1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_sb.h" 26 #include "xfs_mount.h" 27 #include "xfs_da_format.h" 28 #include "xfs_da_btree.h" 29 #include "xfs_inode.h" 30 #include "xfs_trans.h" 31 #include "xfs_log.h" 32 #include "xfs_log_priv.h" 33 #include "xfs_log_recover.h" 34 #include "xfs_inode_item.h" 35 #include "xfs_extfree_item.h" 36 #include "xfs_trans_priv.h" 37 #include "xfs_alloc.h" 38 #include "xfs_ialloc.h" 39 #include "xfs_quota.h" 40 #include "xfs_cksum.h" 41 #include "xfs_trace.h" 42 #include "xfs_icache.h" 43 #include "xfs_bmap_btree.h" 44 #include "xfs_error.h" 45 #include "xfs_dir2.h" 46 47 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) 48 49 STATIC int 50 xlog_find_zeroed( 51 struct xlog *, 52 xfs_daddr_t *); 53 STATIC int 54 xlog_clear_stale_blocks( 55 struct xlog *, 56 xfs_lsn_t); 57 #if defined(DEBUG) 58 STATIC void 59 xlog_recover_check_summary( 60 struct xlog *); 61 #else 62 #define xlog_recover_check_summary(log) 63 #endif 64 65 /* 66 * This structure is used during recovery to record the buf log items which 67 * have been canceled and should not be replayed. 68 */ 69 struct xfs_buf_cancel { 70 xfs_daddr_t bc_blkno; 71 uint bc_len; 72 int bc_refcount; 73 struct list_head bc_list; 74 }; 75 76 /* 77 * Sector aligned buffer routines for buffer create/read/write/access 78 */ 79 80 /* 81 * Verify the given count of basic blocks is valid number of blocks 82 * to specify for an operation involving the given XFS log buffer. 83 * Returns nonzero if the count is valid, 0 otherwise. 84 */ 85 86 static inline int 87 xlog_buf_bbcount_valid( 88 struct xlog *log, 89 int bbcount) 90 { 91 return bbcount > 0 && bbcount <= log->l_logBBsize; 92 } 93 94 /* 95 * Allocate a buffer to hold log data. The buffer needs to be able 96 * to map to a range of nbblks basic blocks at any valid (basic 97 * block) offset within the log. 98 */ 99 STATIC xfs_buf_t * 100 xlog_get_bp( 101 struct xlog *log, 102 int nbblks) 103 { 104 struct xfs_buf *bp; 105 106 if (!xlog_buf_bbcount_valid(log, nbblks)) { 107 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 108 nbblks); 109 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 110 return NULL; 111 } 112 113 /* 114 * We do log I/O in units of log sectors (a power-of-2 115 * multiple of the basic block size), so we round up the 116 * requested size to accommodate the basic blocks required 117 * for complete log sectors. 118 * 119 * In addition, the buffer may be used for a non-sector- 120 * aligned block offset, in which case an I/O of the 121 * requested size could extend beyond the end of the 122 * buffer. If the requested size is only 1 basic block it 123 * will never straddle a sector boundary, so this won't be 124 * an issue. Nor will this be a problem if the log I/O is 125 * done in basic blocks (sector size 1). But otherwise we 126 * extend the buffer by one extra log sector to ensure 127 * there's space to accommodate this possibility. 128 */ 129 if (nbblks > 1 && log->l_sectBBsize > 1) 130 nbblks += log->l_sectBBsize; 131 nbblks = round_up(nbblks, log->l_sectBBsize); 132 133 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0); 134 if (bp) 135 xfs_buf_unlock(bp); 136 return bp; 137 } 138 139 STATIC void 140 xlog_put_bp( 141 xfs_buf_t *bp) 142 { 143 xfs_buf_free(bp); 144 } 145 146 /* 147 * Return the address of the start of the given block number's data 148 * in a log buffer. The buffer covers a log sector-aligned region. 149 */ 150 STATIC char * 151 xlog_align( 152 struct xlog *log, 153 xfs_daddr_t blk_no, 154 int nbblks, 155 struct xfs_buf *bp) 156 { 157 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1); 158 159 ASSERT(offset + nbblks <= bp->b_length); 160 return bp->b_addr + BBTOB(offset); 161 } 162 163 164 /* 165 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 166 */ 167 STATIC int 168 xlog_bread_noalign( 169 struct xlog *log, 170 xfs_daddr_t blk_no, 171 int nbblks, 172 struct xfs_buf *bp) 173 { 174 int error; 175 176 if (!xlog_buf_bbcount_valid(log, nbblks)) { 177 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 178 nbblks); 179 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 180 return -EFSCORRUPTED; 181 } 182 183 blk_no = round_down(blk_no, log->l_sectBBsize); 184 nbblks = round_up(nbblks, log->l_sectBBsize); 185 186 ASSERT(nbblks > 0); 187 ASSERT(nbblks <= bp->b_length); 188 189 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 190 XFS_BUF_READ(bp); 191 bp->b_io_length = nbblks; 192 bp->b_error = 0; 193 194 error = xfs_buf_submit_wait(bp); 195 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) 196 xfs_buf_ioerror_alert(bp, __func__); 197 return error; 198 } 199 200 STATIC int 201 xlog_bread( 202 struct xlog *log, 203 xfs_daddr_t blk_no, 204 int nbblks, 205 struct xfs_buf *bp, 206 char **offset) 207 { 208 int error; 209 210 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 211 if (error) 212 return error; 213 214 *offset = xlog_align(log, blk_no, nbblks, bp); 215 return 0; 216 } 217 218 /* 219 * Read at an offset into the buffer. Returns with the buffer in it's original 220 * state regardless of the result of the read. 221 */ 222 STATIC int 223 xlog_bread_offset( 224 struct xlog *log, 225 xfs_daddr_t blk_no, /* block to read from */ 226 int nbblks, /* blocks to read */ 227 struct xfs_buf *bp, 228 char *offset) 229 { 230 char *orig_offset = bp->b_addr; 231 int orig_len = BBTOB(bp->b_length); 232 int error, error2; 233 234 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks)); 235 if (error) 236 return error; 237 238 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 239 240 /* must reset buffer pointer even on error */ 241 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len); 242 if (error) 243 return error; 244 return error2; 245 } 246 247 /* 248 * Write out the buffer at the given block for the given number of blocks. 249 * The buffer is kept locked across the write and is returned locked. 250 * This can only be used for synchronous log writes. 251 */ 252 STATIC int 253 xlog_bwrite( 254 struct xlog *log, 255 xfs_daddr_t blk_no, 256 int nbblks, 257 struct xfs_buf *bp) 258 { 259 int error; 260 261 if (!xlog_buf_bbcount_valid(log, nbblks)) { 262 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 263 nbblks); 264 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 265 return -EFSCORRUPTED; 266 } 267 268 blk_no = round_down(blk_no, log->l_sectBBsize); 269 nbblks = round_up(nbblks, log->l_sectBBsize); 270 271 ASSERT(nbblks > 0); 272 ASSERT(nbblks <= bp->b_length); 273 274 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 275 XFS_BUF_ZEROFLAGS(bp); 276 xfs_buf_hold(bp); 277 xfs_buf_lock(bp); 278 bp->b_io_length = nbblks; 279 bp->b_error = 0; 280 281 error = xfs_bwrite(bp); 282 if (error) 283 xfs_buf_ioerror_alert(bp, __func__); 284 xfs_buf_relse(bp); 285 return error; 286 } 287 288 #ifdef DEBUG 289 /* 290 * dump debug superblock and log record information 291 */ 292 STATIC void 293 xlog_header_check_dump( 294 xfs_mount_t *mp, 295 xlog_rec_header_t *head) 296 { 297 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d", 298 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 299 xfs_debug(mp, " log : uuid = %pU, fmt = %d", 300 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 301 } 302 #else 303 #define xlog_header_check_dump(mp, head) 304 #endif 305 306 /* 307 * check log record header for recovery 308 */ 309 STATIC int 310 xlog_header_check_recover( 311 xfs_mount_t *mp, 312 xlog_rec_header_t *head) 313 { 314 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 315 316 /* 317 * IRIX doesn't write the h_fmt field and leaves it zeroed 318 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 319 * a dirty log created in IRIX. 320 */ 321 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) { 322 xfs_warn(mp, 323 "dirty log written in incompatible format - can't recover"); 324 xlog_header_check_dump(mp, head); 325 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 326 XFS_ERRLEVEL_HIGH, mp); 327 return -EFSCORRUPTED; 328 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 329 xfs_warn(mp, 330 "dirty log entry has mismatched uuid - can't recover"); 331 xlog_header_check_dump(mp, head); 332 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 333 XFS_ERRLEVEL_HIGH, mp); 334 return -EFSCORRUPTED; 335 } 336 return 0; 337 } 338 339 /* 340 * read the head block of the log and check the header 341 */ 342 STATIC int 343 xlog_header_check_mount( 344 xfs_mount_t *mp, 345 xlog_rec_header_t *head) 346 { 347 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 348 349 if (uuid_is_nil(&head->h_fs_uuid)) { 350 /* 351 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 352 * h_fs_uuid is nil, we assume this log was last mounted 353 * by IRIX and continue. 354 */ 355 xfs_warn(mp, "nil uuid in log - IRIX style log"); 356 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 357 xfs_warn(mp, "log has mismatched uuid - can't recover"); 358 xlog_header_check_dump(mp, head); 359 XFS_ERROR_REPORT("xlog_header_check_mount", 360 XFS_ERRLEVEL_HIGH, mp); 361 return -EFSCORRUPTED; 362 } 363 return 0; 364 } 365 366 STATIC void 367 xlog_recover_iodone( 368 struct xfs_buf *bp) 369 { 370 if (bp->b_error) { 371 /* 372 * We're not going to bother about retrying 373 * this during recovery. One strike! 374 */ 375 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 376 xfs_buf_ioerror_alert(bp, __func__); 377 xfs_force_shutdown(bp->b_target->bt_mount, 378 SHUTDOWN_META_IO_ERROR); 379 } 380 } 381 bp->b_iodone = NULL; 382 xfs_buf_ioend(bp); 383 } 384 385 /* 386 * This routine finds (to an approximation) the first block in the physical 387 * log which contains the given cycle. It uses a binary search algorithm. 388 * Note that the algorithm can not be perfect because the disk will not 389 * necessarily be perfect. 390 */ 391 STATIC int 392 xlog_find_cycle_start( 393 struct xlog *log, 394 struct xfs_buf *bp, 395 xfs_daddr_t first_blk, 396 xfs_daddr_t *last_blk, 397 uint cycle) 398 { 399 char *offset; 400 xfs_daddr_t mid_blk; 401 xfs_daddr_t end_blk; 402 uint mid_cycle; 403 int error; 404 405 end_blk = *last_blk; 406 mid_blk = BLK_AVG(first_blk, end_blk); 407 while (mid_blk != first_blk && mid_blk != end_blk) { 408 error = xlog_bread(log, mid_blk, 1, bp, &offset); 409 if (error) 410 return error; 411 mid_cycle = xlog_get_cycle(offset); 412 if (mid_cycle == cycle) 413 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 414 else 415 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 416 mid_blk = BLK_AVG(first_blk, end_blk); 417 } 418 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 419 (mid_blk == end_blk && mid_blk-1 == first_blk)); 420 421 *last_blk = end_blk; 422 423 return 0; 424 } 425 426 /* 427 * Check that a range of blocks does not contain stop_on_cycle_no. 428 * Fill in *new_blk with the block offset where such a block is 429 * found, or with -1 (an invalid block number) if there is no such 430 * block in the range. The scan needs to occur from front to back 431 * and the pointer into the region must be updated since a later 432 * routine will need to perform another test. 433 */ 434 STATIC int 435 xlog_find_verify_cycle( 436 struct xlog *log, 437 xfs_daddr_t start_blk, 438 int nbblks, 439 uint stop_on_cycle_no, 440 xfs_daddr_t *new_blk) 441 { 442 xfs_daddr_t i, j; 443 uint cycle; 444 xfs_buf_t *bp; 445 xfs_daddr_t bufblks; 446 char *buf = NULL; 447 int error = 0; 448 449 /* 450 * Greedily allocate a buffer big enough to handle the full 451 * range of basic blocks we'll be examining. If that fails, 452 * try a smaller size. We need to be able to read at least 453 * a log sector, or we're out of luck. 454 */ 455 bufblks = 1 << ffs(nbblks); 456 while (bufblks > log->l_logBBsize) 457 bufblks >>= 1; 458 while (!(bp = xlog_get_bp(log, bufblks))) { 459 bufblks >>= 1; 460 if (bufblks < log->l_sectBBsize) 461 return -ENOMEM; 462 } 463 464 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 465 int bcount; 466 467 bcount = min(bufblks, (start_blk + nbblks - i)); 468 469 error = xlog_bread(log, i, bcount, bp, &buf); 470 if (error) 471 goto out; 472 473 for (j = 0; j < bcount; j++) { 474 cycle = xlog_get_cycle(buf); 475 if (cycle == stop_on_cycle_no) { 476 *new_blk = i+j; 477 goto out; 478 } 479 480 buf += BBSIZE; 481 } 482 } 483 484 *new_blk = -1; 485 486 out: 487 xlog_put_bp(bp); 488 return error; 489 } 490 491 /* 492 * Potentially backup over partial log record write. 493 * 494 * In the typical case, last_blk is the number of the block directly after 495 * a good log record. Therefore, we subtract one to get the block number 496 * of the last block in the given buffer. extra_bblks contains the number 497 * of blocks we would have read on a previous read. This happens when the 498 * last log record is split over the end of the physical log. 499 * 500 * extra_bblks is the number of blocks potentially verified on a previous 501 * call to this routine. 502 */ 503 STATIC int 504 xlog_find_verify_log_record( 505 struct xlog *log, 506 xfs_daddr_t start_blk, 507 xfs_daddr_t *last_blk, 508 int extra_bblks) 509 { 510 xfs_daddr_t i; 511 xfs_buf_t *bp; 512 char *offset = NULL; 513 xlog_rec_header_t *head = NULL; 514 int error = 0; 515 int smallmem = 0; 516 int num_blks = *last_blk - start_blk; 517 int xhdrs; 518 519 ASSERT(start_blk != 0 || *last_blk != start_blk); 520 521 if (!(bp = xlog_get_bp(log, num_blks))) { 522 if (!(bp = xlog_get_bp(log, 1))) 523 return -ENOMEM; 524 smallmem = 1; 525 } else { 526 error = xlog_bread(log, start_blk, num_blks, bp, &offset); 527 if (error) 528 goto out; 529 offset += ((num_blks - 1) << BBSHIFT); 530 } 531 532 for (i = (*last_blk) - 1; i >= 0; i--) { 533 if (i < start_blk) { 534 /* valid log record not found */ 535 xfs_warn(log->l_mp, 536 "Log inconsistent (didn't find previous header)"); 537 ASSERT(0); 538 error = -EIO; 539 goto out; 540 } 541 542 if (smallmem) { 543 error = xlog_bread(log, i, 1, bp, &offset); 544 if (error) 545 goto out; 546 } 547 548 head = (xlog_rec_header_t *)offset; 549 550 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 551 break; 552 553 if (!smallmem) 554 offset -= BBSIZE; 555 } 556 557 /* 558 * We hit the beginning of the physical log & still no header. Return 559 * to caller. If caller can handle a return of -1, then this routine 560 * will be called again for the end of the physical log. 561 */ 562 if (i == -1) { 563 error = 1; 564 goto out; 565 } 566 567 /* 568 * We have the final block of the good log (the first block 569 * of the log record _before_ the head. So we check the uuid. 570 */ 571 if ((error = xlog_header_check_mount(log->l_mp, head))) 572 goto out; 573 574 /* 575 * We may have found a log record header before we expected one. 576 * last_blk will be the 1st block # with a given cycle #. We may end 577 * up reading an entire log record. In this case, we don't want to 578 * reset last_blk. Only when last_blk points in the middle of a log 579 * record do we update last_blk. 580 */ 581 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 582 uint h_size = be32_to_cpu(head->h_size); 583 584 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 585 if (h_size % XLOG_HEADER_CYCLE_SIZE) 586 xhdrs++; 587 } else { 588 xhdrs = 1; 589 } 590 591 if (*last_blk - i + extra_bblks != 592 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 593 *last_blk = i; 594 595 out: 596 xlog_put_bp(bp); 597 return error; 598 } 599 600 /* 601 * Head is defined to be the point of the log where the next log write 602 * could go. This means that incomplete LR writes at the end are 603 * eliminated when calculating the head. We aren't guaranteed that previous 604 * LR have complete transactions. We only know that a cycle number of 605 * current cycle number -1 won't be present in the log if we start writing 606 * from our current block number. 607 * 608 * last_blk contains the block number of the first block with a given 609 * cycle number. 610 * 611 * Return: zero if normal, non-zero if error. 612 */ 613 STATIC int 614 xlog_find_head( 615 struct xlog *log, 616 xfs_daddr_t *return_head_blk) 617 { 618 xfs_buf_t *bp; 619 char *offset; 620 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 621 int num_scan_bblks; 622 uint first_half_cycle, last_half_cycle; 623 uint stop_on_cycle; 624 int error, log_bbnum = log->l_logBBsize; 625 626 /* Is the end of the log device zeroed? */ 627 error = xlog_find_zeroed(log, &first_blk); 628 if (error < 0) { 629 xfs_warn(log->l_mp, "empty log check failed"); 630 return error; 631 } 632 if (error == 1) { 633 *return_head_blk = first_blk; 634 635 /* Is the whole lot zeroed? */ 636 if (!first_blk) { 637 /* Linux XFS shouldn't generate totally zeroed logs - 638 * mkfs etc write a dummy unmount record to a fresh 639 * log so we can store the uuid in there 640 */ 641 xfs_warn(log->l_mp, "totally zeroed log"); 642 } 643 644 return 0; 645 } 646 647 first_blk = 0; /* get cycle # of 1st block */ 648 bp = xlog_get_bp(log, 1); 649 if (!bp) 650 return -ENOMEM; 651 652 error = xlog_bread(log, 0, 1, bp, &offset); 653 if (error) 654 goto bp_err; 655 656 first_half_cycle = xlog_get_cycle(offset); 657 658 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 659 error = xlog_bread(log, last_blk, 1, bp, &offset); 660 if (error) 661 goto bp_err; 662 663 last_half_cycle = xlog_get_cycle(offset); 664 ASSERT(last_half_cycle != 0); 665 666 /* 667 * If the 1st half cycle number is equal to the last half cycle number, 668 * then the entire log is stamped with the same cycle number. In this 669 * case, head_blk can't be set to zero (which makes sense). The below 670 * math doesn't work out properly with head_blk equal to zero. Instead, 671 * we set it to log_bbnum which is an invalid block number, but this 672 * value makes the math correct. If head_blk doesn't changed through 673 * all the tests below, *head_blk is set to zero at the very end rather 674 * than log_bbnum. In a sense, log_bbnum and zero are the same block 675 * in a circular file. 676 */ 677 if (first_half_cycle == last_half_cycle) { 678 /* 679 * In this case we believe that the entire log should have 680 * cycle number last_half_cycle. We need to scan backwards 681 * from the end verifying that there are no holes still 682 * containing last_half_cycle - 1. If we find such a hole, 683 * then the start of that hole will be the new head. The 684 * simple case looks like 685 * x | x ... | x - 1 | x 686 * Another case that fits this picture would be 687 * x | x + 1 | x ... | x 688 * In this case the head really is somewhere at the end of the 689 * log, as one of the latest writes at the beginning was 690 * incomplete. 691 * One more case is 692 * x | x + 1 | x ... | x - 1 | x 693 * This is really the combination of the above two cases, and 694 * the head has to end up at the start of the x-1 hole at the 695 * end of the log. 696 * 697 * In the 256k log case, we will read from the beginning to the 698 * end of the log and search for cycle numbers equal to x-1. 699 * We don't worry about the x+1 blocks that we encounter, 700 * because we know that they cannot be the head since the log 701 * started with x. 702 */ 703 head_blk = log_bbnum; 704 stop_on_cycle = last_half_cycle - 1; 705 } else { 706 /* 707 * In this case we want to find the first block with cycle 708 * number matching last_half_cycle. We expect the log to be 709 * some variation on 710 * x + 1 ... | x ... | x 711 * The first block with cycle number x (last_half_cycle) will 712 * be where the new head belongs. First we do a binary search 713 * for the first occurrence of last_half_cycle. The binary 714 * search may not be totally accurate, so then we scan back 715 * from there looking for occurrences of last_half_cycle before 716 * us. If that backwards scan wraps around the beginning of 717 * the log, then we look for occurrences of last_half_cycle - 1 718 * at the end of the log. The cases we're looking for look 719 * like 720 * v binary search stopped here 721 * x + 1 ... | x | x + 1 | x ... | x 722 * ^ but we want to locate this spot 723 * or 724 * <---------> less than scan distance 725 * x + 1 ... | x ... | x - 1 | x 726 * ^ we want to locate this spot 727 */ 728 stop_on_cycle = last_half_cycle; 729 if ((error = xlog_find_cycle_start(log, bp, first_blk, 730 &head_blk, last_half_cycle))) 731 goto bp_err; 732 } 733 734 /* 735 * Now validate the answer. Scan back some number of maximum possible 736 * blocks and make sure each one has the expected cycle number. The 737 * maximum is determined by the total possible amount of buffering 738 * in the in-core log. The following number can be made tighter if 739 * we actually look at the block size of the filesystem. 740 */ 741 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 742 if (head_blk >= num_scan_bblks) { 743 /* 744 * We are guaranteed that the entire check can be performed 745 * in one buffer. 746 */ 747 start_blk = head_blk - num_scan_bblks; 748 if ((error = xlog_find_verify_cycle(log, 749 start_blk, num_scan_bblks, 750 stop_on_cycle, &new_blk))) 751 goto bp_err; 752 if (new_blk != -1) 753 head_blk = new_blk; 754 } else { /* need to read 2 parts of log */ 755 /* 756 * We are going to scan backwards in the log in two parts. 757 * First we scan the physical end of the log. In this part 758 * of the log, we are looking for blocks with cycle number 759 * last_half_cycle - 1. 760 * If we find one, then we know that the log starts there, as 761 * we've found a hole that didn't get written in going around 762 * the end of the physical log. The simple case for this is 763 * x + 1 ... | x ... | x - 1 | x 764 * <---------> less than scan distance 765 * If all of the blocks at the end of the log have cycle number 766 * last_half_cycle, then we check the blocks at the start of 767 * the log looking for occurrences of last_half_cycle. If we 768 * find one, then our current estimate for the location of the 769 * first occurrence of last_half_cycle is wrong and we move 770 * back to the hole we've found. This case looks like 771 * x + 1 ... | x | x + 1 | x ... 772 * ^ binary search stopped here 773 * Another case we need to handle that only occurs in 256k 774 * logs is 775 * x + 1 ... | x ... | x+1 | x ... 776 * ^ binary search stops here 777 * In a 256k log, the scan at the end of the log will see the 778 * x + 1 blocks. We need to skip past those since that is 779 * certainly not the head of the log. By searching for 780 * last_half_cycle-1 we accomplish that. 781 */ 782 ASSERT(head_blk <= INT_MAX && 783 (xfs_daddr_t) num_scan_bblks >= head_blk); 784 start_blk = log_bbnum - (num_scan_bblks - head_blk); 785 if ((error = xlog_find_verify_cycle(log, start_blk, 786 num_scan_bblks - (int)head_blk, 787 (stop_on_cycle - 1), &new_blk))) 788 goto bp_err; 789 if (new_blk != -1) { 790 head_blk = new_blk; 791 goto validate_head; 792 } 793 794 /* 795 * Scan beginning of log now. The last part of the physical 796 * log is good. This scan needs to verify that it doesn't find 797 * the last_half_cycle. 798 */ 799 start_blk = 0; 800 ASSERT(head_blk <= INT_MAX); 801 if ((error = xlog_find_verify_cycle(log, 802 start_blk, (int)head_blk, 803 stop_on_cycle, &new_blk))) 804 goto bp_err; 805 if (new_blk != -1) 806 head_blk = new_blk; 807 } 808 809 validate_head: 810 /* 811 * Now we need to make sure head_blk is not pointing to a block in 812 * the middle of a log record. 813 */ 814 num_scan_bblks = XLOG_REC_SHIFT(log); 815 if (head_blk >= num_scan_bblks) { 816 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 817 818 /* start ptr at last block ptr before head_blk */ 819 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 820 if (error == 1) 821 error = -EIO; 822 if (error) 823 goto bp_err; 824 } else { 825 start_blk = 0; 826 ASSERT(head_blk <= INT_MAX); 827 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 828 if (error < 0) 829 goto bp_err; 830 if (error == 1) { 831 /* We hit the beginning of the log during our search */ 832 start_blk = log_bbnum - (num_scan_bblks - head_blk); 833 new_blk = log_bbnum; 834 ASSERT(start_blk <= INT_MAX && 835 (xfs_daddr_t) log_bbnum-start_blk >= 0); 836 ASSERT(head_blk <= INT_MAX); 837 error = xlog_find_verify_log_record(log, start_blk, 838 &new_blk, (int)head_blk); 839 if (error == 1) 840 error = -EIO; 841 if (error) 842 goto bp_err; 843 if (new_blk != log_bbnum) 844 head_blk = new_blk; 845 } else if (error) 846 goto bp_err; 847 } 848 849 xlog_put_bp(bp); 850 if (head_blk == log_bbnum) 851 *return_head_blk = 0; 852 else 853 *return_head_blk = head_blk; 854 /* 855 * When returning here, we have a good block number. Bad block 856 * means that during a previous crash, we didn't have a clean break 857 * from cycle number N to cycle number N-1. In this case, we need 858 * to find the first block with cycle number N-1. 859 */ 860 return 0; 861 862 bp_err: 863 xlog_put_bp(bp); 864 865 if (error) 866 xfs_warn(log->l_mp, "failed to find log head"); 867 return error; 868 } 869 870 /* 871 * Find the sync block number or the tail of the log. 872 * 873 * This will be the block number of the last record to have its 874 * associated buffers synced to disk. Every log record header has 875 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 876 * to get a sync block number. The only concern is to figure out which 877 * log record header to believe. 878 * 879 * The following algorithm uses the log record header with the largest 880 * lsn. The entire log record does not need to be valid. We only care 881 * that the header is valid. 882 * 883 * We could speed up search by using current head_blk buffer, but it is not 884 * available. 885 */ 886 STATIC int 887 xlog_find_tail( 888 struct xlog *log, 889 xfs_daddr_t *head_blk, 890 xfs_daddr_t *tail_blk) 891 { 892 xlog_rec_header_t *rhead; 893 xlog_op_header_t *op_head; 894 char *offset = NULL; 895 xfs_buf_t *bp; 896 int error, i, found; 897 xfs_daddr_t umount_data_blk; 898 xfs_daddr_t after_umount_blk; 899 xfs_lsn_t tail_lsn; 900 int hblks; 901 902 found = 0; 903 904 /* 905 * Find previous log record 906 */ 907 if ((error = xlog_find_head(log, head_blk))) 908 return error; 909 910 bp = xlog_get_bp(log, 1); 911 if (!bp) 912 return -ENOMEM; 913 if (*head_blk == 0) { /* special case */ 914 error = xlog_bread(log, 0, 1, bp, &offset); 915 if (error) 916 goto done; 917 918 if (xlog_get_cycle(offset) == 0) { 919 *tail_blk = 0; 920 /* leave all other log inited values alone */ 921 goto done; 922 } 923 } 924 925 /* 926 * Search backwards looking for log record header block 927 */ 928 ASSERT(*head_blk < INT_MAX); 929 for (i = (int)(*head_blk) - 1; i >= 0; i--) { 930 error = xlog_bread(log, i, 1, bp, &offset); 931 if (error) 932 goto done; 933 934 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 935 found = 1; 936 break; 937 } 938 } 939 /* 940 * If we haven't found the log record header block, start looking 941 * again from the end of the physical log. XXXmiken: There should be 942 * a check here to make sure we didn't search more than N blocks in 943 * the previous code. 944 */ 945 if (!found) { 946 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) { 947 error = xlog_bread(log, i, 1, bp, &offset); 948 if (error) 949 goto done; 950 951 if (*(__be32 *)offset == 952 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 953 found = 2; 954 break; 955 } 956 } 957 } 958 if (!found) { 959 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); 960 xlog_put_bp(bp); 961 ASSERT(0); 962 return -EIO; 963 } 964 965 /* find blk_no of tail of log */ 966 rhead = (xlog_rec_header_t *)offset; 967 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 968 969 /* 970 * Reset log values according to the state of the log when we 971 * crashed. In the case where head_blk == 0, we bump curr_cycle 972 * one because the next write starts a new cycle rather than 973 * continuing the cycle of the last good log record. At this 974 * point we have guaranteed that all partial log records have been 975 * accounted for. Therefore, we know that the last good log record 976 * written was complete and ended exactly on the end boundary 977 * of the physical log. 978 */ 979 log->l_prev_block = i; 980 log->l_curr_block = (int)*head_blk; 981 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 982 if (found == 2) 983 log->l_curr_cycle++; 984 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); 985 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); 986 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, 987 BBTOB(log->l_curr_block)); 988 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, 989 BBTOB(log->l_curr_block)); 990 991 /* 992 * Look for unmount record. If we find it, then we know there 993 * was a clean unmount. Since 'i' could be the last block in 994 * the physical log, we convert to a log block before comparing 995 * to the head_blk. 996 * 997 * Save the current tail lsn to use to pass to 998 * xlog_clear_stale_blocks() below. We won't want to clear the 999 * unmount record if there is one, so we pass the lsn of the 1000 * unmount record rather than the block after it. 1001 */ 1002 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1003 int h_size = be32_to_cpu(rhead->h_size); 1004 int h_version = be32_to_cpu(rhead->h_version); 1005 1006 if ((h_version & XLOG_VERSION_2) && 1007 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 1008 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 1009 if (h_size % XLOG_HEADER_CYCLE_SIZE) 1010 hblks++; 1011 } else { 1012 hblks = 1; 1013 } 1014 } else { 1015 hblks = 1; 1016 } 1017 after_umount_blk = (i + hblks + (int) 1018 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize; 1019 tail_lsn = atomic64_read(&log->l_tail_lsn); 1020 if (*head_blk == after_umount_blk && 1021 be32_to_cpu(rhead->h_num_logops) == 1) { 1022 umount_data_blk = (i + hblks) % log->l_logBBsize; 1023 error = xlog_bread(log, umount_data_blk, 1, bp, &offset); 1024 if (error) 1025 goto done; 1026 1027 op_head = (xlog_op_header_t *)offset; 1028 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 1029 /* 1030 * Set tail and last sync so that newly written 1031 * log records will point recovery to after the 1032 * current unmount record. 1033 */ 1034 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1035 log->l_curr_cycle, after_umount_blk); 1036 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1037 log->l_curr_cycle, after_umount_blk); 1038 *tail_blk = after_umount_blk; 1039 1040 /* 1041 * Note that the unmount was clean. If the unmount 1042 * was not clean, we need to know this to rebuild the 1043 * superblock counters from the perag headers if we 1044 * have a filesystem using non-persistent counters. 1045 */ 1046 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 1047 } 1048 } 1049 1050 /* 1051 * Make sure that there are no blocks in front of the head 1052 * with the same cycle number as the head. This can happen 1053 * because we allow multiple outstanding log writes concurrently, 1054 * and the later writes might make it out before earlier ones. 1055 * 1056 * We use the lsn from before modifying it so that we'll never 1057 * overwrite the unmount record after a clean unmount. 1058 * 1059 * Do this only if we are going to recover the filesystem 1060 * 1061 * NOTE: This used to say "if (!readonly)" 1062 * However on Linux, we can & do recover a read-only filesystem. 1063 * We only skip recovery if NORECOVERY is specified on mount, 1064 * in which case we would not be here. 1065 * 1066 * But... if the -device- itself is readonly, just skip this. 1067 * We can't recover this device anyway, so it won't matter. 1068 */ 1069 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) 1070 error = xlog_clear_stale_blocks(log, tail_lsn); 1071 1072 done: 1073 xlog_put_bp(bp); 1074 1075 if (error) 1076 xfs_warn(log->l_mp, "failed to locate log tail"); 1077 return error; 1078 } 1079 1080 /* 1081 * Is the log zeroed at all? 1082 * 1083 * The last binary search should be changed to perform an X block read 1084 * once X becomes small enough. You can then search linearly through 1085 * the X blocks. This will cut down on the number of reads we need to do. 1086 * 1087 * If the log is partially zeroed, this routine will pass back the blkno 1088 * of the first block with cycle number 0. It won't have a complete LR 1089 * preceding it. 1090 * 1091 * Return: 1092 * 0 => the log is completely written to 1093 * 1 => use *blk_no as the first block of the log 1094 * <0 => error has occurred 1095 */ 1096 STATIC int 1097 xlog_find_zeroed( 1098 struct xlog *log, 1099 xfs_daddr_t *blk_no) 1100 { 1101 xfs_buf_t *bp; 1102 char *offset; 1103 uint first_cycle, last_cycle; 1104 xfs_daddr_t new_blk, last_blk, start_blk; 1105 xfs_daddr_t num_scan_bblks; 1106 int error, log_bbnum = log->l_logBBsize; 1107 1108 *blk_no = 0; 1109 1110 /* check totally zeroed log */ 1111 bp = xlog_get_bp(log, 1); 1112 if (!bp) 1113 return -ENOMEM; 1114 error = xlog_bread(log, 0, 1, bp, &offset); 1115 if (error) 1116 goto bp_err; 1117 1118 first_cycle = xlog_get_cycle(offset); 1119 if (first_cycle == 0) { /* completely zeroed log */ 1120 *blk_no = 0; 1121 xlog_put_bp(bp); 1122 return 1; 1123 } 1124 1125 /* check partially zeroed log */ 1126 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset); 1127 if (error) 1128 goto bp_err; 1129 1130 last_cycle = xlog_get_cycle(offset); 1131 if (last_cycle != 0) { /* log completely written to */ 1132 xlog_put_bp(bp); 1133 return 0; 1134 } else if (first_cycle != 1) { 1135 /* 1136 * If the cycle of the last block is zero, the cycle of 1137 * the first block must be 1. If it's not, maybe we're 1138 * not looking at a log... Bail out. 1139 */ 1140 xfs_warn(log->l_mp, 1141 "Log inconsistent or not a log (last==0, first!=1)"); 1142 error = -EINVAL; 1143 goto bp_err; 1144 } 1145 1146 /* we have a partially zeroed log */ 1147 last_blk = log_bbnum-1; 1148 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1149 goto bp_err; 1150 1151 /* 1152 * Validate the answer. Because there is no way to guarantee that 1153 * the entire log is made up of log records which are the same size, 1154 * we scan over the defined maximum blocks. At this point, the maximum 1155 * is not chosen to mean anything special. XXXmiken 1156 */ 1157 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1158 ASSERT(num_scan_bblks <= INT_MAX); 1159 1160 if (last_blk < num_scan_bblks) 1161 num_scan_bblks = last_blk; 1162 start_blk = last_blk - num_scan_bblks; 1163 1164 /* 1165 * We search for any instances of cycle number 0 that occur before 1166 * our current estimate of the head. What we're trying to detect is 1167 * 1 ... | 0 | 1 | 0... 1168 * ^ binary search ends here 1169 */ 1170 if ((error = xlog_find_verify_cycle(log, start_blk, 1171 (int)num_scan_bblks, 0, &new_blk))) 1172 goto bp_err; 1173 if (new_blk != -1) 1174 last_blk = new_blk; 1175 1176 /* 1177 * Potentially backup over partial log record write. We don't need 1178 * to search the end of the log because we know it is zero. 1179 */ 1180 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0); 1181 if (error == 1) 1182 error = -EIO; 1183 if (error) 1184 goto bp_err; 1185 1186 *blk_no = last_blk; 1187 bp_err: 1188 xlog_put_bp(bp); 1189 if (error) 1190 return error; 1191 return 1; 1192 } 1193 1194 /* 1195 * These are simple subroutines used by xlog_clear_stale_blocks() below 1196 * to initialize a buffer full of empty log record headers and write 1197 * them into the log. 1198 */ 1199 STATIC void 1200 xlog_add_record( 1201 struct xlog *log, 1202 char *buf, 1203 int cycle, 1204 int block, 1205 int tail_cycle, 1206 int tail_block) 1207 { 1208 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1209 1210 memset(buf, 0, BBSIZE); 1211 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1212 recp->h_cycle = cpu_to_be32(cycle); 1213 recp->h_version = cpu_to_be32( 1214 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1215 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1216 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1217 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1218 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1219 } 1220 1221 STATIC int 1222 xlog_write_log_records( 1223 struct xlog *log, 1224 int cycle, 1225 int start_block, 1226 int blocks, 1227 int tail_cycle, 1228 int tail_block) 1229 { 1230 char *offset; 1231 xfs_buf_t *bp; 1232 int balign, ealign; 1233 int sectbb = log->l_sectBBsize; 1234 int end_block = start_block + blocks; 1235 int bufblks; 1236 int error = 0; 1237 int i, j = 0; 1238 1239 /* 1240 * Greedily allocate a buffer big enough to handle the full 1241 * range of basic blocks to be written. If that fails, try 1242 * a smaller size. We need to be able to write at least a 1243 * log sector, or we're out of luck. 1244 */ 1245 bufblks = 1 << ffs(blocks); 1246 while (bufblks > log->l_logBBsize) 1247 bufblks >>= 1; 1248 while (!(bp = xlog_get_bp(log, bufblks))) { 1249 bufblks >>= 1; 1250 if (bufblks < sectbb) 1251 return -ENOMEM; 1252 } 1253 1254 /* We may need to do a read at the start to fill in part of 1255 * the buffer in the starting sector not covered by the first 1256 * write below. 1257 */ 1258 balign = round_down(start_block, sectbb); 1259 if (balign != start_block) { 1260 error = xlog_bread_noalign(log, start_block, 1, bp); 1261 if (error) 1262 goto out_put_bp; 1263 1264 j = start_block - balign; 1265 } 1266 1267 for (i = start_block; i < end_block; i += bufblks) { 1268 int bcount, endcount; 1269 1270 bcount = min(bufblks, end_block - start_block); 1271 endcount = bcount - j; 1272 1273 /* We may need to do a read at the end to fill in part of 1274 * the buffer in the final sector not covered by the write. 1275 * If this is the same sector as the above read, skip it. 1276 */ 1277 ealign = round_down(end_block, sectbb); 1278 if (j == 0 && (start_block + endcount > ealign)) { 1279 offset = bp->b_addr + BBTOB(ealign - start_block); 1280 error = xlog_bread_offset(log, ealign, sectbb, 1281 bp, offset); 1282 if (error) 1283 break; 1284 1285 } 1286 1287 offset = xlog_align(log, start_block, endcount, bp); 1288 for (; j < endcount; j++) { 1289 xlog_add_record(log, offset, cycle, i+j, 1290 tail_cycle, tail_block); 1291 offset += BBSIZE; 1292 } 1293 error = xlog_bwrite(log, start_block, endcount, bp); 1294 if (error) 1295 break; 1296 start_block += endcount; 1297 j = 0; 1298 } 1299 1300 out_put_bp: 1301 xlog_put_bp(bp); 1302 return error; 1303 } 1304 1305 /* 1306 * This routine is called to blow away any incomplete log writes out 1307 * in front of the log head. We do this so that we won't become confused 1308 * if we come up, write only a little bit more, and then crash again. 1309 * If we leave the partial log records out there, this situation could 1310 * cause us to think those partial writes are valid blocks since they 1311 * have the current cycle number. We get rid of them by overwriting them 1312 * with empty log records with the old cycle number rather than the 1313 * current one. 1314 * 1315 * The tail lsn is passed in rather than taken from 1316 * the log so that we will not write over the unmount record after a 1317 * clean unmount in a 512 block log. Doing so would leave the log without 1318 * any valid log records in it until a new one was written. If we crashed 1319 * during that time we would not be able to recover. 1320 */ 1321 STATIC int 1322 xlog_clear_stale_blocks( 1323 struct xlog *log, 1324 xfs_lsn_t tail_lsn) 1325 { 1326 int tail_cycle, head_cycle; 1327 int tail_block, head_block; 1328 int tail_distance, max_distance; 1329 int distance; 1330 int error; 1331 1332 tail_cycle = CYCLE_LSN(tail_lsn); 1333 tail_block = BLOCK_LSN(tail_lsn); 1334 head_cycle = log->l_curr_cycle; 1335 head_block = log->l_curr_block; 1336 1337 /* 1338 * Figure out the distance between the new head of the log 1339 * and the tail. We want to write over any blocks beyond the 1340 * head that we may have written just before the crash, but 1341 * we don't want to overwrite the tail of the log. 1342 */ 1343 if (head_cycle == tail_cycle) { 1344 /* 1345 * The tail is behind the head in the physical log, 1346 * so the distance from the head to the tail is the 1347 * distance from the head to the end of the log plus 1348 * the distance from the beginning of the log to the 1349 * tail. 1350 */ 1351 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1352 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1353 XFS_ERRLEVEL_LOW, log->l_mp); 1354 return -EFSCORRUPTED; 1355 } 1356 tail_distance = tail_block + (log->l_logBBsize - head_block); 1357 } else { 1358 /* 1359 * The head is behind the tail in the physical log, 1360 * so the distance from the head to the tail is just 1361 * the tail block minus the head block. 1362 */ 1363 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1364 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1365 XFS_ERRLEVEL_LOW, log->l_mp); 1366 return -EFSCORRUPTED; 1367 } 1368 tail_distance = tail_block - head_block; 1369 } 1370 1371 /* 1372 * If the head is right up against the tail, we can't clear 1373 * anything. 1374 */ 1375 if (tail_distance <= 0) { 1376 ASSERT(tail_distance == 0); 1377 return 0; 1378 } 1379 1380 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1381 /* 1382 * Take the smaller of the maximum amount of outstanding I/O 1383 * we could have and the distance to the tail to clear out. 1384 * We take the smaller so that we don't overwrite the tail and 1385 * we don't waste all day writing from the head to the tail 1386 * for no reason. 1387 */ 1388 max_distance = MIN(max_distance, tail_distance); 1389 1390 if ((head_block + max_distance) <= log->l_logBBsize) { 1391 /* 1392 * We can stomp all the blocks we need to without 1393 * wrapping around the end of the log. Just do it 1394 * in a single write. Use the cycle number of the 1395 * current cycle minus one so that the log will look like: 1396 * n ... | n - 1 ... 1397 */ 1398 error = xlog_write_log_records(log, (head_cycle - 1), 1399 head_block, max_distance, tail_cycle, 1400 tail_block); 1401 if (error) 1402 return error; 1403 } else { 1404 /* 1405 * We need to wrap around the end of the physical log in 1406 * order to clear all the blocks. Do it in two separate 1407 * I/Os. The first write should be from the head to the 1408 * end of the physical log, and it should use the current 1409 * cycle number minus one just like above. 1410 */ 1411 distance = log->l_logBBsize - head_block; 1412 error = xlog_write_log_records(log, (head_cycle - 1), 1413 head_block, distance, tail_cycle, 1414 tail_block); 1415 1416 if (error) 1417 return error; 1418 1419 /* 1420 * Now write the blocks at the start of the physical log. 1421 * This writes the remainder of the blocks we want to clear. 1422 * It uses the current cycle number since we're now on the 1423 * same cycle as the head so that we get: 1424 * n ... n ... | n - 1 ... 1425 * ^^^^^ blocks we're writing 1426 */ 1427 distance = max_distance - (log->l_logBBsize - head_block); 1428 error = xlog_write_log_records(log, head_cycle, 0, distance, 1429 tail_cycle, tail_block); 1430 if (error) 1431 return error; 1432 } 1433 1434 return 0; 1435 } 1436 1437 /****************************************************************************** 1438 * 1439 * Log recover routines 1440 * 1441 ****************************************************************************** 1442 */ 1443 1444 /* 1445 * Sort the log items in the transaction. 1446 * 1447 * The ordering constraints are defined by the inode allocation and unlink 1448 * behaviour. The rules are: 1449 * 1450 * 1. Every item is only logged once in a given transaction. Hence it 1451 * represents the last logged state of the item. Hence ordering is 1452 * dependent on the order in which operations need to be performed so 1453 * required initial conditions are always met. 1454 * 1455 * 2. Cancelled buffers are recorded in pass 1 in a separate table and 1456 * there's nothing to replay from them so we can simply cull them 1457 * from the transaction. However, we can't do that until after we've 1458 * replayed all the other items because they may be dependent on the 1459 * cancelled buffer and replaying the cancelled buffer can remove it 1460 * form the cancelled buffer table. Hence they have tobe done last. 1461 * 1462 * 3. Inode allocation buffers must be replayed before inode items that 1463 * read the buffer and replay changes into it. For filesystems using the 1464 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get 1465 * treated the same as inode allocation buffers as they create and 1466 * initialise the buffers directly. 1467 * 1468 * 4. Inode unlink buffers must be replayed after inode items are replayed. 1469 * This ensures that inodes are completely flushed to the inode buffer 1470 * in a "free" state before we remove the unlinked inode list pointer. 1471 * 1472 * Hence the ordering needs to be inode allocation buffers first, inode items 1473 * second, inode unlink buffers third and cancelled buffers last. 1474 * 1475 * But there's a problem with that - we can't tell an inode allocation buffer 1476 * apart from a regular buffer, so we can't separate them. We can, however, 1477 * tell an inode unlink buffer from the others, and so we can separate them out 1478 * from all the other buffers and move them to last. 1479 * 1480 * Hence, 4 lists, in order from head to tail: 1481 * - buffer_list for all buffers except cancelled/inode unlink buffers 1482 * - item_list for all non-buffer items 1483 * - inode_buffer_list for inode unlink buffers 1484 * - cancel_list for the cancelled buffers 1485 * 1486 * Note that we add objects to the tail of the lists so that first-to-last 1487 * ordering is preserved within the lists. Adding objects to the head of the 1488 * list means when we traverse from the head we walk them in last-to-first 1489 * order. For cancelled buffers and inode unlink buffers this doesn't matter, 1490 * but for all other items there may be specific ordering that we need to 1491 * preserve. 1492 */ 1493 STATIC int 1494 xlog_recover_reorder_trans( 1495 struct xlog *log, 1496 struct xlog_recover *trans, 1497 int pass) 1498 { 1499 xlog_recover_item_t *item, *n; 1500 int error = 0; 1501 LIST_HEAD(sort_list); 1502 LIST_HEAD(cancel_list); 1503 LIST_HEAD(buffer_list); 1504 LIST_HEAD(inode_buffer_list); 1505 LIST_HEAD(inode_list); 1506 1507 list_splice_init(&trans->r_itemq, &sort_list); 1508 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1509 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1510 1511 switch (ITEM_TYPE(item)) { 1512 case XFS_LI_ICREATE: 1513 list_move_tail(&item->ri_list, &buffer_list); 1514 break; 1515 case XFS_LI_BUF: 1516 if (buf_f->blf_flags & XFS_BLF_CANCEL) { 1517 trace_xfs_log_recover_item_reorder_head(log, 1518 trans, item, pass); 1519 list_move(&item->ri_list, &cancel_list); 1520 break; 1521 } 1522 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 1523 list_move(&item->ri_list, &inode_buffer_list); 1524 break; 1525 } 1526 list_move_tail(&item->ri_list, &buffer_list); 1527 break; 1528 case XFS_LI_INODE: 1529 case XFS_LI_DQUOT: 1530 case XFS_LI_QUOTAOFF: 1531 case XFS_LI_EFD: 1532 case XFS_LI_EFI: 1533 trace_xfs_log_recover_item_reorder_tail(log, 1534 trans, item, pass); 1535 list_move_tail(&item->ri_list, &inode_list); 1536 break; 1537 default: 1538 xfs_warn(log->l_mp, 1539 "%s: unrecognized type of log operation", 1540 __func__); 1541 ASSERT(0); 1542 /* 1543 * return the remaining items back to the transaction 1544 * item list so they can be freed in caller. 1545 */ 1546 if (!list_empty(&sort_list)) 1547 list_splice_init(&sort_list, &trans->r_itemq); 1548 error = -EIO; 1549 goto out; 1550 } 1551 } 1552 out: 1553 ASSERT(list_empty(&sort_list)); 1554 if (!list_empty(&buffer_list)) 1555 list_splice(&buffer_list, &trans->r_itemq); 1556 if (!list_empty(&inode_list)) 1557 list_splice_tail(&inode_list, &trans->r_itemq); 1558 if (!list_empty(&inode_buffer_list)) 1559 list_splice_tail(&inode_buffer_list, &trans->r_itemq); 1560 if (!list_empty(&cancel_list)) 1561 list_splice_tail(&cancel_list, &trans->r_itemq); 1562 return error; 1563 } 1564 1565 /* 1566 * Build up the table of buf cancel records so that we don't replay 1567 * cancelled data in the second pass. For buffer records that are 1568 * not cancel records, there is nothing to do here so we just return. 1569 * 1570 * If we get a cancel record which is already in the table, this indicates 1571 * that the buffer was cancelled multiple times. In order to ensure 1572 * that during pass 2 we keep the record in the table until we reach its 1573 * last occurrence in the log, we keep a reference count in the cancel 1574 * record in the table to tell us how many times we expect to see this 1575 * record during the second pass. 1576 */ 1577 STATIC int 1578 xlog_recover_buffer_pass1( 1579 struct xlog *log, 1580 struct xlog_recover_item *item) 1581 { 1582 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1583 struct list_head *bucket; 1584 struct xfs_buf_cancel *bcp; 1585 1586 /* 1587 * If this isn't a cancel buffer item, then just return. 1588 */ 1589 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 1590 trace_xfs_log_recover_buf_not_cancel(log, buf_f); 1591 return 0; 1592 } 1593 1594 /* 1595 * Insert an xfs_buf_cancel record into the hash table of them. 1596 * If there is already an identical record, bump its reference count. 1597 */ 1598 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno); 1599 list_for_each_entry(bcp, bucket, bc_list) { 1600 if (bcp->bc_blkno == buf_f->blf_blkno && 1601 bcp->bc_len == buf_f->blf_len) { 1602 bcp->bc_refcount++; 1603 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f); 1604 return 0; 1605 } 1606 } 1607 1608 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP); 1609 bcp->bc_blkno = buf_f->blf_blkno; 1610 bcp->bc_len = buf_f->blf_len; 1611 bcp->bc_refcount = 1; 1612 list_add_tail(&bcp->bc_list, bucket); 1613 1614 trace_xfs_log_recover_buf_cancel_add(log, buf_f); 1615 return 0; 1616 } 1617 1618 /* 1619 * Check to see whether the buffer being recovered has a corresponding 1620 * entry in the buffer cancel record table. If it is, return the cancel 1621 * buffer structure to the caller. 1622 */ 1623 STATIC struct xfs_buf_cancel * 1624 xlog_peek_buffer_cancelled( 1625 struct xlog *log, 1626 xfs_daddr_t blkno, 1627 uint len, 1628 ushort flags) 1629 { 1630 struct list_head *bucket; 1631 struct xfs_buf_cancel *bcp; 1632 1633 if (!log->l_buf_cancel_table) { 1634 /* empty table means no cancelled buffers in the log */ 1635 ASSERT(!(flags & XFS_BLF_CANCEL)); 1636 return NULL; 1637 } 1638 1639 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); 1640 list_for_each_entry(bcp, bucket, bc_list) { 1641 if (bcp->bc_blkno == blkno && bcp->bc_len == len) 1642 return bcp; 1643 } 1644 1645 /* 1646 * We didn't find a corresponding entry in the table, so return 0 so 1647 * that the buffer is NOT cancelled. 1648 */ 1649 ASSERT(!(flags & XFS_BLF_CANCEL)); 1650 return NULL; 1651 } 1652 1653 /* 1654 * If the buffer is being cancelled then return 1 so that it will be cancelled, 1655 * otherwise return 0. If the buffer is actually a buffer cancel item 1656 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the 1657 * table and remove it from the table if this is the last reference. 1658 * 1659 * We remove the cancel record from the table when we encounter its last 1660 * occurrence in the log so that if the same buffer is re-used again after its 1661 * last cancellation we actually replay the changes made at that point. 1662 */ 1663 STATIC int 1664 xlog_check_buffer_cancelled( 1665 struct xlog *log, 1666 xfs_daddr_t blkno, 1667 uint len, 1668 ushort flags) 1669 { 1670 struct xfs_buf_cancel *bcp; 1671 1672 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags); 1673 if (!bcp) 1674 return 0; 1675 1676 /* 1677 * We've go a match, so return 1 so that the recovery of this buffer 1678 * is cancelled. If this buffer is actually a buffer cancel log 1679 * item, then decrement the refcount on the one in the table and 1680 * remove it if this is the last reference. 1681 */ 1682 if (flags & XFS_BLF_CANCEL) { 1683 if (--bcp->bc_refcount == 0) { 1684 list_del(&bcp->bc_list); 1685 kmem_free(bcp); 1686 } 1687 } 1688 return 1; 1689 } 1690 1691 /* 1692 * Perform recovery for a buffer full of inodes. In these buffers, the only 1693 * data which should be recovered is that which corresponds to the 1694 * di_next_unlinked pointers in the on disk inode structures. The rest of the 1695 * data for the inodes is always logged through the inodes themselves rather 1696 * than the inode buffer and is recovered in xlog_recover_inode_pass2(). 1697 * 1698 * The only time when buffers full of inodes are fully recovered is when the 1699 * buffer is full of newly allocated inodes. In this case the buffer will 1700 * not be marked as an inode buffer and so will be sent to 1701 * xlog_recover_do_reg_buffer() below during recovery. 1702 */ 1703 STATIC int 1704 xlog_recover_do_inode_buffer( 1705 struct xfs_mount *mp, 1706 xlog_recover_item_t *item, 1707 struct xfs_buf *bp, 1708 xfs_buf_log_format_t *buf_f) 1709 { 1710 int i; 1711 int item_index = 0; 1712 int bit = 0; 1713 int nbits = 0; 1714 int reg_buf_offset = 0; 1715 int reg_buf_bytes = 0; 1716 int next_unlinked_offset; 1717 int inodes_per_buf; 1718 xfs_agino_t *logged_nextp; 1719 xfs_agino_t *buffer_nextp; 1720 1721 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); 1722 1723 /* 1724 * Post recovery validation only works properly on CRC enabled 1725 * filesystems. 1726 */ 1727 if (xfs_sb_version_hascrc(&mp->m_sb)) 1728 bp->b_ops = &xfs_inode_buf_ops; 1729 1730 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog; 1731 for (i = 0; i < inodes_per_buf; i++) { 1732 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 1733 offsetof(xfs_dinode_t, di_next_unlinked); 1734 1735 while (next_unlinked_offset >= 1736 (reg_buf_offset + reg_buf_bytes)) { 1737 /* 1738 * The next di_next_unlinked field is beyond 1739 * the current logged region. Find the next 1740 * logged region that contains or is beyond 1741 * the current di_next_unlinked field. 1742 */ 1743 bit += nbits; 1744 bit = xfs_next_bit(buf_f->blf_data_map, 1745 buf_f->blf_map_size, bit); 1746 1747 /* 1748 * If there are no more logged regions in the 1749 * buffer, then we're done. 1750 */ 1751 if (bit == -1) 1752 return 0; 1753 1754 nbits = xfs_contig_bits(buf_f->blf_data_map, 1755 buf_f->blf_map_size, bit); 1756 ASSERT(nbits > 0); 1757 reg_buf_offset = bit << XFS_BLF_SHIFT; 1758 reg_buf_bytes = nbits << XFS_BLF_SHIFT; 1759 item_index++; 1760 } 1761 1762 /* 1763 * If the current logged region starts after the current 1764 * di_next_unlinked field, then move on to the next 1765 * di_next_unlinked field. 1766 */ 1767 if (next_unlinked_offset < reg_buf_offset) 1768 continue; 1769 1770 ASSERT(item->ri_buf[item_index].i_addr != NULL); 1771 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); 1772 ASSERT((reg_buf_offset + reg_buf_bytes) <= 1773 BBTOB(bp->b_io_length)); 1774 1775 /* 1776 * The current logged region contains a copy of the 1777 * current di_next_unlinked field. Extract its value 1778 * and copy it to the buffer copy. 1779 */ 1780 logged_nextp = item->ri_buf[item_index].i_addr + 1781 next_unlinked_offset - reg_buf_offset; 1782 if (unlikely(*logged_nextp == 0)) { 1783 xfs_alert(mp, 1784 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). " 1785 "Trying to replay bad (0) inode di_next_unlinked field.", 1786 item, bp); 1787 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 1788 XFS_ERRLEVEL_LOW, mp); 1789 return -EFSCORRUPTED; 1790 } 1791 1792 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset); 1793 *buffer_nextp = *logged_nextp; 1794 1795 /* 1796 * If necessary, recalculate the CRC in the on-disk inode. We 1797 * have to leave the inode in a consistent state for whoever 1798 * reads it next.... 1799 */ 1800 xfs_dinode_calc_crc(mp, 1801 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); 1802 1803 } 1804 1805 return 0; 1806 } 1807 1808 /* 1809 * V5 filesystems know the age of the buffer on disk being recovered. We can 1810 * have newer objects on disk than we are replaying, and so for these cases we 1811 * don't want to replay the current change as that will make the buffer contents 1812 * temporarily invalid on disk. 1813 * 1814 * The magic number might not match the buffer type we are going to recover 1815 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence 1816 * extract the LSN of the existing object in the buffer based on it's current 1817 * magic number. If we don't recognise the magic number in the buffer, then 1818 * return a LSN of -1 so that the caller knows it was an unrecognised block and 1819 * so can recover the buffer. 1820 * 1821 * Note: we cannot rely solely on magic number matches to determine that the 1822 * buffer has a valid LSN - we also need to verify that it belongs to this 1823 * filesystem, so we need to extract the object's LSN and compare it to that 1824 * which we read from the superblock. If the UUIDs don't match, then we've got a 1825 * stale metadata block from an old filesystem instance that we need to recover 1826 * over the top of. 1827 */ 1828 static xfs_lsn_t 1829 xlog_recover_get_buf_lsn( 1830 struct xfs_mount *mp, 1831 struct xfs_buf *bp) 1832 { 1833 __uint32_t magic32; 1834 __uint16_t magic16; 1835 __uint16_t magicda; 1836 void *blk = bp->b_addr; 1837 uuid_t *uuid; 1838 xfs_lsn_t lsn = -1; 1839 1840 /* v4 filesystems always recover immediately */ 1841 if (!xfs_sb_version_hascrc(&mp->m_sb)) 1842 goto recover_immediately; 1843 1844 magic32 = be32_to_cpu(*(__be32 *)blk); 1845 switch (magic32) { 1846 case XFS_ABTB_CRC_MAGIC: 1847 case XFS_ABTC_CRC_MAGIC: 1848 case XFS_ABTB_MAGIC: 1849 case XFS_ABTC_MAGIC: 1850 case XFS_IBT_CRC_MAGIC: 1851 case XFS_IBT_MAGIC: { 1852 struct xfs_btree_block *btb = blk; 1853 1854 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn); 1855 uuid = &btb->bb_u.s.bb_uuid; 1856 break; 1857 } 1858 case XFS_BMAP_CRC_MAGIC: 1859 case XFS_BMAP_MAGIC: { 1860 struct xfs_btree_block *btb = blk; 1861 1862 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn); 1863 uuid = &btb->bb_u.l.bb_uuid; 1864 break; 1865 } 1866 case XFS_AGF_MAGIC: 1867 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn); 1868 uuid = &((struct xfs_agf *)blk)->agf_uuid; 1869 break; 1870 case XFS_AGFL_MAGIC: 1871 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn); 1872 uuid = &((struct xfs_agfl *)blk)->agfl_uuid; 1873 break; 1874 case XFS_AGI_MAGIC: 1875 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn); 1876 uuid = &((struct xfs_agi *)blk)->agi_uuid; 1877 break; 1878 case XFS_SYMLINK_MAGIC: 1879 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn); 1880 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid; 1881 break; 1882 case XFS_DIR3_BLOCK_MAGIC: 1883 case XFS_DIR3_DATA_MAGIC: 1884 case XFS_DIR3_FREE_MAGIC: 1885 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn); 1886 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid; 1887 break; 1888 case XFS_ATTR3_RMT_MAGIC: 1889 /* 1890 * Remote attr blocks are written synchronously, rather than 1891 * being logged. That means they do not contain a valid LSN 1892 * (i.e. transactionally ordered) in them, and hence any time we 1893 * see a buffer to replay over the top of a remote attribute 1894 * block we should simply do so. 1895 */ 1896 goto recover_immediately; 1897 case XFS_SB_MAGIC: 1898 /* 1899 * superblock uuids are magic. We may or may not have a 1900 * sb_meta_uuid on disk, but it will be set in the in-core 1901 * superblock. We set the uuid pointer for verification 1902 * according to the superblock feature mask to ensure we check 1903 * the relevant UUID in the superblock. 1904 */ 1905 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn); 1906 if (xfs_sb_version_hasmetauuid(&mp->m_sb)) 1907 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid; 1908 else 1909 uuid = &((struct xfs_dsb *)blk)->sb_uuid; 1910 break; 1911 default: 1912 break; 1913 } 1914 1915 if (lsn != (xfs_lsn_t)-1) { 1916 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid)) 1917 goto recover_immediately; 1918 return lsn; 1919 } 1920 1921 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic); 1922 switch (magicda) { 1923 case XFS_DIR3_LEAF1_MAGIC: 1924 case XFS_DIR3_LEAFN_MAGIC: 1925 case XFS_DA3_NODE_MAGIC: 1926 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn); 1927 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid; 1928 break; 1929 default: 1930 break; 1931 } 1932 1933 if (lsn != (xfs_lsn_t)-1) { 1934 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid)) 1935 goto recover_immediately; 1936 return lsn; 1937 } 1938 1939 /* 1940 * We do individual object checks on dquot and inode buffers as they 1941 * have their own individual LSN records. Also, we could have a stale 1942 * buffer here, so we have to at least recognise these buffer types. 1943 * 1944 * A notd complexity here is inode unlinked list processing - it logs 1945 * the inode directly in the buffer, but we don't know which inodes have 1946 * been modified, and there is no global buffer LSN. Hence we need to 1947 * recover all inode buffer types immediately. This problem will be 1948 * fixed by logical logging of the unlinked list modifications. 1949 */ 1950 magic16 = be16_to_cpu(*(__be16 *)blk); 1951 switch (magic16) { 1952 case XFS_DQUOT_MAGIC: 1953 case XFS_DINODE_MAGIC: 1954 goto recover_immediately; 1955 default: 1956 break; 1957 } 1958 1959 /* unknown buffer contents, recover immediately */ 1960 1961 recover_immediately: 1962 return (xfs_lsn_t)-1; 1963 1964 } 1965 1966 /* 1967 * Validate the recovered buffer is of the correct type and attach the 1968 * appropriate buffer operations to them for writeback. Magic numbers are in a 1969 * few places: 1970 * the first 16 bits of the buffer (inode buffer, dquot buffer), 1971 * the first 32 bits of the buffer (most blocks), 1972 * inside a struct xfs_da_blkinfo at the start of the buffer. 1973 */ 1974 static void 1975 xlog_recover_validate_buf_type( 1976 struct xfs_mount *mp, 1977 struct xfs_buf *bp, 1978 xfs_buf_log_format_t *buf_f) 1979 { 1980 struct xfs_da_blkinfo *info = bp->b_addr; 1981 __uint32_t magic32; 1982 __uint16_t magic16; 1983 __uint16_t magicda; 1984 1985 /* 1986 * We can only do post recovery validation on items on CRC enabled 1987 * fielsystems as we need to know when the buffer was written to be able 1988 * to determine if we should have replayed the item. If we replay old 1989 * metadata over a newer buffer, then it will enter a temporarily 1990 * inconsistent state resulting in verification failures. Hence for now 1991 * just avoid the verification stage for non-crc filesystems 1992 */ 1993 if (!xfs_sb_version_hascrc(&mp->m_sb)) 1994 return; 1995 1996 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr); 1997 magic16 = be16_to_cpu(*(__be16*)bp->b_addr); 1998 magicda = be16_to_cpu(info->magic); 1999 switch (xfs_blft_from_flags(buf_f)) { 2000 case XFS_BLFT_BTREE_BUF: 2001 switch (magic32) { 2002 case XFS_ABTB_CRC_MAGIC: 2003 case XFS_ABTC_CRC_MAGIC: 2004 case XFS_ABTB_MAGIC: 2005 case XFS_ABTC_MAGIC: 2006 bp->b_ops = &xfs_allocbt_buf_ops; 2007 break; 2008 case XFS_IBT_CRC_MAGIC: 2009 case XFS_FIBT_CRC_MAGIC: 2010 case XFS_IBT_MAGIC: 2011 case XFS_FIBT_MAGIC: 2012 bp->b_ops = &xfs_inobt_buf_ops; 2013 break; 2014 case XFS_BMAP_CRC_MAGIC: 2015 case XFS_BMAP_MAGIC: 2016 bp->b_ops = &xfs_bmbt_buf_ops; 2017 break; 2018 default: 2019 xfs_warn(mp, "Bad btree block magic!"); 2020 ASSERT(0); 2021 break; 2022 } 2023 break; 2024 case XFS_BLFT_AGF_BUF: 2025 if (magic32 != XFS_AGF_MAGIC) { 2026 xfs_warn(mp, "Bad AGF block magic!"); 2027 ASSERT(0); 2028 break; 2029 } 2030 bp->b_ops = &xfs_agf_buf_ops; 2031 break; 2032 case XFS_BLFT_AGFL_BUF: 2033 if (magic32 != XFS_AGFL_MAGIC) { 2034 xfs_warn(mp, "Bad AGFL block magic!"); 2035 ASSERT(0); 2036 break; 2037 } 2038 bp->b_ops = &xfs_agfl_buf_ops; 2039 break; 2040 case XFS_BLFT_AGI_BUF: 2041 if (magic32 != XFS_AGI_MAGIC) { 2042 xfs_warn(mp, "Bad AGI block magic!"); 2043 ASSERT(0); 2044 break; 2045 } 2046 bp->b_ops = &xfs_agi_buf_ops; 2047 break; 2048 case XFS_BLFT_UDQUOT_BUF: 2049 case XFS_BLFT_PDQUOT_BUF: 2050 case XFS_BLFT_GDQUOT_BUF: 2051 #ifdef CONFIG_XFS_QUOTA 2052 if (magic16 != XFS_DQUOT_MAGIC) { 2053 xfs_warn(mp, "Bad DQUOT block magic!"); 2054 ASSERT(0); 2055 break; 2056 } 2057 bp->b_ops = &xfs_dquot_buf_ops; 2058 #else 2059 xfs_alert(mp, 2060 "Trying to recover dquots without QUOTA support built in!"); 2061 ASSERT(0); 2062 #endif 2063 break; 2064 case XFS_BLFT_DINO_BUF: 2065 if (magic16 != XFS_DINODE_MAGIC) { 2066 xfs_warn(mp, "Bad INODE block magic!"); 2067 ASSERT(0); 2068 break; 2069 } 2070 bp->b_ops = &xfs_inode_buf_ops; 2071 break; 2072 case XFS_BLFT_SYMLINK_BUF: 2073 if (magic32 != XFS_SYMLINK_MAGIC) { 2074 xfs_warn(mp, "Bad symlink block magic!"); 2075 ASSERT(0); 2076 break; 2077 } 2078 bp->b_ops = &xfs_symlink_buf_ops; 2079 break; 2080 case XFS_BLFT_DIR_BLOCK_BUF: 2081 if (magic32 != XFS_DIR2_BLOCK_MAGIC && 2082 magic32 != XFS_DIR3_BLOCK_MAGIC) { 2083 xfs_warn(mp, "Bad dir block magic!"); 2084 ASSERT(0); 2085 break; 2086 } 2087 bp->b_ops = &xfs_dir3_block_buf_ops; 2088 break; 2089 case XFS_BLFT_DIR_DATA_BUF: 2090 if (magic32 != XFS_DIR2_DATA_MAGIC && 2091 magic32 != XFS_DIR3_DATA_MAGIC) { 2092 xfs_warn(mp, "Bad dir data magic!"); 2093 ASSERT(0); 2094 break; 2095 } 2096 bp->b_ops = &xfs_dir3_data_buf_ops; 2097 break; 2098 case XFS_BLFT_DIR_FREE_BUF: 2099 if (magic32 != XFS_DIR2_FREE_MAGIC && 2100 magic32 != XFS_DIR3_FREE_MAGIC) { 2101 xfs_warn(mp, "Bad dir3 free magic!"); 2102 ASSERT(0); 2103 break; 2104 } 2105 bp->b_ops = &xfs_dir3_free_buf_ops; 2106 break; 2107 case XFS_BLFT_DIR_LEAF1_BUF: 2108 if (magicda != XFS_DIR2_LEAF1_MAGIC && 2109 magicda != XFS_DIR3_LEAF1_MAGIC) { 2110 xfs_warn(mp, "Bad dir leaf1 magic!"); 2111 ASSERT(0); 2112 break; 2113 } 2114 bp->b_ops = &xfs_dir3_leaf1_buf_ops; 2115 break; 2116 case XFS_BLFT_DIR_LEAFN_BUF: 2117 if (magicda != XFS_DIR2_LEAFN_MAGIC && 2118 magicda != XFS_DIR3_LEAFN_MAGIC) { 2119 xfs_warn(mp, "Bad dir leafn magic!"); 2120 ASSERT(0); 2121 break; 2122 } 2123 bp->b_ops = &xfs_dir3_leafn_buf_ops; 2124 break; 2125 case XFS_BLFT_DA_NODE_BUF: 2126 if (magicda != XFS_DA_NODE_MAGIC && 2127 magicda != XFS_DA3_NODE_MAGIC) { 2128 xfs_warn(mp, "Bad da node magic!"); 2129 ASSERT(0); 2130 break; 2131 } 2132 bp->b_ops = &xfs_da3_node_buf_ops; 2133 break; 2134 case XFS_BLFT_ATTR_LEAF_BUF: 2135 if (magicda != XFS_ATTR_LEAF_MAGIC && 2136 magicda != XFS_ATTR3_LEAF_MAGIC) { 2137 xfs_warn(mp, "Bad attr leaf magic!"); 2138 ASSERT(0); 2139 break; 2140 } 2141 bp->b_ops = &xfs_attr3_leaf_buf_ops; 2142 break; 2143 case XFS_BLFT_ATTR_RMT_BUF: 2144 if (magic32 != XFS_ATTR3_RMT_MAGIC) { 2145 xfs_warn(mp, "Bad attr remote magic!"); 2146 ASSERT(0); 2147 break; 2148 } 2149 bp->b_ops = &xfs_attr3_rmt_buf_ops; 2150 break; 2151 case XFS_BLFT_SB_BUF: 2152 if (magic32 != XFS_SB_MAGIC) { 2153 xfs_warn(mp, "Bad SB block magic!"); 2154 ASSERT(0); 2155 break; 2156 } 2157 bp->b_ops = &xfs_sb_buf_ops; 2158 break; 2159 default: 2160 xfs_warn(mp, "Unknown buffer type %d!", 2161 xfs_blft_from_flags(buf_f)); 2162 break; 2163 } 2164 } 2165 2166 /* 2167 * Perform a 'normal' buffer recovery. Each logged region of the 2168 * buffer should be copied over the corresponding region in the 2169 * given buffer. The bitmap in the buf log format structure indicates 2170 * where to place the logged data. 2171 */ 2172 STATIC void 2173 xlog_recover_do_reg_buffer( 2174 struct xfs_mount *mp, 2175 xlog_recover_item_t *item, 2176 struct xfs_buf *bp, 2177 xfs_buf_log_format_t *buf_f) 2178 { 2179 int i; 2180 int bit; 2181 int nbits; 2182 int error; 2183 2184 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); 2185 2186 bit = 0; 2187 i = 1; /* 0 is the buf format structure */ 2188 while (1) { 2189 bit = xfs_next_bit(buf_f->blf_data_map, 2190 buf_f->blf_map_size, bit); 2191 if (bit == -1) 2192 break; 2193 nbits = xfs_contig_bits(buf_f->blf_data_map, 2194 buf_f->blf_map_size, bit); 2195 ASSERT(nbits > 0); 2196 ASSERT(item->ri_buf[i].i_addr != NULL); 2197 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); 2198 ASSERT(BBTOB(bp->b_io_length) >= 2199 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); 2200 2201 /* 2202 * The dirty regions logged in the buffer, even though 2203 * contiguous, may span multiple chunks. This is because the 2204 * dirty region may span a physical page boundary in a buffer 2205 * and hence be split into two separate vectors for writing into 2206 * the log. Hence we need to trim nbits back to the length of 2207 * the current region being copied out of the log. 2208 */ 2209 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT)) 2210 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT; 2211 2212 /* 2213 * Do a sanity check if this is a dquot buffer. Just checking 2214 * the first dquot in the buffer should do. XXXThis is 2215 * probably a good thing to do for other buf types also. 2216 */ 2217 error = 0; 2218 if (buf_f->blf_flags & 2219 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2220 if (item->ri_buf[i].i_addr == NULL) { 2221 xfs_alert(mp, 2222 "XFS: NULL dquot in %s.", __func__); 2223 goto next; 2224 } 2225 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) { 2226 xfs_alert(mp, 2227 "XFS: dquot too small (%d) in %s.", 2228 item->ri_buf[i].i_len, __func__); 2229 goto next; 2230 } 2231 error = xfs_dqcheck(mp, item->ri_buf[i].i_addr, 2232 -1, 0, XFS_QMOPT_DOWARN, 2233 "dquot_buf_recover"); 2234 if (error) 2235 goto next; 2236 } 2237 2238 memcpy(xfs_buf_offset(bp, 2239 (uint)bit << XFS_BLF_SHIFT), /* dest */ 2240 item->ri_buf[i].i_addr, /* source */ 2241 nbits<<XFS_BLF_SHIFT); /* length */ 2242 next: 2243 i++; 2244 bit += nbits; 2245 } 2246 2247 /* Shouldn't be any more regions */ 2248 ASSERT(i == item->ri_total); 2249 2250 xlog_recover_validate_buf_type(mp, bp, buf_f); 2251 } 2252 2253 /* 2254 * Perform a dquot buffer recovery. 2255 * Simple algorithm: if we have found a QUOTAOFF log item of the same type 2256 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2257 * Else, treat it as a regular buffer and do recovery. 2258 * 2259 * Return false if the buffer was tossed and true if we recovered the buffer to 2260 * indicate to the caller if the buffer needs writing. 2261 */ 2262 STATIC bool 2263 xlog_recover_do_dquot_buffer( 2264 struct xfs_mount *mp, 2265 struct xlog *log, 2266 struct xlog_recover_item *item, 2267 struct xfs_buf *bp, 2268 struct xfs_buf_log_format *buf_f) 2269 { 2270 uint type; 2271 2272 trace_xfs_log_recover_buf_dquot_buf(log, buf_f); 2273 2274 /* 2275 * Filesystems are required to send in quota flags at mount time. 2276 */ 2277 if (!mp->m_qflags) 2278 return false; 2279 2280 type = 0; 2281 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) 2282 type |= XFS_DQ_USER; 2283 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) 2284 type |= XFS_DQ_PROJ; 2285 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) 2286 type |= XFS_DQ_GROUP; 2287 /* 2288 * This type of quotas was turned off, so ignore this buffer 2289 */ 2290 if (log->l_quotaoffs_flag & type) 2291 return false; 2292 2293 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2294 return true; 2295 } 2296 2297 /* 2298 * This routine replays a modification made to a buffer at runtime. 2299 * There are actually two types of buffer, regular and inode, which 2300 * are handled differently. Inode buffers are handled differently 2301 * in that we only recover a specific set of data from them, namely 2302 * the inode di_next_unlinked fields. This is because all other inode 2303 * data is actually logged via inode records and any data we replay 2304 * here which overlaps that may be stale. 2305 * 2306 * When meta-data buffers are freed at run time we log a buffer item 2307 * with the XFS_BLF_CANCEL bit set to indicate that previous copies 2308 * of the buffer in the log should not be replayed at recovery time. 2309 * This is so that if the blocks covered by the buffer are reused for 2310 * file data before we crash we don't end up replaying old, freed 2311 * meta-data into a user's file. 2312 * 2313 * To handle the cancellation of buffer log items, we make two passes 2314 * over the log during recovery. During the first we build a table of 2315 * those buffers which have been cancelled, and during the second we 2316 * only replay those buffers which do not have corresponding cancel 2317 * records in the table. See xlog_recover_buffer_pass[1,2] above 2318 * for more details on the implementation of the table of cancel records. 2319 */ 2320 STATIC int 2321 xlog_recover_buffer_pass2( 2322 struct xlog *log, 2323 struct list_head *buffer_list, 2324 struct xlog_recover_item *item, 2325 xfs_lsn_t current_lsn) 2326 { 2327 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2328 xfs_mount_t *mp = log->l_mp; 2329 xfs_buf_t *bp; 2330 int error; 2331 uint buf_flags; 2332 xfs_lsn_t lsn; 2333 2334 /* 2335 * In this pass we only want to recover all the buffers which have 2336 * not been cancelled and are not cancellation buffers themselves. 2337 */ 2338 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno, 2339 buf_f->blf_len, buf_f->blf_flags)) { 2340 trace_xfs_log_recover_buf_cancel(log, buf_f); 2341 return 0; 2342 } 2343 2344 trace_xfs_log_recover_buf_recover(log, buf_f); 2345 2346 buf_flags = 0; 2347 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) 2348 buf_flags |= XBF_UNMAPPED; 2349 2350 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, 2351 buf_flags, NULL); 2352 if (!bp) 2353 return -ENOMEM; 2354 error = bp->b_error; 2355 if (error) { 2356 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)"); 2357 goto out_release; 2358 } 2359 2360 /* 2361 * Recover the buffer only if we get an LSN from it and it's less than 2362 * the lsn of the transaction we are replaying. 2363 * 2364 * Note that we have to be extremely careful of readahead here. 2365 * Readahead does not attach verfiers to the buffers so if we don't 2366 * actually do any replay after readahead because of the LSN we found 2367 * in the buffer if more recent than that current transaction then we 2368 * need to attach the verifier directly. Failure to do so can lead to 2369 * future recovery actions (e.g. EFI and unlinked list recovery) can 2370 * operate on the buffers and they won't get the verifier attached. This 2371 * can lead to blocks on disk having the correct content but a stale 2372 * CRC. 2373 * 2374 * It is safe to assume these clean buffers are currently up to date. 2375 * If the buffer is dirtied by a later transaction being replayed, then 2376 * the verifier will be reset to match whatever recover turns that 2377 * buffer into. 2378 */ 2379 lsn = xlog_recover_get_buf_lsn(mp, bp); 2380 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 2381 xlog_recover_validate_buf_type(mp, bp, buf_f); 2382 goto out_release; 2383 } 2384 2385 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 2386 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2387 if (error) 2388 goto out_release; 2389 } else if (buf_f->blf_flags & 2390 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2391 bool dirty; 2392 2393 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2394 if (!dirty) 2395 goto out_release; 2396 } else { 2397 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2398 } 2399 2400 /* 2401 * Perform delayed write on the buffer. Asynchronous writes will be 2402 * slower when taking into account all the buffers to be flushed. 2403 * 2404 * Also make sure that only inode buffers with good sizes stay in 2405 * the buffer cache. The kernel moves inodes in buffers of 1 block 2406 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode 2407 * buffers in the log can be a different size if the log was generated 2408 * by an older kernel using unclustered inode buffers or a newer kernel 2409 * running with a different inode cluster size. Regardless, if the 2410 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size) 2411 * for *our* value of mp->m_inode_cluster_size, then we need to keep 2412 * the buffer out of the buffer cache so that the buffer won't 2413 * overlap with future reads of those inodes. 2414 */ 2415 if (XFS_DINODE_MAGIC == 2416 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && 2417 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize, 2418 (__uint32_t)log->l_mp->m_inode_cluster_size))) { 2419 xfs_buf_stale(bp); 2420 error = xfs_bwrite(bp); 2421 } else { 2422 ASSERT(bp->b_target->bt_mount == mp); 2423 bp->b_iodone = xlog_recover_iodone; 2424 xfs_buf_delwri_queue(bp, buffer_list); 2425 } 2426 2427 out_release: 2428 xfs_buf_relse(bp); 2429 return error; 2430 } 2431 2432 /* 2433 * Inode fork owner changes 2434 * 2435 * If we have been told that we have to reparent the inode fork, it's because an 2436 * extent swap operation on a CRC enabled filesystem has been done and we are 2437 * replaying it. We need to walk the BMBT of the appropriate fork and change the 2438 * owners of it. 2439 * 2440 * The complexity here is that we don't have an inode context to work with, so 2441 * after we've replayed the inode we need to instantiate one. This is where the 2442 * fun begins. 2443 * 2444 * We are in the middle of log recovery, so we can't run transactions. That 2445 * means we cannot use cache coherent inode instantiation via xfs_iget(), as 2446 * that will result in the corresponding iput() running the inode through 2447 * xfs_inactive(). If we've just replayed an inode core that changes the link 2448 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run 2449 * transactions (bad!). 2450 * 2451 * So, to avoid this, we instantiate an inode directly from the inode core we've 2452 * just recovered. We have the buffer still locked, and all we really need to 2453 * instantiate is the inode core and the forks being modified. We can do this 2454 * manually, then run the inode btree owner change, and then tear down the 2455 * xfs_inode without having to run any transactions at all. 2456 * 2457 * Also, because we don't have a transaction context available here but need to 2458 * gather all the buffers we modify for writeback so we pass the buffer_list 2459 * instead for the operation to use. 2460 */ 2461 2462 STATIC int 2463 xfs_recover_inode_owner_change( 2464 struct xfs_mount *mp, 2465 struct xfs_dinode *dip, 2466 struct xfs_inode_log_format *in_f, 2467 struct list_head *buffer_list) 2468 { 2469 struct xfs_inode *ip; 2470 int error; 2471 2472 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)); 2473 2474 ip = xfs_inode_alloc(mp, in_f->ilf_ino); 2475 if (!ip) 2476 return -ENOMEM; 2477 2478 /* instantiate the inode */ 2479 xfs_dinode_from_disk(&ip->i_d, dip); 2480 ASSERT(ip->i_d.di_version >= 3); 2481 2482 error = xfs_iformat_fork(ip, dip); 2483 if (error) 2484 goto out_free_ip; 2485 2486 2487 if (in_f->ilf_fields & XFS_ILOG_DOWNER) { 2488 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT); 2489 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK, 2490 ip->i_ino, buffer_list); 2491 if (error) 2492 goto out_free_ip; 2493 } 2494 2495 if (in_f->ilf_fields & XFS_ILOG_AOWNER) { 2496 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT); 2497 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK, 2498 ip->i_ino, buffer_list); 2499 if (error) 2500 goto out_free_ip; 2501 } 2502 2503 out_free_ip: 2504 xfs_inode_free(ip); 2505 return error; 2506 } 2507 2508 STATIC int 2509 xlog_recover_inode_pass2( 2510 struct xlog *log, 2511 struct list_head *buffer_list, 2512 struct xlog_recover_item *item, 2513 xfs_lsn_t current_lsn) 2514 { 2515 xfs_inode_log_format_t *in_f; 2516 xfs_mount_t *mp = log->l_mp; 2517 xfs_buf_t *bp; 2518 xfs_dinode_t *dip; 2519 int len; 2520 char *src; 2521 char *dest; 2522 int error; 2523 int attr_index; 2524 uint fields; 2525 xfs_icdinode_t *dicp; 2526 uint isize; 2527 int need_free = 0; 2528 2529 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) { 2530 in_f = item->ri_buf[0].i_addr; 2531 } else { 2532 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP); 2533 need_free = 1; 2534 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 2535 if (error) 2536 goto error; 2537 } 2538 2539 /* 2540 * Inode buffers can be freed, look out for it, 2541 * and do not replay the inode. 2542 */ 2543 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, 2544 in_f->ilf_len, 0)) { 2545 error = 0; 2546 trace_xfs_log_recover_inode_cancel(log, in_f); 2547 goto error; 2548 } 2549 trace_xfs_log_recover_inode_recover(log, in_f); 2550 2551 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0, 2552 &xfs_inode_buf_ops); 2553 if (!bp) { 2554 error = -ENOMEM; 2555 goto error; 2556 } 2557 error = bp->b_error; 2558 if (error) { 2559 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)"); 2560 goto out_release; 2561 } 2562 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 2563 dip = xfs_buf_offset(bp, in_f->ilf_boffset); 2564 2565 /* 2566 * Make sure the place we're flushing out to really looks 2567 * like an inode! 2568 */ 2569 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) { 2570 xfs_alert(mp, 2571 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld", 2572 __func__, dip, bp, in_f->ilf_ino); 2573 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)", 2574 XFS_ERRLEVEL_LOW, mp); 2575 error = -EFSCORRUPTED; 2576 goto out_release; 2577 } 2578 dicp = item->ri_buf[1].i_addr; 2579 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { 2580 xfs_alert(mp, 2581 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld", 2582 __func__, item, in_f->ilf_ino); 2583 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)", 2584 XFS_ERRLEVEL_LOW, mp); 2585 error = -EFSCORRUPTED; 2586 goto out_release; 2587 } 2588 2589 /* 2590 * If the inode has an LSN in it, recover the inode only if it's less 2591 * than the lsn of the transaction we are replaying. Note: we still 2592 * need to replay an owner change even though the inode is more recent 2593 * than the transaction as there is no guarantee that all the btree 2594 * blocks are more recent than this transaction, too. 2595 */ 2596 if (dip->di_version >= 3) { 2597 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn); 2598 2599 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 2600 trace_xfs_log_recover_inode_skip(log, in_f); 2601 error = 0; 2602 goto out_owner_change; 2603 } 2604 } 2605 2606 /* 2607 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes 2608 * are transactional and if ordering is necessary we can determine that 2609 * more accurately by the LSN field in the V3 inode core. Don't trust 2610 * the inode versions we might be changing them here - use the 2611 * superblock flag to determine whether we need to look at di_flushiter 2612 * to skip replay when the on disk inode is newer than the log one 2613 */ 2614 if (!xfs_sb_version_hascrc(&mp->m_sb) && 2615 dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) { 2616 /* 2617 * Deal with the wrap case, DI_MAX_FLUSH is less 2618 * than smaller numbers 2619 */ 2620 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && 2621 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) { 2622 /* do nothing */ 2623 } else { 2624 trace_xfs_log_recover_inode_skip(log, in_f); 2625 error = 0; 2626 goto out_release; 2627 } 2628 } 2629 2630 /* Take the opportunity to reset the flush iteration count */ 2631 dicp->di_flushiter = 0; 2632 2633 if (unlikely(S_ISREG(dicp->di_mode))) { 2634 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2635 (dicp->di_format != XFS_DINODE_FMT_BTREE)) { 2636 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)", 2637 XFS_ERRLEVEL_LOW, mp, dicp); 2638 xfs_alert(mp, 2639 "%s: Bad regular inode log record, rec ptr 0x%p, " 2640 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2641 __func__, item, dip, bp, in_f->ilf_ino); 2642 error = -EFSCORRUPTED; 2643 goto out_release; 2644 } 2645 } else if (unlikely(S_ISDIR(dicp->di_mode))) { 2646 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2647 (dicp->di_format != XFS_DINODE_FMT_BTREE) && 2648 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { 2649 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)", 2650 XFS_ERRLEVEL_LOW, mp, dicp); 2651 xfs_alert(mp, 2652 "%s: Bad dir inode log record, rec ptr 0x%p, " 2653 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2654 __func__, item, dip, bp, in_f->ilf_ino); 2655 error = -EFSCORRUPTED; 2656 goto out_release; 2657 } 2658 } 2659 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ 2660 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)", 2661 XFS_ERRLEVEL_LOW, mp, dicp); 2662 xfs_alert(mp, 2663 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 2664 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", 2665 __func__, item, dip, bp, in_f->ilf_ino, 2666 dicp->di_nextents + dicp->di_anextents, 2667 dicp->di_nblocks); 2668 error = -EFSCORRUPTED; 2669 goto out_release; 2670 } 2671 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { 2672 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)", 2673 XFS_ERRLEVEL_LOW, mp, dicp); 2674 xfs_alert(mp, 2675 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 2676 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__, 2677 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff); 2678 error = -EFSCORRUPTED; 2679 goto out_release; 2680 } 2681 isize = xfs_icdinode_size(dicp->di_version); 2682 if (unlikely(item->ri_buf[1].i_len > isize)) { 2683 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)", 2684 XFS_ERRLEVEL_LOW, mp, dicp); 2685 xfs_alert(mp, 2686 "%s: Bad inode log record length %d, rec ptr 0x%p", 2687 __func__, item->ri_buf[1].i_len, item); 2688 error = -EFSCORRUPTED; 2689 goto out_release; 2690 } 2691 2692 /* The core is in in-core format */ 2693 xfs_dinode_to_disk(dip, dicp); 2694 2695 /* the rest is in on-disk format */ 2696 if (item->ri_buf[1].i_len > isize) { 2697 memcpy((char *)dip + isize, 2698 item->ri_buf[1].i_addr + isize, 2699 item->ri_buf[1].i_len - isize); 2700 } 2701 2702 fields = in_f->ilf_fields; 2703 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { 2704 case XFS_ILOG_DEV: 2705 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); 2706 break; 2707 case XFS_ILOG_UUID: 2708 memcpy(XFS_DFORK_DPTR(dip), 2709 &in_f->ilf_u.ilfu_uuid, 2710 sizeof(uuid_t)); 2711 break; 2712 } 2713 2714 if (in_f->ilf_size == 2) 2715 goto out_owner_change; 2716 len = item->ri_buf[2].i_len; 2717 src = item->ri_buf[2].i_addr; 2718 ASSERT(in_f->ilf_size <= 4); 2719 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 2720 ASSERT(!(fields & XFS_ILOG_DFORK) || 2721 (len == in_f->ilf_dsize)); 2722 2723 switch (fields & XFS_ILOG_DFORK) { 2724 case XFS_ILOG_DDATA: 2725 case XFS_ILOG_DEXT: 2726 memcpy(XFS_DFORK_DPTR(dip), src, len); 2727 break; 2728 2729 case XFS_ILOG_DBROOT: 2730 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, 2731 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), 2732 XFS_DFORK_DSIZE(dip, mp)); 2733 break; 2734 2735 default: 2736 /* 2737 * There are no data fork flags set. 2738 */ 2739 ASSERT((fields & XFS_ILOG_DFORK) == 0); 2740 break; 2741 } 2742 2743 /* 2744 * If we logged any attribute data, recover it. There may or 2745 * may not have been any other non-core data logged in this 2746 * transaction. 2747 */ 2748 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 2749 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 2750 attr_index = 3; 2751 } else { 2752 attr_index = 2; 2753 } 2754 len = item->ri_buf[attr_index].i_len; 2755 src = item->ri_buf[attr_index].i_addr; 2756 ASSERT(len == in_f->ilf_asize); 2757 2758 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 2759 case XFS_ILOG_ADATA: 2760 case XFS_ILOG_AEXT: 2761 dest = XFS_DFORK_APTR(dip); 2762 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 2763 memcpy(dest, src, len); 2764 break; 2765 2766 case XFS_ILOG_ABROOT: 2767 dest = XFS_DFORK_APTR(dip); 2768 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, 2769 len, (xfs_bmdr_block_t*)dest, 2770 XFS_DFORK_ASIZE(dip, mp)); 2771 break; 2772 2773 default: 2774 xfs_warn(log->l_mp, "%s: Invalid flag", __func__); 2775 ASSERT(0); 2776 error = -EIO; 2777 goto out_release; 2778 } 2779 } 2780 2781 out_owner_change: 2782 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) 2783 error = xfs_recover_inode_owner_change(mp, dip, in_f, 2784 buffer_list); 2785 /* re-generate the checksum. */ 2786 xfs_dinode_calc_crc(log->l_mp, dip); 2787 2788 ASSERT(bp->b_target->bt_mount == mp); 2789 bp->b_iodone = xlog_recover_iodone; 2790 xfs_buf_delwri_queue(bp, buffer_list); 2791 2792 out_release: 2793 xfs_buf_relse(bp); 2794 error: 2795 if (need_free) 2796 kmem_free(in_f); 2797 return error; 2798 } 2799 2800 /* 2801 * Recover QUOTAOFF records. We simply make a note of it in the xlog 2802 * structure, so that we know not to do any dquot item or dquot buffer recovery, 2803 * of that type. 2804 */ 2805 STATIC int 2806 xlog_recover_quotaoff_pass1( 2807 struct xlog *log, 2808 struct xlog_recover_item *item) 2809 { 2810 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr; 2811 ASSERT(qoff_f); 2812 2813 /* 2814 * The logitem format's flag tells us if this was user quotaoff, 2815 * group/project quotaoff or both. 2816 */ 2817 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 2818 log->l_quotaoffs_flag |= XFS_DQ_USER; 2819 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 2820 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 2821 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 2822 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 2823 2824 return 0; 2825 } 2826 2827 /* 2828 * Recover a dquot record 2829 */ 2830 STATIC int 2831 xlog_recover_dquot_pass2( 2832 struct xlog *log, 2833 struct list_head *buffer_list, 2834 struct xlog_recover_item *item, 2835 xfs_lsn_t current_lsn) 2836 { 2837 xfs_mount_t *mp = log->l_mp; 2838 xfs_buf_t *bp; 2839 struct xfs_disk_dquot *ddq, *recddq; 2840 int error; 2841 xfs_dq_logformat_t *dq_f; 2842 uint type; 2843 2844 2845 /* 2846 * Filesystems are required to send in quota flags at mount time. 2847 */ 2848 if (mp->m_qflags == 0) 2849 return 0; 2850 2851 recddq = item->ri_buf[1].i_addr; 2852 if (recddq == NULL) { 2853 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__); 2854 return -EIO; 2855 } 2856 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) { 2857 xfs_alert(log->l_mp, "dquot too small (%d) in %s.", 2858 item->ri_buf[1].i_len, __func__); 2859 return -EIO; 2860 } 2861 2862 /* 2863 * This type of quotas was turned off, so ignore this record. 2864 */ 2865 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 2866 ASSERT(type); 2867 if (log->l_quotaoffs_flag & type) 2868 return 0; 2869 2870 /* 2871 * At this point we know that quota was _not_ turned off. 2872 * Since the mount flags are not indicating to us otherwise, this 2873 * must mean that quota is on, and the dquot needs to be replayed. 2874 * Remember that we may not have fully recovered the superblock yet, 2875 * so we can't do the usual trick of looking at the SB quota bits. 2876 * 2877 * The other possibility, of course, is that the quota subsystem was 2878 * removed since the last mount - ENOSYS. 2879 */ 2880 dq_f = item->ri_buf[0].i_addr; 2881 ASSERT(dq_f); 2882 error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2883 "xlog_recover_dquot_pass2 (log copy)"); 2884 if (error) 2885 return -EIO; 2886 ASSERT(dq_f->qlf_len == 1); 2887 2888 /* 2889 * At this point we are assuming that the dquots have been allocated 2890 * and hence the buffer has valid dquots stamped in it. It should, 2891 * therefore, pass verifier validation. If the dquot is bad, then the 2892 * we'll return an error here, so we don't need to specifically check 2893 * the dquot in the buffer after the verifier has run. 2894 */ 2895 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno, 2896 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp, 2897 &xfs_dquot_buf_ops); 2898 if (error) 2899 return error; 2900 2901 ASSERT(bp); 2902 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset); 2903 2904 /* 2905 * If the dquot has an LSN in it, recover the dquot only if it's less 2906 * than the lsn of the transaction we are replaying. 2907 */ 2908 if (xfs_sb_version_hascrc(&mp->m_sb)) { 2909 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq; 2910 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn); 2911 2912 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 2913 goto out_release; 2914 } 2915 } 2916 2917 memcpy(ddq, recddq, item->ri_buf[1].i_len); 2918 if (xfs_sb_version_hascrc(&mp->m_sb)) { 2919 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk), 2920 XFS_DQUOT_CRC_OFF); 2921 } 2922 2923 ASSERT(dq_f->qlf_size == 2); 2924 ASSERT(bp->b_target->bt_mount == mp); 2925 bp->b_iodone = xlog_recover_iodone; 2926 xfs_buf_delwri_queue(bp, buffer_list); 2927 2928 out_release: 2929 xfs_buf_relse(bp); 2930 return 0; 2931 } 2932 2933 /* 2934 * This routine is called to create an in-core extent free intent 2935 * item from the efi format structure which was logged on disk. 2936 * It allocates an in-core efi, copies the extents from the format 2937 * structure into it, and adds the efi to the AIL with the given 2938 * LSN. 2939 */ 2940 STATIC int 2941 xlog_recover_efi_pass2( 2942 struct xlog *log, 2943 struct xlog_recover_item *item, 2944 xfs_lsn_t lsn) 2945 { 2946 int error; 2947 struct xfs_mount *mp = log->l_mp; 2948 struct xfs_efi_log_item *efip; 2949 struct xfs_efi_log_format *efi_formatp; 2950 2951 efi_formatp = item->ri_buf[0].i_addr; 2952 2953 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 2954 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); 2955 if (error) { 2956 xfs_efi_item_free(efip); 2957 return error; 2958 } 2959 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 2960 2961 spin_lock(&log->l_ailp->xa_lock); 2962 /* 2963 * The EFI has two references. One for the EFD and one for EFI to ensure 2964 * it makes it into the AIL. Insert the EFI into the AIL directly and 2965 * drop the EFI reference. Note that xfs_trans_ail_update() drops the 2966 * AIL lock. 2967 */ 2968 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn); 2969 xfs_efi_release(efip); 2970 return 0; 2971 } 2972 2973 2974 /* 2975 * This routine is called when an EFD format structure is found in a committed 2976 * transaction in the log. Its purpose is to cancel the corresponding EFI if it 2977 * was still in the log. To do this it searches the AIL for the EFI with an id 2978 * equal to that in the EFD format structure. If we find it we drop the EFD 2979 * reference, which removes the EFI from the AIL and frees it. 2980 */ 2981 STATIC int 2982 xlog_recover_efd_pass2( 2983 struct xlog *log, 2984 struct xlog_recover_item *item) 2985 { 2986 xfs_efd_log_format_t *efd_formatp; 2987 xfs_efi_log_item_t *efip = NULL; 2988 xfs_log_item_t *lip; 2989 __uint64_t efi_id; 2990 struct xfs_ail_cursor cur; 2991 struct xfs_ail *ailp = log->l_ailp; 2992 2993 efd_formatp = item->ri_buf[0].i_addr; 2994 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 2995 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 2996 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 2997 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 2998 efi_id = efd_formatp->efd_efi_id; 2999 3000 /* 3001 * Search for the EFI with the id in the EFD format structure in the 3002 * AIL. 3003 */ 3004 spin_lock(&ailp->xa_lock); 3005 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3006 while (lip != NULL) { 3007 if (lip->li_type == XFS_LI_EFI) { 3008 efip = (xfs_efi_log_item_t *)lip; 3009 if (efip->efi_format.efi_id == efi_id) { 3010 /* 3011 * Drop the EFD reference to the EFI. This 3012 * removes the EFI from the AIL and frees it. 3013 */ 3014 spin_unlock(&ailp->xa_lock); 3015 xfs_efi_release(efip); 3016 spin_lock(&ailp->xa_lock); 3017 break; 3018 } 3019 } 3020 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3021 } 3022 3023 xfs_trans_ail_cursor_done(&cur); 3024 spin_unlock(&ailp->xa_lock); 3025 3026 return 0; 3027 } 3028 3029 /* 3030 * This routine is called when an inode create format structure is found in a 3031 * committed transaction in the log. It's purpose is to initialise the inodes 3032 * being allocated on disk. This requires us to get inode cluster buffers that 3033 * match the range to be intialised, stamped with inode templates and written 3034 * by delayed write so that subsequent modifications will hit the cached buffer 3035 * and only need writing out at the end of recovery. 3036 */ 3037 STATIC int 3038 xlog_recover_do_icreate_pass2( 3039 struct xlog *log, 3040 struct list_head *buffer_list, 3041 xlog_recover_item_t *item) 3042 { 3043 struct xfs_mount *mp = log->l_mp; 3044 struct xfs_icreate_log *icl; 3045 xfs_agnumber_t agno; 3046 xfs_agblock_t agbno; 3047 unsigned int count; 3048 unsigned int isize; 3049 xfs_agblock_t length; 3050 int blks_per_cluster; 3051 int bb_per_cluster; 3052 int cancel_count; 3053 int nbufs; 3054 int i; 3055 3056 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr; 3057 if (icl->icl_type != XFS_LI_ICREATE) { 3058 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type"); 3059 return -EINVAL; 3060 } 3061 3062 if (icl->icl_size != 1) { 3063 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size"); 3064 return -EINVAL; 3065 } 3066 3067 agno = be32_to_cpu(icl->icl_ag); 3068 if (agno >= mp->m_sb.sb_agcount) { 3069 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno"); 3070 return -EINVAL; 3071 } 3072 agbno = be32_to_cpu(icl->icl_agbno); 3073 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) { 3074 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno"); 3075 return -EINVAL; 3076 } 3077 isize = be32_to_cpu(icl->icl_isize); 3078 if (isize != mp->m_sb.sb_inodesize) { 3079 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize"); 3080 return -EINVAL; 3081 } 3082 count = be32_to_cpu(icl->icl_count); 3083 if (!count) { 3084 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count"); 3085 return -EINVAL; 3086 } 3087 length = be32_to_cpu(icl->icl_length); 3088 if (!length || length >= mp->m_sb.sb_agblocks) { 3089 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length"); 3090 return -EINVAL; 3091 } 3092 3093 /* 3094 * The inode chunk is either full or sparse and we only support 3095 * m_ialloc_min_blks sized sparse allocations at this time. 3096 */ 3097 if (length != mp->m_ialloc_blks && 3098 length != mp->m_ialloc_min_blks) { 3099 xfs_warn(log->l_mp, 3100 "%s: unsupported chunk length", __FUNCTION__); 3101 return -EINVAL; 3102 } 3103 3104 /* verify inode count is consistent with extent length */ 3105 if ((count >> mp->m_sb.sb_inopblog) != length) { 3106 xfs_warn(log->l_mp, 3107 "%s: inconsistent inode count and chunk length", 3108 __FUNCTION__); 3109 return -EINVAL; 3110 } 3111 3112 /* 3113 * The icreate transaction can cover multiple cluster buffers and these 3114 * buffers could have been freed and reused. Check the individual 3115 * buffers for cancellation so we don't overwrite anything written after 3116 * a cancellation. 3117 */ 3118 blks_per_cluster = xfs_icluster_size_fsb(mp); 3119 bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster); 3120 nbufs = length / blks_per_cluster; 3121 for (i = 0, cancel_count = 0; i < nbufs; i++) { 3122 xfs_daddr_t daddr; 3123 3124 daddr = XFS_AGB_TO_DADDR(mp, agno, 3125 agbno + i * blks_per_cluster); 3126 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0)) 3127 cancel_count++; 3128 } 3129 3130 /* 3131 * We currently only use icreate for a single allocation at a time. This 3132 * means we should expect either all or none of the buffers to be 3133 * cancelled. Be conservative and skip replay if at least one buffer is 3134 * cancelled, but warn the user that something is awry if the buffers 3135 * are not consistent. 3136 * 3137 * XXX: This must be refined to only skip cancelled clusters once we use 3138 * icreate for multiple chunk allocations. 3139 */ 3140 ASSERT(!cancel_count || cancel_count == nbufs); 3141 if (cancel_count) { 3142 if (cancel_count != nbufs) 3143 xfs_warn(mp, 3144 "WARNING: partial inode chunk cancellation, skipped icreate."); 3145 trace_xfs_log_recover_icreate_cancel(log, icl); 3146 return 0; 3147 } 3148 3149 trace_xfs_log_recover_icreate_recover(log, icl); 3150 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno, 3151 length, be32_to_cpu(icl->icl_gen)); 3152 } 3153 3154 STATIC void 3155 xlog_recover_buffer_ra_pass2( 3156 struct xlog *log, 3157 struct xlog_recover_item *item) 3158 { 3159 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr; 3160 struct xfs_mount *mp = log->l_mp; 3161 3162 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno, 3163 buf_f->blf_len, buf_f->blf_flags)) { 3164 return; 3165 } 3166 3167 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno, 3168 buf_f->blf_len, NULL); 3169 } 3170 3171 STATIC void 3172 xlog_recover_inode_ra_pass2( 3173 struct xlog *log, 3174 struct xlog_recover_item *item) 3175 { 3176 struct xfs_inode_log_format ilf_buf; 3177 struct xfs_inode_log_format *ilfp; 3178 struct xfs_mount *mp = log->l_mp; 3179 int error; 3180 3181 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { 3182 ilfp = item->ri_buf[0].i_addr; 3183 } else { 3184 ilfp = &ilf_buf; 3185 memset(ilfp, 0, sizeof(*ilfp)); 3186 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp); 3187 if (error) 3188 return; 3189 } 3190 3191 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0)) 3192 return; 3193 3194 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno, 3195 ilfp->ilf_len, &xfs_inode_buf_ra_ops); 3196 } 3197 3198 STATIC void 3199 xlog_recover_dquot_ra_pass2( 3200 struct xlog *log, 3201 struct xlog_recover_item *item) 3202 { 3203 struct xfs_mount *mp = log->l_mp; 3204 struct xfs_disk_dquot *recddq; 3205 struct xfs_dq_logformat *dq_f; 3206 uint type; 3207 3208 3209 if (mp->m_qflags == 0) 3210 return; 3211 3212 recddq = item->ri_buf[1].i_addr; 3213 if (recddq == NULL) 3214 return; 3215 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot)) 3216 return; 3217 3218 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 3219 ASSERT(type); 3220 if (log->l_quotaoffs_flag & type) 3221 return; 3222 3223 dq_f = item->ri_buf[0].i_addr; 3224 ASSERT(dq_f); 3225 ASSERT(dq_f->qlf_len == 1); 3226 3227 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, 3228 XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL); 3229 } 3230 3231 STATIC void 3232 xlog_recover_ra_pass2( 3233 struct xlog *log, 3234 struct xlog_recover_item *item) 3235 { 3236 switch (ITEM_TYPE(item)) { 3237 case XFS_LI_BUF: 3238 xlog_recover_buffer_ra_pass2(log, item); 3239 break; 3240 case XFS_LI_INODE: 3241 xlog_recover_inode_ra_pass2(log, item); 3242 break; 3243 case XFS_LI_DQUOT: 3244 xlog_recover_dquot_ra_pass2(log, item); 3245 break; 3246 case XFS_LI_EFI: 3247 case XFS_LI_EFD: 3248 case XFS_LI_QUOTAOFF: 3249 default: 3250 break; 3251 } 3252 } 3253 3254 STATIC int 3255 xlog_recover_commit_pass1( 3256 struct xlog *log, 3257 struct xlog_recover *trans, 3258 struct xlog_recover_item *item) 3259 { 3260 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1); 3261 3262 switch (ITEM_TYPE(item)) { 3263 case XFS_LI_BUF: 3264 return xlog_recover_buffer_pass1(log, item); 3265 case XFS_LI_QUOTAOFF: 3266 return xlog_recover_quotaoff_pass1(log, item); 3267 case XFS_LI_INODE: 3268 case XFS_LI_EFI: 3269 case XFS_LI_EFD: 3270 case XFS_LI_DQUOT: 3271 case XFS_LI_ICREATE: 3272 /* nothing to do in pass 1 */ 3273 return 0; 3274 default: 3275 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 3276 __func__, ITEM_TYPE(item)); 3277 ASSERT(0); 3278 return -EIO; 3279 } 3280 } 3281 3282 STATIC int 3283 xlog_recover_commit_pass2( 3284 struct xlog *log, 3285 struct xlog_recover *trans, 3286 struct list_head *buffer_list, 3287 struct xlog_recover_item *item) 3288 { 3289 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2); 3290 3291 switch (ITEM_TYPE(item)) { 3292 case XFS_LI_BUF: 3293 return xlog_recover_buffer_pass2(log, buffer_list, item, 3294 trans->r_lsn); 3295 case XFS_LI_INODE: 3296 return xlog_recover_inode_pass2(log, buffer_list, item, 3297 trans->r_lsn); 3298 case XFS_LI_EFI: 3299 return xlog_recover_efi_pass2(log, item, trans->r_lsn); 3300 case XFS_LI_EFD: 3301 return xlog_recover_efd_pass2(log, item); 3302 case XFS_LI_DQUOT: 3303 return xlog_recover_dquot_pass2(log, buffer_list, item, 3304 trans->r_lsn); 3305 case XFS_LI_ICREATE: 3306 return xlog_recover_do_icreate_pass2(log, buffer_list, item); 3307 case XFS_LI_QUOTAOFF: 3308 /* nothing to do in pass2 */ 3309 return 0; 3310 default: 3311 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 3312 __func__, ITEM_TYPE(item)); 3313 ASSERT(0); 3314 return -EIO; 3315 } 3316 } 3317 3318 STATIC int 3319 xlog_recover_items_pass2( 3320 struct xlog *log, 3321 struct xlog_recover *trans, 3322 struct list_head *buffer_list, 3323 struct list_head *item_list) 3324 { 3325 struct xlog_recover_item *item; 3326 int error = 0; 3327 3328 list_for_each_entry(item, item_list, ri_list) { 3329 error = xlog_recover_commit_pass2(log, trans, 3330 buffer_list, item); 3331 if (error) 3332 return error; 3333 } 3334 3335 return error; 3336 } 3337 3338 /* 3339 * Perform the transaction. 3340 * 3341 * If the transaction modifies a buffer or inode, do it now. Otherwise, 3342 * EFIs and EFDs get queued up by adding entries into the AIL for them. 3343 */ 3344 STATIC int 3345 xlog_recover_commit_trans( 3346 struct xlog *log, 3347 struct xlog_recover *trans, 3348 int pass) 3349 { 3350 int error = 0; 3351 int error2; 3352 int items_queued = 0; 3353 struct xlog_recover_item *item; 3354 struct xlog_recover_item *next; 3355 LIST_HEAD (buffer_list); 3356 LIST_HEAD (ra_list); 3357 LIST_HEAD (done_list); 3358 3359 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100 3360 3361 hlist_del(&trans->r_list); 3362 3363 error = xlog_recover_reorder_trans(log, trans, pass); 3364 if (error) 3365 return error; 3366 3367 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) { 3368 switch (pass) { 3369 case XLOG_RECOVER_PASS1: 3370 error = xlog_recover_commit_pass1(log, trans, item); 3371 break; 3372 case XLOG_RECOVER_PASS2: 3373 xlog_recover_ra_pass2(log, item); 3374 list_move_tail(&item->ri_list, &ra_list); 3375 items_queued++; 3376 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) { 3377 error = xlog_recover_items_pass2(log, trans, 3378 &buffer_list, &ra_list); 3379 list_splice_tail_init(&ra_list, &done_list); 3380 items_queued = 0; 3381 } 3382 3383 break; 3384 default: 3385 ASSERT(0); 3386 } 3387 3388 if (error) 3389 goto out; 3390 } 3391 3392 out: 3393 if (!list_empty(&ra_list)) { 3394 if (!error) 3395 error = xlog_recover_items_pass2(log, trans, 3396 &buffer_list, &ra_list); 3397 list_splice_tail_init(&ra_list, &done_list); 3398 } 3399 3400 if (!list_empty(&done_list)) 3401 list_splice_init(&done_list, &trans->r_itemq); 3402 3403 error2 = xfs_buf_delwri_submit(&buffer_list); 3404 return error ? error : error2; 3405 } 3406 3407 STATIC void 3408 xlog_recover_add_item( 3409 struct list_head *head) 3410 { 3411 xlog_recover_item_t *item; 3412 3413 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 3414 INIT_LIST_HEAD(&item->ri_list); 3415 list_add_tail(&item->ri_list, head); 3416 } 3417 3418 STATIC int 3419 xlog_recover_add_to_cont_trans( 3420 struct xlog *log, 3421 struct xlog_recover *trans, 3422 char *dp, 3423 int len) 3424 { 3425 xlog_recover_item_t *item; 3426 char *ptr, *old_ptr; 3427 int old_len; 3428 3429 /* 3430 * If the transaction is empty, the header was split across this and the 3431 * previous record. Copy the rest of the header. 3432 */ 3433 if (list_empty(&trans->r_itemq)) { 3434 ASSERT(len < sizeof(struct xfs_trans_header)); 3435 if (len > sizeof(struct xfs_trans_header)) { 3436 xfs_warn(log->l_mp, "%s: bad header length", __func__); 3437 return -EIO; 3438 } 3439 3440 xlog_recover_add_item(&trans->r_itemq); 3441 ptr = (char *)&trans->r_theader + 3442 sizeof(struct xfs_trans_header) - len; 3443 memcpy(ptr, dp, len); 3444 return 0; 3445 } 3446 3447 /* take the tail entry */ 3448 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 3449 3450 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 3451 old_len = item->ri_buf[item->ri_cnt-1].i_len; 3452 3453 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP); 3454 memcpy(&ptr[old_len], dp, len); 3455 item->ri_buf[item->ri_cnt-1].i_len += len; 3456 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 3457 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 3458 return 0; 3459 } 3460 3461 /* 3462 * The next region to add is the start of a new region. It could be 3463 * a whole region or it could be the first part of a new region. Because 3464 * of this, the assumption here is that the type and size fields of all 3465 * format structures fit into the first 32 bits of the structure. 3466 * 3467 * This works because all regions must be 32 bit aligned. Therefore, we 3468 * either have both fields or we have neither field. In the case we have 3469 * neither field, the data part of the region is zero length. We only have 3470 * a log_op_header and can throw away the header since a new one will appear 3471 * later. If we have at least 4 bytes, then we can determine how many regions 3472 * will appear in the current log item. 3473 */ 3474 STATIC int 3475 xlog_recover_add_to_trans( 3476 struct xlog *log, 3477 struct xlog_recover *trans, 3478 char *dp, 3479 int len) 3480 { 3481 xfs_inode_log_format_t *in_f; /* any will do */ 3482 xlog_recover_item_t *item; 3483 char *ptr; 3484 3485 if (!len) 3486 return 0; 3487 if (list_empty(&trans->r_itemq)) { 3488 /* we need to catch log corruptions here */ 3489 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 3490 xfs_warn(log->l_mp, "%s: bad header magic number", 3491 __func__); 3492 ASSERT(0); 3493 return -EIO; 3494 } 3495 3496 if (len > sizeof(struct xfs_trans_header)) { 3497 xfs_warn(log->l_mp, "%s: bad header length", __func__); 3498 ASSERT(0); 3499 return -EIO; 3500 } 3501 3502 /* 3503 * The transaction header can be arbitrarily split across op 3504 * records. If we don't have the whole thing here, copy what we 3505 * do have and handle the rest in the next record. 3506 */ 3507 if (len == sizeof(struct xfs_trans_header)) 3508 xlog_recover_add_item(&trans->r_itemq); 3509 memcpy(&trans->r_theader, dp, len); 3510 return 0; 3511 } 3512 3513 ptr = kmem_alloc(len, KM_SLEEP); 3514 memcpy(ptr, dp, len); 3515 in_f = (xfs_inode_log_format_t *)ptr; 3516 3517 /* take the tail entry */ 3518 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 3519 if (item->ri_total != 0 && 3520 item->ri_total == item->ri_cnt) { 3521 /* tail item is in use, get a new one */ 3522 xlog_recover_add_item(&trans->r_itemq); 3523 item = list_entry(trans->r_itemq.prev, 3524 xlog_recover_item_t, ri_list); 3525 } 3526 3527 if (item->ri_total == 0) { /* first region to be added */ 3528 if (in_f->ilf_size == 0 || 3529 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 3530 xfs_warn(log->l_mp, 3531 "bad number of regions (%d) in inode log format", 3532 in_f->ilf_size); 3533 ASSERT(0); 3534 kmem_free(ptr); 3535 return -EIO; 3536 } 3537 3538 item->ri_total = in_f->ilf_size; 3539 item->ri_buf = 3540 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 3541 KM_SLEEP); 3542 } 3543 ASSERT(item->ri_total > item->ri_cnt); 3544 /* Description region is ri_buf[0] */ 3545 item->ri_buf[item->ri_cnt].i_addr = ptr; 3546 item->ri_buf[item->ri_cnt].i_len = len; 3547 item->ri_cnt++; 3548 trace_xfs_log_recover_item_add(log, trans, item, 0); 3549 return 0; 3550 } 3551 3552 /* 3553 * Free up any resources allocated by the transaction 3554 * 3555 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 3556 */ 3557 STATIC void 3558 xlog_recover_free_trans( 3559 struct xlog_recover *trans) 3560 { 3561 xlog_recover_item_t *item, *n; 3562 int i; 3563 3564 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 3565 /* Free the regions in the item. */ 3566 list_del(&item->ri_list); 3567 for (i = 0; i < item->ri_cnt; i++) 3568 kmem_free(item->ri_buf[i].i_addr); 3569 /* Free the item itself */ 3570 kmem_free(item->ri_buf); 3571 kmem_free(item); 3572 } 3573 /* Free the transaction recover structure */ 3574 kmem_free(trans); 3575 } 3576 3577 /* 3578 * On error or completion, trans is freed. 3579 */ 3580 STATIC int 3581 xlog_recovery_process_trans( 3582 struct xlog *log, 3583 struct xlog_recover *trans, 3584 char *dp, 3585 unsigned int len, 3586 unsigned int flags, 3587 int pass) 3588 { 3589 int error = 0; 3590 bool freeit = false; 3591 3592 /* mask off ophdr transaction container flags */ 3593 flags &= ~XLOG_END_TRANS; 3594 if (flags & XLOG_WAS_CONT_TRANS) 3595 flags &= ~XLOG_CONTINUE_TRANS; 3596 3597 /* 3598 * Callees must not free the trans structure. We'll decide if we need to 3599 * free it or not based on the operation being done and it's result. 3600 */ 3601 switch (flags) { 3602 /* expected flag values */ 3603 case 0: 3604 case XLOG_CONTINUE_TRANS: 3605 error = xlog_recover_add_to_trans(log, trans, dp, len); 3606 break; 3607 case XLOG_WAS_CONT_TRANS: 3608 error = xlog_recover_add_to_cont_trans(log, trans, dp, len); 3609 break; 3610 case XLOG_COMMIT_TRANS: 3611 error = xlog_recover_commit_trans(log, trans, pass); 3612 /* success or fail, we are now done with this transaction. */ 3613 freeit = true; 3614 break; 3615 3616 /* unexpected flag values */ 3617 case XLOG_UNMOUNT_TRANS: 3618 /* just skip trans */ 3619 xfs_warn(log->l_mp, "%s: Unmount LR", __func__); 3620 freeit = true; 3621 break; 3622 case XLOG_START_TRANS: 3623 default: 3624 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags); 3625 ASSERT(0); 3626 error = -EIO; 3627 break; 3628 } 3629 if (error || freeit) 3630 xlog_recover_free_trans(trans); 3631 return error; 3632 } 3633 3634 /* 3635 * Lookup the transaction recovery structure associated with the ID in the 3636 * current ophdr. If the transaction doesn't exist and the start flag is set in 3637 * the ophdr, then allocate a new transaction for future ID matches to find. 3638 * Either way, return what we found during the lookup - an existing transaction 3639 * or nothing. 3640 */ 3641 STATIC struct xlog_recover * 3642 xlog_recover_ophdr_to_trans( 3643 struct hlist_head rhash[], 3644 struct xlog_rec_header *rhead, 3645 struct xlog_op_header *ohead) 3646 { 3647 struct xlog_recover *trans; 3648 xlog_tid_t tid; 3649 struct hlist_head *rhp; 3650 3651 tid = be32_to_cpu(ohead->oh_tid); 3652 rhp = &rhash[XLOG_RHASH(tid)]; 3653 hlist_for_each_entry(trans, rhp, r_list) { 3654 if (trans->r_log_tid == tid) 3655 return trans; 3656 } 3657 3658 /* 3659 * skip over non-start transaction headers - we could be 3660 * processing slack space before the next transaction starts 3661 */ 3662 if (!(ohead->oh_flags & XLOG_START_TRANS)) 3663 return NULL; 3664 3665 ASSERT(be32_to_cpu(ohead->oh_len) == 0); 3666 3667 /* 3668 * This is a new transaction so allocate a new recovery container to 3669 * hold the recovery ops that will follow. 3670 */ 3671 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP); 3672 trans->r_log_tid = tid; 3673 trans->r_lsn = be64_to_cpu(rhead->h_lsn); 3674 INIT_LIST_HEAD(&trans->r_itemq); 3675 INIT_HLIST_NODE(&trans->r_list); 3676 hlist_add_head(&trans->r_list, rhp); 3677 3678 /* 3679 * Nothing more to do for this ophdr. Items to be added to this new 3680 * transaction will be in subsequent ophdr containers. 3681 */ 3682 return NULL; 3683 } 3684 3685 STATIC int 3686 xlog_recover_process_ophdr( 3687 struct xlog *log, 3688 struct hlist_head rhash[], 3689 struct xlog_rec_header *rhead, 3690 struct xlog_op_header *ohead, 3691 char *dp, 3692 char *end, 3693 int pass) 3694 { 3695 struct xlog_recover *trans; 3696 unsigned int len; 3697 3698 /* Do we understand who wrote this op? */ 3699 if (ohead->oh_clientid != XFS_TRANSACTION && 3700 ohead->oh_clientid != XFS_LOG) { 3701 xfs_warn(log->l_mp, "%s: bad clientid 0x%x", 3702 __func__, ohead->oh_clientid); 3703 ASSERT(0); 3704 return -EIO; 3705 } 3706 3707 /* 3708 * Check the ophdr contains all the data it is supposed to contain. 3709 */ 3710 len = be32_to_cpu(ohead->oh_len); 3711 if (dp + len > end) { 3712 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len); 3713 WARN_ON(1); 3714 return -EIO; 3715 } 3716 3717 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead); 3718 if (!trans) { 3719 /* nothing to do, so skip over this ophdr */ 3720 return 0; 3721 } 3722 3723 return xlog_recovery_process_trans(log, trans, dp, len, 3724 ohead->oh_flags, pass); 3725 } 3726 3727 /* 3728 * There are two valid states of the r_state field. 0 indicates that the 3729 * transaction structure is in a normal state. We have either seen the 3730 * start of the transaction or the last operation we added was not a partial 3731 * operation. If the last operation we added to the transaction was a 3732 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 3733 * 3734 * NOTE: skip LRs with 0 data length. 3735 */ 3736 STATIC int 3737 xlog_recover_process_data( 3738 struct xlog *log, 3739 struct hlist_head rhash[], 3740 struct xlog_rec_header *rhead, 3741 char *dp, 3742 int pass) 3743 { 3744 struct xlog_op_header *ohead; 3745 char *end; 3746 int num_logops; 3747 int error; 3748 3749 end = dp + be32_to_cpu(rhead->h_len); 3750 num_logops = be32_to_cpu(rhead->h_num_logops); 3751 3752 /* check the log format matches our own - else we can't recover */ 3753 if (xlog_header_check_recover(log->l_mp, rhead)) 3754 return -EIO; 3755 3756 while ((dp < end) && num_logops) { 3757 3758 ohead = (struct xlog_op_header *)dp; 3759 dp += sizeof(*ohead); 3760 ASSERT(dp <= end); 3761 3762 /* errors will abort recovery */ 3763 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead, 3764 dp, end, pass); 3765 if (error) 3766 return error; 3767 3768 dp += be32_to_cpu(ohead->oh_len); 3769 num_logops--; 3770 } 3771 return 0; 3772 } 3773 3774 /* 3775 * Process an extent free intent item that was recovered from 3776 * the log. We need to free the extents that it describes. 3777 */ 3778 STATIC int 3779 xlog_recover_process_efi( 3780 xfs_mount_t *mp, 3781 xfs_efi_log_item_t *efip) 3782 { 3783 xfs_efd_log_item_t *efdp; 3784 xfs_trans_t *tp; 3785 int i; 3786 int error = 0; 3787 xfs_extent_t *extp; 3788 xfs_fsblock_t startblock_fsb; 3789 3790 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)); 3791 3792 /* 3793 * First check the validity of the extents described by the 3794 * EFI. If any are bad, then assume that all are bad and 3795 * just toss the EFI. 3796 */ 3797 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3798 extp = &(efip->efi_format.efi_extents[i]); 3799 startblock_fsb = XFS_BB_TO_FSB(mp, 3800 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 3801 if ((startblock_fsb == 0) || 3802 (extp->ext_len == 0) || 3803 (startblock_fsb >= mp->m_sb.sb_dblocks) || 3804 (extp->ext_len >= mp->m_sb.sb_agblocks)) { 3805 /* 3806 * This will pull the EFI from the AIL and 3807 * free the memory associated with it. 3808 */ 3809 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); 3810 xfs_efi_release(efip); 3811 return -EIO; 3812 } 3813 } 3814 3815 tp = xfs_trans_alloc(mp, 0); 3816 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0); 3817 if (error) 3818 goto abort_error; 3819 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 3820 3821 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3822 extp = &(efip->efi_format.efi_extents[i]); 3823 error = xfs_trans_free_extent(tp, efdp, extp->ext_start, 3824 extp->ext_len); 3825 if (error) 3826 goto abort_error; 3827 3828 } 3829 3830 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); 3831 error = xfs_trans_commit(tp); 3832 return error; 3833 3834 abort_error: 3835 xfs_trans_cancel(tp); 3836 return error; 3837 } 3838 3839 /* 3840 * When this is called, all of the EFIs which did not have 3841 * corresponding EFDs should be in the AIL. What we do now 3842 * is free the extents associated with each one. 3843 * 3844 * Since we process the EFIs in normal transactions, they 3845 * will be removed at some point after the commit. This prevents 3846 * us from just walking down the list processing each one. 3847 * We'll use a flag in the EFI to skip those that we've already 3848 * processed and use the AIL iteration mechanism's generation 3849 * count to try to speed this up at least a bit. 3850 * 3851 * When we start, we know that the EFIs are the only things in 3852 * the AIL. As we process them, however, other items are added 3853 * to the AIL. Since everything added to the AIL must come after 3854 * everything already in the AIL, we stop processing as soon as 3855 * we see something other than an EFI in the AIL. 3856 */ 3857 STATIC int 3858 xlog_recover_process_efis( 3859 struct xlog *log) 3860 { 3861 struct xfs_log_item *lip; 3862 struct xfs_efi_log_item *efip; 3863 int error = 0; 3864 struct xfs_ail_cursor cur; 3865 struct xfs_ail *ailp; 3866 3867 ailp = log->l_ailp; 3868 spin_lock(&ailp->xa_lock); 3869 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3870 while (lip != NULL) { 3871 /* 3872 * We're done when we see something other than an EFI. 3873 * There should be no EFIs left in the AIL now. 3874 */ 3875 if (lip->li_type != XFS_LI_EFI) { 3876 #ifdef DEBUG 3877 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 3878 ASSERT(lip->li_type != XFS_LI_EFI); 3879 #endif 3880 break; 3881 } 3882 3883 /* 3884 * Skip EFIs that we've already processed. 3885 */ 3886 efip = container_of(lip, struct xfs_efi_log_item, efi_item); 3887 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) { 3888 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3889 continue; 3890 } 3891 3892 spin_unlock(&ailp->xa_lock); 3893 error = xlog_recover_process_efi(log->l_mp, efip); 3894 spin_lock(&ailp->xa_lock); 3895 if (error) 3896 goto out; 3897 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3898 } 3899 out: 3900 xfs_trans_ail_cursor_done(&cur); 3901 spin_unlock(&ailp->xa_lock); 3902 return error; 3903 } 3904 3905 /* 3906 * A cancel occurs when the mount has failed and we're bailing out. Release all 3907 * pending EFIs so they don't pin the AIL. 3908 */ 3909 STATIC int 3910 xlog_recover_cancel_efis( 3911 struct xlog *log) 3912 { 3913 struct xfs_log_item *lip; 3914 struct xfs_efi_log_item *efip; 3915 int error = 0; 3916 struct xfs_ail_cursor cur; 3917 struct xfs_ail *ailp; 3918 3919 ailp = log->l_ailp; 3920 spin_lock(&ailp->xa_lock); 3921 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3922 while (lip != NULL) { 3923 /* 3924 * We're done when we see something other than an EFI. 3925 * There should be no EFIs left in the AIL now. 3926 */ 3927 if (lip->li_type != XFS_LI_EFI) { 3928 #ifdef DEBUG 3929 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 3930 ASSERT(lip->li_type != XFS_LI_EFI); 3931 #endif 3932 break; 3933 } 3934 3935 efip = container_of(lip, struct xfs_efi_log_item, efi_item); 3936 3937 spin_unlock(&ailp->xa_lock); 3938 xfs_efi_release(efip); 3939 spin_lock(&ailp->xa_lock); 3940 3941 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3942 } 3943 3944 xfs_trans_ail_cursor_done(&cur); 3945 spin_unlock(&ailp->xa_lock); 3946 return error; 3947 } 3948 3949 /* 3950 * This routine performs a transaction to null out a bad inode pointer 3951 * in an agi unlinked inode hash bucket. 3952 */ 3953 STATIC void 3954 xlog_recover_clear_agi_bucket( 3955 xfs_mount_t *mp, 3956 xfs_agnumber_t agno, 3957 int bucket) 3958 { 3959 xfs_trans_t *tp; 3960 xfs_agi_t *agi; 3961 xfs_buf_t *agibp; 3962 int offset; 3963 int error; 3964 3965 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); 3966 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0); 3967 if (error) 3968 goto out_abort; 3969 3970 error = xfs_read_agi(mp, tp, agno, &agibp); 3971 if (error) 3972 goto out_abort; 3973 3974 agi = XFS_BUF_TO_AGI(agibp); 3975 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 3976 offset = offsetof(xfs_agi_t, agi_unlinked) + 3977 (sizeof(xfs_agino_t) * bucket); 3978 xfs_trans_log_buf(tp, agibp, offset, 3979 (offset + sizeof(xfs_agino_t) - 1)); 3980 3981 error = xfs_trans_commit(tp); 3982 if (error) 3983 goto out_error; 3984 return; 3985 3986 out_abort: 3987 xfs_trans_cancel(tp); 3988 out_error: 3989 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); 3990 return; 3991 } 3992 3993 STATIC xfs_agino_t 3994 xlog_recover_process_one_iunlink( 3995 struct xfs_mount *mp, 3996 xfs_agnumber_t agno, 3997 xfs_agino_t agino, 3998 int bucket) 3999 { 4000 struct xfs_buf *ibp; 4001 struct xfs_dinode *dip; 4002 struct xfs_inode *ip; 4003 xfs_ino_t ino; 4004 int error; 4005 4006 ino = XFS_AGINO_TO_INO(mp, agno, agino); 4007 error = xfs_iget(mp, NULL, ino, 0, 0, &ip); 4008 if (error) 4009 goto fail; 4010 4011 /* 4012 * Get the on disk inode to find the next inode in the bucket. 4013 */ 4014 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0); 4015 if (error) 4016 goto fail_iput; 4017 4018 ASSERT(ip->i_d.di_nlink == 0); 4019 ASSERT(ip->i_d.di_mode != 0); 4020 4021 /* setup for the next pass */ 4022 agino = be32_to_cpu(dip->di_next_unlinked); 4023 xfs_buf_relse(ibp); 4024 4025 /* 4026 * Prevent any DMAPI event from being sent when the reference on 4027 * the inode is dropped. 4028 */ 4029 ip->i_d.di_dmevmask = 0; 4030 4031 IRELE(ip); 4032 return agino; 4033 4034 fail_iput: 4035 IRELE(ip); 4036 fail: 4037 /* 4038 * We can't read in the inode this bucket points to, or this inode 4039 * is messed up. Just ditch this bucket of inodes. We will lose 4040 * some inodes and space, but at least we won't hang. 4041 * 4042 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 4043 * clear the inode pointer in the bucket. 4044 */ 4045 xlog_recover_clear_agi_bucket(mp, agno, bucket); 4046 return NULLAGINO; 4047 } 4048 4049 /* 4050 * xlog_iunlink_recover 4051 * 4052 * This is called during recovery to process any inodes which 4053 * we unlinked but not freed when the system crashed. These 4054 * inodes will be on the lists in the AGI blocks. What we do 4055 * here is scan all the AGIs and fully truncate and free any 4056 * inodes found on the lists. Each inode is removed from the 4057 * lists when it has been fully truncated and is freed. The 4058 * freeing of the inode and its removal from the list must be 4059 * atomic. 4060 */ 4061 STATIC void 4062 xlog_recover_process_iunlinks( 4063 struct xlog *log) 4064 { 4065 xfs_mount_t *mp; 4066 xfs_agnumber_t agno; 4067 xfs_agi_t *agi; 4068 xfs_buf_t *agibp; 4069 xfs_agino_t agino; 4070 int bucket; 4071 int error; 4072 uint mp_dmevmask; 4073 4074 mp = log->l_mp; 4075 4076 /* 4077 * Prevent any DMAPI event from being sent while in this function. 4078 */ 4079 mp_dmevmask = mp->m_dmevmask; 4080 mp->m_dmevmask = 0; 4081 4082 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 4083 /* 4084 * Find the agi for this ag. 4085 */ 4086 error = xfs_read_agi(mp, NULL, agno, &agibp); 4087 if (error) { 4088 /* 4089 * AGI is b0rked. Don't process it. 4090 * 4091 * We should probably mark the filesystem as corrupt 4092 * after we've recovered all the ag's we can.... 4093 */ 4094 continue; 4095 } 4096 /* 4097 * Unlock the buffer so that it can be acquired in the normal 4098 * course of the transaction to truncate and free each inode. 4099 * Because we are not racing with anyone else here for the AGI 4100 * buffer, we don't even need to hold it locked to read the 4101 * initial unlinked bucket entries out of the buffer. We keep 4102 * buffer reference though, so that it stays pinned in memory 4103 * while we need the buffer. 4104 */ 4105 agi = XFS_BUF_TO_AGI(agibp); 4106 xfs_buf_unlock(agibp); 4107 4108 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 4109 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 4110 while (agino != NULLAGINO) { 4111 agino = xlog_recover_process_one_iunlink(mp, 4112 agno, agino, bucket); 4113 } 4114 } 4115 xfs_buf_rele(agibp); 4116 } 4117 4118 mp->m_dmevmask = mp_dmevmask; 4119 } 4120 4121 /* 4122 * Upack the log buffer data and crc check it. If the check fails, issue a 4123 * warning if and only if the CRC in the header is non-zero. This makes the 4124 * check an advisory warning, and the zero CRC check will prevent failure 4125 * warnings from being emitted when upgrading the kernel from one that does not 4126 * add CRCs by default. 4127 * 4128 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log 4129 * corruption failure 4130 */ 4131 STATIC int 4132 xlog_unpack_data_crc( 4133 struct xlog_rec_header *rhead, 4134 char *dp, 4135 struct xlog *log) 4136 { 4137 __le32 crc; 4138 4139 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); 4140 if (crc != rhead->h_crc) { 4141 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) { 4142 xfs_alert(log->l_mp, 4143 "log record CRC mismatch: found 0x%x, expected 0x%x.", 4144 le32_to_cpu(rhead->h_crc), 4145 le32_to_cpu(crc)); 4146 xfs_hex_dump(dp, 32); 4147 } 4148 4149 /* 4150 * If we've detected a log record corruption, then we can't 4151 * recover past this point. Abort recovery if we are enforcing 4152 * CRC protection by punting an error back up the stack. 4153 */ 4154 if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) 4155 return -EFSCORRUPTED; 4156 } 4157 4158 return 0; 4159 } 4160 4161 STATIC int 4162 xlog_unpack_data( 4163 struct xlog_rec_header *rhead, 4164 char *dp, 4165 struct xlog *log) 4166 { 4167 int i, j, k; 4168 int error; 4169 4170 error = xlog_unpack_data_crc(rhead, dp, log); 4171 if (error) 4172 return error; 4173 4174 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 4175 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 4176 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 4177 dp += BBSIZE; 4178 } 4179 4180 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 4181 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 4182 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 4183 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 4184 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 4185 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 4186 dp += BBSIZE; 4187 } 4188 } 4189 4190 return 0; 4191 } 4192 4193 STATIC int 4194 xlog_valid_rec_header( 4195 struct xlog *log, 4196 struct xlog_rec_header *rhead, 4197 xfs_daddr_t blkno) 4198 { 4199 int hlen; 4200 4201 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) { 4202 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 4203 XFS_ERRLEVEL_LOW, log->l_mp); 4204 return -EFSCORRUPTED; 4205 } 4206 if (unlikely( 4207 (!rhead->h_version || 4208 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { 4209 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", 4210 __func__, be32_to_cpu(rhead->h_version)); 4211 return -EIO; 4212 } 4213 4214 /* LR body must have data or it wouldn't have been written */ 4215 hlen = be32_to_cpu(rhead->h_len); 4216 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 4217 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 4218 XFS_ERRLEVEL_LOW, log->l_mp); 4219 return -EFSCORRUPTED; 4220 } 4221 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 4222 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 4223 XFS_ERRLEVEL_LOW, log->l_mp); 4224 return -EFSCORRUPTED; 4225 } 4226 return 0; 4227 } 4228 4229 /* 4230 * Read the log from tail to head and process the log records found. 4231 * Handle the two cases where the tail and head are in the same cycle 4232 * and where the active portion of the log wraps around the end of 4233 * the physical log separately. The pass parameter is passed through 4234 * to the routines called to process the data and is not looked at 4235 * here. 4236 */ 4237 STATIC int 4238 xlog_do_recovery_pass( 4239 struct xlog *log, 4240 xfs_daddr_t head_blk, 4241 xfs_daddr_t tail_blk, 4242 int pass) 4243 { 4244 xlog_rec_header_t *rhead; 4245 xfs_daddr_t blk_no; 4246 char *offset; 4247 xfs_buf_t *hbp, *dbp; 4248 int error = 0, h_size; 4249 int bblks, split_bblks; 4250 int hblks, split_hblks, wrapped_hblks; 4251 struct hlist_head rhash[XLOG_RHASH_SIZE]; 4252 4253 ASSERT(head_blk != tail_blk); 4254 4255 /* 4256 * Read the header of the tail block and get the iclog buffer size from 4257 * h_size. Use this to tell how many sectors make up the log header. 4258 */ 4259 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 4260 /* 4261 * When using variable length iclogs, read first sector of 4262 * iclog header and extract the header size from it. Get a 4263 * new hbp that is the correct size. 4264 */ 4265 hbp = xlog_get_bp(log, 1); 4266 if (!hbp) 4267 return -ENOMEM; 4268 4269 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 4270 if (error) 4271 goto bread_err1; 4272 4273 rhead = (xlog_rec_header_t *)offset; 4274 error = xlog_valid_rec_header(log, rhead, tail_blk); 4275 if (error) 4276 goto bread_err1; 4277 h_size = be32_to_cpu(rhead->h_size); 4278 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 4279 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 4280 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 4281 if (h_size % XLOG_HEADER_CYCLE_SIZE) 4282 hblks++; 4283 xlog_put_bp(hbp); 4284 hbp = xlog_get_bp(log, hblks); 4285 } else { 4286 hblks = 1; 4287 } 4288 } else { 4289 ASSERT(log->l_sectBBsize == 1); 4290 hblks = 1; 4291 hbp = xlog_get_bp(log, 1); 4292 h_size = XLOG_BIG_RECORD_BSIZE; 4293 } 4294 4295 if (!hbp) 4296 return -ENOMEM; 4297 dbp = xlog_get_bp(log, BTOBB(h_size)); 4298 if (!dbp) { 4299 xlog_put_bp(hbp); 4300 return -ENOMEM; 4301 } 4302 4303 memset(rhash, 0, sizeof(rhash)); 4304 blk_no = tail_blk; 4305 if (tail_blk > head_blk) { 4306 /* 4307 * Perform recovery around the end of the physical log. 4308 * When the head is not on the same cycle number as the tail, 4309 * we can't do a sequential recovery. 4310 */ 4311 while (blk_no < log->l_logBBsize) { 4312 /* 4313 * Check for header wrapping around physical end-of-log 4314 */ 4315 offset = hbp->b_addr; 4316 split_hblks = 0; 4317 wrapped_hblks = 0; 4318 if (blk_no + hblks <= log->l_logBBsize) { 4319 /* Read header in one read */ 4320 error = xlog_bread(log, blk_no, hblks, hbp, 4321 &offset); 4322 if (error) 4323 goto bread_err2; 4324 } else { 4325 /* This LR is split across physical log end */ 4326 if (blk_no != log->l_logBBsize) { 4327 /* some data before physical log end */ 4328 ASSERT(blk_no <= INT_MAX); 4329 split_hblks = log->l_logBBsize - (int)blk_no; 4330 ASSERT(split_hblks > 0); 4331 error = xlog_bread(log, blk_no, 4332 split_hblks, hbp, 4333 &offset); 4334 if (error) 4335 goto bread_err2; 4336 } 4337 4338 /* 4339 * Note: this black magic still works with 4340 * large sector sizes (non-512) only because: 4341 * - we increased the buffer size originally 4342 * by 1 sector giving us enough extra space 4343 * for the second read; 4344 * - the log start is guaranteed to be sector 4345 * aligned; 4346 * - we read the log end (LR header start) 4347 * _first_, then the log start (LR header end) 4348 * - order is important. 4349 */ 4350 wrapped_hblks = hblks - split_hblks; 4351 error = xlog_bread_offset(log, 0, 4352 wrapped_hblks, hbp, 4353 offset + BBTOB(split_hblks)); 4354 if (error) 4355 goto bread_err2; 4356 } 4357 rhead = (xlog_rec_header_t *)offset; 4358 error = xlog_valid_rec_header(log, rhead, 4359 split_hblks ? blk_no : 0); 4360 if (error) 4361 goto bread_err2; 4362 4363 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 4364 blk_no += hblks; 4365 4366 /* Read in data for log record */ 4367 if (blk_no + bblks <= log->l_logBBsize) { 4368 error = xlog_bread(log, blk_no, bblks, dbp, 4369 &offset); 4370 if (error) 4371 goto bread_err2; 4372 } else { 4373 /* This log record is split across the 4374 * physical end of log */ 4375 offset = dbp->b_addr; 4376 split_bblks = 0; 4377 if (blk_no != log->l_logBBsize) { 4378 /* some data is before the physical 4379 * end of log */ 4380 ASSERT(!wrapped_hblks); 4381 ASSERT(blk_no <= INT_MAX); 4382 split_bblks = 4383 log->l_logBBsize - (int)blk_no; 4384 ASSERT(split_bblks > 0); 4385 error = xlog_bread(log, blk_no, 4386 split_bblks, dbp, 4387 &offset); 4388 if (error) 4389 goto bread_err2; 4390 } 4391 4392 /* 4393 * Note: this black magic still works with 4394 * large sector sizes (non-512) only because: 4395 * - we increased the buffer size originally 4396 * by 1 sector giving us enough extra space 4397 * for the second read; 4398 * - the log start is guaranteed to be sector 4399 * aligned; 4400 * - we read the log end (LR header start) 4401 * _first_, then the log start (LR header end) 4402 * - order is important. 4403 */ 4404 error = xlog_bread_offset(log, 0, 4405 bblks - split_bblks, dbp, 4406 offset + BBTOB(split_bblks)); 4407 if (error) 4408 goto bread_err2; 4409 } 4410 4411 error = xlog_unpack_data(rhead, offset, log); 4412 if (error) 4413 goto bread_err2; 4414 4415 error = xlog_recover_process_data(log, rhash, 4416 rhead, offset, pass); 4417 if (error) 4418 goto bread_err2; 4419 blk_no += bblks; 4420 } 4421 4422 ASSERT(blk_no >= log->l_logBBsize); 4423 blk_no -= log->l_logBBsize; 4424 } 4425 4426 /* read first part of physical log */ 4427 while (blk_no < head_blk) { 4428 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 4429 if (error) 4430 goto bread_err2; 4431 4432 rhead = (xlog_rec_header_t *)offset; 4433 error = xlog_valid_rec_header(log, rhead, blk_no); 4434 if (error) 4435 goto bread_err2; 4436 4437 /* blocks in data section */ 4438 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 4439 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 4440 &offset); 4441 if (error) 4442 goto bread_err2; 4443 4444 error = xlog_unpack_data(rhead, offset, log); 4445 if (error) 4446 goto bread_err2; 4447 4448 error = xlog_recover_process_data(log, rhash, 4449 rhead, offset, pass); 4450 if (error) 4451 goto bread_err2; 4452 blk_no += bblks + hblks; 4453 } 4454 4455 bread_err2: 4456 xlog_put_bp(dbp); 4457 bread_err1: 4458 xlog_put_bp(hbp); 4459 return error; 4460 } 4461 4462 /* 4463 * Do the recovery of the log. We actually do this in two phases. 4464 * The two passes are necessary in order to implement the function 4465 * of cancelling a record written into the log. The first pass 4466 * determines those things which have been cancelled, and the 4467 * second pass replays log items normally except for those which 4468 * have been cancelled. The handling of the replay and cancellations 4469 * takes place in the log item type specific routines. 4470 * 4471 * The table of items which have cancel records in the log is allocated 4472 * and freed at this level, since only here do we know when all of 4473 * the log recovery has been completed. 4474 */ 4475 STATIC int 4476 xlog_do_log_recovery( 4477 struct xlog *log, 4478 xfs_daddr_t head_blk, 4479 xfs_daddr_t tail_blk) 4480 { 4481 int error, i; 4482 4483 ASSERT(head_blk != tail_blk); 4484 4485 /* 4486 * First do a pass to find all of the cancelled buf log items. 4487 * Store them in the buf_cancel_table for use in the second pass. 4488 */ 4489 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * 4490 sizeof(struct list_head), 4491 KM_SLEEP); 4492 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 4493 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); 4494 4495 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 4496 XLOG_RECOVER_PASS1); 4497 if (error != 0) { 4498 kmem_free(log->l_buf_cancel_table); 4499 log->l_buf_cancel_table = NULL; 4500 return error; 4501 } 4502 /* 4503 * Then do a second pass to actually recover the items in the log. 4504 * When it is complete free the table of buf cancel items. 4505 */ 4506 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 4507 XLOG_RECOVER_PASS2); 4508 #ifdef DEBUG 4509 if (!error) { 4510 int i; 4511 4512 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 4513 ASSERT(list_empty(&log->l_buf_cancel_table[i])); 4514 } 4515 #endif /* DEBUG */ 4516 4517 kmem_free(log->l_buf_cancel_table); 4518 log->l_buf_cancel_table = NULL; 4519 4520 return error; 4521 } 4522 4523 /* 4524 * Do the actual recovery 4525 */ 4526 STATIC int 4527 xlog_do_recover( 4528 struct xlog *log, 4529 xfs_daddr_t head_blk, 4530 xfs_daddr_t tail_blk) 4531 { 4532 int error; 4533 xfs_buf_t *bp; 4534 xfs_sb_t *sbp; 4535 4536 /* 4537 * First replay the images in the log. 4538 */ 4539 error = xlog_do_log_recovery(log, head_blk, tail_blk); 4540 if (error) 4541 return error; 4542 4543 /* 4544 * If IO errors happened during recovery, bail out. 4545 */ 4546 if (XFS_FORCED_SHUTDOWN(log->l_mp)) { 4547 return -EIO; 4548 } 4549 4550 /* 4551 * We now update the tail_lsn since much of the recovery has completed 4552 * and there may be space available to use. If there were no extent 4553 * or iunlinks, we can free up the entire log and set the tail_lsn to 4554 * be the last_sync_lsn. This was set in xlog_find_tail to be the 4555 * lsn of the last known good LR on disk. If there are extent frees 4556 * or iunlinks they will have some entries in the AIL; so we look at 4557 * the AIL to determine how to set the tail_lsn. 4558 */ 4559 xlog_assign_tail_lsn(log->l_mp); 4560 4561 /* 4562 * Now that we've finished replaying all buffer and inode 4563 * updates, re-read in the superblock and reverify it. 4564 */ 4565 bp = xfs_getsb(log->l_mp, 0); 4566 XFS_BUF_UNDONE(bp); 4567 ASSERT(!(XFS_BUF_ISWRITE(bp))); 4568 XFS_BUF_READ(bp); 4569 XFS_BUF_UNASYNC(bp); 4570 bp->b_ops = &xfs_sb_buf_ops; 4571 4572 error = xfs_buf_submit_wait(bp); 4573 if (error) { 4574 if (!XFS_FORCED_SHUTDOWN(log->l_mp)) { 4575 xfs_buf_ioerror_alert(bp, __func__); 4576 ASSERT(0); 4577 } 4578 xfs_buf_relse(bp); 4579 return error; 4580 } 4581 4582 /* Convert superblock from on-disk format */ 4583 sbp = &log->l_mp->m_sb; 4584 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 4585 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); 4586 ASSERT(xfs_sb_good_version(sbp)); 4587 xfs_reinit_percpu_counters(log->l_mp); 4588 4589 xfs_buf_relse(bp); 4590 4591 4592 xlog_recover_check_summary(log); 4593 4594 /* Normal transactions can now occur */ 4595 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 4596 return 0; 4597 } 4598 4599 /* 4600 * Perform recovery and re-initialize some log variables in xlog_find_tail. 4601 * 4602 * Return error or zero. 4603 */ 4604 int 4605 xlog_recover( 4606 struct xlog *log) 4607 { 4608 xfs_daddr_t head_blk, tail_blk; 4609 int error; 4610 4611 /* find the tail of the log */ 4612 if ((error = xlog_find_tail(log, &head_blk, &tail_blk))) 4613 return error; 4614 4615 if (tail_blk != head_blk) { 4616 /* There used to be a comment here: 4617 * 4618 * disallow recovery on read-only mounts. note -- mount 4619 * checks for ENOSPC and turns it into an intelligent 4620 * error message. 4621 * ...but this is no longer true. Now, unless you specify 4622 * NORECOVERY (in which case this function would never be 4623 * called), we just go ahead and recover. We do this all 4624 * under the vfs layer, so we can get away with it unless 4625 * the device itself is read-only, in which case we fail. 4626 */ 4627 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 4628 return error; 4629 } 4630 4631 /* 4632 * Version 5 superblock log feature mask validation. We know the 4633 * log is dirty so check if there are any unknown log features 4634 * in what we need to recover. If there are unknown features 4635 * (e.g. unsupported transactions, then simply reject the 4636 * attempt at recovery before touching anything. 4637 */ 4638 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 && 4639 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, 4640 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { 4641 xfs_warn(log->l_mp, 4642 "Superblock has unknown incompatible log features (0x%x) enabled.", 4643 (log->l_mp->m_sb.sb_features_log_incompat & 4644 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 4645 xfs_warn(log->l_mp, 4646 "The log can not be fully and/or safely recovered by this kernel."); 4647 xfs_warn(log->l_mp, 4648 "Please recover the log on a kernel that supports the unknown features."); 4649 return -EINVAL; 4650 } 4651 4652 /* 4653 * Delay log recovery if the debug hook is set. This is debug 4654 * instrumention to coordinate simulation of I/O failures with 4655 * log recovery. 4656 */ 4657 if (xfs_globals.log_recovery_delay) { 4658 xfs_notice(log->l_mp, 4659 "Delaying log recovery for %d seconds.", 4660 xfs_globals.log_recovery_delay); 4661 msleep(xfs_globals.log_recovery_delay * 1000); 4662 } 4663 4664 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", 4665 log->l_mp->m_logname ? log->l_mp->m_logname 4666 : "internal"); 4667 4668 error = xlog_do_recover(log, head_blk, tail_blk); 4669 log->l_flags |= XLOG_RECOVERY_NEEDED; 4670 } 4671 return error; 4672 } 4673 4674 /* 4675 * In the first part of recovery we replay inodes and buffers and build 4676 * up the list of extent free items which need to be processed. Here 4677 * we process the extent free items and clean up the on disk unlinked 4678 * inode lists. This is separated from the first part of recovery so 4679 * that the root and real-time bitmap inodes can be read in from disk in 4680 * between the two stages. This is necessary so that we can free space 4681 * in the real-time portion of the file system. 4682 */ 4683 int 4684 xlog_recover_finish( 4685 struct xlog *log) 4686 { 4687 /* 4688 * Now we're ready to do the transactions needed for the 4689 * rest of recovery. Start with completing all the extent 4690 * free intent records and then process the unlinked inode 4691 * lists. At this point, we essentially run in normal mode 4692 * except that we're still performing recovery actions 4693 * rather than accepting new requests. 4694 */ 4695 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 4696 int error; 4697 error = xlog_recover_process_efis(log); 4698 if (error) { 4699 xfs_alert(log->l_mp, "Failed to recover EFIs"); 4700 return error; 4701 } 4702 /* 4703 * Sync the log to get all the EFIs out of the AIL. 4704 * This isn't absolutely necessary, but it helps in 4705 * case the unlink transactions would have problems 4706 * pushing the EFIs out of the way. 4707 */ 4708 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 4709 4710 xlog_recover_process_iunlinks(log); 4711 4712 xlog_recover_check_summary(log); 4713 4714 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", 4715 log->l_mp->m_logname ? log->l_mp->m_logname 4716 : "internal"); 4717 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 4718 } else { 4719 xfs_info(log->l_mp, "Ending clean mount"); 4720 } 4721 return 0; 4722 } 4723 4724 int 4725 xlog_recover_cancel( 4726 struct xlog *log) 4727 { 4728 int error = 0; 4729 4730 if (log->l_flags & XLOG_RECOVERY_NEEDED) 4731 error = xlog_recover_cancel_efis(log); 4732 4733 return error; 4734 } 4735 4736 #if defined(DEBUG) 4737 /* 4738 * Read all of the agf and agi counters and check that they 4739 * are consistent with the superblock counters. 4740 */ 4741 void 4742 xlog_recover_check_summary( 4743 struct xlog *log) 4744 { 4745 xfs_mount_t *mp; 4746 xfs_agf_t *agfp; 4747 xfs_buf_t *agfbp; 4748 xfs_buf_t *agibp; 4749 xfs_agnumber_t agno; 4750 __uint64_t freeblks; 4751 __uint64_t itotal; 4752 __uint64_t ifree; 4753 int error; 4754 4755 mp = log->l_mp; 4756 4757 freeblks = 0LL; 4758 itotal = 0LL; 4759 ifree = 0LL; 4760 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 4761 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 4762 if (error) { 4763 xfs_alert(mp, "%s agf read failed agno %d error %d", 4764 __func__, agno, error); 4765 } else { 4766 agfp = XFS_BUF_TO_AGF(agfbp); 4767 freeblks += be32_to_cpu(agfp->agf_freeblks) + 4768 be32_to_cpu(agfp->agf_flcount); 4769 xfs_buf_relse(agfbp); 4770 } 4771 4772 error = xfs_read_agi(mp, NULL, agno, &agibp); 4773 if (error) { 4774 xfs_alert(mp, "%s agi read failed agno %d error %d", 4775 __func__, agno, error); 4776 } else { 4777 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 4778 4779 itotal += be32_to_cpu(agi->agi_count); 4780 ifree += be32_to_cpu(agi->agi_freecount); 4781 xfs_buf_relse(agibp); 4782 } 4783 } 4784 } 4785 #endif /* DEBUG */ 4786