1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_mount.h" 28 #include "xfs_error.h" 29 #include "xfs_bmap_btree.h" 30 #include "xfs_alloc_btree.h" 31 #include "xfs_ialloc_btree.h" 32 #include "xfs_dinode.h" 33 #include "xfs_inode.h" 34 #include "xfs_inode_item.h" 35 #include "xfs_alloc.h" 36 #include "xfs_ialloc.h" 37 #include "xfs_log_priv.h" 38 #include "xfs_buf_item.h" 39 #include "xfs_log_recover.h" 40 #include "xfs_extfree_item.h" 41 #include "xfs_trans_priv.h" 42 #include "xfs_quota.h" 43 #include "xfs_rw.h" 44 #include "xfs_utils.h" 45 #include "xfs_trace.h" 46 47 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *); 48 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t); 49 #if defined(DEBUG) 50 STATIC void xlog_recover_check_summary(xlog_t *); 51 #else 52 #define xlog_recover_check_summary(log) 53 #endif 54 55 /* 56 * Sector aligned buffer routines for buffer create/read/write/access 57 */ 58 59 /* 60 * Verify the given count of basic blocks is valid number of blocks 61 * to specify for an operation involving the given XFS log buffer. 62 * Returns nonzero if the count is valid, 0 otherwise. 63 */ 64 65 static inline int 66 xlog_buf_bbcount_valid( 67 xlog_t *log, 68 int bbcount) 69 { 70 return bbcount > 0 && bbcount <= log->l_logBBsize; 71 } 72 73 /* 74 * Allocate a buffer to hold log data. The buffer needs to be able 75 * to map to a range of nbblks basic blocks at any valid (basic 76 * block) offset within the log. 77 */ 78 STATIC xfs_buf_t * 79 xlog_get_bp( 80 xlog_t *log, 81 int nbblks) 82 { 83 if (!xlog_buf_bbcount_valid(log, nbblks)) { 84 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", 85 nbblks); 86 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 87 return NULL; 88 } 89 90 /* 91 * We do log I/O in units of log sectors (a power-of-2 92 * multiple of the basic block size), so we round up the 93 * requested size to acommodate the basic blocks required 94 * for complete log sectors. 95 * 96 * In addition, the buffer may be used for a non-sector- 97 * aligned block offset, in which case an I/O of the 98 * requested size could extend beyond the end of the 99 * buffer. If the requested size is only 1 basic block it 100 * will never straddle a sector boundary, so this won't be 101 * an issue. Nor will this be a problem if the log I/O is 102 * done in basic blocks (sector size 1). But otherwise we 103 * extend the buffer by one extra log sector to ensure 104 * there's space to accomodate this possiblility. 105 */ 106 if (nbblks > 1 && log->l_sectBBsize > 1) 107 nbblks += log->l_sectBBsize; 108 nbblks = round_up(nbblks, log->l_sectBBsize); 109 110 return xfs_buf_get_uncached(log->l_mp->m_logdev_targp, 111 BBTOB(nbblks), 0); 112 } 113 114 STATIC void 115 xlog_put_bp( 116 xfs_buf_t *bp) 117 { 118 xfs_buf_free(bp); 119 } 120 121 /* 122 * Return the address of the start of the given block number's data 123 * in a log buffer. The buffer covers a log sector-aligned region. 124 */ 125 STATIC xfs_caddr_t 126 xlog_align( 127 xlog_t *log, 128 xfs_daddr_t blk_no, 129 int nbblks, 130 xfs_buf_t *bp) 131 { 132 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1); 133 134 ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp)); 135 return XFS_BUF_PTR(bp) + BBTOB(offset); 136 } 137 138 139 /* 140 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 141 */ 142 STATIC int 143 xlog_bread_noalign( 144 xlog_t *log, 145 xfs_daddr_t blk_no, 146 int nbblks, 147 xfs_buf_t *bp) 148 { 149 int error; 150 151 if (!xlog_buf_bbcount_valid(log, nbblks)) { 152 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", 153 nbblks); 154 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 155 return EFSCORRUPTED; 156 } 157 158 blk_no = round_down(blk_no, log->l_sectBBsize); 159 nbblks = round_up(nbblks, log->l_sectBBsize); 160 161 ASSERT(nbblks > 0); 162 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); 163 164 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 165 XFS_BUF_READ(bp); 166 XFS_BUF_BUSY(bp); 167 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); 168 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); 169 170 xfsbdstrat(log->l_mp, bp); 171 error = xfs_buf_iowait(bp); 172 if (error) 173 xfs_ioerror_alert("xlog_bread", log->l_mp, 174 bp, XFS_BUF_ADDR(bp)); 175 return error; 176 } 177 178 STATIC int 179 xlog_bread( 180 xlog_t *log, 181 xfs_daddr_t blk_no, 182 int nbblks, 183 xfs_buf_t *bp, 184 xfs_caddr_t *offset) 185 { 186 int error; 187 188 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 189 if (error) 190 return error; 191 192 *offset = xlog_align(log, blk_no, nbblks, bp); 193 return 0; 194 } 195 196 /* 197 * Write out the buffer at the given block for the given number of blocks. 198 * The buffer is kept locked across the write and is returned locked. 199 * This can only be used for synchronous log writes. 200 */ 201 STATIC int 202 xlog_bwrite( 203 xlog_t *log, 204 xfs_daddr_t blk_no, 205 int nbblks, 206 xfs_buf_t *bp) 207 { 208 int error; 209 210 if (!xlog_buf_bbcount_valid(log, nbblks)) { 211 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", 212 nbblks); 213 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 214 return EFSCORRUPTED; 215 } 216 217 blk_no = round_down(blk_no, log->l_sectBBsize); 218 nbblks = round_up(nbblks, log->l_sectBBsize); 219 220 ASSERT(nbblks > 0); 221 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); 222 223 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 224 XFS_BUF_ZEROFLAGS(bp); 225 XFS_BUF_BUSY(bp); 226 XFS_BUF_HOLD(bp); 227 XFS_BUF_PSEMA(bp, PRIBIO); 228 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); 229 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); 230 231 if ((error = xfs_bwrite(log->l_mp, bp))) 232 xfs_ioerror_alert("xlog_bwrite", log->l_mp, 233 bp, XFS_BUF_ADDR(bp)); 234 return error; 235 } 236 237 #ifdef DEBUG 238 /* 239 * dump debug superblock and log record information 240 */ 241 STATIC void 242 xlog_header_check_dump( 243 xfs_mount_t *mp, 244 xlog_rec_header_t *head) 245 { 246 cmn_err(CE_DEBUG, "%s: SB : uuid = %pU, fmt = %d\n", 247 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 248 cmn_err(CE_DEBUG, " log : uuid = %pU, fmt = %d\n", 249 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 250 } 251 #else 252 #define xlog_header_check_dump(mp, head) 253 #endif 254 255 /* 256 * check log record header for recovery 257 */ 258 STATIC int 259 xlog_header_check_recover( 260 xfs_mount_t *mp, 261 xlog_rec_header_t *head) 262 { 263 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM); 264 265 /* 266 * IRIX doesn't write the h_fmt field and leaves it zeroed 267 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 268 * a dirty log created in IRIX. 269 */ 270 if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) { 271 xlog_warn( 272 "XFS: dirty log written in incompatible format - can't recover"); 273 xlog_header_check_dump(mp, head); 274 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 275 XFS_ERRLEVEL_HIGH, mp); 276 return XFS_ERROR(EFSCORRUPTED); 277 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 278 xlog_warn( 279 "XFS: dirty log entry has mismatched uuid - can't recover"); 280 xlog_header_check_dump(mp, head); 281 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 282 XFS_ERRLEVEL_HIGH, mp); 283 return XFS_ERROR(EFSCORRUPTED); 284 } 285 return 0; 286 } 287 288 /* 289 * read the head block of the log and check the header 290 */ 291 STATIC int 292 xlog_header_check_mount( 293 xfs_mount_t *mp, 294 xlog_rec_header_t *head) 295 { 296 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM); 297 298 if (uuid_is_nil(&head->h_fs_uuid)) { 299 /* 300 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 301 * h_fs_uuid is nil, we assume this log was last mounted 302 * by IRIX and continue. 303 */ 304 xlog_warn("XFS: nil uuid in log - IRIX style log"); 305 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 306 xlog_warn("XFS: log has mismatched uuid - can't recover"); 307 xlog_header_check_dump(mp, head); 308 XFS_ERROR_REPORT("xlog_header_check_mount", 309 XFS_ERRLEVEL_HIGH, mp); 310 return XFS_ERROR(EFSCORRUPTED); 311 } 312 return 0; 313 } 314 315 STATIC void 316 xlog_recover_iodone( 317 struct xfs_buf *bp) 318 { 319 if (XFS_BUF_GETERROR(bp)) { 320 /* 321 * We're not going to bother about retrying 322 * this during recovery. One strike! 323 */ 324 xfs_ioerror_alert("xlog_recover_iodone", 325 bp->b_target->bt_mount, bp, 326 XFS_BUF_ADDR(bp)); 327 xfs_force_shutdown(bp->b_target->bt_mount, 328 SHUTDOWN_META_IO_ERROR); 329 } 330 XFS_BUF_CLR_IODONE_FUNC(bp); 331 xfs_buf_ioend(bp, 0); 332 } 333 334 /* 335 * This routine finds (to an approximation) the first block in the physical 336 * log which contains the given cycle. It uses a binary search algorithm. 337 * Note that the algorithm can not be perfect because the disk will not 338 * necessarily be perfect. 339 */ 340 STATIC int 341 xlog_find_cycle_start( 342 xlog_t *log, 343 xfs_buf_t *bp, 344 xfs_daddr_t first_blk, 345 xfs_daddr_t *last_blk, 346 uint cycle) 347 { 348 xfs_caddr_t offset; 349 xfs_daddr_t mid_blk; 350 xfs_daddr_t end_blk; 351 uint mid_cycle; 352 int error; 353 354 end_blk = *last_blk; 355 mid_blk = BLK_AVG(first_blk, end_blk); 356 while (mid_blk != first_blk && mid_blk != end_blk) { 357 error = xlog_bread(log, mid_blk, 1, bp, &offset); 358 if (error) 359 return error; 360 mid_cycle = xlog_get_cycle(offset); 361 if (mid_cycle == cycle) 362 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 363 else 364 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 365 mid_blk = BLK_AVG(first_blk, end_blk); 366 } 367 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 368 (mid_blk == end_blk && mid_blk-1 == first_blk)); 369 370 *last_blk = end_blk; 371 372 return 0; 373 } 374 375 /* 376 * Check that a range of blocks does not contain stop_on_cycle_no. 377 * Fill in *new_blk with the block offset where such a block is 378 * found, or with -1 (an invalid block number) if there is no such 379 * block in the range. The scan needs to occur from front to back 380 * and the pointer into the region must be updated since a later 381 * routine will need to perform another test. 382 */ 383 STATIC int 384 xlog_find_verify_cycle( 385 xlog_t *log, 386 xfs_daddr_t start_blk, 387 int nbblks, 388 uint stop_on_cycle_no, 389 xfs_daddr_t *new_blk) 390 { 391 xfs_daddr_t i, j; 392 uint cycle; 393 xfs_buf_t *bp; 394 xfs_daddr_t bufblks; 395 xfs_caddr_t buf = NULL; 396 int error = 0; 397 398 /* 399 * Greedily allocate a buffer big enough to handle the full 400 * range of basic blocks we'll be examining. If that fails, 401 * try a smaller size. We need to be able to read at least 402 * a log sector, or we're out of luck. 403 */ 404 bufblks = 1 << ffs(nbblks); 405 while (!(bp = xlog_get_bp(log, bufblks))) { 406 bufblks >>= 1; 407 if (bufblks < log->l_sectBBsize) 408 return ENOMEM; 409 } 410 411 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 412 int bcount; 413 414 bcount = min(bufblks, (start_blk + nbblks - i)); 415 416 error = xlog_bread(log, i, bcount, bp, &buf); 417 if (error) 418 goto out; 419 420 for (j = 0; j < bcount; j++) { 421 cycle = xlog_get_cycle(buf); 422 if (cycle == stop_on_cycle_no) { 423 *new_blk = i+j; 424 goto out; 425 } 426 427 buf += BBSIZE; 428 } 429 } 430 431 *new_blk = -1; 432 433 out: 434 xlog_put_bp(bp); 435 return error; 436 } 437 438 /* 439 * Potentially backup over partial log record write. 440 * 441 * In the typical case, last_blk is the number of the block directly after 442 * a good log record. Therefore, we subtract one to get the block number 443 * of the last block in the given buffer. extra_bblks contains the number 444 * of blocks we would have read on a previous read. This happens when the 445 * last log record is split over the end of the physical log. 446 * 447 * extra_bblks is the number of blocks potentially verified on a previous 448 * call to this routine. 449 */ 450 STATIC int 451 xlog_find_verify_log_record( 452 xlog_t *log, 453 xfs_daddr_t start_blk, 454 xfs_daddr_t *last_blk, 455 int extra_bblks) 456 { 457 xfs_daddr_t i; 458 xfs_buf_t *bp; 459 xfs_caddr_t offset = NULL; 460 xlog_rec_header_t *head = NULL; 461 int error = 0; 462 int smallmem = 0; 463 int num_blks = *last_blk - start_blk; 464 int xhdrs; 465 466 ASSERT(start_blk != 0 || *last_blk != start_blk); 467 468 if (!(bp = xlog_get_bp(log, num_blks))) { 469 if (!(bp = xlog_get_bp(log, 1))) 470 return ENOMEM; 471 smallmem = 1; 472 } else { 473 error = xlog_bread(log, start_blk, num_blks, bp, &offset); 474 if (error) 475 goto out; 476 offset += ((num_blks - 1) << BBSHIFT); 477 } 478 479 for (i = (*last_blk) - 1; i >= 0; i--) { 480 if (i < start_blk) { 481 /* valid log record not found */ 482 xlog_warn( 483 "XFS: Log inconsistent (didn't find previous header)"); 484 ASSERT(0); 485 error = XFS_ERROR(EIO); 486 goto out; 487 } 488 489 if (smallmem) { 490 error = xlog_bread(log, i, 1, bp, &offset); 491 if (error) 492 goto out; 493 } 494 495 head = (xlog_rec_header_t *)offset; 496 497 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno)) 498 break; 499 500 if (!smallmem) 501 offset -= BBSIZE; 502 } 503 504 /* 505 * We hit the beginning of the physical log & still no header. Return 506 * to caller. If caller can handle a return of -1, then this routine 507 * will be called again for the end of the physical log. 508 */ 509 if (i == -1) { 510 error = -1; 511 goto out; 512 } 513 514 /* 515 * We have the final block of the good log (the first block 516 * of the log record _before_ the head. So we check the uuid. 517 */ 518 if ((error = xlog_header_check_mount(log->l_mp, head))) 519 goto out; 520 521 /* 522 * We may have found a log record header before we expected one. 523 * last_blk will be the 1st block # with a given cycle #. We may end 524 * up reading an entire log record. In this case, we don't want to 525 * reset last_blk. Only when last_blk points in the middle of a log 526 * record do we update last_blk. 527 */ 528 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 529 uint h_size = be32_to_cpu(head->h_size); 530 531 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 532 if (h_size % XLOG_HEADER_CYCLE_SIZE) 533 xhdrs++; 534 } else { 535 xhdrs = 1; 536 } 537 538 if (*last_blk - i + extra_bblks != 539 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 540 *last_blk = i; 541 542 out: 543 xlog_put_bp(bp); 544 return error; 545 } 546 547 /* 548 * Head is defined to be the point of the log where the next log write 549 * write could go. This means that incomplete LR writes at the end are 550 * eliminated when calculating the head. We aren't guaranteed that previous 551 * LR have complete transactions. We only know that a cycle number of 552 * current cycle number -1 won't be present in the log if we start writing 553 * from our current block number. 554 * 555 * last_blk contains the block number of the first block with a given 556 * cycle number. 557 * 558 * Return: zero if normal, non-zero if error. 559 */ 560 STATIC int 561 xlog_find_head( 562 xlog_t *log, 563 xfs_daddr_t *return_head_blk) 564 { 565 xfs_buf_t *bp; 566 xfs_caddr_t offset; 567 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 568 int num_scan_bblks; 569 uint first_half_cycle, last_half_cycle; 570 uint stop_on_cycle; 571 int error, log_bbnum = log->l_logBBsize; 572 573 /* Is the end of the log device zeroed? */ 574 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) { 575 *return_head_blk = first_blk; 576 577 /* Is the whole lot zeroed? */ 578 if (!first_blk) { 579 /* Linux XFS shouldn't generate totally zeroed logs - 580 * mkfs etc write a dummy unmount record to a fresh 581 * log so we can store the uuid in there 582 */ 583 xlog_warn("XFS: totally zeroed log"); 584 } 585 586 return 0; 587 } else if (error) { 588 xlog_warn("XFS: empty log check failed"); 589 return error; 590 } 591 592 first_blk = 0; /* get cycle # of 1st block */ 593 bp = xlog_get_bp(log, 1); 594 if (!bp) 595 return ENOMEM; 596 597 error = xlog_bread(log, 0, 1, bp, &offset); 598 if (error) 599 goto bp_err; 600 601 first_half_cycle = xlog_get_cycle(offset); 602 603 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 604 error = xlog_bread(log, last_blk, 1, bp, &offset); 605 if (error) 606 goto bp_err; 607 608 last_half_cycle = xlog_get_cycle(offset); 609 ASSERT(last_half_cycle != 0); 610 611 /* 612 * If the 1st half cycle number is equal to the last half cycle number, 613 * then the entire log is stamped with the same cycle number. In this 614 * case, head_blk can't be set to zero (which makes sense). The below 615 * math doesn't work out properly with head_blk equal to zero. Instead, 616 * we set it to log_bbnum which is an invalid block number, but this 617 * value makes the math correct. If head_blk doesn't changed through 618 * all the tests below, *head_blk is set to zero at the very end rather 619 * than log_bbnum. In a sense, log_bbnum and zero are the same block 620 * in a circular file. 621 */ 622 if (first_half_cycle == last_half_cycle) { 623 /* 624 * In this case we believe that the entire log should have 625 * cycle number last_half_cycle. We need to scan backwards 626 * from the end verifying that there are no holes still 627 * containing last_half_cycle - 1. If we find such a hole, 628 * then the start of that hole will be the new head. The 629 * simple case looks like 630 * x | x ... | x - 1 | x 631 * Another case that fits this picture would be 632 * x | x + 1 | x ... | x 633 * In this case the head really is somewhere at the end of the 634 * log, as one of the latest writes at the beginning was 635 * incomplete. 636 * One more case is 637 * x | x + 1 | x ... | x - 1 | x 638 * This is really the combination of the above two cases, and 639 * the head has to end up at the start of the x-1 hole at the 640 * end of the log. 641 * 642 * In the 256k log case, we will read from the beginning to the 643 * end of the log and search for cycle numbers equal to x-1. 644 * We don't worry about the x+1 blocks that we encounter, 645 * because we know that they cannot be the head since the log 646 * started with x. 647 */ 648 head_blk = log_bbnum; 649 stop_on_cycle = last_half_cycle - 1; 650 } else { 651 /* 652 * In this case we want to find the first block with cycle 653 * number matching last_half_cycle. We expect the log to be 654 * some variation on 655 * x + 1 ... | x ... | x 656 * The first block with cycle number x (last_half_cycle) will 657 * be where the new head belongs. First we do a binary search 658 * for the first occurrence of last_half_cycle. The binary 659 * search may not be totally accurate, so then we scan back 660 * from there looking for occurrences of last_half_cycle before 661 * us. If that backwards scan wraps around the beginning of 662 * the log, then we look for occurrences of last_half_cycle - 1 663 * at the end of the log. The cases we're looking for look 664 * like 665 * v binary search stopped here 666 * x + 1 ... | x | x + 1 | x ... | x 667 * ^ but we want to locate this spot 668 * or 669 * <---------> less than scan distance 670 * x + 1 ... | x ... | x - 1 | x 671 * ^ we want to locate this spot 672 */ 673 stop_on_cycle = last_half_cycle; 674 if ((error = xlog_find_cycle_start(log, bp, first_blk, 675 &head_blk, last_half_cycle))) 676 goto bp_err; 677 } 678 679 /* 680 * Now validate the answer. Scan back some number of maximum possible 681 * blocks and make sure each one has the expected cycle number. The 682 * maximum is determined by the total possible amount of buffering 683 * in the in-core log. The following number can be made tighter if 684 * we actually look at the block size of the filesystem. 685 */ 686 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 687 if (head_blk >= num_scan_bblks) { 688 /* 689 * We are guaranteed that the entire check can be performed 690 * in one buffer. 691 */ 692 start_blk = head_blk - num_scan_bblks; 693 if ((error = xlog_find_verify_cycle(log, 694 start_blk, num_scan_bblks, 695 stop_on_cycle, &new_blk))) 696 goto bp_err; 697 if (new_blk != -1) 698 head_blk = new_blk; 699 } else { /* need to read 2 parts of log */ 700 /* 701 * We are going to scan backwards in the log in two parts. 702 * First we scan the physical end of the log. In this part 703 * of the log, we are looking for blocks with cycle number 704 * last_half_cycle - 1. 705 * If we find one, then we know that the log starts there, as 706 * we've found a hole that didn't get written in going around 707 * the end of the physical log. The simple case for this is 708 * x + 1 ... | x ... | x - 1 | x 709 * <---------> less than scan distance 710 * If all of the blocks at the end of the log have cycle number 711 * last_half_cycle, then we check the blocks at the start of 712 * the log looking for occurrences of last_half_cycle. If we 713 * find one, then our current estimate for the location of the 714 * first occurrence of last_half_cycle is wrong and we move 715 * back to the hole we've found. This case looks like 716 * x + 1 ... | x | x + 1 | x ... 717 * ^ binary search stopped here 718 * Another case we need to handle that only occurs in 256k 719 * logs is 720 * x + 1 ... | x ... | x+1 | x ... 721 * ^ binary search stops here 722 * In a 256k log, the scan at the end of the log will see the 723 * x + 1 blocks. We need to skip past those since that is 724 * certainly not the head of the log. By searching for 725 * last_half_cycle-1 we accomplish that. 726 */ 727 ASSERT(head_blk <= INT_MAX && 728 (xfs_daddr_t) num_scan_bblks >= head_blk); 729 start_blk = log_bbnum - (num_scan_bblks - head_blk); 730 if ((error = xlog_find_verify_cycle(log, start_blk, 731 num_scan_bblks - (int)head_blk, 732 (stop_on_cycle - 1), &new_blk))) 733 goto bp_err; 734 if (new_blk != -1) { 735 head_blk = new_blk; 736 goto validate_head; 737 } 738 739 /* 740 * Scan beginning of log now. The last part of the physical 741 * log is good. This scan needs to verify that it doesn't find 742 * the last_half_cycle. 743 */ 744 start_blk = 0; 745 ASSERT(head_blk <= INT_MAX); 746 if ((error = xlog_find_verify_cycle(log, 747 start_blk, (int)head_blk, 748 stop_on_cycle, &new_blk))) 749 goto bp_err; 750 if (new_blk != -1) 751 head_blk = new_blk; 752 } 753 754 validate_head: 755 /* 756 * Now we need to make sure head_blk is not pointing to a block in 757 * the middle of a log record. 758 */ 759 num_scan_bblks = XLOG_REC_SHIFT(log); 760 if (head_blk >= num_scan_bblks) { 761 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 762 763 /* start ptr at last block ptr before head_blk */ 764 if ((error = xlog_find_verify_log_record(log, start_blk, 765 &head_blk, 0)) == -1) { 766 error = XFS_ERROR(EIO); 767 goto bp_err; 768 } else if (error) 769 goto bp_err; 770 } else { 771 start_blk = 0; 772 ASSERT(head_blk <= INT_MAX); 773 if ((error = xlog_find_verify_log_record(log, start_blk, 774 &head_blk, 0)) == -1) { 775 /* We hit the beginning of the log during our search */ 776 start_blk = log_bbnum - (num_scan_bblks - head_blk); 777 new_blk = log_bbnum; 778 ASSERT(start_blk <= INT_MAX && 779 (xfs_daddr_t) log_bbnum-start_blk >= 0); 780 ASSERT(head_blk <= INT_MAX); 781 if ((error = xlog_find_verify_log_record(log, 782 start_blk, &new_blk, 783 (int)head_blk)) == -1) { 784 error = XFS_ERROR(EIO); 785 goto bp_err; 786 } else if (error) 787 goto bp_err; 788 if (new_blk != log_bbnum) 789 head_blk = new_blk; 790 } else if (error) 791 goto bp_err; 792 } 793 794 xlog_put_bp(bp); 795 if (head_blk == log_bbnum) 796 *return_head_blk = 0; 797 else 798 *return_head_blk = head_blk; 799 /* 800 * When returning here, we have a good block number. Bad block 801 * means that during a previous crash, we didn't have a clean break 802 * from cycle number N to cycle number N-1. In this case, we need 803 * to find the first block with cycle number N-1. 804 */ 805 return 0; 806 807 bp_err: 808 xlog_put_bp(bp); 809 810 if (error) 811 xlog_warn("XFS: failed to find log head"); 812 return error; 813 } 814 815 /* 816 * Find the sync block number or the tail of the log. 817 * 818 * This will be the block number of the last record to have its 819 * associated buffers synced to disk. Every log record header has 820 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 821 * to get a sync block number. The only concern is to figure out which 822 * log record header to believe. 823 * 824 * The following algorithm uses the log record header with the largest 825 * lsn. The entire log record does not need to be valid. We only care 826 * that the header is valid. 827 * 828 * We could speed up search by using current head_blk buffer, but it is not 829 * available. 830 */ 831 STATIC int 832 xlog_find_tail( 833 xlog_t *log, 834 xfs_daddr_t *head_blk, 835 xfs_daddr_t *tail_blk) 836 { 837 xlog_rec_header_t *rhead; 838 xlog_op_header_t *op_head; 839 xfs_caddr_t offset = NULL; 840 xfs_buf_t *bp; 841 int error, i, found; 842 xfs_daddr_t umount_data_blk; 843 xfs_daddr_t after_umount_blk; 844 xfs_lsn_t tail_lsn; 845 int hblks; 846 847 found = 0; 848 849 /* 850 * Find previous log record 851 */ 852 if ((error = xlog_find_head(log, head_blk))) 853 return error; 854 855 bp = xlog_get_bp(log, 1); 856 if (!bp) 857 return ENOMEM; 858 if (*head_blk == 0) { /* special case */ 859 error = xlog_bread(log, 0, 1, bp, &offset); 860 if (error) 861 goto done; 862 863 if (xlog_get_cycle(offset) == 0) { 864 *tail_blk = 0; 865 /* leave all other log inited values alone */ 866 goto done; 867 } 868 } 869 870 /* 871 * Search backwards looking for log record header block 872 */ 873 ASSERT(*head_blk < INT_MAX); 874 for (i = (int)(*head_blk) - 1; i >= 0; i--) { 875 error = xlog_bread(log, i, 1, bp, &offset); 876 if (error) 877 goto done; 878 879 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) { 880 found = 1; 881 break; 882 } 883 } 884 /* 885 * If we haven't found the log record header block, start looking 886 * again from the end of the physical log. XXXmiken: There should be 887 * a check here to make sure we didn't search more than N blocks in 888 * the previous code. 889 */ 890 if (!found) { 891 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) { 892 error = xlog_bread(log, i, 1, bp, &offset); 893 if (error) 894 goto done; 895 896 if (XLOG_HEADER_MAGIC_NUM == 897 be32_to_cpu(*(__be32 *)offset)) { 898 found = 2; 899 break; 900 } 901 } 902 } 903 if (!found) { 904 xlog_warn("XFS: xlog_find_tail: couldn't find sync record"); 905 ASSERT(0); 906 return XFS_ERROR(EIO); 907 } 908 909 /* find blk_no of tail of log */ 910 rhead = (xlog_rec_header_t *)offset; 911 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 912 913 /* 914 * Reset log values according to the state of the log when we 915 * crashed. In the case where head_blk == 0, we bump curr_cycle 916 * one because the next write starts a new cycle rather than 917 * continuing the cycle of the last good log record. At this 918 * point we have guaranteed that all partial log records have been 919 * accounted for. Therefore, we know that the last good log record 920 * written was complete and ended exactly on the end boundary 921 * of the physical log. 922 */ 923 log->l_prev_block = i; 924 log->l_curr_block = (int)*head_blk; 925 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 926 if (found == 2) 927 log->l_curr_cycle++; 928 log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn); 929 log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn); 930 log->l_grant_reserve_cycle = log->l_curr_cycle; 931 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block); 932 log->l_grant_write_cycle = log->l_curr_cycle; 933 log->l_grant_write_bytes = BBTOB(log->l_curr_block); 934 935 /* 936 * Look for unmount record. If we find it, then we know there 937 * was a clean unmount. Since 'i' could be the last block in 938 * the physical log, we convert to a log block before comparing 939 * to the head_blk. 940 * 941 * Save the current tail lsn to use to pass to 942 * xlog_clear_stale_blocks() below. We won't want to clear the 943 * unmount record if there is one, so we pass the lsn of the 944 * unmount record rather than the block after it. 945 */ 946 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 947 int h_size = be32_to_cpu(rhead->h_size); 948 int h_version = be32_to_cpu(rhead->h_version); 949 950 if ((h_version & XLOG_VERSION_2) && 951 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 952 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 953 if (h_size % XLOG_HEADER_CYCLE_SIZE) 954 hblks++; 955 } else { 956 hblks = 1; 957 } 958 } else { 959 hblks = 1; 960 } 961 after_umount_blk = (i + hblks + (int) 962 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize; 963 tail_lsn = log->l_tail_lsn; 964 if (*head_blk == after_umount_blk && 965 be32_to_cpu(rhead->h_num_logops) == 1) { 966 umount_data_blk = (i + hblks) % log->l_logBBsize; 967 error = xlog_bread(log, umount_data_blk, 1, bp, &offset); 968 if (error) 969 goto done; 970 971 op_head = (xlog_op_header_t *)offset; 972 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 973 /* 974 * Set tail and last sync so that newly written 975 * log records will point recovery to after the 976 * current unmount record. 977 */ 978 log->l_tail_lsn = 979 xlog_assign_lsn(log->l_curr_cycle, 980 after_umount_blk); 981 log->l_last_sync_lsn = 982 xlog_assign_lsn(log->l_curr_cycle, 983 after_umount_blk); 984 *tail_blk = after_umount_blk; 985 986 /* 987 * Note that the unmount was clean. If the unmount 988 * was not clean, we need to know this to rebuild the 989 * superblock counters from the perag headers if we 990 * have a filesystem using non-persistent counters. 991 */ 992 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 993 } 994 } 995 996 /* 997 * Make sure that there are no blocks in front of the head 998 * with the same cycle number as the head. This can happen 999 * because we allow multiple outstanding log writes concurrently, 1000 * and the later writes might make it out before earlier ones. 1001 * 1002 * We use the lsn from before modifying it so that we'll never 1003 * overwrite the unmount record after a clean unmount. 1004 * 1005 * Do this only if we are going to recover the filesystem 1006 * 1007 * NOTE: This used to say "if (!readonly)" 1008 * However on Linux, we can & do recover a read-only filesystem. 1009 * We only skip recovery if NORECOVERY is specified on mount, 1010 * in which case we would not be here. 1011 * 1012 * But... if the -device- itself is readonly, just skip this. 1013 * We can't recover this device anyway, so it won't matter. 1014 */ 1015 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) 1016 error = xlog_clear_stale_blocks(log, tail_lsn); 1017 1018 done: 1019 xlog_put_bp(bp); 1020 1021 if (error) 1022 xlog_warn("XFS: failed to locate log tail"); 1023 return error; 1024 } 1025 1026 /* 1027 * Is the log zeroed at all? 1028 * 1029 * The last binary search should be changed to perform an X block read 1030 * once X becomes small enough. You can then search linearly through 1031 * the X blocks. This will cut down on the number of reads we need to do. 1032 * 1033 * If the log is partially zeroed, this routine will pass back the blkno 1034 * of the first block with cycle number 0. It won't have a complete LR 1035 * preceding it. 1036 * 1037 * Return: 1038 * 0 => the log is completely written to 1039 * -1 => use *blk_no as the first block of the log 1040 * >0 => error has occurred 1041 */ 1042 STATIC int 1043 xlog_find_zeroed( 1044 xlog_t *log, 1045 xfs_daddr_t *blk_no) 1046 { 1047 xfs_buf_t *bp; 1048 xfs_caddr_t offset; 1049 uint first_cycle, last_cycle; 1050 xfs_daddr_t new_blk, last_blk, start_blk; 1051 xfs_daddr_t num_scan_bblks; 1052 int error, log_bbnum = log->l_logBBsize; 1053 1054 *blk_no = 0; 1055 1056 /* check totally zeroed log */ 1057 bp = xlog_get_bp(log, 1); 1058 if (!bp) 1059 return ENOMEM; 1060 error = xlog_bread(log, 0, 1, bp, &offset); 1061 if (error) 1062 goto bp_err; 1063 1064 first_cycle = xlog_get_cycle(offset); 1065 if (first_cycle == 0) { /* completely zeroed log */ 1066 *blk_no = 0; 1067 xlog_put_bp(bp); 1068 return -1; 1069 } 1070 1071 /* check partially zeroed log */ 1072 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset); 1073 if (error) 1074 goto bp_err; 1075 1076 last_cycle = xlog_get_cycle(offset); 1077 if (last_cycle != 0) { /* log completely written to */ 1078 xlog_put_bp(bp); 1079 return 0; 1080 } else if (first_cycle != 1) { 1081 /* 1082 * If the cycle of the last block is zero, the cycle of 1083 * the first block must be 1. If it's not, maybe we're 1084 * not looking at a log... Bail out. 1085 */ 1086 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)"); 1087 return XFS_ERROR(EINVAL); 1088 } 1089 1090 /* we have a partially zeroed log */ 1091 last_blk = log_bbnum-1; 1092 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1093 goto bp_err; 1094 1095 /* 1096 * Validate the answer. Because there is no way to guarantee that 1097 * the entire log is made up of log records which are the same size, 1098 * we scan over the defined maximum blocks. At this point, the maximum 1099 * is not chosen to mean anything special. XXXmiken 1100 */ 1101 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1102 ASSERT(num_scan_bblks <= INT_MAX); 1103 1104 if (last_blk < num_scan_bblks) 1105 num_scan_bblks = last_blk; 1106 start_blk = last_blk - num_scan_bblks; 1107 1108 /* 1109 * We search for any instances of cycle number 0 that occur before 1110 * our current estimate of the head. What we're trying to detect is 1111 * 1 ... | 0 | 1 | 0... 1112 * ^ binary search ends here 1113 */ 1114 if ((error = xlog_find_verify_cycle(log, start_blk, 1115 (int)num_scan_bblks, 0, &new_blk))) 1116 goto bp_err; 1117 if (new_blk != -1) 1118 last_blk = new_blk; 1119 1120 /* 1121 * Potentially backup over partial log record write. We don't need 1122 * to search the end of the log because we know it is zero. 1123 */ 1124 if ((error = xlog_find_verify_log_record(log, start_blk, 1125 &last_blk, 0)) == -1) { 1126 error = XFS_ERROR(EIO); 1127 goto bp_err; 1128 } else if (error) 1129 goto bp_err; 1130 1131 *blk_no = last_blk; 1132 bp_err: 1133 xlog_put_bp(bp); 1134 if (error) 1135 return error; 1136 return -1; 1137 } 1138 1139 /* 1140 * These are simple subroutines used by xlog_clear_stale_blocks() below 1141 * to initialize a buffer full of empty log record headers and write 1142 * them into the log. 1143 */ 1144 STATIC void 1145 xlog_add_record( 1146 xlog_t *log, 1147 xfs_caddr_t buf, 1148 int cycle, 1149 int block, 1150 int tail_cycle, 1151 int tail_block) 1152 { 1153 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1154 1155 memset(buf, 0, BBSIZE); 1156 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1157 recp->h_cycle = cpu_to_be32(cycle); 1158 recp->h_version = cpu_to_be32( 1159 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1160 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1161 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1162 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1163 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1164 } 1165 1166 STATIC int 1167 xlog_write_log_records( 1168 xlog_t *log, 1169 int cycle, 1170 int start_block, 1171 int blocks, 1172 int tail_cycle, 1173 int tail_block) 1174 { 1175 xfs_caddr_t offset; 1176 xfs_buf_t *bp; 1177 int balign, ealign; 1178 int sectbb = log->l_sectBBsize; 1179 int end_block = start_block + blocks; 1180 int bufblks; 1181 int error = 0; 1182 int i, j = 0; 1183 1184 /* 1185 * Greedily allocate a buffer big enough to handle the full 1186 * range of basic blocks to be written. If that fails, try 1187 * a smaller size. We need to be able to write at least a 1188 * log sector, or we're out of luck. 1189 */ 1190 bufblks = 1 << ffs(blocks); 1191 while (!(bp = xlog_get_bp(log, bufblks))) { 1192 bufblks >>= 1; 1193 if (bufblks < sectbb) 1194 return ENOMEM; 1195 } 1196 1197 /* We may need to do a read at the start to fill in part of 1198 * the buffer in the starting sector not covered by the first 1199 * write below. 1200 */ 1201 balign = round_down(start_block, sectbb); 1202 if (balign != start_block) { 1203 error = xlog_bread_noalign(log, start_block, 1, bp); 1204 if (error) 1205 goto out_put_bp; 1206 1207 j = start_block - balign; 1208 } 1209 1210 for (i = start_block; i < end_block; i += bufblks) { 1211 int bcount, endcount; 1212 1213 bcount = min(bufblks, end_block - start_block); 1214 endcount = bcount - j; 1215 1216 /* We may need to do a read at the end to fill in part of 1217 * the buffer in the final sector not covered by the write. 1218 * If this is the same sector as the above read, skip it. 1219 */ 1220 ealign = round_down(end_block, sectbb); 1221 if (j == 0 && (start_block + endcount > ealign)) { 1222 offset = XFS_BUF_PTR(bp); 1223 balign = BBTOB(ealign - start_block); 1224 error = XFS_BUF_SET_PTR(bp, offset + balign, 1225 BBTOB(sectbb)); 1226 if (error) 1227 break; 1228 1229 error = xlog_bread_noalign(log, ealign, sectbb, bp); 1230 if (error) 1231 break; 1232 1233 error = XFS_BUF_SET_PTR(bp, offset, bufblks); 1234 if (error) 1235 break; 1236 } 1237 1238 offset = xlog_align(log, start_block, endcount, bp); 1239 for (; j < endcount; j++) { 1240 xlog_add_record(log, offset, cycle, i+j, 1241 tail_cycle, tail_block); 1242 offset += BBSIZE; 1243 } 1244 error = xlog_bwrite(log, start_block, endcount, bp); 1245 if (error) 1246 break; 1247 start_block += endcount; 1248 j = 0; 1249 } 1250 1251 out_put_bp: 1252 xlog_put_bp(bp); 1253 return error; 1254 } 1255 1256 /* 1257 * This routine is called to blow away any incomplete log writes out 1258 * in front of the log head. We do this so that we won't become confused 1259 * if we come up, write only a little bit more, and then crash again. 1260 * If we leave the partial log records out there, this situation could 1261 * cause us to think those partial writes are valid blocks since they 1262 * have the current cycle number. We get rid of them by overwriting them 1263 * with empty log records with the old cycle number rather than the 1264 * current one. 1265 * 1266 * The tail lsn is passed in rather than taken from 1267 * the log so that we will not write over the unmount record after a 1268 * clean unmount in a 512 block log. Doing so would leave the log without 1269 * any valid log records in it until a new one was written. If we crashed 1270 * during that time we would not be able to recover. 1271 */ 1272 STATIC int 1273 xlog_clear_stale_blocks( 1274 xlog_t *log, 1275 xfs_lsn_t tail_lsn) 1276 { 1277 int tail_cycle, head_cycle; 1278 int tail_block, head_block; 1279 int tail_distance, max_distance; 1280 int distance; 1281 int error; 1282 1283 tail_cycle = CYCLE_LSN(tail_lsn); 1284 tail_block = BLOCK_LSN(tail_lsn); 1285 head_cycle = log->l_curr_cycle; 1286 head_block = log->l_curr_block; 1287 1288 /* 1289 * Figure out the distance between the new head of the log 1290 * and the tail. We want to write over any blocks beyond the 1291 * head that we may have written just before the crash, but 1292 * we don't want to overwrite the tail of the log. 1293 */ 1294 if (head_cycle == tail_cycle) { 1295 /* 1296 * The tail is behind the head in the physical log, 1297 * so the distance from the head to the tail is the 1298 * distance from the head to the end of the log plus 1299 * the distance from the beginning of the log to the 1300 * tail. 1301 */ 1302 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1303 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1304 XFS_ERRLEVEL_LOW, log->l_mp); 1305 return XFS_ERROR(EFSCORRUPTED); 1306 } 1307 tail_distance = tail_block + (log->l_logBBsize - head_block); 1308 } else { 1309 /* 1310 * The head is behind the tail in the physical log, 1311 * so the distance from the head to the tail is just 1312 * the tail block minus the head block. 1313 */ 1314 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1315 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1316 XFS_ERRLEVEL_LOW, log->l_mp); 1317 return XFS_ERROR(EFSCORRUPTED); 1318 } 1319 tail_distance = tail_block - head_block; 1320 } 1321 1322 /* 1323 * If the head is right up against the tail, we can't clear 1324 * anything. 1325 */ 1326 if (tail_distance <= 0) { 1327 ASSERT(tail_distance == 0); 1328 return 0; 1329 } 1330 1331 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1332 /* 1333 * Take the smaller of the maximum amount of outstanding I/O 1334 * we could have and the distance to the tail to clear out. 1335 * We take the smaller so that we don't overwrite the tail and 1336 * we don't waste all day writing from the head to the tail 1337 * for no reason. 1338 */ 1339 max_distance = MIN(max_distance, tail_distance); 1340 1341 if ((head_block + max_distance) <= log->l_logBBsize) { 1342 /* 1343 * We can stomp all the blocks we need to without 1344 * wrapping around the end of the log. Just do it 1345 * in a single write. Use the cycle number of the 1346 * current cycle minus one so that the log will look like: 1347 * n ... | n - 1 ... 1348 */ 1349 error = xlog_write_log_records(log, (head_cycle - 1), 1350 head_block, max_distance, tail_cycle, 1351 tail_block); 1352 if (error) 1353 return error; 1354 } else { 1355 /* 1356 * We need to wrap around the end of the physical log in 1357 * order to clear all the blocks. Do it in two separate 1358 * I/Os. The first write should be from the head to the 1359 * end of the physical log, and it should use the current 1360 * cycle number minus one just like above. 1361 */ 1362 distance = log->l_logBBsize - head_block; 1363 error = xlog_write_log_records(log, (head_cycle - 1), 1364 head_block, distance, tail_cycle, 1365 tail_block); 1366 1367 if (error) 1368 return error; 1369 1370 /* 1371 * Now write the blocks at the start of the physical log. 1372 * This writes the remainder of the blocks we want to clear. 1373 * It uses the current cycle number since we're now on the 1374 * same cycle as the head so that we get: 1375 * n ... n ... | n - 1 ... 1376 * ^^^^^ blocks we're writing 1377 */ 1378 distance = max_distance - (log->l_logBBsize - head_block); 1379 error = xlog_write_log_records(log, head_cycle, 0, distance, 1380 tail_cycle, tail_block); 1381 if (error) 1382 return error; 1383 } 1384 1385 return 0; 1386 } 1387 1388 /****************************************************************************** 1389 * 1390 * Log recover routines 1391 * 1392 ****************************************************************************** 1393 */ 1394 1395 STATIC xlog_recover_t * 1396 xlog_recover_find_tid( 1397 struct hlist_head *head, 1398 xlog_tid_t tid) 1399 { 1400 xlog_recover_t *trans; 1401 struct hlist_node *n; 1402 1403 hlist_for_each_entry(trans, n, head, r_list) { 1404 if (trans->r_log_tid == tid) 1405 return trans; 1406 } 1407 return NULL; 1408 } 1409 1410 STATIC void 1411 xlog_recover_new_tid( 1412 struct hlist_head *head, 1413 xlog_tid_t tid, 1414 xfs_lsn_t lsn) 1415 { 1416 xlog_recover_t *trans; 1417 1418 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP); 1419 trans->r_log_tid = tid; 1420 trans->r_lsn = lsn; 1421 INIT_LIST_HEAD(&trans->r_itemq); 1422 1423 INIT_HLIST_NODE(&trans->r_list); 1424 hlist_add_head(&trans->r_list, head); 1425 } 1426 1427 STATIC void 1428 xlog_recover_add_item( 1429 struct list_head *head) 1430 { 1431 xlog_recover_item_t *item; 1432 1433 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 1434 INIT_LIST_HEAD(&item->ri_list); 1435 list_add_tail(&item->ri_list, head); 1436 } 1437 1438 STATIC int 1439 xlog_recover_add_to_cont_trans( 1440 struct log *log, 1441 xlog_recover_t *trans, 1442 xfs_caddr_t dp, 1443 int len) 1444 { 1445 xlog_recover_item_t *item; 1446 xfs_caddr_t ptr, old_ptr; 1447 int old_len; 1448 1449 if (list_empty(&trans->r_itemq)) { 1450 /* finish copying rest of trans header */ 1451 xlog_recover_add_item(&trans->r_itemq); 1452 ptr = (xfs_caddr_t) &trans->r_theader + 1453 sizeof(xfs_trans_header_t) - len; 1454 memcpy(ptr, dp, len); /* d, s, l */ 1455 return 0; 1456 } 1457 /* take the tail entry */ 1458 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 1459 1460 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 1461 old_len = item->ri_buf[item->ri_cnt-1].i_len; 1462 1463 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u); 1464 memcpy(&ptr[old_len], dp, len); /* d, s, l */ 1465 item->ri_buf[item->ri_cnt-1].i_len += len; 1466 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 1467 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 1468 return 0; 1469 } 1470 1471 /* 1472 * The next region to add is the start of a new region. It could be 1473 * a whole region or it could be the first part of a new region. Because 1474 * of this, the assumption here is that the type and size fields of all 1475 * format structures fit into the first 32 bits of the structure. 1476 * 1477 * This works because all regions must be 32 bit aligned. Therefore, we 1478 * either have both fields or we have neither field. In the case we have 1479 * neither field, the data part of the region is zero length. We only have 1480 * a log_op_header and can throw away the header since a new one will appear 1481 * later. If we have at least 4 bytes, then we can determine how many regions 1482 * will appear in the current log item. 1483 */ 1484 STATIC int 1485 xlog_recover_add_to_trans( 1486 struct log *log, 1487 xlog_recover_t *trans, 1488 xfs_caddr_t dp, 1489 int len) 1490 { 1491 xfs_inode_log_format_t *in_f; /* any will do */ 1492 xlog_recover_item_t *item; 1493 xfs_caddr_t ptr; 1494 1495 if (!len) 1496 return 0; 1497 if (list_empty(&trans->r_itemq)) { 1498 /* we need to catch log corruptions here */ 1499 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 1500 xlog_warn("XFS: xlog_recover_add_to_trans: " 1501 "bad header magic number"); 1502 ASSERT(0); 1503 return XFS_ERROR(EIO); 1504 } 1505 if (len == sizeof(xfs_trans_header_t)) 1506 xlog_recover_add_item(&trans->r_itemq); 1507 memcpy(&trans->r_theader, dp, len); /* d, s, l */ 1508 return 0; 1509 } 1510 1511 ptr = kmem_alloc(len, KM_SLEEP); 1512 memcpy(ptr, dp, len); 1513 in_f = (xfs_inode_log_format_t *)ptr; 1514 1515 /* take the tail entry */ 1516 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 1517 if (item->ri_total != 0 && 1518 item->ri_total == item->ri_cnt) { 1519 /* tail item is in use, get a new one */ 1520 xlog_recover_add_item(&trans->r_itemq); 1521 item = list_entry(trans->r_itemq.prev, 1522 xlog_recover_item_t, ri_list); 1523 } 1524 1525 if (item->ri_total == 0) { /* first region to be added */ 1526 if (in_f->ilf_size == 0 || 1527 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 1528 xlog_warn( 1529 "XFS: bad number of regions (%d) in inode log format", 1530 in_f->ilf_size); 1531 ASSERT(0); 1532 return XFS_ERROR(EIO); 1533 } 1534 1535 item->ri_total = in_f->ilf_size; 1536 item->ri_buf = 1537 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 1538 KM_SLEEP); 1539 } 1540 ASSERT(item->ri_total > item->ri_cnt); 1541 /* Description region is ri_buf[0] */ 1542 item->ri_buf[item->ri_cnt].i_addr = ptr; 1543 item->ri_buf[item->ri_cnt].i_len = len; 1544 item->ri_cnt++; 1545 trace_xfs_log_recover_item_add(log, trans, item, 0); 1546 return 0; 1547 } 1548 1549 /* 1550 * Sort the log items in the transaction. Cancelled buffers need 1551 * to be put first so they are processed before any items that might 1552 * modify the buffers. If they are cancelled, then the modifications 1553 * don't need to be replayed. 1554 */ 1555 STATIC int 1556 xlog_recover_reorder_trans( 1557 struct log *log, 1558 xlog_recover_t *trans, 1559 int pass) 1560 { 1561 xlog_recover_item_t *item, *n; 1562 LIST_HEAD(sort_list); 1563 1564 list_splice_init(&trans->r_itemq, &sort_list); 1565 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1566 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1567 1568 switch (ITEM_TYPE(item)) { 1569 case XFS_LI_BUF: 1570 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 1571 trace_xfs_log_recover_item_reorder_head(log, 1572 trans, item, pass); 1573 list_move(&item->ri_list, &trans->r_itemq); 1574 break; 1575 } 1576 case XFS_LI_INODE: 1577 case XFS_LI_DQUOT: 1578 case XFS_LI_QUOTAOFF: 1579 case XFS_LI_EFD: 1580 case XFS_LI_EFI: 1581 trace_xfs_log_recover_item_reorder_tail(log, 1582 trans, item, pass); 1583 list_move_tail(&item->ri_list, &trans->r_itemq); 1584 break; 1585 default: 1586 xlog_warn( 1587 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation"); 1588 ASSERT(0); 1589 return XFS_ERROR(EIO); 1590 } 1591 } 1592 ASSERT(list_empty(&sort_list)); 1593 return 0; 1594 } 1595 1596 /* 1597 * Build up the table of buf cancel records so that we don't replay 1598 * cancelled data in the second pass. For buffer records that are 1599 * not cancel records, there is nothing to do here so we just return. 1600 * 1601 * If we get a cancel record which is already in the table, this indicates 1602 * that the buffer was cancelled multiple times. In order to ensure 1603 * that during pass 2 we keep the record in the table until we reach its 1604 * last occurrence in the log, we keep a reference count in the cancel 1605 * record in the table to tell us how many times we expect to see this 1606 * record during the second pass. 1607 */ 1608 STATIC void 1609 xlog_recover_do_buffer_pass1( 1610 xlog_t *log, 1611 xfs_buf_log_format_t *buf_f) 1612 { 1613 xfs_buf_cancel_t *bcp; 1614 xfs_buf_cancel_t *nextp; 1615 xfs_buf_cancel_t *prevp; 1616 xfs_buf_cancel_t **bucket; 1617 xfs_daddr_t blkno = 0; 1618 uint len = 0; 1619 ushort flags = 0; 1620 1621 switch (buf_f->blf_type) { 1622 case XFS_LI_BUF: 1623 blkno = buf_f->blf_blkno; 1624 len = buf_f->blf_len; 1625 flags = buf_f->blf_flags; 1626 break; 1627 } 1628 1629 /* 1630 * If this isn't a cancel buffer item, then just return. 1631 */ 1632 if (!(flags & XFS_BLF_CANCEL)) { 1633 trace_xfs_log_recover_buf_not_cancel(log, buf_f); 1634 return; 1635 } 1636 1637 /* 1638 * Insert an xfs_buf_cancel record into the hash table of 1639 * them. If there is already an identical record, bump 1640 * its reference count. 1641 */ 1642 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % 1643 XLOG_BC_TABLE_SIZE]; 1644 /* 1645 * If the hash bucket is empty then just insert a new record into 1646 * the bucket. 1647 */ 1648 if (*bucket == NULL) { 1649 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), 1650 KM_SLEEP); 1651 bcp->bc_blkno = blkno; 1652 bcp->bc_len = len; 1653 bcp->bc_refcount = 1; 1654 bcp->bc_next = NULL; 1655 *bucket = bcp; 1656 return; 1657 } 1658 1659 /* 1660 * The hash bucket is not empty, so search for duplicates of our 1661 * record. If we find one them just bump its refcount. If not 1662 * then add us at the end of the list. 1663 */ 1664 prevp = NULL; 1665 nextp = *bucket; 1666 while (nextp != NULL) { 1667 if (nextp->bc_blkno == blkno && nextp->bc_len == len) { 1668 nextp->bc_refcount++; 1669 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f); 1670 return; 1671 } 1672 prevp = nextp; 1673 nextp = nextp->bc_next; 1674 } 1675 ASSERT(prevp != NULL); 1676 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), 1677 KM_SLEEP); 1678 bcp->bc_blkno = blkno; 1679 bcp->bc_len = len; 1680 bcp->bc_refcount = 1; 1681 bcp->bc_next = NULL; 1682 prevp->bc_next = bcp; 1683 trace_xfs_log_recover_buf_cancel_add(log, buf_f); 1684 } 1685 1686 /* 1687 * Check to see whether the buffer being recovered has a corresponding 1688 * entry in the buffer cancel record table. If it does then return 1 1689 * so that it will be cancelled, otherwise return 0. If the buffer is 1690 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement 1691 * the refcount on the entry in the table and remove it from the table 1692 * if this is the last reference. 1693 * 1694 * We remove the cancel record from the table when we encounter its 1695 * last occurrence in the log so that if the same buffer is re-used 1696 * again after its last cancellation we actually replay the changes 1697 * made at that point. 1698 */ 1699 STATIC int 1700 xlog_check_buffer_cancelled( 1701 xlog_t *log, 1702 xfs_daddr_t blkno, 1703 uint len, 1704 ushort flags) 1705 { 1706 xfs_buf_cancel_t *bcp; 1707 xfs_buf_cancel_t *prevp; 1708 xfs_buf_cancel_t **bucket; 1709 1710 if (log->l_buf_cancel_table == NULL) { 1711 /* 1712 * There is nothing in the table built in pass one, 1713 * so this buffer must not be cancelled. 1714 */ 1715 ASSERT(!(flags & XFS_BLF_CANCEL)); 1716 return 0; 1717 } 1718 1719 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % 1720 XLOG_BC_TABLE_SIZE]; 1721 bcp = *bucket; 1722 if (bcp == NULL) { 1723 /* 1724 * There is no corresponding entry in the table built 1725 * in pass one, so this buffer has not been cancelled. 1726 */ 1727 ASSERT(!(flags & XFS_BLF_CANCEL)); 1728 return 0; 1729 } 1730 1731 /* 1732 * Search for an entry in the buffer cancel table that 1733 * matches our buffer. 1734 */ 1735 prevp = NULL; 1736 while (bcp != NULL) { 1737 if (bcp->bc_blkno == blkno && bcp->bc_len == len) { 1738 /* 1739 * We've go a match, so return 1 so that the 1740 * recovery of this buffer is cancelled. 1741 * If this buffer is actually a buffer cancel 1742 * log item, then decrement the refcount on the 1743 * one in the table and remove it if this is the 1744 * last reference. 1745 */ 1746 if (flags & XFS_BLF_CANCEL) { 1747 bcp->bc_refcount--; 1748 if (bcp->bc_refcount == 0) { 1749 if (prevp == NULL) { 1750 *bucket = bcp->bc_next; 1751 } else { 1752 prevp->bc_next = bcp->bc_next; 1753 } 1754 kmem_free(bcp); 1755 } 1756 } 1757 return 1; 1758 } 1759 prevp = bcp; 1760 bcp = bcp->bc_next; 1761 } 1762 /* 1763 * We didn't find a corresponding entry in the table, so 1764 * return 0 so that the buffer is NOT cancelled. 1765 */ 1766 ASSERT(!(flags & XFS_BLF_CANCEL)); 1767 return 0; 1768 } 1769 1770 STATIC int 1771 xlog_recover_do_buffer_pass2( 1772 xlog_t *log, 1773 xfs_buf_log_format_t *buf_f) 1774 { 1775 xfs_daddr_t blkno = 0; 1776 ushort flags = 0; 1777 uint len = 0; 1778 1779 switch (buf_f->blf_type) { 1780 case XFS_LI_BUF: 1781 blkno = buf_f->blf_blkno; 1782 flags = buf_f->blf_flags; 1783 len = buf_f->blf_len; 1784 break; 1785 } 1786 1787 return xlog_check_buffer_cancelled(log, blkno, len, flags); 1788 } 1789 1790 /* 1791 * Perform recovery for a buffer full of inodes. In these buffers, 1792 * the only data which should be recovered is that which corresponds 1793 * to the di_next_unlinked pointers in the on disk inode structures. 1794 * The rest of the data for the inodes is always logged through the 1795 * inodes themselves rather than the inode buffer and is recovered 1796 * in xlog_recover_do_inode_trans(). 1797 * 1798 * The only time when buffers full of inodes are fully recovered is 1799 * when the buffer is full of newly allocated inodes. In this case 1800 * the buffer will not be marked as an inode buffer and so will be 1801 * sent to xlog_recover_do_reg_buffer() below during recovery. 1802 */ 1803 STATIC int 1804 xlog_recover_do_inode_buffer( 1805 xfs_mount_t *mp, 1806 xlog_recover_item_t *item, 1807 xfs_buf_t *bp, 1808 xfs_buf_log_format_t *buf_f) 1809 { 1810 int i; 1811 int item_index; 1812 int bit; 1813 int nbits; 1814 int reg_buf_offset; 1815 int reg_buf_bytes; 1816 int next_unlinked_offset; 1817 int inodes_per_buf; 1818 xfs_agino_t *logged_nextp; 1819 xfs_agino_t *buffer_nextp; 1820 unsigned int *data_map = NULL; 1821 unsigned int map_size = 0; 1822 1823 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); 1824 1825 switch (buf_f->blf_type) { 1826 case XFS_LI_BUF: 1827 data_map = buf_f->blf_data_map; 1828 map_size = buf_f->blf_map_size; 1829 break; 1830 } 1831 /* 1832 * Set the variables corresponding to the current region to 1833 * 0 so that we'll initialize them on the first pass through 1834 * the loop. 1835 */ 1836 reg_buf_offset = 0; 1837 reg_buf_bytes = 0; 1838 bit = 0; 1839 nbits = 0; 1840 item_index = 0; 1841 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog; 1842 for (i = 0; i < inodes_per_buf; i++) { 1843 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 1844 offsetof(xfs_dinode_t, di_next_unlinked); 1845 1846 while (next_unlinked_offset >= 1847 (reg_buf_offset + reg_buf_bytes)) { 1848 /* 1849 * The next di_next_unlinked field is beyond 1850 * the current logged region. Find the next 1851 * logged region that contains or is beyond 1852 * the current di_next_unlinked field. 1853 */ 1854 bit += nbits; 1855 bit = xfs_next_bit(data_map, map_size, bit); 1856 1857 /* 1858 * If there are no more logged regions in the 1859 * buffer, then we're done. 1860 */ 1861 if (bit == -1) { 1862 return 0; 1863 } 1864 1865 nbits = xfs_contig_bits(data_map, map_size, 1866 bit); 1867 ASSERT(nbits > 0); 1868 reg_buf_offset = bit << XFS_BLF_SHIFT; 1869 reg_buf_bytes = nbits << XFS_BLF_SHIFT; 1870 item_index++; 1871 } 1872 1873 /* 1874 * If the current logged region starts after the current 1875 * di_next_unlinked field, then move on to the next 1876 * di_next_unlinked field. 1877 */ 1878 if (next_unlinked_offset < reg_buf_offset) { 1879 continue; 1880 } 1881 1882 ASSERT(item->ri_buf[item_index].i_addr != NULL); 1883 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); 1884 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp)); 1885 1886 /* 1887 * The current logged region contains a copy of the 1888 * current di_next_unlinked field. Extract its value 1889 * and copy it to the buffer copy. 1890 */ 1891 logged_nextp = item->ri_buf[item_index].i_addr + 1892 next_unlinked_offset - reg_buf_offset; 1893 if (unlikely(*logged_nextp == 0)) { 1894 xfs_fs_cmn_err(CE_ALERT, mp, 1895 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field", 1896 item, bp); 1897 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 1898 XFS_ERRLEVEL_LOW, mp); 1899 return XFS_ERROR(EFSCORRUPTED); 1900 } 1901 1902 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp, 1903 next_unlinked_offset); 1904 *buffer_nextp = *logged_nextp; 1905 } 1906 1907 return 0; 1908 } 1909 1910 /* 1911 * Perform a 'normal' buffer recovery. Each logged region of the 1912 * buffer should be copied over the corresponding region in the 1913 * given buffer. The bitmap in the buf log format structure indicates 1914 * where to place the logged data. 1915 */ 1916 /*ARGSUSED*/ 1917 STATIC void 1918 xlog_recover_do_reg_buffer( 1919 struct xfs_mount *mp, 1920 xlog_recover_item_t *item, 1921 xfs_buf_t *bp, 1922 xfs_buf_log_format_t *buf_f) 1923 { 1924 int i; 1925 int bit; 1926 int nbits; 1927 unsigned int *data_map = NULL; 1928 unsigned int map_size = 0; 1929 int error; 1930 1931 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); 1932 1933 switch (buf_f->blf_type) { 1934 case XFS_LI_BUF: 1935 data_map = buf_f->blf_data_map; 1936 map_size = buf_f->blf_map_size; 1937 break; 1938 } 1939 bit = 0; 1940 i = 1; /* 0 is the buf format structure */ 1941 while (1) { 1942 bit = xfs_next_bit(data_map, map_size, bit); 1943 if (bit == -1) 1944 break; 1945 nbits = xfs_contig_bits(data_map, map_size, bit); 1946 ASSERT(nbits > 0); 1947 ASSERT(item->ri_buf[i].i_addr != NULL); 1948 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); 1949 ASSERT(XFS_BUF_COUNT(bp) >= 1950 ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT)); 1951 1952 /* 1953 * Do a sanity check if this is a dquot buffer. Just checking 1954 * the first dquot in the buffer should do. XXXThis is 1955 * probably a good thing to do for other buf types also. 1956 */ 1957 error = 0; 1958 if (buf_f->blf_flags & 1959 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 1960 if (item->ri_buf[i].i_addr == NULL) { 1961 cmn_err(CE_ALERT, 1962 "XFS: NULL dquot in %s.", __func__); 1963 goto next; 1964 } 1965 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) { 1966 cmn_err(CE_ALERT, 1967 "XFS: dquot too small (%d) in %s.", 1968 item->ri_buf[i].i_len, __func__); 1969 goto next; 1970 } 1971 error = xfs_qm_dqcheck(item->ri_buf[i].i_addr, 1972 -1, 0, XFS_QMOPT_DOWARN, 1973 "dquot_buf_recover"); 1974 if (error) 1975 goto next; 1976 } 1977 1978 memcpy(xfs_buf_offset(bp, 1979 (uint)bit << XFS_BLF_SHIFT), /* dest */ 1980 item->ri_buf[i].i_addr, /* source */ 1981 nbits<<XFS_BLF_SHIFT); /* length */ 1982 next: 1983 i++; 1984 bit += nbits; 1985 } 1986 1987 /* Shouldn't be any more regions */ 1988 ASSERT(i == item->ri_total); 1989 } 1990 1991 /* 1992 * Do some primitive error checking on ondisk dquot data structures. 1993 */ 1994 int 1995 xfs_qm_dqcheck( 1996 xfs_disk_dquot_t *ddq, 1997 xfs_dqid_t id, 1998 uint type, /* used only when IO_dorepair is true */ 1999 uint flags, 2000 char *str) 2001 { 2002 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq; 2003 int errs = 0; 2004 2005 /* 2006 * We can encounter an uninitialized dquot buffer for 2 reasons: 2007 * 1. If we crash while deleting the quotainode(s), and those blks got 2008 * used for user data. This is because we take the path of regular 2009 * file deletion; however, the size field of quotainodes is never 2010 * updated, so all the tricks that we play in itruncate_finish 2011 * don't quite matter. 2012 * 2013 * 2. We don't play the quota buffers when there's a quotaoff logitem. 2014 * But the allocation will be replayed so we'll end up with an 2015 * uninitialized quota block. 2016 * 2017 * This is all fine; things are still consistent, and we haven't lost 2018 * any quota information. Just don't complain about bad dquot blks. 2019 */ 2020 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) { 2021 if (flags & XFS_QMOPT_DOWARN) 2022 cmn_err(CE_ALERT, 2023 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x", 2024 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC); 2025 errs++; 2026 } 2027 if (ddq->d_version != XFS_DQUOT_VERSION) { 2028 if (flags & XFS_QMOPT_DOWARN) 2029 cmn_err(CE_ALERT, 2030 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x", 2031 str, id, ddq->d_version, XFS_DQUOT_VERSION); 2032 errs++; 2033 } 2034 2035 if (ddq->d_flags != XFS_DQ_USER && 2036 ddq->d_flags != XFS_DQ_PROJ && 2037 ddq->d_flags != XFS_DQ_GROUP) { 2038 if (flags & XFS_QMOPT_DOWARN) 2039 cmn_err(CE_ALERT, 2040 "%s : XFS dquot ID 0x%x, unknown flags 0x%x", 2041 str, id, ddq->d_flags); 2042 errs++; 2043 } 2044 2045 if (id != -1 && id != be32_to_cpu(ddq->d_id)) { 2046 if (flags & XFS_QMOPT_DOWARN) 2047 cmn_err(CE_ALERT, 2048 "%s : ondisk-dquot 0x%p, ID mismatch: " 2049 "0x%x expected, found id 0x%x", 2050 str, ddq, id, be32_to_cpu(ddq->d_id)); 2051 errs++; 2052 } 2053 2054 if (!errs && ddq->d_id) { 2055 if (ddq->d_blk_softlimit && 2056 be64_to_cpu(ddq->d_bcount) >= 2057 be64_to_cpu(ddq->d_blk_softlimit)) { 2058 if (!ddq->d_btimer) { 2059 if (flags & XFS_QMOPT_DOWARN) 2060 cmn_err(CE_ALERT, 2061 "%s : Dquot ID 0x%x (0x%p) " 2062 "BLK TIMER NOT STARTED", 2063 str, (int)be32_to_cpu(ddq->d_id), ddq); 2064 errs++; 2065 } 2066 } 2067 if (ddq->d_ino_softlimit && 2068 be64_to_cpu(ddq->d_icount) >= 2069 be64_to_cpu(ddq->d_ino_softlimit)) { 2070 if (!ddq->d_itimer) { 2071 if (flags & XFS_QMOPT_DOWARN) 2072 cmn_err(CE_ALERT, 2073 "%s : Dquot ID 0x%x (0x%p) " 2074 "INODE TIMER NOT STARTED", 2075 str, (int)be32_to_cpu(ddq->d_id), ddq); 2076 errs++; 2077 } 2078 } 2079 if (ddq->d_rtb_softlimit && 2080 be64_to_cpu(ddq->d_rtbcount) >= 2081 be64_to_cpu(ddq->d_rtb_softlimit)) { 2082 if (!ddq->d_rtbtimer) { 2083 if (flags & XFS_QMOPT_DOWARN) 2084 cmn_err(CE_ALERT, 2085 "%s : Dquot ID 0x%x (0x%p) " 2086 "RTBLK TIMER NOT STARTED", 2087 str, (int)be32_to_cpu(ddq->d_id), ddq); 2088 errs++; 2089 } 2090 } 2091 } 2092 2093 if (!errs || !(flags & XFS_QMOPT_DQREPAIR)) 2094 return errs; 2095 2096 if (flags & XFS_QMOPT_DOWARN) 2097 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id); 2098 2099 /* 2100 * Typically, a repair is only requested by quotacheck. 2101 */ 2102 ASSERT(id != -1); 2103 ASSERT(flags & XFS_QMOPT_DQREPAIR); 2104 memset(d, 0, sizeof(xfs_dqblk_t)); 2105 2106 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC); 2107 d->dd_diskdq.d_version = XFS_DQUOT_VERSION; 2108 d->dd_diskdq.d_flags = type; 2109 d->dd_diskdq.d_id = cpu_to_be32(id); 2110 2111 return errs; 2112 } 2113 2114 /* 2115 * Perform a dquot buffer recovery. 2116 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type 2117 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2118 * Else, treat it as a regular buffer and do recovery. 2119 */ 2120 STATIC void 2121 xlog_recover_do_dquot_buffer( 2122 xfs_mount_t *mp, 2123 xlog_t *log, 2124 xlog_recover_item_t *item, 2125 xfs_buf_t *bp, 2126 xfs_buf_log_format_t *buf_f) 2127 { 2128 uint type; 2129 2130 trace_xfs_log_recover_buf_dquot_buf(log, buf_f); 2131 2132 /* 2133 * Filesystems are required to send in quota flags at mount time. 2134 */ 2135 if (mp->m_qflags == 0) { 2136 return; 2137 } 2138 2139 type = 0; 2140 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) 2141 type |= XFS_DQ_USER; 2142 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) 2143 type |= XFS_DQ_PROJ; 2144 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) 2145 type |= XFS_DQ_GROUP; 2146 /* 2147 * This type of quotas was turned off, so ignore this buffer 2148 */ 2149 if (log->l_quotaoffs_flag & type) 2150 return; 2151 2152 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2153 } 2154 2155 /* 2156 * This routine replays a modification made to a buffer at runtime. 2157 * There are actually two types of buffer, regular and inode, which 2158 * are handled differently. Inode buffers are handled differently 2159 * in that we only recover a specific set of data from them, namely 2160 * the inode di_next_unlinked fields. This is because all other inode 2161 * data is actually logged via inode records and any data we replay 2162 * here which overlaps that may be stale. 2163 * 2164 * When meta-data buffers are freed at run time we log a buffer item 2165 * with the XFS_BLF_CANCEL bit set to indicate that previous copies 2166 * of the buffer in the log should not be replayed at recovery time. 2167 * This is so that if the blocks covered by the buffer are reused for 2168 * file data before we crash we don't end up replaying old, freed 2169 * meta-data into a user's file. 2170 * 2171 * To handle the cancellation of buffer log items, we make two passes 2172 * over the log during recovery. During the first we build a table of 2173 * those buffers which have been cancelled, and during the second we 2174 * only replay those buffers which do not have corresponding cancel 2175 * records in the table. See xlog_recover_do_buffer_pass[1,2] above 2176 * for more details on the implementation of the table of cancel records. 2177 */ 2178 STATIC int 2179 xlog_recover_do_buffer_trans( 2180 xlog_t *log, 2181 xlog_recover_item_t *item, 2182 int pass) 2183 { 2184 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2185 xfs_mount_t *mp; 2186 xfs_buf_t *bp; 2187 int error; 2188 int cancel; 2189 xfs_daddr_t blkno; 2190 int len; 2191 ushort flags; 2192 uint buf_flags; 2193 2194 if (pass == XLOG_RECOVER_PASS1) { 2195 /* 2196 * In this pass we're only looking for buf items 2197 * with the XFS_BLF_CANCEL bit set. 2198 */ 2199 xlog_recover_do_buffer_pass1(log, buf_f); 2200 return 0; 2201 } else { 2202 /* 2203 * In this pass we want to recover all the buffers 2204 * which have not been cancelled and are not 2205 * cancellation buffers themselves. The routine 2206 * we call here will tell us whether or not to 2207 * continue with the replay of this buffer. 2208 */ 2209 cancel = xlog_recover_do_buffer_pass2(log, buf_f); 2210 if (cancel) { 2211 trace_xfs_log_recover_buf_cancel(log, buf_f); 2212 return 0; 2213 } 2214 } 2215 trace_xfs_log_recover_buf_recover(log, buf_f); 2216 switch (buf_f->blf_type) { 2217 case XFS_LI_BUF: 2218 blkno = buf_f->blf_blkno; 2219 len = buf_f->blf_len; 2220 flags = buf_f->blf_flags; 2221 break; 2222 default: 2223 xfs_fs_cmn_err(CE_ALERT, log->l_mp, 2224 "xfs_log_recover: unknown buffer type 0x%x, logdev %s", 2225 buf_f->blf_type, log->l_mp->m_logname ? 2226 log->l_mp->m_logname : "internal"); 2227 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans", 2228 XFS_ERRLEVEL_LOW, log->l_mp); 2229 return XFS_ERROR(EFSCORRUPTED); 2230 } 2231 2232 mp = log->l_mp; 2233 buf_flags = XBF_LOCK; 2234 if (!(flags & XFS_BLF_INODE_BUF)) 2235 buf_flags |= XBF_MAPPED; 2236 2237 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, buf_flags); 2238 if (XFS_BUF_ISERROR(bp)) { 2239 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp, 2240 bp, blkno); 2241 error = XFS_BUF_GETERROR(bp); 2242 xfs_buf_relse(bp); 2243 return error; 2244 } 2245 2246 error = 0; 2247 if (flags & XFS_BLF_INODE_BUF) { 2248 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2249 } else if (flags & 2250 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2251 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2252 } else { 2253 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2254 } 2255 if (error) 2256 return XFS_ERROR(error); 2257 2258 /* 2259 * Perform delayed write on the buffer. Asynchronous writes will be 2260 * slower when taking into account all the buffers to be flushed. 2261 * 2262 * Also make sure that only inode buffers with good sizes stay in 2263 * the buffer cache. The kernel moves inodes in buffers of 1 block 2264 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode 2265 * buffers in the log can be a different size if the log was generated 2266 * by an older kernel using unclustered inode buffers or a newer kernel 2267 * running with a different inode cluster size. Regardless, if the 2268 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE) 2269 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep 2270 * the buffer out of the buffer cache so that the buffer won't 2271 * overlap with future reads of those inodes. 2272 */ 2273 if (XFS_DINODE_MAGIC == 2274 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && 2275 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize, 2276 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) { 2277 XFS_BUF_STALE(bp); 2278 error = xfs_bwrite(mp, bp); 2279 } else { 2280 ASSERT(bp->b_target->bt_mount == mp); 2281 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2282 xfs_bdwrite(mp, bp); 2283 } 2284 2285 return (error); 2286 } 2287 2288 STATIC int 2289 xlog_recover_do_inode_trans( 2290 xlog_t *log, 2291 xlog_recover_item_t *item, 2292 int pass) 2293 { 2294 xfs_inode_log_format_t *in_f; 2295 xfs_mount_t *mp; 2296 xfs_buf_t *bp; 2297 xfs_dinode_t *dip; 2298 xfs_ino_t ino; 2299 int len; 2300 xfs_caddr_t src; 2301 xfs_caddr_t dest; 2302 int error; 2303 int attr_index; 2304 uint fields; 2305 xfs_icdinode_t *dicp; 2306 int need_free = 0; 2307 2308 if (pass == XLOG_RECOVER_PASS1) { 2309 return 0; 2310 } 2311 2312 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) { 2313 in_f = item->ri_buf[0].i_addr; 2314 } else { 2315 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP); 2316 need_free = 1; 2317 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 2318 if (error) 2319 goto error; 2320 } 2321 ino = in_f->ilf_ino; 2322 mp = log->l_mp; 2323 2324 /* 2325 * Inode buffers can be freed, look out for it, 2326 * and do not replay the inode. 2327 */ 2328 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, 2329 in_f->ilf_len, 0)) { 2330 error = 0; 2331 trace_xfs_log_recover_inode_cancel(log, in_f); 2332 goto error; 2333 } 2334 trace_xfs_log_recover_inode_recover(log, in_f); 2335 2336 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 2337 XBF_LOCK); 2338 if (XFS_BUF_ISERROR(bp)) { 2339 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp, 2340 bp, in_f->ilf_blkno); 2341 error = XFS_BUF_GETERROR(bp); 2342 xfs_buf_relse(bp); 2343 goto error; 2344 } 2345 error = 0; 2346 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 2347 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset); 2348 2349 /* 2350 * Make sure the place we're flushing out to really looks 2351 * like an inode! 2352 */ 2353 if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) { 2354 xfs_buf_relse(bp); 2355 xfs_fs_cmn_err(CE_ALERT, mp, 2356 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld", 2357 dip, bp, ino); 2358 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)", 2359 XFS_ERRLEVEL_LOW, mp); 2360 error = EFSCORRUPTED; 2361 goto error; 2362 } 2363 dicp = item->ri_buf[1].i_addr; 2364 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { 2365 xfs_buf_relse(bp); 2366 xfs_fs_cmn_err(CE_ALERT, mp, 2367 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld", 2368 item, ino); 2369 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)", 2370 XFS_ERRLEVEL_LOW, mp); 2371 error = EFSCORRUPTED; 2372 goto error; 2373 } 2374 2375 /* Skip replay when the on disk inode is newer than the log one */ 2376 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) { 2377 /* 2378 * Deal with the wrap case, DI_MAX_FLUSH is less 2379 * than smaller numbers 2380 */ 2381 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && 2382 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) { 2383 /* do nothing */ 2384 } else { 2385 xfs_buf_relse(bp); 2386 trace_xfs_log_recover_inode_skip(log, in_f); 2387 error = 0; 2388 goto error; 2389 } 2390 } 2391 /* Take the opportunity to reset the flush iteration count */ 2392 dicp->di_flushiter = 0; 2393 2394 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) { 2395 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2396 (dicp->di_format != XFS_DINODE_FMT_BTREE)) { 2397 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)", 2398 XFS_ERRLEVEL_LOW, mp, dicp); 2399 xfs_buf_relse(bp); 2400 xfs_fs_cmn_err(CE_ALERT, mp, 2401 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2402 item, dip, bp, ino); 2403 error = EFSCORRUPTED; 2404 goto error; 2405 } 2406 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) { 2407 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2408 (dicp->di_format != XFS_DINODE_FMT_BTREE) && 2409 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { 2410 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)", 2411 XFS_ERRLEVEL_LOW, mp, dicp); 2412 xfs_buf_relse(bp); 2413 xfs_fs_cmn_err(CE_ALERT, mp, 2414 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2415 item, dip, bp, ino); 2416 error = EFSCORRUPTED; 2417 goto error; 2418 } 2419 } 2420 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ 2421 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)", 2422 XFS_ERRLEVEL_LOW, mp, dicp); 2423 xfs_buf_relse(bp); 2424 xfs_fs_cmn_err(CE_ALERT, mp, 2425 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", 2426 item, dip, bp, ino, 2427 dicp->di_nextents + dicp->di_anextents, 2428 dicp->di_nblocks); 2429 error = EFSCORRUPTED; 2430 goto error; 2431 } 2432 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { 2433 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)", 2434 XFS_ERRLEVEL_LOW, mp, dicp); 2435 xfs_buf_relse(bp); 2436 xfs_fs_cmn_err(CE_ALERT, mp, 2437 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x", 2438 item, dip, bp, ino, dicp->di_forkoff); 2439 error = EFSCORRUPTED; 2440 goto error; 2441 } 2442 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) { 2443 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)", 2444 XFS_ERRLEVEL_LOW, mp, dicp); 2445 xfs_buf_relse(bp); 2446 xfs_fs_cmn_err(CE_ALERT, mp, 2447 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p", 2448 item->ri_buf[1].i_len, item); 2449 error = EFSCORRUPTED; 2450 goto error; 2451 } 2452 2453 /* The core is in in-core format */ 2454 xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr); 2455 2456 /* the rest is in on-disk format */ 2457 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) { 2458 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode), 2459 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode), 2460 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode)); 2461 } 2462 2463 fields = in_f->ilf_fields; 2464 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { 2465 case XFS_ILOG_DEV: 2466 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); 2467 break; 2468 case XFS_ILOG_UUID: 2469 memcpy(XFS_DFORK_DPTR(dip), 2470 &in_f->ilf_u.ilfu_uuid, 2471 sizeof(uuid_t)); 2472 break; 2473 } 2474 2475 if (in_f->ilf_size == 2) 2476 goto write_inode_buffer; 2477 len = item->ri_buf[2].i_len; 2478 src = item->ri_buf[2].i_addr; 2479 ASSERT(in_f->ilf_size <= 4); 2480 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 2481 ASSERT(!(fields & XFS_ILOG_DFORK) || 2482 (len == in_f->ilf_dsize)); 2483 2484 switch (fields & XFS_ILOG_DFORK) { 2485 case XFS_ILOG_DDATA: 2486 case XFS_ILOG_DEXT: 2487 memcpy(XFS_DFORK_DPTR(dip), src, len); 2488 break; 2489 2490 case XFS_ILOG_DBROOT: 2491 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, 2492 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), 2493 XFS_DFORK_DSIZE(dip, mp)); 2494 break; 2495 2496 default: 2497 /* 2498 * There are no data fork flags set. 2499 */ 2500 ASSERT((fields & XFS_ILOG_DFORK) == 0); 2501 break; 2502 } 2503 2504 /* 2505 * If we logged any attribute data, recover it. There may or 2506 * may not have been any other non-core data logged in this 2507 * transaction. 2508 */ 2509 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 2510 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 2511 attr_index = 3; 2512 } else { 2513 attr_index = 2; 2514 } 2515 len = item->ri_buf[attr_index].i_len; 2516 src = item->ri_buf[attr_index].i_addr; 2517 ASSERT(len == in_f->ilf_asize); 2518 2519 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 2520 case XFS_ILOG_ADATA: 2521 case XFS_ILOG_AEXT: 2522 dest = XFS_DFORK_APTR(dip); 2523 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 2524 memcpy(dest, src, len); 2525 break; 2526 2527 case XFS_ILOG_ABROOT: 2528 dest = XFS_DFORK_APTR(dip); 2529 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, 2530 len, (xfs_bmdr_block_t*)dest, 2531 XFS_DFORK_ASIZE(dip, mp)); 2532 break; 2533 2534 default: 2535 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag"); 2536 ASSERT(0); 2537 xfs_buf_relse(bp); 2538 error = EIO; 2539 goto error; 2540 } 2541 } 2542 2543 write_inode_buffer: 2544 ASSERT(bp->b_target->bt_mount == mp); 2545 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2546 xfs_bdwrite(mp, bp); 2547 error: 2548 if (need_free) 2549 kmem_free(in_f); 2550 return XFS_ERROR(error); 2551 } 2552 2553 /* 2554 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t 2555 * structure, so that we know not to do any dquot item or dquot buffer recovery, 2556 * of that type. 2557 */ 2558 STATIC int 2559 xlog_recover_do_quotaoff_trans( 2560 xlog_t *log, 2561 xlog_recover_item_t *item, 2562 int pass) 2563 { 2564 xfs_qoff_logformat_t *qoff_f; 2565 2566 if (pass == XLOG_RECOVER_PASS2) { 2567 return (0); 2568 } 2569 2570 qoff_f = item->ri_buf[0].i_addr; 2571 ASSERT(qoff_f); 2572 2573 /* 2574 * The logitem format's flag tells us if this was user quotaoff, 2575 * group/project quotaoff or both. 2576 */ 2577 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 2578 log->l_quotaoffs_flag |= XFS_DQ_USER; 2579 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 2580 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 2581 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 2582 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 2583 2584 return (0); 2585 } 2586 2587 /* 2588 * Recover a dquot record 2589 */ 2590 STATIC int 2591 xlog_recover_do_dquot_trans( 2592 xlog_t *log, 2593 xlog_recover_item_t *item, 2594 int pass) 2595 { 2596 xfs_mount_t *mp; 2597 xfs_buf_t *bp; 2598 struct xfs_disk_dquot *ddq, *recddq; 2599 int error; 2600 xfs_dq_logformat_t *dq_f; 2601 uint type; 2602 2603 if (pass == XLOG_RECOVER_PASS1) { 2604 return 0; 2605 } 2606 mp = log->l_mp; 2607 2608 /* 2609 * Filesystems are required to send in quota flags at mount time. 2610 */ 2611 if (mp->m_qflags == 0) 2612 return (0); 2613 2614 recddq = item->ri_buf[1].i_addr; 2615 if (recddq == NULL) { 2616 cmn_err(CE_ALERT, 2617 "XFS: NULL dquot in %s.", __func__); 2618 return XFS_ERROR(EIO); 2619 } 2620 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) { 2621 cmn_err(CE_ALERT, 2622 "XFS: dquot too small (%d) in %s.", 2623 item->ri_buf[1].i_len, __func__); 2624 return XFS_ERROR(EIO); 2625 } 2626 2627 /* 2628 * This type of quotas was turned off, so ignore this record. 2629 */ 2630 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 2631 ASSERT(type); 2632 if (log->l_quotaoffs_flag & type) 2633 return (0); 2634 2635 /* 2636 * At this point we know that quota was _not_ turned off. 2637 * Since the mount flags are not indicating to us otherwise, this 2638 * must mean that quota is on, and the dquot needs to be replayed. 2639 * Remember that we may not have fully recovered the superblock yet, 2640 * so we can't do the usual trick of looking at the SB quota bits. 2641 * 2642 * The other possibility, of course, is that the quota subsystem was 2643 * removed since the last mount - ENOSYS. 2644 */ 2645 dq_f = item->ri_buf[0].i_addr; 2646 ASSERT(dq_f); 2647 if ((error = xfs_qm_dqcheck(recddq, 2648 dq_f->qlf_id, 2649 0, XFS_QMOPT_DOWARN, 2650 "xlog_recover_do_dquot_trans (log copy)"))) { 2651 return XFS_ERROR(EIO); 2652 } 2653 ASSERT(dq_f->qlf_len == 1); 2654 2655 error = xfs_read_buf(mp, mp->m_ddev_targp, 2656 dq_f->qlf_blkno, 2657 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 2658 0, &bp); 2659 if (error) { 2660 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp, 2661 bp, dq_f->qlf_blkno); 2662 return error; 2663 } 2664 ASSERT(bp); 2665 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset); 2666 2667 /* 2668 * At least the magic num portion should be on disk because this 2669 * was among a chunk of dquots created earlier, and we did some 2670 * minimal initialization then. 2671 */ 2672 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2673 "xlog_recover_do_dquot_trans")) { 2674 xfs_buf_relse(bp); 2675 return XFS_ERROR(EIO); 2676 } 2677 2678 memcpy(ddq, recddq, item->ri_buf[1].i_len); 2679 2680 ASSERT(dq_f->qlf_size == 2); 2681 ASSERT(bp->b_target->bt_mount == mp); 2682 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2683 xfs_bdwrite(mp, bp); 2684 2685 return (0); 2686 } 2687 2688 /* 2689 * This routine is called to create an in-core extent free intent 2690 * item from the efi format structure which was logged on disk. 2691 * It allocates an in-core efi, copies the extents from the format 2692 * structure into it, and adds the efi to the AIL with the given 2693 * LSN. 2694 */ 2695 STATIC int 2696 xlog_recover_do_efi_trans( 2697 xlog_t *log, 2698 xlog_recover_item_t *item, 2699 xfs_lsn_t lsn, 2700 int pass) 2701 { 2702 int error; 2703 xfs_mount_t *mp; 2704 xfs_efi_log_item_t *efip; 2705 xfs_efi_log_format_t *efi_formatp; 2706 2707 if (pass == XLOG_RECOVER_PASS1) { 2708 return 0; 2709 } 2710 2711 efi_formatp = item->ri_buf[0].i_addr; 2712 2713 mp = log->l_mp; 2714 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 2715 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]), 2716 &(efip->efi_format)))) { 2717 xfs_efi_item_free(efip); 2718 return error; 2719 } 2720 efip->efi_next_extent = efi_formatp->efi_nextents; 2721 efip->efi_flags |= XFS_EFI_COMMITTED; 2722 2723 spin_lock(&log->l_ailp->xa_lock); 2724 /* 2725 * xfs_trans_ail_update() drops the AIL lock. 2726 */ 2727 xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn); 2728 return 0; 2729 } 2730 2731 2732 /* 2733 * This routine is called when an efd format structure is found in 2734 * a committed transaction in the log. It's purpose is to cancel 2735 * the corresponding efi if it was still in the log. To do this 2736 * it searches the AIL for the efi with an id equal to that in the 2737 * efd format structure. If we find it, we remove the efi from the 2738 * AIL and free it. 2739 */ 2740 STATIC void 2741 xlog_recover_do_efd_trans( 2742 xlog_t *log, 2743 xlog_recover_item_t *item, 2744 int pass) 2745 { 2746 xfs_efd_log_format_t *efd_formatp; 2747 xfs_efi_log_item_t *efip = NULL; 2748 xfs_log_item_t *lip; 2749 __uint64_t efi_id; 2750 struct xfs_ail_cursor cur; 2751 struct xfs_ail *ailp = log->l_ailp; 2752 2753 if (pass == XLOG_RECOVER_PASS1) { 2754 return; 2755 } 2756 2757 efd_formatp = item->ri_buf[0].i_addr; 2758 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 2759 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 2760 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 2761 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 2762 efi_id = efd_formatp->efd_efi_id; 2763 2764 /* 2765 * Search for the efi with the id in the efd format structure 2766 * in the AIL. 2767 */ 2768 spin_lock(&ailp->xa_lock); 2769 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 2770 while (lip != NULL) { 2771 if (lip->li_type == XFS_LI_EFI) { 2772 efip = (xfs_efi_log_item_t *)lip; 2773 if (efip->efi_format.efi_id == efi_id) { 2774 /* 2775 * xfs_trans_ail_delete() drops the 2776 * AIL lock. 2777 */ 2778 xfs_trans_ail_delete(ailp, lip); 2779 xfs_efi_item_free(efip); 2780 spin_lock(&ailp->xa_lock); 2781 break; 2782 } 2783 } 2784 lip = xfs_trans_ail_cursor_next(ailp, &cur); 2785 } 2786 xfs_trans_ail_cursor_done(ailp, &cur); 2787 spin_unlock(&ailp->xa_lock); 2788 } 2789 2790 /* 2791 * Perform the transaction 2792 * 2793 * If the transaction modifies a buffer or inode, do it now. Otherwise, 2794 * EFIs and EFDs get queued up by adding entries into the AIL for them. 2795 */ 2796 STATIC int 2797 xlog_recover_do_trans( 2798 xlog_t *log, 2799 xlog_recover_t *trans, 2800 int pass) 2801 { 2802 int error = 0; 2803 xlog_recover_item_t *item; 2804 2805 error = xlog_recover_reorder_trans(log, trans, pass); 2806 if (error) 2807 return error; 2808 2809 list_for_each_entry(item, &trans->r_itemq, ri_list) { 2810 trace_xfs_log_recover_item_recover(log, trans, item, pass); 2811 switch (ITEM_TYPE(item)) { 2812 case XFS_LI_BUF: 2813 error = xlog_recover_do_buffer_trans(log, item, pass); 2814 break; 2815 case XFS_LI_INODE: 2816 error = xlog_recover_do_inode_trans(log, item, pass); 2817 break; 2818 case XFS_LI_EFI: 2819 error = xlog_recover_do_efi_trans(log, item, 2820 trans->r_lsn, pass); 2821 break; 2822 case XFS_LI_EFD: 2823 xlog_recover_do_efd_trans(log, item, pass); 2824 error = 0; 2825 break; 2826 case XFS_LI_DQUOT: 2827 error = xlog_recover_do_dquot_trans(log, item, pass); 2828 break; 2829 case XFS_LI_QUOTAOFF: 2830 error = xlog_recover_do_quotaoff_trans(log, item, 2831 pass); 2832 break; 2833 default: 2834 xlog_warn( 2835 "XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item)); 2836 ASSERT(0); 2837 error = XFS_ERROR(EIO); 2838 break; 2839 } 2840 2841 if (error) 2842 return error; 2843 } 2844 2845 return 0; 2846 } 2847 2848 /* 2849 * Free up any resources allocated by the transaction 2850 * 2851 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 2852 */ 2853 STATIC void 2854 xlog_recover_free_trans( 2855 xlog_recover_t *trans) 2856 { 2857 xlog_recover_item_t *item, *n; 2858 int i; 2859 2860 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 2861 /* Free the regions in the item. */ 2862 list_del(&item->ri_list); 2863 for (i = 0; i < item->ri_cnt; i++) 2864 kmem_free(item->ri_buf[i].i_addr); 2865 /* Free the item itself */ 2866 kmem_free(item->ri_buf); 2867 kmem_free(item); 2868 } 2869 /* Free the transaction recover structure */ 2870 kmem_free(trans); 2871 } 2872 2873 STATIC int 2874 xlog_recover_commit_trans( 2875 xlog_t *log, 2876 xlog_recover_t *trans, 2877 int pass) 2878 { 2879 int error; 2880 2881 hlist_del(&trans->r_list); 2882 if ((error = xlog_recover_do_trans(log, trans, pass))) 2883 return error; 2884 xlog_recover_free_trans(trans); /* no error */ 2885 return 0; 2886 } 2887 2888 STATIC int 2889 xlog_recover_unmount_trans( 2890 xlog_recover_t *trans) 2891 { 2892 /* Do nothing now */ 2893 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR"); 2894 return 0; 2895 } 2896 2897 /* 2898 * There are two valid states of the r_state field. 0 indicates that the 2899 * transaction structure is in a normal state. We have either seen the 2900 * start of the transaction or the last operation we added was not a partial 2901 * operation. If the last operation we added to the transaction was a 2902 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 2903 * 2904 * NOTE: skip LRs with 0 data length. 2905 */ 2906 STATIC int 2907 xlog_recover_process_data( 2908 xlog_t *log, 2909 struct hlist_head rhash[], 2910 xlog_rec_header_t *rhead, 2911 xfs_caddr_t dp, 2912 int pass) 2913 { 2914 xfs_caddr_t lp; 2915 int num_logops; 2916 xlog_op_header_t *ohead; 2917 xlog_recover_t *trans; 2918 xlog_tid_t tid; 2919 int error; 2920 unsigned long hash; 2921 uint flags; 2922 2923 lp = dp + be32_to_cpu(rhead->h_len); 2924 num_logops = be32_to_cpu(rhead->h_num_logops); 2925 2926 /* check the log format matches our own - else we can't recover */ 2927 if (xlog_header_check_recover(log->l_mp, rhead)) 2928 return (XFS_ERROR(EIO)); 2929 2930 while ((dp < lp) && num_logops) { 2931 ASSERT(dp + sizeof(xlog_op_header_t) <= lp); 2932 ohead = (xlog_op_header_t *)dp; 2933 dp += sizeof(xlog_op_header_t); 2934 if (ohead->oh_clientid != XFS_TRANSACTION && 2935 ohead->oh_clientid != XFS_LOG) { 2936 xlog_warn( 2937 "XFS: xlog_recover_process_data: bad clientid"); 2938 ASSERT(0); 2939 return (XFS_ERROR(EIO)); 2940 } 2941 tid = be32_to_cpu(ohead->oh_tid); 2942 hash = XLOG_RHASH(tid); 2943 trans = xlog_recover_find_tid(&rhash[hash], tid); 2944 if (trans == NULL) { /* not found; add new tid */ 2945 if (ohead->oh_flags & XLOG_START_TRANS) 2946 xlog_recover_new_tid(&rhash[hash], tid, 2947 be64_to_cpu(rhead->h_lsn)); 2948 } else { 2949 if (dp + be32_to_cpu(ohead->oh_len) > lp) { 2950 xlog_warn( 2951 "XFS: xlog_recover_process_data: bad length"); 2952 WARN_ON(1); 2953 return (XFS_ERROR(EIO)); 2954 } 2955 flags = ohead->oh_flags & ~XLOG_END_TRANS; 2956 if (flags & XLOG_WAS_CONT_TRANS) 2957 flags &= ~XLOG_CONTINUE_TRANS; 2958 switch (flags) { 2959 case XLOG_COMMIT_TRANS: 2960 error = xlog_recover_commit_trans(log, 2961 trans, pass); 2962 break; 2963 case XLOG_UNMOUNT_TRANS: 2964 error = xlog_recover_unmount_trans(trans); 2965 break; 2966 case XLOG_WAS_CONT_TRANS: 2967 error = xlog_recover_add_to_cont_trans(log, 2968 trans, dp, 2969 be32_to_cpu(ohead->oh_len)); 2970 break; 2971 case XLOG_START_TRANS: 2972 xlog_warn( 2973 "XFS: xlog_recover_process_data: bad transaction"); 2974 ASSERT(0); 2975 error = XFS_ERROR(EIO); 2976 break; 2977 case 0: 2978 case XLOG_CONTINUE_TRANS: 2979 error = xlog_recover_add_to_trans(log, trans, 2980 dp, be32_to_cpu(ohead->oh_len)); 2981 break; 2982 default: 2983 xlog_warn( 2984 "XFS: xlog_recover_process_data: bad flag"); 2985 ASSERT(0); 2986 error = XFS_ERROR(EIO); 2987 break; 2988 } 2989 if (error) 2990 return error; 2991 } 2992 dp += be32_to_cpu(ohead->oh_len); 2993 num_logops--; 2994 } 2995 return 0; 2996 } 2997 2998 /* 2999 * Process an extent free intent item that was recovered from 3000 * the log. We need to free the extents that it describes. 3001 */ 3002 STATIC int 3003 xlog_recover_process_efi( 3004 xfs_mount_t *mp, 3005 xfs_efi_log_item_t *efip) 3006 { 3007 xfs_efd_log_item_t *efdp; 3008 xfs_trans_t *tp; 3009 int i; 3010 int error = 0; 3011 xfs_extent_t *extp; 3012 xfs_fsblock_t startblock_fsb; 3013 3014 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED)); 3015 3016 /* 3017 * First check the validity of the extents described by the 3018 * EFI. If any are bad, then assume that all are bad and 3019 * just toss the EFI. 3020 */ 3021 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3022 extp = &(efip->efi_format.efi_extents[i]); 3023 startblock_fsb = XFS_BB_TO_FSB(mp, 3024 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 3025 if ((startblock_fsb == 0) || 3026 (extp->ext_len == 0) || 3027 (startblock_fsb >= mp->m_sb.sb_dblocks) || 3028 (extp->ext_len >= mp->m_sb.sb_agblocks)) { 3029 /* 3030 * This will pull the EFI from the AIL and 3031 * free the memory associated with it. 3032 */ 3033 xfs_efi_release(efip, efip->efi_format.efi_nextents); 3034 return XFS_ERROR(EIO); 3035 } 3036 } 3037 3038 tp = xfs_trans_alloc(mp, 0); 3039 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0); 3040 if (error) 3041 goto abort_error; 3042 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 3043 3044 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3045 extp = &(efip->efi_format.efi_extents[i]); 3046 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len); 3047 if (error) 3048 goto abort_error; 3049 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start, 3050 extp->ext_len); 3051 } 3052 3053 efip->efi_flags |= XFS_EFI_RECOVERED; 3054 error = xfs_trans_commit(tp, 0); 3055 return error; 3056 3057 abort_error: 3058 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3059 return error; 3060 } 3061 3062 /* 3063 * When this is called, all of the EFIs which did not have 3064 * corresponding EFDs should be in the AIL. What we do now 3065 * is free the extents associated with each one. 3066 * 3067 * Since we process the EFIs in normal transactions, they 3068 * will be removed at some point after the commit. This prevents 3069 * us from just walking down the list processing each one. 3070 * We'll use a flag in the EFI to skip those that we've already 3071 * processed and use the AIL iteration mechanism's generation 3072 * count to try to speed this up at least a bit. 3073 * 3074 * When we start, we know that the EFIs are the only things in 3075 * the AIL. As we process them, however, other items are added 3076 * to the AIL. Since everything added to the AIL must come after 3077 * everything already in the AIL, we stop processing as soon as 3078 * we see something other than an EFI in the AIL. 3079 */ 3080 STATIC int 3081 xlog_recover_process_efis( 3082 xlog_t *log) 3083 { 3084 xfs_log_item_t *lip; 3085 xfs_efi_log_item_t *efip; 3086 int error = 0; 3087 struct xfs_ail_cursor cur; 3088 struct xfs_ail *ailp; 3089 3090 ailp = log->l_ailp; 3091 spin_lock(&ailp->xa_lock); 3092 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3093 while (lip != NULL) { 3094 /* 3095 * We're done when we see something other than an EFI. 3096 * There should be no EFIs left in the AIL now. 3097 */ 3098 if (lip->li_type != XFS_LI_EFI) { 3099 #ifdef DEBUG 3100 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 3101 ASSERT(lip->li_type != XFS_LI_EFI); 3102 #endif 3103 break; 3104 } 3105 3106 /* 3107 * Skip EFIs that we've already processed. 3108 */ 3109 efip = (xfs_efi_log_item_t *)lip; 3110 if (efip->efi_flags & XFS_EFI_RECOVERED) { 3111 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3112 continue; 3113 } 3114 3115 spin_unlock(&ailp->xa_lock); 3116 error = xlog_recover_process_efi(log->l_mp, efip); 3117 spin_lock(&ailp->xa_lock); 3118 if (error) 3119 goto out; 3120 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3121 } 3122 out: 3123 xfs_trans_ail_cursor_done(ailp, &cur); 3124 spin_unlock(&ailp->xa_lock); 3125 return error; 3126 } 3127 3128 /* 3129 * This routine performs a transaction to null out a bad inode pointer 3130 * in an agi unlinked inode hash bucket. 3131 */ 3132 STATIC void 3133 xlog_recover_clear_agi_bucket( 3134 xfs_mount_t *mp, 3135 xfs_agnumber_t agno, 3136 int bucket) 3137 { 3138 xfs_trans_t *tp; 3139 xfs_agi_t *agi; 3140 xfs_buf_t *agibp; 3141 int offset; 3142 int error; 3143 3144 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); 3145 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 3146 0, 0, 0); 3147 if (error) 3148 goto out_abort; 3149 3150 error = xfs_read_agi(mp, tp, agno, &agibp); 3151 if (error) 3152 goto out_abort; 3153 3154 agi = XFS_BUF_TO_AGI(agibp); 3155 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 3156 offset = offsetof(xfs_agi_t, agi_unlinked) + 3157 (sizeof(xfs_agino_t) * bucket); 3158 xfs_trans_log_buf(tp, agibp, offset, 3159 (offset + sizeof(xfs_agino_t) - 1)); 3160 3161 error = xfs_trans_commit(tp, 0); 3162 if (error) 3163 goto out_error; 3164 return; 3165 3166 out_abort: 3167 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3168 out_error: 3169 xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: " 3170 "failed to clear agi %d. Continuing.", agno); 3171 return; 3172 } 3173 3174 STATIC xfs_agino_t 3175 xlog_recover_process_one_iunlink( 3176 struct xfs_mount *mp, 3177 xfs_agnumber_t agno, 3178 xfs_agino_t agino, 3179 int bucket) 3180 { 3181 struct xfs_buf *ibp; 3182 struct xfs_dinode *dip; 3183 struct xfs_inode *ip; 3184 xfs_ino_t ino; 3185 int error; 3186 3187 ino = XFS_AGINO_TO_INO(mp, agno, agino); 3188 error = xfs_iget(mp, NULL, ino, 0, 0, &ip); 3189 if (error) 3190 goto fail; 3191 3192 /* 3193 * Get the on disk inode to find the next inode in the bucket. 3194 */ 3195 error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK); 3196 if (error) 3197 goto fail_iput; 3198 3199 ASSERT(ip->i_d.di_nlink == 0); 3200 ASSERT(ip->i_d.di_mode != 0); 3201 3202 /* setup for the next pass */ 3203 agino = be32_to_cpu(dip->di_next_unlinked); 3204 xfs_buf_relse(ibp); 3205 3206 /* 3207 * Prevent any DMAPI event from being sent when the reference on 3208 * the inode is dropped. 3209 */ 3210 ip->i_d.di_dmevmask = 0; 3211 3212 IRELE(ip); 3213 return agino; 3214 3215 fail_iput: 3216 IRELE(ip); 3217 fail: 3218 /* 3219 * We can't read in the inode this bucket points to, or this inode 3220 * is messed up. Just ditch this bucket of inodes. We will lose 3221 * some inodes and space, but at least we won't hang. 3222 * 3223 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 3224 * clear the inode pointer in the bucket. 3225 */ 3226 xlog_recover_clear_agi_bucket(mp, agno, bucket); 3227 return NULLAGINO; 3228 } 3229 3230 /* 3231 * xlog_iunlink_recover 3232 * 3233 * This is called during recovery to process any inodes which 3234 * we unlinked but not freed when the system crashed. These 3235 * inodes will be on the lists in the AGI blocks. What we do 3236 * here is scan all the AGIs and fully truncate and free any 3237 * inodes found on the lists. Each inode is removed from the 3238 * lists when it has been fully truncated and is freed. The 3239 * freeing of the inode and its removal from the list must be 3240 * atomic. 3241 */ 3242 STATIC void 3243 xlog_recover_process_iunlinks( 3244 xlog_t *log) 3245 { 3246 xfs_mount_t *mp; 3247 xfs_agnumber_t agno; 3248 xfs_agi_t *agi; 3249 xfs_buf_t *agibp; 3250 xfs_agino_t agino; 3251 int bucket; 3252 int error; 3253 uint mp_dmevmask; 3254 3255 mp = log->l_mp; 3256 3257 /* 3258 * Prevent any DMAPI event from being sent while in this function. 3259 */ 3260 mp_dmevmask = mp->m_dmevmask; 3261 mp->m_dmevmask = 0; 3262 3263 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3264 /* 3265 * Find the agi for this ag. 3266 */ 3267 error = xfs_read_agi(mp, NULL, agno, &agibp); 3268 if (error) { 3269 /* 3270 * AGI is b0rked. Don't process it. 3271 * 3272 * We should probably mark the filesystem as corrupt 3273 * after we've recovered all the ag's we can.... 3274 */ 3275 continue; 3276 } 3277 agi = XFS_BUF_TO_AGI(agibp); 3278 3279 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 3280 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 3281 while (agino != NULLAGINO) { 3282 /* 3283 * Release the agi buffer so that it can 3284 * be acquired in the normal course of the 3285 * transaction to truncate and free the inode. 3286 */ 3287 xfs_buf_relse(agibp); 3288 3289 agino = xlog_recover_process_one_iunlink(mp, 3290 agno, agino, bucket); 3291 3292 /* 3293 * Reacquire the agibuffer and continue around 3294 * the loop. This should never fail as we know 3295 * the buffer was good earlier on. 3296 */ 3297 error = xfs_read_agi(mp, NULL, agno, &agibp); 3298 ASSERT(error == 0); 3299 agi = XFS_BUF_TO_AGI(agibp); 3300 } 3301 } 3302 3303 /* 3304 * Release the buffer for the current agi so we can 3305 * go on to the next one. 3306 */ 3307 xfs_buf_relse(agibp); 3308 } 3309 3310 mp->m_dmevmask = mp_dmevmask; 3311 } 3312 3313 3314 #ifdef DEBUG 3315 STATIC void 3316 xlog_pack_data_checksum( 3317 xlog_t *log, 3318 xlog_in_core_t *iclog, 3319 int size) 3320 { 3321 int i; 3322 __be32 *up; 3323 uint chksum = 0; 3324 3325 up = (__be32 *)iclog->ic_datap; 3326 /* divide length by 4 to get # words */ 3327 for (i = 0; i < (size >> 2); i++) { 3328 chksum ^= be32_to_cpu(*up); 3329 up++; 3330 } 3331 iclog->ic_header.h_chksum = cpu_to_be32(chksum); 3332 } 3333 #else 3334 #define xlog_pack_data_checksum(log, iclog, size) 3335 #endif 3336 3337 /* 3338 * Stamp cycle number in every block 3339 */ 3340 void 3341 xlog_pack_data( 3342 xlog_t *log, 3343 xlog_in_core_t *iclog, 3344 int roundoff) 3345 { 3346 int i, j, k; 3347 int size = iclog->ic_offset + roundoff; 3348 __be32 cycle_lsn; 3349 xfs_caddr_t dp; 3350 3351 xlog_pack_data_checksum(log, iclog, size); 3352 3353 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 3354 3355 dp = iclog->ic_datap; 3356 for (i = 0; i < BTOBB(size) && 3357 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3358 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 3359 *(__be32 *)dp = cycle_lsn; 3360 dp += BBSIZE; 3361 } 3362 3363 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3364 xlog_in_core_2_t *xhdr = iclog->ic_data; 3365 3366 for ( ; i < BTOBB(size); i++) { 3367 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3368 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3369 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 3370 *(__be32 *)dp = cycle_lsn; 3371 dp += BBSIZE; 3372 } 3373 3374 for (i = 1; i < log->l_iclog_heads; i++) { 3375 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 3376 } 3377 } 3378 } 3379 3380 STATIC void 3381 xlog_unpack_data( 3382 xlog_rec_header_t *rhead, 3383 xfs_caddr_t dp, 3384 xlog_t *log) 3385 { 3386 int i, j, k; 3387 3388 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 3389 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3390 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 3391 dp += BBSIZE; 3392 } 3393 3394 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3395 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 3396 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 3397 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3398 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3399 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 3400 dp += BBSIZE; 3401 } 3402 } 3403 } 3404 3405 STATIC int 3406 xlog_valid_rec_header( 3407 xlog_t *log, 3408 xlog_rec_header_t *rhead, 3409 xfs_daddr_t blkno) 3410 { 3411 int hlen; 3412 3413 if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) { 3414 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 3415 XFS_ERRLEVEL_LOW, log->l_mp); 3416 return XFS_ERROR(EFSCORRUPTED); 3417 } 3418 if (unlikely( 3419 (!rhead->h_version || 3420 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { 3421 xlog_warn("XFS: %s: unrecognised log version (%d).", 3422 __func__, be32_to_cpu(rhead->h_version)); 3423 return XFS_ERROR(EIO); 3424 } 3425 3426 /* LR body must have data or it wouldn't have been written */ 3427 hlen = be32_to_cpu(rhead->h_len); 3428 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 3429 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 3430 XFS_ERRLEVEL_LOW, log->l_mp); 3431 return XFS_ERROR(EFSCORRUPTED); 3432 } 3433 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 3434 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 3435 XFS_ERRLEVEL_LOW, log->l_mp); 3436 return XFS_ERROR(EFSCORRUPTED); 3437 } 3438 return 0; 3439 } 3440 3441 /* 3442 * Read the log from tail to head and process the log records found. 3443 * Handle the two cases where the tail and head are in the same cycle 3444 * and where the active portion of the log wraps around the end of 3445 * the physical log separately. The pass parameter is passed through 3446 * to the routines called to process the data and is not looked at 3447 * here. 3448 */ 3449 STATIC int 3450 xlog_do_recovery_pass( 3451 xlog_t *log, 3452 xfs_daddr_t head_blk, 3453 xfs_daddr_t tail_blk, 3454 int pass) 3455 { 3456 xlog_rec_header_t *rhead; 3457 xfs_daddr_t blk_no; 3458 xfs_caddr_t offset; 3459 xfs_buf_t *hbp, *dbp; 3460 int error = 0, h_size; 3461 int bblks, split_bblks; 3462 int hblks, split_hblks, wrapped_hblks; 3463 struct hlist_head rhash[XLOG_RHASH_SIZE]; 3464 3465 ASSERT(head_blk != tail_blk); 3466 3467 /* 3468 * Read the header of the tail block and get the iclog buffer size from 3469 * h_size. Use this to tell how many sectors make up the log header. 3470 */ 3471 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3472 /* 3473 * When using variable length iclogs, read first sector of 3474 * iclog header and extract the header size from it. Get a 3475 * new hbp that is the correct size. 3476 */ 3477 hbp = xlog_get_bp(log, 1); 3478 if (!hbp) 3479 return ENOMEM; 3480 3481 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 3482 if (error) 3483 goto bread_err1; 3484 3485 rhead = (xlog_rec_header_t *)offset; 3486 error = xlog_valid_rec_header(log, rhead, tail_blk); 3487 if (error) 3488 goto bread_err1; 3489 h_size = be32_to_cpu(rhead->h_size); 3490 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 3491 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 3492 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 3493 if (h_size % XLOG_HEADER_CYCLE_SIZE) 3494 hblks++; 3495 xlog_put_bp(hbp); 3496 hbp = xlog_get_bp(log, hblks); 3497 } else { 3498 hblks = 1; 3499 } 3500 } else { 3501 ASSERT(log->l_sectBBsize == 1); 3502 hblks = 1; 3503 hbp = xlog_get_bp(log, 1); 3504 h_size = XLOG_BIG_RECORD_BSIZE; 3505 } 3506 3507 if (!hbp) 3508 return ENOMEM; 3509 dbp = xlog_get_bp(log, BTOBB(h_size)); 3510 if (!dbp) { 3511 xlog_put_bp(hbp); 3512 return ENOMEM; 3513 } 3514 3515 memset(rhash, 0, sizeof(rhash)); 3516 if (tail_blk <= head_blk) { 3517 for (blk_no = tail_blk; blk_no < head_blk; ) { 3518 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 3519 if (error) 3520 goto bread_err2; 3521 3522 rhead = (xlog_rec_header_t *)offset; 3523 error = xlog_valid_rec_header(log, rhead, blk_no); 3524 if (error) 3525 goto bread_err2; 3526 3527 /* blocks in data section */ 3528 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3529 error = xlog_bread(log, blk_no + hblks, bblks, dbp, 3530 &offset); 3531 if (error) 3532 goto bread_err2; 3533 3534 xlog_unpack_data(rhead, offset, log); 3535 if ((error = xlog_recover_process_data(log, 3536 rhash, rhead, offset, pass))) 3537 goto bread_err2; 3538 blk_no += bblks + hblks; 3539 } 3540 } else { 3541 /* 3542 * Perform recovery around the end of the physical log. 3543 * When the head is not on the same cycle number as the tail, 3544 * we can't do a sequential recovery as above. 3545 */ 3546 blk_no = tail_blk; 3547 while (blk_no < log->l_logBBsize) { 3548 /* 3549 * Check for header wrapping around physical end-of-log 3550 */ 3551 offset = XFS_BUF_PTR(hbp); 3552 split_hblks = 0; 3553 wrapped_hblks = 0; 3554 if (blk_no + hblks <= log->l_logBBsize) { 3555 /* Read header in one read */ 3556 error = xlog_bread(log, blk_no, hblks, hbp, 3557 &offset); 3558 if (error) 3559 goto bread_err2; 3560 } else { 3561 /* This LR is split across physical log end */ 3562 if (blk_no != log->l_logBBsize) { 3563 /* some data before physical log end */ 3564 ASSERT(blk_no <= INT_MAX); 3565 split_hblks = log->l_logBBsize - (int)blk_no; 3566 ASSERT(split_hblks > 0); 3567 error = xlog_bread(log, blk_no, 3568 split_hblks, hbp, 3569 &offset); 3570 if (error) 3571 goto bread_err2; 3572 } 3573 3574 /* 3575 * Note: this black magic still works with 3576 * large sector sizes (non-512) only because: 3577 * - we increased the buffer size originally 3578 * by 1 sector giving us enough extra space 3579 * for the second read; 3580 * - the log start is guaranteed to be sector 3581 * aligned; 3582 * - we read the log end (LR header start) 3583 * _first_, then the log start (LR header end) 3584 * - order is important. 3585 */ 3586 wrapped_hblks = hblks - split_hblks; 3587 error = XFS_BUF_SET_PTR(hbp, 3588 offset + BBTOB(split_hblks), 3589 BBTOB(hblks - split_hblks)); 3590 if (error) 3591 goto bread_err2; 3592 3593 error = xlog_bread_noalign(log, 0, 3594 wrapped_hblks, hbp); 3595 if (error) 3596 goto bread_err2; 3597 3598 error = XFS_BUF_SET_PTR(hbp, offset, 3599 BBTOB(hblks)); 3600 if (error) 3601 goto bread_err2; 3602 } 3603 rhead = (xlog_rec_header_t *)offset; 3604 error = xlog_valid_rec_header(log, rhead, 3605 split_hblks ? blk_no : 0); 3606 if (error) 3607 goto bread_err2; 3608 3609 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3610 blk_no += hblks; 3611 3612 /* Read in data for log record */ 3613 if (blk_no + bblks <= log->l_logBBsize) { 3614 error = xlog_bread(log, blk_no, bblks, dbp, 3615 &offset); 3616 if (error) 3617 goto bread_err2; 3618 } else { 3619 /* This log record is split across the 3620 * physical end of log */ 3621 offset = XFS_BUF_PTR(dbp); 3622 split_bblks = 0; 3623 if (blk_no != log->l_logBBsize) { 3624 /* some data is before the physical 3625 * end of log */ 3626 ASSERT(!wrapped_hblks); 3627 ASSERT(blk_no <= INT_MAX); 3628 split_bblks = 3629 log->l_logBBsize - (int)blk_no; 3630 ASSERT(split_bblks > 0); 3631 error = xlog_bread(log, blk_no, 3632 split_bblks, dbp, 3633 &offset); 3634 if (error) 3635 goto bread_err2; 3636 } 3637 3638 /* 3639 * Note: this black magic still works with 3640 * large sector sizes (non-512) only because: 3641 * - we increased the buffer size originally 3642 * by 1 sector giving us enough extra space 3643 * for the second read; 3644 * - the log start is guaranteed to be sector 3645 * aligned; 3646 * - we read the log end (LR header start) 3647 * _first_, then the log start (LR header end) 3648 * - order is important. 3649 */ 3650 error = XFS_BUF_SET_PTR(dbp, 3651 offset + BBTOB(split_bblks), 3652 BBTOB(bblks - split_bblks)); 3653 if (error) 3654 goto bread_err2; 3655 3656 error = xlog_bread_noalign(log, wrapped_hblks, 3657 bblks - split_bblks, 3658 dbp); 3659 if (error) 3660 goto bread_err2; 3661 3662 error = XFS_BUF_SET_PTR(dbp, offset, h_size); 3663 if (error) 3664 goto bread_err2; 3665 } 3666 xlog_unpack_data(rhead, offset, log); 3667 if ((error = xlog_recover_process_data(log, rhash, 3668 rhead, offset, pass))) 3669 goto bread_err2; 3670 blk_no += bblks; 3671 } 3672 3673 ASSERT(blk_no >= log->l_logBBsize); 3674 blk_no -= log->l_logBBsize; 3675 3676 /* read first part of physical log */ 3677 while (blk_no < head_blk) { 3678 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 3679 if (error) 3680 goto bread_err2; 3681 3682 rhead = (xlog_rec_header_t *)offset; 3683 error = xlog_valid_rec_header(log, rhead, blk_no); 3684 if (error) 3685 goto bread_err2; 3686 3687 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3688 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 3689 &offset); 3690 if (error) 3691 goto bread_err2; 3692 3693 xlog_unpack_data(rhead, offset, log); 3694 if ((error = xlog_recover_process_data(log, rhash, 3695 rhead, offset, pass))) 3696 goto bread_err2; 3697 blk_no += bblks + hblks; 3698 } 3699 } 3700 3701 bread_err2: 3702 xlog_put_bp(dbp); 3703 bread_err1: 3704 xlog_put_bp(hbp); 3705 return error; 3706 } 3707 3708 /* 3709 * Do the recovery of the log. We actually do this in two phases. 3710 * The two passes are necessary in order to implement the function 3711 * of cancelling a record written into the log. The first pass 3712 * determines those things which have been cancelled, and the 3713 * second pass replays log items normally except for those which 3714 * have been cancelled. The handling of the replay and cancellations 3715 * takes place in the log item type specific routines. 3716 * 3717 * The table of items which have cancel records in the log is allocated 3718 * and freed at this level, since only here do we know when all of 3719 * the log recovery has been completed. 3720 */ 3721 STATIC int 3722 xlog_do_log_recovery( 3723 xlog_t *log, 3724 xfs_daddr_t head_blk, 3725 xfs_daddr_t tail_blk) 3726 { 3727 int error; 3728 3729 ASSERT(head_blk != tail_blk); 3730 3731 /* 3732 * First do a pass to find all of the cancelled buf log items. 3733 * Store them in the buf_cancel_table for use in the second pass. 3734 */ 3735 log->l_buf_cancel_table = 3736 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE * 3737 sizeof(xfs_buf_cancel_t*), 3738 KM_SLEEP); 3739 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3740 XLOG_RECOVER_PASS1); 3741 if (error != 0) { 3742 kmem_free(log->l_buf_cancel_table); 3743 log->l_buf_cancel_table = NULL; 3744 return error; 3745 } 3746 /* 3747 * Then do a second pass to actually recover the items in the log. 3748 * When it is complete free the table of buf cancel items. 3749 */ 3750 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3751 XLOG_RECOVER_PASS2); 3752 #ifdef DEBUG 3753 if (!error) { 3754 int i; 3755 3756 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3757 ASSERT(log->l_buf_cancel_table[i] == NULL); 3758 } 3759 #endif /* DEBUG */ 3760 3761 kmem_free(log->l_buf_cancel_table); 3762 log->l_buf_cancel_table = NULL; 3763 3764 return error; 3765 } 3766 3767 /* 3768 * Do the actual recovery 3769 */ 3770 STATIC int 3771 xlog_do_recover( 3772 xlog_t *log, 3773 xfs_daddr_t head_blk, 3774 xfs_daddr_t tail_blk) 3775 { 3776 int error; 3777 xfs_buf_t *bp; 3778 xfs_sb_t *sbp; 3779 3780 /* 3781 * First replay the images in the log. 3782 */ 3783 error = xlog_do_log_recovery(log, head_blk, tail_blk); 3784 if (error) { 3785 return error; 3786 } 3787 3788 XFS_bflush(log->l_mp->m_ddev_targp); 3789 3790 /* 3791 * If IO errors happened during recovery, bail out. 3792 */ 3793 if (XFS_FORCED_SHUTDOWN(log->l_mp)) { 3794 return (EIO); 3795 } 3796 3797 /* 3798 * We now update the tail_lsn since much of the recovery has completed 3799 * and there may be space available to use. If there were no extent 3800 * or iunlinks, we can free up the entire log and set the tail_lsn to 3801 * be the last_sync_lsn. This was set in xlog_find_tail to be the 3802 * lsn of the last known good LR on disk. If there are extent frees 3803 * or iunlinks they will have some entries in the AIL; so we look at 3804 * the AIL to determine how to set the tail_lsn. 3805 */ 3806 xlog_assign_tail_lsn(log->l_mp); 3807 3808 /* 3809 * Now that we've finished replaying all buffer and inode 3810 * updates, re-read in the superblock. 3811 */ 3812 bp = xfs_getsb(log->l_mp, 0); 3813 XFS_BUF_UNDONE(bp); 3814 ASSERT(!(XFS_BUF_ISWRITE(bp))); 3815 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp))); 3816 XFS_BUF_READ(bp); 3817 XFS_BUF_UNASYNC(bp); 3818 xfsbdstrat(log->l_mp, bp); 3819 error = xfs_buf_iowait(bp); 3820 if (error) { 3821 xfs_ioerror_alert("xlog_do_recover", 3822 log->l_mp, bp, XFS_BUF_ADDR(bp)); 3823 ASSERT(0); 3824 xfs_buf_relse(bp); 3825 return error; 3826 } 3827 3828 /* Convert superblock from on-disk format */ 3829 sbp = &log->l_mp->m_sb; 3830 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 3831 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); 3832 ASSERT(xfs_sb_good_version(sbp)); 3833 xfs_buf_relse(bp); 3834 3835 /* We've re-read the superblock so re-initialize per-cpu counters */ 3836 xfs_icsb_reinit_counters(log->l_mp); 3837 3838 xlog_recover_check_summary(log); 3839 3840 /* Normal transactions can now occur */ 3841 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 3842 return 0; 3843 } 3844 3845 /* 3846 * Perform recovery and re-initialize some log variables in xlog_find_tail. 3847 * 3848 * Return error or zero. 3849 */ 3850 int 3851 xlog_recover( 3852 xlog_t *log) 3853 { 3854 xfs_daddr_t head_blk, tail_blk; 3855 int error; 3856 3857 /* find the tail of the log */ 3858 if ((error = xlog_find_tail(log, &head_blk, &tail_blk))) 3859 return error; 3860 3861 if (tail_blk != head_blk) { 3862 /* There used to be a comment here: 3863 * 3864 * disallow recovery on read-only mounts. note -- mount 3865 * checks for ENOSPC and turns it into an intelligent 3866 * error message. 3867 * ...but this is no longer true. Now, unless you specify 3868 * NORECOVERY (in which case this function would never be 3869 * called), we just go ahead and recover. We do this all 3870 * under the vfs layer, so we can get away with it unless 3871 * the device itself is read-only, in which case we fail. 3872 */ 3873 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 3874 return error; 3875 } 3876 3877 cmn_err(CE_NOTE, 3878 "Starting XFS recovery on filesystem: %s (logdev: %s)", 3879 log->l_mp->m_fsname, log->l_mp->m_logname ? 3880 log->l_mp->m_logname : "internal"); 3881 3882 error = xlog_do_recover(log, head_blk, tail_blk); 3883 log->l_flags |= XLOG_RECOVERY_NEEDED; 3884 } 3885 return error; 3886 } 3887 3888 /* 3889 * In the first part of recovery we replay inodes and buffers and build 3890 * up the list of extent free items which need to be processed. Here 3891 * we process the extent free items and clean up the on disk unlinked 3892 * inode lists. This is separated from the first part of recovery so 3893 * that the root and real-time bitmap inodes can be read in from disk in 3894 * between the two stages. This is necessary so that we can free space 3895 * in the real-time portion of the file system. 3896 */ 3897 int 3898 xlog_recover_finish( 3899 xlog_t *log) 3900 { 3901 /* 3902 * Now we're ready to do the transactions needed for the 3903 * rest of recovery. Start with completing all the extent 3904 * free intent records and then process the unlinked inode 3905 * lists. At this point, we essentially run in normal mode 3906 * except that we're still performing recovery actions 3907 * rather than accepting new requests. 3908 */ 3909 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 3910 int error; 3911 error = xlog_recover_process_efis(log); 3912 if (error) { 3913 cmn_err(CE_ALERT, 3914 "Failed to recover EFIs on filesystem: %s", 3915 log->l_mp->m_fsname); 3916 return error; 3917 } 3918 /* 3919 * Sync the log to get all the EFIs out of the AIL. 3920 * This isn't absolutely necessary, but it helps in 3921 * case the unlink transactions would have problems 3922 * pushing the EFIs out of the way. 3923 */ 3924 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 3925 3926 xlog_recover_process_iunlinks(log); 3927 3928 xlog_recover_check_summary(log); 3929 3930 cmn_err(CE_NOTE, 3931 "Ending XFS recovery on filesystem: %s (logdev: %s)", 3932 log->l_mp->m_fsname, log->l_mp->m_logname ? 3933 log->l_mp->m_logname : "internal"); 3934 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 3935 } else { 3936 cmn_err(CE_DEBUG, 3937 "!Ending clean XFS mount for filesystem: %s\n", 3938 log->l_mp->m_fsname); 3939 } 3940 return 0; 3941 } 3942 3943 3944 #if defined(DEBUG) 3945 /* 3946 * Read all of the agf and agi counters and check that they 3947 * are consistent with the superblock counters. 3948 */ 3949 void 3950 xlog_recover_check_summary( 3951 xlog_t *log) 3952 { 3953 xfs_mount_t *mp; 3954 xfs_agf_t *agfp; 3955 xfs_buf_t *agfbp; 3956 xfs_buf_t *agibp; 3957 xfs_agnumber_t agno; 3958 __uint64_t freeblks; 3959 __uint64_t itotal; 3960 __uint64_t ifree; 3961 int error; 3962 3963 mp = log->l_mp; 3964 3965 freeblks = 0LL; 3966 itotal = 0LL; 3967 ifree = 0LL; 3968 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3969 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 3970 if (error) { 3971 xfs_fs_cmn_err(CE_ALERT, mp, 3972 "xlog_recover_check_summary(agf)" 3973 "agf read failed agno %d error %d", 3974 agno, error); 3975 } else { 3976 agfp = XFS_BUF_TO_AGF(agfbp); 3977 freeblks += be32_to_cpu(agfp->agf_freeblks) + 3978 be32_to_cpu(agfp->agf_flcount); 3979 xfs_buf_relse(agfbp); 3980 } 3981 3982 error = xfs_read_agi(mp, NULL, agno, &agibp); 3983 if (!error) { 3984 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 3985 3986 itotal += be32_to_cpu(agi->agi_count); 3987 ifree += be32_to_cpu(agi->agi_freecount); 3988 xfs_buf_relse(agibp); 3989 } 3990 } 3991 } 3992 #endif /* DEBUG */ 3993