xref: /openbmc/linux/fs/xfs/xfs_log_recover.c (revision bd329f028f1cd51c7623c326147af07c6d832193)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_da_format.h"
29 #include "xfs_da_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_trans.h"
32 #include "xfs_log.h"
33 #include "xfs_log_priv.h"
34 #include "xfs_log_recover.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_extfree_item.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_alloc.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_quota.h"
41 #include "xfs_cksum.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_bmap_btree.h"
45 #include "xfs_error.h"
46 #include "xfs_dir2.h"
47 #include "xfs_rmap_item.h"
48 #include "xfs_buf_item.h"
49 #include "xfs_refcount_item.h"
50 #include "xfs_bmap_item.h"
51 
52 #define BLK_AVG(blk1, blk2)	((blk1+blk2) >> 1)
53 
54 STATIC int
55 xlog_find_zeroed(
56 	struct xlog	*,
57 	xfs_daddr_t	*);
58 STATIC int
59 xlog_clear_stale_blocks(
60 	struct xlog	*,
61 	xfs_lsn_t);
62 #if defined(DEBUG)
63 STATIC void
64 xlog_recover_check_summary(
65 	struct xlog *);
66 #else
67 #define	xlog_recover_check_summary(log)
68 #endif
69 STATIC int
70 xlog_do_recovery_pass(
71         struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
72 
73 /*
74  * This structure is used during recovery to record the buf log items which
75  * have been canceled and should not be replayed.
76  */
77 struct xfs_buf_cancel {
78 	xfs_daddr_t		bc_blkno;
79 	uint			bc_len;
80 	int			bc_refcount;
81 	struct list_head	bc_list;
82 };
83 
84 /*
85  * Sector aligned buffer routines for buffer create/read/write/access
86  */
87 
88 /*
89  * Verify the log-relative block number and length in basic blocks are valid for
90  * an operation involving the given XFS log buffer. Returns true if the fields
91  * are valid, false otherwise.
92  */
93 static inline bool
94 xlog_verify_bp(
95 	struct xlog	*log,
96 	xfs_daddr_t	blk_no,
97 	int		bbcount)
98 {
99 	if (blk_no < 0 || blk_no >= log->l_logBBsize)
100 		return false;
101 	if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
102 		return false;
103 	return true;
104 }
105 
106 /*
107  * Allocate a buffer to hold log data.  The buffer needs to be able
108  * to map to a range of nbblks basic blocks at any valid (basic
109  * block) offset within the log.
110  */
111 STATIC xfs_buf_t *
112 xlog_get_bp(
113 	struct xlog	*log,
114 	int		nbblks)
115 {
116 	struct xfs_buf	*bp;
117 
118 	/*
119 	 * Pass log block 0 since we don't have an addr yet, buffer will be
120 	 * verified on read.
121 	 */
122 	if (!xlog_verify_bp(log, 0, nbblks)) {
123 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
124 			nbblks);
125 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
126 		return NULL;
127 	}
128 
129 	/*
130 	 * We do log I/O in units of log sectors (a power-of-2
131 	 * multiple of the basic block size), so we round up the
132 	 * requested size to accommodate the basic blocks required
133 	 * for complete log sectors.
134 	 *
135 	 * In addition, the buffer may be used for a non-sector-
136 	 * aligned block offset, in which case an I/O of the
137 	 * requested size could extend beyond the end of the
138 	 * buffer.  If the requested size is only 1 basic block it
139 	 * will never straddle a sector boundary, so this won't be
140 	 * an issue.  Nor will this be a problem if the log I/O is
141 	 * done in basic blocks (sector size 1).  But otherwise we
142 	 * extend the buffer by one extra log sector to ensure
143 	 * there's space to accommodate this possibility.
144 	 */
145 	if (nbblks > 1 && log->l_sectBBsize > 1)
146 		nbblks += log->l_sectBBsize;
147 	nbblks = round_up(nbblks, log->l_sectBBsize);
148 
149 	bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
150 	if (bp)
151 		xfs_buf_unlock(bp);
152 	return bp;
153 }
154 
155 STATIC void
156 xlog_put_bp(
157 	xfs_buf_t	*bp)
158 {
159 	xfs_buf_free(bp);
160 }
161 
162 /*
163  * Return the address of the start of the given block number's data
164  * in a log buffer.  The buffer covers a log sector-aligned region.
165  */
166 STATIC char *
167 xlog_align(
168 	struct xlog	*log,
169 	xfs_daddr_t	blk_no,
170 	int		nbblks,
171 	struct xfs_buf	*bp)
172 {
173 	xfs_daddr_t	offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
174 
175 	ASSERT(offset + nbblks <= bp->b_length);
176 	return bp->b_addr + BBTOB(offset);
177 }
178 
179 
180 /*
181  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
182  */
183 STATIC int
184 xlog_bread_noalign(
185 	struct xlog	*log,
186 	xfs_daddr_t	blk_no,
187 	int		nbblks,
188 	struct xfs_buf	*bp)
189 {
190 	int		error;
191 
192 	if (!xlog_verify_bp(log, blk_no, nbblks)) {
193 		xfs_warn(log->l_mp,
194 			 "Invalid log block/length (0x%llx, 0x%x) for buffer",
195 			 blk_no, nbblks);
196 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
197 		return -EFSCORRUPTED;
198 	}
199 
200 	blk_no = round_down(blk_no, log->l_sectBBsize);
201 	nbblks = round_up(nbblks, log->l_sectBBsize);
202 
203 	ASSERT(nbblks > 0);
204 	ASSERT(nbblks <= bp->b_length);
205 
206 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
207 	bp->b_flags |= XBF_READ;
208 	bp->b_io_length = nbblks;
209 	bp->b_error = 0;
210 
211 	error = xfs_buf_submit_wait(bp);
212 	if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
213 		xfs_buf_ioerror_alert(bp, __func__);
214 	return error;
215 }
216 
217 STATIC int
218 xlog_bread(
219 	struct xlog	*log,
220 	xfs_daddr_t	blk_no,
221 	int		nbblks,
222 	struct xfs_buf	*bp,
223 	char		**offset)
224 {
225 	int		error;
226 
227 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
228 	if (error)
229 		return error;
230 
231 	*offset = xlog_align(log, blk_no, nbblks, bp);
232 	return 0;
233 }
234 
235 /*
236  * Read at an offset into the buffer. Returns with the buffer in it's original
237  * state regardless of the result of the read.
238  */
239 STATIC int
240 xlog_bread_offset(
241 	struct xlog	*log,
242 	xfs_daddr_t	blk_no,		/* block to read from */
243 	int		nbblks,		/* blocks to read */
244 	struct xfs_buf	*bp,
245 	char		*offset)
246 {
247 	char		*orig_offset = bp->b_addr;
248 	int		orig_len = BBTOB(bp->b_length);
249 	int		error, error2;
250 
251 	error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
252 	if (error)
253 		return error;
254 
255 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
256 
257 	/* must reset buffer pointer even on error */
258 	error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
259 	if (error)
260 		return error;
261 	return error2;
262 }
263 
264 /*
265  * Write out the buffer at the given block for the given number of blocks.
266  * The buffer is kept locked across the write and is returned locked.
267  * This can only be used for synchronous log writes.
268  */
269 STATIC int
270 xlog_bwrite(
271 	struct xlog	*log,
272 	xfs_daddr_t	blk_no,
273 	int		nbblks,
274 	struct xfs_buf	*bp)
275 {
276 	int		error;
277 
278 	if (!xlog_verify_bp(log, blk_no, nbblks)) {
279 		xfs_warn(log->l_mp,
280 			 "Invalid log block/length (0x%llx, 0x%x) for buffer",
281 			 blk_no, nbblks);
282 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
283 		return -EFSCORRUPTED;
284 	}
285 
286 	blk_no = round_down(blk_no, log->l_sectBBsize);
287 	nbblks = round_up(nbblks, log->l_sectBBsize);
288 
289 	ASSERT(nbblks > 0);
290 	ASSERT(nbblks <= bp->b_length);
291 
292 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
293 	xfs_buf_hold(bp);
294 	xfs_buf_lock(bp);
295 	bp->b_io_length = nbblks;
296 	bp->b_error = 0;
297 
298 	error = xfs_bwrite(bp);
299 	if (error)
300 		xfs_buf_ioerror_alert(bp, __func__);
301 	xfs_buf_relse(bp);
302 	return error;
303 }
304 
305 #ifdef DEBUG
306 /*
307  * dump debug superblock and log record information
308  */
309 STATIC void
310 xlog_header_check_dump(
311 	xfs_mount_t		*mp,
312 	xlog_rec_header_t	*head)
313 {
314 	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
315 		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
316 	xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
317 		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
318 }
319 #else
320 #define xlog_header_check_dump(mp, head)
321 #endif
322 
323 /*
324  * check log record header for recovery
325  */
326 STATIC int
327 xlog_header_check_recover(
328 	xfs_mount_t		*mp,
329 	xlog_rec_header_t	*head)
330 {
331 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
332 
333 	/*
334 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
335 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
336 	 * a dirty log created in IRIX.
337 	 */
338 	if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
339 		xfs_warn(mp,
340 	"dirty log written in incompatible format - can't recover");
341 		xlog_header_check_dump(mp, head);
342 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
343 				 XFS_ERRLEVEL_HIGH, mp);
344 		return -EFSCORRUPTED;
345 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
346 		xfs_warn(mp,
347 	"dirty log entry has mismatched uuid - can't recover");
348 		xlog_header_check_dump(mp, head);
349 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
350 				 XFS_ERRLEVEL_HIGH, mp);
351 		return -EFSCORRUPTED;
352 	}
353 	return 0;
354 }
355 
356 /*
357  * read the head block of the log and check the header
358  */
359 STATIC int
360 xlog_header_check_mount(
361 	xfs_mount_t		*mp,
362 	xlog_rec_header_t	*head)
363 {
364 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
365 
366 	if (uuid_is_null(&head->h_fs_uuid)) {
367 		/*
368 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
369 		 * h_fs_uuid is null, we assume this log was last mounted
370 		 * by IRIX and continue.
371 		 */
372 		xfs_warn(mp, "null uuid in log - IRIX style log");
373 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
374 		xfs_warn(mp, "log has mismatched uuid - can't recover");
375 		xlog_header_check_dump(mp, head);
376 		XFS_ERROR_REPORT("xlog_header_check_mount",
377 				 XFS_ERRLEVEL_HIGH, mp);
378 		return -EFSCORRUPTED;
379 	}
380 	return 0;
381 }
382 
383 STATIC void
384 xlog_recover_iodone(
385 	struct xfs_buf	*bp)
386 {
387 	if (bp->b_error) {
388 		/*
389 		 * We're not going to bother about retrying
390 		 * this during recovery. One strike!
391 		 */
392 		if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
393 			xfs_buf_ioerror_alert(bp, __func__);
394 			xfs_force_shutdown(bp->b_target->bt_mount,
395 						SHUTDOWN_META_IO_ERROR);
396 		}
397 	}
398 
399 	/*
400 	 * On v5 supers, a bli could be attached to update the metadata LSN.
401 	 * Clean it up.
402 	 */
403 	if (bp->b_log_item)
404 		xfs_buf_item_relse(bp);
405 	ASSERT(bp->b_log_item == NULL);
406 
407 	bp->b_iodone = NULL;
408 	xfs_buf_ioend(bp);
409 }
410 
411 /*
412  * This routine finds (to an approximation) the first block in the physical
413  * log which contains the given cycle.  It uses a binary search algorithm.
414  * Note that the algorithm can not be perfect because the disk will not
415  * necessarily be perfect.
416  */
417 STATIC int
418 xlog_find_cycle_start(
419 	struct xlog	*log,
420 	struct xfs_buf	*bp,
421 	xfs_daddr_t	first_blk,
422 	xfs_daddr_t	*last_blk,
423 	uint		cycle)
424 {
425 	char		*offset;
426 	xfs_daddr_t	mid_blk;
427 	xfs_daddr_t	end_blk;
428 	uint		mid_cycle;
429 	int		error;
430 
431 	end_blk = *last_blk;
432 	mid_blk = BLK_AVG(first_blk, end_blk);
433 	while (mid_blk != first_blk && mid_blk != end_blk) {
434 		error = xlog_bread(log, mid_blk, 1, bp, &offset);
435 		if (error)
436 			return error;
437 		mid_cycle = xlog_get_cycle(offset);
438 		if (mid_cycle == cycle)
439 			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
440 		else
441 			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
442 		mid_blk = BLK_AVG(first_blk, end_blk);
443 	}
444 	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
445 	       (mid_blk == end_blk && mid_blk-1 == first_blk));
446 
447 	*last_blk = end_blk;
448 
449 	return 0;
450 }
451 
452 /*
453  * Check that a range of blocks does not contain stop_on_cycle_no.
454  * Fill in *new_blk with the block offset where such a block is
455  * found, or with -1 (an invalid block number) if there is no such
456  * block in the range.  The scan needs to occur from front to back
457  * and the pointer into the region must be updated since a later
458  * routine will need to perform another test.
459  */
460 STATIC int
461 xlog_find_verify_cycle(
462 	struct xlog	*log,
463 	xfs_daddr_t	start_blk,
464 	int		nbblks,
465 	uint		stop_on_cycle_no,
466 	xfs_daddr_t	*new_blk)
467 {
468 	xfs_daddr_t	i, j;
469 	uint		cycle;
470 	xfs_buf_t	*bp;
471 	xfs_daddr_t	bufblks;
472 	char		*buf = NULL;
473 	int		error = 0;
474 
475 	/*
476 	 * Greedily allocate a buffer big enough to handle the full
477 	 * range of basic blocks we'll be examining.  If that fails,
478 	 * try a smaller size.  We need to be able to read at least
479 	 * a log sector, or we're out of luck.
480 	 */
481 	bufblks = 1 << ffs(nbblks);
482 	while (bufblks > log->l_logBBsize)
483 		bufblks >>= 1;
484 	while (!(bp = xlog_get_bp(log, bufblks))) {
485 		bufblks >>= 1;
486 		if (bufblks < log->l_sectBBsize)
487 			return -ENOMEM;
488 	}
489 
490 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
491 		int	bcount;
492 
493 		bcount = min(bufblks, (start_blk + nbblks - i));
494 
495 		error = xlog_bread(log, i, bcount, bp, &buf);
496 		if (error)
497 			goto out;
498 
499 		for (j = 0; j < bcount; j++) {
500 			cycle = xlog_get_cycle(buf);
501 			if (cycle == stop_on_cycle_no) {
502 				*new_blk = i+j;
503 				goto out;
504 			}
505 
506 			buf += BBSIZE;
507 		}
508 	}
509 
510 	*new_blk = -1;
511 
512 out:
513 	xlog_put_bp(bp);
514 	return error;
515 }
516 
517 /*
518  * Potentially backup over partial log record write.
519  *
520  * In the typical case, last_blk is the number of the block directly after
521  * a good log record.  Therefore, we subtract one to get the block number
522  * of the last block in the given buffer.  extra_bblks contains the number
523  * of blocks we would have read on a previous read.  This happens when the
524  * last log record is split over the end of the physical log.
525  *
526  * extra_bblks is the number of blocks potentially verified on a previous
527  * call to this routine.
528  */
529 STATIC int
530 xlog_find_verify_log_record(
531 	struct xlog		*log,
532 	xfs_daddr_t		start_blk,
533 	xfs_daddr_t		*last_blk,
534 	int			extra_bblks)
535 {
536 	xfs_daddr_t		i;
537 	xfs_buf_t		*bp;
538 	char			*offset = NULL;
539 	xlog_rec_header_t	*head = NULL;
540 	int			error = 0;
541 	int			smallmem = 0;
542 	int			num_blks = *last_blk - start_blk;
543 	int			xhdrs;
544 
545 	ASSERT(start_blk != 0 || *last_blk != start_blk);
546 
547 	if (!(bp = xlog_get_bp(log, num_blks))) {
548 		if (!(bp = xlog_get_bp(log, 1)))
549 			return -ENOMEM;
550 		smallmem = 1;
551 	} else {
552 		error = xlog_bread(log, start_blk, num_blks, bp, &offset);
553 		if (error)
554 			goto out;
555 		offset += ((num_blks - 1) << BBSHIFT);
556 	}
557 
558 	for (i = (*last_blk) - 1; i >= 0; i--) {
559 		if (i < start_blk) {
560 			/* valid log record not found */
561 			xfs_warn(log->l_mp,
562 		"Log inconsistent (didn't find previous header)");
563 			ASSERT(0);
564 			error = -EIO;
565 			goto out;
566 		}
567 
568 		if (smallmem) {
569 			error = xlog_bread(log, i, 1, bp, &offset);
570 			if (error)
571 				goto out;
572 		}
573 
574 		head = (xlog_rec_header_t *)offset;
575 
576 		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
577 			break;
578 
579 		if (!smallmem)
580 			offset -= BBSIZE;
581 	}
582 
583 	/*
584 	 * We hit the beginning of the physical log & still no header.  Return
585 	 * to caller.  If caller can handle a return of -1, then this routine
586 	 * will be called again for the end of the physical log.
587 	 */
588 	if (i == -1) {
589 		error = 1;
590 		goto out;
591 	}
592 
593 	/*
594 	 * We have the final block of the good log (the first block
595 	 * of the log record _before_ the head. So we check the uuid.
596 	 */
597 	if ((error = xlog_header_check_mount(log->l_mp, head)))
598 		goto out;
599 
600 	/*
601 	 * We may have found a log record header before we expected one.
602 	 * last_blk will be the 1st block # with a given cycle #.  We may end
603 	 * up reading an entire log record.  In this case, we don't want to
604 	 * reset last_blk.  Only when last_blk points in the middle of a log
605 	 * record do we update last_blk.
606 	 */
607 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
608 		uint	h_size = be32_to_cpu(head->h_size);
609 
610 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
611 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
612 			xhdrs++;
613 	} else {
614 		xhdrs = 1;
615 	}
616 
617 	if (*last_blk - i + extra_bblks !=
618 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
619 		*last_blk = i;
620 
621 out:
622 	xlog_put_bp(bp);
623 	return error;
624 }
625 
626 /*
627  * Head is defined to be the point of the log where the next log write
628  * could go.  This means that incomplete LR writes at the end are
629  * eliminated when calculating the head.  We aren't guaranteed that previous
630  * LR have complete transactions.  We only know that a cycle number of
631  * current cycle number -1 won't be present in the log if we start writing
632  * from our current block number.
633  *
634  * last_blk contains the block number of the first block with a given
635  * cycle number.
636  *
637  * Return: zero if normal, non-zero if error.
638  */
639 STATIC int
640 xlog_find_head(
641 	struct xlog	*log,
642 	xfs_daddr_t	*return_head_blk)
643 {
644 	xfs_buf_t	*bp;
645 	char		*offset;
646 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
647 	int		num_scan_bblks;
648 	uint		first_half_cycle, last_half_cycle;
649 	uint		stop_on_cycle;
650 	int		error, log_bbnum = log->l_logBBsize;
651 
652 	/* Is the end of the log device zeroed? */
653 	error = xlog_find_zeroed(log, &first_blk);
654 	if (error < 0) {
655 		xfs_warn(log->l_mp, "empty log check failed");
656 		return error;
657 	}
658 	if (error == 1) {
659 		*return_head_blk = first_blk;
660 
661 		/* Is the whole lot zeroed? */
662 		if (!first_blk) {
663 			/* Linux XFS shouldn't generate totally zeroed logs -
664 			 * mkfs etc write a dummy unmount record to a fresh
665 			 * log so we can store the uuid in there
666 			 */
667 			xfs_warn(log->l_mp, "totally zeroed log");
668 		}
669 
670 		return 0;
671 	}
672 
673 	first_blk = 0;			/* get cycle # of 1st block */
674 	bp = xlog_get_bp(log, 1);
675 	if (!bp)
676 		return -ENOMEM;
677 
678 	error = xlog_bread(log, 0, 1, bp, &offset);
679 	if (error)
680 		goto bp_err;
681 
682 	first_half_cycle = xlog_get_cycle(offset);
683 
684 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
685 	error = xlog_bread(log, last_blk, 1, bp, &offset);
686 	if (error)
687 		goto bp_err;
688 
689 	last_half_cycle = xlog_get_cycle(offset);
690 	ASSERT(last_half_cycle != 0);
691 
692 	/*
693 	 * If the 1st half cycle number is equal to the last half cycle number,
694 	 * then the entire log is stamped with the same cycle number.  In this
695 	 * case, head_blk can't be set to zero (which makes sense).  The below
696 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
697 	 * we set it to log_bbnum which is an invalid block number, but this
698 	 * value makes the math correct.  If head_blk doesn't changed through
699 	 * all the tests below, *head_blk is set to zero at the very end rather
700 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
701 	 * in a circular file.
702 	 */
703 	if (first_half_cycle == last_half_cycle) {
704 		/*
705 		 * In this case we believe that the entire log should have
706 		 * cycle number last_half_cycle.  We need to scan backwards
707 		 * from the end verifying that there are no holes still
708 		 * containing last_half_cycle - 1.  If we find such a hole,
709 		 * then the start of that hole will be the new head.  The
710 		 * simple case looks like
711 		 *        x | x ... | x - 1 | x
712 		 * Another case that fits this picture would be
713 		 *        x | x + 1 | x ... | x
714 		 * In this case the head really is somewhere at the end of the
715 		 * log, as one of the latest writes at the beginning was
716 		 * incomplete.
717 		 * One more case is
718 		 *        x | x + 1 | x ... | x - 1 | x
719 		 * This is really the combination of the above two cases, and
720 		 * the head has to end up at the start of the x-1 hole at the
721 		 * end of the log.
722 		 *
723 		 * In the 256k log case, we will read from the beginning to the
724 		 * end of the log and search for cycle numbers equal to x-1.
725 		 * We don't worry about the x+1 blocks that we encounter,
726 		 * because we know that they cannot be the head since the log
727 		 * started with x.
728 		 */
729 		head_blk = log_bbnum;
730 		stop_on_cycle = last_half_cycle - 1;
731 	} else {
732 		/*
733 		 * In this case we want to find the first block with cycle
734 		 * number matching last_half_cycle.  We expect the log to be
735 		 * some variation on
736 		 *        x + 1 ... | x ... | x
737 		 * The first block with cycle number x (last_half_cycle) will
738 		 * be where the new head belongs.  First we do a binary search
739 		 * for the first occurrence of last_half_cycle.  The binary
740 		 * search may not be totally accurate, so then we scan back
741 		 * from there looking for occurrences of last_half_cycle before
742 		 * us.  If that backwards scan wraps around the beginning of
743 		 * the log, then we look for occurrences of last_half_cycle - 1
744 		 * at the end of the log.  The cases we're looking for look
745 		 * like
746 		 *                               v binary search stopped here
747 		 *        x + 1 ... | x | x + 1 | x ... | x
748 		 *                   ^ but we want to locate this spot
749 		 * or
750 		 *        <---------> less than scan distance
751 		 *        x + 1 ... | x ... | x - 1 | x
752 		 *                           ^ we want to locate this spot
753 		 */
754 		stop_on_cycle = last_half_cycle;
755 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
756 						&head_blk, last_half_cycle)))
757 			goto bp_err;
758 	}
759 
760 	/*
761 	 * Now validate the answer.  Scan back some number of maximum possible
762 	 * blocks and make sure each one has the expected cycle number.  The
763 	 * maximum is determined by the total possible amount of buffering
764 	 * in the in-core log.  The following number can be made tighter if
765 	 * we actually look at the block size of the filesystem.
766 	 */
767 	num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
768 	if (head_blk >= num_scan_bblks) {
769 		/*
770 		 * We are guaranteed that the entire check can be performed
771 		 * in one buffer.
772 		 */
773 		start_blk = head_blk - num_scan_bblks;
774 		if ((error = xlog_find_verify_cycle(log,
775 						start_blk, num_scan_bblks,
776 						stop_on_cycle, &new_blk)))
777 			goto bp_err;
778 		if (new_blk != -1)
779 			head_blk = new_blk;
780 	} else {		/* need to read 2 parts of log */
781 		/*
782 		 * We are going to scan backwards in the log in two parts.
783 		 * First we scan the physical end of the log.  In this part
784 		 * of the log, we are looking for blocks with cycle number
785 		 * last_half_cycle - 1.
786 		 * If we find one, then we know that the log starts there, as
787 		 * we've found a hole that didn't get written in going around
788 		 * the end of the physical log.  The simple case for this is
789 		 *        x + 1 ... | x ... | x - 1 | x
790 		 *        <---------> less than scan distance
791 		 * If all of the blocks at the end of the log have cycle number
792 		 * last_half_cycle, then we check the blocks at the start of
793 		 * the log looking for occurrences of last_half_cycle.  If we
794 		 * find one, then our current estimate for the location of the
795 		 * first occurrence of last_half_cycle is wrong and we move
796 		 * back to the hole we've found.  This case looks like
797 		 *        x + 1 ... | x | x + 1 | x ...
798 		 *                               ^ binary search stopped here
799 		 * Another case we need to handle that only occurs in 256k
800 		 * logs is
801 		 *        x + 1 ... | x ... | x+1 | x ...
802 		 *                   ^ binary search stops here
803 		 * In a 256k log, the scan at the end of the log will see the
804 		 * x + 1 blocks.  We need to skip past those since that is
805 		 * certainly not the head of the log.  By searching for
806 		 * last_half_cycle-1 we accomplish that.
807 		 */
808 		ASSERT(head_blk <= INT_MAX &&
809 			(xfs_daddr_t) num_scan_bblks >= head_blk);
810 		start_blk = log_bbnum - (num_scan_bblks - head_blk);
811 		if ((error = xlog_find_verify_cycle(log, start_blk,
812 					num_scan_bblks - (int)head_blk,
813 					(stop_on_cycle - 1), &new_blk)))
814 			goto bp_err;
815 		if (new_blk != -1) {
816 			head_blk = new_blk;
817 			goto validate_head;
818 		}
819 
820 		/*
821 		 * Scan beginning of log now.  The last part of the physical
822 		 * log is good.  This scan needs to verify that it doesn't find
823 		 * the last_half_cycle.
824 		 */
825 		start_blk = 0;
826 		ASSERT(head_blk <= INT_MAX);
827 		if ((error = xlog_find_verify_cycle(log,
828 					start_blk, (int)head_blk,
829 					stop_on_cycle, &new_blk)))
830 			goto bp_err;
831 		if (new_blk != -1)
832 			head_blk = new_blk;
833 	}
834 
835 validate_head:
836 	/*
837 	 * Now we need to make sure head_blk is not pointing to a block in
838 	 * the middle of a log record.
839 	 */
840 	num_scan_bblks = XLOG_REC_SHIFT(log);
841 	if (head_blk >= num_scan_bblks) {
842 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
843 
844 		/* start ptr at last block ptr before head_blk */
845 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
846 		if (error == 1)
847 			error = -EIO;
848 		if (error)
849 			goto bp_err;
850 	} else {
851 		start_blk = 0;
852 		ASSERT(head_blk <= INT_MAX);
853 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
854 		if (error < 0)
855 			goto bp_err;
856 		if (error == 1) {
857 			/* We hit the beginning of the log during our search */
858 			start_blk = log_bbnum - (num_scan_bblks - head_blk);
859 			new_blk = log_bbnum;
860 			ASSERT(start_blk <= INT_MAX &&
861 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
862 			ASSERT(head_blk <= INT_MAX);
863 			error = xlog_find_verify_log_record(log, start_blk,
864 							&new_blk, (int)head_blk);
865 			if (error == 1)
866 				error = -EIO;
867 			if (error)
868 				goto bp_err;
869 			if (new_blk != log_bbnum)
870 				head_blk = new_blk;
871 		} else if (error)
872 			goto bp_err;
873 	}
874 
875 	xlog_put_bp(bp);
876 	if (head_blk == log_bbnum)
877 		*return_head_blk = 0;
878 	else
879 		*return_head_blk = head_blk;
880 	/*
881 	 * When returning here, we have a good block number.  Bad block
882 	 * means that during a previous crash, we didn't have a clean break
883 	 * from cycle number N to cycle number N-1.  In this case, we need
884 	 * to find the first block with cycle number N-1.
885 	 */
886 	return 0;
887 
888  bp_err:
889 	xlog_put_bp(bp);
890 
891 	if (error)
892 		xfs_warn(log->l_mp, "failed to find log head");
893 	return error;
894 }
895 
896 /*
897  * Seek backwards in the log for log record headers.
898  *
899  * Given a starting log block, walk backwards until we find the provided number
900  * of records or hit the provided tail block. The return value is the number of
901  * records encountered or a negative error code. The log block and buffer
902  * pointer of the last record seen are returned in rblk and rhead respectively.
903  */
904 STATIC int
905 xlog_rseek_logrec_hdr(
906 	struct xlog		*log,
907 	xfs_daddr_t		head_blk,
908 	xfs_daddr_t		tail_blk,
909 	int			count,
910 	struct xfs_buf		*bp,
911 	xfs_daddr_t		*rblk,
912 	struct xlog_rec_header	**rhead,
913 	bool			*wrapped)
914 {
915 	int			i;
916 	int			error;
917 	int			found = 0;
918 	char			*offset = NULL;
919 	xfs_daddr_t		end_blk;
920 
921 	*wrapped = false;
922 
923 	/*
924 	 * Walk backwards from the head block until we hit the tail or the first
925 	 * block in the log.
926 	 */
927 	end_blk = head_blk > tail_blk ? tail_blk : 0;
928 	for (i = (int) head_blk - 1; i >= end_blk; i--) {
929 		error = xlog_bread(log, i, 1, bp, &offset);
930 		if (error)
931 			goto out_error;
932 
933 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
934 			*rblk = i;
935 			*rhead = (struct xlog_rec_header *) offset;
936 			if (++found == count)
937 				break;
938 		}
939 	}
940 
941 	/*
942 	 * If we haven't hit the tail block or the log record header count,
943 	 * start looking again from the end of the physical log. Note that
944 	 * callers can pass head == tail if the tail is not yet known.
945 	 */
946 	if (tail_blk >= head_blk && found != count) {
947 		for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
948 			error = xlog_bread(log, i, 1, bp, &offset);
949 			if (error)
950 				goto out_error;
951 
952 			if (*(__be32 *)offset ==
953 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
954 				*wrapped = true;
955 				*rblk = i;
956 				*rhead = (struct xlog_rec_header *) offset;
957 				if (++found == count)
958 					break;
959 			}
960 		}
961 	}
962 
963 	return found;
964 
965 out_error:
966 	return error;
967 }
968 
969 /*
970  * Seek forward in the log for log record headers.
971  *
972  * Given head and tail blocks, walk forward from the tail block until we find
973  * the provided number of records or hit the head block. The return value is the
974  * number of records encountered or a negative error code. The log block and
975  * buffer pointer of the last record seen are returned in rblk and rhead
976  * respectively.
977  */
978 STATIC int
979 xlog_seek_logrec_hdr(
980 	struct xlog		*log,
981 	xfs_daddr_t		head_blk,
982 	xfs_daddr_t		tail_blk,
983 	int			count,
984 	struct xfs_buf		*bp,
985 	xfs_daddr_t		*rblk,
986 	struct xlog_rec_header	**rhead,
987 	bool			*wrapped)
988 {
989 	int			i;
990 	int			error;
991 	int			found = 0;
992 	char			*offset = NULL;
993 	xfs_daddr_t		end_blk;
994 
995 	*wrapped = false;
996 
997 	/*
998 	 * Walk forward from the tail block until we hit the head or the last
999 	 * block in the log.
1000 	 */
1001 	end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
1002 	for (i = (int) tail_blk; i <= end_blk; i++) {
1003 		error = xlog_bread(log, i, 1, bp, &offset);
1004 		if (error)
1005 			goto out_error;
1006 
1007 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1008 			*rblk = i;
1009 			*rhead = (struct xlog_rec_header *) offset;
1010 			if (++found == count)
1011 				break;
1012 		}
1013 	}
1014 
1015 	/*
1016 	 * If we haven't hit the head block or the log record header count,
1017 	 * start looking again from the start of the physical log.
1018 	 */
1019 	if (tail_blk > head_blk && found != count) {
1020 		for (i = 0; i < (int) head_blk; i++) {
1021 			error = xlog_bread(log, i, 1, bp, &offset);
1022 			if (error)
1023 				goto out_error;
1024 
1025 			if (*(__be32 *)offset ==
1026 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1027 				*wrapped = true;
1028 				*rblk = i;
1029 				*rhead = (struct xlog_rec_header *) offset;
1030 				if (++found == count)
1031 					break;
1032 			}
1033 		}
1034 	}
1035 
1036 	return found;
1037 
1038 out_error:
1039 	return error;
1040 }
1041 
1042 /*
1043  * Calculate distance from head to tail (i.e., unused space in the log).
1044  */
1045 static inline int
1046 xlog_tail_distance(
1047 	struct xlog	*log,
1048 	xfs_daddr_t	head_blk,
1049 	xfs_daddr_t	tail_blk)
1050 {
1051 	if (head_blk < tail_blk)
1052 		return tail_blk - head_blk;
1053 
1054 	return tail_blk + (log->l_logBBsize - head_blk);
1055 }
1056 
1057 /*
1058  * Verify the log tail. This is particularly important when torn or incomplete
1059  * writes have been detected near the front of the log and the head has been
1060  * walked back accordingly.
1061  *
1062  * We also have to handle the case where the tail was pinned and the head
1063  * blocked behind the tail right before a crash. If the tail had been pushed
1064  * immediately prior to the crash and the subsequent checkpoint was only
1065  * partially written, it's possible it overwrote the last referenced tail in the
1066  * log with garbage. This is not a coherency problem because the tail must have
1067  * been pushed before it can be overwritten, but appears as log corruption to
1068  * recovery because we have no way to know the tail was updated if the
1069  * subsequent checkpoint didn't write successfully.
1070  *
1071  * Therefore, CRC check the log from tail to head. If a failure occurs and the
1072  * offending record is within max iclog bufs from the head, walk the tail
1073  * forward and retry until a valid tail is found or corruption is detected out
1074  * of the range of a possible overwrite.
1075  */
1076 STATIC int
1077 xlog_verify_tail(
1078 	struct xlog		*log,
1079 	xfs_daddr_t		head_blk,
1080 	xfs_daddr_t		*tail_blk,
1081 	int			hsize)
1082 {
1083 	struct xlog_rec_header	*thead;
1084 	struct xfs_buf		*bp;
1085 	xfs_daddr_t		first_bad;
1086 	int			error = 0;
1087 	bool			wrapped;
1088 	xfs_daddr_t		tmp_tail;
1089 	xfs_daddr_t		orig_tail = *tail_blk;
1090 
1091 	bp = xlog_get_bp(log, 1);
1092 	if (!bp)
1093 		return -ENOMEM;
1094 
1095 	/*
1096 	 * Make sure the tail points to a record (returns positive count on
1097 	 * success).
1098 	 */
1099 	error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, bp,
1100 			&tmp_tail, &thead, &wrapped);
1101 	if (error < 0)
1102 		goto out;
1103 	if (*tail_blk != tmp_tail)
1104 		*tail_blk = tmp_tail;
1105 
1106 	/*
1107 	 * Run a CRC check from the tail to the head. We can't just check
1108 	 * MAX_ICLOGS records past the tail because the tail may point to stale
1109 	 * blocks cleared during the search for the head/tail. These blocks are
1110 	 * overwritten with zero-length records and thus record count is not a
1111 	 * reliable indicator of the iclog state before a crash.
1112 	 */
1113 	first_bad = 0;
1114 	error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1115 				      XLOG_RECOVER_CRCPASS, &first_bad);
1116 	while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1117 		int	tail_distance;
1118 
1119 		/*
1120 		 * Is corruption within range of the head? If so, retry from
1121 		 * the next record. Otherwise return an error.
1122 		 */
1123 		tail_distance = xlog_tail_distance(log, head_blk, first_bad);
1124 		if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
1125 			break;
1126 
1127 		/* skip to the next record; returns positive count on success */
1128 		error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, bp,
1129 				&tmp_tail, &thead, &wrapped);
1130 		if (error < 0)
1131 			goto out;
1132 
1133 		*tail_blk = tmp_tail;
1134 		first_bad = 0;
1135 		error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1136 					      XLOG_RECOVER_CRCPASS, &first_bad);
1137 	}
1138 
1139 	if (!error && *tail_blk != orig_tail)
1140 		xfs_warn(log->l_mp,
1141 		"Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1142 			 orig_tail, *tail_blk);
1143 out:
1144 	xlog_put_bp(bp);
1145 	return error;
1146 }
1147 
1148 /*
1149  * Detect and trim torn writes from the head of the log.
1150  *
1151  * Storage without sector atomicity guarantees can result in torn writes in the
1152  * log in the event of a crash. Our only means to detect this scenario is via
1153  * CRC verification. While we can't always be certain that CRC verification
1154  * failure is due to a torn write vs. an unrelated corruption, we do know that
1155  * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1156  * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1157  * the log and treat failures in this range as torn writes as a matter of
1158  * policy. In the event of CRC failure, the head is walked back to the last good
1159  * record in the log and the tail is updated from that record and verified.
1160  */
1161 STATIC int
1162 xlog_verify_head(
1163 	struct xlog		*log,
1164 	xfs_daddr_t		*head_blk,	/* in/out: unverified head */
1165 	xfs_daddr_t		*tail_blk,	/* out: tail block */
1166 	struct xfs_buf		*bp,
1167 	xfs_daddr_t		*rhead_blk,	/* start blk of last record */
1168 	struct xlog_rec_header	**rhead,	/* ptr to last record */
1169 	bool			*wrapped)	/* last rec. wraps phys. log */
1170 {
1171 	struct xlog_rec_header	*tmp_rhead;
1172 	struct xfs_buf		*tmp_bp;
1173 	xfs_daddr_t		first_bad;
1174 	xfs_daddr_t		tmp_rhead_blk;
1175 	int			found;
1176 	int			error;
1177 	bool			tmp_wrapped;
1178 
1179 	/*
1180 	 * Check the head of the log for torn writes. Search backwards from the
1181 	 * head until we hit the tail or the maximum number of log record I/Os
1182 	 * that could have been in flight at one time. Use a temporary buffer so
1183 	 * we don't trash the rhead/bp pointers from the caller.
1184 	 */
1185 	tmp_bp = xlog_get_bp(log, 1);
1186 	if (!tmp_bp)
1187 		return -ENOMEM;
1188 	error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1189 				      XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk,
1190 				      &tmp_rhead, &tmp_wrapped);
1191 	xlog_put_bp(tmp_bp);
1192 	if (error < 0)
1193 		return error;
1194 
1195 	/*
1196 	 * Now run a CRC verification pass over the records starting at the
1197 	 * block found above to the current head. If a CRC failure occurs, the
1198 	 * log block of the first bad record is saved in first_bad.
1199 	 */
1200 	error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1201 				      XLOG_RECOVER_CRCPASS, &first_bad);
1202 	if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1203 		/*
1204 		 * We've hit a potential torn write. Reset the error and warn
1205 		 * about it.
1206 		 */
1207 		error = 0;
1208 		xfs_warn(log->l_mp,
1209 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1210 			 first_bad, *head_blk);
1211 
1212 		/*
1213 		 * Get the header block and buffer pointer for the last good
1214 		 * record before the bad record.
1215 		 *
1216 		 * Note that xlog_find_tail() clears the blocks at the new head
1217 		 * (i.e., the records with invalid CRC) if the cycle number
1218 		 * matches the the current cycle.
1219 		 */
1220 		found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp,
1221 					      rhead_blk, rhead, wrapped);
1222 		if (found < 0)
1223 			return found;
1224 		if (found == 0)		/* XXX: right thing to do here? */
1225 			return -EIO;
1226 
1227 		/*
1228 		 * Reset the head block to the starting block of the first bad
1229 		 * log record and set the tail block based on the last good
1230 		 * record.
1231 		 *
1232 		 * Bail out if the updated head/tail match as this indicates
1233 		 * possible corruption outside of the acceptable
1234 		 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1235 		 */
1236 		*head_blk = first_bad;
1237 		*tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1238 		if (*head_blk == *tail_blk) {
1239 			ASSERT(0);
1240 			return 0;
1241 		}
1242 	}
1243 	if (error)
1244 		return error;
1245 
1246 	return xlog_verify_tail(log, *head_blk, tail_blk,
1247 				be32_to_cpu((*rhead)->h_size));
1248 }
1249 
1250 /*
1251  * Check whether the head of the log points to an unmount record. In other
1252  * words, determine whether the log is clean. If so, update the in-core state
1253  * appropriately.
1254  */
1255 static int
1256 xlog_check_unmount_rec(
1257 	struct xlog		*log,
1258 	xfs_daddr_t		*head_blk,
1259 	xfs_daddr_t		*tail_blk,
1260 	struct xlog_rec_header	*rhead,
1261 	xfs_daddr_t		rhead_blk,
1262 	struct xfs_buf		*bp,
1263 	bool			*clean)
1264 {
1265 	struct xlog_op_header	*op_head;
1266 	xfs_daddr_t		umount_data_blk;
1267 	xfs_daddr_t		after_umount_blk;
1268 	int			hblks;
1269 	int			error;
1270 	char			*offset;
1271 
1272 	*clean = false;
1273 
1274 	/*
1275 	 * Look for unmount record. If we find it, then we know there was a
1276 	 * clean unmount. Since 'i' could be the last block in the physical
1277 	 * log, we convert to a log block before comparing to the head_blk.
1278 	 *
1279 	 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1280 	 * below. We won't want to clear the unmount record if there is one, so
1281 	 * we pass the lsn of the unmount record rather than the block after it.
1282 	 */
1283 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1284 		int	h_size = be32_to_cpu(rhead->h_size);
1285 		int	h_version = be32_to_cpu(rhead->h_version);
1286 
1287 		if ((h_version & XLOG_VERSION_2) &&
1288 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1289 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1290 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
1291 				hblks++;
1292 		} else {
1293 			hblks = 1;
1294 		}
1295 	} else {
1296 		hblks = 1;
1297 	}
1298 	after_umount_blk = rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len));
1299 	after_umount_blk = do_mod(after_umount_blk, log->l_logBBsize);
1300 	if (*head_blk == after_umount_blk &&
1301 	    be32_to_cpu(rhead->h_num_logops) == 1) {
1302 		umount_data_blk = rhead_blk + hblks;
1303 		umount_data_blk = do_mod(umount_data_blk, log->l_logBBsize);
1304 		error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1305 		if (error)
1306 			return error;
1307 
1308 		op_head = (struct xlog_op_header *)offset;
1309 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1310 			/*
1311 			 * Set tail and last sync so that newly written log
1312 			 * records will point recovery to after the current
1313 			 * unmount record.
1314 			 */
1315 			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1316 					log->l_curr_cycle, after_umount_blk);
1317 			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1318 					log->l_curr_cycle, after_umount_blk);
1319 			*tail_blk = after_umount_blk;
1320 
1321 			*clean = true;
1322 		}
1323 	}
1324 
1325 	return 0;
1326 }
1327 
1328 static void
1329 xlog_set_state(
1330 	struct xlog		*log,
1331 	xfs_daddr_t		head_blk,
1332 	struct xlog_rec_header	*rhead,
1333 	xfs_daddr_t		rhead_blk,
1334 	bool			bump_cycle)
1335 {
1336 	/*
1337 	 * Reset log values according to the state of the log when we
1338 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
1339 	 * one because the next write starts a new cycle rather than
1340 	 * continuing the cycle of the last good log record.  At this
1341 	 * point we have guaranteed that all partial log records have been
1342 	 * accounted for.  Therefore, we know that the last good log record
1343 	 * written was complete and ended exactly on the end boundary
1344 	 * of the physical log.
1345 	 */
1346 	log->l_prev_block = rhead_blk;
1347 	log->l_curr_block = (int)head_blk;
1348 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1349 	if (bump_cycle)
1350 		log->l_curr_cycle++;
1351 	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1352 	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1353 	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1354 					BBTOB(log->l_curr_block));
1355 	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1356 					BBTOB(log->l_curr_block));
1357 }
1358 
1359 /*
1360  * Find the sync block number or the tail of the log.
1361  *
1362  * This will be the block number of the last record to have its
1363  * associated buffers synced to disk.  Every log record header has
1364  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
1365  * to get a sync block number.  The only concern is to figure out which
1366  * log record header to believe.
1367  *
1368  * The following algorithm uses the log record header with the largest
1369  * lsn.  The entire log record does not need to be valid.  We only care
1370  * that the header is valid.
1371  *
1372  * We could speed up search by using current head_blk buffer, but it is not
1373  * available.
1374  */
1375 STATIC int
1376 xlog_find_tail(
1377 	struct xlog		*log,
1378 	xfs_daddr_t		*head_blk,
1379 	xfs_daddr_t		*tail_blk)
1380 {
1381 	xlog_rec_header_t	*rhead;
1382 	char			*offset = NULL;
1383 	xfs_buf_t		*bp;
1384 	int			error;
1385 	xfs_daddr_t		rhead_blk;
1386 	xfs_lsn_t		tail_lsn;
1387 	bool			wrapped = false;
1388 	bool			clean = false;
1389 
1390 	/*
1391 	 * Find previous log record
1392 	 */
1393 	if ((error = xlog_find_head(log, head_blk)))
1394 		return error;
1395 	ASSERT(*head_blk < INT_MAX);
1396 
1397 	bp = xlog_get_bp(log, 1);
1398 	if (!bp)
1399 		return -ENOMEM;
1400 	if (*head_blk == 0) {				/* special case */
1401 		error = xlog_bread(log, 0, 1, bp, &offset);
1402 		if (error)
1403 			goto done;
1404 
1405 		if (xlog_get_cycle(offset) == 0) {
1406 			*tail_blk = 0;
1407 			/* leave all other log inited values alone */
1408 			goto done;
1409 		}
1410 	}
1411 
1412 	/*
1413 	 * Search backwards through the log looking for the log record header
1414 	 * block. This wraps all the way back around to the head so something is
1415 	 * seriously wrong if we can't find it.
1416 	 */
1417 	error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp,
1418 				      &rhead_blk, &rhead, &wrapped);
1419 	if (error < 0)
1420 		return error;
1421 	if (!error) {
1422 		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1423 		return -EIO;
1424 	}
1425 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1426 
1427 	/*
1428 	 * Set the log state based on the current head record.
1429 	 */
1430 	xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1431 	tail_lsn = atomic64_read(&log->l_tail_lsn);
1432 
1433 	/*
1434 	 * Look for an unmount record at the head of the log. This sets the log
1435 	 * state to determine whether recovery is necessary.
1436 	 */
1437 	error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1438 				       rhead_blk, bp, &clean);
1439 	if (error)
1440 		goto done;
1441 
1442 	/*
1443 	 * Verify the log head if the log is not clean (e.g., we have anything
1444 	 * but an unmount record at the head). This uses CRC verification to
1445 	 * detect and trim torn writes. If discovered, CRC failures are
1446 	 * considered torn writes and the log head is trimmed accordingly.
1447 	 *
1448 	 * Note that we can only run CRC verification when the log is dirty
1449 	 * because there's no guarantee that the log data behind an unmount
1450 	 * record is compatible with the current architecture.
1451 	 */
1452 	if (!clean) {
1453 		xfs_daddr_t	orig_head = *head_blk;
1454 
1455 		error = xlog_verify_head(log, head_blk, tail_blk, bp,
1456 					 &rhead_blk, &rhead, &wrapped);
1457 		if (error)
1458 			goto done;
1459 
1460 		/* update in-core state again if the head changed */
1461 		if (*head_blk != orig_head) {
1462 			xlog_set_state(log, *head_blk, rhead, rhead_blk,
1463 				       wrapped);
1464 			tail_lsn = atomic64_read(&log->l_tail_lsn);
1465 			error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1466 						       rhead, rhead_blk, bp,
1467 						       &clean);
1468 			if (error)
1469 				goto done;
1470 		}
1471 	}
1472 
1473 	/*
1474 	 * Note that the unmount was clean. If the unmount was not clean, we
1475 	 * need to know this to rebuild the superblock counters from the perag
1476 	 * headers if we have a filesystem using non-persistent counters.
1477 	 */
1478 	if (clean)
1479 		log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1480 
1481 	/*
1482 	 * Make sure that there are no blocks in front of the head
1483 	 * with the same cycle number as the head.  This can happen
1484 	 * because we allow multiple outstanding log writes concurrently,
1485 	 * and the later writes might make it out before earlier ones.
1486 	 *
1487 	 * We use the lsn from before modifying it so that we'll never
1488 	 * overwrite the unmount record after a clean unmount.
1489 	 *
1490 	 * Do this only if we are going to recover the filesystem
1491 	 *
1492 	 * NOTE: This used to say "if (!readonly)"
1493 	 * However on Linux, we can & do recover a read-only filesystem.
1494 	 * We only skip recovery if NORECOVERY is specified on mount,
1495 	 * in which case we would not be here.
1496 	 *
1497 	 * But... if the -device- itself is readonly, just skip this.
1498 	 * We can't recover this device anyway, so it won't matter.
1499 	 */
1500 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1501 		error = xlog_clear_stale_blocks(log, tail_lsn);
1502 
1503 done:
1504 	xlog_put_bp(bp);
1505 
1506 	if (error)
1507 		xfs_warn(log->l_mp, "failed to locate log tail");
1508 	return error;
1509 }
1510 
1511 /*
1512  * Is the log zeroed at all?
1513  *
1514  * The last binary search should be changed to perform an X block read
1515  * once X becomes small enough.  You can then search linearly through
1516  * the X blocks.  This will cut down on the number of reads we need to do.
1517  *
1518  * If the log is partially zeroed, this routine will pass back the blkno
1519  * of the first block with cycle number 0.  It won't have a complete LR
1520  * preceding it.
1521  *
1522  * Return:
1523  *	0  => the log is completely written to
1524  *	1 => use *blk_no as the first block of the log
1525  *	<0 => error has occurred
1526  */
1527 STATIC int
1528 xlog_find_zeroed(
1529 	struct xlog	*log,
1530 	xfs_daddr_t	*blk_no)
1531 {
1532 	xfs_buf_t	*bp;
1533 	char		*offset;
1534 	uint	        first_cycle, last_cycle;
1535 	xfs_daddr_t	new_blk, last_blk, start_blk;
1536 	xfs_daddr_t     num_scan_bblks;
1537 	int	        error, log_bbnum = log->l_logBBsize;
1538 
1539 	*blk_no = 0;
1540 
1541 	/* check totally zeroed log */
1542 	bp = xlog_get_bp(log, 1);
1543 	if (!bp)
1544 		return -ENOMEM;
1545 	error = xlog_bread(log, 0, 1, bp, &offset);
1546 	if (error)
1547 		goto bp_err;
1548 
1549 	first_cycle = xlog_get_cycle(offset);
1550 	if (first_cycle == 0) {		/* completely zeroed log */
1551 		*blk_no = 0;
1552 		xlog_put_bp(bp);
1553 		return 1;
1554 	}
1555 
1556 	/* check partially zeroed log */
1557 	error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1558 	if (error)
1559 		goto bp_err;
1560 
1561 	last_cycle = xlog_get_cycle(offset);
1562 	if (last_cycle != 0) {		/* log completely written to */
1563 		xlog_put_bp(bp);
1564 		return 0;
1565 	} else if (first_cycle != 1) {
1566 		/*
1567 		 * If the cycle of the last block is zero, the cycle of
1568 		 * the first block must be 1. If it's not, maybe we're
1569 		 * not looking at a log... Bail out.
1570 		 */
1571 		xfs_warn(log->l_mp,
1572 			"Log inconsistent or not a log (last==0, first!=1)");
1573 		error = -EINVAL;
1574 		goto bp_err;
1575 	}
1576 
1577 	/* we have a partially zeroed log */
1578 	last_blk = log_bbnum-1;
1579 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1580 		goto bp_err;
1581 
1582 	/*
1583 	 * Validate the answer.  Because there is no way to guarantee that
1584 	 * the entire log is made up of log records which are the same size,
1585 	 * we scan over the defined maximum blocks.  At this point, the maximum
1586 	 * is not chosen to mean anything special.   XXXmiken
1587 	 */
1588 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1589 	ASSERT(num_scan_bblks <= INT_MAX);
1590 
1591 	if (last_blk < num_scan_bblks)
1592 		num_scan_bblks = last_blk;
1593 	start_blk = last_blk - num_scan_bblks;
1594 
1595 	/*
1596 	 * We search for any instances of cycle number 0 that occur before
1597 	 * our current estimate of the head.  What we're trying to detect is
1598 	 *        1 ... | 0 | 1 | 0...
1599 	 *                       ^ binary search ends here
1600 	 */
1601 	if ((error = xlog_find_verify_cycle(log, start_blk,
1602 					 (int)num_scan_bblks, 0, &new_blk)))
1603 		goto bp_err;
1604 	if (new_blk != -1)
1605 		last_blk = new_blk;
1606 
1607 	/*
1608 	 * Potentially backup over partial log record write.  We don't need
1609 	 * to search the end of the log because we know it is zero.
1610 	 */
1611 	error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1612 	if (error == 1)
1613 		error = -EIO;
1614 	if (error)
1615 		goto bp_err;
1616 
1617 	*blk_no = last_blk;
1618 bp_err:
1619 	xlog_put_bp(bp);
1620 	if (error)
1621 		return error;
1622 	return 1;
1623 }
1624 
1625 /*
1626  * These are simple subroutines used by xlog_clear_stale_blocks() below
1627  * to initialize a buffer full of empty log record headers and write
1628  * them into the log.
1629  */
1630 STATIC void
1631 xlog_add_record(
1632 	struct xlog		*log,
1633 	char			*buf,
1634 	int			cycle,
1635 	int			block,
1636 	int			tail_cycle,
1637 	int			tail_block)
1638 {
1639 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1640 
1641 	memset(buf, 0, BBSIZE);
1642 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1643 	recp->h_cycle = cpu_to_be32(cycle);
1644 	recp->h_version = cpu_to_be32(
1645 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1646 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1647 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1648 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1649 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1650 }
1651 
1652 STATIC int
1653 xlog_write_log_records(
1654 	struct xlog	*log,
1655 	int		cycle,
1656 	int		start_block,
1657 	int		blocks,
1658 	int		tail_cycle,
1659 	int		tail_block)
1660 {
1661 	char		*offset;
1662 	xfs_buf_t	*bp;
1663 	int		balign, ealign;
1664 	int		sectbb = log->l_sectBBsize;
1665 	int		end_block = start_block + blocks;
1666 	int		bufblks;
1667 	int		error = 0;
1668 	int		i, j = 0;
1669 
1670 	/*
1671 	 * Greedily allocate a buffer big enough to handle the full
1672 	 * range of basic blocks to be written.  If that fails, try
1673 	 * a smaller size.  We need to be able to write at least a
1674 	 * log sector, or we're out of luck.
1675 	 */
1676 	bufblks = 1 << ffs(blocks);
1677 	while (bufblks > log->l_logBBsize)
1678 		bufblks >>= 1;
1679 	while (!(bp = xlog_get_bp(log, bufblks))) {
1680 		bufblks >>= 1;
1681 		if (bufblks < sectbb)
1682 			return -ENOMEM;
1683 	}
1684 
1685 	/* We may need to do a read at the start to fill in part of
1686 	 * the buffer in the starting sector not covered by the first
1687 	 * write below.
1688 	 */
1689 	balign = round_down(start_block, sectbb);
1690 	if (balign != start_block) {
1691 		error = xlog_bread_noalign(log, start_block, 1, bp);
1692 		if (error)
1693 			goto out_put_bp;
1694 
1695 		j = start_block - balign;
1696 	}
1697 
1698 	for (i = start_block; i < end_block; i += bufblks) {
1699 		int		bcount, endcount;
1700 
1701 		bcount = min(bufblks, end_block - start_block);
1702 		endcount = bcount - j;
1703 
1704 		/* We may need to do a read at the end to fill in part of
1705 		 * the buffer in the final sector not covered by the write.
1706 		 * If this is the same sector as the above read, skip it.
1707 		 */
1708 		ealign = round_down(end_block, sectbb);
1709 		if (j == 0 && (start_block + endcount > ealign)) {
1710 			offset = bp->b_addr + BBTOB(ealign - start_block);
1711 			error = xlog_bread_offset(log, ealign, sectbb,
1712 							bp, offset);
1713 			if (error)
1714 				break;
1715 
1716 		}
1717 
1718 		offset = xlog_align(log, start_block, endcount, bp);
1719 		for (; j < endcount; j++) {
1720 			xlog_add_record(log, offset, cycle, i+j,
1721 					tail_cycle, tail_block);
1722 			offset += BBSIZE;
1723 		}
1724 		error = xlog_bwrite(log, start_block, endcount, bp);
1725 		if (error)
1726 			break;
1727 		start_block += endcount;
1728 		j = 0;
1729 	}
1730 
1731  out_put_bp:
1732 	xlog_put_bp(bp);
1733 	return error;
1734 }
1735 
1736 /*
1737  * This routine is called to blow away any incomplete log writes out
1738  * in front of the log head.  We do this so that we won't become confused
1739  * if we come up, write only a little bit more, and then crash again.
1740  * If we leave the partial log records out there, this situation could
1741  * cause us to think those partial writes are valid blocks since they
1742  * have the current cycle number.  We get rid of them by overwriting them
1743  * with empty log records with the old cycle number rather than the
1744  * current one.
1745  *
1746  * The tail lsn is passed in rather than taken from
1747  * the log so that we will not write over the unmount record after a
1748  * clean unmount in a 512 block log.  Doing so would leave the log without
1749  * any valid log records in it until a new one was written.  If we crashed
1750  * during that time we would not be able to recover.
1751  */
1752 STATIC int
1753 xlog_clear_stale_blocks(
1754 	struct xlog	*log,
1755 	xfs_lsn_t	tail_lsn)
1756 {
1757 	int		tail_cycle, head_cycle;
1758 	int		tail_block, head_block;
1759 	int		tail_distance, max_distance;
1760 	int		distance;
1761 	int		error;
1762 
1763 	tail_cycle = CYCLE_LSN(tail_lsn);
1764 	tail_block = BLOCK_LSN(tail_lsn);
1765 	head_cycle = log->l_curr_cycle;
1766 	head_block = log->l_curr_block;
1767 
1768 	/*
1769 	 * Figure out the distance between the new head of the log
1770 	 * and the tail.  We want to write over any blocks beyond the
1771 	 * head that we may have written just before the crash, but
1772 	 * we don't want to overwrite the tail of the log.
1773 	 */
1774 	if (head_cycle == tail_cycle) {
1775 		/*
1776 		 * The tail is behind the head in the physical log,
1777 		 * so the distance from the head to the tail is the
1778 		 * distance from the head to the end of the log plus
1779 		 * the distance from the beginning of the log to the
1780 		 * tail.
1781 		 */
1782 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1783 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1784 					 XFS_ERRLEVEL_LOW, log->l_mp);
1785 			return -EFSCORRUPTED;
1786 		}
1787 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1788 	} else {
1789 		/*
1790 		 * The head is behind the tail in the physical log,
1791 		 * so the distance from the head to the tail is just
1792 		 * the tail block minus the head block.
1793 		 */
1794 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1795 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1796 					 XFS_ERRLEVEL_LOW, log->l_mp);
1797 			return -EFSCORRUPTED;
1798 		}
1799 		tail_distance = tail_block - head_block;
1800 	}
1801 
1802 	/*
1803 	 * If the head is right up against the tail, we can't clear
1804 	 * anything.
1805 	 */
1806 	if (tail_distance <= 0) {
1807 		ASSERT(tail_distance == 0);
1808 		return 0;
1809 	}
1810 
1811 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1812 	/*
1813 	 * Take the smaller of the maximum amount of outstanding I/O
1814 	 * we could have and the distance to the tail to clear out.
1815 	 * We take the smaller so that we don't overwrite the tail and
1816 	 * we don't waste all day writing from the head to the tail
1817 	 * for no reason.
1818 	 */
1819 	max_distance = MIN(max_distance, tail_distance);
1820 
1821 	if ((head_block + max_distance) <= log->l_logBBsize) {
1822 		/*
1823 		 * We can stomp all the blocks we need to without
1824 		 * wrapping around the end of the log.  Just do it
1825 		 * in a single write.  Use the cycle number of the
1826 		 * current cycle minus one so that the log will look like:
1827 		 *     n ... | n - 1 ...
1828 		 */
1829 		error = xlog_write_log_records(log, (head_cycle - 1),
1830 				head_block, max_distance, tail_cycle,
1831 				tail_block);
1832 		if (error)
1833 			return error;
1834 	} else {
1835 		/*
1836 		 * We need to wrap around the end of the physical log in
1837 		 * order to clear all the blocks.  Do it in two separate
1838 		 * I/Os.  The first write should be from the head to the
1839 		 * end of the physical log, and it should use the current
1840 		 * cycle number minus one just like above.
1841 		 */
1842 		distance = log->l_logBBsize - head_block;
1843 		error = xlog_write_log_records(log, (head_cycle - 1),
1844 				head_block, distance, tail_cycle,
1845 				tail_block);
1846 
1847 		if (error)
1848 			return error;
1849 
1850 		/*
1851 		 * Now write the blocks at the start of the physical log.
1852 		 * This writes the remainder of the blocks we want to clear.
1853 		 * It uses the current cycle number since we're now on the
1854 		 * same cycle as the head so that we get:
1855 		 *    n ... n ... | n - 1 ...
1856 		 *    ^^^^^ blocks we're writing
1857 		 */
1858 		distance = max_distance - (log->l_logBBsize - head_block);
1859 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1860 				tail_cycle, tail_block);
1861 		if (error)
1862 			return error;
1863 	}
1864 
1865 	return 0;
1866 }
1867 
1868 /******************************************************************************
1869  *
1870  *		Log recover routines
1871  *
1872  ******************************************************************************
1873  */
1874 
1875 /*
1876  * Sort the log items in the transaction.
1877  *
1878  * The ordering constraints are defined by the inode allocation and unlink
1879  * behaviour. The rules are:
1880  *
1881  *	1. Every item is only logged once in a given transaction. Hence it
1882  *	   represents the last logged state of the item. Hence ordering is
1883  *	   dependent on the order in which operations need to be performed so
1884  *	   required initial conditions are always met.
1885  *
1886  *	2. Cancelled buffers are recorded in pass 1 in a separate table and
1887  *	   there's nothing to replay from them so we can simply cull them
1888  *	   from the transaction. However, we can't do that until after we've
1889  *	   replayed all the other items because they may be dependent on the
1890  *	   cancelled buffer and replaying the cancelled buffer can remove it
1891  *	   form the cancelled buffer table. Hence they have tobe done last.
1892  *
1893  *	3. Inode allocation buffers must be replayed before inode items that
1894  *	   read the buffer and replay changes into it. For filesystems using the
1895  *	   ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1896  *	   treated the same as inode allocation buffers as they create and
1897  *	   initialise the buffers directly.
1898  *
1899  *	4. Inode unlink buffers must be replayed after inode items are replayed.
1900  *	   This ensures that inodes are completely flushed to the inode buffer
1901  *	   in a "free" state before we remove the unlinked inode list pointer.
1902  *
1903  * Hence the ordering needs to be inode allocation buffers first, inode items
1904  * second, inode unlink buffers third and cancelled buffers last.
1905  *
1906  * But there's a problem with that - we can't tell an inode allocation buffer
1907  * apart from a regular buffer, so we can't separate them. We can, however,
1908  * tell an inode unlink buffer from the others, and so we can separate them out
1909  * from all the other buffers and move them to last.
1910  *
1911  * Hence, 4 lists, in order from head to tail:
1912  *	- buffer_list for all buffers except cancelled/inode unlink buffers
1913  *	- item_list for all non-buffer items
1914  *	- inode_buffer_list for inode unlink buffers
1915  *	- cancel_list for the cancelled buffers
1916  *
1917  * Note that we add objects to the tail of the lists so that first-to-last
1918  * ordering is preserved within the lists. Adding objects to the head of the
1919  * list means when we traverse from the head we walk them in last-to-first
1920  * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1921  * but for all other items there may be specific ordering that we need to
1922  * preserve.
1923  */
1924 STATIC int
1925 xlog_recover_reorder_trans(
1926 	struct xlog		*log,
1927 	struct xlog_recover	*trans,
1928 	int			pass)
1929 {
1930 	xlog_recover_item_t	*item, *n;
1931 	int			error = 0;
1932 	LIST_HEAD(sort_list);
1933 	LIST_HEAD(cancel_list);
1934 	LIST_HEAD(buffer_list);
1935 	LIST_HEAD(inode_buffer_list);
1936 	LIST_HEAD(inode_list);
1937 
1938 	list_splice_init(&trans->r_itemq, &sort_list);
1939 	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1940 		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1941 
1942 		switch (ITEM_TYPE(item)) {
1943 		case XFS_LI_ICREATE:
1944 			list_move_tail(&item->ri_list, &buffer_list);
1945 			break;
1946 		case XFS_LI_BUF:
1947 			if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1948 				trace_xfs_log_recover_item_reorder_head(log,
1949 							trans, item, pass);
1950 				list_move(&item->ri_list, &cancel_list);
1951 				break;
1952 			}
1953 			if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1954 				list_move(&item->ri_list, &inode_buffer_list);
1955 				break;
1956 			}
1957 			list_move_tail(&item->ri_list, &buffer_list);
1958 			break;
1959 		case XFS_LI_INODE:
1960 		case XFS_LI_DQUOT:
1961 		case XFS_LI_QUOTAOFF:
1962 		case XFS_LI_EFD:
1963 		case XFS_LI_EFI:
1964 		case XFS_LI_RUI:
1965 		case XFS_LI_RUD:
1966 		case XFS_LI_CUI:
1967 		case XFS_LI_CUD:
1968 		case XFS_LI_BUI:
1969 		case XFS_LI_BUD:
1970 			trace_xfs_log_recover_item_reorder_tail(log,
1971 							trans, item, pass);
1972 			list_move_tail(&item->ri_list, &inode_list);
1973 			break;
1974 		default:
1975 			xfs_warn(log->l_mp,
1976 				"%s: unrecognized type of log operation",
1977 				__func__);
1978 			ASSERT(0);
1979 			/*
1980 			 * return the remaining items back to the transaction
1981 			 * item list so they can be freed in caller.
1982 			 */
1983 			if (!list_empty(&sort_list))
1984 				list_splice_init(&sort_list, &trans->r_itemq);
1985 			error = -EIO;
1986 			goto out;
1987 		}
1988 	}
1989 out:
1990 	ASSERT(list_empty(&sort_list));
1991 	if (!list_empty(&buffer_list))
1992 		list_splice(&buffer_list, &trans->r_itemq);
1993 	if (!list_empty(&inode_list))
1994 		list_splice_tail(&inode_list, &trans->r_itemq);
1995 	if (!list_empty(&inode_buffer_list))
1996 		list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1997 	if (!list_empty(&cancel_list))
1998 		list_splice_tail(&cancel_list, &trans->r_itemq);
1999 	return error;
2000 }
2001 
2002 /*
2003  * Build up the table of buf cancel records so that we don't replay
2004  * cancelled data in the second pass.  For buffer records that are
2005  * not cancel records, there is nothing to do here so we just return.
2006  *
2007  * If we get a cancel record which is already in the table, this indicates
2008  * that the buffer was cancelled multiple times.  In order to ensure
2009  * that during pass 2 we keep the record in the table until we reach its
2010  * last occurrence in the log, we keep a reference count in the cancel
2011  * record in the table to tell us how many times we expect to see this
2012  * record during the second pass.
2013  */
2014 STATIC int
2015 xlog_recover_buffer_pass1(
2016 	struct xlog			*log,
2017 	struct xlog_recover_item	*item)
2018 {
2019 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2020 	struct list_head	*bucket;
2021 	struct xfs_buf_cancel	*bcp;
2022 
2023 	/*
2024 	 * If this isn't a cancel buffer item, then just return.
2025 	 */
2026 	if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
2027 		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
2028 		return 0;
2029 	}
2030 
2031 	/*
2032 	 * Insert an xfs_buf_cancel record into the hash table of them.
2033 	 * If there is already an identical record, bump its reference count.
2034 	 */
2035 	bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
2036 	list_for_each_entry(bcp, bucket, bc_list) {
2037 		if (bcp->bc_blkno == buf_f->blf_blkno &&
2038 		    bcp->bc_len == buf_f->blf_len) {
2039 			bcp->bc_refcount++;
2040 			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
2041 			return 0;
2042 		}
2043 	}
2044 
2045 	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
2046 	bcp->bc_blkno = buf_f->blf_blkno;
2047 	bcp->bc_len = buf_f->blf_len;
2048 	bcp->bc_refcount = 1;
2049 	list_add_tail(&bcp->bc_list, bucket);
2050 
2051 	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
2052 	return 0;
2053 }
2054 
2055 /*
2056  * Check to see whether the buffer being recovered has a corresponding
2057  * entry in the buffer cancel record table. If it is, return the cancel
2058  * buffer structure to the caller.
2059  */
2060 STATIC struct xfs_buf_cancel *
2061 xlog_peek_buffer_cancelled(
2062 	struct xlog		*log,
2063 	xfs_daddr_t		blkno,
2064 	uint			len,
2065 	unsigned short			flags)
2066 {
2067 	struct list_head	*bucket;
2068 	struct xfs_buf_cancel	*bcp;
2069 
2070 	if (!log->l_buf_cancel_table) {
2071 		/* empty table means no cancelled buffers in the log */
2072 		ASSERT(!(flags & XFS_BLF_CANCEL));
2073 		return NULL;
2074 	}
2075 
2076 	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
2077 	list_for_each_entry(bcp, bucket, bc_list) {
2078 		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
2079 			return bcp;
2080 	}
2081 
2082 	/*
2083 	 * We didn't find a corresponding entry in the table, so return 0 so
2084 	 * that the buffer is NOT cancelled.
2085 	 */
2086 	ASSERT(!(flags & XFS_BLF_CANCEL));
2087 	return NULL;
2088 }
2089 
2090 /*
2091  * If the buffer is being cancelled then return 1 so that it will be cancelled,
2092  * otherwise return 0.  If the buffer is actually a buffer cancel item
2093  * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2094  * table and remove it from the table if this is the last reference.
2095  *
2096  * We remove the cancel record from the table when we encounter its last
2097  * occurrence in the log so that if the same buffer is re-used again after its
2098  * last cancellation we actually replay the changes made at that point.
2099  */
2100 STATIC int
2101 xlog_check_buffer_cancelled(
2102 	struct xlog		*log,
2103 	xfs_daddr_t		blkno,
2104 	uint			len,
2105 	unsigned short			flags)
2106 {
2107 	struct xfs_buf_cancel	*bcp;
2108 
2109 	bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2110 	if (!bcp)
2111 		return 0;
2112 
2113 	/*
2114 	 * We've go a match, so return 1 so that the recovery of this buffer
2115 	 * is cancelled.  If this buffer is actually a buffer cancel log
2116 	 * item, then decrement the refcount on the one in the table and
2117 	 * remove it if this is the last reference.
2118 	 */
2119 	if (flags & XFS_BLF_CANCEL) {
2120 		if (--bcp->bc_refcount == 0) {
2121 			list_del(&bcp->bc_list);
2122 			kmem_free(bcp);
2123 		}
2124 	}
2125 	return 1;
2126 }
2127 
2128 /*
2129  * Perform recovery for a buffer full of inodes.  In these buffers, the only
2130  * data which should be recovered is that which corresponds to the
2131  * di_next_unlinked pointers in the on disk inode structures.  The rest of the
2132  * data for the inodes is always logged through the inodes themselves rather
2133  * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2134  *
2135  * The only time when buffers full of inodes are fully recovered is when the
2136  * buffer is full of newly allocated inodes.  In this case the buffer will
2137  * not be marked as an inode buffer and so will be sent to
2138  * xlog_recover_do_reg_buffer() below during recovery.
2139  */
2140 STATIC int
2141 xlog_recover_do_inode_buffer(
2142 	struct xfs_mount	*mp,
2143 	xlog_recover_item_t	*item,
2144 	struct xfs_buf		*bp,
2145 	xfs_buf_log_format_t	*buf_f)
2146 {
2147 	int			i;
2148 	int			item_index = 0;
2149 	int			bit = 0;
2150 	int			nbits = 0;
2151 	int			reg_buf_offset = 0;
2152 	int			reg_buf_bytes = 0;
2153 	int			next_unlinked_offset;
2154 	int			inodes_per_buf;
2155 	xfs_agino_t		*logged_nextp;
2156 	xfs_agino_t		*buffer_nextp;
2157 
2158 	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2159 
2160 	/*
2161 	 * Post recovery validation only works properly on CRC enabled
2162 	 * filesystems.
2163 	 */
2164 	if (xfs_sb_version_hascrc(&mp->m_sb))
2165 		bp->b_ops = &xfs_inode_buf_ops;
2166 
2167 	inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
2168 	for (i = 0; i < inodes_per_buf; i++) {
2169 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2170 			offsetof(xfs_dinode_t, di_next_unlinked);
2171 
2172 		while (next_unlinked_offset >=
2173 		       (reg_buf_offset + reg_buf_bytes)) {
2174 			/*
2175 			 * The next di_next_unlinked field is beyond
2176 			 * the current logged region.  Find the next
2177 			 * logged region that contains or is beyond
2178 			 * the current di_next_unlinked field.
2179 			 */
2180 			bit += nbits;
2181 			bit = xfs_next_bit(buf_f->blf_data_map,
2182 					   buf_f->blf_map_size, bit);
2183 
2184 			/*
2185 			 * If there are no more logged regions in the
2186 			 * buffer, then we're done.
2187 			 */
2188 			if (bit == -1)
2189 				return 0;
2190 
2191 			nbits = xfs_contig_bits(buf_f->blf_data_map,
2192 						buf_f->blf_map_size, bit);
2193 			ASSERT(nbits > 0);
2194 			reg_buf_offset = bit << XFS_BLF_SHIFT;
2195 			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2196 			item_index++;
2197 		}
2198 
2199 		/*
2200 		 * If the current logged region starts after the current
2201 		 * di_next_unlinked field, then move on to the next
2202 		 * di_next_unlinked field.
2203 		 */
2204 		if (next_unlinked_offset < reg_buf_offset)
2205 			continue;
2206 
2207 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
2208 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2209 		ASSERT((reg_buf_offset + reg_buf_bytes) <=
2210 							BBTOB(bp->b_io_length));
2211 
2212 		/*
2213 		 * The current logged region contains a copy of the
2214 		 * current di_next_unlinked field.  Extract its value
2215 		 * and copy it to the buffer copy.
2216 		 */
2217 		logged_nextp = item->ri_buf[item_index].i_addr +
2218 				next_unlinked_offset - reg_buf_offset;
2219 		if (unlikely(*logged_nextp == 0)) {
2220 			xfs_alert(mp,
2221 		"Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
2222 		"Trying to replay bad (0) inode di_next_unlinked field.",
2223 				item, bp);
2224 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2225 					 XFS_ERRLEVEL_LOW, mp);
2226 			return -EFSCORRUPTED;
2227 		}
2228 
2229 		buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
2230 		*buffer_nextp = *logged_nextp;
2231 
2232 		/*
2233 		 * If necessary, recalculate the CRC in the on-disk inode. We
2234 		 * have to leave the inode in a consistent state for whoever
2235 		 * reads it next....
2236 		 */
2237 		xfs_dinode_calc_crc(mp,
2238 				xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2239 
2240 	}
2241 
2242 	return 0;
2243 }
2244 
2245 /*
2246  * V5 filesystems know the age of the buffer on disk being recovered. We can
2247  * have newer objects on disk than we are replaying, and so for these cases we
2248  * don't want to replay the current change as that will make the buffer contents
2249  * temporarily invalid on disk.
2250  *
2251  * The magic number might not match the buffer type we are going to recover
2252  * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
2253  * extract the LSN of the existing object in the buffer based on it's current
2254  * magic number.  If we don't recognise the magic number in the buffer, then
2255  * return a LSN of -1 so that the caller knows it was an unrecognised block and
2256  * so can recover the buffer.
2257  *
2258  * Note: we cannot rely solely on magic number matches to determine that the
2259  * buffer has a valid LSN - we also need to verify that it belongs to this
2260  * filesystem, so we need to extract the object's LSN and compare it to that
2261  * which we read from the superblock. If the UUIDs don't match, then we've got a
2262  * stale metadata block from an old filesystem instance that we need to recover
2263  * over the top of.
2264  */
2265 static xfs_lsn_t
2266 xlog_recover_get_buf_lsn(
2267 	struct xfs_mount	*mp,
2268 	struct xfs_buf		*bp)
2269 {
2270 	uint32_t		magic32;
2271 	uint16_t		magic16;
2272 	uint16_t		magicda;
2273 	void			*blk = bp->b_addr;
2274 	uuid_t			*uuid;
2275 	xfs_lsn_t		lsn = -1;
2276 
2277 	/* v4 filesystems always recover immediately */
2278 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2279 		goto recover_immediately;
2280 
2281 	magic32 = be32_to_cpu(*(__be32 *)blk);
2282 	switch (magic32) {
2283 	case XFS_ABTB_CRC_MAGIC:
2284 	case XFS_ABTC_CRC_MAGIC:
2285 	case XFS_ABTB_MAGIC:
2286 	case XFS_ABTC_MAGIC:
2287 	case XFS_RMAP_CRC_MAGIC:
2288 	case XFS_REFC_CRC_MAGIC:
2289 	case XFS_IBT_CRC_MAGIC:
2290 	case XFS_IBT_MAGIC: {
2291 		struct xfs_btree_block *btb = blk;
2292 
2293 		lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2294 		uuid = &btb->bb_u.s.bb_uuid;
2295 		break;
2296 	}
2297 	case XFS_BMAP_CRC_MAGIC:
2298 	case XFS_BMAP_MAGIC: {
2299 		struct xfs_btree_block *btb = blk;
2300 
2301 		lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2302 		uuid = &btb->bb_u.l.bb_uuid;
2303 		break;
2304 	}
2305 	case XFS_AGF_MAGIC:
2306 		lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2307 		uuid = &((struct xfs_agf *)blk)->agf_uuid;
2308 		break;
2309 	case XFS_AGFL_MAGIC:
2310 		lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2311 		uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2312 		break;
2313 	case XFS_AGI_MAGIC:
2314 		lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2315 		uuid = &((struct xfs_agi *)blk)->agi_uuid;
2316 		break;
2317 	case XFS_SYMLINK_MAGIC:
2318 		lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2319 		uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2320 		break;
2321 	case XFS_DIR3_BLOCK_MAGIC:
2322 	case XFS_DIR3_DATA_MAGIC:
2323 	case XFS_DIR3_FREE_MAGIC:
2324 		lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2325 		uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2326 		break;
2327 	case XFS_ATTR3_RMT_MAGIC:
2328 		/*
2329 		 * Remote attr blocks are written synchronously, rather than
2330 		 * being logged. That means they do not contain a valid LSN
2331 		 * (i.e. transactionally ordered) in them, and hence any time we
2332 		 * see a buffer to replay over the top of a remote attribute
2333 		 * block we should simply do so.
2334 		 */
2335 		goto recover_immediately;
2336 	case XFS_SB_MAGIC:
2337 		/*
2338 		 * superblock uuids are magic. We may or may not have a
2339 		 * sb_meta_uuid on disk, but it will be set in the in-core
2340 		 * superblock. We set the uuid pointer for verification
2341 		 * according to the superblock feature mask to ensure we check
2342 		 * the relevant UUID in the superblock.
2343 		 */
2344 		lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2345 		if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2346 			uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2347 		else
2348 			uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2349 		break;
2350 	default:
2351 		break;
2352 	}
2353 
2354 	if (lsn != (xfs_lsn_t)-1) {
2355 		if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2356 			goto recover_immediately;
2357 		return lsn;
2358 	}
2359 
2360 	magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2361 	switch (magicda) {
2362 	case XFS_DIR3_LEAF1_MAGIC:
2363 	case XFS_DIR3_LEAFN_MAGIC:
2364 	case XFS_DA3_NODE_MAGIC:
2365 		lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2366 		uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2367 		break;
2368 	default:
2369 		break;
2370 	}
2371 
2372 	if (lsn != (xfs_lsn_t)-1) {
2373 		if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2374 			goto recover_immediately;
2375 		return lsn;
2376 	}
2377 
2378 	/*
2379 	 * We do individual object checks on dquot and inode buffers as they
2380 	 * have their own individual LSN records. Also, we could have a stale
2381 	 * buffer here, so we have to at least recognise these buffer types.
2382 	 *
2383 	 * A notd complexity here is inode unlinked list processing - it logs
2384 	 * the inode directly in the buffer, but we don't know which inodes have
2385 	 * been modified, and there is no global buffer LSN. Hence we need to
2386 	 * recover all inode buffer types immediately. This problem will be
2387 	 * fixed by logical logging of the unlinked list modifications.
2388 	 */
2389 	magic16 = be16_to_cpu(*(__be16 *)blk);
2390 	switch (magic16) {
2391 	case XFS_DQUOT_MAGIC:
2392 	case XFS_DINODE_MAGIC:
2393 		goto recover_immediately;
2394 	default:
2395 		break;
2396 	}
2397 
2398 	/* unknown buffer contents, recover immediately */
2399 
2400 recover_immediately:
2401 	return (xfs_lsn_t)-1;
2402 
2403 }
2404 
2405 /*
2406  * Validate the recovered buffer is of the correct type and attach the
2407  * appropriate buffer operations to them for writeback. Magic numbers are in a
2408  * few places:
2409  *	the first 16 bits of the buffer (inode buffer, dquot buffer),
2410  *	the first 32 bits of the buffer (most blocks),
2411  *	inside a struct xfs_da_blkinfo at the start of the buffer.
2412  */
2413 static void
2414 xlog_recover_validate_buf_type(
2415 	struct xfs_mount	*mp,
2416 	struct xfs_buf		*bp,
2417 	xfs_buf_log_format_t	*buf_f,
2418 	xfs_lsn_t		current_lsn)
2419 {
2420 	struct xfs_da_blkinfo	*info = bp->b_addr;
2421 	uint32_t		magic32;
2422 	uint16_t		magic16;
2423 	uint16_t		magicda;
2424 	char			*warnmsg = NULL;
2425 
2426 	/*
2427 	 * We can only do post recovery validation on items on CRC enabled
2428 	 * fielsystems as we need to know when the buffer was written to be able
2429 	 * to determine if we should have replayed the item. If we replay old
2430 	 * metadata over a newer buffer, then it will enter a temporarily
2431 	 * inconsistent state resulting in verification failures. Hence for now
2432 	 * just avoid the verification stage for non-crc filesystems
2433 	 */
2434 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2435 		return;
2436 
2437 	magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2438 	magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2439 	magicda = be16_to_cpu(info->magic);
2440 	switch (xfs_blft_from_flags(buf_f)) {
2441 	case XFS_BLFT_BTREE_BUF:
2442 		switch (magic32) {
2443 		case XFS_ABTB_CRC_MAGIC:
2444 		case XFS_ABTC_CRC_MAGIC:
2445 		case XFS_ABTB_MAGIC:
2446 		case XFS_ABTC_MAGIC:
2447 			bp->b_ops = &xfs_allocbt_buf_ops;
2448 			break;
2449 		case XFS_IBT_CRC_MAGIC:
2450 		case XFS_FIBT_CRC_MAGIC:
2451 		case XFS_IBT_MAGIC:
2452 		case XFS_FIBT_MAGIC:
2453 			bp->b_ops = &xfs_inobt_buf_ops;
2454 			break;
2455 		case XFS_BMAP_CRC_MAGIC:
2456 		case XFS_BMAP_MAGIC:
2457 			bp->b_ops = &xfs_bmbt_buf_ops;
2458 			break;
2459 		case XFS_RMAP_CRC_MAGIC:
2460 			bp->b_ops = &xfs_rmapbt_buf_ops;
2461 			break;
2462 		case XFS_REFC_CRC_MAGIC:
2463 			bp->b_ops = &xfs_refcountbt_buf_ops;
2464 			break;
2465 		default:
2466 			warnmsg = "Bad btree block magic!";
2467 			break;
2468 		}
2469 		break;
2470 	case XFS_BLFT_AGF_BUF:
2471 		if (magic32 != XFS_AGF_MAGIC) {
2472 			warnmsg = "Bad AGF block magic!";
2473 			break;
2474 		}
2475 		bp->b_ops = &xfs_agf_buf_ops;
2476 		break;
2477 	case XFS_BLFT_AGFL_BUF:
2478 		if (magic32 != XFS_AGFL_MAGIC) {
2479 			warnmsg = "Bad AGFL block magic!";
2480 			break;
2481 		}
2482 		bp->b_ops = &xfs_agfl_buf_ops;
2483 		break;
2484 	case XFS_BLFT_AGI_BUF:
2485 		if (magic32 != XFS_AGI_MAGIC) {
2486 			warnmsg = "Bad AGI block magic!";
2487 			break;
2488 		}
2489 		bp->b_ops = &xfs_agi_buf_ops;
2490 		break;
2491 	case XFS_BLFT_UDQUOT_BUF:
2492 	case XFS_BLFT_PDQUOT_BUF:
2493 	case XFS_BLFT_GDQUOT_BUF:
2494 #ifdef CONFIG_XFS_QUOTA
2495 		if (magic16 != XFS_DQUOT_MAGIC) {
2496 			warnmsg = "Bad DQUOT block magic!";
2497 			break;
2498 		}
2499 		bp->b_ops = &xfs_dquot_buf_ops;
2500 #else
2501 		xfs_alert(mp,
2502 	"Trying to recover dquots without QUOTA support built in!");
2503 		ASSERT(0);
2504 #endif
2505 		break;
2506 	case XFS_BLFT_DINO_BUF:
2507 		if (magic16 != XFS_DINODE_MAGIC) {
2508 			warnmsg = "Bad INODE block magic!";
2509 			break;
2510 		}
2511 		bp->b_ops = &xfs_inode_buf_ops;
2512 		break;
2513 	case XFS_BLFT_SYMLINK_BUF:
2514 		if (magic32 != XFS_SYMLINK_MAGIC) {
2515 			warnmsg = "Bad symlink block magic!";
2516 			break;
2517 		}
2518 		bp->b_ops = &xfs_symlink_buf_ops;
2519 		break;
2520 	case XFS_BLFT_DIR_BLOCK_BUF:
2521 		if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2522 		    magic32 != XFS_DIR3_BLOCK_MAGIC) {
2523 			warnmsg = "Bad dir block magic!";
2524 			break;
2525 		}
2526 		bp->b_ops = &xfs_dir3_block_buf_ops;
2527 		break;
2528 	case XFS_BLFT_DIR_DATA_BUF:
2529 		if (magic32 != XFS_DIR2_DATA_MAGIC &&
2530 		    magic32 != XFS_DIR3_DATA_MAGIC) {
2531 			warnmsg = "Bad dir data magic!";
2532 			break;
2533 		}
2534 		bp->b_ops = &xfs_dir3_data_buf_ops;
2535 		break;
2536 	case XFS_BLFT_DIR_FREE_BUF:
2537 		if (magic32 != XFS_DIR2_FREE_MAGIC &&
2538 		    magic32 != XFS_DIR3_FREE_MAGIC) {
2539 			warnmsg = "Bad dir3 free magic!";
2540 			break;
2541 		}
2542 		bp->b_ops = &xfs_dir3_free_buf_ops;
2543 		break;
2544 	case XFS_BLFT_DIR_LEAF1_BUF:
2545 		if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2546 		    magicda != XFS_DIR3_LEAF1_MAGIC) {
2547 			warnmsg = "Bad dir leaf1 magic!";
2548 			break;
2549 		}
2550 		bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2551 		break;
2552 	case XFS_BLFT_DIR_LEAFN_BUF:
2553 		if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2554 		    magicda != XFS_DIR3_LEAFN_MAGIC) {
2555 			warnmsg = "Bad dir leafn magic!";
2556 			break;
2557 		}
2558 		bp->b_ops = &xfs_dir3_leafn_buf_ops;
2559 		break;
2560 	case XFS_BLFT_DA_NODE_BUF:
2561 		if (magicda != XFS_DA_NODE_MAGIC &&
2562 		    magicda != XFS_DA3_NODE_MAGIC) {
2563 			warnmsg = "Bad da node magic!";
2564 			break;
2565 		}
2566 		bp->b_ops = &xfs_da3_node_buf_ops;
2567 		break;
2568 	case XFS_BLFT_ATTR_LEAF_BUF:
2569 		if (magicda != XFS_ATTR_LEAF_MAGIC &&
2570 		    magicda != XFS_ATTR3_LEAF_MAGIC) {
2571 			warnmsg = "Bad attr leaf magic!";
2572 			break;
2573 		}
2574 		bp->b_ops = &xfs_attr3_leaf_buf_ops;
2575 		break;
2576 	case XFS_BLFT_ATTR_RMT_BUF:
2577 		if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2578 			warnmsg = "Bad attr remote magic!";
2579 			break;
2580 		}
2581 		bp->b_ops = &xfs_attr3_rmt_buf_ops;
2582 		break;
2583 	case XFS_BLFT_SB_BUF:
2584 		if (magic32 != XFS_SB_MAGIC) {
2585 			warnmsg = "Bad SB block magic!";
2586 			break;
2587 		}
2588 		bp->b_ops = &xfs_sb_buf_ops;
2589 		break;
2590 #ifdef CONFIG_XFS_RT
2591 	case XFS_BLFT_RTBITMAP_BUF:
2592 	case XFS_BLFT_RTSUMMARY_BUF:
2593 		/* no magic numbers for verification of RT buffers */
2594 		bp->b_ops = &xfs_rtbuf_ops;
2595 		break;
2596 #endif /* CONFIG_XFS_RT */
2597 	default:
2598 		xfs_warn(mp, "Unknown buffer type %d!",
2599 			 xfs_blft_from_flags(buf_f));
2600 		break;
2601 	}
2602 
2603 	/*
2604 	 * Nothing else to do in the case of a NULL current LSN as this means
2605 	 * the buffer is more recent than the change in the log and will be
2606 	 * skipped.
2607 	 */
2608 	if (current_lsn == NULLCOMMITLSN)
2609 		return;
2610 
2611 	if (warnmsg) {
2612 		xfs_warn(mp, warnmsg);
2613 		ASSERT(0);
2614 	}
2615 
2616 	/*
2617 	 * We must update the metadata LSN of the buffer as it is written out to
2618 	 * ensure that older transactions never replay over this one and corrupt
2619 	 * the buffer. This can occur if log recovery is interrupted at some
2620 	 * point after the current transaction completes, at which point a
2621 	 * subsequent mount starts recovery from the beginning.
2622 	 *
2623 	 * Write verifiers update the metadata LSN from log items attached to
2624 	 * the buffer. Therefore, initialize a bli purely to carry the LSN to
2625 	 * the verifier. We'll clean it up in our ->iodone() callback.
2626 	 */
2627 	if (bp->b_ops) {
2628 		struct xfs_buf_log_item	*bip;
2629 
2630 		ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
2631 		bp->b_iodone = xlog_recover_iodone;
2632 		xfs_buf_item_init(bp, mp);
2633 		bip = bp->b_log_item;
2634 		bip->bli_item.li_lsn = current_lsn;
2635 	}
2636 }
2637 
2638 /*
2639  * Perform a 'normal' buffer recovery.  Each logged region of the
2640  * buffer should be copied over the corresponding region in the
2641  * given buffer.  The bitmap in the buf log format structure indicates
2642  * where to place the logged data.
2643  */
2644 STATIC void
2645 xlog_recover_do_reg_buffer(
2646 	struct xfs_mount	*mp,
2647 	xlog_recover_item_t	*item,
2648 	struct xfs_buf		*bp,
2649 	xfs_buf_log_format_t	*buf_f,
2650 	xfs_lsn_t		current_lsn)
2651 {
2652 	int			i;
2653 	int			bit;
2654 	int			nbits;
2655 	xfs_failaddr_t		fa;
2656 
2657 	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2658 
2659 	bit = 0;
2660 	i = 1;  /* 0 is the buf format structure */
2661 	while (1) {
2662 		bit = xfs_next_bit(buf_f->blf_data_map,
2663 				   buf_f->blf_map_size, bit);
2664 		if (bit == -1)
2665 			break;
2666 		nbits = xfs_contig_bits(buf_f->blf_data_map,
2667 					buf_f->blf_map_size, bit);
2668 		ASSERT(nbits > 0);
2669 		ASSERT(item->ri_buf[i].i_addr != NULL);
2670 		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2671 		ASSERT(BBTOB(bp->b_io_length) >=
2672 		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2673 
2674 		/*
2675 		 * The dirty regions logged in the buffer, even though
2676 		 * contiguous, may span multiple chunks. This is because the
2677 		 * dirty region may span a physical page boundary in a buffer
2678 		 * and hence be split into two separate vectors for writing into
2679 		 * the log. Hence we need to trim nbits back to the length of
2680 		 * the current region being copied out of the log.
2681 		 */
2682 		if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2683 			nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2684 
2685 		/*
2686 		 * Do a sanity check if this is a dquot buffer. Just checking
2687 		 * the first dquot in the buffer should do. XXXThis is
2688 		 * probably a good thing to do for other buf types also.
2689 		 */
2690 		fa = NULL;
2691 		if (buf_f->blf_flags &
2692 		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2693 			if (item->ri_buf[i].i_addr == NULL) {
2694 				xfs_alert(mp,
2695 					"XFS: NULL dquot in %s.", __func__);
2696 				goto next;
2697 			}
2698 			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2699 				xfs_alert(mp,
2700 					"XFS: dquot too small (%d) in %s.",
2701 					item->ri_buf[i].i_len, __func__);
2702 				goto next;
2703 			}
2704 			fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr,
2705 					       -1, 0, 0);
2706 			if (fa) {
2707 				xfs_alert(mp,
2708 	"dquot corrupt at %pS trying to replay into block 0x%llx",
2709 					fa, bp->b_bn);
2710 				goto next;
2711 			}
2712 		}
2713 
2714 		memcpy(xfs_buf_offset(bp,
2715 			(uint)bit << XFS_BLF_SHIFT),	/* dest */
2716 			item->ri_buf[i].i_addr,		/* source */
2717 			nbits<<XFS_BLF_SHIFT);		/* length */
2718  next:
2719 		i++;
2720 		bit += nbits;
2721 	}
2722 
2723 	/* Shouldn't be any more regions */
2724 	ASSERT(i == item->ri_total);
2725 
2726 	xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
2727 }
2728 
2729 /*
2730  * Perform a dquot buffer recovery.
2731  * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2732  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2733  * Else, treat it as a regular buffer and do recovery.
2734  *
2735  * Return false if the buffer was tossed and true if we recovered the buffer to
2736  * indicate to the caller if the buffer needs writing.
2737  */
2738 STATIC bool
2739 xlog_recover_do_dquot_buffer(
2740 	struct xfs_mount		*mp,
2741 	struct xlog			*log,
2742 	struct xlog_recover_item	*item,
2743 	struct xfs_buf			*bp,
2744 	struct xfs_buf_log_format	*buf_f)
2745 {
2746 	uint			type;
2747 
2748 	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2749 
2750 	/*
2751 	 * Filesystems are required to send in quota flags at mount time.
2752 	 */
2753 	if (!mp->m_qflags)
2754 		return false;
2755 
2756 	type = 0;
2757 	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2758 		type |= XFS_DQ_USER;
2759 	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2760 		type |= XFS_DQ_PROJ;
2761 	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2762 		type |= XFS_DQ_GROUP;
2763 	/*
2764 	 * This type of quotas was turned off, so ignore this buffer
2765 	 */
2766 	if (log->l_quotaoffs_flag & type)
2767 		return false;
2768 
2769 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
2770 	return true;
2771 }
2772 
2773 /*
2774  * This routine replays a modification made to a buffer at runtime.
2775  * There are actually two types of buffer, regular and inode, which
2776  * are handled differently.  Inode buffers are handled differently
2777  * in that we only recover a specific set of data from them, namely
2778  * the inode di_next_unlinked fields.  This is because all other inode
2779  * data is actually logged via inode records and any data we replay
2780  * here which overlaps that may be stale.
2781  *
2782  * When meta-data buffers are freed at run time we log a buffer item
2783  * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2784  * of the buffer in the log should not be replayed at recovery time.
2785  * This is so that if the blocks covered by the buffer are reused for
2786  * file data before we crash we don't end up replaying old, freed
2787  * meta-data into a user's file.
2788  *
2789  * To handle the cancellation of buffer log items, we make two passes
2790  * over the log during recovery.  During the first we build a table of
2791  * those buffers which have been cancelled, and during the second we
2792  * only replay those buffers which do not have corresponding cancel
2793  * records in the table.  See xlog_recover_buffer_pass[1,2] above
2794  * for more details on the implementation of the table of cancel records.
2795  */
2796 STATIC int
2797 xlog_recover_buffer_pass2(
2798 	struct xlog			*log,
2799 	struct list_head		*buffer_list,
2800 	struct xlog_recover_item	*item,
2801 	xfs_lsn_t			current_lsn)
2802 {
2803 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2804 	xfs_mount_t		*mp = log->l_mp;
2805 	xfs_buf_t		*bp;
2806 	int			error;
2807 	uint			buf_flags;
2808 	xfs_lsn_t		lsn;
2809 
2810 	/*
2811 	 * In this pass we only want to recover all the buffers which have
2812 	 * not been cancelled and are not cancellation buffers themselves.
2813 	 */
2814 	if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2815 			buf_f->blf_len, buf_f->blf_flags)) {
2816 		trace_xfs_log_recover_buf_cancel(log, buf_f);
2817 		return 0;
2818 	}
2819 
2820 	trace_xfs_log_recover_buf_recover(log, buf_f);
2821 
2822 	buf_flags = 0;
2823 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2824 		buf_flags |= XBF_UNMAPPED;
2825 
2826 	bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2827 			  buf_flags, NULL);
2828 	if (!bp)
2829 		return -ENOMEM;
2830 	error = bp->b_error;
2831 	if (error) {
2832 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2833 		goto out_release;
2834 	}
2835 
2836 	/*
2837 	 * Recover the buffer only if we get an LSN from it and it's less than
2838 	 * the lsn of the transaction we are replaying.
2839 	 *
2840 	 * Note that we have to be extremely careful of readahead here.
2841 	 * Readahead does not attach verfiers to the buffers so if we don't
2842 	 * actually do any replay after readahead because of the LSN we found
2843 	 * in the buffer if more recent than that current transaction then we
2844 	 * need to attach the verifier directly. Failure to do so can lead to
2845 	 * future recovery actions (e.g. EFI and unlinked list recovery) can
2846 	 * operate on the buffers and they won't get the verifier attached. This
2847 	 * can lead to blocks on disk having the correct content but a stale
2848 	 * CRC.
2849 	 *
2850 	 * It is safe to assume these clean buffers are currently up to date.
2851 	 * If the buffer is dirtied by a later transaction being replayed, then
2852 	 * the verifier will be reset to match whatever recover turns that
2853 	 * buffer into.
2854 	 */
2855 	lsn = xlog_recover_get_buf_lsn(mp, bp);
2856 	if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2857 		trace_xfs_log_recover_buf_skip(log, buf_f);
2858 		xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
2859 		goto out_release;
2860 	}
2861 
2862 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2863 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2864 		if (error)
2865 			goto out_release;
2866 	} else if (buf_f->blf_flags &
2867 		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2868 		bool	dirty;
2869 
2870 		dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2871 		if (!dirty)
2872 			goto out_release;
2873 	} else {
2874 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
2875 	}
2876 
2877 	/*
2878 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2879 	 * slower when taking into account all the buffers to be flushed.
2880 	 *
2881 	 * Also make sure that only inode buffers with good sizes stay in
2882 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2883 	 * or mp->m_inode_cluster_size bytes, whichever is bigger.  The inode
2884 	 * buffers in the log can be a different size if the log was generated
2885 	 * by an older kernel using unclustered inode buffers or a newer kernel
2886 	 * running with a different inode cluster size.  Regardless, if the
2887 	 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2888 	 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2889 	 * the buffer out of the buffer cache so that the buffer won't
2890 	 * overlap with future reads of those inodes.
2891 	 */
2892 	if (XFS_DINODE_MAGIC ==
2893 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2894 	    (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2895 			(uint32_t)log->l_mp->m_inode_cluster_size))) {
2896 		xfs_buf_stale(bp);
2897 		error = xfs_bwrite(bp);
2898 	} else {
2899 		ASSERT(bp->b_target->bt_mount == mp);
2900 		bp->b_iodone = xlog_recover_iodone;
2901 		xfs_buf_delwri_queue(bp, buffer_list);
2902 	}
2903 
2904 out_release:
2905 	xfs_buf_relse(bp);
2906 	return error;
2907 }
2908 
2909 /*
2910  * Inode fork owner changes
2911  *
2912  * If we have been told that we have to reparent the inode fork, it's because an
2913  * extent swap operation on a CRC enabled filesystem has been done and we are
2914  * replaying it. We need to walk the BMBT of the appropriate fork and change the
2915  * owners of it.
2916  *
2917  * The complexity here is that we don't have an inode context to work with, so
2918  * after we've replayed the inode we need to instantiate one.  This is where the
2919  * fun begins.
2920  *
2921  * We are in the middle of log recovery, so we can't run transactions. That
2922  * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2923  * that will result in the corresponding iput() running the inode through
2924  * xfs_inactive(). If we've just replayed an inode core that changes the link
2925  * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2926  * transactions (bad!).
2927  *
2928  * So, to avoid this, we instantiate an inode directly from the inode core we've
2929  * just recovered. We have the buffer still locked, and all we really need to
2930  * instantiate is the inode core and the forks being modified. We can do this
2931  * manually, then run the inode btree owner change, and then tear down the
2932  * xfs_inode without having to run any transactions at all.
2933  *
2934  * Also, because we don't have a transaction context available here but need to
2935  * gather all the buffers we modify for writeback so we pass the buffer_list
2936  * instead for the operation to use.
2937  */
2938 
2939 STATIC int
2940 xfs_recover_inode_owner_change(
2941 	struct xfs_mount	*mp,
2942 	struct xfs_dinode	*dip,
2943 	struct xfs_inode_log_format *in_f,
2944 	struct list_head	*buffer_list)
2945 {
2946 	struct xfs_inode	*ip;
2947 	int			error;
2948 
2949 	ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2950 
2951 	ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2952 	if (!ip)
2953 		return -ENOMEM;
2954 
2955 	/* instantiate the inode */
2956 	xfs_inode_from_disk(ip, dip);
2957 	ASSERT(ip->i_d.di_version >= 3);
2958 
2959 	error = xfs_iformat_fork(ip, dip);
2960 	if (error)
2961 		goto out_free_ip;
2962 
2963 	if (!xfs_inode_verify_forks(ip)) {
2964 		error = -EFSCORRUPTED;
2965 		goto out_free_ip;
2966 	}
2967 
2968 	if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2969 		ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2970 		error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2971 					      ip->i_ino, buffer_list);
2972 		if (error)
2973 			goto out_free_ip;
2974 	}
2975 
2976 	if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2977 		ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2978 		error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2979 					      ip->i_ino, buffer_list);
2980 		if (error)
2981 			goto out_free_ip;
2982 	}
2983 
2984 out_free_ip:
2985 	xfs_inode_free(ip);
2986 	return error;
2987 }
2988 
2989 STATIC int
2990 xlog_recover_inode_pass2(
2991 	struct xlog			*log,
2992 	struct list_head		*buffer_list,
2993 	struct xlog_recover_item	*item,
2994 	xfs_lsn_t			current_lsn)
2995 {
2996 	struct xfs_inode_log_format	*in_f;
2997 	xfs_mount_t		*mp = log->l_mp;
2998 	xfs_buf_t		*bp;
2999 	xfs_dinode_t		*dip;
3000 	int			len;
3001 	char			*src;
3002 	char			*dest;
3003 	int			error;
3004 	int			attr_index;
3005 	uint			fields;
3006 	struct xfs_log_dinode	*ldip;
3007 	uint			isize;
3008 	int			need_free = 0;
3009 
3010 	if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3011 		in_f = item->ri_buf[0].i_addr;
3012 	} else {
3013 		in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), KM_SLEEP);
3014 		need_free = 1;
3015 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
3016 		if (error)
3017 			goto error;
3018 	}
3019 
3020 	/*
3021 	 * Inode buffers can be freed, look out for it,
3022 	 * and do not replay the inode.
3023 	 */
3024 	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
3025 					in_f->ilf_len, 0)) {
3026 		error = 0;
3027 		trace_xfs_log_recover_inode_cancel(log, in_f);
3028 		goto error;
3029 	}
3030 	trace_xfs_log_recover_inode_recover(log, in_f);
3031 
3032 	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
3033 			  &xfs_inode_buf_ops);
3034 	if (!bp) {
3035 		error = -ENOMEM;
3036 		goto error;
3037 	}
3038 	error = bp->b_error;
3039 	if (error) {
3040 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
3041 		goto out_release;
3042 	}
3043 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
3044 	dip = xfs_buf_offset(bp, in_f->ilf_boffset);
3045 
3046 	/*
3047 	 * Make sure the place we're flushing out to really looks
3048 	 * like an inode!
3049 	 */
3050 	if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
3051 		xfs_alert(mp,
3052 	"%s: Bad inode magic number, dip = "PTR_FMT", dino bp = "PTR_FMT", ino = %Ld",
3053 			__func__, dip, bp, in_f->ilf_ino);
3054 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
3055 				 XFS_ERRLEVEL_LOW, mp);
3056 		error = -EFSCORRUPTED;
3057 		goto out_release;
3058 	}
3059 	ldip = item->ri_buf[1].i_addr;
3060 	if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
3061 		xfs_alert(mp,
3062 			"%s: Bad inode log record, rec ptr "PTR_FMT", ino %Ld",
3063 			__func__, item, in_f->ilf_ino);
3064 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
3065 				 XFS_ERRLEVEL_LOW, mp);
3066 		error = -EFSCORRUPTED;
3067 		goto out_release;
3068 	}
3069 
3070 	/*
3071 	 * If the inode has an LSN in it, recover the inode only if it's less
3072 	 * than the lsn of the transaction we are replaying. Note: we still
3073 	 * need to replay an owner change even though the inode is more recent
3074 	 * than the transaction as there is no guarantee that all the btree
3075 	 * blocks are more recent than this transaction, too.
3076 	 */
3077 	if (dip->di_version >= 3) {
3078 		xfs_lsn_t	lsn = be64_to_cpu(dip->di_lsn);
3079 
3080 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3081 			trace_xfs_log_recover_inode_skip(log, in_f);
3082 			error = 0;
3083 			goto out_owner_change;
3084 		}
3085 	}
3086 
3087 	/*
3088 	 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3089 	 * are transactional and if ordering is necessary we can determine that
3090 	 * more accurately by the LSN field in the V3 inode core. Don't trust
3091 	 * the inode versions we might be changing them here - use the
3092 	 * superblock flag to determine whether we need to look at di_flushiter
3093 	 * to skip replay when the on disk inode is newer than the log one
3094 	 */
3095 	if (!xfs_sb_version_hascrc(&mp->m_sb) &&
3096 	    ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
3097 		/*
3098 		 * Deal with the wrap case, DI_MAX_FLUSH is less
3099 		 * than smaller numbers
3100 		 */
3101 		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
3102 		    ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
3103 			/* do nothing */
3104 		} else {
3105 			trace_xfs_log_recover_inode_skip(log, in_f);
3106 			error = 0;
3107 			goto out_release;
3108 		}
3109 	}
3110 
3111 	/* Take the opportunity to reset the flush iteration count */
3112 	ldip->di_flushiter = 0;
3113 
3114 	if (unlikely(S_ISREG(ldip->di_mode))) {
3115 		if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3116 		    (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
3117 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3118 					 XFS_ERRLEVEL_LOW, mp, ldip);
3119 			xfs_alert(mp,
3120 		"%s: Bad regular inode log record, rec ptr "PTR_FMT", "
3121 		"ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
3122 				__func__, item, dip, bp, in_f->ilf_ino);
3123 			error = -EFSCORRUPTED;
3124 			goto out_release;
3125 		}
3126 	} else if (unlikely(S_ISDIR(ldip->di_mode))) {
3127 		if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3128 		    (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3129 		    (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
3130 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3131 					     XFS_ERRLEVEL_LOW, mp, ldip);
3132 			xfs_alert(mp,
3133 		"%s: Bad dir inode log record, rec ptr "PTR_FMT", "
3134 		"ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
3135 				__func__, item, dip, bp, in_f->ilf_ino);
3136 			error = -EFSCORRUPTED;
3137 			goto out_release;
3138 		}
3139 	}
3140 	if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
3141 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3142 				     XFS_ERRLEVEL_LOW, mp, ldip);
3143 		xfs_alert(mp,
3144 	"%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3145 	"dino bp "PTR_FMT", ino %Ld, total extents = %d, nblocks = %Ld",
3146 			__func__, item, dip, bp, in_f->ilf_ino,
3147 			ldip->di_nextents + ldip->di_anextents,
3148 			ldip->di_nblocks);
3149 		error = -EFSCORRUPTED;
3150 		goto out_release;
3151 	}
3152 	if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
3153 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3154 				     XFS_ERRLEVEL_LOW, mp, ldip);
3155 		xfs_alert(mp,
3156 	"%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3157 	"dino bp "PTR_FMT", ino %Ld, forkoff 0x%x", __func__,
3158 			item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
3159 		error = -EFSCORRUPTED;
3160 		goto out_release;
3161 	}
3162 	isize = xfs_log_dinode_size(ldip->di_version);
3163 	if (unlikely(item->ri_buf[1].i_len > isize)) {
3164 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3165 				     XFS_ERRLEVEL_LOW, mp, ldip);
3166 		xfs_alert(mp,
3167 			"%s: Bad inode log record length %d, rec ptr "PTR_FMT,
3168 			__func__, item->ri_buf[1].i_len, item);
3169 		error = -EFSCORRUPTED;
3170 		goto out_release;
3171 	}
3172 
3173 	/* recover the log dinode inode into the on disk inode */
3174 	xfs_log_dinode_to_disk(ldip, dip);
3175 
3176 	/* the rest is in on-disk format */
3177 	if (item->ri_buf[1].i_len > isize) {
3178 		memcpy((char *)dip + isize,
3179 			item->ri_buf[1].i_addr + isize,
3180 			item->ri_buf[1].i_len - isize);
3181 	}
3182 
3183 	fields = in_f->ilf_fields;
3184 	if (fields & XFS_ILOG_DEV)
3185 		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3186 
3187 	if (in_f->ilf_size == 2)
3188 		goto out_owner_change;
3189 	len = item->ri_buf[2].i_len;
3190 	src = item->ri_buf[2].i_addr;
3191 	ASSERT(in_f->ilf_size <= 4);
3192 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3193 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
3194 	       (len == in_f->ilf_dsize));
3195 
3196 	switch (fields & XFS_ILOG_DFORK) {
3197 	case XFS_ILOG_DDATA:
3198 	case XFS_ILOG_DEXT:
3199 		memcpy(XFS_DFORK_DPTR(dip), src, len);
3200 		break;
3201 
3202 	case XFS_ILOG_DBROOT:
3203 		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3204 				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3205 				 XFS_DFORK_DSIZE(dip, mp));
3206 		break;
3207 
3208 	default:
3209 		/*
3210 		 * There are no data fork flags set.
3211 		 */
3212 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
3213 		break;
3214 	}
3215 
3216 	/*
3217 	 * If we logged any attribute data, recover it.  There may or
3218 	 * may not have been any other non-core data logged in this
3219 	 * transaction.
3220 	 */
3221 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3222 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3223 			attr_index = 3;
3224 		} else {
3225 			attr_index = 2;
3226 		}
3227 		len = item->ri_buf[attr_index].i_len;
3228 		src = item->ri_buf[attr_index].i_addr;
3229 		ASSERT(len == in_f->ilf_asize);
3230 
3231 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3232 		case XFS_ILOG_ADATA:
3233 		case XFS_ILOG_AEXT:
3234 			dest = XFS_DFORK_APTR(dip);
3235 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3236 			memcpy(dest, src, len);
3237 			break;
3238 
3239 		case XFS_ILOG_ABROOT:
3240 			dest = XFS_DFORK_APTR(dip);
3241 			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3242 					 len, (xfs_bmdr_block_t*)dest,
3243 					 XFS_DFORK_ASIZE(dip, mp));
3244 			break;
3245 
3246 		default:
3247 			xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3248 			ASSERT(0);
3249 			error = -EIO;
3250 			goto out_release;
3251 		}
3252 	}
3253 
3254 out_owner_change:
3255 	if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
3256 		error = xfs_recover_inode_owner_change(mp, dip, in_f,
3257 						       buffer_list);
3258 	/* re-generate the checksum. */
3259 	xfs_dinode_calc_crc(log->l_mp, dip);
3260 
3261 	ASSERT(bp->b_target->bt_mount == mp);
3262 	bp->b_iodone = xlog_recover_iodone;
3263 	xfs_buf_delwri_queue(bp, buffer_list);
3264 
3265 out_release:
3266 	xfs_buf_relse(bp);
3267 error:
3268 	if (need_free)
3269 		kmem_free(in_f);
3270 	return error;
3271 }
3272 
3273 /*
3274  * Recover QUOTAOFF records. We simply make a note of it in the xlog
3275  * structure, so that we know not to do any dquot item or dquot buffer recovery,
3276  * of that type.
3277  */
3278 STATIC int
3279 xlog_recover_quotaoff_pass1(
3280 	struct xlog			*log,
3281 	struct xlog_recover_item	*item)
3282 {
3283 	xfs_qoff_logformat_t	*qoff_f = item->ri_buf[0].i_addr;
3284 	ASSERT(qoff_f);
3285 
3286 	/*
3287 	 * The logitem format's flag tells us if this was user quotaoff,
3288 	 * group/project quotaoff or both.
3289 	 */
3290 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3291 		log->l_quotaoffs_flag |= XFS_DQ_USER;
3292 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3293 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3294 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3295 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3296 
3297 	return 0;
3298 }
3299 
3300 /*
3301  * Recover a dquot record
3302  */
3303 STATIC int
3304 xlog_recover_dquot_pass2(
3305 	struct xlog			*log,
3306 	struct list_head		*buffer_list,
3307 	struct xlog_recover_item	*item,
3308 	xfs_lsn_t			current_lsn)
3309 {
3310 	xfs_mount_t		*mp = log->l_mp;
3311 	xfs_buf_t		*bp;
3312 	struct xfs_disk_dquot	*ddq, *recddq;
3313 	xfs_failaddr_t		fa;
3314 	int			error;
3315 	xfs_dq_logformat_t	*dq_f;
3316 	uint			type;
3317 
3318 
3319 	/*
3320 	 * Filesystems are required to send in quota flags at mount time.
3321 	 */
3322 	if (mp->m_qflags == 0)
3323 		return 0;
3324 
3325 	recddq = item->ri_buf[1].i_addr;
3326 	if (recddq == NULL) {
3327 		xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3328 		return -EIO;
3329 	}
3330 	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
3331 		xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3332 			item->ri_buf[1].i_len, __func__);
3333 		return -EIO;
3334 	}
3335 
3336 	/*
3337 	 * This type of quotas was turned off, so ignore this record.
3338 	 */
3339 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3340 	ASSERT(type);
3341 	if (log->l_quotaoffs_flag & type)
3342 		return 0;
3343 
3344 	/*
3345 	 * At this point we know that quota was _not_ turned off.
3346 	 * Since the mount flags are not indicating to us otherwise, this
3347 	 * must mean that quota is on, and the dquot needs to be replayed.
3348 	 * Remember that we may not have fully recovered the superblock yet,
3349 	 * so we can't do the usual trick of looking at the SB quota bits.
3350 	 *
3351 	 * The other possibility, of course, is that the quota subsystem was
3352 	 * removed since the last mount - ENOSYS.
3353 	 */
3354 	dq_f = item->ri_buf[0].i_addr;
3355 	ASSERT(dq_f);
3356 	fa = xfs_dquot_verify(mp, recddq, dq_f->qlf_id, 0, 0);
3357 	if (fa) {
3358 		xfs_alert(mp, "corrupt dquot ID 0x%x in log at %pS",
3359 				dq_f->qlf_id, fa);
3360 		return -EIO;
3361 	}
3362 	ASSERT(dq_f->qlf_len == 1);
3363 
3364 	/*
3365 	 * At this point we are assuming that the dquots have been allocated
3366 	 * and hence the buffer has valid dquots stamped in it. It should,
3367 	 * therefore, pass verifier validation. If the dquot is bad, then the
3368 	 * we'll return an error here, so we don't need to specifically check
3369 	 * the dquot in the buffer after the verifier has run.
3370 	 */
3371 	error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3372 				   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3373 				   &xfs_dquot_buf_ops);
3374 	if (error)
3375 		return error;
3376 
3377 	ASSERT(bp);
3378 	ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3379 
3380 	/*
3381 	 * If the dquot has an LSN in it, recover the dquot only if it's less
3382 	 * than the lsn of the transaction we are replaying.
3383 	 */
3384 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3385 		struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3386 		xfs_lsn_t	lsn = be64_to_cpu(dqb->dd_lsn);
3387 
3388 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3389 			goto out_release;
3390 		}
3391 	}
3392 
3393 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
3394 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3395 		xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3396 				 XFS_DQUOT_CRC_OFF);
3397 	}
3398 
3399 	ASSERT(dq_f->qlf_size == 2);
3400 	ASSERT(bp->b_target->bt_mount == mp);
3401 	bp->b_iodone = xlog_recover_iodone;
3402 	xfs_buf_delwri_queue(bp, buffer_list);
3403 
3404 out_release:
3405 	xfs_buf_relse(bp);
3406 	return 0;
3407 }
3408 
3409 /*
3410  * This routine is called to create an in-core extent free intent
3411  * item from the efi format structure which was logged on disk.
3412  * It allocates an in-core efi, copies the extents from the format
3413  * structure into it, and adds the efi to the AIL with the given
3414  * LSN.
3415  */
3416 STATIC int
3417 xlog_recover_efi_pass2(
3418 	struct xlog			*log,
3419 	struct xlog_recover_item	*item,
3420 	xfs_lsn_t			lsn)
3421 {
3422 	int				error;
3423 	struct xfs_mount		*mp = log->l_mp;
3424 	struct xfs_efi_log_item		*efip;
3425 	struct xfs_efi_log_format	*efi_formatp;
3426 
3427 	efi_formatp = item->ri_buf[0].i_addr;
3428 
3429 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3430 	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3431 	if (error) {
3432 		xfs_efi_item_free(efip);
3433 		return error;
3434 	}
3435 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3436 
3437 	spin_lock(&log->l_ailp->xa_lock);
3438 	/*
3439 	 * The EFI has two references. One for the EFD and one for EFI to ensure
3440 	 * it makes it into the AIL. Insert the EFI into the AIL directly and
3441 	 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3442 	 * AIL lock.
3443 	 */
3444 	xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3445 	xfs_efi_release(efip);
3446 	return 0;
3447 }
3448 
3449 
3450 /*
3451  * This routine is called when an EFD format structure is found in a committed
3452  * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3453  * was still in the log. To do this it searches the AIL for the EFI with an id
3454  * equal to that in the EFD format structure. If we find it we drop the EFD
3455  * reference, which removes the EFI from the AIL and frees it.
3456  */
3457 STATIC int
3458 xlog_recover_efd_pass2(
3459 	struct xlog			*log,
3460 	struct xlog_recover_item	*item)
3461 {
3462 	xfs_efd_log_format_t	*efd_formatp;
3463 	xfs_efi_log_item_t	*efip = NULL;
3464 	xfs_log_item_t		*lip;
3465 	uint64_t		efi_id;
3466 	struct xfs_ail_cursor	cur;
3467 	struct xfs_ail		*ailp = log->l_ailp;
3468 
3469 	efd_formatp = item->ri_buf[0].i_addr;
3470 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3471 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3472 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3473 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3474 	efi_id = efd_formatp->efd_efi_id;
3475 
3476 	/*
3477 	 * Search for the EFI with the id in the EFD format structure in the
3478 	 * AIL.
3479 	 */
3480 	spin_lock(&ailp->xa_lock);
3481 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3482 	while (lip != NULL) {
3483 		if (lip->li_type == XFS_LI_EFI) {
3484 			efip = (xfs_efi_log_item_t *)lip;
3485 			if (efip->efi_format.efi_id == efi_id) {
3486 				/*
3487 				 * Drop the EFD reference to the EFI. This
3488 				 * removes the EFI from the AIL and frees it.
3489 				 */
3490 				spin_unlock(&ailp->xa_lock);
3491 				xfs_efi_release(efip);
3492 				spin_lock(&ailp->xa_lock);
3493 				break;
3494 			}
3495 		}
3496 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3497 	}
3498 
3499 	xfs_trans_ail_cursor_done(&cur);
3500 	spin_unlock(&ailp->xa_lock);
3501 
3502 	return 0;
3503 }
3504 
3505 /*
3506  * This routine is called to create an in-core extent rmap update
3507  * item from the rui format structure which was logged on disk.
3508  * It allocates an in-core rui, copies the extents from the format
3509  * structure into it, and adds the rui to the AIL with the given
3510  * LSN.
3511  */
3512 STATIC int
3513 xlog_recover_rui_pass2(
3514 	struct xlog			*log,
3515 	struct xlog_recover_item	*item,
3516 	xfs_lsn_t			lsn)
3517 {
3518 	int				error;
3519 	struct xfs_mount		*mp = log->l_mp;
3520 	struct xfs_rui_log_item		*ruip;
3521 	struct xfs_rui_log_format	*rui_formatp;
3522 
3523 	rui_formatp = item->ri_buf[0].i_addr;
3524 
3525 	ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3526 	error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3527 	if (error) {
3528 		xfs_rui_item_free(ruip);
3529 		return error;
3530 	}
3531 	atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3532 
3533 	spin_lock(&log->l_ailp->xa_lock);
3534 	/*
3535 	 * The RUI has two references. One for the RUD and one for RUI to ensure
3536 	 * it makes it into the AIL. Insert the RUI into the AIL directly and
3537 	 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3538 	 * AIL lock.
3539 	 */
3540 	xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3541 	xfs_rui_release(ruip);
3542 	return 0;
3543 }
3544 
3545 
3546 /*
3547  * This routine is called when an RUD format structure is found in a committed
3548  * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3549  * was still in the log. To do this it searches the AIL for the RUI with an id
3550  * equal to that in the RUD format structure. If we find it we drop the RUD
3551  * reference, which removes the RUI from the AIL and frees it.
3552  */
3553 STATIC int
3554 xlog_recover_rud_pass2(
3555 	struct xlog			*log,
3556 	struct xlog_recover_item	*item)
3557 {
3558 	struct xfs_rud_log_format	*rud_formatp;
3559 	struct xfs_rui_log_item		*ruip = NULL;
3560 	struct xfs_log_item		*lip;
3561 	uint64_t			rui_id;
3562 	struct xfs_ail_cursor		cur;
3563 	struct xfs_ail			*ailp = log->l_ailp;
3564 
3565 	rud_formatp = item->ri_buf[0].i_addr;
3566 	ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
3567 	rui_id = rud_formatp->rud_rui_id;
3568 
3569 	/*
3570 	 * Search for the RUI with the id in the RUD format structure in the
3571 	 * AIL.
3572 	 */
3573 	spin_lock(&ailp->xa_lock);
3574 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3575 	while (lip != NULL) {
3576 		if (lip->li_type == XFS_LI_RUI) {
3577 			ruip = (struct xfs_rui_log_item *)lip;
3578 			if (ruip->rui_format.rui_id == rui_id) {
3579 				/*
3580 				 * Drop the RUD reference to the RUI. This
3581 				 * removes the RUI from the AIL and frees it.
3582 				 */
3583 				spin_unlock(&ailp->xa_lock);
3584 				xfs_rui_release(ruip);
3585 				spin_lock(&ailp->xa_lock);
3586 				break;
3587 			}
3588 		}
3589 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3590 	}
3591 
3592 	xfs_trans_ail_cursor_done(&cur);
3593 	spin_unlock(&ailp->xa_lock);
3594 
3595 	return 0;
3596 }
3597 
3598 /*
3599  * Copy an CUI format buffer from the given buf, and into the destination
3600  * CUI format structure.  The CUI/CUD items were designed not to need any
3601  * special alignment handling.
3602  */
3603 static int
3604 xfs_cui_copy_format(
3605 	struct xfs_log_iovec		*buf,
3606 	struct xfs_cui_log_format	*dst_cui_fmt)
3607 {
3608 	struct xfs_cui_log_format	*src_cui_fmt;
3609 	uint				len;
3610 
3611 	src_cui_fmt = buf->i_addr;
3612 	len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents);
3613 
3614 	if (buf->i_len == len) {
3615 		memcpy(dst_cui_fmt, src_cui_fmt, len);
3616 		return 0;
3617 	}
3618 	return -EFSCORRUPTED;
3619 }
3620 
3621 /*
3622  * This routine is called to create an in-core extent refcount update
3623  * item from the cui format structure which was logged on disk.
3624  * It allocates an in-core cui, copies the extents from the format
3625  * structure into it, and adds the cui to the AIL with the given
3626  * LSN.
3627  */
3628 STATIC int
3629 xlog_recover_cui_pass2(
3630 	struct xlog			*log,
3631 	struct xlog_recover_item	*item,
3632 	xfs_lsn_t			lsn)
3633 {
3634 	int				error;
3635 	struct xfs_mount		*mp = log->l_mp;
3636 	struct xfs_cui_log_item		*cuip;
3637 	struct xfs_cui_log_format	*cui_formatp;
3638 
3639 	cui_formatp = item->ri_buf[0].i_addr;
3640 
3641 	cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
3642 	error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format);
3643 	if (error) {
3644 		xfs_cui_item_free(cuip);
3645 		return error;
3646 	}
3647 	atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
3648 
3649 	spin_lock(&log->l_ailp->xa_lock);
3650 	/*
3651 	 * The CUI has two references. One for the CUD and one for CUI to ensure
3652 	 * it makes it into the AIL. Insert the CUI into the AIL directly and
3653 	 * drop the CUI reference. Note that xfs_trans_ail_update() drops the
3654 	 * AIL lock.
3655 	 */
3656 	xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn);
3657 	xfs_cui_release(cuip);
3658 	return 0;
3659 }
3660 
3661 
3662 /*
3663  * This routine is called when an CUD format structure is found in a committed
3664  * transaction in the log. Its purpose is to cancel the corresponding CUI if it
3665  * was still in the log. To do this it searches the AIL for the CUI with an id
3666  * equal to that in the CUD format structure. If we find it we drop the CUD
3667  * reference, which removes the CUI from the AIL and frees it.
3668  */
3669 STATIC int
3670 xlog_recover_cud_pass2(
3671 	struct xlog			*log,
3672 	struct xlog_recover_item	*item)
3673 {
3674 	struct xfs_cud_log_format	*cud_formatp;
3675 	struct xfs_cui_log_item		*cuip = NULL;
3676 	struct xfs_log_item		*lip;
3677 	uint64_t			cui_id;
3678 	struct xfs_ail_cursor		cur;
3679 	struct xfs_ail			*ailp = log->l_ailp;
3680 
3681 	cud_formatp = item->ri_buf[0].i_addr;
3682 	if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format))
3683 		return -EFSCORRUPTED;
3684 	cui_id = cud_formatp->cud_cui_id;
3685 
3686 	/*
3687 	 * Search for the CUI with the id in the CUD format structure in the
3688 	 * AIL.
3689 	 */
3690 	spin_lock(&ailp->xa_lock);
3691 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3692 	while (lip != NULL) {
3693 		if (lip->li_type == XFS_LI_CUI) {
3694 			cuip = (struct xfs_cui_log_item *)lip;
3695 			if (cuip->cui_format.cui_id == cui_id) {
3696 				/*
3697 				 * Drop the CUD reference to the CUI. This
3698 				 * removes the CUI from the AIL and frees it.
3699 				 */
3700 				spin_unlock(&ailp->xa_lock);
3701 				xfs_cui_release(cuip);
3702 				spin_lock(&ailp->xa_lock);
3703 				break;
3704 			}
3705 		}
3706 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3707 	}
3708 
3709 	xfs_trans_ail_cursor_done(&cur);
3710 	spin_unlock(&ailp->xa_lock);
3711 
3712 	return 0;
3713 }
3714 
3715 /*
3716  * Copy an BUI format buffer from the given buf, and into the destination
3717  * BUI format structure.  The BUI/BUD items were designed not to need any
3718  * special alignment handling.
3719  */
3720 static int
3721 xfs_bui_copy_format(
3722 	struct xfs_log_iovec		*buf,
3723 	struct xfs_bui_log_format	*dst_bui_fmt)
3724 {
3725 	struct xfs_bui_log_format	*src_bui_fmt;
3726 	uint				len;
3727 
3728 	src_bui_fmt = buf->i_addr;
3729 	len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents);
3730 
3731 	if (buf->i_len == len) {
3732 		memcpy(dst_bui_fmt, src_bui_fmt, len);
3733 		return 0;
3734 	}
3735 	return -EFSCORRUPTED;
3736 }
3737 
3738 /*
3739  * This routine is called to create an in-core extent bmap update
3740  * item from the bui format structure which was logged on disk.
3741  * It allocates an in-core bui, copies the extents from the format
3742  * structure into it, and adds the bui to the AIL with the given
3743  * LSN.
3744  */
3745 STATIC int
3746 xlog_recover_bui_pass2(
3747 	struct xlog			*log,
3748 	struct xlog_recover_item	*item,
3749 	xfs_lsn_t			lsn)
3750 {
3751 	int				error;
3752 	struct xfs_mount		*mp = log->l_mp;
3753 	struct xfs_bui_log_item		*buip;
3754 	struct xfs_bui_log_format	*bui_formatp;
3755 
3756 	bui_formatp = item->ri_buf[0].i_addr;
3757 
3758 	if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS)
3759 		return -EFSCORRUPTED;
3760 	buip = xfs_bui_init(mp);
3761 	error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format);
3762 	if (error) {
3763 		xfs_bui_item_free(buip);
3764 		return error;
3765 	}
3766 	atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents);
3767 
3768 	spin_lock(&log->l_ailp->xa_lock);
3769 	/*
3770 	 * The RUI has two references. One for the RUD and one for RUI to ensure
3771 	 * it makes it into the AIL. Insert the RUI into the AIL directly and
3772 	 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3773 	 * AIL lock.
3774 	 */
3775 	xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn);
3776 	xfs_bui_release(buip);
3777 	return 0;
3778 }
3779 
3780 
3781 /*
3782  * This routine is called when an BUD format structure is found in a committed
3783  * transaction in the log. Its purpose is to cancel the corresponding BUI if it
3784  * was still in the log. To do this it searches the AIL for the BUI with an id
3785  * equal to that in the BUD format structure. If we find it we drop the BUD
3786  * reference, which removes the BUI from the AIL and frees it.
3787  */
3788 STATIC int
3789 xlog_recover_bud_pass2(
3790 	struct xlog			*log,
3791 	struct xlog_recover_item	*item)
3792 {
3793 	struct xfs_bud_log_format	*bud_formatp;
3794 	struct xfs_bui_log_item		*buip = NULL;
3795 	struct xfs_log_item		*lip;
3796 	uint64_t			bui_id;
3797 	struct xfs_ail_cursor		cur;
3798 	struct xfs_ail			*ailp = log->l_ailp;
3799 
3800 	bud_formatp = item->ri_buf[0].i_addr;
3801 	if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format))
3802 		return -EFSCORRUPTED;
3803 	bui_id = bud_formatp->bud_bui_id;
3804 
3805 	/*
3806 	 * Search for the BUI with the id in the BUD format structure in the
3807 	 * AIL.
3808 	 */
3809 	spin_lock(&ailp->xa_lock);
3810 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3811 	while (lip != NULL) {
3812 		if (lip->li_type == XFS_LI_BUI) {
3813 			buip = (struct xfs_bui_log_item *)lip;
3814 			if (buip->bui_format.bui_id == bui_id) {
3815 				/*
3816 				 * Drop the BUD reference to the BUI. This
3817 				 * removes the BUI from the AIL and frees it.
3818 				 */
3819 				spin_unlock(&ailp->xa_lock);
3820 				xfs_bui_release(buip);
3821 				spin_lock(&ailp->xa_lock);
3822 				break;
3823 			}
3824 		}
3825 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3826 	}
3827 
3828 	xfs_trans_ail_cursor_done(&cur);
3829 	spin_unlock(&ailp->xa_lock);
3830 
3831 	return 0;
3832 }
3833 
3834 /*
3835  * This routine is called when an inode create format structure is found in a
3836  * committed transaction in the log.  It's purpose is to initialise the inodes
3837  * being allocated on disk. This requires us to get inode cluster buffers that
3838  * match the range to be initialised, stamped with inode templates and written
3839  * by delayed write so that subsequent modifications will hit the cached buffer
3840  * and only need writing out at the end of recovery.
3841  */
3842 STATIC int
3843 xlog_recover_do_icreate_pass2(
3844 	struct xlog		*log,
3845 	struct list_head	*buffer_list,
3846 	xlog_recover_item_t	*item)
3847 {
3848 	struct xfs_mount	*mp = log->l_mp;
3849 	struct xfs_icreate_log	*icl;
3850 	xfs_agnumber_t		agno;
3851 	xfs_agblock_t		agbno;
3852 	unsigned int		count;
3853 	unsigned int		isize;
3854 	xfs_agblock_t		length;
3855 	int			blks_per_cluster;
3856 	int			bb_per_cluster;
3857 	int			cancel_count;
3858 	int			nbufs;
3859 	int			i;
3860 
3861 	icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3862 	if (icl->icl_type != XFS_LI_ICREATE) {
3863 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3864 		return -EINVAL;
3865 	}
3866 
3867 	if (icl->icl_size != 1) {
3868 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3869 		return -EINVAL;
3870 	}
3871 
3872 	agno = be32_to_cpu(icl->icl_ag);
3873 	if (agno >= mp->m_sb.sb_agcount) {
3874 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3875 		return -EINVAL;
3876 	}
3877 	agbno = be32_to_cpu(icl->icl_agbno);
3878 	if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3879 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3880 		return -EINVAL;
3881 	}
3882 	isize = be32_to_cpu(icl->icl_isize);
3883 	if (isize != mp->m_sb.sb_inodesize) {
3884 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3885 		return -EINVAL;
3886 	}
3887 	count = be32_to_cpu(icl->icl_count);
3888 	if (!count) {
3889 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3890 		return -EINVAL;
3891 	}
3892 	length = be32_to_cpu(icl->icl_length);
3893 	if (!length || length >= mp->m_sb.sb_agblocks) {
3894 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3895 		return -EINVAL;
3896 	}
3897 
3898 	/*
3899 	 * The inode chunk is either full or sparse and we only support
3900 	 * m_ialloc_min_blks sized sparse allocations at this time.
3901 	 */
3902 	if (length != mp->m_ialloc_blks &&
3903 	    length != mp->m_ialloc_min_blks) {
3904 		xfs_warn(log->l_mp,
3905 			 "%s: unsupported chunk length", __FUNCTION__);
3906 		return -EINVAL;
3907 	}
3908 
3909 	/* verify inode count is consistent with extent length */
3910 	if ((count >> mp->m_sb.sb_inopblog) != length) {
3911 		xfs_warn(log->l_mp,
3912 			 "%s: inconsistent inode count and chunk length",
3913 			 __FUNCTION__);
3914 		return -EINVAL;
3915 	}
3916 
3917 	/*
3918 	 * The icreate transaction can cover multiple cluster buffers and these
3919 	 * buffers could have been freed and reused. Check the individual
3920 	 * buffers for cancellation so we don't overwrite anything written after
3921 	 * a cancellation.
3922 	 */
3923 	blks_per_cluster = xfs_icluster_size_fsb(mp);
3924 	bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster);
3925 	nbufs = length / blks_per_cluster;
3926 	for (i = 0, cancel_count = 0; i < nbufs; i++) {
3927 		xfs_daddr_t	daddr;
3928 
3929 		daddr = XFS_AGB_TO_DADDR(mp, agno,
3930 					 agbno + i * blks_per_cluster);
3931 		if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3932 			cancel_count++;
3933 	}
3934 
3935 	/*
3936 	 * We currently only use icreate for a single allocation at a time. This
3937 	 * means we should expect either all or none of the buffers to be
3938 	 * cancelled. Be conservative and skip replay if at least one buffer is
3939 	 * cancelled, but warn the user that something is awry if the buffers
3940 	 * are not consistent.
3941 	 *
3942 	 * XXX: This must be refined to only skip cancelled clusters once we use
3943 	 * icreate for multiple chunk allocations.
3944 	 */
3945 	ASSERT(!cancel_count || cancel_count == nbufs);
3946 	if (cancel_count) {
3947 		if (cancel_count != nbufs)
3948 			xfs_warn(mp,
3949 	"WARNING: partial inode chunk cancellation, skipped icreate.");
3950 		trace_xfs_log_recover_icreate_cancel(log, icl);
3951 		return 0;
3952 	}
3953 
3954 	trace_xfs_log_recover_icreate_recover(log, icl);
3955 	return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3956 				     length, be32_to_cpu(icl->icl_gen));
3957 }
3958 
3959 STATIC void
3960 xlog_recover_buffer_ra_pass2(
3961 	struct xlog                     *log,
3962 	struct xlog_recover_item        *item)
3963 {
3964 	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
3965 	struct xfs_mount		*mp = log->l_mp;
3966 
3967 	if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3968 			buf_f->blf_len, buf_f->blf_flags)) {
3969 		return;
3970 	}
3971 
3972 	xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3973 				buf_f->blf_len, NULL);
3974 }
3975 
3976 STATIC void
3977 xlog_recover_inode_ra_pass2(
3978 	struct xlog                     *log,
3979 	struct xlog_recover_item        *item)
3980 {
3981 	struct xfs_inode_log_format	ilf_buf;
3982 	struct xfs_inode_log_format	*ilfp;
3983 	struct xfs_mount		*mp = log->l_mp;
3984 	int			error;
3985 
3986 	if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3987 		ilfp = item->ri_buf[0].i_addr;
3988 	} else {
3989 		ilfp = &ilf_buf;
3990 		memset(ilfp, 0, sizeof(*ilfp));
3991 		error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3992 		if (error)
3993 			return;
3994 	}
3995 
3996 	if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3997 		return;
3998 
3999 	xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
4000 				ilfp->ilf_len, &xfs_inode_buf_ra_ops);
4001 }
4002 
4003 STATIC void
4004 xlog_recover_dquot_ra_pass2(
4005 	struct xlog			*log,
4006 	struct xlog_recover_item	*item)
4007 {
4008 	struct xfs_mount	*mp = log->l_mp;
4009 	struct xfs_disk_dquot	*recddq;
4010 	struct xfs_dq_logformat	*dq_f;
4011 	uint			type;
4012 	int			len;
4013 
4014 
4015 	if (mp->m_qflags == 0)
4016 		return;
4017 
4018 	recddq = item->ri_buf[1].i_addr;
4019 	if (recddq == NULL)
4020 		return;
4021 	if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
4022 		return;
4023 
4024 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
4025 	ASSERT(type);
4026 	if (log->l_quotaoffs_flag & type)
4027 		return;
4028 
4029 	dq_f = item->ri_buf[0].i_addr;
4030 	ASSERT(dq_f);
4031 	ASSERT(dq_f->qlf_len == 1);
4032 
4033 	len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
4034 	if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
4035 		return;
4036 
4037 	xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
4038 			  &xfs_dquot_buf_ra_ops);
4039 }
4040 
4041 STATIC void
4042 xlog_recover_ra_pass2(
4043 	struct xlog			*log,
4044 	struct xlog_recover_item	*item)
4045 {
4046 	switch (ITEM_TYPE(item)) {
4047 	case XFS_LI_BUF:
4048 		xlog_recover_buffer_ra_pass2(log, item);
4049 		break;
4050 	case XFS_LI_INODE:
4051 		xlog_recover_inode_ra_pass2(log, item);
4052 		break;
4053 	case XFS_LI_DQUOT:
4054 		xlog_recover_dquot_ra_pass2(log, item);
4055 		break;
4056 	case XFS_LI_EFI:
4057 	case XFS_LI_EFD:
4058 	case XFS_LI_QUOTAOFF:
4059 	case XFS_LI_RUI:
4060 	case XFS_LI_RUD:
4061 	case XFS_LI_CUI:
4062 	case XFS_LI_CUD:
4063 	case XFS_LI_BUI:
4064 	case XFS_LI_BUD:
4065 	default:
4066 		break;
4067 	}
4068 }
4069 
4070 STATIC int
4071 xlog_recover_commit_pass1(
4072 	struct xlog			*log,
4073 	struct xlog_recover		*trans,
4074 	struct xlog_recover_item	*item)
4075 {
4076 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
4077 
4078 	switch (ITEM_TYPE(item)) {
4079 	case XFS_LI_BUF:
4080 		return xlog_recover_buffer_pass1(log, item);
4081 	case XFS_LI_QUOTAOFF:
4082 		return xlog_recover_quotaoff_pass1(log, item);
4083 	case XFS_LI_INODE:
4084 	case XFS_LI_EFI:
4085 	case XFS_LI_EFD:
4086 	case XFS_LI_DQUOT:
4087 	case XFS_LI_ICREATE:
4088 	case XFS_LI_RUI:
4089 	case XFS_LI_RUD:
4090 	case XFS_LI_CUI:
4091 	case XFS_LI_CUD:
4092 	case XFS_LI_BUI:
4093 	case XFS_LI_BUD:
4094 		/* nothing to do in pass 1 */
4095 		return 0;
4096 	default:
4097 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4098 			__func__, ITEM_TYPE(item));
4099 		ASSERT(0);
4100 		return -EIO;
4101 	}
4102 }
4103 
4104 STATIC int
4105 xlog_recover_commit_pass2(
4106 	struct xlog			*log,
4107 	struct xlog_recover		*trans,
4108 	struct list_head		*buffer_list,
4109 	struct xlog_recover_item	*item)
4110 {
4111 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
4112 
4113 	switch (ITEM_TYPE(item)) {
4114 	case XFS_LI_BUF:
4115 		return xlog_recover_buffer_pass2(log, buffer_list, item,
4116 						 trans->r_lsn);
4117 	case XFS_LI_INODE:
4118 		return xlog_recover_inode_pass2(log, buffer_list, item,
4119 						 trans->r_lsn);
4120 	case XFS_LI_EFI:
4121 		return xlog_recover_efi_pass2(log, item, trans->r_lsn);
4122 	case XFS_LI_EFD:
4123 		return xlog_recover_efd_pass2(log, item);
4124 	case XFS_LI_RUI:
4125 		return xlog_recover_rui_pass2(log, item, trans->r_lsn);
4126 	case XFS_LI_RUD:
4127 		return xlog_recover_rud_pass2(log, item);
4128 	case XFS_LI_CUI:
4129 		return xlog_recover_cui_pass2(log, item, trans->r_lsn);
4130 	case XFS_LI_CUD:
4131 		return xlog_recover_cud_pass2(log, item);
4132 	case XFS_LI_BUI:
4133 		return xlog_recover_bui_pass2(log, item, trans->r_lsn);
4134 	case XFS_LI_BUD:
4135 		return xlog_recover_bud_pass2(log, item);
4136 	case XFS_LI_DQUOT:
4137 		return xlog_recover_dquot_pass2(log, buffer_list, item,
4138 						trans->r_lsn);
4139 	case XFS_LI_ICREATE:
4140 		return xlog_recover_do_icreate_pass2(log, buffer_list, item);
4141 	case XFS_LI_QUOTAOFF:
4142 		/* nothing to do in pass2 */
4143 		return 0;
4144 	default:
4145 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4146 			__func__, ITEM_TYPE(item));
4147 		ASSERT(0);
4148 		return -EIO;
4149 	}
4150 }
4151 
4152 STATIC int
4153 xlog_recover_items_pass2(
4154 	struct xlog                     *log,
4155 	struct xlog_recover             *trans,
4156 	struct list_head                *buffer_list,
4157 	struct list_head                *item_list)
4158 {
4159 	struct xlog_recover_item	*item;
4160 	int				error = 0;
4161 
4162 	list_for_each_entry(item, item_list, ri_list) {
4163 		error = xlog_recover_commit_pass2(log, trans,
4164 					  buffer_list, item);
4165 		if (error)
4166 			return error;
4167 	}
4168 
4169 	return error;
4170 }
4171 
4172 /*
4173  * Perform the transaction.
4174  *
4175  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
4176  * EFIs and EFDs get queued up by adding entries into the AIL for them.
4177  */
4178 STATIC int
4179 xlog_recover_commit_trans(
4180 	struct xlog		*log,
4181 	struct xlog_recover	*trans,
4182 	int			pass,
4183 	struct list_head	*buffer_list)
4184 {
4185 	int				error = 0;
4186 	int				items_queued = 0;
4187 	struct xlog_recover_item	*item;
4188 	struct xlog_recover_item	*next;
4189 	LIST_HEAD			(ra_list);
4190 	LIST_HEAD			(done_list);
4191 
4192 	#define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
4193 
4194 	hlist_del_init(&trans->r_list);
4195 
4196 	error = xlog_recover_reorder_trans(log, trans, pass);
4197 	if (error)
4198 		return error;
4199 
4200 	list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
4201 		switch (pass) {
4202 		case XLOG_RECOVER_PASS1:
4203 			error = xlog_recover_commit_pass1(log, trans, item);
4204 			break;
4205 		case XLOG_RECOVER_PASS2:
4206 			xlog_recover_ra_pass2(log, item);
4207 			list_move_tail(&item->ri_list, &ra_list);
4208 			items_queued++;
4209 			if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
4210 				error = xlog_recover_items_pass2(log, trans,
4211 						buffer_list, &ra_list);
4212 				list_splice_tail_init(&ra_list, &done_list);
4213 				items_queued = 0;
4214 			}
4215 
4216 			break;
4217 		default:
4218 			ASSERT(0);
4219 		}
4220 
4221 		if (error)
4222 			goto out;
4223 	}
4224 
4225 out:
4226 	if (!list_empty(&ra_list)) {
4227 		if (!error)
4228 			error = xlog_recover_items_pass2(log, trans,
4229 					buffer_list, &ra_list);
4230 		list_splice_tail_init(&ra_list, &done_list);
4231 	}
4232 
4233 	if (!list_empty(&done_list))
4234 		list_splice_init(&done_list, &trans->r_itemq);
4235 
4236 	return error;
4237 }
4238 
4239 STATIC void
4240 xlog_recover_add_item(
4241 	struct list_head	*head)
4242 {
4243 	xlog_recover_item_t	*item;
4244 
4245 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
4246 	INIT_LIST_HEAD(&item->ri_list);
4247 	list_add_tail(&item->ri_list, head);
4248 }
4249 
4250 STATIC int
4251 xlog_recover_add_to_cont_trans(
4252 	struct xlog		*log,
4253 	struct xlog_recover	*trans,
4254 	char			*dp,
4255 	int			len)
4256 {
4257 	xlog_recover_item_t	*item;
4258 	char			*ptr, *old_ptr;
4259 	int			old_len;
4260 
4261 	/*
4262 	 * If the transaction is empty, the header was split across this and the
4263 	 * previous record. Copy the rest of the header.
4264 	 */
4265 	if (list_empty(&trans->r_itemq)) {
4266 		ASSERT(len <= sizeof(struct xfs_trans_header));
4267 		if (len > sizeof(struct xfs_trans_header)) {
4268 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
4269 			return -EIO;
4270 		}
4271 
4272 		xlog_recover_add_item(&trans->r_itemq);
4273 		ptr = (char *)&trans->r_theader +
4274 				sizeof(struct xfs_trans_header) - len;
4275 		memcpy(ptr, dp, len);
4276 		return 0;
4277 	}
4278 
4279 	/* take the tail entry */
4280 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4281 
4282 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
4283 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
4284 
4285 	ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP);
4286 	memcpy(&ptr[old_len], dp, len);
4287 	item->ri_buf[item->ri_cnt-1].i_len += len;
4288 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
4289 	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
4290 	return 0;
4291 }
4292 
4293 /*
4294  * The next region to add is the start of a new region.  It could be
4295  * a whole region or it could be the first part of a new region.  Because
4296  * of this, the assumption here is that the type and size fields of all
4297  * format structures fit into the first 32 bits of the structure.
4298  *
4299  * This works because all regions must be 32 bit aligned.  Therefore, we
4300  * either have both fields or we have neither field.  In the case we have
4301  * neither field, the data part of the region is zero length.  We only have
4302  * a log_op_header and can throw away the header since a new one will appear
4303  * later.  If we have at least 4 bytes, then we can determine how many regions
4304  * will appear in the current log item.
4305  */
4306 STATIC int
4307 xlog_recover_add_to_trans(
4308 	struct xlog		*log,
4309 	struct xlog_recover	*trans,
4310 	char			*dp,
4311 	int			len)
4312 {
4313 	struct xfs_inode_log_format	*in_f;			/* any will do */
4314 	xlog_recover_item_t	*item;
4315 	char			*ptr;
4316 
4317 	if (!len)
4318 		return 0;
4319 	if (list_empty(&trans->r_itemq)) {
4320 		/* we need to catch log corruptions here */
4321 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
4322 			xfs_warn(log->l_mp, "%s: bad header magic number",
4323 				__func__);
4324 			ASSERT(0);
4325 			return -EIO;
4326 		}
4327 
4328 		if (len > sizeof(struct xfs_trans_header)) {
4329 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
4330 			ASSERT(0);
4331 			return -EIO;
4332 		}
4333 
4334 		/*
4335 		 * The transaction header can be arbitrarily split across op
4336 		 * records. If we don't have the whole thing here, copy what we
4337 		 * do have and handle the rest in the next record.
4338 		 */
4339 		if (len == sizeof(struct xfs_trans_header))
4340 			xlog_recover_add_item(&trans->r_itemq);
4341 		memcpy(&trans->r_theader, dp, len);
4342 		return 0;
4343 	}
4344 
4345 	ptr = kmem_alloc(len, KM_SLEEP);
4346 	memcpy(ptr, dp, len);
4347 	in_f = (struct xfs_inode_log_format *)ptr;
4348 
4349 	/* take the tail entry */
4350 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4351 	if (item->ri_total != 0 &&
4352 	     item->ri_total == item->ri_cnt) {
4353 		/* tail item is in use, get a new one */
4354 		xlog_recover_add_item(&trans->r_itemq);
4355 		item = list_entry(trans->r_itemq.prev,
4356 					xlog_recover_item_t, ri_list);
4357 	}
4358 
4359 	if (item->ri_total == 0) {		/* first region to be added */
4360 		if (in_f->ilf_size == 0 ||
4361 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4362 			xfs_warn(log->l_mp,
4363 		"bad number of regions (%d) in inode log format",
4364 				  in_f->ilf_size);
4365 			ASSERT(0);
4366 			kmem_free(ptr);
4367 			return -EIO;
4368 		}
4369 
4370 		item->ri_total = in_f->ilf_size;
4371 		item->ri_buf =
4372 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4373 				    KM_SLEEP);
4374 	}
4375 	ASSERT(item->ri_total > item->ri_cnt);
4376 	/* Description region is ri_buf[0] */
4377 	item->ri_buf[item->ri_cnt].i_addr = ptr;
4378 	item->ri_buf[item->ri_cnt].i_len  = len;
4379 	item->ri_cnt++;
4380 	trace_xfs_log_recover_item_add(log, trans, item, 0);
4381 	return 0;
4382 }
4383 
4384 /*
4385  * Free up any resources allocated by the transaction
4386  *
4387  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4388  */
4389 STATIC void
4390 xlog_recover_free_trans(
4391 	struct xlog_recover	*trans)
4392 {
4393 	xlog_recover_item_t	*item, *n;
4394 	int			i;
4395 
4396 	hlist_del_init(&trans->r_list);
4397 
4398 	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4399 		/* Free the regions in the item. */
4400 		list_del(&item->ri_list);
4401 		for (i = 0; i < item->ri_cnt; i++)
4402 			kmem_free(item->ri_buf[i].i_addr);
4403 		/* Free the item itself */
4404 		kmem_free(item->ri_buf);
4405 		kmem_free(item);
4406 	}
4407 	/* Free the transaction recover structure */
4408 	kmem_free(trans);
4409 }
4410 
4411 /*
4412  * On error or completion, trans is freed.
4413  */
4414 STATIC int
4415 xlog_recovery_process_trans(
4416 	struct xlog		*log,
4417 	struct xlog_recover	*trans,
4418 	char			*dp,
4419 	unsigned int		len,
4420 	unsigned int		flags,
4421 	int			pass,
4422 	struct list_head	*buffer_list)
4423 {
4424 	int			error = 0;
4425 	bool			freeit = false;
4426 
4427 	/* mask off ophdr transaction container flags */
4428 	flags &= ~XLOG_END_TRANS;
4429 	if (flags & XLOG_WAS_CONT_TRANS)
4430 		flags &= ~XLOG_CONTINUE_TRANS;
4431 
4432 	/*
4433 	 * Callees must not free the trans structure. We'll decide if we need to
4434 	 * free it or not based on the operation being done and it's result.
4435 	 */
4436 	switch (flags) {
4437 	/* expected flag values */
4438 	case 0:
4439 	case XLOG_CONTINUE_TRANS:
4440 		error = xlog_recover_add_to_trans(log, trans, dp, len);
4441 		break;
4442 	case XLOG_WAS_CONT_TRANS:
4443 		error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4444 		break;
4445 	case XLOG_COMMIT_TRANS:
4446 		error = xlog_recover_commit_trans(log, trans, pass,
4447 						  buffer_list);
4448 		/* success or fail, we are now done with this transaction. */
4449 		freeit = true;
4450 		break;
4451 
4452 	/* unexpected flag values */
4453 	case XLOG_UNMOUNT_TRANS:
4454 		/* just skip trans */
4455 		xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
4456 		freeit = true;
4457 		break;
4458 	case XLOG_START_TRANS:
4459 	default:
4460 		xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4461 		ASSERT(0);
4462 		error = -EIO;
4463 		break;
4464 	}
4465 	if (error || freeit)
4466 		xlog_recover_free_trans(trans);
4467 	return error;
4468 }
4469 
4470 /*
4471  * Lookup the transaction recovery structure associated with the ID in the
4472  * current ophdr. If the transaction doesn't exist and the start flag is set in
4473  * the ophdr, then allocate a new transaction for future ID matches to find.
4474  * Either way, return what we found during the lookup - an existing transaction
4475  * or nothing.
4476  */
4477 STATIC struct xlog_recover *
4478 xlog_recover_ophdr_to_trans(
4479 	struct hlist_head	rhash[],
4480 	struct xlog_rec_header	*rhead,
4481 	struct xlog_op_header	*ohead)
4482 {
4483 	struct xlog_recover	*trans;
4484 	xlog_tid_t		tid;
4485 	struct hlist_head	*rhp;
4486 
4487 	tid = be32_to_cpu(ohead->oh_tid);
4488 	rhp = &rhash[XLOG_RHASH(tid)];
4489 	hlist_for_each_entry(trans, rhp, r_list) {
4490 		if (trans->r_log_tid == tid)
4491 			return trans;
4492 	}
4493 
4494 	/*
4495 	 * skip over non-start transaction headers - we could be
4496 	 * processing slack space before the next transaction starts
4497 	 */
4498 	if (!(ohead->oh_flags & XLOG_START_TRANS))
4499 		return NULL;
4500 
4501 	ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4502 
4503 	/*
4504 	 * This is a new transaction so allocate a new recovery container to
4505 	 * hold the recovery ops that will follow.
4506 	 */
4507 	trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
4508 	trans->r_log_tid = tid;
4509 	trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4510 	INIT_LIST_HEAD(&trans->r_itemq);
4511 	INIT_HLIST_NODE(&trans->r_list);
4512 	hlist_add_head(&trans->r_list, rhp);
4513 
4514 	/*
4515 	 * Nothing more to do for this ophdr. Items to be added to this new
4516 	 * transaction will be in subsequent ophdr containers.
4517 	 */
4518 	return NULL;
4519 }
4520 
4521 STATIC int
4522 xlog_recover_process_ophdr(
4523 	struct xlog		*log,
4524 	struct hlist_head	rhash[],
4525 	struct xlog_rec_header	*rhead,
4526 	struct xlog_op_header	*ohead,
4527 	char			*dp,
4528 	char			*end,
4529 	int			pass,
4530 	struct list_head	*buffer_list)
4531 {
4532 	struct xlog_recover	*trans;
4533 	unsigned int		len;
4534 	int			error;
4535 
4536 	/* Do we understand who wrote this op? */
4537 	if (ohead->oh_clientid != XFS_TRANSACTION &&
4538 	    ohead->oh_clientid != XFS_LOG) {
4539 		xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4540 			__func__, ohead->oh_clientid);
4541 		ASSERT(0);
4542 		return -EIO;
4543 	}
4544 
4545 	/*
4546 	 * Check the ophdr contains all the data it is supposed to contain.
4547 	 */
4548 	len = be32_to_cpu(ohead->oh_len);
4549 	if (dp + len > end) {
4550 		xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4551 		WARN_ON(1);
4552 		return -EIO;
4553 	}
4554 
4555 	trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4556 	if (!trans) {
4557 		/* nothing to do, so skip over this ophdr */
4558 		return 0;
4559 	}
4560 
4561 	/*
4562 	 * The recovered buffer queue is drained only once we know that all
4563 	 * recovery items for the current LSN have been processed. This is
4564 	 * required because:
4565 	 *
4566 	 * - Buffer write submission updates the metadata LSN of the buffer.
4567 	 * - Log recovery skips items with a metadata LSN >= the current LSN of
4568 	 *   the recovery item.
4569 	 * - Separate recovery items against the same metadata buffer can share
4570 	 *   a current LSN. I.e., consider that the LSN of a recovery item is
4571 	 *   defined as the starting LSN of the first record in which its
4572 	 *   transaction appears, that a record can hold multiple transactions,
4573 	 *   and/or that a transaction can span multiple records.
4574 	 *
4575 	 * In other words, we are allowed to submit a buffer from log recovery
4576 	 * once per current LSN. Otherwise, we may incorrectly skip recovery
4577 	 * items and cause corruption.
4578 	 *
4579 	 * We don't know up front whether buffers are updated multiple times per
4580 	 * LSN. Therefore, track the current LSN of each commit log record as it
4581 	 * is processed and drain the queue when it changes. Use commit records
4582 	 * because they are ordered correctly by the logging code.
4583 	 */
4584 	if (log->l_recovery_lsn != trans->r_lsn &&
4585 	    ohead->oh_flags & XLOG_COMMIT_TRANS) {
4586 		error = xfs_buf_delwri_submit(buffer_list);
4587 		if (error)
4588 			return error;
4589 		log->l_recovery_lsn = trans->r_lsn;
4590 	}
4591 
4592 	return xlog_recovery_process_trans(log, trans, dp, len,
4593 					   ohead->oh_flags, pass, buffer_list);
4594 }
4595 
4596 /*
4597  * There are two valid states of the r_state field.  0 indicates that the
4598  * transaction structure is in a normal state.  We have either seen the
4599  * start of the transaction or the last operation we added was not a partial
4600  * operation.  If the last operation we added to the transaction was a
4601  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4602  *
4603  * NOTE: skip LRs with 0 data length.
4604  */
4605 STATIC int
4606 xlog_recover_process_data(
4607 	struct xlog		*log,
4608 	struct hlist_head	rhash[],
4609 	struct xlog_rec_header	*rhead,
4610 	char			*dp,
4611 	int			pass,
4612 	struct list_head	*buffer_list)
4613 {
4614 	struct xlog_op_header	*ohead;
4615 	char			*end;
4616 	int			num_logops;
4617 	int			error;
4618 
4619 	end = dp + be32_to_cpu(rhead->h_len);
4620 	num_logops = be32_to_cpu(rhead->h_num_logops);
4621 
4622 	/* check the log format matches our own - else we can't recover */
4623 	if (xlog_header_check_recover(log->l_mp, rhead))
4624 		return -EIO;
4625 
4626 	trace_xfs_log_recover_record(log, rhead, pass);
4627 	while ((dp < end) && num_logops) {
4628 
4629 		ohead = (struct xlog_op_header *)dp;
4630 		dp += sizeof(*ohead);
4631 		ASSERT(dp <= end);
4632 
4633 		/* errors will abort recovery */
4634 		error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4635 						   dp, end, pass, buffer_list);
4636 		if (error)
4637 			return error;
4638 
4639 		dp += be32_to_cpu(ohead->oh_len);
4640 		num_logops--;
4641 	}
4642 	return 0;
4643 }
4644 
4645 /* Recover the EFI if necessary. */
4646 STATIC int
4647 xlog_recover_process_efi(
4648 	struct xfs_mount		*mp,
4649 	struct xfs_ail			*ailp,
4650 	struct xfs_log_item		*lip)
4651 {
4652 	struct xfs_efi_log_item		*efip;
4653 	int				error;
4654 
4655 	/*
4656 	 * Skip EFIs that we've already processed.
4657 	 */
4658 	efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4659 	if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4660 		return 0;
4661 
4662 	spin_unlock(&ailp->xa_lock);
4663 	error = xfs_efi_recover(mp, efip);
4664 	spin_lock(&ailp->xa_lock);
4665 
4666 	return error;
4667 }
4668 
4669 /* Release the EFI since we're cancelling everything. */
4670 STATIC void
4671 xlog_recover_cancel_efi(
4672 	struct xfs_mount		*mp,
4673 	struct xfs_ail			*ailp,
4674 	struct xfs_log_item		*lip)
4675 {
4676 	struct xfs_efi_log_item		*efip;
4677 
4678 	efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4679 
4680 	spin_unlock(&ailp->xa_lock);
4681 	xfs_efi_release(efip);
4682 	spin_lock(&ailp->xa_lock);
4683 }
4684 
4685 /* Recover the RUI if necessary. */
4686 STATIC int
4687 xlog_recover_process_rui(
4688 	struct xfs_mount		*mp,
4689 	struct xfs_ail			*ailp,
4690 	struct xfs_log_item		*lip)
4691 {
4692 	struct xfs_rui_log_item		*ruip;
4693 	int				error;
4694 
4695 	/*
4696 	 * Skip RUIs that we've already processed.
4697 	 */
4698 	ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4699 	if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4700 		return 0;
4701 
4702 	spin_unlock(&ailp->xa_lock);
4703 	error = xfs_rui_recover(mp, ruip);
4704 	spin_lock(&ailp->xa_lock);
4705 
4706 	return error;
4707 }
4708 
4709 /* Release the RUI since we're cancelling everything. */
4710 STATIC void
4711 xlog_recover_cancel_rui(
4712 	struct xfs_mount		*mp,
4713 	struct xfs_ail			*ailp,
4714 	struct xfs_log_item		*lip)
4715 {
4716 	struct xfs_rui_log_item		*ruip;
4717 
4718 	ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4719 
4720 	spin_unlock(&ailp->xa_lock);
4721 	xfs_rui_release(ruip);
4722 	spin_lock(&ailp->xa_lock);
4723 }
4724 
4725 /* Recover the CUI if necessary. */
4726 STATIC int
4727 xlog_recover_process_cui(
4728 	struct xfs_mount		*mp,
4729 	struct xfs_ail			*ailp,
4730 	struct xfs_log_item		*lip,
4731 	struct xfs_defer_ops		*dfops)
4732 {
4733 	struct xfs_cui_log_item		*cuip;
4734 	int				error;
4735 
4736 	/*
4737 	 * Skip CUIs that we've already processed.
4738 	 */
4739 	cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4740 	if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags))
4741 		return 0;
4742 
4743 	spin_unlock(&ailp->xa_lock);
4744 	error = xfs_cui_recover(mp, cuip, dfops);
4745 	spin_lock(&ailp->xa_lock);
4746 
4747 	return error;
4748 }
4749 
4750 /* Release the CUI since we're cancelling everything. */
4751 STATIC void
4752 xlog_recover_cancel_cui(
4753 	struct xfs_mount		*mp,
4754 	struct xfs_ail			*ailp,
4755 	struct xfs_log_item		*lip)
4756 {
4757 	struct xfs_cui_log_item		*cuip;
4758 
4759 	cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4760 
4761 	spin_unlock(&ailp->xa_lock);
4762 	xfs_cui_release(cuip);
4763 	spin_lock(&ailp->xa_lock);
4764 }
4765 
4766 /* Recover the BUI if necessary. */
4767 STATIC int
4768 xlog_recover_process_bui(
4769 	struct xfs_mount		*mp,
4770 	struct xfs_ail			*ailp,
4771 	struct xfs_log_item		*lip,
4772 	struct xfs_defer_ops		*dfops)
4773 {
4774 	struct xfs_bui_log_item		*buip;
4775 	int				error;
4776 
4777 	/*
4778 	 * Skip BUIs that we've already processed.
4779 	 */
4780 	buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4781 	if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags))
4782 		return 0;
4783 
4784 	spin_unlock(&ailp->xa_lock);
4785 	error = xfs_bui_recover(mp, buip, dfops);
4786 	spin_lock(&ailp->xa_lock);
4787 
4788 	return error;
4789 }
4790 
4791 /* Release the BUI since we're cancelling everything. */
4792 STATIC void
4793 xlog_recover_cancel_bui(
4794 	struct xfs_mount		*mp,
4795 	struct xfs_ail			*ailp,
4796 	struct xfs_log_item		*lip)
4797 {
4798 	struct xfs_bui_log_item		*buip;
4799 
4800 	buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4801 
4802 	spin_unlock(&ailp->xa_lock);
4803 	xfs_bui_release(buip);
4804 	spin_lock(&ailp->xa_lock);
4805 }
4806 
4807 /* Is this log item a deferred action intent? */
4808 static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4809 {
4810 	switch (lip->li_type) {
4811 	case XFS_LI_EFI:
4812 	case XFS_LI_RUI:
4813 	case XFS_LI_CUI:
4814 	case XFS_LI_BUI:
4815 		return true;
4816 	default:
4817 		return false;
4818 	}
4819 }
4820 
4821 /* Take all the collected deferred ops and finish them in order. */
4822 static int
4823 xlog_finish_defer_ops(
4824 	struct xfs_mount	*mp,
4825 	struct xfs_defer_ops	*dfops)
4826 {
4827 	struct xfs_trans	*tp;
4828 	int64_t			freeblks;
4829 	uint			resblks;
4830 	int			error;
4831 
4832 	/*
4833 	 * We're finishing the defer_ops that accumulated as a result of
4834 	 * recovering unfinished intent items during log recovery.  We
4835 	 * reserve an itruncate transaction because it is the largest
4836 	 * permanent transaction type.  Since we're the only user of the fs
4837 	 * right now, take 93% (15/16) of the available free blocks.  Use
4838 	 * weird math to avoid a 64-bit division.
4839 	 */
4840 	freeblks = percpu_counter_sum(&mp->m_fdblocks);
4841 	if (freeblks <= 0)
4842 		return -ENOSPC;
4843 	resblks = min_t(int64_t, UINT_MAX, freeblks);
4844 	resblks = (resblks * 15) >> 4;
4845 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks,
4846 			0, XFS_TRANS_RESERVE, &tp);
4847 	if (error)
4848 		return error;
4849 
4850 	error = xfs_defer_finish(&tp, dfops);
4851 	if (error)
4852 		goto out_cancel;
4853 
4854 	return xfs_trans_commit(tp);
4855 
4856 out_cancel:
4857 	xfs_trans_cancel(tp);
4858 	return error;
4859 }
4860 
4861 /*
4862  * When this is called, all of the log intent items which did not have
4863  * corresponding log done items should be in the AIL.  What we do now
4864  * is update the data structures associated with each one.
4865  *
4866  * Since we process the log intent items in normal transactions, they
4867  * will be removed at some point after the commit.  This prevents us
4868  * from just walking down the list processing each one.  We'll use a
4869  * flag in the intent item to skip those that we've already processed
4870  * and use the AIL iteration mechanism's generation count to try to
4871  * speed this up at least a bit.
4872  *
4873  * When we start, we know that the intents are the only things in the
4874  * AIL.  As we process them, however, other items are added to the
4875  * AIL.
4876  */
4877 STATIC int
4878 xlog_recover_process_intents(
4879 	struct xlog		*log)
4880 {
4881 	struct xfs_defer_ops	dfops;
4882 	struct xfs_ail_cursor	cur;
4883 	struct xfs_log_item	*lip;
4884 	struct xfs_ail		*ailp;
4885 	xfs_fsblock_t		firstfsb;
4886 	int			error = 0;
4887 #if defined(DEBUG) || defined(XFS_WARN)
4888 	xfs_lsn_t		last_lsn;
4889 #endif
4890 
4891 	ailp = log->l_ailp;
4892 	spin_lock(&ailp->xa_lock);
4893 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4894 #if defined(DEBUG) || defined(XFS_WARN)
4895 	last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
4896 #endif
4897 	xfs_defer_init(&dfops, &firstfsb);
4898 	while (lip != NULL) {
4899 		/*
4900 		 * We're done when we see something other than an intent.
4901 		 * There should be no intents left in the AIL now.
4902 		 */
4903 		if (!xlog_item_is_intent(lip)) {
4904 #ifdef DEBUG
4905 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4906 				ASSERT(!xlog_item_is_intent(lip));
4907 #endif
4908 			break;
4909 		}
4910 
4911 		/*
4912 		 * We should never see a redo item with a LSN higher than
4913 		 * the last transaction we found in the log at the start
4914 		 * of recovery.
4915 		 */
4916 		ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
4917 
4918 		/*
4919 		 * NOTE: If your intent processing routine can create more
4920 		 * deferred ops, you /must/ attach them to the dfops in this
4921 		 * routine or else those subsequent intents will get
4922 		 * replayed in the wrong order!
4923 		 */
4924 		switch (lip->li_type) {
4925 		case XFS_LI_EFI:
4926 			error = xlog_recover_process_efi(log->l_mp, ailp, lip);
4927 			break;
4928 		case XFS_LI_RUI:
4929 			error = xlog_recover_process_rui(log->l_mp, ailp, lip);
4930 			break;
4931 		case XFS_LI_CUI:
4932 			error = xlog_recover_process_cui(log->l_mp, ailp, lip,
4933 					&dfops);
4934 			break;
4935 		case XFS_LI_BUI:
4936 			error = xlog_recover_process_bui(log->l_mp, ailp, lip,
4937 					&dfops);
4938 			break;
4939 		}
4940 		if (error)
4941 			goto out;
4942 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
4943 	}
4944 out:
4945 	xfs_trans_ail_cursor_done(&cur);
4946 	spin_unlock(&ailp->xa_lock);
4947 	if (error)
4948 		xfs_defer_cancel(&dfops);
4949 	else
4950 		error = xlog_finish_defer_ops(log->l_mp, &dfops);
4951 
4952 	return error;
4953 }
4954 
4955 /*
4956  * A cancel occurs when the mount has failed and we're bailing out.
4957  * Release all pending log intent items so they don't pin the AIL.
4958  */
4959 STATIC int
4960 xlog_recover_cancel_intents(
4961 	struct xlog		*log)
4962 {
4963 	struct xfs_log_item	*lip;
4964 	int			error = 0;
4965 	struct xfs_ail_cursor	cur;
4966 	struct xfs_ail		*ailp;
4967 
4968 	ailp = log->l_ailp;
4969 	spin_lock(&ailp->xa_lock);
4970 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4971 	while (lip != NULL) {
4972 		/*
4973 		 * We're done when we see something other than an intent.
4974 		 * There should be no intents left in the AIL now.
4975 		 */
4976 		if (!xlog_item_is_intent(lip)) {
4977 #ifdef DEBUG
4978 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4979 				ASSERT(!xlog_item_is_intent(lip));
4980 #endif
4981 			break;
4982 		}
4983 
4984 		switch (lip->li_type) {
4985 		case XFS_LI_EFI:
4986 			xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4987 			break;
4988 		case XFS_LI_RUI:
4989 			xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4990 			break;
4991 		case XFS_LI_CUI:
4992 			xlog_recover_cancel_cui(log->l_mp, ailp, lip);
4993 			break;
4994 		case XFS_LI_BUI:
4995 			xlog_recover_cancel_bui(log->l_mp, ailp, lip);
4996 			break;
4997 		}
4998 
4999 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
5000 	}
5001 
5002 	xfs_trans_ail_cursor_done(&cur);
5003 	spin_unlock(&ailp->xa_lock);
5004 	return error;
5005 }
5006 
5007 /*
5008  * This routine performs a transaction to null out a bad inode pointer
5009  * in an agi unlinked inode hash bucket.
5010  */
5011 STATIC void
5012 xlog_recover_clear_agi_bucket(
5013 	xfs_mount_t	*mp,
5014 	xfs_agnumber_t	agno,
5015 	int		bucket)
5016 {
5017 	xfs_trans_t	*tp;
5018 	xfs_agi_t	*agi;
5019 	xfs_buf_t	*agibp;
5020 	int		offset;
5021 	int		error;
5022 
5023 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
5024 	if (error)
5025 		goto out_error;
5026 
5027 	error = xfs_read_agi(mp, tp, agno, &agibp);
5028 	if (error)
5029 		goto out_abort;
5030 
5031 	agi = XFS_BUF_TO_AGI(agibp);
5032 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
5033 	offset = offsetof(xfs_agi_t, agi_unlinked) +
5034 		 (sizeof(xfs_agino_t) * bucket);
5035 	xfs_trans_log_buf(tp, agibp, offset,
5036 			  (offset + sizeof(xfs_agino_t) - 1));
5037 
5038 	error = xfs_trans_commit(tp);
5039 	if (error)
5040 		goto out_error;
5041 	return;
5042 
5043 out_abort:
5044 	xfs_trans_cancel(tp);
5045 out_error:
5046 	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
5047 	return;
5048 }
5049 
5050 STATIC xfs_agino_t
5051 xlog_recover_process_one_iunlink(
5052 	struct xfs_mount		*mp,
5053 	xfs_agnumber_t			agno,
5054 	xfs_agino_t			agino,
5055 	int				bucket)
5056 {
5057 	struct xfs_buf			*ibp;
5058 	struct xfs_dinode		*dip;
5059 	struct xfs_inode		*ip;
5060 	xfs_ino_t			ino;
5061 	int				error;
5062 
5063 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
5064 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
5065 	if (error)
5066 		goto fail;
5067 
5068 	/*
5069 	 * Get the on disk inode to find the next inode in the bucket.
5070 	 */
5071 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
5072 	if (error)
5073 		goto fail_iput;
5074 
5075 	xfs_iflags_clear(ip, XFS_IRECOVERY);
5076 	ASSERT(VFS_I(ip)->i_nlink == 0);
5077 	ASSERT(VFS_I(ip)->i_mode != 0);
5078 
5079 	/* setup for the next pass */
5080 	agino = be32_to_cpu(dip->di_next_unlinked);
5081 	xfs_buf_relse(ibp);
5082 
5083 	/*
5084 	 * Prevent any DMAPI event from being sent when the reference on
5085 	 * the inode is dropped.
5086 	 */
5087 	ip->i_d.di_dmevmask = 0;
5088 
5089 	IRELE(ip);
5090 	return agino;
5091 
5092  fail_iput:
5093 	IRELE(ip);
5094  fail:
5095 	/*
5096 	 * We can't read in the inode this bucket points to, or this inode
5097 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
5098 	 * some inodes and space, but at least we won't hang.
5099 	 *
5100 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
5101 	 * clear the inode pointer in the bucket.
5102 	 */
5103 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
5104 	return NULLAGINO;
5105 }
5106 
5107 /*
5108  * xlog_iunlink_recover
5109  *
5110  * This is called during recovery to process any inodes which
5111  * we unlinked but not freed when the system crashed.  These
5112  * inodes will be on the lists in the AGI blocks.  What we do
5113  * here is scan all the AGIs and fully truncate and free any
5114  * inodes found on the lists.  Each inode is removed from the
5115  * lists when it has been fully truncated and is freed.  The
5116  * freeing of the inode and its removal from the list must be
5117  * atomic.
5118  */
5119 STATIC void
5120 xlog_recover_process_iunlinks(
5121 	struct xlog	*log)
5122 {
5123 	xfs_mount_t	*mp;
5124 	xfs_agnumber_t	agno;
5125 	xfs_agi_t	*agi;
5126 	xfs_buf_t	*agibp;
5127 	xfs_agino_t	agino;
5128 	int		bucket;
5129 	int		error;
5130 	uint		mp_dmevmask;
5131 
5132 	mp = log->l_mp;
5133 
5134 	/*
5135 	 * Prevent any DMAPI event from being sent while in this function.
5136 	 */
5137 	mp_dmevmask = mp->m_dmevmask;
5138 	mp->m_dmevmask = 0;
5139 
5140 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5141 		/*
5142 		 * Find the agi for this ag.
5143 		 */
5144 		error = xfs_read_agi(mp, NULL, agno, &agibp);
5145 		if (error) {
5146 			/*
5147 			 * AGI is b0rked. Don't process it.
5148 			 *
5149 			 * We should probably mark the filesystem as corrupt
5150 			 * after we've recovered all the ag's we can....
5151 			 */
5152 			continue;
5153 		}
5154 		/*
5155 		 * Unlock the buffer so that it can be acquired in the normal
5156 		 * course of the transaction to truncate and free each inode.
5157 		 * Because we are not racing with anyone else here for the AGI
5158 		 * buffer, we don't even need to hold it locked to read the
5159 		 * initial unlinked bucket entries out of the buffer. We keep
5160 		 * buffer reference though, so that it stays pinned in memory
5161 		 * while we need the buffer.
5162 		 */
5163 		agi = XFS_BUF_TO_AGI(agibp);
5164 		xfs_buf_unlock(agibp);
5165 
5166 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
5167 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
5168 			while (agino != NULLAGINO) {
5169 				agino = xlog_recover_process_one_iunlink(mp,
5170 							agno, agino, bucket);
5171 			}
5172 		}
5173 		xfs_buf_rele(agibp);
5174 	}
5175 
5176 	mp->m_dmevmask = mp_dmevmask;
5177 }
5178 
5179 STATIC int
5180 xlog_unpack_data(
5181 	struct xlog_rec_header	*rhead,
5182 	char			*dp,
5183 	struct xlog		*log)
5184 {
5185 	int			i, j, k;
5186 
5187 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
5188 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
5189 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
5190 		dp += BBSIZE;
5191 	}
5192 
5193 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5194 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
5195 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
5196 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5197 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5198 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
5199 			dp += BBSIZE;
5200 		}
5201 	}
5202 
5203 	return 0;
5204 }
5205 
5206 /*
5207  * CRC check, unpack and process a log record.
5208  */
5209 STATIC int
5210 xlog_recover_process(
5211 	struct xlog		*log,
5212 	struct hlist_head	rhash[],
5213 	struct xlog_rec_header	*rhead,
5214 	char			*dp,
5215 	int			pass,
5216 	struct list_head	*buffer_list)
5217 {
5218 	int			error;
5219 	__le32			old_crc = rhead->h_crc;
5220 	__le32			crc;
5221 
5222 
5223 	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
5224 
5225 	/*
5226 	 * Nothing else to do if this is a CRC verification pass. Just return
5227 	 * if this a record with a non-zero crc. Unfortunately, mkfs always
5228 	 * sets old_crc to 0 so we must consider this valid even on v5 supers.
5229 	 * Otherwise, return EFSBADCRC on failure so the callers up the stack
5230 	 * know precisely what failed.
5231 	 */
5232 	if (pass == XLOG_RECOVER_CRCPASS) {
5233 		if (old_crc && crc != old_crc)
5234 			return -EFSBADCRC;
5235 		return 0;
5236 	}
5237 
5238 	/*
5239 	 * We're in the normal recovery path. Issue a warning if and only if the
5240 	 * CRC in the header is non-zero. This is an advisory warning and the
5241 	 * zero CRC check prevents warnings from being emitted when upgrading
5242 	 * the kernel from one that does not add CRCs by default.
5243 	 */
5244 	if (crc != old_crc) {
5245 		if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
5246 			xfs_alert(log->l_mp,
5247 		"log record CRC mismatch: found 0x%x, expected 0x%x.",
5248 					le32_to_cpu(old_crc),
5249 					le32_to_cpu(crc));
5250 			xfs_hex_dump(dp, 32);
5251 		}
5252 
5253 		/*
5254 		 * If the filesystem is CRC enabled, this mismatch becomes a
5255 		 * fatal log corruption failure.
5256 		 */
5257 		if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
5258 			return -EFSCORRUPTED;
5259 	}
5260 
5261 	error = xlog_unpack_data(rhead, dp, log);
5262 	if (error)
5263 		return error;
5264 
5265 	return xlog_recover_process_data(log, rhash, rhead, dp, pass,
5266 					 buffer_list);
5267 }
5268 
5269 STATIC int
5270 xlog_valid_rec_header(
5271 	struct xlog		*log,
5272 	struct xlog_rec_header	*rhead,
5273 	xfs_daddr_t		blkno)
5274 {
5275 	int			hlen;
5276 
5277 	if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
5278 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
5279 				XFS_ERRLEVEL_LOW, log->l_mp);
5280 		return -EFSCORRUPTED;
5281 	}
5282 	if (unlikely(
5283 	    (!rhead->h_version ||
5284 	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
5285 		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
5286 			__func__, be32_to_cpu(rhead->h_version));
5287 		return -EIO;
5288 	}
5289 
5290 	/* LR body must have data or it wouldn't have been written */
5291 	hlen = be32_to_cpu(rhead->h_len);
5292 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
5293 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
5294 				XFS_ERRLEVEL_LOW, log->l_mp);
5295 		return -EFSCORRUPTED;
5296 	}
5297 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
5298 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
5299 				XFS_ERRLEVEL_LOW, log->l_mp);
5300 		return -EFSCORRUPTED;
5301 	}
5302 	return 0;
5303 }
5304 
5305 /*
5306  * Read the log from tail to head and process the log records found.
5307  * Handle the two cases where the tail and head are in the same cycle
5308  * and where the active portion of the log wraps around the end of
5309  * the physical log separately.  The pass parameter is passed through
5310  * to the routines called to process the data and is not looked at
5311  * here.
5312  */
5313 STATIC int
5314 xlog_do_recovery_pass(
5315 	struct xlog		*log,
5316 	xfs_daddr_t		head_blk,
5317 	xfs_daddr_t		tail_blk,
5318 	int			pass,
5319 	xfs_daddr_t		*first_bad)	/* out: first bad log rec */
5320 {
5321 	xlog_rec_header_t	*rhead;
5322 	xfs_daddr_t		blk_no, rblk_no;
5323 	xfs_daddr_t		rhead_blk;
5324 	char			*offset;
5325 	xfs_buf_t		*hbp, *dbp;
5326 	int			error = 0, h_size, h_len;
5327 	int			error2 = 0;
5328 	int			bblks, split_bblks;
5329 	int			hblks, split_hblks, wrapped_hblks;
5330 	int			i;
5331 	struct hlist_head	rhash[XLOG_RHASH_SIZE];
5332 	LIST_HEAD		(buffer_list);
5333 
5334 	ASSERT(head_blk != tail_blk);
5335 	blk_no = rhead_blk = tail_blk;
5336 
5337 	for (i = 0; i < XLOG_RHASH_SIZE; i++)
5338 		INIT_HLIST_HEAD(&rhash[i]);
5339 
5340 	/*
5341 	 * Read the header of the tail block and get the iclog buffer size from
5342 	 * h_size.  Use this to tell how many sectors make up the log header.
5343 	 */
5344 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5345 		/*
5346 		 * When using variable length iclogs, read first sector of
5347 		 * iclog header and extract the header size from it.  Get a
5348 		 * new hbp that is the correct size.
5349 		 */
5350 		hbp = xlog_get_bp(log, 1);
5351 		if (!hbp)
5352 			return -ENOMEM;
5353 
5354 		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
5355 		if (error)
5356 			goto bread_err1;
5357 
5358 		rhead = (xlog_rec_header_t *)offset;
5359 		error = xlog_valid_rec_header(log, rhead, tail_blk);
5360 		if (error)
5361 			goto bread_err1;
5362 
5363 		/*
5364 		 * xfsprogs has a bug where record length is based on lsunit but
5365 		 * h_size (iclog size) is hardcoded to 32k. Now that we
5366 		 * unconditionally CRC verify the unmount record, this means the
5367 		 * log buffer can be too small for the record and cause an
5368 		 * overrun.
5369 		 *
5370 		 * Detect this condition here. Use lsunit for the buffer size as
5371 		 * long as this looks like the mkfs case. Otherwise, return an
5372 		 * error to avoid a buffer overrun.
5373 		 */
5374 		h_size = be32_to_cpu(rhead->h_size);
5375 		h_len = be32_to_cpu(rhead->h_len);
5376 		if (h_len > h_size) {
5377 			if (h_len <= log->l_mp->m_logbsize &&
5378 			    be32_to_cpu(rhead->h_num_logops) == 1) {
5379 				xfs_warn(log->l_mp,
5380 		"invalid iclog size (%d bytes), using lsunit (%d bytes)",
5381 					 h_size, log->l_mp->m_logbsize);
5382 				h_size = log->l_mp->m_logbsize;
5383 			} else
5384 				return -EFSCORRUPTED;
5385 		}
5386 
5387 		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
5388 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
5389 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
5390 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
5391 				hblks++;
5392 			xlog_put_bp(hbp);
5393 			hbp = xlog_get_bp(log, hblks);
5394 		} else {
5395 			hblks = 1;
5396 		}
5397 	} else {
5398 		ASSERT(log->l_sectBBsize == 1);
5399 		hblks = 1;
5400 		hbp = xlog_get_bp(log, 1);
5401 		h_size = XLOG_BIG_RECORD_BSIZE;
5402 	}
5403 
5404 	if (!hbp)
5405 		return -ENOMEM;
5406 	dbp = xlog_get_bp(log, BTOBB(h_size));
5407 	if (!dbp) {
5408 		xlog_put_bp(hbp);
5409 		return -ENOMEM;
5410 	}
5411 
5412 	memset(rhash, 0, sizeof(rhash));
5413 	if (tail_blk > head_blk) {
5414 		/*
5415 		 * Perform recovery around the end of the physical log.
5416 		 * When the head is not on the same cycle number as the tail,
5417 		 * we can't do a sequential recovery.
5418 		 */
5419 		while (blk_no < log->l_logBBsize) {
5420 			/*
5421 			 * Check for header wrapping around physical end-of-log
5422 			 */
5423 			offset = hbp->b_addr;
5424 			split_hblks = 0;
5425 			wrapped_hblks = 0;
5426 			if (blk_no + hblks <= log->l_logBBsize) {
5427 				/* Read header in one read */
5428 				error = xlog_bread(log, blk_no, hblks, hbp,
5429 						   &offset);
5430 				if (error)
5431 					goto bread_err2;
5432 			} else {
5433 				/* This LR is split across physical log end */
5434 				if (blk_no != log->l_logBBsize) {
5435 					/* some data before physical log end */
5436 					ASSERT(blk_no <= INT_MAX);
5437 					split_hblks = log->l_logBBsize - (int)blk_no;
5438 					ASSERT(split_hblks > 0);
5439 					error = xlog_bread(log, blk_no,
5440 							   split_hblks, hbp,
5441 							   &offset);
5442 					if (error)
5443 						goto bread_err2;
5444 				}
5445 
5446 				/*
5447 				 * Note: this black magic still works with
5448 				 * large sector sizes (non-512) only because:
5449 				 * - we increased the buffer size originally
5450 				 *   by 1 sector giving us enough extra space
5451 				 *   for the second read;
5452 				 * - the log start is guaranteed to be sector
5453 				 *   aligned;
5454 				 * - we read the log end (LR header start)
5455 				 *   _first_, then the log start (LR header end)
5456 				 *   - order is important.
5457 				 */
5458 				wrapped_hblks = hblks - split_hblks;
5459 				error = xlog_bread_offset(log, 0,
5460 						wrapped_hblks, hbp,
5461 						offset + BBTOB(split_hblks));
5462 				if (error)
5463 					goto bread_err2;
5464 			}
5465 			rhead = (xlog_rec_header_t *)offset;
5466 			error = xlog_valid_rec_header(log, rhead,
5467 						split_hblks ? blk_no : 0);
5468 			if (error)
5469 				goto bread_err2;
5470 
5471 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5472 			blk_no += hblks;
5473 
5474 			/*
5475 			 * Read the log record data in multiple reads if it
5476 			 * wraps around the end of the log. Note that if the
5477 			 * header already wrapped, blk_no could point past the
5478 			 * end of the log. The record data is contiguous in
5479 			 * that case.
5480 			 */
5481 			if (blk_no + bblks <= log->l_logBBsize ||
5482 			    blk_no >= log->l_logBBsize) {
5483 				/* mod blk_no in case the header wrapped and
5484 				 * pushed it beyond the end of the log */
5485 				rblk_no = do_mod(blk_no, log->l_logBBsize);
5486 				error = xlog_bread(log, rblk_no, bblks, dbp,
5487 						   &offset);
5488 				if (error)
5489 					goto bread_err2;
5490 			} else {
5491 				/* This log record is split across the
5492 				 * physical end of log */
5493 				offset = dbp->b_addr;
5494 				split_bblks = 0;
5495 				if (blk_no != log->l_logBBsize) {
5496 					/* some data is before the physical
5497 					 * end of log */
5498 					ASSERT(!wrapped_hblks);
5499 					ASSERT(blk_no <= INT_MAX);
5500 					split_bblks =
5501 						log->l_logBBsize - (int)blk_no;
5502 					ASSERT(split_bblks > 0);
5503 					error = xlog_bread(log, blk_no,
5504 							split_bblks, dbp,
5505 							&offset);
5506 					if (error)
5507 						goto bread_err2;
5508 				}
5509 
5510 				/*
5511 				 * Note: this black magic still works with
5512 				 * large sector sizes (non-512) only because:
5513 				 * - we increased the buffer size originally
5514 				 *   by 1 sector giving us enough extra space
5515 				 *   for the second read;
5516 				 * - the log start is guaranteed to be sector
5517 				 *   aligned;
5518 				 * - we read the log end (LR header start)
5519 				 *   _first_, then the log start (LR header end)
5520 				 *   - order is important.
5521 				 */
5522 				error = xlog_bread_offset(log, 0,
5523 						bblks - split_bblks, dbp,
5524 						offset + BBTOB(split_bblks));
5525 				if (error)
5526 					goto bread_err2;
5527 			}
5528 
5529 			error = xlog_recover_process(log, rhash, rhead, offset,
5530 						     pass, &buffer_list);
5531 			if (error)
5532 				goto bread_err2;
5533 
5534 			blk_no += bblks;
5535 			rhead_blk = blk_no;
5536 		}
5537 
5538 		ASSERT(blk_no >= log->l_logBBsize);
5539 		blk_no -= log->l_logBBsize;
5540 		rhead_blk = blk_no;
5541 	}
5542 
5543 	/* read first part of physical log */
5544 	while (blk_no < head_blk) {
5545 		error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5546 		if (error)
5547 			goto bread_err2;
5548 
5549 		rhead = (xlog_rec_header_t *)offset;
5550 		error = xlog_valid_rec_header(log, rhead, blk_no);
5551 		if (error)
5552 			goto bread_err2;
5553 
5554 		/* blocks in data section */
5555 		bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5556 		error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5557 				   &offset);
5558 		if (error)
5559 			goto bread_err2;
5560 
5561 		error = xlog_recover_process(log, rhash, rhead, offset, pass,
5562 					     &buffer_list);
5563 		if (error)
5564 			goto bread_err2;
5565 
5566 		blk_no += bblks + hblks;
5567 		rhead_blk = blk_no;
5568 	}
5569 
5570  bread_err2:
5571 	xlog_put_bp(dbp);
5572  bread_err1:
5573 	xlog_put_bp(hbp);
5574 
5575 	/*
5576 	 * Submit buffers that have been added from the last record processed,
5577 	 * regardless of error status.
5578 	 */
5579 	if (!list_empty(&buffer_list))
5580 		error2 = xfs_buf_delwri_submit(&buffer_list);
5581 
5582 	if (error && first_bad)
5583 		*first_bad = rhead_blk;
5584 
5585 	/*
5586 	 * Transactions are freed at commit time but transactions without commit
5587 	 * records on disk are never committed. Free any that may be left in the
5588 	 * hash table.
5589 	 */
5590 	for (i = 0; i < XLOG_RHASH_SIZE; i++) {
5591 		struct hlist_node	*tmp;
5592 		struct xlog_recover	*trans;
5593 
5594 		hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
5595 			xlog_recover_free_trans(trans);
5596 	}
5597 
5598 	return error ? error : error2;
5599 }
5600 
5601 /*
5602  * Do the recovery of the log.  We actually do this in two phases.
5603  * The two passes are necessary in order to implement the function
5604  * of cancelling a record written into the log.  The first pass
5605  * determines those things which have been cancelled, and the
5606  * second pass replays log items normally except for those which
5607  * have been cancelled.  The handling of the replay and cancellations
5608  * takes place in the log item type specific routines.
5609  *
5610  * The table of items which have cancel records in the log is allocated
5611  * and freed at this level, since only here do we know when all of
5612  * the log recovery has been completed.
5613  */
5614 STATIC int
5615 xlog_do_log_recovery(
5616 	struct xlog	*log,
5617 	xfs_daddr_t	head_blk,
5618 	xfs_daddr_t	tail_blk)
5619 {
5620 	int		error, i;
5621 
5622 	ASSERT(head_blk != tail_blk);
5623 
5624 	/*
5625 	 * First do a pass to find all of the cancelled buf log items.
5626 	 * Store them in the buf_cancel_table for use in the second pass.
5627 	 */
5628 	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5629 						 sizeof(struct list_head),
5630 						 KM_SLEEP);
5631 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5632 		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5633 
5634 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5635 				      XLOG_RECOVER_PASS1, NULL);
5636 	if (error != 0) {
5637 		kmem_free(log->l_buf_cancel_table);
5638 		log->l_buf_cancel_table = NULL;
5639 		return error;
5640 	}
5641 	/*
5642 	 * Then do a second pass to actually recover the items in the log.
5643 	 * When it is complete free the table of buf cancel items.
5644 	 */
5645 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5646 				      XLOG_RECOVER_PASS2, NULL);
5647 #ifdef DEBUG
5648 	if (!error) {
5649 		int	i;
5650 
5651 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5652 			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
5653 	}
5654 #endif	/* DEBUG */
5655 
5656 	kmem_free(log->l_buf_cancel_table);
5657 	log->l_buf_cancel_table = NULL;
5658 
5659 	return error;
5660 }
5661 
5662 /*
5663  * Do the actual recovery
5664  */
5665 STATIC int
5666 xlog_do_recover(
5667 	struct xlog	*log,
5668 	xfs_daddr_t	head_blk,
5669 	xfs_daddr_t	tail_blk)
5670 {
5671 	struct xfs_mount *mp = log->l_mp;
5672 	int		error;
5673 	xfs_buf_t	*bp;
5674 	xfs_sb_t	*sbp;
5675 
5676 	trace_xfs_log_recover(log, head_blk, tail_blk);
5677 
5678 	/*
5679 	 * First replay the images in the log.
5680 	 */
5681 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
5682 	if (error)
5683 		return error;
5684 
5685 	/*
5686 	 * If IO errors happened during recovery, bail out.
5687 	 */
5688 	if (XFS_FORCED_SHUTDOWN(mp)) {
5689 		return -EIO;
5690 	}
5691 
5692 	/*
5693 	 * We now update the tail_lsn since much of the recovery has completed
5694 	 * and there may be space available to use.  If there were no extent
5695 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
5696 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
5697 	 * lsn of the last known good LR on disk.  If there are extent frees
5698 	 * or iunlinks they will have some entries in the AIL; so we look at
5699 	 * the AIL to determine how to set the tail_lsn.
5700 	 */
5701 	xlog_assign_tail_lsn(mp);
5702 
5703 	/*
5704 	 * Now that we've finished replaying all buffer and inode
5705 	 * updates, re-read in the superblock and reverify it.
5706 	 */
5707 	bp = xfs_getsb(mp, 0);
5708 	bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
5709 	ASSERT(!(bp->b_flags & XBF_WRITE));
5710 	bp->b_flags |= XBF_READ;
5711 	bp->b_ops = &xfs_sb_buf_ops;
5712 
5713 	error = xfs_buf_submit_wait(bp);
5714 	if (error) {
5715 		if (!XFS_FORCED_SHUTDOWN(mp)) {
5716 			xfs_buf_ioerror_alert(bp, __func__);
5717 			ASSERT(0);
5718 		}
5719 		xfs_buf_relse(bp);
5720 		return error;
5721 	}
5722 
5723 	/* Convert superblock from on-disk format */
5724 	sbp = &mp->m_sb;
5725 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
5726 	xfs_buf_relse(bp);
5727 
5728 	/* re-initialise in-core superblock and geometry structures */
5729 	xfs_reinit_percpu_counters(mp);
5730 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5731 	if (error) {
5732 		xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5733 		return error;
5734 	}
5735 	mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5736 
5737 	xlog_recover_check_summary(log);
5738 
5739 	/* Normal transactions can now occur */
5740 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5741 	return 0;
5742 }
5743 
5744 /*
5745  * Perform recovery and re-initialize some log variables in xlog_find_tail.
5746  *
5747  * Return error or zero.
5748  */
5749 int
5750 xlog_recover(
5751 	struct xlog	*log)
5752 {
5753 	xfs_daddr_t	head_blk, tail_blk;
5754 	int		error;
5755 
5756 	/* find the tail of the log */
5757 	error = xlog_find_tail(log, &head_blk, &tail_blk);
5758 	if (error)
5759 		return error;
5760 
5761 	/*
5762 	 * The superblock was read before the log was available and thus the LSN
5763 	 * could not be verified. Check the superblock LSN against the current
5764 	 * LSN now that it's known.
5765 	 */
5766 	if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5767 	    !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5768 		return -EINVAL;
5769 
5770 	if (tail_blk != head_blk) {
5771 		/* There used to be a comment here:
5772 		 *
5773 		 * disallow recovery on read-only mounts.  note -- mount
5774 		 * checks for ENOSPC and turns it into an intelligent
5775 		 * error message.
5776 		 * ...but this is no longer true.  Now, unless you specify
5777 		 * NORECOVERY (in which case this function would never be
5778 		 * called), we just go ahead and recover.  We do this all
5779 		 * under the vfs layer, so we can get away with it unless
5780 		 * the device itself is read-only, in which case we fail.
5781 		 */
5782 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5783 			return error;
5784 		}
5785 
5786 		/*
5787 		 * Version 5 superblock log feature mask validation. We know the
5788 		 * log is dirty so check if there are any unknown log features
5789 		 * in what we need to recover. If there are unknown features
5790 		 * (e.g. unsupported transactions, then simply reject the
5791 		 * attempt at recovery before touching anything.
5792 		 */
5793 		if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5794 		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5795 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5796 			xfs_warn(log->l_mp,
5797 "Superblock has unknown incompatible log features (0x%x) enabled.",
5798 				(log->l_mp->m_sb.sb_features_log_incompat &
5799 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5800 			xfs_warn(log->l_mp,
5801 "The log can not be fully and/or safely recovered by this kernel.");
5802 			xfs_warn(log->l_mp,
5803 "Please recover the log on a kernel that supports the unknown features.");
5804 			return -EINVAL;
5805 		}
5806 
5807 		/*
5808 		 * Delay log recovery if the debug hook is set. This is debug
5809 		 * instrumention to coordinate simulation of I/O failures with
5810 		 * log recovery.
5811 		 */
5812 		if (xfs_globals.log_recovery_delay) {
5813 			xfs_notice(log->l_mp,
5814 				"Delaying log recovery for %d seconds.",
5815 				xfs_globals.log_recovery_delay);
5816 			msleep(xfs_globals.log_recovery_delay * 1000);
5817 		}
5818 
5819 		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5820 				log->l_mp->m_logname ? log->l_mp->m_logname
5821 						     : "internal");
5822 
5823 		error = xlog_do_recover(log, head_blk, tail_blk);
5824 		log->l_flags |= XLOG_RECOVERY_NEEDED;
5825 	}
5826 	return error;
5827 }
5828 
5829 /*
5830  * In the first part of recovery we replay inodes and buffers and build
5831  * up the list of extent free items which need to be processed.  Here
5832  * we process the extent free items and clean up the on disk unlinked
5833  * inode lists.  This is separated from the first part of recovery so
5834  * that the root and real-time bitmap inodes can be read in from disk in
5835  * between the two stages.  This is necessary so that we can free space
5836  * in the real-time portion of the file system.
5837  */
5838 int
5839 xlog_recover_finish(
5840 	struct xlog	*log)
5841 {
5842 	/*
5843 	 * Now we're ready to do the transactions needed for the
5844 	 * rest of recovery.  Start with completing all the extent
5845 	 * free intent records and then process the unlinked inode
5846 	 * lists.  At this point, we essentially run in normal mode
5847 	 * except that we're still performing recovery actions
5848 	 * rather than accepting new requests.
5849 	 */
5850 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5851 		int	error;
5852 		error = xlog_recover_process_intents(log);
5853 		if (error) {
5854 			xfs_alert(log->l_mp, "Failed to recover intents");
5855 			return error;
5856 		}
5857 
5858 		/*
5859 		 * Sync the log to get all the intents out of the AIL.
5860 		 * This isn't absolutely necessary, but it helps in
5861 		 * case the unlink transactions would have problems
5862 		 * pushing the intents out of the way.
5863 		 */
5864 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
5865 
5866 		xlog_recover_process_iunlinks(log);
5867 
5868 		xlog_recover_check_summary(log);
5869 
5870 		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5871 				log->l_mp->m_logname ? log->l_mp->m_logname
5872 						     : "internal");
5873 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5874 	} else {
5875 		xfs_info(log->l_mp, "Ending clean mount");
5876 	}
5877 	return 0;
5878 }
5879 
5880 int
5881 xlog_recover_cancel(
5882 	struct xlog	*log)
5883 {
5884 	int		error = 0;
5885 
5886 	if (log->l_flags & XLOG_RECOVERY_NEEDED)
5887 		error = xlog_recover_cancel_intents(log);
5888 
5889 	return error;
5890 }
5891 
5892 #if defined(DEBUG)
5893 /*
5894  * Read all of the agf and agi counters and check that they
5895  * are consistent with the superblock counters.
5896  */
5897 STATIC void
5898 xlog_recover_check_summary(
5899 	struct xlog	*log)
5900 {
5901 	xfs_mount_t	*mp;
5902 	xfs_agf_t	*agfp;
5903 	xfs_buf_t	*agfbp;
5904 	xfs_buf_t	*agibp;
5905 	xfs_agnumber_t	agno;
5906 	uint64_t	freeblks;
5907 	uint64_t	itotal;
5908 	uint64_t	ifree;
5909 	int		error;
5910 
5911 	mp = log->l_mp;
5912 
5913 	freeblks = 0LL;
5914 	itotal = 0LL;
5915 	ifree = 0LL;
5916 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5917 		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5918 		if (error) {
5919 			xfs_alert(mp, "%s agf read failed agno %d error %d",
5920 						__func__, agno, error);
5921 		} else {
5922 			agfp = XFS_BUF_TO_AGF(agfbp);
5923 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
5924 				    be32_to_cpu(agfp->agf_flcount);
5925 			xfs_buf_relse(agfbp);
5926 		}
5927 
5928 		error = xfs_read_agi(mp, NULL, agno, &agibp);
5929 		if (error) {
5930 			xfs_alert(mp, "%s agi read failed agno %d error %d",
5931 						__func__, agno, error);
5932 		} else {
5933 			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
5934 
5935 			itotal += be32_to_cpu(agi->agi_count);
5936 			ifree += be32_to_cpu(agi->agi_freecount);
5937 			xfs_buf_relse(agibp);
5938 		}
5939 	}
5940 }
5941 #endif /* DEBUG */
5942