xref: /openbmc/linux/fs/xfs/xfs_log_recover.c (revision c819e2cf)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_trans.h"
31 #include "xfs_log.h"
32 #include "xfs_log_priv.h"
33 #include "xfs_log_recover.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_extfree_item.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_alloc.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_quota.h"
40 #include "xfs_cksum.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_bmap_btree.h"
44 #include "xfs_error.h"
45 #include "xfs_dir2.h"
46 
47 #define BLK_AVG(blk1, blk2)	((blk1+blk2) >> 1)
48 
49 STATIC int
50 xlog_find_zeroed(
51 	struct xlog	*,
52 	xfs_daddr_t	*);
53 STATIC int
54 xlog_clear_stale_blocks(
55 	struct xlog	*,
56 	xfs_lsn_t);
57 #if defined(DEBUG)
58 STATIC void
59 xlog_recover_check_summary(
60 	struct xlog *);
61 #else
62 #define	xlog_recover_check_summary(log)
63 #endif
64 
65 /*
66  * This structure is used during recovery to record the buf log items which
67  * have been canceled and should not be replayed.
68  */
69 struct xfs_buf_cancel {
70 	xfs_daddr_t		bc_blkno;
71 	uint			bc_len;
72 	int			bc_refcount;
73 	struct list_head	bc_list;
74 };
75 
76 /*
77  * Sector aligned buffer routines for buffer create/read/write/access
78  */
79 
80 /*
81  * Verify the given count of basic blocks is valid number of blocks
82  * to specify for an operation involving the given XFS log buffer.
83  * Returns nonzero if the count is valid, 0 otherwise.
84  */
85 
86 static inline int
87 xlog_buf_bbcount_valid(
88 	struct xlog	*log,
89 	int		bbcount)
90 {
91 	return bbcount > 0 && bbcount <= log->l_logBBsize;
92 }
93 
94 /*
95  * Allocate a buffer to hold log data.  The buffer needs to be able
96  * to map to a range of nbblks basic blocks at any valid (basic
97  * block) offset within the log.
98  */
99 STATIC xfs_buf_t *
100 xlog_get_bp(
101 	struct xlog	*log,
102 	int		nbblks)
103 {
104 	struct xfs_buf	*bp;
105 
106 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
107 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
108 			nbblks);
109 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
110 		return NULL;
111 	}
112 
113 	/*
114 	 * We do log I/O in units of log sectors (a power-of-2
115 	 * multiple of the basic block size), so we round up the
116 	 * requested size to accommodate the basic blocks required
117 	 * for complete log sectors.
118 	 *
119 	 * In addition, the buffer may be used for a non-sector-
120 	 * aligned block offset, in which case an I/O of the
121 	 * requested size could extend beyond the end of the
122 	 * buffer.  If the requested size is only 1 basic block it
123 	 * will never straddle a sector boundary, so this won't be
124 	 * an issue.  Nor will this be a problem if the log I/O is
125 	 * done in basic blocks (sector size 1).  But otherwise we
126 	 * extend the buffer by one extra log sector to ensure
127 	 * there's space to accommodate this possibility.
128 	 */
129 	if (nbblks > 1 && log->l_sectBBsize > 1)
130 		nbblks += log->l_sectBBsize;
131 	nbblks = round_up(nbblks, log->l_sectBBsize);
132 
133 	bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
134 	if (bp)
135 		xfs_buf_unlock(bp);
136 	return bp;
137 }
138 
139 STATIC void
140 xlog_put_bp(
141 	xfs_buf_t	*bp)
142 {
143 	xfs_buf_free(bp);
144 }
145 
146 /*
147  * Return the address of the start of the given block number's data
148  * in a log buffer.  The buffer covers a log sector-aligned region.
149  */
150 STATIC xfs_caddr_t
151 xlog_align(
152 	struct xlog	*log,
153 	xfs_daddr_t	blk_no,
154 	int		nbblks,
155 	struct xfs_buf	*bp)
156 {
157 	xfs_daddr_t	offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
158 
159 	ASSERT(offset + nbblks <= bp->b_length);
160 	return bp->b_addr + BBTOB(offset);
161 }
162 
163 
164 /*
165  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
166  */
167 STATIC int
168 xlog_bread_noalign(
169 	struct xlog	*log,
170 	xfs_daddr_t	blk_no,
171 	int		nbblks,
172 	struct xfs_buf	*bp)
173 {
174 	int		error;
175 
176 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
177 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
178 			nbblks);
179 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
180 		return -EFSCORRUPTED;
181 	}
182 
183 	blk_no = round_down(blk_no, log->l_sectBBsize);
184 	nbblks = round_up(nbblks, log->l_sectBBsize);
185 
186 	ASSERT(nbblks > 0);
187 	ASSERT(nbblks <= bp->b_length);
188 
189 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
190 	XFS_BUF_READ(bp);
191 	bp->b_io_length = nbblks;
192 	bp->b_error = 0;
193 
194 	error = xfs_buf_submit_wait(bp);
195 	if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
196 		xfs_buf_ioerror_alert(bp, __func__);
197 	return error;
198 }
199 
200 STATIC int
201 xlog_bread(
202 	struct xlog	*log,
203 	xfs_daddr_t	blk_no,
204 	int		nbblks,
205 	struct xfs_buf	*bp,
206 	xfs_caddr_t	*offset)
207 {
208 	int		error;
209 
210 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
211 	if (error)
212 		return error;
213 
214 	*offset = xlog_align(log, blk_no, nbblks, bp);
215 	return 0;
216 }
217 
218 /*
219  * Read at an offset into the buffer. Returns with the buffer in it's original
220  * state regardless of the result of the read.
221  */
222 STATIC int
223 xlog_bread_offset(
224 	struct xlog	*log,
225 	xfs_daddr_t	blk_no,		/* block to read from */
226 	int		nbblks,		/* blocks to read */
227 	struct xfs_buf	*bp,
228 	xfs_caddr_t	offset)
229 {
230 	xfs_caddr_t	orig_offset = bp->b_addr;
231 	int		orig_len = BBTOB(bp->b_length);
232 	int		error, error2;
233 
234 	error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
235 	if (error)
236 		return error;
237 
238 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
239 
240 	/* must reset buffer pointer even on error */
241 	error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
242 	if (error)
243 		return error;
244 	return error2;
245 }
246 
247 /*
248  * Write out the buffer at the given block for the given number of blocks.
249  * The buffer is kept locked across the write and is returned locked.
250  * This can only be used for synchronous log writes.
251  */
252 STATIC int
253 xlog_bwrite(
254 	struct xlog	*log,
255 	xfs_daddr_t	blk_no,
256 	int		nbblks,
257 	struct xfs_buf	*bp)
258 {
259 	int		error;
260 
261 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
262 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
263 			nbblks);
264 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
265 		return -EFSCORRUPTED;
266 	}
267 
268 	blk_no = round_down(blk_no, log->l_sectBBsize);
269 	nbblks = round_up(nbblks, log->l_sectBBsize);
270 
271 	ASSERT(nbblks > 0);
272 	ASSERT(nbblks <= bp->b_length);
273 
274 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
275 	XFS_BUF_ZEROFLAGS(bp);
276 	xfs_buf_hold(bp);
277 	xfs_buf_lock(bp);
278 	bp->b_io_length = nbblks;
279 	bp->b_error = 0;
280 
281 	error = xfs_bwrite(bp);
282 	if (error)
283 		xfs_buf_ioerror_alert(bp, __func__);
284 	xfs_buf_relse(bp);
285 	return error;
286 }
287 
288 #ifdef DEBUG
289 /*
290  * dump debug superblock and log record information
291  */
292 STATIC void
293 xlog_header_check_dump(
294 	xfs_mount_t		*mp,
295 	xlog_rec_header_t	*head)
296 {
297 	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
298 		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
299 	xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
300 		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
301 }
302 #else
303 #define xlog_header_check_dump(mp, head)
304 #endif
305 
306 /*
307  * check log record header for recovery
308  */
309 STATIC int
310 xlog_header_check_recover(
311 	xfs_mount_t		*mp,
312 	xlog_rec_header_t	*head)
313 {
314 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
315 
316 	/*
317 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
318 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
319 	 * a dirty log created in IRIX.
320 	 */
321 	if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
322 		xfs_warn(mp,
323 	"dirty log written in incompatible format - can't recover");
324 		xlog_header_check_dump(mp, head);
325 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
326 				 XFS_ERRLEVEL_HIGH, mp);
327 		return -EFSCORRUPTED;
328 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
329 		xfs_warn(mp,
330 	"dirty log entry has mismatched uuid - can't recover");
331 		xlog_header_check_dump(mp, head);
332 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
333 				 XFS_ERRLEVEL_HIGH, mp);
334 		return -EFSCORRUPTED;
335 	}
336 	return 0;
337 }
338 
339 /*
340  * read the head block of the log and check the header
341  */
342 STATIC int
343 xlog_header_check_mount(
344 	xfs_mount_t		*mp,
345 	xlog_rec_header_t	*head)
346 {
347 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
348 
349 	if (uuid_is_nil(&head->h_fs_uuid)) {
350 		/*
351 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
352 		 * h_fs_uuid is nil, we assume this log was last mounted
353 		 * by IRIX and continue.
354 		 */
355 		xfs_warn(mp, "nil uuid in log - IRIX style log");
356 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
357 		xfs_warn(mp, "log has mismatched uuid - can't recover");
358 		xlog_header_check_dump(mp, head);
359 		XFS_ERROR_REPORT("xlog_header_check_mount",
360 				 XFS_ERRLEVEL_HIGH, mp);
361 		return -EFSCORRUPTED;
362 	}
363 	return 0;
364 }
365 
366 STATIC void
367 xlog_recover_iodone(
368 	struct xfs_buf	*bp)
369 {
370 	if (bp->b_error) {
371 		/*
372 		 * We're not going to bother about retrying
373 		 * this during recovery. One strike!
374 		 */
375 		if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
376 			xfs_buf_ioerror_alert(bp, __func__);
377 			xfs_force_shutdown(bp->b_target->bt_mount,
378 						SHUTDOWN_META_IO_ERROR);
379 		}
380 	}
381 	bp->b_iodone = NULL;
382 	xfs_buf_ioend(bp);
383 }
384 
385 /*
386  * This routine finds (to an approximation) the first block in the physical
387  * log which contains the given cycle.  It uses a binary search algorithm.
388  * Note that the algorithm can not be perfect because the disk will not
389  * necessarily be perfect.
390  */
391 STATIC int
392 xlog_find_cycle_start(
393 	struct xlog	*log,
394 	struct xfs_buf	*bp,
395 	xfs_daddr_t	first_blk,
396 	xfs_daddr_t	*last_blk,
397 	uint		cycle)
398 {
399 	xfs_caddr_t	offset;
400 	xfs_daddr_t	mid_blk;
401 	xfs_daddr_t	end_blk;
402 	uint		mid_cycle;
403 	int		error;
404 
405 	end_blk = *last_blk;
406 	mid_blk = BLK_AVG(first_blk, end_blk);
407 	while (mid_blk != first_blk && mid_blk != end_blk) {
408 		error = xlog_bread(log, mid_blk, 1, bp, &offset);
409 		if (error)
410 			return error;
411 		mid_cycle = xlog_get_cycle(offset);
412 		if (mid_cycle == cycle)
413 			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
414 		else
415 			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
416 		mid_blk = BLK_AVG(first_blk, end_blk);
417 	}
418 	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
419 	       (mid_blk == end_blk && mid_blk-1 == first_blk));
420 
421 	*last_blk = end_blk;
422 
423 	return 0;
424 }
425 
426 /*
427  * Check that a range of blocks does not contain stop_on_cycle_no.
428  * Fill in *new_blk with the block offset where such a block is
429  * found, or with -1 (an invalid block number) if there is no such
430  * block in the range.  The scan needs to occur from front to back
431  * and the pointer into the region must be updated since a later
432  * routine will need to perform another test.
433  */
434 STATIC int
435 xlog_find_verify_cycle(
436 	struct xlog	*log,
437 	xfs_daddr_t	start_blk,
438 	int		nbblks,
439 	uint		stop_on_cycle_no,
440 	xfs_daddr_t	*new_blk)
441 {
442 	xfs_daddr_t	i, j;
443 	uint		cycle;
444 	xfs_buf_t	*bp;
445 	xfs_daddr_t	bufblks;
446 	xfs_caddr_t	buf = NULL;
447 	int		error = 0;
448 
449 	/*
450 	 * Greedily allocate a buffer big enough to handle the full
451 	 * range of basic blocks we'll be examining.  If that fails,
452 	 * try a smaller size.  We need to be able to read at least
453 	 * a log sector, or we're out of luck.
454 	 */
455 	bufblks = 1 << ffs(nbblks);
456 	while (bufblks > log->l_logBBsize)
457 		bufblks >>= 1;
458 	while (!(bp = xlog_get_bp(log, bufblks))) {
459 		bufblks >>= 1;
460 		if (bufblks < log->l_sectBBsize)
461 			return -ENOMEM;
462 	}
463 
464 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
465 		int	bcount;
466 
467 		bcount = min(bufblks, (start_blk + nbblks - i));
468 
469 		error = xlog_bread(log, i, bcount, bp, &buf);
470 		if (error)
471 			goto out;
472 
473 		for (j = 0; j < bcount; j++) {
474 			cycle = xlog_get_cycle(buf);
475 			if (cycle == stop_on_cycle_no) {
476 				*new_blk = i+j;
477 				goto out;
478 			}
479 
480 			buf += BBSIZE;
481 		}
482 	}
483 
484 	*new_blk = -1;
485 
486 out:
487 	xlog_put_bp(bp);
488 	return error;
489 }
490 
491 /*
492  * Potentially backup over partial log record write.
493  *
494  * In the typical case, last_blk is the number of the block directly after
495  * a good log record.  Therefore, we subtract one to get the block number
496  * of the last block in the given buffer.  extra_bblks contains the number
497  * of blocks we would have read on a previous read.  This happens when the
498  * last log record is split over the end of the physical log.
499  *
500  * extra_bblks is the number of blocks potentially verified on a previous
501  * call to this routine.
502  */
503 STATIC int
504 xlog_find_verify_log_record(
505 	struct xlog		*log,
506 	xfs_daddr_t		start_blk,
507 	xfs_daddr_t		*last_blk,
508 	int			extra_bblks)
509 {
510 	xfs_daddr_t		i;
511 	xfs_buf_t		*bp;
512 	xfs_caddr_t		offset = NULL;
513 	xlog_rec_header_t	*head = NULL;
514 	int			error = 0;
515 	int			smallmem = 0;
516 	int			num_blks = *last_blk - start_blk;
517 	int			xhdrs;
518 
519 	ASSERT(start_blk != 0 || *last_blk != start_blk);
520 
521 	if (!(bp = xlog_get_bp(log, num_blks))) {
522 		if (!(bp = xlog_get_bp(log, 1)))
523 			return -ENOMEM;
524 		smallmem = 1;
525 	} else {
526 		error = xlog_bread(log, start_blk, num_blks, bp, &offset);
527 		if (error)
528 			goto out;
529 		offset += ((num_blks - 1) << BBSHIFT);
530 	}
531 
532 	for (i = (*last_blk) - 1; i >= 0; i--) {
533 		if (i < start_blk) {
534 			/* valid log record not found */
535 			xfs_warn(log->l_mp,
536 		"Log inconsistent (didn't find previous header)");
537 			ASSERT(0);
538 			error = -EIO;
539 			goto out;
540 		}
541 
542 		if (smallmem) {
543 			error = xlog_bread(log, i, 1, bp, &offset);
544 			if (error)
545 				goto out;
546 		}
547 
548 		head = (xlog_rec_header_t *)offset;
549 
550 		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
551 			break;
552 
553 		if (!smallmem)
554 			offset -= BBSIZE;
555 	}
556 
557 	/*
558 	 * We hit the beginning of the physical log & still no header.  Return
559 	 * to caller.  If caller can handle a return of -1, then this routine
560 	 * will be called again for the end of the physical log.
561 	 */
562 	if (i == -1) {
563 		error = 1;
564 		goto out;
565 	}
566 
567 	/*
568 	 * We have the final block of the good log (the first block
569 	 * of the log record _before_ the head. So we check the uuid.
570 	 */
571 	if ((error = xlog_header_check_mount(log->l_mp, head)))
572 		goto out;
573 
574 	/*
575 	 * We may have found a log record header before we expected one.
576 	 * last_blk will be the 1st block # with a given cycle #.  We may end
577 	 * up reading an entire log record.  In this case, we don't want to
578 	 * reset last_blk.  Only when last_blk points in the middle of a log
579 	 * record do we update last_blk.
580 	 */
581 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
582 		uint	h_size = be32_to_cpu(head->h_size);
583 
584 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
585 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
586 			xhdrs++;
587 	} else {
588 		xhdrs = 1;
589 	}
590 
591 	if (*last_blk - i + extra_bblks !=
592 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
593 		*last_blk = i;
594 
595 out:
596 	xlog_put_bp(bp);
597 	return error;
598 }
599 
600 /*
601  * Head is defined to be the point of the log where the next log write
602  * could go.  This means that incomplete LR writes at the end are
603  * eliminated when calculating the head.  We aren't guaranteed that previous
604  * LR have complete transactions.  We only know that a cycle number of
605  * current cycle number -1 won't be present in the log if we start writing
606  * from our current block number.
607  *
608  * last_blk contains the block number of the first block with a given
609  * cycle number.
610  *
611  * Return: zero if normal, non-zero if error.
612  */
613 STATIC int
614 xlog_find_head(
615 	struct xlog	*log,
616 	xfs_daddr_t	*return_head_blk)
617 {
618 	xfs_buf_t	*bp;
619 	xfs_caddr_t	offset;
620 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
621 	int		num_scan_bblks;
622 	uint		first_half_cycle, last_half_cycle;
623 	uint		stop_on_cycle;
624 	int		error, log_bbnum = log->l_logBBsize;
625 
626 	/* Is the end of the log device zeroed? */
627 	error = xlog_find_zeroed(log, &first_blk);
628 	if (error < 0) {
629 		xfs_warn(log->l_mp, "empty log check failed");
630 		return error;
631 	}
632 	if (error == 1) {
633 		*return_head_blk = first_blk;
634 
635 		/* Is the whole lot zeroed? */
636 		if (!first_blk) {
637 			/* Linux XFS shouldn't generate totally zeroed logs -
638 			 * mkfs etc write a dummy unmount record to a fresh
639 			 * log so we can store the uuid in there
640 			 */
641 			xfs_warn(log->l_mp, "totally zeroed log");
642 		}
643 
644 		return 0;
645 	}
646 
647 	first_blk = 0;			/* get cycle # of 1st block */
648 	bp = xlog_get_bp(log, 1);
649 	if (!bp)
650 		return -ENOMEM;
651 
652 	error = xlog_bread(log, 0, 1, bp, &offset);
653 	if (error)
654 		goto bp_err;
655 
656 	first_half_cycle = xlog_get_cycle(offset);
657 
658 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
659 	error = xlog_bread(log, last_blk, 1, bp, &offset);
660 	if (error)
661 		goto bp_err;
662 
663 	last_half_cycle = xlog_get_cycle(offset);
664 	ASSERT(last_half_cycle != 0);
665 
666 	/*
667 	 * If the 1st half cycle number is equal to the last half cycle number,
668 	 * then the entire log is stamped with the same cycle number.  In this
669 	 * case, head_blk can't be set to zero (which makes sense).  The below
670 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
671 	 * we set it to log_bbnum which is an invalid block number, but this
672 	 * value makes the math correct.  If head_blk doesn't changed through
673 	 * all the tests below, *head_blk is set to zero at the very end rather
674 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
675 	 * in a circular file.
676 	 */
677 	if (first_half_cycle == last_half_cycle) {
678 		/*
679 		 * In this case we believe that the entire log should have
680 		 * cycle number last_half_cycle.  We need to scan backwards
681 		 * from the end verifying that there are no holes still
682 		 * containing last_half_cycle - 1.  If we find such a hole,
683 		 * then the start of that hole will be the new head.  The
684 		 * simple case looks like
685 		 *        x | x ... | x - 1 | x
686 		 * Another case that fits this picture would be
687 		 *        x | x + 1 | x ... | x
688 		 * In this case the head really is somewhere at the end of the
689 		 * log, as one of the latest writes at the beginning was
690 		 * incomplete.
691 		 * One more case is
692 		 *        x | x + 1 | x ... | x - 1 | x
693 		 * This is really the combination of the above two cases, and
694 		 * the head has to end up at the start of the x-1 hole at the
695 		 * end of the log.
696 		 *
697 		 * In the 256k log case, we will read from the beginning to the
698 		 * end of the log and search for cycle numbers equal to x-1.
699 		 * We don't worry about the x+1 blocks that we encounter,
700 		 * because we know that they cannot be the head since the log
701 		 * started with x.
702 		 */
703 		head_blk = log_bbnum;
704 		stop_on_cycle = last_half_cycle - 1;
705 	} else {
706 		/*
707 		 * In this case we want to find the first block with cycle
708 		 * number matching last_half_cycle.  We expect the log to be
709 		 * some variation on
710 		 *        x + 1 ... | x ... | x
711 		 * The first block with cycle number x (last_half_cycle) will
712 		 * be where the new head belongs.  First we do a binary search
713 		 * for the first occurrence of last_half_cycle.  The binary
714 		 * search may not be totally accurate, so then we scan back
715 		 * from there looking for occurrences of last_half_cycle before
716 		 * us.  If that backwards scan wraps around the beginning of
717 		 * the log, then we look for occurrences of last_half_cycle - 1
718 		 * at the end of the log.  The cases we're looking for look
719 		 * like
720 		 *                               v binary search stopped here
721 		 *        x + 1 ... | x | x + 1 | x ... | x
722 		 *                   ^ but we want to locate this spot
723 		 * or
724 		 *        <---------> less than scan distance
725 		 *        x + 1 ... | x ... | x - 1 | x
726 		 *                           ^ we want to locate this spot
727 		 */
728 		stop_on_cycle = last_half_cycle;
729 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
730 						&head_blk, last_half_cycle)))
731 			goto bp_err;
732 	}
733 
734 	/*
735 	 * Now validate the answer.  Scan back some number of maximum possible
736 	 * blocks and make sure each one has the expected cycle number.  The
737 	 * maximum is determined by the total possible amount of buffering
738 	 * in the in-core log.  The following number can be made tighter if
739 	 * we actually look at the block size of the filesystem.
740 	 */
741 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
742 	if (head_blk >= num_scan_bblks) {
743 		/*
744 		 * We are guaranteed that the entire check can be performed
745 		 * in one buffer.
746 		 */
747 		start_blk = head_blk - num_scan_bblks;
748 		if ((error = xlog_find_verify_cycle(log,
749 						start_blk, num_scan_bblks,
750 						stop_on_cycle, &new_blk)))
751 			goto bp_err;
752 		if (new_blk != -1)
753 			head_blk = new_blk;
754 	} else {		/* need to read 2 parts of log */
755 		/*
756 		 * We are going to scan backwards in the log in two parts.
757 		 * First we scan the physical end of the log.  In this part
758 		 * of the log, we are looking for blocks with cycle number
759 		 * last_half_cycle - 1.
760 		 * If we find one, then we know that the log starts there, as
761 		 * we've found a hole that didn't get written in going around
762 		 * the end of the physical log.  The simple case for this is
763 		 *        x + 1 ... | x ... | x - 1 | x
764 		 *        <---------> less than scan distance
765 		 * If all of the blocks at the end of the log have cycle number
766 		 * last_half_cycle, then we check the blocks at the start of
767 		 * the log looking for occurrences of last_half_cycle.  If we
768 		 * find one, then our current estimate for the location of the
769 		 * first occurrence of last_half_cycle is wrong and we move
770 		 * back to the hole we've found.  This case looks like
771 		 *        x + 1 ... | x | x + 1 | x ...
772 		 *                               ^ binary search stopped here
773 		 * Another case we need to handle that only occurs in 256k
774 		 * logs is
775 		 *        x + 1 ... | x ... | x+1 | x ...
776 		 *                   ^ binary search stops here
777 		 * In a 256k log, the scan at the end of the log will see the
778 		 * x + 1 blocks.  We need to skip past those since that is
779 		 * certainly not the head of the log.  By searching for
780 		 * last_half_cycle-1 we accomplish that.
781 		 */
782 		ASSERT(head_blk <= INT_MAX &&
783 			(xfs_daddr_t) num_scan_bblks >= head_blk);
784 		start_blk = log_bbnum - (num_scan_bblks - head_blk);
785 		if ((error = xlog_find_verify_cycle(log, start_blk,
786 					num_scan_bblks - (int)head_blk,
787 					(stop_on_cycle - 1), &new_blk)))
788 			goto bp_err;
789 		if (new_blk != -1) {
790 			head_blk = new_blk;
791 			goto validate_head;
792 		}
793 
794 		/*
795 		 * Scan beginning of log now.  The last part of the physical
796 		 * log is good.  This scan needs to verify that it doesn't find
797 		 * the last_half_cycle.
798 		 */
799 		start_blk = 0;
800 		ASSERT(head_blk <= INT_MAX);
801 		if ((error = xlog_find_verify_cycle(log,
802 					start_blk, (int)head_blk,
803 					stop_on_cycle, &new_blk)))
804 			goto bp_err;
805 		if (new_blk != -1)
806 			head_blk = new_blk;
807 	}
808 
809 validate_head:
810 	/*
811 	 * Now we need to make sure head_blk is not pointing to a block in
812 	 * the middle of a log record.
813 	 */
814 	num_scan_bblks = XLOG_REC_SHIFT(log);
815 	if (head_blk >= num_scan_bblks) {
816 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
817 
818 		/* start ptr at last block ptr before head_blk */
819 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
820 		if (error == 1)
821 			error = -EIO;
822 		if (error)
823 			goto bp_err;
824 	} else {
825 		start_blk = 0;
826 		ASSERT(head_blk <= INT_MAX);
827 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
828 		if (error < 0)
829 			goto bp_err;
830 		if (error == 1) {
831 			/* We hit the beginning of the log during our search */
832 			start_blk = log_bbnum - (num_scan_bblks - head_blk);
833 			new_blk = log_bbnum;
834 			ASSERT(start_blk <= INT_MAX &&
835 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
836 			ASSERT(head_blk <= INT_MAX);
837 			error = xlog_find_verify_log_record(log, start_blk,
838 							&new_blk, (int)head_blk);
839 			if (error == 1)
840 				error = -EIO;
841 			if (error)
842 				goto bp_err;
843 			if (new_blk != log_bbnum)
844 				head_blk = new_blk;
845 		} else if (error)
846 			goto bp_err;
847 	}
848 
849 	xlog_put_bp(bp);
850 	if (head_blk == log_bbnum)
851 		*return_head_blk = 0;
852 	else
853 		*return_head_blk = head_blk;
854 	/*
855 	 * When returning here, we have a good block number.  Bad block
856 	 * means that during a previous crash, we didn't have a clean break
857 	 * from cycle number N to cycle number N-1.  In this case, we need
858 	 * to find the first block with cycle number N-1.
859 	 */
860 	return 0;
861 
862  bp_err:
863 	xlog_put_bp(bp);
864 
865 	if (error)
866 		xfs_warn(log->l_mp, "failed to find log head");
867 	return error;
868 }
869 
870 /*
871  * Find the sync block number or the tail of the log.
872  *
873  * This will be the block number of the last record to have its
874  * associated buffers synced to disk.  Every log record header has
875  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
876  * to get a sync block number.  The only concern is to figure out which
877  * log record header to believe.
878  *
879  * The following algorithm uses the log record header with the largest
880  * lsn.  The entire log record does not need to be valid.  We only care
881  * that the header is valid.
882  *
883  * We could speed up search by using current head_blk buffer, but it is not
884  * available.
885  */
886 STATIC int
887 xlog_find_tail(
888 	struct xlog		*log,
889 	xfs_daddr_t		*head_blk,
890 	xfs_daddr_t		*tail_blk)
891 {
892 	xlog_rec_header_t	*rhead;
893 	xlog_op_header_t	*op_head;
894 	xfs_caddr_t		offset = NULL;
895 	xfs_buf_t		*bp;
896 	int			error, i, found;
897 	xfs_daddr_t		umount_data_blk;
898 	xfs_daddr_t		after_umount_blk;
899 	xfs_lsn_t		tail_lsn;
900 	int			hblks;
901 
902 	found = 0;
903 
904 	/*
905 	 * Find previous log record
906 	 */
907 	if ((error = xlog_find_head(log, head_blk)))
908 		return error;
909 
910 	bp = xlog_get_bp(log, 1);
911 	if (!bp)
912 		return -ENOMEM;
913 	if (*head_blk == 0) {				/* special case */
914 		error = xlog_bread(log, 0, 1, bp, &offset);
915 		if (error)
916 			goto done;
917 
918 		if (xlog_get_cycle(offset) == 0) {
919 			*tail_blk = 0;
920 			/* leave all other log inited values alone */
921 			goto done;
922 		}
923 	}
924 
925 	/*
926 	 * Search backwards looking for log record header block
927 	 */
928 	ASSERT(*head_blk < INT_MAX);
929 	for (i = (int)(*head_blk) - 1; i >= 0; i--) {
930 		error = xlog_bread(log, i, 1, bp, &offset);
931 		if (error)
932 			goto done;
933 
934 		if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
935 			found = 1;
936 			break;
937 		}
938 	}
939 	/*
940 	 * If we haven't found the log record header block, start looking
941 	 * again from the end of the physical log.  XXXmiken: There should be
942 	 * a check here to make sure we didn't search more than N blocks in
943 	 * the previous code.
944 	 */
945 	if (!found) {
946 		for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
947 			error = xlog_bread(log, i, 1, bp, &offset);
948 			if (error)
949 				goto done;
950 
951 			if (*(__be32 *)offset ==
952 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
953 				found = 2;
954 				break;
955 			}
956 		}
957 	}
958 	if (!found) {
959 		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
960 		xlog_put_bp(bp);
961 		ASSERT(0);
962 		return -EIO;
963 	}
964 
965 	/* find blk_no of tail of log */
966 	rhead = (xlog_rec_header_t *)offset;
967 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
968 
969 	/*
970 	 * Reset log values according to the state of the log when we
971 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
972 	 * one because the next write starts a new cycle rather than
973 	 * continuing the cycle of the last good log record.  At this
974 	 * point we have guaranteed that all partial log records have been
975 	 * accounted for.  Therefore, we know that the last good log record
976 	 * written was complete and ended exactly on the end boundary
977 	 * of the physical log.
978 	 */
979 	log->l_prev_block = i;
980 	log->l_curr_block = (int)*head_blk;
981 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
982 	if (found == 2)
983 		log->l_curr_cycle++;
984 	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
985 	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
986 	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
987 					BBTOB(log->l_curr_block));
988 	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
989 					BBTOB(log->l_curr_block));
990 
991 	/*
992 	 * Look for unmount record.  If we find it, then we know there
993 	 * was a clean unmount.  Since 'i' could be the last block in
994 	 * the physical log, we convert to a log block before comparing
995 	 * to the head_blk.
996 	 *
997 	 * Save the current tail lsn to use to pass to
998 	 * xlog_clear_stale_blocks() below.  We won't want to clear the
999 	 * unmount record if there is one, so we pass the lsn of the
1000 	 * unmount record rather than the block after it.
1001 	 */
1002 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1003 		int	h_size = be32_to_cpu(rhead->h_size);
1004 		int	h_version = be32_to_cpu(rhead->h_version);
1005 
1006 		if ((h_version & XLOG_VERSION_2) &&
1007 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1008 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1009 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
1010 				hblks++;
1011 		} else {
1012 			hblks = 1;
1013 		}
1014 	} else {
1015 		hblks = 1;
1016 	}
1017 	after_umount_blk = (i + hblks + (int)
1018 		BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1019 	tail_lsn = atomic64_read(&log->l_tail_lsn);
1020 	if (*head_blk == after_umount_blk &&
1021 	    be32_to_cpu(rhead->h_num_logops) == 1) {
1022 		umount_data_blk = (i + hblks) % log->l_logBBsize;
1023 		error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1024 		if (error)
1025 			goto done;
1026 
1027 		op_head = (xlog_op_header_t *)offset;
1028 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1029 			/*
1030 			 * Set tail and last sync so that newly written
1031 			 * log records will point recovery to after the
1032 			 * current unmount record.
1033 			 */
1034 			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1035 					log->l_curr_cycle, after_umount_blk);
1036 			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1037 					log->l_curr_cycle, after_umount_blk);
1038 			*tail_blk = after_umount_blk;
1039 
1040 			/*
1041 			 * Note that the unmount was clean. If the unmount
1042 			 * was not clean, we need to know this to rebuild the
1043 			 * superblock counters from the perag headers if we
1044 			 * have a filesystem using non-persistent counters.
1045 			 */
1046 			log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1047 		}
1048 	}
1049 
1050 	/*
1051 	 * Make sure that there are no blocks in front of the head
1052 	 * with the same cycle number as the head.  This can happen
1053 	 * because we allow multiple outstanding log writes concurrently,
1054 	 * and the later writes might make it out before earlier ones.
1055 	 *
1056 	 * We use the lsn from before modifying it so that we'll never
1057 	 * overwrite the unmount record after a clean unmount.
1058 	 *
1059 	 * Do this only if we are going to recover the filesystem
1060 	 *
1061 	 * NOTE: This used to say "if (!readonly)"
1062 	 * However on Linux, we can & do recover a read-only filesystem.
1063 	 * We only skip recovery if NORECOVERY is specified on mount,
1064 	 * in which case we would not be here.
1065 	 *
1066 	 * But... if the -device- itself is readonly, just skip this.
1067 	 * We can't recover this device anyway, so it won't matter.
1068 	 */
1069 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1070 		error = xlog_clear_stale_blocks(log, tail_lsn);
1071 
1072 done:
1073 	xlog_put_bp(bp);
1074 
1075 	if (error)
1076 		xfs_warn(log->l_mp, "failed to locate log tail");
1077 	return error;
1078 }
1079 
1080 /*
1081  * Is the log zeroed at all?
1082  *
1083  * The last binary search should be changed to perform an X block read
1084  * once X becomes small enough.  You can then search linearly through
1085  * the X blocks.  This will cut down on the number of reads we need to do.
1086  *
1087  * If the log is partially zeroed, this routine will pass back the blkno
1088  * of the first block with cycle number 0.  It won't have a complete LR
1089  * preceding it.
1090  *
1091  * Return:
1092  *	0  => the log is completely written to
1093  *	1 => use *blk_no as the first block of the log
1094  *	<0 => error has occurred
1095  */
1096 STATIC int
1097 xlog_find_zeroed(
1098 	struct xlog	*log,
1099 	xfs_daddr_t	*blk_no)
1100 {
1101 	xfs_buf_t	*bp;
1102 	xfs_caddr_t	offset;
1103 	uint	        first_cycle, last_cycle;
1104 	xfs_daddr_t	new_blk, last_blk, start_blk;
1105 	xfs_daddr_t     num_scan_bblks;
1106 	int	        error, log_bbnum = log->l_logBBsize;
1107 
1108 	*blk_no = 0;
1109 
1110 	/* check totally zeroed log */
1111 	bp = xlog_get_bp(log, 1);
1112 	if (!bp)
1113 		return -ENOMEM;
1114 	error = xlog_bread(log, 0, 1, bp, &offset);
1115 	if (error)
1116 		goto bp_err;
1117 
1118 	first_cycle = xlog_get_cycle(offset);
1119 	if (first_cycle == 0) {		/* completely zeroed log */
1120 		*blk_no = 0;
1121 		xlog_put_bp(bp);
1122 		return 1;
1123 	}
1124 
1125 	/* check partially zeroed log */
1126 	error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1127 	if (error)
1128 		goto bp_err;
1129 
1130 	last_cycle = xlog_get_cycle(offset);
1131 	if (last_cycle != 0) {		/* log completely written to */
1132 		xlog_put_bp(bp);
1133 		return 0;
1134 	} else if (first_cycle != 1) {
1135 		/*
1136 		 * If the cycle of the last block is zero, the cycle of
1137 		 * the first block must be 1. If it's not, maybe we're
1138 		 * not looking at a log... Bail out.
1139 		 */
1140 		xfs_warn(log->l_mp,
1141 			"Log inconsistent or not a log (last==0, first!=1)");
1142 		error = -EINVAL;
1143 		goto bp_err;
1144 	}
1145 
1146 	/* we have a partially zeroed log */
1147 	last_blk = log_bbnum-1;
1148 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1149 		goto bp_err;
1150 
1151 	/*
1152 	 * Validate the answer.  Because there is no way to guarantee that
1153 	 * the entire log is made up of log records which are the same size,
1154 	 * we scan over the defined maximum blocks.  At this point, the maximum
1155 	 * is not chosen to mean anything special.   XXXmiken
1156 	 */
1157 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1158 	ASSERT(num_scan_bblks <= INT_MAX);
1159 
1160 	if (last_blk < num_scan_bblks)
1161 		num_scan_bblks = last_blk;
1162 	start_blk = last_blk - num_scan_bblks;
1163 
1164 	/*
1165 	 * We search for any instances of cycle number 0 that occur before
1166 	 * our current estimate of the head.  What we're trying to detect is
1167 	 *        1 ... | 0 | 1 | 0...
1168 	 *                       ^ binary search ends here
1169 	 */
1170 	if ((error = xlog_find_verify_cycle(log, start_blk,
1171 					 (int)num_scan_bblks, 0, &new_blk)))
1172 		goto bp_err;
1173 	if (new_blk != -1)
1174 		last_blk = new_blk;
1175 
1176 	/*
1177 	 * Potentially backup over partial log record write.  We don't need
1178 	 * to search the end of the log because we know it is zero.
1179 	 */
1180 	error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1181 	if (error == 1)
1182 		error = -EIO;
1183 	if (error)
1184 		goto bp_err;
1185 
1186 	*blk_no = last_blk;
1187 bp_err:
1188 	xlog_put_bp(bp);
1189 	if (error)
1190 		return error;
1191 	return 1;
1192 }
1193 
1194 /*
1195  * These are simple subroutines used by xlog_clear_stale_blocks() below
1196  * to initialize a buffer full of empty log record headers and write
1197  * them into the log.
1198  */
1199 STATIC void
1200 xlog_add_record(
1201 	struct xlog		*log,
1202 	xfs_caddr_t		buf,
1203 	int			cycle,
1204 	int			block,
1205 	int			tail_cycle,
1206 	int			tail_block)
1207 {
1208 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1209 
1210 	memset(buf, 0, BBSIZE);
1211 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1212 	recp->h_cycle = cpu_to_be32(cycle);
1213 	recp->h_version = cpu_to_be32(
1214 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1215 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1216 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1217 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1218 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1219 }
1220 
1221 STATIC int
1222 xlog_write_log_records(
1223 	struct xlog	*log,
1224 	int		cycle,
1225 	int		start_block,
1226 	int		blocks,
1227 	int		tail_cycle,
1228 	int		tail_block)
1229 {
1230 	xfs_caddr_t	offset;
1231 	xfs_buf_t	*bp;
1232 	int		balign, ealign;
1233 	int		sectbb = log->l_sectBBsize;
1234 	int		end_block = start_block + blocks;
1235 	int		bufblks;
1236 	int		error = 0;
1237 	int		i, j = 0;
1238 
1239 	/*
1240 	 * Greedily allocate a buffer big enough to handle the full
1241 	 * range of basic blocks to be written.  If that fails, try
1242 	 * a smaller size.  We need to be able to write at least a
1243 	 * log sector, or we're out of luck.
1244 	 */
1245 	bufblks = 1 << ffs(blocks);
1246 	while (bufblks > log->l_logBBsize)
1247 		bufblks >>= 1;
1248 	while (!(bp = xlog_get_bp(log, bufblks))) {
1249 		bufblks >>= 1;
1250 		if (bufblks < sectbb)
1251 			return -ENOMEM;
1252 	}
1253 
1254 	/* We may need to do a read at the start to fill in part of
1255 	 * the buffer in the starting sector not covered by the first
1256 	 * write below.
1257 	 */
1258 	balign = round_down(start_block, sectbb);
1259 	if (balign != start_block) {
1260 		error = xlog_bread_noalign(log, start_block, 1, bp);
1261 		if (error)
1262 			goto out_put_bp;
1263 
1264 		j = start_block - balign;
1265 	}
1266 
1267 	for (i = start_block; i < end_block; i += bufblks) {
1268 		int		bcount, endcount;
1269 
1270 		bcount = min(bufblks, end_block - start_block);
1271 		endcount = bcount - j;
1272 
1273 		/* We may need to do a read at the end to fill in part of
1274 		 * the buffer in the final sector not covered by the write.
1275 		 * If this is the same sector as the above read, skip it.
1276 		 */
1277 		ealign = round_down(end_block, sectbb);
1278 		if (j == 0 && (start_block + endcount > ealign)) {
1279 			offset = bp->b_addr + BBTOB(ealign - start_block);
1280 			error = xlog_bread_offset(log, ealign, sectbb,
1281 							bp, offset);
1282 			if (error)
1283 				break;
1284 
1285 		}
1286 
1287 		offset = xlog_align(log, start_block, endcount, bp);
1288 		for (; j < endcount; j++) {
1289 			xlog_add_record(log, offset, cycle, i+j,
1290 					tail_cycle, tail_block);
1291 			offset += BBSIZE;
1292 		}
1293 		error = xlog_bwrite(log, start_block, endcount, bp);
1294 		if (error)
1295 			break;
1296 		start_block += endcount;
1297 		j = 0;
1298 	}
1299 
1300  out_put_bp:
1301 	xlog_put_bp(bp);
1302 	return error;
1303 }
1304 
1305 /*
1306  * This routine is called to blow away any incomplete log writes out
1307  * in front of the log head.  We do this so that we won't become confused
1308  * if we come up, write only a little bit more, and then crash again.
1309  * If we leave the partial log records out there, this situation could
1310  * cause us to think those partial writes are valid blocks since they
1311  * have the current cycle number.  We get rid of them by overwriting them
1312  * with empty log records with the old cycle number rather than the
1313  * current one.
1314  *
1315  * The tail lsn is passed in rather than taken from
1316  * the log so that we will not write over the unmount record after a
1317  * clean unmount in a 512 block log.  Doing so would leave the log without
1318  * any valid log records in it until a new one was written.  If we crashed
1319  * during that time we would not be able to recover.
1320  */
1321 STATIC int
1322 xlog_clear_stale_blocks(
1323 	struct xlog	*log,
1324 	xfs_lsn_t	tail_lsn)
1325 {
1326 	int		tail_cycle, head_cycle;
1327 	int		tail_block, head_block;
1328 	int		tail_distance, max_distance;
1329 	int		distance;
1330 	int		error;
1331 
1332 	tail_cycle = CYCLE_LSN(tail_lsn);
1333 	tail_block = BLOCK_LSN(tail_lsn);
1334 	head_cycle = log->l_curr_cycle;
1335 	head_block = log->l_curr_block;
1336 
1337 	/*
1338 	 * Figure out the distance between the new head of the log
1339 	 * and the tail.  We want to write over any blocks beyond the
1340 	 * head that we may have written just before the crash, but
1341 	 * we don't want to overwrite the tail of the log.
1342 	 */
1343 	if (head_cycle == tail_cycle) {
1344 		/*
1345 		 * The tail is behind the head in the physical log,
1346 		 * so the distance from the head to the tail is the
1347 		 * distance from the head to the end of the log plus
1348 		 * the distance from the beginning of the log to the
1349 		 * tail.
1350 		 */
1351 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1352 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1353 					 XFS_ERRLEVEL_LOW, log->l_mp);
1354 			return -EFSCORRUPTED;
1355 		}
1356 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1357 	} else {
1358 		/*
1359 		 * The head is behind the tail in the physical log,
1360 		 * so the distance from the head to the tail is just
1361 		 * the tail block minus the head block.
1362 		 */
1363 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1364 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1365 					 XFS_ERRLEVEL_LOW, log->l_mp);
1366 			return -EFSCORRUPTED;
1367 		}
1368 		tail_distance = tail_block - head_block;
1369 	}
1370 
1371 	/*
1372 	 * If the head is right up against the tail, we can't clear
1373 	 * anything.
1374 	 */
1375 	if (tail_distance <= 0) {
1376 		ASSERT(tail_distance == 0);
1377 		return 0;
1378 	}
1379 
1380 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1381 	/*
1382 	 * Take the smaller of the maximum amount of outstanding I/O
1383 	 * we could have and the distance to the tail to clear out.
1384 	 * We take the smaller so that we don't overwrite the tail and
1385 	 * we don't waste all day writing from the head to the tail
1386 	 * for no reason.
1387 	 */
1388 	max_distance = MIN(max_distance, tail_distance);
1389 
1390 	if ((head_block + max_distance) <= log->l_logBBsize) {
1391 		/*
1392 		 * We can stomp all the blocks we need to without
1393 		 * wrapping around the end of the log.  Just do it
1394 		 * in a single write.  Use the cycle number of the
1395 		 * current cycle minus one so that the log will look like:
1396 		 *     n ... | n - 1 ...
1397 		 */
1398 		error = xlog_write_log_records(log, (head_cycle - 1),
1399 				head_block, max_distance, tail_cycle,
1400 				tail_block);
1401 		if (error)
1402 			return error;
1403 	} else {
1404 		/*
1405 		 * We need to wrap around the end of the physical log in
1406 		 * order to clear all the blocks.  Do it in two separate
1407 		 * I/Os.  The first write should be from the head to the
1408 		 * end of the physical log, and it should use the current
1409 		 * cycle number minus one just like above.
1410 		 */
1411 		distance = log->l_logBBsize - head_block;
1412 		error = xlog_write_log_records(log, (head_cycle - 1),
1413 				head_block, distance, tail_cycle,
1414 				tail_block);
1415 
1416 		if (error)
1417 			return error;
1418 
1419 		/*
1420 		 * Now write the blocks at the start of the physical log.
1421 		 * This writes the remainder of the blocks we want to clear.
1422 		 * It uses the current cycle number since we're now on the
1423 		 * same cycle as the head so that we get:
1424 		 *    n ... n ... | n - 1 ...
1425 		 *    ^^^^^ blocks we're writing
1426 		 */
1427 		distance = max_distance - (log->l_logBBsize - head_block);
1428 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1429 				tail_cycle, tail_block);
1430 		if (error)
1431 			return error;
1432 	}
1433 
1434 	return 0;
1435 }
1436 
1437 /******************************************************************************
1438  *
1439  *		Log recover routines
1440  *
1441  ******************************************************************************
1442  */
1443 
1444 /*
1445  * Sort the log items in the transaction.
1446  *
1447  * The ordering constraints are defined by the inode allocation and unlink
1448  * behaviour. The rules are:
1449  *
1450  *	1. Every item is only logged once in a given transaction. Hence it
1451  *	   represents the last logged state of the item. Hence ordering is
1452  *	   dependent on the order in which operations need to be performed so
1453  *	   required initial conditions are always met.
1454  *
1455  *	2. Cancelled buffers are recorded in pass 1 in a separate table and
1456  *	   there's nothing to replay from them so we can simply cull them
1457  *	   from the transaction. However, we can't do that until after we've
1458  *	   replayed all the other items because they may be dependent on the
1459  *	   cancelled buffer and replaying the cancelled buffer can remove it
1460  *	   form the cancelled buffer table. Hence they have tobe done last.
1461  *
1462  *	3. Inode allocation buffers must be replayed before inode items that
1463  *	   read the buffer and replay changes into it. For filesystems using the
1464  *	   ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1465  *	   treated the same as inode allocation buffers as they create and
1466  *	   initialise the buffers directly.
1467  *
1468  *	4. Inode unlink buffers must be replayed after inode items are replayed.
1469  *	   This ensures that inodes are completely flushed to the inode buffer
1470  *	   in a "free" state before we remove the unlinked inode list pointer.
1471  *
1472  * Hence the ordering needs to be inode allocation buffers first, inode items
1473  * second, inode unlink buffers third and cancelled buffers last.
1474  *
1475  * But there's a problem with that - we can't tell an inode allocation buffer
1476  * apart from a regular buffer, so we can't separate them. We can, however,
1477  * tell an inode unlink buffer from the others, and so we can separate them out
1478  * from all the other buffers and move them to last.
1479  *
1480  * Hence, 4 lists, in order from head to tail:
1481  *	- buffer_list for all buffers except cancelled/inode unlink buffers
1482  *	- item_list for all non-buffer items
1483  *	- inode_buffer_list for inode unlink buffers
1484  *	- cancel_list for the cancelled buffers
1485  *
1486  * Note that we add objects to the tail of the lists so that first-to-last
1487  * ordering is preserved within the lists. Adding objects to the head of the
1488  * list means when we traverse from the head we walk them in last-to-first
1489  * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1490  * but for all other items there may be specific ordering that we need to
1491  * preserve.
1492  */
1493 STATIC int
1494 xlog_recover_reorder_trans(
1495 	struct xlog		*log,
1496 	struct xlog_recover	*trans,
1497 	int			pass)
1498 {
1499 	xlog_recover_item_t	*item, *n;
1500 	int			error = 0;
1501 	LIST_HEAD(sort_list);
1502 	LIST_HEAD(cancel_list);
1503 	LIST_HEAD(buffer_list);
1504 	LIST_HEAD(inode_buffer_list);
1505 	LIST_HEAD(inode_list);
1506 
1507 	list_splice_init(&trans->r_itemq, &sort_list);
1508 	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1509 		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1510 
1511 		switch (ITEM_TYPE(item)) {
1512 		case XFS_LI_ICREATE:
1513 			list_move_tail(&item->ri_list, &buffer_list);
1514 			break;
1515 		case XFS_LI_BUF:
1516 			if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1517 				trace_xfs_log_recover_item_reorder_head(log,
1518 							trans, item, pass);
1519 				list_move(&item->ri_list, &cancel_list);
1520 				break;
1521 			}
1522 			if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1523 				list_move(&item->ri_list, &inode_buffer_list);
1524 				break;
1525 			}
1526 			list_move_tail(&item->ri_list, &buffer_list);
1527 			break;
1528 		case XFS_LI_INODE:
1529 		case XFS_LI_DQUOT:
1530 		case XFS_LI_QUOTAOFF:
1531 		case XFS_LI_EFD:
1532 		case XFS_LI_EFI:
1533 			trace_xfs_log_recover_item_reorder_tail(log,
1534 							trans, item, pass);
1535 			list_move_tail(&item->ri_list, &inode_list);
1536 			break;
1537 		default:
1538 			xfs_warn(log->l_mp,
1539 				"%s: unrecognized type of log operation",
1540 				__func__);
1541 			ASSERT(0);
1542 			/*
1543 			 * return the remaining items back to the transaction
1544 			 * item list so they can be freed in caller.
1545 			 */
1546 			if (!list_empty(&sort_list))
1547 				list_splice_init(&sort_list, &trans->r_itemq);
1548 			error = -EIO;
1549 			goto out;
1550 		}
1551 	}
1552 out:
1553 	ASSERT(list_empty(&sort_list));
1554 	if (!list_empty(&buffer_list))
1555 		list_splice(&buffer_list, &trans->r_itemq);
1556 	if (!list_empty(&inode_list))
1557 		list_splice_tail(&inode_list, &trans->r_itemq);
1558 	if (!list_empty(&inode_buffer_list))
1559 		list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1560 	if (!list_empty(&cancel_list))
1561 		list_splice_tail(&cancel_list, &trans->r_itemq);
1562 	return error;
1563 }
1564 
1565 /*
1566  * Build up the table of buf cancel records so that we don't replay
1567  * cancelled data in the second pass.  For buffer records that are
1568  * not cancel records, there is nothing to do here so we just return.
1569  *
1570  * If we get a cancel record which is already in the table, this indicates
1571  * that the buffer was cancelled multiple times.  In order to ensure
1572  * that during pass 2 we keep the record in the table until we reach its
1573  * last occurrence in the log, we keep a reference count in the cancel
1574  * record in the table to tell us how many times we expect to see this
1575  * record during the second pass.
1576  */
1577 STATIC int
1578 xlog_recover_buffer_pass1(
1579 	struct xlog			*log,
1580 	struct xlog_recover_item	*item)
1581 {
1582 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1583 	struct list_head	*bucket;
1584 	struct xfs_buf_cancel	*bcp;
1585 
1586 	/*
1587 	 * If this isn't a cancel buffer item, then just return.
1588 	 */
1589 	if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1590 		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1591 		return 0;
1592 	}
1593 
1594 	/*
1595 	 * Insert an xfs_buf_cancel record into the hash table of them.
1596 	 * If there is already an identical record, bump its reference count.
1597 	 */
1598 	bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1599 	list_for_each_entry(bcp, bucket, bc_list) {
1600 		if (bcp->bc_blkno == buf_f->blf_blkno &&
1601 		    bcp->bc_len == buf_f->blf_len) {
1602 			bcp->bc_refcount++;
1603 			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1604 			return 0;
1605 		}
1606 	}
1607 
1608 	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1609 	bcp->bc_blkno = buf_f->blf_blkno;
1610 	bcp->bc_len = buf_f->blf_len;
1611 	bcp->bc_refcount = 1;
1612 	list_add_tail(&bcp->bc_list, bucket);
1613 
1614 	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1615 	return 0;
1616 }
1617 
1618 /*
1619  * Check to see whether the buffer being recovered has a corresponding
1620  * entry in the buffer cancel record table. If it is, return the cancel
1621  * buffer structure to the caller.
1622  */
1623 STATIC struct xfs_buf_cancel *
1624 xlog_peek_buffer_cancelled(
1625 	struct xlog		*log,
1626 	xfs_daddr_t		blkno,
1627 	uint			len,
1628 	ushort			flags)
1629 {
1630 	struct list_head	*bucket;
1631 	struct xfs_buf_cancel	*bcp;
1632 
1633 	if (!log->l_buf_cancel_table) {
1634 		/* empty table means no cancelled buffers in the log */
1635 		ASSERT(!(flags & XFS_BLF_CANCEL));
1636 		return NULL;
1637 	}
1638 
1639 	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1640 	list_for_each_entry(bcp, bucket, bc_list) {
1641 		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1642 			return bcp;
1643 	}
1644 
1645 	/*
1646 	 * We didn't find a corresponding entry in the table, so return 0 so
1647 	 * that the buffer is NOT cancelled.
1648 	 */
1649 	ASSERT(!(flags & XFS_BLF_CANCEL));
1650 	return NULL;
1651 }
1652 
1653 /*
1654  * If the buffer is being cancelled then return 1 so that it will be cancelled,
1655  * otherwise return 0.  If the buffer is actually a buffer cancel item
1656  * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
1657  * table and remove it from the table if this is the last reference.
1658  *
1659  * We remove the cancel record from the table when we encounter its last
1660  * occurrence in the log so that if the same buffer is re-used again after its
1661  * last cancellation we actually replay the changes made at that point.
1662  */
1663 STATIC int
1664 xlog_check_buffer_cancelled(
1665 	struct xlog		*log,
1666 	xfs_daddr_t		blkno,
1667 	uint			len,
1668 	ushort			flags)
1669 {
1670 	struct xfs_buf_cancel	*bcp;
1671 
1672 	bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
1673 	if (!bcp)
1674 		return 0;
1675 
1676 	/*
1677 	 * We've go a match, so return 1 so that the recovery of this buffer
1678 	 * is cancelled.  If this buffer is actually a buffer cancel log
1679 	 * item, then decrement the refcount on the one in the table and
1680 	 * remove it if this is the last reference.
1681 	 */
1682 	if (flags & XFS_BLF_CANCEL) {
1683 		if (--bcp->bc_refcount == 0) {
1684 			list_del(&bcp->bc_list);
1685 			kmem_free(bcp);
1686 		}
1687 	}
1688 	return 1;
1689 }
1690 
1691 /*
1692  * Perform recovery for a buffer full of inodes.  In these buffers, the only
1693  * data which should be recovered is that which corresponds to the
1694  * di_next_unlinked pointers in the on disk inode structures.  The rest of the
1695  * data for the inodes is always logged through the inodes themselves rather
1696  * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1697  *
1698  * The only time when buffers full of inodes are fully recovered is when the
1699  * buffer is full of newly allocated inodes.  In this case the buffer will
1700  * not be marked as an inode buffer and so will be sent to
1701  * xlog_recover_do_reg_buffer() below during recovery.
1702  */
1703 STATIC int
1704 xlog_recover_do_inode_buffer(
1705 	struct xfs_mount	*mp,
1706 	xlog_recover_item_t	*item,
1707 	struct xfs_buf		*bp,
1708 	xfs_buf_log_format_t	*buf_f)
1709 {
1710 	int			i;
1711 	int			item_index = 0;
1712 	int			bit = 0;
1713 	int			nbits = 0;
1714 	int			reg_buf_offset = 0;
1715 	int			reg_buf_bytes = 0;
1716 	int			next_unlinked_offset;
1717 	int			inodes_per_buf;
1718 	xfs_agino_t		*logged_nextp;
1719 	xfs_agino_t		*buffer_nextp;
1720 
1721 	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1722 
1723 	/*
1724 	 * Post recovery validation only works properly on CRC enabled
1725 	 * filesystems.
1726 	 */
1727 	if (xfs_sb_version_hascrc(&mp->m_sb))
1728 		bp->b_ops = &xfs_inode_buf_ops;
1729 
1730 	inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1731 	for (i = 0; i < inodes_per_buf; i++) {
1732 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1733 			offsetof(xfs_dinode_t, di_next_unlinked);
1734 
1735 		while (next_unlinked_offset >=
1736 		       (reg_buf_offset + reg_buf_bytes)) {
1737 			/*
1738 			 * The next di_next_unlinked field is beyond
1739 			 * the current logged region.  Find the next
1740 			 * logged region that contains or is beyond
1741 			 * the current di_next_unlinked field.
1742 			 */
1743 			bit += nbits;
1744 			bit = xfs_next_bit(buf_f->blf_data_map,
1745 					   buf_f->blf_map_size, bit);
1746 
1747 			/*
1748 			 * If there are no more logged regions in the
1749 			 * buffer, then we're done.
1750 			 */
1751 			if (bit == -1)
1752 				return 0;
1753 
1754 			nbits = xfs_contig_bits(buf_f->blf_data_map,
1755 						buf_f->blf_map_size, bit);
1756 			ASSERT(nbits > 0);
1757 			reg_buf_offset = bit << XFS_BLF_SHIFT;
1758 			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1759 			item_index++;
1760 		}
1761 
1762 		/*
1763 		 * If the current logged region starts after the current
1764 		 * di_next_unlinked field, then move on to the next
1765 		 * di_next_unlinked field.
1766 		 */
1767 		if (next_unlinked_offset < reg_buf_offset)
1768 			continue;
1769 
1770 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
1771 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1772 		ASSERT((reg_buf_offset + reg_buf_bytes) <=
1773 							BBTOB(bp->b_io_length));
1774 
1775 		/*
1776 		 * The current logged region contains a copy of the
1777 		 * current di_next_unlinked field.  Extract its value
1778 		 * and copy it to the buffer copy.
1779 		 */
1780 		logged_nextp = item->ri_buf[item_index].i_addr +
1781 				next_unlinked_offset - reg_buf_offset;
1782 		if (unlikely(*logged_nextp == 0)) {
1783 			xfs_alert(mp,
1784 		"Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1785 		"Trying to replay bad (0) inode di_next_unlinked field.",
1786 				item, bp);
1787 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1788 					 XFS_ERRLEVEL_LOW, mp);
1789 			return -EFSCORRUPTED;
1790 		}
1791 
1792 		buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1793 					      next_unlinked_offset);
1794 		*buffer_nextp = *logged_nextp;
1795 
1796 		/*
1797 		 * If necessary, recalculate the CRC in the on-disk inode. We
1798 		 * have to leave the inode in a consistent state for whoever
1799 		 * reads it next....
1800 		 */
1801 		xfs_dinode_calc_crc(mp, (struct xfs_dinode *)
1802 				xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
1803 
1804 	}
1805 
1806 	return 0;
1807 }
1808 
1809 /*
1810  * V5 filesystems know the age of the buffer on disk being recovered. We can
1811  * have newer objects on disk than we are replaying, and so for these cases we
1812  * don't want to replay the current change as that will make the buffer contents
1813  * temporarily invalid on disk.
1814  *
1815  * The magic number might not match the buffer type we are going to recover
1816  * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
1817  * extract the LSN of the existing object in the buffer based on it's current
1818  * magic number.  If we don't recognise the magic number in the buffer, then
1819  * return a LSN of -1 so that the caller knows it was an unrecognised block and
1820  * so can recover the buffer.
1821  *
1822  * Note: we cannot rely solely on magic number matches to determine that the
1823  * buffer has a valid LSN - we also need to verify that it belongs to this
1824  * filesystem, so we need to extract the object's LSN and compare it to that
1825  * which we read from the superblock. If the UUIDs don't match, then we've got a
1826  * stale metadata block from an old filesystem instance that we need to recover
1827  * over the top of.
1828  */
1829 static xfs_lsn_t
1830 xlog_recover_get_buf_lsn(
1831 	struct xfs_mount	*mp,
1832 	struct xfs_buf		*bp)
1833 {
1834 	__uint32_t		magic32;
1835 	__uint16_t		magic16;
1836 	__uint16_t		magicda;
1837 	void			*blk = bp->b_addr;
1838 	uuid_t			*uuid;
1839 	xfs_lsn_t		lsn = -1;
1840 
1841 	/* v4 filesystems always recover immediately */
1842 	if (!xfs_sb_version_hascrc(&mp->m_sb))
1843 		goto recover_immediately;
1844 
1845 	magic32 = be32_to_cpu(*(__be32 *)blk);
1846 	switch (magic32) {
1847 	case XFS_ABTB_CRC_MAGIC:
1848 	case XFS_ABTC_CRC_MAGIC:
1849 	case XFS_ABTB_MAGIC:
1850 	case XFS_ABTC_MAGIC:
1851 	case XFS_IBT_CRC_MAGIC:
1852 	case XFS_IBT_MAGIC: {
1853 		struct xfs_btree_block *btb = blk;
1854 
1855 		lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
1856 		uuid = &btb->bb_u.s.bb_uuid;
1857 		break;
1858 	}
1859 	case XFS_BMAP_CRC_MAGIC:
1860 	case XFS_BMAP_MAGIC: {
1861 		struct xfs_btree_block *btb = blk;
1862 
1863 		lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
1864 		uuid = &btb->bb_u.l.bb_uuid;
1865 		break;
1866 	}
1867 	case XFS_AGF_MAGIC:
1868 		lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
1869 		uuid = &((struct xfs_agf *)blk)->agf_uuid;
1870 		break;
1871 	case XFS_AGFL_MAGIC:
1872 		lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
1873 		uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
1874 		break;
1875 	case XFS_AGI_MAGIC:
1876 		lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
1877 		uuid = &((struct xfs_agi *)blk)->agi_uuid;
1878 		break;
1879 	case XFS_SYMLINK_MAGIC:
1880 		lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
1881 		uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
1882 		break;
1883 	case XFS_DIR3_BLOCK_MAGIC:
1884 	case XFS_DIR3_DATA_MAGIC:
1885 	case XFS_DIR3_FREE_MAGIC:
1886 		lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
1887 		uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
1888 		break;
1889 	case XFS_ATTR3_RMT_MAGIC:
1890 		lsn = be64_to_cpu(((struct xfs_attr3_rmt_hdr *)blk)->rm_lsn);
1891 		uuid = &((struct xfs_attr3_rmt_hdr *)blk)->rm_uuid;
1892 		break;
1893 	case XFS_SB_MAGIC:
1894 		lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
1895 		uuid = &((struct xfs_dsb *)blk)->sb_uuid;
1896 		break;
1897 	default:
1898 		break;
1899 	}
1900 
1901 	if (lsn != (xfs_lsn_t)-1) {
1902 		if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
1903 			goto recover_immediately;
1904 		return lsn;
1905 	}
1906 
1907 	magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
1908 	switch (magicda) {
1909 	case XFS_DIR3_LEAF1_MAGIC:
1910 	case XFS_DIR3_LEAFN_MAGIC:
1911 	case XFS_DA3_NODE_MAGIC:
1912 		lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
1913 		uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
1914 		break;
1915 	default:
1916 		break;
1917 	}
1918 
1919 	if (lsn != (xfs_lsn_t)-1) {
1920 		if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
1921 			goto recover_immediately;
1922 		return lsn;
1923 	}
1924 
1925 	/*
1926 	 * We do individual object checks on dquot and inode buffers as they
1927 	 * have their own individual LSN records. Also, we could have a stale
1928 	 * buffer here, so we have to at least recognise these buffer types.
1929 	 *
1930 	 * A notd complexity here is inode unlinked list processing - it logs
1931 	 * the inode directly in the buffer, but we don't know which inodes have
1932 	 * been modified, and there is no global buffer LSN. Hence we need to
1933 	 * recover all inode buffer types immediately. This problem will be
1934 	 * fixed by logical logging of the unlinked list modifications.
1935 	 */
1936 	magic16 = be16_to_cpu(*(__be16 *)blk);
1937 	switch (magic16) {
1938 	case XFS_DQUOT_MAGIC:
1939 	case XFS_DINODE_MAGIC:
1940 		goto recover_immediately;
1941 	default:
1942 		break;
1943 	}
1944 
1945 	/* unknown buffer contents, recover immediately */
1946 
1947 recover_immediately:
1948 	return (xfs_lsn_t)-1;
1949 
1950 }
1951 
1952 /*
1953  * Validate the recovered buffer is of the correct type and attach the
1954  * appropriate buffer operations to them for writeback. Magic numbers are in a
1955  * few places:
1956  *	the first 16 bits of the buffer (inode buffer, dquot buffer),
1957  *	the first 32 bits of the buffer (most blocks),
1958  *	inside a struct xfs_da_blkinfo at the start of the buffer.
1959  */
1960 static void
1961 xlog_recover_validate_buf_type(
1962 	struct xfs_mount	*mp,
1963 	struct xfs_buf		*bp,
1964 	xfs_buf_log_format_t	*buf_f)
1965 {
1966 	struct xfs_da_blkinfo	*info = bp->b_addr;
1967 	__uint32_t		magic32;
1968 	__uint16_t		magic16;
1969 	__uint16_t		magicda;
1970 
1971 	/*
1972 	 * We can only do post recovery validation on items on CRC enabled
1973 	 * fielsystems as we need to know when the buffer was written to be able
1974 	 * to determine if we should have replayed the item. If we replay old
1975 	 * metadata over a newer buffer, then it will enter a temporarily
1976 	 * inconsistent state resulting in verification failures. Hence for now
1977 	 * just avoid the verification stage for non-crc filesystems
1978 	 */
1979 	if (!xfs_sb_version_hascrc(&mp->m_sb))
1980 		return;
1981 
1982 	magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
1983 	magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
1984 	magicda = be16_to_cpu(info->magic);
1985 	switch (xfs_blft_from_flags(buf_f)) {
1986 	case XFS_BLFT_BTREE_BUF:
1987 		switch (magic32) {
1988 		case XFS_ABTB_CRC_MAGIC:
1989 		case XFS_ABTC_CRC_MAGIC:
1990 		case XFS_ABTB_MAGIC:
1991 		case XFS_ABTC_MAGIC:
1992 			bp->b_ops = &xfs_allocbt_buf_ops;
1993 			break;
1994 		case XFS_IBT_CRC_MAGIC:
1995 		case XFS_FIBT_CRC_MAGIC:
1996 		case XFS_IBT_MAGIC:
1997 		case XFS_FIBT_MAGIC:
1998 			bp->b_ops = &xfs_inobt_buf_ops;
1999 			break;
2000 		case XFS_BMAP_CRC_MAGIC:
2001 		case XFS_BMAP_MAGIC:
2002 			bp->b_ops = &xfs_bmbt_buf_ops;
2003 			break;
2004 		default:
2005 			xfs_warn(mp, "Bad btree block magic!");
2006 			ASSERT(0);
2007 			break;
2008 		}
2009 		break;
2010 	case XFS_BLFT_AGF_BUF:
2011 		if (magic32 != XFS_AGF_MAGIC) {
2012 			xfs_warn(mp, "Bad AGF block magic!");
2013 			ASSERT(0);
2014 			break;
2015 		}
2016 		bp->b_ops = &xfs_agf_buf_ops;
2017 		break;
2018 	case XFS_BLFT_AGFL_BUF:
2019 		if (magic32 != XFS_AGFL_MAGIC) {
2020 			xfs_warn(mp, "Bad AGFL block magic!");
2021 			ASSERT(0);
2022 			break;
2023 		}
2024 		bp->b_ops = &xfs_agfl_buf_ops;
2025 		break;
2026 	case XFS_BLFT_AGI_BUF:
2027 		if (magic32 != XFS_AGI_MAGIC) {
2028 			xfs_warn(mp, "Bad AGI block magic!");
2029 			ASSERT(0);
2030 			break;
2031 		}
2032 		bp->b_ops = &xfs_agi_buf_ops;
2033 		break;
2034 	case XFS_BLFT_UDQUOT_BUF:
2035 	case XFS_BLFT_PDQUOT_BUF:
2036 	case XFS_BLFT_GDQUOT_BUF:
2037 #ifdef CONFIG_XFS_QUOTA
2038 		if (magic16 != XFS_DQUOT_MAGIC) {
2039 			xfs_warn(mp, "Bad DQUOT block magic!");
2040 			ASSERT(0);
2041 			break;
2042 		}
2043 		bp->b_ops = &xfs_dquot_buf_ops;
2044 #else
2045 		xfs_alert(mp,
2046 	"Trying to recover dquots without QUOTA support built in!");
2047 		ASSERT(0);
2048 #endif
2049 		break;
2050 	case XFS_BLFT_DINO_BUF:
2051 		if (magic16 != XFS_DINODE_MAGIC) {
2052 			xfs_warn(mp, "Bad INODE block magic!");
2053 			ASSERT(0);
2054 			break;
2055 		}
2056 		bp->b_ops = &xfs_inode_buf_ops;
2057 		break;
2058 	case XFS_BLFT_SYMLINK_BUF:
2059 		if (magic32 != XFS_SYMLINK_MAGIC) {
2060 			xfs_warn(mp, "Bad symlink block magic!");
2061 			ASSERT(0);
2062 			break;
2063 		}
2064 		bp->b_ops = &xfs_symlink_buf_ops;
2065 		break;
2066 	case XFS_BLFT_DIR_BLOCK_BUF:
2067 		if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2068 		    magic32 != XFS_DIR3_BLOCK_MAGIC) {
2069 			xfs_warn(mp, "Bad dir block magic!");
2070 			ASSERT(0);
2071 			break;
2072 		}
2073 		bp->b_ops = &xfs_dir3_block_buf_ops;
2074 		break;
2075 	case XFS_BLFT_DIR_DATA_BUF:
2076 		if (magic32 != XFS_DIR2_DATA_MAGIC &&
2077 		    magic32 != XFS_DIR3_DATA_MAGIC) {
2078 			xfs_warn(mp, "Bad dir data magic!");
2079 			ASSERT(0);
2080 			break;
2081 		}
2082 		bp->b_ops = &xfs_dir3_data_buf_ops;
2083 		break;
2084 	case XFS_BLFT_DIR_FREE_BUF:
2085 		if (magic32 != XFS_DIR2_FREE_MAGIC &&
2086 		    magic32 != XFS_DIR3_FREE_MAGIC) {
2087 			xfs_warn(mp, "Bad dir3 free magic!");
2088 			ASSERT(0);
2089 			break;
2090 		}
2091 		bp->b_ops = &xfs_dir3_free_buf_ops;
2092 		break;
2093 	case XFS_BLFT_DIR_LEAF1_BUF:
2094 		if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2095 		    magicda != XFS_DIR3_LEAF1_MAGIC) {
2096 			xfs_warn(mp, "Bad dir leaf1 magic!");
2097 			ASSERT(0);
2098 			break;
2099 		}
2100 		bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2101 		break;
2102 	case XFS_BLFT_DIR_LEAFN_BUF:
2103 		if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2104 		    magicda != XFS_DIR3_LEAFN_MAGIC) {
2105 			xfs_warn(mp, "Bad dir leafn magic!");
2106 			ASSERT(0);
2107 			break;
2108 		}
2109 		bp->b_ops = &xfs_dir3_leafn_buf_ops;
2110 		break;
2111 	case XFS_BLFT_DA_NODE_BUF:
2112 		if (magicda != XFS_DA_NODE_MAGIC &&
2113 		    magicda != XFS_DA3_NODE_MAGIC) {
2114 			xfs_warn(mp, "Bad da node magic!");
2115 			ASSERT(0);
2116 			break;
2117 		}
2118 		bp->b_ops = &xfs_da3_node_buf_ops;
2119 		break;
2120 	case XFS_BLFT_ATTR_LEAF_BUF:
2121 		if (magicda != XFS_ATTR_LEAF_MAGIC &&
2122 		    magicda != XFS_ATTR3_LEAF_MAGIC) {
2123 			xfs_warn(mp, "Bad attr leaf magic!");
2124 			ASSERT(0);
2125 			break;
2126 		}
2127 		bp->b_ops = &xfs_attr3_leaf_buf_ops;
2128 		break;
2129 	case XFS_BLFT_ATTR_RMT_BUF:
2130 		if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2131 			xfs_warn(mp, "Bad attr remote magic!");
2132 			ASSERT(0);
2133 			break;
2134 		}
2135 		bp->b_ops = &xfs_attr3_rmt_buf_ops;
2136 		break;
2137 	case XFS_BLFT_SB_BUF:
2138 		if (magic32 != XFS_SB_MAGIC) {
2139 			xfs_warn(mp, "Bad SB block magic!");
2140 			ASSERT(0);
2141 			break;
2142 		}
2143 		bp->b_ops = &xfs_sb_buf_ops;
2144 		break;
2145 	default:
2146 		xfs_warn(mp, "Unknown buffer type %d!",
2147 			 xfs_blft_from_flags(buf_f));
2148 		break;
2149 	}
2150 }
2151 
2152 /*
2153  * Perform a 'normal' buffer recovery.  Each logged region of the
2154  * buffer should be copied over the corresponding region in the
2155  * given buffer.  The bitmap in the buf log format structure indicates
2156  * where to place the logged data.
2157  */
2158 STATIC void
2159 xlog_recover_do_reg_buffer(
2160 	struct xfs_mount	*mp,
2161 	xlog_recover_item_t	*item,
2162 	struct xfs_buf		*bp,
2163 	xfs_buf_log_format_t	*buf_f)
2164 {
2165 	int			i;
2166 	int			bit;
2167 	int			nbits;
2168 	int                     error;
2169 
2170 	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2171 
2172 	bit = 0;
2173 	i = 1;  /* 0 is the buf format structure */
2174 	while (1) {
2175 		bit = xfs_next_bit(buf_f->blf_data_map,
2176 				   buf_f->blf_map_size, bit);
2177 		if (bit == -1)
2178 			break;
2179 		nbits = xfs_contig_bits(buf_f->blf_data_map,
2180 					buf_f->blf_map_size, bit);
2181 		ASSERT(nbits > 0);
2182 		ASSERT(item->ri_buf[i].i_addr != NULL);
2183 		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2184 		ASSERT(BBTOB(bp->b_io_length) >=
2185 		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2186 
2187 		/*
2188 		 * The dirty regions logged in the buffer, even though
2189 		 * contiguous, may span multiple chunks. This is because the
2190 		 * dirty region may span a physical page boundary in a buffer
2191 		 * and hence be split into two separate vectors for writing into
2192 		 * the log. Hence we need to trim nbits back to the length of
2193 		 * the current region being copied out of the log.
2194 		 */
2195 		if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2196 			nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2197 
2198 		/*
2199 		 * Do a sanity check if this is a dquot buffer. Just checking
2200 		 * the first dquot in the buffer should do. XXXThis is
2201 		 * probably a good thing to do for other buf types also.
2202 		 */
2203 		error = 0;
2204 		if (buf_f->blf_flags &
2205 		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2206 			if (item->ri_buf[i].i_addr == NULL) {
2207 				xfs_alert(mp,
2208 					"XFS: NULL dquot in %s.", __func__);
2209 				goto next;
2210 			}
2211 			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2212 				xfs_alert(mp,
2213 					"XFS: dquot too small (%d) in %s.",
2214 					item->ri_buf[i].i_len, __func__);
2215 				goto next;
2216 			}
2217 			error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
2218 					       -1, 0, XFS_QMOPT_DOWARN,
2219 					       "dquot_buf_recover");
2220 			if (error)
2221 				goto next;
2222 		}
2223 
2224 		memcpy(xfs_buf_offset(bp,
2225 			(uint)bit << XFS_BLF_SHIFT),	/* dest */
2226 			item->ri_buf[i].i_addr,		/* source */
2227 			nbits<<XFS_BLF_SHIFT);		/* length */
2228  next:
2229 		i++;
2230 		bit += nbits;
2231 	}
2232 
2233 	/* Shouldn't be any more regions */
2234 	ASSERT(i == item->ri_total);
2235 
2236 	xlog_recover_validate_buf_type(mp, bp, buf_f);
2237 }
2238 
2239 /*
2240  * Perform a dquot buffer recovery.
2241  * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2242  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2243  * Else, treat it as a regular buffer and do recovery.
2244  *
2245  * Return false if the buffer was tossed and true if we recovered the buffer to
2246  * indicate to the caller if the buffer needs writing.
2247  */
2248 STATIC bool
2249 xlog_recover_do_dquot_buffer(
2250 	struct xfs_mount		*mp,
2251 	struct xlog			*log,
2252 	struct xlog_recover_item	*item,
2253 	struct xfs_buf			*bp,
2254 	struct xfs_buf_log_format	*buf_f)
2255 {
2256 	uint			type;
2257 
2258 	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2259 
2260 	/*
2261 	 * Filesystems are required to send in quota flags at mount time.
2262 	 */
2263 	if (!mp->m_qflags)
2264 		return false;
2265 
2266 	type = 0;
2267 	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2268 		type |= XFS_DQ_USER;
2269 	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2270 		type |= XFS_DQ_PROJ;
2271 	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2272 		type |= XFS_DQ_GROUP;
2273 	/*
2274 	 * This type of quotas was turned off, so ignore this buffer
2275 	 */
2276 	if (log->l_quotaoffs_flag & type)
2277 		return false;
2278 
2279 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2280 	return true;
2281 }
2282 
2283 /*
2284  * This routine replays a modification made to a buffer at runtime.
2285  * There are actually two types of buffer, regular and inode, which
2286  * are handled differently.  Inode buffers are handled differently
2287  * in that we only recover a specific set of data from them, namely
2288  * the inode di_next_unlinked fields.  This is because all other inode
2289  * data is actually logged via inode records and any data we replay
2290  * here which overlaps that may be stale.
2291  *
2292  * When meta-data buffers are freed at run time we log a buffer item
2293  * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2294  * of the buffer in the log should not be replayed at recovery time.
2295  * This is so that if the blocks covered by the buffer are reused for
2296  * file data before we crash we don't end up replaying old, freed
2297  * meta-data into a user's file.
2298  *
2299  * To handle the cancellation of buffer log items, we make two passes
2300  * over the log during recovery.  During the first we build a table of
2301  * those buffers which have been cancelled, and during the second we
2302  * only replay those buffers which do not have corresponding cancel
2303  * records in the table.  See xlog_recover_buffer_pass[1,2] above
2304  * for more details on the implementation of the table of cancel records.
2305  */
2306 STATIC int
2307 xlog_recover_buffer_pass2(
2308 	struct xlog			*log,
2309 	struct list_head		*buffer_list,
2310 	struct xlog_recover_item	*item,
2311 	xfs_lsn_t			current_lsn)
2312 {
2313 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2314 	xfs_mount_t		*mp = log->l_mp;
2315 	xfs_buf_t		*bp;
2316 	int			error;
2317 	uint			buf_flags;
2318 	xfs_lsn_t		lsn;
2319 
2320 	/*
2321 	 * In this pass we only want to recover all the buffers which have
2322 	 * not been cancelled and are not cancellation buffers themselves.
2323 	 */
2324 	if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2325 			buf_f->blf_len, buf_f->blf_flags)) {
2326 		trace_xfs_log_recover_buf_cancel(log, buf_f);
2327 		return 0;
2328 	}
2329 
2330 	trace_xfs_log_recover_buf_recover(log, buf_f);
2331 
2332 	buf_flags = 0;
2333 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2334 		buf_flags |= XBF_UNMAPPED;
2335 
2336 	bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2337 			  buf_flags, NULL);
2338 	if (!bp)
2339 		return -ENOMEM;
2340 	error = bp->b_error;
2341 	if (error) {
2342 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2343 		goto out_release;
2344 	}
2345 
2346 	/*
2347 	 * Recover the buffer only if we get an LSN from it and it's less than
2348 	 * the lsn of the transaction we are replaying.
2349 	 *
2350 	 * Note that we have to be extremely careful of readahead here.
2351 	 * Readahead does not attach verfiers to the buffers so if we don't
2352 	 * actually do any replay after readahead because of the LSN we found
2353 	 * in the buffer if more recent than that current transaction then we
2354 	 * need to attach the verifier directly. Failure to do so can lead to
2355 	 * future recovery actions (e.g. EFI and unlinked list recovery) can
2356 	 * operate on the buffers and they won't get the verifier attached. This
2357 	 * can lead to blocks on disk having the correct content but a stale
2358 	 * CRC.
2359 	 *
2360 	 * It is safe to assume these clean buffers are currently up to date.
2361 	 * If the buffer is dirtied by a later transaction being replayed, then
2362 	 * the verifier will be reset to match whatever recover turns that
2363 	 * buffer into.
2364 	 */
2365 	lsn = xlog_recover_get_buf_lsn(mp, bp);
2366 	if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2367 		xlog_recover_validate_buf_type(mp, bp, buf_f);
2368 		goto out_release;
2369 	}
2370 
2371 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2372 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2373 		if (error)
2374 			goto out_release;
2375 	} else if (buf_f->blf_flags &
2376 		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2377 		bool	dirty;
2378 
2379 		dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2380 		if (!dirty)
2381 			goto out_release;
2382 	} else {
2383 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2384 	}
2385 
2386 	/*
2387 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2388 	 * slower when taking into account all the buffers to be flushed.
2389 	 *
2390 	 * Also make sure that only inode buffers with good sizes stay in
2391 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2392 	 * or mp->m_inode_cluster_size bytes, whichever is bigger.  The inode
2393 	 * buffers in the log can be a different size if the log was generated
2394 	 * by an older kernel using unclustered inode buffers or a newer kernel
2395 	 * running with a different inode cluster size.  Regardless, if the
2396 	 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2397 	 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2398 	 * the buffer out of the buffer cache so that the buffer won't
2399 	 * overlap with future reads of those inodes.
2400 	 */
2401 	if (XFS_DINODE_MAGIC ==
2402 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2403 	    (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2404 			(__uint32_t)log->l_mp->m_inode_cluster_size))) {
2405 		xfs_buf_stale(bp);
2406 		error = xfs_bwrite(bp);
2407 	} else {
2408 		ASSERT(bp->b_target->bt_mount == mp);
2409 		bp->b_iodone = xlog_recover_iodone;
2410 		xfs_buf_delwri_queue(bp, buffer_list);
2411 	}
2412 
2413 out_release:
2414 	xfs_buf_relse(bp);
2415 	return error;
2416 }
2417 
2418 /*
2419  * Inode fork owner changes
2420  *
2421  * If we have been told that we have to reparent the inode fork, it's because an
2422  * extent swap operation on a CRC enabled filesystem has been done and we are
2423  * replaying it. We need to walk the BMBT of the appropriate fork and change the
2424  * owners of it.
2425  *
2426  * The complexity here is that we don't have an inode context to work with, so
2427  * after we've replayed the inode we need to instantiate one.  This is where the
2428  * fun begins.
2429  *
2430  * We are in the middle of log recovery, so we can't run transactions. That
2431  * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2432  * that will result in the corresponding iput() running the inode through
2433  * xfs_inactive(). If we've just replayed an inode core that changes the link
2434  * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2435  * transactions (bad!).
2436  *
2437  * So, to avoid this, we instantiate an inode directly from the inode core we've
2438  * just recovered. We have the buffer still locked, and all we really need to
2439  * instantiate is the inode core and the forks being modified. We can do this
2440  * manually, then run the inode btree owner change, and then tear down the
2441  * xfs_inode without having to run any transactions at all.
2442  *
2443  * Also, because we don't have a transaction context available here but need to
2444  * gather all the buffers we modify for writeback so we pass the buffer_list
2445  * instead for the operation to use.
2446  */
2447 
2448 STATIC int
2449 xfs_recover_inode_owner_change(
2450 	struct xfs_mount	*mp,
2451 	struct xfs_dinode	*dip,
2452 	struct xfs_inode_log_format *in_f,
2453 	struct list_head	*buffer_list)
2454 {
2455 	struct xfs_inode	*ip;
2456 	int			error;
2457 
2458 	ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2459 
2460 	ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2461 	if (!ip)
2462 		return -ENOMEM;
2463 
2464 	/* instantiate the inode */
2465 	xfs_dinode_from_disk(&ip->i_d, dip);
2466 	ASSERT(ip->i_d.di_version >= 3);
2467 
2468 	error = xfs_iformat_fork(ip, dip);
2469 	if (error)
2470 		goto out_free_ip;
2471 
2472 
2473 	if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2474 		ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2475 		error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2476 					      ip->i_ino, buffer_list);
2477 		if (error)
2478 			goto out_free_ip;
2479 	}
2480 
2481 	if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2482 		ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2483 		error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2484 					      ip->i_ino, buffer_list);
2485 		if (error)
2486 			goto out_free_ip;
2487 	}
2488 
2489 out_free_ip:
2490 	xfs_inode_free(ip);
2491 	return error;
2492 }
2493 
2494 STATIC int
2495 xlog_recover_inode_pass2(
2496 	struct xlog			*log,
2497 	struct list_head		*buffer_list,
2498 	struct xlog_recover_item	*item,
2499 	xfs_lsn_t			current_lsn)
2500 {
2501 	xfs_inode_log_format_t	*in_f;
2502 	xfs_mount_t		*mp = log->l_mp;
2503 	xfs_buf_t		*bp;
2504 	xfs_dinode_t		*dip;
2505 	int			len;
2506 	xfs_caddr_t		src;
2507 	xfs_caddr_t		dest;
2508 	int			error;
2509 	int			attr_index;
2510 	uint			fields;
2511 	xfs_icdinode_t		*dicp;
2512 	uint			isize;
2513 	int			need_free = 0;
2514 
2515 	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2516 		in_f = item->ri_buf[0].i_addr;
2517 	} else {
2518 		in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2519 		need_free = 1;
2520 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2521 		if (error)
2522 			goto error;
2523 	}
2524 
2525 	/*
2526 	 * Inode buffers can be freed, look out for it,
2527 	 * and do not replay the inode.
2528 	 */
2529 	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2530 					in_f->ilf_len, 0)) {
2531 		error = 0;
2532 		trace_xfs_log_recover_inode_cancel(log, in_f);
2533 		goto error;
2534 	}
2535 	trace_xfs_log_recover_inode_recover(log, in_f);
2536 
2537 	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2538 			  &xfs_inode_buf_ops);
2539 	if (!bp) {
2540 		error = -ENOMEM;
2541 		goto error;
2542 	}
2543 	error = bp->b_error;
2544 	if (error) {
2545 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2546 		goto out_release;
2547 	}
2548 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2549 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2550 
2551 	/*
2552 	 * Make sure the place we're flushing out to really looks
2553 	 * like an inode!
2554 	 */
2555 	if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2556 		xfs_alert(mp,
2557 	"%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2558 			__func__, dip, bp, in_f->ilf_ino);
2559 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2560 				 XFS_ERRLEVEL_LOW, mp);
2561 		error = -EFSCORRUPTED;
2562 		goto out_release;
2563 	}
2564 	dicp = item->ri_buf[1].i_addr;
2565 	if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2566 		xfs_alert(mp,
2567 			"%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2568 			__func__, item, in_f->ilf_ino);
2569 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2570 				 XFS_ERRLEVEL_LOW, mp);
2571 		error = -EFSCORRUPTED;
2572 		goto out_release;
2573 	}
2574 
2575 	/*
2576 	 * If the inode has an LSN in it, recover the inode only if it's less
2577 	 * than the lsn of the transaction we are replaying. Note: we still
2578 	 * need to replay an owner change even though the inode is more recent
2579 	 * than the transaction as there is no guarantee that all the btree
2580 	 * blocks are more recent than this transaction, too.
2581 	 */
2582 	if (dip->di_version >= 3) {
2583 		xfs_lsn_t	lsn = be64_to_cpu(dip->di_lsn);
2584 
2585 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2586 			trace_xfs_log_recover_inode_skip(log, in_f);
2587 			error = 0;
2588 			goto out_owner_change;
2589 		}
2590 	}
2591 
2592 	/*
2593 	 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2594 	 * are transactional and if ordering is necessary we can determine that
2595 	 * more accurately by the LSN field in the V3 inode core. Don't trust
2596 	 * the inode versions we might be changing them here - use the
2597 	 * superblock flag to determine whether we need to look at di_flushiter
2598 	 * to skip replay when the on disk inode is newer than the log one
2599 	 */
2600 	if (!xfs_sb_version_hascrc(&mp->m_sb) &&
2601 	    dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2602 		/*
2603 		 * Deal with the wrap case, DI_MAX_FLUSH is less
2604 		 * than smaller numbers
2605 		 */
2606 		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2607 		    dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2608 			/* do nothing */
2609 		} else {
2610 			trace_xfs_log_recover_inode_skip(log, in_f);
2611 			error = 0;
2612 			goto out_release;
2613 		}
2614 	}
2615 
2616 	/* Take the opportunity to reset the flush iteration count */
2617 	dicp->di_flushiter = 0;
2618 
2619 	if (unlikely(S_ISREG(dicp->di_mode))) {
2620 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2621 		    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2622 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2623 					 XFS_ERRLEVEL_LOW, mp, dicp);
2624 			xfs_alert(mp,
2625 		"%s: Bad regular inode log record, rec ptr 0x%p, "
2626 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2627 				__func__, item, dip, bp, in_f->ilf_ino);
2628 			error = -EFSCORRUPTED;
2629 			goto out_release;
2630 		}
2631 	} else if (unlikely(S_ISDIR(dicp->di_mode))) {
2632 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2633 		    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2634 		    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2635 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2636 					     XFS_ERRLEVEL_LOW, mp, dicp);
2637 			xfs_alert(mp,
2638 		"%s: Bad dir inode log record, rec ptr 0x%p, "
2639 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2640 				__func__, item, dip, bp, in_f->ilf_ino);
2641 			error = -EFSCORRUPTED;
2642 			goto out_release;
2643 		}
2644 	}
2645 	if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2646 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2647 				     XFS_ERRLEVEL_LOW, mp, dicp);
2648 		xfs_alert(mp,
2649 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2650 	"dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2651 			__func__, item, dip, bp, in_f->ilf_ino,
2652 			dicp->di_nextents + dicp->di_anextents,
2653 			dicp->di_nblocks);
2654 		error = -EFSCORRUPTED;
2655 		goto out_release;
2656 	}
2657 	if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2658 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2659 				     XFS_ERRLEVEL_LOW, mp, dicp);
2660 		xfs_alert(mp,
2661 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2662 	"dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2663 			item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2664 		error = -EFSCORRUPTED;
2665 		goto out_release;
2666 	}
2667 	isize = xfs_icdinode_size(dicp->di_version);
2668 	if (unlikely(item->ri_buf[1].i_len > isize)) {
2669 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2670 				     XFS_ERRLEVEL_LOW, mp, dicp);
2671 		xfs_alert(mp,
2672 			"%s: Bad inode log record length %d, rec ptr 0x%p",
2673 			__func__, item->ri_buf[1].i_len, item);
2674 		error = -EFSCORRUPTED;
2675 		goto out_release;
2676 	}
2677 
2678 	/* The core is in in-core format */
2679 	xfs_dinode_to_disk(dip, dicp);
2680 
2681 	/* the rest is in on-disk format */
2682 	if (item->ri_buf[1].i_len > isize) {
2683 		memcpy((char *)dip + isize,
2684 			item->ri_buf[1].i_addr + isize,
2685 			item->ri_buf[1].i_len - isize);
2686 	}
2687 
2688 	fields = in_f->ilf_fields;
2689 	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2690 	case XFS_ILOG_DEV:
2691 		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2692 		break;
2693 	case XFS_ILOG_UUID:
2694 		memcpy(XFS_DFORK_DPTR(dip),
2695 		       &in_f->ilf_u.ilfu_uuid,
2696 		       sizeof(uuid_t));
2697 		break;
2698 	}
2699 
2700 	if (in_f->ilf_size == 2)
2701 		goto out_owner_change;
2702 	len = item->ri_buf[2].i_len;
2703 	src = item->ri_buf[2].i_addr;
2704 	ASSERT(in_f->ilf_size <= 4);
2705 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2706 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
2707 	       (len == in_f->ilf_dsize));
2708 
2709 	switch (fields & XFS_ILOG_DFORK) {
2710 	case XFS_ILOG_DDATA:
2711 	case XFS_ILOG_DEXT:
2712 		memcpy(XFS_DFORK_DPTR(dip), src, len);
2713 		break;
2714 
2715 	case XFS_ILOG_DBROOT:
2716 		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2717 				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2718 				 XFS_DFORK_DSIZE(dip, mp));
2719 		break;
2720 
2721 	default:
2722 		/*
2723 		 * There are no data fork flags set.
2724 		 */
2725 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
2726 		break;
2727 	}
2728 
2729 	/*
2730 	 * If we logged any attribute data, recover it.  There may or
2731 	 * may not have been any other non-core data logged in this
2732 	 * transaction.
2733 	 */
2734 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2735 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2736 			attr_index = 3;
2737 		} else {
2738 			attr_index = 2;
2739 		}
2740 		len = item->ri_buf[attr_index].i_len;
2741 		src = item->ri_buf[attr_index].i_addr;
2742 		ASSERT(len == in_f->ilf_asize);
2743 
2744 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2745 		case XFS_ILOG_ADATA:
2746 		case XFS_ILOG_AEXT:
2747 			dest = XFS_DFORK_APTR(dip);
2748 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2749 			memcpy(dest, src, len);
2750 			break;
2751 
2752 		case XFS_ILOG_ABROOT:
2753 			dest = XFS_DFORK_APTR(dip);
2754 			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2755 					 len, (xfs_bmdr_block_t*)dest,
2756 					 XFS_DFORK_ASIZE(dip, mp));
2757 			break;
2758 
2759 		default:
2760 			xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2761 			ASSERT(0);
2762 			error = -EIO;
2763 			goto out_release;
2764 		}
2765 	}
2766 
2767 out_owner_change:
2768 	if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
2769 		error = xfs_recover_inode_owner_change(mp, dip, in_f,
2770 						       buffer_list);
2771 	/* re-generate the checksum. */
2772 	xfs_dinode_calc_crc(log->l_mp, dip);
2773 
2774 	ASSERT(bp->b_target->bt_mount == mp);
2775 	bp->b_iodone = xlog_recover_iodone;
2776 	xfs_buf_delwri_queue(bp, buffer_list);
2777 
2778 out_release:
2779 	xfs_buf_relse(bp);
2780 error:
2781 	if (need_free)
2782 		kmem_free(in_f);
2783 	return error;
2784 }
2785 
2786 /*
2787  * Recover QUOTAOFF records. We simply make a note of it in the xlog
2788  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2789  * of that type.
2790  */
2791 STATIC int
2792 xlog_recover_quotaoff_pass1(
2793 	struct xlog			*log,
2794 	struct xlog_recover_item	*item)
2795 {
2796 	xfs_qoff_logformat_t	*qoff_f = item->ri_buf[0].i_addr;
2797 	ASSERT(qoff_f);
2798 
2799 	/*
2800 	 * The logitem format's flag tells us if this was user quotaoff,
2801 	 * group/project quotaoff or both.
2802 	 */
2803 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2804 		log->l_quotaoffs_flag |= XFS_DQ_USER;
2805 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2806 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2807 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2808 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2809 
2810 	return 0;
2811 }
2812 
2813 /*
2814  * Recover a dquot record
2815  */
2816 STATIC int
2817 xlog_recover_dquot_pass2(
2818 	struct xlog			*log,
2819 	struct list_head		*buffer_list,
2820 	struct xlog_recover_item	*item,
2821 	xfs_lsn_t			current_lsn)
2822 {
2823 	xfs_mount_t		*mp = log->l_mp;
2824 	xfs_buf_t		*bp;
2825 	struct xfs_disk_dquot	*ddq, *recddq;
2826 	int			error;
2827 	xfs_dq_logformat_t	*dq_f;
2828 	uint			type;
2829 
2830 
2831 	/*
2832 	 * Filesystems are required to send in quota flags at mount time.
2833 	 */
2834 	if (mp->m_qflags == 0)
2835 		return 0;
2836 
2837 	recddq = item->ri_buf[1].i_addr;
2838 	if (recddq == NULL) {
2839 		xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2840 		return -EIO;
2841 	}
2842 	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2843 		xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2844 			item->ri_buf[1].i_len, __func__);
2845 		return -EIO;
2846 	}
2847 
2848 	/*
2849 	 * This type of quotas was turned off, so ignore this record.
2850 	 */
2851 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2852 	ASSERT(type);
2853 	if (log->l_quotaoffs_flag & type)
2854 		return 0;
2855 
2856 	/*
2857 	 * At this point we know that quota was _not_ turned off.
2858 	 * Since the mount flags are not indicating to us otherwise, this
2859 	 * must mean that quota is on, and the dquot needs to be replayed.
2860 	 * Remember that we may not have fully recovered the superblock yet,
2861 	 * so we can't do the usual trick of looking at the SB quota bits.
2862 	 *
2863 	 * The other possibility, of course, is that the quota subsystem was
2864 	 * removed since the last mount - ENOSYS.
2865 	 */
2866 	dq_f = item->ri_buf[0].i_addr;
2867 	ASSERT(dq_f);
2868 	error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2869 			   "xlog_recover_dquot_pass2 (log copy)");
2870 	if (error)
2871 		return -EIO;
2872 	ASSERT(dq_f->qlf_len == 1);
2873 
2874 	/*
2875 	 * At this point we are assuming that the dquots have been allocated
2876 	 * and hence the buffer has valid dquots stamped in it. It should,
2877 	 * therefore, pass verifier validation. If the dquot is bad, then the
2878 	 * we'll return an error here, so we don't need to specifically check
2879 	 * the dquot in the buffer after the verifier has run.
2880 	 */
2881 	error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
2882 				   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
2883 				   &xfs_dquot_buf_ops);
2884 	if (error)
2885 		return error;
2886 
2887 	ASSERT(bp);
2888 	ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2889 
2890 	/*
2891 	 * If the dquot has an LSN in it, recover the dquot only if it's less
2892 	 * than the lsn of the transaction we are replaying.
2893 	 */
2894 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
2895 		struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
2896 		xfs_lsn_t	lsn = be64_to_cpu(dqb->dd_lsn);
2897 
2898 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2899 			goto out_release;
2900 		}
2901 	}
2902 
2903 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
2904 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
2905 		xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
2906 				 XFS_DQUOT_CRC_OFF);
2907 	}
2908 
2909 	ASSERT(dq_f->qlf_size == 2);
2910 	ASSERT(bp->b_target->bt_mount == mp);
2911 	bp->b_iodone = xlog_recover_iodone;
2912 	xfs_buf_delwri_queue(bp, buffer_list);
2913 
2914 out_release:
2915 	xfs_buf_relse(bp);
2916 	return 0;
2917 }
2918 
2919 /*
2920  * This routine is called to create an in-core extent free intent
2921  * item from the efi format structure which was logged on disk.
2922  * It allocates an in-core efi, copies the extents from the format
2923  * structure into it, and adds the efi to the AIL with the given
2924  * LSN.
2925  */
2926 STATIC int
2927 xlog_recover_efi_pass2(
2928 	struct xlog			*log,
2929 	struct xlog_recover_item	*item,
2930 	xfs_lsn_t			lsn)
2931 {
2932 	int			error;
2933 	xfs_mount_t		*mp = log->l_mp;
2934 	xfs_efi_log_item_t	*efip;
2935 	xfs_efi_log_format_t	*efi_formatp;
2936 
2937 	efi_formatp = item->ri_buf[0].i_addr;
2938 
2939 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2940 	if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2941 					 &(efip->efi_format)))) {
2942 		xfs_efi_item_free(efip);
2943 		return error;
2944 	}
2945 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2946 
2947 	spin_lock(&log->l_ailp->xa_lock);
2948 	/*
2949 	 * xfs_trans_ail_update() drops the AIL lock.
2950 	 */
2951 	xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
2952 	return 0;
2953 }
2954 
2955 
2956 /*
2957  * This routine is called when an efd format structure is found in
2958  * a committed transaction in the log.  It's purpose is to cancel
2959  * the corresponding efi if it was still in the log.  To do this
2960  * it searches the AIL for the efi with an id equal to that in the
2961  * efd format structure.  If we find it, we remove the efi from the
2962  * AIL and free it.
2963  */
2964 STATIC int
2965 xlog_recover_efd_pass2(
2966 	struct xlog			*log,
2967 	struct xlog_recover_item	*item)
2968 {
2969 	xfs_efd_log_format_t	*efd_formatp;
2970 	xfs_efi_log_item_t	*efip = NULL;
2971 	xfs_log_item_t		*lip;
2972 	__uint64_t		efi_id;
2973 	struct xfs_ail_cursor	cur;
2974 	struct xfs_ail		*ailp = log->l_ailp;
2975 
2976 	efd_formatp = item->ri_buf[0].i_addr;
2977 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2978 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2979 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2980 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2981 	efi_id = efd_formatp->efd_efi_id;
2982 
2983 	/*
2984 	 * Search for the efi with the id in the efd format structure
2985 	 * in the AIL.
2986 	 */
2987 	spin_lock(&ailp->xa_lock);
2988 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2989 	while (lip != NULL) {
2990 		if (lip->li_type == XFS_LI_EFI) {
2991 			efip = (xfs_efi_log_item_t *)lip;
2992 			if (efip->efi_format.efi_id == efi_id) {
2993 				/*
2994 				 * xfs_trans_ail_delete() drops the
2995 				 * AIL lock.
2996 				 */
2997 				xfs_trans_ail_delete(ailp, lip,
2998 						     SHUTDOWN_CORRUPT_INCORE);
2999 				xfs_efi_item_free(efip);
3000 				spin_lock(&ailp->xa_lock);
3001 				break;
3002 			}
3003 		}
3004 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3005 	}
3006 	xfs_trans_ail_cursor_done(&cur);
3007 	spin_unlock(&ailp->xa_lock);
3008 
3009 	return 0;
3010 }
3011 
3012 /*
3013  * This routine is called when an inode create format structure is found in a
3014  * committed transaction in the log.  It's purpose is to initialise the inodes
3015  * being allocated on disk. This requires us to get inode cluster buffers that
3016  * match the range to be intialised, stamped with inode templates and written
3017  * by delayed write so that subsequent modifications will hit the cached buffer
3018  * and only need writing out at the end of recovery.
3019  */
3020 STATIC int
3021 xlog_recover_do_icreate_pass2(
3022 	struct xlog		*log,
3023 	struct list_head	*buffer_list,
3024 	xlog_recover_item_t	*item)
3025 {
3026 	struct xfs_mount	*mp = log->l_mp;
3027 	struct xfs_icreate_log	*icl;
3028 	xfs_agnumber_t		agno;
3029 	xfs_agblock_t		agbno;
3030 	unsigned int		count;
3031 	unsigned int		isize;
3032 	xfs_agblock_t		length;
3033 
3034 	icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3035 	if (icl->icl_type != XFS_LI_ICREATE) {
3036 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3037 		return -EINVAL;
3038 	}
3039 
3040 	if (icl->icl_size != 1) {
3041 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3042 		return -EINVAL;
3043 	}
3044 
3045 	agno = be32_to_cpu(icl->icl_ag);
3046 	if (agno >= mp->m_sb.sb_agcount) {
3047 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3048 		return -EINVAL;
3049 	}
3050 	agbno = be32_to_cpu(icl->icl_agbno);
3051 	if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3052 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3053 		return -EINVAL;
3054 	}
3055 	isize = be32_to_cpu(icl->icl_isize);
3056 	if (isize != mp->m_sb.sb_inodesize) {
3057 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3058 		return -EINVAL;
3059 	}
3060 	count = be32_to_cpu(icl->icl_count);
3061 	if (!count) {
3062 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3063 		return -EINVAL;
3064 	}
3065 	length = be32_to_cpu(icl->icl_length);
3066 	if (!length || length >= mp->m_sb.sb_agblocks) {
3067 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3068 		return -EINVAL;
3069 	}
3070 
3071 	/* existing allocation is fixed value */
3072 	ASSERT(count == mp->m_ialloc_inos);
3073 	ASSERT(length == mp->m_ialloc_blks);
3074 	if (count != mp->m_ialloc_inos ||
3075 	     length != mp->m_ialloc_blks) {
3076 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2");
3077 		return -EINVAL;
3078 	}
3079 
3080 	/*
3081 	 * Inode buffers can be freed. Do not replay the inode initialisation as
3082 	 * we could be overwriting something written after this inode buffer was
3083 	 * cancelled.
3084 	 *
3085 	 * XXX: we need to iterate all buffers and only init those that are not
3086 	 * cancelled. I think that a more fine grained factoring of
3087 	 * xfs_ialloc_inode_init may be appropriate here to enable this to be
3088 	 * done easily.
3089 	 */
3090 	if (xlog_check_buffer_cancelled(log,
3091 			XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0))
3092 		return 0;
3093 
3094 	xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length,
3095 					be32_to_cpu(icl->icl_gen));
3096 	return 0;
3097 }
3098 
3099 STATIC void
3100 xlog_recover_buffer_ra_pass2(
3101 	struct xlog                     *log,
3102 	struct xlog_recover_item        *item)
3103 {
3104 	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
3105 	struct xfs_mount		*mp = log->l_mp;
3106 
3107 	if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3108 			buf_f->blf_len, buf_f->blf_flags)) {
3109 		return;
3110 	}
3111 
3112 	xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3113 				buf_f->blf_len, NULL);
3114 }
3115 
3116 STATIC void
3117 xlog_recover_inode_ra_pass2(
3118 	struct xlog                     *log,
3119 	struct xlog_recover_item        *item)
3120 {
3121 	struct xfs_inode_log_format	ilf_buf;
3122 	struct xfs_inode_log_format	*ilfp;
3123 	struct xfs_mount		*mp = log->l_mp;
3124 	int			error;
3125 
3126 	if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3127 		ilfp = item->ri_buf[0].i_addr;
3128 	} else {
3129 		ilfp = &ilf_buf;
3130 		memset(ilfp, 0, sizeof(*ilfp));
3131 		error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3132 		if (error)
3133 			return;
3134 	}
3135 
3136 	if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3137 		return;
3138 
3139 	xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3140 				ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3141 }
3142 
3143 STATIC void
3144 xlog_recover_dquot_ra_pass2(
3145 	struct xlog			*log,
3146 	struct xlog_recover_item	*item)
3147 {
3148 	struct xfs_mount	*mp = log->l_mp;
3149 	struct xfs_disk_dquot	*recddq;
3150 	struct xfs_dq_logformat	*dq_f;
3151 	uint			type;
3152 
3153 
3154 	if (mp->m_qflags == 0)
3155 		return;
3156 
3157 	recddq = item->ri_buf[1].i_addr;
3158 	if (recddq == NULL)
3159 		return;
3160 	if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3161 		return;
3162 
3163 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3164 	ASSERT(type);
3165 	if (log->l_quotaoffs_flag & type)
3166 		return;
3167 
3168 	dq_f = item->ri_buf[0].i_addr;
3169 	ASSERT(dq_f);
3170 	ASSERT(dq_f->qlf_len == 1);
3171 
3172 	xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno,
3173 			  XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL);
3174 }
3175 
3176 STATIC void
3177 xlog_recover_ra_pass2(
3178 	struct xlog			*log,
3179 	struct xlog_recover_item	*item)
3180 {
3181 	switch (ITEM_TYPE(item)) {
3182 	case XFS_LI_BUF:
3183 		xlog_recover_buffer_ra_pass2(log, item);
3184 		break;
3185 	case XFS_LI_INODE:
3186 		xlog_recover_inode_ra_pass2(log, item);
3187 		break;
3188 	case XFS_LI_DQUOT:
3189 		xlog_recover_dquot_ra_pass2(log, item);
3190 		break;
3191 	case XFS_LI_EFI:
3192 	case XFS_LI_EFD:
3193 	case XFS_LI_QUOTAOFF:
3194 	default:
3195 		break;
3196 	}
3197 }
3198 
3199 STATIC int
3200 xlog_recover_commit_pass1(
3201 	struct xlog			*log,
3202 	struct xlog_recover		*trans,
3203 	struct xlog_recover_item	*item)
3204 {
3205 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3206 
3207 	switch (ITEM_TYPE(item)) {
3208 	case XFS_LI_BUF:
3209 		return xlog_recover_buffer_pass1(log, item);
3210 	case XFS_LI_QUOTAOFF:
3211 		return xlog_recover_quotaoff_pass1(log, item);
3212 	case XFS_LI_INODE:
3213 	case XFS_LI_EFI:
3214 	case XFS_LI_EFD:
3215 	case XFS_LI_DQUOT:
3216 	case XFS_LI_ICREATE:
3217 		/* nothing to do in pass 1 */
3218 		return 0;
3219 	default:
3220 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3221 			__func__, ITEM_TYPE(item));
3222 		ASSERT(0);
3223 		return -EIO;
3224 	}
3225 }
3226 
3227 STATIC int
3228 xlog_recover_commit_pass2(
3229 	struct xlog			*log,
3230 	struct xlog_recover		*trans,
3231 	struct list_head		*buffer_list,
3232 	struct xlog_recover_item	*item)
3233 {
3234 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3235 
3236 	switch (ITEM_TYPE(item)) {
3237 	case XFS_LI_BUF:
3238 		return xlog_recover_buffer_pass2(log, buffer_list, item,
3239 						 trans->r_lsn);
3240 	case XFS_LI_INODE:
3241 		return xlog_recover_inode_pass2(log, buffer_list, item,
3242 						 trans->r_lsn);
3243 	case XFS_LI_EFI:
3244 		return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3245 	case XFS_LI_EFD:
3246 		return xlog_recover_efd_pass2(log, item);
3247 	case XFS_LI_DQUOT:
3248 		return xlog_recover_dquot_pass2(log, buffer_list, item,
3249 						trans->r_lsn);
3250 	case XFS_LI_ICREATE:
3251 		return xlog_recover_do_icreate_pass2(log, buffer_list, item);
3252 	case XFS_LI_QUOTAOFF:
3253 		/* nothing to do in pass2 */
3254 		return 0;
3255 	default:
3256 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3257 			__func__, ITEM_TYPE(item));
3258 		ASSERT(0);
3259 		return -EIO;
3260 	}
3261 }
3262 
3263 STATIC int
3264 xlog_recover_items_pass2(
3265 	struct xlog                     *log,
3266 	struct xlog_recover             *trans,
3267 	struct list_head                *buffer_list,
3268 	struct list_head                *item_list)
3269 {
3270 	struct xlog_recover_item	*item;
3271 	int				error = 0;
3272 
3273 	list_for_each_entry(item, item_list, ri_list) {
3274 		error = xlog_recover_commit_pass2(log, trans,
3275 					  buffer_list, item);
3276 		if (error)
3277 			return error;
3278 	}
3279 
3280 	return error;
3281 }
3282 
3283 /*
3284  * Perform the transaction.
3285  *
3286  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
3287  * EFIs and EFDs get queued up by adding entries into the AIL for them.
3288  */
3289 STATIC int
3290 xlog_recover_commit_trans(
3291 	struct xlog		*log,
3292 	struct xlog_recover	*trans,
3293 	int			pass)
3294 {
3295 	int				error = 0;
3296 	int				error2;
3297 	int				items_queued = 0;
3298 	struct xlog_recover_item	*item;
3299 	struct xlog_recover_item	*next;
3300 	LIST_HEAD			(buffer_list);
3301 	LIST_HEAD			(ra_list);
3302 	LIST_HEAD			(done_list);
3303 
3304 	#define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
3305 
3306 	hlist_del(&trans->r_list);
3307 
3308 	error = xlog_recover_reorder_trans(log, trans, pass);
3309 	if (error)
3310 		return error;
3311 
3312 	list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
3313 		switch (pass) {
3314 		case XLOG_RECOVER_PASS1:
3315 			error = xlog_recover_commit_pass1(log, trans, item);
3316 			break;
3317 		case XLOG_RECOVER_PASS2:
3318 			xlog_recover_ra_pass2(log, item);
3319 			list_move_tail(&item->ri_list, &ra_list);
3320 			items_queued++;
3321 			if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3322 				error = xlog_recover_items_pass2(log, trans,
3323 						&buffer_list, &ra_list);
3324 				list_splice_tail_init(&ra_list, &done_list);
3325 				items_queued = 0;
3326 			}
3327 
3328 			break;
3329 		default:
3330 			ASSERT(0);
3331 		}
3332 
3333 		if (error)
3334 			goto out;
3335 	}
3336 
3337 out:
3338 	if (!list_empty(&ra_list)) {
3339 		if (!error)
3340 			error = xlog_recover_items_pass2(log, trans,
3341 					&buffer_list, &ra_list);
3342 		list_splice_tail_init(&ra_list, &done_list);
3343 	}
3344 
3345 	if (!list_empty(&done_list))
3346 		list_splice_init(&done_list, &trans->r_itemq);
3347 
3348 	error2 = xfs_buf_delwri_submit(&buffer_list);
3349 	return error ? error : error2;
3350 }
3351 
3352 STATIC void
3353 xlog_recover_add_item(
3354 	struct list_head	*head)
3355 {
3356 	xlog_recover_item_t	*item;
3357 
3358 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
3359 	INIT_LIST_HEAD(&item->ri_list);
3360 	list_add_tail(&item->ri_list, head);
3361 }
3362 
3363 STATIC int
3364 xlog_recover_add_to_cont_trans(
3365 	struct xlog		*log,
3366 	struct xlog_recover	*trans,
3367 	xfs_caddr_t		dp,
3368 	int			len)
3369 {
3370 	xlog_recover_item_t	*item;
3371 	xfs_caddr_t		ptr, old_ptr;
3372 	int			old_len;
3373 
3374 	if (list_empty(&trans->r_itemq)) {
3375 		/* finish copying rest of trans header */
3376 		xlog_recover_add_item(&trans->r_itemq);
3377 		ptr = (xfs_caddr_t) &trans->r_theader +
3378 				sizeof(xfs_trans_header_t) - len;
3379 		memcpy(ptr, dp, len);
3380 		return 0;
3381 	}
3382 	/* take the tail entry */
3383 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3384 
3385 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
3386 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
3387 
3388 	ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
3389 	memcpy(&ptr[old_len], dp, len);
3390 	item->ri_buf[item->ri_cnt-1].i_len += len;
3391 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
3392 	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
3393 	return 0;
3394 }
3395 
3396 /*
3397  * The next region to add is the start of a new region.  It could be
3398  * a whole region or it could be the first part of a new region.  Because
3399  * of this, the assumption here is that the type and size fields of all
3400  * format structures fit into the first 32 bits of the structure.
3401  *
3402  * This works because all regions must be 32 bit aligned.  Therefore, we
3403  * either have both fields or we have neither field.  In the case we have
3404  * neither field, the data part of the region is zero length.  We only have
3405  * a log_op_header and can throw away the header since a new one will appear
3406  * later.  If we have at least 4 bytes, then we can determine how many regions
3407  * will appear in the current log item.
3408  */
3409 STATIC int
3410 xlog_recover_add_to_trans(
3411 	struct xlog		*log,
3412 	struct xlog_recover	*trans,
3413 	xfs_caddr_t		dp,
3414 	int			len)
3415 {
3416 	xfs_inode_log_format_t	*in_f;			/* any will do */
3417 	xlog_recover_item_t	*item;
3418 	xfs_caddr_t		ptr;
3419 
3420 	if (!len)
3421 		return 0;
3422 	if (list_empty(&trans->r_itemq)) {
3423 		/* we need to catch log corruptions here */
3424 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
3425 			xfs_warn(log->l_mp, "%s: bad header magic number",
3426 				__func__);
3427 			ASSERT(0);
3428 			return -EIO;
3429 		}
3430 		if (len == sizeof(xfs_trans_header_t))
3431 			xlog_recover_add_item(&trans->r_itemq);
3432 		memcpy(&trans->r_theader, dp, len);
3433 		return 0;
3434 	}
3435 
3436 	ptr = kmem_alloc(len, KM_SLEEP);
3437 	memcpy(ptr, dp, len);
3438 	in_f = (xfs_inode_log_format_t *)ptr;
3439 
3440 	/* take the tail entry */
3441 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3442 	if (item->ri_total != 0 &&
3443 	     item->ri_total == item->ri_cnt) {
3444 		/* tail item is in use, get a new one */
3445 		xlog_recover_add_item(&trans->r_itemq);
3446 		item = list_entry(trans->r_itemq.prev,
3447 					xlog_recover_item_t, ri_list);
3448 	}
3449 
3450 	if (item->ri_total == 0) {		/* first region to be added */
3451 		if (in_f->ilf_size == 0 ||
3452 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
3453 			xfs_warn(log->l_mp,
3454 		"bad number of regions (%d) in inode log format",
3455 				  in_f->ilf_size);
3456 			ASSERT(0);
3457 			kmem_free(ptr);
3458 			return -EIO;
3459 		}
3460 
3461 		item->ri_total = in_f->ilf_size;
3462 		item->ri_buf =
3463 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
3464 				    KM_SLEEP);
3465 	}
3466 	ASSERT(item->ri_total > item->ri_cnt);
3467 	/* Description region is ri_buf[0] */
3468 	item->ri_buf[item->ri_cnt].i_addr = ptr;
3469 	item->ri_buf[item->ri_cnt].i_len  = len;
3470 	item->ri_cnt++;
3471 	trace_xfs_log_recover_item_add(log, trans, item, 0);
3472 	return 0;
3473 }
3474 
3475 /*
3476  * Free up any resources allocated by the transaction
3477  *
3478  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3479  */
3480 STATIC void
3481 xlog_recover_free_trans(
3482 	struct xlog_recover	*trans)
3483 {
3484 	xlog_recover_item_t	*item, *n;
3485 	int			i;
3486 
3487 	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3488 		/* Free the regions in the item. */
3489 		list_del(&item->ri_list);
3490 		for (i = 0; i < item->ri_cnt; i++)
3491 			kmem_free(item->ri_buf[i].i_addr);
3492 		/* Free the item itself */
3493 		kmem_free(item->ri_buf);
3494 		kmem_free(item);
3495 	}
3496 	/* Free the transaction recover structure */
3497 	kmem_free(trans);
3498 }
3499 
3500 /*
3501  * On error or completion, trans is freed.
3502  */
3503 STATIC int
3504 xlog_recovery_process_trans(
3505 	struct xlog		*log,
3506 	struct xlog_recover	*trans,
3507 	xfs_caddr_t		dp,
3508 	unsigned int		len,
3509 	unsigned int		flags,
3510 	int			pass)
3511 {
3512 	int			error = 0;
3513 	bool			freeit = false;
3514 
3515 	/* mask off ophdr transaction container flags */
3516 	flags &= ~XLOG_END_TRANS;
3517 	if (flags & XLOG_WAS_CONT_TRANS)
3518 		flags &= ~XLOG_CONTINUE_TRANS;
3519 
3520 	/*
3521 	 * Callees must not free the trans structure. We'll decide if we need to
3522 	 * free it or not based on the operation being done and it's result.
3523 	 */
3524 	switch (flags) {
3525 	/* expected flag values */
3526 	case 0:
3527 	case XLOG_CONTINUE_TRANS:
3528 		error = xlog_recover_add_to_trans(log, trans, dp, len);
3529 		break;
3530 	case XLOG_WAS_CONT_TRANS:
3531 		error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
3532 		break;
3533 	case XLOG_COMMIT_TRANS:
3534 		error = xlog_recover_commit_trans(log, trans, pass);
3535 		/* success or fail, we are now done with this transaction. */
3536 		freeit = true;
3537 		break;
3538 
3539 	/* unexpected flag values */
3540 	case XLOG_UNMOUNT_TRANS:
3541 		/* just skip trans */
3542 		xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
3543 		freeit = true;
3544 		break;
3545 	case XLOG_START_TRANS:
3546 	default:
3547 		xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
3548 		ASSERT(0);
3549 		error = -EIO;
3550 		break;
3551 	}
3552 	if (error || freeit)
3553 		xlog_recover_free_trans(trans);
3554 	return error;
3555 }
3556 
3557 /*
3558  * Lookup the transaction recovery structure associated with the ID in the
3559  * current ophdr. If the transaction doesn't exist and the start flag is set in
3560  * the ophdr, then allocate a new transaction for future ID matches to find.
3561  * Either way, return what we found during the lookup - an existing transaction
3562  * or nothing.
3563  */
3564 STATIC struct xlog_recover *
3565 xlog_recover_ophdr_to_trans(
3566 	struct hlist_head	rhash[],
3567 	struct xlog_rec_header	*rhead,
3568 	struct xlog_op_header	*ohead)
3569 {
3570 	struct xlog_recover	*trans;
3571 	xlog_tid_t		tid;
3572 	struct hlist_head	*rhp;
3573 
3574 	tid = be32_to_cpu(ohead->oh_tid);
3575 	rhp = &rhash[XLOG_RHASH(tid)];
3576 	hlist_for_each_entry(trans, rhp, r_list) {
3577 		if (trans->r_log_tid == tid)
3578 			return trans;
3579 	}
3580 
3581 	/*
3582 	 * skip over non-start transaction headers - we could be
3583 	 * processing slack space before the next transaction starts
3584 	 */
3585 	if (!(ohead->oh_flags & XLOG_START_TRANS))
3586 		return NULL;
3587 
3588 	ASSERT(be32_to_cpu(ohead->oh_len) == 0);
3589 
3590 	/*
3591 	 * This is a new transaction so allocate a new recovery container to
3592 	 * hold the recovery ops that will follow.
3593 	 */
3594 	trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
3595 	trans->r_log_tid = tid;
3596 	trans->r_lsn = be64_to_cpu(rhead->h_lsn);
3597 	INIT_LIST_HEAD(&trans->r_itemq);
3598 	INIT_HLIST_NODE(&trans->r_list);
3599 	hlist_add_head(&trans->r_list, rhp);
3600 
3601 	/*
3602 	 * Nothing more to do for this ophdr. Items to be added to this new
3603 	 * transaction will be in subsequent ophdr containers.
3604 	 */
3605 	return NULL;
3606 }
3607 
3608 STATIC int
3609 xlog_recover_process_ophdr(
3610 	struct xlog		*log,
3611 	struct hlist_head	rhash[],
3612 	struct xlog_rec_header	*rhead,
3613 	struct xlog_op_header	*ohead,
3614 	xfs_caddr_t		dp,
3615 	xfs_caddr_t		end,
3616 	int			pass)
3617 {
3618 	struct xlog_recover	*trans;
3619 	unsigned int		len;
3620 
3621 	/* Do we understand who wrote this op? */
3622 	if (ohead->oh_clientid != XFS_TRANSACTION &&
3623 	    ohead->oh_clientid != XFS_LOG) {
3624 		xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3625 			__func__, ohead->oh_clientid);
3626 		ASSERT(0);
3627 		return -EIO;
3628 	}
3629 
3630 	/*
3631 	 * Check the ophdr contains all the data it is supposed to contain.
3632 	 */
3633 	len = be32_to_cpu(ohead->oh_len);
3634 	if (dp + len > end) {
3635 		xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
3636 		WARN_ON(1);
3637 		return -EIO;
3638 	}
3639 
3640 	trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
3641 	if (!trans) {
3642 		/* nothing to do, so skip over this ophdr */
3643 		return 0;
3644 	}
3645 
3646 	return xlog_recovery_process_trans(log, trans, dp, len,
3647 					   ohead->oh_flags, pass);
3648 }
3649 
3650 /*
3651  * There are two valid states of the r_state field.  0 indicates that the
3652  * transaction structure is in a normal state.  We have either seen the
3653  * start of the transaction or the last operation we added was not a partial
3654  * operation.  If the last operation we added to the transaction was a
3655  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3656  *
3657  * NOTE: skip LRs with 0 data length.
3658  */
3659 STATIC int
3660 xlog_recover_process_data(
3661 	struct xlog		*log,
3662 	struct hlist_head	rhash[],
3663 	struct xlog_rec_header	*rhead,
3664 	xfs_caddr_t		dp,
3665 	int			pass)
3666 {
3667 	struct xlog_op_header	*ohead;
3668 	xfs_caddr_t		end;
3669 	int			num_logops;
3670 	int			error;
3671 
3672 	end = dp + be32_to_cpu(rhead->h_len);
3673 	num_logops = be32_to_cpu(rhead->h_num_logops);
3674 
3675 	/* check the log format matches our own - else we can't recover */
3676 	if (xlog_header_check_recover(log->l_mp, rhead))
3677 		return -EIO;
3678 
3679 	while ((dp < end) && num_logops) {
3680 
3681 		ohead = (struct xlog_op_header *)dp;
3682 		dp += sizeof(*ohead);
3683 		ASSERT(dp <= end);
3684 
3685 		/* errors will abort recovery */
3686 		error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
3687 						    dp, end, pass);
3688 		if (error)
3689 			return error;
3690 
3691 		dp += be32_to_cpu(ohead->oh_len);
3692 		num_logops--;
3693 	}
3694 	return 0;
3695 }
3696 
3697 /*
3698  * Process an extent free intent item that was recovered from
3699  * the log.  We need to free the extents that it describes.
3700  */
3701 STATIC int
3702 xlog_recover_process_efi(
3703 	xfs_mount_t		*mp,
3704 	xfs_efi_log_item_t	*efip)
3705 {
3706 	xfs_efd_log_item_t	*efdp;
3707 	xfs_trans_t		*tp;
3708 	int			i;
3709 	int			error = 0;
3710 	xfs_extent_t		*extp;
3711 	xfs_fsblock_t		startblock_fsb;
3712 
3713 	ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
3714 
3715 	/*
3716 	 * First check the validity of the extents described by the
3717 	 * EFI.  If any are bad, then assume that all are bad and
3718 	 * just toss the EFI.
3719 	 */
3720 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3721 		extp = &(efip->efi_format.efi_extents[i]);
3722 		startblock_fsb = XFS_BB_TO_FSB(mp,
3723 				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
3724 		if ((startblock_fsb == 0) ||
3725 		    (extp->ext_len == 0) ||
3726 		    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3727 		    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3728 			/*
3729 			 * This will pull the EFI from the AIL and
3730 			 * free the memory associated with it.
3731 			 */
3732 			set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3733 			xfs_efi_release(efip, efip->efi_format.efi_nextents);
3734 			return -EIO;
3735 		}
3736 	}
3737 
3738 	tp = xfs_trans_alloc(mp, 0);
3739 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
3740 	if (error)
3741 		goto abort_error;
3742 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3743 
3744 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3745 		extp = &(efip->efi_format.efi_extents[i]);
3746 		error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3747 		if (error)
3748 			goto abort_error;
3749 		xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3750 					 extp->ext_len);
3751 	}
3752 
3753 	set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3754 	error = xfs_trans_commit(tp, 0);
3755 	return error;
3756 
3757 abort_error:
3758 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3759 	return error;
3760 }
3761 
3762 /*
3763  * When this is called, all of the EFIs which did not have
3764  * corresponding EFDs should be in the AIL.  What we do now
3765  * is free the extents associated with each one.
3766  *
3767  * Since we process the EFIs in normal transactions, they
3768  * will be removed at some point after the commit.  This prevents
3769  * us from just walking down the list processing each one.
3770  * We'll use a flag in the EFI to skip those that we've already
3771  * processed and use the AIL iteration mechanism's generation
3772  * count to try to speed this up at least a bit.
3773  *
3774  * When we start, we know that the EFIs are the only things in
3775  * the AIL.  As we process them, however, other items are added
3776  * to the AIL.  Since everything added to the AIL must come after
3777  * everything already in the AIL, we stop processing as soon as
3778  * we see something other than an EFI in the AIL.
3779  */
3780 STATIC int
3781 xlog_recover_process_efis(
3782 	struct xlog	*log)
3783 {
3784 	xfs_log_item_t		*lip;
3785 	xfs_efi_log_item_t	*efip;
3786 	int			error = 0;
3787 	struct xfs_ail_cursor	cur;
3788 	struct xfs_ail		*ailp;
3789 
3790 	ailp = log->l_ailp;
3791 	spin_lock(&ailp->xa_lock);
3792 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3793 	while (lip != NULL) {
3794 		/*
3795 		 * We're done when we see something other than an EFI.
3796 		 * There should be no EFIs left in the AIL now.
3797 		 */
3798 		if (lip->li_type != XFS_LI_EFI) {
3799 #ifdef DEBUG
3800 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3801 				ASSERT(lip->li_type != XFS_LI_EFI);
3802 #endif
3803 			break;
3804 		}
3805 
3806 		/*
3807 		 * Skip EFIs that we've already processed.
3808 		 */
3809 		efip = (xfs_efi_log_item_t *)lip;
3810 		if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3811 			lip = xfs_trans_ail_cursor_next(ailp, &cur);
3812 			continue;
3813 		}
3814 
3815 		spin_unlock(&ailp->xa_lock);
3816 		error = xlog_recover_process_efi(log->l_mp, efip);
3817 		spin_lock(&ailp->xa_lock);
3818 		if (error)
3819 			goto out;
3820 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3821 	}
3822 out:
3823 	xfs_trans_ail_cursor_done(&cur);
3824 	spin_unlock(&ailp->xa_lock);
3825 	return error;
3826 }
3827 
3828 /*
3829  * This routine performs a transaction to null out a bad inode pointer
3830  * in an agi unlinked inode hash bucket.
3831  */
3832 STATIC void
3833 xlog_recover_clear_agi_bucket(
3834 	xfs_mount_t	*mp,
3835 	xfs_agnumber_t	agno,
3836 	int		bucket)
3837 {
3838 	xfs_trans_t	*tp;
3839 	xfs_agi_t	*agi;
3840 	xfs_buf_t	*agibp;
3841 	int		offset;
3842 	int		error;
3843 
3844 	tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3845 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
3846 	if (error)
3847 		goto out_abort;
3848 
3849 	error = xfs_read_agi(mp, tp, agno, &agibp);
3850 	if (error)
3851 		goto out_abort;
3852 
3853 	agi = XFS_BUF_TO_AGI(agibp);
3854 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3855 	offset = offsetof(xfs_agi_t, agi_unlinked) +
3856 		 (sizeof(xfs_agino_t) * bucket);
3857 	xfs_trans_log_buf(tp, agibp, offset,
3858 			  (offset + sizeof(xfs_agino_t) - 1));
3859 
3860 	error = xfs_trans_commit(tp, 0);
3861 	if (error)
3862 		goto out_error;
3863 	return;
3864 
3865 out_abort:
3866 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3867 out_error:
3868 	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3869 	return;
3870 }
3871 
3872 STATIC xfs_agino_t
3873 xlog_recover_process_one_iunlink(
3874 	struct xfs_mount		*mp,
3875 	xfs_agnumber_t			agno,
3876 	xfs_agino_t			agino,
3877 	int				bucket)
3878 {
3879 	struct xfs_buf			*ibp;
3880 	struct xfs_dinode		*dip;
3881 	struct xfs_inode		*ip;
3882 	xfs_ino_t			ino;
3883 	int				error;
3884 
3885 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
3886 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3887 	if (error)
3888 		goto fail;
3889 
3890 	/*
3891 	 * Get the on disk inode to find the next inode in the bucket.
3892 	 */
3893 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
3894 	if (error)
3895 		goto fail_iput;
3896 
3897 	ASSERT(ip->i_d.di_nlink == 0);
3898 	ASSERT(ip->i_d.di_mode != 0);
3899 
3900 	/* setup for the next pass */
3901 	agino = be32_to_cpu(dip->di_next_unlinked);
3902 	xfs_buf_relse(ibp);
3903 
3904 	/*
3905 	 * Prevent any DMAPI event from being sent when the reference on
3906 	 * the inode is dropped.
3907 	 */
3908 	ip->i_d.di_dmevmask = 0;
3909 
3910 	IRELE(ip);
3911 	return agino;
3912 
3913  fail_iput:
3914 	IRELE(ip);
3915  fail:
3916 	/*
3917 	 * We can't read in the inode this bucket points to, or this inode
3918 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
3919 	 * some inodes and space, but at least we won't hang.
3920 	 *
3921 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3922 	 * clear the inode pointer in the bucket.
3923 	 */
3924 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
3925 	return NULLAGINO;
3926 }
3927 
3928 /*
3929  * xlog_iunlink_recover
3930  *
3931  * This is called during recovery to process any inodes which
3932  * we unlinked but not freed when the system crashed.  These
3933  * inodes will be on the lists in the AGI blocks.  What we do
3934  * here is scan all the AGIs and fully truncate and free any
3935  * inodes found on the lists.  Each inode is removed from the
3936  * lists when it has been fully truncated and is freed.  The
3937  * freeing of the inode and its removal from the list must be
3938  * atomic.
3939  */
3940 STATIC void
3941 xlog_recover_process_iunlinks(
3942 	struct xlog	*log)
3943 {
3944 	xfs_mount_t	*mp;
3945 	xfs_agnumber_t	agno;
3946 	xfs_agi_t	*agi;
3947 	xfs_buf_t	*agibp;
3948 	xfs_agino_t	agino;
3949 	int		bucket;
3950 	int		error;
3951 	uint		mp_dmevmask;
3952 
3953 	mp = log->l_mp;
3954 
3955 	/*
3956 	 * Prevent any DMAPI event from being sent while in this function.
3957 	 */
3958 	mp_dmevmask = mp->m_dmevmask;
3959 	mp->m_dmevmask = 0;
3960 
3961 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3962 		/*
3963 		 * Find the agi for this ag.
3964 		 */
3965 		error = xfs_read_agi(mp, NULL, agno, &agibp);
3966 		if (error) {
3967 			/*
3968 			 * AGI is b0rked. Don't process it.
3969 			 *
3970 			 * We should probably mark the filesystem as corrupt
3971 			 * after we've recovered all the ag's we can....
3972 			 */
3973 			continue;
3974 		}
3975 		/*
3976 		 * Unlock the buffer so that it can be acquired in the normal
3977 		 * course of the transaction to truncate and free each inode.
3978 		 * Because we are not racing with anyone else here for the AGI
3979 		 * buffer, we don't even need to hold it locked to read the
3980 		 * initial unlinked bucket entries out of the buffer. We keep
3981 		 * buffer reference though, so that it stays pinned in memory
3982 		 * while we need the buffer.
3983 		 */
3984 		agi = XFS_BUF_TO_AGI(agibp);
3985 		xfs_buf_unlock(agibp);
3986 
3987 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3988 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3989 			while (agino != NULLAGINO) {
3990 				agino = xlog_recover_process_one_iunlink(mp,
3991 							agno, agino, bucket);
3992 			}
3993 		}
3994 		xfs_buf_rele(agibp);
3995 	}
3996 
3997 	mp->m_dmevmask = mp_dmevmask;
3998 }
3999 
4000 /*
4001  * Upack the log buffer data and crc check it. If the check fails, issue a
4002  * warning if and only if the CRC in the header is non-zero. This makes the
4003  * check an advisory warning, and the zero CRC check will prevent failure
4004  * warnings from being emitted when upgrading the kernel from one that does not
4005  * add CRCs by default.
4006  *
4007  * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
4008  * corruption failure
4009  */
4010 STATIC int
4011 xlog_unpack_data_crc(
4012 	struct xlog_rec_header	*rhead,
4013 	xfs_caddr_t		dp,
4014 	struct xlog		*log)
4015 {
4016 	__le32			crc;
4017 
4018 	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
4019 	if (crc != rhead->h_crc) {
4020 		if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
4021 			xfs_alert(log->l_mp,
4022 		"log record CRC mismatch: found 0x%x, expected 0x%x.",
4023 					le32_to_cpu(rhead->h_crc),
4024 					le32_to_cpu(crc));
4025 			xfs_hex_dump(dp, 32);
4026 		}
4027 
4028 		/*
4029 		 * If we've detected a log record corruption, then we can't
4030 		 * recover past this point. Abort recovery if we are enforcing
4031 		 * CRC protection by punting an error back up the stack.
4032 		 */
4033 		if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
4034 			return -EFSCORRUPTED;
4035 	}
4036 
4037 	return 0;
4038 }
4039 
4040 STATIC int
4041 xlog_unpack_data(
4042 	struct xlog_rec_header	*rhead,
4043 	xfs_caddr_t		dp,
4044 	struct xlog		*log)
4045 {
4046 	int			i, j, k;
4047 	int			error;
4048 
4049 	error = xlog_unpack_data_crc(rhead, dp, log);
4050 	if (error)
4051 		return error;
4052 
4053 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
4054 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
4055 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
4056 		dp += BBSIZE;
4057 	}
4058 
4059 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4060 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
4061 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
4062 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4063 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4064 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
4065 			dp += BBSIZE;
4066 		}
4067 	}
4068 
4069 	return 0;
4070 }
4071 
4072 STATIC int
4073 xlog_valid_rec_header(
4074 	struct xlog		*log,
4075 	struct xlog_rec_header	*rhead,
4076 	xfs_daddr_t		blkno)
4077 {
4078 	int			hlen;
4079 
4080 	if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
4081 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4082 				XFS_ERRLEVEL_LOW, log->l_mp);
4083 		return -EFSCORRUPTED;
4084 	}
4085 	if (unlikely(
4086 	    (!rhead->h_version ||
4087 	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
4088 		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
4089 			__func__, be32_to_cpu(rhead->h_version));
4090 		return -EIO;
4091 	}
4092 
4093 	/* LR body must have data or it wouldn't have been written */
4094 	hlen = be32_to_cpu(rhead->h_len);
4095 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4096 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4097 				XFS_ERRLEVEL_LOW, log->l_mp);
4098 		return -EFSCORRUPTED;
4099 	}
4100 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4101 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4102 				XFS_ERRLEVEL_LOW, log->l_mp);
4103 		return -EFSCORRUPTED;
4104 	}
4105 	return 0;
4106 }
4107 
4108 /*
4109  * Read the log from tail to head and process the log records found.
4110  * Handle the two cases where the tail and head are in the same cycle
4111  * and where the active portion of the log wraps around the end of
4112  * the physical log separately.  The pass parameter is passed through
4113  * to the routines called to process the data and is not looked at
4114  * here.
4115  */
4116 STATIC int
4117 xlog_do_recovery_pass(
4118 	struct xlog		*log,
4119 	xfs_daddr_t		head_blk,
4120 	xfs_daddr_t		tail_blk,
4121 	int			pass)
4122 {
4123 	xlog_rec_header_t	*rhead;
4124 	xfs_daddr_t		blk_no;
4125 	xfs_caddr_t		offset;
4126 	xfs_buf_t		*hbp, *dbp;
4127 	int			error = 0, h_size;
4128 	int			bblks, split_bblks;
4129 	int			hblks, split_hblks, wrapped_hblks;
4130 	struct hlist_head	rhash[XLOG_RHASH_SIZE];
4131 
4132 	ASSERT(head_blk != tail_blk);
4133 
4134 	/*
4135 	 * Read the header of the tail block and get the iclog buffer size from
4136 	 * h_size.  Use this to tell how many sectors make up the log header.
4137 	 */
4138 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4139 		/*
4140 		 * When using variable length iclogs, read first sector of
4141 		 * iclog header and extract the header size from it.  Get a
4142 		 * new hbp that is the correct size.
4143 		 */
4144 		hbp = xlog_get_bp(log, 1);
4145 		if (!hbp)
4146 			return -ENOMEM;
4147 
4148 		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4149 		if (error)
4150 			goto bread_err1;
4151 
4152 		rhead = (xlog_rec_header_t *)offset;
4153 		error = xlog_valid_rec_header(log, rhead, tail_blk);
4154 		if (error)
4155 			goto bread_err1;
4156 		h_size = be32_to_cpu(rhead->h_size);
4157 		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
4158 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4159 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4160 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
4161 				hblks++;
4162 			xlog_put_bp(hbp);
4163 			hbp = xlog_get_bp(log, hblks);
4164 		} else {
4165 			hblks = 1;
4166 		}
4167 	} else {
4168 		ASSERT(log->l_sectBBsize == 1);
4169 		hblks = 1;
4170 		hbp = xlog_get_bp(log, 1);
4171 		h_size = XLOG_BIG_RECORD_BSIZE;
4172 	}
4173 
4174 	if (!hbp)
4175 		return -ENOMEM;
4176 	dbp = xlog_get_bp(log, BTOBB(h_size));
4177 	if (!dbp) {
4178 		xlog_put_bp(hbp);
4179 		return -ENOMEM;
4180 	}
4181 
4182 	memset(rhash, 0, sizeof(rhash));
4183 	blk_no = tail_blk;
4184 	if (tail_blk > head_blk) {
4185 		/*
4186 		 * Perform recovery around the end of the physical log.
4187 		 * When the head is not on the same cycle number as the tail,
4188 		 * we can't do a sequential recovery.
4189 		 */
4190 		while (blk_no < log->l_logBBsize) {
4191 			/*
4192 			 * Check for header wrapping around physical end-of-log
4193 			 */
4194 			offset = hbp->b_addr;
4195 			split_hblks = 0;
4196 			wrapped_hblks = 0;
4197 			if (blk_no + hblks <= log->l_logBBsize) {
4198 				/* Read header in one read */
4199 				error = xlog_bread(log, blk_no, hblks, hbp,
4200 						   &offset);
4201 				if (error)
4202 					goto bread_err2;
4203 			} else {
4204 				/* This LR is split across physical log end */
4205 				if (blk_no != log->l_logBBsize) {
4206 					/* some data before physical log end */
4207 					ASSERT(blk_no <= INT_MAX);
4208 					split_hblks = log->l_logBBsize - (int)blk_no;
4209 					ASSERT(split_hblks > 0);
4210 					error = xlog_bread(log, blk_no,
4211 							   split_hblks, hbp,
4212 							   &offset);
4213 					if (error)
4214 						goto bread_err2;
4215 				}
4216 
4217 				/*
4218 				 * Note: this black magic still works with
4219 				 * large sector sizes (non-512) only because:
4220 				 * - we increased the buffer size originally
4221 				 *   by 1 sector giving us enough extra space
4222 				 *   for the second read;
4223 				 * - the log start is guaranteed to be sector
4224 				 *   aligned;
4225 				 * - we read the log end (LR header start)
4226 				 *   _first_, then the log start (LR header end)
4227 				 *   - order is important.
4228 				 */
4229 				wrapped_hblks = hblks - split_hblks;
4230 				error = xlog_bread_offset(log, 0,
4231 						wrapped_hblks, hbp,
4232 						offset + BBTOB(split_hblks));
4233 				if (error)
4234 					goto bread_err2;
4235 			}
4236 			rhead = (xlog_rec_header_t *)offset;
4237 			error = xlog_valid_rec_header(log, rhead,
4238 						split_hblks ? blk_no : 0);
4239 			if (error)
4240 				goto bread_err2;
4241 
4242 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4243 			blk_no += hblks;
4244 
4245 			/* Read in data for log record */
4246 			if (blk_no + bblks <= log->l_logBBsize) {
4247 				error = xlog_bread(log, blk_no, bblks, dbp,
4248 						   &offset);
4249 				if (error)
4250 					goto bread_err2;
4251 			} else {
4252 				/* This log record is split across the
4253 				 * physical end of log */
4254 				offset = dbp->b_addr;
4255 				split_bblks = 0;
4256 				if (blk_no != log->l_logBBsize) {
4257 					/* some data is before the physical
4258 					 * end of log */
4259 					ASSERT(!wrapped_hblks);
4260 					ASSERT(blk_no <= INT_MAX);
4261 					split_bblks =
4262 						log->l_logBBsize - (int)blk_no;
4263 					ASSERT(split_bblks > 0);
4264 					error = xlog_bread(log, blk_no,
4265 							split_bblks, dbp,
4266 							&offset);
4267 					if (error)
4268 						goto bread_err2;
4269 				}
4270 
4271 				/*
4272 				 * Note: this black magic still works with
4273 				 * large sector sizes (non-512) only because:
4274 				 * - we increased the buffer size originally
4275 				 *   by 1 sector giving us enough extra space
4276 				 *   for the second read;
4277 				 * - the log start is guaranteed to be sector
4278 				 *   aligned;
4279 				 * - we read the log end (LR header start)
4280 				 *   _first_, then the log start (LR header end)
4281 				 *   - order is important.
4282 				 */
4283 				error = xlog_bread_offset(log, 0,
4284 						bblks - split_bblks, dbp,
4285 						offset + BBTOB(split_bblks));
4286 				if (error)
4287 					goto bread_err2;
4288 			}
4289 
4290 			error = xlog_unpack_data(rhead, offset, log);
4291 			if (error)
4292 				goto bread_err2;
4293 
4294 			error = xlog_recover_process_data(log, rhash,
4295 							rhead, offset, pass);
4296 			if (error)
4297 				goto bread_err2;
4298 			blk_no += bblks;
4299 		}
4300 
4301 		ASSERT(blk_no >= log->l_logBBsize);
4302 		blk_no -= log->l_logBBsize;
4303 	}
4304 
4305 	/* read first part of physical log */
4306 	while (blk_no < head_blk) {
4307 		error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4308 		if (error)
4309 			goto bread_err2;
4310 
4311 		rhead = (xlog_rec_header_t *)offset;
4312 		error = xlog_valid_rec_header(log, rhead, blk_no);
4313 		if (error)
4314 			goto bread_err2;
4315 
4316 		/* blocks in data section */
4317 		bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4318 		error = xlog_bread(log, blk_no+hblks, bblks, dbp,
4319 				   &offset);
4320 		if (error)
4321 			goto bread_err2;
4322 
4323 		error = xlog_unpack_data(rhead, offset, log);
4324 		if (error)
4325 			goto bread_err2;
4326 
4327 		error = xlog_recover_process_data(log, rhash,
4328 						rhead, offset, pass);
4329 		if (error)
4330 			goto bread_err2;
4331 		blk_no += bblks + hblks;
4332 	}
4333 
4334  bread_err2:
4335 	xlog_put_bp(dbp);
4336  bread_err1:
4337 	xlog_put_bp(hbp);
4338 	return error;
4339 }
4340 
4341 /*
4342  * Do the recovery of the log.  We actually do this in two phases.
4343  * The two passes are necessary in order to implement the function
4344  * of cancelling a record written into the log.  The first pass
4345  * determines those things which have been cancelled, and the
4346  * second pass replays log items normally except for those which
4347  * have been cancelled.  The handling of the replay and cancellations
4348  * takes place in the log item type specific routines.
4349  *
4350  * The table of items which have cancel records in the log is allocated
4351  * and freed at this level, since only here do we know when all of
4352  * the log recovery has been completed.
4353  */
4354 STATIC int
4355 xlog_do_log_recovery(
4356 	struct xlog	*log,
4357 	xfs_daddr_t	head_blk,
4358 	xfs_daddr_t	tail_blk)
4359 {
4360 	int		error, i;
4361 
4362 	ASSERT(head_blk != tail_blk);
4363 
4364 	/*
4365 	 * First do a pass to find all of the cancelled buf log items.
4366 	 * Store them in the buf_cancel_table for use in the second pass.
4367 	 */
4368 	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4369 						 sizeof(struct list_head),
4370 						 KM_SLEEP);
4371 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4372 		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4373 
4374 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4375 				      XLOG_RECOVER_PASS1);
4376 	if (error != 0) {
4377 		kmem_free(log->l_buf_cancel_table);
4378 		log->l_buf_cancel_table = NULL;
4379 		return error;
4380 	}
4381 	/*
4382 	 * Then do a second pass to actually recover the items in the log.
4383 	 * When it is complete free the table of buf cancel items.
4384 	 */
4385 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4386 				      XLOG_RECOVER_PASS2);
4387 #ifdef DEBUG
4388 	if (!error) {
4389 		int	i;
4390 
4391 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4392 			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
4393 	}
4394 #endif	/* DEBUG */
4395 
4396 	kmem_free(log->l_buf_cancel_table);
4397 	log->l_buf_cancel_table = NULL;
4398 
4399 	return error;
4400 }
4401 
4402 /*
4403  * Do the actual recovery
4404  */
4405 STATIC int
4406 xlog_do_recover(
4407 	struct xlog	*log,
4408 	xfs_daddr_t	head_blk,
4409 	xfs_daddr_t	tail_blk)
4410 {
4411 	int		error;
4412 	xfs_buf_t	*bp;
4413 	xfs_sb_t	*sbp;
4414 
4415 	/*
4416 	 * First replay the images in the log.
4417 	 */
4418 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
4419 	if (error)
4420 		return error;
4421 
4422 	/*
4423 	 * If IO errors happened during recovery, bail out.
4424 	 */
4425 	if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4426 		return -EIO;
4427 	}
4428 
4429 	/*
4430 	 * We now update the tail_lsn since much of the recovery has completed
4431 	 * and there may be space available to use.  If there were no extent
4432 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
4433 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
4434 	 * lsn of the last known good LR on disk.  If there are extent frees
4435 	 * or iunlinks they will have some entries in the AIL; so we look at
4436 	 * the AIL to determine how to set the tail_lsn.
4437 	 */
4438 	xlog_assign_tail_lsn(log->l_mp);
4439 
4440 	/*
4441 	 * Now that we've finished replaying all buffer and inode
4442 	 * updates, re-read in the superblock and reverify it.
4443 	 */
4444 	bp = xfs_getsb(log->l_mp, 0);
4445 	XFS_BUF_UNDONE(bp);
4446 	ASSERT(!(XFS_BUF_ISWRITE(bp)));
4447 	XFS_BUF_READ(bp);
4448 	XFS_BUF_UNASYNC(bp);
4449 	bp->b_ops = &xfs_sb_buf_ops;
4450 
4451 	error = xfs_buf_submit_wait(bp);
4452 	if (error) {
4453 		if (!XFS_FORCED_SHUTDOWN(log->l_mp)) {
4454 			xfs_buf_ioerror_alert(bp, __func__);
4455 			ASSERT(0);
4456 		}
4457 		xfs_buf_relse(bp);
4458 		return error;
4459 	}
4460 
4461 	/* Convert superblock from on-disk format */
4462 	sbp = &log->l_mp->m_sb;
4463 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
4464 	ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
4465 	ASSERT(xfs_sb_good_version(sbp));
4466 	xfs_buf_relse(bp);
4467 
4468 	/* We've re-read the superblock so re-initialize per-cpu counters */
4469 	xfs_icsb_reinit_counters(log->l_mp);
4470 
4471 	xlog_recover_check_summary(log);
4472 
4473 	/* Normal transactions can now occur */
4474 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4475 	return 0;
4476 }
4477 
4478 /*
4479  * Perform recovery and re-initialize some log variables in xlog_find_tail.
4480  *
4481  * Return error or zero.
4482  */
4483 int
4484 xlog_recover(
4485 	struct xlog	*log)
4486 {
4487 	xfs_daddr_t	head_blk, tail_blk;
4488 	int		error;
4489 
4490 	/* find the tail of the log */
4491 	if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
4492 		return error;
4493 
4494 	if (tail_blk != head_blk) {
4495 		/* There used to be a comment here:
4496 		 *
4497 		 * disallow recovery on read-only mounts.  note -- mount
4498 		 * checks for ENOSPC and turns it into an intelligent
4499 		 * error message.
4500 		 * ...but this is no longer true.  Now, unless you specify
4501 		 * NORECOVERY (in which case this function would never be
4502 		 * called), we just go ahead and recover.  We do this all
4503 		 * under the vfs layer, so we can get away with it unless
4504 		 * the device itself is read-only, in which case we fail.
4505 		 */
4506 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
4507 			return error;
4508 		}
4509 
4510 		/*
4511 		 * Version 5 superblock log feature mask validation. We know the
4512 		 * log is dirty so check if there are any unknown log features
4513 		 * in what we need to recover. If there are unknown features
4514 		 * (e.g. unsupported transactions, then simply reject the
4515 		 * attempt at recovery before touching anything.
4516 		 */
4517 		if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
4518 		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
4519 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
4520 			xfs_warn(log->l_mp,
4521 "Superblock has unknown incompatible log features (0x%x) enabled.\n"
4522 "The log can not be fully and/or safely recovered by this kernel.\n"
4523 "Please recover the log on a kernel that supports the unknown features.",
4524 				(log->l_mp->m_sb.sb_features_log_incompat &
4525 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
4526 			return -EINVAL;
4527 		}
4528 
4529 		/*
4530 		 * Delay log recovery if the debug hook is set. This is debug
4531 		 * instrumention to coordinate simulation of I/O failures with
4532 		 * log recovery.
4533 		 */
4534 		if (xfs_globals.log_recovery_delay) {
4535 			xfs_notice(log->l_mp,
4536 				"Delaying log recovery for %d seconds.",
4537 				xfs_globals.log_recovery_delay);
4538 			msleep(xfs_globals.log_recovery_delay * 1000);
4539 		}
4540 
4541 		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
4542 				log->l_mp->m_logname ? log->l_mp->m_logname
4543 						     : "internal");
4544 
4545 		error = xlog_do_recover(log, head_blk, tail_blk);
4546 		log->l_flags |= XLOG_RECOVERY_NEEDED;
4547 	}
4548 	return error;
4549 }
4550 
4551 /*
4552  * In the first part of recovery we replay inodes and buffers and build
4553  * up the list of extent free items which need to be processed.  Here
4554  * we process the extent free items and clean up the on disk unlinked
4555  * inode lists.  This is separated from the first part of recovery so
4556  * that the root and real-time bitmap inodes can be read in from disk in
4557  * between the two stages.  This is necessary so that we can free space
4558  * in the real-time portion of the file system.
4559  */
4560 int
4561 xlog_recover_finish(
4562 	struct xlog	*log)
4563 {
4564 	/*
4565 	 * Now we're ready to do the transactions needed for the
4566 	 * rest of recovery.  Start with completing all the extent
4567 	 * free intent records and then process the unlinked inode
4568 	 * lists.  At this point, we essentially run in normal mode
4569 	 * except that we're still performing recovery actions
4570 	 * rather than accepting new requests.
4571 	 */
4572 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
4573 		int	error;
4574 		error = xlog_recover_process_efis(log);
4575 		if (error) {
4576 			xfs_alert(log->l_mp, "Failed to recover EFIs");
4577 			return error;
4578 		}
4579 		/*
4580 		 * Sync the log to get all the EFIs out of the AIL.
4581 		 * This isn't absolutely necessary, but it helps in
4582 		 * case the unlink transactions would have problems
4583 		 * pushing the EFIs out of the way.
4584 		 */
4585 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
4586 
4587 		xlog_recover_process_iunlinks(log);
4588 
4589 		xlog_recover_check_summary(log);
4590 
4591 		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4592 				log->l_mp->m_logname ? log->l_mp->m_logname
4593 						     : "internal");
4594 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4595 	} else {
4596 		xfs_info(log->l_mp, "Ending clean mount");
4597 	}
4598 	return 0;
4599 }
4600 
4601 
4602 #if defined(DEBUG)
4603 /*
4604  * Read all of the agf and agi counters and check that they
4605  * are consistent with the superblock counters.
4606  */
4607 void
4608 xlog_recover_check_summary(
4609 	struct xlog	*log)
4610 {
4611 	xfs_mount_t	*mp;
4612 	xfs_agf_t	*agfp;
4613 	xfs_buf_t	*agfbp;
4614 	xfs_buf_t	*agibp;
4615 	xfs_agnumber_t	agno;
4616 	__uint64_t	freeblks;
4617 	__uint64_t	itotal;
4618 	__uint64_t	ifree;
4619 	int		error;
4620 
4621 	mp = log->l_mp;
4622 
4623 	freeblks = 0LL;
4624 	itotal = 0LL;
4625 	ifree = 0LL;
4626 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4627 		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4628 		if (error) {
4629 			xfs_alert(mp, "%s agf read failed agno %d error %d",
4630 						__func__, agno, error);
4631 		} else {
4632 			agfp = XFS_BUF_TO_AGF(agfbp);
4633 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
4634 				    be32_to_cpu(agfp->agf_flcount);
4635 			xfs_buf_relse(agfbp);
4636 		}
4637 
4638 		error = xfs_read_agi(mp, NULL, agno, &agibp);
4639 		if (error) {
4640 			xfs_alert(mp, "%s agi read failed agno %d error %d",
4641 						__func__, agno, error);
4642 		} else {
4643 			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
4644 
4645 			itotal += be32_to_cpu(agi->agi_count);
4646 			ifree += be32_to_cpu(agi->agi_freecount);
4647 			xfs_buf_relse(agibp);
4648 		}
4649 	}
4650 }
4651 #endif /* DEBUG */
4652