xref: /openbmc/linux/fs/xfs/xfs_log_recover.c (revision d3964221)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_trans.h"
31 #include "xfs_log.h"
32 #include "xfs_log_priv.h"
33 #include "xfs_log_recover.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_extfree_item.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_alloc.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_quota.h"
40 #include "xfs_cksum.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_bmap_btree.h"
44 #include "xfs_error.h"
45 #include "xfs_dir2.h"
46 #include "xfs_rmap_item.h"
47 #include "xfs_buf_item.h"
48 #include "xfs_refcount_item.h"
49 #include "xfs_bmap_item.h"
50 
51 #define BLK_AVG(blk1, blk2)	((blk1+blk2) >> 1)
52 
53 STATIC int
54 xlog_find_zeroed(
55 	struct xlog	*,
56 	xfs_daddr_t	*);
57 STATIC int
58 xlog_clear_stale_blocks(
59 	struct xlog	*,
60 	xfs_lsn_t);
61 #if defined(DEBUG)
62 STATIC void
63 xlog_recover_check_summary(
64 	struct xlog *);
65 #else
66 #define	xlog_recover_check_summary(log)
67 #endif
68 STATIC int
69 xlog_do_recovery_pass(
70         struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
71 
72 /*
73  * This structure is used during recovery to record the buf log items which
74  * have been canceled and should not be replayed.
75  */
76 struct xfs_buf_cancel {
77 	xfs_daddr_t		bc_blkno;
78 	uint			bc_len;
79 	int			bc_refcount;
80 	struct list_head	bc_list;
81 };
82 
83 /*
84  * Sector aligned buffer routines for buffer create/read/write/access
85  */
86 
87 /*
88  * Verify the given count of basic blocks is valid number of blocks
89  * to specify for an operation involving the given XFS log buffer.
90  * Returns nonzero if the count is valid, 0 otherwise.
91  */
92 
93 static inline int
94 xlog_buf_bbcount_valid(
95 	struct xlog	*log,
96 	int		bbcount)
97 {
98 	return bbcount > 0 && bbcount <= log->l_logBBsize;
99 }
100 
101 /*
102  * Allocate a buffer to hold log data.  The buffer needs to be able
103  * to map to a range of nbblks basic blocks at any valid (basic
104  * block) offset within the log.
105  */
106 STATIC xfs_buf_t *
107 xlog_get_bp(
108 	struct xlog	*log,
109 	int		nbblks)
110 {
111 	struct xfs_buf	*bp;
112 
113 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
114 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
115 			nbblks);
116 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
117 		return NULL;
118 	}
119 
120 	/*
121 	 * We do log I/O in units of log sectors (a power-of-2
122 	 * multiple of the basic block size), so we round up the
123 	 * requested size to accommodate the basic blocks required
124 	 * for complete log sectors.
125 	 *
126 	 * In addition, the buffer may be used for a non-sector-
127 	 * aligned block offset, in which case an I/O of the
128 	 * requested size could extend beyond the end of the
129 	 * buffer.  If the requested size is only 1 basic block it
130 	 * will never straddle a sector boundary, so this won't be
131 	 * an issue.  Nor will this be a problem if the log I/O is
132 	 * done in basic blocks (sector size 1).  But otherwise we
133 	 * extend the buffer by one extra log sector to ensure
134 	 * there's space to accommodate this possibility.
135 	 */
136 	if (nbblks > 1 && log->l_sectBBsize > 1)
137 		nbblks += log->l_sectBBsize;
138 	nbblks = round_up(nbblks, log->l_sectBBsize);
139 
140 	bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
141 	if (bp)
142 		xfs_buf_unlock(bp);
143 	return bp;
144 }
145 
146 STATIC void
147 xlog_put_bp(
148 	xfs_buf_t	*bp)
149 {
150 	xfs_buf_free(bp);
151 }
152 
153 /*
154  * Return the address of the start of the given block number's data
155  * in a log buffer.  The buffer covers a log sector-aligned region.
156  */
157 STATIC char *
158 xlog_align(
159 	struct xlog	*log,
160 	xfs_daddr_t	blk_no,
161 	int		nbblks,
162 	struct xfs_buf	*bp)
163 {
164 	xfs_daddr_t	offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
165 
166 	ASSERT(offset + nbblks <= bp->b_length);
167 	return bp->b_addr + BBTOB(offset);
168 }
169 
170 
171 /*
172  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
173  */
174 STATIC int
175 xlog_bread_noalign(
176 	struct xlog	*log,
177 	xfs_daddr_t	blk_no,
178 	int		nbblks,
179 	struct xfs_buf	*bp)
180 {
181 	int		error;
182 
183 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
184 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
185 			nbblks);
186 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
187 		return -EFSCORRUPTED;
188 	}
189 
190 	blk_no = round_down(blk_no, log->l_sectBBsize);
191 	nbblks = round_up(nbblks, log->l_sectBBsize);
192 
193 	ASSERT(nbblks > 0);
194 	ASSERT(nbblks <= bp->b_length);
195 
196 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
197 	bp->b_flags |= XBF_READ;
198 	bp->b_io_length = nbblks;
199 	bp->b_error = 0;
200 
201 	error = xfs_buf_submit_wait(bp);
202 	if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
203 		xfs_buf_ioerror_alert(bp, __func__);
204 	return error;
205 }
206 
207 STATIC int
208 xlog_bread(
209 	struct xlog	*log,
210 	xfs_daddr_t	blk_no,
211 	int		nbblks,
212 	struct xfs_buf	*bp,
213 	char		**offset)
214 {
215 	int		error;
216 
217 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
218 	if (error)
219 		return error;
220 
221 	*offset = xlog_align(log, blk_no, nbblks, bp);
222 	return 0;
223 }
224 
225 /*
226  * Read at an offset into the buffer. Returns with the buffer in it's original
227  * state regardless of the result of the read.
228  */
229 STATIC int
230 xlog_bread_offset(
231 	struct xlog	*log,
232 	xfs_daddr_t	blk_no,		/* block to read from */
233 	int		nbblks,		/* blocks to read */
234 	struct xfs_buf	*bp,
235 	char		*offset)
236 {
237 	char		*orig_offset = bp->b_addr;
238 	int		orig_len = BBTOB(bp->b_length);
239 	int		error, error2;
240 
241 	error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
242 	if (error)
243 		return error;
244 
245 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
246 
247 	/* must reset buffer pointer even on error */
248 	error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
249 	if (error)
250 		return error;
251 	return error2;
252 }
253 
254 /*
255  * Write out the buffer at the given block for the given number of blocks.
256  * The buffer is kept locked across the write and is returned locked.
257  * This can only be used for synchronous log writes.
258  */
259 STATIC int
260 xlog_bwrite(
261 	struct xlog	*log,
262 	xfs_daddr_t	blk_no,
263 	int		nbblks,
264 	struct xfs_buf	*bp)
265 {
266 	int		error;
267 
268 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
269 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
270 			nbblks);
271 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
272 		return -EFSCORRUPTED;
273 	}
274 
275 	blk_no = round_down(blk_no, log->l_sectBBsize);
276 	nbblks = round_up(nbblks, log->l_sectBBsize);
277 
278 	ASSERT(nbblks > 0);
279 	ASSERT(nbblks <= bp->b_length);
280 
281 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
282 	xfs_buf_hold(bp);
283 	xfs_buf_lock(bp);
284 	bp->b_io_length = nbblks;
285 	bp->b_error = 0;
286 
287 	error = xfs_bwrite(bp);
288 	if (error)
289 		xfs_buf_ioerror_alert(bp, __func__);
290 	xfs_buf_relse(bp);
291 	return error;
292 }
293 
294 #ifdef DEBUG
295 /*
296  * dump debug superblock and log record information
297  */
298 STATIC void
299 xlog_header_check_dump(
300 	xfs_mount_t		*mp,
301 	xlog_rec_header_t	*head)
302 {
303 	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
304 		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
305 	xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
306 		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
307 }
308 #else
309 #define xlog_header_check_dump(mp, head)
310 #endif
311 
312 /*
313  * check log record header for recovery
314  */
315 STATIC int
316 xlog_header_check_recover(
317 	xfs_mount_t		*mp,
318 	xlog_rec_header_t	*head)
319 {
320 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
321 
322 	/*
323 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
324 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
325 	 * a dirty log created in IRIX.
326 	 */
327 	if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
328 		xfs_warn(mp,
329 	"dirty log written in incompatible format - can't recover");
330 		xlog_header_check_dump(mp, head);
331 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
332 				 XFS_ERRLEVEL_HIGH, mp);
333 		return -EFSCORRUPTED;
334 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
335 		xfs_warn(mp,
336 	"dirty log entry has mismatched uuid - can't recover");
337 		xlog_header_check_dump(mp, head);
338 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
339 				 XFS_ERRLEVEL_HIGH, mp);
340 		return -EFSCORRUPTED;
341 	}
342 	return 0;
343 }
344 
345 /*
346  * read the head block of the log and check the header
347  */
348 STATIC int
349 xlog_header_check_mount(
350 	xfs_mount_t		*mp,
351 	xlog_rec_header_t	*head)
352 {
353 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
354 
355 	if (uuid_is_null(&head->h_fs_uuid)) {
356 		/*
357 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
358 		 * h_fs_uuid is null, we assume this log was last mounted
359 		 * by IRIX and continue.
360 		 */
361 		xfs_warn(mp, "null uuid in log - IRIX style log");
362 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
363 		xfs_warn(mp, "log has mismatched uuid - can't recover");
364 		xlog_header_check_dump(mp, head);
365 		XFS_ERROR_REPORT("xlog_header_check_mount",
366 				 XFS_ERRLEVEL_HIGH, mp);
367 		return -EFSCORRUPTED;
368 	}
369 	return 0;
370 }
371 
372 STATIC void
373 xlog_recover_iodone(
374 	struct xfs_buf	*bp)
375 {
376 	if (bp->b_error) {
377 		/*
378 		 * We're not going to bother about retrying
379 		 * this during recovery. One strike!
380 		 */
381 		if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
382 			xfs_buf_ioerror_alert(bp, __func__);
383 			xfs_force_shutdown(bp->b_target->bt_mount,
384 						SHUTDOWN_META_IO_ERROR);
385 		}
386 	}
387 
388 	/*
389 	 * On v5 supers, a bli could be attached to update the metadata LSN.
390 	 * Clean it up.
391 	 */
392 	if (bp->b_fspriv)
393 		xfs_buf_item_relse(bp);
394 	ASSERT(bp->b_fspriv == NULL);
395 
396 	bp->b_iodone = NULL;
397 	xfs_buf_ioend(bp);
398 }
399 
400 /*
401  * This routine finds (to an approximation) the first block in the physical
402  * log which contains the given cycle.  It uses a binary search algorithm.
403  * Note that the algorithm can not be perfect because the disk will not
404  * necessarily be perfect.
405  */
406 STATIC int
407 xlog_find_cycle_start(
408 	struct xlog	*log,
409 	struct xfs_buf	*bp,
410 	xfs_daddr_t	first_blk,
411 	xfs_daddr_t	*last_blk,
412 	uint		cycle)
413 {
414 	char		*offset;
415 	xfs_daddr_t	mid_blk;
416 	xfs_daddr_t	end_blk;
417 	uint		mid_cycle;
418 	int		error;
419 
420 	end_blk = *last_blk;
421 	mid_blk = BLK_AVG(first_blk, end_blk);
422 	while (mid_blk != first_blk && mid_blk != end_blk) {
423 		error = xlog_bread(log, mid_blk, 1, bp, &offset);
424 		if (error)
425 			return error;
426 		mid_cycle = xlog_get_cycle(offset);
427 		if (mid_cycle == cycle)
428 			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
429 		else
430 			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
431 		mid_blk = BLK_AVG(first_blk, end_blk);
432 	}
433 	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
434 	       (mid_blk == end_blk && mid_blk-1 == first_blk));
435 
436 	*last_blk = end_blk;
437 
438 	return 0;
439 }
440 
441 /*
442  * Check that a range of blocks does not contain stop_on_cycle_no.
443  * Fill in *new_blk with the block offset where such a block is
444  * found, or with -1 (an invalid block number) if there is no such
445  * block in the range.  The scan needs to occur from front to back
446  * and the pointer into the region must be updated since a later
447  * routine will need to perform another test.
448  */
449 STATIC int
450 xlog_find_verify_cycle(
451 	struct xlog	*log,
452 	xfs_daddr_t	start_blk,
453 	int		nbblks,
454 	uint		stop_on_cycle_no,
455 	xfs_daddr_t	*new_blk)
456 {
457 	xfs_daddr_t	i, j;
458 	uint		cycle;
459 	xfs_buf_t	*bp;
460 	xfs_daddr_t	bufblks;
461 	char		*buf = NULL;
462 	int		error = 0;
463 
464 	/*
465 	 * Greedily allocate a buffer big enough to handle the full
466 	 * range of basic blocks we'll be examining.  If that fails,
467 	 * try a smaller size.  We need to be able to read at least
468 	 * a log sector, or we're out of luck.
469 	 */
470 	bufblks = 1 << ffs(nbblks);
471 	while (bufblks > log->l_logBBsize)
472 		bufblks >>= 1;
473 	while (!(bp = xlog_get_bp(log, bufblks))) {
474 		bufblks >>= 1;
475 		if (bufblks < log->l_sectBBsize)
476 			return -ENOMEM;
477 	}
478 
479 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
480 		int	bcount;
481 
482 		bcount = min(bufblks, (start_blk + nbblks - i));
483 
484 		error = xlog_bread(log, i, bcount, bp, &buf);
485 		if (error)
486 			goto out;
487 
488 		for (j = 0; j < bcount; j++) {
489 			cycle = xlog_get_cycle(buf);
490 			if (cycle == stop_on_cycle_no) {
491 				*new_blk = i+j;
492 				goto out;
493 			}
494 
495 			buf += BBSIZE;
496 		}
497 	}
498 
499 	*new_blk = -1;
500 
501 out:
502 	xlog_put_bp(bp);
503 	return error;
504 }
505 
506 /*
507  * Potentially backup over partial log record write.
508  *
509  * In the typical case, last_blk is the number of the block directly after
510  * a good log record.  Therefore, we subtract one to get the block number
511  * of the last block in the given buffer.  extra_bblks contains the number
512  * of blocks we would have read on a previous read.  This happens when the
513  * last log record is split over the end of the physical log.
514  *
515  * extra_bblks is the number of blocks potentially verified on a previous
516  * call to this routine.
517  */
518 STATIC int
519 xlog_find_verify_log_record(
520 	struct xlog		*log,
521 	xfs_daddr_t		start_blk,
522 	xfs_daddr_t		*last_blk,
523 	int			extra_bblks)
524 {
525 	xfs_daddr_t		i;
526 	xfs_buf_t		*bp;
527 	char			*offset = NULL;
528 	xlog_rec_header_t	*head = NULL;
529 	int			error = 0;
530 	int			smallmem = 0;
531 	int			num_blks = *last_blk - start_blk;
532 	int			xhdrs;
533 
534 	ASSERT(start_blk != 0 || *last_blk != start_blk);
535 
536 	if (!(bp = xlog_get_bp(log, num_blks))) {
537 		if (!(bp = xlog_get_bp(log, 1)))
538 			return -ENOMEM;
539 		smallmem = 1;
540 	} else {
541 		error = xlog_bread(log, start_blk, num_blks, bp, &offset);
542 		if (error)
543 			goto out;
544 		offset += ((num_blks - 1) << BBSHIFT);
545 	}
546 
547 	for (i = (*last_blk) - 1; i >= 0; i--) {
548 		if (i < start_blk) {
549 			/* valid log record not found */
550 			xfs_warn(log->l_mp,
551 		"Log inconsistent (didn't find previous header)");
552 			ASSERT(0);
553 			error = -EIO;
554 			goto out;
555 		}
556 
557 		if (smallmem) {
558 			error = xlog_bread(log, i, 1, bp, &offset);
559 			if (error)
560 				goto out;
561 		}
562 
563 		head = (xlog_rec_header_t *)offset;
564 
565 		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
566 			break;
567 
568 		if (!smallmem)
569 			offset -= BBSIZE;
570 	}
571 
572 	/*
573 	 * We hit the beginning of the physical log & still no header.  Return
574 	 * to caller.  If caller can handle a return of -1, then this routine
575 	 * will be called again for the end of the physical log.
576 	 */
577 	if (i == -1) {
578 		error = 1;
579 		goto out;
580 	}
581 
582 	/*
583 	 * We have the final block of the good log (the first block
584 	 * of the log record _before_ the head. So we check the uuid.
585 	 */
586 	if ((error = xlog_header_check_mount(log->l_mp, head)))
587 		goto out;
588 
589 	/*
590 	 * We may have found a log record header before we expected one.
591 	 * last_blk will be the 1st block # with a given cycle #.  We may end
592 	 * up reading an entire log record.  In this case, we don't want to
593 	 * reset last_blk.  Only when last_blk points in the middle of a log
594 	 * record do we update last_blk.
595 	 */
596 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
597 		uint	h_size = be32_to_cpu(head->h_size);
598 
599 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
600 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
601 			xhdrs++;
602 	} else {
603 		xhdrs = 1;
604 	}
605 
606 	if (*last_blk - i + extra_bblks !=
607 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
608 		*last_blk = i;
609 
610 out:
611 	xlog_put_bp(bp);
612 	return error;
613 }
614 
615 /*
616  * Head is defined to be the point of the log where the next log write
617  * could go.  This means that incomplete LR writes at the end are
618  * eliminated when calculating the head.  We aren't guaranteed that previous
619  * LR have complete transactions.  We only know that a cycle number of
620  * current cycle number -1 won't be present in the log if we start writing
621  * from our current block number.
622  *
623  * last_blk contains the block number of the first block with a given
624  * cycle number.
625  *
626  * Return: zero if normal, non-zero if error.
627  */
628 STATIC int
629 xlog_find_head(
630 	struct xlog	*log,
631 	xfs_daddr_t	*return_head_blk)
632 {
633 	xfs_buf_t	*bp;
634 	char		*offset;
635 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
636 	int		num_scan_bblks;
637 	uint		first_half_cycle, last_half_cycle;
638 	uint		stop_on_cycle;
639 	int		error, log_bbnum = log->l_logBBsize;
640 
641 	/* Is the end of the log device zeroed? */
642 	error = xlog_find_zeroed(log, &first_blk);
643 	if (error < 0) {
644 		xfs_warn(log->l_mp, "empty log check failed");
645 		return error;
646 	}
647 	if (error == 1) {
648 		*return_head_blk = first_blk;
649 
650 		/* Is the whole lot zeroed? */
651 		if (!first_blk) {
652 			/* Linux XFS shouldn't generate totally zeroed logs -
653 			 * mkfs etc write a dummy unmount record to a fresh
654 			 * log so we can store the uuid in there
655 			 */
656 			xfs_warn(log->l_mp, "totally zeroed log");
657 		}
658 
659 		return 0;
660 	}
661 
662 	first_blk = 0;			/* get cycle # of 1st block */
663 	bp = xlog_get_bp(log, 1);
664 	if (!bp)
665 		return -ENOMEM;
666 
667 	error = xlog_bread(log, 0, 1, bp, &offset);
668 	if (error)
669 		goto bp_err;
670 
671 	first_half_cycle = xlog_get_cycle(offset);
672 
673 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
674 	error = xlog_bread(log, last_blk, 1, bp, &offset);
675 	if (error)
676 		goto bp_err;
677 
678 	last_half_cycle = xlog_get_cycle(offset);
679 	ASSERT(last_half_cycle != 0);
680 
681 	/*
682 	 * If the 1st half cycle number is equal to the last half cycle number,
683 	 * then the entire log is stamped with the same cycle number.  In this
684 	 * case, head_blk can't be set to zero (which makes sense).  The below
685 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
686 	 * we set it to log_bbnum which is an invalid block number, but this
687 	 * value makes the math correct.  If head_blk doesn't changed through
688 	 * all the tests below, *head_blk is set to zero at the very end rather
689 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
690 	 * in a circular file.
691 	 */
692 	if (first_half_cycle == last_half_cycle) {
693 		/*
694 		 * In this case we believe that the entire log should have
695 		 * cycle number last_half_cycle.  We need to scan backwards
696 		 * from the end verifying that there are no holes still
697 		 * containing last_half_cycle - 1.  If we find such a hole,
698 		 * then the start of that hole will be the new head.  The
699 		 * simple case looks like
700 		 *        x | x ... | x - 1 | x
701 		 * Another case that fits this picture would be
702 		 *        x | x + 1 | x ... | x
703 		 * In this case the head really is somewhere at the end of the
704 		 * log, as one of the latest writes at the beginning was
705 		 * incomplete.
706 		 * One more case is
707 		 *        x | x + 1 | x ... | x - 1 | x
708 		 * This is really the combination of the above two cases, and
709 		 * the head has to end up at the start of the x-1 hole at the
710 		 * end of the log.
711 		 *
712 		 * In the 256k log case, we will read from the beginning to the
713 		 * end of the log and search for cycle numbers equal to x-1.
714 		 * We don't worry about the x+1 blocks that we encounter,
715 		 * because we know that they cannot be the head since the log
716 		 * started with x.
717 		 */
718 		head_blk = log_bbnum;
719 		stop_on_cycle = last_half_cycle - 1;
720 	} else {
721 		/*
722 		 * In this case we want to find the first block with cycle
723 		 * number matching last_half_cycle.  We expect the log to be
724 		 * some variation on
725 		 *        x + 1 ... | x ... | x
726 		 * The first block with cycle number x (last_half_cycle) will
727 		 * be where the new head belongs.  First we do a binary search
728 		 * for the first occurrence of last_half_cycle.  The binary
729 		 * search may not be totally accurate, so then we scan back
730 		 * from there looking for occurrences of last_half_cycle before
731 		 * us.  If that backwards scan wraps around the beginning of
732 		 * the log, then we look for occurrences of last_half_cycle - 1
733 		 * at the end of the log.  The cases we're looking for look
734 		 * like
735 		 *                               v binary search stopped here
736 		 *        x + 1 ... | x | x + 1 | x ... | x
737 		 *                   ^ but we want to locate this spot
738 		 * or
739 		 *        <---------> less than scan distance
740 		 *        x + 1 ... | x ... | x - 1 | x
741 		 *                           ^ we want to locate this spot
742 		 */
743 		stop_on_cycle = last_half_cycle;
744 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
745 						&head_blk, last_half_cycle)))
746 			goto bp_err;
747 	}
748 
749 	/*
750 	 * Now validate the answer.  Scan back some number of maximum possible
751 	 * blocks and make sure each one has the expected cycle number.  The
752 	 * maximum is determined by the total possible amount of buffering
753 	 * in the in-core log.  The following number can be made tighter if
754 	 * we actually look at the block size of the filesystem.
755 	 */
756 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
757 	if (head_blk >= num_scan_bblks) {
758 		/*
759 		 * We are guaranteed that the entire check can be performed
760 		 * in one buffer.
761 		 */
762 		start_blk = head_blk - num_scan_bblks;
763 		if ((error = xlog_find_verify_cycle(log,
764 						start_blk, num_scan_bblks,
765 						stop_on_cycle, &new_blk)))
766 			goto bp_err;
767 		if (new_blk != -1)
768 			head_blk = new_blk;
769 	} else {		/* need to read 2 parts of log */
770 		/*
771 		 * We are going to scan backwards in the log in two parts.
772 		 * First we scan the physical end of the log.  In this part
773 		 * of the log, we are looking for blocks with cycle number
774 		 * last_half_cycle - 1.
775 		 * If we find one, then we know that the log starts there, as
776 		 * we've found a hole that didn't get written in going around
777 		 * the end of the physical log.  The simple case for this is
778 		 *        x + 1 ... | x ... | x - 1 | x
779 		 *        <---------> less than scan distance
780 		 * If all of the blocks at the end of the log have cycle number
781 		 * last_half_cycle, then we check the blocks at the start of
782 		 * the log looking for occurrences of last_half_cycle.  If we
783 		 * find one, then our current estimate for the location of the
784 		 * first occurrence of last_half_cycle is wrong and we move
785 		 * back to the hole we've found.  This case looks like
786 		 *        x + 1 ... | x | x + 1 | x ...
787 		 *                               ^ binary search stopped here
788 		 * Another case we need to handle that only occurs in 256k
789 		 * logs is
790 		 *        x + 1 ... | x ... | x+1 | x ...
791 		 *                   ^ binary search stops here
792 		 * In a 256k log, the scan at the end of the log will see the
793 		 * x + 1 blocks.  We need to skip past those since that is
794 		 * certainly not the head of the log.  By searching for
795 		 * last_half_cycle-1 we accomplish that.
796 		 */
797 		ASSERT(head_blk <= INT_MAX &&
798 			(xfs_daddr_t) num_scan_bblks >= head_blk);
799 		start_blk = log_bbnum - (num_scan_bblks - head_blk);
800 		if ((error = xlog_find_verify_cycle(log, start_blk,
801 					num_scan_bblks - (int)head_blk,
802 					(stop_on_cycle - 1), &new_blk)))
803 			goto bp_err;
804 		if (new_blk != -1) {
805 			head_blk = new_blk;
806 			goto validate_head;
807 		}
808 
809 		/*
810 		 * Scan beginning of log now.  The last part of the physical
811 		 * log is good.  This scan needs to verify that it doesn't find
812 		 * the last_half_cycle.
813 		 */
814 		start_blk = 0;
815 		ASSERT(head_blk <= INT_MAX);
816 		if ((error = xlog_find_verify_cycle(log,
817 					start_blk, (int)head_blk,
818 					stop_on_cycle, &new_blk)))
819 			goto bp_err;
820 		if (new_blk != -1)
821 			head_blk = new_blk;
822 	}
823 
824 validate_head:
825 	/*
826 	 * Now we need to make sure head_blk is not pointing to a block in
827 	 * the middle of a log record.
828 	 */
829 	num_scan_bblks = XLOG_REC_SHIFT(log);
830 	if (head_blk >= num_scan_bblks) {
831 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
832 
833 		/* start ptr at last block ptr before head_blk */
834 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
835 		if (error == 1)
836 			error = -EIO;
837 		if (error)
838 			goto bp_err;
839 	} else {
840 		start_blk = 0;
841 		ASSERT(head_blk <= INT_MAX);
842 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
843 		if (error < 0)
844 			goto bp_err;
845 		if (error == 1) {
846 			/* We hit the beginning of the log during our search */
847 			start_blk = log_bbnum - (num_scan_bblks - head_blk);
848 			new_blk = log_bbnum;
849 			ASSERT(start_blk <= INT_MAX &&
850 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
851 			ASSERT(head_blk <= INT_MAX);
852 			error = xlog_find_verify_log_record(log, start_blk,
853 							&new_blk, (int)head_blk);
854 			if (error == 1)
855 				error = -EIO;
856 			if (error)
857 				goto bp_err;
858 			if (new_blk != log_bbnum)
859 				head_blk = new_blk;
860 		} else if (error)
861 			goto bp_err;
862 	}
863 
864 	xlog_put_bp(bp);
865 	if (head_blk == log_bbnum)
866 		*return_head_blk = 0;
867 	else
868 		*return_head_blk = head_blk;
869 	/*
870 	 * When returning here, we have a good block number.  Bad block
871 	 * means that during a previous crash, we didn't have a clean break
872 	 * from cycle number N to cycle number N-1.  In this case, we need
873 	 * to find the first block with cycle number N-1.
874 	 */
875 	return 0;
876 
877  bp_err:
878 	xlog_put_bp(bp);
879 
880 	if (error)
881 		xfs_warn(log->l_mp, "failed to find log head");
882 	return error;
883 }
884 
885 /*
886  * Seek backwards in the log for log record headers.
887  *
888  * Given a starting log block, walk backwards until we find the provided number
889  * of records or hit the provided tail block. The return value is the number of
890  * records encountered or a negative error code. The log block and buffer
891  * pointer of the last record seen are returned in rblk and rhead respectively.
892  */
893 STATIC int
894 xlog_rseek_logrec_hdr(
895 	struct xlog		*log,
896 	xfs_daddr_t		head_blk,
897 	xfs_daddr_t		tail_blk,
898 	int			count,
899 	struct xfs_buf		*bp,
900 	xfs_daddr_t		*rblk,
901 	struct xlog_rec_header	**rhead,
902 	bool			*wrapped)
903 {
904 	int			i;
905 	int			error;
906 	int			found = 0;
907 	char			*offset = NULL;
908 	xfs_daddr_t		end_blk;
909 
910 	*wrapped = false;
911 
912 	/*
913 	 * Walk backwards from the head block until we hit the tail or the first
914 	 * block in the log.
915 	 */
916 	end_blk = head_blk > tail_blk ? tail_blk : 0;
917 	for (i = (int) head_blk - 1; i >= end_blk; i--) {
918 		error = xlog_bread(log, i, 1, bp, &offset);
919 		if (error)
920 			goto out_error;
921 
922 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
923 			*rblk = i;
924 			*rhead = (struct xlog_rec_header *) offset;
925 			if (++found == count)
926 				break;
927 		}
928 	}
929 
930 	/*
931 	 * If we haven't hit the tail block or the log record header count,
932 	 * start looking again from the end of the physical log. Note that
933 	 * callers can pass head == tail if the tail is not yet known.
934 	 */
935 	if (tail_blk >= head_blk && found != count) {
936 		for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
937 			error = xlog_bread(log, i, 1, bp, &offset);
938 			if (error)
939 				goto out_error;
940 
941 			if (*(__be32 *)offset ==
942 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
943 				*wrapped = true;
944 				*rblk = i;
945 				*rhead = (struct xlog_rec_header *) offset;
946 				if (++found == count)
947 					break;
948 			}
949 		}
950 	}
951 
952 	return found;
953 
954 out_error:
955 	return error;
956 }
957 
958 /*
959  * Seek forward in the log for log record headers.
960  *
961  * Given head and tail blocks, walk forward from the tail block until we find
962  * the provided number of records or hit the head block. The return value is the
963  * number of records encountered or a negative error code. The log block and
964  * buffer pointer of the last record seen are returned in rblk and rhead
965  * respectively.
966  */
967 STATIC int
968 xlog_seek_logrec_hdr(
969 	struct xlog		*log,
970 	xfs_daddr_t		head_blk,
971 	xfs_daddr_t		tail_blk,
972 	int			count,
973 	struct xfs_buf		*bp,
974 	xfs_daddr_t		*rblk,
975 	struct xlog_rec_header	**rhead,
976 	bool			*wrapped)
977 {
978 	int			i;
979 	int			error;
980 	int			found = 0;
981 	char			*offset = NULL;
982 	xfs_daddr_t		end_blk;
983 
984 	*wrapped = false;
985 
986 	/*
987 	 * Walk forward from the tail block until we hit the head or the last
988 	 * block in the log.
989 	 */
990 	end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
991 	for (i = (int) tail_blk; i <= end_blk; i++) {
992 		error = xlog_bread(log, i, 1, bp, &offset);
993 		if (error)
994 			goto out_error;
995 
996 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
997 			*rblk = i;
998 			*rhead = (struct xlog_rec_header *) offset;
999 			if (++found == count)
1000 				break;
1001 		}
1002 	}
1003 
1004 	/*
1005 	 * If we haven't hit the head block or the log record header count,
1006 	 * start looking again from the start of the physical log.
1007 	 */
1008 	if (tail_blk > head_blk && found != count) {
1009 		for (i = 0; i < (int) head_blk; i++) {
1010 			error = xlog_bread(log, i, 1, bp, &offset);
1011 			if (error)
1012 				goto out_error;
1013 
1014 			if (*(__be32 *)offset ==
1015 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1016 				*wrapped = true;
1017 				*rblk = i;
1018 				*rhead = (struct xlog_rec_header *) offset;
1019 				if (++found == count)
1020 					break;
1021 			}
1022 		}
1023 	}
1024 
1025 	return found;
1026 
1027 out_error:
1028 	return error;
1029 }
1030 
1031 /*
1032  * Calculate distance from head to tail (i.e., unused space in the log).
1033  */
1034 static inline int
1035 xlog_tail_distance(
1036 	struct xlog	*log,
1037 	xfs_daddr_t	head_blk,
1038 	xfs_daddr_t	tail_blk)
1039 {
1040 	if (head_blk < tail_blk)
1041 		return tail_blk - head_blk;
1042 
1043 	return tail_blk + (log->l_logBBsize - head_blk);
1044 }
1045 
1046 /*
1047  * Verify the log tail. This is particularly important when torn or incomplete
1048  * writes have been detected near the front of the log and the head has been
1049  * walked back accordingly.
1050  *
1051  * We also have to handle the case where the tail was pinned and the head
1052  * blocked behind the tail right before a crash. If the tail had been pushed
1053  * immediately prior to the crash and the subsequent checkpoint was only
1054  * partially written, it's possible it overwrote the last referenced tail in the
1055  * log with garbage. This is not a coherency problem because the tail must have
1056  * been pushed before it can be overwritten, but appears as log corruption to
1057  * recovery because we have no way to know the tail was updated if the
1058  * subsequent checkpoint didn't write successfully.
1059  *
1060  * Therefore, CRC check the log from tail to head. If a failure occurs and the
1061  * offending record is within max iclog bufs from the head, walk the tail
1062  * forward and retry until a valid tail is found or corruption is detected out
1063  * of the range of a possible overwrite.
1064  */
1065 STATIC int
1066 xlog_verify_tail(
1067 	struct xlog		*log,
1068 	xfs_daddr_t		head_blk,
1069 	xfs_daddr_t		*tail_blk,
1070 	int			hsize)
1071 {
1072 	struct xlog_rec_header	*thead;
1073 	struct xfs_buf		*bp;
1074 	xfs_daddr_t		first_bad;
1075 	int			error = 0;
1076 	bool			wrapped;
1077 	xfs_daddr_t		tmp_tail;
1078 	xfs_daddr_t		orig_tail = *tail_blk;
1079 
1080 	bp = xlog_get_bp(log, 1);
1081 	if (!bp)
1082 		return -ENOMEM;
1083 
1084 	/*
1085 	 * Make sure the tail points to a record (returns positive count on
1086 	 * success).
1087 	 */
1088 	error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, bp,
1089 			&tmp_tail, &thead, &wrapped);
1090 	if (error < 0)
1091 		goto out;
1092 	if (*tail_blk != tmp_tail)
1093 		*tail_blk = tmp_tail;
1094 
1095 	/*
1096 	 * Run a CRC check from the tail to the head. We can't just check
1097 	 * MAX_ICLOGS records past the tail because the tail may point to stale
1098 	 * blocks cleared during the search for the head/tail. These blocks are
1099 	 * overwritten with zero-length records and thus record count is not a
1100 	 * reliable indicator of the iclog state before a crash.
1101 	 */
1102 	first_bad = 0;
1103 	error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1104 				      XLOG_RECOVER_CRCPASS, &first_bad);
1105 	while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1106 		int	tail_distance;
1107 
1108 		/*
1109 		 * Is corruption within range of the head? If so, retry from
1110 		 * the next record. Otherwise return an error.
1111 		 */
1112 		tail_distance = xlog_tail_distance(log, head_blk, first_bad);
1113 		if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
1114 			break;
1115 
1116 		/* skip to the next record; returns positive count on success */
1117 		error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, bp,
1118 				&tmp_tail, &thead, &wrapped);
1119 		if (error < 0)
1120 			goto out;
1121 
1122 		*tail_blk = tmp_tail;
1123 		first_bad = 0;
1124 		error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1125 					      XLOG_RECOVER_CRCPASS, &first_bad);
1126 	}
1127 
1128 	if (!error && *tail_blk != orig_tail)
1129 		xfs_warn(log->l_mp,
1130 		"Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1131 			 orig_tail, *tail_blk);
1132 out:
1133 	xlog_put_bp(bp);
1134 	return error;
1135 }
1136 
1137 /*
1138  * Detect and trim torn writes from the head of the log.
1139  *
1140  * Storage without sector atomicity guarantees can result in torn writes in the
1141  * log in the event of a crash. Our only means to detect this scenario is via
1142  * CRC verification. While we can't always be certain that CRC verification
1143  * failure is due to a torn write vs. an unrelated corruption, we do know that
1144  * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1145  * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1146  * the log and treat failures in this range as torn writes as a matter of
1147  * policy. In the event of CRC failure, the head is walked back to the last good
1148  * record in the log and the tail is updated from that record and verified.
1149  */
1150 STATIC int
1151 xlog_verify_head(
1152 	struct xlog		*log,
1153 	xfs_daddr_t		*head_blk,	/* in/out: unverified head */
1154 	xfs_daddr_t		*tail_blk,	/* out: tail block */
1155 	struct xfs_buf		*bp,
1156 	xfs_daddr_t		*rhead_blk,	/* start blk of last record */
1157 	struct xlog_rec_header	**rhead,	/* ptr to last record */
1158 	bool			*wrapped)	/* last rec. wraps phys. log */
1159 {
1160 	struct xlog_rec_header	*tmp_rhead;
1161 	struct xfs_buf		*tmp_bp;
1162 	xfs_daddr_t		first_bad;
1163 	xfs_daddr_t		tmp_rhead_blk;
1164 	int			found;
1165 	int			error;
1166 	bool			tmp_wrapped;
1167 
1168 	/*
1169 	 * Check the head of the log for torn writes. Search backwards from the
1170 	 * head until we hit the tail or the maximum number of log record I/Os
1171 	 * that could have been in flight at one time. Use a temporary buffer so
1172 	 * we don't trash the rhead/bp pointers from the caller.
1173 	 */
1174 	tmp_bp = xlog_get_bp(log, 1);
1175 	if (!tmp_bp)
1176 		return -ENOMEM;
1177 	error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1178 				      XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk,
1179 				      &tmp_rhead, &tmp_wrapped);
1180 	xlog_put_bp(tmp_bp);
1181 	if (error < 0)
1182 		return error;
1183 
1184 	/*
1185 	 * Now run a CRC verification pass over the records starting at the
1186 	 * block found above to the current head. If a CRC failure occurs, the
1187 	 * log block of the first bad record is saved in first_bad.
1188 	 */
1189 	error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1190 				      XLOG_RECOVER_CRCPASS, &first_bad);
1191 	if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1192 		/*
1193 		 * We've hit a potential torn write. Reset the error and warn
1194 		 * about it.
1195 		 */
1196 		error = 0;
1197 		xfs_warn(log->l_mp,
1198 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1199 			 first_bad, *head_blk);
1200 
1201 		/*
1202 		 * Get the header block and buffer pointer for the last good
1203 		 * record before the bad record.
1204 		 *
1205 		 * Note that xlog_find_tail() clears the blocks at the new head
1206 		 * (i.e., the records with invalid CRC) if the cycle number
1207 		 * matches the the current cycle.
1208 		 */
1209 		found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp,
1210 					      rhead_blk, rhead, wrapped);
1211 		if (found < 0)
1212 			return found;
1213 		if (found == 0)		/* XXX: right thing to do here? */
1214 			return -EIO;
1215 
1216 		/*
1217 		 * Reset the head block to the starting block of the first bad
1218 		 * log record and set the tail block based on the last good
1219 		 * record.
1220 		 *
1221 		 * Bail out if the updated head/tail match as this indicates
1222 		 * possible corruption outside of the acceptable
1223 		 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1224 		 */
1225 		*head_blk = first_bad;
1226 		*tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1227 		if (*head_blk == *tail_blk) {
1228 			ASSERT(0);
1229 			return 0;
1230 		}
1231 	}
1232 	if (error)
1233 		return error;
1234 
1235 	return xlog_verify_tail(log, *head_blk, tail_blk,
1236 				be32_to_cpu((*rhead)->h_size));
1237 }
1238 
1239 /*
1240  * Check whether the head of the log points to an unmount record. In other
1241  * words, determine whether the log is clean. If so, update the in-core state
1242  * appropriately.
1243  */
1244 static int
1245 xlog_check_unmount_rec(
1246 	struct xlog		*log,
1247 	xfs_daddr_t		*head_blk,
1248 	xfs_daddr_t		*tail_blk,
1249 	struct xlog_rec_header	*rhead,
1250 	xfs_daddr_t		rhead_blk,
1251 	struct xfs_buf		*bp,
1252 	bool			*clean)
1253 {
1254 	struct xlog_op_header	*op_head;
1255 	xfs_daddr_t		umount_data_blk;
1256 	xfs_daddr_t		after_umount_blk;
1257 	int			hblks;
1258 	int			error;
1259 	char			*offset;
1260 
1261 	*clean = false;
1262 
1263 	/*
1264 	 * Look for unmount record. If we find it, then we know there was a
1265 	 * clean unmount. Since 'i' could be the last block in the physical
1266 	 * log, we convert to a log block before comparing to the head_blk.
1267 	 *
1268 	 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1269 	 * below. We won't want to clear the unmount record if there is one, so
1270 	 * we pass the lsn of the unmount record rather than the block after it.
1271 	 */
1272 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1273 		int	h_size = be32_to_cpu(rhead->h_size);
1274 		int	h_version = be32_to_cpu(rhead->h_version);
1275 
1276 		if ((h_version & XLOG_VERSION_2) &&
1277 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1278 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1279 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
1280 				hblks++;
1281 		} else {
1282 			hblks = 1;
1283 		}
1284 	} else {
1285 		hblks = 1;
1286 	}
1287 	after_umount_blk = rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len));
1288 	after_umount_blk = do_mod(after_umount_blk, log->l_logBBsize);
1289 	if (*head_blk == after_umount_blk &&
1290 	    be32_to_cpu(rhead->h_num_logops) == 1) {
1291 		umount_data_blk = rhead_blk + hblks;
1292 		umount_data_blk = do_mod(umount_data_blk, log->l_logBBsize);
1293 		error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1294 		if (error)
1295 			return error;
1296 
1297 		op_head = (struct xlog_op_header *)offset;
1298 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1299 			/*
1300 			 * Set tail and last sync so that newly written log
1301 			 * records will point recovery to after the current
1302 			 * unmount record.
1303 			 */
1304 			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1305 					log->l_curr_cycle, after_umount_blk);
1306 			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1307 					log->l_curr_cycle, after_umount_blk);
1308 			*tail_blk = after_umount_blk;
1309 
1310 			*clean = true;
1311 		}
1312 	}
1313 
1314 	return 0;
1315 }
1316 
1317 static void
1318 xlog_set_state(
1319 	struct xlog		*log,
1320 	xfs_daddr_t		head_blk,
1321 	struct xlog_rec_header	*rhead,
1322 	xfs_daddr_t		rhead_blk,
1323 	bool			bump_cycle)
1324 {
1325 	/*
1326 	 * Reset log values according to the state of the log when we
1327 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
1328 	 * one because the next write starts a new cycle rather than
1329 	 * continuing the cycle of the last good log record.  At this
1330 	 * point we have guaranteed that all partial log records have been
1331 	 * accounted for.  Therefore, we know that the last good log record
1332 	 * written was complete and ended exactly on the end boundary
1333 	 * of the physical log.
1334 	 */
1335 	log->l_prev_block = rhead_blk;
1336 	log->l_curr_block = (int)head_blk;
1337 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1338 	if (bump_cycle)
1339 		log->l_curr_cycle++;
1340 	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1341 	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1342 	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1343 					BBTOB(log->l_curr_block));
1344 	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1345 					BBTOB(log->l_curr_block));
1346 }
1347 
1348 /*
1349  * Find the sync block number or the tail of the log.
1350  *
1351  * This will be the block number of the last record to have its
1352  * associated buffers synced to disk.  Every log record header has
1353  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
1354  * to get a sync block number.  The only concern is to figure out which
1355  * log record header to believe.
1356  *
1357  * The following algorithm uses the log record header with the largest
1358  * lsn.  The entire log record does not need to be valid.  We only care
1359  * that the header is valid.
1360  *
1361  * We could speed up search by using current head_blk buffer, but it is not
1362  * available.
1363  */
1364 STATIC int
1365 xlog_find_tail(
1366 	struct xlog		*log,
1367 	xfs_daddr_t		*head_blk,
1368 	xfs_daddr_t		*tail_blk)
1369 {
1370 	xlog_rec_header_t	*rhead;
1371 	char			*offset = NULL;
1372 	xfs_buf_t		*bp;
1373 	int			error;
1374 	xfs_daddr_t		rhead_blk;
1375 	xfs_lsn_t		tail_lsn;
1376 	bool			wrapped = false;
1377 	bool			clean = false;
1378 
1379 	/*
1380 	 * Find previous log record
1381 	 */
1382 	if ((error = xlog_find_head(log, head_blk)))
1383 		return error;
1384 	ASSERT(*head_blk < INT_MAX);
1385 
1386 	bp = xlog_get_bp(log, 1);
1387 	if (!bp)
1388 		return -ENOMEM;
1389 	if (*head_blk == 0) {				/* special case */
1390 		error = xlog_bread(log, 0, 1, bp, &offset);
1391 		if (error)
1392 			goto done;
1393 
1394 		if (xlog_get_cycle(offset) == 0) {
1395 			*tail_blk = 0;
1396 			/* leave all other log inited values alone */
1397 			goto done;
1398 		}
1399 	}
1400 
1401 	/*
1402 	 * Search backwards through the log looking for the log record header
1403 	 * block. This wraps all the way back around to the head so something is
1404 	 * seriously wrong if we can't find it.
1405 	 */
1406 	error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp,
1407 				      &rhead_blk, &rhead, &wrapped);
1408 	if (error < 0)
1409 		return error;
1410 	if (!error) {
1411 		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1412 		return -EIO;
1413 	}
1414 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1415 
1416 	/*
1417 	 * Set the log state based on the current head record.
1418 	 */
1419 	xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1420 	tail_lsn = atomic64_read(&log->l_tail_lsn);
1421 
1422 	/*
1423 	 * Look for an unmount record at the head of the log. This sets the log
1424 	 * state to determine whether recovery is necessary.
1425 	 */
1426 	error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1427 				       rhead_blk, bp, &clean);
1428 	if (error)
1429 		goto done;
1430 
1431 	/*
1432 	 * Verify the log head if the log is not clean (e.g., we have anything
1433 	 * but an unmount record at the head). This uses CRC verification to
1434 	 * detect and trim torn writes. If discovered, CRC failures are
1435 	 * considered torn writes and the log head is trimmed accordingly.
1436 	 *
1437 	 * Note that we can only run CRC verification when the log is dirty
1438 	 * because there's no guarantee that the log data behind an unmount
1439 	 * record is compatible with the current architecture.
1440 	 */
1441 	if (!clean) {
1442 		xfs_daddr_t	orig_head = *head_blk;
1443 
1444 		error = xlog_verify_head(log, head_blk, tail_blk, bp,
1445 					 &rhead_blk, &rhead, &wrapped);
1446 		if (error)
1447 			goto done;
1448 
1449 		/* update in-core state again if the head changed */
1450 		if (*head_blk != orig_head) {
1451 			xlog_set_state(log, *head_blk, rhead, rhead_blk,
1452 				       wrapped);
1453 			tail_lsn = atomic64_read(&log->l_tail_lsn);
1454 			error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1455 						       rhead, rhead_blk, bp,
1456 						       &clean);
1457 			if (error)
1458 				goto done;
1459 		}
1460 	}
1461 
1462 	/*
1463 	 * Note that the unmount was clean. If the unmount was not clean, we
1464 	 * need to know this to rebuild the superblock counters from the perag
1465 	 * headers if we have a filesystem using non-persistent counters.
1466 	 */
1467 	if (clean)
1468 		log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1469 
1470 	/*
1471 	 * Make sure that there are no blocks in front of the head
1472 	 * with the same cycle number as the head.  This can happen
1473 	 * because we allow multiple outstanding log writes concurrently,
1474 	 * and the later writes might make it out before earlier ones.
1475 	 *
1476 	 * We use the lsn from before modifying it so that we'll never
1477 	 * overwrite the unmount record after a clean unmount.
1478 	 *
1479 	 * Do this only if we are going to recover the filesystem
1480 	 *
1481 	 * NOTE: This used to say "if (!readonly)"
1482 	 * However on Linux, we can & do recover a read-only filesystem.
1483 	 * We only skip recovery if NORECOVERY is specified on mount,
1484 	 * in which case we would not be here.
1485 	 *
1486 	 * But... if the -device- itself is readonly, just skip this.
1487 	 * We can't recover this device anyway, so it won't matter.
1488 	 */
1489 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1490 		error = xlog_clear_stale_blocks(log, tail_lsn);
1491 
1492 done:
1493 	xlog_put_bp(bp);
1494 
1495 	if (error)
1496 		xfs_warn(log->l_mp, "failed to locate log tail");
1497 	return error;
1498 }
1499 
1500 /*
1501  * Is the log zeroed at all?
1502  *
1503  * The last binary search should be changed to perform an X block read
1504  * once X becomes small enough.  You can then search linearly through
1505  * the X blocks.  This will cut down on the number of reads we need to do.
1506  *
1507  * If the log is partially zeroed, this routine will pass back the blkno
1508  * of the first block with cycle number 0.  It won't have a complete LR
1509  * preceding it.
1510  *
1511  * Return:
1512  *	0  => the log is completely written to
1513  *	1 => use *blk_no as the first block of the log
1514  *	<0 => error has occurred
1515  */
1516 STATIC int
1517 xlog_find_zeroed(
1518 	struct xlog	*log,
1519 	xfs_daddr_t	*blk_no)
1520 {
1521 	xfs_buf_t	*bp;
1522 	char		*offset;
1523 	uint	        first_cycle, last_cycle;
1524 	xfs_daddr_t	new_blk, last_blk, start_blk;
1525 	xfs_daddr_t     num_scan_bblks;
1526 	int	        error, log_bbnum = log->l_logBBsize;
1527 
1528 	*blk_no = 0;
1529 
1530 	/* check totally zeroed log */
1531 	bp = xlog_get_bp(log, 1);
1532 	if (!bp)
1533 		return -ENOMEM;
1534 	error = xlog_bread(log, 0, 1, bp, &offset);
1535 	if (error)
1536 		goto bp_err;
1537 
1538 	first_cycle = xlog_get_cycle(offset);
1539 	if (first_cycle == 0) {		/* completely zeroed log */
1540 		*blk_no = 0;
1541 		xlog_put_bp(bp);
1542 		return 1;
1543 	}
1544 
1545 	/* check partially zeroed log */
1546 	error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1547 	if (error)
1548 		goto bp_err;
1549 
1550 	last_cycle = xlog_get_cycle(offset);
1551 	if (last_cycle != 0) {		/* log completely written to */
1552 		xlog_put_bp(bp);
1553 		return 0;
1554 	} else if (first_cycle != 1) {
1555 		/*
1556 		 * If the cycle of the last block is zero, the cycle of
1557 		 * the first block must be 1. If it's not, maybe we're
1558 		 * not looking at a log... Bail out.
1559 		 */
1560 		xfs_warn(log->l_mp,
1561 			"Log inconsistent or not a log (last==0, first!=1)");
1562 		error = -EINVAL;
1563 		goto bp_err;
1564 	}
1565 
1566 	/* we have a partially zeroed log */
1567 	last_blk = log_bbnum-1;
1568 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1569 		goto bp_err;
1570 
1571 	/*
1572 	 * Validate the answer.  Because there is no way to guarantee that
1573 	 * the entire log is made up of log records which are the same size,
1574 	 * we scan over the defined maximum blocks.  At this point, the maximum
1575 	 * is not chosen to mean anything special.   XXXmiken
1576 	 */
1577 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1578 	ASSERT(num_scan_bblks <= INT_MAX);
1579 
1580 	if (last_blk < num_scan_bblks)
1581 		num_scan_bblks = last_blk;
1582 	start_blk = last_blk - num_scan_bblks;
1583 
1584 	/*
1585 	 * We search for any instances of cycle number 0 that occur before
1586 	 * our current estimate of the head.  What we're trying to detect is
1587 	 *        1 ... | 0 | 1 | 0...
1588 	 *                       ^ binary search ends here
1589 	 */
1590 	if ((error = xlog_find_verify_cycle(log, start_blk,
1591 					 (int)num_scan_bblks, 0, &new_blk)))
1592 		goto bp_err;
1593 	if (new_blk != -1)
1594 		last_blk = new_blk;
1595 
1596 	/*
1597 	 * Potentially backup over partial log record write.  We don't need
1598 	 * to search the end of the log because we know it is zero.
1599 	 */
1600 	error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1601 	if (error == 1)
1602 		error = -EIO;
1603 	if (error)
1604 		goto bp_err;
1605 
1606 	*blk_no = last_blk;
1607 bp_err:
1608 	xlog_put_bp(bp);
1609 	if (error)
1610 		return error;
1611 	return 1;
1612 }
1613 
1614 /*
1615  * These are simple subroutines used by xlog_clear_stale_blocks() below
1616  * to initialize a buffer full of empty log record headers and write
1617  * them into the log.
1618  */
1619 STATIC void
1620 xlog_add_record(
1621 	struct xlog		*log,
1622 	char			*buf,
1623 	int			cycle,
1624 	int			block,
1625 	int			tail_cycle,
1626 	int			tail_block)
1627 {
1628 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1629 
1630 	memset(buf, 0, BBSIZE);
1631 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1632 	recp->h_cycle = cpu_to_be32(cycle);
1633 	recp->h_version = cpu_to_be32(
1634 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1635 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1636 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1637 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1638 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1639 }
1640 
1641 STATIC int
1642 xlog_write_log_records(
1643 	struct xlog	*log,
1644 	int		cycle,
1645 	int		start_block,
1646 	int		blocks,
1647 	int		tail_cycle,
1648 	int		tail_block)
1649 {
1650 	char		*offset;
1651 	xfs_buf_t	*bp;
1652 	int		balign, ealign;
1653 	int		sectbb = log->l_sectBBsize;
1654 	int		end_block = start_block + blocks;
1655 	int		bufblks;
1656 	int		error = 0;
1657 	int		i, j = 0;
1658 
1659 	/*
1660 	 * Greedily allocate a buffer big enough to handle the full
1661 	 * range of basic blocks to be written.  If that fails, try
1662 	 * a smaller size.  We need to be able to write at least a
1663 	 * log sector, or we're out of luck.
1664 	 */
1665 	bufblks = 1 << ffs(blocks);
1666 	while (bufblks > log->l_logBBsize)
1667 		bufblks >>= 1;
1668 	while (!(bp = xlog_get_bp(log, bufblks))) {
1669 		bufblks >>= 1;
1670 		if (bufblks < sectbb)
1671 			return -ENOMEM;
1672 	}
1673 
1674 	/* We may need to do a read at the start to fill in part of
1675 	 * the buffer in the starting sector not covered by the first
1676 	 * write below.
1677 	 */
1678 	balign = round_down(start_block, sectbb);
1679 	if (balign != start_block) {
1680 		error = xlog_bread_noalign(log, start_block, 1, bp);
1681 		if (error)
1682 			goto out_put_bp;
1683 
1684 		j = start_block - balign;
1685 	}
1686 
1687 	for (i = start_block; i < end_block; i += bufblks) {
1688 		int		bcount, endcount;
1689 
1690 		bcount = min(bufblks, end_block - start_block);
1691 		endcount = bcount - j;
1692 
1693 		/* We may need to do a read at the end to fill in part of
1694 		 * the buffer in the final sector not covered by the write.
1695 		 * If this is the same sector as the above read, skip it.
1696 		 */
1697 		ealign = round_down(end_block, sectbb);
1698 		if (j == 0 && (start_block + endcount > ealign)) {
1699 			offset = bp->b_addr + BBTOB(ealign - start_block);
1700 			error = xlog_bread_offset(log, ealign, sectbb,
1701 							bp, offset);
1702 			if (error)
1703 				break;
1704 
1705 		}
1706 
1707 		offset = xlog_align(log, start_block, endcount, bp);
1708 		for (; j < endcount; j++) {
1709 			xlog_add_record(log, offset, cycle, i+j,
1710 					tail_cycle, tail_block);
1711 			offset += BBSIZE;
1712 		}
1713 		error = xlog_bwrite(log, start_block, endcount, bp);
1714 		if (error)
1715 			break;
1716 		start_block += endcount;
1717 		j = 0;
1718 	}
1719 
1720  out_put_bp:
1721 	xlog_put_bp(bp);
1722 	return error;
1723 }
1724 
1725 /*
1726  * This routine is called to blow away any incomplete log writes out
1727  * in front of the log head.  We do this so that we won't become confused
1728  * if we come up, write only a little bit more, and then crash again.
1729  * If we leave the partial log records out there, this situation could
1730  * cause us to think those partial writes are valid blocks since they
1731  * have the current cycle number.  We get rid of them by overwriting them
1732  * with empty log records with the old cycle number rather than the
1733  * current one.
1734  *
1735  * The tail lsn is passed in rather than taken from
1736  * the log so that we will not write over the unmount record after a
1737  * clean unmount in a 512 block log.  Doing so would leave the log without
1738  * any valid log records in it until a new one was written.  If we crashed
1739  * during that time we would not be able to recover.
1740  */
1741 STATIC int
1742 xlog_clear_stale_blocks(
1743 	struct xlog	*log,
1744 	xfs_lsn_t	tail_lsn)
1745 {
1746 	int		tail_cycle, head_cycle;
1747 	int		tail_block, head_block;
1748 	int		tail_distance, max_distance;
1749 	int		distance;
1750 	int		error;
1751 
1752 	tail_cycle = CYCLE_LSN(tail_lsn);
1753 	tail_block = BLOCK_LSN(tail_lsn);
1754 	head_cycle = log->l_curr_cycle;
1755 	head_block = log->l_curr_block;
1756 
1757 	/*
1758 	 * Figure out the distance between the new head of the log
1759 	 * and the tail.  We want to write over any blocks beyond the
1760 	 * head that we may have written just before the crash, but
1761 	 * we don't want to overwrite the tail of the log.
1762 	 */
1763 	if (head_cycle == tail_cycle) {
1764 		/*
1765 		 * The tail is behind the head in the physical log,
1766 		 * so the distance from the head to the tail is the
1767 		 * distance from the head to the end of the log plus
1768 		 * the distance from the beginning of the log to the
1769 		 * tail.
1770 		 */
1771 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1772 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1773 					 XFS_ERRLEVEL_LOW, log->l_mp);
1774 			return -EFSCORRUPTED;
1775 		}
1776 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1777 	} else {
1778 		/*
1779 		 * The head is behind the tail in the physical log,
1780 		 * so the distance from the head to the tail is just
1781 		 * the tail block minus the head block.
1782 		 */
1783 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1784 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1785 					 XFS_ERRLEVEL_LOW, log->l_mp);
1786 			return -EFSCORRUPTED;
1787 		}
1788 		tail_distance = tail_block - head_block;
1789 	}
1790 
1791 	/*
1792 	 * If the head is right up against the tail, we can't clear
1793 	 * anything.
1794 	 */
1795 	if (tail_distance <= 0) {
1796 		ASSERT(tail_distance == 0);
1797 		return 0;
1798 	}
1799 
1800 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1801 	/*
1802 	 * Take the smaller of the maximum amount of outstanding I/O
1803 	 * we could have and the distance to the tail to clear out.
1804 	 * We take the smaller so that we don't overwrite the tail and
1805 	 * we don't waste all day writing from the head to the tail
1806 	 * for no reason.
1807 	 */
1808 	max_distance = MIN(max_distance, tail_distance);
1809 
1810 	if ((head_block + max_distance) <= log->l_logBBsize) {
1811 		/*
1812 		 * We can stomp all the blocks we need to without
1813 		 * wrapping around the end of the log.  Just do it
1814 		 * in a single write.  Use the cycle number of the
1815 		 * current cycle minus one so that the log will look like:
1816 		 *     n ... | n - 1 ...
1817 		 */
1818 		error = xlog_write_log_records(log, (head_cycle - 1),
1819 				head_block, max_distance, tail_cycle,
1820 				tail_block);
1821 		if (error)
1822 			return error;
1823 	} else {
1824 		/*
1825 		 * We need to wrap around the end of the physical log in
1826 		 * order to clear all the blocks.  Do it in two separate
1827 		 * I/Os.  The first write should be from the head to the
1828 		 * end of the physical log, and it should use the current
1829 		 * cycle number minus one just like above.
1830 		 */
1831 		distance = log->l_logBBsize - head_block;
1832 		error = xlog_write_log_records(log, (head_cycle - 1),
1833 				head_block, distance, tail_cycle,
1834 				tail_block);
1835 
1836 		if (error)
1837 			return error;
1838 
1839 		/*
1840 		 * Now write the blocks at the start of the physical log.
1841 		 * This writes the remainder of the blocks we want to clear.
1842 		 * It uses the current cycle number since we're now on the
1843 		 * same cycle as the head so that we get:
1844 		 *    n ... n ... | n - 1 ...
1845 		 *    ^^^^^ blocks we're writing
1846 		 */
1847 		distance = max_distance - (log->l_logBBsize - head_block);
1848 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1849 				tail_cycle, tail_block);
1850 		if (error)
1851 			return error;
1852 	}
1853 
1854 	return 0;
1855 }
1856 
1857 /******************************************************************************
1858  *
1859  *		Log recover routines
1860  *
1861  ******************************************************************************
1862  */
1863 
1864 /*
1865  * Sort the log items in the transaction.
1866  *
1867  * The ordering constraints are defined by the inode allocation and unlink
1868  * behaviour. The rules are:
1869  *
1870  *	1. Every item is only logged once in a given transaction. Hence it
1871  *	   represents the last logged state of the item. Hence ordering is
1872  *	   dependent on the order in which operations need to be performed so
1873  *	   required initial conditions are always met.
1874  *
1875  *	2. Cancelled buffers are recorded in pass 1 in a separate table and
1876  *	   there's nothing to replay from them so we can simply cull them
1877  *	   from the transaction. However, we can't do that until after we've
1878  *	   replayed all the other items because they may be dependent on the
1879  *	   cancelled buffer and replaying the cancelled buffer can remove it
1880  *	   form the cancelled buffer table. Hence they have tobe done last.
1881  *
1882  *	3. Inode allocation buffers must be replayed before inode items that
1883  *	   read the buffer and replay changes into it. For filesystems using the
1884  *	   ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1885  *	   treated the same as inode allocation buffers as they create and
1886  *	   initialise the buffers directly.
1887  *
1888  *	4. Inode unlink buffers must be replayed after inode items are replayed.
1889  *	   This ensures that inodes are completely flushed to the inode buffer
1890  *	   in a "free" state before we remove the unlinked inode list pointer.
1891  *
1892  * Hence the ordering needs to be inode allocation buffers first, inode items
1893  * second, inode unlink buffers third and cancelled buffers last.
1894  *
1895  * But there's a problem with that - we can't tell an inode allocation buffer
1896  * apart from a regular buffer, so we can't separate them. We can, however,
1897  * tell an inode unlink buffer from the others, and so we can separate them out
1898  * from all the other buffers and move them to last.
1899  *
1900  * Hence, 4 lists, in order from head to tail:
1901  *	- buffer_list for all buffers except cancelled/inode unlink buffers
1902  *	- item_list for all non-buffer items
1903  *	- inode_buffer_list for inode unlink buffers
1904  *	- cancel_list for the cancelled buffers
1905  *
1906  * Note that we add objects to the tail of the lists so that first-to-last
1907  * ordering is preserved within the lists. Adding objects to the head of the
1908  * list means when we traverse from the head we walk them in last-to-first
1909  * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1910  * but for all other items there may be specific ordering that we need to
1911  * preserve.
1912  */
1913 STATIC int
1914 xlog_recover_reorder_trans(
1915 	struct xlog		*log,
1916 	struct xlog_recover	*trans,
1917 	int			pass)
1918 {
1919 	xlog_recover_item_t	*item, *n;
1920 	int			error = 0;
1921 	LIST_HEAD(sort_list);
1922 	LIST_HEAD(cancel_list);
1923 	LIST_HEAD(buffer_list);
1924 	LIST_HEAD(inode_buffer_list);
1925 	LIST_HEAD(inode_list);
1926 
1927 	list_splice_init(&trans->r_itemq, &sort_list);
1928 	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1929 		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1930 
1931 		switch (ITEM_TYPE(item)) {
1932 		case XFS_LI_ICREATE:
1933 			list_move_tail(&item->ri_list, &buffer_list);
1934 			break;
1935 		case XFS_LI_BUF:
1936 			if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1937 				trace_xfs_log_recover_item_reorder_head(log,
1938 							trans, item, pass);
1939 				list_move(&item->ri_list, &cancel_list);
1940 				break;
1941 			}
1942 			if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1943 				list_move(&item->ri_list, &inode_buffer_list);
1944 				break;
1945 			}
1946 			list_move_tail(&item->ri_list, &buffer_list);
1947 			break;
1948 		case XFS_LI_INODE:
1949 		case XFS_LI_DQUOT:
1950 		case XFS_LI_QUOTAOFF:
1951 		case XFS_LI_EFD:
1952 		case XFS_LI_EFI:
1953 		case XFS_LI_RUI:
1954 		case XFS_LI_RUD:
1955 		case XFS_LI_CUI:
1956 		case XFS_LI_CUD:
1957 		case XFS_LI_BUI:
1958 		case XFS_LI_BUD:
1959 			trace_xfs_log_recover_item_reorder_tail(log,
1960 							trans, item, pass);
1961 			list_move_tail(&item->ri_list, &inode_list);
1962 			break;
1963 		default:
1964 			xfs_warn(log->l_mp,
1965 				"%s: unrecognized type of log operation",
1966 				__func__);
1967 			ASSERT(0);
1968 			/*
1969 			 * return the remaining items back to the transaction
1970 			 * item list so they can be freed in caller.
1971 			 */
1972 			if (!list_empty(&sort_list))
1973 				list_splice_init(&sort_list, &trans->r_itemq);
1974 			error = -EIO;
1975 			goto out;
1976 		}
1977 	}
1978 out:
1979 	ASSERT(list_empty(&sort_list));
1980 	if (!list_empty(&buffer_list))
1981 		list_splice(&buffer_list, &trans->r_itemq);
1982 	if (!list_empty(&inode_list))
1983 		list_splice_tail(&inode_list, &trans->r_itemq);
1984 	if (!list_empty(&inode_buffer_list))
1985 		list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1986 	if (!list_empty(&cancel_list))
1987 		list_splice_tail(&cancel_list, &trans->r_itemq);
1988 	return error;
1989 }
1990 
1991 /*
1992  * Build up the table of buf cancel records so that we don't replay
1993  * cancelled data in the second pass.  For buffer records that are
1994  * not cancel records, there is nothing to do here so we just return.
1995  *
1996  * If we get a cancel record which is already in the table, this indicates
1997  * that the buffer was cancelled multiple times.  In order to ensure
1998  * that during pass 2 we keep the record in the table until we reach its
1999  * last occurrence in the log, we keep a reference count in the cancel
2000  * record in the table to tell us how many times we expect to see this
2001  * record during the second pass.
2002  */
2003 STATIC int
2004 xlog_recover_buffer_pass1(
2005 	struct xlog			*log,
2006 	struct xlog_recover_item	*item)
2007 {
2008 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2009 	struct list_head	*bucket;
2010 	struct xfs_buf_cancel	*bcp;
2011 
2012 	/*
2013 	 * If this isn't a cancel buffer item, then just return.
2014 	 */
2015 	if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
2016 		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
2017 		return 0;
2018 	}
2019 
2020 	/*
2021 	 * Insert an xfs_buf_cancel record into the hash table of them.
2022 	 * If there is already an identical record, bump its reference count.
2023 	 */
2024 	bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
2025 	list_for_each_entry(bcp, bucket, bc_list) {
2026 		if (bcp->bc_blkno == buf_f->blf_blkno &&
2027 		    bcp->bc_len == buf_f->blf_len) {
2028 			bcp->bc_refcount++;
2029 			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
2030 			return 0;
2031 		}
2032 	}
2033 
2034 	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
2035 	bcp->bc_blkno = buf_f->blf_blkno;
2036 	bcp->bc_len = buf_f->blf_len;
2037 	bcp->bc_refcount = 1;
2038 	list_add_tail(&bcp->bc_list, bucket);
2039 
2040 	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
2041 	return 0;
2042 }
2043 
2044 /*
2045  * Check to see whether the buffer being recovered has a corresponding
2046  * entry in the buffer cancel record table. If it is, return the cancel
2047  * buffer structure to the caller.
2048  */
2049 STATIC struct xfs_buf_cancel *
2050 xlog_peek_buffer_cancelled(
2051 	struct xlog		*log,
2052 	xfs_daddr_t		blkno,
2053 	uint			len,
2054 	unsigned short			flags)
2055 {
2056 	struct list_head	*bucket;
2057 	struct xfs_buf_cancel	*bcp;
2058 
2059 	if (!log->l_buf_cancel_table) {
2060 		/* empty table means no cancelled buffers in the log */
2061 		ASSERT(!(flags & XFS_BLF_CANCEL));
2062 		return NULL;
2063 	}
2064 
2065 	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
2066 	list_for_each_entry(bcp, bucket, bc_list) {
2067 		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
2068 			return bcp;
2069 	}
2070 
2071 	/*
2072 	 * We didn't find a corresponding entry in the table, so return 0 so
2073 	 * that the buffer is NOT cancelled.
2074 	 */
2075 	ASSERT(!(flags & XFS_BLF_CANCEL));
2076 	return NULL;
2077 }
2078 
2079 /*
2080  * If the buffer is being cancelled then return 1 so that it will be cancelled,
2081  * otherwise return 0.  If the buffer is actually a buffer cancel item
2082  * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2083  * table and remove it from the table if this is the last reference.
2084  *
2085  * We remove the cancel record from the table when we encounter its last
2086  * occurrence in the log so that if the same buffer is re-used again after its
2087  * last cancellation we actually replay the changes made at that point.
2088  */
2089 STATIC int
2090 xlog_check_buffer_cancelled(
2091 	struct xlog		*log,
2092 	xfs_daddr_t		blkno,
2093 	uint			len,
2094 	unsigned short			flags)
2095 {
2096 	struct xfs_buf_cancel	*bcp;
2097 
2098 	bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2099 	if (!bcp)
2100 		return 0;
2101 
2102 	/*
2103 	 * We've go a match, so return 1 so that the recovery of this buffer
2104 	 * is cancelled.  If this buffer is actually a buffer cancel log
2105 	 * item, then decrement the refcount on the one in the table and
2106 	 * remove it if this is the last reference.
2107 	 */
2108 	if (flags & XFS_BLF_CANCEL) {
2109 		if (--bcp->bc_refcount == 0) {
2110 			list_del(&bcp->bc_list);
2111 			kmem_free(bcp);
2112 		}
2113 	}
2114 	return 1;
2115 }
2116 
2117 /*
2118  * Perform recovery for a buffer full of inodes.  In these buffers, the only
2119  * data which should be recovered is that which corresponds to the
2120  * di_next_unlinked pointers in the on disk inode structures.  The rest of the
2121  * data for the inodes is always logged through the inodes themselves rather
2122  * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2123  *
2124  * The only time when buffers full of inodes are fully recovered is when the
2125  * buffer is full of newly allocated inodes.  In this case the buffer will
2126  * not be marked as an inode buffer and so will be sent to
2127  * xlog_recover_do_reg_buffer() below during recovery.
2128  */
2129 STATIC int
2130 xlog_recover_do_inode_buffer(
2131 	struct xfs_mount	*mp,
2132 	xlog_recover_item_t	*item,
2133 	struct xfs_buf		*bp,
2134 	xfs_buf_log_format_t	*buf_f)
2135 {
2136 	int			i;
2137 	int			item_index = 0;
2138 	int			bit = 0;
2139 	int			nbits = 0;
2140 	int			reg_buf_offset = 0;
2141 	int			reg_buf_bytes = 0;
2142 	int			next_unlinked_offset;
2143 	int			inodes_per_buf;
2144 	xfs_agino_t		*logged_nextp;
2145 	xfs_agino_t		*buffer_nextp;
2146 
2147 	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2148 
2149 	/*
2150 	 * Post recovery validation only works properly on CRC enabled
2151 	 * filesystems.
2152 	 */
2153 	if (xfs_sb_version_hascrc(&mp->m_sb))
2154 		bp->b_ops = &xfs_inode_buf_ops;
2155 
2156 	inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
2157 	for (i = 0; i < inodes_per_buf; i++) {
2158 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2159 			offsetof(xfs_dinode_t, di_next_unlinked);
2160 
2161 		while (next_unlinked_offset >=
2162 		       (reg_buf_offset + reg_buf_bytes)) {
2163 			/*
2164 			 * The next di_next_unlinked field is beyond
2165 			 * the current logged region.  Find the next
2166 			 * logged region that contains or is beyond
2167 			 * the current di_next_unlinked field.
2168 			 */
2169 			bit += nbits;
2170 			bit = xfs_next_bit(buf_f->blf_data_map,
2171 					   buf_f->blf_map_size, bit);
2172 
2173 			/*
2174 			 * If there are no more logged regions in the
2175 			 * buffer, then we're done.
2176 			 */
2177 			if (bit == -1)
2178 				return 0;
2179 
2180 			nbits = xfs_contig_bits(buf_f->blf_data_map,
2181 						buf_f->blf_map_size, bit);
2182 			ASSERT(nbits > 0);
2183 			reg_buf_offset = bit << XFS_BLF_SHIFT;
2184 			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2185 			item_index++;
2186 		}
2187 
2188 		/*
2189 		 * If the current logged region starts after the current
2190 		 * di_next_unlinked field, then move on to the next
2191 		 * di_next_unlinked field.
2192 		 */
2193 		if (next_unlinked_offset < reg_buf_offset)
2194 			continue;
2195 
2196 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
2197 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2198 		ASSERT((reg_buf_offset + reg_buf_bytes) <=
2199 							BBTOB(bp->b_io_length));
2200 
2201 		/*
2202 		 * The current logged region contains a copy of the
2203 		 * current di_next_unlinked field.  Extract its value
2204 		 * and copy it to the buffer copy.
2205 		 */
2206 		logged_nextp = item->ri_buf[item_index].i_addr +
2207 				next_unlinked_offset - reg_buf_offset;
2208 		if (unlikely(*logged_nextp == 0)) {
2209 			xfs_alert(mp,
2210 		"Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
2211 		"Trying to replay bad (0) inode di_next_unlinked field.",
2212 				item, bp);
2213 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2214 					 XFS_ERRLEVEL_LOW, mp);
2215 			return -EFSCORRUPTED;
2216 		}
2217 
2218 		buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
2219 		*buffer_nextp = *logged_nextp;
2220 
2221 		/*
2222 		 * If necessary, recalculate the CRC in the on-disk inode. We
2223 		 * have to leave the inode in a consistent state for whoever
2224 		 * reads it next....
2225 		 */
2226 		xfs_dinode_calc_crc(mp,
2227 				xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2228 
2229 	}
2230 
2231 	return 0;
2232 }
2233 
2234 /*
2235  * V5 filesystems know the age of the buffer on disk being recovered. We can
2236  * have newer objects on disk than we are replaying, and so for these cases we
2237  * don't want to replay the current change as that will make the buffer contents
2238  * temporarily invalid on disk.
2239  *
2240  * The magic number might not match the buffer type we are going to recover
2241  * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
2242  * extract the LSN of the existing object in the buffer based on it's current
2243  * magic number.  If we don't recognise the magic number in the buffer, then
2244  * return a LSN of -1 so that the caller knows it was an unrecognised block and
2245  * so can recover the buffer.
2246  *
2247  * Note: we cannot rely solely on magic number matches to determine that the
2248  * buffer has a valid LSN - we also need to verify that it belongs to this
2249  * filesystem, so we need to extract the object's LSN and compare it to that
2250  * which we read from the superblock. If the UUIDs don't match, then we've got a
2251  * stale metadata block from an old filesystem instance that we need to recover
2252  * over the top of.
2253  */
2254 static xfs_lsn_t
2255 xlog_recover_get_buf_lsn(
2256 	struct xfs_mount	*mp,
2257 	struct xfs_buf		*bp)
2258 {
2259 	uint32_t		magic32;
2260 	uint16_t		magic16;
2261 	uint16_t		magicda;
2262 	void			*blk = bp->b_addr;
2263 	uuid_t			*uuid;
2264 	xfs_lsn_t		lsn = -1;
2265 
2266 	/* v4 filesystems always recover immediately */
2267 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2268 		goto recover_immediately;
2269 
2270 	magic32 = be32_to_cpu(*(__be32 *)blk);
2271 	switch (magic32) {
2272 	case XFS_ABTB_CRC_MAGIC:
2273 	case XFS_ABTC_CRC_MAGIC:
2274 	case XFS_ABTB_MAGIC:
2275 	case XFS_ABTC_MAGIC:
2276 	case XFS_RMAP_CRC_MAGIC:
2277 	case XFS_REFC_CRC_MAGIC:
2278 	case XFS_IBT_CRC_MAGIC:
2279 	case XFS_IBT_MAGIC: {
2280 		struct xfs_btree_block *btb = blk;
2281 
2282 		lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2283 		uuid = &btb->bb_u.s.bb_uuid;
2284 		break;
2285 	}
2286 	case XFS_BMAP_CRC_MAGIC:
2287 	case XFS_BMAP_MAGIC: {
2288 		struct xfs_btree_block *btb = blk;
2289 
2290 		lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2291 		uuid = &btb->bb_u.l.bb_uuid;
2292 		break;
2293 	}
2294 	case XFS_AGF_MAGIC:
2295 		lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2296 		uuid = &((struct xfs_agf *)blk)->agf_uuid;
2297 		break;
2298 	case XFS_AGFL_MAGIC:
2299 		lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2300 		uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2301 		break;
2302 	case XFS_AGI_MAGIC:
2303 		lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2304 		uuid = &((struct xfs_agi *)blk)->agi_uuid;
2305 		break;
2306 	case XFS_SYMLINK_MAGIC:
2307 		lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2308 		uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2309 		break;
2310 	case XFS_DIR3_BLOCK_MAGIC:
2311 	case XFS_DIR3_DATA_MAGIC:
2312 	case XFS_DIR3_FREE_MAGIC:
2313 		lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2314 		uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2315 		break;
2316 	case XFS_ATTR3_RMT_MAGIC:
2317 		/*
2318 		 * Remote attr blocks are written synchronously, rather than
2319 		 * being logged. That means they do not contain a valid LSN
2320 		 * (i.e. transactionally ordered) in them, and hence any time we
2321 		 * see a buffer to replay over the top of a remote attribute
2322 		 * block we should simply do so.
2323 		 */
2324 		goto recover_immediately;
2325 	case XFS_SB_MAGIC:
2326 		/*
2327 		 * superblock uuids are magic. We may or may not have a
2328 		 * sb_meta_uuid on disk, but it will be set in the in-core
2329 		 * superblock. We set the uuid pointer for verification
2330 		 * according to the superblock feature mask to ensure we check
2331 		 * the relevant UUID in the superblock.
2332 		 */
2333 		lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2334 		if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2335 			uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2336 		else
2337 			uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2338 		break;
2339 	default:
2340 		break;
2341 	}
2342 
2343 	if (lsn != (xfs_lsn_t)-1) {
2344 		if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2345 			goto recover_immediately;
2346 		return lsn;
2347 	}
2348 
2349 	magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2350 	switch (magicda) {
2351 	case XFS_DIR3_LEAF1_MAGIC:
2352 	case XFS_DIR3_LEAFN_MAGIC:
2353 	case XFS_DA3_NODE_MAGIC:
2354 		lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2355 		uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2356 		break;
2357 	default:
2358 		break;
2359 	}
2360 
2361 	if (lsn != (xfs_lsn_t)-1) {
2362 		if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2363 			goto recover_immediately;
2364 		return lsn;
2365 	}
2366 
2367 	/*
2368 	 * We do individual object checks on dquot and inode buffers as they
2369 	 * have their own individual LSN records. Also, we could have a stale
2370 	 * buffer here, so we have to at least recognise these buffer types.
2371 	 *
2372 	 * A notd complexity here is inode unlinked list processing - it logs
2373 	 * the inode directly in the buffer, but we don't know which inodes have
2374 	 * been modified, and there is no global buffer LSN. Hence we need to
2375 	 * recover all inode buffer types immediately. This problem will be
2376 	 * fixed by logical logging of the unlinked list modifications.
2377 	 */
2378 	magic16 = be16_to_cpu(*(__be16 *)blk);
2379 	switch (magic16) {
2380 	case XFS_DQUOT_MAGIC:
2381 	case XFS_DINODE_MAGIC:
2382 		goto recover_immediately;
2383 	default:
2384 		break;
2385 	}
2386 
2387 	/* unknown buffer contents, recover immediately */
2388 
2389 recover_immediately:
2390 	return (xfs_lsn_t)-1;
2391 
2392 }
2393 
2394 /*
2395  * Validate the recovered buffer is of the correct type and attach the
2396  * appropriate buffer operations to them for writeback. Magic numbers are in a
2397  * few places:
2398  *	the first 16 bits of the buffer (inode buffer, dquot buffer),
2399  *	the first 32 bits of the buffer (most blocks),
2400  *	inside a struct xfs_da_blkinfo at the start of the buffer.
2401  */
2402 static void
2403 xlog_recover_validate_buf_type(
2404 	struct xfs_mount	*mp,
2405 	struct xfs_buf		*bp,
2406 	xfs_buf_log_format_t	*buf_f,
2407 	xfs_lsn_t		current_lsn)
2408 {
2409 	struct xfs_da_blkinfo	*info = bp->b_addr;
2410 	uint32_t		magic32;
2411 	uint16_t		magic16;
2412 	uint16_t		magicda;
2413 	char			*warnmsg = NULL;
2414 
2415 	/*
2416 	 * We can only do post recovery validation on items on CRC enabled
2417 	 * fielsystems as we need to know when the buffer was written to be able
2418 	 * to determine if we should have replayed the item. If we replay old
2419 	 * metadata over a newer buffer, then it will enter a temporarily
2420 	 * inconsistent state resulting in verification failures. Hence for now
2421 	 * just avoid the verification stage for non-crc filesystems
2422 	 */
2423 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2424 		return;
2425 
2426 	magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2427 	magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2428 	magicda = be16_to_cpu(info->magic);
2429 	switch (xfs_blft_from_flags(buf_f)) {
2430 	case XFS_BLFT_BTREE_BUF:
2431 		switch (magic32) {
2432 		case XFS_ABTB_CRC_MAGIC:
2433 		case XFS_ABTC_CRC_MAGIC:
2434 		case XFS_ABTB_MAGIC:
2435 		case XFS_ABTC_MAGIC:
2436 			bp->b_ops = &xfs_allocbt_buf_ops;
2437 			break;
2438 		case XFS_IBT_CRC_MAGIC:
2439 		case XFS_FIBT_CRC_MAGIC:
2440 		case XFS_IBT_MAGIC:
2441 		case XFS_FIBT_MAGIC:
2442 			bp->b_ops = &xfs_inobt_buf_ops;
2443 			break;
2444 		case XFS_BMAP_CRC_MAGIC:
2445 		case XFS_BMAP_MAGIC:
2446 			bp->b_ops = &xfs_bmbt_buf_ops;
2447 			break;
2448 		case XFS_RMAP_CRC_MAGIC:
2449 			bp->b_ops = &xfs_rmapbt_buf_ops;
2450 			break;
2451 		case XFS_REFC_CRC_MAGIC:
2452 			bp->b_ops = &xfs_refcountbt_buf_ops;
2453 			break;
2454 		default:
2455 			warnmsg = "Bad btree block magic!";
2456 			break;
2457 		}
2458 		break;
2459 	case XFS_BLFT_AGF_BUF:
2460 		if (magic32 != XFS_AGF_MAGIC) {
2461 			warnmsg = "Bad AGF block magic!";
2462 			break;
2463 		}
2464 		bp->b_ops = &xfs_agf_buf_ops;
2465 		break;
2466 	case XFS_BLFT_AGFL_BUF:
2467 		if (magic32 != XFS_AGFL_MAGIC) {
2468 			warnmsg = "Bad AGFL block magic!";
2469 			break;
2470 		}
2471 		bp->b_ops = &xfs_agfl_buf_ops;
2472 		break;
2473 	case XFS_BLFT_AGI_BUF:
2474 		if (magic32 != XFS_AGI_MAGIC) {
2475 			warnmsg = "Bad AGI block magic!";
2476 			break;
2477 		}
2478 		bp->b_ops = &xfs_agi_buf_ops;
2479 		break;
2480 	case XFS_BLFT_UDQUOT_BUF:
2481 	case XFS_BLFT_PDQUOT_BUF:
2482 	case XFS_BLFT_GDQUOT_BUF:
2483 #ifdef CONFIG_XFS_QUOTA
2484 		if (magic16 != XFS_DQUOT_MAGIC) {
2485 			warnmsg = "Bad DQUOT block magic!";
2486 			break;
2487 		}
2488 		bp->b_ops = &xfs_dquot_buf_ops;
2489 #else
2490 		xfs_alert(mp,
2491 	"Trying to recover dquots without QUOTA support built in!");
2492 		ASSERT(0);
2493 #endif
2494 		break;
2495 	case XFS_BLFT_DINO_BUF:
2496 		if (magic16 != XFS_DINODE_MAGIC) {
2497 			warnmsg = "Bad INODE block magic!";
2498 			break;
2499 		}
2500 		bp->b_ops = &xfs_inode_buf_ops;
2501 		break;
2502 	case XFS_BLFT_SYMLINK_BUF:
2503 		if (magic32 != XFS_SYMLINK_MAGIC) {
2504 			warnmsg = "Bad symlink block magic!";
2505 			break;
2506 		}
2507 		bp->b_ops = &xfs_symlink_buf_ops;
2508 		break;
2509 	case XFS_BLFT_DIR_BLOCK_BUF:
2510 		if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2511 		    magic32 != XFS_DIR3_BLOCK_MAGIC) {
2512 			warnmsg = "Bad dir block magic!";
2513 			break;
2514 		}
2515 		bp->b_ops = &xfs_dir3_block_buf_ops;
2516 		break;
2517 	case XFS_BLFT_DIR_DATA_BUF:
2518 		if (magic32 != XFS_DIR2_DATA_MAGIC &&
2519 		    magic32 != XFS_DIR3_DATA_MAGIC) {
2520 			warnmsg = "Bad dir data magic!";
2521 			break;
2522 		}
2523 		bp->b_ops = &xfs_dir3_data_buf_ops;
2524 		break;
2525 	case XFS_BLFT_DIR_FREE_BUF:
2526 		if (magic32 != XFS_DIR2_FREE_MAGIC &&
2527 		    magic32 != XFS_DIR3_FREE_MAGIC) {
2528 			warnmsg = "Bad dir3 free magic!";
2529 			break;
2530 		}
2531 		bp->b_ops = &xfs_dir3_free_buf_ops;
2532 		break;
2533 	case XFS_BLFT_DIR_LEAF1_BUF:
2534 		if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2535 		    magicda != XFS_DIR3_LEAF1_MAGIC) {
2536 			warnmsg = "Bad dir leaf1 magic!";
2537 			break;
2538 		}
2539 		bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2540 		break;
2541 	case XFS_BLFT_DIR_LEAFN_BUF:
2542 		if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2543 		    magicda != XFS_DIR3_LEAFN_MAGIC) {
2544 			warnmsg = "Bad dir leafn magic!";
2545 			break;
2546 		}
2547 		bp->b_ops = &xfs_dir3_leafn_buf_ops;
2548 		break;
2549 	case XFS_BLFT_DA_NODE_BUF:
2550 		if (magicda != XFS_DA_NODE_MAGIC &&
2551 		    magicda != XFS_DA3_NODE_MAGIC) {
2552 			warnmsg = "Bad da node magic!";
2553 			break;
2554 		}
2555 		bp->b_ops = &xfs_da3_node_buf_ops;
2556 		break;
2557 	case XFS_BLFT_ATTR_LEAF_BUF:
2558 		if (magicda != XFS_ATTR_LEAF_MAGIC &&
2559 		    magicda != XFS_ATTR3_LEAF_MAGIC) {
2560 			warnmsg = "Bad attr leaf magic!";
2561 			break;
2562 		}
2563 		bp->b_ops = &xfs_attr3_leaf_buf_ops;
2564 		break;
2565 	case XFS_BLFT_ATTR_RMT_BUF:
2566 		if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2567 			warnmsg = "Bad attr remote magic!";
2568 			break;
2569 		}
2570 		bp->b_ops = &xfs_attr3_rmt_buf_ops;
2571 		break;
2572 	case XFS_BLFT_SB_BUF:
2573 		if (magic32 != XFS_SB_MAGIC) {
2574 			warnmsg = "Bad SB block magic!";
2575 			break;
2576 		}
2577 		bp->b_ops = &xfs_sb_buf_ops;
2578 		break;
2579 #ifdef CONFIG_XFS_RT
2580 	case XFS_BLFT_RTBITMAP_BUF:
2581 	case XFS_BLFT_RTSUMMARY_BUF:
2582 		/* no magic numbers for verification of RT buffers */
2583 		bp->b_ops = &xfs_rtbuf_ops;
2584 		break;
2585 #endif /* CONFIG_XFS_RT */
2586 	default:
2587 		xfs_warn(mp, "Unknown buffer type %d!",
2588 			 xfs_blft_from_flags(buf_f));
2589 		break;
2590 	}
2591 
2592 	/*
2593 	 * Nothing else to do in the case of a NULL current LSN as this means
2594 	 * the buffer is more recent than the change in the log and will be
2595 	 * skipped.
2596 	 */
2597 	if (current_lsn == NULLCOMMITLSN)
2598 		return;
2599 
2600 	if (warnmsg) {
2601 		xfs_warn(mp, warnmsg);
2602 		ASSERT(0);
2603 	}
2604 
2605 	/*
2606 	 * We must update the metadata LSN of the buffer as it is written out to
2607 	 * ensure that older transactions never replay over this one and corrupt
2608 	 * the buffer. This can occur if log recovery is interrupted at some
2609 	 * point after the current transaction completes, at which point a
2610 	 * subsequent mount starts recovery from the beginning.
2611 	 *
2612 	 * Write verifiers update the metadata LSN from log items attached to
2613 	 * the buffer. Therefore, initialize a bli purely to carry the LSN to
2614 	 * the verifier. We'll clean it up in our ->iodone() callback.
2615 	 */
2616 	if (bp->b_ops) {
2617 		struct xfs_buf_log_item	*bip;
2618 
2619 		ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
2620 		bp->b_iodone = xlog_recover_iodone;
2621 		xfs_buf_item_init(bp, mp);
2622 		bip = bp->b_fspriv;
2623 		bip->bli_item.li_lsn = current_lsn;
2624 	}
2625 }
2626 
2627 /*
2628  * Perform a 'normal' buffer recovery.  Each logged region of the
2629  * buffer should be copied over the corresponding region in the
2630  * given buffer.  The bitmap in the buf log format structure indicates
2631  * where to place the logged data.
2632  */
2633 STATIC void
2634 xlog_recover_do_reg_buffer(
2635 	struct xfs_mount	*mp,
2636 	xlog_recover_item_t	*item,
2637 	struct xfs_buf		*bp,
2638 	xfs_buf_log_format_t	*buf_f,
2639 	xfs_lsn_t		current_lsn)
2640 {
2641 	int			i;
2642 	int			bit;
2643 	int			nbits;
2644 	int                     error;
2645 
2646 	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2647 
2648 	bit = 0;
2649 	i = 1;  /* 0 is the buf format structure */
2650 	while (1) {
2651 		bit = xfs_next_bit(buf_f->blf_data_map,
2652 				   buf_f->blf_map_size, bit);
2653 		if (bit == -1)
2654 			break;
2655 		nbits = xfs_contig_bits(buf_f->blf_data_map,
2656 					buf_f->blf_map_size, bit);
2657 		ASSERT(nbits > 0);
2658 		ASSERT(item->ri_buf[i].i_addr != NULL);
2659 		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2660 		ASSERT(BBTOB(bp->b_io_length) >=
2661 		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2662 
2663 		/*
2664 		 * The dirty regions logged in the buffer, even though
2665 		 * contiguous, may span multiple chunks. This is because the
2666 		 * dirty region may span a physical page boundary in a buffer
2667 		 * and hence be split into two separate vectors for writing into
2668 		 * the log. Hence we need to trim nbits back to the length of
2669 		 * the current region being copied out of the log.
2670 		 */
2671 		if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2672 			nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2673 
2674 		/*
2675 		 * Do a sanity check if this is a dquot buffer. Just checking
2676 		 * the first dquot in the buffer should do. XXXThis is
2677 		 * probably a good thing to do for other buf types also.
2678 		 */
2679 		error = 0;
2680 		if (buf_f->blf_flags &
2681 		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2682 			if (item->ri_buf[i].i_addr == NULL) {
2683 				xfs_alert(mp,
2684 					"XFS: NULL dquot in %s.", __func__);
2685 				goto next;
2686 			}
2687 			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2688 				xfs_alert(mp,
2689 					"XFS: dquot too small (%d) in %s.",
2690 					item->ri_buf[i].i_len, __func__);
2691 				goto next;
2692 			}
2693 			error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
2694 					       -1, 0, XFS_QMOPT_DOWARN,
2695 					       "dquot_buf_recover");
2696 			if (error)
2697 				goto next;
2698 		}
2699 
2700 		memcpy(xfs_buf_offset(bp,
2701 			(uint)bit << XFS_BLF_SHIFT),	/* dest */
2702 			item->ri_buf[i].i_addr,		/* source */
2703 			nbits<<XFS_BLF_SHIFT);		/* length */
2704  next:
2705 		i++;
2706 		bit += nbits;
2707 	}
2708 
2709 	/* Shouldn't be any more regions */
2710 	ASSERT(i == item->ri_total);
2711 
2712 	xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
2713 }
2714 
2715 /*
2716  * Perform a dquot buffer recovery.
2717  * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2718  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2719  * Else, treat it as a regular buffer and do recovery.
2720  *
2721  * Return false if the buffer was tossed and true if we recovered the buffer to
2722  * indicate to the caller if the buffer needs writing.
2723  */
2724 STATIC bool
2725 xlog_recover_do_dquot_buffer(
2726 	struct xfs_mount		*mp,
2727 	struct xlog			*log,
2728 	struct xlog_recover_item	*item,
2729 	struct xfs_buf			*bp,
2730 	struct xfs_buf_log_format	*buf_f)
2731 {
2732 	uint			type;
2733 
2734 	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2735 
2736 	/*
2737 	 * Filesystems are required to send in quota flags at mount time.
2738 	 */
2739 	if (!mp->m_qflags)
2740 		return false;
2741 
2742 	type = 0;
2743 	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2744 		type |= XFS_DQ_USER;
2745 	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2746 		type |= XFS_DQ_PROJ;
2747 	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2748 		type |= XFS_DQ_GROUP;
2749 	/*
2750 	 * This type of quotas was turned off, so ignore this buffer
2751 	 */
2752 	if (log->l_quotaoffs_flag & type)
2753 		return false;
2754 
2755 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
2756 	return true;
2757 }
2758 
2759 /*
2760  * This routine replays a modification made to a buffer at runtime.
2761  * There are actually two types of buffer, regular and inode, which
2762  * are handled differently.  Inode buffers are handled differently
2763  * in that we only recover a specific set of data from them, namely
2764  * the inode di_next_unlinked fields.  This is because all other inode
2765  * data is actually logged via inode records and any data we replay
2766  * here which overlaps that may be stale.
2767  *
2768  * When meta-data buffers are freed at run time we log a buffer item
2769  * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2770  * of the buffer in the log should not be replayed at recovery time.
2771  * This is so that if the blocks covered by the buffer are reused for
2772  * file data before we crash we don't end up replaying old, freed
2773  * meta-data into a user's file.
2774  *
2775  * To handle the cancellation of buffer log items, we make two passes
2776  * over the log during recovery.  During the first we build a table of
2777  * those buffers which have been cancelled, and during the second we
2778  * only replay those buffers which do not have corresponding cancel
2779  * records in the table.  See xlog_recover_buffer_pass[1,2] above
2780  * for more details on the implementation of the table of cancel records.
2781  */
2782 STATIC int
2783 xlog_recover_buffer_pass2(
2784 	struct xlog			*log,
2785 	struct list_head		*buffer_list,
2786 	struct xlog_recover_item	*item,
2787 	xfs_lsn_t			current_lsn)
2788 {
2789 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2790 	xfs_mount_t		*mp = log->l_mp;
2791 	xfs_buf_t		*bp;
2792 	int			error;
2793 	uint			buf_flags;
2794 	xfs_lsn_t		lsn;
2795 
2796 	/*
2797 	 * In this pass we only want to recover all the buffers which have
2798 	 * not been cancelled and are not cancellation buffers themselves.
2799 	 */
2800 	if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2801 			buf_f->blf_len, buf_f->blf_flags)) {
2802 		trace_xfs_log_recover_buf_cancel(log, buf_f);
2803 		return 0;
2804 	}
2805 
2806 	trace_xfs_log_recover_buf_recover(log, buf_f);
2807 
2808 	buf_flags = 0;
2809 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2810 		buf_flags |= XBF_UNMAPPED;
2811 
2812 	bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2813 			  buf_flags, NULL);
2814 	if (!bp)
2815 		return -ENOMEM;
2816 	error = bp->b_error;
2817 	if (error) {
2818 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2819 		goto out_release;
2820 	}
2821 
2822 	/*
2823 	 * Recover the buffer only if we get an LSN from it and it's less than
2824 	 * the lsn of the transaction we are replaying.
2825 	 *
2826 	 * Note that we have to be extremely careful of readahead here.
2827 	 * Readahead does not attach verfiers to the buffers so if we don't
2828 	 * actually do any replay after readahead because of the LSN we found
2829 	 * in the buffer if more recent than that current transaction then we
2830 	 * need to attach the verifier directly. Failure to do so can lead to
2831 	 * future recovery actions (e.g. EFI and unlinked list recovery) can
2832 	 * operate on the buffers and they won't get the verifier attached. This
2833 	 * can lead to blocks on disk having the correct content but a stale
2834 	 * CRC.
2835 	 *
2836 	 * It is safe to assume these clean buffers are currently up to date.
2837 	 * If the buffer is dirtied by a later transaction being replayed, then
2838 	 * the verifier will be reset to match whatever recover turns that
2839 	 * buffer into.
2840 	 */
2841 	lsn = xlog_recover_get_buf_lsn(mp, bp);
2842 	if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2843 		trace_xfs_log_recover_buf_skip(log, buf_f);
2844 		xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
2845 		goto out_release;
2846 	}
2847 
2848 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2849 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2850 		if (error)
2851 			goto out_release;
2852 	} else if (buf_f->blf_flags &
2853 		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2854 		bool	dirty;
2855 
2856 		dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2857 		if (!dirty)
2858 			goto out_release;
2859 	} else {
2860 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
2861 	}
2862 
2863 	/*
2864 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2865 	 * slower when taking into account all the buffers to be flushed.
2866 	 *
2867 	 * Also make sure that only inode buffers with good sizes stay in
2868 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2869 	 * or mp->m_inode_cluster_size bytes, whichever is bigger.  The inode
2870 	 * buffers in the log can be a different size if the log was generated
2871 	 * by an older kernel using unclustered inode buffers or a newer kernel
2872 	 * running with a different inode cluster size.  Regardless, if the
2873 	 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2874 	 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2875 	 * the buffer out of the buffer cache so that the buffer won't
2876 	 * overlap with future reads of those inodes.
2877 	 */
2878 	if (XFS_DINODE_MAGIC ==
2879 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2880 	    (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2881 			(uint32_t)log->l_mp->m_inode_cluster_size))) {
2882 		xfs_buf_stale(bp);
2883 		error = xfs_bwrite(bp);
2884 	} else {
2885 		ASSERT(bp->b_target->bt_mount == mp);
2886 		bp->b_iodone = xlog_recover_iodone;
2887 		xfs_buf_delwri_queue(bp, buffer_list);
2888 	}
2889 
2890 out_release:
2891 	xfs_buf_relse(bp);
2892 	return error;
2893 }
2894 
2895 /*
2896  * Inode fork owner changes
2897  *
2898  * If we have been told that we have to reparent the inode fork, it's because an
2899  * extent swap operation on a CRC enabled filesystem has been done and we are
2900  * replaying it. We need to walk the BMBT of the appropriate fork and change the
2901  * owners of it.
2902  *
2903  * The complexity here is that we don't have an inode context to work with, so
2904  * after we've replayed the inode we need to instantiate one.  This is where the
2905  * fun begins.
2906  *
2907  * We are in the middle of log recovery, so we can't run transactions. That
2908  * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2909  * that will result in the corresponding iput() running the inode through
2910  * xfs_inactive(). If we've just replayed an inode core that changes the link
2911  * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2912  * transactions (bad!).
2913  *
2914  * So, to avoid this, we instantiate an inode directly from the inode core we've
2915  * just recovered. We have the buffer still locked, and all we really need to
2916  * instantiate is the inode core and the forks being modified. We can do this
2917  * manually, then run the inode btree owner change, and then tear down the
2918  * xfs_inode without having to run any transactions at all.
2919  *
2920  * Also, because we don't have a transaction context available here but need to
2921  * gather all the buffers we modify for writeback so we pass the buffer_list
2922  * instead for the operation to use.
2923  */
2924 
2925 STATIC int
2926 xfs_recover_inode_owner_change(
2927 	struct xfs_mount	*mp,
2928 	struct xfs_dinode	*dip,
2929 	struct xfs_inode_log_format *in_f,
2930 	struct list_head	*buffer_list)
2931 {
2932 	struct xfs_inode	*ip;
2933 	int			error;
2934 
2935 	ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2936 
2937 	ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2938 	if (!ip)
2939 		return -ENOMEM;
2940 
2941 	/* instantiate the inode */
2942 	xfs_inode_from_disk(ip, dip);
2943 	ASSERT(ip->i_d.di_version >= 3);
2944 
2945 	error = xfs_iformat_fork(ip, dip);
2946 	if (error)
2947 		goto out_free_ip;
2948 
2949 
2950 	if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2951 		ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2952 		error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2953 					      ip->i_ino, buffer_list);
2954 		if (error)
2955 			goto out_free_ip;
2956 	}
2957 
2958 	if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2959 		ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2960 		error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2961 					      ip->i_ino, buffer_list);
2962 		if (error)
2963 			goto out_free_ip;
2964 	}
2965 
2966 out_free_ip:
2967 	xfs_inode_free(ip);
2968 	return error;
2969 }
2970 
2971 STATIC int
2972 xlog_recover_inode_pass2(
2973 	struct xlog			*log,
2974 	struct list_head		*buffer_list,
2975 	struct xlog_recover_item	*item,
2976 	xfs_lsn_t			current_lsn)
2977 {
2978 	xfs_inode_log_format_t	*in_f;
2979 	xfs_mount_t		*mp = log->l_mp;
2980 	xfs_buf_t		*bp;
2981 	xfs_dinode_t		*dip;
2982 	int			len;
2983 	char			*src;
2984 	char			*dest;
2985 	int			error;
2986 	int			attr_index;
2987 	uint			fields;
2988 	struct xfs_log_dinode	*ldip;
2989 	uint			isize;
2990 	int			need_free = 0;
2991 
2992 	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2993 		in_f = item->ri_buf[0].i_addr;
2994 	} else {
2995 		in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2996 		need_free = 1;
2997 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2998 		if (error)
2999 			goto error;
3000 	}
3001 
3002 	/*
3003 	 * Inode buffers can be freed, look out for it,
3004 	 * and do not replay the inode.
3005 	 */
3006 	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
3007 					in_f->ilf_len, 0)) {
3008 		error = 0;
3009 		trace_xfs_log_recover_inode_cancel(log, in_f);
3010 		goto error;
3011 	}
3012 	trace_xfs_log_recover_inode_recover(log, in_f);
3013 
3014 	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
3015 			  &xfs_inode_buf_ops);
3016 	if (!bp) {
3017 		error = -ENOMEM;
3018 		goto error;
3019 	}
3020 	error = bp->b_error;
3021 	if (error) {
3022 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
3023 		goto out_release;
3024 	}
3025 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
3026 	dip = xfs_buf_offset(bp, in_f->ilf_boffset);
3027 
3028 	/*
3029 	 * Make sure the place we're flushing out to really looks
3030 	 * like an inode!
3031 	 */
3032 	if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
3033 		xfs_alert(mp,
3034 	"%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
3035 			__func__, dip, bp, in_f->ilf_ino);
3036 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
3037 				 XFS_ERRLEVEL_LOW, mp);
3038 		error = -EFSCORRUPTED;
3039 		goto out_release;
3040 	}
3041 	ldip = item->ri_buf[1].i_addr;
3042 	if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
3043 		xfs_alert(mp,
3044 			"%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
3045 			__func__, item, in_f->ilf_ino);
3046 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
3047 				 XFS_ERRLEVEL_LOW, mp);
3048 		error = -EFSCORRUPTED;
3049 		goto out_release;
3050 	}
3051 
3052 	/*
3053 	 * If the inode has an LSN in it, recover the inode only if it's less
3054 	 * than the lsn of the transaction we are replaying. Note: we still
3055 	 * need to replay an owner change even though the inode is more recent
3056 	 * than the transaction as there is no guarantee that all the btree
3057 	 * blocks are more recent than this transaction, too.
3058 	 */
3059 	if (dip->di_version >= 3) {
3060 		xfs_lsn_t	lsn = be64_to_cpu(dip->di_lsn);
3061 
3062 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3063 			trace_xfs_log_recover_inode_skip(log, in_f);
3064 			error = 0;
3065 			goto out_owner_change;
3066 		}
3067 	}
3068 
3069 	/*
3070 	 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3071 	 * are transactional and if ordering is necessary we can determine that
3072 	 * more accurately by the LSN field in the V3 inode core. Don't trust
3073 	 * the inode versions we might be changing them here - use the
3074 	 * superblock flag to determine whether we need to look at di_flushiter
3075 	 * to skip replay when the on disk inode is newer than the log one
3076 	 */
3077 	if (!xfs_sb_version_hascrc(&mp->m_sb) &&
3078 	    ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
3079 		/*
3080 		 * Deal with the wrap case, DI_MAX_FLUSH is less
3081 		 * than smaller numbers
3082 		 */
3083 		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
3084 		    ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
3085 			/* do nothing */
3086 		} else {
3087 			trace_xfs_log_recover_inode_skip(log, in_f);
3088 			error = 0;
3089 			goto out_release;
3090 		}
3091 	}
3092 
3093 	/* Take the opportunity to reset the flush iteration count */
3094 	ldip->di_flushiter = 0;
3095 
3096 	if (unlikely(S_ISREG(ldip->di_mode))) {
3097 		if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3098 		    (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
3099 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3100 					 XFS_ERRLEVEL_LOW, mp, ldip);
3101 			xfs_alert(mp,
3102 		"%s: Bad regular inode log record, rec ptr 0x%p, "
3103 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3104 				__func__, item, dip, bp, in_f->ilf_ino);
3105 			error = -EFSCORRUPTED;
3106 			goto out_release;
3107 		}
3108 	} else if (unlikely(S_ISDIR(ldip->di_mode))) {
3109 		if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3110 		    (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3111 		    (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
3112 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3113 					     XFS_ERRLEVEL_LOW, mp, ldip);
3114 			xfs_alert(mp,
3115 		"%s: Bad dir inode log record, rec ptr 0x%p, "
3116 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3117 				__func__, item, dip, bp, in_f->ilf_ino);
3118 			error = -EFSCORRUPTED;
3119 			goto out_release;
3120 		}
3121 	}
3122 	if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
3123 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3124 				     XFS_ERRLEVEL_LOW, mp, ldip);
3125 		xfs_alert(mp,
3126 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3127 	"dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
3128 			__func__, item, dip, bp, in_f->ilf_ino,
3129 			ldip->di_nextents + ldip->di_anextents,
3130 			ldip->di_nblocks);
3131 		error = -EFSCORRUPTED;
3132 		goto out_release;
3133 	}
3134 	if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
3135 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3136 				     XFS_ERRLEVEL_LOW, mp, ldip);
3137 		xfs_alert(mp,
3138 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3139 	"dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
3140 			item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
3141 		error = -EFSCORRUPTED;
3142 		goto out_release;
3143 	}
3144 	isize = xfs_log_dinode_size(ldip->di_version);
3145 	if (unlikely(item->ri_buf[1].i_len > isize)) {
3146 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3147 				     XFS_ERRLEVEL_LOW, mp, ldip);
3148 		xfs_alert(mp,
3149 			"%s: Bad inode log record length %d, rec ptr 0x%p",
3150 			__func__, item->ri_buf[1].i_len, item);
3151 		error = -EFSCORRUPTED;
3152 		goto out_release;
3153 	}
3154 
3155 	/* recover the log dinode inode into the on disk inode */
3156 	xfs_log_dinode_to_disk(ldip, dip);
3157 
3158 	/* the rest is in on-disk format */
3159 	if (item->ri_buf[1].i_len > isize) {
3160 		memcpy((char *)dip + isize,
3161 			item->ri_buf[1].i_addr + isize,
3162 			item->ri_buf[1].i_len - isize);
3163 	}
3164 
3165 	fields = in_f->ilf_fields;
3166 	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
3167 	case XFS_ILOG_DEV:
3168 		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3169 		break;
3170 	case XFS_ILOG_UUID:
3171 		memcpy(XFS_DFORK_DPTR(dip),
3172 		       &in_f->ilf_u.ilfu_uuid,
3173 		       sizeof(uuid_t));
3174 		break;
3175 	}
3176 
3177 	if (in_f->ilf_size == 2)
3178 		goto out_owner_change;
3179 	len = item->ri_buf[2].i_len;
3180 	src = item->ri_buf[2].i_addr;
3181 	ASSERT(in_f->ilf_size <= 4);
3182 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3183 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
3184 	       (len == in_f->ilf_dsize));
3185 
3186 	switch (fields & XFS_ILOG_DFORK) {
3187 	case XFS_ILOG_DDATA:
3188 	case XFS_ILOG_DEXT:
3189 		memcpy(XFS_DFORK_DPTR(dip), src, len);
3190 		break;
3191 
3192 	case XFS_ILOG_DBROOT:
3193 		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3194 				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3195 				 XFS_DFORK_DSIZE(dip, mp));
3196 		break;
3197 
3198 	default:
3199 		/*
3200 		 * There are no data fork flags set.
3201 		 */
3202 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
3203 		break;
3204 	}
3205 
3206 	/*
3207 	 * If we logged any attribute data, recover it.  There may or
3208 	 * may not have been any other non-core data logged in this
3209 	 * transaction.
3210 	 */
3211 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3212 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3213 			attr_index = 3;
3214 		} else {
3215 			attr_index = 2;
3216 		}
3217 		len = item->ri_buf[attr_index].i_len;
3218 		src = item->ri_buf[attr_index].i_addr;
3219 		ASSERT(len == in_f->ilf_asize);
3220 
3221 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3222 		case XFS_ILOG_ADATA:
3223 		case XFS_ILOG_AEXT:
3224 			dest = XFS_DFORK_APTR(dip);
3225 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3226 			memcpy(dest, src, len);
3227 			break;
3228 
3229 		case XFS_ILOG_ABROOT:
3230 			dest = XFS_DFORK_APTR(dip);
3231 			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3232 					 len, (xfs_bmdr_block_t*)dest,
3233 					 XFS_DFORK_ASIZE(dip, mp));
3234 			break;
3235 
3236 		default:
3237 			xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3238 			ASSERT(0);
3239 			error = -EIO;
3240 			goto out_release;
3241 		}
3242 	}
3243 
3244 out_owner_change:
3245 	if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
3246 		error = xfs_recover_inode_owner_change(mp, dip, in_f,
3247 						       buffer_list);
3248 	/* re-generate the checksum. */
3249 	xfs_dinode_calc_crc(log->l_mp, dip);
3250 
3251 	ASSERT(bp->b_target->bt_mount == mp);
3252 	bp->b_iodone = xlog_recover_iodone;
3253 	xfs_buf_delwri_queue(bp, buffer_list);
3254 
3255 out_release:
3256 	xfs_buf_relse(bp);
3257 error:
3258 	if (need_free)
3259 		kmem_free(in_f);
3260 	return error;
3261 }
3262 
3263 /*
3264  * Recover QUOTAOFF records. We simply make a note of it in the xlog
3265  * structure, so that we know not to do any dquot item or dquot buffer recovery,
3266  * of that type.
3267  */
3268 STATIC int
3269 xlog_recover_quotaoff_pass1(
3270 	struct xlog			*log,
3271 	struct xlog_recover_item	*item)
3272 {
3273 	xfs_qoff_logformat_t	*qoff_f = item->ri_buf[0].i_addr;
3274 	ASSERT(qoff_f);
3275 
3276 	/*
3277 	 * The logitem format's flag tells us if this was user quotaoff,
3278 	 * group/project quotaoff or both.
3279 	 */
3280 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3281 		log->l_quotaoffs_flag |= XFS_DQ_USER;
3282 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3283 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3284 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3285 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3286 
3287 	return 0;
3288 }
3289 
3290 /*
3291  * Recover a dquot record
3292  */
3293 STATIC int
3294 xlog_recover_dquot_pass2(
3295 	struct xlog			*log,
3296 	struct list_head		*buffer_list,
3297 	struct xlog_recover_item	*item,
3298 	xfs_lsn_t			current_lsn)
3299 {
3300 	xfs_mount_t		*mp = log->l_mp;
3301 	xfs_buf_t		*bp;
3302 	struct xfs_disk_dquot	*ddq, *recddq;
3303 	int			error;
3304 	xfs_dq_logformat_t	*dq_f;
3305 	uint			type;
3306 
3307 
3308 	/*
3309 	 * Filesystems are required to send in quota flags at mount time.
3310 	 */
3311 	if (mp->m_qflags == 0)
3312 		return 0;
3313 
3314 	recddq = item->ri_buf[1].i_addr;
3315 	if (recddq == NULL) {
3316 		xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3317 		return -EIO;
3318 	}
3319 	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
3320 		xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3321 			item->ri_buf[1].i_len, __func__);
3322 		return -EIO;
3323 	}
3324 
3325 	/*
3326 	 * This type of quotas was turned off, so ignore this record.
3327 	 */
3328 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3329 	ASSERT(type);
3330 	if (log->l_quotaoffs_flag & type)
3331 		return 0;
3332 
3333 	/*
3334 	 * At this point we know that quota was _not_ turned off.
3335 	 * Since the mount flags are not indicating to us otherwise, this
3336 	 * must mean that quota is on, and the dquot needs to be replayed.
3337 	 * Remember that we may not have fully recovered the superblock yet,
3338 	 * so we can't do the usual trick of looking at the SB quota bits.
3339 	 *
3340 	 * The other possibility, of course, is that the quota subsystem was
3341 	 * removed since the last mount - ENOSYS.
3342 	 */
3343 	dq_f = item->ri_buf[0].i_addr;
3344 	ASSERT(dq_f);
3345 	error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3346 			   "xlog_recover_dquot_pass2 (log copy)");
3347 	if (error)
3348 		return -EIO;
3349 	ASSERT(dq_f->qlf_len == 1);
3350 
3351 	/*
3352 	 * At this point we are assuming that the dquots have been allocated
3353 	 * and hence the buffer has valid dquots stamped in it. It should,
3354 	 * therefore, pass verifier validation. If the dquot is bad, then the
3355 	 * we'll return an error here, so we don't need to specifically check
3356 	 * the dquot in the buffer after the verifier has run.
3357 	 */
3358 	error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3359 				   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3360 				   &xfs_dquot_buf_ops);
3361 	if (error)
3362 		return error;
3363 
3364 	ASSERT(bp);
3365 	ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3366 
3367 	/*
3368 	 * If the dquot has an LSN in it, recover the dquot only if it's less
3369 	 * than the lsn of the transaction we are replaying.
3370 	 */
3371 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3372 		struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3373 		xfs_lsn_t	lsn = be64_to_cpu(dqb->dd_lsn);
3374 
3375 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3376 			goto out_release;
3377 		}
3378 	}
3379 
3380 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
3381 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3382 		xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3383 				 XFS_DQUOT_CRC_OFF);
3384 	}
3385 
3386 	ASSERT(dq_f->qlf_size == 2);
3387 	ASSERT(bp->b_target->bt_mount == mp);
3388 	bp->b_iodone = xlog_recover_iodone;
3389 	xfs_buf_delwri_queue(bp, buffer_list);
3390 
3391 out_release:
3392 	xfs_buf_relse(bp);
3393 	return 0;
3394 }
3395 
3396 /*
3397  * This routine is called to create an in-core extent free intent
3398  * item from the efi format structure which was logged on disk.
3399  * It allocates an in-core efi, copies the extents from the format
3400  * structure into it, and adds the efi to the AIL with the given
3401  * LSN.
3402  */
3403 STATIC int
3404 xlog_recover_efi_pass2(
3405 	struct xlog			*log,
3406 	struct xlog_recover_item	*item,
3407 	xfs_lsn_t			lsn)
3408 {
3409 	int				error;
3410 	struct xfs_mount		*mp = log->l_mp;
3411 	struct xfs_efi_log_item		*efip;
3412 	struct xfs_efi_log_format	*efi_formatp;
3413 
3414 	efi_formatp = item->ri_buf[0].i_addr;
3415 
3416 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3417 	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3418 	if (error) {
3419 		xfs_efi_item_free(efip);
3420 		return error;
3421 	}
3422 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3423 
3424 	spin_lock(&log->l_ailp->xa_lock);
3425 	/*
3426 	 * The EFI has two references. One for the EFD and one for EFI to ensure
3427 	 * it makes it into the AIL. Insert the EFI into the AIL directly and
3428 	 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3429 	 * AIL lock.
3430 	 */
3431 	xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3432 	xfs_efi_release(efip);
3433 	return 0;
3434 }
3435 
3436 
3437 /*
3438  * This routine is called when an EFD format structure is found in a committed
3439  * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3440  * was still in the log. To do this it searches the AIL for the EFI with an id
3441  * equal to that in the EFD format structure. If we find it we drop the EFD
3442  * reference, which removes the EFI from the AIL and frees it.
3443  */
3444 STATIC int
3445 xlog_recover_efd_pass2(
3446 	struct xlog			*log,
3447 	struct xlog_recover_item	*item)
3448 {
3449 	xfs_efd_log_format_t	*efd_formatp;
3450 	xfs_efi_log_item_t	*efip = NULL;
3451 	xfs_log_item_t		*lip;
3452 	uint64_t		efi_id;
3453 	struct xfs_ail_cursor	cur;
3454 	struct xfs_ail		*ailp = log->l_ailp;
3455 
3456 	efd_formatp = item->ri_buf[0].i_addr;
3457 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3458 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3459 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3460 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3461 	efi_id = efd_formatp->efd_efi_id;
3462 
3463 	/*
3464 	 * Search for the EFI with the id in the EFD format structure in the
3465 	 * AIL.
3466 	 */
3467 	spin_lock(&ailp->xa_lock);
3468 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3469 	while (lip != NULL) {
3470 		if (lip->li_type == XFS_LI_EFI) {
3471 			efip = (xfs_efi_log_item_t *)lip;
3472 			if (efip->efi_format.efi_id == efi_id) {
3473 				/*
3474 				 * Drop the EFD reference to the EFI. This
3475 				 * removes the EFI from the AIL and frees it.
3476 				 */
3477 				spin_unlock(&ailp->xa_lock);
3478 				xfs_efi_release(efip);
3479 				spin_lock(&ailp->xa_lock);
3480 				break;
3481 			}
3482 		}
3483 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3484 	}
3485 
3486 	xfs_trans_ail_cursor_done(&cur);
3487 	spin_unlock(&ailp->xa_lock);
3488 
3489 	return 0;
3490 }
3491 
3492 /*
3493  * This routine is called to create an in-core extent rmap update
3494  * item from the rui format structure which was logged on disk.
3495  * It allocates an in-core rui, copies the extents from the format
3496  * structure into it, and adds the rui to the AIL with the given
3497  * LSN.
3498  */
3499 STATIC int
3500 xlog_recover_rui_pass2(
3501 	struct xlog			*log,
3502 	struct xlog_recover_item	*item,
3503 	xfs_lsn_t			lsn)
3504 {
3505 	int				error;
3506 	struct xfs_mount		*mp = log->l_mp;
3507 	struct xfs_rui_log_item		*ruip;
3508 	struct xfs_rui_log_format	*rui_formatp;
3509 
3510 	rui_formatp = item->ri_buf[0].i_addr;
3511 
3512 	ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3513 	error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3514 	if (error) {
3515 		xfs_rui_item_free(ruip);
3516 		return error;
3517 	}
3518 	atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3519 
3520 	spin_lock(&log->l_ailp->xa_lock);
3521 	/*
3522 	 * The RUI has two references. One for the RUD and one for RUI to ensure
3523 	 * it makes it into the AIL. Insert the RUI into the AIL directly and
3524 	 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3525 	 * AIL lock.
3526 	 */
3527 	xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3528 	xfs_rui_release(ruip);
3529 	return 0;
3530 }
3531 
3532 
3533 /*
3534  * This routine is called when an RUD format structure is found in a committed
3535  * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3536  * was still in the log. To do this it searches the AIL for the RUI with an id
3537  * equal to that in the RUD format structure. If we find it we drop the RUD
3538  * reference, which removes the RUI from the AIL and frees it.
3539  */
3540 STATIC int
3541 xlog_recover_rud_pass2(
3542 	struct xlog			*log,
3543 	struct xlog_recover_item	*item)
3544 {
3545 	struct xfs_rud_log_format	*rud_formatp;
3546 	struct xfs_rui_log_item		*ruip = NULL;
3547 	struct xfs_log_item		*lip;
3548 	uint64_t			rui_id;
3549 	struct xfs_ail_cursor		cur;
3550 	struct xfs_ail			*ailp = log->l_ailp;
3551 
3552 	rud_formatp = item->ri_buf[0].i_addr;
3553 	ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
3554 	rui_id = rud_formatp->rud_rui_id;
3555 
3556 	/*
3557 	 * Search for the RUI with the id in the RUD format structure in the
3558 	 * AIL.
3559 	 */
3560 	spin_lock(&ailp->xa_lock);
3561 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3562 	while (lip != NULL) {
3563 		if (lip->li_type == XFS_LI_RUI) {
3564 			ruip = (struct xfs_rui_log_item *)lip;
3565 			if (ruip->rui_format.rui_id == rui_id) {
3566 				/*
3567 				 * Drop the RUD reference to the RUI. This
3568 				 * removes the RUI from the AIL and frees it.
3569 				 */
3570 				spin_unlock(&ailp->xa_lock);
3571 				xfs_rui_release(ruip);
3572 				spin_lock(&ailp->xa_lock);
3573 				break;
3574 			}
3575 		}
3576 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3577 	}
3578 
3579 	xfs_trans_ail_cursor_done(&cur);
3580 	spin_unlock(&ailp->xa_lock);
3581 
3582 	return 0;
3583 }
3584 
3585 /*
3586  * Copy an CUI format buffer from the given buf, and into the destination
3587  * CUI format structure.  The CUI/CUD items were designed not to need any
3588  * special alignment handling.
3589  */
3590 static int
3591 xfs_cui_copy_format(
3592 	struct xfs_log_iovec		*buf,
3593 	struct xfs_cui_log_format	*dst_cui_fmt)
3594 {
3595 	struct xfs_cui_log_format	*src_cui_fmt;
3596 	uint				len;
3597 
3598 	src_cui_fmt = buf->i_addr;
3599 	len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents);
3600 
3601 	if (buf->i_len == len) {
3602 		memcpy(dst_cui_fmt, src_cui_fmt, len);
3603 		return 0;
3604 	}
3605 	return -EFSCORRUPTED;
3606 }
3607 
3608 /*
3609  * This routine is called to create an in-core extent refcount update
3610  * item from the cui format structure which was logged on disk.
3611  * It allocates an in-core cui, copies the extents from the format
3612  * structure into it, and adds the cui to the AIL with the given
3613  * LSN.
3614  */
3615 STATIC int
3616 xlog_recover_cui_pass2(
3617 	struct xlog			*log,
3618 	struct xlog_recover_item	*item,
3619 	xfs_lsn_t			lsn)
3620 {
3621 	int				error;
3622 	struct xfs_mount		*mp = log->l_mp;
3623 	struct xfs_cui_log_item		*cuip;
3624 	struct xfs_cui_log_format	*cui_formatp;
3625 
3626 	cui_formatp = item->ri_buf[0].i_addr;
3627 
3628 	cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
3629 	error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format);
3630 	if (error) {
3631 		xfs_cui_item_free(cuip);
3632 		return error;
3633 	}
3634 	atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
3635 
3636 	spin_lock(&log->l_ailp->xa_lock);
3637 	/*
3638 	 * The CUI has two references. One for the CUD and one for CUI to ensure
3639 	 * it makes it into the AIL. Insert the CUI into the AIL directly and
3640 	 * drop the CUI reference. Note that xfs_trans_ail_update() drops the
3641 	 * AIL lock.
3642 	 */
3643 	xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn);
3644 	xfs_cui_release(cuip);
3645 	return 0;
3646 }
3647 
3648 
3649 /*
3650  * This routine is called when an CUD format structure is found in a committed
3651  * transaction in the log. Its purpose is to cancel the corresponding CUI if it
3652  * was still in the log. To do this it searches the AIL for the CUI with an id
3653  * equal to that in the CUD format structure. If we find it we drop the CUD
3654  * reference, which removes the CUI from the AIL and frees it.
3655  */
3656 STATIC int
3657 xlog_recover_cud_pass2(
3658 	struct xlog			*log,
3659 	struct xlog_recover_item	*item)
3660 {
3661 	struct xfs_cud_log_format	*cud_formatp;
3662 	struct xfs_cui_log_item		*cuip = NULL;
3663 	struct xfs_log_item		*lip;
3664 	uint64_t			cui_id;
3665 	struct xfs_ail_cursor		cur;
3666 	struct xfs_ail			*ailp = log->l_ailp;
3667 
3668 	cud_formatp = item->ri_buf[0].i_addr;
3669 	if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format))
3670 		return -EFSCORRUPTED;
3671 	cui_id = cud_formatp->cud_cui_id;
3672 
3673 	/*
3674 	 * Search for the CUI with the id in the CUD format structure in the
3675 	 * AIL.
3676 	 */
3677 	spin_lock(&ailp->xa_lock);
3678 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3679 	while (lip != NULL) {
3680 		if (lip->li_type == XFS_LI_CUI) {
3681 			cuip = (struct xfs_cui_log_item *)lip;
3682 			if (cuip->cui_format.cui_id == cui_id) {
3683 				/*
3684 				 * Drop the CUD reference to the CUI. This
3685 				 * removes the CUI from the AIL and frees it.
3686 				 */
3687 				spin_unlock(&ailp->xa_lock);
3688 				xfs_cui_release(cuip);
3689 				spin_lock(&ailp->xa_lock);
3690 				break;
3691 			}
3692 		}
3693 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3694 	}
3695 
3696 	xfs_trans_ail_cursor_done(&cur);
3697 	spin_unlock(&ailp->xa_lock);
3698 
3699 	return 0;
3700 }
3701 
3702 /*
3703  * Copy an BUI format buffer from the given buf, and into the destination
3704  * BUI format structure.  The BUI/BUD items were designed not to need any
3705  * special alignment handling.
3706  */
3707 static int
3708 xfs_bui_copy_format(
3709 	struct xfs_log_iovec		*buf,
3710 	struct xfs_bui_log_format	*dst_bui_fmt)
3711 {
3712 	struct xfs_bui_log_format	*src_bui_fmt;
3713 	uint				len;
3714 
3715 	src_bui_fmt = buf->i_addr;
3716 	len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents);
3717 
3718 	if (buf->i_len == len) {
3719 		memcpy(dst_bui_fmt, src_bui_fmt, len);
3720 		return 0;
3721 	}
3722 	return -EFSCORRUPTED;
3723 }
3724 
3725 /*
3726  * This routine is called to create an in-core extent bmap update
3727  * item from the bui format structure which was logged on disk.
3728  * It allocates an in-core bui, copies the extents from the format
3729  * structure into it, and adds the bui to the AIL with the given
3730  * LSN.
3731  */
3732 STATIC int
3733 xlog_recover_bui_pass2(
3734 	struct xlog			*log,
3735 	struct xlog_recover_item	*item,
3736 	xfs_lsn_t			lsn)
3737 {
3738 	int				error;
3739 	struct xfs_mount		*mp = log->l_mp;
3740 	struct xfs_bui_log_item		*buip;
3741 	struct xfs_bui_log_format	*bui_formatp;
3742 
3743 	bui_formatp = item->ri_buf[0].i_addr;
3744 
3745 	if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS)
3746 		return -EFSCORRUPTED;
3747 	buip = xfs_bui_init(mp);
3748 	error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format);
3749 	if (error) {
3750 		xfs_bui_item_free(buip);
3751 		return error;
3752 	}
3753 	atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents);
3754 
3755 	spin_lock(&log->l_ailp->xa_lock);
3756 	/*
3757 	 * The RUI has two references. One for the RUD and one for RUI to ensure
3758 	 * it makes it into the AIL. Insert the RUI into the AIL directly and
3759 	 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3760 	 * AIL lock.
3761 	 */
3762 	xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn);
3763 	xfs_bui_release(buip);
3764 	return 0;
3765 }
3766 
3767 
3768 /*
3769  * This routine is called when an BUD format structure is found in a committed
3770  * transaction in the log. Its purpose is to cancel the corresponding BUI if it
3771  * was still in the log. To do this it searches the AIL for the BUI with an id
3772  * equal to that in the BUD format structure. If we find it we drop the BUD
3773  * reference, which removes the BUI from the AIL and frees it.
3774  */
3775 STATIC int
3776 xlog_recover_bud_pass2(
3777 	struct xlog			*log,
3778 	struct xlog_recover_item	*item)
3779 {
3780 	struct xfs_bud_log_format	*bud_formatp;
3781 	struct xfs_bui_log_item		*buip = NULL;
3782 	struct xfs_log_item		*lip;
3783 	uint64_t			bui_id;
3784 	struct xfs_ail_cursor		cur;
3785 	struct xfs_ail			*ailp = log->l_ailp;
3786 
3787 	bud_formatp = item->ri_buf[0].i_addr;
3788 	if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format))
3789 		return -EFSCORRUPTED;
3790 	bui_id = bud_formatp->bud_bui_id;
3791 
3792 	/*
3793 	 * Search for the BUI with the id in the BUD format structure in the
3794 	 * AIL.
3795 	 */
3796 	spin_lock(&ailp->xa_lock);
3797 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3798 	while (lip != NULL) {
3799 		if (lip->li_type == XFS_LI_BUI) {
3800 			buip = (struct xfs_bui_log_item *)lip;
3801 			if (buip->bui_format.bui_id == bui_id) {
3802 				/*
3803 				 * Drop the BUD reference to the BUI. This
3804 				 * removes the BUI from the AIL and frees it.
3805 				 */
3806 				spin_unlock(&ailp->xa_lock);
3807 				xfs_bui_release(buip);
3808 				spin_lock(&ailp->xa_lock);
3809 				break;
3810 			}
3811 		}
3812 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3813 	}
3814 
3815 	xfs_trans_ail_cursor_done(&cur);
3816 	spin_unlock(&ailp->xa_lock);
3817 
3818 	return 0;
3819 }
3820 
3821 /*
3822  * This routine is called when an inode create format structure is found in a
3823  * committed transaction in the log.  It's purpose is to initialise the inodes
3824  * being allocated on disk. This requires us to get inode cluster buffers that
3825  * match the range to be initialised, stamped with inode templates and written
3826  * by delayed write so that subsequent modifications will hit the cached buffer
3827  * and only need writing out at the end of recovery.
3828  */
3829 STATIC int
3830 xlog_recover_do_icreate_pass2(
3831 	struct xlog		*log,
3832 	struct list_head	*buffer_list,
3833 	xlog_recover_item_t	*item)
3834 {
3835 	struct xfs_mount	*mp = log->l_mp;
3836 	struct xfs_icreate_log	*icl;
3837 	xfs_agnumber_t		agno;
3838 	xfs_agblock_t		agbno;
3839 	unsigned int		count;
3840 	unsigned int		isize;
3841 	xfs_agblock_t		length;
3842 	int			blks_per_cluster;
3843 	int			bb_per_cluster;
3844 	int			cancel_count;
3845 	int			nbufs;
3846 	int			i;
3847 
3848 	icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3849 	if (icl->icl_type != XFS_LI_ICREATE) {
3850 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3851 		return -EINVAL;
3852 	}
3853 
3854 	if (icl->icl_size != 1) {
3855 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3856 		return -EINVAL;
3857 	}
3858 
3859 	agno = be32_to_cpu(icl->icl_ag);
3860 	if (agno >= mp->m_sb.sb_agcount) {
3861 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3862 		return -EINVAL;
3863 	}
3864 	agbno = be32_to_cpu(icl->icl_agbno);
3865 	if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3866 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3867 		return -EINVAL;
3868 	}
3869 	isize = be32_to_cpu(icl->icl_isize);
3870 	if (isize != mp->m_sb.sb_inodesize) {
3871 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3872 		return -EINVAL;
3873 	}
3874 	count = be32_to_cpu(icl->icl_count);
3875 	if (!count) {
3876 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3877 		return -EINVAL;
3878 	}
3879 	length = be32_to_cpu(icl->icl_length);
3880 	if (!length || length >= mp->m_sb.sb_agblocks) {
3881 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3882 		return -EINVAL;
3883 	}
3884 
3885 	/*
3886 	 * The inode chunk is either full or sparse and we only support
3887 	 * m_ialloc_min_blks sized sparse allocations at this time.
3888 	 */
3889 	if (length != mp->m_ialloc_blks &&
3890 	    length != mp->m_ialloc_min_blks) {
3891 		xfs_warn(log->l_mp,
3892 			 "%s: unsupported chunk length", __FUNCTION__);
3893 		return -EINVAL;
3894 	}
3895 
3896 	/* verify inode count is consistent with extent length */
3897 	if ((count >> mp->m_sb.sb_inopblog) != length) {
3898 		xfs_warn(log->l_mp,
3899 			 "%s: inconsistent inode count and chunk length",
3900 			 __FUNCTION__);
3901 		return -EINVAL;
3902 	}
3903 
3904 	/*
3905 	 * The icreate transaction can cover multiple cluster buffers and these
3906 	 * buffers could have been freed and reused. Check the individual
3907 	 * buffers for cancellation so we don't overwrite anything written after
3908 	 * a cancellation.
3909 	 */
3910 	blks_per_cluster = xfs_icluster_size_fsb(mp);
3911 	bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster);
3912 	nbufs = length / blks_per_cluster;
3913 	for (i = 0, cancel_count = 0; i < nbufs; i++) {
3914 		xfs_daddr_t	daddr;
3915 
3916 		daddr = XFS_AGB_TO_DADDR(mp, agno,
3917 					 agbno + i * blks_per_cluster);
3918 		if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3919 			cancel_count++;
3920 	}
3921 
3922 	/*
3923 	 * We currently only use icreate for a single allocation at a time. This
3924 	 * means we should expect either all or none of the buffers to be
3925 	 * cancelled. Be conservative and skip replay if at least one buffer is
3926 	 * cancelled, but warn the user that something is awry if the buffers
3927 	 * are not consistent.
3928 	 *
3929 	 * XXX: This must be refined to only skip cancelled clusters once we use
3930 	 * icreate for multiple chunk allocations.
3931 	 */
3932 	ASSERT(!cancel_count || cancel_count == nbufs);
3933 	if (cancel_count) {
3934 		if (cancel_count != nbufs)
3935 			xfs_warn(mp,
3936 	"WARNING: partial inode chunk cancellation, skipped icreate.");
3937 		trace_xfs_log_recover_icreate_cancel(log, icl);
3938 		return 0;
3939 	}
3940 
3941 	trace_xfs_log_recover_icreate_recover(log, icl);
3942 	return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3943 				     length, be32_to_cpu(icl->icl_gen));
3944 }
3945 
3946 STATIC void
3947 xlog_recover_buffer_ra_pass2(
3948 	struct xlog                     *log,
3949 	struct xlog_recover_item        *item)
3950 {
3951 	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
3952 	struct xfs_mount		*mp = log->l_mp;
3953 
3954 	if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3955 			buf_f->blf_len, buf_f->blf_flags)) {
3956 		return;
3957 	}
3958 
3959 	xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3960 				buf_f->blf_len, NULL);
3961 }
3962 
3963 STATIC void
3964 xlog_recover_inode_ra_pass2(
3965 	struct xlog                     *log,
3966 	struct xlog_recover_item        *item)
3967 {
3968 	struct xfs_inode_log_format	ilf_buf;
3969 	struct xfs_inode_log_format	*ilfp;
3970 	struct xfs_mount		*mp = log->l_mp;
3971 	int			error;
3972 
3973 	if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3974 		ilfp = item->ri_buf[0].i_addr;
3975 	} else {
3976 		ilfp = &ilf_buf;
3977 		memset(ilfp, 0, sizeof(*ilfp));
3978 		error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3979 		if (error)
3980 			return;
3981 	}
3982 
3983 	if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3984 		return;
3985 
3986 	xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3987 				ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3988 }
3989 
3990 STATIC void
3991 xlog_recover_dquot_ra_pass2(
3992 	struct xlog			*log,
3993 	struct xlog_recover_item	*item)
3994 {
3995 	struct xfs_mount	*mp = log->l_mp;
3996 	struct xfs_disk_dquot	*recddq;
3997 	struct xfs_dq_logformat	*dq_f;
3998 	uint			type;
3999 	int			len;
4000 
4001 
4002 	if (mp->m_qflags == 0)
4003 		return;
4004 
4005 	recddq = item->ri_buf[1].i_addr;
4006 	if (recddq == NULL)
4007 		return;
4008 	if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
4009 		return;
4010 
4011 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
4012 	ASSERT(type);
4013 	if (log->l_quotaoffs_flag & type)
4014 		return;
4015 
4016 	dq_f = item->ri_buf[0].i_addr;
4017 	ASSERT(dq_f);
4018 	ASSERT(dq_f->qlf_len == 1);
4019 
4020 	len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
4021 	if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
4022 		return;
4023 
4024 	xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
4025 			  &xfs_dquot_buf_ra_ops);
4026 }
4027 
4028 STATIC void
4029 xlog_recover_ra_pass2(
4030 	struct xlog			*log,
4031 	struct xlog_recover_item	*item)
4032 {
4033 	switch (ITEM_TYPE(item)) {
4034 	case XFS_LI_BUF:
4035 		xlog_recover_buffer_ra_pass2(log, item);
4036 		break;
4037 	case XFS_LI_INODE:
4038 		xlog_recover_inode_ra_pass2(log, item);
4039 		break;
4040 	case XFS_LI_DQUOT:
4041 		xlog_recover_dquot_ra_pass2(log, item);
4042 		break;
4043 	case XFS_LI_EFI:
4044 	case XFS_LI_EFD:
4045 	case XFS_LI_QUOTAOFF:
4046 	case XFS_LI_RUI:
4047 	case XFS_LI_RUD:
4048 	case XFS_LI_CUI:
4049 	case XFS_LI_CUD:
4050 	case XFS_LI_BUI:
4051 	case XFS_LI_BUD:
4052 	default:
4053 		break;
4054 	}
4055 }
4056 
4057 STATIC int
4058 xlog_recover_commit_pass1(
4059 	struct xlog			*log,
4060 	struct xlog_recover		*trans,
4061 	struct xlog_recover_item	*item)
4062 {
4063 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
4064 
4065 	switch (ITEM_TYPE(item)) {
4066 	case XFS_LI_BUF:
4067 		return xlog_recover_buffer_pass1(log, item);
4068 	case XFS_LI_QUOTAOFF:
4069 		return xlog_recover_quotaoff_pass1(log, item);
4070 	case XFS_LI_INODE:
4071 	case XFS_LI_EFI:
4072 	case XFS_LI_EFD:
4073 	case XFS_LI_DQUOT:
4074 	case XFS_LI_ICREATE:
4075 	case XFS_LI_RUI:
4076 	case XFS_LI_RUD:
4077 	case XFS_LI_CUI:
4078 	case XFS_LI_CUD:
4079 	case XFS_LI_BUI:
4080 	case XFS_LI_BUD:
4081 		/* nothing to do in pass 1 */
4082 		return 0;
4083 	default:
4084 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4085 			__func__, ITEM_TYPE(item));
4086 		ASSERT(0);
4087 		return -EIO;
4088 	}
4089 }
4090 
4091 STATIC int
4092 xlog_recover_commit_pass2(
4093 	struct xlog			*log,
4094 	struct xlog_recover		*trans,
4095 	struct list_head		*buffer_list,
4096 	struct xlog_recover_item	*item)
4097 {
4098 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
4099 
4100 	switch (ITEM_TYPE(item)) {
4101 	case XFS_LI_BUF:
4102 		return xlog_recover_buffer_pass2(log, buffer_list, item,
4103 						 trans->r_lsn);
4104 	case XFS_LI_INODE:
4105 		return xlog_recover_inode_pass2(log, buffer_list, item,
4106 						 trans->r_lsn);
4107 	case XFS_LI_EFI:
4108 		return xlog_recover_efi_pass2(log, item, trans->r_lsn);
4109 	case XFS_LI_EFD:
4110 		return xlog_recover_efd_pass2(log, item);
4111 	case XFS_LI_RUI:
4112 		return xlog_recover_rui_pass2(log, item, trans->r_lsn);
4113 	case XFS_LI_RUD:
4114 		return xlog_recover_rud_pass2(log, item);
4115 	case XFS_LI_CUI:
4116 		return xlog_recover_cui_pass2(log, item, trans->r_lsn);
4117 	case XFS_LI_CUD:
4118 		return xlog_recover_cud_pass2(log, item);
4119 	case XFS_LI_BUI:
4120 		return xlog_recover_bui_pass2(log, item, trans->r_lsn);
4121 	case XFS_LI_BUD:
4122 		return xlog_recover_bud_pass2(log, item);
4123 	case XFS_LI_DQUOT:
4124 		return xlog_recover_dquot_pass2(log, buffer_list, item,
4125 						trans->r_lsn);
4126 	case XFS_LI_ICREATE:
4127 		return xlog_recover_do_icreate_pass2(log, buffer_list, item);
4128 	case XFS_LI_QUOTAOFF:
4129 		/* nothing to do in pass2 */
4130 		return 0;
4131 	default:
4132 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4133 			__func__, ITEM_TYPE(item));
4134 		ASSERT(0);
4135 		return -EIO;
4136 	}
4137 }
4138 
4139 STATIC int
4140 xlog_recover_items_pass2(
4141 	struct xlog                     *log,
4142 	struct xlog_recover             *trans,
4143 	struct list_head                *buffer_list,
4144 	struct list_head                *item_list)
4145 {
4146 	struct xlog_recover_item	*item;
4147 	int				error = 0;
4148 
4149 	list_for_each_entry(item, item_list, ri_list) {
4150 		error = xlog_recover_commit_pass2(log, trans,
4151 					  buffer_list, item);
4152 		if (error)
4153 			return error;
4154 	}
4155 
4156 	return error;
4157 }
4158 
4159 /*
4160  * Perform the transaction.
4161  *
4162  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
4163  * EFIs and EFDs get queued up by adding entries into the AIL for them.
4164  */
4165 STATIC int
4166 xlog_recover_commit_trans(
4167 	struct xlog		*log,
4168 	struct xlog_recover	*trans,
4169 	int			pass,
4170 	struct list_head	*buffer_list)
4171 {
4172 	int				error = 0;
4173 	int				items_queued = 0;
4174 	struct xlog_recover_item	*item;
4175 	struct xlog_recover_item	*next;
4176 	LIST_HEAD			(ra_list);
4177 	LIST_HEAD			(done_list);
4178 
4179 	#define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
4180 
4181 	hlist_del_init(&trans->r_list);
4182 
4183 	error = xlog_recover_reorder_trans(log, trans, pass);
4184 	if (error)
4185 		return error;
4186 
4187 	list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
4188 		switch (pass) {
4189 		case XLOG_RECOVER_PASS1:
4190 			error = xlog_recover_commit_pass1(log, trans, item);
4191 			break;
4192 		case XLOG_RECOVER_PASS2:
4193 			xlog_recover_ra_pass2(log, item);
4194 			list_move_tail(&item->ri_list, &ra_list);
4195 			items_queued++;
4196 			if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
4197 				error = xlog_recover_items_pass2(log, trans,
4198 						buffer_list, &ra_list);
4199 				list_splice_tail_init(&ra_list, &done_list);
4200 				items_queued = 0;
4201 			}
4202 
4203 			break;
4204 		default:
4205 			ASSERT(0);
4206 		}
4207 
4208 		if (error)
4209 			goto out;
4210 	}
4211 
4212 out:
4213 	if (!list_empty(&ra_list)) {
4214 		if (!error)
4215 			error = xlog_recover_items_pass2(log, trans,
4216 					buffer_list, &ra_list);
4217 		list_splice_tail_init(&ra_list, &done_list);
4218 	}
4219 
4220 	if (!list_empty(&done_list))
4221 		list_splice_init(&done_list, &trans->r_itemq);
4222 
4223 	return error;
4224 }
4225 
4226 STATIC void
4227 xlog_recover_add_item(
4228 	struct list_head	*head)
4229 {
4230 	xlog_recover_item_t	*item;
4231 
4232 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
4233 	INIT_LIST_HEAD(&item->ri_list);
4234 	list_add_tail(&item->ri_list, head);
4235 }
4236 
4237 STATIC int
4238 xlog_recover_add_to_cont_trans(
4239 	struct xlog		*log,
4240 	struct xlog_recover	*trans,
4241 	char			*dp,
4242 	int			len)
4243 {
4244 	xlog_recover_item_t	*item;
4245 	char			*ptr, *old_ptr;
4246 	int			old_len;
4247 
4248 	/*
4249 	 * If the transaction is empty, the header was split across this and the
4250 	 * previous record. Copy the rest of the header.
4251 	 */
4252 	if (list_empty(&trans->r_itemq)) {
4253 		ASSERT(len <= sizeof(struct xfs_trans_header));
4254 		if (len > sizeof(struct xfs_trans_header)) {
4255 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
4256 			return -EIO;
4257 		}
4258 
4259 		xlog_recover_add_item(&trans->r_itemq);
4260 		ptr = (char *)&trans->r_theader +
4261 				sizeof(struct xfs_trans_header) - len;
4262 		memcpy(ptr, dp, len);
4263 		return 0;
4264 	}
4265 
4266 	/* take the tail entry */
4267 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4268 
4269 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
4270 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
4271 
4272 	ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP);
4273 	memcpy(&ptr[old_len], dp, len);
4274 	item->ri_buf[item->ri_cnt-1].i_len += len;
4275 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
4276 	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
4277 	return 0;
4278 }
4279 
4280 /*
4281  * The next region to add is the start of a new region.  It could be
4282  * a whole region or it could be the first part of a new region.  Because
4283  * of this, the assumption here is that the type and size fields of all
4284  * format structures fit into the first 32 bits of the structure.
4285  *
4286  * This works because all regions must be 32 bit aligned.  Therefore, we
4287  * either have both fields or we have neither field.  In the case we have
4288  * neither field, the data part of the region is zero length.  We only have
4289  * a log_op_header and can throw away the header since a new one will appear
4290  * later.  If we have at least 4 bytes, then we can determine how many regions
4291  * will appear in the current log item.
4292  */
4293 STATIC int
4294 xlog_recover_add_to_trans(
4295 	struct xlog		*log,
4296 	struct xlog_recover	*trans,
4297 	char			*dp,
4298 	int			len)
4299 {
4300 	xfs_inode_log_format_t	*in_f;			/* any will do */
4301 	xlog_recover_item_t	*item;
4302 	char			*ptr;
4303 
4304 	if (!len)
4305 		return 0;
4306 	if (list_empty(&trans->r_itemq)) {
4307 		/* we need to catch log corruptions here */
4308 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
4309 			xfs_warn(log->l_mp, "%s: bad header magic number",
4310 				__func__);
4311 			ASSERT(0);
4312 			return -EIO;
4313 		}
4314 
4315 		if (len > sizeof(struct xfs_trans_header)) {
4316 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
4317 			ASSERT(0);
4318 			return -EIO;
4319 		}
4320 
4321 		/*
4322 		 * The transaction header can be arbitrarily split across op
4323 		 * records. If we don't have the whole thing here, copy what we
4324 		 * do have and handle the rest in the next record.
4325 		 */
4326 		if (len == sizeof(struct xfs_trans_header))
4327 			xlog_recover_add_item(&trans->r_itemq);
4328 		memcpy(&trans->r_theader, dp, len);
4329 		return 0;
4330 	}
4331 
4332 	ptr = kmem_alloc(len, KM_SLEEP);
4333 	memcpy(ptr, dp, len);
4334 	in_f = (xfs_inode_log_format_t *)ptr;
4335 
4336 	/* take the tail entry */
4337 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4338 	if (item->ri_total != 0 &&
4339 	     item->ri_total == item->ri_cnt) {
4340 		/* tail item is in use, get a new one */
4341 		xlog_recover_add_item(&trans->r_itemq);
4342 		item = list_entry(trans->r_itemq.prev,
4343 					xlog_recover_item_t, ri_list);
4344 	}
4345 
4346 	if (item->ri_total == 0) {		/* first region to be added */
4347 		if (in_f->ilf_size == 0 ||
4348 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4349 			xfs_warn(log->l_mp,
4350 		"bad number of regions (%d) in inode log format",
4351 				  in_f->ilf_size);
4352 			ASSERT(0);
4353 			kmem_free(ptr);
4354 			return -EIO;
4355 		}
4356 
4357 		item->ri_total = in_f->ilf_size;
4358 		item->ri_buf =
4359 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4360 				    KM_SLEEP);
4361 	}
4362 	ASSERT(item->ri_total > item->ri_cnt);
4363 	/* Description region is ri_buf[0] */
4364 	item->ri_buf[item->ri_cnt].i_addr = ptr;
4365 	item->ri_buf[item->ri_cnt].i_len  = len;
4366 	item->ri_cnt++;
4367 	trace_xfs_log_recover_item_add(log, trans, item, 0);
4368 	return 0;
4369 }
4370 
4371 /*
4372  * Free up any resources allocated by the transaction
4373  *
4374  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4375  */
4376 STATIC void
4377 xlog_recover_free_trans(
4378 	struct xlog_recover	*trans)
4379 {
4380 	xlog_recover_item_t	*item, *n;
4381 	int			i;
4382 
4383 	hlist_del_init(&trans->r_list);
4384 
4385 	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4386 		/* Free the regions in the item. */
4387 		list_del(&item->ri_list);
4388 		for (i = 0; i < item->ri_cnt; i++)
4389 			kmem_free(item->ri_buf[i].i_addr);
4390 		/* Free the item itself */
4391 		kmem_free(item->ri_buf);
4392 		kmem_free(item);
4393 	}
4394 	/* Free the transaction recover structure */
4395 	kmem_free(trans);
4396 }
4397 
4398 /*
4399  * On error or completion, trans is freed.
4400  */
4401 STATIC int
4402 xlog_recovery_process_trans(
4403 	struct xlog		*log,
4404 	struct xlog_recover	*trans,
4405 	char			*dp,
4406 	unsigned int		len,
4407 	unsigned int		flags,
4408 	int			pass,
4409 	struct list_head	*buffer_list)
4410 {
4411 	int			error = 0;
4412 	bool			freeit = false;
4413 
4414 	/* mask off ophdr transaction container flags */
4415 	flags &= ~XLOG_END_TRANS;
4416 	if (flags & XLOG_WAS_CONT_TRANS)
4417 		flags &= ~XLOG_CONTINUE_TRANS;
4418 
4419 	/*
4420 	 * Callees must not free the trans structure. We'll decide if we need to
4421 	 * free it or not based on the operation being done and it's result.
4422 	 */
4423 	switch (flags) {
4424 	/* expected flag values */
4425 	case 0:
4426 	case XLOG_CONTINUE_TRANS:
4427 		error = xlog_recover_add_to_trans(log, trans, dp, len);
4428 		break;
4429 	case XLOG_WAS_CONT_TRANS:
4430 		error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4431 		break;
4432 	case XLOG_COMMIT_TRANS:
4433 		error = xlog_recover_commit_trans(log, trans, pass,
4434 						  buffer_list);
4435 		/* success or fail, we are now done with this transaction. */
4436 		freeit = true;
4437 		break;
4438 
4439 	/* unexpected flag values */
4440 	case XLOG_UNMOUNT_TRANS:
4441 		/* just skip trans */
4442 		xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
4443 		freeit = true;
4444 		break;
4445 	case XLOG_START_TRANS:
4446 	default:
4447 		xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4448 		ASSERT(0);
4449 		error = -EIO;
4450 		break;
4451 	}
4452 	if (error || freeit)
4453 		xlog_recover_free_trans(trans);
4454 	return error;
4455 }
4456 
4457 /*
4458  * Lookup the transaction recovery structure associated with the ID in the
4459  * current ophdr. If the transaction doesn't exist and the start flag is set in
4460  * the ophdr, then allocate a new transaction for future ID matches to find.
4461  * Either way, return what we found during the lookup - an existing transaction
4462  * or nothing.
4463  */
4464 STATIC struct xlog_recover *
4465 xlog_recover_ophdr_to_trans(
4466 	struct hlist_head	rhash[],
4467 	struct xlog_rec_header	*rhead,
4468 	struct xlog_op_header	*ohead)
4469 {
4470 	struct xlog_recover	*trans;
4471 	xlog_tid_t		tid;
4472 	struct hlist_head	*rhp;
4473 
4474 	tid = be32_to_cpu(ohead->oh_tid);
4475 	rhp = &rhash[XLOG_RHASH(tid)];
4476 	hlist_for_each_entry(trans, rhp, r_list) {
4477 		if (trans->r_log_tid == tid)
4478 			return trans;
4479 	}
4480 
4481 	/*
4482 	 * skip over non-start transaction headers - we could be
4483 	 * processing slack space before the next transaction starts
4484 	 */
4485 	if (!(ohead->oh_flags & XLOG_START_TRANS))
4486 		return NULL;
4487 
4488 	ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4489 
4490 	/*
4491 	 * This is a new transaction so allocate a new recovery container to
4492 	 * hold the recovery ops that will follow.
4493 	 */
4494 	trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
4495 	trans->r_log_tid = tid;
4496 	trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4497 	INIT_LIST_HEAD(&trans->r_itemq);
4498 	INIT_HLIST_NODE(&trans->r_list);
4499 	hlist_add_head(&trans->r_list, rhp);
4500 
4501 	/*
4502 	 * Nothing more to do for this ophdr. Items to be added to this new
4503 	 * transaction will be in subsequent ophdr containers.
4504 	 */
4505 	return NULL;
4506 }
4507 
4508 STATIC int
4509 xlog_recover_process_ophdr(
4510 	struct xlog		*log,
4511 	struct hlist_head	rhash[],
4512 	struct xlog_rec_header	*rhead,
4513 	struct xlog_op_header	*ohead,
4514 	char			*dp,
4515 	char			*end,
4516 	int			pass,
4517 	struct list_head	*buffer_list)
4518 {
4519 	struct xlog_recover	*trans;
4520 	unsigned int		len;
4521 	int			error;
4522 
4523 	/* Do we understand who wrote this op? */
4524 	if (ohead->oh_clientid != XFS_TRANSACTION &&
4525 	    ohead->oh_clientid != XFS_LOG) {
4526 		xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4527 			__func__, ohead->oh_clientid);
4528 		ASSERT(0);
4529 		return -EIO;
4530 	}
4531 
4532 	/*
4533 	 * Check the ophdr contains all the data it is supposed to contain.
4534 	 */
4535 	len = be32_to_cpu(ohead->oh_len);
4536 	if (dp + len > end) {
4537 		xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4538 		WARN_ON(1);
4539 		return -EIO;
4540 	}
4541 
4542 	trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4543 	if (!trans) {
4544 		/* nothing to do, so skip over this ophdr */
4545 		return 0;
4546 	}
4547 
4548 	/*
4549 	 * The recovered buffer queue is drained only once we know that all
4550 	 * recovery items for the current LSN have been processed. This is
4551 	 * required because:
4552 	 *
4553 	 * - Buffer write submission updates the metadata LSN of the buffer.
4554 	 * - Log recovery skips items with a metadata LSN >= the current LSN of
4555 	 *   the recovery item.
4556 	 * - Separate recovery items against the same metadata buffer can share
4557 	 *   a current LSN. I.e., consider that the LSN of a recovery item is
4558 	 *   defined as the starting LSN of the first record in which its
4559 	 *   transaction appears, that a record can hold multiple transactions,
4560 	 *   and/or that a transaction can span multiple records.
4561 	 *
4562 	 * In other words, we are allowed to submit a buffer from log recovery
4563 	 * once per current LSN. Otherwise, we may incorrectly skip recovery
4564 	 * items and cause corruption.
4565 	 *
4566 	 * We don't know up front whether buffers are updated multiple times per
4567 	 * LSN. Therefore, track the current LSN of each commit log record as it
4568 	 * is processed and drain the queue when it changes. Use commit records
4569 	 * because they are ordered correctly by the logging code.
4570 	 */
4571 	if (log->l_recovery_lsn != trans->r_lsn &&
4572 	    ohead->oh_flags & XLOG_COMMIT_TRANS) {
4573 		error = xfs_buf_delwri_submit(buffer_list);
4574 		if (error)
4575 			return error;
4576 		log->l_recovery_lsn = trans->r_lsn;
4577 	}
4578 
4579 	return xlog_recovery_process_trans(log, trans, dp, len,
4580 					   ohead->oh_flags, pass, buffer_list);
4581 }
4582 
4583 /*
4584  * There are two valid states of the r_state field.  0 indicates that the
4585  * transaction structure is in a normal state.  We have either seen the
4586  * start of the transaction or the last operation we added was not a partial
4587  * operation.  If the last operation we added to the transaction was a
4588  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4589  *
4590  * NOTE: skip LRs with 0 data length.
4591  */
4592 STATIC int
4593 xlog_recover_process_data(
4594 	struct xlog		*log,
4595 	struct hlist_head	rhash[],
4596 	struct xlog_rec_header	*rhead,
4597 	char			*dp,
4598 	int			pass,
4599 	struct list_head	*buffer_list)
4600 {
4601 	struct xlog_op_header	*ohead;
4602 	char			*end;
4603 	int			num_logops;
4604 	int			error;
4605 
4606 	end = dp + be32_to_cpu(rhead->h_len);
4607 	num_logops = be32_to_cpu(rhead->h_num_logops);
4608 
4609 	/* check the log format matches our own - else we can't recover */
4610 	if (xlog_header_check_recover(log->l_mp, rhead))
4611 		return -EIO;
4612 
4613 	trace_xfs_log_recover_record(log, rhead, pass);
4614 	while ((dp < end) && num_logops) {
4615 
4616 		ohead = (struct xlog_op_header *)dp;
4617 		dp += sizeof(*ohead);
4618 		ASSERT(dp <= end);
4619 
4620 		/* errors will abort recovery */
4621 		error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4622 						   dp, end, pass, buffer_list);
4623 		if (error)
4624 			return error;
4625 
4626 		dp += be32_to_cpu(ohead->oh_len);
4627 		num_logops--;
4628 	}
4629 	return 0;
4630 }
4631 
4632 /* Recover the EFI if necessary. */
4633 STATIC int
4634 xlog_recover_process_efi(
4635 	struct xfs_mount		*mp,
4636 	struct xfs_ail			*ailp,
4637 	struct xfs_log_item		*lip)
4638 {
4639 	struct xfs_efi_log_item		*efip;
4640 	int				error;
4641 
4642 	/*
4643 	 * Skip EFIs that we've already processed.
4644 	 */
4645 	efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4646 	if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4647 		return 0;
4648 
4649 	spin_unlock(&ailp->xa_lock);
4650 	error = xfs_efi_recover(mp, efip);
4651 	spin_lock(&ailp->xa_lock);
4652 
4653 	return error;
4654 }
4655 
4656 /* Release the EFI since we're cancelling everything. */
4657 STATIC void
4658 xlog_recover_cancel_efi(
4659 	struct xfs_mount		*mp,
4660 	struct xfs_ail			*ailp,
4661 	struct xfs_log_item		*lip)
4662 {
4663 	struct xfs_efi_log_item		*efip;
4664 
4665 	efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4666 
4667 	spin_unlock(&ailp->xa_lock);
4668 	xfs_efi_release(efip);
4669 	spin_lock(&ailp->xa_lock);
4670 }
4671 
4672 /* Recover the RUI if necessary. */
4673 STATIC int
4674 xlog_recover_process_rui(
4675 	struct xfs_mount		*mp,
4676 	struct xfs_ail			*ailp,
4677 	struct xfs_log_item		*lip)
4678 {
4679 	struct xfs_rui_log_item		*ruip;
4680 	int				error;
4681 
4682 	/*
4683 	 * Skip RUIs that we've already processed.
4684 	 */
4685 	ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4686 	if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4687 		return 0;
4688 
4689 	spin_unlock(&ailp->xa_lock);
4690 	error = xfs_rui_recover(mp, ruip);
4691 	spin_lock(&ailp->xa_lock);
4692 
4693 	return error;
4694 }
4695 
4696 /* Release the RUI since we're cancelling everything. */
4697 STATIC void
4698 xlog_recover_cancel_rui(
4699 	struct xfs_mount		*mp,
4700 	struct xfs_ail			*ailp,
4701 	struct xfs_log_item		*lip)
4702 {
4703 	struct xfs_rui_log_item		*ruip;
4704 
4705 	ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4706 
4707 	spin_unlock(&ailp->xa_lock);
4708 	xfs_rui_release(ruip);
4709 	spin_lock(&ailp->xa_lock);
4710 }
4711 
4712 /* Recover the CUI if necessary. */
4713 STATIC int
4714 xlog_recover_process_cui(
4715 	struct xfs_mount		*mp,
4716 	struct xfs_ail			*ailp,
4717 	struct xfs_log_item		*lip)
4718 {
4719 	struct xfs_cui_log_item		*cuip;
4720 	int				error;
4721 
4722 	/*
4723 	 * Skip CUIs that we've already processed.
4724 	 */
4725 	cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4726 	if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags))
4727 		return 0;
4728 
4729 	spin_unlock(&ailp->xa_lock);
4730 	error = xfs_cui_recover(mp, cuip);
4731 	spin_lock(&ailp->xa_lock);
4732 
4733 	return error;
4734 }
4735 
4736 /* Release the CUI since we're cancelling everything. */
4737 STATIC void
4738 xlog_recover_cancel_cui(
4739 	struct xfs_mount		*mp,
4740 	struct xfs_ail			*ailp,
4741 	struct xfs_log_item		*lip)
4742 {
4743 	struct xfs_cui_log_item		*cuip;
4744 
4745 	cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4746 
4747 	spin_unlock(&ailp->xa_lock);
4748 	xfs_cui_release(cuip);
4749 	spin_lock(&ailp->xa_lock);
4750 }
4751 
4752 /* Recover the BUI if necessary. */
4753 STATIC int
4754 xlog_recover_process_bui(
4755 	struct xfs_mount		*mp,
4756 	struct xfs_ail			*ailp,
4757 	struct xfs_log_item		*lip)
4758 {
4759 	struct xfs_bui_log_item		*buip;
4760 	int				error;
4761 
4762 	/*
4763 	 * Skip BUIs that we've already processed.
4764 	 */
4765 	buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4766 	if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags))
4767 		return 0;
4768 
4769 	spin_unlock(&ailp->xa_lock);
4770 	error = xfs_bui_recover(mp, buip);
4771 	spin_lock(&ailp->xa_lock);
4772 
4773 	return error;
4774 }
4775 
4776 /* Release the BUI since we're cancelling everything. */
4777 STATIC void
4778 xlog_recover_cancel_bui(
4779 	struct xfs_mount		*mp,
4780 	struct xfs_ail			*ailp,
4781 	struct xfs_log_item		*lip)
4782 {
4783 	struct xfs_bui_log_item		*buip;
4784 
4785 	buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4786 
4787 	spin_unlock(&ailp->xa_lock);
4788 	xfs_bui_release(buip);
4789 	spin_lock(&ailp->xa_lock);
4790 }
4791 
4792 /* Is this log item a deferred action intent? */
4793 static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4794 {
4795 	switch (lip->li_type) {
4796 	case XFS_LI_EFI:
4797 	case XFS_LI_RUI:
4798 	case XFS_LI_CUI:
4799 	case XFS_LI_BUI:
4800 		return true;
4801 	default:
4802 		return false;
4803 	}
4804 }
4805 
4806 /*
4807  * When this is called, all of the log intent items which did not have
4808  * corresponding log done items should be in the AIL.  What we do now
4809  * is update the data structures associated with each one.
4810  *
4811  * Since we process the log intent items in normal transactions, they
4812  * will be removed at some point after the commit.  This prevents us
4813  * from just walking down the list processing each one.  We'll use a
4814  * flag in the intent item to skip those that we've already processed
4815  * and use the AIL iteration mechanism's generation count to try to
4816  * speed this up at least a bit.
4817  *
4818  * When we start, we know that the intents are the only things in the
4819  * AIL.  As we process them, however, other items are added to the
4820  * AIL.
4821  */
4822 STATIC int
4823 xlog_recover_process_intents(
4824 	struct xlog		*log)
4825 {
4826 	struct xfs_log_item	*lip;
4827 	int			error = 0;
4828 	struct xfs_ail_cursor	cur;
4829 	struct xfs_ail		*ailp;
4830 #if defined(DEBUG) || defined(XFS_WARN)
4831 	xfs_lsn_t		last_lsn;
4832 #endif
4833 
4834 	ailp = log->l_ailp;
4835 	spin_lock(&ailp->xa_lock);
4836 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4837 #if defined(DEBUG) || defined(XFS_WARN)
4838 	last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
4839 #endif
4840 	while (lip != NULL) {
4841 		/*
4842 		 * We're done when we see something other than an intent.
4843 		 * There should be no intents left in the AIL now.
4844 		 */
4845 		if (!xlog_item_is_intent(lip)) {
4846 #ifdef DEBUG
4847 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4848 				ASSERT(!xlog_item_is_intent(lip));
4849 #endif
4850 			break;
4851 		}
4852 
4853 		/*
4854 		 * We should never see a redo item with a LSN higher than
4855 		 * the last transaction we found in the log at the start
4856 		 * of recovery.
4857 		 */
4858 		ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
4859 
4860 		switch (lip->li_type) {
4861 		case XFS_LI_EFI:
4862 			error = xlog_recover_process_efi(log->l_mp, ailp, lip);
4863 			break;
4864 		case XFS_LI_RUI:
4865 			error = xlog_recover_process_rui(log->l_mp, ailp, lip);
4866 			break;
4867 		case XFS_LI_CUI:
4868 			error = xlog_recover_process_cui(log->l_mp, ailp, lip);
4869 			break;
4870 		case XFS_LI_BUI:
4871 			error = xlog_recover_process_bui(log->l_mp, ailp, lip);
4872 			break;
4873 		}
4874 		if (error)
4875 			goto out;
4876 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
4877 	}
4878 out:
4879 	xfs_trans_ail_cursor_done(&cur);
4880 	spin_unlock(&ailp->xa_lock);
4881 	return error;
4882 }
4883 
4884 /*
4885  * A cancel occurs when the mount has failed and we're bailing out.
4886  * Release all pending log intent items so they don't pin the AIL.
4887  */
4888 STATIC int
4889 xlog_recover_cancel_intents(
4890 	struct xlog		*log)
4891 {
4892 	struct xfs_log_item	*lip;
4893 	int			error = 0;
4894 	struct xfs_ail_cursor	cur;
4895 	struct xfs_ail		*ailp;
4896 
4897 	ailp = log->l_ailp;
4898 	spin_lock(&ailp->xa_lock);
4899 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4900 	while (lip != NULL) {
4901 		/*
4902 		 * We're done when we see something other than an intent.
4903 		 * There should be no intents left in the AIL now.
4904 		 */
4905 		if (!xlog_item_is_intent(lip)) {
4906 #ifdef DEBUG
4907 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4908 				ASSERT(!xlog_item_is_intent(lip));
4909 #endif
4910 			break;
4911 		}
4912 
4913 		switch (lip->li_type) {
4914 		case XFS_LI_EFI:
4915 			xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4916 			break;
4917 		case XFS_LI_RUI:
4918 			xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4919 			break;
4920 		case XFS_LI_CUI:
4921 			xlog_recover_cancel_cui(log->l_mp, ailp, lip);
4922 			break;
4923 		case XFS_LI_BUI:
4924 			xlog_recover_cancel_bui(log->l_mp, ailp, lip);
4925 			break;
4926 		}
4927 
4928 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
4929 	}
4930 
4931 	xfs_trans_ail_cursor_done(&cur);
4932 	spin_unlock(&ailp->xa_lock);
4933 	return error;
4934 }
4935 
4936 /*
4937  * This routine performs a transaction to null out a bad inode pointer
4938  * in an agi unlinked inode hash bucket.
4939  */
4940 STATIC void
4941 xlog_recover_clear_agi_bucket(
4942 	xfs_mount_t	*mp,
4943 	xfs_agnumber_t	agno,
4944 	int		bucket)
4945 {
4946 	xfs_trans_t	*tp;
4947 	xfs_agi_t	*agi;
4948 	xfs_buf_t	*agibp;
4949 	int		offset;
4950 	int		error;
4951 
4952 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
4953 	if (error)
4954 		goto out_error;
4955 
4956 	error = xfs_read_agi(mp, tp, agno, &agibp);
4957 	if (error)
4958 		goto out_abort;
4959 
4960 	agi = XFS_BUF_TO_AGI(agibp);
4961 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
4962 	offset = offsetof(xfs_agi_t, agi_unlinked) +
4963 		 (sizeof(xfs_agino_t) * bucket);
4964 	xfs_trans_log_buf(tp, agibp, offset,
4965 			  (offset + sizeof(xfs_agino_t) - 1));
4966 
4967 	error = xfs_trans_commit(tp);
4968 	if (error)
4969 		goto out_error;
4970 	return;
4971 
4972 out_abort:
4973 	xfs_trans_cancel(tp);
4974 out_error:
4975 	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
4976 	return;
4977 }
4978 
4979 STATIC xfs_agino_t
4980 xlog_recover_process_one_iunlink(
4981 	struct xfs_mount		*mp,
4982 	xfs_agnumber_t			agno,
4983 	xfs_agino_t			agino,
4984 	int				bucket)
4985 {
4986 	struct xfs_buf			*ibp;
4987 	struct xfs_dinode		*dip;
4988 	struct xfs_inode		*ip;
4989 	xfs_ino_t			ino;
4990 	int				error;
4991 
4992 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
4993 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
4994 	if (error)
4995 		goto fail;
4996 
4997 	/*
4998 	 * Get the on disk inode to find the next inode in the bucket.
4999 	 */
5000 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
5001 	if (error)
5002 		goto fail_iput;
5003 
5004 	xfs_iflags_clear(ip, XFS_IRECOVERY);
5005 	ASSERT(VFS_I(ip)->i_nlink == 0);
5006 	ASSERT(VFS_I(ip)->i_mode != 0);
5007 
5008 	/* setup for the next pass */
5009 	agino = be32_to_cpu(dip->di_next_unlinked);
5010 	xfs_buf_relse(ibp);
5011 
5012 	/*
5013 	 * Prevent any DMAPI event from being sent when the reference on
5014 	 * the inode is dropped.
5015 	 */
5016 	ip->i_d.di_dmevmask = 0;
5017 
5018 	IRELE(ip);
5019 	return agino;
5020 
5021  fail_iput:
5022 	IRELE(ip);
5023  fail:
5024 	/*
5025 	 * We can't read in the inode this bucket points to, or this inode
5026 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
5027 	 * some inodes and space, but at least we won't hang.
5028 	 *
5029 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
5030 	 * clear the inode pointer in the bucket.
5031 	 */
5032 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
5033 	return NULLAGINO;
5034 }
5035 
5036 /*
5037  * xlog_iunlink_recover
5038  *
5039  * This is called during recovery to process any inodes which
5040  * we unlinked but not freed when the system crashed.  These
5041  * inodes will be on the lists in the AGI blocks.  What we do
5042  * here is scan all the AGIs and fully truncate and free any
5043  * inodes found on the lists.  Each inode is removed from the
5044  * lists when it has been fully truncated and is freed.  The
5045  * freeing of the inode and its removal from the list must be
5046  * atomic.
5047  */
5048 STATIC void
5049 xlog_recover_process_iunlinks(
5050 	struct xlog	*log)
5051 {
5052 	xfs_mount_t	*mp;
5053 	xfs_agnumber_t	agno;
5054 	xfs_agi_t	*agi;
5055 	xfs_buf_t	*agibp;
5056 	xfs_agino_t	agino;
5057 	int		bucket;
5058 	int		error;
5059 	uint		mp_dmevmask;
5060 
5061 	mp = log->l_mp;
5062 
5063 	/*
5064 	 * Prevent any DMAPI event from being sent while in this function.
5065 	 */
5066 	mp_dmevmask = mp->m_dmevmask;
5067 	mp->m_dmevmask = 0;
5068 
5069 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5070 		/*
5071 		 * Find the agi for this ag.
5072 		 */
5073 		error = xfs_read_agi(mp, NULL, agno, &agibp);
5074 		if (error) {
5075 			/*
5076 			 * AGI is b0rked. Don't process it.
5077 			 *
5078 			 * We should probably mark the filesystem as corrupt
5079 			 * after we've recovered all the ag's we can....
5080 			 */
5081 			continue;
5082 		}
5083 		/*
5084 		 * Unlock the buffer so that it can be acquired in the normal
5085 		 * course of the transaction to truncate and free each inode.
5086 		 * Because we are not racing with anyone else here for the AGI
5087 		 * buffer, we don't even need to hold it locked to read the
5088 		 * initial unlinked bucket entries out of the buffer. We keep
5089 		 * buffer reference though, so that it stays pinned in memory
5090 		 * while we need the buffer.
5091 		 */
5092 		agi = XFS_BUF_TO_AGI(agibp);
5093 		xfs_buf_unlock(agibp);
5094 
5095 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
5096 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
5097 			while (agino != NULLAGINO) {
5098 				agino = xlog_recover_process_one_iunlink(mp,
5099 							agno, agino, bucket);
5100 			}
5101 		}
5102 		xfs_buf_rele(agibp);
5103 	}
5104 
5105 	mp->m_dmevmask = mp_dmevmask;
5106 }
5107 
5108 STATIC int
5109 xlog_unpack_data(
5110 	struct xlog_rec_header	*rhead,
5111 	char			*dp,
5112 	struct xlog		*log)
5113 {
5114 	int			i, j, k;
5115 
5116 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
5117 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
5118 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
5119 		dp += BBSIZE;
5120 	}
5121 
5122 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5123 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
5124 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
5125 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5126 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5127 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
5128 			dp += BBSIZE;
5129 		}
5130 	}
5131 
5132 	return 0;
5133 }
5134 
5135 /*
5136  * CRC check, unpack and process a log record.
5137  */
5138 STATIC int
5139 xlog_recover_process(
5140 	struct xlog		*log,
5141 	struct hlist_head	rhash[],
5142 	struct xlog_rec_header	*rhead,
5143 	char			*dp,
5144 	int			pass,
5145 	struct list_head	*buffer_list)
5146 {
5147 	int			error;
5148 	__le32			old_crc = rhead->h_crc;
5149 	__le32			crc;
5150 
5151 
5152 	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
5153 
5154 	/*
5155 	 * Nothing else to do if this is a CRC verification pass. Just return
5156 	 * if this a record with a non-zero crc. Unfortunately, mkfs always
5157 	 * sets old_crc to 0 so we must consider this valid even on v5 supers.
5158 	 * Otherwise, return EFSBADCRC on failure so the callers up the stack
5159 	 * know precisely what failed.
5160 	 */
5161 	if (pass == XLOG_RECOVER_CRCPASS) {
5162 		if (old_crc && crc != old_crc)
5163 			return -EFSBADCRC;
5164 		return 0;
5165 	}
5166 
5167 	/*
5168 	 * We're in the normal recovery path. Issue a warning if and only if the
5169 	 * CRC in the header is non-zero. This is an advisory warning and the
5170 	 * zero CRC check prevents warnings from being emitted when upgrading
5171 	 * the kernel from one that does not add CRCs by default.
5172 	 */
5173 	if (crc != old_crc) {
5174 		if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
5175 			xfs_alert(log->l_mp,
5176 		"log record CRC mismatch: found 0x%x, expected 0x%x.",
5177 					le32_to_cpu(old_crc),
5178 					le32_to_cpu(crc));
5179 			xfs_hex_dump(dp, 32);
5180 		}
5181 
5182 		/*
5183 		 * If the filesystem is CRC enabled, this mismatch becomes a
5184 		 * fatal log corruption failure.
5185 		 */
5186 		if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
5187 			return -EFSCORRUPTED;
5188 	}
5189 
5190 	error = xlog_unpack_data(rhead, dp, log);
5191 	if (error)
5192 		return error;
5193 
5194 	return xlog_recover_process_data(log, rhash, rhead, dp, pass,
5195 					 buffer_list);
5196 }
5197 
5198 STATIC int
5199 xlog_valid_rec_header(
5200 	struct xlog		*log,
5201 	struct xlog_rec_header	*rhead,
5202 	xfs_daddr_t		blkno)
5203 {
5204 	int			hlen;
5205 
5206 	if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
5207 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
5208 				XFS_ERRLEVEL_LOW, log->l_mp);
5209 		return -EFSCORRUPTED;
5210 	}
5211 	if (unlikely(
5212 	    (!rhead->h_version ||
5213 	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
5214 		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
5215 			__func__, be32_to_cpu(rhead->h_version));
5216 		return -EIO;
5217 	}
5218 
5219 	/* LR body must have data or it wouldn't have been written */
5220 	hlen = be32_to_cpu(rhead->h_len);
5221 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
5222 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
5223 				XFS_ERRLEVEL_LOW, log->l_mp);
5224 		return -EFSCORRUPTED;
5225 	}
5226 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
5227 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
5228 				XFS_ERRLEVEL_LOW, log->l_mp);
5229 		return -EFSCORRUPTED;
5230 	}
5231 	return 0;
5232 }
5233 
5234 /*
5235  * Read the log from tail to head and process the log records found.
5236  * Handle the two cases where the tail and head are in the same cycle
5237  * and where the active portion of the log wraps around the end of
5238  * the physical log separately.  The pass parameter is passed through
5239  * to the routines called to process the data and is not looked at
5240  * here.
5241  */
5242 STATIC int
5243 xlog_do_recovery_pass(
5244 	struct xlog		*log,
5245 	xfs_daddr_t		head_blk,
5246 	xfs_daddr_t		tail_blk,
5247 	int			pass,
5248 	xfs_daddr_t		*first_bad)	/* out: first bad log rec */
5249 {
5250 	xlog_rec_header_t	*rhead;
5251 	xfs_daddr_t		blk_no, rblk_no;
5252 	xfs_daddr_t		rhead_blk;
5253 	char			*offset;
5254 	xfs_buf_t		*hbp, *dbp;
5255 	int			error = 0, h_size, h_len;
5256 	int			error2 = 0;
5257 	int			bblks, split_bblks;
5258 	int			hblks, split_hblks, wrapped_hblks;
5259 	int			i;
5260 	struct hlist_head	rhash[XLOG_RHASH_SIZE];
5261 	LIST_HEAD		(buffer_list);
5262 
5263 	ASSERT(head_blk != tail_blk);
5264 	blk_no = rhead_blk = tail_blk;
5265 
5266 	for (i = 0; i < XLOG_RHASH_SIZE; i++)
5267 		INIT_HLIST_HEAD(&rhash[i]);
5268 
5269 	/*
5270 	 * Read the header of the tail block and get the iclog buffer size from
5271 	 * h_size.  Use this to tell how many sectors make up the log header.
5272 	 */
5273 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5274 		/*
5275 		 * When using variable length iclogs, read first sector of
5276 		 * iclog header and extract the header size from it.  Get a
5277 		 * new hbp that is the correct size.
5278 		 */
5279 		hbp = xlog_get_bp(log, 1);
5280 		if (!hbp)
5281 			return -ENOMEM;
5282 
5283 		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
5284 		if (error)
5285 			goto bread_err1;
5286 
5287 		rhead = (xlog_rec_header_t *)offset;
5288 		error = xlog_valid_rec_header(log, rhead, tail_blk);
5289 		if (error)
5290 			goto bread_err1;
5291 
5292 		/*
5293 		 * xfsprogs has a bug where record length is based on lsunit but
5294 		 * h_size (iclog size) is hardcoded to 32k. Now that we
5295 		 * unconditionally CRC verify the unmount record, this means the
5296 		 * log buffer can be too small for the record and cause an
5297 		 * overrun.
5298 		 *
5299 		 * Detect this condition here. Use lsunit for the buffer size as
5300 		 * long as this looks like the mkfs case. Otherwise, return an
5301 		 * error to avoid a buffer overrun.
5302 		 */
5303 		h_size = be32_to_cpu(rhead->h_size);
5304 		h_len = be32_to_cpu(rhead->h_len);
5305 		if (h_len > h_size) {
5306 			if (h_len <= log->l_mp->m_logbsize &&
5307 			    be32_to_cpu(rhead->h_num_logops) == 1) {
5308 				xfs_warn(log->l_mp,
5309 		"invalid iclog size (%d bytes), using lsunit (%d bytes)",
5310 					 h_size, log->l_mp->m_logbsize);
5311 				h_size = log->l_mp->m_logbsize;
5312 			} else
5313 				return -EFSCORRUPTED;
5314 		}
5315 
5316 		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
5317 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
5318 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
5319 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
5320 				hblks++;
5321 			xlog_put_bp(hbp);
5322 			hbp = xlog_get_bp(log, hblks);
5323 		} else {
5324 			hblks = 1;
5325 		}
5326 	} else {
5327 		ASSERT(log->l_sectBBsize == 1);
5328 		hblks = 1;
5329 		hbp = xlog_get_bp(log, 1);
5330 		h_size = XLOG_BIG_RECORD_BSIZE;
5331 	}
5332 
5333 	if (!hbp)
5334 		return -ENOMEM;
5335 	dbp = xlog_get_bp(log, BTOBB(h_size));
5336 	if (!dbp) {
5337 		xlog_put_bp(hbp);
5338 		return -ENOMEM;
5339 	}
5340 
5341 	memset(rhash, 0, sizeof(rhash));
5342 	if (tail_blk > head_blk) {
5343 		/*
5344 		 * Perform recovery around the end of the physical log.
5345 		 * When the head is not on the same cycle number as the tail,
5346 		 * we can't do a sequential recovery.
5347 		 */
5348 		while (blk_no < log->l_logBBsize) {
5349 			/*
5350 			 * Check for header wrapping around physical end-of-log
5351 			 */
5352 			offset = hbp->b_addr;
5353 			split_hblks = 0;
5354 			wrapped_hblks = 0;
5355 			if (blk_no + hblks <= log->l_logBBsize) {
5356 				/* Read header in one read */
5357 				error = xlog_bread(log, blk_no, hblks, hbp,
5358 						   &offset);
5359 				if (error)
5360 					goto bread_err2;
5361 			} else {
5362 				/* This LR is split across physical log end */
5363 				if (blk_no != log->l_logBBsize) {
5364 					/* some data before physical log end */
5365 					ASSERT(blk_no <= INT_MAX);
5366 					split_hblks = log->l_logBBsize - (int)blk_no;
5367 					ASSERT(split_hblks > 0);
5368 					error = xlog_bread(log, blk_no,
5369 							   split_hblks, hbp,
5370 							   &offset);
5371 					if (error)
5372 						goto bread_err2;
5373 				}
5374 
5375 				/*
5376 				 * Note: this black magic still works with
5377 				 * large sector sizes (non-512) only because:
5378 				 * - we increased the buffer size originally
5379 				 *   by 1 sector giving us enough extra space
5380 				 *   for the second read;
5381 				 * - the log start is guaranteed to be sector
5382 				 *   aligned;
5383 				 * - we read the log end (LR header start)
5384 				 *   _first_, then the log start (LR header end)
5385 				 *   - order is important.
5386 				 */
5387 				wrapped_hblks = hblks - split_hblks;
5388 				error = xlog_bread_offset(log, 0,
5389 						wrapped_hblks, hbp,
5390 						offset + BBTOB(split_hblks));
5391 				if (error)
5392 					goto bread_err2;
5393 			}
5394 			rhead = (xlog_rec_header_t *)offset;
5395 			error = xlog_valid_rec_header(log, rhead,
5396 						split_hblks ? blk_no : 0);
5397 			if (error)
5398 				goto bread_err2;
5399 
5400 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5401 			blk_no += hblks;
5402 
5403 			/*
5404 			 * Read the log record data in multiple reads if it
5405 			 * wraps around the end of the log. Note that if the
5406 			 * header already wrapped, blk_no could point past the
5407 			 * end of the log. The record data is contiguous in
5408 			 * that case.
5409 			 */
5410 			if (blk_no + bblks <= log->l_logBBsize ||
5411 			    blk_no >= log->l_logBBsize) {
5412 				/* mod blk_no in case the header wrapped and
5413 				 * pushed it beyond the end of the log */
5414 				rblk_no = do_mod(blk_no, log->l_logBBsize);
5415 				error = xlog_bread(log, rblk_no, bblks, dbp,
5416 						   &offset);
5417 				if (error)
5418 					goto bread_err2;
5419 			} else {
5420 				/* This log record is split across the
5421 				 * physical end of log */
5422 				offset = dbp->b_addr;
5423 				split_bblks = 0;
5424 				if (blk_no != log->l_logBBsize) {
5425 					/* some data is before the physical
5426 					 * end of log */
5427 					ASSERT(!wrapped_hblks);
5428 					ASSERT(blk_no <= INT_MAX);
5429 					split_bblks =
5430 						log->l_logBBsize - (int)blk_no;
5431 					ASSERT(split_bblks > 0);
5432 					error = xlog_bread(log, blk_no,
5433 							split_bblks, dbp,
5434 							&offset);
5435 					if (error)
5436 						goto bread_err2;
5437 				}
5438 
5439 				/*
5440 				 * Note: this black magic still works with
5441 				 * large sector sizes (non-512) only because:
5442 				 * - we increased the buffer size originally
5443 				 *   by 1 sector giving us enough extra space
5444 				 *   for the second read;
5445 				 * - the log start is guaranteed to be sector
5446 				 *   aligned;
5447 				 * - we read the log end (LR header start)
5448 				 *   _first_, then the log start (LR header end)
5449 				 *   - order is important.
5450 				 */
5451 				error = xlog_bread_offset(log, 0,
5452 						bblks - split_bblks, dbp,
5453 						offset + BBTOB(split_bblks));
5454 				if (error)
5455 					goto bread_err2;
5456 			}
5457 
5458 			error = xlog_recover_process(log, rhash, rhead, offset,
5459 						     pass, &buffer_list);
5460 			if (error)
5461 				goto bread_err2;
5462 
5463 			blk_no += bblks;
5464 			rhead_blk = blk_no;
5465 		}
5466 
5467 		ASSERT(blk_no >= log->l_logBBsize);
5468 		blk_no -= log->l_logBBsize;
5469 		rhead_blk = blk_no;
5470 	}
5471 
5472 	/* read first part of physical log */
5473 	while (blk_no < head_blk) {
5474 		error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5475 		if (error)
5476 			goto bread_err2;
5477 
5478 		rhead = (xlog_rec_header_t *)offset;
5479 		error = xlog_valid_rec_header(log, rhead, blk_no);
5480 		if (error)
5481 			goto bread_err2;
5482 
5483 		/* blocks in data section */
5484 		bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5485 		error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5486 				   &offset);
5487 		if (error)
5488 			goto bread_err2;
5489 
5490 		error = xlog_recover_process(log, rhash, rhead, offset, pass,
5491 					     &buffer_list);
5492 		if (error)
5493 			goto bread_err2;
5494 
5495 		blk_no += bblks + hblks;
5496 		rhead_blk = blk_no;
5497 	}
5498 
5499  bread_err2:
5500 	xlog_put_bp(dbp);
5501  bread_err1:
5502 	xlog_put_bp(hbp);
5503 
5504 	/*
5505 	 * Submit buffers that have been added from the last record processed,
5506 	 * regardless of error status.
5507 	 */
5508 	if (!list_empty(&buffer_list))
5509 		error2 = xfs_buf_delwri_submit(&buffer_list);
5510 
5511 	if (error && first_bad)
5512 		*first_bad = rhead_blk;
5513 
5514 	/*
5515 	 * Transactions are freed at commit time but transactions without commit
5516 	 * records on disk are never committed. Free any that may be left in the
5517 	 * hash table.
5518 	 */
5519 	for (i = 0; i < XLOG_RHASH_SIZE; i++) {
5520 		struct hlist_node	*tmp;
5521 		struct xlog_recover	*trans;
5522 
5523 		hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
5524 			xlog_recover_free_trans(trans);
5525 	}
5526 
5527 	return error ? error : error2;
5528 }
5529 
5530 /*
5531  * Do the recovery of the log.  We actually do this in two phases.
5532  * The two passes are necessary in order to implement the function
5533  * of cancelling a record written into the log.  The first pass
5534  * determines those things which have been cancelled, and the
5535  * second pass replays log items normally except for those which
5536  * have been cancelled.  The handling of the replay and cancellations
5537  * takes place in the log item type specific routines.
5538  *
5539  * The table of items which have cancel records in the log is allocated
5540  * and freed at this level, since only here do we know when all of
5541  * the log recovery has been completed.
5542  */
5543 STATIC int
5544 xlog_do_log_recovery(
5545 	struct xlog	*log,
5546 	xfs_daddr_t	head_blk,
5547 	xfs_daddr_t	tail_blk)
5548 {
5549 	int		error, i;
5550 
5551 	ASSERT(head_blk != tail_blk);
5552 
5553 	/*
5554 	 * First do a pass to find all of the cancelled buf log items.
5555 	 * Store them in the buf_cancel_table for use in the second pass.
5556 	 */
5557 	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5558 						 sizeof(struct list_head),
5559 						 KM_SLEEP);
5560 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5561 		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5562 
5563 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5564 				      XLOG_RECOVER_PASS1, NULL);
5565 	if (error != 0) {
5566 		kmem_free(log->l_buf_cancel_table);
5567 		log->l_buf_cancel_table = NULL;
5568 		return error;
5569 	}
5570 	/*
5571 	 * Then do a second pass to actually recover the items in the log.
5572 	 * When it is complete free the table of buf cancel items.
5573 	 */
5574 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5575 				      XLOG_RECOVER_PASS2, NULL);
5576 #ifdef DEBUG
5577 	if (!error) {
5578 		int	i;
5579 
5580 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5581 			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
5582 	}
5583 #endif	/* DEBUG */
5584 
5585 	kmem_free(log->l_buf_cancel_table);
5586 	log->l_buf_cancel_table = NULL;
5587 
5588 	return error;
5589 }
5590 
5591 /*
5592  * Do the actual recovery
5593  */
5594 STATIC int
5595 xlog_do_recover(
5596 	struct xlog	*log,
5597 	xfs_daddr_t	head_blk,
5598 	xfs_daddr_t	tail_blk)
5599 {
5600 	struct xfs_mount *mp = log->l_mp;
5601 	int		error;
5602 	xfs_buf_t	*bp;
5603 	xfs_sb_t	*sbp;
5604 
5605 	trace_xfs_log_recover(log, head_blk, tail_blk);
5606 
5607 	/*
5608 	 * First replay the images in the log.
5609 	 */
5610 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
5611 	if (error)
5612 		return error;
5613 
5614 	/*
5615 	 * If IO errors happened during recovery, bail out.
5616 	 */
5617 	if (XFS_FORCED_SHUTDOWN(mp)) {
5618 		return -EIO;
5619 	}
5620 
5621 	/*
5622 	 * We now update the tail_lsn since much of the recovery has completed
5623 	 * and there may be space available to use.  If there were no extent
5624 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
5625 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
5626 	 * lsn of the last known good LR on disk.  If there are extent frees
5627 	 * or iunlinks they will have some entries in the AIL; so we look at
5628 	 * the AIL to determine how to set the tail_lsn.
5629 	 */
5630 	xlog_assign_tail_lsn(mp);
5631 
5632 	/*
5633 	 * Now that we've finished replaying all buffer and inode
5634 	 * updates, re-read in the superblock and reverify it.
5635 	 */
5636 	bp = xfs_getsb(mp, 0);
5637 	bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
5638 	ASSERT(!(bp->b_flags & XBF_WRITE));
5639 	bp->b_flags |= XBF_READ;
5640 	bp->b_ops = &xfs_sb_buf_ops;
5641 
5642 	error = xfs_buf_submit_wait(bp);
5643 	if (error) {
5644 		if (!XFS_FORCED_SHUTDOWN(mp)) {
5645 			xfs_buf_ioerror_alert(bp, __func__);
5646 			ASSERT(0);
5647 		}
5648 		xfs_buf_relse(bp);
5649 		return error;
5650 	}
5651 
5652 	/* Convert superblock from on-disk format */
5653 	sbp = &mp->m_sb;
5654 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
5655 	xfs_buf_relse(bp);
5656 
5657 	/* re-initialise in-core superblock and geometry structures */
5658 	xfs_reinit_percpu_counters(mp);
5659 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5660 	if (error) {
5661 		xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5662 		return error;
5663 	}
5664 	mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5665 
5666 	xlog_recover_check_summary(log);
5667 
5668 	/* Normal transactions can now occur */
5669 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5670 	return 0;
5671 }
5672 
5673 /*
5674  * Perform recovery and re-initialize some log variables in xlog_find_tail.
5675  *
5676  * Return error or zero.
5677  */
5678 int
5679 xlog_recover(
5680 	struct xlog	*log)
5681 {
5682 	xfs_daddr_t	head_blk, tail_blk;
5683 	int		error;
5684 
5685 	/* find the tail of the log */
5686 	error = xlog_find_tail(log, &head_blk, &tail_blk);
5687 	if (error)
5688 		return error;
5689 
5690 	/*
5691 	 * The superblock was read before the log was available and thus the LSN
5692 	 * could not be verified. Check the superblock LSN against the current
5693 	 * LSN now that it's known.
5694 	 */
5695 	if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5696 	    !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5697 		return -EINVAL;
5698 
5699 	if (tail_blk != head_blk) {
5700 		/* There used to be a comment here:
5701 		 *
5702 		 * disallow recovery on read-only mounts.  note -- mount
5703 		 * checks for ENOSPC and turns it into an intelligent
5704 		 * error message.
5705 		 * ...but this is no longer true.  Now, unless you specify
5706 		 * NORECOVERY (in which case this function would never be
5707 		 * called), we just go ahead and recover.  We do this all
5708 		 * under the vfs layer, so we can get away with it unless
5709 		 * the device itself is read-only, in which case we fail.
5710 		 */
5711 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5712 			return error;
5713 		}
5714 
5715 		/*
5716 		 * Version 5 superblock log feature mask validation. We know the
5717 		 * log is dirty so check if there are any unknown log features
5718 		 * in what we need to recover. If there are unknown features
5719 		 * (e.g. unsupported transactions, then simply reject the
5720 		 * attempt at recovery before touching anything.
5721 		 */
5722 		if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5723 		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5724 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5725 			xfs_warn(log->l_mp,
5726 "Superblock has unknown incompatible log features (0x%x) enabled.",
5727 				(log->l_mp->m_sb.sb_features_log_incompat &
5728 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5729 			xfs_warn(log->l_mp,
5730 "The log can not be fully and/or safely recovered by this kernel.");
5731 			xfs_warn(log->l_mp,
5732 "Please recover the log on a kernel that supports the unknown features.");
5733 			return -EINVAL;
5734 		}
5735 
5736 		/*
5737 		 * Delay log recovery if the debug hook is set. This is debug
5738 		 * instrumention to coordinate simulation of I/O failures with
5739 		 * log recovery.
5740 		 */
5741 		if (xfs_globals.log_recovery_delay) {
5742 			xfs_notice(log->l_mp,
5743 				"Delaying log recovery for %d seconds.",
5744 				xfs_globals.log_recovery_delay);
5745 			msleep(xfs_globals.log_recovery_delay * 1000);
5746 		}
5747 
5748 		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5749 				log->l_mp->m_logname ? log->l_mp->m_logname
5750 						     : "internal");
5751 
5752 		error = xlog_do_recover(log, head_blk, tail_blk);
5753 		log->l_flags |= XLOG_RECOVERY_NEEDED;
5754 	}
5755 	return error;
5756 }
5757 
5758 /*
5759  * In the first part of recovery we replay inodes and buffers and build
5760  * up the list of extent free items which need to be processed.  Here
5761  * we process the extent free items and clean up the on disk unlinked
5762  * inode lists.  This is separated from the first part of recovery so
5763  * that the root and real-time bitmap inodes can be read in from disk in
5764  * between the two stages.  This is necessary so that we can free space
5765  * in the real-time portion of the file system.
5766  */
5767 int
5768 xlog_recover_finish(
5769 	struct xlog	*log)
5770 {
5771 	/*
5772 	 * Now we're ready to do the transactions needed for the
5773 	 * rest of recovery.  Start with completing all the extent
5774 	 * free intent records and then process the unlinked inode
5775 	 * lists.  At this point, we essentially run in normal mode
5776 	 * except that we're still performing recovery actions
5777 	 * rather than accepting new requests.
5778 	 */
5779 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5780 		int	error;
5781 		error = xlog_recover_process_intents(log);
5782 		if (error) {
5783 			xfs_alert(log->l_mp, "Failed to recover intents");
5784 			return error;
5785 		}
5786 
5787 		/*
5788 		 * Sync the log to get all the intents out of the AIL.
5789 		 * This isn't absolutely necessary, but it helps in
5790 		 * case the unlink transactions would have problems
5791 		 * pushing the intents out of the way.
5792 		 */
5793 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
5794 
5795 		xlog_recover_process_iunlinks(log);
5796 
5797 		xlog_recover_check_summary(log);
5798 
5799 		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5800 				log->l_mp->m_logname ? log->l_mp->m_logname
5801 						     : "internal");
5802 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5803 	} else {
5804 		xfs_info(log->l_mp, "Ending clean mount");
5805 	}
5806 	return 0;
5807 }
5808 
5809 int
5810 xlog_recover_cancel(
5811 	struct xlog	*log)
5812 {
5813 	int		error = 0;
5814 
5815 	if (log->l_flags & XLOG_RECOVERY_NEEDED)
5816 		error = xlog_recover_cancel_intents(log);
5817 
5818 	return error;
5819 }
5820 
5821 #if defined(DEBUG)
5822 /*
5823  * Read all of the agf and agi counters and check that they
5824  * are consistent with the superblock counters.
5825  */
5826 void
5827 xlog_recover_check_summary(
5828 	struct xlog	*log)
5829 {
5830 	xfs_mount_t	*mp;
5831 	xfs_agf_t	*agfp;
5832 	xfs_buf_t	*agfbp;
5833 	xfs_buf_t	*agibp;
5834 	xfs_agnumber_t	agno;
5835 	uint64_t	freeblks;
5836 	uint64_t	itotal;
5837 	uint64_t	ifree;
5838 	int		error;
5839 
5840 	mp = log->l_mp;
5841 
5842 	freeblks = 0LL;
5843 	itotal = 0LL;
5844 	ifree = 0LL;
5845 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5846 		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5847 		if (error) {
5848 			xfs_alert(mp, "%s agf read failed agno %d error %d",
5849 						__func__, agno, error);
5850 		} else {
5851 			agfp = XFS_BUF_TO_AGF(agfbp);
5852 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
5853 				    be32_to_cpu(agfp->agf_flcount);
5854 			xfs_buf_relse(agfbp);
5855 		}
5856 
5857 		error = xfs_read_agi(mp, NULL, agno, &agibp);
5858 		if (error) {
5859 			xfs_alert(mp, "%s agi read failed agno %d error %d",
5860 						__func__, agno, error);
5861 		} else {
5862 			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
5863 
5864 			itotal += be32_to_cpu(agi->agi_count);
5865 			ifree += be32_to_cpu(agi->agi_freecount);
5866 			xfs_buf_relse(agibp);
5867 		}
5868 	}
5869 }
5870 #endif /* DEBUG */
5871