xref: /openbmc/linux/fs/xfs/xfs_log_recover.c (revision d623f60d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_da_format.h"
17 #include "xfs_da_btree.h"
18 #include "xfs_inode.h"
19 #include "xfs_trans.h"
20 #include "xfs_log.h"
21 #include "xfs_log_priv.h"
22 #include "xfs_log_recover.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_extfree_item.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_alloc.h"
27 #include "xfs_ialloc.h"
28 #include "xfs_quota.h"
29 #include "xfs_cksum.h"
30 #include "xfs_trace.h"
31 #include "xfs_icache.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_error.h"
34 #include "xfs_dir2.h"
35 #include "xfs_rmap_item.h"
36 #include "xfs_buf_item.h"
37 #include "xfs_refcount_item.h"
38 #include "xfs_bmap_item.h"
39 
40 #define BLK_AVG(blk1, blk2)	((blk1+blk2) >> 1)
41 
42 STATIC int
43 xlog_find_zeroed(
44 	struct xlog	*,
45 	xfs_daddr_t	*);
46 STATIC int
47 xlog_clear_stale_blocks(
48 	struct xlog	*,
49 	xfs_lsn_t);
50 #if defined(DEBUG)
51 STATIC void
52 xlog_recover_check_summary(
53 	struct xlog *);
54 #else
55 #define	xlog_recover_check_summary(log)
56 #endif
57 STATIC int
58 xlog_do_recovery_pass(
59         struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
60 
61 /*
62  * This structure is used during recovery to record the buf log items which
63  * have been canceled and should not be replayed.
64  */
65 struct xfs_buf_cancel {
66 	xfs_daddr_t		bc_blkno;
67 	uint			bc_len;
68 	int			bc_refcount;
69 	struct list_head	bc_list;
70 };
71 
72 /*
73  * Sector aligned buffer routines for buffer create/read/write/access
74  */
75 
76 /*
77  * Verify the log-relative block number and length in basic blocks are valid for
78  * an operation involving the given XFS log buffer. Returns true if the fields
79  * are valid, false otherwise.
80  */
81 static inline bool
82 xlog_verify_bp(
83 	struct xlog	*log,
84 	xfs_daddr_t	blk_no,
85 	int		bbcount)
86 {
87 	if (blk_no < 0 || blk_no >= log->l_logBBsize)
88 		return false;
89 	if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
90 		return false;
91 	return true;
92 }
93 
94 /*
95  * Allocate a buffer to hold log data.  The buffer needs to be able
96  * to map to a range of nbblks basic blocks at any valid (basic
97  * block) offset within the log.
98  */
99 STATIC xfs_buf_t *
100 xlog_get_bp(
101 	struct xlog	*log,
102 	int		nbblks)
103 {
104 	struct xfs_buf	*bp;
105 
106 	/*
107 	 * Pass log block 0 since we don't have an addr yet, buffer will be
108 	 * verified on read.
109 	 */
110 	if (!xlog_verify_bp(log, 0, nbblks)) {
111 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
112 			nbblks);
113 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
114 		return NULL;
115 	}
116 
117 	/*
118 	 * We do log I/O in units of log sectors (a power-of-2
119 	 * multiple of the basic block size), so we round up the
120 	 * requested size to accommodate the basic blocks required
121 	 * for complete log sectors.
122 	 *
123 	 * In addition, the buffer may be used for a non-sector-
124 	 * aligned block offset, in which case an I/O of the
125 	 * requested size could extend beyond the end of the
126 	 * buffer.  If the requested size is only 1 basic block it
127 	 * will never straddle a sector boundary, so this won't be
128 	 * an issue.  Nor will this be a problem if the log I/O is
129 	 * done in basic blocks (sector size 1).  But otherwise we
130 	 * extend the buffer by one extra log sector to ensure
131 	 * there's space to accommodate this possibility.
132 	 */
133 	if (nbblks > 1 && log->l_sectBBsize > 1)
134 		nbblks += log->l_sectBBsize;
135 	nbblks = round_up(nbblks, log->l_sectBBsize);
136 
137 	bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
138 	if (bp)
139 		xfs_buf_unlock(bp);
140 	return bp;
141 }
142 
143 STATIC void
144 xlog_put_bp(
145 	xfs_buf_t	*bp)
146 {
147 	xfs_buf_free(bp);
148 }
149 
150 /*
151  * Return the address of the start of the given block number's data
152  * in a log buffer.  The buffer covers a log sector-aligned region.
153  */
154 STATIC char *
155 xlog_align(
156 	struct xlog	*log,
157 	xfs_daddr_t	blk_no,
158 	int		nbblks,
159 	struct xfs_buf	*bp)
160 {
161 	xfs_daddr_t	offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
162 
163 	ASSERT(offset + nbblks <= bp->b_length);
164 	return bp->b_addr + BBTOB(offset);
165 }
166 
167 
168 /*
169  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
170  */
171 STATIC int
172 xlog_bread_noalign(
173 	struct xlog	*log,
174 	xfs_daddr_t	blk_no,
175 	int		nbblks,
176 	struct xfs_buf	*bp)
177 {
178 	int		error;
179 
180 	if (!xlog_verify_bp(log, blk_no, nbblks)) {
181 		xfs_warn(log->l_mp,
182 			 "Invalid log block/length (0x%llx, 0x%x) for buffer",
183 			 blk_no, nbblks);
184 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
185 		return -EFSCORRUPTED;
186 	}
187 
188 	blk_no = round_down(blk_no, log->l_sectBBsize);
189 	nbblks = round_up(nbblks, log->l_sectBBsize);
190 
191 	ASSERT(nbblks > 0);
192 	ASSERT(nbblks <= bp->b_length);
193 
194 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
195 	bp->b_flags |= XBF_READ;
196 	bp->b_io_length = nbblks;
197 	bp->b_error = 0;
198 
199 	error = xfs_buf_submit_wait(bp);
200 	if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
201 		xfs_buf_ioerror_alert(bp, __func__);
202 	return error;
203 }
204 
205 STATIC int
206 xlog_bread(
207 	struct xlog	*log,
208 	xfs_daddr_t	blk_no,
209 	int		nbblks,
210 	struct xfs_buf	*bp,
211 	char		**offset)
212 {
213 	int		error;
214 
215 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
216 	if (error)
217 		return error;
218 
219 	*offset = xlog_align(log, blk_no, nbblks, bp);
220 	return 0;
221 }
222 
223 /*
224  * Read at an offset into the buffer. Returns with the buffer in it's original
225  * state regardless of the result of the read.
226  */
227 STATIC int
228 xlog_bread_offset(
229 	struct xlog	*log,
230 	xfs_daddr_t	blk_no,		/* block to read from */
231 	int		nbblks,		/* blocks to read */
232 	struct xfs_buf	*bp,
233 	char		*offset)
234 {
235 	char		*orig_offset = bp->b_addr;
236 	int		orig_len = BBTOB(bp->b_length);
237 	int		error, error2;
238 
239 	error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
240 	if (error)
241 		return error;
242 
243 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
244 
245 	/* must reset buffer pointer even on error */
246 	error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
247 	if (error)
248 		return error;
249 	return error2;
250 }
251 
252 /*
253  * Write out the buffer at the given block for the given number of blocks.
254  * The buffer is kept locked across the write and is returned locked.
255  * This can only be used for synchronous log writes.
256  */
257 STATIC int
258 xlog_bwrite(
259 	struct xlog	*log,
260 	xfs_daddr_t	blk_no,
261 	int		nbblks,
262 	struct xfs_buf	*bp)
263 {
264 	int		error;
265 
266 	if (!xlog_verify_bp(log, blk_no, nbblks)) {
267 		xfs_warn(log->l_mp,
268 			 "Invalid log block/length (0x%llx, 0x%x) for buffer",
269 			 blk_no, nbblks);
270 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
271 		return -EFSCORRUPTED;
272 	}
273 
274 	blk_no = round_down(blk_no, log->l_sectBBsize);
275 	nbblks = round_up(nbblks, log->l_sectBBsize);
276 
277 	ASSERT(nbblks > 0);
278 	ASSERT(nbblks <= bp->b_length);
279 
280 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
281 	xfs_buf_hold(bp);
282 	xfs_buf_lock(bp);
283 	bp->b_io_length = nbblks;
284 	bp->b_error = 0;
285 
286 	error = xfs_bwrite(bp);
287 	if (error)
288 		xfs_buf_ioerror_alert(bp, __func__);
289 	xfs_buf_relse(bp);
290 	return error;
291 }
292 
293 #ifdef DEBUG
294 /*
295  * dump debug superblock and log record information
296  */
297 STATIC void
298 xlog_header_check_dump(
299 	xfs_mount_t		*mp,
300 	xlog_rec_header_t	*head)
301 {
302 	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
303 		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
304 	xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
305 		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
306 }
307 #else
308 #define xlog_header_check_dump(mp, head)
309 #endif
310 
311 /*
312  * check log record header for recovery
313  */
314 STATIC int
315 xlog_header_check_recover(
316 	xfs_mount_t		*mp,
317 	xlog_rec_header_t	*head)
318 {
319 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
320 
321 	/*
322 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
323 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
324 	 * a dirty log created in IRIX.
325 	 */
326 	if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
327 		xfs_warn(mp,
328 	"dirty log written in incompatible format - can't recover");
329 		xlog_header_check_dump(mp, head);
330 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
331 				 XFS_ERRLEVEL_HIGH, mp);
332 		return -EFSCORRUPTED;
333 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
334 		xfs_warn(mp,
335 	"dirty log entry has mismatched uuid - can't recover");
336 		xlog_header_check_dump(mp, head);
337 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
338 				 XFS_ERRLEVEL_HIGH, mp);
339 		return -EFSCORRUPTED;
340 	}
341 	return 0;
342 }
343 
344 /*
345  * read the head block of the log and check the header
346  */
347 STATIC int
348 xlog_header_check_mount(
349 	xfs_mount_t		*mp,
350 	xlog_rec_header_t	*head)
351 {
352 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
353 
354 	if (uuid_is_null(&head->h_fs_uuid)) {
355 		/*
356 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
357 		 * h_fs_uuid is null, we assume this log was last mounted
358 		 * by IRIX and continue.
359 		 */
360 		xfs_warn(mp, "null uuid in log - IRIX style log");
361 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
362 		xfs_warn(mp, "log has mismatched uuid - can't recover");
363 		xlog_header_check_dump(mp, head);
364 		XFS_ERROR_REPORT("xlog_header_check_mount",
365 				 XFS_ERRLEVEL_HIGH, mp);
366 		return -EFSCORRUPTED;
367 	}
368 	return 0;
369 }
370 
371 STATIC void
372 xlog_recover_iodone(
373 	struct xfs_buf	*bp)
374 {
375 	if (bp->b_error) {
376 		/*
377 		 * We're not going to bother about retrying
378 		 * this during recovery. One strike!
379 		 */
380 		if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
381 			xfs_buf_ioerror_alert(bp, __func__);
382 			xfs_force_shutdown(bp->b_target->bt_mount,
383 						SHUTDOWN_META_IO_ERROR);
384 		}
385 	}
386 
387 	/*
388 	 * On v5 supers, a bli could be attached to update the metadata LSN.
389 	 * Clean it up.
390 	 */
391 	if (bp->b_log_item)
392 		xfs_buf_item_relse(bp);
393 	ASSERT(bp->b_log_item == NULL);
394 
395 	bp->b_iodone = NULL;
396 	xfs_buf_ioend(bp);
397 }
398 
399 /*
400  * This routine finds (to an approximation) the first block in the physical
401  * log which contains the given cycle.  It uses a binary search algorithm.
402  * Note that the algorithm can not be perfect because the disk will not
403  * necessarily be perfect.
404  */
405 STATIC int
406 xlog_find_cycle_start(
407 	struct xlog	*log,
408 	struct xfs_buf	*bp,
409 	xfs_daddr_t	first_blk,
410 	xfs_daddr_t	*last_blk,
411 	uint		cycle)
412 {
413 	char		*offset;
414 	xfs_daddr_t	mid_blk;
415 	xfs_daddr_t	end_blk;
416 	uint		mid_cycle;
417 	int		error;
418 
419 	end_blk = *last_blk;
420 	mid_blk = BLK_AVG(first_blk, end_blk);
421 	while (mid_blk != first_blk && mid_blk != end_blk) {
422 		error = xlog_bread(log, mid_blk, 1, bp, &offset);
423 		if (error)
424 			return error;
425 		mid_cycle = xlog_get_cycle(offset);
426 		if (mid_cycle == cycle)
427 			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
428 		else
429 			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
430 		mid_blk = BLK_AVG(first_blk, end_blk);
431 	}
432 	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
433 	       (mid_blk == end_blk && mid_blk-1 == first_blk));
434 
435 	*last_blk = end_blk;
436 
437 	return 0;
438 }
439 
440 /*
441  * Check that a range of blocks does not contain stop_on_cycle_no.
442  * Fill in *new_blk with the block offset where such a block is
443  * found, or with -1 (an invalid block number) if there is no such
444  * block in the range.  The scan needs to occur from front to back
445  * and the pointer into the region must be updated since a later
446  * routine will need to perform another test.
447  */
448 STATIC int
449 xlog_find_verify_cycle(
450 	struct xlog	*log,
451 	xfs_daddr_t	start_blk,
452 	int		nbblks,
453 	uint		stop_on_cycle_no,
454 	xfs_daddr_t	*new_blk)
455 {
456 	xfs_daddr_t	i, j;
457 	uint		cycle;
458 	xfs_buf_t	*bp;
459 	xfs_daddr_t	bufblks;
460 	char		*buf = NULL;
461 	int		error = 0;
462 
463 	/*
464 	 * Greedily allocate a buffer big enough to handle the full
465 	 * range of basic blocks we'll be examining.  If that fails,
466 	 * try a smaller size.  We need to be able to read at least
467 	 * a log sector, or we're out of luck.
468 	 */
469 	bufblks = 1 << ffs(nbblks);
470 	while (bufblks > log->l_logBBsize)
471 		bufblks >>= 1;
472 	while (!(bp = xlog_get_bp(log, bufblks))) {
473 		bufblks >>= 1;
474 		if (bufblks < log->l_sectBBsize)
475 			return -ENOMEM;
476 	}
477 
478 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
479 		int	bcount;
480 
481 		bcount = min(bufblks, (start_blk + nbblks - i));
482 
483 		error = xlog_bread(log, i, bcount, bp, &buf);
484 		if (error)
485 			goto out;
486 
487 		for (j = 0; j < bcount; j++) {
488 			cycle = xlog_get_cycle(buf);
489 			if (cycle == stop_on_cycle_no) {
490 				*new_blk = i+j;
491 				goto out;
492 			}
493 
494 			buf += BBSIZE;
495 		}
496 	}
497 
498 	*new_blk = -1;
499 
500 out:
501 	xlog_put_bp(bp);
502 	return error;
503 }
504 
505 /*
506  * Potentially backup over partial log record write.
507  *
508  * In the typical case, last_blk is the number of the block directly after
509  * a good log record.  Therefore, we subtract one to get the block number
510  * of the last block in the given buffer.  extra_bblks contains the number
511  * of blocks we would have read on a previous read.  This happens when the
512  * last log record is split over the end of the physical log.
513  *
514  * extra_bblks is the number of blocks potentially verified on a previous
515  * call to this routine.
516  */
517 STATIC int
518 xlog_find_verify_log_record(
519 	struct xlog		*log,
520 	xfs_daddr_t		start_blk,
521 	xfs_daddr_t		*last_blk,
522 	int			extra_bblks)
523 {
524 	xfs_daddr_t		i;
525 	xfs_buf_t		*bp;
526 	char			*offset = NULL;
527 	xlog_rec_header_t	*head = NULL;
528 	int			error = 0;
529 	int			smallmem = 0;
530 	int			num_blks = *last_blk - start_blk;
531 	int			xhdrs;
532 
533 	ASSERT(start_blk != 0 || *last_blk != start_blk);
534 
535 	if (!(bp = xlog_get_bp(log, num_blks))) {
536 		if (!(bp = xlog_get_bp(log, 1)))
537 			return -ENOMEM;
538 		smallmem = 1;
539 	} else {
540 		error = xlog_bread(log, start_blk, num_blks, bp, &offset);
541 		if (error)
542 			goto out;
543 		offset += ((num_blks - 1) << BBSHIFT);
544 	}
545 
546 	for (i = (*last_blk) - 1; i >= 0; i--) {
547 		if (i < start_blk) {
548 			/* valid log record not found */
549 			xfs_warn(log->l_mp,
550 		"Log inconsistent (didn't find previous header)");
551 			ASSERT(0);
552 			error = -EIO;
553 			goto out;
554 		}
555 
556 		if (smallmem) {
557 			error = xlog_bread(log, i, 1, bp, &offset);
558 			if (error)
559 				goto out;
560 		}
561 
562 		head = (xlog_rec_header_t *)offset;
563 
564 		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
565 			break;
566 
567 		if (!smallmem)
568 			offset -= BBSIZE;
569 	}
570 
571 	/*
572 	 * We hit the beginning of the physical log & still no header.  Return
573 	 * to caller.  If caller can handle a return of -1, then this routine
574 	 * will be called again for the end of the physical log.
575 	 */
576 	if (i == -1) {
577 		error = 1;
578 		goto out;
579 	}
580 
581 	/*
582 	 * We have the final block of the good log (the first block
583 	 * of the log record _before_ the head. So we check the uuid.
584 	 */
585 	if ((error = xlog_header_check_mount(log->l_mp, head)))
586 		goto out;
587 
588 	/*
589 	 * We may have found a log record header before we expected one.
590 	 * last_blk will be the 1st block # with a given cycle #.  We may end
591 	 * up reading an entire log record.  In this case, we don't want to
592 	 * reset last_blk.  Only when last_blk points in the middle of a log
593 	 * record do we update last_blk.
594 	 */
595 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
596 		uint	h_size = be32_to_cpu(head->h_size);
597 
598 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
599 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
600 			xhdrs++;
601 	} else {
602 		xhdrs = 1;
603 	}
604 
605 	if (*last_blk - i + extra_bblks !=
606 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
607 		*last_blk = i;
608 
609 out:
610 	xlog_put_bp(bp);
611 	return error;
612 }
613 
614 /*
615  * Head is defined to be the point of the log where the next log write
616  * could go.  This means that incomplete LR writes at the end are
617  * eliminated when calculating the head.  We aren't guaranteed that previous
618  * LR have complete transactions.  We only know that a cycle number of
619  * current cycle number -1 won't be present in the log if we start writing
620  * from our current block number.
621  *
622  * last_blk contains the block number of the first block with a given
623  * cycle number.
624  *
625  * Return: zero if normal, non-zero if error.
626  */
627 STATIC int
628 xlog_find_head(
629 	struct xlog	*log,
630 	xfs_daddr_t	*return_head_blk)
631 {
632 	xfs_buf_t	*bp;
633 	char		*offset;
634 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
635 	int		num_scan_bblks;
636 	uint		first_half_cycle, last_half_cycle;
637 	uint		stop_on_cycle;
638 	int		error, log_bbnum = log->l_logBBsize;
639 
640 	/* Is the end of the log device zeroed? */
641 	error = xlog_find_zeroed(log, &first_blk);
642 	if (error < 0) {
643 		xfs_warn(log->l_mp, "empty log check failed");
644 		return error;
645 	}
646 	if (error == 1) {
647 		*return_head_blk = first_blk;
648 
649 		/* Is the whole lot zeroed? */
650 		if (!first_blk) {
651 			/* Linux XFS shouldn't generate totally zeroed logs -
652 			 * mkfs etc write a dummy unmount record to a fresh
653 			 * log so we can store the uuid in there
654 			 */
655 			xfs_warn(log->l_mp, "totally zeroed log");
656 		}
657 
658 		return 0;
659 	}
660 
661 	first_blk = 0;			/* get cycle # of 1st block */
662 	bp = xlog_get_bp(log, 1);
663 	if (!bp)
664 		return -ENOMEM;
665 
666 	error = xlog_bread(log, 0, 1, bp, &offset);
667 	if (error)
668 		goto bp_err;
669 
670 	first_half_cycle = xlog_get_cycle(offset);
671 
672 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
673 	error = xlog_bread(log, last_blk, 1, bp, &offset);
674 	if (error)
675 		goto bp_err;
676 
677 	last_half_cycle = xlog_get_cycle(offset);
678 	ASSERT(last_half_cycle != 0);
679 
680 	/*
681 	 * If the 1st half cycle number is equal to the last half cycle number,
682 	 * then the entire log is stamped with the same cycle number.  In this
683 	 * case, head_blk can't be set to zero (which makes sense).  The below
684 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
685 	 * we set it to log_bbnum which is an invalid block number, but this
686 	 * value makes the math correct.  If head_blk doesn't changed through
687 	 * all the tests below, *head_blk is set to zero at the very end rather
688 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
689 	 * in a circular file.
690 	 */
691 	if (first_half_cycle == last_half_cycle) {
692 		/*
693 		 * In this case we believe that the entire log should have
694 		 * cycle number last_half_cycle.  We need to scan backwards
695 		 * from the end verifying that there are no holes still
696 		 * containing last_half_cycle - 1.  If we find such a hole,
697 		 * then the start of that hole will be the new head.  The
698 		 * simple case looks like
699 		 *        x | x ... | x - 1 | x
700 		 * Another case that fits this picture would be
701 		 *        x | x + 1 | x ... | x
702 		 * In this case the head really is somewhere at the end of the
703 		 * log, as one of the latest writes at the beginning was
704 		 * incomplete.
705 		 * One more case is
706 		 *        x | x + 1 | x ... | x - 1 | x
707 		 * This is really the combination of the above two cases, and
708 		 * the head has to end up at the start of the x-1 hole at the
709 		 * end of the log.
710 		 *
711 		 * In the 256k log case, we will read from the beginning to the
712 		 * end of the log and search for cycle numbers equal to x-1.
713 		 * We don't worry about the x+1 blocks that we encounter,
714 		 * because we know that they cannot be the head since the log
715 		 * started with x.
716 		 */
717 		head_blk = log_bbnum;
718 		stop_on_cycle = last_half_cycle - 1;
719 	} else {
720 		/*
721 		 * In this case we want to find the first block with cycle
722 		 * number matching last_half_cycle.  We expect the log to be
723 		 * some variation on
724 		 *        x + 1 ... | x ... | x
725 		 * The first block with cycle number x (last_half_cycle) will
726 		 * be where the new head belongs.  First we do a binary search
727 		 * for the first occurrence of last_half_cycle.  The binary
728 		 * search may not be totally accurate, so then we scan back
729 		 * from there looking for occurrences of last_half_cycle before
730 		 * us.  If that backwards scan wraps around the beginning of
731 		 * the log, then we look for occurrences of last_half_cycle - 1
732 		 * at the end of the log.  The cases we're looking for look
733 		 * like
734 		 *                               v binary search stopped here
735 		 *        x + 1 ... | x | x + 1 | x ... | x
736 		 *                   ^ but we want to locate this spot
737 		 * or
738 		 *        <---------> less than scan distance
739 		 *        x + 1 ... | x ... | x - 1 | x
740 		 *                           ^ we want to locate this spot
741 		 */
742 		stop_on_cycle = last_half_cycle;
743 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
744 						&head_blk, last_half_cycle)))
745 			goto bp_err;
746 	}
747 
748 	/*
749 	 * Now validate the answer.  Scan back some number of maximum possible
750 	 * blocks and make sure each one has the expected cycle number.  The
751 	 * maximum is determined by the total possible amount of buffering
752 	 * in the in-core log.  The following number can be made tighter if
753 	 * we actually look at the block size of the filesystem.
754 	 */
755 	num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
756 	if (head_blk >= num_scan_bblks) {
757 		/*
758 		 * We are guaranteed that the entire check can be performed
759 		 * in one buffer.
760 		 */
761 		start_blk = head_blk - num_scan_bblks;
762 		if ((error = xlog_find_verify_cycle(log,
763 						start_blk, num_scan_bblks,
764 						stop_on_cycle, &new_blk)))
765 			goto bp_err;
766 		if (new_blk != -1)
767 			head_blk = new_blk;
768 	} else {		/* need to read 2 parts of log */
769 		/*
770 		 * We are going to scan backwards in the log in two parts.
771 		 * First we scan the physical end of the log.  In this part
772 		 * of the log, we are looking for blocks with cycle number
773 		 * last_half_cycle - 1.
774 		 * If we find one, then we know that the log starts there, as
775 		 * we've found a hole that didn't get written in going around
776 		 * the end of the physical log.  The simple case for this is
777 		 *        x + 1 ... | x ... | x - 1 | x
778 		 *        <---------> less than scan distance
779 		 * If all of the blocks at the end of the log have cycle number
780 		 * last_half_cycle, then we check the blocks at the start of
781 		 * the log looking for occurrences of last_half_cycle.  If we
782 		 * find one, then our current estimate for the location of the
783 		 * first occurrence of last_half_cycle is wrong and we move
784 		 * back to the hole we've found.  This case looks like
785 		 *        x + 1 ... | x | x + 1 | x ...
786 		 *                               ^ binary search stopped here
787 		 * Another case we need to handle that only occurs in 256k
788 		 * logs is
789 		 *        x + 1 ... | x ... | x+1 | x ...
790 		 *                   ^ binary search stops here
791 		 * In a 256k log, the scan at the end of the log will see the
792 		 * x + 1 blocks.  We need to skip past those since that is
793 		 * certainly not the head of the log.  By searching for
794 		 * last_half_cycle-1 we accomplish that.
795 		 */
796 		ASSERT(head_blk <= INT_MAX &&
797 			(xfs_daddr_t) num_scan_bblks >= head_blk);
798 		start_blk = log_bbnum - (num_scan_bblks - head_blk);
799 		if ((error = xlog_find_verify_cycle(log, start_blk,
800 					num_scan_bblks - (int)head_blk,
801 					(stop_on_cycle - 1), &new_blk)))
802 			goto bp_err;
803 		if (new_blk != -1) {
804 			head_blk = new_blk;
805 			goto validate_head;
806 		}
807 
808 		/*
809 		 * Scan beginning of log now.  The last part of the physical
810 		 * log is good.  This scan needs to verify that it doesn't find
811 		 * the last_half_cycle.
812 		 */
813 		start_blk = 0;
814 		ASSERT(head_blk <= INT_MAX);
815 		if ((error = xlog_find_verify_cycle(log,
816 					start_blk, (int)head_blk,
817 					stop_on_cycle, &new_blk)))
818 			goto bp_err;
819 		if (new_blk != -1)
820 			head_blk = new_blk;
821 	}
822 
823 validate_head:
824 	/*
825 	 * Now we need to make sure head_blk is not pointing to a block in
826 	 * the middle of a log record.
827 	 */
828 	num_scan_bblks = XLOG_REC_SHIFT(log);
829 	if (head_blk >= num_scan_bblks) {
830 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
831 
832 		/* start ptr at last block ptr before head_blk */
833 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
834 		if (error == 1)
835 			error = -EIO;
836 		if (error)
837 			goto bp_err;
838 	} else {
839 		start_blk = 0;
840 		ASSERT(head_blk <= INT_MAX);
841 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
842 		if (error < 0)
843 			goto bp_err;
844 		if (error == 1) {
845 			/* We hit the beginning of the log during our search */
846 			start_blk = log_bbnum - (num_scan_bblks - head_blk);
847 			new_blk = log_bbnum;
848 			ASSERT(start_blk <= INT_MAX &&
849 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
850 			ASSERT(head_blk <= INT_MAX);
851 			error = xlog_find_verify_log_record(log, start_blk,
852 							&new_blk, (int)head_blk);
853 			if (error == 1)
854 				error = -EIO;
855 			if (error)
856 				goto bp_err;
857 			if (new_blk != log_bbnum)
858 				head_blk = new_blk;
859 		} else if (error)
860 			goto bp_err;
861 	}
862 
863 	xlog_put_bp(bp);
864 	if (head_blk == log_bbnum)
865 		*return_head_blk = 0;
866 	else
867 		*return_head_blk = head_blk;
868 	/*
869 	 * When returning here, we have a good block number.  Bad block
870 	 * means that during a previous crash, we didn't have a clean break
871 	 * from cycle number N to cycle number N-1.  In this case, we need
872 	 * to find the first block with cycle number N-1.
873 	 */
874 	return 0;
875 
876  bp_err:
877 	xlog_put_bp(bp);
878 
879 	if (error)
880 		xfs_warn(log->l_mp, "failed to find log head");
881 	return error;
882 }
883 
884 /*
885  * Seek backwards in the log for log record headers.
886  *
887  * Given a starting log block, walk backwards until we find the provided number
888  * of records or hit the provided tail block. The return value is the number of
889  * records encountered or a negative error code. The log block and buffer
890  * pointer of the last record seen are returned in rblk and rhead respectively.
891  */
892 STATIC int
893 xlog_rseek_logrec_hdr(
894 	struct xlog		*log,
895 	xfs_daddr_t		head_blk,
896 	xfs_daddr_t		tail_blk,
897 	int			count,
898 	struct xfs_buf		*bp,
899 	xfs_daddr_t		*rblk,
900 	struct xlog_rec_header	**rhead,
901 	bool			*wrapped)
902 {
903 	int			i;
904 	int			error;
905 	int			found = 0;
906 	char			*offset = NULL;
907 	xfs_daddr_t		end_blk;
908 
909 	*wrapped = false;
910 
911 	/*
912 	 * Walk backwards from the head block until we hit the tail or the first
913 	 * block in the log.
914 	 */
915 	end_blk = head_blk > tail_blk ? tail_blk : 0;
916 	for (i = (int) head_blk - 1; i >= end_blk; i--) {
917 		error = xlog_bread(log, i, 1, bp, &offset);
918 		if (error)
919 			goto out_error;
920 
921 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
922 			*rblk = i;
923 			*rhead = (struct xlog_rec_header *) offset;
924 			if (++found == count)
925 				break;
926 		}
927 	}
928 
929 	/*
930 	 * If we haven't hit the tail block or the log record header count,
931 	 * start looking again from the end of the physical log. Note that
932 	 * callers can pass head == tail if the tail is not yet known.
933 	 */
934 	if (tail_blk >= head_blk && found != count) {
935 		for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
936 			error = xlog_bread(log, i, 1, bp, &offset);
937 			if (error)
938 				goto out_error;
939 
940 			if (*(__be32 *)offset ==
941 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
942 				*wrapped = true;
943 				*rblk = i;
944 				*rhead = (struct xlog_rec_header *) offset;
945 				if (++found == count)
946 					break;
947 			}
948 		}
949 	}
950 
951 	return found;
952 
953 out_error:
954 	return error;
955 }
956 
957 /*
958  * Seek forward in the log for log record headers.
959  *
960  * Given head and tail blocks, walk forward from the tail block until we find
961  * the provided number of records or hit the head block. The return value is the
962  * number of records encountered or a negative error code. The log block and
963  * buffer pointer of the last record seen are returned in rblk and rhead
964  * respectively.
965  */
966 STATIC int
967 xlog_seek_logrec_hdr(
968 	struct xlog		*log,
969 	xfs_daddr_t		head_blk,
970 	xfs_daddr_t		tail_blk,
971 	int			count,
972 	struct xfs_buf		*bp,
973 	xfs_daddr_t		*rblk,
974 	struct xlog_rec_header	**rhead,
975 	bool			*wrapped)
976 {
977 	int			i;
978 	int			error;
979 	int			found = 0;
980 	char			*offset = NULL;
981 	xfs_daddr_t		end_blk;
982 
983 	*wrapped = false;
984 
985 	/*
986 	 * Walk forward from the tail block until we hit the head or the last
987 	 * block in the log.
988 	 */
989 	end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
990 	for (i = (int) tail_blk; i <= end_blk; i++) {
991 		error = xlog_bread(log, i, 1, bp, &offset);
992 		if (error)
993 			goto out_error;
994 
995 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
996 			*rblk = i;
997 			*rhead = (struct xlog_rec_header *) offset;
998 			if (++found == count)
999 				break;
1000 		}
1001 	}
1002 
1003 	/*
1004 	 * If we haven't hit the head block or the log record header count,
1005 	 * start looking again from the start of the physical log.
1006 	 */
1007 	if (tail_blk > head_blk && found != count) {
1008 		for (i = 0; i < (int) head_blk; i++) {
1009 			error = xlog_bread(log, i, 1, bp, &offset);
1010 			if (error)
1011 				goto out_error;
1012 
1013 			if (*(__be32 *)offset ==
1014 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1015 				*wrapped = true;
1016 				*rblk = i;
1017 				*rhead = (struct xlog_rec_header *) offset;
1018 				if (++found == count)
1019 					break;
1020 			}
1021 		}
1022 	}
1023 
1024 	return found;
1025 
1026 out_error:
1027 	return error;
1028 }
1029 
1030 /*
1031  * Calculate distance from head to tail (i.e., unused space in the log).
1032  */
1033 static inline int
1034 xlog_tail_distance(
1035 	struct xlog	*log,
1036 	xfs_daddr_t	head_blk,
1037 	xfs_daddr_t	tail_blk)
1038 {
1039 	if (head_blk < tail_blk)
1040 		return tail_blk - head_blk;
1041 
1042 	return tail_blk + (log->l_logBBsize - head_blk);
1043 }
1044 
1045 /*
1046  * Verify the log tail. This is particularly important when torn or incomplete
1047  * writes have been detected near the front of the log and the head has been
1048  * walked back accordingly.
1049  *
1050  * We also have to handle the case where the tail was pinned and the head
1051  * blocked behind the tail right before a crash. If the tail had been pushed
1052  * immediately prior to the crash and the subsequent checkpoint was only
1053  * partially written, it's possible it overwrote the last referenced tail in the
1054  * log with garbage. This is not a coherency problem because the tail must have
1055  * been pushed before it can be overwritten, but appears as log corruption to
1056  * recovery because we have no way to know the tail was updated if the
1057  * subsequent checkpoint didn't write successfully.
1058  *
1059  * Therefore, CRC check the log from tail to head. If a failure occurs and the
1060  * offending record is within max iclog bufs from the head, walk the tail
1061  * forward and retry until a valid tail is found or corruption is detected out
1062  * of the range of a possible overwrite.
1063  */
1064 STATIC int
1065 xlog_verify_tail(
1066 	struct xlog		*log,
1067 	xfs_daddr_t		head_blk,
1068 	xfs_daddr_t		*tail_blk,
1069 	int			hsize)
1070 {
1071 	struct xlog_rec_header	*thead;
1072 	struct xfs_buf		*bp;
1073 	xfs_daddr_t		first_bad;
1074 	int			error = 0;
1075 	bool			wrapped;
1076 	xfs_daddr_t		tmp_tail;
1077 	xfs_daddr_t		orig_tail = *tail_blk;
1078 
1079 	bp = xlog_get_bp(log, 1);
1080 	if (!bp)
1081 		return -ENOMEM;
1082 
1083 	/*
1084 	 * Make sure the tail points to a record (returns positive count on
1085 	 * success).
1086 	 */
1087 	error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, bp,
1088 			&tmp_tail, &thead, &wrapped);
1089 	if (error < 0)
1090 		goto out;
1091 	if (*tail_blk != tmp_tail)
1092 		*tail_blk = tmp_tail;
1093 
1094 	/*
1095 	 * Run a CRC check from the tail to the head. We can't just check
1096 	 * MAX_ICLOGS records past the tail because the tail may point to stale
1097 	 * blocks cleared during the search for the head/tail. These blocks are
1098 	 * overwritten with zero-length records and thus record count is not a
1099 	 * reliable indicator of the iclog state before a crash.
1100 	 */
1101 	first_bad = 0;
1102 	error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1103 				      XLOG_RECOVER_CRCPASS, &first_bad);
1104 	while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1105 		int	tail_distance;
1106 
1107 		/*
1108 		 * Is corruption within range of the head? If so, retry from
1109 		 * the next record. Otherwise return an error.
1110 		 */
1111 		tail_distance = xlog_tail_distance(log, head_blk, first_bad);
1112 		if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
1113 			break;
1114 
1115 		/* skip to the next record; returns positive count on success */
1116 		error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, bp,
1117 				&tmp_tail, &thead, &wrapped);
1118 		if (error < 0)
1119 			goto out;
1120 
1121 		*tail_blk = tmp_tail;
1122 		first_bad = 0;
1123 		error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1124 					      XLOG_RECOVER_CRCPASS, &first_bad);
1125 	}
1126 
1127 	if (!error && *tail_blk != orig_tail)
1128 		xfs_warn(log->l_mp,
1129 		"Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1130 			 orig_tail, *tail_blk);
1131 out:
1132 	xlog_put_bp(bp);
1133 	return error;
1134 }
1135 
1136 /*
1137  * Detect and trim torn writes from the head of the log.
1138  *
1139  * Storage without sector atomicity guarantees can result in torn writes in the
1140  * log in the event of a crash. Our only means to detect this scenario is via
1141  * CRC verification. While we can't always be certain that CRC verification
1142  * failure is due to a torn write vs. an unrelated corruption, we do know that
1143  * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1144  * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1145  * the log and treat failures in this range as torn writes as a matter of
1146  * policy. In the event of CRC failure, the head is walked back to the last good
1147  * record in the log and the tail is updated from that record and verified.
1148  */
1149 STATIC int
1150 xlog_verify_head(
1151 	struct xlog		*log,
1152 	xfs_daddr_t		*head_blk,	/* in/out: unverified head */
1153 	xfs_daddr_t		*tail_blk,	/* out: tail block */
1154 	struct xfs_buf		*bp,
1155 	xfs_daddr_t		*rhead_blk,	/* start blk of last record */
1156 	struct xlog_rec_header	**rhead,	/* ptr to last record */
1157 	bool			*wrapped)	/* last rec. wraps phys. log */
1158 {
1159 	struct xlog_rec_header	*tmp_rhead;
1160 	struct xfs_buf		*tmp_bp;
1161 	xfs_daddr_t		first_bad;
1162 	xfs_daddr_t		tmp_rhead_blk;
1163 	int			found;
1164 	int			error;
1165 	bool			tmp_wrapped;
1166 
1167 	/*
1168 	 * Check the head of the log for torn writes. Search backwards from the
1169 	 * head until we hit the tail or the maximum number of log record I/Os
1170 	 * that could have been in flight at one time. Use a temporary buffer so
1171 	 * we don't trash the rhead/bp pointers from the caller.
1172 	 */
1173 	tmp_bp = xlog_get_bp(log, 1);
1174 	if (!tmp_bp)
1175 		return -ENOMEM;
1176 	error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1177 				      XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk,
1178 				      &tmp_rhead, &tmp_wrapped);
1179 	xlog_put_bp(tmp_bp);
1180 	if (error < 0)
1181 		return error;
1182 
1183 	/*
1184 	 * Now run a CRC verification pass over the records starting at the
1185 	 * block found above to the current head. If a CRC failure occurs, the
1186 	 * log block of the first bad record is saved in first_bad.
1187 	 */
1188 	error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1189 				      XLOG_RECOVER_CRCPASS, &first_bad);
1190 	if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1191 		/*
1192 		 * We've hit a potential torn write. Reset the error and warn
1193 		 * about it.
1194 		 */
1195 		error = 0;
1196 		xfs_warn(log->l_mp,
1197 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1198 			 first_bad, *head_blk);
1199 
1200 		/*
1201 		 * Get the header block and buffer pointer for the last good
1202 		 * record before the bad record.
1203 		 *
1204 		 * Note that xlog_find_tail() clears the blocks at the new head
1205 		 * (i.e., the records with invalid CRC) if the cycle number
1206 		 * matches the the current cycle.
1207 		 */
1208 		found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp,
1209 					      rhead_blk, rhead, wrapped);
1210 		if (found < 0)
1211 			return found;
1212 		if (found == 0)		/* XXX: right thing to do here? */
1213 			return -EIO;
1214 
1215 		/*
1216 		 * Reset the head block to the starting block of the first bad
1217 		 * log record and set the tail block based on the last good
1218 		 * record.
1219 		 *
1220 		 * Bail out if the updated head/tail match as this indicates
1221 		 * possible corruption outside of the acceptable
1222 		 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1223 		 */
1224 		*head_blk = first_bad;
1225 		*tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1226 		if (*head_blk == *tail_blk) {
1227 			ASSERT(0);
1228 			return 0;
1229 		}
1230 	}
1231 	if (error)
1232 		return error;
1233 
1234 	return xlog_verify_tail(log, *head_blk, tail_blk,
1235 				be32_to_cpu((*rhead)->h_size));
1236 }
1237 
1238 /*
1239  * We need to make sure we handle log wrapping properly, so we can't use the
1240  * calculated logbno directly. Make sure it wraps to the correct bno inside the
1241  * log.
1242  *
1243  * The log is limited to 32 bit sizes, so we use the appropriate modulus
1244  * operation here and cast it back to a 64 bit daddr on return.
1245  */
1246 static inline xfs_daddr_t
1247 xlog_wrap_logbno(
1248 	struct xlog		*log,
1249 	xfs_daddr_t		bno)
1250 {
1251 	int			mod;
1252 
1253 	div_s64_rem(bno, log->l_logBBsize, &mod);
1254 	return mod;
1255 }
1256 
1257 /*
1258  * Check whether the head of the log points to an unmount record. In other
1259  * words, determine whether the log is clean. If so, update the in-core state
1260  * appropriately.
1261  */
1262 static int
1263 xlog_check_unmount_rec(
1264 	struct xlog		*log,
1265 	xfs_daddr_t		*head_blk,
1266 	xfs_daddr_t		*tail_blk,
1267 	struct xlog_rec_header	*rhead,
1268 	xfs_daddr_t		rhead_blk,
1269 	struct xfs_buf		*bp,
1270 	bool			*clean)
1271 {
1272 	struct xlog_op_header	*op_head;
1273 	xfs_daddr_t		umount_data_blk;
1274 	xfs_daddr_t		after_umount_blk;
1275 	int			hblks;
1276 	int			error;
1277 	char			*offset;
1278 
1279 	*clean = false;
1280 
1281 	/*
1282 	 * Look for unmount record. If we find it, then we know there was a
1283 	 * clean unmount. Since 'i' could be the last block in the physical
1284 	 * log, we convert to a log block before comparing to the head_blk.
1285 	 *
1286 	 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1287 	 * below. We won't want to clear the unmount record if there is one, so
1288 	 * we pass the lsn of the unmount record rather than the block after it.
1289 	 */
1290 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1291 		int	h_size = be32_to_cpu(rhead->h_size);
1292 		int	h_version = be32_to_cpu(rhead->h_version);
1293 
1294 		if ((h_version & XLOG_VERSION_2) &&
1295 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1296 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1297 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
1298 				hblks++;
1299 		} else {
1300 			hblks = 1;
1301 		}
1302 	} else {
1303 		hblks = 1;
1304 	}
1305 
1306 	after_umount_blk = xlog_wrap_logbno(log,
1307 			rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
1308 
1309 	if (*head_blk == after_umount_blk &&
1310 	    be32_to_cpu(rhead->h_num_logops) == 1) {
1311 		umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
1312 		error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1313 		if (error)
1314 			return error;
1315 
1316 		op_head = (struct xlog_op_header *)offset;
1317 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1318 			/*
1319 			 * Set tail and last sync so that newly written log
1320 			 * records will point recovery to after the current
1321 			 * unmount record.
1322 			 */
1323 			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1324 					log->l_curr_cycle, after_umount_blk);
1325 			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1326 					log->l_curr_cycle, after_umount_blk);
1327 			*tail_blk = after_umount_blk;
1328 
1329 			*clean = true;
1330 		}
1331 	}
1332 
1333 	return 0;
1334 }
1335 
1336 static void
1337 xlog_set_state(
1338 	struct xlog		*log,
1339 	xfs_daddr_t		head_blk,
1340 	struct xlog_rec_header	*rhead,
1341 	xfs_daddr_t		rhead_blk,
1342 	bool			bump_cycle)
1343 {
1344 	/*
1345 	 * Reset log values according to the state of the log when we
1346 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
1347 	 * one because the next write starts a new cycle rather than
1348 	 * continuing the cycle of the last good log record.  At this
1349 	 * point we have guaranteed that all partial log records have been
1350 	 * accounted for.  Therefore, we know that the last good log record
1351 	 * written was complete and ended exactly on the end boundary
1352 	 * of the physical log.
1353 	 */
1354 	log->l_prev_block = rhead_blk;
1355 	log->l_curr_block = (int)head_blk;
1356 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1357 	if (bump_cycle)
1358 		log->l_curr_cycle++;
1359 	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1360 	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1361 	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1362 					BBTOB(log->l_curr_block));
1363 	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1364 					BBTOB(log->l_curr_block));
1365 }
1366 
1367 /*
1368  * Find the sync block number or the tail of the log.
1369  *
1370  * This will be the block number of the last record to have its
1371  * associated buffers synced to disk.  Every log record header has
1372  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
1373  * to get a sync block number.  The only concern is to figure out which
1374  * log record header to believe.
1375  *
1376  * The following algorithm uses the log record header with the largest
1377  * lsn.  The entire log record does not need to be valid.  We only care
1378  * that the header is valid.
1379  *
1380  * We could speed up search by using current head_blk buffer, but it is not
1381  * available.
1382  */
1383 STATIC int
1384 xlog_find_tail(
1385 	struct xlog		*log,
1386 	xfs_daddr_t		*head_blk,
1387 	xfs_daddr_t		*tail_blk)
1388 {
1389 	xlog_rec_header_t	*rhead;
1390 	char			*offset = NULL;
1391 	xfs_buf_t		*bp;
1392 	int			error;
1393 	xfs_daddr_t		rhead_blk;
1394 	xfs_lsn_t		tail_lsn;
1395 	bool			wrapped = false;
1396 	bool			clean = false;
1397 
1398 	/*
1399 	 * Find previous log record
1400 	 */
1401 	if ((error = xlog_find_head(log, head_blk)))
1402 		return error;
1403 	ASSERT(*head_blk < INT_MAX);
1404 
1405 	bp = xlog_get_bp(log, 1);
1406 	if (!bp)
1407 		return -ENOMEM;
1408 	if (*head_blk == 0) {				/* special case */
1409 		error = xlog_bread(log, 0, 1, bp, &offset);
1410 		if (error)
1411 			goto done;
1412 
1413 		if (xlog_get_cycle(offset) == 0) {
1414 			*tail_blk = 0;
1415 			/* leave all other log inited values alone */
1416 			goto done;
1417 		}
1418 	}
1419 
1420 	/*
1421 	 * Search backwards through the log looking for the log record header
1422 	 * block. This wraps all the way back around to the head so something is
1423 	 * seriously wrong if we can't find it.
1424 	 */
1425 	error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp,
1426 				      &rhead_blk, &rhead, &wrapped);
1427 	if (error < 0)
1428 		return error;
1429 	if (!error) {
1430 		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1431 		return -EIO;
1432 	}
1433 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1434 
1435 	/*
1436 	 * Set the log state based on the current head record.
1437 	 */
1438 	xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1439 	tail_lsn = atomic64_read(&log->l_tail_lsn);
1440 
1441 	/*
1442 	 * Look for an unmount record at the head of the log. This sets the log
1443 	 * state to determine whether recovery is necessary.
1444 	 */
1445 	error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1446 				       rhead_blk, bp, &clean);
1447 	if (error)
1448 		goto done;
1449 
1450 	/*
1451 	 * Verify the log head if the log is not clean (e.g., we have anything
1452 	 * but an unmount record at the head). This uses CRC verification to
1453 	 * detect and trim torn writes. If discovered, CRC failures are
1454 	 * considered torn writes and the log head is trimmed accordingly.
1455 	 *
1456 	 * Note that we can only run CRC verification when the log is dirty
1457 	 * because there's no guarantee that the log data behind an unmount
1458 	 * record is compatible with the current architecture.
1459 	 */
1460 	if (!clean) {
1461 		xfs_daddr_t	orig_head = *head_blk;
1462 
1463 		error = xlog_verify_head(log, head_blk, tail_blk, bp,
1464 					 &rhead_blk, &rhead, &wrapped);
1465 		if (error)
1466 			goto done;
1467 
1468 		/* update in-core state again if the head changed */
1469 		if (*head_blk != orig_head) {
1470 			xlog_set_state(log, *head_blk, rhead, rhead_blk,
1471 				       wrapped);
1472 			tail_lsn = atomic64_read(&log->l_tail_lsn);
1473 			error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1474 						       rhead, rhead_blk, bp,
1475 						       &clean);
1476 			if (error)
1477 				goto done;
1478 		}
1479 	}
1480 
1481 	/*
1482 	 * Note that the unmount was clean. If the unmount was not clean, we
1483 	 * need to know this to rebuild the superblock counters from the perag
1484 	 * headers if we have a filesystem using non-persistent counters.
1485 	 */
1486 	if (clean)
1487 		log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1488 
1489 	/*
1490 	 * Make sure that there are no blocks in front of the head
1491 	 * with the same cycle number as the head.  This can happen
1492 	 * because we allow multiple outstanding log writes concurrently,
1493 	 * and the later writes might make it out before earlier ones.
1494 	 *
1495 	 * We use the lsn from before modifying it so that we'll never
1496 	 * overwrite the unmount record after a clean unmount.
1497 	 *
1498 	 * Do this only if we are going to recover the filesystem
1499 	 *
1500 	 * NOTE: This used to say "if (!readonly)"
1501 	 * However on Linux, we can & do recover a read-only filesystem.
1502 	 * We only skip recovery if NORECOVERY is specified on mount,
1503 	 * in which case we would not be here.
1504 	 *
1505 	 * But... if the -device- itself is readonly, just skip this.
1506 	 * We can't recover this device anyway, so it won't matter.
1507 	 */
1508 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1509 		error = xlog_clear_stale_blocks(log, tail_lsn);
1510 
1511 done:
1512 	xlog_put_bp(bp);
1513 
1514 	if (error)
1515 		xfs_warn(log->l_mp, "failed to locate log tail");
1516 	return error;
1517 }
1518 
1519 /*
1520  * Is the log zeroed at all?
1521  *
1522  * The last binary search should be changed to perform an X block read
1523  * once X becomes small enough.  You can then search linearly through
1524  * the X blocks.  This will cut down on the number of reads we need to do.
1525  *
1526  * If the log is partially zeroed, this routine will pass back the blkno
1527  * of the first block with cycle number 0.  It won't have a complete LR
1528  * preceding it.
1529  *
1530  * Return:
1531  *	0  => the log is completely written to
1532  *	1 => use *blk_no as the first block of the log
1533  *	<0 => error has occurred
1534  */
1535 STATIC int
1536 xlog_find_zeroed(
1537 	struct xlog	*log,
1538 	xfs_daddr_t	*blk_no)
1539 {
1540 	xfs_buf_t	*bp;
1541 	char		*offset;
1542 	uint	        first_cycle, last_cycle;
1543 	xfs_daddr_t	new_blk, last_blk, start_blk;
1544 	xfs_daddr_t     num_scan_bblks;
1545 	int	        error, log_bbnum = log->l_logBBsize;
1546 
1547 	*blk_no = 0;
1548 
1549 	/* check totally zeroed log */
1550 	bp = xlog_get_bp(log, 1);
1551 	if (!bp)
1552 		return -ENOMEM;
1553 	error = xlog_bread(log, 0, 1, bp, &offset);
1554 	if (error)
1555 		goto bp_err;
1556 
1557 	first_cycle = xlog_get_cycle(offset);
1558 	if (first_cycle == 0) {		/* completely zeroed log */
1559 		*blk_no = 0;
1560 		xlog_put_bp(bp);
1561 		return 1;
1562 	}
1563 
1564 	/* check partially zeroed log */
1565 	error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1566 	if (error)
1567 		goto bp_err;
1568 
1569 	last_cycle = xlog_get_cycle(offset);
1570 	if (last_cycle != 0) {		/* log completely written to */
1571 		xlog_put_bp(bp);
1572 		return 0;
1573 	} else if (first_cycle != 1) {
1574 		/*
1575 		 * If the cycle of the last block is zero, the cycle of
1576 		 * the first block must be 1. If it's not, maybe we're
1577 		 * not looking at a log... Bail out.
1578 		 */
1579 		xfs_warn(log->l_mp,
1580 			"Log inconsistent or not a log (last==0, first!=1)");
1581 		error = -EINVAL;
1582 		goto bp_err;
1583 	}
1584 
1585 	/* we have a partially zeroed log */
1586 	last_blk = log_bbnum-1;
1587 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1588 		goto bp_err;
1589 
1590 	/*
1591 	 * Validate the answer.  Because there is no way to guarantee that
1592 	 * the entire log is made up of log records which are the same size,
1593 	 * we scan over the defined maximum blocks.  At this point, the maximum
1594 	 * is not chosen to mean anything special.   XXXmiken
1595 	 */
1596 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1597 	ASSERT(num_scan_bblks <= INT_MAX);
1598 
1599 	if (last_blk < num_scan_bblks)
1600 		num_scan_bblks = last_blk;
1601 	start_blk = last_blk - num_scan_bblks;
1602 
1603 	/*
1604 	 * We search for any instances of cycle number 0 that occur before
1605 	 * our current estimate of the head.  What we're trying to detect is
1606 	 *        1 ... | 0 | 1 | 0...
1607 	 *                       ^ binary search ends here
1608 	 */
1609 	if ((error = xlog_find_verify_cycle(log, start_blk,
1610 					 (int)num_scan_bblks, 0, &new_blk)))
1611 		goto bp_err;
1612 	if (new_blk != -1)
1613 		last_blk = new_blk;
1614 
1615 	/*
1616 	 * Potentially backup over partial log record write.  We don't need
1617 	 * to search the end of the log because we know it is zero.
1618 	 */
1619 	error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1620 	if (error == 1)
1621 		error = -EIO;
1622 	if (error)
1623 		goto bp_err;
1624 
1625 	*blk_no = last_blk;
1626 bp_err:
1627 	xlog_put_bp(bp);
1628 	if (error)
1629 		return error;
1630 	return 1;
1631 }
1632 
1633 /*
1634  * These are simple subroutines used by xlog_clear_stale_blocks() below
1635  * to initialize a buffer full of empty log record headers and write
1636  * them into the log.
1637  */
1638 STATIC void
1639 xlog_add_record(
1640 	struct xlog		*log,
1641 	char			*buf,
1642 	int			cycle,
1643 	int			block,
1644 	int			tail_cycle,
1645 	int			tail_block)
1646 {
1647 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1648 
1649 	memset(buf, 0, BBSIZE);
1650 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1651 	recp->h_cycle = cpu_to_be32(cycle);
1652 	recp->h_version = cpu_to_be32(
1653 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1654 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1655 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1656 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1657 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1658 }
1659 
1660 STATIC int
1661 xlog_write_log_records(
1662 	struct xlog	*log,
1663 	int		cycle,
1664 	int		start_block,
1665 	int		blocks,
1666 	int		tail_cycle,
1667 	int		tail_block)
1668 {
1669 	char		*offset;
1670 	xfs_buf_t	*bp;
1671 	int		balign, ealign;
1672 	int		sectbb = log->l_sectBBsize;
1673 	int		end_block = start_block + blocks;
1674 	int		bufblks;
1675 	int		error = 0;
1676 	int		i, j = 0;
1677 
1678 	/*
1679 	 * Greedily allocate a buffer big enough to handle the full
1680 	 * range of basic blocks to be written.  If that fails, try
1681 	 * a smaller size.  We need to be able to write at least a
1682 	 * log sector, or we're out of luck.
1683 	 */
1684 	bufblks = 1 << ffs(blocks);
1685 	while (bufblks > log->l_logBBsize)
1686 		bufblks >>= 1;
1687 	while (!(bp = xlog_get_bp(log, bufblks))) {
1688 		bufblks >>= 1;
1689 		if (bufblks < sectbb)
1690 			return -ENOMEM;
1691 	}
1692 
1693 	/* We may need to do a read at the start to fill in part of
1694 	 * the buffer in the starting sector not covered by the first
1695 	 * write below.
1696 	 */
1697 	balign = round_down(start_block, sectbb);
1698 	if (balign != start_block) {
1699 		error = xlog_bread_noalign(log, start_block, 1, bp);
1700 		if (error)
1701 			goto out_put_bp;
1702 
1703 		j = start_block - balign;
1704 	}
1705 
1706 	for (i = start_block; i < end_block; i += bufblks) {
1707 		int		bcount, endcount;
1708 
1709 		bcount = min(bufblks, end_block - start_block);
1710 		endcount = bcount - j;
1711 
1712 		/* We may need to do a read at the end to fill in part of
1713 		 * the buffer in the final sector not covered by the write.
1714 		 * If this is the same sector as the above read, skip it.
1715 		 */
1716 		ealign = round_down(end_block, sectbb);
1717 		if (j == 0 && (start_block + endcount > ealign)) {
1718 			offset = bp->b_addr + BBTOB(ealign - start_block);
1719 			error = xlog_bread_offset(log, ealign, sectbb,
1720 							bp, offset);
1721 			if (error)
1722 				break;
1723 
1724 		}
1725 
1726 		offset = xlog_align(log, start_block, endcount, bp);
1727 		for (; j < endcount; j++) {
1728 			xlog_add_record(log, offset, cycle, i+j,
1729 					tail_cycle, tail_block);
1730 			offset += BBSIZE;
1731 		}
1732 		error = xlog_bwrite(log, start_block, endcount, bp);
1733 		if (error)
1734 			break;
1735 		start_block += endcount;
1736 		j = 0;
1737 	}
1738 
1739  out_put_bp:
1740 	xlog_put_bp(bp);
1741 	return error;
1742 }
1743 
1744 /*
1745  * This routine is called to blow away any incomplete log writes out
1746  * in front of the log head.  We do this so that we won't become confused
1747  * if we come up, write only a little bit more, and then crash again.
1748  * If we leave the partial log records out there, this situation could
1749  * cause us to think those partial writes are valid blocks since they
1750  * have the current cycle number.  We get rid of them by overwriting them
1751  * with empty log records with the old cycle number rather than the
1752  * current one.
1753  *
1754  * The tail lsn is passed in rather than taken from
1755  * the log so that we will not write over the unmount record after a
1756  * clean unmount in a 512 block log.  Doing so would leave the log without
1757  * any valid log records in it until a new one was written.  If we crashed
1758  * during that time we would not be able to recover.
1759  */
1760 STATIC int
1761 xlog_clear_stale_blocks(
1762 	struct xlog	*log,
1763 	xfs_lsn_t	tail_lsn)
1764 {
1765 	int		tail_cycle, head_cycle;
1766 	int		tail_block, head_block;
1767 	int		tail_distance, max_distance;
1768 	int		distance;
1769 	int		error;
1770 
1771 	tail_cycle = CYCLE_LSN(tail_lsn);
1772 	tail_block = BLOCK_LSN(tail_lsn);
1773 	head_cycle = log->l_curr_cycle;
1774 	head_block = log->l_curr_block;
1775 
1776 	/*
1777 	 * Figure out the distance between the new head of the log
1778 	 * and the tail.  We want to write over any blocks beyond the
1779 	 * head that we may have written just before the crash, but
1780 	 * we don't want to overwrite the tail of the log.
1781 	 */
1782 	if (head_cycle == tail_cycle) {
1783 		/*
1784 		 * The tail is behind the head in the physical log,
1785 		 * so the distance from the head to the tail is the
1786 		 * distance from the head to the end of the log plus
1787 		 * the distance from the beginning of the log to the
1788 		 * tail.
1789 		 */
1790 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1791 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1792 					 XFS_ERRLEVEL_LOW, log->l_mp);
1793 			return -EFSCORRUPTED;
1794 		}
1795 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1796 	} else {
1797 		/*
1798 		 * The head is behind the tail in the physical log,
1799 		 * so the distance from the head to the tail is just
1800 		 * the tail block minus the head block.
1801 		 */
1802 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1803 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1804 					 XFS_ERRLEVEL_LOW, log->l_mp);
1805 			return -EFSCORRUPTED;
1806 		}
1807 		tail_distance = tail_block - head_block;
1808 	}
1809 
1810 	/*
1811 	 * If the head is right up against the tail, we can't clear
1812 	 * anything.
1813 	 */
1814 	if (tail_distance <= 0) {
1815 		ASSERT(tail_distance == 0);
1816 		return 0;
1817 	}
1818 
1819 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1820 	/*
1821 	 * Take the smaller of the maximum amount of outstanding I/O
1822 	 * we could have and the distance to the tail to clear out.
1823 	 * We take the smaller so that we don't overwrite the tail and
1824 	 * we don't waste all day writing from the head to the tail
1825 	 * for no reason.
1826 	 */
1827 	max_distance = min(max_distance, tail_distance);
1828 
1829 	if ((head_block + max_distance) <= log->l_logBBsize) {
1830 		/*
1831 		 * We can stomp all the blocks we need to without
1832 		 * wrapping around the end of the log.  Just do it
1833 		 * in a single write.  Use the cycle number of the
1834 		 * current cycle minus one so that the log will look like:
1835 		 *     n ... | n - 1 ...
1836 		 */
1837 		error = xlog_write_log_records(log, (head_cycle - 1),
1838 				head_block, max_distance, tail_cycle,
1839 				tail_block);
1840 		if (error)
1841 			return error;
1842 	} else {
1843 		/*
1844 		 * We need to wrap around the end of the physical log in
1845 		 * order to clear all the blocks.  Do it in two separate
1846 		 * I/Os.  The first write should be from the head to the
1847 		 * end of the physical log, and it should use the current
1848 		 * cycle number minus one just like above.
1849 		 */
1850 		distance = log->l_logBBsize - head_block;
1851 		error = xlog_write_log_records(log, (head_cycle - 1),
1852 				head_block, distance, tail_cycle,
1853 				tail_block);
1854 
1855 		if (error)
1856 			return error;
1857 
1858 		/*
1859 		 * Now write the blocks at the start of the physical log.
1860 		 * This writes the remainder of the blocks we want to clear.
1861 		 * It uses the current cycle number since we're now on the
1862 		 * same cycle as the head so that we get:
1863 		 *    n ... n ... | n - 1 ...
1864 		 *    ^^^^^ blocks we're writing
1865 		 */
1866 		distance = max_distance - (log->l_logBBsize - head_block);
1867 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1868 				tail_cycle, tail_block);
1869 		if (error)
1870 			return error;
1871 	}
1872 
1873 	return 0;
1874 }
1875 
1876 /******************************************************************************
1877  *
1878  *		Log recover routines
1879  *
1880  ******************************************************************************
1881  */
1882 
1883 /*
1884  * Sort the log items in the transaction.
1885  *
1886  * The ordering constraints are defined by the inode allocation and unlink
1887  * behaviour. The rules are:
1888  *
1889  *	1. Every item is only logged once in a given transaction. Hence it
1890  *	   represents the last logged state of the item. Hence ordering is
1891  *	   dependent on the order in which operations need to be performed so
1892  *	   required initial conditions are always met.
1893  *
1894  *	2. Cancelled buffers are recorded in pass 1 in a separate table and
1895  *	   there's nothing to replay from them so we can simply cull them
1896  *	   from the transaction. However, we can't do that until after we've
1897  *	   replayed all the other items because they may be dependent on the
1898  *	   cancelled buffer and replaying the cancelled buffer can remove it
1899  *	   form the cancelled buffer table. Hence they have tobe done last.
1900  *
1901  *	3. Inode allocation buffers must be replayed before inode items that
1902  *	   read the buffer and replay changes into it. For filesystems using the
1903  *	   ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1904  *	   treated the same as inode allocation buffers as they create and
1905  *	   initialise the buffers directly.
1906  *
1907  *	4. Inode unlink buffers must be replayed after inode items are replayed.
1908  *	   This ensures that inodes are completely flushed to the inode buffer
1909  *	   in a "free" state before we remove the unlinked inode list pointer.
1910  *
1911  * Hence the ordering needs to be inode allocation buffers first, inode items
1912  * second, inode unlink buffers third and cancelled buffers last.
1913  *
1914  * But there's a problem with that - we can't tell an inode allocation buffer
1915  * apart from a regular buffer, so we can't separate them. We can, however,
1916  * tell an inode unlink buffer from the others, and so we can separate them out
1917  * from all the other buffers and move them to last.
1918  *
1919  * Hence, 4 lists, in order from head to tail:
1920  *	- buffer_list for all buffers except cancelled/inode unlink buffers
1921  *	- item_list for all non-buffer items
1922  *	- inode_buffer_list for inode unlink buffers
1923  *	- cancel_list for the cancelled buffers
1924  *
1925  * Note that we add objects to the tail of the lists so that first-to-last
1926  * ordering is preserved within the lists. Adding objects to the head of the
1927  * list means when we traverse from the head we walk them in last-to-first
1928  * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1929  * but for all other items there may be specific ordering that we need to
1930  * preserve.
1931  */
1932 STATIC int
1933 xlog_recover_reorder_trans(
1934 	struct xlog		*log,
1935 	struct xlog_recover	*trans,
1936 	int			pass)
1937 {
1938 	xlog_recover_item_t	*item, *n;
1939 	int			error = 0;
1940 	LIST_HEAD(sort_list);
1941 	LIST_HEAD(cancel_list);
1942 	LIST_HEAD(buffer_list);
1943 	LIST_HEAD(inode_buffer_list);
1944 	LIST_HEAD(inode_list);
1945 
1946 	list_splice_init(&trans->r_itemq, &sort_list);
1947 	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1948 		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1949 
1950 		switch (ITEM_TYPE(item)) {
1951 		case XFS_LI_ICREATE:
1952 			list_move_tail(&item->ri_list, &buffer_list);
1953 			break;
1954 		case XFS_LI_BUF:
1955 			if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1956 				trace_xfs_log_recover_item_reorder_head(log,
1957 							trans, item, pass);
1958 				list_move(&item->ri_list, &cancel_list);
1959 				break;
1960 			}
1961 			if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1962 				list_move(&item->ri_list, &inode_buffer_list);
1963 				break;
1964 			}
1965 			list_move_tail(&item->ri_list, &buffer_list);
1966 			break;
1967 		case XFS_LI_INODE:
1968 		case XFS_LI_DQUOT:
1969 		case XFS_LI_QUOTAOFF:
1970 		case XFS_LI_EFD:
1971 		case XFS_LI_EFI:
1972 		case XFS_LI_RUI:
1973 		case XFS_LI_RUD:
1974 		case XFS_LI_CUI:
1975 		case XFS_LI_CUD:
1976 		case XFS_LI_BUI:
1977 		case XFS_LI_BUD:
1978 			trace_xfs_log_recover_item_reorder_tail(log,
1979 							trans, item, pass);
1980 			list_move_tail(&item->ri_list, &inode_list);
1981 			break;
1982 		default:
1983 			xfs_warn(log->l_mp,
1984 				"%s: unrecognized type of log operation",
1985 				__func__);
1986 			ASSERT(0);
1987 			/*
1988 			 * return the remaining items back to the transaction
1989 			 * item list so they can be freed in caller.
1990 			 */
1991 			if (!list_empty(&sort_list))
1992 				list_splice_init(&sort_list, &trans->r_itemq);
1993 			error = -EIO;
1994 			goto out;
1995 		}
1996 	}
1997 out:
1998 	ASSERT(list_empty(&sort_list));
1999 	if (!list_empty(&buffer_list))
2000 		list_splice(&buffer_list, &trans->r_itemq);
2001 	if (!list_empty(&inode_list))
2002 		list_splice_tail(&inode_list, &trans->r_itemq);
2003 	if (!list_empty(&inode_buffer_list))
2004 		list_splice_tail(&inode_buffer_list, &trans->r_itemq);
2005 	if (!list_empty(&cancel_list))
2006 		list_splice_tail(&cancel_list, &trans->r_itemq);
2007 	return error;
2008 }
2009 
2010 /*
2011  * Build up the table of buf cancel records so that we don't replay
2012  * cancelled data in the second pass.  For buffer records that are
2013  * not cancel records, there is nothing to do here so we just return.
2014  *
2015  * If we get a cancel record which is already in the table, this indicates
2016  * that the buffer was cancelled multiple times.  In order to ensure
2017  * that during pass 2 we keep the record in the table until we reach its
2018  * last occurrence in the log, we keep a reference count in the cancel
2019  * record in the table to tell us how many times we expect to see this
2020  * record during the second pass.
2021  */
2022 STATIC int
2023 xlog_recover_buffer_pass1(
2024 	struct xlog			*log,
2025 	struct xlog_recover_item	*item)
2026 {
2027 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2028 	struct list_head	*bucket;
2029 	struct xfs_buf_cancel	*bcp;
2030 
2031 	/*
2032 	 * If this isn't a cancel buffer item, then just return.
2033 	 */
2034 	if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
2035 		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
2036 		return 0;
2037 	}
2038 
2039 	/*
2040 	 * Insert an xfs_buf_cancel record into the hash table of them.
2041 	 * If there is already an identical record, bump its reference count.
2042 	 */
2043 	bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
2044 	list_for_each_entry(bcp, bucket, bc_list) {
2045 		if (bcp->bc_blkno == buf_f->blf_blkno &&
2046 		    bcp->bc_len == buf_f->blf_len) {
2047 			bcp->bc_refcount++;
2048 			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
2049 			return 0;
2050 		}
2051 	}
2052 
2053 	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
2054 	bcp->bc_blkno = buf_f->blf_blkno;
2055 	bcp->bc_len = buf_f->blf_len;
2056 	bcp->bc_refcount = 1;
2057 	list_add_tail(&bcp->bc_list, bucket);
2058 
2059 	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
2060 	return 0;
2061 }
2062 
2063 /*
2064  * Check to see whether the buffer being recovered has a corresponding
2065  * entry in the buffer cancel record table. If it is, return the cancel
2066  * buffer structure to the caller.
2067  */
2068 STATIC struct xfs_buf_cancel *
2069 xlog_peek_buffer_cancelled(
2070 	struct xlog		*log,
2071 	xfs_daddr_t		blkno,
2072 	uint			len,
2073 	unsigned short			flags)
2074 {
2075 	struct list_head	*bucket;
2076 	struct xfs_buf_cancel	*bcp;
2077 
2078 	if (!log->l_buf_cancel_table) {
2079 		/* empty table means no cancelled buffers in the log */
2080 		ASSERT(!(flags & XFS_BLF_CANCEL));
2081 		return NULL;
2082 	}
2083 
2084 	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
2085 	list_for_each_entry(bcp, bucket, bc_list) {
2086 		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
2087 			return bcp;
2088 	}
2089 
2090 	/*
2091 	 * We didn't find a corresponding entry in the table, so return 0 so
2092 	 * that the buffer is NOT cancelled.
2093 	 */
2094 	ASSERT(!(flags & XFS_BLF_CANCEL));
2095 	return NULL;
2096 }
2097 
2098 /*
2099  * If the buffer is being cancelled then return 1 so that it will be cancelled,
2100  * otherwise return 0.  If the buffer is actually a buffer cancel item
2101  * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2102  * table and remove it from the table if this is the last reference.
2103  *
2104  * We remove the cancel record from the table when we encounter its last
2105  * occurrence in the log so that if the same buffer is re-used again after its
2106  * last cancellation we actually replay the changes made at that point.
2107  */
2108 STATIC int
2109 xlog_check_buffer_cancelled(
2110 	struct xlog		*log,
2111 	xfs_daddr_t		blkno,
2112 	uint			len,
2113 	unsigned short			flags)
2114 {
2115 	struct xfs_buf_cancel	*bcp;
2116 
2117 	bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2118 	if (!bcp)
2119 		return 0;
2120 
2121 	/*
2122 	 * We've go a match, so return 1 so that the recovery of this buffer
2123 	 * is cancelled.  If this buffer is actually a buffer cancel log
2124 	 * item, then decrement the refcount on the one in the table and
2125 	 * remove it if this is the last reference.
2126 	 */
2127 	if (flags & XFS_BLF_CANCEL) {
2128 		if (--bcp->bc_refcount == 0) {
2129 			list_del(&bcp->bc_list);
2130 			kmem_free(bcp);
2131 		}
2132 	}
2133 	return 1;
2134 }
2135 
2136 /*
2137  * Perform recovery for a buffer full of inodes.  In these buffers, the only
2138  * data which should be recovered is that which corresponds to the
2139  * di_next_unlinked pointers in the on disk inode structures.  The rest of the
2140  * data for the inodes is always logged through the inodes themselves rather
2141  * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2142  *
2143  * The only time when buffers full of inodes are fully recovered is when the
2144  * buffer is full of newly allocated inodes.  In this case the buffer will
2145  * not be marked as an inode buffer and so will be sent to
2146  * xlog_recover_do_reg_buffer() below during recovery.
2147  */
2148 STATIC int
2149 xlog_recover_do_inode_buffer(
2150 	struct xfs_mount	*mp,
2151 	xlog_recover_item_t	*item,
2152 	struct xfs_buf		*bp,
2153 	xfs_buf_log_format_t	*buf_f)
2154 {
2155 	int			i;
2156 	int			item_index = 0;
2157 	int			bit = 0;
2158 	int			nbits = 0;
2159 	int			reg_buf_offset = 0;
2160 	int			reg_buf_bytes = 0;
2161 	int			next_unlinked_offset;
2162 	int			inodes_per_buf;
2163 	xfs_agino_t		*logged_nextp;
2164 	xfs_agino_t		*buffer_nextp;
2165 
2166 	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2167 
2168 	/*
2169 	 * Post recovery validation only works properly on CRC enabled
2170 	 * filesystems.
2171 	 */
2172 	if (xfs_sb_version_hascrc(&mp->m_sb))
2173 		bp->b_ops = &xfs_inode_buf_ops;
2174 
2175 	inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
2176 	for (i = 0; i < inodes_per_buf; i++) {
2177 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2178 			offsetof(xfs_dinode_t, di_next_unlinked);
2179 
2180 		while (next_unlinked_offset >=
2181 		       (reg_buf_offset + reg_buf_bytes)) {
2182 			/*
2183 			 * The next di_next_unlinked field is beyond
2184 			 * the current logged region.  Find the next
2185 			 * logged region that contains or is beyond
2186 			 * the current di_next_unlinked field.
2187 			 */
2188 			bit += nbits;
2189 			bit = xfs_next_bit(buf_f->blf_data_map,
2190 					   buf_f->blf_map_size, bit);
2191 
2192 			/*
2193 			 * If there are no more logged regions in the
2194 			 * buffer, then we're done.
2195 			 */
2196 			if (bit == -1)
2197 				return 0;
2198 
2199 			nbits = xfs_contig_bits(buf_f->blf_data_map,
2200 						buf_f->blf_map_size, bit);
2201 			ASSERT(nbits > 0);
2202 			reg_buf_offset = bit << XFS_BLF_SHIFT;
2203 			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2204 			item_index++;
2205 		}
2206 
2207 		/*
2208 		 * If the current logged region starts after the current
2209 		 * di_next_unlinked field, then move on to the next
2210 		 * di_next_unlinked field.
2211 		 */
2212 		if (next_unlinked_offset < reg_buf_offset)
2213 			continue;
2214 
2215 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
2216 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2217 		ASSERT((reg_buf_offset + reg_buf_bytes) <=
2218 							BBTOB(bp->b_io_length));
2219 
2220 		/*
2221 		 * The current logged region contains a copy of the
2222 		 * current di_next_unlinked field.  Extract its value
2223 		 * and copy it to the buffer copy.
2224 		 */
2225 		logged_nextp = item->ri_buf[item_index].i_addr +
2226 				next_unlinked_offset - reg_buf_offset;
2227 		if (unlikely(*logged_nextp == 0)) {
2228 			xfs_alert(mp,
2229 		"Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
2230 		"Trying to replay bad (0) inode di_next_unlinked field.",
2231 				item, bp);
2232 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2233 					 XFS_ERRLEVEL_LOW, mp);
2234 			return -EFSCORRUPTED;
2235 		}
2236 
2237 		buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
2238 		*buffer_nextp = *logged_nextp;
2239 
2240 		/*
2241 		 * If necessary, recalculate the CRC in the on-disk inode. We
2242 		 * have to leave the inode in a consistent state for whoever
2243 		 * reads it next....
2244 		 */
2245 		xfs_dinode_calc_crc(mp,
2246 				xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2247 
2248 	}
2249 
2250 	return 0;
2251 }
2252 
2253 /*
2254  * V5 filesystems know the age of the buffer on disk being recovered. We can
2255  * have newer objects on disk than we are replaying, and so for these cases we
2256  * don't want to replay the current change as that will make the buffer contents
2257  * temporarily invalid on disk.
2258  *
2259  * The magic number might not match the buffer type we are going to recover
2260  * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
2261  * extract the LSN of the existing object in the buffer based on it's current
2262  * magic number.  If we don't recognise the magic number in the buffer, then
2263  * return a LSN of -1 so that the caller knows it was an unrecognised block and
2264  * so can recover the buffer.
2265  *
2266  * Note: we cannot rely solely on magic number matches to determine that the
2267  * buffer has a valid LSN - we also need to verify that it belongs to this
2268  * filesystem, so we need to extract the object's LSN and compare it to that
2269  * which we read from the superblock. If the UUIDs don't match, then we've got a
2270  * stale metadata block from an old filesystem instance that we need to recover
2271  * over the top of.
2272  */
2273 static xfs_lsn_t
2274 xlog_recover_get_buf_lsn(
2275 	struct xfs_mount	*mp,
2276 	struct xfs_buf		*bp)
2277 {
2278 	uint32_t		magic32;
2279 	uint16_t		magic16;
2280 	uint16_t		magicda;
2281 	void			*blk = bp->b_addr;
2282 	uuid_t			*uuid;
2283 	xfs_lsn_t		lsn = -1;
2284 
2285 	/* v4 filesystems always recover immediately */
2286 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2287 		goto recover_immediately;
2288 
2289 	magic32 = be32_to_cpu(*(__be32 *)blk);
2290 	switch (magic32) {
2291 	case XFS_ABTB_CRC_MAGIC:
2292 	case XFS_ABTC_CRC_MAGIC:
2293 	case XFS_ABTB_MAGIC:
2294 	case XFS_ABTC_MAGIC:
2295 	case XFS_RMAP_CRC_MAGIC:
2296 	case XFS_REFC_CRC_MAGIC:
2297 	case XFS_IBT_CRC_MAGIC:
2298 	case XFS_IBT_MAGIC: {
2299 		struct xfs_btree_block *btb = blk;
2300 
2301 		lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2302 		uuid = &btb->bb_u.s.bb_uuid;
2303 		break;
2304 	}
2305 	case XFS_BMAP_CRC_MAGIC:
2306 	case XFS_BMAP_MAGIC: {
2307 		struct xfs_btree_block *btb = blk;
2308 
2309 		lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2310 		uuid = &btb->bb_u.l.bb_uuid;
2311 		break;
2312 	}
2313 	case XFS_AGF_MAGIC:
2314 		lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2315 		uuid = &((struct xfs_agf *)blk)->agf_uuid;
2316 		break;
2317 	case XFS_AGFL_MAGIC:
2318 		lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2319 		uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2320 		break;
2321 	case XFS_AGI_MAGIC:
2322 		lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2323 		uuid = &((struct xfs_agi *)blk)->agi_uuid;
2324 		break;
2325 	case XFS_SYMLINK_MAGIC:
2326 		lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2327 		uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2328 		break;
2329 	case XFS_DIR3_BLOCK_MAGIC:
2330 	case XFS_DIR3_DATA_MAGIC:
2331 	case XFS_DIR3_FREE_MAGIC:
2332 		lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2333 		uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2334 		break;
2335 	case XFS_ATTR3_RMT_MAGIC:
2336 		/*
2337 		 * Remote attr blocks are written synchronously, rather than
2338 		 * being logged. That means they do not contain a valid LSN
2339 		 * (i.e. transactionally ordered) in them, and hence any time we
2340 		 * see a buffer to replay over the top of a remote attribute
2341 		 * block we should simply do so.
2342 		 */
2343 		goto recover_immediately;
2344 	case XFS_SB_MAGIC:
2345 		/*
2346 		 * superblock uuids are magic. We may or may not have a
2347 		 * sb_meta_uuid on disk, but it will be set in the in-core
2348 		 * superblock. We set the uuid pointer for verification
2349 		 * according to the superblock feature mask to ensure we check
2350 		 * the relevant UUID in the superblock.
2351 		 */
2352 		lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2353 		if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2354 			uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2355 		else
2356 			uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2357 		break;
2358 	default:
2359 		break;
2360 	}
2361 
2362 	if (lsn != (xfs_lsn_t)-1) {
2363 		if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2364 			goto recover_immediately;
2365 		return lsn;
2366 	}
2367 
2368 	magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2369 	switch (magicda) {
2370 	case XFS_DIR3_LEAF1_MAGIC:
2371 	case XFS_DIR3_LEAFN_MAGIC:
2372 	case XFS_DA3_NODE_MAGIC:
2373 		lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2374 		uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2375 		break;
2376 	default:
2377 		break;
2378 	}
2379 
2380 	if (lsn != (xfs_lsn_t)-1) {
2381 		if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2382 			goto recover_immediately;
2383 		return lsn;
2384 	}
2385 
2386 	/*
2387 	 * We do individual object checks on dquot and inode buffers as they
2388 	 * have their own individual LSN records. Also, we could have a stale
2389 	 * buffer here, so we have to at least recognise these buffer types.
2390 	 *
2391 	 * A notd complexity here is inode unlinked list processing - it logs
2392 	 * the inode directly in the buffer, but we don't know which inodes have
2393 	 * been modified, and there is no global buffer LSN. Hence we need to
2394 	 * recover all inode buffer types immediately. This problem will be
2395 	 * fixed by logical logging of the unlinked list modifications.
2396 	 */
2397 	magic16 = be16_to_cpu(*(__be16 *)blk);
2398 	switch (magic16) {
2399 	case XFS_DQUOT_MAGIC:
2400 	case XFS_DINODE_MAGIC:
2401 		goto recover_immediately;
2402 	default:
2403 		break;
2404 	}
2405 
2406 	/* unknown buffer contents, recover immediately */
2407 
2408 recover_immediately:
2409 	return (xfs_lsn_t)-1;
2410 
2411 }
2412 
2413 /*
2414  * Validate the recovered buffer is of the correct type and attach the
2415  * appropriate buffer operations to them for writeback. Magic numbers are in a
2416  * few places:
2417  *	the first 16 bits of the buffer (inode buffer, dquot buffer),
2418  *	the first 32 bits of the buffer (most blocks),
2419  *	inside a struct xfs_da_blkinfo at the start of the buffer.
2420  */
2421 static void
2422 xlog_recover_validate_buf_type(
2423 	struct xfs_mount	*mp,
2424 	struct xfs_buf		*bp,
2425 	xfs_buf_log_format_t	*buf_f,
2426 	xfs_lsn_t		current_lsn)
2427 {
2428 	struct xfs_da_blkinfo	*info = bp->b_addr;
2429 	uint32_t		magic32;
2430 	uint16_t		magic16;
2431 	uint16_t		magicda;
2432 	char			*warnmsg = NULL;
2433 
2434 	/*
2435 	 * We can only do post recovery validation on items on CRC enabled
2436 	 * fielsystems as we need to know when the buffer was written to be able
2437 	 * to determine if we should have replayed the item. If we replay old
2438 	 * metadata over a newer buffer, then it will enter a temporarily
2439 	 * inconsistent state resulting in verification failures. Hence for now
2440 	 * just avoid the verification stage for non-crc filesystems
2441 	 */
2442 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2443 		return;
2444 
2445 	magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2446 	magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2447 	magicda = be16_to_cpu(info->magic);
2448 	switch (xfs_blft_from_flags(buf_f)) {
2449 	case XFS_BLFT_BTREE_BUF:
2450 		switch (magic32) {
2451 		case XFS_ABTB_CRC_MAGIC:
2452 		case XFS_ABTC_CRC_MAGIC:
2453 		case XFS_ABTB_MAGIC:
2454 		case XFS_ABTC_MAGIC:
2455 			bp->b_ops = &xfs_allocbt_buf_ops;
2456 			break;
2457 		case XFS_IBT_CRC_MAGIC:
2458 		case XFS_FIBT_CRC_MAGIC:
2459 		case XFS_IBT_MAGIC:
2460 		case XFS_FIBT_MAGIC:
2461 			bp->b_ops = &xfs_inobt_buf_ops;
2462 			break;
2463 		case XFS_BMAP_CRC_MAGIC:
2464 		case XFS_BMAP_MAGIC:
2465 			bp->b_ops = &xfs_bmbt_buf_ops;
2466 			break;
2467 		case XFS_RMAP_CRC_MAGIC:
2468 			bp->b_ops = &xfs_rmapbt_buf_ops;
2469 			break;
2470 		case XFS_REFC_CRC_MAGIC:
2471 			bp->b_ops = &xfs_refcountbt_buf_ops;
2472 			break;
2473 		default:
2474 			warnmsg = "Bad btree block magic!";
2475 			break;
2476 		}
2477 		break;
2478 	case XFS_BLFT_AGF_BUF:
2479 		if (magic32 != XFS_AGF_MAGIC) {
2480 			warnmsg = "Bad AGF block magic!";
2481 			break;
2482 		}
2483 		bp->b_ops = &xfs_agf_buf_ops;
2484 		break;
2485 	case XFS_BLFT_AGFL_BUF:
2486 		if (magic32 != XFS_AGFL_MAGIC) {
2487 			warnmsg = "Bad AGFL block magic!";
2488 			break;
2489 		}
2490 		bp->b_ops = &xfs_agfl_buf_ops;
2491 		break;
2492 	case XFS_BLFT_AGI_BUF:
2493 		if (magic32 != XFS_AGI_MAGIC) {
2494 			warnmsg = "Bad AGI block magic!";
2495 			break;
2496 		}
2497 		bp->b_ops = &xfs_agi_buf_ops;
2498 		break;
2499 	case XFS_BLFT_UDQUOT_BUF:
2500 	case XFS_BLFT_PDQUOT_BUF:
2501 	case XFS_BLFT_GDQUOT_BUF:
2502 #ifdef CONFIG_XFS_QUOTA
2503 		if (magic16 != XFS_DQUOT_MAGIC) {
2504 			warnmsg = "Bad DQUOT block magic!";
2505 			break;
2506 		}
2507 		bp->b_ops = &xfs_dquot_buf_ops;
2508 #else
2509 		xfs_alert(mp,
2510 	"Trying to recover dquots without QUOTA support built in!");
2511 		ASSERT(0);
2512 #endif
2513 		break;
2514 	case XFS_BLFT_DINO_BUF:
2515 		if (magic16 != XFS_DINODE_MAGIC) {
2516 			warnmsg = "Bad INODE block magic!";
2517 			break;
2518 		}
2519 		bp->b_ops = &xfs_inode_buf_ops;
2520 		break;
2521 	case XFS_BLFT_SYMLINK_BUF:
2522 		if (magic32 != XFS_SYMLINK_MAGIC) {
2523 			warnmsg = "Bad symlink block magic!";
2524 			break;
2525 		}
2526 		bp->b_ops = &xfs_symlink_buf_ops;
2527 		break;
2528 	case XFS_BLFT_DIR_BLOCK_BUF:
2529 		if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2530 		    magic32 != XFS_DIR3_BLOCK_MAGIC) {
2531 			warnmsg = "Bad dir block magic!";
2532 			break;
2533 		}
2534 		bp->b_ops = &xfs_dir3_block_buf_ops;
2535 		break;
2536 	case XFS_BLFT_DIR_DATA_BUF:
2537 		if (magic32 != XFS_DIR2_DATA_MAGIC &&
2538 		    magic32 != XFS_DIR3_DATA_MAGIC) {
2539 			warnmsg = "Bad dir data magic!";
2540 			break;
2541 		}
2542 		bp->b_ops = &xfs_dir3_data_buf_ops;
2543 		break;
2544 	case XFS_BLFT_DIR_FREE_BUF:
2545 		if (magic32 != XFS_DIR2_FREE_MAGIC &&
2546 		    magic32 != XFS_DIR3_FREE_MAGIC) {
2547 			warnmsg = "Bad dir3 free magic!";
2548 			break;
2549 		}
2550 		bp->b_ops = &xfs_dir3_free_buf_ops;
2551 		break;
2552 	case XFS_BLFT_DIR_LEAF1_BUF:
2553 		if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2554 		    magicda != XFS_DIR3_LEAF1_MAGIC) {
2555 			warnmsg = "Bad dir leaf1 magic!";
2556 			break;
2557 		}
2558 		bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2559 		break;
2560 	case XFS_BLFT_DIR_LEAFN_BUF:
2561 		if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2562 		    magicda != XFS_DIR3_LEAFN_MAGIC) {
2563 			warnmsg = "Bad dir leafn magic!";
2564 			break;
2565 		}
2566 		bp->b_ops = &xfs_dir3_leafn_buf_ops;
2567 		break;
2568 	case XFS_BLFT_DA_NODE_BUF:
2569 		if (magicda != XFS_DA_NODE_MAGIC &&
2570 		    magicda != XFS_DA3_NODE_MAGIC) {
2571 			warnmsg = "Bad da node magic!";
2572 			break;
2573 		}
2574 		bp->b_ops = &xfs_da3_node_buf_ops;
2575 		break;
2576 	case XFS_BLFT_ATTR_LEAF_BUF:
2577 		if (magicda != XFS_ATTR_LEAF_MAGIC &&
2578 		    magicda != XFS_ATTR3_LEAF_MAGIC) {
2579 			warnmsg = "Bad attr leaf magic!";
2580 			break;
2581 		}
2582 		bp->b_ops = &xfs_attr3_leaf_buf_ops;
2583 		break;
2584 	case XFS_BLFT_ATTR_RMT_BUF:
2585 		if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2586 			warnmsg = "Bad attr remote magic!";
2587 			break;
2588 		}
2589 		bp->b_ops = &xfs_attr3_rmt_buf_ops;
2590 		break;
2591 	case XFS_BLFT_SB_BUF:
2592 		if (magic32 != XFS_SB_MAGIC) {
2593 			warnmsg = "Bad SB block magic!";
2594 			break;
2595 		}
2596 		bp->b_ops = &xfs_sb_buf_ops;
2597 		break;
2598 #ifdef CONFIG_XFS_RT
2599 	case XFS_BLFT_RTBITMAP_BUF:
2600 	case XFS_BLFT_RTSUMMARY_BUF:
2601 		/* no magic numbers for verification of RT buffers */
2602 		bp->b_ops = &xfs_rtbuf_ops;
2603 		break;
2604 #endif /* CONFIG_XFS_RT */
2605 	default:
2606 		xfs_warn(mp, "Unknown buffer type %d!",
2607 			 xfs_blft_from_flags(buf_f));
2608 		break;
2609 	}
2610 
2611 	/*
2612 	 * Nothing else to do in the case of a NULL current LSN as this means
2613 	 * the buffer is more recent than the change in the log and will be
2614 	 * skipped.
2615 	 */
2616 	if (current_lsn == NULLCOMMITLSN)
2617 		return;
2618 
2619 	if (warnmsg) {
2620 		xfs_warn(mp, warnmsg);
2621 		ASSERT(0);
2622 	}
2623 
2624 	/*
2625 	 * We must update the metadata LSN of the buffer as it is written out to
2626 	 * ensure that older transactions never replay over this one and corrupt
2627 	 * the buffer. This can occur if log recovery is interrupted at some
2628 	 * point after the current transaction completes, at which point a
2629 	 * subsequent mount starts recovery from the beginning.
2630 	 *
2631 	 * Write verifiers update the metadata LSN from log items attached to
2632 	 * the buffer. Therefore, initialize a bli purely to carry the LSN to
2633 	 * the verifier. We'll clean it up in our ->iodone() callback.
2634 	 */
2635 	if (bp->b_ops) {
2636 		struct xfs_buf_log_item	*bip;
2637 
2638 		ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
2639 		bp->b_iodone = xlog_recover_iodone;
2640 		xfs_buf_item_init(bp, mp);
2641 		bip = bp->b_log_item;
2642 		bip->bli_item.li_lsn = current_lsn;
2643 	}
2644 }
2645 
2646 /*
2647  * Perform a 'normal' buffer recovery.  Each logged region of the
2648  * buffer should be copied over the corresponding region in the
2649  * given buffer.  The bitmap in the buf log format structure indicates
2650  * where to place the logged data.
2651  */
2652 STATIC void
2653 xlog_recover_do_reg_buffer(
2654 	struct xfs_mount	*mp,
2655 	xlog_recover_item_t	*item,
2656 	struct xfs_buf		*bp,
2657 	xfs_buf_log_format_t	*buf_f,
2658 	xfs_lsn_t		current_lsn)
2659 {
2660 	int			i;
2661 	int			bit;
2662 	int			nbits;
2663 	xfs_failaddr_t		fa;
2664 
2665 	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2666 
2667 	bit = 0;
2668 	i = 1;  /* 0 is the buf format structure */
2669 	while (1) {
2670 		bit = xfs_next_bit(buf_f->blf_data_map,
2671 				   buf_f->blf_map_size, bit);
2672 		if (bit == -1)
2673 			break;
2674 		nbits = xfs_contig_bits(buf_f->blf_data_map,
2675 					buf_f->blf_map_size, bit);
2676 		ASSERT(nbits > 0);
2677 		ASSERT(item->ri_buf[i].i_addr != NULL);
2678 		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2679 		ASSERT(BBTOB(bp->b_io_length) >=
2680 		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2681 
2682 		/*
2683 		 * The dirty regions logged in the buffer, even though
2684 		 * contiguous, may span multiple chunks. This is because the
2685 		 * dirty region may span a physical page boundary in a buffer
2686 		 * and hence be split into two separate vectors for writing into
2687 		 * the log. Hence we need to trim nbits back to the length of
2688 		 * the current region being copied out of the log.
2689 		 */
2690 		if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2691 			nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2692 
2693 		/*
2694 		 * Do a sanity check if this is a dquot buffer. Just checking
2695 		 * the first dquot in the buffer should do. XXXThis is
2696 		 * probably a good thing to do for other buf types also.
2697 		 */
2698 		fa = NULL;
2699 		if (buf_f->blf_flags &
2700 		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2701 			if (item->ri_buf[i].i_addr == NULL) {
2702 				xfs_alert(mp,
2703 					"XFS: NULL dquot in %s.", __func__);
2704 				goto next;
2705 			}
2706 			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2707 				xfs_alert(mp,
2708 					"XFS: dquot too small (%d) in %s.",
2709 					item->ri_buf[i].i_len, __func__);
2710 				goto next;
2711 			}
2712 			fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr,
2713 					       -1, 0);
2714 			if (fa) {
2715 				xfs_alert(mp,
2716 	"dquot corrupt at %pS trying to replay into block 0x%llx",
2717 					fa, bp->b_bn);
2718 				goto next;
2719 			}
2720 		}
2721 
2722 		memcpy(xfs_buf_offset(bp,
2723 			(uint)bit << XFS_BLF_SHIFT),	/* dest */
2724 			item->ri_buf[i].i_addr,		/* source */
2725 			nbits<<XFS_BLF_SHIFT);		/* length */
2726  next:
2727 		i++;
2728 		bit += nbits;
2729 	}
2730 
2731 	/* Shouldn't be any more regions */
2732 	ASSERT(i == item->ri_total);
2733 
2734 	xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
2735 }
2736 
2737 /*
2738  * Perform a dquot buffer recovery.
2739  * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2740  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2741  * Else, treat it as a regular buffer and do recovery.
2742  *
2743  * Return false if the buffer was tossed and true if we recovered the buffer to
2744  * indicate to the caller if the buffer needs writing.
2745  */
2746 STATIC bool
2747 xlog_recover_do_dquot_buffer(
2748 	struct xfs_mount		*mp,
2749 	struct xlog			*log,
2750 	struct xlog_recover_item	*item,
2751 	struct xfs_buf			*bp,
2752 	struct xfs_buf_log_format	*buf_f)
2753 {
2754 	uint			type;
2755 
2756 	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2757 
2758 	/*
2759 	 * Filesystems are required to send in quota flags at mount time.
2760 	 */
2761 	if (!mp->m_qflags)
2762 		return false;
2763 
2764 	type = 0;
2765 	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2766 		type |= XFS_DQ_USER;
2767 	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2768 		type |= XFS_DQ_PROJ;
2769 	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2770 		type |= XFS_DQ_GROUP;
2771 	/*
2772 	 * This type of quotas was turned off, so ignore this buffer
2773 	 */
2774 	if (log->l_quotaoffs_flag & type)
2775 		return false;
2776 
2777 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
2778 	return true;
2779 }
2780 
2781 /*
2782  * This routine replays a modification made to a buffer at runtime.
2783  * There are actually two types of buffer, regular and inode, which
2784  * are handled differently.  Inode buffers are handled differently
2785  * in that we only recover a specific set of data from them, namely
2786  * the inode di_next_unlinked fields.  This is because all other inode
2787  * data is actually logged via inode records and any data we replay
2788  * here which overlaps that may be stale.
2789  *
2790  * When meta-data buffers are freed at run time we log a buffer item
2791  * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2792  * of the buffer in the log should not be replayed at recovery time.
2793  * This is so that if the blocks covered by the buffer are reused for
2794  * file data before we crash we don't end up replaying old, freed
2795  * meta-data into a user's file.
2796  *
2797  * To handle the cancellation of buffer log items, we make two passes
2798  * over the log during recovery.  During the first we build a table of
2799  * those buffers which have been cancelled, and during the second we
2800  * only replay those buffers which do not have corresponding cancel
2801  * records in the table.  See xlog_recover_buffer_pass[1,2] above
2802  * for more details on the implementation of the table of cancel records.
2803  */
2804 STATIC int
2805 xlog_recover_buffer_pass2(
2806 	struct xlog			*log,
2807 	struct list_head		*buffer_list,
2808 	struct xlog_recover_item	*item,
2809 	xfs_lsn_t			current_lsn)
2810 {
2811 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2812 	xfs_mount_t		*mp = log->l_mp;
2813 	xfs_buf_t		*bp;
2814 	int			error;
2815 	uint			buf_flags;
2816 	xfs_lsn_t		lsn;
2817 
2818 	/*
2819 	 * In this pass we only want to recover all the buffers which have
2820 	 * not been cancelled and are not cancellation buffers themselves.
2821 	 */
2822 	if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2823 			buf_f->blf_len, buf_f->blf_flags)) {
2824 		trace_xfs_log_recover_buf_cancel(log, buf_f);
2825 		return 0;
2826 	}
2827 
2828 	trace_xfs_log_recover_buf_recover(log, buf_f);
2829 
2830 	buf_flags = 0;
2831 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2832 		buf_flags |= XBF_UNMAPPED;
2833 
2834 	bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2835 			  buf_flags, NULL);
2836 	if (!bp)
2837 		return -ENOMEM;
2838 	error = bp->b_error;
2839 	if (error) {
2840 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2841 		goto out_release;
2842 	}
2843 
2844 	/*
2845 	 * Recover the buffer only if we get an LSN from it and it's less than
2846 	 * the lsn of the transaction we are replaying.
2847 	 *
2848 	 * Note that we have to be extremely careful of readahead here.
2849 	 * Readahead does not attach verfiers to the buffers so if we don't
2850 	 * actually do any replay after readahead because of the LSN we found
2851 	 * in the buffer if more recent than that current transaction then we
2852 	 * need to attach the verifier directly. Failure to do so can lead to
2853 	 * future recovery actions (e.g. EFI and unlinked list recovery) can
2854 	 * operate on the buffers and they won't get the verifier attached. This
2855 	 * can lead to blocks on disk having the correct content but a stale
2856 	 * CRC.
2857 	 *
2858 	 * It is safe to assume these clean buffers are currently up to date.
2859 	 * If the buffer is dirtied by a later transaction being replayed, then
2860 	 * the verifier will be reset to match whatever recover turns that
2861 	 * buffer into.
2862 	 */
2863 	lsn = xlog_recover_get_buf_lsn(mp, bp);
2864 	if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2865 		trace_xfs_log_recover_buf_skip(log, buf_f);
2866 		xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
2867 		goto out_release;
2868 	}
2869 
2870 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2871 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2872 		if (error)
2873 			goto out_release;
2874 	} else if (buf_f->blf_flags &
2875 		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2876 		bool	dirty;
2877 
2878 		dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2879 		if (!dirty)
2880 			goto out_release;
2881 	} else {
2882 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
2883 	}
2884 
2885 	/*
2886 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2887 	 * slower when taking into account all the buffers to be flushed.
2888 	 *
2889 	 * Also make sure that only inode buffers with good sizes stay in
2890 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2891 	 * or mp->m_inode_cluster_size bytes, whichever is bigger.  The inode
2892 	 * buffers in the log can be a different size if the log was generated
2893 	 * by an older kernel using unclustered inode buffers or a newer kernel
2894 	 * running with a different inode cluster size.  Regardless, if the
2895 	 * the inode buffer size isn't max(blocksize, mp->m_inode_cluster_size)
2896 	 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2897 	 * the buffer out of the buffer cache so that the buffer won't
2898 	 * overlap with future reads of those inodes.
2899 	 */
2900 	if (XFS_DINODE_MAGIC ==
2901 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2902 	    (BBTOB(bp->b_io_length) != max(log->l_mp->m_sb.sb_blocksize,
2903 			(uint32_t)log->l_mp->m_inode_cluster_size))) {
2904 		xfs_buf_stale(bp);
2905 		error = xfs_bwrite(bp);
2906 	} else {
2907 		ASSERT(bp->b_target->bt_mount == mp);
2908 		bp->b_iodone = xlog_recover_iodone;
2909 		xfs_buf_delwri_queue(bp, buffer_list);
2910 	}
2911 
2912 out_release:
2913 	xfs_buf_relse(bp);
2914 	return error;
2915 }
2916 
2917 /*
2918  * Inode fork owner changes
2919  *
2920  * If we have been told that we have to reparent the inode fork, it's because an
2921  * extent swap operation on a CRC enabled filesystem has been done and we are
2922  * replaying it. We need to walk the BMBT of the appropriate fork and change the
2923  * owners of it.
2924  *
2925  * The complexity here is that we don't have an inode context to work with, so
2926  * after we've replayed the inode we need to instantiate one.  This is where the
2927  * fun begins.
2928  *
2929  * We are in the middle of log recovery, so we can't run transactions. That
2930  * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2931  * that will result in the corresponding iput() running the inode through
2932  * xfs_inactive(). If we've just replayed an inode core that changes the link
2933  * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2934  * transactions (bad!).
2935  *
2936  * So, to avoid this, we instantiate an inode directly from the inode core we've
2937  * just recovered. We have the buffer still locked, and all we really need to
2938  * instantiate is the inode core and the forks being modified. We can do this
2939  * manually, then run the inode btree owner change, and then tear down the
2940  * xfs_inode without having to run any transactions at all.
2941  *
2942  * Also, because we don't have a transaction context available here but need to
2943  * gather all the buffers we modify for writeback so we pass the buffer_list
2944  * instead for the operation to use.
2945  */
2946 
2947 STATIC int
2948 xfs_recover_inode_owner_change(
2949 	struct xfs_mount	*mp,
2950 	struct xfs_dinode	*dip,
2951 	struct xfs_inode_log_format *in_f,
2952 	struct list_head	*buffer_list)
2953 {
2954 	struct xfs_inode	*ip;
2955 	int			error;
2956 
2957 	ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2958 
2959 	ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2960 	if (!ip)
2961 		return -ENOMEM;
2962 
2963 	/* instantiate the inode */
2964 	xfs_inode_from_disk(ip, dip);
2965 	ASSERT(ip->i_d.di_version >= 3);
2966 
2967 	error = xfs_iformat_fork(ip, dip);
2968 	if (error)
2969 		goto out_free_ip;
2970 
2971 	if (!xfs_inode_verify_forks(ip)) {
2972 		error = -EFSCORRUPTED;
2973 		goto out_free_ip;
2974 	}
2975 
2976 	if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2977 		ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2978 		error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2979 					      ip->i_ino, buffer_list);
2980 		if (error)
2981 			goto out_free_ip;
2982 	}
2983 
2984 	if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2985 		ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2986 		error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2987 					      ip->i_ino, buffer_list);
2988 		if (error)
2989 			goto out_free_ip;
2990 	}
2991 
2992 out_free_ip:
2993 	xfs_inode_free(ip);
2994 	return error;
2995 }
2996 
2997 STATIC int
2998 xlog_recover_inode_pass2(
2999 	struct xlog			*log,
3000 	struct list_head		*buffer_list,
3001 	struct xlog_recover_item	*item,
3002 	xfs_lsn_t			current_lsn)
3003 {
3004 	struct xfs_inode_log_format	*in_f;
3005 	xfs_mount_t		*mp = log->l_mp;
3006 	xfs_buf_t		*bp;
3007 	xfs_dinode_t		*dip;
3008 	int			len;
3009 	char			*src;
3010 	char			*dest;
3011 	int			error;
3012 	int			attr_index;
3013 	uint			fields;
3014 	struct xfs_log_dinode	*ldip;
3015 	uint			isize;
3016 	int			need_free = 0;
3017 
3018 	if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3019 		in_f = item->ri_buf[0].i_addr;
3020 	} else {
3021 		in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), KM_SLEEP);
3022 		need_free = 1;
3023 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
3024 		if (error)
3025 			goto error;
3026 	}
3027 
3028 	/*
3029 	 * Inode buffers can be freed, look out for it,
3030 	 * and do not replay the inode.
3031 	 */
3032 	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
3033 					in_f->ilf_len, 0)) {
3034 		error = 0;
3035 		trace_xfs_log_recover_inode_cancel(log, in_f);
3036 		goto error;
3037 	}
3038 	trace_xfs_log_recover_inode_recover(log, in_f);
3039 
3040 	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
3041 			  &xfs_inode_buf_ops);
3042 	if (!bp) {
3043 		error = -ENOMEM;
3044 		goto error;
3045 	}
3046 	error = bp->b_error;
3047 	if (error) {
3048 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
3049 		goto out_release;
3050 	}
3051 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
3052 	dip = xfs_buf_offset(bp, in_f->ilf_boffset);
3053 
3054 	/*
3055 	 * Make sure the place we're flushing out to really looks
3056 	 * like an inode!
3057 	 */
3058 	if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
3059 		xfs_alert(mp,
3060 	"%s: Bad inode magic number, dip = "PTR_FMT", dino bp = "PTR_FMT", ino = %Ld",
3061 			__func__, dip, bp, in_f->ilf_ino);
3062 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
3063 				 XFS_ERRLEVEL_LOW, mp);
3064 		error = -EFSCORRUPTED;
3065 		goto out_release;
3066 	}
3067 	ldip = item->ri_buf[1].i_addr;
3068 	if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
3069 		xfs_alert(mp,
3070 			"%s: Bad inode log record, rec ptr "PTR_FMT", ino %Ld",
3071 			__func__, item, in_f->ilf_ino);
3072 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
3073 				 XFS_ERRLEVEL_LOW, mp);
3074 		error = -EFSCORRUPTED;
3075 		goto out_release;
3076 	}
3077 
3078 	/*
3079 	 * If the inode has an LSN in it, recover the inode only if it's less
3080 	 * than the lsn of the transaction we are replaying. Note: we still
3081 	 * need to replay an owner change even though the inode is more recent
3082 	 * than the transaction as there is no guarantee that all the btree
3083 	 * blocks are more recent than this transaction, too.
3084 	 */
3085 	if (dip->di_version >= 3) {
3086 		xfs_lsn_t	lsn = be64_to_cpu(dip->di_lsn);
3087 
3088 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3089 			trace_xfs_log_recover_inode_skip(log, in_f);
3090 			error = 0;
3091 			goto out_owner_change;
3092 		}
3093 	}
3094 
3095 	/*
3096 	 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3097 	 * are transactional and if ordering is necessary we can determine that
3098 	 * more accurately by the LSN field in the V3 inode core. Don't trust
3099 	 * the inode versions we might be changing them here - use the
3100 	 * superblock flag to determine whether we need to look at di_flushiter
3101 	 * to skip replay when the on disk inode is newer than the log one
3102 	 */
3103 	if (!xfs_sb_version_hascrc(&mp->m_sb) &&
3104 	    ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
3105 		/*
3106 		 * Deal with the wrap case, DI_MAX_FLUSH is less
3107 		 * than smaller numbers
3108 		 */
3109 		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
3110 		    ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
3111 			/* do nothing */
3112 		} else {
3113 			trace_xfs_log_recover_inode_skip(log, in_f);
3114 			error = 0;
3115 			goto out_release;
3116 		}
3117 	}
3118 
3119 	/* Take the opportunity to reset the flush iteration count */
3120 	ldip->di_flushiter = 0;
3121 
3122 	if (unlikely(S_ISREG(ldip->di_mode))) {
3123 		if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3124 		    (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
3125 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3126 					 XFS_ERRLEVEL_LOW, mp, ldip,
3127 					 sizeof(*ldip));
3128 			xfs_alert(mp,
3129 		"%s: Bad regular inode log record, rec ptr "PTR_FMT", "
3130 		"ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
3131 				__func__, item, dip, bp, in_f->ilf_ino);
3132 			error = -EFSCORRUPTED;
3133 			goto out_release;
3134 		}
3135 	} else if (unlikely(S_ISDIR(ldip->di_mode))) {
3136 		if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3137 		    (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3138 		    (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
3139 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3140 					     XFS_ERRLEVEL_LOW, mp, ldip,
3141 					     sizeof(*ldip));
3142 			xfs_alert(mp,
3143 		"%s: Bad dir inode log record, rec ptr "PTR_FMT", "
3144 		"ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
3145 				__func__, item, dip, bp, in_f->ilf_ino);
3146 			error = -EFSCORRUPTED;
3147 			goto out_release;
3148 		}
3149 	}
3150 	if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
3151 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3152 				     XFS_ERRLEVEL_LOW, mp, ldip,
3153 				     sizeof(*ldip));
3154 		xfs_alert(mp,
3155 	"%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3156 	"dino bp "PTR_FMT", ino %Ld, total extents = %d, nblocks = %Ld",
3157 			__func__, item, dip, bp, in_f->ilf_ino,
3158 			ldip->di_nextents + ldip->di_anextents,
3159 			ldip->di_nblocks);
3160 		error = -EFSCORRUPTED;
3161 		goto out_release;
3162 	}
3163 	if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
3164 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3165 				     XFS_ERRLEVEL_LOW, mp, ldip,
3166 				     sizeof(*ldip));
3167 		xfs_alert(mp,
3168 	"%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3169 	"dino bp "PTR_FMT", ino %Ld, forkoff 0x%x", __func__,
3170 			item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
3171 		error = -EFSCORRUPTED;
3172 		goto out_release;
3173 	}
3174 	isize = xfs_log_dinode_size(ldip->di_version);
3175 	if (unlikely(item->ri_buf[1].i_len > isize)) {
3176 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3177 				     XFS_ERRLEVEL_LOW, mp, ldip,
3178 				     sizeof(*ldip));
3179 		xfs_alert(mp,
3180 			"%s: Bad inode log record length %d, rec ptr "PTR_FMT,
3181 			__func__, item->ri_buf[1].i_len, item);
3182 		error = -EFSCORRUPTED;
3183 		goto out_release;
3184 	}
3185 
3186 	/* recover the log dinode inode into the on disk inode */
3187 	xfs_log_dinode_to_disk(ldip, dip);
3188 
3189 	fields = in_f->ilf_fields;
3190 	if (fields & XFS_ILOG_DEV)
3191 		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3192 
3193 	if (in_f->ilf_size == 2)
3194 		goto out_owner_change;
3195 	len = item->ri_buf[2].i_len;
3196 	src = item->ri_buf[2].i_addr;
3197 	ASSERT(in_f->ilf_size <= 4);
3198 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3199 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
3200 	       (len == in_f->ilf_dsize));
3201 
3202 	switch (fields & XFS_ILOG_DFORK) {
3203 	case XFS_ILOG_DDATA:
3204 	case XFS_ILOG_DEXT:
3205 		memcpy(XFS_DFORK_DPTR(dip), src, len);
3206 		break;
3207 
3208 	case XFS_ILOG_DBROOT:
3209 		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3210 				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3211 				 XFS_DFORK_DSIZE(dip, mp));
3212 		break;
3213 
3214 	default:
3215 		/*
3216 		 * There are no data fork flags set.
3217 		 */
3218 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
3219 		break;
3220 	}
3221 
3222 	/*
3223 	 * If we logged any attribute data, recover it.  There may or
3224 	 * may not have been any other non-core data logged in this
3225 	 * transaction.
3226 	 */
3227 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3228 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3229 			attr_index = 3;
3230 		} else {
3231 			attr_index = 2;
3232 		}
3233 		len = item->ri_buf[attr_index].i_len;
3234 		src = item->ri_buf[attr_index].i_addr;
3235 		ASSERT(len == in_f->ilf_asize);
3236 
3237 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3238 		case XFS_ILOG_ADATA:
3239 		case XFS_ILOG_AEXT:
3240 			dest = XFS_DFORK_APTR(dip);
3241 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3242 			memcpy(dest, src, len);
3243 			break;
3244 
3245 		case XFS_ILOG_ABROOT:
3246 			dest = XFS_DFORK_APTR(dip);
3247 			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3248 					 len, (xfs_bmdr_block_t*)dest,
3249 					 XFS_DFORK_ASIZE(dip, mp));
3250 			break;
3251 
3252 		default:
3253 			xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3254 			ASSERT(0);
3255 			error = -EIO;
3256 			goto out_release;
3257 		}
3258 	}
3259 
3260 out_owner_change:
3261 	/* Recover the swapext owner change unless inode has been deleted */
3262 	if ((in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) &&
3263 	    (dip->di_mode != 0))
3264 		error = xfs_recover_inode_owner_change(mp, dip, in_f,
3265 						       buffer_list);
3266 	/* re-generate the checksum. */
3267 	xfs_dinode_calc_crc(log->l_mp, dip);
3268 
3269 	ASSERT(bp->b_target->bt_mount == mp);
3270 	bp->b_iodone = xlog_recover_iodone;
3271 	xfs_buf_delwri_queue(bp, buffer_list);
3272 
3273 out_release:
3274 	xfs_buf_relse(bp);
3275 error:
3276 	if (need_free)
3277 		kmem_free(in_f);
3278 	return error;
3279 }
3280 
3281 /*
3282  * Recover QUOTAOFF records. We simply make a note of it in the xlog
3283  * structure, so that we know not to do any dquot item or dquot buffer recovery,
3284  * of that type.
3285  */
3286 STATIC int
3287 xlog_recover_quotaoff_pass1(
3288 	struct xlog			*log,
3289 	struct xlog_recover_item	*item)
3290 {
3291 	xfs_qoff_logformat_t	*qoff_f = item->ri_buf[0].i_addr;
3292 	ASSERT(qoff_f);
3293 
3294 	/*
3295 	 * The logitem format's flag tells us if this was user quotaoff,
3296 	 * group/project quotaoff or both.
3297 	 */
3298 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3299 		log->l_quotaoffs_flag |= XFS_DQ_USER;
3300 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3301 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3302 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3303 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3304 
3305 	return 0;
3306 }
3307 
3308 /*
3309  * Recover a dquot record
3310  */
3311 STATIC int
3312 xlog_recover_dquot_pass2(
3313 	struct xlog			*log,
3314 	struct list_head		*buffer_list,
3315 	struct xlog_recover_item	*item,
3316 	xfs_lsn_t			current_lsn)
3317 {
3318 	xfs_mount_t		*mp = log->l_mp;
3319 	xfs_buf_t		*bp;
3320 	struct xfs_disk_dquot	*ddq, *recddq;
3321 	xfs_failaddr_t		fa;
3322 	int			error;
3323 	xfs_dq_logformat_t	*dq_f;
3324 	uint			type;
3325 
3326 
3327 	/*
3328 	 * Filesystems are required to send in quota flags at mount time.
3329 	 */
3330 	if (mp->m_qflags == 0)
3331 		return 0;
3332 
3333 	recddq = item->ri_buf[1].i_addr;
3334 	if (recddq == NULL) {
3335 		xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3336 		return -EIO;
3337 	}
3338 	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
3339 		xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3340 			item->ri_buf[1].i_len, __func__);
3341 		return -EIO;
3342 	}
3343 
3344 	/*
3345 	 * This type of quotas was turned off, so ignore this record.
3346 	 */
3347 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3348 	ASSERT(type);
3349 	if (log->l_quotaoffs_flag & type)
3350 		return 0;
3351 
3352 	/*
3353 	 * At this point we know that quota was _not_ turned off.
3354 	 * Since the mount flags are not indicating to us otherwise, this
3355 	 * must mean that quota is on, and the dquot needs to be replayed.
3356 	 * Remember that we may not have fully recovered the superblock yet,
3357 	 * so we can't do the usual trick of looking at the SB quota bits.
3358 	 *
3359 	 * The other possibility, of course, is that the quota subsystem was
3360 	 * removed since the last mount - ENOSYS.
3361 	 */
3362 	dq_f = item->ri_buf[0].i_addr;
3363 	ASSERT(dq_f);
3364 	fa = xfs_dquot_verify(mp, recddq, dq_f->qlf_id, 0);
3365 	if (fa) {
3366 		xfs_alert(mp, "corrupt dquot ID 0x%x in log at %pS",
3367 				dq_f->qlf_id, fa);
3368 		return -EIO;
3369 	}
3370 	ASSERT(dq_f->qlf_len == 1);
3371 
3372 	/*
3373 	 * At this point we are assuming that the dquots have been allocated
3374 	 * and hence the buffer has valid dquots stamped in it. It should,
3375 	 * therefore, pass verifier validation. If the dquot is bad, then the
3376 	 * we'll return an error here, so we don't need to specifically check
3377 	 * the dquot in the buffer after the verifier has run.
3378 	 */
3379 	error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3380 				   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3381 				   &xfs_dquot_buf_ops);
3382 	if (error)
3383 		return error;
3384 
3385 	ASSERT(bp);
3386 	ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3387 
3388 	/*
3389 	 * If the dquot has an LSN in it, recover the dquot only if it's less
3390 	 * than the lsn of the transaction we are replaying.
3391 	 */
3392 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3393 		struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3394 		xfs_lsn_t	lsn = be64_to_cpu(dqb->dd_lsn);
3395 
3396 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3397 			goto out_release;
3398 		}
3399 	}
3400 
3401 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
3402 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3403 		xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3404 				 XFS_DQUOT_CRC_OFF);
3405 	}
3406 
3407 	ASSERT(dq_f->qlf_size == 2);
3408 	ASSERT(bp->b_target->bt_mount == mp);
3409 	bp->b_iodone = xlog_recover_iodone;
3410 	xfs_buf_delwri_queue(bp, buffer_list);
3411 
3412 out_release:
3413 	xfs_buf_relse(bp);
3414 	return 0;
3415 }
3416 
3417 /*
3418  * This routine is called to create an in-core extent free intent
3419  * item from the efi format structure which was logged on disk.
3420  * It allocates an in-core efi, copies the extents from the format
3421  * structure into it, and adds the efi to the AIL with the given
3422  * LSN.
3423  */
3424 STATIC int
3425 xlog_recover_efi_pass2(
3426 	struct xlog			*log,
3427 	struct xlog_recover_item	*item,
3428 	xfs_lsn_t			lsn)
3429 {
3430 	int				error;
3431 	struct xfs_mount		*mp = log->l_mp;
3432 	struct xfs_efi_log_item		*efip;
3433 	struct xfs_efi_log_format	*efi_formatp;
3434 
3435 	efi_formatp = item->ri_buf[0].i_addr;
3436 
3437 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3438 	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3439 	if (error) {
3440 		xfs_efi_item_free(efip);
3441 		return error;
3442 	}
3443 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3444 
3445 	spin_lock(&log->l_ailp->ail_lock);
3446 	/*
3447 	 * The EFI has two references. One for the EFD and one for EFI to ensure
3448 	 * it makes it into the AIL. Insert the EFI into the AIL directly and
3449 	 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3450 	 * AIL lock.
3451 	 */
3452 	xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3453 	xfs_efi_release(efip);
3454 	return 0;
3455 }
3456 
3457 
3458 /*
3459  * This routine is called when an EFD format structure is found in a committed
3460  * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3461  * was still in the log. To do this it searches the AIL for the EFI with an id
3462  * equal to that in the EFD format structure. If we find it we drop the EFD
3463  * reference, which removes the EFI from the AIL and frees it.
3464  */
3465 STATIC int
3466 xlog_recover_efd_pass2(
3467 	struct xlog			*log,
3468 	struct xlog_recover_item	*item)
3469 {
3470 	xfs_efd_log_format_t	*efd_formatp;
3471 	xfs_efi_log_item_t	*efip = NULL;
3472 	xfs_log_item_t		*lip;
3473 	uint64_t		efi_id;
3474 	struct xfs_ail_cursor	cur;
3475 	struct xfs_ail		*ailp = log->l_ailp;
3476 
3477 	efd_formatp = item->ri_buf[0].i_addr;
3478 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3479 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3480 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3481 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3482 	efi_id = efd_formatp->efd_efi_id;
3483 
3484 	/*
3485 	 * Search for the EFI with the id in the EFD format structure in the
3486 	 * AIL.
3487 	 */
3488 	spin_lock(&ailp->ail_lock);
3489 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3490 	while (lip != NULL) {
3491 		if (lip->li_type == XFS_LI_EFI) {
3492 			efip = (xfs_efi_log_item_t *)lip;
3493 			if (efip->efi_format.efi_id == efi_id) {
3494 				/*
3495 				 * Drop the EFD reference to the EFI. This
3496 				 * removes the EFI from the AIL and frees it.
3497 				 */
3498 				spin_unlock(&ailp->ail_lock);
3499 				xfs_efi_release(efip);
3500 				spin_lock(&ailp->ail_lock);
3501 				break;
3502 			}
3503 		}
3504 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3505 	}
3506 
3507 	xfs_trans_ail_cursor_done(&cur);
3508 	spin_unlock(&ailp->ail_lock);
3509 
3510 	return 0;
3511 }
3512 
3513 /*
3514  * This routine is called to create an in-core extent rmap update
3515  * item from the rui format structure which was logged on disk.
3516  * It allocates an in-core rui, copies the extents from the format
3517  * structure into it, and adds the rui to the AIL with the given
3518  * LSN.
3519  */
3520 STATIC int
3521 xlog_recover_rui_pass2(
3522 	struct xlog			*log,
3523 	struct xlog_recover_item	*item,
3524 	xfs_lsn_t			lsn)
3525 {
3526 	int				error;
3527 	struct xfs_mount		*mp = log->l_mp;
3528 	struct xfs_rui_log_item		*ruip;
3529 	struct xfs_rui_log_format	*rui_formatp;
3530 
3531 	rui_formatp = item->ri_buf[0].i_addr;
3532 
3533 	ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3534 	error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3535 	if (error) {
3536 		xfs_rui_item_free(ruip);
3537 		return error;
3538 	}
3539 	atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3540 
3541 	spin_lock(&log->l_ailp->ail_lock);
3542 	/*
3543 	 * The RUI has two references. One for the RUD and one for RUI to ensure
3544 	 * it makes it into the AIL. Insert the RUI into the AIL directly and
3545 	 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3546 	 * AIL lock.
3547 	 */
3548 	xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3549 	xfs_rui_release(ruip);
3550 	return 0;
3551 }
3552 
3553 
3554 /*
3555  * This routine is called when an RUD format structure is found in a committed
3556  * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3557  * was still in the log. To do this it searches the AIL for the RUI with an id
3558  * equal to that in the RUD format structure. If we find it we drop the RUD
3559  * reference, which removes the RUI from the AIL and frees it.
3560  */
3561 STATIC int
3562 xlog_recover_rud_pass2(
3563 	struct xlog			*log,
3564 	struct xlog_recover_item	*item)
3565 {
3566 	struct xfs_rud_log_format	*rud_formatp;
3567 	struct xfs_rui_log_item		*ruip = NULL;
3568 	struct xfs_log_item		*lip;
3569 	uint64_t			rui_id;
3570 	struct xfs_ail_cursor		cur;
3571 	struct xfs_ail			*ailp = log->l_ailp;
3572 
3573 	rud_formatp = item->ri_buf[0].i_addr;
3574 	ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
3575 	rui_id = rud_formatp->rud_rui_id;
3576 
3577 	/*
3578 	 * Search for the RUI with the id in the RUD format structure in the
3579 	 * AIL.
3580 	 */
3581 	spin_lock(&ailp->ail_lock);
3582 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3583 	while (lip != NULL) {
3584 		if (lip->li_type == XFS_LI_RUI) {
3585 			ruip = (struct xfs_rui_log_item *)lip;
3586 			if (ruip->rui_format.rui_id == rui_id) {
3587 				/*
3588 				 * Drop the RUD reference to the RUI. This
3589 				 * removes the RUI from the AIL and frees it.
3590 				 */
3591 				spin_unlock(&ailp->ail_lock);
3592 				xfs_rui_release(ruip);
3593 				spin_lock(&ailp->ail_lock);
3594 				break;
3595 			}
3596 		}
3597 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3598 	}
3599 
3600 	xfs_trans_ail_cursor_done(&cur);
3601 	spin_unlock(&ailp->ail_lock);
3602 
3603 	return 0;
3604 }
3605 
3606 /*
3607  * Copy an CUI format buffer from the given buf, and into the destination
3608  * CUI format structure.  The CUI/CUD items were designed not to need any
3609  * special alignment handling.
3610  */
3611 static int
3612 xfs_cui_copy_format(
3613 	struct xfs_log_iovec		*buf,
3614 	struct xfs_cui_log_format	*dst_cui_fmt)
3615 {
3616 	struct xfs_cui_log_format	*src_cui_fmt;
3617 	uint				len;
3618 
3619 	src_cui_fmt = buf->i_addr;
3620 	len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents);
3621 
3622 	if (buf->i_len == len) {
3623 		memcpy(dst_cui_fmt, src_cui_fmt, len);
3624 		return 0;
3625 	}
3626 	return -EFSCORRUPTED;
3627 }
3628 
3629 /*
3630  * This routine is called to create an in-core extent refcount update
3631  * item from the cui format structure which was logged on disk.
3632  * It allocates an in-core cui, copies the extents from the format
3633  * structure into it, and adds the cui to the AIL with the given
3634  * LSN.
3635  */
3636 STATIC int
3637 xlog_recover_cui_pass2(
3638 	struct xlog			*log,
3639 	struct xlog_recover_item	*item,
3640 	xfs_lsn_t			lsn)
3641 {
3642 	int				error;
3643 	struct xfs_mount		*mp = log->l_mp;
3644 	struct xfs_cui_log_item		*cuip;
3645 	struct xfs_cui_log_format	*cui_formatp;
3646 
3647 	cui_formatp = item->ri_buf[0].i_addr;
3648 
3649 	cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
3650 	error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format);
3651 	if (error) {
3652 		xfs_cui_item_free(cuip);
3653 		return error;
3654 	}
3655 	atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
3656 
3657 	spin_lock(&log->l_ailp->ail_lock);
3658 	/*
3659 	 * The CUI has two references. One for the CUD and one for CUI to ensure
3660 	 * it makes it into the AIL. Insert the CUI into the AIL directly and
3661 	 * drop the CUI reference. Note that xfs_trans_ail_update() drops the
3662 	 * AIL lock.
3663 	 */
3664 	xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn);
3665 	xfs_cui_release(cuip);
3666 	return 0;
3667 }
3668 
3669 
3670 /*
3671  * This routine is called when an CUD format structure is found in a committed
3672  * transaction in the log. Its purpose is to cancel the corresponding CUI if it
3673  * was still in the log. To do this it searches the AIL for the CUI with an id
3674  * equal to that in the CUD format structure. If we find it we drop the CUD
3675  * reference, which removes the CUI from the AIL and frees it.
3676  */
3677 STATIC int
3678 xlog_recover_cud_pass2(
3679 	struct xlog			*log,
3680 	struct xlog_recover_item	*item)
3681 {
3682 	struct xfs_cud_log_format	*cud_formatp;
3683 	struct xfs_cui_log_item		*cuip = NULL;
3684 	struct xfs_log_item		*lip;
3685 	uint64_t			cui_id;
3686 	struct xfs_ail_cursor		cur;
3687 	struct xfs_ail			*ailp = log->l_ailp;
3688 
3689 	cud_formatp = item->ri_buf[0].i_addr;
3690 	if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format))
3691 		return -EFSCORRUPTED;
3692 	cui_id = cud_formatp->cud_cui_id;
3693 
3694 	/*
3695 	 * Search for the CUI with the id in the CUD format structure in the
3696 	 * AIL.
3697 	 */
3698 	spin_lock(&ailp->ail_lock);
3699 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3700 	while (lip != NULL) {
3701 		if (lip->li_type == XFS_LI_CUI) {
3702 			cuip = (struct xfs_cui_log_item *)lip;
3703 			if (cuip->cui_format.cui_id == cui_id) {
3704 				/*
3705 				 * Drop the CUD reference to the CUI. This
3706 				 * removes the CUI from the AIL and frees it.
3707 				 */
3708 				spin_unlock(&ailp->ail_lock);
3709 				xfs_cui_release(cuip);
3710 				spin_lock(&ailp->ail_lock);
3711 				break;
3712 			}
3713 		}
3714 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3715 	}
3716 
3717 	xfs_trans_ail_cursor_done(&cur);
3718 	spin_unlock(&ailp->ail_lock);
3719 
3720 	return 0;
3721 }
3722 
3723 /*
3724  * Copy an BUI format buffer from the given buf, and into the destination
3725  * BUI format structure.  The BUI/BUD items were designed not to need any
3726  * special alignment handling.
3727  */
3728 static int
3729 xfs_bui_copy_format(
3730 	struct xfs_log_iovec		*buf,
3731 	struct xfs_bui_log_format	*dst_bui_fmt)
3732 {
3733 	struct xfs_bui_log_format	*src_bui_fmt;
3734 	uint				len;
3735 
3736 	src_bui_fmt = buf->i_addr;
3737 	len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents);
3738 
3739 	if (buf->i_len == len) {
3740 		memcpy(dst_bui_fmt, src_bui_fmt, len);
3741 		return 0;
3742 	}
3743 	return -EFSCORRUPTED;
3744 }
3745 
3746 /*
3747  * This routine is called to create an in-core extent bmap update
3748  * item from the bui format structure which was logged on disk.
3749  * It allocates an in-core bui, copies the extents from the format
3750  * structure into it, and adds the bui to the AIL with the given
3751  * LSN.
3752  */
3753 STATIC int
3754 xlog_recover_bui_pass2(
3755 	struct xlog			*log,
3756 	struct xlog_recover_item	*item,
3757 	xfs_lsn_t			lsn)
3758 {
3759 	int				error;
3760 	struct xfs_mount		*mp = log->l_mp;
3761 	struct xfs_bui_log_item		*buip;
3762 	struct xfs_bui_log_format	*bui_formatp;
3763 
3764 	bui_formatp = item->ri_buf[0].i_addr;
3765 
3766 	if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS)
3767 		return -EFSCORRUPTED;
3768 	buip = xfs_bui_init(mp);
3769 	error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format);
3770 	if (error) {
3771 		xfs_bui_item_free(buip);
3772 		return error;
3773 	}
3774 	atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents);
3775 
3776 	spin_lock(&log->l_ailp->ail_lock);
3777 	/*
3778 	 * The RUI has two references. One for the RUD and one for RUI to ensure
3779 	 * it makes it into the AIL. Insert the RUI into the AIL directly and
3780 	 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3781 	 * AIL lock.
3782 	 */
3783 	xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn);
3784 	xfs_bui_release(buip);
3785 	return 0;
3786 }
3787 
3788 
3789 /*
3790  * This routine is called when an BUD format structure is found in a committed
3791  * transaction in the log. Its purpose is to cancel the corresponding BUI if it
3792  * was still in the log. To do this it searches the AIL for the BUI with an id
3793  * equal to that in the BUD format structure. If we find it we drop the BUD
3794  * reference, which removes the BUI from the AIL and frees it.
3795  */
3796 STATIC int
3797 xlog_recover_bud_pass2(
3798 	struct xlog			*log,
3799 	struct xlog_recover_item	*item)
3800 {
3801 	struct xfs_bud_log_format	*bud_formatp;
3802 	struct xfs_bui_log_item		*buip = NULL;
3803 	struct xfs_log_item		*lip;
3804 	uint64_t			bui_id;
3805 	struct xfs_ail_cursor		cur;
3806 	struct xfs_ail			*ailp = log->l_ailp;
3807 
3808 	bud_formatp = item->ri_buf[0].i_addr;
3809 	if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format))
3810 		return -EFSCORRUPTED;
3811 	bui_id = bud_formatp->bud_bui_id;
3812 
3813 	/*
3814 	 * Search for the BUI with the id in the BUD format structure in the
3815 	 * AIL.
3816 	 */
3817 	spin_lock(&ailp->ail_lock);
3818 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3819 	while (lip != NULL) {
3820 		if (lip->li_type == XFS_LI_BUI) {
3821 			buip = (struct xfs_bui_log_item *)lip;
3822 			if (buip->bui_format.bui_id == bui_id) {
3823 				/*
3824 				 * Drop the BUD reference to the BUI. This
3825 				 * removes the BUI from the AIL and frees it.
3826 				 */
3827 				spin_unlock(&ailp->ail_lock);
3828 				xfs_bui_release(buip);
3829 				spin_lock(&ailp->ail_lock);
3830 				break;
3831 			}
3832 		}
3833 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3834 	}
3835 
3836 	xfs_trans_ail_cursor_done(&cur);
3837 	spin_unlock(&ailp->ail_lock);
3838 
3839 	return 0;
3840 }
3841 
3842 /*
3843  * This routine is called when an inode create format structure is found in a
3844  * committed transaction in the log.  It's purpose is to initialise the inodes
3845  * being allocated on disk. This requires us to get inode cluster buffers that
3846  * match the range to be initialised, stamped with inode templates and written
3847  * by delayed write so that subsequent modifications will hit the cached buffer
3848  * and only need writing out at the end of recovery.
3849  */
3850 STATIC int
3851 xlog_recover_do_icreate_pass2(
3852 	struct xlog		*log,
3853 	struct list_head	*buffer_list,
3854 	xlog_recover_item_t	*item)
3855 {
3856 	struct xfs_mount	*mp = log->l_mp;
3857 	struct xfs_icreate_log	*icl;
3858 	xfs_agnumber_t		agno;
3859 	xfs_agblock_t		agbno;
3860 	unsigned int		count;
3861 	unsigned int		isize;
3862 	xfs_agblock_t		length;
3863 	int			blks_per_cluster;
3864 	int			bb_per_cluster;
3865 	int			cancel_count;
3866 	int			nbufs;
3867 	int			i;
3868 
3869 	icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3870 	if (icl->icl_type != XFS_LI_ICREATE) {
3871 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3872 		return -EINVAL;
3873 	}
3874 
3875 	if (icl->icl_size != 1) {
3876 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3877 		return -EINVAL;
3878 	}
3879 
3880 	agno = be32_to_cpu(icl->icl_ag);
3881 	if (agno >= mp->m_sb.sb_agcount) {
3882 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3883 		return -EINVAL;
3884 	}
3885 	agbno = be32_to_cpu(icl->icl_agbno);
3886 	if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3887 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3888 		return -EINVAL;
3889 	}
3890 	isize = be32_to_cpu(icl->icl_isize);
3891 	if (isize != mp->m_sb.sb_inodesize) {
3892 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3893 		return -EINVAL;
3894 	}
3895 	count = be32_to_cpu(icl->icl_count);
3896 	if (!count) {
3897 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3898 		return -EINVAL;
3899 	}
3900 	length = be32_to_cpu(icl->icl_length);
3901 	if (!length || length >= mp->m_sb.sb_agblocks) {
3902 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3903 		return -EINVAL;
3904 	}
3905 
3906 	/*
3907 	 * The inode chunk is either full or sparse and we only support
3908 	 * m_ialloc_min_blks sized sparse allocations at this time.
3909 	 */
3910 	if (length != mp->m_ialloc_blks &&
3911 	    length != mp->m_ialloc_min_blks) {
3912 		xfs_warn(log->l_mp,
3913 			 "%s: unsupported chunk length", __FUNCTION__);
3914 		return -EINVAL;
3915 	}
3916 
3917 	/* verify inode count is consistent with extent length */
3918 	if ((count >> mp->m_sb.sb_inopblog) != length) {
3919 		xfs_warn(log->l_mp,
3920 			 "%s: inconsistent inode count and chunk length",
3921 			 __FUNCTION__);
3922 		return -EINVAL;
3923 	}
3924 
3925 	/*
3926 	 * The icreate transaction can cover multiple cluster buffers and these
3927 	 * buffers could have been freed and reused. Check the individual
3928 	 * buffers for cancellation so we don't overwrite anything written after
3929 	 * a cancellation.
3930 	 */
3931 	blks_per_cluster = xfs_icluster_size_fsb(mp);
3932 	bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster);
3933 	nbufs = length / blks_per_cluster;
3934 	for (i = 0, cancel_count = 0; i < nbufs; i++) {
3935 		xfs_daddr_t	daddr;
3936 
3937 		daddr = XFS_AGB_TO_DADDR(mp, agno,
3938 					 agbno + i * blks_per_cluster);
3939 		if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3940 			cancel_count++;
3941 	}
3942 
3943 	/*
3944 	 * We currently only use icreate for a single allocation at a time. This
3945 	 * means we should expect either all or none of the buffers to be
3946 	 * cancelled. Be conservative and skip replay if at least one buffer is
3947 	 * cancelled, but warn the user that something is awry if the buffers
3948 	 * are not consistent.
3949 	 *
3950 	 * XXX: This must be refined to only skip cancelled clusters once we use
3951 	 * icreate for multiple chunk allocations.
3952 	 */
3953 	ASSERT(!cancel_count || cancel_count == nbufs);
3954 	if (cancel_count) {
3955 		if (cancel_count != nbufs)
3956 			xfs_warn(mp,
3957 	"WARNING: partial inode chunk cancellation, skipped icreate.");
3958 		trace_xfs_log_recover_icreate_cancel(log, icl);
3959 		return 0;
3960 	}
3961 
3962 	trace_xfs_log_recover_icreate_recover(log, icl);
3963 	return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3964 				     length, be32_to_cpu(icl->icl_gen));
3965 }
3966 
3967 STATIC void
3968 xlog_recover_buffer_ra_pass2(
3969 	struct xlog                     *log,
3970 	struct xlog_recover_item        *item)
3971 {
3972 	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
3973 	struct xfs_mount		*mp = log->l_mp;
3974 
3975 	if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3976 			buf_f->blf_len, buf_f->blf_flags)) {
3977 		return;
3978 	}
3979 
3980 	xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3981 				buf_f->blf_len, NULL);
3982 }
3983 
3984 STATIC void
3985 xlog_recover_inode_ra_pass2(
3986 	struct xlog                     *log,
3987 	struct xlog_recover_item        *item)
3988 {
3989 	struct xfs_inode_log_format	ilf_buf;
3990 	struct xfs_inode_log_format	*ilfp;
3991 	struct xfs_mount		*mp = log->l_mp;
3992 	int			error;
3993 
3994 	if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3995 		ilfp = item->ri_buf[0].i_addr;
3996 	} else {
3997 		ilfp = &ilf_buf;
3998 		memset(ilfp, 0, sizeof(*ilfp));
3999 		error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
4000 		if (error)
4001 			return;
4002 	}
4003 
4004 	if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
4005 		return;
4006 
4007 	xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
4008 				ilfp->ilf_len, &xfs_inode_buf_ra_ops);
4009 }
4010 
4011 STATIC void
4012 xlog_recover_dquot_ra_pass2(
4013 	struct xlog			*log,
4014 	struct xlog_recover_item	*item)
4015 {
4016 	struct xfs_mount	*mp = log->l_mp;
4017 	struct xfs_disk_dquot	*recddq;
4018 	struct xfs_dq_logformat	*dq_f;
4019 	uint			type;
4020 	int			len;
4021 
4022 
4023 	if (mp->m_qflags == 0)
4024 		return;
4025 
4026 	recddq = item->ri_buf[1].i_addr;
4027 	if (recddq == NULL)
4028 		return;
4029 	if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
4030 		return;
4031 
4032 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
4033 	ASSERT(type);
4034 	if (log->l_quotaoffs_flag & type)
4035 		return;
4036 
4037 	dq_f = item->ri_buf[0].i_addr;
4038 	ASSERT(dq_f);
4039 	ASSERT(dq_f->qlf_len == 1);
4040 
4041 	len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
4042 	if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
4043 		return;
4044 
4045 	xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
4046 			  &xfs_dquot_buf_ra_ops);
4047 }
4048 
4049 STATIC void
4050 xlog_recover_ra_pass2(
4051 	struct xlog			*log,
4052 	struct xlog_recover_item	*item)
4053 {
4054 	switch (ITEM_TYPE(item)) {
4055 	case XFS_LI_BUF:
4056 		xlog_recover_buffer_ra_pass2(log, item);
4057 		break;
4058 	case XFS_LI_INODE:
4059 		xlog_recover_inode_ra_pass2(log, item);
4060 		break;
4061 	case XFS_LI_DQUOT:
4062 		xlog_recover_dquot_ra_pass2(log, item);
4063 		break;
4064 	case XFS_LI_EFI:
4065 	case XFS_LI_EFD:
4066 	case XFS_LI_QUOTAOFF:
4067 	case XFS_LI_RUI:
4068 	case XFS_LI_RUD:
4069 	case XFS_LI_CUI:
4070 	case XFS_LI_CUD:
4071 	case XFS_LI_BUI:
4072 	case XFS_LI_BUD:
4073 	default:
4074 		break;
4075 	}
4076 }
4077 
4078 STATIC int
4079 xlog_recover_commit_pass1(
4080 	struct xlog			*log,
4081 	struct xlog_recover		*trans,
4082 	struct xlog_recover_item	*item)
4083 {
4084 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
4085 
4086 	switch (ITEM_TYPE(item)) {
4087 	case XFS_LI_BUF:
4088 		return xlog_recover_buffer_pass1(log, item);
4089 	case XFS_LI_QUOTAOFF:
4090 		return xlog_recover_quotaoff_pass1(log, item);
4091 	case XFS_LI_INODE:
4092 	case XFS_LI_EFI:
4093 	case XFS_LI_EFD:
4094 	case XFS_LI_DQUOT:
4095 	case XFS_LI_ICREATE:
4096 	case XFS_LI_RUI:
4097 	case XFS_LI_RUD:
4098 	case XFS_LI_CUI:
4099 	case XFS_LI_CUD:
4100 	case XFS_LI_BUI:
4101 	case XFS_LI_BUD:
4102 		/* nothing to do in pass 1 */
4103 		return 0;
4104 	default:
4105 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4106 			__func__, ITEM_TYPE(item));
4107 		ASSERT(0);
4108 		return -EIO;
4109 	}
4110 }
4111 
4112 STATIC int
4113 xlog_recover_commit_pass2(
4114 	struct xlog			*log,
4115 	struct xlog_recover		*trans,
4116 	struct list_head		*buffer_list,
4117 	struct xlog_recover_item	*item)
4118 {
4119 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
4120 
4121 	switch (ITEM_TYPE(item)) {
4122 	case XFS_LI_BUF:
4123 		return xlog_recover_buffer_pass2(log, buffer_list, item,
4124 						 trans->r_lsn);
4125 	case XFS_LI_INODE:
4126 		return xlog_recover_inode_pass2(log, buffer_list, item,
4127 						 trans->r_lsn);
4128 	case XFS_LI_EFI:
4129 		return xlog_recover_efi_pass2(log, item, trans->r_lsn);
4130 	case XFS_LI_EFD:
4131 		return xlog_recover_efd_pass2(log, item);
4132 	case XFS_LI_RUI:
4133 		return xlog_recover_rui_pass2(log, item, trans->r_lsn);
4134 	case XFS_LI_RUD:
4135 		return xlog_recover_rud_pass2(log, item);
4136 	case XFS_LI_CUI:
4137 		return xlog_recover_cui_pass2(log, item, trans->r_lsn);
4138 	case XFS_LI_CUD:
4139 		return xlog_recover_cud_pass2(log, item);
4140 	case XFS_LI_BUI:
4141 		return xlog_recover_bui_pass2(log, item, trans->r_lsn);
4142 	case XFS_LI_BUD:
4143 		return xlog_recover_bud_pass2(log, item);
4144 	case XFS_LI_DQUOT:
4145 		return xlog_recover_dquot_pass2(log, buffer_list, item,
4146 						trans->r_lsn);
4147 	case XFS_LI_ICREATE:
4148 		return xlog_recover_do_icreate_pass2(log, buffer_list, item);
4149 	case XFS_LI_QUOTAOFF:
4150 		/* nothing to do in pass2 */
4151 		return 0;
4152 	default:
4153 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4154 			__func__, ITEM_TYPE(item));
4155 		ASSERT(0);
4156 		return -EIO;
4157 	}
4158 }
4159 
4160 STATIC int
4161 xlog_recover_items_pass2(
4162 	struct xlog                     *log,
4163 	struct xlog_recover             *trans,
4164 	struct list_head                *buffer_list,
4165 	struct list_head                *item_list)
4166 {
4167 	struct xlog_recover_item	*item;
4168 	int				error = 0;
4169 
4170 	list_for_each_entry(item, item_list, ri_list) {
4171 		error = xlog_recover_commit_pass2(log, trans,
4172 					  buffer_list, item);
4173 		if (error)
4174 			return error;
4175 	}
4176 
4177 	return error;
4178 }
4179 
4180 /*
4181  * Perform the transaction.
4182  *
4183  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
4184  * EFIs and EFDs get queued up by adding entries into the AIL for them.
4185  */
4186 STATIC int
4187 xlog_recover_commit_trans(
4188 	struct xlog		*log,
4189 	struct xlog_recover	*trans,
4190 	int			pass,
4191 	struct list_head	*buffer_list)
4192 {
4193 	int				error = 0;
4194 	int				items_queued = 0;
4195 	struct xlog_recover_item	*item;
4196 	struct xlog_recover_item	*next;
4197 	LIST_HEAD			(ra_list);
4198 	LIST_HEAD			(done_list);
4199 
4200 	#define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
4201 
4202 	hlist_del_init(&trans->r_list);
4203 
4204 	error = xlog_recover_reorder_trans(log, trans, pass);
4205 	if (error)
4206 		return error;
4207 
4208 	list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
4209 		switch (pass) {
4210 		case XLOG_RECOVER_PASS1:
4211 			error = xlog_recover_commit_pass1(log, trans, item);
4212 			break;
4213 		case XLOG_RECOVER_PASS2:
4214 			xlog_recover_ra_pass2(log, item);
4215 			list_move_tail(&item->ri_list, &ra_list);
4216 			items_queued++;
4217 			if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
4218 				error = xlog_recover_items_pass2(log, trans,
4219 						buffer_list, &ra_list);
4220 				list_splice_tail_init(&ra_list, &done_list);
4221 				items_queued = 0;
4222 			}
4223 
4224 			break;
4225 		default:
4226 			ASSERT(0);
4227 		}
4228 
4229 		if (error)
4230 			goto out;
4231 	}
4232 
4233 out:
4234 	if (!list_empty(&ra_list)) {
4235 		if (!error)
4236 			error = xlog_recover_items_pass2(log, trans,
4237 					buffer_list, &ra_list);
4238 		list_splice_tail_init(&ra_list, &done_list);
4239 	}
4240 
4241 	if (!list_empty(&done_list))
4242 		list_splice_init(&done_list, &trans->r_itemq);
4243 
4244 	return error;
4245 }
4246 
4247 STATIC void
4248 xlog_recover_add_item(
4249 	struct list_head	*head)
4250 {
4251 	xlog_recover_item_t	*item;
4252 
4253 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
4254 	INIT_LIST_HEAD(&item->ri_list);
4255 	list_add_tail(&item->ri_list, head);
4256 }
4257 
4258 STATIC int
4259 xlog_recover_add_to_cont_trans(
4260 	struct xlog		*log,
4261 	struct xlog_recover	*trans,
4262 	char			*dp,
4263 	int			len)
4264 {
4265 	xlog_recover_item_t	*item;
4266 	char			*ptr, *old_ptr;
4267 	int			old_len;
4268 
4269 	/*
4270 	 * If the transaction is empty, the header was split across this and the
4271 	 * previous record. Copy the rest of the header.
4272 	 */
4273 	if (list_empty(&trans->r_itemq)) {
4274 		ASSERT(len <= sizeof(struct xfs_trans_header));
4275 		if (len > sizeof(struct xfs_trans_header)) {
4276 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
4277 			return -EIO;
4278 		}
4279 
4280 		xlog_recover_add_item(&trans->r_itemq);
4281 		ptr = (char *)&trans->r_theader +
4282 				sizeof(struct xfs_trans_header) - len;
4283 		memcpy(ptr, dp, len);
4284 		return 0;
4285 	}
4286 
4287 	/* take the tail entry */
4288 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4289 
4290 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
4291 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
4292 
4293 	ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP);
4294 	memcpy(&ptr[old_len], dp, len);
4295 	item->ri_buf[item->ri_cnt-1].i_len += len;
4296 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
4297 	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
4298 	return 0;
4299 }
4300 
4301 /*
4302  * The next region to add is the start of a new region.  It could be
4303  * a whole region or it could be the first part of a new region.  Because
4304  * of this, the assumption here is that the type and size fields of all
4305  * format structures fit into the first 32 bits of the structure.
4306  *
4307  * This works because all regions must be 32 bit aligned.  Therefore, we
4308  * either have both fields or we have neither field.  In the case we have
4309  * neither field, the data part of the region is zero length.  We only have
4310  * a log_op_header and can throw away the header since a new one will appear
4311  * later.  If we have at least 4 bytes, then we can determine how many regions
4312  * will appear in the current log item.
4313  */
4314 STATIC int
4315 xlog_recover_add_to_trans(
4316 	struct xlog		*log,
4317 	struct xlog_recover	*trans,
4318 	char			*dp,
4319 	int			len)
4320 {
4321 	struct xfs_inode_log_format	*in_f;			/* any will do */
4322 	xlog_recover_item_t	*item;
4323 	char			*ptr;
4324 
4325 	if (!len)
4326 		return 0;
4327 	if (list_empty(&trans->r_itemq)) {
4328 		/* we need to catch log corruptions here */
4329 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
4330 			xfs_warn(log->l_mp, "%s: bad header magic number",
4331 				__func__);
4332 			ASSERT(0);
4333 			return -EIO;
4334 		}
4335 
4336 		if (len > sizeof(struct xfs_trans_header)) {
4337 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
4338 			ASSERT(0);
4339 			return -EIO;
4340 		}
4341 
4342 		/*
4343 		 * The transaction header can be arbitrarily split across op
4344 		 * records. If we don't have the whole thing here, copy what we
4345 		 * do have and handle the rest in the next record.
4346 		 */
4347 		if (len == sizeof(struct xfs_trans_header))
4348 			xlog_recover_add_item(&trans->r_itemq);
4349 		memcpy(&trans->r_theader, dp, len);
4350 		return 0;
4351 	}
4352 
4353 	ptr = kmem_alloc(len, KM_SLEEP);
4354 	memcpy(ptr, dp, len);
4355 	in_f = (struct xfs_inode_log_format *)ptr;
4356 
4357 	/* take the tail entry */
4358 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4359 	if (item->ri_total != 0 &&
4360 	     item->ri_total == item->ri_cnt) {
4361 		/* tail item is in use, get a new one */
4362 		xlog_recover_add_item(&trans->r_itemq);
4363 		item = list_entry(trans->r_itemq.prev,
4364 					xlog_recover_item_t, ri_list);
4365 	}
4366 
4367 	if (item->ri_total == 0) {		/* first region to be added */
4368 		if (in_f->ilf_size == 0 ||
4369 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4370 			xfs_warn(log->l_mp,
4371 		"bad number of regions (%d) in inode log format",
4372 				  in_f->ilf_size);
4373 			ASSERT(0);
4374 			kmem_free(ptr);
4375 			return -EIO;
4376 		}
4377 
4378 		item->ri_total = in_f->ilf_size;
4379 		item->ri_buf =
4380 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4381 				    KM_SLEEP);
4382 	}
4383 	ASSERT(item->ri_total > item->ri_cnt);
4384 	/* Description region is ri_buf[0] */
4385 	item->ri_buf[item->ri_cnt].i_addr = ptr;
4386 	item->ri_buf[item->ri_cnt].i_len  = len;
4387 	item->ri_cnt++;
4388 	trace_xfs_log_recover_item_add(log, trans, item, 0);
4389 	return 0;
4390 }
4391 
4392 /*
4393  * Free up any resources allocated by the transaction
4394  *
4395  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4396  */
4397 STATIC void
4398 xlog_recover_free_trans(
4399 	struct xlog_recover	*trans)
4400 {
4401 	xlog_recover_item_t	*item, *n;
4402 	int			i;
4403 
4404 	hlist_del_init(&trans->r_list);
4405 
4406 	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4407 		/* Free the regions in the item. */
4408 		list_del(&item->ri_list);
4409 		for (i = 0; i < item->ri_cnt; i++)
4410 			kmem_free(item->ri_buf[i].i_addr);
4411 		/* Free the item itself */
4412 		kmem_free(item->ri_buf);
4413 		kmem_free(item);
4414 	}
4415 	/* Free the transaction recover structure */
4416 	kmem_free(trans);
4417 }
4418 
4419 /*
4420  * On error or completion, trans is freed.
4421  */
4422 STATIC int
4423 xlog_recovery_process_trans(
4424 	struct xlog		*log,
4425 	struct xlog_recover	*trans,
4426 	char			*dp,
4427 	unsigned int		len,
4428 	unsigned int		flags,
4429 	int			pass,
4430 	struct list_head	*buffer_list)
4431 {
4432 	int			error = 0;
4433 	bool			freeit = false;
4434 
4435 	/* mask off ophdr transaction container flags */
4436 	flags &= ~XLOG_END_TRANS;
4437 	if (flags & XLOG_WAS_CONT_TRANS)
4438 		flags &= ~XLOG_CONTINUE_TRANS;
4439 
4440 	/*
4441 	 * Callees must not free the trans structure. We'll decide if we need to
4442 	 * free it or not based on the operation being done and it's result.
4443 	 */
4444 	switch (flags) {
4445 	/* expected flag values */
4446 	case 0:
4447 	case XLOG_CONTINUE_TRANS:
4448 		error = xlog_recover_add_to_trans(log, trans, dp, len);
4449 		break;
4450 	case XLOG_WAS_CONT_TRANS:
4451 		error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4452 		break;
4453 	case XLOG_COMMIT_TRANS:
4454 		error = xlog_recover_commit_trans(log, trans, pass,
4455 						  buffer_list);
4456 		/* success or fail, we are now done with this transaction. */
4457 		freeit = true;
4458 		break;
4459 
4460 	/* unexpected flag values */
4461 	case XLOG_UNMOUNT_TRANS:
4462 		/* just skip trans */
4463 		xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
4464 		freeit = true;
4465 		break;
4466 	case XLOG_START_TRANS:
4467 	default:
4468 		xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4469 		ASSERT(0);
4470 		error = -EIO;
4471 		break;
4472 	}
4473 	if (error || freeit)
4474 		xlog_recover_free_trans(trans);
4475 	return error;
4476 }
4477 
4478 /*
4479  * Lookup the transaction recovery structure associated with the ID in the
4480  * current ophdr. If the transaction doesn't exist and the start flag is set in
4481  * the ophdr, then allocate a new transaction for future ID matches to find.
4482  * Either way, return what we found during the lookup - an existing transaction
4483  * or nothing.
4484  */
4485 STATIC struct xlog_recover *
4486 xlog_recover_ophdr_to_trans(
4487 	struct hlist_head	rhash[],
4488 	struct xlog_rec_header	*rhead,
4489 	struct xlog_op_header	*ohead)
4490 {
4491 	struct xlog_recover	*trans;
4492 	xlog_tid_t		tid;
4493 	struct hlist_head	*rhp;
4494 
4495 	tid = be32_to_cpu(ohead->oh_tid);
4496 	rhp = &rhash[XLOG_RHASH(tid)];
4497 	hlist_for_each_entry(trans, rhp, r_list) {
4498 		if (trans->r_log_tid == tid)
4499 			return trans;
4500 	}
4501 
4502 	/*
4503 	 * skip over non-start transaction headers - we could be
4504 	 * processing slack space before the next transaction starts
4505 	 */
4506 	if (!(ohead->oh_flags & XLOG_START_TRANS))
4507 		return NULL;
4508 
4509 	ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4510 
4511 	/*
4512 	 * This is a new transaction so allocate a new recovery container to
4513 	 * hold the recovery ops that will follow.
4514 	 */
4515 	trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
4516 	trans->r_log_tid = tid;
4517 	trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4518 	INIT_LIST_HEAD(&trans->r_itemq);
4519 	INIT_HLIST_NODE(&trans->r_list);
4520 	hlist_add_head(&trans->r_list, rhp);
4521 
4522 	/*
4523 	 * Nothing more to do for this ophdr. Items to be added to this new
4524 	 * transaction will be in subsequent ophdr containers.
4525 	 */
4526 	return NULL;
4527 }
4528 
4529 STATIC int
4530 xlog_recover_process_ophdr(
4531 	struct xlog		*log,
4532 	struct hlist_head	rhash[],
4533 	struct xlog_rec_header	*rhead,
4534 	struct xlog_op_header	*ohead,
4535 	char			*dp,
4536 	char			*end,
4537 	int			pass,
4538 	struct list_head	*buffer_list)
4539 {
4540 	struct xlog_recover	*trans;
4541 	unsigned int		len;
4542 	int			error;
4543 
4544 	/* Do we understand who wrote this op? */
4545 	if (ohead->oh_clientid != XFS_TRANSACTION &&
4546 	    ohead->oh_clientid != XFS_LOG) {
4547 		xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4548 			__func__, ohead->oh_clientid);
4549 		ASSERT(0);
4550 		return -EIO;
4551 	}
4552 
4553 	/*
4554 	 * Check the ophdr contains all the data it is supposed to contain.
4555 	 */
4556 	len = be32_to_cpu(ohead->oh_len);
4557 	if (dp + len > end) {
4558 		xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4559 		WARN_ON(1);
4560 		return -EIO;
4561 	}
4562 
4563 	trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4564 	if (!trans) {
4565 		/* nothing to do, so skip over this ophdr */
4566 		return 0;
4567 	}
4568 
4569 	/*
4570 	 * The recovered buffer queue is drained only once we know that all
4571 	 * recovery items for the current LSN have been processed. This is
4572 	 * required because:
4573 	 *
4574 	 * - Buffer write submission updates the metadata LSN of the buffer.
4575 	 * - Log recovery skips items with a metadata LSN >= the current LSN of
4576 	 *   the recovery item.
4577 	 * - Separate recovery items against the same metadata buffer can share
4578 	 *   a current LSN. I.e., consider that the LSN of a recovery item is
4579 	 *   defined as the starting LSN of the first record in which its
4580 	 *   transaction appears, that a record can hold multiple transactions,
4581 	 *   and/or that a transaction can span multiple records.
4582 	 *
4583 	 * In other words, we are allowed to submit a buffer from log recovery
4584 	 * once per current LSN. Otherwise, we may incorrectly skip recovery
4585 	 * items and cause corruption.
4586 	 *
4587 	 * We don't know up front whether buffers are updated multiple times per
4588 	 * LSN. Therefore, track the current LSN of each commit log record as it
4589 	 * is processed and drain the queue when it changes. Use commit records
4590 	 * because they are ordered correctly by the logging code.
4591 	 */
4592 	if (log->l_recovery_lsn != trans->r_lsn &&
4593 	    ohead->oh_flags & XLOG_COMMIT_TRANS) {
4594 		error = xfs_buf_delwri_submit(buffer_list);
4595 		if (error)
4596 			return error;
4597 		log->l_recovery_lsn = trans->r_lsn;
4598 	}
4599 
4600 	return xlog_recovery_process_trans(log, trans, dp, len,
4601 					   ohead->oh_flags, pass, buffer_list);
4602 }
4603 
4604 /*
4605  * There are two valid states of the r_state field.  0 indicates that the
4606  * transaction structure is in a normal state.  We have either seen the
4607  * start of the transaction or the last operation we added was not a partial
4608  * operation.  If the last operation we added to the transaction was a
4609  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4610  *
4611  * NOTE: skip LRs with 0 data length.
4612  */
4613 STATIC int
4614 xlog_recover_process_data(
4615 	struct xlog		*log,
4616 	struct hlist_head	rhash[],
4617 	struct xlog_rec_header	*rhead,
4618 	char			*dp,
4619 	int			pass,
4620 	struct list_head	*buffer_list)
4621 {
4622 	struct xlog_op_header	*ohead;
4623 	char			*end;
4624 	int			num_logops;
4625 	int			error;
4626 
4627 	end = dp + be32_to_cpu(rhead->h_len);
4628 	num_logops = be32_to_cpu(rhead->h_num_logops);
4629 
4630 	/* check the log format matches our own - else we can't recover */
4631 	if (xlog_header_check_recover(log->l_mp, rhead))
4632 		return -EIO;
4633 
4634 	trace_xfs_log_recover_record(log, rhead, pass);
4635 	while ((dp < end) && num_logops) {
4636 
4637 		ohead = (struct xlog_op_header *)dp;
4638 		dp += sizeof(*ohead);
4639 		ASSERT(dp <= end);
4640 
4641 		/* errors will abort recovery */
4642 		error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4643 						   dp, end, pass, buffer_list);
4644 		if (error)
4645 			return error;
4646 
4647 		dp += be32_to_cpu(ohead->oh_len);
4648 		num_logops--;
4649 	}
4650 	return 0;
4651 }
4652 
4653 /* Recover the EFI if necessary. */
4654 STATIC int
4655 xlog_recover_process_efi(
4656 	struct xfs_mount		*mp,
4657 	struct xfs_ail			*ailp,
4658 	struct xfs_log_item		*lip)
4659 {
4660 	struct xfs_efi_log_item		*efip;
4661 	int				error;
4662 
4663 	/*
4664 	 * Skip EFIs that we've already processed.
4665 	 */
4666 	efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4667 	if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4668 		return 0;
4669 
4670 	spin_unlock(&ailp->ail_lock);
4671 	error = xfs_efi_recover(mp, efip);
4672 	spin_lock(&ailp->ail_lock);
4673 
4674 	return error;
4675 }
4676 
4677 /* Release the EFI since we're cancelling everything. */
4678 STATIC void
4679 xlog_recover_cancel_efi(
4680 	struct xfs_mount		*mp,
4681 	struct xfs_ail			*ailp,
4682 	struct xfs_log_item		*lip)
4683 {
4684 	struct xfs_efi_log_item		*efip;
4685 
4686 	efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4687 
4688 	spin_unlock(&ailp->ail_lock);
4689 	xfs_efi_release(efip);
4690 	spin_lock(&ailp->ail_lock);
4691 }
4692 
4693 /* Recover the RUI if necessary. */
4694 STATIC int
4695 xlog_recover_process_rui(
4696 	struct xfs_mount		*mp,
4697 	struct xfs_ail			*ailp,
4698 	struct xfs_log_item		*lip)
4699 {
4700 	struct xfs_rui_log_item		*ruip;
4701 	int				error;
4702 
4703 	/*
4704 	 * Skip RUIs that we've already processed.
4705 	 */
4706 	ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4707 	if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4708 		return 0;
4709 
4710 	spin_unlock(&ailp->ail_lock);
4711 	error = xfs_rui_recover(mp, ruip);
4712 	spin_lock(&ailp->ail_lock);
4713 
4714 	return error;
4715 }
4716 
4717 /* Release the RUI since we're cancelling everything. */
4718 STATIC void
4719 xlog_recover_cancel_rui(
4720 	struct xfs_mount		*mp,
4721 	struct xfs_ail			*ailp,
4722 	struct xfs_log_item		*lip)
4723 {
4724 	struct xfs_rui_log_item		*ruip;
4725 
4726 	ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4727 
4728 	spin_unlock(&ailp->ail_lock);
4729 	xfs_rui_release(ruip);
4730 	spin_lock(&ailp->ail_lock);
4731 }
4732 
4733 /* Recover the CUI if necessary. */
4734 STATIC int
4735 xlog_recover_process_cui(
4736 	struct xfs_mount		*mp,
4737 	struct xfs_ail			*ailp,
4738 	struct xfs_log_item		*lip,
4739 	struct xfs_defer_ops		*dfops)
4740 {
4741 	struct xfs_cui_log_item		*cuip;
4742 	int				error;
4743 
4744 	/*
4745 	 * Skip CUIs that we've already processed.
4746 	 */
4747 	cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4748 	if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags))
4749 		return 0;
4750 
4751 	spin_unlock(&ailp->ail_lock);
4752 	error = xfs_cui_recover(mp, cuip, dfops);
4753 	spin_lock(&ailp->ail_lock);
4754 
4755 	return error;
4756 }
4757 
4758 /* Release the CUI since we're cancelling everything. */
4759 STATIC void
4760 xlog_recover_cancel_cui(
4761 	struct xfs_mount		*mp,
4762 	struct xfs_ail			*ailp,
4763 	struct xfs_log_item		*lip)
4764 {
4765 	struct xfs_cui_log_item		*cuip;
4766 
4767 	cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4768 
4769 	spin_unlock(&ailp->ail_lock);
4770 	xfs_cui_release(cuip);
4771 	spin_lock(&ailp->ail_lock);
4772 }
4773 
4774 /* Recover the BUI if necessary. */
4775 STATIC int
4776 xlog_recover_process_bui(
4777 	struct xfs_mount		*mp,
4778 	struct xfs_ail			*ailp,
4779 	struct xfs_log_item		*lip,
4780 	struct xfs_defer_ops		*dfops)
4781 {
4782 	struct xfs_bui_log_item		*buip;
4783 	int				error;
4784 
4785 	/*
4786 	 * Skip BUIs that we've already processed.
4787 	 */
4788 	buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4789 	if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags))
4790 		return 0;
4791 
4792 	spin_unlock(&ailp->ail_lock);
4793 	error = xfs_bui_recover(mp, buip, dfops);
4794 	spin_lock(&ailp->ail_lock);
4795 
4796 	return error;
4797 }
4798 
4799 /* Release the BUI since we're cancelling everything. */
4800 STATIC void
4801 xlog_recover_cancel_bui(
4802 	struct xfs_mount		*mp,
4803 	struct xfs_ail			*ailp,
4804 	struct xfs_log_item		*lip)
4805 {
4806 	struct xfs_bui_log_item		*buip;
4807 
4808 	buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4809 
4810 	spin_unlock(&ailp->ail_lock);
4811 	xfs_bui_release(buip);
4812 	spin_lock(&ailp->ail_lock);
4813 }
4814 
4815 /* Is this log item a deferred action intent? */
4816 static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4817 {
4818 	switch (lip->li_type) {
4819 	case XFS_LI_EFI:
4820 	case XFS_LI_RUI:
4821 	case XFS_LI_CUI:
4822 	case XFS_LI_BUI:
4823 		return true;
4824 	default:
4825 		return false;
4826 	}
4827 }
4828 
4829 /* Take all the collected deferred ops and finish them in order. */
4830 static int
4831 xlog_finish_defer_ops(
4832 	struct xfs_mount	*mp,
4833 	struct xfs_defer_ops	*dfops)
4834 {
4835 	struct xfs_trans	*tp;
4836 	int64_t			freeblks;
4837 	uint			resblks;
4838 	int			error;
4839 
4840 	/*
4841 	 * We're finishing the defer_ops that accumulated as a result of
4842 	 * recovering unfinished intent items during log recovery.  We
4843 	 * reserve an itruncate transaction because it is the largest
4844 	 * permanent transaction type.  Since we're the only user of the fs
4845 	 * right now, take 93% (15/16) of the available free blocks.  Use
4846 	 * weird math to avoid a 64-bit division.
4847 	 */
4848 	freeblks = percpu_counter_sum(&mp->m_fdblocks);
4849 	if (freeblks <= 0)
4850 		return -ENOSPC;
4851 	resblks = min_t(int64_t, UINT_MAX, freeblks);
4852 	resblks = (resblks * 15) >> 4;
4853 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks,
4854 			0, XFS_TRANS_RESERVE, &tp);
4855 	if (error)
4856 		return error;
4857 
4858 	error = xfs_defer_finish(&tp, dfops);
4859 	if (error)
4860 		goto out_cancel;
4861 
4862 	return xfs_trans_commit(tp);
4863 
4864 out_cancel:
4865 	xfs_trans_cancel(tp);
4866 	return error;
4867 }
4868 
4869 /*
4870  * When this is called, all of the log intent items which did not have
4871  * corresponding log done items should be in the AIL.  What we do now
4872  * is update the data structures associated with each one.
4873  *
4874  * Since we process the log intent items in normal transactions, they
4875  * will be removed at some point after the commit.  This prevents us
4876  * from just walking down the list processing each one.  We'll use a
4877  * flag in the intent item to skip those that we've already processed
4878  * and use the AIL iteration mechanism's generation count to try to
4879  * speed this up at least a bit.
4880  *
4881  * When we start, we know that the intents are the only things in the
4882  * AIL.  As we process them, however, other items are added to the
4883  * AIL.
4884  */
4885 STATIC int
4886 xlog_recover_process_intents(
4887 	struct xlog		*log)
4888 {
4889 	struct xfs_defer_ops	dfops;
4890 	struct xfs_ail_cursor	cur;
4891 	struct xfs_log_item	*lip;
4892 	struct xfs_ail		*ailp;
4893 	xfs_fsblock_t		firstfsb;
4894 	int			error = 0;
4895 #if defined(DEBUG) || defined(XFS_WARN)
4896 	xfs_lsn_t		last_lsn;
4897 #endif
4898 
4899 	ailp = log->l_ailp;
4900 	spin_lock(&ailp->ail_lock);
4901 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4902 #if defined(DEBUG) || defined(XFS_WARN)
4903 	last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
4904 #endif
4905 	xfs_defer_init(&dfops, &firstfsb);
4906 	while (lip != NULL) {
4907 		/*
4908 		 * We're done when we see something other than an intent.
4909 		 * There should be no intents left in the AIL now.
4910 		 */
4911 		if (!xlog_item_is_intent(lip)) {
4912 #ifdef DEBUG
4913 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4914 				ASSERT(!xlog_item_is_intent(lip));
4915 #endif
4916 			break;
4917 		}
4918 
4919 		/*
4920 		 * We should never see a redo item with a LSN higher than
4921 		 * the last transaction we found in the log at the start
4922 		 * of recovery.
4923 		 */
4924 		ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
4925 
4926 		/*
4927 		 * NOTE: If your intent processing routine can create more
4928 		 * deferred ops, you /must/ attach them to the dfops in this
4929 		 * routine or else those subsequent intents will get
4930 		 * replayed in the wrong order!
4931 		 */
4932 		switch (lip->li_type) {
4933 		case XFS_LI_EFI:
4934 			error = xlog_recover_process_efi(log->l_mp, ailp, lip);
4935 			break;
4936 		case XFS_LI_RUI:
4937 			error = xlog_recover_process_rui(log->l_mp, ailp, lip);
4938 			break;
4939 		case XFS_LI_CUI:
4940 			error = xlog_recover_process_cui(log->l_mp, ailp, lip,
4941 					&dfops);
4942 			break;
4943 		case XFS_LI_BUI:
4944 			error = xlog_recover_process_bui(log->l_mp, ailp, lip,
4945 					&dfops);
4946 			break;
4947 		}
4948 		if (error)
4949 			goto out;
4950 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
4951 	}
4952 out:
4953 	xfs_trans_ail_cursor_done(&cur);
4954 	spin_unlock(&ailp->ail_lock);
4955 	if (error)
4956 		xfs_defer_cancel(&dfops);
4957 	else
4958 		error = xlog_finish_defer_ops(log->l_mp, &dfops);
4959 
4960 	return error;
4961 }
4962 
4963 /*
4964  * A cancel occurs when the mount has failed and we're bailing out.
4965  * Release all pending log intent items so they don't pin the AIL.
4966  */
4967 STATIC int
4968 xlog_recover_cancel_intents(
4969 	struct xlog		*log)
4970 {
4971 	struct xfs_log_item	*lip;
4972 	int			error = 0;
4973 	struct xfs_ail_cursor	cur;
4974 	struct xfs_ail		*ailp;
4975 
4976 	ailp = log->l_ailp;
4977 	spin_lock(&ailp->ail_lock);
4978 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4979 	while (lip != NULL) {
4980 		/*
4981 		 * We're done when we see something other than an intent.
4982 		 * There should be no intents left in the AIL now.
4983 		 */
4984 		if (!xlog_item_is_intent(lip)) {
4985 #ifdef DEBUG
4986 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4987 				ASSERT(!xlog_item_is_intent(lip));
4988 #endif
4989 			break;
4990 		}
4991 
4992 		switch (lip->li_type) {
4993 		case XFS_LI_EFI:
4994 			xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4995 			break;
4996 		case XFS_LI_RUI:
4997 			xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4998 			break;
4999 		case XFS_LI_CUI:
5000 			xlog_recover_cancel_cui(log->l_mp, ailp, lip);
5001 			break;
5002 		case XFS_LI_BUI:
5003 			xlog_recover_cancel_bui(log->l_mp, ailp, lip);
5004 			break;
5005 		}
5006 
5007 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
5008 	}
5009 
5010 	xfs_trans_ail_cursor_done(&cur);
5011 	spin_unlock(&ailp->ail_lock);
5012 	return error;
5013 }
5014 
5015 /*
5016  * This routine performs a transaction to null out a bad inode pointer
5017  * in an agi unlinked inode hash bucket.
5018  */
5019 STATIC void
5020 xlog_recover_clear_agi_bucket(
5021 	xfs_mount_t	*mp,
5022 	xfs_agnumber_t	agno,
5023 	int		bucket)
5024 {
5025 	xfs_trans_t	*tp;
5026 	xfs_agi_t	*agi;
5027 	xfs_buf_t	*agibp;
5028 	int		offset;
5029 	int		error;
5030 
5031 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
5032 	if (error)
5033 		goto out_error;
5034 
5035 	error = xfs_read_agi(mp, tp, agno, &agibp);
5036 	if (error)
5037 		goto out_abort;
5038 
5039 	agi = XFS_BUF_TO_AGI(agibp);
5040 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
5041 	offset = offsetof(xfs_agi_t, agi_unlinked) +
5042 		 (sizeof(xfs_agino_t) * bucket);
5043 	xfs_trans_log_buf(tp, agibp, offset,
5044 			  (offset + sizeof(xfs_agino_t) - 1));
5045 
5046 	error = xfs_trans_commit(tp);
5047 	if (error)
5048 		goto out_error;
5049 	return;
5050 
5051 out_abort:
5052 	xfs_trans_cancel(tp);
5053 out_error:
5054 	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
5055 	return;
5056 }
5057 
5058 STATIC xfs_agino_t
5059 xlog_recover_process_one_iunlink(
5060 	struct xfs_mount		*mp,
5061 	xfs_agnumber_t			agno,
5062 	xfs_agino_t			agino,
5063 	int				bucket)
5064 {
5065 	struct xfs_buf			*ibp;
5066 	struct xfs_dinode		*dip;
5067 	struct xfs_inode		*ip;
5068 	xfs_ino_t			ino;
5069 	int				error;
5070 
5071 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
5072 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
5073 	if (error)
5074 		goto fail;
5075 
5076 	/*
5077 	 * Get the on disk inode to find the next inode in the bucket.
5078 	 */
5079 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
5080 	if (error)
5081 		goto fail_iput;
5082 
5083 	xfs_iflags_clear(ip, XFS_IRECOVERY);
5084 	ASSERT(VFS_I(ip)->i_nlink == 0);
5085 	ASSERT(VFS_I(ip)->i_mode != 0);
5086 
5087 	/* setup for the next pass */
5088 	agino = be32_to_cpu(dip->di_next_unlinked);
5089 	xfs_buf_relse(ibp);
5090 
5091 	/*
5092 	 * Prevent any DMAPI event from being sent when the reference on
5093 	 * the inode is dropped.
5094 	 */
5095 	ip->i_d.di_dmevmask = 0;
5096 
5097 	IRELE(ip);
5098 	return agino;
5099 
5100  fail_iput:
5101 	IRELE(ip);
5102  fail:
5103 	/*
5104 	 * We can't read in the inode this bucket points to, or this inode
5105 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
5106 	 * some inodes and space, but at least we won't hang.
5107 	 *
5108 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
5109 	 * clear the inode pointer in the bucket.
5110 	 */
5111 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
5112 	return NULLAGINO;
5113 }
5114 
5115 /*
5116  * xlog_iunlink_recover
5117  *
5118  * This is called during recovery to process any inodes which
5119  * we unlinked but not freed when the system crashed.  These
5120  * inodes will be on the lists in the AGI blocks.  What we do
5121  * here is scan all the AGIs and fully truncate and free any
5122  * inodes found on the lists.  Each inode is removed from the
5123  * lists when it has been fully truncated and is freed.  The
5124  * freeing of the inode and its removal from the list must be
5125  * atomic.
5126  */
5127 STATIC void
5128 xlog_recover_process_iunlinks(
5129 	struct xlog	*log)
5130 {
5131 	xfs_mount_t	*mp;
5132 	xfs_agnumber_t	agno;
5133 	xfs_agi_t	*agi;
5134 	xfs_buf_t	*agibp;
5135 	xfs_agino_t	agino;
5136 	int		bucket;
5137 	int		error;
5138 
5139 	mp = log->l_mp;
5140 
5141 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5142 		/*
5143 		 * Find the agi for this ag.
5144 		 */
5145 		error = xfs_read_agi(mp, NULL, agno, &agibp);
5146 		if (error) {
5147 			/*
5148 			 * AGI is b0rked. Don't process it.
5149 			 *
5150 			 * We should probably mark the filesystem as corrupt
5151 			 * after we've recovered all the ag's we can....
5152 			 */
5153 			continue;
5154 		}
5155 		/*
5156 		 * Unlock the buffer so that it can be acquired in the normal
5157 		 * course of the transaction to truncate and free each inode.
5158 		 * Because we are not racing with anyone else here for the AGI
5159 		 * buffer, we don't even need to hold it locked to read the
5160 		 * initial unlinked bucket entries out of the buffer. We keep
5161 		 * buffer reference though, so that it stays pinned in memory
5162 		 * while we need the buffer.
5163 		 */
5164 		agi = XFS_BUF_TO_AGI(agibp);
5165 		xfs_buf_unlock(agibp);
5166 
5167 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
5168 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
5169 			while (agino != NULLAGINO) {
5170 				agino = xlog_recover_process_one_iunlink(mp,
5171 							agno, agino, bucket);
5172 			}
5173 		}
5174 		xfs_buf_rele(agibp);
5175 	}
5176 }
5177 
5178 STATIC int
5179 xlog_unpack_data(
5180 	struct xlog_rec_header	*rhead,
5181 	char			*dp,
5182 	struct xlog		*log)
5183 {
5184 	int			i, j, k;
5185 
5186 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
5187 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
5188 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
5189 		dp += BBSIZE;
5190 	}
5191 
5192 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5193 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
5194 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
5195 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5196 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5197 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
5198 			dp += BBSIZE;
5199 		}
5200 	}
5201 
5202 	return 0;
5203 }
5204 
5205 /*
5206  * CRC check, unpack and process a log record.
5207  */
5208 STATIC int
5209 xlog_recover_process(
5210 	struct xlog		*log,
5211 	struct hlist_head	rhash[],
5212 	struct xlog_rec_header	*rhead,
5213 	char			*dp,
5214 	int			pass,
5215 	struct list_head	*buffer_list)
5216 {
5217 	int			error;
5218 	__le32			old_crc = rhead->h_crc;
5219 	__le32			crc;
5220 
5221 
5222 	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
5223 
5224 	/*
5225 	 * Nothing else to do if this is a CRC verification pass. Just return
5226 	 * if this a record with a non-zero crc. Unfortunately, mkfs always
5227 	 * sets old_crc to 0 so we must consider this valid even on v5 supers.
5228 	 * Otherwise, return EFSBADCRC on failure so the callers up the stack
5229 	 * know precisely what failed.
5230 	 */
5231 	if (pass == XLOG_RECOVER_CRCPASS) {
5232 		if (old_crc && crc != old_crc)
5233 			return -EFSBADCRC;
5234 		return 0;
5235 	}
5236 
5237 	/*
5238 	 * We're in the normal recovery path. Issue a warning if and only if the
5239 	 * CRC in the header is non-zero. This is an advisory warning and the
5240 	 * zero CRC check prevents warnings from being emitted when upgrading
5241 	 * the kernel from one that does not add CRCs by default.
5242 	 */
5243 	if (crc != old_crc) {
5244 		if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
5245 			xfs_alert(log->l_mp,
5246 		"log record CRC mismatch: found 0x%x, expected 0x%x.",
5247 					le32_to_cpu(old_crc),
5248 					le32_to_cpu(crc));
5249 			xfs_hex_dump(dp, 32);
5250 		}
5251 
5252 		/*
5253 		 * If the filesystem is CRC enabled, this mismatch becomes a
5254 		 * fatal log corruption failure.
5255 		 */
5256 		if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
5257 			return -EFSCORRUPTED;
5258 	}
5259 
5260 	error = xlog_unpack_data(rhead, dp, log);
5261 	if (error)
5262 		return error;
5263 
5264 	return xlog_recover_process_data(log, rhash, rhead, dp, pass,
5265 					 buffer_list);
5266 }
5267 
5268 STATIC int
5269 xlog_valid_rec_header(
5270 	struct xlog		*log,
5271 	struct xlog_rec_header	*rhead,
5272 	xfs_daddr_t		blkno)
5273 {
5274 	int			hlen;
5275 
5276 	if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
5277 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
5278 				XFS_ERRLEVEL_LOW, log->l_mp);
5279 		return -EFSCORRUPTED;
5280 	}
5281 	if (unlikely(
5282 	    (!rhead->h_version ||
5283 	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
5284 		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
5285 			__func__, be32_to_cpu(rhead->h_version));
5286 		return -EIO;
5287 	}
5288 
5289 	/* LR body must have data or it wouldn't have been written */
5290 	hlen = be32_to_cpu(rhead->h_len);
5291 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
5292 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
5293 				XFS_ERRLEVEL_LOW, log->l_mp);
5294 		return -EFSCORRUPTED;
5295 	}
5296 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
5297 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
5298 				XFS_ERRLEVEL_LOW, log->l_mp);
5299 		return -EFSCORRUPTED;
5300 	}
5301 	return 0;
5302 }
5303 
5304 /*
5305  * Read the log from tail to head and process the log records found.
5306  * Handle the two cases where the tail and head are in the same cycle
5307  * and where the active portion of the log wraps around the end of
5308  * the physical log separately.  The pass parameter is passed through
5309  * to the routines called to process the data and is not looked at
5310  * here.
5311  */
5312 STATIC int
5313 xlog_do_recovery_pass(
5314 	struct xlog		*log,
5315 	xfs_daddr_t		head_blk,
5316 	xfs_daddr_t		tail_blk,
5317 	int			pass,
5318 	xfs_daddr_t		*first_bad)	/* out: first bad log rec */
5319 {
5320 	xlog_rec_header_t	*rhead;
5321 	xfs_daddr_t		blk_no, rblk_no;
5322 	xfs_daddr_t		rhead_blk;
5323 	char			*offset;
5324 	xfs_buf_t		*hbp, *dbp;
5325 	int			error = 0, h_size, h_len;
5326 	int			error2 = 0;
5327 	int			bblks, split_bblks;
5328 	int			hblks, split_hblks, wrapped_hblks;
5329 	int			i;
5330 	struct hlist_head	rhash[XLOG_RHASH_SIZE];
5331 	LIST_HEAD		(buffer_list);
5332 
5333 	ASSERT(head_blk != tail_blk);
5334 	blk_no = rhead_blk = tail_blk;
5335 
5336 	for (i = 0; i < XLOG_RHASH_SIZE; i++)
5337 		INIT_HLIST_HEAD(&rhash[i]);
5338 
5339 	/*
5340 	 * Read the header of the tail block and get the iclog buffer size from
5341 	 * h_size.  Use this to tell how many sectors make up the log header.
5342 	 */
5343 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5344 		/*
5345 		 * When using variable length iclogs, read first sector of
5346 		 * iclog header and extract the header size from it.  Get a
5347 		 * new hbp that is the correct size.
5348 		 */
5349 		hbp = xlog_get_bp(log, 1);
5350 		if (!hbp)
5351 			return -ENOMEM;
5352 
5353 		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
5354 		if (error)
5355 			goto bread_err1;
5356 
5357 		rhead = (xlog_rec_header_t *)offset;
5358 		error = xlog_valid_rec_header(log, rhead, tail_blk);
5359 		if (error)
5360 			goto bread_err1;
5361 
5362 		/*
5363 		 * xfsprogs has a bug where record length is based on lsunit but
5364 		 * h_size (iclog size) is hardcoded to 32k. Now that we
5365 		 * unconditionally CRC verify the unmount record, this means the
5366 		 * log buffer can be too small for the record and cause an
5367 		 * overrun.
5368 		 *
5369 		 * Detect this condition here. Use lsunit for the buffer size as
5370 		 * long as this looks like the mkfs case. Otherwise, return an
5371 		 * error to avoid a buffer overrun.
5372 		 */
5373 		h_size = be32_to_cpu(rhead->h_size);
5374 		h_len = be32_to_cpu(rhead->h_len);
5375 		if (h_len > h_size) {
5376 			if (h_len <= log->l_mp->m_logbsize &&
5377 			    be32_to_cpu(rhead->h_num_logops) == 1) {
5378 				xfs_warn(log->l_mp,
5379 		"invalid iclog size (%d bytes), using lsunit (%d bytes)",
5380 					 h_size, log->l_mp->m_logbsize);
5381 				h_size = log->l_mp->m_logbsize;
5382 			} else
5383 				return -EFSCORRUPTED;
5384 		}
5385 
5386 		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
5387 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
5388 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
5389 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
5390 				hblks++;
5391 			xlog_put_bp(hbp);
5392 			hbp = xlog_get_bp(log, hblks);
5393 		} else {
5394 			hblks = 1;
5395 		}
5396 	} else {
5397 		ASSERT(log->l_sectBBsize == 1);
5398 		hblks = 1;
5399 		hbp = xlog_get_bp(log, 1);
5400 		h_size = XLOG_BIG_RECORD_BSIZE;
5401 	}
5402 
5403 	if (!hbp)
5404 		return -ENOMEM;
5405 	dbp = xlog_get_bp(log, BTOBB(h_size));
5406 	if (!dbp) {
5407 		xlog_put_bp(hbp);
5408 		return -ENOMEM;
5409 	}
5410 
5411 	memset(rhash, 0, sizeof(rhash));
5412 	if (tail_blk > head_blk) {
5413 		/*
5414 		 * Perform recovery around the end of the physical log.
5415 		 * When the head is not on the same cycle number as the tail,
5416 		 * we can't do a sequential recovery.
5417 		 */
5418 		while (blk_no < log->l_logBBsize) {
5419 			/*
5420 			 * Check for header wrapping around physical end-of-log
5421 			 */
5422 			offset = hbp->b_addr;
5423 			split_hblks = 0;
5424 			wrapped_hblks = 0;
5425 			if (blk_no + hblks <= log->l_logBBsize) {
5426 				/* Read header in one read */
5427 				error = xlog_bread(log, blk_no, hblks, hbp,
5428 						   &offset);
5429 				if (error)
5430 					goto bread_err2;
5431 			} else {
5432 				/* This LR is split across physical log end */
5433 				if (blk_no != log->l_logBBsize) {
5434 					/* some data before physical log end */
5435 					ASSERT(blk_no <= INT_MAX);
5436 					split_hblks = log->l_logBBsize - (int)blk_no;
5437 					ASSERT(split_hblks > 0);
5438 					error = xlog_bread(log, blk_no,
5439 							   split_hblks, hbp,
5440 							   &offset);
5441 					if (error)
5442 						goto bread_err2;
5443 				}
5444 
5445 				/*
5446 				 * Note: this black magic still works with
5447 				 * large sector sizes (non-512) only because:
5448 				 * - we increased the buffer size originally
5449 				 *   by 1 sector giving us enough extra space
5450 				 *   for the second read;
5451 				 * - the log start is guaranteed to be sector
5452 				 *   aligned;
5453 				 * - we read the log end (LR header start)
5454 				 *   _first_, then the log start (LR header end)
5455 				 *   - order is important.
5456 				 */
5457 				wrapped_hblks = hblks - split_hblks;
5458 				error = xlog_bread_offset(log, 0,
5459 						wrapped_hblks, hbp,
5460 						offset + BBTOB(split_hblks));
5461 				if (error)
5462 					goto bread_err2;
5463 			}
5464 			rhead = (xlog_rec_header_t *)offset;
5465 			error = xlog_valid_rec_header(log, rhead,
5466 						split_hblks ? blk_no : 0);
5467 			if (error)
5468 				goto bread_err2;
5469 
5470 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5471 			blk_no += hblks;
5472 
5473 			/*
5474 			 * Read the log record data in multiple reads if it
5475 			 * wraps around the end of the log. Note that if the
5476 			 * header already wrapped, blk_no could point past the
5477 			 * end of the log. The record data is contiguous in
5478 			 * that case.
5479 			 */
5480 			if (blk_no + bblks <= log->l_logBBsize ||
5481 			    blk_no >= log->l_logBBsize) {
5482 				rblk_no = xlog_wrap_logbno(log, blk_no);
5483 				error = xlog_bread(log, rblk_no, bblks, dbp,
5484 						   &offset);
5485 				if (error)
5486 					goto bread_err2;
5487 			} else {
5488 				/* This log record is split across the
5489 				 * physical end of log */
5490 				offset = dbp->b_addr;
5491 				split_bblks = 0;
5492 				if (blk_no != log->l_logBBsize) {
5493 					/* some data is before the physical
5494 					 * end of log */
5495 					ASSERT(!wrapped_hblks);
5496 					ASSERT(blk_no <= INT_MAX);
5497 					split_bblks =
5498 						log->l_logBBsize - (int)blk_no;
5499 					ASSERT(split_bblks > 0);
5500 					error = xlog_bread(log, blk_no,
5501 							split_bblks, dbp,
5502 							&offset);
5503 					if (error)
5504 						goto bread_err2;
5505 				}
5506 
5507 				/*
5508 				 * Note: this black magic still works with
5509 				 * large sector sizes (non-512) only because:
5510 				 * - we increased the buffer size originally
5511 				 *   by 1 sector giving us enough extra space
5512 				 *   for the second read;
5513 				 * - the log start is guaranteed to be sector
5514 				 *   aligned;
5515 				 * - we read the log end (LR header start)
5516 				 *   _first_, then the log start (LR header end)
5517 				 *   - order is important.
5518 				 */
5519 				error = xlog_bread_offset(log, 0,
5520 						bblks - split_bblks, dbp,
5521 						offset + BBTOB(split_bblks));
5522 				if (error)
5523 					goto bread_err2;
5524 			}
5525 
5526 			error = xlog_recover_process(log, rhash, rhead, offset,
5527 						     pass, &buffer_list);
5528 			if (error)
5529 				goto bread_err2;
5530 
5531 			blk_no += bblks;
5532 			rhead_blk = blk_no;
5533 		}
5534 
5535 		ASSERT(blk_no >= log->l_logBBsize);
5536 		blk_no -= log->l_logBBsize;
5537 		rhead_blk = blk_no;
5538 	}
5539 
5540 	/* read first part of physical log */
5541 	while (blk_no < head_blk) {
5542 		error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5543 		if (error)
5544 			goto bread_err2;
5545 
5546 		rhead = (xlog_rec_header_t *)offset;
5547 		error = xlog_valid_rec_header(log, rhead, blk_no);
5548 		if (error)
5549 			goto bread_err2;
5550 
5551 		/* blocks in data section */
5552 		bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5553 		error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5554 				   &offset);
5555 		if (error)
5556 			goto bread_err2;
5557 
5558 		error = xlog_recover_process(log, rhash, rhead, offset, pass,
5559 					     &buffer_list);
5560 		if (error)
5561 			goto bread_err2;
5562 
5563 		blk_no += bblks + hblks;
5564 		rhead_blk = blk_no;
5565 	}
5566 
5567  bread_err2:
5568 	xlog_put_bp(dbp);
5569  bread_err1:
5570 	xlog_put_bp(hbp);
5571 
5572 	/*
5573 	 * Submit buffers that have been added from the last record processed,
5574 	 * regardless of error status.
5575 	 */
5576 	if (!list_empty(&buffer_list))
5577 		error2 = xfs_buf_delwri_submit(&buffer_list);
5578 
5579 	if (error && first_bad)
5580 		*first_bad = rhead_blk;
5581 
5582 	/*
5583 	 * Transactions are freed at commit time but transactions without commit
5584 	 * records on disk are never committed. Free any that may be left in the
5585 	 * hash table.
5586 	 */
5587 	for (i = 0; i < XLOG_RHASH_SIZE; i++) {
5588 		struct hlist_node	*tmp;
5589 		struct xlog_recover	*trans;
5590 
5591 		hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
5592 			xlog_recover_free_trans(trans);
5593 	}
5594 
5595 	return error ? error : error2;
5596 }
5597 
5598 /*
5599  * Do the recovery of the log.  We actually do this in two phases.
5600  * The two passes are necessary in order to implement the function
5601  * of cancelling a record written into the log.  The first pass
5602  * determines those things which have been cancelled, and the
5603  * second pass replays log items normally except for those which
5604  * have been cancelled.  The handling of the replay and cancellations
5605  * takes place in the log item type specific routines.
5606  *
5607  * The table of items which have cancel records in the log is allocated
5608  * and freed at this level, since only here do we know when all of
5609  * the log recovery has been completed.
5610  */
5611 STATIC int
5612 xlog_do_log_recovery(
5613 	struct xlog	*log,
5614 	xfs_daddr_t	head_blk,
5615 	xfs_daddr_t	tail_blk)
5616 {
5617 	int		error, i;
5618 
5619 	ASSERT(head_blk != tail_blk);
5620 
5621 	/*
5622 	 * First do a pass to find all of the cancelled buf log items.
5623 	 * Store them in the buf_cancel_table for use in the second pass.
5624 	 */
5625 	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5626 						 sizeof(struct list_head),
5627 						 KM_SLEEP);
5628 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5629 		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5630 
5631 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5632 				      XLOG_RECOVER_PASS1, NULL);
5633 	if (error != 0) {
5634 		kmem_free(log->l_buf_cancel_table);
5635 		log->l_buf_cancel_table = NULL;
5636 		return error;
5637 	}
5638 	/*
5639 	 * Then do a second pass to actually recover the items in the log.
5640 	 * When it is complete free the table of buf cancel items.
5641 	 */
5642 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5643 				      XLOG_RECOVER_PASS2, NULL);
5644 #ifdef DEBUG
5645 	if (!error) {
5646 		int	i;
5647 
5648 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5649 			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
5650 	}
5651 #endif	/* DEBUG */
5652 
5653 	kmem_free(log->l_buf_cancel_table);
5654 	log->l_buf_cancel_table = NULL;
5655 
5656 	return error;
5657 }
5658 
5659 /*
5660  * Do the actual recovery
5661  */
5662 STATIC int
5663 xlog_do_recover(
5664 	struct xlog	*log,
5665 	xfs_daddr_t	head_blk,
5666 	xfs_daddr_t	tail_blk)
5667 {
5668 	struct xfs_mount *mp = log->l_mp;
5669 	int		error;
5670 	xfs_buf_t	*bp;
5671 	xfs_sb_t	*sbp;
5672 
5673 	trace_xfs_log_recover(log, head_blk, tail_blk);
5674 
5675 	/*
5676 	 * First replay the images in the log.
5677 	 */
5678 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
5679 	if (error)
5680 		return error;
5681 
5682 	/*
5683 	 * If IO errors happened during recovery, bail out.
5684 	 */
5685 	if (XFS_FORCED_SHUTDOWN(mp)) {
5686 		return -EIO;
5687 	}
5688 
5689 	/*
5690 	 * We now update the tail_lsn since much of the recovery has completed
5691 	 * and there may be space available to use.  If there were no extent
5692 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
5693 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
5694 	 * lsn of the last known good LR on disk.  If there are extent frees
5695 	 * or iunlinks they will have some entries in the AIL; so we look at
5696 	 * the AIL to determine how to set the tail_lsn.
5697 	 */
5698 	xlog_assign_tail_lsn(mp);
5699 
5700 	/*
5701 	 * Now that we've finished replaying all buffer and inode
5702 	 * updates, re-read in the superblock and reverify it.
5703 	 */
5704 	bp = xfs_getsb(mp, 0);
5705 	bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
5706 	ASSERT(!(bp->b_flags & XBF_WRITE));
5707 	bp->b_flags |= XBF_READ;
5708 	bp->b_ops = &xfs_sb_buf_ops;
5709 
5710 	error = xfs_buf_submit_wait(bp);
5711 	if (error) {
5712 		if (!XFS_FORCED_SHUTDOWN(mp)) {
5713 			xfs_buf_ioerror_alert(bp, __func__);
5714 			ASSERT(0);
5715 		}
5716 		xfs_buf_relse(bp);
5717 		return error;
5718 	}
5719 
5720 	/* Convert superblock from on-disk format */
5721 	sbp = &mp->m_sb;
5722 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
5723 	xfs_buf_relse(bp);
5724 
5725 	/* re-initialise in-core superblock and geometry structures */
5726 	xfs_reinit_percpu_counters(mp);
5727 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5728 	if (error) {
5729 		xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5730 		return error;
5731 	}
5732 	mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5733 
5734 	xlog_recover_check_summary(log);
5735 
5736 	/* Normal transactions can now occur */
5737 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5738 	return 0;
5739 }
5740 
5741 /*
5742  * Perform recovery and re-initialize some log variables in xlog_find_tail.
5743  *
5744  * Return error or zero.
5745  */
5746 int
5747 xlog_recover(
5748 	struct xlog	*log)
5749 {
5750 	xfs_daddr_t	head_blk, tail_blk;
5751 	int		error;
5752 
5753 	/* find the tail of the log */
5754 	error = xlog_find_tail(log, &head_blk, &tail_blk);
5755 	if (error)
5756 		return error;
5757 
5758 	/*
5759 	 * The superblock was read before the log was available and thus the LSN
5760 	 * could not be verified. Check the superblock LSN against the current
5761 	 * LSN now that it's known.
5762 	 */
5763 	if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5764 	    !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5765 		return -EINVAL;
5766 
5767 	if (tail_blk != head_blk) {
5768 		/* There used to be a comment here:
5769 		 *
5770 		 * disallow recovery on read-only mounts.  note -- mount
5771 		 * checks for ENOSPC and turns it into an intelligent
5772 		 * error message.
5773 		 * ...but this is no longer true.  Now, unless you specify
5774 		 * NORECOVERY (in which case this function would never be
5775 		 * called), we just go ahead and recover.  We do this all
5776 		 * under the vfs layer, so we can get away with it unless
5777 		 * the device itself is read-only, in which case we fail.
5778 		 */
5779 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5780 			return error;
5781 		}
5782 
5783 		/*
5784 		 * Version 5 superblock log feature mask validation. We know the
5785 		 * log is dirty so check if there are any unknown log features
5786 		 * in what we need to recover. If there are unknown features
5787 		 * (e.g. unsupported transactions, then simply reject the
5788 		 * attempt at recovery before touching anything.
5789 		 */
5790 		if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5791 		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5792 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5793 			xfs_warn(log->l_mp,
5794 "Superblock has unknown incompatible log features (0x%x) enabled.",
5795 				(log->l_mp->m_sb.sb_features_log_incompat &
5796 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5797 			xfs_warn(log->l_mp,
5798 "The log can not be fully and/or safely recovered by this kernel.");
5799 			xfs_warn(log->l_mp,
5800 "Please recover the log on a kernel that supports the unknown features.");
5801 			return -EINVAL;
5802 		}
5803 
5804 		/*
5805 		 * Delay log recovery if the debug hook is set. This is debug
5806 		 * instrumention to coordinate simulation of I/O failures with
5807 		 * log recovery.
5808 		 */
5809 		if (xfs_globals.log_recovery_delay) {
5810 			xfs_notice(log->l_mp,
5811 				"Delaying log recovery for %d seconds.",
5812 				xfs_globals.log_recovery_delay);
5813 			msleep(xfs_globals.log_recovery_delay * 1000);
5814 		}
5815 
5816 		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5817 				log->l_mp->m_logname ? log->l_mp->m_logname
5818 						     : "internal");
5819 
5820 		error = xlog_do_recover(log, head_blk, tail_blk);
5821 		log->l_flags |= XLOG_RECOVERY_NEEDED;
5822 	}
5823 	return error;
5824 }
5825 
5826 /*
5827  * In the first part of recovery we replay inodes and buffers and build
5828  * up the list of extent free items which need to be processed.  Here
5829  * we process the extent free items and clean up the on disk unlinked
5830  * inode lists.  This is separated from the first part of recovery so
5831  * that the root and real-time bitmap inodes can be read in from disk in
5832  * between the two stages.  This is necessary so that we can free space
5833  * in the real-time portion of the file system.
5834  */
5835 int
5836 xlog_recover_finish(
5837 	struct xlog	*log)
5838 {
5839 	/*
5840 	 * Now we're ready to do the transactions needed for the
5841 	 * rest of recovery.  Start with completing all the extent
5842 	 * free intent records and then process the unlinked inode
5843 	 * lists.  At this point, we essentially run in normal mode
5844 	 * except that we're still performing recovery actions
5845 	 * rather than accepting new requests.
5846 	 */
5847 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5848 		int	error;
5849 		error = xlog_recover_process_intents(log);
5850 		if (error) {
5851 			xfs_alert(log->l_mp, "Failed to recover intents");
5852 			return error;
5853 		}
5854 
5855 		/*
5856 		 * Sync the log to get all the intents out of the AIL.
5857 		 * This isn't absolutely necessary, but it helps in
5858 		 * case the unlink transactions would have problems
5859 		 * pushing the intents out of the way.
5860 		 */
5861 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
5862 
5863 		xlog_recover_process_iunlinks(log);
5864 
5865 		xlog_recover_check_summary(log);
5866 
5867 		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5868 				log->l_mp->m_logname ? log->l_mp->m_logname
5869 						     : "internal");
5870 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5871 	} else {
5872 		xfs_info(log->l_mp, "Ending clean mount");
5873 	}
5874 	return 0;
5875 }
5876 
5877 int
5878 xlog_recover_cancel(
5879 	struct xlog	*log)
5880 {
5881 	int		error = 0;
5882 
5883 	if (log->l_flags & XLOG_RECOVERY_NEEDED)
5884 		error = xlog_recover_cancel_intents(log);
5885 
5886 	return error;
5887 }
5888 
5889 #if defined(DEBUG)
5890 /*
5891  * Read all of the agf and agi counters and check that they
5892  * are consistent with the superblock counters.
5893  */
5894 STATIC void
5895 xlog_recover_check_summary(
5896 	struct xlog	*log)
5897 {
5898 	xfs_mount_t	*mp;
5899 	xfs_agf_t	*agfp;
5900 	xfs_buf_t	*agfbp;
5901 	xfs_buf_t	*agibp;
5902 	xfs_agnumber_t	agno;
5903 	uint64_t	freeblks;
5904 	uint64_t	itotal;
5905 	uint64_t	ifree;
5906 	int		error;
5907 
5908 	mp = log->l_mp;
5909 
5910 	freeblks = 0LL;
5911 	itotal = 0LL;
5912 	ifree = 0LL;
5913 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5914 		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5915 		if (error) {
5916 			xfs_alert(mp, "%s agf read failed agno %d error %d",
5917 						__func__, agno, error);
5918 		} else {
5919 			agfp = XFS_BUF_TO_AGF(agfbp);
5920 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
5921 				    be32_to_cpu(agfp->agf_flcount);
5922 			xfs_buf_relse(agfbp);
5923 		}
5924 
5925 		error = xfs_read_agi(mp, NULL, agno, &agibp);
5926 		if (error) {
5927 			xfs_alert(mp, "%s agi read failed agno %d error %d",
5928 						__func__, agno, error);
5929 		} else {
5930 			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
5931 
5932 			itotal += be32_to_cpu(agi->agi_count);
5933 			ifree += be32_to_cpu(agi->agi_freecount);
5934 			xfs_buf_relse(agibp);
5935 		}
5936 	}
5937 }
5938 #endif /* DEBUG */
5939