xref: /openbmc/linux/fs/xfs/xfs_log_recover.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_alloc.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_log_priv.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_log_recover.h"
40 #include "xfs_extfree_item.h"
41 #include "xfs_trans_priv.h"
42 #include "xfs_quota.h"
43 #include "xfs_rw.h"
44 #include "xfs_utils.h"
45 #include "xfs_trace.h"
46 
47 STATIC int	xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
48 STATIC int	xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
49 #if defined(DEBUG)
50 STATIC void	xlog_recover_check_summary(xlog_t *);
51 #else
52 #define	xlog_recover_check_summary(log)
53 #endif
54 
55 /*
56  * Sector aligned buffer routines for buffer create/read/write/access
57  */
58 
59 /*
60  * Verify the given count of basic blocks is valid number of blocks
61  * to specify for an operation involving the given XFS log buffer.
62  * Returns nonzero if the count is valid, 0 otherwise.
63  */
64 
65 static inline int
66 xlog_buf_bbcount_valid(
67 	xlog_t		*log,
68 	int		bbcount)
69 {
70 	return bbcount > 0 && bbcount <= log->l_logBBsize;
71 }
72 
73 /*
74  * Allocate a buffer to hold log data.  The buffer needs to be able
75  * to map to a range of nbblks basic blocks at any valid (basic
76  * block) offset within the log.
77  */
78 STATIC xfs_buf_t *
79 xlog_get_bp(
80 	xlog_t		*log,
81 	int		nbblks)
82 {
83 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
84 		xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
85 			nbblks);
86 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
87 		return NULL;
88 	}
89 
90 	/*
91 	 * We do log I/O in units of log sectors (a power-of-2
92 	 * multiple of the basic block size), so we round up the
93 	 * requested size to acommodate the basic blocks required
94 	 * for complete log sectors.
95 	 *
96 	 * In addition, the buffer may be used for a non-sector-
97 	 * aligned block offset, in which case an I/O of the
98 	 * requested size could extend beyond the end of the
99 	 * buffer.  If the requested size is only 1 basic block it
100 	 * will never straddle a sector boundary, so this won't be
101 	 * an issue.  Nor will this be a problem if the log I/O is
102 	 * done in basic blocks (sector size 1).  But otherwise we
103 	 * extend the buffer by one extra log sector to ensure
104 	 * there's space to accomodate this possiblility.
105 	 */
106 	if (nbblks > 1 && log->l_sectBBsize > 1)
107 		nbblks += log->l_sectBBsize;
108 	nbblks = round_up(nbblks, log->l_sectBBsize);
109 
110 	return xfs_buf_get_uncached(log->l_mp->m_logdev_targp,
111 					BBTOB(nbblks), 0);
112 }
113 
114 STATIC void
115 xlog_put_bp(
116 	xfs_buf_t	*bp)
117 {
118 	xfs_buf_free(bp);
119 }
120 
121 /*
122  * Return the address of the start of the given block number's data
123  * in a log buffer.  The buffer covers a log sector-aligned region.
124  */
125 STATIC xfs_caddr_t
126 xlog_align(
127 	xlog_t		*log,
128 	xfs_daddr_t	blk_no,
129 	int		nbblks,
130 	xfs_buf_t	*bp)
131 {
132 	xfs_daddr_t	offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
133 
134 	ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp));
135 	return XFS_BUF_PTR(bp) + BBTOB(offset);
136 }
137 
138 
139 /*
140  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
141  */
142 STATIC int
143 xlog_bread_noalign(
144 	xlog_t		*log,
145 	xfs_daddr_t	blk_no,
146 	int		nbblks,
147 	xfs_buf_t	*bp)
148 {
149 	int		error;
150 
151 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
152 		xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
153 			nbblks);
154 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
155 		return EFSCORRUPTED;
156 	}
157 
158 	blk_no = round_down(blk_no, log->l_sectBBsize);
159 	nbblks = round_up(nbblks, log->l_sectBBsize);
160 
161 	ASSERT(nbblks > 0);
162 	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
163 
164 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
165 	XFS_BUF_READ(bp);
166 	XFS_BUF_BUSY(bp);
167 	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
168 	XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
169 
170 	xfsbdstrat(log->l_mp, bp);
171 	error = xfs_buf_iowait(bp);
172 	if (error)
173 		xfs_ioerror_alert("xlog_bread", log->l_mp,
174 				  bp, XFS_BUF_ADDR(bp));
175 	return error;
176 }
177 
178 STATIC int
179 xlog_bread(
180 	xlog_t		*log,
181 	xfs_daddr_t	blk_no,
182 	int		nbblks,
183 	xfs_buf_t	*bp,
184 	xfs_caddr_t	*offset)
185 {
186 	int		error;
187 
188 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
189 	if (error)
190 		return error;
191 
192 	*offset = xlog_align(log, blk_no, nbblks, bp);
193 	return 0;
194 }
195 
196 /*
197  * Write out the buffer at the given block for the given number of blocks.
198  * The buffer is kept locked across the write and is returned locked.
199  * This can only be used for synchronous log writes.
200  */
201 STATIC int
202 xlog_bwrite(
203 	xlog_t		*log,
204 	xfs_daddr_t	blk_no,
205 	int		nbblks,
206 	xfs_buf_t	*bp)
207 {
208 	int		error;
209 
210 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
211 		xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
212 			nbblks);
213 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
214 		return EFSCORRUPTED;
215 	}
216 
217 	blk_no = round_down(blk_no, log->l_sectBBsize);
218 	nbblks = round_up(nbblks, log->l_sectBBsize);
219 
220 	ASSERT(nbblks > 0);
221 	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
222 
223 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
224 	XFS_BUF_ZEROFLAGS(bp);
225 	XFS_BUF_BUSY(bp);
226 	XFS_BUF_HOLD(bp);
227 	XFS_BUF_PSEMA(bp, PRIBIO);
228 	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
229 	XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
230 
231 	if ((error = xfs_bwrite(log->l_mp, bp)))
232 		xfs_ioerror_alert("xlog_bwrite", log->l_mp,
233 				  bp, XFS_BUF_ADDR(bp));
234 	return error;
235 }
236 
237 #ifdef DEBUG
238 /*
239  * dump debug superblock and log record information
240  */
241 STATIC void
242 xlog_header_check_dump(
243 	xfs_mount_t		*mp,
244 	xlog_rec_header_t	*head)
245 {
246 	cmn_err(CE_DEBUG, "%s:  SB : uuid = %pU, fmt = %d\n",
247 		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
248 	cmn_err(CE_DEBUG, "    log : uuid = %pU, fmt = %d\n",
249 		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
250 }
251 #else
252 #define xlog_header_check_dump(mp, head)
253 #endif
254 
255 /*
256  * check log record header for recovery
257  */
258 STATIC int
259 xlog_header_check_recover(
260 	xfs_mount_t		*mp,
261 	xlog_rec_header_t	*head)
262 {
263 	ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
264 
265 	/*
266 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
267 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
268 	 * a dirty log created in IRIX.
269 	 */
270 	if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
271 		xlog_warn(
272 	"XFS: dirty log written in incompatible format - can't recover");
273 		xlog_header_check_dump(mp, head);
274 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
275 				 XFS_ERRLEVEL_HIGH, mp);
276 		return XFS_ERROR(EFSCORRUPTED);
277 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
278 		xlog_warn(
279 	"XFS: dirty log entry has mismatched uuid - can't recover");
280 		xlog_header_check_dump(mp, head);
281 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
282 				 XFS_ERRLEVEL_HIGH, mp);
283 		return XFS_ERROR(EFSCORRUPTED);
284 	}
285 	return 0;
286 }
287 
288 /*
289  * read the head block of the log and check the header
290  */
291 STATIC int
292 xlog_header_check_mount(
293 	xfs_mount_t		*mp,
294 	xlog_rec_header_t	*head)
295 {
296 	ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
297 
298 	if (uuid_is_nil(&head->h_fs_uuid)) {
299 		/*
300 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
301 		 * h_fs_uuid is nil, we assume this log was last mounted
302 		 * by IRIX and continue.
303 		 */
304 		xlog_warn("XFS: nil uuid in log - IRIX style log");
305 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
306 		xlog_warn("XFS: log has mismatched uuid - can't recover");
307 		xlog_header_check_dump(mp, head);
308 		XFS_ERROR_REPORT("xlog_header_check_mount",
309 				 XFS_ERRLEVEL_HIGH, mp);
310 		return XFS_ERROR(EFSCORRUPTED);
311 	}
312 	return 0;
313 }
314 
315 STATIC void
316 xlog_recover_iodone(
317 	struct xfs_buf	*bp)
318 {
319 	if (XFS_BUF_GETERROR(bp)) {
320 		/*
321 		 * We're not going to bother about retrying
322 		 * this during recovery. One strike!
323 		 */
324 		xfs_ioerror_alert("xlog_recover_iodone",
325 					bp->b_target->bt_mount, bp,
326 					XFS_BUF_ADDR(bp));
327 		xfs_force_shutdown(bp->b_target->bt_mount,
328 					SHUTDOWN_META_IO_ERROR);
329 	}
330 	XFS_BUF_CLR_IODONE_FUNC(bp);
331 	xfs_buf_ioend(bp, 0);
332 }
333 
334 /*
335  * This routine finds (to an approximation) the first block in the physical
336  * log which contains the given cycle.  It uses a binary search algorithm.
337  * Note that the algorithm can not be perfect because the disk will not
338  * necessarily be perfect.
339  */
340 STATIC int
341 xlog_find_cycle_start(
342 	xlog_t		*log,
343 	xfs_buf_t	*bp,
344 	xfs_daddr_t	first_blk,
345 	xfs_daddr_t	*last_blk,
346 	uint		cycle)
347 {
348 	xfs_caddr_t	offset;
349 	xfs_daddr_t	mid_blk;
350 	xfs_daddr_t	end_blk;
351 	uint		mid_cycle;
352 	int		error;
353 
354 	end_blk = *last_blk;
355 	mid_blk = BLK_AVG(first_blk, end_blk);
356 	while (mid_blk != first_blk && mid_blk != end_blk) {
357 		error = xlog_bread(log, mid_blk, 1, bp, &offset);
358 		if (error)
359 			return error;
360 		mid_cycle = xlog_get_cycle(offset);
361 		if (mid_cycle == cycle)
362 			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
363 		else
364 			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
365 		mid_blk = BLK_AVG(first_blk, end_blk);
366 	}
367 	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
368 	       (mid_blk == end_blk && mid_blk-1 == first_blk));
369 
370 	*last_blk = end_blk;
371 
372 	return 0;
373 }
374 
375 /*
376  * Check that a range of blocks does not contain stop_on_cycle_no.
377  * Fill in *new_blk with the block offset where such a block is
378  * found, or with -1 (an invalid block number) if there is no such
379  * block in the range.  The scan needs to occur from front to back
380  * and the pointer into the region must be updated since a later
381  * routine will need to perform another test.
382  */
383 STATIC int
384 xlog_find_verify_cycle(
385 	xlog_t		*log,
386 	xfs_daddr_t	start_blk,
387 	int		nbblks,
388 	uint		stop_on_cycle_no,
389 	xfs_daddr_t	*new_blk)
390 {
391 	xfs_daddr_t	i, j;
392 	uint		cycle;
393 	xfs_buf_t	*bp;
394 	xfs_daddr_t	bufblks;
395 	xfs_caddr_t	buf = NULL;
396 	int		error = 0;
397 
398 	/*
399 	 * Greedily allocate a buffer big enough to handle the full
400 	 * range of basic blocks we'll be examining.  If that fails,
401 	 * try a smaller size.  We need to be able to read at least
402 	 * a log sector, or we're out of luck.
403 	 */
404 	bufblks = 1 << ffs(nbblks);
405 	while (!(bp = xlog_get_bp(log, bufblks))) {
406 		bufblks >>= 1;
407 		if (bufblks < log->l_sectBBsize)
408 			return ENOMEM;
409 	}
410 
411 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
412 		int	bcount;
413 
414 		bcount = min(bufblks, (start_blk + nbblks - i));
415 
416 		error = xlog_bread(log, i, bcount, bp, &buf);
417 		if (error)
418 			goto out;
419 
420 		for (j = 0; j < bcount; j++) {
421 			cycle = xlog_get_cycle(buf);
422 			if (cycle == stop_on_cycle_no) {
423 				*new_blk = i+j;
424 				goto out;
425 			}
426 
427 			buf += BBSIZE;
428 		}
429 	}
430 
431 	*new_blk = -1;
432 
433 out:
434 	xlog_put_bp(bp);
435 	return error;
436 }
437 
438 /*
439  * Potentially backup over partial log record write.
440  *
441  * In the typical case, last_blk is the number of the block directly after
442  * a good log record.  Therefore, we subtract one to get the block number
443  * of the last block in the given buffer.  extra_bblks contains the number
444  * of blocks we would have read on a previous read.  This happens when the
445  * last log record is split over the end of the physical log.
446  *
447  * extra_bblks is the number of blocks potentially verified on a previous
448  * call to this routine.
449  */
450 STATIC int
451 xlog_find_verify_log_record(
452 	xlog_t			*log,
453 	xfs_daddr_t		start_blk,
454 	xfs_daddr_t		*last_blk,
455 	int			extra_bblks)
456 {
457 	xfs_daddr_t		i;
458 	xfs_buf_t		*bp;
459 	xfs_caddr_t		offset = NULL;
460 	xlog_rec_header_t	*head = NULL;
461 	int			error = 0;
462 	int			smallmem = 0;
463 	int			num_blks = *last_blk - start_blk;
464 	int			xhdrs;
465 
466 	ASSERT(start_blk != 0 || *last_blk != start_blk);
467 
468 	if (!(bp = xlog_get_bp(log, num_blks))) {
469 		if (!(bp = xlog_get_bp(log, 1)))
470 			return ENOMEM;
471 		smallmem = 1;
472 	} else {
473 		error = xlog_bread(log, start_blk, num_blks, bp, &offset);
474 		if (error)
475 			goto out;
476 		offset += ((num_blks - 1) << BBSHIFT);
477 	}
478 
479 	for (i = (*last_blk) - 1; i >= 0; i--) {
480 		if (i < start_blk) {
481 			/* valid log record not found */
482 			xlog_warn(
483 		"XFS: Log inconsistent (didn't find previous header)");
484 			ASSERT(0);
485 			error = XFS_ERROR(EIO);
486 			goto out;
487 		}
488 
489 		if (smallmem) {
490 			error = xlog_bread(log, i, 1, bp, &offset);
491 			if (error)
492 				goto out;
493 		}
494 
495 		head = (xlog_rec_header_t *)offset;
496 
497 		if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
498 			break;
499 
500 		if (!smallmem)
501 			offset -= BBSIZE;
502 	}
503 
504 	/*
505 	 * We hit the beginning of the physical log & still no header.  Return
506 	 * to caller.  If caller can handle a return of -1, then this routine
507 	 * will be called again for the end of the physical log.
508 	 */
509 	if (i == -1) {
510 		error = -1;
511 		goto out;
512 	}
513 
514 	/*
515 	 * We have the final block of the good log (the first block
516 	 * of the log record _before_ the head. So we check the uuid.
517 	 */
518 	if ((error = xlog_header_check_mount(log->l_mp, head)))
519 		goto out;
520 
521 	/*
522 	 * We may have found a log record header before we expected one.
523 	 * last_blk will be the 1st block # with a given cycle #.  We may end
524 	 * up reading an entire log record.  In this case, we don't want to
525 	 * reset last_blk.  Only when last_blk points in the middle of a log
526 	 * record do we update last_blk.
527 	 */
528 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
529 		uint	h_size = be32_to_cpu(head->h_size);
530 
531 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
532 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
533 			xhdrs++;
534 	} else {
535 		xhdrs = 1;
536 	}
537 
538 	if (*last_blk - i + extra_bblks !=
539 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
540 		*last_blk = i;
541 
542 out:
543 	xlog_put_bp(bp);
544 	return error;
545 }
546 
547 /*
548  * Head is defined to be the point of the log where the next log write
549  * write could go.  This means that incomplete LR writes at the end are
550  * eliminated when calculating the head.  We aren't guaranteed that previous
551  * LR have complete transactions.  We only know that a cycle number of
552  * current cycle number -1 won't be present in the log if we start writing
553  * from our current block number.
554  *
555  * last_blk contains the block number of the first block with a given
556  * cycle number.
557  *
558  * Return: zero if normal, non-zero if error.
559  */
560 STATIC int
561 xlog_find_head(
562 	xlog_t 		*log,
563 	xfs_daddr_t	*return_head_blk)
564 {
565 	xfs_buf_t	*bp;
566 	xfs_caddr_t	offset;
567 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
568 	int		num_scan_bblks;
569 	uint		first_half_cycle, last_half_cycle;
570 	uint		stop_on_cycle;
571 	int		error, log_bbnum = log->l_logBBsize;
572 
573 	/* Is the end of the log device zeroed? */
574 	if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
575 		*return_head_blk = first_blk;
576 
577 		/* Is the whole lot zeroed? */
578 		if (!first_blk) {
579 			/* Linux XFS shouldn't generate totally zeroed logs -
580 			 * mkfs etc write a dummy unmount record to a fresh
581 			 * log so we can store the uuid in there
582 			 */
583 			xlog_warn("XFS: totally zeroed log");
584 		}
585 
586 		return 0;
587 	} else if (error) {
588 		xlog_warn("XFS: empty log check failed");
589 		return error;
590 	}
591 
592 	first_blk = 0;			/* get cycle # of 1st block */
593 	bp = xlog_get_bp(log, 1);
594 	if (!bp)
595 		return ENOMEM;
596 
597 	error = xlog_bread(log, 0, 1, bp, &offset);
598 	if (error)
599 		goto bp_err;
600 
601 	first_half_cycle = xlog_get_cycle(offset);
602 
603 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
604 	error = xlog_bread(log, last_blk, 1, bp, &offset);
605 	if (error)
606 		goto bp_err;
607 
608 	last_half_cycle = xlog_get_cycle(offset);
609 	ASSERT(last_half_cycle != 0);
610 
611 	/*
612 	 * If the 1st half cycle number is equal to the last half cycle number,
613 	 * then the entire log is stamped with the same cycle number.  In this
614 	 * case, head_blk can't be set to zero (which makes sense).  The below
615 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
616 	 * we set it to log_bbnum which is an invalid block number, but this
617 	 * value makes the math correct.  If head_blk doesn't changed through
618 	 * all the tests below, *head_blk is set to zero at the very end rather
619 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
620 	 * in a circular file.
621 	 */
622 	if (first_half_cycle == last_half_cycle) {
623 		/*
624 		 * In this case we believe that the entire log should have
625 		 * cycle number last_half_cycle.  We need to scan backwards
626 		 * from the end verifying that there are no holes still
627 		 * containing last_half_cycle - 1.  If we find such a hole,
628 		 * then the start of that hole will be the new head.  The
629 		 * simple case looks like
630 		 *        x | x ... | x - 1 | x
631 		 * Another case that fits this picture would be
632 		 *        x | x + 1 | x ... | x
633 		 * In this case the head really is somewhere at the end of the
634 		 * log, as one of the latest writes at the beginning was
635 		 * incomplete.
636 		 * One more case is
637 		 *        x | x + 1 | x ... | x - 1 | x
638 		 * This is really the combination of the above two cases, and
639 		 * the head has to end up at the start of the x-1 hole at the
640 		 * end of the log.
641 		 *
642 		 * In the 256k log case, we will read from the beginning to the
643 		 * end of the log and search for cycle numbers equal to x-1.
644 		 * We don't worry about the x+1 blocks that we encounter,
645 		 * because we know that they cannot be the head since the log
646 		 * started with x.
647 		 */
648 		head_blk = log_bbnum;
649 		stop_on_cycle = last_half_cycle - 1;
650 	} else {
651 		/*
652 		 * In this case we want to find the first block with cycle
653 		 * number matching last_half_cycle.  We expect the log to be
654 		 * some variation on
655 		 *        x + 1 ... | x ... | x
656 		 * The first block with cycle number x (last_half_cycle) will
657 		 * be where the new head belongs.  First we do a binary search
658 		 * for the first occurrence of last_half_cycle.  The binary
659 		 * search may not be totally accurate, so then we scan back
660 		 * from there looking for occurrences of last_half_cycle before
661 		 * us.  If that backwards scan wraps around the beginning of
662 		 * the log, then we look for occurrences of last_half_cycle - 1
663 		 * at the end of the log.  The cases we're looking for look
664 		 * like
665 		 *                               v binary search stopped here
666 		 *        x + 1 ... | x | x + 1 | x ... | x
667 		 *                   ^ but we want to locate this spot
668 		 * or
669 		 *        <---------> less than scan distance
670 		 *        x + 1 ... | x ... | x - 1 | x
671 		 *                           ^ we want to locate this spot
672 		 */
673 		stop_on_cycle = last_half_cycle;
674 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
675 						&head_blk, last_half_cycle)))
676 			goto bp_err;
677 	}
678 
679 	/*
680 	 * Now validate the answer.  Scan back some number of maximum possible
681 	 * blocks and make sure each one has the expected cycle number.  The
682 	 * maximum is determined by the total possible amount of buffering
683 	 * in the in-core log.  The following number can be made tighter if
684 	 * we actually look at the block size of the filesystem.
685 	 */
686 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
687 	if (head_blk >= num_scan_bblks) {
688 		/*
689 		 * We are guaranteed that the entire check can be performed
690 		 * in one buffer.
691 		 */
692 		start_blk = head_blk - num_scan_bblks;
693 		if ((error = xlog_find_verify_cycle(log,
694 						start_blk, num_scan_bblks,
695 						stop_on_cycle, &new_blk)))
696 			goto bp_err;
697 		if (new_blk != -1)
698 			head_blk = new_blk;
699 	} else {		/* need to read 2 parts of log */
700 		/*
701 		 * We are going to scan backwards in the log in two parts.
702 		 * First we scan the physical end of the log.  In this part
703 		 * of the log, we are looking for blocks with cycle number
704 		 * last_half_cycle - 1.
705 		 * If we find one, then we know that the log starts there, as
706 		 * we've found a hole that didn't get written in going around
707 		 * the end of the physical log.  The simple case for this is
708 		 *        x + 1 ... | x ... | x - 1 | x
709 		 *        <---------> less than scan distance
710 		 * If all of the blocks at the end of the log have cycle number
711 		 * last_half_cycle, then we check the blocks at the start of
712 		 * the log looking for occurrences of last_half_cycle.  If we
713 		 * find one, then our current estimate for the location of the
714 		 * first occurrence of last_half_cycle is wrong and we move
715 		 * back to the hole we've found.  This case looks like
716 		 *        x + 1 ... | x | x + 1 | x ...
717 		 *                               ^ binary search stopped here
718 		 * Another case we need to handle that only occurs in 256k
719 		 * logs is
720 		 *        x + 1 ... | x ... | x+1 | x ...
721 		 *                   ^ binary search stops here
722 		 * In a 256k log, the scan at the end of the log will see the
723 		 * x + 1 blocks.  We need to skip past those since that is
724 		 * certainly not the head of the log.  By searching for
725 		 * last_half_cycle-1 we accomplish that.
726 		 */
727 		ASSERT(head_blk <= INT_MAX &&
728 			(xfs_daddr_t) num_scan_bblks >= head_blk);
729 		start_blk = log_bbnum - (num_scan_bblks - head_blk);
730 		if ((error = xlog_find_verify_cycle(log, start_blk,
731 					num_scan_bblks - (int)head_blk,
732 					(stop_on_cycle - 1), &new_blk)))
733 			goto bp_err;
734 		if (new_blk != -1) {
735 			head_blk = new_blk;
736 			goto validate_head;
737 		}
738 
739 		/*
740 		 * Scan beginning of log now.  The last part of the physical
741 		 * log is good.  This scan needs to verify that it doesn't find
742 		 * the last_half_cycle.
743 		 */
744 		start_blk = 0;
745 		ASSERT(head_blk <= INT_MAX);
746 		if ((error = xlog_find_verify_cycle(log,
747 					start_blk, (int)head_blk,
748 					stop_on_cycle, &new_blk)))
749 			goto bp_err;
750 		if (new_blk != -1)
751 			head_blk = new_blk;
752 	}
753 
754 validate_head:
755 	/*
756 	 * Now we need to make sure head_blk is not pointing to a block in
757 	 * the middle of a log record.
758 	 */
759 	num_scan_bblks = XLOG_REC_SHIFT(log);
760 	if (head_blk >= num_scan_bblks) {
761 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
762 
763 		/* start ptr at last block ptr before head_blk */
764 		if ((error = xlog_find_verify_log_record(log, start_blk,
765 							&head_blk, 0)) == -1) {
766 			error = XFS_ERROR(EIO);
767 			goto bp_err;
768 		} else if (error)
769 			goto bp_err;
770 	} else {
771 		start_blk = 0;
772 		ASSERT(head_blk <= INT_MAX);
773 		if ((error = xlog_find_verify_log_record(log, start_blk,
774 							&head_blk, 0)) == -1) {
775 			/* We hit the beginning of the log during our search */
776 			start_blk = log_bbnum - (num_scan_bblks - head_blk);
777 			new_blk = log_bbnum;
778 			ASSERT(start_blk <= INT_MAX &&
779 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
780 			ASSERT(head_blk <= INT_MAX);
781 			if ((error = xlog_find_verify_log_record(log,
782 							start_blk, &new_blk,
783 							(int)head_blk)) == -1) {
784 				error = XFS_ERROR(EIO);
785 				goto bp_err;
786 			} else if (error)
787 				goto bp_err;
788 			if (new_blk != log_bbnum)
789 				head_blk = new_blk;
790 		} else if (error)
791 			goto bp_err;
792 	}
793 
794 	xlog_put_bp(bp);
795 	if (head_blk == log_bbnum)
796 		*return_head_blk = 0;
797 	else
798 		*return_head_blk = head_blk;
799 	/*
800 	 * When returning here, we have a good block number.  Bad block
801 	 * means that during a previous crash, we didn't have a clean break
802 	 * from cycle number N to cycle number N-1.  In this case, we need
803 	 * to find the first block with cycle number N-1.
804 	 */
805 	return 0;
806 
807  bp_err:
808 	xlog_put_bp(bp);
809 
810 	if (error)
811 	    xlog_warn("XFS: failed to find log head");
812 	return error;
813 }
814 
815 /*
816  * Find the sync block number or the tail of the log.
817  *
818  * This will be the block number of the last record to have its
819  * associated buffers synced to disk.  Every log record header has
820  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
821  * to get a sync block number.  The only concern is to figure out which
822  * log record header to believe.
823  *
824  * The following algorithm uses the log record header with the largest
825  * lsn.  The entire log record does not need to be valid.  We only care
826  * that the header is valid.
827  *
828  * We could speed up search by using current head_blk buffer, but it is not
829  * available.
830  */
831 STATIC int
832 xlog_find_tail(
833 	xlog_t			*log,
834 	xfs_daddr_t		*head_blk,
835 	xfs_daddr_t		*tail_blk)
836 {
837 	xlog_rec_header_t	*rhead;
838 	xlog_op_header_t	*op_head;
839 	xfs_caddr_t		offset = NULL;
840 	xfs_buf_t		*bp;
841 	int			error, i, found;
842 	xfs_daddr_t		umount_data_blk;
843 	xfs_daddr_t		after_umount_blk;
844 	xfs_lsn_t		tail_lsn;
845 	int			hblks;
846 
847 	found = 0;
848 
849 	/*
850 	 * Find previous log record
851 	 */
852 	if ((error = xlog_find_head(log, head_blk)))
853 		return error;
854 
855 	bp = xlog_get_bp(log, 1);
856 	if (!bp)
857 		return ENOMEM;
858 	if (*head_blk == 0) {				/* special case */
859 		error = xlog_bread(log, 0, 1, bp, &offset);
860 		if (error)
861 			goto done;
862 
863 		if (xlog_get_cycle(offset) == 0) {
864 			*tail_blk = 0;
865 			/* leave all other log inited values alone */
866 			goto done;
867 		}
868 	}
869 
870 	/*
871 	 * Search backwards looking for log record header block
872 	 */
873 	ASSERT(*head_blk < INT_MAX);
874 	for (i = (int)(*head_blk) - 1; i >= 0; i--) {
875 		error = xlog_bread(log, i, 1, bp, &offset);
876 		if (error)
877 			goto done;
878 
879 		if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
880 			found = 1;
881 			break;
882 		}
883 	}
884 	/*
885 	 * If we haven't found the log record header block, start looking
886 	 * again from the end of the physical log.  XXXmiken: There should be
887 	 * a check here to make sure we didn't search more than N blocks in
888 	 * the previous code.
889 	 */
890 	if (!found) {
891 		for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
892 			error = xlog_bread(log, i, 1, bp, &offset);
893 			if (error)
894 				goto done;
895 
896 			if (XLOG_HEADER_MAGIC_NUM ==
897 			    be32_to_cpu(*(__be32 *)offset)) {
898 				found = 2;
899 				break;
900 			}
901 		}
902 	}
903 	if (!found) {
904 		xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
905 		ASSERT(0);
906 		return XFS_ERROR(EIO);
907 	}
908 
909 	/* find blk_no of tail of log */
910 	rhead = (xlog_rec_header_t *)offset;
911 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
912 
913 	/*
914 	 * Reset log values according to the state of the log when we
915 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
916 	 * one because the next write starts a new cycle rather than
917 	 * continuing the cycle of the last good log record.  At this
918 	 * point we have guaranteed that all partial log records have been
919 	 * accounted for.  Therefore, we know that the last good log record
920 	 * written was complete and ended exactly on the end boundary
921 	 * of the physical log.
922 	 */
923 	log->l_prev_block = i;
924 	log->l_curr_block = (int)*head_blk;
925 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
926 	if (found == 2)
927 		log->l_curr_cycle++;
928 	log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
929 	log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
930 	log->l_grant_reserve_cycle = log->l_curr_cycle;
931 	log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
932 	log->l_grant_write_cycle = log->l_curr_cycle;
933 	log->l_grant_write_bytes = BBTOB(log->l_curr_block);
934 
935 	/*
936 	 * Look for unmount record.  If we find it, then we know there
937 	 * was a clean unmount.  Since 'i' could be the last block in
938 	 * the physical log, we convert to a log block before comparing
939 	 * to the head_blk.
940 	 *
941 	 * Save the current tail lsn to use to pass to
942 	 * xlog_clear_stale_blocks() below.  We won't want to clear the
943 	 * unmount record if there is one, so we pass the lsn of the
944 	 * unmount record rather than the block after it.
945 	 */
946 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
947 		int	h_size = be32_to_cpu(rhead->h_size);
948 		int	h_version = be32_to_cpu(rhead->h_version);
949 
950 		if ((h_version & XLOG_VERSION_2) &&
951 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
952 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
953 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
954 				hblks++;
955 		} else {
956 			hblks = 1;
957 		}
958 	} else {
959 		hblks = 1;
960 	}
961 	after_umount_blk = (i + hblks + (int)
962 		BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
963 	tail_lsn = log->l_tail_lsn;
964 	if (*head_blk == after_umount_blk &&
965 	    be32_to_cpu(rhead->h_num_logops) == 1) {
966 		umount_data_blk = (i + hblks) % log->l_logBBsize;
967 		error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
968 		if (error)
969 			goto done;
970 
971 		op_head = (xlog_op_header_t *)offset;
972 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
973 			/*
974 			 * Set tail and last sync so that newly written
975 			 * log records will point recovery to after the
976 			 * current unmount record.
977 			 */
978 			log->l_tail_lsn =
979 				xlog_assign_lsn(log->l_curr_cycle,
980 						after_umount_blk);
981 			log->l_last_sync_lsn =
982 				xlog_assign_lsn(log->l_curr_cycle,
983 						after_umount_blk);
984 			*tail_blk = after_umount_blk;
985 
986 			/*
987 			 * Note that the unmount was clean. If the unmount
988 			 * was not clean, we need to know this to rebuild the
989 			 * superblock counters from the perag headers if we
990 			 * have a filesystem using non-persistent counters.
991 			 */
992 			log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
993 		}
994 	}
995 
996 	/*
997 	 * Make sure that there are no blocks in front of the head
998 	 * with the same cycle number as the head.  This can happen
999 	 * because we allow multiple outstanding log writes concurrently,
1000 	 * and the later writes might make it out before earlier ones.
1001 	 *
1002 	 * We use the lsn from before modifying it so that we'll never
1003 	 * overwrite the unmount record after a clean unmount.
1004 	 *
1005 	 * Do this only if we are going to recover the filesystem
1006 	 *
1007 	 * NOTE: This used to say "if (!readonly)"
1008 	 * However on Linux, we can & do recover a read-only filesystem.
1009 	 * We only skip recovery if NORECOVERY is specified on mount,
1010 	 * in which case we would not be here.
1011 	 *
1012 	 * But... if the -device- itself is readonly, just skip this.
1013 	 * We can't recover this device anyway, so it won't matter.
1014 	 */
1015 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1016 		error = xlog_clear_stale_blocks(log, tail_lsn);
1017 
1018 done:
1019 	xlog_put_bp(bp);
1020 
1021 	if (error)
1022 		xlog_warn("XFS: failed to locate log tail");
1023 	return error;
1024 }
1025 
1026 /*
1027  * Is the log zeroed at all?
1028  *
1029  * The last binary search should be changed to perform an X block read
1030  * once X becomes small enough.  You can then search linearly through
1031  * the X blocks.  This will cut down on the number of reads we need to do.
1032  *
1033  * If the log is partially zeroed, this routine will pass back the blkno
1034  * of the first block with cycle number 0.  It won't have a complete LR
1035  * preceding it.
1036  *
1037  * Return:
1038  *	0  => the log is completely written to
1039  *	-1 => use *blk_no as the first block of the log
1040  *	>0 => error has occurred
1041  */
1042 STATIC int
1043 xlog_find_zeroed(
1044 	xlog_t		*log,
1045 	xfs_daddr_t	*blk_no)
1046 {
1047 	xfs_buf_t	*bp;
1048 	xfs_caddr_t	offset;
1049 	uint	        first_cycle, last_cycle;
1050 	xfs_daddr_t	new_blk, last_blk, start_blk;
1051 	xfs_daddr_t     num_scan_bblks;
1052 	int	        error, log_bbnum = log->l_logBBsize;
1053 
1054 	*blk_no = 0;
1055 
1056 	/* check totally zeroed log */
1057 	bp = xlog_get_bp(log, 1);
1058 	if (!bp)
1059 		return ENOMEM;
1060 	error = xlog_bread(log, 0, 1, bp, &offset);
1061 	if (error)
1062 		goto bp_err;
1063 
1064 	first_cycle = xlog_get_cycle(offset);
1065 	if (first_cycle == 0) {		/* completely zeroed log */
1066 		*blk_no = 0;
1067 		xlog_put_bp(bp);
1068 		return -1;
1069 	}
1070 
1071 	/* check partially zeroed log */
1072 	error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1073 	if (error)
1074 		goto bp_err;
1075 
1076 	last_cycle = xlog_get_cycle(offset);
1077 	if (last_cycle != 0) {		/* log completely written to */
1078 		xlog_put_bp(bp);
1079 		return 0;
1080 	} else if (first_cycle != 1) {
1081 		/*
1082 		 * If the cycle of the last block is zero, the cycle of
1083 		 * the first block must be 1. If it's not, maybe we're
1084 		 * not looking at a log... Bail out.
1085 		 */
1086 		xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1087 		return XFS_ERROR(EINVAL);
1088 	}
1089 
1090 	/* we have a partially zeroed log */
1091 	last_blk = log_bbnum-1;
1092 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1093 		goto bp_err;
1094 
1095 	/*
1096 	 * Validate the answer.  Because there is no way to guarantee that
1097 	 * the entire log is made up of log records which are the same size,
1098 	 * we scan over the defined maximum blocks.  At this point, the maximum
1099 	 * is not chosen to mean anything special.   XXXmiken
1100 	 */
1101 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1102 	ASSERT(num_scan_bblks <= INT_MAX);
1103 
1104 	if (last_blk < num_scan_bblks)
1105 		num_scan_bblks = last_blk;
1106 	start_blk = last_blk - num_scan_bblks;
1107 
1108 	/*
1109 	 * We search for any instances of cycle number 0 that occur before
1110 	 * our current estimate of the head.  What we're trying to detect is
1111 	 *        1 ... | 0 | 1 | 0...
1112 	 *                       ^ binary search ends here
1113 	 */
1114 	if ((error = xlog_find_verify_cycle(log, start_blk,
1115 					 (int)num_scan_bblks, 0, &new_blk)))
1116 		goto bp_err;
1117 	if (new_blk != -1)
1118 		last_blk = new_blk;
1119 
1120 	/*
1121 	 * Potentially backup over partial log record write.  We don't need
1122 	 * to search the end of the log because we know it is zero.
1123 	 */
1124 	if ((error = xlog_find_verify_log_record(log, start_blk,
1125 				&last_blk, 0)) == -1) {
1126 	    error = XFS_ERROR(EIO);
1127 	    goto bp_err;
1128 	} else if (error)
1129 	    goto bp_err;
1130 
1131 	*blk_no = last_blk;
1132 bp_err:
1133 	xlog_put_bp(bp);
1134 	if (error)
1135 		return error;
1136 	return -1;
1137 }
1138 
1139 /*
1140  * These are simple subroutines used by xlog_clear_stale_blocks() below
1141  * to initialize a buffer full of empty log record headers and write
1142  * them into the log.
1143  */
1144 STATIC void
1145 xlog_add_record(
1146 	xlog_t			*log,
1147 	xfs_caddr_t		buf,
1148 	int			cycle,
1149 	int			block,
1150 	int			tail_cycle,
1151 	int			tail_block)
1152 {
1153 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1154 
1155 	memset(buf, 0, BBSIZE);
1156 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1157 	recp->h_cycle = cpu_to_be32(cycle);
1158 	recp->h_version = cpu_to_be32(
1159 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1160 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1161 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1162 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1163 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1164 }
1165 
1166 STATIC int
1167 xlog_write_log_records(
1168 	xlog_t		*log,
1169 	int		cycle,
1170 	int		start_block,
1171 	int		blocks,
1172 	int		tail_cycle,
1173 	int		tail_block)
1174 {
1175 	xfs_caddr_t	offset;
1176 	xfs_buf_t	*bp;
1177 	int		balign, ealign;
1178 	int		sectbb = log->l_sectBBsize;
1179 	int		end_block = start_block + blocks;
1180 	int		bufblks;
1181 	int		error = 0;
1182 	int		i, j = 0;
1183 
1184 	/*
1185 	 * Greedily allocate a buffer big enough to handle the full
1186 	 * range of basic blocks to be written.  If that fails, try
1187 	 * a smaller size.  We need to be able to write at least a
1188 	 * log sector, or we're out of luck.
1189 	 */
1190 	bufblks = 1 << ffs(blocks);
1191 	while (!(bp = xlog_get_bp(log, bufblks))) {
1192 		bufblks >>= 1;
1193 		if (bufblks < sectbb)
1194 			return ENOMEM;
1195 	}
1196 
1197 	/* We may need to do a read at the start to fill in part of
1198 	 * the buffer in the starting sector not covered by the first
1199 	 * write below.
1200 	 */
1201 	balign = round_down(start_block, sectbb);
1202 	if (balign != start_block) {
1203 		error = xlog_bread_noalign(log, start_block, 1, bp);
1204 		if (error)
1205 			goto out_put_bp;
1206 
1207 		j = start_block - balign;
1208 	}
1209 
1210 	for (i = start_block; i < end_block; i += bufblks) {
1211 		int		bcount, endcount;
1212 
1213 		bcount = min(bufblks, end_block - start_block);
1214 		endcount = bcount - j;
1215 
1216 		/* We may need to do a read at the end to fill in part of
1217 		 * the buffer in the final sector not covered by the write.
1218 		 * If this is the same sector as the above read, skip it.
1219 		 */
1220 		ealign = round_down(end_block, sectbb);
1221 		if (j == 0 && (start_block + endcount > ealign)) {
1222 			offset = XFS_BUF_PTR(bp);
1223 			balign = BBTOB(ealign - start_block);
1224 			error = XFS_BUF_SET_PTR(bp, offset + balign,
1225 						BBTOB(sectbb));
1226 			if (error)
1227 				break;
1228 
1229 			error = xlog_bread_noalign(log, ealign, sectbb, bp);
1230 			if (error)
1231 				break;
1232 
1233 			error = XFS_BUF_SET_PTR(bp, offset, bufblks);
1234 			if (error)
1235 				break;
1236 		}
1237 
1238 		offset = xlog_align(log, start_block, endcount, bp);
1239 		for (; j < endcount; j++) {
1240 			xlog_add_record(log, offset, cycle, i+j,
1241 					tail_cycle, tail_block);
1242 			offset += BBSIZE;
1243 		}
1244 		error = xlog_bwrite(log, start_block, endcount, bp);
1245 		if (error)
1246 			break;
1247 		start_block += endcount;
1248 		j = 0;
1249 	}
1250 
1251  out_put_bp:
1252 	xlog_put_bp(bp);
1253 	return error;
1254 }
1255 
1256 /*
1257  * This routine is called to blow away any incomplete log writes out
1258  * in front of the log head.  We do this so that we won't become confused
1259  * if we come up, write only a little bit more, and then crash again.
1260  * If we leave the partial log records out there, this situation could
1261  * cause us to think those partial writes are valid blocks since they
1262  * have the current cycle number.  We get rid of them by overwriting them
1263  * with empty log records with the old cycle number rather than the
1264  * current one.
1265  *
1266  * The tail lsn is passed in rather than taken from
1267  * the log so that we will not write over the unmount record after a
1268  * clean unmount in a 512 block log.  Doing so would leave the log without
1269  * any valid log records in it until a new one was written.  If we crashed
1270  * during that time we would not be able to recover.
1271  */
1272 STATIC int
1273 xlog_clear_stale_blocks(
1274 	xlog_t		*log,
1275 	xfs_lsn_t	tail_lsn)
1276 {
1277 	int		tail_cycle, head_cycle;
1278 	int		tail_block, head_block;
1279 	int		tail_distance, max_distance;
1280 	int		distance;
1281 	int		error;
1282 
1283 	tail_cycle = CYCLE_LSN(tail_lsn);
1284 	tail_block = BLOCK_LSN(tail_lsn);
1285 	head_cycle = log->l_curr_cycle;
1286 	head_block = log->l_curr_block;
1287 
1288 	/*
1289 	 * Figure out the distance between the new head of the log
1290 	 * and the tail.  We want to write over any blocks beyond the
1291 	 * head that we may have written just before the crash, but
1292 	 * we don't want to overwrite the tail of the log.
1293 	 */
1294 	if (head_cycle == tail_cycle) {
1295 		/*
1296 		 * The tail is behind the head in the physical log,
1297 		 * so the distance from the head to the tail is the
1298 		 * distance from the head to the end of the log plus
1299 		 * the distance from the beginning of the log to the
1300 		 * tail.
1301 		 */
1302 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1303 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1304 					 XFS_ERRLEVEL_LOW, log->l_mp);
1305 			return XFS_ERROR(EFSCORRUPTED);
1306 		}
1307 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1308 	} else {
1309 		/*
1310 		 * The head is behind the tail in the physical log,
1311 		 * so the distance from the head to the tail is just
1312 		 * the tail block minus the head block.
1313 		 */
1314 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1315 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1316 					 XFS_ERRLEVEL_LOW, log->l_mp);
1317 			return XFS_ERROR(EFSCORRUPTED);
1318 		}
1319 		tail_distance = tail_block - head_block;
1320 	}
1321 
1322 	/*
1323 	 * If the head is right up against the tail, we can't clear
1324 	 * anything.
1325 	 */
1326 	if (tail_distance <= 0) {
1327 		ASSERT(tail_distance == 0);
1328 		return 0;
1329 	}
1330 
1331 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1332 	/*
1333 	 * Take the smaller of the maximum amount of outstanding I/O
1334 	 * we could have and the distance to the tail to clear out.
1335 	 * We take the smaller so that we don't overwrite the tail and
1336 	 * we don't waste all day writing from the head to the tail
1337 	 * for no reason.
1338 	 */
1339 	max_distance = MIN(max_distance, tail_distance);
1340 
1341 	if ((head_block + max_distance) <= log->l_logBBsize) {
1342 		/*
1343 		 * We can stomp all the blocks we need to without
1344 		 * wrapping around the end of the log.  Just do it
1345 		 * in a single write.  Use the cycle number of the
1346 		 * current cycle minus one so that the log will look like:
1347 		 *     n ... | n - 1 ...
1348 		 */
1349 		error = xlog_write_log_records(log, (head_cycle - 1),
1350 				head_block, max_distance, tail_cycle,
1351 				tail_block);
1352 		if (error)
1353 			return error;
1354 	} else {
1355 		/*
1356 		 * We need to wrap around the end of the physical log in
1357 		 * order to clear all the blocks.  Do it in two separate
1358 		 * I/Os.  The first write should be from the head to the
1359 		 * end of the physical log, and it should use the current
1360 		 * cycle number minus one just like above.
1361 		 */
1362 		distance = log->l_logBBsize - head_block;
1363 		error = xlog_write_log_records(log, (head_cycle - 1),
1364 				head_block, distance, tail_cycle,
1365 				tail_block);
1366 
1367 		if (error)
1368 			return error;
1369 
1370 		/*
1371 		 * Now write the blocks at the start of the physical log.
1372 		 * This writes the remainder of the blocks we want to clear.
1373 		 * It uses the current cycle number since we're now on the
1374 		 * same cycle as the head so that we get:
1375 		 *    n ... n ... | n - 1 ...
1376 		 *    ^^^^^ blocks we're writing
1377 		 */
1378 		distance = max_distance - (log->l_logBBsize - head_block);
1379 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1380 				tail_cycle, tail_block);
1381 		if (error)
1382 			return error;
1383 	}
1384 
1385 	return 0;
1386 }
1387 
1388 /******************************************************************************
1389  *
1390  *		Log recover routines
1391  *
1392  ******************************************************************************
1393  */
1394 
1395 STATIC xlog_recover_t *
1396 xlog_recover_find_tid(
1397 	struct hlist_head	*head,
1398 	xlog_tid_t		tid)
1399 {
1400 	xlog_recover_t		*trans;
1401 	struct hlist_node	*n;
1402 
1403 	hlist_for_each_entry(trans, n, head, r_list) {
1404 		if (trans->r_log_tid == tid)
1405 			return trans;
1406 	}
1407 	return NULL;
1408 }
1409 
1410 STATIC void
1411 xlog_recover_new_tid(
1412 	struct hlist_head	*head,
1413 	xlog_tid_t		tid,
1414 	xfs_lsn_t		lsn)
1415 {
1416 	xlog_recover_t		*trans;
1417 
1418 	trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1419 	trans->r_log_tid   = tid;
1420 	trans->r_lsn	   = lsn;
1421 	INIT_LIST_HEAD(&trans->r_itemq);
1422 
1423 	INIT_HLIST_NODE(&trans->r_list);
1424 	hlist_add_head(&trans->r_list, head);
1425 }
1426 
1427 STATIC void
1428 xlog_recover_add_item(
1429 	struct list_head	*head)
1430 {
1431 	xlog_recover_item_t	*item;
1432 
1433 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1434 	INIT_LIST_HEAD(&item->ri_list);
1435 	list_add_tail(&item->ri_list, head);
1436 }
1437 
1438 STATIC int
1439 xlog_recover_add_to_cont_trans(
1440 	struct log		*log,
1441 	xlog_recover_t		*trans,
1442 	xfs_caddr_t		dp,
1443 	int			len)
1444 {
1445 	xlog_recover_item_t	*item;
1446 	xfs_caddr_t		ptr, old_ptr;
1447 	int			old_len;
1448 
1449 	if (list_empty(&trans->r_itemq)) {
1450 		/* finish copying rest of trans header */
1451 		xlog_recover_add_item(&trans->r_itemq);
1452 		ptr = (xfs_caddr_t) &trans->r_theader +
1453 				sizeof(xfs_trans_header_t) - len;
1454 		memcpy(ptr, dp, len); /* d, s, l */
1455 		return 0;
1456 	}
1457 	/* take the tail entry */
1458 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1459 
1460 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1461 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
1462 
1463 	ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1464 	memcpy(&ptr[old_len], dp, len); /* d, s, l */
1465 	item->ri_buf[item->ri_cnt-1].i_len += len;
1466 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1467 	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1468 	return 0;
1469 }
1470 
1471 /*
1472  * The next region to add is the start of a new region.  It could be
1473  * a whole region or it could be the first part of a new region.  Because
1474  * of this, the assumption here is that the type and size fields of all
1475  * format structures fit into the first 32 bits of the structure.
1476  *
1477  * This works because all regions must be 32 bit aligned.  Therefore, we
1478  * either have both fields or we have neither field.  In the case we have
1479  * neither field, the data part of the region is zero length.  We only have
1480  * a log_op_header and can throw away the header since a new one will appear
1481  * later.  If we have at least 4 bytes, then we can determine how many regions
1482  * will appear in the current log item.
1483  */
1484 STATIC int
1485 xlog_recover_add_to_trans(
1486 	struct log		*log,
1487 	xlog_recover_t		*trans,
1488 	xfs_caddr_t		dp,
1489 	int			len)
1490 {
1491 	xfs_inode_log_format_t	*in_f;			/* any will do */
1492 	xlog_recover_item_t	*item;
1493 	xfs_caddr_t		ptr;
1494 
1495 	if (!len)
1496 		return 0;
1497 	if (list_empty(&trans->r_itemq)) {
1498 		/* we need to catch log corruptions here */
1499 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1500 			xlog_warn("XFS: xlog_recover_add_to_trans: "
1501 				  "bad header magic number");
1502 			ASSERT(0);
1503 			return XFS_ERROR(EIO);
1504 		}
1505 		if (len == sizeof(xfs_trans_header_t))
1506 			xlog_recover_add_item(&trans->r_itemq);
1507 		memcpy(&trans->r_theader, dp, len); /* d, s, l */
1508 		return 0;
1509 	}
1510 
1511 	ptr = kmem_alloc(len, KM_SLEEP);
1512 	memcpy(ptr, dp, len);
1513 	in_f = (xfs_inode_log_format_t *)ptr;
1514 
1515 	/* take the tail entry */
1516 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1517 	if (item->ri_total != 0 &&
1518 	     item->ri_total == item->ri_cnt) {
1519 		/* tail item is in use, get a new one */
1520 		xlog_recover_add_item(&trans->r_itemq);
1521 		item = list_entry(trans->r_itemq.prev,
1522 					xlog_recover_item_t, ri_list);
1523 	}
1524 
1525 	if (item->ri_total == 0) {		/* first region to be added */
1526 		if (in_f->ilf_size == 0 ||
1527 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1528 			xlog_warn(
1529 	"XFS: bad number of regions (%d) in inode log format",
1530 				  in_f->ilf_size);
1531 			ASSERT(0);
1532 			return XFS_ERROR(EIO);
1533 		}
1534 
1535 		item->ri_total = in_f->ilf_size;
1536 		item->ri_buf =
1537 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1538 				    KM_SLEEP);
1539 	}
1540 	ASSERT(item->ri_total > item->ri_cnt);
1541 	/* Description region is ri_buf[0] */
1542 	item->ri_buf[item->ri_cnt].i_addr = ptr;
1543 	item->ri_buf[item->ri_cnt].i_len  = len;
1544 	item->ri_cnt++;
1545 	trace_xfs_log_recover_item_add(log, trans, item, 0);
1546 	return 0;
1547 }
1548 
1549 /*
1550  * Sort the log items in the transaction. Cancelled buffers need
1551  * to be put first so they are processed before any items that might
1552  * modify the buffers. If they are cancelled, then the modifications
1553  * don't need to be replayed.
1554  */
1555 STATIC int
1556 xlog_recover_reorder_trans(
1557 	struct log		*log,
1558 	xlog_recover_t		*trans,
1559 	int			pass)
1560 {
1561 	xlog_recover_item_t	*item, *n;
1562 	LIST_HEAD(sort_list);
1563 
1564 	list_splice_init(&trans->r_itemq, &sort_list);
1565 	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1566 		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1567 
1568 		switch (ITEM_TYPE(item)) {
1569 		case XFS_LI_BUF:
1570 			if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1571 				trace_xfs_log_recover_item_reorder_head(log,
1572 							trans, item, pass);
1573 				list_move(&item->ri_list, &trans->r_itemq);
1574 				break;
1575 			}
1576 		case XFS_LI_INODE:
1577 		case XFS_LI_DQUOT:
1578 		case XFS_LI_QUOTAOFF:
1579 		case XFS_LI_EFD:
1580 		case XFS_LI_EFI:
1581 			trace_xfs_log_recover_item_reorder_tail(log,
1582 							trans, item, pass);
1583 			list_move_tail(&item->ri_list, &trans->r_itemq);
1584 			break;
1585 		default:
1586 			xlog_warn(
1587 	"XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1588 			ASSERT(0);
1589 			return XFS_ERROR(EIO);
1590 		}
1591 	}
1592 	ASSERT(list_empty(&sort_list));
1593 	return 0;
1594 }
1595 
1596 /*
1597  * Build up the table of buf cancel records so that we don't replay
1598  * cancelled data in the second pass.  For buffer records that are
1599  * not cancel records, there is nothing to do here so we just return.
1600  *
1601  * If we get a cancel record which is already in the table, this indicates
1602  * that the buffer was cancelled multiple times.  In order to ensure
1603  * that during pass 2 we keep the record in the table until we reach its
1604  * last occurrence in the log, we keep a reference count in the cancel
1605  * record in the table to tell us how many times we expect to see this
1606  * record during the second pass.
1607  */
1608 STATIC void
1609 xlog_recover_do_buffer_pass1(
1610 	xlog_t			*log,
1611 	xfs_buf_log_format_t	*buf_f)
1612 {
1613 	xfs_buf_cancel_t	*bcp;
1614 	xfs_buf_cancel_t	*nextp;
1615 	xfs_buf_cancel_t	*prevp;
1616 	xfs_buf_cancel_t	**bucket;
1617 	xfs_daddr_t		blkno = 0;
1618 	uint			len = 0;
1619 	ushort			flags = 0;
1620 
1621 	switch (buf_f->blf_type) {
1622 	case XFS_LI_BUF:
1623 		blkno = buf_f->blf_blkno;
1624 		len = buf_f->blf_len;
1625 		flags = buf_f->blf_flags;
1626 		break;
1627 	}
1628 
1629 	/*
1630 	 * If this isn't a cancel buffer item, then just return.
1631 	 */
1632 	if (!(flags & XFS_BLF_CANCEL)) {
1633 		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1634 		return;
1635 	}
1636 
1637 	/*
1638 	 * Insert an xfs_buf_cancel record into the hash table of
1639 	 * them.  If there is already an identical record, bump
1640 	 * its reference count.
1641 	 */
1642 	bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1643 					  XLOG_BC_TABLE_SIZE];
1644 	/*
1645 	 * If the hash bucket is empty then just insert a new record into
1646 	 * the bucket.
1647 	 */
1648 	if (*bucket == NULL) {
1649 		bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1650 						     KM_SLEEP);
1651 		bcp->bc_blkno = blkno;
1652 		bcp->bc_len = len;
1653 		bcp->bc_refcount = 1;
1654 		bcp->bc_next = NULL;
1655 		*bucket = bcp;
1656 		return;
1657 	}
1658 
1659 	/*
1660 	 * The hash bucket is not empty, so search for duplicates of our
1661 	 * record.  If we find one them just bump its refcount.  If not
1662 	 * then add us at the end of the list.
1663 	 */
1664 	prevp = NULL;
1665 	nextp = *bucket;
1666 	while (nextp != NULL) {
1667 		if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1668 			nextp->bc_refcount++;
1669 			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1670 			return;
1671 		}
1672 		prevp = nextp;
1673 		nextp = nextp->bc_next;
1674 	}
1675 	ASSERT(prevp != NULL);
1676 	bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1677 					     KM_SLEEP);
1678 	bcp->bc_blkno = blkno;
1679 	bcp->bc_len = len;
1680 	bcp->bc_refcount = 1;
1681 	bcp->bc_next = NULL;
1682 	prevp->bc_next = bcp;
1683 	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1684 }
1685 
1686 /*
1687  * Check to see whether the buffer being recovered has a corresponding
1688  * entry in the buffer cancel record table.  If it does then return 1
1689  * so that it will be cancelled, otherwise return 0.  If the buffer is
1690  * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1691  * the refcount on the entry in the table and remove it from the table
1692  * if this is the last reference.
1693  *
1694  * We remove the cancel record from the table when we encounter its
1695  * last occurrence in the log so that if the same buffer is re-used
1696  * again after its last cancellation we actually replay the changes
1697  * made at that point.
1698  */
1699 STATIC int
1700 xlog_check_buffer_cancelled(
1701 	xlog_t			*log,
1702 	xfs_daddr_t		blkno,
1703 	uint			len,
1704 	ushort			flags)
1705 {
1706 	xfs_buf_cancel_t	*bcp;
1707 	xfs_buf_cancel_t	*prevp;
1708 	xfs_buf_cancel_t	**bucket;
1709 
1710 	if (log->l_buf_cancel_table == NULL) {
1711 		/*
1712 		 * There is nothing in the table built in pass one,
1713 		 * so this buffer must not be cancelled.
1714 		 */
1715 		ASSERT(!(flags & XFS_BLF_CANCEL));
1716 		return 0;
1717 	}
1718 
1719 	bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1720 					  XLOG_BC_TABLE_SIZE];
1721 	bcp = *bucket;
1722 	if (bcp == NULL) {
1723 		/*
1724 		 * There is no corresponding entry in the table built
1725 		 * in pass one, so this buffer has not been cancelled.
1726 		 */
1727 		ASSERT(!(flags & XFS_BLF_CANCEL));
1728 		return 0;
1729 	}
1730 
1731 	/*
1732 	 * Search for an entry in the buffer cancel table that
1733 	 * matches our buffer.
1734 	 */
1735 	prevp = NULL;
1736 	while (bcp != NULL) {
1737 		if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1738 			/*
1739 			 * We've go a match, so return 1 so that the
1740 			 * recovery of this buffer is cancelled.
1741 			 * If this buffer is actually a buffer cancel
1742 			 * log item, then decrement the refcount on the
1743 			 * one in the table and remove it if this is the
1744 			 * last reference.
1745 			 */
1746 			if (flags & XFS_BLF_CANCEL) {
1747 				bcp->bc_refcount--;
1748 				if (bcp->bc_refcount == 0) {
1749 					if (prevp == NULL) {
1750 						*bucket = bcp->bc_next;
1751 					} else {
1752 						prevp->bc_next = bcp->bc_next;
1753 					}
1754 					kmem_free(bcp);
1755 				}
1756 			}
1757 			return 1;
1758 		}
1759 		prevp = bcp;
1760 		bcp = bcp->bc_next;
1761 	}
1762 	/*
1763 	 * We didn't find a corresponding entry in the table, so
1764 	 * return 0 so that the buffer is NOT cancelled.
1765 	 */
1766 	ASSERT(!(flags & XFS_BLF_CANCEL));
1767 	return 0;
1768 }
1769 
1770 STATIC int
1771 xlog_recover_do_buffer_pass2(
1772 	xlog_t			*log,
1773 	xfs_buf_log_format_t	*buf_f)
1774 {
1775 	xfs_daddr_t		blkno = 0;
1776 	ushort			flags = 0;
1777 	uint			len = 0;
1778 
1779 	switch (buf_f->blf_type) {
1780 	case XFS_LI_BUF:
1781 		blkno = buf_f->blf_blkno;
1782 		flags = buf_f->blf_flags;
1783 		len = buf_f->blf_len;
1784 		break;
1785 	}
1786 
1787 	return xlog_check_buffer_cancelled(log, blkno, len, flags);
1788 }
1789 
1790 /*
1791  * Perform recovery for a buffer full of inodes.  In these buffers,
1792  * the only data which should be recovered is that which corresponds
1793  * to the di_next_unlinked pointers in the on disk inode structures.
1794  * The rest of the data for the inodes is always logged through the
1795  * inodes themselves rather than the inode buffer and is recovered
1796  * in xlog_recover_do_inode_trans().
1797  *
1798  * The only time when buffers full of inodes are fully recovered is
1799  * when the buffer is full of newly allocated inodes.  In this case
1800  * the buffer will not be marked as an inode buffer and so will be
1801  * sent to xlog_recover_do_reg_buffer() below during recovery.
1802  */
1803 STATIC int
1804 xlog_recover_do_inode_buffer(
1805 	xfs_mount_t		*mp,
1806 	xlog_recover_item_t	*item,
1807 	xfs_buf_t		*bp,
1808 	xfs_buf_log_format_t	*buf_f)
1809 {
1810 	int			i;
1811 	int			item_index;
1812 	int			bit;
1813 	int			nbits;
1814 	int			reg_buf_offset;
1815 	int			reg_buf_bytes;
1816 	int			next_unlinked_offset;
1817 	int			inodes_per_buf;
1818 	xfs_agino_t		*logged_nextp;
1819 	xfs_agino_t		*buffer_nextp;
1820 	unsigned int		*data_map = NULL;
1821 	unsigned int		map_size = 0;
1822 
1823 	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1824 
1825 	switch (buf_f->blf_type) {
1826 	case XFS_LI_BUF:
1827 		data_map = buf_f->blf_data_map;
1828 		map_size = buf_f->blf_map_size;
1829 		break;
1830 	}
1831 	/*
1832 	 * Set the variables corresponding to the current region to
1833 	 * 0 so that we'll initialize them on the first pass through
1834 	 * the loop.
1835 	 */
1836 	reg_buf_offset = 0;
1837 	reg_buf_bytes = 0;
1838 	bit = 0;
1839 	nbits = 0;
1840 	item_index = 0;
1841 	inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1842 	for (i = 0; i < inodes_per_buf; i++) {
1843 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1844 			offsetof(xfs_dinode_t, di_next_unlinked);
1845 
1846 		while (next_unlinked_offset >=
1847 		       (reg_buf_offset + reg_buf_bytes)) {
1848 			/*
1849 			 * The next di_next_unlinked field is beyond
1850 			 * the current logged region.  Find the next
1851 			 * logged region that contains or is beyond
1852 			 * the current di_next_unlinked field.
1853 			 */
1854 			bit += nbits;
1855 			bit = xfs_next_bit(data_map, map_size, bit);
1856 
1857 			/*
1858 			 * If there are no more logged regions in the
1859 			 * buffer, then we're done.
1860 			 */
1861 			if (bit == -1) {
1862 				return 0;
1863 			}
1864 
1865 			nbits = xfs_contig_bits(data_map, map_size,
1866 							 bit);
1867 			ASSERT(nbits > 0);
1868 			reg_buf_offset = bit << XFS_BLF_SHIFT;
1869 			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1870 			item_index++;
1871 		}
1872 
1873 		/*
1874 		 * If the current logged region starts after the current
1875 		 * di_next_unlinked field, then move on to the next
1876 		 * di_next_unlinked field.
1877 		 */
1878 		if (next_unlinked_offset < reg_buf_offset) {
1879 			continue;
1880 		}
1881 
1882 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
1883 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1884 		ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1885 
1886 		/*
1887 		 * The current logged region contains a copy of the
1888 		 * current di_next_unlinked field.  Extract its value
1889 		 * and copy it to the buffer copy.
1890 		 */
1891 		logged_nextp = item->ri_buf[item_index].i_addr +
1892 				next_unlinked_offset - reg_buf_offset;
1893 		if (unlikely(*logged_nextp == 0)) {
1894 			xfs_fs_cmn_err(CE_ALERT, mp,
1895 				"bad inode buffer log record (ptr = 0x%p, bp = 0x%p).  XFS trying to replay bad (0) inode di_next_unlinked field",
1896 				item, bp);
1897 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1898 					 XFS_ERRLEVEL_LOW, mp);
1899 			return XFS_ERROR(EFSCORRUPTED);
1900 		}
1901 
1902 		buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1903 					      next_unlinked_offset);
1904 		*buffer_nextp = *logged_nextp;
1905 	}
1906 
1907 	return 0;
1908 }
1909 
1910 /*
1911  * Perform a 'normal' buffer recovery.  Each logged region of the
1912  * buffer should be copied over the corresponding region in the
1913  * given buffer.  The bitmap in the buf log format structure indicates
1914  * where to place the logged data.
1915  */
1916 /*ARGSUSED*/
1917 STATIC void
1918 xlog_recover_do_reg_buffer(
1919 	struct xfs_mount	*mp,
1920 	xlog_recover_item_t	*item,
1921 	xfs_buf_t		*bp,
1922 	xfs_buf_log_format_t	*buf_f)
1923 {
1924 	int			i;
1925 	int			bit;
1926 	int			nbits;
1927 	unsigned int		*data_map = NULL;
1928 	unsigned int		map_size = 0;
1929 	int                     error;
1930 
1931 	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1932 
1933 	switch (buf_f->blf_type) {
1934 	case XFS_LI_BUF:
1935 		data_map = buf_f->blf_data_map;
1936 		map_size = buf_f->blf_map_size;
1937 		break;
1938 	}
1939 	bit = 0;
1940 	i = 1;  /* 0 is the buf format structure */
1941 	while (1) {
1942 		bit = xfs_next_bit(data_map, map_size, bit);
1943 		if (bit == -1)
1944 			break;
1945 		nbits = xfs_contig_bits(data_map, map_size, bit);
1946 		ASSERT(nbits > 0);
1947 		ASSERT(item->ri_buf[i].i_addr != NULL);
1948 		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
1949 		ASSERT(XFS_BUF_COUNT(bp) >=
1950 		       ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT));
1951 
1952 		/*
1953 		 * Do a sanity check if this is a dquot buffer. Just checking
1954 		 * the first dquot in the buffer should do. XXXThis is
1955 		 * probably a good thing to do for other buf types also.
1956 		 */
1957 		error = 0;
1958 		if (buf_f->blf_flags &
1959 		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1960 			if (item->ri_buf[i].i_addr == NULL) {
1961 				cmn_err(CE_ALERT,
1962 					"XFS: NULL dquot in %s.", __func__);
1963 				goto next;
1964 			}
1965 			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1966 				cmn_err(CE_ALERT,
1967 					"XFS: dquot too small (%d) in %s.",
1968 					item->ri_buf[i].i_len, __func__);
1969 				goto next;
1970 			}
1971 			error = xfs_qm_dqcheck(item->ri_buf[i].i_addr,
1972 					       -1, 0, XFS_QMOPT_DOWARN,
1973 					       "dquot_buf_recover");
1974 			if (error)
1975 				goto next;
1976 		}
1977 
1978 		memcpy(xfs_buf_offset(bp,
1979 			(uint)bit << XFS_BLF_SHIFT),	/* dest */
1980 			item->ri_buf[i].i_addr,		/* source */
1981 			nbits<<XFS_BLF_SHIFT);		/* length */
1982  next:
1983 		i++;
1984 		bit += nbits;
1985 	}
1986 
1987 	/* Shouldn't be any more regions */
1988 	ASSERT(i == item->ri_total);
1989 }
1990 
1991 /*
1992  * Do some primitive error checking on ondisk dquot data structures.
1993  */
1994 int
1995 xfs_qm_dqcheck(
1996 	xfs_disk_dquot_t *ddq,
1997 	xfs_dqid_t	 id,
1998 	uint		 type,	  /* used only when IO_dorepair is true */
1999 	uint		 flags,
2000 	char		 *str)
2001 {
2002 	xfs_dqblk_t	 *d = (xfs_dqblk_t *)ddq;
2003 	int		errs = 0;
2004 
2005 	/*
2006 	 * We can encounter an uninitialized dquot buffer for 2 reasons:
2007 	 * 1. If we crash while deleting the quotainode(s), and those blks got
2008 	 *    used for user data. This is because we take the path of regular
2009 	 *    file deletion; however, the size field of quotainodes is never
2010 	 *    updated, so all the tricks that we play in itruncate_finish
2011 	 *    don't quite matter.
2012 	 *
2013 	 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2014 	 *    But the allocation will be replayed so we'll end up with an
2015 	 *    uninitialized quota block.
2016 	 *
2017 	 * This is all fine; things are still consistent, and we haven't lost
2018 	 * any quota information. Just don't complain about bad dquot blks.
2019 	 */
2020 	if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
2021 		if (flags & XFS_QMOPT_DOWARN)
2022 			cmn_err(CE_ALERT,
2023 			"%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2024 			str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
2025 		errs++;
2026 	}
2027 	if (ddq->d_version != XFS_DQUOT_VERSION) {
2028 		if (flags & XFS_QMOPT_DOWARN)
2029 			cmn_err(CE_ALERT,
2030 			"%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2031 			str, id, ddq->d_version, XFS_DQUOT_VERSION);
2032 		errs++;
2033 	}
2034 
2035 	if (ddq->d_flags != XFS_DQ_USER &&
2036 	    ddq->d_flags != XFS_DQ_PROJ &&
2037 	    ddq->d_flags != XFS_DQ_GROUP) {
2038 		if (flags & XFS_QMOPT_DOWARN)
2039 			cmn_err(CE_ALERT,
2040 			"%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2041 			str, id, ddq->d_flags);
2042 		errs++;
2043 	}
2044 
2045 	if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2046 		if (flags & XFS_QMOPT_DOWARN)
2047 			cmn_err(CE_ALERT,
2048 			"%s : ondisk-dquot 0x%p, ID mismatch: "
2049 			"0x%x expected, found id 0x%x",
2050 			str, ddq, id, be32_to_cpu(ddq->d_id));
2051 		errs++;
2052 	}
2053 
2054 	if (!errs && ddq->d_id) {
2055 		if (ddq->d_blk_softlimit &&
2056 		    be64_to_cpu(ddq->d_bcount) >=
2057 				be64_to_cpu(ddq->d_blk_softlimit)) {
2058 			if (!ddq->d_btimer) {
2059 				if (flags & XFS_QMOPT_DOWARN)
2060 					cmn_err(CE_ALERT,
2061 					"%s : Dquot ID 0x%x (0x%p) "
2062 					"BLK TIMER NOT STARTED",
2063 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2064 				errs++;
2065 			}
2066 		}
2067 		if (ddq->d_ino_softlimit &&
2068 		    be64_to_cpu(ddq->d_icount) >=
2069 				be64_to_cpu(ddq->d_ino_softlimit)) {
2070 			if (!ddq->d_itimer) {
2071 				if (flags & XFS_QMOPT_DOWARN)
2072 					cmn_err(CE_ALERT,
2073 					"%s : Dquot ID 0x%x (0x%p) "
2074 					"INODE TIMER NOT STARTED",
2075 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2076 				errs++;
2077 			}
2078 		}
2079 		if (ddq->d_rtb_softlimit &&
2080 		    be64_to_cpu(ddq->d_rtbcount) >=
2081 				be64_to_cpu(ddq->d_rtb_softlimit)) {
2082 			if (!ddq->d_rtbtimer) {
2083 				if (flags & XFS_QMOPT_DOWARN)
2084 					cmn_err(CE_ALERT,
2085 					"%s : Dquot ID 0x%x (0x%p) "
2086 					"RTBLK TIMER NOT STARTED",
2087 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2088 				errs++;
2089 			}
2090 		}
2091 	}
2092 
2093 	if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2094 		return errs;
2095 
2096 	if (flags & XFS_QMOPT_DOWARN)
2097 		cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2098 
2099 	/*
2100 	 * Typically, a repair is only requested by quotacheck.
2101 	 */
2102 	ASSERT(id != -1);
2103 	ASSERT(flags & XFS_QMOPT_DQREPAIR);
2104 	memset(d, 0, sizeof(xfs_dqblk_t));
2105 
2106 	d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2107 	d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2108 	d->dd_diskdq.d_flags = type;
2109 	d->dd_diskdq.d_id = cpu_to_be32(id);
2110 
2111 	return errs;
2112 }
2113 
2114 /*
2115  * Perform a dquot buffer recovery.
2116  * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2117  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2118  * Else, treat it as a regular buffer and do recovery.
2119  */
2120 STATIC void
2121 xlog_recover_do_dquot_buffer(
2122 	xfs_mount_t		*mp,
2123 	xlog_t			*log,
2124 	xlog_recover_item_t	*item,
2125 	xfs_buf_t		*bp,
2126 	xfs_buf_log_format_t	*buf_f)
2127 {
2128 	uint			type;
2129 
2130 	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2131 
2132 	/*
2133 	 * Filesystems are required to send in quota flags at mount time.
2134 	 */
2135 	if (mp->m_qflags == 0) {
2136 		return;
2137 	}
2138 
2139 	type = 0;
2140 	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2141 		type |= XFS_DQ_USER;
2142 	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2143 		type |= XFS_DQ_PROJ;
2144 	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2145 		type |= XFS_DQ_GROUP;
2146 	/*
2147 	 * This type of quotas was turned off, so ignore this buffer
2148 	 */
2149 	if (log->l_quotaoffs_flag & type)
2150 		return;
2151 
2152 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2153 }
2154 
2155 /*
2156  * This routine replays a modification made to a buffer at runtime.
2157  * There are actually two types of buffer, regular and inode, which
2158  * are handled differently.  Inode buffers are handled differently
2159  * in that we only recover a specific set of data from them, namely
2160  * the inode di_next_unlinked fields.  This is because all other inode
2161  * data is actually logged via inode records and any data we replay
2162  * here which overlaps that may be stale.
2163  *
2164  * When meta-data buffers are freed at run time we log a buffer item
2165  * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2166  * of the buffer in the log should not be replayed at recovery time.
2167  * This is so that if the blocks covered by the buffer are reused for
2168  * file data before we crash we don't end up replaying old, freed
2169  * meta-data into a user's file.
2170  *
2171  * To handle the cancellation of buffer log items, we make two passes
2172  * over the log during recovery.  During the first we build a table of
2173  * those buffers which have been cancelled, and during the second we
2174  * only replay those buffers which do not have corresponding cancel
2175  * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2176  * for more details on the implementation of the table of cancel records.
2177  */
2178 STATIC int
2179 xlog_recover_do_buffer_trans(
2180 	xlog_t			*log,
2181 	xlog_recover_item_t	*item,
2182 	int			pass)
2183 {
2184 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2185 	xfs_mount_t		*mp;
2186 	xfs_buf_t		*bp;
2187 	int			error;
2188 	int			cancel;
2189 	xfs_daddr_t		blkno;
2190 	int			len;
2191 	ushort			flags;
2192 	uint			buf_flags;
2193 
2194 	if (pass == XLOG_RECOVER_PASS1) {
2195 		/*
2196 		 * In this pass we're only looking for buf items
2197 		 * with the XFS_BLF_CANCEL bit set.
2198 		 */
2199 		xlog_recover_do_buffer_pass1(log, buf_f);
2200 		return 0;
2201 	} else {
2202 		/*
2203 		 * In this pass we want to recover all the buffers
2204 		 * which have not been cancelled and are not
2205 		 * cancellation buffers themselves.  The routine
2206 		 * we call here will tell us whether or not to
2207 		 * continue with the replay of this buffer.
2208 		 */
2209 		cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2210 		if (cancel) {
2211 			trace_xfs_log_recover_buf_cancel(log, buf_f);
2212 			return 0;
2213 		}
2214 	}
2215 	trace_xfs_log_recover_buf_recover(log, buf_f);
2216 	switch (buf_f->blf_type) {
2217 	case XFS_LI_BUF:
2218 		blkno = buf_f->blf_blkno;
2219 		len = buf_f->blf_len;
2220 		flags = buf_f->blf_flags;
2221 		break;
2222 	default:
2223 		xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2224 			"xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2225 			buf_f->blf_type, log->l_mp->m_logname ?
2226 			log->l_mp->m_logname : "internal");
2227 		XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2228 				 XFS_ERRLEVEL_LOW, log->l_mp);
2229 		return XFS_ERROR(EFSCORRUPTED);
2230 	}
2231 
2232 	mp = log->l_mp;
2233 	buf_flags = XBF_LOCK;
2234 	if (!(flags & XFS_BLF_INODE_BUF))
2235 		buf_flags |= XBF_MAPPED;
2236 
2237 	bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, buf_flags);
2238 	if (XFS_BUF_ISERROR(bp)) {
2239 		xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2240 				  bp, blkno);
2241 		error = XFS_BUF_GETERROR(bp);
2242 		xfs_buf_relse(bp);
2243 		return error;
2244 	}
2245 
2246 	error = 0;
2247 	if (flags & XFS_BLF_INODE_BUF) {
2248 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2249 	} else if (flags &
2250 		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2251 		xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2252 	} else {
2253 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2254 	}
2255 	if (error)
2256 		return XFS_ERROR(error);
2257 
2258 	/*
2259 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2260 	 * slower when taking into account all the buffers to be flushed.
2261 	 *
2262 	 * Also make sure that only inode buffers with good sizes stay in
2263 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2264 	 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2265 	 * buffers in the log can be a different size if the log was generated
2266 	 * by an older kernel using unclustered inode buffers or a newer kernel
2267 	 * running with a different inode cluster size.  Regardless, if the
2268 	 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2269 	 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2270 	 * the buffer out of the buffer cache so that the buffer won't
2271 	 * overlap with future reads of those inodes.
2272 	 */
2273 	if (XFS_DINODE_MAGIC ==
2274 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2275 	    (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2276 			(__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2277 		XFS_BUF_STALE(bp);
2278 		error = xfs_bwrite(mp, bp);
2279 	} else {
2280 		ASSERT(bp->b_target->bt_mount == mp);
2281 		XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2282 		xfs_bdwrite(mp, bp);
2283 	}
2284 
2285 	return (error);
2286 }
2287 
2288 STATIC int
2289 xlog_recover_do_inode_trans(
2290 	xlog_t			*log,
2291 	xlog_recover_item_t	*item,
2292 	int			pass)
2293 {
2294 	xfs_inode_log_format_t	*in_f;
2295 	xfs_mount_t		*mp;
2296 	xfs_buf_t		*bp;
2297 	xfs_dinode_t		*dip;
2298 	xfs_ino_t		ino;
2299 	int			len;
2300 	xfs_caddr_t		src;
2301 	xfs_caddr_t		dest;
2302 	int			error;
2303 	int			attr_index;
2304 	uint			fields;
2305 	xfs_icdinode_t		*dicp;
2306 	int			need_free = 0;
2307 
2308 	if (pass == XLOG_RECOVER_PASS1) {
2309 		return 0;
2310 	}
2311 
2312 	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2313 		in_f = item->ri_buf[0].i_addr;
2314 	} else {
2315 		in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2316 		need_free = 1;
2317 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2318 		if (error)
2319 			goto error;
2320 	}
2321 	ino = in_f->ilf_ino;
2322 	mp = log->l_mp;
2323 
2324 	/*
2325 	 * Inode buffers can be freed, look out for it,
2326 	 * and do not replay the inode.
2327 	 */
2328 	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2329 					in_f->ilf_len, 0)) {
2330 		error = 0;
2331 		trace_xfs_log_recover_inode_cancel(log, in_f);
2332 		goto error;
2333 	}
2334 	trace_xfs_log_recover_inode_recover(log, in_f);
2335 
2336 	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
2337 			  XBF_LOCK);
2338 	if (XFS_BUF_ISERROR(bp)) {
2339 		xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2340 				  bp, in_f->ilf_blkno);
2341 		error = XFS_BUF_GETERROR(bp);
2342 		xfs_buf_relse(bp);
2343 		goto error;
2344 	}
2345 	error = 0;
2346 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2347 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2348 
2349 	/*
2350 	 * Make sure the place we're flushing out to really looks
2351 	 * like an inode!
2352 	 */
2353 	if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
2354 		xfs_buf_relse(bp);
2355 		xfs_fs_cmn_err(CE_ALERT, mp,
2356 			"xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2357 			dip, bp, ino);
2358 		XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2359 				 XFS_ERRLEVEL_LOW, mp);
2360 		error = EFSCORRUPTED;
2361 		goto error;
2362 	}
2363 	dicp = item->ri_buf[1].i_addr;
2364 	if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2365 		xfs_buf_relse(bp);
2366 		xfs_fs_cmn_err(CE_ALERT, mp,
2367 			"xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2368 			item, ino);
2369 		XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2370 				 XFS_ERRLEVEL_LOW, mp);
2371 		error = EFSCORRUPTED;
2372 		goto error;
2373 	}
2374 
2375 	/* Skip replay when the on disk inode is newer than the log one */
2376 	if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2377 		/*
2378 		 * Deal with the wrap case, DI_MAX_FLUSH is less
2379 		 * than smaller numbers
2380 		 */
2381 		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2382 		    dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2383 			/* do nothing */
2384 		} else {
2385 			xfs_buf_relse(bp);
2386 			trace_xfs_log_recover_inode_skip(log, in_f);
2387 			error = 0;
2388 			goto error;
2389 		}
2390 	}
2391 	/* Take the opportunity to reset the flush iteration count */
2392 	dicp->di_flushiter = 0;
2393 
2394 	if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2395 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2396 		    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2397 			XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2398 					 XFS_ERRLEVEL_LOW, mp, dicp);
2399 			xfs_buf_relse(bp);
2400 			xfs_fs_cmn_err(CE_ALERT, mp,
2401 				"xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2402 				item, dip, bp, ino);
2403 			error = EFSCORRUPTED;
2404 			goto error;
2405 		}
2406 	} else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2407 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2408 		    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2409 		    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2410 			XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2411 					     XFS_ERRLEVEL_LOW, mp, dicp);
2412 			xfs_buf_relse(bp);
2413 			xfs_fs_cmn_err(CE_ALERT, mp,
2414 				"xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2415 				item, dip, bp, ino);
2416 			error = EFSCORRUPTED;
2417 			goto error;
2418 		}
2419 	}
2420 	if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2421 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2422 				     XFS_ERRLEVEL_LOW, mp, dicp);
2423 		xfs_buf_relse(bp);
2424 		xfs_fs_cmn_err(CE_ALERT, mp,
2425 			"xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2426 			item, dip, bp, ino,
2427 			dicp->di_nextents + dicp->di_anextents,
2428 			dicp->di_nblocks);
2429 		error = EFSCORRUPTED;
2430 		goto error;
2431 	}
2432 	if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2433 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2434 				     XFS_ERRLEVEL_LOW, mp, dicp);
2435 		xfs_buf_relse(bp);
2436 		xfs_fs_cmn_err(CE_ALERT, mp,
2437 			"xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2438 			item, dip, bp, ino, dicp->di_forkoff);
2439 		error = EFSCORRUPTED;
2440 		goto error;
2441 	}
2442 	if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2443 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2444 				     XFS_ERRLEVEL_LOW, mp, dicp);
2445 		xfs_buf_relse(bp);
2446 		xfs_fs_cmn_err(CE_ALERT, mp,
2447 			"xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2448 			item->ri_buf[1].i_len, item);
2449 		error = EFSCORRUPTED;
2450 		goto error;
2451 	}
2452 
2453 	/* The core is in in-core format */
2454 	xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
2455 
2456 	/* the rest is in on-disk format */
2457 	if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2458 		memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2459 			item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2460 			item->ri_buf[1].i_len  - sizeof(struct xfs_icdinode));
2461 	}
2462 
2463 	fields = in_f->ilf_fields;
2464 	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2465 	case XFS_ILOG_DEV:
2466 		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2467 		break;
2468 	case XFS_ILOG_UUID:
2469 		memcpy(XFS_DFORK_DPTR(dip),
2470 		       &in_f->ilf_u.ilfu_uuid,
2471 		       sizeof(uuid_t));
2472 		break;
2473 	}
2474 
2475 	if (in_f->ilf_size == 2)
2476 		goto write_inode_buffer;
2477 	len = item->ri_buf[2].i_len;
2478 	src = item->ri_buf[2].i_addr;
2479 	ASSERT(in_f->ilf_size <= 4);
2480 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2481 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
2482 	       (len == in_f->ilf_dsize));
2483 
2484 	switch (fields & XFS_ILOG_DFORK) {
2485 	case XFS_ILOG_DDATA:
2486 	case XFS_ILOG_DEXT:
2487 		memcpy(XFS_DFORK_DPTR(dip), src, len);
2488 		break;
2489 
2490 	case XFS_ILOG_DBROOT:
2491 		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2492 				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2493 				 XFS_DFORK_DSIZE(dip, mp));
2494 		break;
2495 
2496 	default:
2497 		/*
2498 		 * There are no data fork flags set.
2499 		 */
2500 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
2501 		break;
2502 	}
2503 
2504 	/*
2505 	 * If we logged any attribute data, recover it.  There may or
2506 	 * may not have been any other non-core data logged in this
2507 	 * transaction.
2508 	 */
2509 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2510 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2511 			attr_index = 3;
2512 		} else {
2513 			attr_index = 2;
2514 		}
2515 		len = item->ri_buf[attr_index].i_len;
2516 		src = item->ri_buf[attr_index].i_addr;
2517 		ASSERT(len == in_f->ilf_asize);
2518 
2519 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2520 		case XFS_ILOG_ADATA:
2521 		case XFS_ILOG_AEXT:
2522 			dest = XFS_DFORK_APTR(dip);
2523 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2524 			memcpy(dest, src, len);
2525 			break;
2526 
2527 		case XFS_ILOG_ABROOT:
2528 			dest = XFS_DFORK_APTR(dip);
2529 			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2530 					 len, (xfs_bmdr_block_t*)dest,
2531 					 XFS_DFORK_ASIZE(dip, mp));
2532 			break;
2533 
2534 		default:
2535 			xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2536 			ASSERT(0);
2537 			xfs_buf_relse(bp);
2538 			error = EIO;
2539 			goto error;
2540 		}
2541 	}
2542 
2543 write_inode_buffer:
2544 	ASSERT(bp->b_target->bt_mount == mp);
2545 	XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2546 	xfs_bdwrite(mp, bp);
2547 error:
2548 	if (need_free)
2549 		kmem_free(in_f);
2550 	return XFS_ERROR(error);
2551 }
2552 
2553 /*
2554  * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2555  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2556  * of that type.
2557  */
2558 STATIC int
2559 xlog_recover_do_quotaoff_trans(
2560 	xlog_t			*log,
2561 	xlog_recover_item_t	*item,
2562 	int			pass)
2563 {
2564 	xfs_qoff_logformat_t	*qoff_f;
2565 
2566 	if (pass == XLOG_RECOVER_PASS2) {
2567 		return (0);
2568 	}
2569 
2570 	qoff_f = item->ri_buf[0].i_addr;
2571 	ASSERT(qoff_f);
2572 
2573 	/*
2574 	 * The logitem format's flag tells us if this was user quotaoff,
2575 	 * group/project quotaoff or both.
2576 	 */
2577 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2578 		log->l_quotaoffs_flag |= XFS_DQ_USER;
2579 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2580 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2581 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2582 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2583 
2584 	return (0);
2585 }
2586 
2587 /*
2588  * Recover a dquot record
2589  */
2590 STATIC int
2591 xlog_recover_do_dquot_trans(
2592 	xlog_t			*log,
2593 	xlog_recover_item_t	*item,
2594 	int			pass)
2595 {
2596 	xfs_mount_t		*mp;
2597 	xfs_buf_t		*bp;
2598 	struct xfs_disk_dquot	*ddq, *recddq;
2599 	int			error;
2600 	xfs_dq_logformat_t	*dq_f;
2601 	uint			type;
2602 
2603 	if (pass == XLOG_RECOVER_PASS1) {
2604 		return 0;
2605 	}
2606 	mp = log->l_mp;
2607 
2608 	/*
2609 	 * Filesystems are required to send in quota flags at mount time.
2610 	 */
2611 	if (mp->m_qflags == 0)
2612 		return (0);
2613 
2614 	recddq = item->ri_buf[1].i_addr;
2615 	if (recddq == NULL) {
2616 		cmn_err(CE_ALERT,
2617 			"XFS: NULL dquot in %s.", __func__);
2618 		return XFS_ERROR(EIO);
2619 	}
2620 	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2621 		cmn_err(CE_ALERT,
2622 			"XFS: dquot too small (%d) in %s.",
2623 			item->ri_buf[1].i_len, __func__);
2624 		return XFS_ERROR(EIO);
2625 	}
2626 
2627 	/*
2628 	 * This type of quotas was turned off, so ignore this record.
2629 	 */
2630 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2631 	ASSERT(type);
2632 	if (log->l_quotaoffs_flag & type)
2633 		return (0);
2634 
2635 	/*
2636 	 * At this point we know that quota was _not_ turned off.
2637 	 * Since the mount flags are not indicating to us otherwise, this
2638 	 * must mean that quota is on, and the dquot needs to be replayed.
2639 	 * Remember that we may not have fully recovered the superblock yet,
2640 	 * so we can't do the usual trick of looking at the SB quota bits.
2641 	 *
2642 	 * The other possibility, of course, is that the quota subsystem was
2643 	 * removed since the last mount - ENOSYS.
2644 	 */
2645 	dq_f = item->ri_buf[0].i_addr;
2646 	ASSERT(dq_f);
2647 	if ((error = xfs_qm_dqcheck(recddq,
2648 			   dq_f->qlf_id,
2649 			   0, XFS_QMOPT_DOWARN,
2650 			   "xlog_recover_do_dquot_trans (log copy)"))) {
2651 		return XFS_ERROR(EIO);
2652 	}
2653 	ASSERT(dq_f->qlf_len == 1);
2654 
2655 	error = xfs_read_buf(mp, mp->m_ddev_targp,
2656 			     dq_f->qlf_blkno,
2657 			     XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2658 			     0, &bp);
2659 	if (error) {
2660 		xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2661 				  bp, dq_f->qlf_blkno);
2662 		return error;
2663 	}
2664 	ASSERT(bp);
2665 	ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2666 
2667 	/*
2668 	 * At least the magic num portion should be on disk because this
2669 	 * was among a chunk of dquots created earlier, and we did some
2670 	 * minimal initialization then.
2671 	 */
2672 	if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2673 			   "xlog_recover_do_dquot_trans")) {
2674 		xfs_buf_relse(bp);
2675 		return XFS_ERROR(EIO);
2676 	}
2677 
2678 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
2679 
2680 	ASSERT(dq_f->qlf_size == 2);
2681 	ASSERT(bp->b_target->bt_mount == mp);
2682 	XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2683 	xfs_bdwrite(mp, bp);
2684 
2685 	return (0);
2686 }
2687 
2688 /*
2689  * This routine is called to create an in-core extent free intent
2690  * item from the efi format structure which was logged on disk.
2691  * It allocates an in-core efi, copies the extents from the format
2692  * structure into it, and adds the efi to the AIL with the given
2693  * LSN.
2694  */
2695 STATIC int
2696 xlog_recover_do_efi_trans(
2697 	xlog_t			*log,
2698 	xlog_recover_item_t	*item,
2699 	xfs_lsn_t		lsn,
2700 	int			pass)
2701 {
2702 	int			error;
2703 	xfs_mount_t		*mp;
2704 	xfs_efi_log_item_t	*efip;
2705 	xfs_efi_log_format_t	*efi_formatp;
2706 
2707 	if (pass == XLOG_RECOVER_PASS1) {
2708 		return 0;
2709 	}
2710 
2711 	efi_formatp = item->ri_buf[0].i_addr;
2712 
2713 	mp = log->l_mp;
2714 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2715 	if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2716 					 &(efip->efi_format)))) {
2717 		xfs_efi_item_free(efip);
2718 		return error;
2719 	}
2720 	efip->efi_next_extent = efi_formatp->efi_nextents;
2721 	efip->efi_flags |= XFS_EFI_COMMITTED;
2722 
2723 	spin_lock(&log->l_ailp->xa_lock);
2724 	/*
2725 	 * xfs_trans_ail_update() drops the AIL lock.
2726 	 */
2727 	xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
2728 	return 0;
2729 }
2730 
2731 
2732 /*
2733  * This routine is called when an efd format structure is found in
2734  * a committed transaction in the log.  It's purpose is to cancel
2735  * the corresponding efi if it was still in the log.  To do this
2736  * it searches the AIL for the efi with an id equal to that in the
2737  * efd format structure.  If we find it, we remove the efi from the
2738  * AIL and free it.
2739  */
2740 STATIC void
2741 xlog_recover_do_efd_trans(
2742 	xlog_t			*log,
2743 	xlog_recover_item_t	*item,
2744 	int			pass)
2745 {
2746 	xfs_efd_log_format_t	*efd_formatp;
2747 	xfs_efi_log_item_t	*efip = NULL;
2748 	xfs_log_item_t		*lip;
2749 	__uint64_t		efi_id;
2750 	struct xfs_ail_cursor	cur;
2751 	struct xfs_ail		*ailp = log->l_ailp;
2752 
2753 	if (pass == XLOG_RECOVER_PASS1) {
2754 		return;
2755 	}
2756 
2757 	efd_formatp = item->ri_buf[0].i_addr;
2758 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2759 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2760 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2761 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2762 	efi_id = efd_formatp->efd_efi_id;
2763 
2764 	/*
2765 	 * Search for the efi with the id in the efd format structure
2766 	 * in the AIL.
2767 	 */
2768 	spin_lock(&ailp->xa_lock);
2769 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2770 	while (lip != NULL) {
2771 		if (lip->li_type == XFS_LI_EFI) {
2772 			efip = (xfs_efi_log_item_t *)lip;
2773 			if (efip->efi_format.efi_id == efi_id) {
2774 				/*
2775 				 * xfs_trans_ail_delete() drops the
2776 				 * AIL lock.
2777 				 */
2778 				xfs_trans_ail_delete(ailp, lip);
2779 				xfs_efi_item_free(efip);
2780 				spin_lock(&ailp->xa_lock);
2781 				break;
2782 			}
2783 		}
2784 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
2785 	}
2786 	xfs_trans_ail_cursor_done(ailp, &cur);
2787 	spin_unlock(&ailp->xa_lock);
2788 }
2789 
2790 /*
2791  * Perform the transaction
2792  *
2793  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2794  * EFIs and EFDs get queued up by adding entries into the AIL for them.
2795  */
2796 STATIC int
2797 xlog_recover_do_trans(
2798 	xlog_t			*log,
2799 	xlog_recover_t		*trans,
2800 	int			pass)
2801 {
2802 	int			error = 0;
2803 	xlog_recover_item_t	*item;
2804 
2805 	error = xlog_recover_reorder_trans(log, trans, pass);
2806 	if (error)
2807 		return error;
2808 
2809 	list_for_each_entry(item, &trans->r_itemq, ri_list) {
2810 		trace_xfs_log_recover_item_recover(log, trans, item, pass);
2811 		switch (ITEM_TYPE(item)) {
2812 		case XFS_LI_BUF:
2813 			error = xlog_recover_do_buffer_trans(log, item, pass);
2814 			break;
2815 		case XFS_LI_INODE:
2816 			error = xlog_recover_do_inode_trans(log, item, pass);
2817 			break;
2818 		case XFS_LI_EFI:
2819 			error = xlog_recover_do_efi_trans(log, item,
2820 							  trans->r_lsn, pass);
2821 			break;
2822 		case XFS_LI_EFD:
2823 			xlog_recover_do_efd_trans(log, item, pass);
2824 			error = 0;
2825 			break;
2826 		case XFS_LI_DQUOT:
2827 			error = xlog_recover_do_dquot_trans(log, item, pass);
2828 			break;
2829 		case XFS_LI_QUOTAOFF:
2830 			error = xlog_recover_do_quotaoff_trans(log, item,
2831 							       pass);
2832 			break;
2833 		default:
2834 			xlog_warn(
2835 	"XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item));
2836 			ASSERT(0);
2837 			error = XFS_ERROR(EIO);
2838 			break;
2839 		}
2840 
2841 		if (error)
2842 			return error;
2843 	}
2844 
2845 	return 0;
2846 }
2847 
2848 /*
2849  * Free up any resources allocated by the transaction
2850  *
2851  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2852  */
2853 STATIC void
2854 xlog_recover_free_trans(
2855 	xlog_recover_t		*trans)
2856 {
2857 	xlog_recover_item_t	*item, *n;
2858 	int			i;
2859 
2860 	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2861 		/* Free the regions in the item. */
2862 		list_del(&item->ri_list);
2863 		for (i = 0; i < item->ri_cnt; i++)
2864 			kmem_free(item->ri_buf[i].i_addr);
2865 		/* Free the item itself */
2866 		kmem_free(item->ri_buf);
2867 		kmem_free(item);
2868 	}
2869 	/* Free the transaction recover structure */
2870 	kmem_free(trans);
2871 }
2872 
2873 STATIC int
2874 xlog_recover_commit_trans(
2875 	xlog_t			*log,
2876 	xlog_recover_t		*trans,
2877 	int			pass)
2878 {
2879 	int			error;
2880 
2881 	hlist_del(&trans->r_list);
2882 	if ((error = xlog_recover_do_trans(log, trans, pass)))
2883 		return error;
2884 	xlog_recover_free_trans(trans);			/* no error */
2885 	return 0;
2886 }
2887 
2888 STATIC int
2889 xlog_recover_unmount_trans(
2890 	xlog_recover_t		*trans)
2891 {
2892 	/* Do nothing now */
2893 	xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2894 	return 0;
2895 }
2896 
2897 /*
2898  * There are two valid states of the r_state field.  0 indicates that the
2899  * transaction structure is in a normal state.  We have either seen the
2900  * start of the transaction or the last operation we added was not a partial
2901  * operation.  If the last operation we added to the transaction was a
2902  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2903  *
2904  * NOTE: skip LRs with 0 data length.
2905  */
2906 STATIC int
2907 xlog_recover_process_data(
2908 	xlog_t			*log,
2909 	struct hlist_head	rhash[],
2910 	xlog_rec_header_t	*rhead,
2911 	xfs_caddr_t		dp,
2912 	int			pass)
2913 {
2914 	xfs_caddr_t		lp;
2915 	int			num_logops;
2916 	xlog_op_header_t	*ohead;
2917 	xlog_recover_t		*trans;
2918 	xlog_tid_t		tid;
2919 	int			error;
2920 	unsigned long		hash;
2921 	uint			flags;
2922 
2923 	lp = dp + be32_to_cpu(rhead->h_len);
2924 	num_logops = be32_to_cpu(rhead->h_num_logops);
2925 
2926 	/* check the log format matches our own - else we can't recover */
2927 	if (xlog_header_check_recover(log->l_mp, rhead))
2928 		return (XFS_ERROR(EIO));
2929 
2930 	while ((dp < lp) && num_logops) {
2931 		ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2932 		ohead = (xlog_op_header_t *)dp;
2933 		dp += sizeof(xlog_op_header_t);
2934 		if (ohead->oh_clientid != XFS_TRANSACTION &&
2935 		    ohead->oh_clientid != XFS_LOG) {
2936 			xlog_warn(
2937 		"XFS: xlog_recover_process_data: bad clientid");
2938 			ASSERT(0);
2939 			return (XFS_ERROR(EIO));
2940 		}
2941 		tid = be32_to_cpu(ohead->oh_tid);
2942 		hash = XLOG_RHASH(tid);
2943 		trans = xlog_recover_find_tid(&rhash[hash], tid);
2944 		if (trans == NULL) {		   /* not found; add new tid */
2945 			if (ohead->oh_flags & XLOG_START_TRANS)
2946 				xlog_recover_new_tid(&rhash[hash], tid,
2947 					be64_to_cpu(rhead->h_lsn));
2948 		} else {
2949 			if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2950 				xlog_warn(
2951 			"XFS: xlog_recover_process_data: bad length");
2952 				WARN_ON(1);
2953 				return (XFS_ERROR(EIO));
2954 			}
2955 			flags = ohead->oh_flags & ~XLOG_END_TRANS;
2956 			if (flags & XLOG_WAS_CONT_TRANS)
2957 				flags &= ~XLOG_CONTINUE_TRANS;
2958 			switch (flags) {
2959 			case XLOG_COMMIT_TRANS:
2960 				error = xlog_recover_commit_trans(log,
2961 								trans, pass);
2962 				break;
2963 			case XLOG_UNMOUNT_TRANS:
2964 				error = xlog_recover_unmount_trans(trans);
2965 				break;
2966 			case XLOG_WAS_CONT_TRANS:
2967 				error = xlog_recover_add_to_cont_trans(log,
2968 						trans, dp,
2969 						be32_to_cpu(ohead->oh_len));
2970 				break;
2971 			case XLOG_START_TRANS:
2972 				xlog_warn(
2973 			"XFS: xlog_recover_process_data: bad transaction");
2974 				ASSERT(0);
2975 				error = XFS_ERROR(EIO);
2976 				break;
2977 			case 0:
2978 			case XLOG_CONTINUE_TRANS:
2979 				error = xlog_recover_add_to_trans(log, trans,
2980 						dp, be32_to_cpu(ohead->oh_len));
2981 				break;
2982 			default:
2983 				xlog_warn(
2984 			"XFS: xlog_recover_process_data: bad flag");
2985 				ASSERT(0);
2986 				error = XFS_ERROR(EIO);
2987 				break;
2988 			}
2989 			if (error)
2990 				return error;
2991 		}
2992 		dp += be32_to_cpu(ohead->oh_len);
2993 		num_logops--;
2994 	}
2995 	return 0;
2996 }
2997 
2998 /*
2999  * Process an extent free intent item that was recovered from
3000  * the log.  We need to free the extents that it describes.
3001  */
3002 STATIC int
3003 xlog_recover_process_efi(
3004 	xfs_mount_t		*mp,
3005 	xfs_efi_log_item_t	*efip)
3006 {
3007 	xfs_efd_log_item_t	*efdp;
3008 	xfs_trans_t		*tp;
3009 	int			i;
3010 	int			error = 0;
3011 	xfs_extent_t		*extp;
3012 	xfs_fsblock_t		startblock_fsb;
3013 
3014 	ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
3015 
3016 	/*
3017 	 * First check the validity of the extents described by the
3018 	 * EFI.  If any are bad, then assume that all are bad and
3019 	 * just toss the EFI.
3020 	 */
3021 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3022 		extp = &(efip->efi_format.efi_extents[i]);
3023 		startblock_fsb = XFS_BB_TO_FSB(mp,
3024 				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
3025 		if ((startblock_fsb == 0) ||
3026 		    (extp->ext_len == 0) ||
3027 		    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3028 		    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3029 			/*
3030 			 * This will pull the EFI from the AIL and
3031 			 * free the memory associated with it.
3032 			 */
3033 			xfs_efi_release(efip, efip->efi_format.efi_nextents);
3034 			return XFS_ERROR(EIO);
3035 		}
3036 	}
3037 
3038 	tp = xfs_trans_alloc(mp, 0);
3039 	error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3040 	if (error)
3041 		goto abort_error;
3042 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3043 
3044 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3045 		extp = &(efip->efi_format.efi_extents[i]);
3046 		error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3047 		if (error)
3048 			goto abort_error;
3049 		xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3050 					 extp->ext_len);
3051 	}
3052 
3053 	efip->efi_flags |= XFS_EFI_RECOVERED;
3054 	error = xfs_trans_commit(tp, 0);
3055 	return error;
3056 
3057 abort_error:
3058 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3059 	return error;
3060 }
3061 
3062 /*
3063  * When this is called, all of the EFIs which did not have
3064  * corresponding EFDs should be in the AIL.  What we do now
3065  * is free the extents associated with each one.
3066  *
3067  * Since we process the EFIs in normal transactions, they
3068  * will be removed at some point after the commit.  This prevents
3069  * us from just walking down the list processing each one.
3070  * We'll use a flag in the EFI to skip those that we've already
3071  * processed and use the AIL iteration mechanism's generation
3072  * count to try to speed this up at least a bit.
3073  *
3074  * When we start, we know that the EFIs are the only things in
3075  * the AIL.  As we process them, however, other items are added
3076  * to the AIL.  Since everything added to the AIL must come after
3077  * everything already in the AIL, we stop processing as soon as
3078  * we see something other than an EFI in the AIL.
3079  */
3080 STATIC int
3081 xlog_recover_process_efis(
3082 	xlog_t			*log)
3083 {
3084 	xfs_log_item_t		*lip;
3085 	xfs_efi_log_item_t	*efip;
3086 	int			error = 0;
3087 	struct xfs_ail_cursor	cur;
3088 	struct xfs_ail		*ailp;
3089 
3090 	ailp = log->l_ailp;
3091 	spin_lock(&ailp->xa_lock);
3092 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3093 	while (lip != NULL) {
3094 		/*
3095 		 * We're done when we see something other than an EFI.
3096 		 * There should be no EFIs left in the AIL now.
3097 		 */
3098 		if (lip->li_type != XFS_LI_EFI) {
3099 #ifdef DEBUG
3100 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3101 				ASSERT(lip->li_type != XFS_LI_EFI);
3102 #endif
3103 			break;
3104 		}
3105 
3106 		/*
3107 		 * Skip EFIs that we've already processed.
3108 		 */
3109 		efip = (xfs_efi_log_item_t *)lip;
3110 		if (efip->efi_flags & XFS_EFI_RECOVERED) {
3111 			lip = xfs_trans_ail_cursor_next(ailp, &cur);
3112 			continue;
3113 		}
3114 
3115 		spin_unlock(&ailp->xa_lock);
3116 		error = xlog_recover_process_efi(log->l_mp, efip);
3117 		spin_lock(&ailp->xa_lock);
3118 		if (error)
3119 			goto out;
3120 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3121 	}
3122 out:
3123 	xfs_trans_ail_cursor_done(ailp, &cur);
3124 	spin_unlock(&ailp->xa_lock);
3125 	return error;
3126 }
3127 
3128 /*
3129  * This routine performs a transaction to null out a bad inode pointer
3130  * in an agi unlinked inode hash bucket.
3131  */
3132 STATIC void
3133 xlog_recover_clear_agi_bucket(
3134 	xfs_mount_t	*mp,
3135 	xfs_agnumber_t	agno,
3136 	int		bucket)
3137 {
3138 	xfs_trans_t	*tp;
3139 	xfs_agi_t	*agi;
3140 	xfs_buf_t	*agibp;
3141 	int		offset;
3142 	int		error;
3143 
3144 	tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3145 	error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3146 				  0, 0, 0);
3147 	if (error)
3148 		goto out_abort;
3149 
3150 	error = xfs_read_agi(mp, tp, agno, &agibp);
3151 	if (error)
3152 		goto out_abort;
3153 
3154 	agi = XFS_BUF_TO_AGI(agibp);
3155 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3156 	offset = offsetof(xfs_agi_t, agi_unlinked) +
3157 		 (sizeof(xfs_agino_t) * bucket);
3158 	xfs_trans_log_buf(tp, agibp, offset,
3159 			  (offset + sizeof(xfs_agino_t) - 1));
3160 
3161 	error = xfs_trans_commit(tp, 0);
3162 	if (error)
3163 		goto out_error;
3164 	return;
3165 
3166 out_abort:
3167 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3168 out_error:
3169 	xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3170 			"failed to clear agi %d. Continuing.", agno);
3171 	return;
3172 }
3173 
3174 STATIC xfs_agino_t
3175 xlog_recover_process_one_iunlink(
3176 	struct xfs_mount		*mp,
3177 	xfs_agnumber_t			agno,
3178 	xfs_agino_t			agino,
3179 	int				bucket)
3180 {
3181 	struct xfs_buf			*ibp;
3182 	struct xfs_dinode		*dip;
3183 	struct xfs_inode		*ip;
3184 	xfs_ino_t			ino;
3185 	int				error;
3186 
3187 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
3188 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3189 	if (error)
3190 		goto fail;
3191 
3192 	/*
3193 	 * Get the on disk inode to find the next inode in the bucket.
3194 	 */
3195 	error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
3196 	if (error)
3197 		goto fail_iput;
3198 
3199 	ASSERT(ip->i_d.di_nlink == 0);
3200 	ASSERT(ip->i_d.di_mode != 0);
3201 
3202 	/* setup for the next pass */
3203 	agino = be32_to_cpu(dip->di_next_unlinked);
3204 	xfs_buf_relse(ibp);
3205 
3206 	/*
3207 	 * Prevent any DMAPI event from being sent when the reference on
3208 	 * the inode is dropped.
3209 	 */
3210 	ip->i_d.di_dmevmask = 0;
3211 
3212 	IRELE(ip);
3213 	return agino;
3214 
3215  fail_iput:
3216 	IRELE(ip);
3217  fail:
3218 	/*
3219 	 * We can't read in the inode this bucket points to, or this inode
3220 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
3221 	 * some inodes and space, but at least we won't hang.
3222 	 *
3223 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3224 	 * clear the inode pointer in the bucket.
3225 	 */
3226 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
3227 	return NULLAGINO;
3228 }
3229 
3230 /*
3231  * xlog_iunlink_recover
3232  *
3233  * This is called during recovery to process any inodes which
3234  * we unlinked but not freed when the system crashed.  These
3235  * inodes will be on the lists in the AGI blocks.  What we do
3236  * here is scan all the AGIs and fully truncate and free any
3237  * inodes found on the lists.  Each inode is removed from the
3238  * lists when it has been fully truncated and is freed.  The
3239  * freeing of the inode and its removal from the list must be
3240  * atomic.
3241  */
3242 STATIC void
3243 xlog_recover_process_iunlinks(
3244 	xlog_t		*log)
3245 {
3246 	xfs_mount_t	*mp;
3247 	xfs_agnumber_t	agno;
3248 	xfs_agi_t	*agi;
3249 	xfs_buf_t	*agibp;
3250 	xfs_agino_t	agino;
3251 	int		bucket;
3252 	int		error;
3253 	uint		mp_dmevmask;
3254 
3255 	mp = log->l_mp;
3256 
3257 	/*
3258 	 * Prevent any DMAPI event from being sent while in this function.
3259 	 */
3260 	mp_dmevmask = mp->m_dmevmask;
3261 	mp->m_dmevmask = 0;
3262 
3263 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3264 		/*
3265 		 * Find the agi for this ag.
3266 		 */
3267 		error = xfs_read_agi(mp, NULL, agno, &agibp);
3268 		if (error) {
3269 			/*
3270 			 * AGI is b0rked. Don't process it.
3271 			 *
3272 			 * We should probably mark the filesystem as corrupt
3273 			 * after we've recovered all the ag's we can....
3274 			 */
3275 			continue;
3276 		}
3277 		agi = XFS_BUF_TO_AGI(agibp);
3278 
3279 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3280 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3281 			while (agino != NULLAGINO) {
3282 				/*
3283 				 * Release the agi buffer so that it can
3284 				 * be acquired in the normal course of the
3285 				 * transaction to truncate and free the inode.
3286 				 */
3287 				xfs_buf_relse(agibp);
3288 
3289 				agino = xlog_recover_process_one_iunlink(mp,
3290 							agno, agino, bucket);
3291 
3292 				/*
3293 				 * Reacquire the agibuffer and continue around
3294 				 * the loop. This should never fail as we know
3295 				 * the buffer was good earlier on.
3296 				 */
3297 				error = xfs_read_agi(mp, NULL, agno, &agibp);
3298 				ASSERT(error == 0);
3299 				agi = XFS_BUF_TO_AGI(agibp);
3300 			}
3301 		}
3302 
3303 		/*
3304 		 * Release the buffer for the current agi so we can
3305 		 * go on to the next one.
3306 		 */
3307 		xfs_buf_relse(agibp);
3308 	}
3309 
3310 	mp->m_dmevmask = mp_dmevmask;
3311 }
3312 
3313 
3314 #ifdef DEBUG
3315 STATIC void
3316 xlog_pack_data_checksum(
3317 	xlog_t		*log,
3318 	xlog_in_core_t	*iclog,
3319 	int		size)
3320 {
3321 	int		i;
3322 	__be32		*up;
3323 	uint		chksum = 0;
3324 
3325 	up = (__be32 *)iclog->ic_datap;
3326 	/* divide length by 4 to get # words */
3327 	for (i = 0; i < (size >> 2); i++) {
3328 		chksum ^= be32_to_cpu(*up);
3329 		up++;
3330 	}
3331 	iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3332 }
3333 #else
3334 #define xlog_pack_data_checksum(log, iclog, size)
3335 #endif
3336 
3337 /*
3338  * Stamp cycle number in every block
3339  */
3340 void
3341 xlog_pack_data(
3342 	xlog_t			*log,
3343 	xlog_in_core_t		*iclog,
3344 	int			roundoff)
3345 {
3346 	int			i, j, k;
3347 	int			size = iclog->ic_offset + roundoff;
3348 	__be32			cycle_lsn;
3349 	xfs_caddr_t		dp;
3350 
3351 	xlog_pack_data_checksum(log, iclog, size);
3352 
3353 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3354 
3355 	dp = iclog->ic_datap;
3356 	for (i = 0; i < BTOBB(size) &&
3357 		i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3358 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3359 		*(__be32 *)dp = cycle_lsn;
3360 		dp += BBSIZE;
3361 	}
3362 
3363 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3364 		xlog_in_core_2_t *xhdr = iclog->ic_data;
3365 
3366 		for ( ; i < BTOBB(size); i++) {
3367 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3368 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3369 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3370 			*(__be32 *)dp = cycle_lsn;
3371 			dp += BBSIZE;
3372 		}
3373 
3374 		for (i = 1; i < log->l_iclog_heads; i++) {
3375 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3376 		}
3377 	}
3378 }
3379 
3380 STATIC void
3381 xlog_unpack_data(
3382 	xlog_rec_header_t	*rhead,
3383 	xfs_caddr_t		dp,
3384 	xlog_t			*log)
3385 {
3386 	int			i, j, k;
3387 
3388 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3389 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3390 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3391 		dp += BBSIZE;
3392 	}
3393 
3394 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3395 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3396 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3397 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3398 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3399 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3400 			dp += BBSIZE;
3401 		}
3402 	}
3403 }
3404 
3405 STATIC int
3406 xlog_valid_rec_header(
3407 	xlog_t			*log,
3408 	xlog_rec_header_t	*rhead,
3409 	xfs_daddr_t		blkno)
3410 {
3411 	int			hlen;
3412 
3413 	if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
3414 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3415 				XFS_ERRLEVEL_LOW, log->l_mp);
3416 		return XFS_ERROR(EFSCORRUPTED);
3417 	}
3418 	if (unlikely(
3419 	    (!rhead->h_version ||
3420 	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3421 		xlog_warn("XFS: %s: unrecognised log version (%d).",
3422 			__func__, be32_to_cpu(rhead->h_version));
3423 		return XFS_ERROR(EIO);
3424 	}
3425 
3426 	/* LR body must have data or it wouldn't have been written */
3427 	hlen = be32_to_cpu(rhead->h_len);
3428 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3429 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3430 				XFS_ERRLEVEL_LOW, log->l_mp);
3431 		return XFS_ERROR(EFSCORRUPTED);
3432 	}
3433 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3434 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3435 				XFS_ERRLEVEL_LOW, log->l_mp);
3436 		return XFS_ERROR(EFSCORRUPTED);
3437 	}
3438 	return 0;
3439 }
3440 
3441 /*
3442  * Read the log from tail to head and process the log records found.
3443  * Handle the two cases where the tail and head are in the same cycle
3444  * and where the active portion of the log wraps around the end of
3445  * the physical log separately.  The pass parameter is passed through
3446  * to the routines called to process the data and is not looked at
3447  * here.
3448  */
3449 STATIC int
3450 xlog_do_recovery_pass(
3451 	xlog_t			*log,
3452 	xfs_daddr_t		head_blk,
3453 	xfs_daddr_t		tail_blk,
3454 	int			pass)
3455 {
3456 	xlog_rec_header_t	*rhead;
3457 	xfs_daddr_t		blk_no;
3458 	xfs_caddr_t		offset;
3459 	xfs_buf_t		*hbp, *dbp;
3460 	int			error = 0, h_size;
3461 	int			bblks, split_bblks;
3462 	int			hblks, split_hblks, wrapped_hblks;
3463 	struct hlist_head	rhash[XLOG_RHASH_SIZE];
3464 
3465 	ASSERT(head_blk != tail_blk);
3466 
3467 	/*
3468 	 * Read the header of the tail block and get the iclog buffer size from
3469 	 * h_size.  Use this to tell how many sectors make up the log header.
3470 	 */
3471 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3472 		/*
3473 		 * When using variable length iclogs, read first sector of
3474 		 * iclog header and extract the header size from it.  Get a
3475 		 * new hbp that is the correct size.
3476 		 */
3477 		hbp = xlog_get_bp(log, 1);
3478 		if (!hbp)
3479 			return ENOMEM;
3480 
3481 		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3482 		if (error)
3483 			goto bread_err1;
3484 
3485 		rhead = (xlog_rec_header_t *)offset;
3486 		error = xlog_valid_rec_header(log, rhead, tail_blk);
3487 		if (error)
3488 			goto bread_err1;
3489 		h_size = be32_to_cpu(rhead->h_size);
3490 		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3491 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3492 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3493 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
3494 				hblks++;
3495 			xlog_put_bp(hbp);
3496 			hbp = xlog_get_bp(log, hblks);
3497 		} else {
3498 			hblks = 1;
3499 		}
3500 	} else {
3501 		ASSERT(log->l_sectBBsize == 1);
3502 		hblks = 1;
3503 		hbp = xlog_get_bp(log, 1);
3504 		h_size = XLOG_BIG_RECORD_BSIZE;
3505 	}
3506 
3507 	if (!hbp)
3508 		return ENOMEM;
3509 	dbp = xlog_get_bp(log, BTOBB(h_size));
3510 	if (!dbp) {
3511 		xlog_put_bp(hbp);
3512 		return ENOMEM;
3513 	}
3514 
3515 	memset(rhash, 0, sizeof(rhash));
3516 	if (tail_blk <= head_blk) {
3517 		for (blk_no = tail_blk; blk_no < head_blk; ) {
3518 			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3519 			if (error)
3520 				goto bread_err2;
3521 
3522 			rhead = (xlog_rec_header_t *)offset;
3523 			error = xlog_valid_rec_header(log, rhead, blk_no);
3524 			if (error)
3525 				goto bread_err2;
3526 
3527 			/* blocks in data section */
3528 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3529 			error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3530 					   &offset);
3531 			if (error)
3532 				goto bread_err2;
3533 
3534 			xlog_unpack_data(rhead, offset, log);
3535 			if ((error = xlog_recover_process_data(log,
3536 						rhash, rhead, offset, pass)))
3537 				goto bread_err2;
3538 			blk_no += bblks + hblks;
3539 		}
3540 	} else {
3541 		/*
3542 		 * Perform recovery around the end of the physical log.
3543 		 * When the head is not on the same cycle number as the tail,
3544 		 * we can't do a sequential recovery as above.
3545 		 */
3546 		blk_no = tail_blk;
3547 		while (blk_no < log->l_logBBsize) {
3548 			/*
3549 			 * Check for header wrapping around physical end-of-log
3550 			 */
3551 			offset = XFS_BUF_PTR(hbp);
3552 			split_hblks = 0;
3553 			wrapped_hblks = 0;
3554 			if (blk_no + hblks <= log->l_logBBsize) {
3555 				/* Read header in one read */
3556 				error = xlog_bread(log, blk_no, hblks, hbp,
3557 						   &offset);
3558 				if (error)
3559 					goto bread_err2;
3560 			} else {
3561 				/* This LR is split across physical log end */
3562 				if (blk_no != log->l_logBBsize) {
3563 					/* some data before physical log end */
3564 					ASSERT(blk_no <= INT_MAX);
3565 					split_hblks = log->l_logBBsize - (int)blk_no;
3566 					ASSERT(split_hblks > 0);
3567 					error = xlog_bread(log, blk_no,
3568 							   split_hblks, hbp,
3569 							   &offset);
3570 					if (error)
3571 						goto bread_err2;
3572 				}
3573 
3574 				/*
3575 				 * Note: this black magic still works with
3576 				 * large sector sizes (non-512) only because:
3577 				 * - we increased the buffer size originally
3578 				 *   by 1 sector giving us enough extra space
3579 				 *   for the second read;
3580 				 * - the log start is guaranteed to be sector
3581 				 *   aligned;
3582 				 * - we read the log end (LR header start)
3583 				 *   _first_, then the log start (LR header end)
3584 				 *   - order is important.
3585 				 */
3586 				wrapped_hblks = hblks - split_hblks;
3587 				error = XFS_BUF_SET_PTR(hbp,
3588 						offset + BBTOB(split_hblks),
3589 						BBTOB(hblks - split_hblks));
3590 				if (error)
3591 					goto bread_err2;
3592 
3593 				error = xlog_bread_noalign(log, 0,
3594 							   wrapped_hblks, hbp);
3595 				if (error)
3596 					goto bread_err2;
3597 
3598 				error = XFS_BUF_SET_PTR(hbp, offset,
3599 							BBTOB(hblks));
3600 				if (error)
3601 					goto bread_err2;
3602 			}
3603 			rhead = (xlog_rec_header_t *)offset;
3604 			error = xlog_valid_rec_header(log, rhead,
3605 						split_hblks ? blk_no : 0);
3606 			if (error)
3607 				goto bread_err2;
3608 
3609 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3610 			blk_no += hblks;
3611 
3612 			/* Read in data for log record */
3613 			if (blk_no + bblks <= log->l_logBBsize) {
3614 				error = xlog_bread(log, blk_no, bblks, dbp,
3615 						   &offset);
3616 				if (error)
3617 					goto bread_err2;
3618 			} else {
3619 				/* This log record is split across the
3620 				 * physical end of log */
3621 				offset = XFS_BUF_PTR(dbp);
3622 				split_bblks = 0;
3623 				if (blk_no != log->l_logBBsize) {
3624 					/* some data is before the physical
3625 					 * end of log */
3626 					ASSERT(!wrapped_hblks);
3627 					ASSERT(blk_no <= INT_MAX);
3628 					split_bblks =
3629 						log->l_logBBsize - (int)blk_no;
3630 					ASSERT(split_bblks > 0);
3631 					error = xlog_bread(log, blk_no,
3632 							split_bblks, dbp,
3633 							&offset);
3634 					if (error)
3635 						goto bread_err2;
3636 				}
3637 
3638 				/*
3639 				 * Note: this black magic still works with
3640 				 * large sector sizes (non-512) only because:
3641 				 * - we increased the buffer size originally
3642 				 *   by 1 sector giving us enough extra space
3643 				 *   for the second read;
3644 				 * - the log start is guaranteed to be sector
3645 				 *   aligned;
3646 				 * - we read the log end (LR header start)
3647 				 *   _first_, then the log start (LR header end)
3648 				 *   - order is important.
3649 				 */
3650 				error = XFS_BUF_SET_PTR(dbp,
3651 						offset + BBTOB(split_bblks),
3652 						BBTOB(bblks - split_bblks));
3653 				if (error)
3654 					goto bread_err2;
3655 
3656 				error = xlog_bread_noalign(log, wrapped_hblks,
3657 						bblks - split_bblks,
3658 						dbp);
3659 				if (error)
3660 					goto bread_err2;
3661 
3662 				error = XFS_BUF_SET_PTR(dbp, offset, h_size);
3663 				if (error)
3664 					goto bread_err2;
3665 			}
3666 			xlog_unpack_data(rhead, offset, log);
3667 			if ((error = xlog_recover_process_data(log, rhash,
3668 							rhead, offset, pass)))
3669 				goto bread_err2;
3670 			blk_no += bblks;
3671 		}
3672 
3673 		ASSERT(blk_no >= log->l_logBBsize);
3674 		blk_no -= log->l_logBBsize;
3675 
3676 		/* read first part of physical log */
3677 		while (blk_no < head_blk) {
3678 			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3679 			if (error)
3680 				goto bread_err2;
3681 
3682 			rhead = (xlog_rec_header_t *)offset;
3683 			error = xlog_valid_rec_header(log, rhead, blk_no);
3684 			if (error)
3685 				goto bread_err2;
3686 
3687 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3688 			error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3689 					   &offset);
3690 			if (error)
3691 				goto bread_err2;
3692 
3693 			xlog_unpack_data(rhead, offset, log);
3694 			if ((error = xlog_recover_process_data(log, rhash,
3695 							rhead, offset, pass)))
3696 				goto bread_err2;
3697 			blk_no += bblks + hblks;
3698 		}
3699 	}
3700 
3701  bread_err2:
3702 	xlog_put_bp(dbp);
3703  bread_err1:
3704 	xlog_put_bp(hbp);
3705 	return error;
3706 }
3707 
3708 /*
3709  * Do the recovery of the log.  We actually do this in two phases.
3710  * The two passes are necessary in order to implement the function
3711  * of cancelling a record written into the log.  The first pass
3712  * determines those things which have been cancelled, and the
3713  * second pass replays log items normally except for those which
3714  * have been cancelled.  The handling of the replay and cancellations
3715  * takes place in the log item type specific routines.
3716  *
3717  * The table of items which have cancel records in the log is allocated
3718  * and freed at this level, since only here do we know when all of
3719  * the log recovery has been completed.
3720  */
3721 STATIC int
3722 xlog_do_log_recovery(
3723 	xlog_t		*log,
3724 	xfs_daddr_t	head_blk,
3725 	xfs_daddr_t	tail_blk)
3726 {
3727 	int		error;
3728 
3729 	ASSERT(head_blk != tail_blk);
3730 
3731 	/*
3732 	 * First do a pass to find all of the cancelled buf log items.
3733 	 * Store them in the buf_cancel_table for use in the second pass.
3734 	 */
3735 	log->l_buf_cancel_table =
3736 		(xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3737 						 sizeof(xfs_buf_cancel_t*),
3738 						 KM_SLEEP);
3739 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3740 				      XLOG_RECOVER_PASS1);
3741 	if (error != 0) {
3742 		kmem_free(log->l_buf_cancel_table);
3743 		log->l_buf_cancel_table = NULL;
3744 		return error;
3745 	}
3746 	/*
3747 	 * Then do a second pass to actually recover the items in the log.
3748 	 * When it is complete free the table of buf cancel items.
3749 	 */
3750 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3751 				      XLOG_RECOVER_PASS2);
3752 #ifdef DEBUG
3753 	if (!error) {
3754 		int	i;
3755 
3756 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3757 			ASSERT(log->l_buf_cancel_table[i] == NULL);
3758 	}
3759 #endif	/* DEBUG */
3760 
3761 	kmem_free(log->l_buf_cancel_table);
3762 	log->l_buf_cancel_table = NULL;
3763 
3764 	return error;
3765 }
3766 
3767 /*
3768  * Do the actual recovery
3769  */
3770 STATIC int
3771 xlog_do_recover(
3772 	xlog_t		*log,
3773 	xfs_daddr_t	head_blk,
3774 	xfs_daddr_t	tail_blk)
3775 {
3776 	int		error;
3777 	xfs_buf_t	*bp;
3778 	xfs_sb_t	*sbp;
3779 
3780 	/*
3781 	 * First replay the images in the log.
3782 	 */
3783 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
3784 	if (error) {
3785 		return error;
3786 	}
3787 
3788 	XFS_bflush(log->l_mp->m_ddev_targp);
3789 
3790 	/*
3791 	 * If IO errors happened during recovery, bail out.
3792 	 */
3793 	if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3794 		return (EIO);
3795 	}
3796 
3797 	/*
3798 	 * We now update the tail_lsn since much of the recovery has completed
3799 	 * and there may be space available to use.  If there were no extent
3800 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
3801 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3802 	 * lsn of the last known good LR on disk.  If there are extent frees
3803 	 * or iunlinks they will have some entries in the AIL; so we look at
3804 	 * the AIL to determine how to set the tail_lsn.
3805 	 */
3806 	xlog_assign_tail_lsn(log->l_mp);
3807 
3808 	/*
3809 	 * Now that we've finished replaying all buffer and inode
3810 	 * updates, re-read in the superblock.
3811 	 */
3812 	bp = xfs_getsb(log->l_mp, 0);
3813 	XFS_BUF_UNDONE(bp);
3814 	ASSERT(!(XFS_BUF_ISWRITE(bp)));
3815 	ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3816 	XFS_BUF_READ(bp);
3817 	XFS_BUF_UNASYNC(bp);
3818 	xfsbdstrat(log->l_mp, bp);
3819 	error = xfs_buf_iowait(bp);
3820 	if (error) {
3821 		xfs_ioerror_alert("xlog_do_recover",
3822 				  log->l_mp, bp, XFS_BUF_ADDR(bp));
3823 		ASSERT(0);
3824 		xfs_buf_relse(bp);
3825 		return error;
3826 	}
3827 
3828 	/* Convert superblock from on-disk format */
3829 	sbp = &log->l_mp->m_sb;
3830 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3831 	ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3832 	ASSERT(xfs_sb_good_version(sbp));
3833 	xfs_buf_relse(bp);
3834 
3835 	/* We've re-read the superblock so re-initialize per-cpu counters */
3836 	xfs_icsb_reinit_counters(log->l_mp);
3837 
3838 	xlog_recover_check_summary(log);
3839 
3840 	/* Normal transactions can now occur */
3841 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3842 	return 0;
3843 }
3844 
3845 /*
3846  * Perform recovery and re-initialize some log variables in xlog_find_tail.
3847  *
3848  * Return error or zero.
3849  */
3850 int
3851 xlog_recover(
3852 	xlog_t		*log)
3853 {
3854 	xfs_daddr_t	head_blk, tail_blk;
3855 	int		error;
3856 
3857 	/* find the tail of the log */
3858 	if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3859 		return error;
3860 
3861 	if (tail_blk != head_blk) {
3862 		/* There used to be a comment here:
3863 		 *
3864 		 * disallow recovery on read-only mounts.  note -- mount
3865 		 * checks for ENOSPC and turns it into an intelligent
3866 		 * error message.
3867 		 * ...but this is no longer true.  Now, unless you specify
3868 		 * NORECOVERY (in which case this function would never be
3869 		 * called), we just go ahead and recover.  We do this all
3870 		 * under the vfs layer, so we can get away with it unless
3871 		 * the device itself is read-only, in which case we fail.
3872 		 */
3873 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3874 			return error;
3875 		}
3876 
3877 		cmn_err(CE_NOTE,
3878 			"Starting XFS recovery on filesystem: %s (logdev: %s)",
3879 			log->l_mp->m_fsname, log->l_mp->m_logname ?
3880 			log->l_mp->m_logname : "internal");
3881 
3882 		error = xlog_do_recover(log, head_blk, tail_blk);
3883 		log->l_flags |= XLOG_RECOVERY_NEEDED;
3884 	}
3885 	return error;
3886 }
3887 
3888 /*
3889  * In the first part of recovery we replay inodes and buffers and build
3890  * up the list of extent free items which need to be processed.  Here
3891  * we process the extent free items and clean up the on disk unlinked
3892  * inode lists.  This is separated from the first part of recovery so
3893  * that the root and real-time bitmap inodes can be read in from disk in
3894  * between the two stages.  This is necessary so that we can free space
3895  * in the real-time portion of the file system.
3896  */
3897 int
3898 xlog_recover_finish(
3899 	xlog_t		*log)
3900 {
3901 	/*
3902 	 * Now we're ready to do the transactions needed for the
3903 	 * rest of recovery.  Start with completing all the extent
3904 	 * free intent records and then process the unlinked inode
3905 	 * lists.  At this point, we essentially run in normal mode
3906 	 * except that we're still performing recovery actions
3907 	 * rather than accepting new requests.
3908 	 */
3909 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3910 		int	error;
3911 		error = xlog_recover_process_efis(log);
3912 		if (error) {
3913 			cmn_err(CE_ALERT,
3914 				"Failed to recover EFIs on filesystem: %s",
3915 				log->l_mp->m_fsname);
3916 			return error;
3917 		}
3918 		/*
3919 		 * Sync the log to get all the EFIs out of the AIL.
3920 		 * This isn't absolutely necessary, but it helps in
3921 		 * case the unlink transactions would have problems
3922 		 * pushing the EFIs out of the way.
3923 		 */
3924 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3925 
3926 		xlog_recover_process_iunlinks(log);
3927 
3928 		xlog_recover_check_summary(log);
3929 
3930 		cmn_err(CE_NOTE,
3931 			"Ending XFS recovery on filesystem: %s (logdev: %s)",
3932 			log->l_mp->m_fsname, log->l_mp->m_logname ?
3933 			log->l_mp->m_logname : "internal");
3934 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3935 	} else {
3936 		cmn_err(CE_DEBUG,
3937 			"!Ending clean XFS mount for filesystem: %s\n",
3938 			log->l_mp->m_fsname);
3939 	}
3940 	return 0;
3941 }
3942 
3943 
3944 #if defined(DEBUG)
3945 /*
3946  * Read all of the agf and agi counters and check that they
3947  * are consistent with the superblock counters.
3948  */
3949 void
3950 xlog_recover_check_summary(
3951 	xlog_t		*log)
3952 {
3953 	xfs_mount_t	*mp;
3954 	xfs_agf_t	*agfp;
3955 	xfs_buf_t	*agfbp;
3956 	xfs_buf_t	*agibp;
3957 	xfs_agnumber_t	agno;
3958 	__uint64_t	freeblks;
3959 	__uint64_t	itotal;
3960 	__uint64_t	ifree;
3961 	int		error;
3962 
3963 	mp = log->l_mp;
3964 
3965 	freeblks = 0LL;
3966 	itotal = 0LL;
3967 	ifree = 0LL;
3968 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3969 		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3970 		if (error) {
3971 			xfs_fs_cmn_err(CE_ALERT, mp,
3972 					"xlog_recover_check_summary(agf)"
3973 					"agf read failed agno %d error %d",
3974 							agno, error);
3975 		} else {
3976 			agfp = XFS_BUF_TO_AGF(agfbp);
3977 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
3978 				    be32_to_cpu(agfp->agf_flcount);
3979 			xfs_buf_relse(agfbp);
3980 		}
3981 
3982 		error = xfs_read_agi(mp, NULL, agno, &agibp);
3983 		if (!error) {
3984 			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
3985 
3986 			itotal += be32_to_cpu(agi->agi_count);
3987 			ifree += be32_to_cpu(agi->agi_freecount);
3988 			xfs_buf_relse(agibp);
3989 		}
3990 	}
3991 }
3992 #endif /* DEBUG */
3993