean unmount in a 512 block log.  Doing so would leave the log without
1321  * any valid log records in it until a new one was written.  If we crashed
1322  * during that time we would not be able to recover.
1323  */
1324 STATIC int
1325 xlog_clear_stale_blocks(
1326 	struct xlog	*log,
1327 	xfs_lsn_t	tail_lsn)
1328 {
1329 	int		tail_cycle, head_cycle;
1330 	int		tail_block, head_block;
1331 	int		tail_distance, max_distance;
1332 	int		distance;
1333 	int		error;
1334 
1335 	tail_cycle = CYCLE_LSN(tail_lsn);
1336 	tail_block = BLOCK_LSN(tail_lsn);
1337 	head_cycle = log->l_curr_cycle;
1338 	head_block = log->l_curr_block;
1339 
1340 	/*
1341 	 * Figure out the distance between the new head of the log
1342 	 * and the tail.  We want to write over any blocks beyond the
1343 	 * head that we may have written just before the crash, but
1344 	 * we don't want to overwrite the tail of the log.
1345 	 */
1346 	if (head_cycle == tail_cycle) {
1347 		/*
1348 		 * The tail is behind the head in the physical log,
1349 		 * so the distance from the head to the tail is the
1350 		 * distance from the head to the end of the log plus
1351 		 * the distance from the beginning of the log to the
1352 		 * tail.
1353 		 */
1354 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1355 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1356 					 XFS_ERRLEVEL_LOW, log->l_mp);
1357 			return XFS_ERROR(EFSCORRUPTED);
1358 		}
1359 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1360 	} else {
1361 		/*
1362 		 * The head is behind the tail in the physical log,
1363 		 * so the distance from the head to the tail is just
1364 		 * the tail block minus the head block.
1365 		 */
1366 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1367 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1368 					 XFS_ERRLEVEL_LOW, log->l_mp);
1369 			return XFS_ERROR(EFSCORRUPTED);
1370 		}
1371 		tail_distance = tail_block - head_block;
1372 	}
1373 
1374 	/*
1375 	 * If the head is right up against the tail, we can't clear
1376 	 * anything.
1377 	 */
1378 	if (tail_distance <= 0) {
1379 		ASSERT(tail_distance == 0);
1380 		return 0;
1381 	}
1382 
1383 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1384 	/*
1385 	 * Take the smaller of the maximum amount of outstanding I/O
1386 	 * we could have and the distance to the tail to clear out.
1387 	 * We take the smaller so that we don't overwrite the tail and
1388 	 * we don't waste all day writing from the head to the tail
1389 	 * for no reason.
1390 	 */
1391 	max_distance = MIN(max_distance, tail_distance);
1392 
1393 	if ((head_block + max_distance) <= log->l_logBBsize) {
1394 		/*
1395 		 * We can stomp all the blocks we need to without
1396 		 * wrapping around the end of the log.  Just do it
1397 		 * in a single write.  Use the cycle number of the
1398 		 * current cycle minus one so that the log will look like:
1399 		 *     n ... | n - 1 ...
1400 		 */
1401 		error = xlog_write_log_records(log, (head_cycle - 1),
1402 				head_block, max_distance, tail_cycle,
1403 				tail_block);
1404 		if (error)
1405 			return error;
1406 	} else {
1407 		/*
1408 		 * We need to wrap around the end of the physical log in
1409 		 * order to clear all the blocks.  Do it in two separate
1410 		 * I/Os.  The first write should be from the head to the
1411 		 * end of the physical log, and it should use the current
1412 		 * cycle number minus one just like above.
1413 		 */
1414 		distance = log->l_logBBsize - head_block;
1415 		error = xlog_write_log_records(log, (head_cycle - 1),
1416 				head_block, distance, tail_cycle,
1417 				tail_block);
1418 
1419 		if (error)
1420 			return error;
1421 
1422 		/*
1423 		 * Now write the blocks at the start of the physical log.
1424 		 * This writes the remainder of the blocks we want to clear.
1425 		 * It uses the current cycle number since we're now on the
1426 		 * same cycle as the head so that we get:
1427 		 *    n ... n ... | n - 1 ...
1428 		 *    ^^^^^ blocks we're writing
1429 		 */
1430 		distance = max_distance - (log->l_logBBsize - head_block);
1431 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1432 				tail_cycle, tail_block);
1433 		if (error)
1434 			return error;
1435 	}
1436 
1437 	return 0;
1438 }
1439 
1440 /******************************************************************************
1441  *
1442  *		Log recover routines
1443  *
1444  ******************************************************************************
1445  */
1446 
1447 STATIC xlog_recover_t *
1448 xlog_recover_find_tid(
1449 	struct hlist_head	*head,
1450 	xlog_tid_t		tid)
1451 {
1452 	xlog_recover_t		*trans;
1453 
1454 	hlist_for_each_entry(trans, head, r_list) {
1455 		if (trans->r_log_tid == tid)
1456 			return trans;
1457 	}
1458 	return NULL;
1459 }
1460 
1461 STATIC void
1462 xlog_recover_new_tid(
1463 	struct hlist_head	*head,
1464 	xlog_tid_t		tid,
1465 	xfs_lsn_t		lsn)
1466 {
1467 	xlog_recover_t		*trans;
1468 
1469 	trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1470 	trans->r_log_tid   = tid;
1471 	trans->r_lsn	   = lsn;
1472 	INIT_LIST_HEAD(&trans->r_itemq);
1473 
1474 	INIT_HLIST_NODE(&trans->r_list);
1475 	hlist_add_head(&trans->r_list, head);
1476 }
1477 
1478 STATIC void
1479 xlog_recover_add_item(
1480 	struct list_head	*head)
1481 {
1482 	xlog_recover_item_t	*item;
1483 
1484 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1485 	INIT_LIST_HEAD(&item->ri_list);
1486 	list_add_tail(&item->ri_list, head);
1487 }
1488 
1489 STATIC int
1490 xlog_recover_add_to_cont_trans(
1491 	struct xlog		*log,
1492 	struct xlog_recover	*trans,
1493 	xfs_caddr_t		dp,
1494 	int			len)
1495 {
1496 	xlog_recover_item_t	*item;
1497 	xfs_caddr_t		ptr, old_ptr;
1498 	int			old_len;
1499 
1500 	if (list_empty(&trans->r_itemq)) {
1501 		/* finish copying rest of trans header */
1502 		xlog_recover_add_item(&trans->r_itemq);
1503 		ptr = (xfs_caddr_t) &trans->r_theader +
1504 				sizeof(xfs_trans_header_t) - len;
1505 		memcpy(ptr, dp, len); /* d, s, l */
1506 		return 0;
1507 	}
1508 	/* take the tail entry */
1509 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1510 
1511 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1512 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
1513 
1514 	ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1515 	memcpy(&ptr[old_len], dp, len); /* d, s, l */
1516 	item->ri_buf[item->ri_cnt-1].i_len += len;
1517 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1518 	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1519 	return 0;
1520 }
1521 
1522 /*
1523  * The next region to add is the start of a new region.  It could be
1524  * a whole region or it could be the first part of a new region.  Because
1525  * of this, the assumption here is that the type and size fields of all
1526  * format structures fit into the first 32 bits of the structure.
1527  *
1528  * This works because all regions must be 32 bit aligned.  Therefore, we
1529  * either have both fields or we have neither field.  In the case we have
1530  * neither field, the data part of the region is zero length.  We only have
1531  * a log_op_header and can throw away the header since a new one will appear
1532  * later.  If we have at least 4 bytes, then we can determine how many regions
1533  * will appear in the current log item.
1534  */
1535 STATIC int
1536 xlog_recover_add_to_trans(
1537 	struct xlog		*log,
1538 	struct xlog_recover	*trans,
1539 	xfs_caddr_t		dp,
1540 	int			len)
1541 {
1542 	xfs_inode_log_format_t	*in_f;			/* any will do */
1543 	xlog_recover_item_t	*item;
1544 	xfs_caddr_t		ptr;
1545 
1546 	if (!len)
1547 		return 0;
1548 	if (list_empty(&trans->r_itemq)) {
1549 		/* we need to catch log corruptions here */
1550 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1551 			xfs_warn(log->l_mp, "%s: bad header magic number",
1552 				__func__);
1553 			ASSERT(0);
1554 			return XFS_ERROR(EIO);
1555 		}
1556 		if (len == sizeof(xfs_trans_header_t))
1557 			xlog_recover_add_item(&trans->r_itemq);
1558 		memcpy(&trans->r_theader, dp, len); /* d, s, l */
1559 		return 0;
1560 	}
1561 
1562 	ptr = kmem_alloc(len, KM_SLEEP);
1563 	memcpy(ptr, dp, len);
1564 	in_f = (xfs_inode_log_format_t *)ptr;
1565 
1566 	/* take the tail entry */
1567 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1568 	if (item->ri_total != 0 &&
1569 	     item->ri_total == item->ri_cnt) {
1570 		/* tail item is in use, get a new one */
1571 		xlog_recover_add_item(&trans->r_itemq);
1572 		item = list_entry(trans->r_itemq.prev,
1573 					xlog_recover_item_t, ri_list);
1574 	}
1575 
1576 	if (item->ri_total == 0) {		/* first region to be added */
1577 		if (in_f->ilf_size == 0 ||
1578 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1579 			xfs_warn(log->l_mp,
1580 		"bad number of regions (%d) in inode log format",
1581 				  in_f->ilf_size);
1582 			ASSERT(0);
1583 			kmem_free(ptr);
1584 			return XFS_ERROR(EIO);
1585 		}
1586 
1587 		item->ri_total = in_f->ilf_size;
1588 		item->ri_buf =
1589 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1590 				    KM_SLEEP);
1591 	}
1592 	ASSERT(item->ri_total > item->ri_cnt);
1593 	/* Description region is ri_buf[0] */
1594 	item->ri_buf[item->ri_cnt].i_addr = ptr;
1595 	item->ri_buf[item->ri_cnt].i_len  = len;
1596 	item->ri_cnt++;
1597 	trace_xfs_log_recover_item_add(log, trans, item, 0);
1598 	return 0;
1599 }
1600 
1601 /*
1602  * Sort the log items in the transaction.
1603  *
1604  * The ordering constraints are defined by the inode allocation and unlink
1605  * behaviour. The rules are:
1606  *
1607  *	1. Every item is only logged once in a given transaction. Hence it
1608  *	   represents the last logged state of the item. Hence ordering is
1609  *	   dependent on the order in which operations need to be performed so
1610  *	   required initial conditions are always met.
1611  *
1612  *	2. Cancelled buffers are recorded in pass 1 in a separate table and
1613  *	   there's nothing to replay from them so we can simply cull them
1614  *	   from the transaction. However, we can't do that until after we've
1615  *	   replayed all the other items because they may be dependent on the
1616  *	   cancelled buffer and replaying the cancelled buffer can remove it
1617  *	   form the cancelled buffer table. Hence they have tobe done last.
1618  *
1619  *	3. Inode allocation buffers must be replayed before inode items that
1620  *	   read the buffer and replay changes into it. For filesystems using the
1621  *	   ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1622  *	   treated the same as inode allocation buffers as they create and
1623  *	   initialise the buffers directly.
1624  *
1625  *	4. Inode unlink buffers must be replayed after inode items are replayed.
1626  *	   This ensures that inodes are completely flushed to the inode buffer
1627  *	   in a "free" state before we remove the unlinked inode list pointer.
1628  *
1629  * Hence the ordering needs to be inode allocation buffers first, inode items
1630  * second, inode unlink buffers third and cancelled buffers last.
1631  *
1632  * But there's a problem with that - we can't tell an inode allocation buffer
1633  * apart from a regular buffer, so we can't separate them. We can, however,
1634  * tell an inode unlink buffer from the others, and so we can separate them out
1635  * from all the other buffers and move them to last.
1636  *
1637  * Hence, 4 lists, in order from head to tail:
1638  *	- buffer_list for all buffers except cancelled/inode unlink buffers
1639  *	- item_list for all non-buffer items
1640  *	- inode_buffer_list for inode unlink buffers
1641  *	- cancel_list for the cancelled buffers
1642  *
1643  * Note that we add objects to the tail of the lists so that first-to-last
1644  * ordering is preserved within the lists. Adding objects to the head of the
1645  * list means when we traverse from the head we walk them in last-to-first
1646  * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1647  * but for all other items there may be specific ordering that we need to
1648  * preserve.
1649  */
1650 STATIC int
1651 xlog_recover_reorder_trans(
1652 	struct xlog		*log,
1653 	struct xlog_recover	*trans,
1654 	int			pass)
1655 {
1656 	xlog_recover_item_t	*item, *n;
1657 	int			error = 0;
1658 	LIST_HEAD(sort_list);
1659 	LIST_HEAD(cancel_list);
1660 	LIST_HEAD(buffer_list);
1661 	LIST_HEAD(inode_buffer_list);
1662 	LIST_HEAD(inode_list);
1663 
1664 	list_splice_init(&trans->r_itemq, &sort_list);
1665 	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1666 		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1667 
1668 		switch (ITEM_TYPE(item)) {
1669 		case XFS_LI_ICREATE:
1670 			list_move_tail(&item->ri_list, &buffer_list);
1671 			break;
1672 		case XFS_LI_BUF:
1673 			if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1674 				trace_xfs_log_recover_item_reorder_head(log,
1675 							trans, item, pass);
1676 				list_move(&item->ri_list, &cancel_list);
1677 				break;
1678 			}
1679 			if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1680 				list_move(&item->ri_list, &inode_buffer_list);
1681 				break;
1682 			}
1683 			list_move_tail(&item->ri_list, &buffer_list);
1684 			break;
1685 		case XFS_LI_INODE:
1686 		case XFS_LI_DQUOT:
1687 		case XFS_LI_QUOTAOFF:
1688 		case XFS_LI_EFD:
1689 		case XFS_LI_EFI:
1690 			trace_xfs_log_recover_item_reorder_tail(log,
1691 							trans, item, pass);
1692 			list_move_tail(&item->ri_list, &inode_list);
1693 			break;
1694 		default:
1695 			xfs_warn(log->l_mp,
1696 				"%s: unrecognized type of log operation",
1697 				__func__);
1698 			ASSERT(0);
1699 			/*
1700 			 * return the remaining items back to the transaction
1701 			 * item list so they can be freed in caller.
1702 			 */
1703 			if (!list_empty(&sort_list))
1704 				list_splice_init(&sort_list, &trans->r_itemq);
1705 			error = XFS_ERROR(EIO);
1706 			goto out;
1707 		}
1708 	}
1709 out:
1710 	ASSERT(list_empty(&sort_list));
1711 	if (!list_empty(&buffer_list))
1712 		list_splice(&buffer_list, &trans->r_itemq);
1713 	if (!list_empty(&inode_list))
1714 		list_splice_tail(&inode_list, &trans->r_itemq);
1715 	if (!list_empty(&inode_buffer_list))
1716 		list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1717 	if (!list_empty(&cancel_list))
1718 		list_splice_tail(&cancel_list, &trans->r_itemq);
1719 	return error;
1720 }
1721 
1722 /*
1723  * Build up the table of buf cancel records so that we don't replay
1724  * cancelled data in the second pass.  For buffer records that are
1725  * not cancel records, there is nothing to do here so we just return.
1726  *
1727  * If we get a cancel record which is already in the table, this indicates
1728  * that the buffer was cancelled multiple times.  In order to ensure
1729  * that during pass 2 we keep the record in the table until we reach its
1730  * last occurrence in the log, we keep a reference count in the cancel
1731  * record in the table to tell us how many times we expect to see this
1732  * record during the second pass.
1733  */
1734 STATIC int
1735 xlog_recover_buffer_pass1(
1736 	struct xlog			*log,
1737 	struct xlog_recover_item	*item)
1738 {
1739 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1740 	struct list_head	*bucket;
1741 	struct xfs_buf_cancel	*bcp;
1742 
1743 	/*
1744 	 * If this isn't a cancel buffer item, then just return.
1745 	 */
1746 	if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1747 		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1748 		return 0;
1749 	}
1750 
1751 	/*
1752 	 * Insert an xfs_buf_cancel record into the hash table of them.
1753 	 * If there is already an identical record, bump its reference count.
1754 	 */
1755 	bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1756 	list_for_each_entry(bcp, bucket, bc_list) {
1757 		if (bcp->bc_blkno == buf_f->blf_blkno &&
1758 		    bcp->bc_len == buf_f->blf_len) {
1759 			bcp->bc_refcount++;
1760 			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1761 			return 0;
1762 		}
1763 	}
1764 
1765 	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1766 	bcp->bc_blkno = buf_f->blf_blkno;
1767 	bcp->bc_len = buf_f->blf_len;
1768 	bcp->bc_refcount = 1;
1769 	list_add_tail(&bcp->bc_list, bucket);
1770 
1771 	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1772 	return 0;
1773 }
1774 
1775 /*
1776  * Check to see whether the buffer being recovered has a corresponding
1777  * entry in the buffer cancel record table. If it is, return the cancel
1778  * buffer structure to the caller.
1779  */
1780 STATIC struct xfs_buf_cancel *
1781 xlog_peek_buffer_cancelled(
1782 	struct xlog		*log,
1783 	xfs_daddr_t		blkno,
1784 	uint			len,
1785 	ushort			flags)
1786 {
1787 	struct list_head	*bucket;
1788 	struct xfs_buf_cancel	*bcp;
1789 
1790 	if (!log->l_buf_cancel_table) {
1791 		/* empty table means no cancelled buffers in the log */
1792 		ASSERT(!(flags & XFS_BLF_CANCEL));
1793 		return NULL;
1794 	}
1795 
1796 	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1797 	list_for_each_entry(bcp, bucket, bc_list) {
1798 		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1799 			return bcp;
1800 	}
1801 
1802 	/*
1803 	 * We didn't find a corresponding entry in the table, so return 0 so
1804 	 * that the buffer is NOT cancelled.
1805 	 */
1806 	ASSERT(!(flags & XFS_BLF_CANCEL));
1807 	return NULL;
1808 }
1809 
1810 /*
1811  * If the buffer is being cancelled then return 1 so that it will be cancelled,
1812  * otherwise return 0.  If the buffer is actually a buffer cancel item
1813  * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
1814  * table and remove it from the table if this is the last reference.
1815  *
1816  * We remove the cancel record from the table when we encounter its last
1817  * occurrence in the log so that if the same buffer is re-used again after its
1818  * last cancellation we actually replay the changes made at that point.
1819  */
1820 STATIC int
1821 xlog_check_buffer_cancelled(
1822 	struct xlog		*log,
1823 	xfs_daddr_t		blkno,
1824 	uint			len,
1825 	ushort			flags)
1826 {
1827 	struct xfs_buf_cancel	*bcp;
1828 
1829 	bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
1830 	if (!bcp)
1831 		return 0;
1832 
1833 	/*
1834 	 * We've go a match, so return 1 so that the recovery of this buffer
1835 	 * is cancelled.  If this buffer is actually a buffer cancel log
1836 	 * item, then decrement the refcount on the one in the table and
1837 	 * remove it if this is the last reference.
1838 	 */
1839 	if (flags & XFS_BLF_CANCEL) {
1840 		if (--bcp->bc_refcount == 0) {
1841 			list_del(&bcp->bc_list);
1842 			kmem_free(bcp);
1843 		}
1844 	}
1845 	return 1;
1846 }
1847 
1848 /*
1849  * Perform recovery for a buffer full of inodes.  In these buffers, the only
1850  * data which should be recovered is that which corresponds to the
1851  * di_next_unlinked pointers in the on disk inode structures.  The rest of the
1852  * data for the inodes is always logged through the inodes themselves rather
1853  * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1854  *
1855  * The only time when buffers full of inodes are fully recovered is when the
1856  * buffer is full of newly allocated inodes.  In this case the buffer will
1857  * not be marked as an inode buffer and so will be sent to
1858  * xlog_recover_do_reg_buffer() below during recovery.
1859  */
1860 STATIC int
1861 xlog_recover_do_inode_buffer(
1862 	struct xfs_mount	*mp,
1863 	xlog_recover_item_t	*item,
1864 	struct xfs_buf		*bp,
1865 	xfs_buf_log_format_t	*buf_f)
1866 {
1867 	int			i;
1868 	int			item_index = 0;
1869 	int			bit = 0;
1870 	int			nbits = 0;
1871 	int			reg_buf_offset = 0;
1872 	int			reg_buf_bytes = 0;
1873 	int			next_unlinked_offset;
1874 	int			inodes_per_buf;
1875 	xfs_agino_t		*logged_nextp;
1876 	xfs_agino_t		*buffer_nextp;
1877 
1878 	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1879 
1880 	/*
1881 	 * Post recovery validation only works properly on CRC enabled
1882 	 * filesystems.
1883 	 */
1884 	if (xfs_sb_version_hascrc(&mp->m_sb))
1885 		bp->b_ops = &xfs_inode_buf_ops;
1886 
1887 	inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1888 	for (i = 0; i < inodes_per_buf; i++) {
1889 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1890 			offsetof(xfs_dinode_t, di_next_unlinked);
1891 
1892 		while (next_unlinked_offset >=
1893 		       (reg_buf_offset + reg_buf_bytes)) {
1894 			/*
1895 			 * The next di_next_unlinked field is beyond
1896 			 * the current logged region.  Find the next
1897 			 * logged region that contains or is beyond
1898 			 * the current di_next_unlinked field.
1899 			 */
1900 			bit += nbits;
1901 			bit = xfs_next_bit(buf_f->blf_data_map,
1902 					   buf_f->blf_map_size, bit);
1903 
1904 			/*
1905 			 * If there are no more logged regions in the
1906 			 * buffer, then we're done.
1907 			 */
1908 			if (bit == -1)
1909 				return 0;
1910 
1911 			nbits = xfs_contig_bits(buf_f->blf_data_map,
1912 						buf_f->blf_map_size, bit);
1913 			ASSERT(nbits > 0);
1914 			reg_buf_offset = bit << XFS_BLF_SHIFT;
1915 			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1916 			item_index++;
1917 		}
1918 
1919 		/*
1920 		 * If the current logged region starts after the current
1921 		 * di_next_unlinked field, then move on to the next
1922 		 * di_next_unlinked field.
1923 		 */
1924 		if (next_unlinked_offset < reg_buf_offset)
1925 			continue;
1926 
1927 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
1928 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1929 		ASSERT((reg_buf_offset + reg_buf_bytes) <=
1930 							BBTOB(bp->b_io_length));
1931 
1932 		/*
1933 		 * The current logged region contains a copy of the
1934 		 * current di_next_unlinked field.  Extract its value
1935 		 * and copy it to the buffer copy.
1936 		 */
1937 		logged_nextp = item->ri_buf[item_index].i_addr +
1938 				next_unlinked_offset - reg_buf_offset;
1939 		if (unlikely(*logged_nextp == 0)) {
1940 			xfs_alert(mp,
1941 		"Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1942 		"Trying to replay bad (0) inode di_next_unlinked field.",
1943 				item, bp);
1944 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1945 					 XFS_ERRLEVEL_LOW, mp);
1946 			return XFS_ERROR(EFSCORRUPTED);
1947 		}
1948 
1949 		buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1950 					      next_unlinked_offset);
1951 		*buffer_nextp = *logged_nextp;
1952 
1953 		/*
1954 		 * If necessary, recalculate the CRC in the on-disk inode. We
1955 		 * have to leave the inode in a consistent state for whoever
1956 		 * reads it next....
1957 		 */
1958 		xfs_dinode_calc_crc(mp, (struct xfs_dinode *)
1959 				xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
1960 
1961 	}
1962 
1963 	return 0;
1964 }
1965 
1966 /*
1967  * V5 filesystems know the age of the buffer on disk being recovered. We can
1968  * have newer objects on disk than we are replaying, and so for these cases we
1969  * don't want to replay the current change as that will make the buffer contents
1970  * temporarily invalid on disk.
1971  *
1972  * The magic number might not match the buffer type we are going to recover
1973  * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
1974  * extract the LSN of the existing object in the buffer based on it's current
1975  * magic number.  If we don't recognise the magic number in the buffer, then
1976  * return a LSN of -1 so that the caller knows it was an unrecognised block and
1977  * so can recover the buffer.
1978  *
1979  * Note: we cannot rely solely on magic number matches to determine that the
1980  * buffer has a valid LSN - we also need to verify that it belongs to this
1981  * filesystem, so we need to extract the object's LSN and compare it to that
1982  * which we read from the superblock. If the UUIDs don't match, then we've got a
1983  * stale metadata block from an old filesystem instance that we need to recover
1984  * over the top of.
1985  */
1986 static xfs_lsn_t
1987 xlog_recover_get_buf_lsn(
1988 	struct xfs_mount	*mp,
1989 	struct xfs_buf		*bp)
1990 {
1991 	__uint32_t		magic32;
1992 	__uint16_t		magic16;
1993 	__uint16_t		magicda;
1994 	void			*blk = bp->b_addr;
1995 	uuid_t			*uuid;
1996 	xfs_lsn_t		lsn = -1;
1997 
1998 	/* v4 filesystems always recover immediately */
1999 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2000 		goto recover_immediately;
2001 
2002 	magic32 = be32_to_cpu(*(__be32 *)blk);
2003 	switch (magic32) {
2004 	case XFS_ABTB_CRC_MAGIC:
2005 	case XFS_ABTC_CRC_MAGIC:
2006 	case XFS_ABTB_MAGIC:
2007 	case XFS_ABTC_MAGIC:
2008 	case XFS_IBT_CRC_MAGIC:
2009 	case XFS_IBT_MAGIC: {
2010 		struct xfs_btree_block *btb = blk;
2011 
2012 		lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2013 		uuid = &btb->bb_u.s.bb_uuid;
2014 		break;
2015 	}
2016 	case XFS_BMAP_CRC_MAGIC:
2017 	case XFS_BMAP_MAGIC: {
2018 		struct xfs_btree_block *btb = blk;
2019 
2020 		lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2021 		uuid = &btb->bb_u.l.bb_uuid;
2022 		break;
2023 	}
2024 	case XFS_AGF_MAGIC:
2025 		lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2026 		uuid = &((struct xfs_agf *)blk)->agf_uuid;
2027 		break;
2028 	case XFS_AGFL_MAGIC:
2029 		lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2030 		uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2031 		break;
2032 	case XFS_AGI_MAGIC:
2033 		lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2034 		uuid = &((struct xfs_agi *)blk)->agi_uuid;
2035 		break;
2036 	case XFS_SYMLINK_MAGIC:
2037 		lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2038 		uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2039 		break;
2040 	case XFS_DIR3_BLOCK_MAGIC:
2041 	case XFS_DIR3_DATA_MAGIC:
2042 	case XFS_DIR3_FREE_MAGIC:
2043 		lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2044 		uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2045 		break;
2046 	case XFS_ATTR3_RMT_MAGIC:
2047 		lsn = be64_to_cpu(((struct xfs_attr3_rmt_hdr *)blk)->rm_lsn);
2048 		uuid = &((struct xfs_attr3_rmt_hdr *)blk)->rm_uuid;
2049 		break;
2050 	case XFS_SB_MAGIC:
2051 		lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2052 		uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2053 		break;
2054 	default:
2055 		break;
2056 	}
2057 
2058 	if (lsn != (xfs_lsn_t)-1) {
2059 		if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2060 			goto recover_immediately;
2061 		return lsn;
2062 	}
2063 
2064 	magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2065 	switch (magicda) {
2066 	case XFS_DIR3_LEAF1_MAGIC:
2067 	case XFS_DIR3_LEAFN_MAGIC:
2068 	case XFS_DA3_NODE_MAGIC:
2069 		lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2070 		uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2071 		break;
2072 	default:
2073 		break;
2074 	}
2075 
2076 	if (lsn != (xfs_lsn_t)-1) {
2077 		if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2078 			goto recover_immediately;
2079 		return lsn;
2080 	}
2081 
2082 	/*
2083 	 * We do individual object checks on dquot and inode buffers as they
2084 	 * have their own individual LSN records. Also, we could have a stale
2085 	 * buffer here, so we have to at least recognise these buffer types.
2086 	 *
2087 	 * A notd complexity here is inode unlinked list processing - it logs
2088 	 * the inode directly in the buffer, but we don't know which inodes have
2089 	 * been modified, and there is no global buffer LSN. Hence we need to
2090 	 * recover all inode buffer types immediately. This problem will be
2091 	 * fixed by logical logging of the unlinked list modifications.
2092 	 */
2093 	magic16 = be16_to_cpu(*(__be16 *)blk);
2094 	switch (magic16) {
2095 	case XFS_DQUOT_MAGIC:
2096 	case XFS_DINODE_MAGIC:
2097 		goto recover_immediately;
2098 	default:
2099 		break;
2100 	}
2101 
2102 	/* unknown buffer contents, recover immediately */
2103 
2104 recover_immediately:
2105 	return (xfs_lsn_t)-1;
2106 
2107 }
2108 
2109 /*
2110  * Validate the recovered buffer is of the correct type and attach the
2111  * appropriate buffer operations to them for writeback. Magic numbers are in a
2112  * few places:
2113  *	the first 16 bits of the buffer (inode buffer, dquot buffer),
2114  *	the first 32 bits of the buffer (most blocks),
2115  *	inside a struct xfs_da_blkinfo at the start of the buffer.
2116  */
2117 static void
2118 xlog_recover_validate_buf_type(
2119 	struct xfs_mount	*mp,
2120 	struct xfs_buf		*bp,
2121 	xfs_buf_log_format_t	*buf_f)
2122 {
2123 	struct xfs_da_blkinfo	*info = bp->b_addr;
2124 	__uint32_t		magic32;
2125 	__uint16_t		magic16;
2126 	__uint16_t		magicda;
2127 
2128 	magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2129 	magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2130 	magicda = be16_to_cpu(info->magic);
2131 	switch (xfs_blft_from_flags(buf_f)) {
2132 	case XFS_BLFT_BTREE_BUF:
2133 		switch (magic32) {
2134 		case XFS_ABTB_CRC_MAGIC:
2135 		case XFS_ABTC_CRC_MAGIC:
2136 		case XFS_ABTB_MAGIC:
2137 		case XFS_ABTC_MAGIC:
2138 			bp->b_ops = &xfs_allocbt_buf_ops;
2139 			break;
2140 		case XFS_IBT_CRC_MAGIC:
2141 		case XFS_FIBT_CRC_MAGIC:
2142 		case XFS_IBT_MAGIC:
2143 		case XFS_FIBT_MAGIC:
2144 			bp->b_ops = &xfs_inobt_buf_ops;
2145 			break;
2146 		case XFS_BMAP_CRC_MAGIC:
2147 		case XFS_BMAP_MAGIC:
2148 			bp->b_ops = &xfs_bmbt_buf_ops;
2149 			break;
2150 		default:
2151 			xfs_warn(mp, "Bad btree block magic!");
2152 			ASSERT(0);
2153 			break;
2154 		}
2155 		break;
2156 	case XFS_BLFT_AGF_BUF:
2157 		if (magic32 != XFS_AGF_MAGIC) {
2158 			xfs_warn(mp, "Bad AGF block magic!");
2159 			ASSERT(0);
2160 			break;
2161 		}
2162 		bp->b_ops = &xfs_agf_buf_ops;
2163 		break;
2164 	case XFS_BLFT_AGFL_BUF:
2165 		if (!xfs_sb_version_hascrc(&mp->m_sb))
2166 			break;
2167 		if (magic32 != XFS_AGFL_MAGIC) {
2168 			xfs_warn(mp, "Bad AGFL block magic!");
2169 			ASSERT(0);
2170 			break;
2171 		}
2172 		bp->b_ops = &xfs_agfl_buf_ops;
2173 		break;
2174 	case XFS_BLFT_AGI_BUF:
2175 		if (magic32 != XFS_AGI_MAGIC) {
2176 			xfs_warn(mp, "Bad AGI block magic!");
2177 			ASSERT(0);
2178 			break;
2179 		}
2180 		bp->b_ops = &xfs_agi_buf_ops;
2181 		break;
2182 	case XFS_BLFT_UDQUOT_BUF:
2183 	case XFS_BLFT_PDQUOT_BUF:
2184 	case XFS_BLFT_GDQUOT_BUF:
2185 #ifdef CONFIG_XFS_QUOTA
2186 		if (magic16 != XFS_DQUOT_MAGIC) {
2187 			xfs_warn(mp, "Bad DQUOT block magic!");
2188 			ASSERT(0);
2189 			break;
2190 		}
2191 		bp->b_ops = &xfs_dquot_buf_ops;
2192 #else
2193 		xfs_alert(mp,
2194 	"Trying to recover dquots without QUOTA support built in!");
2195 		ASSERT(0);
2196 #endif
2197 		break;
2198 	case XFS_BLFT_DINO_BUF:
2199 		/*
2200 		 * we get here with inode allocation buffers, not buffers that
2201 		 * track unlinked list changes.
2202 		 */
2203 		if (magic16 != XFS_DINODE_MAGIC) {
2204 			xfs_warn(mp, "Bad INODE block magic!");
2205 			ASSERT(0);
2206 			break;
2207 		}
2208 		bp->b_ops = &xfs_inode_buf_ops;
2209 		break;
2210 	case XFS_BLFT_SYMLINK_BUF:
2211 		if (magic32 != XFS_SYMLINK_MAGIC) {
2212 			xfs_warn(mp, "Bad symlink block magic!");
2213 			ASSERT(0);
2214 			break;
2215 		}
2216 		bp->b_ops = &xfs_symlink_buf_ops;
2217 		break;
2218 	case XFS_BLFT_DIR_BLOCK_BUF:
2219 		if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2220 		    magic32 != XFS_DIR3_BLOCK_MAGIC) {
2221 			xfs_warn(mp, "Bad dir block magic!");
2222 			ASSERT(0);
2223 			break;
2224 		}
2225 		bp->b_ops = &xfs_dir3_block_buf_ops;
2226 		break;
2227 	case XFS_BLFT_DIR_DATA_BUF:
2228 		if (magic32 != XFS_DIR2_DATA_MAGIC &&
2229 		    magic32 != XFS_DIR3_DATA_MAGIC) {
2230 			xfs_warn(mp, "Bad dir data magic!");
2231 			ASSERT(0);
2232 			break;
2233 		}
2234 		bp->b_ops = &xfs_dir3_data_buf_ops;
2235 		break;
2236 	case XFS_BLFT_DIR_FREE_BUF:
2237 		if (magic32 != XFS_DIR2_FREE_MAGIC &&
2238 		    magic32 != XFS_DIR3_FREE_MAGIC) {
2239 			xfs_warn(mp, "Bad dir3 free magic!");
2240 			ASSERT(0);
2241 			break;
2242 		}
2243 		bp->b_ops = &xfs_dir3_free_buf_ops;
2244 		break;
2245 	case XFS_BLFT_DIR_LEAF1_BUF:
2246 		if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2247 		    magicda != XFS_DIR3_LEAF1_MAGIC) {
2248 			xfs_warn(mp, "Bad dir leaf1 magic!");
2249 			ASSERT(0);
2250 			break;
2251 		}
2252 		bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2253 		break;
2254 	case XFS_BLFT_DIR_LEAFN_BUF:
2255 		if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2256 		    magicda != XFS_DIR3_LEAFN_MAGIC) {
2257 			xfs_warn(mp, "Bad dir leafn magic!");
2258 			ASSERT(0);
2259 			break;
2260 		}
2261 		bp->b_ops = &xfs_dir3_leafn_buf_ops;
2262 		break;
2263 	case XFS_BLFT_DA_NODE_BUF:
2264 		if (magicda != XFS_DA_NODE_MAGIC &&
2265 		    magicda != XFS_DA3_NODE_MAGIC) {
2266 			xfs_warn(mp, "Bad da node magic!");
2267 			ASSERT(0);
2268 			break;
2269 		}
2270 		bp->b_ops = &xfs_da3_node_buf_ops;
2271 		break;
2272 	case XFS_BLFT_ATTR_LEAF_BUF:
2273 		if (magicda != XFS_ATTR_LEAF_MAGIC &&
2274 		    magicda != XFS_ATTR3_LEAF_MAGIC) {
2275 			xfs_warn(mp, "Bad attr leaf magic!");
2276 			ASSERT(0);
2277 			break;
2278 		}
2279 		bp->b_ops = &xfs_attr3_leaf_buf_ops;
2280 		break;
2281 	case XFS_BLFT_ATTR_RMT_BUF:
2282 		if (!xfs_sb_version_hascrc(&mp->m_sb))
2283 			break;
2284 		if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2285 			xfs_warn(mp, "Bad attr remote magic!");
2286 			ASSERT(0);
2287 			break;
2288 		}
2289 		bp->b_ops = &xfs_attr3_rmt_buf_ops;
2290 		break;
2291 	case XFS_BLFT_SB_BUF:
2292 		if (magic32 != XFS_SB_MAGIC) {
2293 			xfs_warn(mp, "Bad SB block magic!");
2294 			ASSERT(0);
2295 			break;
2296 		}
2297 		bp->b_ops = &xfs_sb_buf_ops;
2298 		break;
2299 	default:
2300 		xfs_warn(mp, "Unknown buffer type %d!",
2301 			 xfs_blft_from_flags(buf_f));
2302 		break;
2303 	}
2304 }
2305 
2306 /*
2307  * Perform a 'normal' buffer recovery.  Each logged region of the
2308  * buffer should be copied over the corresponding region in the
2309  * given buffer.  The bitmap in the buf log format structure indicates
2310  * where to place the logged data.
2311  */
2312 STATIC void
2313 xlog_recover_do_reg_buffer(
2314 	struct xfs_mount	*mp,
2315 	xlog_recover_item_t	*item,
2316 	struct xfs_buf		*bp,
2317 	xfs_buf_log_format_t	*buf_f)
2318 {
2319 	int			i;
2320 	int			bit;
2321 	int			nbits;
2322 	int                     error;
2323 
2324 	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2325 
2326 	bit = 0;
2327 	i = 1;  /* 0 is the buf format structure */
2328 	while (1) {
2329 		bit = xfs_next_bit(buf_f->blf_data_map,
2330 				   buf_f->blf_map_size, bit);
2331 		if (bit == -1)
2332 			break;
2333 		nbits = xfs_contig_bits(buf_f->blf_data_map,
2334 					buf_f->blf_map_size, bit);
2335 		ASSERT(nbits > 0);
2336 		ASSERT(item->ri_buf[i].i_addr != NULL);
2337 		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2338 		ASSERT(BBTOB(bp->b_io_length) >=
2339 		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2340 
2341 		/*
2342 		 * The dirty regions logged in the buffer, even though
2343 		 * contiguous, may span multiple chunks. This is because the
2344 		 * dirty region may span a physical page boundary in a buffer
2345 		 * and hence be split into two separate vectors for writing into
2346 		 * the log. Hence we need to trim nbits back to the length of
2347 		 * the current region being copied out of the log.
2348 		 */
2349 		if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2350 			nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2351 
2352 		/*
2353 		 * Do a sanity check if this is a dquot buffer. Just checking
2354 		 * the first dquot in the buffer should do. XXXThis is
2355 		 * probably a good thing to do for other buf types also.
2356 		 */
2357 		error = 0;
2358 		if (buf_f->blf_flags &
2359 		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2360 			if (item->ri_buf[i].i_addr == NULL) {
2361 				xfs_alert(mp,
2362 					"XFS: NULL dquot in %s.", __func__);
2363 				goto next;
2364 			}
2365 			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2366 				xfs_alert(mp,
2367 					"XFS: dquot too small (%d) in %s.",
2368 					item->ri_buf[i].i_len, __func__);
2369 				goto next;
2370 			}
2371 			error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
2372 					       -1, 0, XFS_QMOPT_DOWARN,
2373 					       "dquot_buf_recover");
2374 			if (error)
2375 				goto next;
2376 		}
2377 
2378 		memcpy(xfs_buf_offset(bp,
2379 			(uint)bit << XFS_BLF_SHIFT),	/* dest */
2380 			item->ri_buf[i].i_addr,		/* source */
2381 			nbits<<XFS_BLF_SHIFT);		/* length */
2382  next:
2383 		i++;
2384 		bit += nbits;
2385 	}
2386 
2387 	/* Shouldn't be any more regions */
2388 	ASSERT(i == item->ri_total);
2389 
2390 	/*
2391 	 * We can only do post recovery validation on items on CRC enabled
2392 	 * fielsystems as we need to know when the buffer was written to be able
2393 	 * to determine if we should have replayed the item. If we replay old
2394 	 * metadata over a newer buffer, then it will enter a temporarily
2395 	 * inconsistent state resulting in verification failures. Hence for now
2396 	 * just avoid the verification stage for non-crc filesystems
2397 	 */
2398 	if (xfs_sb_version_hascrc(&mp->m_sb))
2399 		xlog_recover_validate_buf_type(mp, bp, buf_f);
2400 }
2401 
2402 /*
2403  * Perform a dquot buffer recovery.
2404  * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2405  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2406  * Else, treat it as a regular buffer and do recovery.
2407  */
2408 STATIC void
2409 xlog_recover_do_dquot_buffer(
2410 	struct xfs_mount		*mp,
2411 	struct xlog			*log,
2412 	struct xlog_recover_item	*item,
2413 	struct xfs_buf			*bp,
2414 	struct xfs_buf_log_format	*buf_f)
2415 {
2416 	uint			type;
2417 
2418 	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2419 
2420 	/*
2421 	 * Filesystems are required to send in quota flags at mount time.
2422 	 */
2423 	if (mp->m_qflags == 0) {
2424 		return;
2425 	}
2426 
2427 	type = 0;
2428 	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2429 		type |= XFS_DQ_USER;
2430 	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2431 		type |= XFS_DQ_PROJ;
2432 	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2433 		type |= XFS_DQ_GROUP;
2434 	/*
2435 	 * This type of quotas was turned off, so ignore this buffer
2436 	 */
2437 	if (log->l_quotaoffs_flag & type)
2438 		return;
2439 
2440 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2441 }
2442 
2443 /*
2444  * This routine replays a modification made to a buffer at runtime.
2445  * There are actually two types of buffer, regular and inode, which
2446  * are handled differently.  Inode buffers are handled differently
2447  * in that we only recover a specific set of data from them, namely
2448  * the inode di_next_unlinked fields.  This is because all other inode
2449  * data is actually logged via inode records and any data we replay
2450  * here which overlaps that may be stale.
2451  *
2452  * When meta-data buffers are freed at run time we log a buffer item
2453  * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2454  * of the buffer in the log should not be replayed at recovery time.
2455  * This is so that if the blocks covered by the buffer are reused for
2456  * file data before we crash we don't end up replaying old, freed
2457  * meta-data into a user's file.
2458  *
2459  * To handle the cancellation of buffer log items, we make two passes
2460  * over the log during recovery.  During the first we build a table of
2461  * those buffers which have been cancelled, and during the second we
2462  * only replay those buffers which do not have corresponding cancel
2463  * records in the table.  See xlog_recover_buffer_pass[1,2] above
2464  * for more details on the implementation of the table of cancel records.
2465  */
2466 STATIC int
2467 xlog_recover_buffer_pass2(
2468 	struct xlog			*log,
2469 	struct list_head		*buffer_list,
2470 	struct xlog_recover_item	*item,
2471 	xfs_lsn_t			current_lsn)
2472 {
2473 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2474 	xfs_mount_t		*mp = log->l_mp;
2475 	xfs_buf_t		*bp;
2476 	int			error;
2477 	uint			buf_flags;
2478 	xfs_lsn_t		lsn;
2479 
2480 	/*
2481 	 * In this pass we only want to recover all the buffers which have
2482 	 * not been cancelled and are not cancellation buffers themselves.
2483 	 */
2484 	if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2485 			buf_f->blf_len, buf_f->blf_flags)) {
2486 		trace_xfs_log_recover_buf_cancel(log, buf_f);
2487 		return 0;
2488 	}
2489 
2490 	trace_xfs_log_recover_buf_recover(log, buf_f);
2491 
2492 	buf_flags = 0;
2493 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2494 		buf_flags |= XBF_UNMAPPED;
2495 
2496 	bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2497 			  buf_flags, NULL);
2498 	if (!bp)
2499 		return XFS_ERROR(ENOMEM);
2500 	error = bp->b_error;
2501 	if (error) {
2502 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2503 		goto out_release;
2504 	}
2505 
2506 	/*
2507 	 * recover the buffer only if we get an LSN from it and it's less than
2508 	 * the lsn of the transaction we are replaying.
2509 	 */
2510 	lsn = xlog_recover_get_buf_lsn(mp, bp);
2511 	if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0)
2512 		goto out_release;
2513 
2514 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2515 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2516 	} else if (buf_f->blf_flags &
2517 		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2518 		xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2519 	} else {
2520 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2521 	}
2522 	if (error)
2523 		goto out_release;
2524 
2525 	/*
2526 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2527 	 * slower when taking into account all the buffers to be flushed.
2528 	 *
2529 	 * Also make sure that only inode buffers with good sizes stay in
2530 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2531 	 * or mp->m_inode_cluster_size bytes, whichever is bigger.  The inode
2532 	 * buffers in the log can be a different size if the log was generated
2533 	 * by an older kernel using unclustered inode buffers or a newer kernel
2534 	 * running with a different inode cluster size.  Regardless, if the
2535 	 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2536 	 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2537 	 * the buffer out of the buffer cache so that the buffer won't
2538 	 * overlap with future reads of those inodes.
2539 	 */
2540 	if (XFS_DINODE_MAGIC ==
2541 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2542 	    (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2543 			(__uint32_t)log->l_mp->m_inode_cluster_size))) {
2544 		xfs_buf_stale(bp);
2545 		error = xfs_bwrite(bp);
2546 	} else {
2547 		ASSERT(bp->b_target->bt_mount == mp);
2548 		bp->b_iodone = xlog_recover_iodone;
2549 		xfs_buf_delwri_queue(bp, buffer_list);
2550 	}
2551 
2552 out_release:
2553 	xfs_buf_relse(bp);
2554 	return error;
2555 }
2556 
2557 /*
2558  * Inode fork owner changes
2559  *
2560  * If we have been told that we have to reparent the inode fork, it's because an
2561  * extent swap operation on a CRC enabled filesystem has been done and we are
2562  * replaying it. We need to walk the BMBT of the appropriate fork and change the
2563  * owners of it.
2564  *
2565  * The complexity here is that we don't have an inode context to work with, so
2566  * after we've replayed the inode we need to instantiate one.  This is where the
2567  * fun begins.
2568  *
2569  * We are in the middle of log recovery, so we can't run transactions. That
2570  * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2571  * that will result in the corresponding iput() running the inode through
2572  * xfs_inactive(). If we've just replayed an inode core that changes the link
2573  * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2574  * transactions (bad!).
2575  *
2576  * So, to avoid this, we instantiate an inode directly from the inode core we've
2577  * just recovered. We have the buffer still locked, and all we really need to
2578  * instantiate is the inode core and the forks being modified. We can do this
2579  * manually, then run the inode btree owner change, and then tear down the
2580  * xfs_inode without having to run any transactions at all.
2581  *
2582  * Also, because we don't have a transaction context available here but need to
2583  * gather all the buffers we modify for writeback so we pass the buffer_list
2584  * instead for the operation to use.
2585  */
2586 
2587 STATIC int
2588 xfs_recover_inode_owner_change(
2589 	struct xfs_mount	*mp,
2590 	struct xfs_dinode	*dip,
2591 	struct xfs_inode_log_format *in_f,
2592 	struct list_head	*buffer_list)
2593 {
2594 	struct xfs_inode	*ip;
2595 	int			error;
2596 
2597 	ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2598 
2599 	ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2600 	if (!ip)
2601 		return ENOMEM;
2602 
2603 	/* instantiate the inode */
2604 	xfs_dinode_from_disk(&ip->i_d, dip);
2605 	ASSERT(ip->i_d.di_version >= 3);
2606 
2607 	error = xfs_iformat_fork(ip, dip);
2608 	if (error)
2609 		goto out_free_ip;
2610 
2611 
2612 	if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2613 		ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2614 		error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2615 					      ip->i_ino, buffer_list);
2616 		if (error)
2617 			goto out_free_ip;
2618 	}
2619 
2620 	if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2621 		ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2622 		error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2623 					      ip->i_ino, buffer_list);
2624 		if (error)
2625 			goto out_free_ip;
2626 	}
2627 
2628 out_free_ip:
2629 	xfs_inode_free(ip);
2630 	return error;
2631 }
2632 
2633 STATIC int
2634 xlog_recover_inode_pass2(
2635 	struct xlog			*log,
2636 	struct list_head		*buffer_list,
2637 	struct xlog_recover_item	*item,
2638 	xfs_lsn_t			current_lsn)
2639 {
2640 	xfs_inode_log_format_t	*in_f;
2641 	xfs_mount_t		*mp = log->l_mp;
2642 	xfs_buf_t		*bp;
2643 	xfs_dinode_t		*dip;
2644 	int			len;
2645 	xfs_caddr_t		src;
2646 	xfs_caddr_t		dest;
2647 	int			error;
2648 	int			attr_index;
2649 	uint			fields;
2650 	xfs_icdinode_t		*dicp;
2651 	uint			isize;
2652 	int			need_free = 0;
2653 
2654 	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2655 		in_f = item->ri_buf[0].i_addr;
2656 	} else {
2657 		in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2658 		need_free = 1;
2659 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2660 		if (error)
2661 			goto error;
2662 	}
2663 
2664 	/*
2665 	 * Inode buffers can be freed, look out for it,
2666 	 * and do not replay the inode.
2667 	 */
2668 	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2669 					in_f->ilf_len, 0)) {
2670 		error = 0;
2671 		trace_xfs_log_recover_inode_cancel(log, in_f);
2672 		goto error;
2673 	}
2674 	trace_xfs_log_recover_inode_recover(log, in_f);
2675 
2676 	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2677 			  &xfs_inode_buf_ops);
2678 	if (!bp) {
2679 		error = ENOMEM;
2680 		goto error;
2681 	}
2682 	error = bp->b_error;
2683 	if (error) {
2684 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2685 		goto out_release;
2686 	}
2687 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2688 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2689 
2690 	/*
2691 	 * Make sure the place we're flushing out to really looks
2692 	 * like an inode!
2693 	 */
2694 	if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2695 		xfs_alert(mp,
2696 	"%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2697 			__func__, dip, bp, in_f->ilf_ino);
2698 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2699 				 XFS_ERRLEVEL_LOW, mp);
2700 		error = EFSCORRUPTED;
2701 		goto out_release;
2702 	}
2703 	dicp = item->ri_buf[1].i_addr;
2704 	if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2705 		xfs_alert(mp,
2706 			"%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2707 			__func__, item, in_f->ilf_ino);
2708 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2709 				 XFS_ERRLEVEL_LOW, mp);
2710 		error = EFSCORRUPTED;
2711 		goto out_release;
2712 	}
2713 
2714 	/*
2715 	 * If the inode has an LSN in it, recover the inode only if it's less
2716 	 * than the lsn of the transaction we are replaying. Note: we still
2717 	 * need to replay an owner change even though the inode is more recent
2718 	 * than the transaction as there is no guarantee that all the btree
2719 	 * blocks are more recent than this transaction, too.
2720 	 */
2721 	if (dip->di_version >= 3) {
2722 		xfs_lsn_t	lsn = be64_to_cpu(dip->di_lsn);
2723 
2724 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2725 			trace_xfs_log_recover_inode_skip(log, in_f);
2726 			error = 0;
2727 			goto out_owner_change;
2728 		}
2729 	}
2730 
2731 	/*
2732 	 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2733 	 * are transactional and if ordering is necessary we can determine that
2734 	 * more accurately by the LSN field in the V3 inode core. Don't trust
2735 	 * the inode versions we might be changing them here - use the
2736 	 * superblock flag to determine whether we need to look at di_flushiter
2737 	 * to skip replay when the on disk inode is newer than the log one
2738 	 */
2739 	if (!xfs_sb_version_hascrc(&mp->m_sb) &&
2740 	    dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2741 		/*
2742 		 * Deal with the wrap case, DI_MAX_FLUSH is less
2743 		 * than smaller numbers
2744 		 */
2745 		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2746 		    dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2747 			/* do nothing */
2748 		} else {
2749 			trace_xfs_log_recover_inode_skip(log, in_f);
2750 			error = 0;
2751 			goto out_release;
2752 		}
2753 	}
2754 
2755 	/* Take the opportunity to reset the flush iteration count */
2756 	dicp->di_flushiter = 0;
2757 
2758 	if (unlikely(S_ISREG(dicp->di_mode))) {
2759 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2760 		    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2761 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2762 					 XFS_ERRLEVEL_LOW, mp, dicp);
2763 			xfs_alert(mp,
2764 		"%s: Bad regular inode log record, rec ptr 0x%p, "
2765 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2766 				__func__, item, dip, bp, in_f->ilf_ino);
2767 			error = EFSCORRUPTED;
2768 			goto out_release;
2769 		}
2770 	} else if (unlikely(S_ISDIR(dicp->di_mode))) {
2771 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2772 		    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2773 		    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2774 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2775 					     XFS_ERRLEVEL_LOW, mp, dicp);
2776 			xfs_alert(mp,
2777 		"%s: Bad dir inode log record, rec ptr 0x%p, "
2778 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2779 				__func__, item, dip, bp, in_f->ilf_ino);
2780 			error = EFSCORRUPTED;
2781 			goto out_release;
2782 		}
2783 	}
2784 	if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2785 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2786 				     XFS_ERRLEVEL_LOW, mp, dicp);
2787 		xfs_alert(mp,
2788 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2789 	"dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2790 			__func__, item, dip, bp, in_f->ilf_ino,
2791 			dicp->di_nextents + dicp->di_anextents,
2792 			dicp->di_nblocks);
2793 		error = EFSCORRUPTED;
2794 		goto out_release;
2795 	}
2796 	if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2797 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2798 				     XFS_ERRLEVEL_LOW, mp, dicp);
2799 		xfs_alert(mp,
2800 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2801 	"dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2802 			item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2803 		error = EFSCORRUPTED;
2804 		goto out_release;
2805 	}
2806 	isize = xfs_icdinode_size(dicp->di_version);
2807 	if (unlikely(item->ri_buf[1].i_len > isize)) {
2808 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2809 				     XFS_ERRLEVEL_LOW, mp, dicp);
2810 		xfs_alert(mp,
2811 			"%s: Bad inode log record length %d, rec ptr 0x%p",
2812 			__func__, item->ri_buf[1].i_len, item);
2813 		error = EFSCORRUPTED;
2814 		goto out_release;
2815 	}
2816 
2817 	/* The core is in in-core format */
2818 	xfs_dinode_to_disk(dip, dicp);
2819 
2820 	/* the rest is in on-disk format */
2821 	if (item->ri_buf[1].i_len > isize) {
2822 		memcpy((char *)dip + isize,
2823 			item->ri_buf[1].i_addr + isize,
2824 			item->ri_buf[1].i_len - isize);
2825 	}
2826 
2827 	fields = in_f->ilf_fields;
2828 	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2829 	case XFS_ILOG_DEV:
2830 		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2831 		break;
2832 	case XFS_ILOG_UUID:
2833 		memcpy(XFS_DFORK_DPTR(dip),
2834 		       &in_f->ilf_u.ilfu_uuid,
2835 		       sizeof(uuid_t));
2836 		break;
2837 	}
2838 
2839 	if (in_f->ilf_size == 2)
2840 		goto out_owner_change;
2841 	len = item->ri_buf[2].i_len;
2842 	src = item->ri_buf[2].i_addr;
2843 	ASSERT(in_f->ilf_size <= 4);
2844 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2845 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
2846 	       (len == in_f->ilf_dsize));
2847 
2848 	switch (fields & XFS_ILOG_DFORK) {
2849 	case XFS_ILOG_DDATA:
2850 	case XFS_ILOG_DEXT:
2851 		memcpy(XFS_DFORK_DPTR(dip), src, len);
2852 		break;
2853 
2854 	case XFS_ILOG_DBROOT:
2855 		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2856 				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2857 				 XFS_DFORK_DSIZE(dip, mp));
2858 		break;
2859 
2860 	default:
2861 		/*
2862 		 * There are no data fork flags set.
2863 		 */
2864 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
2865 		break;
2866 	}
2867 
2868 	/*
2869 	 * If we logged any attribute data, recover it.  There may or
2870 	 * may not have been any other non-core data logged in this
2871 	 * transaction.
2872 	 */
2873 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2874 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2875 			attr_index = 3;
2876 		} else {
2877 			attr_index = 2;
2878 		}
2879 		len = item->ri_buf[attr_index].i_len;
2880 		src = item->ri_buf[attr_index].i_addr;
2881 		ASSERT(len == in_f->ilf_asize);
2882 
2883 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2884 		case XFS_ILOG_ADATA:
2885 		case XFS_ILOG_AEXT:
2886 			dest = XFS_DFORK_APTR(dip);
2887 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2888 			memcpy(dest, src, len);
2889 			break;
2890 
2891 		case XFS_ILOG_ABROOT:
2892 			dest = XFS_DFORK_APTR(dip);
2893 			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2894 					 len, (xfs_bmdr_block_t*)dest,
2895 					 XFS_DFORK_ASIZE(dip, mp));
2896 			break;
2897 
2898 		default:
2899 			xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2900 			ASSERT(0);
2901 			error = EIO;
2902 			goto out_release;
2903 		}
2904 	}
2905 
2906 out_owner_change:
2907 	if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
2908 		error = xfs_recover_inode_owner_change(mp, dip, in_f,
2909 						       buffer_list);
2910 	/* re-generate the checksum. */
2911 	xfs_dinode_calc_crc(log->l_mp, dip);
2912 
2913 	ASSERT(bp->b_target->bt_mount == mp);
2914 	bp->b_iodone = xlog_recover_iodone;
2915 	xfs_buf_delwri_queue(bp, buffer_list);
2916 
2917 out_release:
2918 	xfs_buf_relse(bp);
2919 error:
2920 	if (need_free)
2921 		kmem_free(in_f);
2922 	return XFS_ERROR(error);
2923 }
2924 
2925 /*
2926  * Recover QUOTAOFF records. We simply make a note of it in the xlog
2927  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2928  * of that type.
2929  */
2930 STATIC int
2931 xlog_recover_quotaoff_pass1(
2932 	struct xlog			*log,
2933 	struct xlog_recover_item	*item)
2934 {
2935 	xfs_qoff_logformat_t	*qoff_f = item->ri_buf[0].i_addr;
2936 	ASSERT(qoff_f);
2937 
2938 	/*
2939 	 * The logitem format's flag tells us if this was user quotaoff,
2940 	 * group/project quotaoff or both.
2941 	 */
2942 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2943 		log->l_quotaoffs_flag |= XFS_DQ_USER;
2944 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2945 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2946 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2947 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2948 
2949 	return (0);
2950 }
2951 
2952 /*
2953  * Recover a dquot record
2954  */
2955 STATIC int
2956 xlog_recover_dquot_pass2(
2957 	struct xlog			*log,
2958 	struct list_head		*buffer_list,
2959 	struct xlog_recover_item	*item,
2960 	xfs_lsn_t			current_lsn)
2961 {
2962 	xfs_mount_t		*mp = log->l_mp;
2963 	xfs_buf_t		*bp;
2964 	struct xfs_disk_dquot	*ddq, *recddq;
2965 	int			error;
2966 	xfs_dq_logformat_t	*dq_f;
2967 	uint			type;
2968 
2969 
2970 	/*
2971 	 * Filesystems are required to send in quota flags at mount time.
2972 	 */
2973 	if (mp->m_qflags == 0)
2974 		return (0);
2975 
2976 	recddq = item->ri_buf[1].i_addr;
2977 	if (recddq == NULL) {
2978 		xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2979 		return XFS_ERROR(EIO);
2980 	}
2981 	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2982 		xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2983 			item->ri_buf[1].i_len, __func__);
2984 		return XFS_ERROR(EIO);
2985 	}
2986 
2987 	/*
2988 	 * This type of quotas was turned off, so ignore this record.
2989 	 */
2990 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2991 	ASSERT(type);
2992 	if (log->l_quotaoffs_flag & type)
2993 		return (0);
2994 
2995 	/*
2996 	 * At this point we know that quota was _not_ turned off.
2997 	 * Since the mount flags are not indicating to us otherwise, this
2998 	 * must mean that quota is on, and the dquot needs to be replayed.
2999 	 * Remember that we may not have fully recovered the superblock yet,
3000 	 * so we can't do the usual trick of looking at the SB quota bits.
3001 	 *
3002 	 * The other possibility, of course, is that the quota subsystem was
3003 	 * removed since the last mount - ENOSYS.
3004 	 */
3005 	dq_f = item->ri_buf[0].i_addr;
3006 	ASSERT(dq_f);
3007 	error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3008 			   "xlog_recover_dquot_pass2 (log copy)");
3009 	if (error)
3010 		return XFS_ERROR(EIO);
3011 	ASSERT(dq_f->qlf_len == 1);
3012 
3013 	error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3014 				   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3015 				   NULL);
3016 	if (error)
3017 		return error;
3018 
3019 	ASSERT(bp);
3020 	ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
3021 
3022 	/*
3023 	 * At least the magic num portion should be on disk because this
3024 	 * was among a chunk of dquots created earlier, and we did some
3025 	 * minimal initialization then.
3026 	 */
3027 	error = xfs_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3028 			   "xlog_recover_dquot_pass2");
3029 	if (error) {
3030 		xfs_buf_relse(bp);
3031 		return XFS_ERROR(EIO);
3032 	}
3033 
3034 	/*
3035 	 * If the dquot has an LSN in it, recover the dquot only if it's less
3036 	 * than the lsn of the transaction we are replaying.
3037 	 */
3038 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3039 		struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3040 		xfs_lsn_t	lsn = be64_to_cpu(dqb->dd_lsn);
3041 
3042 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3043 			goto out_release;
3044 		}
3045 	}
3046 
3047 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
3048 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3049 		xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3050 				 XFS_DQUOT_CRC_OFF);
3051 	}
3052 
3053 	ASSERT(dq_f->qlf_size == 2);
3054 	ASSERT(bp->b_target->bt_mount == mp);
3055 	bp->b_iodone = xlog_recover_iodone;
3056 	xfs_buf_delwri_queue(bp, buffer_list);
3057 
3058 out_release:
3059 	xfs_buf_relse(bp);
3060 	return 0;
3061 }
3062 
3063 /*
3064  * This routine is called to create an in-core extent free intent
3065  * item from the efi format structure which was logged on disk.
3066  * It allocates an in-core efi, copies the extents from the format
3067  * structure into it, and adds the efi to the AIL with the given
3068  * LSN.
3069  */
3070 STATIC int
3071 xlog_recover_efi_pass2(
3072 	struct xlog			*log,
3073 	struct xlog_recover_item	*item,
3074 	xfs_lsn_t			lsn)
3075 {
3076 	int			error;
3077 	xfs_mount_t		*mp = log->l_mp;
3078 	xfs_efi_log_item_t	*efip;
3079 	xfs_efi_log_format_t	*efi_formatp;
3080 
3081 	efi_formatp = item->ri_buf[0].i_addr;
3082 
3083 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3084 	if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
3085 					 &(efip->efi_format)))) {
3086 		xfs_efi_item_free(efip);
3087 		return error;
3088 	}
3089 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3090 
3091 	spin_lock(&log->l_ailp->xa_lock);
3092 	/*
3093 	 * xfs_trans_ail_update() drops the AIL lock.
3094 	 */
3095 	xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3096 	return 0;
3097 }
3098 
3099 
3100 /*
3101  * This routine is called when an efd format structure is found in
3102  * a committed transaction in the log.  It's purpose is to cancel
3103  * the corresponding efi if it was still in the log.  To do this
3104  * it searches the AIL for the efi with an id equal to that in the
3105  * efd format structure.  If we find it, we remove the efi from the
3106  * AIL and free it.
3107  */
3108 STATIC int
3109 xlog_recover_efd_pass2(
3110 	struct xlog			*log,
3111 	struct xlog_recover_item	*item)
3112 {
3113 	xfs_efd_log_format_t	*efd_formatp;
3114 	xfs_efi_log_item_t	*efip = NULL;
3115 	xfs_log_item_t		*lip;
3116 	__uint64_t		efi_id;
3117 	struct xfs_ail_cursor	cur;
3118 	struct xfs_ail		*ailp = log->l_ailp;
3119 
3120 	efd_formatp = item->ri_buf[0].i_addr;
3121 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3122 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3123 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3124 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3125 	efi_id = efd_formatp->efd_efi_id;
3126 
3127 	/*
3128 	 * Search for the efi with the id in the efd format structure
3129 	 * in the AIL.
3130 	 */
3131 	spin_lock(&ailp->xa_lock);
3132 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3133 	while (lip != NULL) {
3134 		if (lip->li_type == XFS_LI_EFI) {
3135 			efip = (xfs_efi_log_item_t *)lip;
3136 			if (efip->efi_format.efi_id == efi_id) {
3137 				/*
3138 				 * xfs_trans_ail_delete() drops the
3139 				 * AIL lock.
3140 				 */
3141 				xfs_trans_ail_delete(ailp, lip,
3142 						     SHUTDOWN_CORRUPT_INCORE);
3143 				xfs_efi_item_free(efip);
3144 				spin_lock(&ailp->xa_lock);
3145 				break;
3146 			}
3147 		}
3148 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3149 	}
3150 	xfs_trans_ail_cursor_done(&cur);
3151 	spin_unlock(&ailp->xa_lock);
3152 
3153 	return 0;
3154 }
3155 
3156 /*
3157  * This routine is called when an inode create format structure is found in a
3158  * committed transaction in the log.  It's purpose is to initialise the inodes
3159  * being allocated on disk. This requires us to get inode cluster buffers that
3160  * match the range to be intialised, stamped with inode templates and written
3161  * by delayed write so that subsequent modifications will hit the cached buffer
3162  * and only need writing out at the end of recovery.
3163  */
3164 STATIC int
3165 xlog_recover_do_icreate_pass2(
3166 	struct xlog		*log,
3167 	struct list_head	*buffer_list,
3168 	xlog_recover_item_t	*item)
3169 {
3170 	struct xfs_mount	*mp = log->l_mp;
3171 	struct xfs_icreate_log	*icl;
3172 	xfs_agnumber_t		agno;
3173 	xfs_agblock_t		agbno;
3174 	unsigned int		count;
3175 	unsigned int		isize;
3176 	xfs_agblock_t		length;
3177 
3178 	icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3179 	if (icl->icl_type != XFS_LI_ICREATE) {
3180 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3181 		return EINVAL;
3182 	}
3183 
3184 	if (icl->icl_size != 1) {
3185 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3186 		return EINVAL;
3187 	}
3188 
3189 	agno = be32_to_cpu(icl->icl_ag);
3190 	if (agno >= mp->m_sb.sb_agcount) {
3191 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3192 		return EINVAL;
3193 	}
3194 	agbno = be32_to_cpu(icl->icl_agbno);
3195 	if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3196 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3197 		return EINVAL;
3198 	}
3199 	isize = be32_to_cpu(icl->icl_isize);
3200 	if (isize != mp->m_sb.sb_inodesize) {
3201 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3202 		return EINVAL;
3203 	}
3204 	count = be32_to_cpu(icl->icl_count);
3205 	if (!count) {
3206 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3207 		return EINVAL;
3208 	}
3209 	length = be32_to_cpu(icl->icl_length);
3210 	if (!length || length >= mp->m_sb.sb_agblocks) {
3211 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3212 		return EINVAL;
3213 	}
3214 
3215 	/* existing allocation is fixed value */
3216 	ASSERT(count == mp->m_ialloc_inos);
3217 	ASSERT(length == mp->m_ialloc_blks);
3218 	if (count != mp->m_ialloc_inos ||
3219 	     length != mp->m_ialloc_blks) {
3220 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2");
3221 		return EINVAL;
3222 	}
3223 
3224 	/*
3225 	 * Inode buffers can be freed. Do not replay the inode initialisation as
3226 	 * we could be overwriting something written after this inode buffer was
3227 	 * cancelled.
3228 	 *
3229 	 * XXX: we need to iterate all buffers and only init those that are not
3230 	 * cancelled. I think that a more fine grained factoring of
3231 	 * xfs_ialloc_inode_init may be appropriate here to enable this to be
3232 	 * done easily.
3233 	 */
3234 	if (xlog_check_buffer_cancelled(log,
3235 			XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0))
3236 		return 0;
3237 
3238 	xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length,
3239 					be32_to_cpu(icl->icl_gen));
3240 	return 0;
3241 }
3242 
3243 /*
3244  * Free up any resources allocated by the transaction
3245  *
3246  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3247  */
3248 STATIC void
3249 xlog_recover_free_trans(
3250 	struct xlog_recover	*trans)
3251 {
3252 	xlog_recover_item_t	*item, *n;
3253 	int			i;
3254 
3255 	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3256 		/* Free the regions in the item. */
3257 		list_del(&item->ri_list);
3258 		for (i = 0; i < item->ri_cnt; i++)
3259 			kmem_free(item->ri_buf[i].i_addr);
3260 		/* Free the item itself */
3261 		kmem_free(item->ri_buf);
3262 		kmem_free(item);
3263 	}
3264 	/* Free the transaction recover structure */
3265 	kmem_free(trans);
3266 }
3267 
3268 STATIC void
3269 xlog_recover_buffer_ra_pass2(
3270 	struct xlog                     *log,
3271 	struct xlog_recover_item        *item)
3272 {
3273 	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
3274 	struct xfs_mount		*mp = log->l_mp;
3275 
3276 	if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3277 			buf_f->blf_len, buf_f->blf_flags)) {
3278 		return;
3279 	}
3280 
3281 	xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3282 				buf_f->blf_len, NULL);
3283 }
3284 
3285 STATIC void
3286 xlog_recover_inode_ra_pass2(
3287 	struct xlog                     *log,
3288 	struct xlog_recover_item        *item)
3289 {
3290 	struct xfs_inode_log_format	ilf_buf;
3291 	struct xfs_inode_log_format	*ilfp;
3292 	struct xfs_mount		*mp = log->l_mp;
3293 	int			error;
3294 
3295 	if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3296 		ilfp = item->ri_buf[0].i_addr;
3297 	} else {
3298 		ilfp = &ilf_buf;
3299 		memset(ilfp, 0, sizeof(*ilfp));
3300 		error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3301 		if (error)
3302 			return;
3303 	}
3304 
3305 	if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3306 		return;
3307 
3308 	xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3309 				ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3310 }
3311 
3312 STATIC void
3313 xlog_recover_dquot_ra_pass2(
3314 	struct xlog			*log,
3315 	struct xlog_recover_item	*item)
3316 {
3317 	struct xfs_mount	*mp = log->l_mp;
3318 	struct xfs_disk_dquot	*recddq;
3319 	struct xfs_dq_logformat	*dq_f;
3320 	uint			type;
3321 
3322 
3323 	if (mp->m_qflags == 0)
3324 		return;
3325 
3326 	recddq = item->ri_buf[1].i_addr;
3327 	if (recddq == NULL)
3328 		return;
3329 	if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3330 		return;
3331 
3332 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3333 	ASSERT(type);
3334 	if (log->l_quotaoffs_flag & type)
3335 		return;
3336 
3337 	dq_f = item->ri_buf[0].i_addr;
3338 	ASSERT(dq_f);
3339 	ASSERT(dq_f->qlf_len == 1);
3340 
3341 	xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno,
3342 			  XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL);
3343 }
3344 
3345 STATIC void
3346 xlog_recover_ra_pass2(
3347 	struct xlog			*log,
3348 	struct xlog_recover_item	*item)
3349 {
3350 	switch (ITEM_TYPE(item)) {
3351 	case XFS_LI_BUF:
3352 		xlog_recover_buffer_ra_pass2(log, item);
3353 		break;
3354 	case XFS_LI_INODE:
3355 		xlog_recover_inode_ra_pass2(log, item);
3356 		break;
3357 	case XFS_LI_DQUOT:
3358 		xlog_recover_dquot_ra_pass2(log, item);
3359 		break;
3360 	case XFS_LI_EFI:
3361 	case XFS_LI_EFD:
3362 	case XFS_LI_QUOTAOFF:
3363 	default:
3364 		break;
3365 	}
3366 }
3367 
3368 STATIC int
3369 xlog_recover_commit_pass1(
3370 	struct xlog			*log,
3371 	struct xlog_recover		*trans,
3372 	struct xlog_recover_item	*item)
3373 {
3374 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3375 
3376 	switch (ITEM_TYPE(item)) {
3377 	case XFS_LI_BUF:
3378 		return xlog_recover_buffer_pass1(log, item);
3379 	case XFS_LI_QUOTAOFF:
3380 		return xlog_recover_quotaoff_pass1(log, item);
3381 	case XFS_LI_INODE:
3382 	case XFS_LI_EFI:
3383 	case XFS_LI_EFD:
3384 	case XFS_LI_DQUOT:
3385 	case XFS_LI_ICREATE:
3386 		/* nothing to do in pass 1 */
3387 		return 0;
3388 	default:
3389 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3390 			__func__, ITEM_TYPE(item));
3391 		ASSERT(0);
3392 		return XFS_ERROR(EIO);
3393 	}
3394 }
3395 
3396 STATIC int
3397 xlog_recover_commit_pass2(
3398 	struct xlog			*log,
3399 	struct xlog_recover		*trans,
3400 	struct list_head		*buffer_list,
3401 	struct xlog_recover_item	*item)
3402 {
3403 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3404 
3405 	switch (ITEM_TYPE(item)) {
3406 	case XFS_LI_BUF:
3407 		return xlog_recover_buffer_pass2(log, buffer_list, item,
3408 						 trans->r_lsn);
3409 	case XFS_LI_INODE:
3410 		return xlog_recover_inode_pass2(log, buffer_list, item,
3411 						 trans->r_lsn);
3412 	case XFS_LI_EFI:
3413 		return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3414 	case XFS_LI_EFD:
3415 		return xlog_recover_efd_pass2(log, item);
3416 	case XFS_LI_DQUOT:
3417 		return xlog_recover_dquot_pass2(log, buffer_list, item,
3418 						trans->r_lsn);
3419 	case XFS_LI_ICREATE:
3420 		return xlog_recover_do_icreate_pass2(log, buffer_list, item);
3421 	case XFS_LI_QUOTAOFF:
3422 		/* nothing to do in pass2 */
3423 		return 0;
3424 	default:
3425 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3426 			__func__, ITEM_TYPE(item));
3427 		ASSERT(0);
3428 		return XFS_ERROR(EIO);
3429 	}
3430 }
3431 
3432 STATIC int
3433 xlog_recover_items_pass2(
3434 	struct xlog                     *log,
3435 	struct xlog_recover             *trans,
3436 	struct list_head                *buffer_list,
3437 	struct list_head                *item_list)
3438 {
3439 	struct xlog_recover_item	*item;
3440 	int				error = 0;
3441 
3442 	list_for_each_entry(item, item_list, ri_list) {
3443 		error = xlog_recover_commit_pass2(log, trans,
3444 					  buffer_list, item);
3445 		if (error)
3446 			return error;
3447 	}
3448 
3449 	return error;
3450 }
3451 
3452 /*
3453  * Perform the transaction.
3454  *
3455  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
3456  * EFIs and EFDs get queued up by adding entries into the AIL for them.
3457  */
3458 STATIC int
3459 xlog_recover_commit_trans(
3460 	struct xlog		*log,
3461 	struct xlog_recover	*trans,
3462 	int			pass)
3463 {
3464 	int				error = 0;
3465 	int				error2;
3466 	int				items_queued = 0;
3467 	struct xlog_recover_item	*item;
3468 	struct xlog_recover_item	*next;
3469 	LIST_HEAD			(buffer_list);
3470 	LIST_HEAD			(ra_list);
3471 	LIST_HEAD			(done_list);
3472 
3473 	#define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
3474 
3475 	hlist_del(&trans->r_list);
3476 
3477 	error = xlog_recover_reorder_trans(log, trans, pass);
3478 	if (error)
3479 		return error;
3480 
3481 	list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
3482 		switch (pass) {
3483 		case XLOG_RECOVER_PASS1:
3484 			error = xlog_recover_commit_pass1(log, trans, item);
3485 			break;
3486 		case XLOG_RECOVER_PASS2:
3487 			xlog_recover_ra_pass2(log, item);
3488 			list_move_tail(&item->ri_list, &ra_list);
3489 			items_queued++;
3490 			if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3491 				error = xlog_recover_items_pass2(log, trans,
3492 						&buffer_list, &ra_list);
3493 				list_splice_tail_init(&ra_list, &done_list);
3494 				items_queued = 0;
3495 			}
3496 
3497 			break;
3498 		default:
3499 			ASSERT(0);
3500 		}
3501 
3502 		if (error)
3503 			goto out;
3504 	}
3505 
3506 out:
3507 	if (!list_empty(&ra_list)) {
3508 		if (!error)
3509 			error = xlog_recover_items_pass2(log, trans,
3510 					&buffer_list, &ra_list);
3511 		list_splice_tail_init(&ra_list, &done_list);
3512 	}
3513 
3514 	if (!list_empty(&done_list))
3515 		list_splice_init(&done_list, &trans->r_itemq);
3516 
3517 	xlog_recover_free_trans(trans);
3518 
3519 	error2 = xfs_buf_delwri_submit(&buffer_list);
3520 	return error ? error : error2;
3521 }
3522 
3523 STATIC int
3524 xlog_recover_unmount_trans(
3525 	struct xlog		*log)
3526 {
3527 	/* Do nothing now */
3528 	xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
3529 	return 0;
3530 }
3531 
3532 /*
3533  * There are two valid states of the r_state field.  0 indicates that the
3534  * transaction structure is in a normal state.  We have either seen the
3535  * start of the transaction or the last operation we added was not a partial
3536  * operation.  If the last operation we added to the transaction was a
3537  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3538  *
3539  * NOTE: skip LRs with 0 data length.
3540  */
3541 STATIC int
3542 xlog_recover_process_data(
3543 	struct xlog		*log,
3544 	struct hlist_head	rhash[],
3545 	struct xlog_rec_header	*rhead,
3546 	xfs_caddr_t		dp,
3547 	int			pass)
3548 {
3549 	xfs_caddr_t		lp;
3550 	int			num_logops;
3551 	xlog_op_header_t	*ohead;
3552 	xlog_recover_t		*trans;
3553 	xlog_tid_t		tid;
3554 	int			error;
3555 	unsigned long		hash;
3556 	uint			flags;
3557 
3558 	lp = dp + be32_to_cpu(rhead->h_len);
3559 	num_logops = be32_to_cpu(rhead->h_num_logops);
3560 
3561 	/* check the log format matches our own - else we can't recover */
3562 	if (xlog_header_check_recover(log->l_mp, rhead))
3563 		return (XFS_ERROR(EIO));
3564 
3565 	while ((dp < lp) && num_logops) {
3566 		ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
3567 		ohead = (xlog_op_header_t *)dp;
3568 		dp += sizeof(xlog_op_header_t);
3569 		if (ohead->oh_clientid != XFS_TRANSACTION &&
3570 		    ohead->oh_clientid != XFS_LOG) {
3571 			xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3572 					__func__, ohead->oh_clientid);
3573 			ASSERT(0);
3574 			return (XFS_ERROR(EIO));
3575 		}
3576 		tid = be32_to_cpu(ohead->oh_tid);
3577 		hash = XLOG_RHASH(tid);
3578 		trans = xlog_recover_find_tid(&rhash[hash], tid);
3579 		if (trans == NULL) {		   /* not found; add new tid */
3580 			if (ohead->oh_flags & XLOG_START_TRANS)
3581 				xlog_recover_new_tid(&rhash[hash], tid,
3582 					be64_to_cpu(rhead->h_lsn));
3583 		} else {
3584 			if (dp + be32_to_cpu(ohead->oh_len) > lp) {
3585 				xfs_warn(log->l_mp, "%s: bad length 0x%x",
3586 					__func__, be32_to_cpu(ohead->oh_len));
3587 				WARN_ON(1);
3588 				return (XFS_ERROR(EIO));
3589 			}
3590 			flags = ohead->oh_flags & ~XLOG_END_TRANS;
3591 			if (flags & XLOG_WAS_CONT_TRANS)
3592 				flags &= ~XLOG_CONTINUE_TRANS;
3593 			switch (flags) {
3594 			case XLOG_COMMIT_TRANS:
3595 				error = xlog_recover_commit_trans(log,
3596 								trans, pass);
3597 				break;
3598 			case XLOG_UNMOUNT_TRANS:
3599 				error = xlog_recover_unmount_trans(log);
3600 				break;
3601 			case XLOG_WAS_CONT_TRANS:
3602 				error = xlog_recover_add_to_cont_trans(log,
3603 						trans, dp,
3604 						be32_to_cpu(ohead->oh_len));
3605 				break;
3606 			case XLOG_START_TRANS:
3607 				xfs_warn(log->l_mp, "%s: bad transaction",
3608 					__func__);
3609 				ASSERT(0);
3610 				error = XFS_ERROR(EIO);
3611 				break;
3612 			case 0:
3613 			case XLOG_CONTINUE_TRANS:
3614 				error = xlog_recover_add_to_trans(log, trans,
3615 						dp, be32_to_cpu(ohead->oh_len));
3616 				break;
3617 			default:
3618 				xfs_warn(log->l_mp, "%s: bad flag 0x%x",
3619 					__func__, flags);
3620 				ASSERT(0);
3621 				error = XFS_ERROR(EIO);
3622 				break;
3623 			}
3624 			if (error) {
3625 				xlog_recover_free_trans(trans);
3626 				return error;
3627 			}
3628 		}
3629 		dp += be32_to_cpu(ohead->oh_len);
3630 		num_logops--;
3631 	}
3632 	return 0;
3633 }
3634 
3635 /*
3636  * Process an extent free intent item that was recovered from
3637  * the log.  We need to free the extents that it describes.
3638  */
3639 STATIC int
3640 xlog_recover_process_efi(
3641 	xfs_mount_t		*mp,
3642 	xfs_efi_log_item_t	*efip)
3643 {
3644 	xfs_efd_log_item_t	*efdp;
3645 	xfs_trans_t		*tp;
3646 	int			i;
3647 	int			error = 0;
3648 	xfs_extent_t		*extp;
3649 	xfs_fsblock_t		startblock_fsb;
3650 
3651 	ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
3652 
3653 	/*
3654 	 * First check the validity of the extents described by the
3655 	 * EFI.  If any are bad, then assume that all are bad and
3656 	 * just toss the EFI.
3657 	 */
3658 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3659 		extp = &(efip->efi_format.efi_extents[i]);
3660 		startblock_fsb = XFS_BB_TO_FSB(mp,
3661 				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
3662 		if ((startblock_fsb == 0) ||
3663 		    (extp->ext_len == 0) ||
3664 		    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3665 		    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3666 			/*
3667 			 * This will pull the EFI from the AIL and
3668 			 * free the memory associated with it.
3669 			 */
3670 			set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3671 			xfs_efi_release(efip, efip->efi_format.efi_nextents);
3672 			return XFS_ERROR(EIO);
3673 		}
3674 	}
3675 
3676 	tp = xfs_trans_alloc(mp, 0);
3677 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
3678 	if (error)
3679 		goto abort_error;
3680 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3681 
3682 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3683 		extp = &(efip->efi_format.efi_extents[i]);
3684 		error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3685 		if (error)
3686 			goto abort_error;
3687 		xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3688 					 extp->ext_len);
3689 	}
3690 
3691 	set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3692 	error = xfs_trans_commit(tp, 0);
3693 	return error;
3694 
3695 abort_error:
3696 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3697 	return error;
3698 }
3699 
3700 /*
3701  * When this is called, all of the EFIs which did not have
3702  * corresponding EFDs should be in the AIL.  What we do now
3703  * is free the extents associated with each one.
3704  *
3705  * Since we process the EFIs in normal transactions, they
3706  * will be removed at some point after the commit.  This prevents
3707  * us from just walking down the list processing each one.
3708  * We'll use a flag in the EFI to skip those that we've already
3709  * processed and use the AIL iteration mechanism's generation
3710  * count to try to speed this up at least a bit.
3711  *
3712  * When we start, we know that the EFIs are the only things in
3713  * the AIL.  As we process them, however, other items are added
3714  * to the AIL.  Since everything added to the AIL must come after
3715  * everything already in the AIL, we stop processing as soon as
3716  * we see something other than an EFI in the AIL.
3717  */
3718 STATIC int
3719 xlog_recover_process_efis(
3720 	struct xlog	*log)
3721 {
3722 	xfs_log_item_t		*lip;
3723 	xfs_efi_log_item_t	*efip;
3724 	int			error = 0;
3725 	struct xfs_ail_cursor	cur;
3726 	struct xfs_ail		*ailp;
3727 
3728 	ailp = log->l_ailp;
3729 	spin_lock(&ailp->xa_lock);
3730 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3731 	while (lip != NULL) {
3732 		/*
3733 		 * We're done when we see something other than an EFI.
3734 		 * There should be no EFIs left in the AIL now.
3735 		 */
3736 		if (lip->li_type != XFS_LI_EFI) {
3737 #ifdef DEBUG
3738 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3739 				ASSERT(lip->li_type != XFS_LI_EFI);
3740 #endif
3741 			break;
3742 		}
3743 
3744 		/*
3745 		 * Skip EFIs that we've already processed.
3746 		 */
3747 		efip = (xfs_efi_log_item_t *)lip;
3748 		if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3749 			lip = xfs_trans_ail_cursor_next(ailp, &cur);
3750 			continue;
3751 		}
3752 
3753 		spin_unlock(&ailp->xa_lock);
3754 		error = xlog_recover_process_efi(log->l_mp, efip);
3755 		spin_lock(&ailp->xa_lock);
3756 		if (error)
3757 			goto out;
3758 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3759 	}
3760 out:
3761 	xfs_trans_ail_cursor_done(&cur);
3762 	spin_unlock(&ailp->xa_lock);
3763 	return error;
3764 }
3765 
3766 /*
3767  * This routine performs a transaction to null out a bad inode pointer
3768  * in an agi unlinked inode hash bucket.
3769  */
3770 STATIC void
3771 xlog_recover_clear_agi_bucket(
3772 	xfs_mount_t	*mp,
3773 	xfs_agnumber_t	agno,
3774 	int		bucket)
3775 {
3776 	xfs_trans_t	*tp;
3777 	xfs_agi_t	*agi;
3778 	xfs_buf_t	*agibp;
3779 	int		offset;
3780 	int		error;
3781 
3782 	tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3783 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
3784 	if (error)
3785 		goto out_abort;
3786 
3787 	error = xfs_read_agi(mp, tp, agno, &agibp);
3788 	if (error)
3789 		goto out_abort;
3790 
3791 	agi = XFS_BUF_TO_AGI(agibp);
3792 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3793 	offset = offsetof(xfs_agi_t, agi_unlinked) +
3794 		 (sizeof(xfs_agino_t) * bucket);
3795 	xfs_trans_log_buf(tp, agibp, offset,
3796 			  (offset + sizeof(xfs_agino_t) - 1));
3797 
3798 	error = xfs_trans_commit(tp, 0);
3799 	if (error)
3800 		goto out_error;
3801 	return;
3802 
3803 out_abort:
3804 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3805 out_error:
3806 	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3807 	return;
3808 }
3809 
3810 STATIC xfs_agino_t
3811 xlog_recover_process_one_iunlink(
3812 	struct xfs_mount		*mp,
3813 	xfs_agnumber_t			agno,
3814 	xfs_agino_t			agino,
3815 	int				bucket)
3816 {
3817 	struct xfs_buf			*ibp;
3818 	struct xfs_dinode		*dip;
3819 	struct xfs_inode		*ip;
3820 	xfs_ino_t			ino;
3821 	int				error;
3822 
3823 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
3824 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3825 	if (error)
3826 		goto fail;
3827 
3828 	/*
3829 	 * Get the on disk inode to find the next inode in the bucket.
3830 	 */
3831 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
3832 	if (error)
3833 		goto fail_iput;
3834 
3835 	ASSERT(ip->i_d.di_nlink == 0);
3836 	ASSERT(ip->i_d.di_mode != 0);
3837 
3838 	/* setup for the next pass */
3839 	agino = be32_to_cpu(dip->di_next_unlinked);
3840 	xfs_buf_relse(ibp);
3841 
3842 	/*
3843 	 * Prevent any DMAPI event from being sent when the reference on
3844 	 * the inode is dropped.
3845 	 */
3846 	ip->i_d.di_dmevmask = 0;
3847 
3848 	IRELE(ip);
3849 	return agino;
3850 
3851  fail_iput:
3852 	IRELE(ip);
3853  fail:
3854 	/*
3855 	 * We can't read in the inode this bucket points to, or this inode
3856 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
3857 	 * some inodes and space, but at least we won't hang.
3858 	 *
3859 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3860 	 * clear the inode pointer in the bucket.
3861 	 */
3862 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
3863 	return NULLAGINO;
3864 }
3865 
3866 /*
3867  * xlog_iunlink_recover
3868  *
3869  * This is called during recovery to process any inodes which
3870  * we unlinked but not freed when the system crashed.  These
3871  * inodes will be on the lists in the AGI blocks.  What we do
3872  * here is scan all the AGIs and fully truncate and free any
3873  * inodes found on the lists.  Each inode is removed from the
3874  * lists when it has been fully truncated and is freed.  The
3875  * freeing of the inode and its removal from the list must be
3876  * atomic.
3877  */
3878 STATIC void
3879 xlog_recover_process_iunlinks(
3880 	struct xlog	*log)
3881 {
3882 	xfs_mount_t	*mp;
3883 	xfs_agnumber_t	agno;
3884 	xfs_agi_t	*agi;
3885 	xfs_buf_t	*agibp;
3886 	xfs_agino_t	agino;
3887 	int		bucket;
3888 	int		error;
3889 	uint		mp_dmevmask;
3890 
3891 	mp = log->l_mp;
3892 
3893 	/*
3894 	 * Prevent any DMAPI event from being sent while in this function.
3895 	 */
3896 	mp_dmevmask = mp->m_dmevmask;
3897 	mp->m_dmevmask = 0;
3898 
3899 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3900 		/*
3901 		 * Find the agi for this ag.
3902 		 */
3903 		error = xfs_read_agi(mp, NULL, agno, &agibp);
3904 		if (error) {
3905 			/*
3906 			 * AGI is b0rked. Don't process it.
3907 			 *
3908 			 * We should probably mark the filesystem as corrupt
3909 			 * after we've recovered all the ag's we can....
3910 			 */
3911 			continue;
3912 		}
3913 		/*
3914 		 * Unlock the buffer so that it can be acquired in the normal
3915 		 * course of the transaction to truncate and free each inode.
3916 		 * Because we are not racing with anyone else here for the AGI
3917 		 * buffer, we don't even need to hold it locked to read the
3918 		 * initial unlinked bucket entries out of the buffer. We keep
3919 		 * buffer reference though, so that it stays pinned in memory
3920 		 * while we need the buffer.
3921 		 */
3922 		agi = XFS_BUF_TO_AGI(agibp);
3923 		xfs_buf_unlock(agibp);
3924 
3925 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3926 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3927 			while (agino != NULLAGINO) {
3928 				agino = xlog_recover_process_one_iunlink(mp,
3929 							agno, agino, bucket);
3930 			}
3931 		}
3932 		xfs_buf_rele(agibp);
3933 	}
3934 
3935 	mp->m_dmevmask = mp_dmevmask;
3936 }
3937 
3938 /*
3939  * Upack the log buffer data and crc check it. If the check fails, issue a
3940  * warning if and only if the CRC in the header is non-zero. This makes the
3941  * check an advisory warning, and the zero CRC check will prevent failure
3942  * warnings from being emitted when upgrading the kernel from one that does not
3943  * add CRCs by default.
3944  *
3945  * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
3946  * corruption failure
3947  */
3948 STATIC int
3949 xlog_unpack_data_crc(
3950 	struct xlog_rec_header	*rhead,
3951 	xfs_caddr_t		dp,
3952 	struct xlog		*log)
3953 {
3954 	__le32			crc;
3955 
3956 	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
3957 	if (crc != rhead->h_crc) {
3958 		if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
3959 			xfs_alert(log->l_mp,
3960 		"log record CRC mismatch: found 0x%x, expected 0x%x.",
3961 					le32_to_cpu(rhead->h_crc),
3962 					le32_to_cpu(crc));
3963 			xfs_hex_dump(dp, 32);
3964 		}
3965 
3966 		/*
3967 		 * If we've detected a log record corruption, then we can't
3968 		 * recover past this point. Abort recovery if we are enforcing
3969 		 * CRC protection by punting an error back up the stack.
3970 		 */
3971 		if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
3972 			return EFSCORRUPTED;
3973 	}
3974 
3975 	return 0;
3976 }
3977 
3978 STATIC int
3979 xlog_unpack_data(
3980 	struct xlog_rec_header	*rhead,
3981 	xfs_caddr_t		dp,
3982 	struct xlog		*log)
3983 {
3984 	int			i, j, k;
3985 	int			error;
3986 
3987 	error = xlog_unpack_data_crc(rhead, dp, log);
3988 	if (error)
3989 		return error;
3990 
3991 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3992 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3993 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3994 		dp += BBSIZE;
3995 	}
3996 
3997 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3998 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3999 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
4000 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4001 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4002 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
4003 			dp += BBSIZE;
4004 		}
4005 	}
4006 
4007 	return 0;
4008 }
4009 
4010 STATIC int
4011 xlog_valid_rec_header(
4012 	struct xlog		*log,
4013 	struct xlog_rec_header	*rhead,
4014 	xfs_daddr_t		blkno)
4015 {
4016 	int			hlen;
4017 
4018 	if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
4019 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4020 				XFS_ERRLEVEL_LOW, log->l_mp);
4021 		return XFS_ERROR(EFSCORRUPTED);
4022 	}
4023 	if (unlikely(
4024 	    (!rhead->h_version ||
4025 	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
4026 		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
4027 			__func__, be32_to_cpu(rhead->h_version));
4028 		return XFS_ERROR(EIO);
4029 	}
4030 
4031 	/* LR body must have data or it wouldn't have been written */
4032 	hlen = be32_to_cpu(rhead->h_len);
4033 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4034 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4035 				XFS_ERRLEVEL_LOW, log->l_mp);
4036 		return XFS_ERROR(EFSCORRUPTED);
4037 	}
4038 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4039 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4040 				XFS_ERRLEVEL_LOW, log->l_mp);
4041 		return XFS_ERROR(EFSCORRUPTED);
4042 	}
4043 	return 0;
4044 }
4045 
4046 /*
4047  * Read the log from tail to head and process the log records found.
4048  * Handle the two cases where the tail and head are in the same cycle
4049  * and where the active portion of the log wraps around the end of
4050  * the physical log separately.  The pass parameter is passed through
4051  * to the routines called to process the data and is not looked at
4052  * here.
4053  */
4054 STATIC int
4055 xlog_do_recovery_pass(
4056 	struct xlog		*log,
4057 	xfs_daddr_t		head_blk,
4058 	xfs_daddr_t		tail_blk,
4059 	int			pass)
4060 {
4061 	xlog_rec_header_t	*rhead;
4062 	xfs_daddr_t		blk_no;
4063 	xfs_caddr_t		offset;
4064 	xfs_buf_t		*hbp, *dbp;
4065 	int			error = 0, h_size;
4066 	int			bblks, split_bblks;
4067 	int			hblks, split_hblks, wrapped_hblks;
4068 	struct hlist_head	rhash[XLOG_RHASH_SIZE];
4069 
4070 	ASSERT(head_blk != tail_blk);
4071 
4072 	/*
4073 	 * Read the header of the tail block and get the iclog buffer size from
4074 	 * h_size.  Use this to tell how many sectors make up the log header.
4075 	 */
4076 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4077 		/*
4078 		 * When using variable length iclogs, read first sector of
4079 		 * iclog header and extract the header size from it.  Get a
4080 		 * new hbp that is the correct size.
4081 		 */
4082 		hbp = xlog_get_bp(log, 1);
4083 		if (!hbp)
4084 			return ENOMEM;
4085 
4086 		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4087 		if (error)
4088 			goto bread_err1;
4089 
4090 		rhead = (xlog_rec_header_t *)offset;
4091 		error = xlog_valid_rec_header(log, rhead, tail_blk);
4092 		if (error)
4093 			goto bread_err1;
4094 		h_size = be32_to_cpu(rhead->h_size);
4095 		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
4096 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4097 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4098 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
4099 				hblks++;
4100 			xlog_put_bp(hbp);
4101 			hbp = xlog_get_bp(log, hblks);
4102 		} else {
4103 			hblks = 1;
4104 		}
4105 	} else {
4106 		ASSERT(log->l_sectBBsize == 1);
4107 		hblks = 1;
4108 		hbp = xlog_get_bp(log, 1);
4109 		h_size = XLOG_BIG_RECORD_BSIZE;
4110 	}
4111 
4112 	if (!hbp)
4113 		return ENOMEM;
4114 	dbp = xlog_get_bp(log, BTOBB(h_size));
4115 	if (!dbp) {
4116 		xlog_put_bp(hbp);
4117 		return ENOMEM;
4118 	}
4119 
4120 	memset(rhash, 0, sizeof(rhash));
4121 	if (tail_blk <= head_blk) {
4122 		for (blk_no = tail_blk; blk_no < head_blk; ) {
4123 			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4124 			if (error)
4125 				goto bread_err2;
4126 
4127 			rhead = (xlog_rec_header_t *)offset;
4128 			error = xlog_valid_rec_header(log, rhead, blk_no);
4129 			if (error)
4130 				goto bread_err2;
4131 
4132 			/* blocks in data section */
4133 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4134 			error = xlog_bread(log, blk_no + hblks, bblks, dbp,
4135 					   &offset);
4136 			if (error)
4137 				goto bread_err2;
4138 
4139 			error = xlog_unpack_data(rhead, offset, log);
4140 			if (error)
4141 				goto bread_err2;
4142 
4143 			error = xlog_recover_process_data(log,
4144 						rhash, rhead, offset, pass);
4145 			if (error)
4146 				goto bread_err2;
4147 			blk_no += bblks + hblks;
4148 		}
4149 	} else {
4150 		/*
4151 		 * Perform recovery around the end of the physical log.
4152 		 * When the head is not on the same cycle number as the tail,
4153 		 * we can't do a sequential recovery as above.
4154 		 */
4155 		blk_no = tail_blk;
4156 		while (blk_no < log->l_logBBsize) {
4157 			/*
4158 			 * Check for header wrapping around physical end-of-log
4159 			 */
4160 			offset = hbp->b_addr;
4161 			split_hblks = 0;
4162 			wrapped_hblks = 0;
4163 			if (blk_no + hblks <= log->l_logBBsize) {
4164 				/* Read header in one read */
4165 				error = xlog_bread(log, blk_no, hblks, hbp,
4166 						   &offset);
4167 				if (error)
4168 					goto bread_err2;
4169 			} else {
4170 				/* This LR is split across physical log end */
4171 				if (blk_no != log->l_logBBsize) {
4172 					/* some data before physical log end */
4173 					ASSERT(blk_no <= INT_MAX);
4174 					split_hblks = log->l_logBBsize - (int)blk_no;
4175 					ASSERT(split_hblks > 0);
4176 					error = xlog_bread(log, blk_no,
4177 							   split_hblks, hbp,
4178 							   &offset);
4179 					if (error)
4180 						goto bread_err2;
4181 				}
4182 
4183 				/*
4184 				 * Note: this black magic still works with
4185 				 * large sector sizes (non-512) only because:
4186 				 * - we increased the buffer size originally
4187 				 *   by 1 sector giving us enough extra space
4188 				 *   for the second read;
4189 				 * - the log start is guaranteed to be sector
4190 				 *   aligned;
4191 				 * - we read the log end (LR header start)
4192 				 *   _first_, then the log start (LR header end)
4193 				 *   - order is important.
4194 				 */
4195 				wrapped_hblks = hblks - split_hblks;
4196 				error = xlog_bread_offset(log, 0,
4197 						wrapped_hblks, hbp,
4198 						offset + BBTOB(split_hblks));
4199 				if (error)
4200 					goto bread_err2;
4201 			}
4202 			rhead = (xlog_rec_header_t *)offset;
4203 			error = xlog_valid_rec_header(log, rhead,
4204 						split_hblks ? blk_no : 0);
4205 			if (error)
4206 				goto bread_err2;
4207 
4208 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4209 			blk_no += hblks;
4210 
4211 			/* Read in data for log record */
4212 			if (blk_no + bblks <= log->l_logBBsize) {
4213 				error = xlog_bread(log, blk_no, bblks, dbp,
4214 						   &offset);
4215 				if (error)
4216 					goto bread_err2;
4217 			} else {
4218 				/* This log record is split across the
4219 				 * physical end of log */
4220 				offset = dbp->b_addr;
4221 				split_bblks = 0;
4222 				if (blk_no != log->l_logBBsize) {
4223 					/* some data is before the physical
4224 					 * end of log */
4225 					ASSERT(!wrapped_hblks);
4226 					ASSERT(blk_no <= INT_MAX);
4227 					split_bblks =
4228 						log->l_logBBsize - (int)blk_no;
4229 					ASSERT(split_bblks > 0);
4230 					error = xlog_bread(log, blk_no,
4231 							split_bblks, dbp,
4232 							&offset);
4233 					if (error)
4234 						goto bread_err2;
4235 				}
4236 
4237 				/*
4238 				 * Note: this black magic still works with
4239 				 * large sector sizes (non-512) only because:
4240 				 * - we increased the buffer size originally
4241 				 *   by 1 sector giving us enough extra space
4242 				 *   for the second read;
4243 				 * - the log start is guaranteed to be sector
4244 				 *   aligned;
4245 				 * - we read the log end (LR header start)
4246 				 *   _first_, then the log start (LR header end)
4247 				 *   - order is important.
4248 				 */
4249 				error = xlog_bread_offset(log, 0,
4250 						bblks - split_bblks, dbp,
4251 						offset + BBTOB(split_bblks));
4252 				if (error)
4253 					goto bread_err2;
4254 			}
4255 
4256 			error = xlog_unpack_data(rhead, offset, log);
4257 			if (error)
4258 				goto bread_err2;
4259 
4260 			error = xlog_recover_process_data(log, rhash,
4261 							rhead, offset, pass);
4262 			if (error)
4263 				goto bread_err2;
4264 			blk_no += bblks;
4265 		}
4266 
4267 		ASSERT(blk_no >= log->l_logBBsize);
4268 		blk_no -= log->l_logBBsize;
4269 
4270 		/* read first part of physical log */
4271 		while (blk_no < head_blk) {
4272 			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4273 			if (error)
4274 				goto bread_err2;
4275 
4276 			rhead = (xlog_rec_header_t *)offset;
4277 			error = xlog_valid_rec_header(log, rhead, blk_no);
4278 			if (error)
4279 				goto bread_err2;
4280 
4281 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4282 			error = xlog_bread(log, blk_no+hblks, bblks, dbp,
4283 					   &offset);
4284 			if (error)
4285 				goto bread_err2;
4286 
4287 			error = xlog_unpack_data(rhead, offset, log);
4288 			if (error)
4289 				goto bread_err2;
4290 
4291 			error = xlog_recover_process_data(log, rhash,
4292 							rhead, offset, pass);
4293 			if (error)
4294 				goto bread_err2;
4295 			blk_no += bblks + hblks;
4296 		}
4297 	}
4298 
4299  bread_err2:
4300 	xlog_put_bp(dbp);
4301  bread_err1:
4302 	xlog_put_bp(hbp);
4303 	return error;
4304 }
4305 
4306 /*
4307  * Do the recovery of the log.  We actually do this in two phases.
4308  * The two passes are necessary in order to implement the function
4309  * of cancelling a record written into the log.  The first pass
4310  * determines those things which have been cancelled, and the
4311  * second pass replays log items normally except for those which
4312  * have been cancelled.  The handling of the replay and cancellations
4313  * takes place in the log item type specific routines.
4314  *
4315  * The table of items which have cancel records in the log is allocated
4316  * and freed at this level, since only here do we know when all of
4317  * the log recovery has been completed.
4318  */
4319 STATIC int
4320 xlog_do_log_recovery(
4321 	struct xlog	*log,
4322 	xfs_daddr_t	head_blk,
4323 	xfs_daddr_t	tail_blk)
4324 {
4325 	int		error, i;
4326 
4327 	ASSERT(head_blk != tail_blk);
4328 
4329 	/*
4330 	 * First do a pass to find all of the cancelled buf log items.
4331 	 * Store them in the buf_cancel_table for use in the second pass.
4332 	 */
4333 	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4334 						 sizeof(struct list_head),
4335 						 KM_SLEEP);
4336 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4337 		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4338 
4339 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4340 				      XLOG_RECOVER_PASS1);
4341 	if (error != 0) {
4342 		kmem_free(log->l_buf_cancel_table);
4343 		log->l_buf_cancel_table = NULL;
4344 		return error;
4345 	}
4346 	/*
4347 	 * Then do a second pass to actually recover the items in the log.
4348 	 * When it is complete free the table of buf cancel items.
4349 	 */
4350 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4351 				      XLOG_RECOVER_PASS2);
4352 #ifdef DEBUG
4353 	if (!error) {
4354 		int	i;
4355 
4356 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4357 			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
4358 	}
4359 #endif	/* DEBUG */
4360 
4361 	kmem_free(log->l_buf_cancel_table);
4362 	log->l_buf_cancel_table = NULL;
4363 
4364 	return error;
4365 }
4366 
4367 /*
4368  * Do the actual recovery
4369  */
4370 STATIC int
4371 xlog_do_recover(
4372 	struct xlog	*log,
4373 	xfs_daddr_t	head_blk,
4374 	xfs_daddr_t	tail_blk)
4375 {
4376 	int		error;
4377 	xfs_buf_t	*bp;
4378 	xfs_sb_t	*sbp;
4379 
4380 	/*
4381 	 * First replay the images in the log.
4382 	 */
4383 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
4384 	if (error)
4385 		return error;
4386 
4387 	/*
4388 	 * If IO errors happened during recovery, bail out.
4389 	 */
4390 	if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4391 		return (EIO);
4392 	}
4393 
4394 	/*
4395 	 * We now update the tail_lsn since much of the recovery has completed
4396 	 * and there may be space available to use.  If there were no extent
4397 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
4398 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
4399 	 * lsn of the last known good LR on disk.  If there are extent frees
4400 	 * or iunlinks they will have some entries in the AIL; so we look at
4401 	 * the AIL to determine how to set the tail_lsn.
4402 	 */
4403 	xlog_assign_tail_lsn(log->l_mp);
4404 
4405 	/*
4406 	 * Now that we've finished replaying all buffer and inode
4407 	 * updates, re-read in the superblock and reverify it.
4408 	 */
4409 	bp = xfs_getsb(log->l_mp, 0);
4410 	XFS_BUF_UNDONE(bp);
4411 	ASSERT(!(XFS_BUF_ISWRITE(bp)));
4412 	XFS_BUF_READ(bp);
4413 	XFS_BUF_UNASYNC(bp);
4414 	bp->b_ops = &xfs_sb_buf_ops;
4415 
4416 	if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4417 		xfs_buf_relse(bp);
4418 		return XFS_ERROR(EIO);
4419 	}
4420 
4421 	xfs_buf_iorequest(bp);
4422 	error = xfs_buf_iowait(bp);
4423 	if (error) {
4424 		xfs_buf_ioerror_alert(bp, __func__);
4425 		ASSERT(0);
4426 		xfs_buf_relse(bp);
4427 		return error;
4428 	}
4429 
4430 	/* Convert superblock from on-disk format */
4431 	sbp = &log->l_mp->m_sb;
4432 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
4433 	ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
4434 	ASSERT(xfs_sb_good_version(sbp));
4435 	xfs_buf_relse(bp);
4436 
4437 	/* We've re-read the superblock so re-initialize per-cpu counters */
4438 	xfs_icsb_reinit_counters(log->l_mp);
4439 
4440 	xlog_recover_check_summary(log);
4441 
4442 	/* Normal transactions can now occur */
4443 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4444 	return 0;
4445 }
4446 
4447 /*
4448  * Perform recovery and re-initialize some log variables in xlog_find_tail.
4449  *
4450  * Return error or zero.
4451  */
4452 int
4453 xlog_recover(
4454 	struct xlog	*log)
4455 {
4456 	xfs_daddr_t	head_blk, tail_blk;
4457 	int		error;
4458 
4459 	/* find the tail of the log */
4460 	if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
4461 		return error;
4462 
4463 	if (tail_blk != head_blk) {
4464 		/* There used to be a comment here:
4465 		 *
4466 		 * disallow recovery on read-only mounts.  note -- mount
4467 		 * checks for ENOSPC and turns it into an intelligent
4468 		 * error message.
4469 		 * ...but this is no longer true.  Now, unless you specify
4470 		 * NORECOVERY (in which case this function would never be
4471 		 * called), we just go ahead and recover.  We do this all
4472 		 * under the vfs layer, so we can get away with it unless
4473 		 * the device itself is read-only, in which case we fail.
4474 		 */
4475 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
4476 			return error;
4477 		}
4478 
4479 		/*
4480 		 * Version 5 superblock log feature mask validation. We know the
4481 		 * log is dirty so check if there are any unknown log features
4482 		 * in what we need to recover. If there are unknown features
4483 		 * (e.g. unsupported transactions, then simply reject the
4484 		 * attempt at recovery before touching anything.
4485 		 */
4486 		if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
4487 		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
4488 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
4489 			xfs_warn(log->l_mp,
4490 "Superblock has unknown incompatible log features (0x%x) enabled.\n"
4491 "The log can not be fully and/or safely recovered by this kernel.\n"
4492 "Please recover the log on a kernel that supports the unknown features.",
4493 				(log->l_mp->m_sb.sb_features_log_incompat &
4494 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
4495 			return EINVAL;
4496 		}
4497 
4498 		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
4499 				log->l_mp->m_logname ? log->l_mp->m_logname
4500 						     : "internal");
4501 
4502 		error = xlog_do_recover(log, head_blk, tail_blk);
4503 		log->l_flags |= XLOG_RECOVERY_NEEDED;
4504 	}
4505 	return error;
4506 }
4507 
4508 /*
4509  * In the first part of recovery we replay inodes and buffers and build
4510  * up the list of extent free items which need to be processed.  Here
4511  * we process the extent free items and clean up the on disk unlinked
4512  * inode lists.  This is separated from the first part of recovery so
4513  * that the root and real-time bitmap inodes can be read in from disk in
4514  * between the two stages.  This is necessary so that we can free space
4515  * in the real-time portion of the file system.
4516  */
4517 int
4518 xlog_recover_finish(
4519 	struct xlog	*log)
4520 {
4521 	/*
4522 	 * Now we're ready to do the transactions needed for the
4523 	 * rest of recovery.  Start with completing all the extent
4524 	 * free intent records and then process the unlinked inode
4525 	 * lists.  At this point, we essentially run in normal mode
4526 	 * except that we're still performing recovery actions
4527 	 * rather than accepting new requests.
4528 	 */
4529 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
4530 		int	error;
4531 		error = xlog_recover_process_efis(log);
4532 		if (error) {
4533 			xfs_alert(log->l_mp, "Failed to recover EFIs");
4534 			return error;
4535 		}
4536 		/*
4537 		 * Sync the log to get all the EFIs out of the AIL.
4538 		 * This isn't absolutely necessary, but it helps in
4539 		 * case the unlink transactions would have problems
4540 		 * pushing the EFIs out of the way.
4541 		 */
4542 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
4543 
4544 		xlog_recover_process_iunlinks(log);
4545 
4546 		xlog_recover_check_summary(log);
4547 
4548 		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4549 				log->l_mp->m_logname ? log->l_mp->m_logname
4550 						     : "internal");
4551 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4552 	} else {
4553 		xfs_info(log->l_mp, "Ending clean mount");
4554 	}
4555 	return 0;
4556 }
4557 
4558 
4559 #if defined(DEBUG)
4560 /*
4561  * Read all of the agf and agi counters and check that they
4562  * are consistent with the superblock counters.
4563  */
4564 void
4565 xlog_recover_check_summary(
4566 	struct xlog	*log)
4567 {
4568 	xfs_mount_t	*mp;
4569 	xfs_agf_t	*agfp;
4570 	xfs_buf_t	*agfbp;
4571 	xfs_buf_t	*agibp;
4572 	xfs_agnumber_t	agno;
4573 	__uint64_t	freeblks;
4574 	__uint64_t	itotal;
4575 	__uint64_t	ifree;
4576 	int		error;
4577 
4578 	mp = log->l_mp;
4579 
4580 	freeblks = 0LL;
4581 	itotal = 0LL;
4582 	ifree = 0LL;
4583 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4584 		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4585 		if (error) {
4586 			xfs_alert(mp, "%s agf read failed agno %d error %d",
4587 						__func__, agno, error);
4588 		} else {
4589 			agfp = XFS_BUF_TO_AGF(agfbp);
4590 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
4591 				    be32_to_cpu(agfp->agf_flcount);
4592 			xfs_buf_relse(agfbp);
4593 		}
4594 
4595 		error = xfs_read_agi(mp, NULL, agno, &agibp);
4596 		if (error) {
4597 			xfs_alert(mp, "%s agi read failed agno %d error %d",
4598 						__func__, agno, error);
4599 		} else {
4600 			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
4601 
4602 			itotal += be32_to_cpu(agi->agi_count);
4603 			ifree += be32_to_cpu(agi->agi_freecount);
4604 			xfs_buf_relse(agibp);
4605 		}
4606 	}
4607 }
4608 #endif /* DEBUG */
4609