xref: /openbmc/linux/fs/xfs/xfs_log_recover.c (revision babbdf5b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_trans.h"
18 #include "xfs_log.h"
19 #include "xfs_log_priv.h"
20 #include "xfs_log_recover.h"
21 #include "xfs_trans_priv.h"
22 #include "xfs_alloc.h"
23 #include "xfs_ialloc.h"
24 #include "xfs_trace.h"
25 #include "xfs_icache.h"
26 #include "xfs_error.h"
27 #include "xfs_buf_item.h"
28 
29 #define BLK_AVG(blk1, blk2)	((blk1+blk2) >> 1)
30 
31 STATIC int
32 xlog_find_zeroed(
33 	struct xlog	*,
34 	xfs_daddr_t	*);
35 STATIC int
36 xlog_clear_stale_blocks(
37 	struct xlog	*,
38 	xfs_lsn_t);
39 #if defined(DEBUG)
40 STATIC void
41 xlog_recover_check_summary(
42 	struct xlog *);
43 #else
44 #define	xlog_recover_check_summary(log)
45 #endif
46 STATIC int
47 xlog_do_recovery_pass(
48         struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
49 
50 /*
51  * Sector aligned buffer routines for buffer create/read/write/access
52  */
53 
54 /*
55  * Verify the log-relative block number and length in basic blocks are valid for
56  * an operation involving the given XFS log buffer. Returns true if the fields
57  * are valid, false otherwise.
58  */
59 static inline bool
60 xlog_verify_bno(
61 	struct xlog	*log,
62 	xfs_daddr_t	blk_no,
63 	int		bbcount)
64 {
65 	if (blk_no < 0 || blk_no >= log->l_logBBsize)
66 		return false;
67 	if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
68 		return false;
69 	return true;
70 }
71 
72 /*
73  * Allocate a buffer to hold log data.  The buffer needs to be able to map to
74  * a range of nbblks basic blocks at any valid offset within the log.
75  */
76 static char *
77 xlog_alloc_buffer(
78 	struct xlog	*log,
79 	int		nbblks)
80 {
81 	int align_mask = xfs_buftarg_dma_alignment(log->l_targ);
82 
83 	/*
84 	 * Pass log block 0 since we don't have an addr yet, buffer will be
85 	 * verified on read.
86 	 */
87 	if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) {
88 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
89 			nbblks);
90 		return NULL;
91 	}
92 
93 	/*
94 	 * We do log I/O in units of log sectors (a power-of-2 multiple of the
95 	 * basic block size), so we round up the requested size to accommodate
96 	 * the basic blocks required for complete log sectors.
97 	 *
98 	 * In addition, the buffer may be used for a non-sector-aligned block
99 	 * offset, in which case an I/O of the requested size could extend
100 	 * beyond the end of the buffer.  If the requested size is only 1 basic
101 	 * block it will never straddle a sector boundary, so this won't be an
102 	 * issue.  Nor will this be a problem if the log I/O is done in basic
103 	 * blocks (sector size 1).  But otherwise we extend the buffer by one
104 	 * extra log sector to ensure there's space to accommodate this
105 	 * possibility.
106 	 */
107 	if (nbblks > 1 && log->l_sectBBsize > 1)
108 		nbblks += log->l_sectBBsize;
109 	nbblks = round_up(nbblks, log->l_sectBBsize);
110 	return kmem_alloc_io(BBTOB(nbblks), align_mask, KM_MAYFAIL | KM_ZERO);
111 }
112 
113 /*
114  * Return the address of the start of the given block number's data
115  * in a log buffer.  The buffer covers a log sector-aligned region.
116  */
117 static inline unsigned int
118 xlog_align(
119 	struct xlog	*log,
120 	xfs_daddr_t	blk_no)
121 {
122 	return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1));
123 }
124 
125 static int
126 xlog_do_io(
127 	struct xlog		*log,
128 	xfs_daddr_t		blk_no,
129 	unsigned int		nbblks,
130 	char			*data,
131 	unsigned int		op)
132 {
133 	int			error;
134 
135 	if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) {
136 		xfs_warn(log->l_mp,
137 			 "Invalid log block/length (0x%llx, 0x%x) for buffer",
138 			 blk_no, nbblks);
139 		return -EFSCORRUPTED;
140 	}
141 
142 	blk_no = round_down(blk_no, log->l_sectBBsize);
143 	nbblks = round_up(nbblks, log->l_sectBBsize);
144 	ASSERT(nbblks > 0);
145 
146 	error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no,
147 			BBTOB(nbblks), data, op);
148 	if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) {
149 		xfs_alert(log->l_mp,
150 			  "log recovery %s I/O error at daddr 0x%llx len %d error %d",
151 			  op == REQ_OP_WRITE ? "write" : "read",
152 			  blk_no, nbblks, error);
153 	}
154 	return error;
155 }
156 
157 STATIC int
158 xlog_bread_noalign(
159 	struct xlog	*log,
160 	xfs_daddr_t	blk_no,
161 	int		nbblks,
162 	char		*data)
163 {
164 	return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
165 }
166 
167 STATIC int
168 xlog_bread(
169 	struct xlog	*log,
170 	xfs_daddr_t	blk_no,
171 	int		nbblks,
172 	char		*data,
173 	char		**offset)
174 {
175 	int		error;
176 
177 	error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
178 	if (!error)
179 		*offset = data + xlog_align(log, blk_no);
180 	return error;
181 }
182 
183 STATIC int
184 xlog_bwrite(
185 	struct xlog	*log,
186 	xfs_daddr_t	blk_no,
187 	int		nbblks,
188 	char		*data)
189 {
190 	return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE);
191 }
192 
193 #ifdef DEBUG
194 /*
195  * dump debug superblock and log record information
196  */
197 STATIC void
198 xlog_header_check_dump(
199 	xfs_mount_t		*mp,
200 	xlog_rec_header_t	*head)
201 {
202 	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
203 		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
204 	xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
205 		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
206 }
207 #else
208 #define xlog_header_check_dump(mp, head)
209 #endif
210 
211 /*
212  * check log record header for recovery
213  */
214 STATIC int
215 xlog_header_check_recover(
216 	xfs_mount_t		*mp,
217 	xlog_rec_header_t	*head)
218 {
219 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
220 
221 	/*
222 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
223 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
224 	 * a dirty log created in IRIX.
225 	 */
226 	if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) {
227 		xfs_warn(mp,
228 	"dirty log written in incompatible format - can't recover");
229 		xlog_header_check_dump(mp, head);
230 		return -EFSCORRUPTED;
231 	}
232 	if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
233 					   &head->h_fs_uuid))) {
234 		xfs_warn(mp,
235 	"dirty log entry has mismatched uuid - can't recover");
236 		xlog_header_check_dump(mp, head);
237 		return -EFSCORRUPTED;
238 	}
239 	return 0;
240 }
241 
242 /*
243  * read the head block of the log and check the header
244  */
245 STATIC int
246 xlog_header_check_mount(
247 	xfs_mount_t		*mp,
248 	xlog_rec_header_t	*head)
249 {
250 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
251 
252 	if (uuid_is_null(&head->h_fs_uuid)) {
253 		/*
254 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
255 		 * h_fs_uuid is null, we assume this log was last mounted
256 		 * by IRIX and continue.
257 		 */
258 		xfs_warn(mp, "null uuid in log - IRIX style log");
259 	} else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
260 						  &head->h_fs_uuid))) {
261 		xfs_warn(mp, "log has mismatched uuid - can't recover");
262 		xlog_header_check_dump(mp, head);
263 		return -EFSCORRUPTED;
264 	}
265 	return 0;
266 }
267 
268 /*
269  * This routine finds (to an approximation) the first block in the physical
270  * log which contains the given cycle.  It uses a binary search algorithm.
271  * Note that the algorithm can not be perfect because the disk will not
272  * necessarily be perfect.
273  */
274 STATIC int
275 xlog_find_cycle_start(
276 	struct xlog	*log,
277 	char		*buffer,
278 	xfs_daddr_t	first_blk,
279 	xfs_daddr_t	*last_blk,
280 	uint		cycle)
281 {
282 	char		*offset;
283 	xfs_daddr_t	mid_blk;
284 	xfs_daddr_t	end_blk;
285 	uint		mid_cycle;
286 	int		error;
287 
288 	end_blk = *last_blk;
289 	mid_blk = BLK_AVG(first_blk, end_blk);
290 	while (mid_blk != first_blk && mid_blk != end_blk) {
291 		error = xlog_bread(log, mid_blk, 1, buffer, &offset);
292 		if (error)
293 			return error;
294 		mid_cycle = xlog_get_cycle(offset);
295 		if (mid_cycle == cycle)
296 			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
297 		else
298 			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
299 		mid_blk = BLK_AVG(first_blk, end_blk);
300 	}
301 	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
302 	       (mid_blk == end_blk && mid_blk-1 == first_blk));
303 
304 	*last_blk = end_blk;
305 
306 	return 0;
307 }
308 
309 /*
310  * Check that a range of blocks does not contain stop_on_cycle_no.
311  * Fill in *new_blk with the block offset where such a block is
312  * found, or with -1 (an invalid block number) if there is no such
313  * block in the range.  The scan needs to occur from front to back
314  * and the pointer into the region must be updated since a later
315  * routine will need to perform another test.
316  */
317 STATIC int
318 xlog_find_verify_cycle(
319 	struct xlog	*log,
320 	xfs_daddr_t	start_blk,
321 	int		nbblks,
322 	uint		stop_on_cycle_no,
323 	xfs_daddr_t	*new_blk)
324 {
325 	xfs_daddr_t	i, j;
326 	uint		cycle;
327 	char		*buffer;
328 	xfs_daddr_t	bufblks;
329 	char		*buf = NULL;
330 	int		error = 0;
331 
332 	/*
333 	 * Greedily allocate a buffer big enough to handle the full
334 	 * range of basic blocks we'll be examining.  If that fails,
335 	 * try a smaller size.  We need to be able to read at least
336 	 * a log sector, or we're out of luck.
337 	 */
338 	bufblks = 1 << ffs(nbblks);
339 	while (bufblks > log->l_logBBsize)
340 		bufblks >>= 1;
341 	while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
342 		bufblks >>= 1;
343 		if (bufblks < log->l_sectBBsize)
344 			return -ENOMEM;
345 	}
346 
347 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
348 		int	bcount;
349 
350 		bcount = min(bufblks, (start_blk + nbblks - i));
351 
352 		error = xlog_bread(log, i, bcount, buffer, &buf);
353 		if (error)
354 			goto out;
355 
356 		for (j = 0; j < bcount; j++) {
357 			cycle = xlog_get_cycle(buf);
358 			if (cycle == stop_on_cycle_no) {
359 				*new_blk = i+j;
360 				goto out;
361 			}
362 
363 			buf += BBSIZE;
364 		}
365 	}
366 
367 	*new_blk = -1;
368 
369 out:
370 	kmem_free(buffer);
371 	return error;
372 }
373 
374 static inline int
375 xlog_logrec_hblks(struct xlog *log, struct xlog_rec_header *rh)
376 {
377 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
378 		int	h_size = be32_to_cpu(rh->h_size);
379 
380 		if ((be32_to_cpu(rh->h_version) & XLOG_VERSION_2) &&
381 		    h_size > XLOG_HEADER_CYCLE_SIZE)
382 			return DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE);
383 	}
384 	return 1;
385 }
386 
387 /*
388  * Potentially backup over partial log record write.
389  *
390  * In the typical case, last_blk is the number of the block directly after
391  * a good log record.  Therefore, we subtract one to get the block number
392  * of the last block in the given buffer.  extra_bblks contains the number
393  * of blocks we would have read on a previous read.  This happens when the
394  * last log record is split over the end of the physical log.
395  *
396  * extra_bblks is the number of blocks potentially verified on a previous
397  * call to this routine.
398  */
399 STATIC int
400 xlog_find_verify_log_record(
401 	struct xlog		*log,
402 	xfs_daddr_t		start_blk,
403 	xfs_daddr_t		*last_blk,
404 	int			extra_bblks)
405 {
406 	xfs_daddr_t		i;
407 	char			*buffer;
408 	char			*offset = NULL;
409 	xlog_rec_header_t	*head = NULL;
410 	int			error = 0;
411 	int			smallmem = 0;
412 	int			num_blks = *last_blk - start_blk;
413 	int			xhdrs;
414 
415 	ASSERT(start_blk != 0 || *last_blk != start_blk);
416 
417 	buffer = xlog_alloc_buffer(log, num_blks);
418 	if (!buffer) {
419 		buffer = xlog_alloc_buffer(log, 1);
420 		if (!buffer)
421 			return -ENOMEM;
422 		smallmem = 1;
423 	} else {
424 		error = xlog_bread(log, start_blk, num_blks, buffer, &offset);
425 		if (error)
426 			goto out;
427 		offset += ((num_blks - 1) << BBSHIFT);
428 	}
429 
430 	for (i = (*last_blk) - 1; i >= 0; i--) {
431 		if (i < start_blk) {
432 			/* valid log record not found */
433 			xfs_warn(log->l_mp,
434 		"Log inconsistent (didn't find previous header)");
435 			ASSERT(0);
436 			error = -EFSCORRUPTED;
437 			goto out;
438 		}
439 
440 		if (smallmem) {
441 			error = xlog_bread(log, i, 1, buffer, &offset);
442 			if (error)
443 				goto out;
444 		}
445 
446 		head = (xlog_rec_header_t *)offset;
447 
448 		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
449 			break;
450 
451 		if (!smallmem)
452 			offset -= BBSIZE;
453 	}
454 
455 	/*
456 	 * We hit the beginning of the physical log & still no header.  Return
457 	 * to caller.  If caller can handle a return of -1, then this routine
458 	 * will be called again for the end of the physical log.
459 	 */
460 	if (i == -1) {
461 		error = 1;
462 		goto out;
463 	}
464 
465 	/*
466 	 * We have the final block of the good log (the first block
467 	 * of the log record _before_ the head. So we check the uuid.
468 	 */
469 	if ((error = xlog_header_check_mount(log->l_mp, head)))
470 		goto out;
471 
472 	/*
473 	 * We may have found a log record header before we expected one.
474 	 * last_blk will be the 1st block # with a given cycle #.  We may end
475 	 * up reading an entire log record.  In this case, we don't want to
476 	 * reset last_blk.  Only when last_blk points in the middle of a log
477 	 * record do we update last_blk.
478 	 */
479 	xhdrs = xlog_logrec_hblks(log, head);
480 
481 	if (*last_blk - i + extra_bblks !=
482 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
483 		*last_blk = i;
484 
485 out:
486 	kmem_free(buffer);
487 	return error;
488 }
489 
490 /*
491  * Head is defined to be the point of the log where the next log write
492  * could go.  This means that incomplete LR writes at the end are
493  * eliminated when calculating the head.  We aren't guaranteed that previous
494  * LR have complete transactions.  We only know that a cycle number of
495  * current cycle number -1 won't be present in the log if we start writing
496  * from our current block number.
497  *
498  * last_blk contains the block number of the first block with a given
499  * cycle number.
500  *
501  * Return: zero if normal, non-zero if error.
502  */
503 STATIC int
504 xlog_find_head(
505 	struct xlog	*log,
506 	xfs_daddr_t	*return_head_blk)
507 {
508 	char		*buffer;
509 	char		*offset;
510 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
511 	int		num_scan_bblks;
512 	uint		first_half_cycle, last_half_cycle;
513 	uint		stop_on_cycle;
514 	int		error, log_bbnum = log->l_logBBsize;
515 
516 	/* Is the end of the log device zeroed? */
517 	error = xlog_find_zeroed(log, &first_blk);
518 	if (error < 0) {
519 		xfs_warn(log->l_mp, "empty log check failed");
520 		return error;
521 	}
522 	if (error == 1) {
523 		*return_head_blk = first_blk;
524 
525 		/* Is the whole lot zeroed? */
526 		if (!first_blk) {
527 			/* Linux XFS shouldn't generate totally zeroed logs -
528 			 * mkfs etc write a dummy unmount record to a fresh
529 			 * log so we can store the uuid in there
530 			 */
531 			xfs_warn(log->l_mp, "totally zeroed log");
532 		}
533 
534 		return 0;
535 	}
536 
537 	first_blk = 0;			/* get cycle # of 1st block */
538 	buffer = xlog_alloc_buffer(log, 1);
539 	if (!buffer)
540 		return -ENOMEM;
541 
542 	error = xlog_bread(log, 0, 1, buffer, &offset);
543 	if (error)
544 		goto out_free_buffer;
545 
546 	first_half_cycle = xlog_get_cycle(offset);
547 
548 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
549 	error = xlog_bread(log, last_blk, 1, buffer, &offset);
550 	if (error)
551 		goto out_free_buffer;
552 
553 	last_half_cycle = xlog_get_cycle(offset);
554 	ASSERT(last_half_cycle != 0);
555 
556 	/*
557 	 * If the 1st half cycle number is equal to the last half cycle number,
558 	 * then the entire log is stamped with the same cycle number.  In this
559 	 * case, head_blk can't be set to zero (which makes sense).  The below
560 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
561 	 * we set it to log_bbnum which is an invalid block number, but this
562 	 * value makes the math correct.  If head_blk doesn't changed through
563 	 * all the tests below, *head_blk is set to zero at the very end rather
564 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
565 	 * in a circular file.
566 	 */
567 	if (first_half_cycle == last_half_cycle) {
568 		/*
569 		 * In this case we believe that the entire log should have
570 		 * cycle number last_half_cycle.  We need to scan backwards
571 		 * from the end verifying that there are no holes still
572 		 * containing last_half_cycle - 1.  If we find such a hole,
573 		 * then the start of that hole will be the new head.  The
574 		 * simple case looks like
575 		 *        x | x ... | x - 1 | x
576 		 * Another case that fits this picture would be
577 		 *        x | x + 1 | x ... | x
578 		 * In this case the head really is somewhere at the end of the
579 		 * log, as one of the latest writes at the beginning was
580 		 * incomplete.
581 		 * One more case is
582 		 *        x | x + 1 | x ... | x - 1 | x
583 		 * This is really the combination of the above two cases, and
584 		 * the head has to end up at the start of the x-1 hole at the
585 		 * end of the log.
586 		 *
587 		 * In the 256k log case, we will read from the beginning to the
588 		 * end of the log and search for cycle numbers equal to x-1.
589 		 * We don't worry about the x+1 blocks that we encounter,
590 		 * because we know that they cannot be the head since the log
591 		 * started with x.
592 		 */
593 		head_blk = log_bbnum;
594 		stop_on_cycle = last_half_cycle - 1;
595 	} else {
596 		/*
597 		 * In this case we want to find the first block with cycle
598 		 * number matching last_half_cycle.  We expect the log to be
599 		 * some variation on
600 		 *        x + 1 ... | x ... | x
601 		 * The first block with cycle number x (last_half_cycle) will
602 		 * be where the new head belongs.  First we do a binary search
603 		 * for the first occurrence of last_half_cycle.  The binary
604 		 * search may not be totally accurate, so then we scan back
605 		 * from there looking for occurrences of last_half_cycle before
606 		 * us.  If that backwards scan wraps around the beginning of
607 		 * the log, then we look for occurrences of last_half_cycle - 1
608 		 * at the end of the log.  The cases we're looking for look
609 		 * like
610 		 *                               v binary search stopped here
611 		 *        x + 1 ... | x | x + 1 | x ... | x
612 		 *                   ^ but we want to locate this spot
613 		 * or
614 		 *        <---------> less than scan distance
615 		 *        x + 1 ... | x ... | x - 1 | x
616 		 *                           ^ we want to locate this spot
617 		 */
618 		stop_on_cycle = last_half_cycle;
619 		error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk,
620 				last_half_cycle);
621 		if (error)
622 			goto out_free_buffer;
623 	}
624 
625 	/*
626 	 * Now validate the answer.  Scan back some number of maximum possible
627 	 * blocks and make sure each one has the expected cycle number.  The
628 	 * maximum is determined by the total possible amount of buffering
629 	 * in the in-core log.  The following number can be made tighter if
630 	 * we actually look at the block size of the filesystem.
631 	 */
632 	num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
633 	if (head_blk >= num_scan_bblks) {
634 		/*
635 		 * We are guaranteed that the entire check can be performed
636 		 * in one buffer.
637 		 */
638 		start_blk = head_blk - num_scan_bblks;
639 		if ((error = xlog_find_verify_cycle(log,
640 						start_blk, num_scan_bblks,
641 						stop_on_cycle, &new_blk)))
642 			goto out_free_buffer;
643 		if (new_blk != -1)
644 			head_blk = new_blk;
645 	} else {		/* need to read 2 parts of log */
646 		/*
647 		 * We are going to scan backwards in the log in two parts.
648 		 * First we scan the physical end of the log.  In this part
649 		 * of the log, we are looking for blocks with cycle number
650 		 * last_half_cycle - 1.
651 		 * If we find one, then we know that the log starts there, as
652 		 * we've found a hole that didn't get written in going around
653 		 * the end of the physical log.  The simple case for this is
654 		 *        x + 1 ... | x ... | x - 1 | x
655 		 *        <---------> less than scan distance
656 		 * If all of the blocks at the end of the log have cycle number
657 		 * last_half_cycle, then we check the blocks at the start of
658 		 * the log looking for occurrences of last_half_cycle.  If we
659 		 * find one, then our current estimate for the location of the
660 		 * first occurrence of last_half_cycle is wrong and we move
661 		 * back to the hole we've found.  This case looks like
662 		 *        x + 1 ... | x | x + 1 | x ...
663 		 *                               ^ binary search stopped here
664 		 * Another case we need to handle that only occurs in 256k
665 		 * logs is
666 		 *        x + 1 ... | x ... | x+1 | x ...
667 		 *                   ^ binary search stops here
668 		 * In a 256k log, the scan at the end of the log will see the
669 		 * x + 1 blocks.  We need to skip past those since that is
670 		 * certainly not the head of the log.  By searching for
671 		 * last_half_cycle-1 we accomplish that.
672 		 */
673 		ASSERT(head_blk <= INT_MAX &&
674 			(xfs_daddr_t) num_scan_bblks >= head_blk);
675 		start_blk = log_bbnum - (num_scan_bblks - head_blk);
676 		if ((error = xlog_find_verify_cycle(log, start_blk,
677 					num_scan_bblks - (int)head_blk,
678 					(stop_on_cycle - 1), &new_blk)))
679 			goto out_free_buffer;
680 		if (new_blk != -1) {
681 			head_blk = new_blk;
682 			goto validate_head;
683 		}
684 
685 		/*
686 		 * Scan beginning of log now.  The last part of the physical
687 		 * log is good.  This scan needs to verify that it doesn't find
688 		 * the last_half_cycle.
689 		 */
690 		start_blk = 0;
691 		ASSERT(head_blk <= INT_MAX);
692 		if ((error = xlog_find_verify_cycle(log,
693 					start_blk, (int)head_blk,
694 					stop_on_cycle, &new_blk)))
695 			goto out_free_buffer;
696 		if (new_blk != -1)
697 			head_blk = new_blk;
698 	}
699 
700 validate_head:
701 	/*
702 	 * Now we need to make sure head_blk is not pointing to a block in
703 	 * the middle of a log record.
704 	 */
705 	num_scan_bblks = XLOG_REC_SHIFT(log);
706 	if (head_blk >= num_scan_bblks) {
707 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
708 
709 		/* start ptr at last block ptr before head_blk */
710 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
711 		if (error == 1)
712 			error = -EIO;
713 		if (error)
714 			goto out_free_buffer;
715 	} else {
716 		start_blk = 0;
717 		ASSERT(head_blk <= INT_MAX);
718 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
719 		if (error < 0)
720 			goto out_free_buffer;
721 		if (error == 1) {
722 			/* We hit the beginning of the log during our search */
723 			start_blk = log_bbnum - (num_scan_bblks - head_blk);
724 			new_blk = log_bbnum;
725 			ASSERT(start_blk <= INT_MAX &&
726 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
727 			ASSERT(head_blk <= INT_MAX);
728 			error = xlog_find_verify_log_record(log, start_blk,
729 							&new_blk, (int)head_blk);
730 			if (error == 1)
731 				error = -EIO;
732 			if (error)
733 				goto out_free_buffer;
734 			if (new_blk != log_bbnum)
735 				head_blk = new_blk;
736 		} else if (error)
737 			goto out_free_buffer;
738 	}
739 
740 	kmem_free(buffer);
741 	if (head_blk == log_bbnum)
742 		*return_head_blk = 0;
743 	else
744 		*return_head_blk = head_blk;
745 	/*
746 	 * When returning here, we have a good block number.  Bad block
747 	 * means that during a previous crash, we didn't have a clean break
748 	 * from cycle number N to cycle number N-1.  In this case, we need
749 	 * to find the first block with cycle number N-1.
750 	 */
751 	return 0;
752 
753 out_free_buffer:
754 	kmem_free(buffer);
755 	if (error)
756 		xfs_warn(log->l_mp, "failed to find log head");
757 	return error;
758 }
759 
760 /*
761  * Seek backwards in the log for log record headers.
762  *
763  * Given a starting log block, walk backwards until we find the provided number
764  * of records or hit the provided tail block. The return value is the number of
765  * records encountered or a negative error code. The log block and buffer
766  * pointer of the last record seen are returned in rblk and rhead respectively.
767  */
768 STATIC int
769 xlog_rseek_logrec_hdr(
770 	struct xlog		*log,
771 	xfs_daddr_t		head_blk,
772 	xfs_daddr_t		tail_blk,
773 	int			count,
774 	char			*buffer,
775 	xfs_daddr_t		*rblk,
776 	struct xlog_rec_header	**rhead,
777 	bool			*wrapped)
778 {
779 	int			i;
780 	int			error;
781 	int			found = 0;
782 	char			*offset = NULL;
783 	xfs_daddr_t		end_blk;
784 
785 	*wrapped = false;
786 
787 	/*
788 	 * Walk backwards from the head block until we hit the tail or the first
789 	 * block in the log.
790 	 */
791 	end_blk = head_blk > tail_blk ? tail_blk : 0;
792 	for (i = (int) head_blk - 1; i >= end_blk; i--) {
793 		error = xlog_bread(log, i, 1, buffer, &offset);
794 		if (error)
795 			goto out_error;
796 
797 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
798 			*rblk = i;
799 			*rhead = (struct xlog_rec_header *) offset;
800 			if (++found == count)
801 				break;
802 		}
803 	}
804 
805 	/*
806 	 * If we haven't hit the tail block or the log record header count,
807 	 * start looking again from the end of the physical log. Note that
808 	 * callers can pass head == tail if the tail is not yet known.
809 	 */
810 	if (tail_blk >= head_blk && found != count) {
811 		for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
812 			error = xlog_bread(log, i, 1, buffer, &offset);
813 			if (error)
814 				goto out_error;
815 
816 			if (*(__be32 *)offset ==
817 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
818 				*wrapped = true;
819 				*rblk = i;
820 				*rhead = (struct xlog_rec_header *) offset;
821 				if (++found == count)
822 					break;
823 			}
824 		}
825 	}
826 
827 	return found;
828 
829 out_error:
830 	return error;
831 }
832 
833 /*
834  * Seek forward in the log for log record headers.
835  *
836  * Given head and tail blocks, walk forward from the tail block until we find
837  * the provided number of records or hit the head block. The return value is the
838  * number of records encountered or a negative error code. The log block and
839  * buffer pointer of the last record seen are returned in rblk and rhead
840  * respectively.
841  */
842 STATIC int
843 xlog_seek_logrec_hdr(
844 	struct xlog		*log,
845 	xfs_daddr_t		head_blk,
846 	xfs_daddr_t		tail_blk,
847 	int			count,
848 	char			*buffer,
849 	xfs_daddr_t		*rblk,
850 	struct xlog_rec_header	**rhead,
851 	bool			*wrapped)
852 {
853 	int			i;
854 	int			error;
855 	int			found = 0;
856 	char			*offset = NULL;
857 	xfs_daddr_t		end_blk;
858 
859 	*wrapped = false;
860 
861 	/*
862 	 * Walk forward from the tail block until we hit the head or the last
863 	 * block in the log.
864 	 */
865 	end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
866 	for (i = (int) tail_blk; i <= end_blk; i++) {
867 		error = xlog_bread(log, i, 1, buffer, &offset);
868 		if (error)
869 			goto out_error;
870 
871 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
872 			*rblk = i;
873 			*rhead = (struct xlog_rec_header *) offset;
874 			if (++found == count)
875 				break;
876 		}
877 	}
878 
879 	/*
880 	 * If we haven't hit the head block or the log record header count,
881 	 * start looking again from the start of the physical log.
882 	 */
883 	if (tail_blk > head_blk && found != count) {
884 		for (i = 0; i < (int) head_blk; i++) {
885 			error = xlog_bread(log, i, 1, buffer, &offset);
886 			if (error)
887 				goto out_error;
888 
889 			if (*(__be32 *)offset ==
890 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
891 				*wrapped = true;
892 				*rblk = i;
893 				*rhead = (struct xlog_rec_header *) offset;
894 				if (++found == count)
895 					break;
896 			}
897 		}
898 	}
899 
900 	return found;
901 
902 out_error:
903 	return error;
904 }
905 
906 /*
907  * Calculate distance from head to tail (i.e., unused space in the log).
908  */
909 static inline int
910 xlog_tail_distance(
911 	struct xlog	*log,
912 	xfs_daddr_t	head_blk,
913 	xfs_daddr_t	tail_blk)
914 {
915 	if (head_blk < tail_blk)
916 		return tail_blk - head_blk;
917 
918 	return tail_blk + (log->l_logBBsize - head_blk);
919 }
920 
921 /*
922  * Verify the log tail. This is particularly important when torn or incomplete
923  * writes have been detected near the front of the log and the head has been
924  * walked back accordingly.
925  *
926  * We also have to handle the case where the tail was pinned and the head
927  * blocked behind the tail right before a crash. If the tail had been pushed
928  * immediately prior to the crash and the subsequent checkpoint was only
929  * partially written, it's possible it overwrote the last referenced tail in the
930  * log with garbage. This is not a coherency problem because the tail must have
931  * been pushed before it can be overwritten, but appears as log corruption to
932  * recovery because we have no way to know the tail was updated if the
933  * subsequent checkpoint didn't write successfully.
934  *
935  * Therefore, CRC check the log from tail to head. If a failure occurs and the
936  * offending record is within max iclog bufs from the head, walk the tail
937  * forward and retry until a valid tail is found or corruption is detected out
938  * of the range of a possible overwrite.
939  */
940 STATIC int
941 xlog_verify_tail(
942 	struct xlog		*log,
943 	xfs_daddr_t		head_blk,
944 	xfs_daddr_t		*tail_blk,
945 	int			hsize)
946 {
947 	struct xlog_rec_header	*thead;
948 	char			*buffer;
949 	xfs_daddr_t		first_bad;
950 	int			error = 0;
951 	bool			wrapped;
952 	xfs_daddr_t		tmp_tail;
953 	xfs_daddr_t		orig_tail = *tail_blk;
954 
955 	buffer = xlog_alloc_buffer(log, 1);
956 	if (!buffer)
957 		return -ENOMEM;
958 
959 	/*
960 	 * Make sure the tail points to a record (returns positive count on
961 	 * success).
962 	 */
963 	error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer,
964 			&tmp_tail, &thead, &wrapped);
965 	if (error < 0)
966 		goto out;
967 	if (*tail_blk != tmp_tail)
968 		*tail_blk = tmp_tail;
969 
970 	/*
971 	 * Run a CRC check from the tail to the head. We can't just check
972 	 * MAX_ICLOGS records past the tail because the tail may point to stale
973 	 * blocks cleared during the search for the head/tail. These blocks are
974 	 * overwritten with zero-length records and thus record count is not a
975 	 * reliable indicator of the iclog state before a crash.
976 	 */
977 	first_bad = 0;
978 	error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
979 				      XLOG_RECOVER_CRCPASS, &first_bad);
980 	while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
981 		int	tail_distance;
982 
983 		/*
984 		 * Is corruption within range of the head? If so, retry from
985 		 * the next record. Otherwise return an error.
986 		 */
987 		tail_distance = xlog_tail_distance(log, head_blk, first_bad);
988 		if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
989 			break;
990 
991 		/* skip to the next record; returns positive count on success */
992 		error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2,
993 				buffer, &tmp_tail, &thead, &wrapped);
994 		if (error < 0)
995 			goto out;
996 
997 		*tail_blk = tmp_tail;
998 		first_bad = 0;
999 		error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1000 					      XLOG_RECOVER_CRCPASS, &first_bad);
1001 	}
1002 
1003 	if (!error && *tail_blk != orig_tail)
1004 		xfs_warn(log->l_mp,
1005 		"Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1006 			 orig_tail, *tail_blk);
1007 out:
1008 	kmem_free(buffer);
1009 	return error;
1010 }
1011 
1012 /*
1013  * Detect and trim torn writes from the head of the log.
1014  *
1015  * Storage without sector atomicity guarantees can result in torn writes in the
1016  * log in the event of a crash. Our only means to detect this scenario is via
1017  * CRC verification. While we can't always be certain that CRC verification
1018  * failure is due to a torn write vs. an unrelated corruption, we do know that
1019  * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1020  * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1021  * the log and treat failures in this range as torn writes as a matter of
1022  * policy. In the event of CRC failure, the head is walked back to the last good
1023  * record in the log and the tail is updated from that record and verified.
1024  */
1025 STATIC int
1026 xlog_verify_head(
1027 	struct xlog		*log,
1028 	xfs_daddr_t		*head_blk,	/* in/out: unverified head */
1029 	xfs_daddr_t		*tail_blk,	/* out: tail block */
1030 	char			*buffer,
1031 	xfs_daddr_t		*rhead_blk,	/* start blk of last record */
1032 	struct xlog_rec_header	**rhead,	/* ptr to last record */
1033 	bool			*wrapped)	/* last rec. wraps phys. log */
1034 {
1035 	struct xlog_rec_header	*tmp_rhead;
1036 	char			*tmp_buffer;
1037 	xfs_daddr_t		first_bad;
1038 	xfs_daddr_t		tmp_rhead_blk;
1039 	int			found;
1040 	int			error;
1041 	bool			tmp_wrapped;
1042 
1043 	/*
1044 	 * Check the head of the log for torn writes. Search backwards from the
1045 	 * head until we hit the tail or the maximum number of log record I/Os
1046 	 * that could have been in flight at one time. Use a temporary buffer so
1047 	 * we don't trash the rhead/buffer pointers from the caller.
1048 	 */
1049 	tmp_buffer = xlog_alloc_buffer(log, 1);
1050 	if (!tmp_buffer)
1051 		return -ENOMEM;
1052 	error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1053 				      XLOG_MAX_ICLOGS, tmp_buffer,
1054 				      &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped);
1055 	kmem_free(tmp_buffer);
1056 	if (error < 0)
1057 		return error;
1058 
1059 	/*
1060 	 * Now run a CRC verification pass over the records starting at the
1061 	 * block found above to the current head. If a CRC failure occurs, the
1062 	 * log block of the first bad record is saved in first_bad.
1063 	 */
1064 	error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1065 				      XLOG_RECOVER_CRCPASS, &first_bad);
1066 	if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1067 		/*
1068 		 * We've hit a potential torn write. Reset the error and warn
1069 		 * about it.
1070 		 */
1071 		error = 0;
1072 		xfs_warn(log->l_mp,
1073 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1074 			 first_bad, *head_blk);
1075 
1076 		/*
1077 		 * Get the header block and buffer pointer for the last good
1078 		 * record before the bad record.
1079 		 *
1080 		 * Note that xlog_find_tail() clears the blocks at the new head
1081 		 * (i.e., the records with invalid CRC) if the cycle number
1082 		 * matches the current cycle.
1083 		 */
1084 		found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1,
1085 				buffer, rhead_blk, rhead, wrapped);
1086 		if (found < 0)
1087 			return found;
1088 		if (found == 0)		/* XXX: right thing to do here? */
1089 			return -EIO;
1090 
1091 		/*
1092 		 * Reset the head block to the starting block of the first bad
1093 		 * log record and set the tail block based on the last good
1094 		 * record.
1095 		 *
1096 		 * Bail out if the updated head/tail match as this indicates
1097 		 * possible corruption outside of the acceptable
1098 		 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1099 		 */
1100 		*head_blk = first_bad;
1101 		*tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1102 		if (*head_blk == *tail_blk) {
1103 			ASSERT(0);
1104 			return 0;
1105 		}
1106 	}
1107 	if (error)
1108 		return error;
1109 
1110 	return xlog_verify_tail(log, *head_blk, tail_blk,
1111 				be32_to_cpu((*rhead)->h_size));
1112 }
1113 
1114 /*
1115  * We need to make sure we handle log wrapping properly, so we can't use the
1116  * calculated logbno directly. Make sure it wraps to the correct bno inside the
1117  * log.
1118  *
1119  * The log is limited to 32 bit sizes, so we use the appropriate modulus
1120  * operation here and cast it back to a 64 bit daddr on return.
1121  */
1122 static inline xfs_daddr_t
1123 xlog_wrap_logbno(
1124 	struct xlog		*log,
1125 	xfs_daddr_t		bno)
1126 {
1127 	int			mod;
1128 
1129 	div_s64_rem(bno, log->l_logBBsize, &mod);
1130 	return mod;
1131 }
1132 
1133 /*
1134  * Check whether the head of the log points to an unmount record. In other
1135  * words, determine whether the log is clean. If so, update the in-core state
1136  * appropriately.
1137  */
1138 static int
1139 xlog_check_unmount_rec(
1140 	struct xlog		*log,
1141 	xfs_daddr_t		*head_blk,
1142 	xfs_daddr_t		*tail_blk,
1143 	struct xlog_rec_header	*rhead,
1144 	xfs_daddr_t		rhead_blk,
1145 	char			*buffer,
1146 	bool			*clean)
1147 {
1148 	struct xlog_op_header	*op_head;
1149 	xfs_daddr_t		umount_data_blk;
1150 	xfs_daddr_t		after_umount_blk;
1151 	int			hblks;
1152 	int			error;
1153 	char			*offset;
1154 
1155 	*clean = false;
1156 
1157 	/*
1158 	 * Look for unmount record. If we find it, then we know there was a
1159 	 * clean unmount. Since 'i' could be the last block in the physical
1160 	 * log, we convert to a log block before comparing to the head_blk.
1161 	 *
1162 	 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1163 	 * below. We won't want to clear the unmount record if there is one, so
1164 	 * we pass the lsn of the unmount record rather than the block after it.
1165 	 */
1166 	hblks = xlog_logrec_hblks(log, rhead);
1167 	after_umount_blk = xlog_wrap_logbno(log,
1168 			rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
1169 
1170 	if (*head_blk == after_umount_blk &&
1171 	    be32_to_cpu(rhead->h_num_logops) == 1) {
1172 		umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
1173 		error = xlog_bread(log, umount_data_blk, 1, buffer, &offset);
1174 		if (error)
1175 			return error;
1176 
1177 		op_head = (struct xlog_op_header *)offset;
1178 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1179 			/*
1180 			 * Set tail and last sync so that newly written log
1181 			 * records will point recovery to after the current
1182 			 * unmount record.
1183 			 */
1184 			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1185 					log->l_curr_cycle, after_umount_blk);
1186 			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1187 					log->l_curr_cycle, after_umount_blk);
1188 			*tail_blk = after_umount_blk;
1189 
1190 			*clean = true;
1191 		}
1192 	}
1193 
1194 	return 0;
1195 }
1196 
1197 static void
1198 xlog_set_state(
1199 	struct xlog		*log,
1200 	xfs_daddr_t		head_blk,
1201 	struct xlog_rec_header	*rhead,
1202 	xfs_daddr_t		rhead_blk,
1203 	bool			bump_cycle)
1204 {
1205 	/*
1206 	 * Reset log values according to the state of the log when we
1207 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
1208 	 * one because the next write starts a new cycle rather than
1209 	 * continuing the cycle of the last good log record.  At this
1210 	 * point we have guaranteed that all partial log records have been
1211 	 * accounted for.  Therefore, we know that the last good log record
1212 	 * written was complete and ended exactly on the end boundary
1213 	 * of the physical log.
1214 	 */
1215 	log->l_prev_block = rhead_blk;
1216 	log->l_curr_block = (int)head_blk;
1217 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1218 	if (bump_cycle)
1219 		log->l_curr_cycle++;
1220 	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1221 	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1222 	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1223 					BBTOB(log->l_curr_block));
1224 	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1225 					BBTOB(log->l_curr_block));
1226 }
1227 
1228 /*
1229  * Find the sync block number or the tail of the log.
1230  *
1231  * This will be the block number of the last record to have its
1232  * associated buffers synced to disk.  Every log record header has
1233  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
1234  * to get a sync block number.  The only concern is to figure out which
1235  * log record header to believe.
1236  *
1237  * The following algorithm uses the log record header with the largest
1238  * lsn.  The entire log record does not need to be valid.  We only care
1239  * that the header is valid.
1240  *
1241  * We could speed up search by using current head_blk buffer, but it is not
1242  * available.
1243  */
1244 STATIC int
1245 xlog_find_tail(
1246 	struct xlog		*log,
1247 	xfs_daddr_t		*head_blk,
1248 	xfs_daddr_t		*tail_blk)
1249 {
1250 	xlog_rec_header_t	*rhead;
1251 	char			*offset = NULL;
1252 	char			*buffer;
1253 	int			error;
1254 	xfs_daddr_t		rhead_blk;
1255 	xfs_lsn_t		tail_lsn;
1256 	bool			wrapped = false;
1257 	bool			clean = false;
1258 
1259 	/*
1260 	 * Find previous log record
1261 	 */
1262 	if ((error = xlog_find_head(log, head_blk)))
1263 		return error;
1264 	ASSERT(*head_blk < INT_MAX);
1265 
1266 	buffer = xlog_alloc_buffer(log, 1);
1267 	if (!buffer)
1268 		return -ENOMEM;
1269 	if (*head_blk == 0) {				/* special case */
1270 		error = xlog_bread(log, 0, 1, buffer, &offset);
1271 		if (error)
1272 			goto done;
1273 
1274 		if (xlog_get_cycle(offset) == 0) {
1275 			*tail_blk = 0;
1276 			/* leave all other log inited values alone */
1277 			goto done;
1278 		}
1279 	}
1280 
1281 	/*
1282 	 * Search backwards through the log looking for the log record header
1283 	 * block. This wraps all the way back around to the head so something is
1284 	 * seriously wrong if we can't find it.
1285 	 */
1286 	error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer,
1287 				      &rhead_blk, &rhead, &wrapped);
1288 	if (error < 0)
1289 		goto done;
1290 	if (!error) {
1291 		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1292 		error = -EFSCORRUPTED;
1293 		goto done;
1294 	}
1295 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1296 
1297 	/*
1298 	 * Set the log state based on the current head record.
1299 	 */
1300 	xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1301 	tail_lsn = atomic64_read(&log->l_tail_lsn);
1302 
1303 	/*
1304 	 * Look for an unmount record at the head of the log. This sets the log
1305 	 * state to determine whether recovery is necessary.
1306 	 */
1307 	error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1308 				       rhead_blk, buffer, &clean);
1309 	if (error)
1310 		goto done;
1311 
1312 	/*
1313 	 * Verify the log head if the log is not clean (e.g., we have anything
1314 	 * but an unmount record at the head). This uses CRC verification to
1315 	 * detect and trim torn writes. If discovered, CRC failures are
1316 	 * considered torn writes and the log head is trimmed accordingly.
1317 	 *
1318 	 * Note that we can only run CRC verification when the log is dirty
1319 	 * because there's no guarantee that the log data behind an unmount
1320 	 * record is compatible with the current architecture.
1321 	 */
1322 	if (!clean) {
1323 		xfs_daddr_t	orig_head = *head_blk;
1324 
1325 		error = xlog_verify_head(log, head_blk, tail_blk, buffer,
1326 					 &rhead_blk, &rhead, &wrapped);
1327 		if (error)
1328 			goto done;
1329 
1330 		/* update in-core state again if the head changed */
1331 		if (*head_blk != orig_head) {
1332 			xlog_set_state(log, *head_blk, rhead, rhead_blk,
1333 				       wrapped);
1334 			tail_lsn = atomic64_read(&log->l_tail_lsn);
1335 			error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1336 						       rhead, rhead_blk, buffer,
1337 						       &clean);
1338 			if (error)
1339 				goto done;
1340 		}
1341 	}
1342 
1343 	/*
1344 	 * Note that the unmount was clean. If the unmount was not clean, we
1345 	 * need to know this to rebuild the superblock counters from the perag
1346 	 * headers if we have a filesystem using non-persistent counters.
1347 	 */
1348 	if (clean)
1349 		log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1350 
1351 	/*
1352 	 * Make sure that there are no blocks in front of the head
1353 	 * with the same cycle number as the head.  This can happen
1354 	 * because we allow multiple outstanding log writes concurrently,
1355 	 * and the later writes might make it out before earlier ones.
1356 	 *
1357 	 * We use the lsn from before modifying it so that we'll never
1358 	 * overwrite the unmount record after a clean unmount.
1359 	 *
1360 	 * Do this only if we are going to recover the filesystem
1361 	 *
1362 	 * NOTE: This used to say "if (!readonly)"
1363 	 * However on Linux, we can & do recover a read-only filesystem.
1364 	 * We only skip recovery if NORECOVERY is specified on mount,
1365 	 * in which case we would not be here.
1366 	 *
1367 	 * But... if the -device- itself is readonly, just skip this.
1368 	 * We can't recover this device anyway, so it won't matter.
1369 	 */
1370 	if (!xfs_readonly_buftarg(log->l_targ))
1371 		error = xlog_clear_stale_blocks(log, tail_lsn);
1372 
1373 done:
1374 	kmem_free(buffer);
1375 
1376 	if (error)
1377 		xfs_warn(log->l_mp, "failed to locate log tail");
1378 	return error;
1379 }
1380 
1381 /*
1382  * Is the log zeroed at all?
1383  *
1384  * The last binary search should be changed to perform an X block read
1385  * once X becomes small enough.  You can then search linearly through
1386  * the X blocks.  This will cut down on the number of reads we need to do.
1387  *
1388  * If the log is partially zeroed, this routine will pass back the blkno
1389  * of the first block with cycle number 0.  It won't have a complete LR
1390  * preceding it.
1391  *
1392  * Return:
1393  *	0  => the log is completely written to
1394  *	1 => use *blk_no as the first block of the log
1395  *	<0 => error has occurred
1396  */
1397 STATIC int
1398 xlog_find_zeroed(
1399 	struct xlog	*log,
1400 	xfs_daddr_t	*blk_no)
1401 {
1402 	char		*buffer;
1403 	char		*offset;
1404 	uint	        first_cycle, last_cycle;
1405 	xfs_daddr_t	new_blk, last_blk, start_blk;
1406 	xfs_daddr_t     num_scan_bblks;
1407 	int	        error, log_bbnum = log->l_logBBsize;
1408 
1409 	*blk_no = 0;
1410 
1411 	/* check totally zeroed log */
1412 	buffer = xlog_alloc_buffer(log, 1);
1413 	if (!buffer)
1414 		return -ENOMEM;
1415 	error = xlog_bread(log, 0, 1, buffer, &offset);
1416 	if (error)
1417 		goto out_free_buffer;
1418 
1419 	first_cycle = xlog_get_cycle(offset);
1420 	if (first_cycle == 0) {		/* completely zeroed log */
1421 		*blk_no = 0;
1422 		kmem_free(buffer);
1423 		return 1;
1424 	}
1425 
1426 	/* check partially zeroed log */
1427 	error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset);
1428 	if (error)
1429 		goto out_free_buffer;
1430 
1431 	last_cycle = xlog_get_cycle(offset);
1432 	if (last_cycle != 0) {		/* log completely written to */
1433 		kmem_free(buffer);
1434 		return 0;
1435 	}
1436 
1437 	/* we have a partially zeroed log */
1438 	last_blk = log_bbnum-1;
1439 	error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0);
1440 	if (error)
1441 		goto out_free_buffer;
1442 
1443 	/*
1444 	 * Validate the answer.  Because there is no way to guarantee that
1445 	 * the entire log is made up of log records which are the same size,
1446 	 * we scan over the defined maximum blocks.  At this point, the maximum
1447 	 * is not chosen to mean anything special.   XXXmiken
1448 	 */
1449 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1450 	ASSERT(num_scan_bblks <= INT_MAX);
1451 
1452 	if (last_blk < num_scan_bblks)
1453 		num_scan_bblks = last_blk;
1454 	start_blk = last_blk - num_scan_bblks;
1455 
1456 	/*
1457 	 * We search for any instances of cycle number 0 that occur before
1458 	 * our current estimate of the head.  What we're trying to detect is
1459 	 *        1 ... | 0 | 1 | 0...
1460 	 *                       ^ binary search ends here
1461 	 */
1462 	if ((error = xlog_find_verify_cycle(log, start_blk,
1463 					 (int)num_scan_bblks, 0, &new_blk)))
1464 		goto out_free_buffer;
1465 	if (new_blk != -1)
1466 		last_blk = new_blk;
1467 
1468 	/*
1469 	 * Potentially backup over partial log record write.  We don't need
1470 	 * to search the end of the log because we know it is zero.
1471 	 */
1472 	error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1473 	if (error == 1)
1474 		error = -EIO;
1475 	if (error)
1476 		goto out_free_buffer;
1477 
1478 	*blk_no = last_blk;
1479 out_free_buffer:
1480 	kmem_free(buffer);
1481 	if (error)
1482 		return error;
1483 	return 1;
1484 }
1485 
1486 /*
1487  * These are simple subroutines used by xlog_clear_stale_blocks() below
1488  * to initialize a buffer full of empty log record headers and write
1489  * them into the log.
1490  */
1491 STATIC void
1492 xlog_add_record(
1493 	struct xlog		*log,
1494 	char			*buf,
1495 	int			cycle,
1496 	int			block,
1497 	int			tail_cycle,
1498 	int			tail_block)
1499 {
1500 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1501 
1502 	memset(buf, 0, BBSIZE);
1503 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1504 	recp->h_cycle = cpu_to_be32(cycle);
1505 	recp->h_version = cpu_to_be32(
1506 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1507 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1508 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1509 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1510 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1511 }
1512 
1513 STATIC int
1514 xlog_write_log_records(
1515 	struct xlog	*log,
1516 	int		cycle,
1517 	int		start_block,
1518 	int		blocks,
1519 	int		tail_cycle,
1520 	int		tail_block)
1521 {
1522 	char		*offset;
1523 	char		*buffer;
1524 	int		balign, ealign;
1525 	int		sectbb = log->l_sectBBsize;
1526 	int		end_block = start_block + blocks;
1527 	int		bufblks;
1528 	int		error = 0;
1529 	int		i, j = 0;
1530 
1531 	/*
1532 	 * Greedily allocate a buffer big enough to handle the full
1533 	 * range of basic blocks to be written.  If that fails, try
1534 	 * a smaller size.  We need to be able to write at least a
1535 	 * log sector, or we're out of luck.
1536 	 */
1537 	bufblks = 1 << ffs(blocks);
1538 	while (bufblks > log->l_logBBsize)
1539 		bufblks >>= 1;
1540 	while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
1541 		bufblks >>= 1;
1542 		if (bufblks < sectbb)
1543 			return -ENOMEM;
1544 	}
1545 
1546 	/* We may need to do a read at the start to fill in part of
1547 	 * the buffer in the starting sector not covered by the first
1548 	 * write below.
1549 	 */
1550 	balign = round_down(start_block, sectbb);
1551 	if (balign != start_block) {
1552 		error = xlog_bread_noalign(log, start_block, 1, buffer);
1553 		if (error)
1554 			goto out_free_buffer;
1555 
1556 		j = start_block - balign;
1557 	}
1558 
1559 	for (i = start_block; i < end_block; i += bufblks) {
1560 		int		bcount, endcount;
1561 
1562 		bcount = min(bufblks, end_block - start_block);
1563 		endcount = bcount - j;
1564 
1565 		/* We may need to do a read at the end to fill in part of
1566 		 * the buffer in the final sector not covered by the write.
1567 		 * If this is the same sector as the above read, skip it.
1568 		 */
1569 		ealign = round_down(end_block, sectbb);
1570 		if (j == 0 && (start_block + endcount > ealign)) {
1571 			error = xlog_bread_noalign(log, ealign, sectbb,
1572 					buffer + BBTOB(ealign - start_block));
1573 			if (error)
1574 				break;
1575 
1576 		}
1577 
1578 		offset = buffer + xlog_align(log, start_block);
1579 		for (; j < endcount; j++) {
1580 			xlog_add_record(log, offset, cycle, i+j,
1581 					tail_cycle, tail_block);
1582 			offset += BBSIZE;
1583 		}
1584 		error = xlog_bwrite(log, start_block, endcount, buffer);
1585 		if (error)
1586 			break;
1587 		start_block += endcount;
1588 		j = 0;
1589 	}
1590 
1591 out_free_buffer:
1592 	kmem_free(buffer);
1593 	return error;
1594 }
1595 
1596 /*
1597  * This routine is called to blow away any incomplete log writes out
1598  * in front of the log head.  We do this so that we won't become confused
1599  * if we come up, write only a little bit more, and then crash again.
1600  * If we leave the partial log records out there, this situation could
1601  * cause us to think those partial writes are valid blocks since they
1602  * have the current cycle number.  We get rid of them by overwriting them
1603  * with empty log records with the old cycle number rather than the
1604  * current one.
1605  *
1606  * The tail lsn is passed in rather than taken from
1607  * the log so that we will not write over the unmount record after a
1608  * clean unmount in a 512 block log.  Doing so would leave the log without
1609  * any valid log records in it until a new one was written.  If we crashed
1610  * during that time we would not be able to recover.
1611  */
1612 STATIC int
1613 xlog_clear_stale_blocks(
1614 	struct xlog	*log,
1615 	xfs_lsn_t	tail_lsn)
1616 {
1617 	int		tail_cycle, head_cycle;
1618 	int		tail_block, head_block;
1619 	int		tail_distance, max_distance;
1620 	int		distance;
1621 	int		error;
1622 
1623 	tail_cycle = CYCLE_LSN(tail_lsn);
1624 	tail_block = BLOCK_LSN(tail_lsn);
1625 	head_cycle = log->l_curr_cycle;
1626 	head_block = log->l_curr_block;
1627 
1628 	/*
1629 	 * Figure out the distance between the new head of the log
1630 	 * and the tail.  We want to write over any blocks beyond the
1631 	 * head that we may have written just before the crash, but
1632 	 * we don't want to overwrite the tail of the log.
1633 	 */
1634 	if (head_cycle == tail_cycle) {
1635 		/*
1636 		 * The tail is behind the head in the physical log,
1637 		 * so the distance from the head to the tail is the
1638 		 * distance from the head to the end of the log plus
1639 		 * the distance from the beginning of the log to the
1640 		 * tail.
1641 		 */
1642 		if (XFS_IS_CORRUPT(log->l_mp,
1643 				   head_block < tail_block ||
1644 				   head_block >= log->l_logBBsize))
1645 			return -EFSCORRUPTED;
1646 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1647 	} else {
1648 		/*
1649 		 * The head is behind the tail in the physical log,
1650 		 * so the distance from the head to the tail is just
1651 		 * the tail block minus the head block.
1652 		 */
1653 		if (XFS_IS_CORRUPT(log->l_mp,
1654 				   head_block >= tail_block ||
1655 				   head_cycle != tail_cycle + 1))
1656 			return -EFSCORRUPTED;
1657 		tail_distance = tail_block - head_block;
1658 	}
1659 
1660 	/*
1661 	 * If the head is right up against the tail, we can't clear
1662 	 * anything.
1663 	 */
1664 	if (tail_distance <= 0) {
1665 		ASSERT(tail_distance == 0);
1666 		return 0;
1667 	}
1668 
1669 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1670 	/*
1671 	 * Take the smaller of the maximum amount of outstanding I/O
1672 	 * we could have and the distance to the tail to clear out.
1673 	 * We take the smaller so that we don't overwrite the tail and
1674 	 * we don't waste all day writing from the head to the tail
1675 	 * for no reason.
1676 	 */
1677 	max_distance = min(max_distance, tail_distance);
1678 
1679 	if ((head_block + max_distance) <= log->l_logBBsize) {
1680 		/*
1681 		 * We can stomp all the blocks we need to without
1682 		 * wrapping around the end of the log.  Just do it
1683 		 * in a single write.  Use the cycle number of the
1684 		 * current cycle minus one so that the log will look like:
1685 		 *     n ... | n - 1 ...
1686 		 */
1687 		error = xlog_write_log_records(log, (head_cycle - 1),
1688 				head_block, max_distance, tail_cycle,
1689 				tail_block);
1690 		if (error)
1691 			return error;
1692 	} else {
1693 		/*
1694 		 * We need to wrap around the end of the physical log in
1695 		 * order to clear all the blocks.  Do it in two separate
1696 		 * I/Os.  The first write should be from the head to the
1697 		 * end of the physical log, and it should use the current
1698 		 * cycle number minus one just like above.
1699 		 */
1700 		distance = log->l_logBBsize - head_block;
1701 		error = xlog_write_log_records(log, (head_cycle - 1),
1702 				head_block, distance, tail_cycle,
1703 				tail_block);
1704 
1705 		if (error)
1706 			return error;
1707 
1708 		/*
1709 		 * Now write the blocks at the start of the physical log.
1710 		 * This writes the remainder of the blocks we want to clear.
1711 		 * It uses the current cycle number since we're now on the
1712 		 * same cycle as the head so that we get:
1713 		 *    n ... n ... | n - 1 ...
1714 		 *    ^^^^^ blocks we're writing
1715 		 */
1716 		distance = max_distance - (log->l_logBBsize - head_block);
1717 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1718 				tail_cycle, tail_block);
1719 		if (error)
1720 			return error;
1721 	}
1722 
1723 	return 0;
1724 }
1725 
1726 /*
1727  * Release the recovered intent item in the AIL that matches the given intent
1728  * type and intent id.
1729  */
1730 void
1731 xlog_recover_release_intent(
1732 	struct xlog		*log,
1733 	unsigned short		intent_type,
1734 	uint64_t		intent_id)
1735 {
1736 	struct xfs_ail_cursor	cur;
1737 	struct xfs_log_item	*lip;
1738 	struct xfs_ail		*ailp = log->l_ailp;
1739 
1740 	spin_lock(&ailp->ail_lock);
1741 	for (lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); lip != NULL;
1742 	     lip = xfs_trans_ail_cursor_next(ailp, &cur)) {
1743 		if (lip->li_type != intent_type)
1744 			continue;
1745 		if (!lip->li_ops->iop_match(lip, intent_id))
1746 			continue;
1747 
1748 		spin_unlock(&ailp->ail_lock);
1749 		lip->li_ops->iop_release(lip);
1750 		spin_lock(&ailp->ail_lock);
1751 		break;
1752 	}
1753 
1754 	xfs_trans_ail_cursor_done(&cur);
1755 	spin_unlock(&ailp->ail_lock);
1756 }
1757 
1758 /******************************************************************************
1759  *
1760  *		Log recover routines
1761  *
1762  ******************************************************************************
1763  */
1764 static const struct xlog_recover_item_ops *xlog_recover_item_ops[] = {
1765 	&xlog_buf_item_ops,
1766 	&xlog_inode_item_ops,
1767 	&xlog_dquot_item_ops,
1768 	&xlog_quotaoff_item_ops,
1769 	&xlog_icreate_item_ops,
1770 	&xlog_efi_item_ops,
1771 	&xlog_efd_item_ops,
1772 	&xlog_rui_item_ops,
1773 	&xlog_rud_item_ops,
1774 	&xlog_cui_item_ops,
1775 	&xlog_cud_item_ops,
1776 	&xlog_bui_item_ops,
1777 	&xlog_bud_item_ops,
1778 };
1779 
1780 static const struct xlog_recover_item_ops *
1781 xlog_find_item_ops(
1782 	struct xlog_recover_item		*item)
1783 {
1784 	unsigned int				i;
1785 
1786 	for (i = 0; i < ARRAY_SIZE(xlog_recover_item_ops); i++)
1787 		if (ITEM_TYPE(item) == xlog_recover_item_ops[i]->item_type)
1788 			return xlog_recover_item_ops[i];
1789 
1790 	return NULL;
1791 }
1792 
1793 /*
1794  * Sort the log items in the transaction.
1795  *
1796  * The ordering constraints are defined by the inode allocation and unlink
1797  * behaviour. The rules are:
1798  *
1799  *	1. Every item is only logged once in a given transaction. Hence it
1800  *	   represents the last logged state of the item. Hence ordering is
1801  *	   dependent on the order in which operations need to be performed so
1802  *	   required initial conditions are always met.
1803  *
1804  *	2. Cancelled buffers are recorded in pass 1 in a separate table and
1805  *	   there's nothing to replay from them so we can simply cull them
1806  *	   from the transaction. However, we can't do that until after we've
1807  *	   replayed all the other items because they may be dependent on the
1808  *	   cancelled buffer and replaying the cancelled buffer can remove it
1809  *	   form the cancelled buffer table. Hence they have tobe done last.
1810  *
1811  *	3. Inode allocation buffers must be replayed before inode items that
1812  *	   read the buffer and replay changes into it. For filesystems using the
1813  *	   ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1814  *	   treated the same as inode allocation buffers as they create and
1815  *	   initialise the buffers directly.
1816  *
1817  *	4. Inode unlink buffers must be replayed after inode items are replayed.
1818  *	   This ensures that inodes are completely flushed to the inode buffer
1819  *	   in a "free" state before we remove the unlinked inode list pointer.
1820  *
1821  * Hence the ordering needs to be inode allocation buffers first, inode items
1822  * second, inode unlink buffers third and cancelled buffers last.
1823  *
1824  * But there's a problem with that - we can't tell an inode allocation buffer
1825  * apart from a regular buffer, so we can't separate them. We can, however,
1826  * tell an inode unlink buffer from the others, and so we can separate them out
1827  * from all the other buffers and move them to last.
1828  *
1829  * Hence, 4 lists, in order from head to tail:
1830  *	- buffer_list for all buffers except cancelled/inode unlink buffers
1831  *	- item_list for all non-buffer items
1832  *	- inode_buffer_list for inode unlink buffers
1833  *	- cancel_list for the cancelled buffers
1834  *
1835  * Note that we add objects to the tail of the lists so that first-to-last
1836  * ordering is preserved within the lists. Adding objects to the head of the
1837  * list means when we traverse from the head we walk them in last-to-first
1838  * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1839  * but for all other items there may be specific ordering that we need to
1840  * preserve.
1841  */
1842 STATIC int
1843 xlog_recover_reorder_trans(
1844 	struct xlog		*log,
1845 	struct xlog_recover	*trans,
1846 	int			pass)
1847 {
1848 	struct xlog_recover_item *item, *n;
1849 	int			error = 0;
1850 	LIST_HEAD(sort_list);
1851 	LIST_HEAD(cancel_list);
1852 	LIST_HEAD(buffer_list);
1853 	LIST_HEAD(inode_buffer_list);
1854 	LIST_HEAD(item_list);
1855 
1856 	list_splice_init(&trans->r_itemq, &sort_list);
1857 	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1858 		enum xlog_recover_reorder	fate = XLOG_REORDER_ITEM_LIST;
1859 
1860 		item->ri_ops = xlog_find_item_ops(item);
1861 		if (!item->ri_ops) {
1862 			xfs_warn(log->l_mp,
1863 				"%s: unrecognized type of log operation (%d)",
1864 				__func__, ITEM_TYPE(item));
1865 			ASSERT(0);
1866 			/*
1867 			 * return the remaining items back to the transaction
1868 			 * item list so they can be freed in caller.
1869 			 */
1870 			if (!list_empty(&sort_list))
1871 				list_splice_init(&sort_list, &trans->r_itemq);
1872 			error = -EFSCORRUPTED;
1873 			break;
1874 		}
1875 
1876 		if (item->ri_ops->reorder)
1877 			fate = item->ri_ops->reorder(item);
1878 
1879 		switch (fate) {
1880 		case XLOG_REORDER_BUFFER_LIST:
1881 			list_move_tail(&item->ri_list, &buffer_list);
1882 			break;
1883 		case XLOG_REORDER_CANCEL_LIST:
1884 			trace_xfs_log_recover_item_reorder_head(log,
1885 					trans, item, pass);
1886 			list_move(&item->ri_list, &cancel_list);
1887 			break;
1888 		case XLOG_REORDER_INODE_BUFFER_LIST:
1889 			list_move(&item->ri_list, &inode_buffer_list);
1890 			break;
1891 		case XLOG_REORDER_ITEM_LIST:
1892 			trace_xfs_log_recover_item_reorder_tail(log,
1893 							trans, item, pass);
1894 			list_move_tail(&item->ri_list, &item_list);
1895 			break;
1896 		}
1897 	}
1898 
1899 	ASSERT(list_empty(&sort_list));
1900 	if (!list_empty(&buffer_list))
1901 		list_splice(&buffer_list, &trans->r_itemq);
1902 	if (!list_empty(&item_list))
1903 		list_splice_tail(&item_list, &trans->r_itemq);
1904 	if (!list_empty(&inode_buffer_list))
1905 		list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1906 	if (!list_empty(&cancel_list))
1907 		list_splice_tail(&cancel_list, &trans->r_itemq);
1908 	return error;
1909 }
1910 
1911 void
1912 xlog_buf_readahead(
1913 	struct xlog		*log,
1914 	xfs_daddr_t		blkno,
1915 	uint			len,
1916 	const struct xfs_buf_ops *ops)
1917 {
1918 	if (!xlog_is_buffer_cancelled(log, blkno, len))
1919 		xfs_buf_readahead(log->l_mp->m_ddev_targp, blkno, len, ops);
1920 }
1921 
1922 STATIC int
1923 xlog_recover_items_pass2(
1924 	struct xlog                     *log,
1925 	struct xlog_recover             *trans,
1926 	struct list_head                *buffer_list,
1927 	struct list_head                *item_list)
1928 {
1929 	struct xlog_recover_item	*item;
1930 	int				error = 0;
1931 
1932 	list_for_each_entry(item, item_list, ri_list) {
1933 		trace_xfs_log_recover_item_recover(log, trans, item,
1934 				XLOG_RECOVER_PASS2);
1935 
1936 		if (item->ri_ops->commit_pass2)
1937 			error = item->ri_ops->commit_pass2(log, buffer_list,
1938 					item, trans->r_lsn);
1939 		if (error)
1940 			return error;
1941 	}
1942 
1943 	return error;
1944 }
1945 
1946 /*
1947  * Perform the transaction.
1948  *
1949  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
1950  * EFIs and EFDs get queued up by adding entries into the AIL for them.
1951  */
1952 STATIC int
1953 xlog_recover_commit_trans(
1954 	struct xlog		*log,
1955 	struct xlog_recover	*trans,
1956 	int			pass,
1957 	struct list_head	*buffer_list)
1958 {
1959 	int				error = 0;
1960 	int				items_queued = 0;
1961 	struct xlog_recover_item	*item;
1962 	struct xlog_recover_item	*next;
1963 	LIST_HEAD			(ra_list);
1964 	LIST_HEAD			(done_list);
1965 
1966 	#define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
1967 
1968 	hlist_del_init(&trans->r_list);
1969 
1970 	error = xlog_recover_reorder_trans(log, trans, pass);
1971 	if (error)
1972 		return error;
1973 
1974 	list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
1975 		trace_xfs_log_recover_item_recover(log, trans, item, pass);
1976 
1977 		switch (pass) {
1978 		case XLOG_RECOVER_PASS1:
1979 			if (item->ri_ops->commit_pass1)
1980 				error = item->ri_ops->commit_pass1(log, item);
1981 			break;
1982 		case XLOG_RECOVER_PASS2:
1983 			if (item->ri_ops->ra_pass2)
1984 				item->ri_ops->ra_pass2(log, item);
1985 			list_move_tail(&item->ri_list, &ra_list);
1986 			items_queued++;
1987 			if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
1988 				error = xlog_recover_items_pass2(log, trans,
1989 						buffer_list, &ra_list);
1990 				list_splice_tail_init(&ra_list, &done_list);
1991 				items_queued = 0;
1992 			}
1993 
1994 			break;
1995 		default:
1996 			ASSERT(0);
1997 		}
1998 
1999 		if (error)
2000 			goto out;
2001 	}
2002 
2003 out:
2004 	if (!list_empty(&ra_list)) {
2005 		if (!error)
2006 			error = xlog_recover_items_pass2(log, trans,
2007 					buffer_list, &ra_list);
2008 		list_splice_tail_init(&ra_list, &done_list);
2009 	}
2010 
2011 	if (!list_empty(&done_list))
2012 		list_splice_init(&done_list, &trans->r_itemq);
2013 
2014 	return error;
2015 }
2016 
2017 STATIC void
2018 xlog_recover_add_item(
2019 	struct list_head	*head)
2020 {
2021 	struct xlog_recover_item *item;
2022 
2023 	item = kmem_zalloc(sizeof(struct xlog_recover_item), 0);
2024 	INIT_LIST_HEAD(&item->ri_list);
2025 	list_add_tail(&item->ri_list, head);
2026 }
2027 
2028 STATIC int
2029 xlog_recover_add_to_cont_trans(
2030 	struct xlog		*log,
2031 	struct xlog_recover	*trans,
2032 	char			*dp,
2033 	int			len)
2034 {
2035 	struct xlog_recover_item *item;
2036 	char			*ptr, *old_ptr;
2037 	int			old_len;
2038 
2039 	/*
2040 	 * If the transaction is empty, the header was split across this and the
2041 	 * previous record. Copy the rest of the header.
2042 	 */
2043 	if (list_empty(&trans->r_itemq)) {
2044 		ASSERT(len <= sizeof(struct xfs_trans_header));
2045 		if (len > sizeof(struct xfs_trans_header)) {
2046 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
2047 			return -EFSCORRUPTED;
2048 		}
2049 
2050 		xlog_recover_add_item(&trans->r_itemq);
2051 		ptr = (char *)&trans->r_theader +
2052 				sizeof(struct xfs_trans_header) - len;
2053 		memcpy(ptr, dp, len);
2054 		return 0;
2055 	}
2056 
2057 	/* take the tail entry */
2058 	item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
2059 			  ri_list);
2060 
2061 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
2062 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
2063 
2064 	ptr = krealloc(old_ptr, len + old_len, GFP_KERNEL | __GFP_NOFAIL);
2065 	memcpy(&ptr[old_len], dp, len);
2066 	item->ri_buf[item->ri_cnt-1].i_len += len;
2067 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
2068 	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
2069 	return 0;
2070 }
2071 
2072 /*
2073  * The next region to add is the start of a new region.  It could be
2074  * a whole region or it could be the first part of a new region.  Because
2075  * of this, the assumption here is that the type and size fields of all
2076  * format structures fit into the first 32 bits of the structure.
2077  *
2078  * This works because all regions must be 32 bit aligned.  Therefore, we
2079  * either have both fields or we have neither field.  In the case we have
2080  * neither field, the data part of the region is zero length.  We only have
2081  * a log_op_header and can throw away the header since a new one will appear
2082  * later.  If we have at least 4 bytes, then we can determine how many regions
2083  * will appear in the current log item.
2084  */
2085 STATIC int
2086 xlog_recover_add_to_trans(
2087 	struct xlog		*log,
2088 	struct xlog_recover	*trans,
2089 	char			*dp,
2090 	int			len)
2091 {
2092 	struct xfs_inode_log_format	*in_f;			/* any will do */
2093 	struct xlog_recover_item *item;
2094 	char			*ptr;
2095 
2096 	if (!len)
2097 		return 0;
2098 	if (list_empty(&trans->r_itemq)) {
2099 		/* we need to catch log corruptions here */
2100 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
2101 			xfs_warn(log->l_mp, "%s: bad header magic number",
2102 				__func__);
2103 			ASSERT(0);
2104 			return -EFSCORRUPTED;
2105 		}
2106 
2107 		if (len > sizeof(struct xfs_trans_header)) {
2108 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
2109 			ASSERT(0);
2110 			return -EFSCORRUPTED;
2111 		}
2112 
2113 		/*
2114 		 * The transaction header can be arbitrarily split across op
2115 		 * records. If we don't have the whole thing here, copy what we
2116 		 * do have and handle the rest in the next record.
2117 		 */
2118 		if (len == sizeof(struct xfs_trans_header))
2119 			xlog_recover_add_item(&trans->r_itemq);
2120 		memcpy(&trans->r_theader, dp, len);
2121 		return 0;
2122 	}
2123 
2124 	ptr = kmem_alloc(len, 0);
2125 	memcpy(ptr, dp, len);
2126 	in_f = (struct xfs_inode_log_format *)ptr;
2127 
2128 	/* take the tail entry */
2129 	item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
2130 			  ri_list);
2131 	if (item->ri_total != 0 &&
2132 	     item->ri_total == item->ri_cnt) {
2133 		/* tail item is in use, get a new one */
2134 		xlog_recover_add_item(&trans->r_itemq);
2135 		item = list_entry(trans->r_itemq.prev,
2136 					struct xlog_recover_item, ri_list);
2137 	}
2138 
2139 	if (item->ri_total == 0) {		/* first region to be added */
2140 		if (in_f->ilf_size == 0 ||
2141 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
2142 			xfs_warn(log->l_mp,
2143 		"bad number of regions (%d) in inode log format",
2144 				  in_f->ilf_size);
2145 			ASSERT(0);
2146 			kmem_free(ptr);
2147 			return -EFSCORRUPTED;
2148 		}
2149 
2150 		item->ri_total = in_f->ilf_size;
2151 		item->ri_buf =
2152 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
2153 				    0);
2154 	}
2155 
2156 	if (item->ri_total <= item->ri_cnt) {
2157 		xfs_warn(log->l_mp,
2158 	"log item region count (%d) overflowed size (%d)",
2159 				item->ri_cnt, item->ri_total);
2160 		ASSERT(0);
2161 		kmem_free(ptr);
2162 		return -EFSCORRUPTED;
2163 	}
2164 
2165 	/* Description region is ri_buf[0] */
2166 	item->ri_buf[item->ri_cnt].i_addr = ptr;
2167 	item->ri_buf[item->ri_cnt].i_len  = len;
2168 	item->ri_cnt++;
2169 	trace_xfs_log_recover_item_add(log, trans, item, 0);
2170 	return 0;
2171 }
2172 
2173 /*
2174  * Free up any resources allocated by the transaction
2175  *
2176  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2177  */
2178 STATIC void
2179 xlog_recover_free_trans(
2180 	struct xlog_recover	*trans)
2181 {
2182 	struct xlog_recover_item *item, *n;
2183 	int			i;
2184 
2185 	hlist_del_init(&trans->r_list);
2186 
2187 	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2188 		/* Free the regions in the item. */
2189 		list_del(&item->ri_list);
2190 		for (i = 0; i < item->ri_cnt; i++)
2191 			kmem_free(item->ri_buf[i].i_addr);
2192 		/* Free the item itself */
2193 		kmem_free(item->ri_buf);
2194 		kmem_free(item);
2195 	}
2196 	/* Free the transaction recover structure */
2197 	kmem_free(trans);
2198 }
2199 
2200 /*
2201  * On error or completion, trans is freed.
2202  */
2203 STATIC int
2204 xlog_recovery_process_trans(
2205 	struct xlog		*log,
2206 	struct xlog_recover	*trans,
2207 	char			*dp,
2208 	unsigned int		len,
2209 	unsigned int		flags,
2210 	int			pass,
2211 	struct list_head	*buffer_list)
2212 {
2213 	int			error = 0;
2214 	bool			freeit = false;
2215 
2216 	/* mask off ophdr transaction container flags */
2217 	flags &= ~XLOG_END_TRANS;
2218 	if (flags & XLOG_WAS_CONT_TRANS)
2219 		flags &= ~XLOG_CONTINUE_TRANS;
2220 
2221 	/*
2222 	 * Callees must not free the trans structure. We'll decide if we need to
2223 	 * free it or not based on the operation being done and it's result.
2224 	 */
2225 	switch (flags) {
2226 	/* expected flag values */
2227 	case 0:
2228 	case XLOG_CONTINUE_TRANS:
2229 		error = xlog_recover_add_to_trans(log, trans, dp, len);
2230 		break;
2231 	case XLOG_WAS_CONT_TRANS:
2232 		error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
2233 		break;
2234 	case XLOG_COMMIT_TRANS:
2235 		error = xlog_recover_commit_trans(log, trans, pass,
2236 						  buffer_list);
2237 		/* success or fail, we are now done with this transaction. */
2238 		freeit = true;
2239 		break;
2240 
2241 	/* unexpected flag values */
2242 	case XLOG_UNMOUNT_TRANS:
2243 		/* just skip trans */
2244 		xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2245 		freeit = true;
2246 		break;
2247 	case XLOG_START_TRANS:
2248 	default:
2249 		xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
2250 		ASSERT(0);
2251 		error = -EFSCORRUPTED;
2252 		break;
2253 	}
2254 	if (error || freeit)
2255 		xlog_recover_free_trans(trans);
2256 	return error;
2257 }
2258 
2259 /*
2260  * Lookup the transaction recovery structure associated with the ID in the
2261  * current ophdr. If the transaction doesn't exist and the start flag is set in
2262  * the ophdr, then allocate a new transaction for future ID matches to find.
2263  * Either way, return what we found during the lookup - an existing transaction
2264  * or nothing.
2265  */
2266 STATIC struct xlog_recover *
2267 xlog_recover_ophdr_to_trans(
2268 	struct hlist_head	rhash[],
2269 	struct xlog_rec_header	*rhead,
2270 	struct xlog_op_header	*ohead)
2271 {
2272 	struct xlog_recover	*trans;
2273 	xlog_tid_t		tid;
2274 	struct hlist_head	*rhp;
2275 
2276 	tid = be32_to_cpu(ohead->oh_tid);
2277 	rhp = &rhash[XLOG_RHASH(tid)];
2278 	hlist_for_each_entry(trans, rhp, r_list) {
2279 		if (trans->r_log_tid == tid)
2280 			return trans;
2281 	}
2282 
2283 	/*
2284 	 * skip over non-start transaction headers - we could be
2285 	 * processing slack space before the next transaction starts
2286 	 */
2287 	if (!(ohead->oh_flags & XLOG_START_TRANS))
2288 		return NULL;
2289 
2290 	ASSERT(be32_to_cpu(ohead->oh_len) == 0);
2291 
2292 	/*
2293 	 * This is a new transaction so allocate a new recovery container to
2294 	 * hold the recovery ops that will follow.
2295 	 */
2296 	trans = kmem_zalloc(sizeof(struct xlog_recover), 0);
2297 	trans->r_log_tid = tid;
2298 	trans->r_lsn = be64_to_cpu(rhead->h_lsn);
2299 	INIT_LIST_HEAD(&trans->r_itemq);
2300 	INIT_HLIST_NODE(&trans->r_list);
2301 	hlist_add_head(&trans->r_list, rhp);
2302 
2303 	/*
2304 	 * Nothing more to do for this ophdr. Items to be added to this new
2305 	 * transaction will be in subsequent ophdr containers.
2306 	 */
2307 	return NULL;
2308 }
2309 
2310 STATIC int
2311 xlog_recover_process_ophdr(
2312 	struct xlog		*log,
2313 	struct hlist_head	rhash[],
2314 	struct xlog_rec_header	*rhead,
2315 	struct xlog_op_header	*ohead,
2316 	char			*dp,
2317 	char			*end,
2318 	int			pass,
2319 	struct list_head	*buffer_list)
2320 {
2321 	struct xlog_recover	*trans;
2322 	unsigned int		len;
2323 	int			error;
2324 
2325 	/* Do we understand who wrote this op? */
2326 	if (ohead->oh_clientid != XFS_TRANSACTION &&
2327 	    ohead->oh_clientid != XFS_LOG) {
2328 		xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2329 			__func__, ohead->oh_clientid);
2330 		ASSERT(0);
2331 		return -EFSCORRUPTED;
2332 	}
2333 
2334 	/*
2335 	 * Check the ophdr contains all the data it is supposed to contain.
2336 	 */
2337 	len = be32_to_cpu(ohead->oh_len);
2338 	if (dp + len > end) {
2339 		xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
2340 		WARN_ON(1);
2341 		return -EFSCORRUPTED;
2342 	}
2343 
2344 	trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
2345 	if (!trans) {
2346 		/* nothing to do, so skip over this ophdr */
2347 		return 0;
2348 	}
2349 
2350 	/*
2351 	 * The recovered buffer queue is drained only once we know that all
2352 	 * recovery items for the current LSN have been processed. This is
2353 	 * required because:
2354 	 *
2355 	 * - Buffer write submission updates the metadata LSN of the buffer.
2356 	 * - Log recovery skips items with a metadata LSN >= the current LSN of
2357 	 *   the recovery item.
2358 	 * - Separate recovery items against the same metadata buffer can share
2359 	 *   a current LSN. I.e., consider that the LSN of a recovery item is
2360 	 *   defined as the starting LSN of the first record in which its
2361 	 *   transaction appears, that a record can hold multiple transactions,
2362 	 *   and/or that a transaction can span multiple records.
2363 	 *
2364 	 * In other words, we are allowed to submit a buffer from log recovery
2365 	 * once per current LSN. Otherwise, we may incorrectly skip recovery
2366 	 * items and cause corruption.
2367 	 *
2368 	 * We don't know up front whether buffers are updated multiple times per
2369 	 * LSN. Therefore, track the current LSN of each commit log record as it
2370 	 * is processed and drain the queue when it changes. Use commit records
2371 	 * because they are ordered correctly by the logging code.
2372 	 */
2373 	if (log->l_recovery_lsn != trans->r_lsn &&
2374 	    ohead->oh_flags & XLOG_COMMIT_TRANS) {
2375 		error = xfs_buf_delwri_submit(buffer_list);
2376 		if (error)
2377 			return error;
2378 		log->l_recovery_lsn = trans->r_lsn;
2379 	}
2380 
2381 	return xlog_recovery_process_trans(log, trans, dp, len,
2382 					   ohead->oh_flags, pass, buffer_list);
2383 }
2384 
2385 /*
2386  * There are two valid states of the r_state field.  0 indicates that the
2387  * transaction structure is in a normal state.  We have either seen the
2388  * start of the transaction or the last operation we added was not a partial
2389  * operation.  If the last operation we added to the transaction was a
2390  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2391  *
2392  * NOTE: skip LRs with 0 data length.
2393  */
2394 STATIC int
2395 xlog_recover_process_data(
2396 	struct xlog		*log,
2397 	struct hlist_head	rhash[],
2398 	struct xlog_rec_header	*rhead,
2399 	char			*dp,
2400 	int			pass,
2401 	struct list_head	*buffer_list)
2402 {
2403 	struct xlog_op_header	*ohead;
2404 	char			*end;
2405 	int			num_logops;
2406 	int			error;
2407 
2408 	end = dp + be32_to_cpu(rhead->h_len);
2409 	num_logops = be32_to_cpu(rhead->h_num_logops);
2410 
2411 	/* check the log format matches our own - else we can't recover */
2412 	if (xlog_header_check_recover(log->l_mp, rhead))
2413 		return -EIO;
2414 
2415 	trace_xfs_log_recover_record(log, rhead, pass);
2416 	while ((dp < end) && num_logops) {
2417 
2418 		ohead = (struct xlog_op_header *)dp;
2419 		dp += sizeof(*ohead);
2420 		ASSERT(dp <= end);
2421 
2422 		/* errors will abort recovery */
2423 		error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
2424 						   dp, end, pass, buffer_list);
2425 		if (error)
2426 			return error;
2427 
2428 		dp += be32_to_cpu(ohead->oh_len);
2429 		num_logops--;
2430 	}
2431 	return 0;
2432 }
2433 
2434 /* Take all the collected deferred ops and finish them in order. */
2435 static int
2436 xlog_finish_defer_ops(
2437 	struct xfs_mount	*mp,
2438 	struct list_head	*capture_list)
2439 {
2440 	struct xfs_defer_capture *dfc, *next;
2441 	struct xfs_trans	*tp;
2442 	struct xfs_inode	*ip;
2443 	int			error = 0;
2444 
2445 	list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
2446 		struct xfs_trans_res	resv;
2447 
2448 		/*
2449 		 * Create a new transaction reservation from the captured
2450 		 * information.  Set logcount to 1 to force the new transaction
2451 		 * to regrant every roll so that we can make forward progress
2452 		 * in recovery no matter how full the log might be.
2453 		 */
2454 		resv.tr_logres = dfc->dfc_logres;
2455 		resv.tr_logcount = 1;
2456 		resv.tr_logflags = XFS_TRANS_PERM_LOG_RES;
2457 
2458 		error = xfs_trans_alloc(mp, &resv, dfc->dfc_blkres,
2459 				dfc->dfc_rtxres, XFS_TRANS_RESERVE, &tp);
2460 		if (error)
2461 			return error;
2462 
2463 		/*
2464 		 * Transfer to this new transaction all the dfops we captured
2465 		 * from recovering a single intent item.
2466 		 */
2467 		list_del_init(&dfc->dfc_list);
2468 		xfs_defer_ops_continue(dfc, tp, &ip);
2469 
2470 		error = xfs_trans_commit(tp);
2471 		if (ip) {
2472 			xfs_iunlock(ip, XFS_ILOCK_EXCL);
2473 			xfs_irele(ip);
2474 		}
2475 		if (error)
2476 			return error;
2477 	}
2478 
2479 	ASSERT(list_empty(capture_list));
2480 	return 0;
2481 }
2482 
2483 /* Release all the captured defer ops and capture structures in this list. */
2484 static void
2485 xlog_abort_defer_ops(
2486 	struct xfs_mount		*mp,
2487 	struct list_head		*capture_list)
2488 {
2489 	struct xfs_defer_capture	*dfc;
2490 	struct xfs_defer_capture	*next;
2491 
2492 	list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
2493 		list_del_init(&dfc->dfc_list);
2494 		xfs_defer_ops_release(mp, dfc);
2495 	}
2496 }
2497 /*
2498  * When this is called, all of the log intent items which did not have
2499  * corresponding log done items should be in the AIL.  What we do now
2500  * is update the data structures associated with each one.
2501  *
2502  * Since we process the log intent items in normal transactions, they
2503  * will be removed at some point after the commit.  This prevents us
2504  * from just walking down the list processing each one.  We'll use a
2505  * flag in the intent item to skip those that we've already processed
2506  * and use the AIL iteration mechanism's generation count to try to
2507  * speed this up at least a bit.
2508  *
2509  * When we start, we know that the intents are the only things in the
2510  * AIL.  As we process them, however, other items are added to the
2511  * AIL.
2512  */
2513 STATIC int
2514 xlog_recover_process_intents(
2515 	struct xlog		*log)
2516 {
2517 	LIST_HEAD(capture_list);
2518 	struct xfs_ail_cursor	cur;
2519 	struct xfs_log_item	*lip;
2520 	struct xfs_ail		*ailp;
2521 	int			error = 0;
2522 #if defined(DEBUG) || defined(XFS_WARN)
2523 	xfs_lsn_t		last_lsn;
2524 #endif
2525 
2526 	ailp = log->l_ailp;
2527 	spin_lock(&ailp->ail_lock);
2528 #if defined(DEBUG) || defined(XFS_WARN)
2529 	last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
2530 #endif
2531 	for (lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2532 	     lip != NULL;
2533 	     lip = xfs_trans_ail_cursor_next(ailp, &cur)) {
2534 		/*
2535 		 * We're done when we see something other than an intent.
2536 		 * There should be no intents left in the AIL now.
2537 		 */
2538 		if (!xlog_item_is_intent(lip)) {
2539 #ifdef DEBUG
2540 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
2541 				ASSERT(!xlog_item_is_intent(lip));
2542 #endif
2543 			break;
2544 		}
2545 
2546 		/*
2547 		 * We should never see a redo item with a LSN higher than
2548 		 * the last transaction we found in the log at the start
2549 		 * of recovery.
2550 		 */
2551 		ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
2552 
2553 		/*
2554 		 * NOTE: If your intent processing routine can create more
2555 		 * deferred ops, you /must/ attach them to the capture list in
2556 		 * the recover routine or else those subsequent intents will be
2557 		 * replayed in the wrong order!
2558 		 */
2559 		spin_unlock(&ailp->ail_lock);
2560 		error = lip->li_ops->iop_recover(lip, &capture_list);
2561 		spin_lock(&ailp->ail_lock);
2562 		if (error) {
2563 			trace_xlog_intent_recovery_failed(log->l_mp, error,
2564 					lip->li_ops->iop_recover);
2565 			break;
2566 		}
2567 	}
2568 
2569 	xfs_trans_ail_cursor_done(&cur);
2570 	spin_unlock(&ailp->ail_lock);
2571 	if (error)
2572 		goto err;
2573 
2574 	error = xlog_finish_defer_ops(log->l_mp, &capture_list);
2575 	if (error)
2576 		goto err;
2577 
2578 	return 0;
2579 err:
2580 	xlog_abort_defer_ops(log->l_mp, &capture_list);
2581 	return error;
2582 }
2583 
2584 /*
2585  * A cancel occurs when the mount has failed and we're bailing out.
2586  * Release all pending log intent items so they don't pin the AIL.
2587  */
2588 STATIC void
2589 xlog_recover_cancel_intents(
2590 	struct xlog		*log)
2591 {
2592 	struct xfs_log_item	*lip;
2593 	struct xfs_ail_cursor	cur;
2594 	struct xfs_ail		*ailp;
2595 
2596 	ailp = log->l_ailp;
2597 	spin_lock(&ailp->ail_lock);
2598 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2599 	while (lip != NULL) {
2600 		/*
2601 		 * We're done when we see something other than an intent.
2602 		 * There should be no intents left in the AIL now.
2603 		 */
2604 		if (!xlog_item_is_intent(lip)) {
2605 #ifdef DEBUG
2606 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
2607 				ASSERT(!xlog_item_is_intent(lip));
2608 #endif
2609 			break;
2610 		}
2611 
2612 		spin_unlock(&ailp->ail_lock);
2613 		lip->li_ops->iop_release(lip);
2614 		spin_lock(&ailp->ail_lock);
2615 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
2616 	}
2617 
2618 	xfs_trans_ail_cursor_done(&cur);
2619 	spin_unlock(&ailp->ail_lock);
2620 }
2621 
2622 /*
2623  * This routine performs a transaction to null out a bad inode pointer
2624  * in an agi unlinked inode hash bucket.
2625  */
2626 STATIC void
2627 xlog_recover_clear_agi_bucket(
2628 	xfs_mount_t	*mp,
2629 	xfs_agnumber_t	agno,
2630 	int		bucket)
2631 {
2632 	xfs_trans_t	*tp;
2633 	xfs_agi_t	*agi;
2634 	struct xfs_buf	*agibp;
2635 	int		offset;
2636 	int		error;
2637 
2638 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
2639 	if (error)
2640 		goto out_error;
2641 
2642 	error = xfs_read_agi(mp, tp, agno, &agibp);
2643 	if (error)
2644 		goto out_abort;
2645 
2646 	agi = agibp->b_addr;
2647 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
2648 	offset = offsetof(xfs_agi_t, agi_unlinked) +
2649 		 (sizeof(xfs_agino_t) * bucket);
2650 	xfs_trans_log_buf(tp, agibp, offset,
2651 			  (offset + sizeof(xfs_agino_t) - 1));
2652 
2653 	error = xfs_trans_commit(tp);
2654 	if (error)
2655 		goto out_error;
2656 	return;
2657 
2658 out_abort:
2659 	xfs_trans_cancel(tp);
2660 out_error:
2661 	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
2662 	return;
2663 }
2664 
2665 STATIC xfs_agino_t
2666 xlog_recover_process_one_iunlink(
2667 	struct xfs_mount		*mp,
2668 	xfs_agnumber_t			agno,
2669 	xfs_agino_t			agino,
2670 	int				bucket)
2671 {
2672 	struct xfs_buf			*ibp;
2673 	struct xfs_dinode		*dip;
2674 	struct xfs_inode		*ip;
2675 	xfs_ino_t			ino;
2676 	int				error;
2677 
2678 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
2679 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
2680 	if (error)
2681 		goto fail;
2682 
2683 	/*
2684 	 * Get the on disk inode to find the next inode in the bucket.
2685 	 */
2686 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &ibp);
2687 	if (error)
2688 		goto fail_iput;
2689 	dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset);
2690 
2691 	xfs_iflags_clear(ip, XFS_IRECOVERY);
2692 	ASSERT(VFS_I(ip)->i_nlink == 0);
2693 	ASSERT(VFS_I(ip)->i_mode != 0);
2694 
2695 	/* setup for the next pass */
2696 	agino = be32_to_cpu(dip->di_next_unlinked);
2697 	xfs_buf_relse(ibp);
2698 
2699 	xfs_irele(ip);
2700 	return agino;
2701 
2702  fail_iput:
2703 	xfs_irele(ip);
2704  fail:
2705 	/*
2706 	 * We can't read in the inode this bucket points to, or this inode
2707 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
2708 	 * some inodes and space, but at least we won't hang.
2709 	 *
2710 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
2711 	 * clear the inode pointer in the bucket.
2712 	 */
2713 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
2714 	return NULLAGINO;
2715 }
2716 
2717 /*
2718  * Recover AGI unlinked lists
2719  *
2720  * This is called during recovery to process any inodes which we unlinked but
2721  * not freed when the system crashed.  These inodes will be on the lists in the
2722  * AGI blocks. What we do here is scan all the AGIs and fully truncate and free
2723  * any inodes found on the lists. Each inode is removed from the lists when it
2724  * has been fully truncated and is freed. The freeing of the inode and its
2725  * removal from the list must be atomic.
2726  *
2727  * If everything we touch in the agi processing loop is already in memory, this
2728  * loop can hold the cpu for a long time. It runs without lock contention,
2729  * memory allocation contention, the need wait for IO, etc, and so will run
2730  * until we either run out of inodes to process, run low on memory or we run out
2731  * of log space.
2732  *
2733  * This behaviour is bad for latency on single CPU and non-preemptible kernels,
2734  * and can prevent other filesystem work (such as CIL pushes) from running. This
2735  * can lead to deadlocks if the recovery process runs out of log reservation
2736  * space. Hence we need to yield the CPU when there is other kernel work
2737  * scheduled on this CPU to ensure other scheduled work can run without undue
2738  * latency.
2739  */
2740 STATIC void
2741 xlog_recover_process_iunlinks(
2742 	struct xlog	*log)
2743 {
2744 	xfs_mount_t	*mp;
2745 	xfs_agnumber_t	agno;
2746 	xfs_agi_t	*agi;
2747 	struct xfs_buf	*agibp;
2748 	xfs_agino_t	agino;
2749 	int		bucket;
2750 	int		error;
2751 
2752 	mp = log->l_mp;
2753 
2754 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
2755 		/*
2756 		 * Find the agi for this ag.
2757 		 */
2758 		error = xfs_read_agi(mp, NULL, agno, &agibp);
2759 		if (error) {
2760 			/*
2761 			 * AGI is b0rked. Don't process it.
2762 			 *
2763 			 * We should probably mark the filesystem as corrupt
2764 			 * after we've recovered all the ag's we can....
2765 			 */
2766 			continue;
2767 		}
2768 		/*
2769 		 * Unlock the buffer so that it can be acquired in the normal
2770 		 * course of the transaction to truncate and free each inode.
2771 		 * Because we are not racing with anyone else here for the AGI
2772 		 * buffer, we don't even need to hold it locked to read the
2773 		 * initial unlinked bucket entries out of the buffer. We keep
2774 		 * buffer reference though, so that it stays pinned in memory
2775 		 * while we need the buffer.
2776 		 */
2777 		agi = agibp->b_addr;
2778 		xfs_buf_unlock(agibp);
2779 
2780 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
2781 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
2782 			while (agino != NULLAGINO) {
2783 				agino = xlog_recover_process_one_iunlink(mp,
2784 							agno, agino, bucket);
2785 				cond_resched();
2786 			}
2787 		}
2788 		xfs_buf_rele(agibp);
2789 	}
2790 }
2791 
2792 STATIC void
2793 xlog_unpack_data(
2794 	struct xlog_rec_header	*rhead,
2795 	char			*dp,
2796 	struct xlog		*log)
2797 {
2798 	int			i, j, k;
2799 
2800 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
2801 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
2802 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
2803 		dp += BBSIZE;
2804 	}
2805 
2806 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
2807 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
2808 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
2809 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
2810 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
2811 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
2812 			dp += BBSIZE;
2813 		}
2814 	}
2815 }
2816 
2817 /*
2818  * CRC check, unpack and process a log record.
2819  */
2820 STATIC int
2821 xlog_recover_process(
2822 	struct xlog		*log,
2823 	struct hlist_head	rhash[],
2824 	struct xlog_rec_header	*rhead,
2825 	char			*dp,
2826 	int			pass,
2827 	struct list_head	*buffer_list)
2828 {
2829 	__le32			old_crc = rhead->h_crc;
2830 	__le32			crc;
2831 
2832 	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
2833 
2834 	/*
2835 	 * Nothing else to do if this is a CRC verification pass. Just return
2836 	 * if this a record with a non-zero crc. Unfortunately, mkfs always
2837 	 * sets old_crc to 0 so we must consider this valid even on v5 supers.
2838 	 * Otherwise, return EFSBADCRC on failure so the callers up the stack
2839 	 * know precisely what failed.
2840 	 */
2841 	if (pass == XLOG_RECOVER_CRCPASS) {
2842 		if (old_crc && crc != old_crc)
2843 			return -EFSBADCRC;
2844 		return 0;
2845 	}
2846 
2847 	/*
2848 	 * We're in the normal recovery path. Issue a warning if and only if the
2849 	 * CRC in the header is non-zero. This is an advisory warning and the
2850 	 * zero CRC check prevents warnings from being emitted when upgrading
2851 	 * the kernel from one that does not add CRCs by default.
2852 	 */
2853 	if (crc != old_crc) {
2854 		if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
2855 			xfs_alert(log->l_mp,
2856 		"log record CRC mismatch: found 0x%x, expected 0x%x.",
2857 					le32_to_cpu(old_crc),
2858 					le32_to_cpu(crc));
2859 			xfs_hex_dump(dp, 32);
2860 		}
2861 
2862 		/*
2863 		 * If the filesystem is CRC enabled, this mismatch becomes a
2864 		 * fatal log corruption failure.
2865 		 */
2866 		if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
2867 			XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
2868 			return -EFSCORRUPTED;
2869 		}
2870 	}
2871 
2872 	xlog_unpack_data(rhead, dp, log);
2873 
2874 	return xlog_recover_process_data(log, rhash, rhead, dp, pass,
2875 					 buffer_list);
2876 }
2877 
2878 STATIC int
2879 xlog_valid_rec_header(
2880 	struct xlog		*log,
2881 	struct xlog_rec_header	*rhead,
2882 	xfs_daddr_t		blkno,
2883 	int			bufsize)
2884 {
2885 	int			hlen;
2886 
2887 	if (XFS_IS_CORRUPT(log->l_mp,
2888 			   rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)))
2889 		return -EFSCORRUPTED;
2890 	if (XFS_IS_CORRUPT(log->l_mp,
2891 			   (!rhead->h_version ||
2892 			   (be32_to_cpu(rhead->h_version) &
2893 			    (~XLOG_VERSION_OKBITS))))) {
2894 		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
2895 			__func__, be32_to_cpu(rhead->h_version));
2896 		return -EFSCORRUPTED;
2897 	}
2898 
2899 	/*
2900 	 * LR body must have data (or it wouldn't have been written)
2901 	 * and h_len must not be greater than LR buffer size.
2902 	 */
2903 	hlen = be32_to_cpu(rhead->h_len);
2904 	if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > bufsize))
2905 		return -EFSCORRUPTED;
2906 
2907 	if (XFS_IS_CORRUPT(log->l_mp,
2908 			   blkno > log->l_logBBsize || blkno > INT_MAX))
2909 		return -EFSCORRUPTED;
2910 	return 0;
2911 }
2912 
2913 /*
2914  * Read the log from tail to head and process the log records found.
2915  * Handle the two cases where the tail and head are in the same cycle
2916  * and where the active portion of the log wraps around the end of
2917  * the physical log separately.  The pass parameter is passed through
2918  * to the routines called to process the data and is not looked at
2919  * here.
2920  */
2921 STATIC int
2922 xlog_do_recovery_pass(
2923 	struct xlog		*log,
2924 	xfs_daddr_t		head_blk,
2925 	xfs_daddr_t		tail_blk,
2926 	int			pass,
2927 	xfs_daddr_t		*first_bad)	/* out: first bad log rec */
2928 {
2929 	xlog_rec_header_t	*rhead;
2930 	xfs_daddr_t		blk_no, rblk_no;
2931 	xfs_daddr_t		rhead_blk;
2932 	char			*offset;
2933 	char			*hbp, *dbp;
2934 	int			error = 0, h_size, h_len;
2935 	int			error2 = 0;
2936 	int			bblks, split_bblks;
2937 	int			hblks, split_hblks, wrapped_hblks;
2938 	int			i;
2939 	struct hlist_head	rhash[XLOG_RHASH_SIZE];
2940 	LIST_HEAD		(buffer_list);
2941 
2942 	ASSERT(head_blk != tail_blk);
2943 	blk_no = rhead_blk = tail_blk;
2944 
2945 	for (i = 0; i < XLOG_RHASH_SIZE; i++)
2946 		INIT_HLIST_HEAD(&rhash[i]);
2947 
2948 	/*
2949 	 * Read the header of the tail block and get the iclog buffer size from
2950 	 * h_size.  Use this to tell how many sectors make up the log header.
2951 	 */
2952 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
2953 		/*
2954 		 * When using variable length iclogs, read first sector of
2955 		 * iclog header and extract the header size from it.  Get a
2956 		 * new hbp that is the correct size.
2957 		 */
2958 		hbp = xlog_alloc_buffer(log, 1);
2959 		if (!hbp)
2960 			return -ENOMEM;
2961 
2962 		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
2963 		if (error)
2964 			goto bread_err1;
2965 
2966 		rhead = (xlog_rec_header_t *)offset;
2967 
2968 		/*
2969 		 * xfsprogs has a bug where record length is based on lsunit but
2970 		 * h_size (iclog size) is hardcoded to 32k. Now that we
2971 		 * unconditionally CRC verify the unmount record, this means the
2972 		 * log buffer can be too small for the record and cause an
2973 		 * overrun.
2974 		 *
2975 		 * Detect this condition here. Use lsunit for the buffer size as
2976 		 * long as this looks like the mkfs case. Otherwise, return an
2977 		 * error to avoid a buffer overrun.
2978 		 */
2979 		h_size = be32_to_cpu(rhead->h_size);
2980 		h_len = be32_to_cpu(rhead->h_len);
2981 		if (h_len > h_size && h_len <= log->l_mp->m_logbsize &&
2982 		    rhead->h_num_logops == cpu_to_be32(1)) {
2983 			xfs_warn(log->l_mp,
2984 		"invalid iclog size (%d bytes), using lsunit (%d bytes)",
2985 				 h_size, log->l_mp->m_logbsize);
2986 			h_size = log->l_mp->m_logbsize;
2987 		}
2988 
2989 		error = xlog_valid_rec_header(log, rhead, tail_blk, h_size);
2990 		if (error)
2991 			goto bread_err1;
2992 
2993 		hblks = xlog_logrec_hblks(log, rhead);
2994 		if (hblks != 1) {
2995 			kmem_free(hbp);
2996 			hbp = xlog_alloc_buffer(log, hblks);
2997 		}
2998 	} else {
2999 		ASSERT(log->l_sectBBsize == 1);
3000 		hblks = 1;
3001 		hbp = xlog_alloc_buffer(log, 1);
3002 		h_size = XLOG_BIG_RECORD_BSIZE;
3003 	}
3004 
3005 	if (!hbp)
3006 		return -ENOMEM;
3007 	dbp = xlog_alloc_buffer(log, BTOBB(h_size));
3008 	if (!dbp) {
3009 		kmem_free(hbp);
3010 		return -ENOMEM;
3011 	}
3012 
3013 	memset(rhash, 0, sizeof(rhash));
3014 	if (tail_blk > head_blk) {
3015 		/*
3016 		 * Perform recovery around the end of the physical log.
3017 		 * When the head is not on the same cycle number as the tail,
3018 		 * we can't do a sequential recovery.
3019 		 */
3020 		while (blk_no < log->l_logBBsize) {
3021 			/*
3022 			 * Check for header wrapping around physical end-of-log
3023 			 */
3024 			offset = hbp;
3025 			split_hblks = 0;
3026 			wrapped_hblks = 0;
3027 			if (blk_no + hblks <= log->l_logBBsize) {
3028 				/* Read header in one read */
3029 				error = xlog_bread(log, blk_no, hblks, hbp,
3030 						   &offset);
3031 				if (error)
3032 					goto bread_err2;
3033 			} else {
3034 				/* This LR is split across physical log end */
3035 				if (blk_no != log->l_logBBsize) {
3036 					/* some data before physical log end */
3037 					ASSERT(blk_no <= INT_MAX);
3038 					split_hblks = log->l_logBBsize - (int)blk_no;
3039 					ASSERT(split_hblks > 0);
3040 					error = xlog_bread(log, blk_no,
3041 							   split_hblks, hbp,
3042 							   &offset);
3043 					if (error)
3044 						goto bread_err2;
3045 				}
3046 
3047 				/*
3048 				 * Note: this black magic still works with
3049 				 * large sector sizes (non-512) only because:
3050 				 * - we increased the buffer size originally
3051 				 *   by 1 sector giving us enough extra space
3052 				 *   for the second read;
3053 				 * - the log start is guaranteed to be sector
3054 				 *   aligned;
3055 				 * - we read the log end (LR header start)
3056 				 *   _first_, then the log start (LR header end)
3057 				 *   - order is important.
3058 				 */
3059 				wrapped_hblks = hblks - split_hblks;
3060 				error = xlog_bread_noalign(log, 0,
3061 						wrapped_hblks,
3062 						offset + BBTOB(split_hblks));
3063 				if (error)
3064 					goto bread_err2;
3065 			}
3066 			rhead = (xlog_rec_header_t *)offset;
3067 			error = xlog_valid_rec_header(log, rhead,
3068 					split_hblks ? blk_no : 0, h_size);
3069 			if (error)
3070 				goto bread_err2;
3071 
3072 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3073 			blk_no += hblks;
3074 
3075 			/*
3076 			 * Read the log record data in multiple reads if it
3077 			 * wraps around the end of the log. Note that if the
3078 			 * header already wrapped, blk_no could point past the
3079 			 * end of the log. The record data is contiguous in
3080 			 * that case.
3081 			 */
3082 			if (blk_no + bblks <= log->l_logBBsize ||
3083 			    blk_no >= log->l_logBBsize) {
3084 				rblk_no = xlog_wrap_logbno(log, blk_no);
3085 				error = xlog_bread(log, rblk_no, bblks, dbp,
3086 						   &offset);
3087 				if (error)
3088 					goto bread_err2;
3089 			} else {
3090 				/* This log record is split across the
3091 				 * physical end of log */
3092 				offset = dbp;
3093 				split_bblks = 0;
3094 				if (blk_no != log->l_logBBsize) {
3095 					/* some data is before the physical
3096 					 * end of log */
3097 					ASSERT(!wrapped_hblks);
3098 					ASSERT(blk_no <= INT_MAX);
3099 					split_bblks =
3100 						log->l_logBBsize - (int)blk_no;
3101 					ASSERT(split_bblks > 0);
3102 					error = xlog_bread(log, blk_no,
3103 							split_bblks, dbp,
3104 							&offset);
3105 					if (error)
3106 						goto bread_err2;
3107 				}
3108 
3109 				/*
3110 				 * Note: this black magic still works with
3111 				 * large sector sizes (non-512) only because:
3112 				 * - we increased the buffer size originally
3113 				 *   by 1 sector giving us enough extra space
3114 				 *   for the second read;
3115 				 * - the log start is guaranteed to be sector
3116 				 *   aligned;
3117 				 * - we read the log end (LR header start)
3118 				 *   _first_, then the log start (LR header end)
3119 				 *   - order is important.
3120 				 */
3121 				error = xlog_bread_noalign(log, 0,
3122 						bblks - split_bblks,
3123 						offset + BBTOB(split_bblks));
3124 				if (error)
3125 					goto bread_err2;
3126 			}
3127 
3128 			error = xlog_recover_process(log, rhash, rhead, offset,
3129 						     pass, &buffer_list);
3130 			if (error)
3131 				goto bread_err2;
3132 
3133 			blk_no += bblks;
3134 			rhead_blk = blk_no;
3135 		}
3136 
3137 		ASSERT(blk_no >= log->l_logBBsize);
3138 		blk_no -= log->l_logBBsize;
3139 		rhead_blk = blk_no;
3140 	}
3141 
3142 	/* read first part of physical log */
3143 	while (blk_no < head_blk) {
3144 		error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3145 		if (error)
3146 			goto bread_err2;
3147 
3148 		rhead = (xlog_rec_header_t *)offset;
3149 		error = xlog_valid_rec_header(log, rhead, blk_no, h_size);
3150 		if (error)
3151 			goto bread_err2;
3152 
3153 		/* blocks in data section */
3154 		bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3155 		error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3156 				   &offset);
3157 		if (error)
3158 			goto bread_err2;
3159 
3160 		error = xlog_recover_process(log, rhash, rhead, offset, pass,
3161 					     &buffer_list);
3162 		if (error)
3163 			goto bread_err2;
3164 
3165 		blk_no += bblks + hblks;
3166 		rhead_blk = blk_no;
3167 	}
3168 
3169  bread_err2:
3170 	kmem_free(dbp);
3171  bread_err1:
3172 	kmem_free(hbp);
3173 
3174 	/*
3175 	 * Submit buffers that have been added from the last record processed,
3176 	 * regardless of error status.
3177 	 */
3178 	if (!list_empty(&buffer_list))
3179 		error2 = xfs_buf_delwri_submit(&buffer_list);
3180 
3181 	if (error && first_bad)
3182 		*first_bad = rhead_blk;
3183 
3184 	/*
3185 	 * Transactions are freed at commit time but transactions without commit
3186 	 * records on disk are never committed. Free any that may be left in the
3187 	 * hash table.
3188 	 */
3189 	for (i = 0; i < XLOG_RHASH_SIZE; i++) {
3190 		struct hlist_node	*tmp;
3191 		struct xlog_recover	*trans;
3192 
3193 		hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
3194 			xlog_recover_free_trans(trans);
3195 	}
3196 
3197 	return error ? error : error2;
3198 }
3199 
3200 /*
3201  * Do the recovery of the log.  We actually do this in two phases.
3202  * The two passes are necessary in order to implement the function
3203  * of cancelling a record written into the log.  The first pass
3204  * determines those things which have been cancelled, and the
3205  * second pass replays log items normally except for those which
3206  * have been cancelled.  The handling of the replay and cancellations
3207  * takes place in the log item type specific routines.
3208  *
3209  * The table of items which have cancel records in the log is allocated
3210  * and freed at this level, since only here do we know when all of
3211  * the log recovery has been completed.
3212  */
3213 STATIC int
3214 xlog_do_log_recovery(
3215 	struct xlog	*log,
3216 	xfs_daddr_t	head_blk,
3217 	xfs_daddr_t	tail_blk)
3218 {
3219 	int		error, i;
3220 
3221 	ASSERT(head_blk != tail_blk);
3222 
3223 	/*
3224 	 * First do a pass to find all of the cancelled buf log items.
3225 	 * Store them in the buf_cancel_table for use in the second pass.
3226 	 */
3227 	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3228 						 sizeof(struct list_head),
3229 						 0);
3230 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3231 		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3232 
3233 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3234 				      XLOG_RECOVER_PASS1, NULL);
3235 	if (error != 0) {
3236 		kmem_free(log->l_buf_cancel_table);
3237 		log->l_buf_cancel_table = NULL;
3238 		return error;
3239 	}
3240 	/*
3241 	 * Then do a second pass to actually recover the items in the log.
3242 	 * When it is complete free the table of buf cancel items.
3243 	 */
3244 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3245 				      XLOG_RECOVER_PASS2, NULL);
3246 #ifdef DEBUG
3247 	if (!error) {
3248 		int	i;
3249 
3250 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3251 			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3252 	}
3253 #endif	/* DEBUG */
3254 
3255 	kmem_free(log->l_buf_cancel_table);
3256 	log->l_buf_cancel_table = NULL;
3257 
3258 	return error;
3259 }
3260 
3261 /*
3262  * Do the actual recovery
3263  */
3264 STATIC int
3265 xlog_do_recover(
3266 	struct xlog		*log,
3267 	xfs_daddr_t		head_blk,
3268 	xfs_daddr_t		tail_blk)
3269 {
3270 	struct xfs_mount	*mp = log->l_mp;
3271 	struct xfs_buf		*bp = mp->m_sb_bp;
3272 	struct xfs_sb		*sbp = &mp->m_sb;
3273 	int			error;
3274 
3275 	trace_xfs_log_recover(log, head_blk, tail_blk);
3276 
3277 	/*
3278 	 * First replay the images in the log.
3279 	 */
3280 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
3281 	if (error)
3282 		return error;
3283 
3284 	/*
3285 	 * If IO errors happened during recovery, bail out.
3286 	 */
3287 	if (XFS_FORCED_SHUTDOWN(mp))
3288 		return -EIO;
3289 
3290 	/*
3291 	 * We now update the tail_lsn since much of the recovery has completed
3292 	 * and there may be space available to use.  If there were no extent
3293 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
3294 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3295 	 * lsn of the last known good LR on disk.  If there are extent frees
3296 	 * or iunlinks they will have some entries in the AIL; so we look at
3297 	 * the AIL to determine how to set the tail_lsn.
3298 	 */
3299 	xlog_assign_tail_lsn(mp);
3300 
3301 	/*
3302 	 * Now that we've finished replaying all buffer and inode updates,
3303 	 * re-read the superblock and reverify it.
3304 	 */
3305 	xfs_buf_lock(bp);
3306 	xfs_buf_hold(bp);
3307 	error = _xfs_buf_read(bp, XBF_READ);
3308 	if (error) {
3309 		if (!XFS_FORCED_SHUTDOWN(mp)) {
3310 			xfs_buf_ioerror_alert(bp, __this_address);
3311 			ASSERT(0);
3312 		}
3313 		xfs_buf_relse(bp);
3314 		return error;
3315 	}
3316 
3317 	/* Convert superblock from on-disk format */
3318 	xfs_sb_from_disk(sbp, bp->b_addr);
3319 	xfs_buf_relse(bp);
3320 
3321 	/* re-initialise in-core superblock and geometry structures */
3322 	xfs_reinit_percpu_counters(mp);
3323 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
3324 	if (error) {
3325 		xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
3326 		return error;
3327 	}
3328 	mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
3329 
3330 	xlog_recover_check_summary(log);
3331 
3332 	/* Normal transactions can now occur */
3333 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3334 	return 0;
3335 }
3336 
3337 /*
3338  * Perform recovery and re-initialize some log variables in xlog_find_tail.
3339  *
3340  * Return error or zero.
3341  */
3342 int
3343 xlog_recover(
3344 	struct xlog	*log)
3345 {
3346 	xfs_daddr_t	head_blk, tail_blk;
3347 	int		error;
3348 
3349 	/* find the tail of the log */
3350 	error = xlog_find_tail(log, &head_blk, &tail_blk);
3351 	if (error)
3352 		return error;
3353 
3354 	/*
3355 	 * The superblock was read before the log was available and thus the LSN
3356 	 * could not be verified. Check the superblock LSN against the current
3357 	 * LSN now that it's known.
3358 	 */
3359 	if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
3360 	    !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
3361 		return -EINVAL;
3362 
3363 	if (tail_blk != head_blk) {
3364 		/* There used to be a comment here:
3365 		 *
3366 		 * disallow recovery on read-only mounts.  note -- mount
3367 		 * checks for ENOSPC and turns it into an intelligent
3368 		 * error message.
3369 		 * ...but this is no longer true.  Now, unless you specify
3370 		 * NORECOVERY (in which case this function would never be
3371 		 * called), we just go ahead and recover.  We do this all
3372 		 * under the vfs layer, so we can get away with it unless
3373 		 * the device itself is read-only, in which case we fail.
3374 		 */
3375 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3376 			return error;
3377 		}
3378 
3379 		/*
3380 		 * Version 5 superblock log feature mask validation. We know the
3381 		 * log is dirty so check if there are any unknown log features
3382 		 * in what we need to recover. If there are unknown features
3383 		 * (e.g. unsupported transactions, then simply reject the
3384 		 * attempt at recovery before touching anything.
3385 		 */
3386 		if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
3387 		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
3388 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
3389 			xfs_warn(log->l_mp,
3390 "Superblock has unknown incompatible log features (0x%x) enabled.",
3391 				(log->l_mp->m_sb.sb_features_log_incompat &
3392 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
3393 			xfs_warn(log->l_mp,
3394 "The log can not be fully and/or safely recovered by this kernel.");
3395 			xfs_warn(log->l_mp,
3396 "Please recover the log on a kernel that supports the unknown features.");
3397 			return -EINVAL;
3398 		}
3399 
3400 		/*
3401 		 * Delay log recovery if the debug hook is set. This is debug
3402 		 * instrumentation to coordinate simulation of I/O failures with
3403 		 * log recovery.
3404 		 */
3405 		if (xfs_globals.log_recovery_delay) {
3406 			xfs_notice(log->l_mp,
3407 				"Delaying log recovery for %d seconds.",
3408 				xfs_globals.log_recovery_delay);
3409 			msleep(xfs_globals.log_recovery_delay * 1000);
3410 		}
3411 
3412 		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3413 				log->l_mp->m_logname ? log->l_mp->m_logname
3414 						     : "internal");
3415 
3416 		error = xlog_do_recover(log, head_blk, tail_blk);
3417 		log->l_flags |= XLOG_RECOVERY_NEEDED;
3418 	}
3419 	return error;
3420 }
3421 
3422 /*
3423  * In the first part of recovery we replay inodes and buffers and build
3424  * up the list of extent free items which need to be processed.  Here
3425  * we process the extent free items and clean up the on disk unlinked
3426  * inode lists.  This is separated from the first part of recovery so
3427  * that the root and real-time bitmap inodes can be read in from disk in
3428  * between the two stages.  This is necessary so that we can free space
3429  * in the real-time portion of the file system.
3430  */
3431 int
3432 xlog_recover_finish(
3433 	struct xlog	*log)
3434 {
3435 	/*
3436 	 * Now we're ready to do the transactions needed for the
3437 	 * rest of recovery.  Start with completing all the extent
3438 	 * free intent records and then process the unlinked inode
3439 	 * lists.  At this point, we essentially run in normal mode
3440 	 * except that we're still performing recovery actions
3441 	 * rather than accepting new requests.
3442 	 */
3443 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3444 		int	error;
3445 		error = xlog_recover_process_intents(log);
3446 		if (error) {
3447 			/*
3448 			 * Cancel all the unprocessed intent items now so that
3449 			 * we don't leave them pinned in the AIL.  This can
3450 			 * cause the AIL to livelock on the pinned item if
3451 			 * anyone tries to push the AIL (inode reclaim does
3452 			 * this) before we get around to xfs_log_mount_cancel.
3453 			 */
3454 			xlog_recover_cancel_intents(log);
3455 			xfs_alert(log->l_mp, "Failed to recover intents");
3456 			return error;
3457 		}
3458 
3459 		/*
3460 		 * Sync the log to get all the intents out of the AIL.
3461 		 * This isn't absolutely necessary, but it helps in
3462 		 * case the unlink transactions would have problems
3463 		 * pushing the intents out of the way.
3464 		 */
3465 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3466 
3467 		xlog_recover_process_iunlinks(log);
3468 
3469 		xlog_recover_check_summary(log);
3470 
3471 		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
3472 				log->l_mp->m_logname ? log->l_mp->m_logname
3473 						     : "internal");
3474 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3475 	} else {
3476 		xfs_info(log->l_mp, "Ending clean mount");
3477 	}
3478 	return 0;
3479 }
3480 
3481 void
3482 xlog_recover_cancel(
3483 	struct xlog	*log)
3484 {
3485 	if (log->l_flags & XLOG_RECOVERY_NEEDED)
3486 		xlog_recover_cancel_intents(log);
3487 }
3488 
3489 #if defined(DEBUG)
3490 /*
3491  * Read all of the agf and agi counters and check that they
3492  * are consistent with the superblock counters.
3493  */
3494 STATIC void
3495 xlog_recover_check_summary(
3496 	struct xlog	*log)
3497 {
3498 	xfs_mount_t	*mp;
3499 	struct xfs_buf	*agfbp;
3500 	struct xfs_buf	*agibp;
3501 	xfs_agnumber_t	agno;
3502 	uint64_t	freeblks;
3503 	uint64_t	itotal;
3504 	uint64_t	ifree;
3505 	int		error;
3506 
3507 	mp = log->l_mp;
3508 
3509 	freeblks = 0LL;
3510 	itotal = 0LL;
3511 	ifree = 0LL;
3512 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3513 		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3514 		if (error) {
3515 			xfs_alert(mp, "%s agf read failed agno %d error %d",
3516 						__func__, agno, error);
3517 		} else {
3518 			struct xfs_agf	*agfp = agfbp->b_addr;
3519 
3520 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
3521 				    be32_to_cpu(agfp->agf_flcount);
3522 			xfs_buf_relse(agfbp);
3523 		}
3524 
3525 		error = xfs_read_agi(mp, NULL, agno, &agibp);
3526 		if (error) {
3527 			xfs_alert(mp, "%s agi read failed agno %d error %d",
3528 						__func__, agno, error);
3529 		} else {
3530 			struct xfs_agi	*agi = agibp->b_addr;
3531 
3532 			itotal += be32_to_cpu(agi->agi_count);
3533 			ifree += be32_to_cpu(agi->agi_freecount);
3534 			xfs_buf_relse(agibp);
3535 		}
3536 	}
3537 }
3538 #endif /* DEBUG */
3539