xref: /openbmc/linux/fs/xfs/xfs_log_recover.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_alloc.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_log_priv.h"
42 #include "xfs_buf_item.h"
43 #include "xfs_log_recover.h"
44 #include "xfs_extfree_item.h"
45 #include "xfs_trans_priv.h"
46 #include "xfs_quota.h"
47 #include "xfs_rw.h"
48 #include "xfs_utils.h"
49 
50 STATIC int	xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
51 STATIC int	xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
52 STATIC void	xlog_recover_insert_item_backq(xlog_recover_item_t **q,
53 					       xlog_recover_item_t *item);
54 #if defined(DEBUG)
55 STATIC void	xlog_recover_check_summary(xlog_t *);
56 #else
57 #define	xlog_recover_check_summary(log)
58 #endif
59 
60 
61 /*
62  * Sector aligned buffer routines for buffer create/read/write/access
63  */
64 
65 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs)	\
66 	( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
67 	((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
68 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno)	((bno) & ~(log)->l_sectbb_mask)
69 
70 xfs_buf_t *
71 xlog_get_bp(
72 	xlog_t		*log,
73 	int		nbblks)
74 {
75 	if (nbblks <= 0 || nbblks > log->l_logBBsize) {
76 		xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
77 		XFS_ERROR_REPORT("xlog_get_bp(1)",
78 				 XFS_ERRLEVEL_HIGH, log->l_mp);
79 		return NULL;
80 	}
81 
82 	if (log->l_sectbb_log) {
83 		if (nbblks > 1)
84 			nbblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
85 		nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
86 	}
87 	return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp);
88 }
89 
90 void
91 xlog_put_bp(
92 	xfs_buf_t	*bp)
93 {
94 	xfs_buf_free(bp);
95 }
96 
97 
98 /*
99  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
100  */
101 int
102 xlog_bread(
103 	xlog_t		*log,
104 	xfs_daddr_t	blk_no,
105 	int		nbblks,
106 	xfs_buf_t	*bp)
107 {
108 	int		error;
109 
110 	if (nbblks <= 0 || nbblks > log->l_logBBsize) {
111 		xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
112 		XFS_ERROR_REPORT("xlog_bread(1)",
113 				 XFS_ERRLEVEL_HIGH, log->l_mp);
114 		return EFSCORRUPTED;
115 	}
116 
117 	if (log->l_sectbb_log) {
118 		blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
119 		nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
120 	}
121 
122 	ASSERT(nbblks > 0);
123 	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
124 	ASSERT(bp);
125 
126 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
127 	XFS_BUF_READ(bp);
128 	XFS_BUF_BUSY(bp);
129 	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
130 	XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
131 
132 	xfsbdstrat(log->l_mp, bp);
133 	error = xfs_iowait(bp);
134 	if (error)
135 		xfs_ioerror_alert("xlog_bread", log->l_mp,
136 				  bp, XFS_BUF_ADDR(bp));
137 	return error;
138 }
139 
140 /*
141  * Write out the buffer at the given block for the given number of blocks.
142  * The buffer is kept locked across the write and is returned locked.
143  * This can only be used for synchronous log writes.
144  */
145 STATIC int
146 xlog_bwrite(
147 	xlog_t		*log,
148 	xfs_daddr_t	blk_no,
149 	int		nbblks,
150 	xfs_buf_t	*bp)
151 {
152 	int		error;
153 
154 	if (nbblks <= 0 || nbblks > log->l_logBBsize) {
155 		xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
156 		XFS_ERROR_REPORT("xlog_bwrite(1)",
157 				 XFS_ERRLEVEL_HIGH, log->l_mp);
158 		return EFSCORRUPTED;
159 	}
160 
161 	if (log->l_sectbb_log) {
162 		blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
163 		nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
164 	}
165 
166 	ASSERT(nbblks > 0);
167 	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
168 
169 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
170 	XFS_BUF_ZEROFLAGS(bp);
171 	XFS_BUF_BUSY(bp);
172 	XFS_BUF_HOLD(bp);
173 	XFS_BUF_PSEMA(bp, PRIBIO);
174 	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
175 	XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
176 
177 	if ((error = xfs_bwrite(log->l_mp, bp)))
178 		xfs_ioerror_alert("xlog_bwrite", log->l_mp,
179 				  bp, XFS_BUF_ADDR(bp));
180 	return error;
181 }
182 
183 STATIC xfs_caddr_t
184 xlog_align(
185 	xlog_t		*log,
186 	xfs_daddr_t	blk_no,
187 	int		nbblks,
188 	xfs_buf_t	*bp)
189 {
190 	xfs_caddr_t	ptr;
191 
192 	if (!log->l_sectbb_log)
193 		return XFS_BUF_PTR(bp);
194 
195 	ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
196 	ASSERT(XFS_BUF_SIZE(bp) >=
197 		BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
198 	return ptr;
199 }
200 
201 #ifdef DEBUG
202 /*
203  * dump debug superblock and log record information
204  */
205 STATIC void
206 xlog_header_check_dump(
207 	xfs_mount_t		*mp,
208 	xlog_rec_header_t	*head)
209 {
210 	int			b;
211 
212 	cmn_err(CE_DEBUG, "%s:  SB : uuid = ", __func__);
213 	for (b = 0; b < 16; b++)
214 		cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
215 	cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
216 	cmn_err(CE_DEBUG, "    log : uuid = ");
217 	for (b = 0; b < 16; b++)
218 		cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
219 	cmn_err(CE_DEBUG, ", fmt = %d\n", be32_to_cpu(head->h_fmt));
220 }
221 #else
222 #define xlog_header_check_dump(mp, head)
223 #endif
224 
225 /*
226  * check log record header for recovery
227  */
228 STATIC int
229 xlog_header_check_recover(
230 	xfs_mount_t		*mp,
231 	xlog_rec_header_t	*head)
232 {
233 	ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
234 
235 	/*
236 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
237 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
238 	 * a dirty log created in IRIX.
239 	 */
240 	if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
241 		xlog_warn(
242 	"XFS: dirty log written in incompatible format - can't recover");
243 		xlog_header_check_dump(mp, head);
244 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
245 				 XFS_ERRLEVEL_HIGH, mp);
246 		return XFS_ERROR(EFSCORRUPTED);
247 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
248 		xlog_warn(
249 	"XFS: dirty log entry has mismatched uuid - can't recover");
250 		xlog_header_check_dump(mp, head);
251 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
252 				 XFS_ERRLEVEL_HIGH, mp);
253 		return XFS_ERROR(EFSCORRUPTED);
254 	}
255 	return 0;
256 }
257 
258 /*
259  * read the head block of the log and check the header
260  */
261 STATIC int
262 xlog_header_check_mount(
263 	xfs_mount_t		*mp,
264 	xlog_rec_header_t	*head)
265 {
266 	ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
267 
268 	if (uuid_is_nil(&head->h_fs_uuid)) {
269 		/*
270 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
271 		 * h_fs_uuid is nil, we assume this log was last mounted
272 		 * by IRIX and continue.
273 		 */
274 		xlog_warn("XFS: nil uuid in log - IRIX style log");
275 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
276 		xlog_warn("XFS: log has mismatched uuid - can't recover");
277 		xlog_header_check_dump(mp, head);
278 		XFS_ERROR_REPORT("xlog_header_check_mount",
279 				 XFS_ERRLEVEL_HIGH, mp);
280 		return XFS_ERROR(EFSCORRUPTED);
281 	}
282 	return 0;
283 }
284 
285 STATIC void
286 xlog_recover_iodone(
287 	struct xfs_buf	*bp)
288 {
289 	if (XFS_BUF_GETERROR(bp)) {
290 		/*
291 		 * We're not going to bother about retrying
292 		 * this during recovery. One strike!
293 		 */
294 		xfs_ioerror_alert("xlog_recover_iodone",
295 				  bp->b_mount, bp, XFS_BUF_ADDR(bp));
296 		xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
297 	}
298 	bp->b_mount = NULL;
299 	XFS_BUF_CLR_IODONE_FUNC(bp);
300 	xfs_biodone(bp);
301 }
302 
303 /*
304  * This routine finds (to an approximation) the first block in the physical
305  * log which contains the given cycle.  It uses a binary search algorithm.
306  * Note that the algorithm can not be perfect because the disk will not
307  * necessarily be perfect.
308  */
309 STATIC int
310 xlog_find_cycle_start(
311 	xlog_t		*log,
312 	xfs_buf_t	*bp,
313 	xfs_daddr_t	first_blk,
314 	xfs_daddr_t	*last_blk,
315 	uint		cycle)
316 {
317 	xfs_caddr_t	offset;
318 	xfs_daddr_t	mid_blk;
319 	uint		mid_cycle;
320 	int		error;
321 
322 	mid_blk = BLK_AVG(first_blk, *last_blk);
323 	while (mid_blk != first_blk && mid_blk != *last_blk) {
324 		if ((error = xlog_bread(log, mid_blk, 1, bp)))
325 			return error;
326 		offset = xlog_align(log, mid_blk, 1, bp);
327 		mid_cycle = xlog_get_cycle(offset);
328 		if (mid_cycle == cycle) {
329 			*last_blk = mid_blk;
330 			/* last_half_cycle == mid_cycle */
331 		} else {
332 			first_blk = mid_blk;
333 			/* first_half_cycle == mid_cycle */
334 		}
335 		mid_blk = BLK_AVG(first_blk, *last_blk);
336 	}
337 	ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
338 	       (mid_blk == *last_blk && mid_blk-1 == first_blk));
339 
340 	return 0;
341 }
342 
343 /*
344  * Check that the range of blocks does not contain the cycle number
345  * given.  The scan needs to occur from front to back and the ptr into the
346  * region must be updated since a later routine will need to perform another
347  * test.  If the region is completely good, we end up returning the same
348  * last block number.
349  *
350  * Set blkno to -1 if we encounter no errors.  This is an invalid block number
351  * since we don't ever expect logs to get this large.
352  */
353 STATIC int
354 xlog_find_verify_cycle(
355 	xlog_t		*log,
356 	xfs_daddr_t	start_blk,
357 	int		nbblks,
358 	uint		stop_on_cycle_no,
359 	xfs_daddr_t	*new_blk)
360 {
361 	xfs_daddr_t	i, j;
362 	uint		cycle;
363 	xfs_buf_t	*bp;
364 	xfs_daddr_t	bufblks;
365 	xfs_caddr_t	buf = NULL;
366 	int		error = 0;
367 
368 	bufblks = 1 << ffs(nbblks);
369 
370 	while (!(bp = xlog_get_bp(log, bufblks))) {
371 		/* can't get enough memory to do everything in one big buffer */
372 		bufblks >>= 1;
373 		if (bufblks <= log->l_sectbb_log)
374 			return ENOMEM;
375 	}
376 
377 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
378 		int	bcount;
379 
380 		bcount = min(bufblks, (start_blk + nbblks - i));
381 
382 		if ((error = xlog_bread(log, i, bcount, bp)))
383 			goto out;
384 
385 		buf = xlog_align(log, i, bcount, bp);
386 		for (j = 0; j < bcount; j++) {
387 			cycle = xlog_get_cycle(buf);
388 			if (cycle == stop_on_cycle_no) {
389 				*new_blk = i+j;
390 				goto out;
391 			}
392 
393 			buf += BBSIZE;
394 		}
395 	}
396 
397 	*new_blk = -1;
398 
399 out:
400 	xlog_put_bp(bp);
401 	return error;
402 }
403 
404 /*
405  * Potentially backup over partial log record write.
406  *
407  * In the typical case, last_blk is the number of the block directly after
408  * a good log record.  Therefore, we subtract one to get the block number
409  * of the last block in the given buffer.  extra_bblks contains the number
410  * of blocks we would have read on a previous read.  This happens when the
411  * last log record is split over the end of the physical log.
412  *
413  * extra_bblks is the number of blocks potentially verified on a previous
414  * call to this routine.
415  */
416 STATIC int
417 xlog_find_verify_log_record(
418 	xlog_t			*log,
419 	xfs_daddr_t		start_blk,
420 	xfs_daddr_t		*last_blk,
421 	int			extra_bblks)
422 {
423 	xfs_daddr_t		i;
424 	xfs_buf_t		*bp;
425 	xfs_caddr_t		offset = NULL;
426 	xlog_rec_header_t	*head = NULL;
427 	int			error = 0;
428 	int			smallmem = 0;
429 	int			num_blks = *last_blk - start_blk;
430 	int			xhdrs;
431 
432 	ASSERT(start_blk != 0 || *last_blk != start_blk);
433 
434 	if (!(bp = xlog_get_bp(log, num_blks))) {
435 		if (!(bp = xlog_get_bp(log, 1)))
436 			return ENOMEM;
437 		smallmem = 1;
438 	} else {
439 		if ((error = xlog_bread(log, start_blk, num_blks, bp)))
440 			goto out;
441 		offset = xlog_align(log, start_blk, num_blks, bp);
442 		offset += ((num_blks - 1) << BBSHIFT);
443 	}
444 
445 	for (i = (*last_blk) - 1; i >= 0; i--) {
446 		if (i < start_blk) {
447 			/* valid log record not found */
448 			xlog_warn(
449 		"XFS: Log inconsistent (didn't find previous header)");
450 			ASSERT(0);
451 			error = XFS_ERROR(EIO);
452 			goto out;
453 		}
454 
455 		if (smallmem) {
456 			if ((error = xlog_bread(log, i, 1, bp)))
457 				goto out;
458 			offset = xlog_align(log, i, 1, bp);
459 		}
460 
461 		head = (xlog_rec_header_t *)offset;
462 
463 		if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
464 			break;
465 
466 		if (!smallmem)
467 			offset -= BBSIZE;
468 	}
469 
470 	/*
471 	 * We hit the beginning of the physical log & still no header.  Return
472 	 * to caller.  If caller can handle a return of -1, then this routine
473 	 * will be called again for the end of the physical log.
474 	 */
475 	if (i == -1) {
476 		error = -1;
477 		goto out;
478 	}
479 
480 	/*
481 	 * We have the final block of the good log (the first block
482 	 * of the log record _before_ the head. So we check the uuid.
483 	 */
484 	if ((error = xlog_header_check_mount(log->l_mp, head)))
485 		goto out;
486 
487 	/*
488 	 * We may have found a log record header before we expected one.
489 	 * last_blk will be the 1st block # with a given cycle #.  We may end
490 	 * up reading an entire log record.  In this case, we don't want to
491 	 * reset last_blk.  Only when last_blk points in the middle of a log
492 	 * record do we update last_blk.
493 	 */
494 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
495 		uint	h_size = be32_to_cpu(head->h_size);
496 
497 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
498 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
499 			xhdrs++;
500 	} else {
501 		xhdrs = 1;
502 	}
503 
504 	if (*last_blk - i + extra_bblks !=
505 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
506 		*last_blk = i;
507 
508 out:
509 	xlog_put_bp(bp);
510 	return error;
511 }
512 
513 /*
514  * Head is defined to be the point of the log where the next log write
515  * write could go.  This means that incomplete LR writes at the end are
516  * eliminated when calculating the head.  We aren't guaranteed that previous
517  * LR have complete transactions.  We only know that a cycle number of
518  * current cycle number -1 won't be present in the log if we start writing
519  * from our current block number.
520  *
521  * last_blk contains the block number of the first block with a given
522  * cycle number.
523  *
524  * Return: zero if normal, non-zero if error.
525  */
526 STATIC int
527 xlog_find_head(
528 	xlog_t 		*log,
529 	xfs_daddr_t	*return_head_blk)
530 {
531 	xfs_buf_t	*bp;
532 	xfs_caddr_t	offset;
533 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
534 	int		num_scan_bblks;
535 	uint		first_half_cycle, last_half_cycle;
536 	uint		stop_on_cycle;
537 	int		error, log_bbnum = log->l_logBBsize;
538 
539 	/* Is the end of the log device zeroed? */
540 	if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
541 		*return_head_blk = first_blk;
542 
543 		/* Is the whole lot zeroed? */
544 		if (!first_blk) {
545 			/* Linux XFS shouldn't generate totally zeroed logs -
546 			 * mkfs etc write a dummy unmount record to a fresh
547 			 * log so we can store the uuid in there
548 			 */
549 			xlog_warn("XFS: totally zeroed log");
550 		}
551 
552 		return 0;
553 	} else if (error) {
554 		xlog_warn("XFS: empty log check failed");
555 		return error;
556 	}
557 
558 	first_blk = 0;			/* get cycle # of 1st block */
559 	bp = xlog_get_bp(log, 1);
560 	if (!bp)
561 		return ENOMEM;
562 	if ((error = xlog_bread(log, 0, 1, bp)))
563 		goto bp_err;
564 	offset = xlog_align(log, 0, 1, bp);
565 	first_half_cycle = xlog_get_cycle(offset);
566 
567 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
568 	if ((error = xlog_bread(log, last_blk, 1, bp)))
569 		goto bp_err;
570 	offset = xlog_align(log, last_blk, 1, bp);
571 	last_half_cycle = xlog_get_cycle(offset);
572 	ASSERT(last_half_cycle != 0);
573 
574 	/*
575 	 * If the 1st half cycle number is equal to the last half cycle number,
576 	 * then the entire log is stamped with the same cycle number.  In this
577 	 * case, head_blk can't be set to zero (which makes sense).  The below
578 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
579 	 * we set it to log_bbnum which is an invalid block number, but this
580 	 * value makes the math correct.  If head_blk doesn't changed through
581 	 * all the tests below, *head_blk is set to zero at the very end rather
582 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
583 	 * in a circular file.
584 	 */
585 	if (first_half_cycle == last_half_cycle) {
586 		/*
587 		 * In this case we believe that the entire log should have
588 		 * cycle number last_half_cycle.  We need to scan backwards
589 		 * from the end verifying that there are no holes still
590 		 * containing last_half_cycle - 1.  If we find such a hole,
591 		 * then the start of that hole will be the new head.  The
592 		 * simple case looks like
593 		 *        x | x ... | x - 1 | x
594 		 * Another case that fits this picture would be
595 		 *        x | x + 1 | x ... | x
596 		 * In this case the head really is somewhere at the end of the
597 		 * log, as one of the latest writes at the beginning was
598 		 * incomplete.
599 		 * One more case is
600 		 *        x | x + 1 | x ... | x - 1 | x
601 		 * This is really the combination of the above two cases, and
602 		 * the head has to end up at the start of the x-1 hole at the
603 		 * end of the log.
604 		 *
605 		 * In the 256k log case, we will read from the beginning to the
606 		 * end of the log and search for cycle numbers equal to x-1.
607 		 * We don't worry about the x+1 blocks that we encounter,
608 		 * because we know that they cannot be the head since the log
609 		 * started with x.
610 		 */
611 		head_blk = log_bbnum;
612 		stop_on_cycle = last_half_cycle - 1;
613 	} else {
614 		/*
615 		 * In this case we want to find the first block with cycle
616 		 * number matching last_half_cycle.  We expect the log to be
617 		 * some variation on
618 		 *        x + 1 ... | x ...
619 		 * The first block with cycle number x (last_half_cycle) will
620 		 * be where the new head belongs.  First we do a binary search
621 		 * for the first occurrence of last_half_cycle.  The binary
622 		 * search may not be totally accurate, so then we scan back
623 		 * from there looking for occurrences of last_half_cycle before
624 		 * us.  If that backwards scan wraps around the beginning of
625 		 * the log, then we look for occurrences of last_half_cycle - 1
626 		 * at the end of the log.  The cases we're looking for look
627 		 * like
628 		 *        x + 1 ... | x | x + 1 | x ...
629 		 *                               ^ binary search stopped here
630 		 * or
631 		 *        x + 1 ... | x ... | x - 1 | x
632 		 *        <---------> less than scan distance
633 		 */
634 		stop_on_cycle = last_half_cycle;
635 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
636 						&head_blk, last_half_cycle)))
637 			goto bp_err;
638 	}
639 
640 	/*
641 	 * Now validate the answer.  Scan back some number of maximum possible
642 	 * blocks and make sure each one has the expected cycle number.  The
643 	 * maximum is determined by the total possible amount of buffering
644 	 * in the in-core log.  The following number can be made tighter if
645 	 * we actually look at the block size of the filesystem.
646 	 */
647 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
648 	if (head_blk >= num_scan_bblks) {
649 		/*
650 		 * We are guaranteed that the entire check can be performed
651 		 * in one buffer.
652 		 */
653 		start_blk = head_blk - num_scan_bblks;
654 		if ((error = xlog_find_verify_cycle(log,
655 						start_blk, num_scan_bblks,
656 						stop_on_cycle, &new_blk)))
657 			goto bp_err;
658 		if (new_blk != -1)
659 			head_blk = new_blk;
660 	} else {		/* need to read 2 parts of log */
661 		/*
662 		 * We are going to scan backwards in the log in two parts.
663 		 * First we scan the physical end of the log.  In this part
664 		 * of the log, we are looking for blocks with cycle number
665 		 * last_half_cycle - 1.
666 		 * If we find one, then we know that the log starts there, as
667 		 * we've found a hole that didn't get written in going around
668 		 * the end of the physical log.  The simple case for this is
669 		 *        x + 1 ... | x ... | x - 1 | x
670 		 *        <---------> less than scan distance
671 		 * If all of the blocks at the end of the log have cycle number
672 		 * last_half_cycle, then we check the blocks at the start of
673 		 * the log looking for occurrences of last_half_cycle.  If we
674 		 * find one, then our current estimate for the location of the
675 		 * first occurrence of last_half_cycle is wrong and we move
676 		 * back to the hole we've found.  This case looks like
677 		 *        x + 1 ... | x | x + 1 | x ...
678 		 *                               ^ binary search stopped here
679 		 * Another case we need to handle that only occurs in 256k
680 		 * logs is
681 		 *        x + 1 ... | x ... | x+1 | x ...
682 		 *                   ^ binary search stops here
683 		 * In a 256k log, the scan at the end of the log will see the
684 		 * x + 1 blocks.  We need to skip past those since that is
685 		 * certainly not the head of the log.  By searching for
686 		 * last_half_cycle-1 we accomplish that.
687 		 */
688 		start_blk = log_bbnum - num_scan_bblks + head_blk;
689 		ASSERT(head_blk <= INT_MAX &&
690 			(xfs_daddr_t) num_scan_bblks - head_blk >= 0);
691 		if ((error = xlog_find_verify_cycle(log, start_blk,
692 					num_scan_bblks - (int)head_blk,
693 					(stop_on_cycle - 1), &new_blk)))
694 			goto bp_err;
695 		if (new_blk != -1) {
696 			head_blk = new_blk;
697 			goto bad_blk;
698 		}
699 
700 		/*
701 		 * Scan beginning of log now.  The last part of the physical
702 		 * log is good.  This scan needs to verify that it doesn't find
703 		 * the last_half_cycle.
704 		 */
705 		start_blk = 0;
706 		ASSERT(head_blk <= INT_MAX);
707 		if ((error = xlog_find_verify_cycle(log,
708 					start_blk, (int)head_blk,
709 					stop_on_cycle, &new_blk)))
710 			goto bp_err;
711 		if (new_blk != -1)
712 			head_blk = new_blk;
713 	}
714 
715  bad_blk:
716 	/*
717 	 * Now we need to make sure head_blk is not pointing to a block in
718 	 * the middle of a log record.
719 	 */
720 	num_scan_bblks = XLOG_REC_SHIFT(log);
721 	if (head_blk >= num_scan_bblks) {
722 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
723 
724 		/* start ptr at last block ptr before head_blk */
725 		if ((error = xlog_find_verify_log_record(log, start_blk,
726 							&head_blk, 0)) == -1) {
727 			error = XFS_ERROR(EIO);
728 			goto bp_err;
729 		} else if (error)
730 			goto bp_err;
731 	} else {
732 		start_blk = 0;
733 		ASSERT(head_blk <= INT_MAX);
734 		if ((error = xlog_find_verify_log_record(log, start_blk,
735 							&head_blk, 0)) == -1) {
736 			/* We hit the beginning of the log during our search */
737 			start_blk = log_bbnum - num_scan_bblks + head_blk;
738 			new_blk = log_bbnum;
739 			ASSERT(start_blk <= INT_MAX &&
740 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
741 			ASSERT(head_blk <= INT_MAX);
742 			if ((error = xlog_find_verify_log_record(log,
743 							start_blk, &new_blk,
744 							(int)head_blk)) == -1) {
745 				error = XFS_ERROR(EIO);
746 				goto bp_err;
747 			} else if (error)
748 				goto bp_err;
749 			if (new_blk != log_bbnum)
750 				head_blk = new_blk;
751 		} else if (error)
752 			goto bp_err;
753 	}
754 
755 	xlog_put_bp(bp);
756 	if (head_blk == log_bbnum)
757 		*return_head_blk = 0;
758 	else
759 		*return_head_blk = head_blk;
760 	/*
761 	 * When returning here, we have a good block number.  Bad block
762 	 * means that during a previous crash, we didn't have a clean break
763 	 * from cycle number N to cycle number N-1.  In this case, we need
764 	 * to find the first block with cycle number N-1.
765 	 */
766 	return 0;
767 
768  bp_err:
769 	xlog_put_bp(bp);
770 
771 	if (error)
772 	    xlog_warn("XFS: failed to find log head");
773 	return error;
774 }
775 
776 /*
777  * Find the sync block number or the tail of the log.
778  *
779  * This will be the block number of the last record to have its
780  * associated buffers synced to disk.  Every log record header has
781  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
782  * to get a sync block number.  The only concern is to figure out which
783  * log record header to believe.
784  *
785  * The following algorithm uses the log record header with the largest
786  * lsn.  The entire log record does not need to be valid.  We only care
787  * that the header is valid.
788  *
789  * We could speed up search by using current head_blk buffer, but it is not
790  * available.
791  */
792 int
793 xlog_find_tail(
794 	xlog_t			*log,
795 	xfs_daddr_t		*head_blk,
796 	xfs_daddr_t		*tail_blk)
797 {
798 	xlog_rec_header_t	*rhead;
799 	xlog_op_header_t	*op_head;
800 	xfs_caddr_t		offset = NULL;
801 	xfs_buf_t		*bp;
802 	int			error, i, found;
803 	xfs_daddr_t		umount_data_blk;
804 	xfs_daddr_t		after_umount_blk;
805 	xfs_lsn_t		tail_lsn;
806 	int			hblks;
807 
808 	found = 0;
809 
810 	/*
811 	 * Find previous log record
812 	 */
813 	if ((error = xlog_find_head(log, head_blk)))
814 		return error;
815 
816 	bp = xlog_get_bp(log, 1);
817 	if (!bp)
818 		return ENOMEM;
819 	if (*head_blk == 0) {				/* special case */
820 		if ((error = xlog_bread(log, 0, 1, bp)))
821 			goto bread_err;
822 		offset = xlog_align(log, 0, 1, bp);
823 		if (xlog_get_cycle(offset) == 0) {
824 			*tail_blk = 0;
825 			/* leave all other log inited values alone */
826 			goto exit;
827 		}
828 	}
829 
830 	/*
831 	 * Search backwards looking for log record header block
832 	 */
833 	ASSERT(*head_blk < INT_MAX);
834 	for (i = (int)(*head_blk) - 1; i >= 0; i--) {
835 		if ((error = xlog_bread(log, i, 1, bp)))
836 			goto bread_err;
837 		offset = xlog_align(log, i, 1, bp);
838 		if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
839 			found = 1;
840 			break;
841 		}
842 	}
843 	/*
844 	 * If we haven't found the log record header block, start looking
845 	 * again from the end of the physical log.  XXXmiken: There should be
846 	 * a check here to make sure we didn't search more than N blocks in
847 	 * the previous code.
848 	 */
849 	if (!found) {
850 		for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
851 			if ((error = xlog_bread(log, i, 1, bp)))
852 				goto bread_err;
853 			offset = xlog_align(log, i, 1, bp);
854 			if (XLOG_HEADER_MAGIC_NUM ==
855 			    be32_to_cpu(*(__be32 *)offset)) {
856 				found = 2;
857 				break;
858 			}
859 		}
860 	}
861 	if (!found) {
862 		xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
863 		ASSERT(0);
864 		return XFS_ERROR(EIO);
865 	}
866 
867 	/* find blk_no of tail of log */
868 	rhead = (xlog_rec_header_t *)offset;
869 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
870 
871 	/*
872 	 * Reset log values according to the state of the log when we
873 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
874 	 * one because the next write starts a new cycle rather than
875 	 * continuing the cycle of the last good log record.  At this
876 	 * point we have guaranteed that all partial log records have been
877 	 * accounted for.  Therefore, we know that the last good log record
878 	 * written was complete and ended exactly on the end boundary
879 	 * of the physical log.
880 	 */
881 	log->l_prev_block = i;
882 	log->l_curr_block = (int)*head_blk;
883 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
884 	if (found == 2)
885 		log->l_curr_cycle++;
886 	log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
887 	log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
888 	log->l_grant_reserve_cycle = log->l_curr_cycle;
889 	log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
890 	log->l_grant_write_cycle = log->l_curr_cycle;
891 	log->l_grant_write_bytes = BBTOB(log->l_curr_block);
892 
893 	/*
894 	 * Look for unmount record.  If we find it, then we know there
895 	 * was a clean unmount.  Since 'i' could be the last block in
896 	 * the physical log, we convert to a log block before comparing
897 	 * to the head_blk.
898 	 *
899 	 * Save the current tail lsn to use to pass to
900 	 * xlog_clear_stale_blocks() below.  We won't want to clear the
901 	 * unmount record if there is one, so we pass the lsn of the
902 	 * unmount record rather than the block after it.
903 	 */
904 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
905 		int	h_size = be32_to_cpu(rhead->h_size);
906 		int	h_version = be32_to_cpu(rhead->h_version);
907 
908 		if ((h_version & XLOG_VERSION_2) &&
909 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
910 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
911 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
912 				hblks++;
913 		} else {
914 			hblks = 1;
915 		}
916 	} else {
917 		hblks = 1;
918 	}
919 	after_umount_blk = (i + hblks + (int)
920 		BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
921 	tail_lsn = log->l_tail_lsn;
922 	if (*head_blk == after_umount_blk &&
923 	    be32_to_cpu(rhead->h_num_logops) == 1) {
924 		umount_data_blk = (i + hblks) % log->l_logBBsize;
925 		if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
926 			goto bread_err;
927 		}
928 		offset = xlog_align(log, umount_data_blk, 1, bp);
929 		op_head = (xlog_op_header_t *)offset;
930 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
931 			/*
932 			 * Set tail and last sync so that newly written
933 			 * log records will point recovery to after the
934 			 * current unmount record.
935 			 */
936 			log->l_tail_lsn =
937 				xlog_assign_lsn(log->l_curr_cycle,
938 						after_umount_blk);
939 			log->l_last_sync_lsn =
940 				xlog_assign_lsn(log->l_curr_cycle,
941 						after_umount_blk);
942 			*tail_blk = after_umount_blk;
943 
944 			/*
945 			 * Note that the unmount was clean. If the unmount
946 			 * was not clean, we need to know this to rebuild the
947 			 * superblock counters from the perag headers if we
948 			 * have a filesystem using non-persistent counters.
949 			 */
950 			log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
951 		}
952 	}
953 
954 	/*
955 	 * Make sure that there are no blocks in front of the head
956 	 * with the same cycle number as the head.  This can happen
957 	 * because we allow multiple outstanding log writes concurrently,
958 	 * and the later writes might make it out before earlier ones.
959 	 *
960 	 * We use the lsn from before modifying it so that we'll never
961 	 * overwrite the unmount record after a clean unmount.
962 	 *
963 	 * Do this only if we are going to recover the filesystem
964 	 *
965 	 * NOTE: This used to say "if (!readonly)"
966 	 * However on Linux, we can & do recover a read-only filesystem.
967 	 * We only skip recovery if NORECOVERY is specified on mount,
968 	 * in which case we would not be here.
969 	 *
970 	 * But... if the -device- itself is readonly, just skip this.
971 	 * We can't recover this device anyway, so it won't matter.
972 	 */
973 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
974 		error = xlog_clear_stale_blocks(log, tail_lsn);
975 	}
976 
977 bread_err:
978 exit:
979 	xlog_put_bp(bp);
980 
981 	if (error)
982 		xlog_warn("XFS: failed to locate log tail");
983 	return error;
984 }
985 
986 /*
987  * Is the log zeroed at all?
988  *
989  * The last binary search should be changed to perform an X block read
990  * once X becomes small enough.  You can then search linearly through
991  * the X blocks.  This will cut down on the number of reads we need to do.
992  *
993  * If the log is partially zeroed, this routine will pass back the blkno
994  * of the first block with cycle number 0.  It won't have a complete LR
995  * preceding it.
996  *
997  * Return:
998  *	0  => the log is completely written to
999  *	-1 => use *blk_no as the first block of the log
1000  *	>0 => error has occurred
1001  */
1002 STATIC int
1003 xlog_find_zeroed(
1004 	xlog_t		*log,
1005 	xfs_daddr_t	*blk_no)
1006 {
1007 	xfs_buf_t	*bp;
1008 	xfs_caddr_t	offset;
1009 	uint	        first_cycle, last_cycle;
1010 	xfs_daddr_t	new_blk, last_blk, start_blk;
1011 	xfs_daddr_t     num_scan_bblks;
1012 	int	        error, log_bbnum = log->l_logBBsize;
1013 
1014 	*blk_no = 0;
1015 
1016 	/* check totally zeroed log */
1017 	bp = xlog_get_bp(log, 1);
1018 	if (!bp)
1019 		return ENOMEM;
1020 	if ((error = xlog_bread(log, 0, 1, bp)))
1021 		goto bp_err;
1022 	offset = xlog_align(log, 0, 1, bp);
1023 	first_cycle = xlog_get_cycle(offset);
1024 	if (first_cycle == 0) {		/* completely zeroed log */
1025 		*blk_no = 0;
1026 		xlog_put_bp(bp);
1027 		return -1;
1028 	}
1029 
1030 	/* check partially zeroed log */
1031 	if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1032 		goto bp_err;
1033 	offset = xlog_align(log, log_bbnum-1, 1, bp);
1034 	last_cycle = xlog_get_cycle(offset);
1035 	if (last_cycle != 0) {		/* log completely written to */
1036 		xlog_put_bp(bp);
1037 		return 0;
1038 	} else if (first_cycle != 1) {
1039 		/*
1040 		 * If the cycle of the last block is zero, the cycle of
1041 		 * the first block must be 1. If it's not, maybe we're
1042 		 * not looking at a log... Bail out.
1043 		 */
1044 		xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1045 		return XFS_ERROR(EINVAL);
1046 	}
1047 
1048 	/* we have a partially zeroed log */
1049 	last_blk = log_bbnum-1;
1050 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1051 		goto bp_err;
1052 
1053 	/*
1054 	 * Validate the answer.  Because there is no way to guarantee that
1055 	 * the entire log is made up of log records which are the same size,
1056 	 * we scan over the defined maximum blocks.  At this point, the maximum
1057 	 * is not chosen to mean anything special.   XXXmiken
1058 	 */
1059 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1060 	ASSERT(num_scan_bblks <= INT_MAX);
1061 
1062 	if (last_blk < num_scan_bblks)
1063 		num_scan_bblks = last_blk;
1064 	start_blk = last_blk - num_scan_bblks;
1065 
1066 	/*
1067 	 * We search for any instances of cycle number 0 that occur before
1068 	 * our current estimate of the head.  What we're trying to detect is
1069 	 *        1 ... | 0 | 1 | 0...
1070 	 *                       ^ binary search ends here
1071 	 */
1072 	if ((error = xlog_find_verify_cycle(log, start_blk,
1073 					 (int)num_scan_bblks, 0, &new_blk)))
1074 		goto bp_err;
1075 	if (new_blk != -1)
1076 		last_blk = new_blk;
1077 
1078 	/*
1079 	 * Potentially backup over partial log record write.  We don't need
1080 	 * to search the end of the log because we know it is zero.
1081 	 */
1082 	if ((error = xlog_find_verify_log_record(log, start_blk,
1083 				&last_blk, 0)) == -1) {
1084 	    error = XFS_ERROR(EIO);
1085 	    goto bp_err;
1086 	} else if (error)
1087 	    goto bp_err;
1088 
1089 	*blk_no = last_blk;
1090 bp_err:
1091 	xlog_put_bp(bp);
1092 	if (error)
1093 		return error;
1094 	return -1;
1095 }
1096 
1097 /*
1098  * These are simple subroutines used by xlog_clear_stale_blocks() below
1099  * to initialize a buffer full of empty log record headers and write
1100  * them into the log.
1101  */
1102 STATIC void
1103 xlog_add_record(
1104 	xlog_t			*log,
1105 	xfs_caddr_t		buf,
1106 	int			cycle,
1107 	int			block,
1108 	int			tail_cycle,
1109 	int			tail_block)
1110 {
1111 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1112 
1113 	memset(buf, 0, BBSIZE);
1114 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1115 	recp->h_cycle = cpu_to_be32(cycle);
1116 	recp->h_version = cpu_to_be32(
1117 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1118 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1119 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1120 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1121 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1122 }
1123 
1124 STATIC int
1125 xlog_write_log_records(
1126 	xlog_t		*log,
1127 	int		cycle,
1128 	int		start_block,
1129 	int		blocks,
1130 	int		tail_cycle,
1131 	int		tail_block)
1132 {
1133 	xfs_caddr_t	offset;
1134 	xfs_buf_t	*bp;
1135 	int		balign, ealign;
1136 	int		sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1137 	int		end_block = start_block + blocks;
1138 	int		bufblks;
1139 	int		error = 0;
1140 	int		i, j = 0;
1141 
1142 	bufblks = 1 << ffs(blocks);
1143 	while (!(bp = xlog_get_bp(log, bufblks))) {
1144 		bufblks >>= 1;
1145 		if (bufblks <= log->l_sectbb_log)
1146 			return ENOMEM;
1147 	}
1148 
1149 	/* We may need to do a read at the start to fill in part of
1150 	 * the buffer in the starting sector not covered by the first
1151 	 * write below.
1152 	 */
1153 	balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1154 	if (balign != start_block) {
1155 		if ((error = xlog_bread(log, start_block, 1, bp))) {
1156 			xlog_put_bp(bp);
1157 			return error;
1158 		}
1159 		j = start_block - balign;
1160 	}
1161 
1162 	for (i = start_block; i < end_block; i += bufblks) {
1163 		int		bcount, endcount;
1164 
1165 		bcount = min(bufblks, end_block - start_block);
1166 		endcount = bcount - j;
1167 
1168 		/* We may need to do a read at the end to fill in part of
1169 		 * the buffer in the final sector not covered by the write.
1170 		 * If this is the same sector as the above read, skip it.
1171 		 */
1172 		ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1173 		if (j == 0 && (start_block + endcount > ealign)) {
1174 			offset = XFS_BUF_PTR(bp);
1175 			balign = BBTOB(ealign - start_block);
1176 			error = XFS_BUF_SET_PTR(bp, offset + balign,
1177 						BBTOB(sectbb));
1178 			if (!error)
1179 				error = xlog_bread(log, ealign, sectbb, bp);
1180 			if (!error)
1181 				error = XFS_BUF_SET_PTR(bp, offset, bufblks);
1182 			if (error)
1183 				break;
1184 		}
1185 
1186 		offset = xlog_align(log, start_block, endcount, bp);
1187 		for (; j < endcount; j++) {
1188 			xlog_add_record(log, offset, cycle, i+j,
1189 					tail_cycle, tail_block);
1190 			offset += BBSIZE;
1191 		}
1192 		error = xlog_bwrite(log, start_block, endcount, bp);
1193 		if (error)
1194 			break;
1195 		start_block += endcount;
1196 		j = 0;
1197 	}
1198 	xlog_put_bp(bp);
1199 	return error;
1200 }
1201 
1202 /*
1203  * This routine is called to blow away any incomplete log writes out
1204  * in front of the log head.  We do this so that we won't become confused
1205  * if we come up, write only a little bit more, and then crash again.
1206  * If we leave the partial log records out there, this situation could
1207  * cause us to think those partial writes are valid blocks since they
1208  * have the current cycle number.  We get rid of them by overwriting them
1209  * with empty log records with the old cycle number rather than the
1210  * current one.
1211  *
1212  * The tail lsn is passed in rather than taken from
1213  * the log so that we will not write over the unmount record after a
1214  * clean unmount in a 512 block log.  Doing so would leave the log without
1215  * any valid log records in it until a new one was written.  If we crashed
1216  * during that time we would not be able to recover.
1217  */
1218 STATIC int
1219 xlog_clear_stale_blocks(
1220 	xlog_t		*log,
1221 	xfs_lsn_t	tail_lsn)
1222 {
1223 	int		tail_cycle, head_cycle;
1224 	int		tail_block, head_block;
1225 	int		tail_distance, max_distance;
1226 	int		distance;
1227 	int		error;
1228 
1229 	tail_cycle = CYCLE_LSN(tail_lsn);
1230 	tail_block = BLOCK_LSN(tail_lsn);
1231 	head_cycle = log->l_curr_cycle;
1232 	head_block = log->l_curr_block;
1233 
1234 	/*
1235 	 * Figure out the distance between the new head of the log
1236 	 * and the tail.  We want to write over any blocks beyond the
1237 	 * head that we may have written just before the crash, but
1238 	 * we don't want to overwrite the tail of the log.
1239 	 */
1240 	if (head_cycle == tail_cycle) {
1241 		/*
1242 		 * The tail is behind the head in the physical log,
1243 		 * so the distance from the head to the tail is the
1244 		 * distance from the head to the end of the log plus
1245 		 * the distance from the beginning of the log to the
1246 		 * tail.
1247 		 */
1248 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1249 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1250 					 XFS_ERRLEVEL_LOW, log->l_mp);
1251 			return XFS_ERROR(EFSCORRUPTED);
1252 		}
1253 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1254 	} else {
1255 		/*
1256 		 * The head is behind the tail in the physical log,
1257 		 * so the distance from the head to the tail is just
1258 		 * the tail block minus the head block.
1259 		 */
1260 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1261 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1262 					 XFS_ERRLEVEL_LOW, log->l_mp);
1263 			return XFS_ERROR(EFSCORRUPTED);
1264 		}
1265 		tail_distance = tail_block - head_block;
1266 	}
1267 
1268 	/*
1269 	 * If the head is right up against the tail, we can't clear
1270 	 * anything.
1271 	 */
1272 	if (tail_distance <= 0) {
1273 		ASSERT(tail_distance == 0);
1274 		return 0;
1275 	}
1276 
1277 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1278 	/*
1279 	 * Take the smaller of the maximum amount of outstanding I/O
1280 	 * we could have and the distance to the tail to clear out.
1281 	 * We take the smaller so that we don't overwrite the tail and
1282 	 * we don't waste all day writing from the head to the tail
1283 	 * for no reason.
1284 	 */
1285 	max_distance = MIN(max_distance, tail_distance);
1286 
1287 	if ((head_block + max_distance) <= log->l_logBBsize) {
1288 		/*
1289 		 * We can stomp all the blocks we need to without
1290 		 * wrapping around the end of the log.  Just do it
1291 		 * in a single write.  Use the cycle number of the
1292 		 * current cycle minus one so that the log will look like:
1293 		 *     n ... | n - 1 ...
1294 		 */
1295 		error = xlog_write_log_records(log, (head_cycle - 1),
1296 				head_block, max_distance, tail_cycle,
1297 				tail_block);
1298 		if (error)
1299 			return error;
1300 	} else {
1301 		/*
1302 		 * We need to wrap around the end of the physical log in
1303 		 * order to clear all the blocks.  Do it in two separate
1304 		 * I/Os.  The first write should be from the head to the
1305 		 * end of the physical log, and it should use the current
1306 		 * cycle number minus one just like above.
1307 		 */
1308 		distance = log->l_logBBsize - head_block;
1309 		error = xlog_write_log_records(log, (head_cycle - 1),
1310 				head_block, distance, tail_cycle,
1311 				tail_block);
1312 
1313 		if (error)
1314 			return error;
1315 
1316 		/*
1317 		 * Now write the blocks at the start of the physical log.
1318 		 * This writes the remainder of the blocks we want to clear.
1319 		 * It uses the current cycle number since we're now on the
1320 		 * same cycle as the head so that we get:
1321 		 *    n ... n ... | n - 1 ...
1322 		 *    ^^^^^ blocks we're writing
1323 		 */
1324 		distance = max_distance - (log->l_logBBsize - head_block);
1325 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1326 				tail_cycle, tail_block);
1327 		if (error)
1328 			return error;
1329 	}
1330 
1331 	return 0;
1332 }
1333 
1334 /******************************************************************************
1335  *
1336  *		Log recover routines
1337  *
1338  ******************************************************************************
1339  */
1340 
1341 STATIC xlog_recover_t *
1342 xlog_recover_find_tid(
1343 	xlog_recover_t		*q,
1344 	xlog_tid_t		tid)
1345 {
1346 	xlog_recover_t		*p = q;
1347 
1348 	while (p != NULL) {
1349 		if (p->r_log_tid == tid)
1350 		    break;
1351 		p = p->r_next;
1352 	}
1353 	return p;
1354 }
1355 
1356 STATIC void
1357 xlog_recover_put_hashq(
1358 	xlog_recover_t		**q,
1359 	xlog_recover_t		*trans)
1360 {
1361 	trans->r_next = *q;
1362 	*q = trans;
1363 }
1364 
1365 STATIC void
1366 xlog_recover_add_item(
1367 	xlog_recover_item_t	**itemq)
1368 {
1369 	xlog_recover_item_t	*item;
1370 
1371 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1372 	xlog_recover_insert_item_backq(itemq, item);
1373 }
1374 
1375 STATIC int
1376 xlog_recover_add_to_cont_trans(
1377 	xlog_recover_t		*trans,
1378 	xfs_caddr_t		dp,
1379 	int			len)
1380 {
1381 	xlog_recover_item_t	*item;
1382 	xfs_caddr_t		ptr, old_ptr;
1383 	int			old_len;
1384 
1385 	item = trans->r_itemq;
1386 	if (item == NULL) {
1387 		/* finish copying rest of trans header */
1388 		xlog_recover_add_item(&trans->r_itemq);
1389 		ptr = (xfs_caddr_t) &trans->r_theader +
1390 				sizeof(xfs_trans_header_t) - len;
1391 		memcpy(ptr, dp, len); /* d, s, l */
1392 		return 0;
1393 	}
1394 	item = item->ri_prev;
1395 
1396 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1397 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
1398 
1399 	ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1400 	memcpy(&ptr[old_len], dp, len); /* d, s, l */
1401 	item->ri_buf[item->ri_cnt-1].i_len += len;
1402 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1403 	return 0;
1404 }
1405 
1406 /*
1407  * The next region to add is the start of a new region.  It could be
1408  * a whole region or it could be the first part of a new region.  Because
1409  * of this, the assumption here is that the type and size fields of all
1410  * format structures fit into the first 32 bits of the structure.
1411  *
1412  * This works because all regions must be 32 bit aligned.  Therefore, we
1413  * either have both fields or we have neither field.  In the case we have
1414  * neither field, the data part of the region is zero length.  We only have
1415  * a log_op_header and can throw away the header since a new one will appear
1416  * later.  If we have at least 4 bytes, then we can determine how many regions
1417  * will appear in the current log item.
1418  */
1419 STATIC int
1420 xlog_recover_add_to_trans(
1421 	xlog_recover_t		*trans,
1422 	xfs_caddr_t		dp,
1423 	int			len)
1424 {
1425 	xfs_inode_log_format_t	*in_f;			/* any will do */
1426 	xlog_recover_item_t	*item;
1427 	xfs_caddr_t		ptr;
1428 
1429 	if (!len)
1430 		return 0;
1431 	item = trans->r_itemq;
1432 	if (item == NULL) {
1433 		/* we need to catch log corruptions here */
1434 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1435 			xlog_warn("XFS: xlog_recover_add_to_trans: "
1436 				  "bad header magic number");
1437 			ASSERT(0);
1438 			return XFS_ERROR(EIO);
1439 		}
1440 		if (len == sizeof(xfs_trans_header_t))
1441 			xlog_recover_add_item(&trans->r_itemq);
1442 		memcpy(&trans->r_theader, dp, len); /* d, s, l */
1443 		return 0;
1444 	}
1445 
1446 	ptr = kmem_alloc(len, KM_SLEEP);
1447 	memcpy(ptr, dp, len);
1448 	in_f = (xfs_inode_log_format_t *)ptr;
1449 
1450 	if (item->ri_prev->ri_total != 0 &&
1451 	     item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1452 		xlog_recover_add_item(&trans->r_itemq);
1453 	}
1454 	item = trans->r_itemq;
1455 	item = item->ri_prev;
1456 
1457 	if (item->ri_total == 0) {		/* first region to be added */
1458 		if (in_f->ilf_size == 0 ||
1459 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1460 			xlog_warn(
1461 	"XFS: bad number of regions (%d) in inode log format",
1462 				  in_f->ilf_size);
1463 			ASSERT(0);
1464 			return XFS_ERROR(EIO);
1465 		}
1466 
1467 		item->ri_total = in_f->ilf_size;
1468 		item->ri_buf =
1469 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1470 				    KM_SLEEP);
1471 	}
1472 	ASSERT(item->ri_total > item->ri_cnt);
1473 	/* Description region is ri_buf[0] */
1474 	item->ri_buf[item->ri_cnt].i_addr = ptr;
1475 	item->ri_buf[item->ri_cnt].i_len  = len;
1476 	item->ri_cnt++;
1477 	return 0;
1478 }
1479 
1480 STATIC void
1481 xlog_recover_new_tid(
1482 	xlog_recover_t		**q,
1483 	xlog_tid_t		tid,
1484 	xfs_lsn_t		lsn)
1485 {
1486 	xlog_recover_t		*trans;
1487 
1488 	trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1489 	trans->r_log_tid   = tid;
1490 	trans->r_lsn	   = lsn;
1491 	xlog_recover_put_hashq(q, trans);
1492 }
1493 
1494 STATIC int
1495 xlog_recover_unlink_tid(
1496 	xlog_recover_t		**q,
1497 	xlog_recover_t		*trans)
1498 {
1499 	xlog_recover_t		*tp;
1500 	int			found = 0;
1501 
1502 	ASSERT(trans != NULL);
1503 	if (trans == *q) {
1504 		*q = (*q)->r_next;
1505 	} else {
1506 		tp = *q;
1507 		while (tp) {
1508 			if (tp->r_next == trans) {
1509 				found = 1;
1510 				break;
1511 			}
1512 			tp = tp->r_next;
1513 		}
1514 		if (!found) {
1515 			xlog_warn(
1516 			     "XFS: xlog_recover_unlink_tid: trans not found");
1517 			ASSERT(0);
1518 			return XFS_ERROR(EIO);
1519 		}
1520 		tp->r_next = tp->r_next->r_next;
1521 	}
1522 	return 0;
1523 }
1524 
1525 STATIC void
1526 xlog_recover_insert_item_backq(
1527 	xlog_recover_item_t	**q,
1528 	xlog_recover_item_t	*item)
1529 {
1530 	if (*q == NULL) {
1531 		item->ri_prev = item->ri_next = item;
1532 		*q = item;
1533 	} else {
1534 		item->ri_next		= *q;
1535 		item->ri_prev		= (*q)->ri_prev;
1536 		(*q)->ri_prev		= item;
1537 		item->ri_prev->ri_next	= item;
1538 	}
1539 }
1540 
1541 STATIC void
1542 xlog_recover_insert_item_frontq(
1543 	xlog_recover_item_t	**q,
1544 	xlog_recover_item_t	*item)
1545 {
1546 	xlog_recover_insert_item_backq(q, item);
1547 	*q = item;
1548 }
1549 
1550 STATIC int
1551 xlog_recover_reorder_trans(
1552 	xlog_recover_t		*trans)
1553 {
1554 	xlog_recover_item_t	*first_item, *itemq, *itemq_next;
1555 	xfs_buf_log_format_t	*buf_f;
1556 	ushort			flags = 0;
1557 
1558 	first_item = itemq = trans->r_itemq;
1559 	trans->r_itemq = NULL;
1560 	do {
1561 		itemq_next = itemq->ri_next;
1562 		buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1563 
1564 		switch (ITEM_TYPE(itemq)) {
1565 		case XFS_LI_BUF:
1566 			flags = buf_f->blf_flags;
1567 			if (!(flags & XFS_BLI_CANCEL)) {
1568 				xlog_recover_insert_item_frontq(&trans->r_itemq,
1569 								itemq);
1570 				break;
1571 			}
1572 		case XFS_LI_INODE:
1573 		case XFS_LI_DQUOT:
1574 		case XFS_LI_QUOTAOFF:
1575 		case XFS_LI_EFD:
1576 		case XFS_LI_EFI:
1577 			xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1578 			break;
1579 		default:
1580 			xlog_warn(
1581 	"XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1582 			ASSERT(0);
1583 			return XFS_ERROR(EIO);
1584 		}
1585 		itemq = itemq_next;
1586 	} while (first_item != itemq);
1587 	return 0;
1588 }
1589 
1590 /*
1591  * Build up the table of buf cancel records so that we don't replay
1592  * cancelled data in the second pass.  For buffer records that are
1593  * not cancel records, there is nothing to do here so we just return.
1594  *
1595  * If we get a cancel record which is already in the table, this indicates
1596  * that the buffer was cancelled multiple times.  In order to ensure
1597  * that during pass 2 we keep the record in the table until we reach its
1598  * last occurrence in the log, we keep a reference count in the cancel
1599  * record in the table to tell us how many times we expect to see this
1600  * record during the second pass.
1601  */
1602 STATIC void
1603 xlog_recover_do_buffer_pass1(
1604 	xlog_t			*log,
1605 	xfs_buf_log_format_t	*buf_f)
1606 {
1607 	xfs_buf_cancel_t	*bcp;
1608 	xfs_buf_cancel_t	*nextp;
1609 	xfs_buf_cancel_t	*prevp;
1610 	xfs_buf_cancel_t	**bucket;
1611 	xfs_daddr_t		blkno = 0;
1612 	uint			len = 0;
1613 	ushort			flags = 0;
1614 
1615 	switch (buf_f->blf_type) {
1616 	case XFS_LI_BUF:
1617 		blkno = buf_f->blf_blkno;
1618 		len = buf_f->blf_len;
1619 		flags = buf_f->blf_flags;
1620 		break;
1621 	}
1622 
1623 	/*
1624 	 * If this isn't a cancel buffer item, then just return.
1625 	 */
1626 	if (!(flags & XFS_BLI_CANCEL))
1627 		return;
1628 
1629 	/*
1630 	 * Insert an xfs_buf_cancel record into the hash table of
1631 	 * them.  If there is already an identical record, bump
1632 	 * its reference count.
1633 	 */
1634 	bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1635 					  XLOG_BC_TABLE_SIZE];
1636 	/*
1637 	 * If the hash bucket is empty then just insert a new record into
1638 	 * the bucket.
1639 	 */
1640 	if (*bucket == NULL) {
1641 		bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1642 						     KM_SLEEP);
1643 		bcp->bc_blkno = blkno;
1644 		bcp->bc_len = len;
1645 		bcp->bc_refcount = 1;
1646 		bcp->bc_next = NULL;
1647 		*bucket = bcp;
1648 		return;
1649 	}
1650 
1651 	/*
1652 	 * The hash bucket is not empty, so search for duplicates of our
1653 	 * record.  If we find one them just bump its refcount.  If not
1654 	 * then add us at the end of the list.
1655 	 */
1656 	prevp = NULL;
1657 	nextp = *bucket;
1658 	while (nextp != NULL) {
1659 		if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1660 			nextp->bc_refcount++;
1661 			return;
1662 		}
1663 		prevp = nextp;
1664 		nextp = nextp->bc_next;
1665 	}
1666 	ASSERT(prevp != NULL);
1667 	bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1668 					     KM_SLEEP);
1669 	bcp->bc_blkno = blkno;
1670 	bcp->bc_len = len;
1671 	bcp->bc_refcount = 1;
1672 	bcp->bc_next = NULL;
1673 	prevp->bc_next = bcp;
1674 }
1675 
1676 /*
1677  * Check to see whether the buffer being recovered has a corresponding
1678  * entry in the buffer cancel record table.  If it does then return 1
1679  * so that it will be cancelled, otherwise return 0.  If the buffer is
1680  * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1681  * the refcount on the entry in the table and remove it from the table
1682  * if this is the last reference.
1683  *
1684  * We remove the cancel record from the table when we encounter its
1685  * last occurrence in the log so that if the same buffer is re-used
1686  * again after its last cancellation we actually replay the changes
1687  * made at that point.
1688  */
1689 STATIC int
1690 xlog_check_buffer_cancelled(
1691 	xlog_t			*log,
1692 	xfs_daddr_t		blkno,
1693 	uint			len,
1694 	ushort			flags)
1695 {
1696 	xfs_buf_cancel_t	*bcp;
1697 	xfs_buf_cancel_t	*prevp;
1698 	xfs_buf_cancel_t	**bucket;
1699 
1700 	if (log->l_buf_cancel_table == NULL) {
1701 		/*
1702 		 * There is nothing in the table built in pass one,
1703 		 * so this buffer must not be cancelled.
1704 		 */
1705 		ASSERT(!(flags & XFS_BLI_CANCEL));
1706 		return 0;
1707 	}
1708 
1709 	bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1710 					  XLOG_BC_TABLE_SIZE];
1711 	bcp = *bucket;
1712 	if (bcp == NULL) {
1713 		/*
1714 		 * There is no corresponding entry in the table built
1715 		 * in pass one, so this buffer has not been cancelled.
1716 		 */
1717 		ASSERT(!(flags & XFS_BLI_CANCEL));
1718 		return 0;
1719 	}
1720 
1721 	/*
1722 	 * Search for an entry in the buffer cancel table that
1723 	 * matches our buffer.
1724 	 */
1725 	prevp = NULL;
1726 	while (bcp != NULL) {
1727 		if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1728 			/*
1729 			 * We've go a match, so return 1 so that the
1730 			 * recovery of this buffer is cancelled.
1731 			 * If this buffer is actually a buffer cancel
1732 			 * log item, then decrement the refcount on the
1733 			 * one in the table and remove it if this is the
1734 			 * last reference.
1735 			 */
1736 			if (flags & XFS_BLI_CANCEL) {
1737 				bcp->bc_refcount--;
1738 				if (bcp->bc_refcount == 0) {
1739 					if (prevp == NULL) {
1740 						*bucket = bcp->bc_next;
1741 					} else {
1742 						prevp->bc_next = bcp->bc_next;
1743 					}
1744 					kmem_free(bcp);
1745 				}
1746 			}
1747 			return 1;
1748 		}
1749 		prevp = bcp;
1750 		bcp = bcp->bc_next;
1751 	}
1752 	/*
1753 	 * We didn't find a corresponding entry in the table, so
1754 	 * return 0 so that the buffer is NOT cancelled.
1755 	 */
1756 	ASSERT(!(flags & XFS_BLI_CANCEL));
1757 	return 0;
1758 }
1759 
1760 STATIC int
1761 xlog_recover_do_buffer_pass2(
1762 	xlog_t			*log,
1763 	xfs_buf_log_format_t	*buf_f)
1764 {
1765 	xfs_daddr_t		blkno = 0;
1766 	ushort			flags = 0;
1767 	uint			len = 0;
1768 
1769 	switch (buf_f->blf_type) {
1770 	case XFS_LI_BUF:
1771 		blkno = buf_f->blf_blkno;
1772 		flags = buf_f->blf_flags;
1773 		len = buf_f->blf_len;
1774 		break;
1775 	}
1776 
1777 	return xlog_check_buffer_cancelled(log, blkno, len, flags);
1778 }
1779 
1780 /*
1781  * Perform recovery for a buffer full of inodes.  In these buffers,
1782  * the only data which should be recovered is that which corresponds
1783  * to the di_next_unlinked pointers in the on disk inode structures.
1784  * The rest of the data for the inodes is always logged through the
1785  * inodes themselves rather than the inode buffer and is recovered
1786  * in xlog_recover_do_inode_trans().
1787  *
1788  * The only time when buffers full of inodes are fully recovered is
1789  * when the buffer is full of newly allocated inodes.  In this case
1790  * the buffer will not be marked as an inode buffer and so will be
1791  * sent to xlog_recover_do_reg_buffer() below during recovery.
1792  */
1793 STATIC int
1794 xlog_recover_do_inode_buffer(
1795 	xfs_mount_t		*mp,
1796 	xlog_recover_item_t	*item,
1797 	xfs_buf_t		*bp,
1798 	xfs_buf_log_format_t	*buf_f)
1799 {
1800 	int			i;
1801 	int			item_index;
1802 	int			bit;
1803 	int			nbits;
1804 	int			reg_buf_offset;
1805 	int			reg_buf_bytes;
1806 	int			next_unlinked_offset;
1807 	int			inodes_per_buf;
1808 	xfs_agino_t		*logged_nextp;
1809 	xfs_agino_t		*buffer_nextp;
1810 	unsigned int		*data_map = NULL;
1811 	unsigned int		map_size = 0;
1812 
1813 	switch (buf_f->blf_type) {
1814 	case XFS_LI_BUF:
1815 		data_map = buf_f->blf_data_map;
1816 		map_size = buf_f->blf_map_size;
1817 		break;
1818 	}
1819 	/*
1820 	 * Set the variables corresponding to the current region to
1821 	 * 0 so that we'll initialize them on the first pass through
1822 	 * the loop.
1823 	 */
1824 	reg_buf_offset = 0;
1825 	reg_buf_bytes = 0;
1826 	bit = 0;
1827 	nbits = 0;
1828 	item_index = 0;
1829 	inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1830 	for (i = 0; i < inodes_per_buf; i++) {
1831 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1832 			offsetof(xfs_dinode_t, di_next_unlinked);
1833 
1834 		while (next_unlinked_offset >=
1835 		       (reg_buf_offset + reg_buf_bytes)) {
1836 			/*
1837 			 * The next di_next_unlinked field is beyond
1838 			 * the current logged region.  Find the next
1839 			 * logged region that contains or is beyond
1840 			 * the current di_next_unlinked field.
1841 			 */
1842 			bit += nbits;
1843 			bit = xfs_next_bit(data_map, map_size, bit);
1844 
1845 			/*
1846 			 * If there are no more logged regions in the
1847 			 * buffer, then we're done.
1848 			 */
1849 			if (bit == -1) {
1850 				return 0;
1851 			}
1852 
1853 			nbits = xfs_contig_bits(data_map, map_size,
1854 							 bit);
1855 			ASSERT(nbits > 0);
1856 			reg_buf_offset = bit << XFS_BLI_SHIFT;
1857 			reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1858 			item_index++;
1859 		}
1860 
1861 		/*
1862 		 * If the current logged region starts after the current
1863 		 * di_next_unlinked field, then move on to the next
1864 		 * di_next_unlinked field.
1865 		 */
1866 		if (next_unlinked_offset < reg_buf_offset) {
1867 			continue;
1868 		}
1869 
1870 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
1871 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1872 		ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1873 
1874 		/*
1875 		 * The current logged region contains a copy of the
1876 		 * current di_next_unlinked field.  Extract its value
1877 		 * and copy it to the buffer copy.
1878 		 */
1879 		logged_nextp = (xfs_agino_t *)
1880 			       ((char *)(item->ri_buf[item_index].i_addr) +
1881 				(next_unlinked_offset - reg_buf_offset));
1882 		if (unlikely(*logged_nextp == 0)) {
1883 			xfs_fs_cmn_err(CE_ALERT, mp,
1884 				"bad inode buffer log record (ptr = 0x%p, bp = 0x%p).  XFS trying to replay bad (0) inode di_next_unlinked field",
1885 				item, bp);
1886 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1887 					 XFS_ERRLEVEL_LOW, mp);
1888 			return XFS_ERROR(EFSCORRUPTED);
1889 		}
1890 
1891 		buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1892 					      next_unlinked_offset);
1893 		*buffer_nextp = *logged_nextp;
1894 	}
1895 
1896 	return 0;
1897 }
1898 
1899 /*
1900  * Perform a 'normal' buffer recovery.  Each logged region of the
1901  * buffer should be copied over the corresponding region in the
1902  * given buffer.  The bitmap in the buf log format structure indicates
1903  * where to place the logged data.
1904  */
1905 /*ARGSUSED*/
1906 STATIC void
1907 xlog_recover_do_reg_buffer(
1908 	xlog_recover_item_t	*item,
1909 	xfs_buf_t		*bp,
1910 	xfs_buf_log_format_t	*buf_f)
1911 {
1912 	int			i;
1913 	int			bit;
1914 	int			nbits;
1915 	unsigned int		*data_map = NULL;
1916 	unsigned int		map_size = 0;
1917 	int                     error;
1918 
1919 	switch (buf_f->blf_type) {
1920 	case XFS_LI_BUF:
1921 		data_map = buf_f->blf_data_map;
1922 		map_size = buf_f->blf_map_size;
1923 		break;
1924 	}
1925 	bit = 0;
1926 	i = 1;  /* 0 is the buf format structure */
1927 	while (1) {
1928 		bit = xfs_next_bit(data_map, map_size, bit);
1929 		if (bit == -1)
1930 			break;
1931 		nbits = xfs_contig_bits(data_map, map_size, bit);
1932 		ASSERT(nbits > 0);
1933 		ASSERT(item->ri_buf[i].i_addr != NULL);
1934 		ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1935 		ASSERT(XFS_BUF_COUNT(bp) >=
1936 		       ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1937 
1938 		/*
1939 		 * Do a sanity check if this is a dquot buffer. Just checking
1940 		 * the first dquot in the buffer should do. XXXThis is
1941 		 * probably a good thing to do for other buf types also.
1942 		 */
1943 		error = 0;
1944 		if (buf_f->blf_flags &
1945 		   (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1946 			error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1947 					       item->ri_buf[i].i_addr,
1948 					       -1, 0, XFS_QMOPT_DOWARN,
1949 					       "dquot_buf_recover");
1950 		}
1951 		if (!error)
1952 			memcpy(xfs_buf_offset(bp,
1953 				(uint)bit << XFS_BLI_SHIFT),	/* dest */
1954 				item->ri_buf[i].i_addr,		/* source */
1955 				nbits<<XFS_BLI_SHIFT);		/* length */
1956 		i++;
1957 		bit += nbits;
1958 	}
1959 
1960 	/* Shouldn't be any more regions */
1961 	ASSERT(i == item->ri_total);
1962 }
1963 
1964 /*
1965  * Do some primitive error checking on ondisk dquot data structures.
1966  */
1967 int
1968 xfs_qm_dqcheck(
1969 	xfs_disk_dquot_t *ddq,
1970 	xfs_dqid_t	 id,
1971 	uint		 type,	  /* used only when IO_dorepair is true */
1972 	uint		 flags,
1973 	char		 *str)
1974 {
1975 	xfs_dqblk_t	 *d = (xfs_dqblk_t *)ddq;
1976 	int		errs = 0;
1977 
1978 	/*
1979 	 * We can encounter an uninitialized dquot buffer for 2 reasons:
1980 	 * 1. If we crash while deleting the quotainode(s), and those blks got
1981 	 *    used for user data. This is because we take the path of regular
1982 	 *    file deletion; however, the size field of quotainodes is never
1983 	 *    updated, so all the tricks that we play in itruncate_finish
1984 	 *    don't quite matter.
1985 	 *
1986 	 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1987 	 *    But the allocation will be replayed so we'll end up with an
1988 	 *    uninitialized quota block.
1989 	 *
1990 	 * This is all fine; things are still consistent, and we haven't lost
1991 	 * any quota information. Just don't complain about bad dquot blks.
1992 	 */
1993 	if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1994 		if (flags & XFS_QMOPT_DOWARN)
1995 			cmn_err(CE_ALERT,
1996 			"%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1997 			str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1998 		errs++;
1999 	}
2000 	if (ddq->d_version != XFS_DQUOT_VERSION) {
2001 		if (flags & XFS_QMOPT_DOWARN)
2002 			cmn_err(CE_ALERT,
2003 			"%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2004 			str, id, ddq->d_version, XFS_DQUOT_VERSION);
2005 		errs++;
2006 	}
2007 
2008 	if (ddq->d_flags != XFS_DQ_USER &&
2009 	    ddq->d_flags != XFS_DQ_PROJ &&
2010 	    ddq->d_flags != XFS_DQ_GROUP) {
2011 		if (flags & XFS_QMOPT_DOWARN)
2012 			cmn_err(CE_ALERT,
2013 			"%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2014 			str, id, ddq->d_flags);
2015 		errs++;
2016 	}
2017 
2018 	if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2019 		if (flags & XFS_QMOPT_DOWARN)
2020 			cmn_err(CE_ALERT,
2021 			"%s : ondisk-dquot 0x%p, ID mismatch: "
2022 			"0x%x expected, found id 0x%x",
2023 			str, ddq, id, be32_to_cpu(ddq->d_id));
2024 		errs++;
2025 	}
2026 
2027 	if (!errs && ddq->d_id) {
2028 		if (ddq->d_blk_softlimit &&
2029 		    be64_to_cpu(ddq->d_bcount) >=
2030 				be64_to_cpu(ddq->d_blk_softlimit)) {
2031 			if (!ddq->d_btimer) {
2032 				if (flags & XFS_QMOPT_DOWARN)
2033 					cmn_err(CE_ALERT,
2034 					"%s : Dquot ID 0x%x (0x%p) "
2035 					"BLK TIMER NOT STARTED",
2036 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2037 				errs++;
2038 			}
2039 		}
2040 		if (ddq->d_ino_softlimit &&
2041 		    be64_to_cpu(ddq->d_icount) >=
2042 				be64_to_cpu(ddq->d_ino_softlimit)) {
2043 			if (!ddq->d_itimer) {
2044 				if (flags & XFS_QMOPT_DOWARN)
2045 					cmn_err(CE_ALERT,
2046 					"%s : Dquot ID 0x%x (0x%p) "
2047 					"INODE TIMER NOT STARTED",
2048 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2049 				errs++;
2050 			}
2051 		}
2052 		if (ddq->d_rtb_softlimit &&
2053 		    be64_to_cpu(ddq->d_rtbcount) >=
2054 				be64_to_cpu(ddq->d_rtb_softlimit)) {
2055 			if (!ddq->d_rtbtimer) {
2056 				if (flags & XFS_QMOPT_DOWARN)
2057 					cmn_err(CE_ALERT,
2058 					"%s : Dquot ID 0x%x (0x%p) "
2059 					"RTBLK TIMER NOT STARTED",
2060 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2061 				errs++;
2062 			}
2063 		}
2064 	}
2065 
2066 	if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2067 		return errs;
2068 
2069 	if (flags & XFS_QMOPT_DOWARN)
2070 		cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2071 
2072 	/*
2073 	 * Typically, a repair is only requested by quotacheck.
2074 	 */
2075 	ASSERT(id != -1);
2076 	ASSERT(flags & XFS_QMOPT_DQREPAIR);
2077 	memset(d, 0, sizeof(xfs_dqblk_t));
2078 
2079 	d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2080 	d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2081 	d->dd_diskdq.d_flags = type;
2082 	d->dd_diskdq.d_id = cpu_to_be32(id);
2083 
2084 	return errs;
2085 }
2086 
2087 /*
2088  * Perform a dquot buffer recovery.
2089  * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2090  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2091  * Else, treat it as a regular buffer and do recovery.
2092  */
2093 STATIC void
2094 xlog_recover_do_dquot_buffer(
2095 	xfs_mount_t		*mp,
2096 	xlog_t			*log,
2097 	xlog_recover_item_t	*item,
2098 	xfs_buf_t		*bp,
2099 	xfs_buf_log_format_t	*buf_f)
2100 {
2101 	uint			type;
2102 
2103 	/*
2104 	 * Filesystems are required to send in quota flags at mount time.
2105 	 */
2106 	if (mp->m_qflags == 0) {
2107 		return;
2108 	}
2109 
2110 	type = 0;
2111 	if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2112 		type |= XFS_DQ_USER;
2113 	if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2114 		type |= XFS_DQ_PROJ;
2115 	if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2116 		type |= XFS_DQ_GROUP;
2117 	/*
2118 	 * This type of quotas was turned off, so ignore this buffer
2119 	 */
2120 	if (log->l_quotaoffs_flag & type)
2121 		return;
2122 
2123 	xlog_recover_do_reg_buffer(item, bp, buf_f);
2124 }
2125 
2126 /*
2127  * This routine replays a modification made to a buffer at runtime.
2128  * There are actually two types of buffer, regular and inode, which
2129  * are handled differently.  Inode buffers are handled differently
2130  * in that we only recover a specific set of data from them, namely
2131  * the inode di_next_unlinked fields.  This is because all other inode
2132  * data is actually logged via inode records and any data we replay
2133  * here which overlaps that may be stale.
2134  *
2135  * When meta-data buffers are freed at run time we log a buffer item
2136  * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2137  * of the buffer in the log should not be replayed at recovery time.
2138  * This is so that if the blocks covered by the buffer are reused for
2139  * file data before we crash we don't end up replaying old, freed
2140  * meta-data into a user's file.
2141  *
2142  * To handle the cancellation of buffer log items, we make two passes
2143  * over the log during recovery.  During the first we build a table of
2144  * those buffers which have been cancelled, and during the second we
2145  * only replay those buffers which do not have corresponding cancel
2146  * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2147  * for more details on the implementation of the table of cancel records.
2148  */
2149 STATIC int
2150 xlog_recover_do_buffer_trans(
2151 	xlog_t			*log,
2152 	xlog_recover_item_t	*item,
2153 	int			pass)
2154 {
2155 	xfs_buf_log_format_t	*buf_f;
2156 	xfs_mount_t		*mp;
2157 	xfs_buf_t		*bp;
2158 	int			error;
2159 	int			cancel;
2160 	xfs_daddr_t		blkno;
2161 	int			len;
2162 	ushort			flags;
2163 
2164 	buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2165 
2166 	if (pass == XLOG_RECOVER_PASS1) {
2167 		/*
2168 		 * In this pass we're only looking for buf items
2169 		 * with the XFS_BLI_CANCEL bit set.
2170 		 */
2171 		xlog_recover_do_buffer_pass1(log, buf_f);
2172 		return 0;
2173 	} else {
2174 		/*
2175 		 * In this pass we want to recover all the buffers
2176 		 * which have not been cancelled and are not
2177 		 * cancellation buffers themselves.  The routine
2178 		 * we call here will tell us whether or not to
2179 		 * continue with the replay of this buffer.
2180 		 */
2181 		cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2182 		if (cancel) {
2183 			return 0;
2184 		}
2185 	}
2186 	switch (buf_f->blf_type) {
2187 	case XFS_LI_BUF:
2188 		blkno = buf_f->blf_blkno;
2189 		len = buf_f->blf_len;
2190 		flags = buf_f->blf_flags;
2191 		break;
2192 	default:
2193 		xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2194 			"xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2195 			buf_f->blf_type, log->l_mp->m_logname ?
2196 			log->l_mp->m_logname : "internal");
2197 		XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2198 				 XFS_ERRLEVEL_LOW, log->l_mp);
2199 		return XFS_ERROR(EFSCORRUPTED);
2200 	}
2201 
2202 	mp = log->l_mp;
2203 	if (flags & XFS_BLI_INODE_BUF) {
2204 		bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2205 								XFS_BUF_LOCK);
2206 	} else {
2207 		bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2208 	}
2209 	if (XFS_BUF_ISERROR(bp)) {
2210 		xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2211 				  bp, blkno);
2212 		error = XFS_BUF_GETERROR(bp);
2213 		xfs_buf_relse(bp);
2214 		return error;
2215 	}
2216 
2217 	error = 0;
2218 	if (flags & XFS_BLI_INODE_BUF) {
2219 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2220 	} else if (flags &
2221 		  (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
2222 		xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2223 	} else {
2224 		xlog_recover_do_reg_buffer(item, bp, buf_f);
2225 	}
2226 	if (error)
2227 		return XFS_ERROR(error);
2228 
2229 	/*
2230 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2231 	 * slower when taking into account all the buffers to be flushed.
2232 	 *
2233 	 * Also make sure that only inode buffers with good sizes stay in
2234 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2235 	 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2236 	 * buffers in the log can be a different size if the log was generated
2237 	 * by an older kernel using unclustered inode buffers or a newer kernel
2238 	 * running with a different inode cluster size.  Regardless, if the
2239 	 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2240 	 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2241 	 * the buffer out of the buffer cache so that the buffer won't
2242 	 * overlap with future reads of those inodes.
2243 	 */
2244 	if (XFS_DINODE_MAGIC ==
2245 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2246 	    (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2247 			(__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2248 		XFS_BUF_STALE(bp);
2249 		error = xfs_bwrite(mp, bp);
2250 	} else {
2251 		ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2252 		bp->b_mount = mp;
2253 		XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2254 		xfs_bdwrite(mp, bp);
2255 	}
2256 
2257 	return (error);
2258 }
2259 
2260 STATIC int
2261 xlog_recover_do_inode_trans(
2262 	xlog_t			*log,
2263 	xlog_recover_item_t	*item,
2264 	int			pass)
2265 {
2266 	xfs_inode_log_format_t	*in_f;
2267 	xfs_mount_t		*mp;
2268 	xfs_buf_t		*bp;
2269 	xfs_dinode_t		*dip;
2270 	xfs_ino_t		ino;
2271 	int			len;
2272 	xfs_caddr_t		src;
2273 	xfs_caddr_t		dest;
2274 	int			error;
2275 	int			attr_index;
2276 	uint			fields;
2277 	xfs_icdinode_t		*dicp;
2278 	int			need_free = 0;
2279 
2280 	if (pass == XLOG_RECOVER_PASS1) {
2281 		return 0;
2282 	}
2283 
2284 	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2285 		in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2286 	} else {
2287 		in_f = (xfs_inode_log_format_t *)kmem_alloc(
2288 			sizeof(xfs_inode_log_format_t), KM_SLEEP);
2289 		need_free = 1;
2290 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2291 		if (error)
2292 			goto error;
2293 	}
2294 	ino = in_f->ilf_ino;
2295 	mp = log->l_mp;
2296 
2297 	/*
2298 	 * Inode buffers can be freed, look out for it,
2299 	 * and do not replay the inode.
2300 	 */
2301 	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2302 					in_f->ilf_len, 0)) {
2303 		error = 0;
2304 		goto error;
2305 	}
2306 
2307 	bp = xfs_buf_read_flags(mp->m_ddev_targp, in_f->ilf_blkno,
2308 				in_f->ilf_len, XFS_BUF_LOCK);
2309 	if (XFS_BUF_ISERROR(bp)) {
2310 		xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2311 				  bp, in_f->ilf_blkno);
2312 		error = XFS_BUF_GETERROR(bp);
2313 		xfs_buf_relse(bp);
2314 		goto error;
2315 	}
2316 	error = 0;
2317 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2318 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2319 
2320 	/*
2321 	 * Make sure the place we're flushing out to really looks
2322 	 * like an inode!
2323 	 */
2324 	if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
2325 		xfs_buf_relse(bp);
2326 		xfs_fs_cmn_err(CE_ALERT, mp,
2327 			"xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2328 			dip, bp, ino);
2329 		XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2330 				 XFS_ERRLEVEL_LOW, mp);
2331 		error = EFSCORRUPTED;
2332 		goto error;
2333 	}
2334 	dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
2335 	if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2336 		xfs_buf_relse(bp);
2337 		xfs_fs_cmn_err(CE_ALERT, mp,
2338 			"xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2339 			item, ino);
2340 		XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2341 				 XFS_ERRLEVEL_LOW, mp);
2342 		error = EFSCORRUPTED;
2343 		goto error;
2344 	}
2345 
2346 	/* Skip replay when the on disk inode is newer than the log one */
2347 	if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2348 		/*
2349 		 * Deal with the wrap case, DI_MAX_FLUSH is less
2350 		 * than smaller numbers
2351 		 */
2352 		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2353 		    dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2354 			/* do nothing */
2355 		} else {
2356 			xfs_buf_relse(bp);
2357 			error = 0;
2358 			goto error;
2359 		}
2360 	}
2361 	/* Take the opportunity to reset the flush iteration count */
2362 	dicp->di_flushiter = 0;
2363 
2364 	if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2365 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2366 		    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2367 			XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2368 					 XFS_ERRLEVEL_LOW, mp, dicp);
2369 			xfs_buf_relse(bp);
2370 			xfs_fs_cmn_err(CE_ALERT, mp,
2371 				"xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2372 				item, dip, bp, ino);
2373 			error = EFSCORRUPTED;
2374 			goto error;
2375 		}
2376 	} else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2377 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2378 		    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2379 		    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2380 			XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2381 					     XFS_ERRLEVEL_LOW, mp, dicp);
2382 			xfs_buf_relse(bp);
2383 			xfs_fs_cmn_err(CE_ALERT, mp,
2384 				"xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2385 				item, dip, bp, ino);
2386 			error = EFSCORRUPTED;
2387 			goto error;
2388 		}
2389 	}
2390 	if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2391 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2392 				     XFS_ERRLEVEL_LOW, mp, dicp);
2393 		xfs_buf_relse(bp);
2394 		xfs_fs_cmn_err(CE_ALERT, mp,
2395 			"xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2396 			item, dip, bp, ino,
2397 			dicp->di_nextents + dicp->di_anextents,
2398 			dicp->di_nblocks);
2399 		error = EFSCORRUPTED;
2400 		goto error;
2401 	}
2402 	if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2403 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2404 				     XFS_ERRLEVEL_LOW, mp, dicp);
2405 		xfs_buf_relse(bp);
2406 		xfs_fs_cmn_err(CE_ALERT, mp,
2407 			"xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2408 			item, dip, bp, ino, dicp->di_forkoff);
2409 		error = EFSCORRUPTED;
2410 		goto error;
2411 	}
2412 	if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2413 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2414 				     XFS_ERRLEVEL_LOW, mp, dicp);
2415 		xfs_buf_relse(bp);
2416 		xfs_fs_cmn_err(CE_ALERT, mp,
2417 			"xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2418 			item->ri_buf[1].i_len, item);
2419 		error = EFSCORRUPTED;
2420 		goto error;
2421 	}
2422 
2423 	/* The core is in in-core format */
2424 	xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr);
2425 
2426 	/* the rest is in on-disk format */
2427 	if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2428 		memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2429 			item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2430 			item->ri_buf[1].i_len  - sizeof(struct xfs_icdinode));
2431 	}
2432 
2433 	fields = in_f->ilf_fields;
2434 	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2435 	case XFS_ILOG_DEV:
2436 		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2437 		break;
2438 	case XFS_ILOG_UUID:
2439 		memcpy(XFS_DFORK_DPTR(dip),
2440 		       &in_f->ilf_u.ilfu_uuid,
2441 		       sizeof(uuid_t));
2442 		break;
2443 	}
2444 
2445 	if (in_f->ilf_size == 2)
2446 		goto write_inode_buffer;
2447 	len = item->ri_buf[2].i_len;
2448 	src = item->ri_buf[2].i_addr;
2449 	ASSERT(in_f->ilf_size <= 4);
2450 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2451 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
2452 	       (len == in_f->ilf_dsize));
2453 
2454 	switch (fields & XFS_ILOG_DFORK) {
2455 	case XFS_ILOG_DDATA:
2456 	case XFS_ILOG_DEXT:
2457 		memcpy(XFS_DFORK_DPTR(dip), src, len);
2458 		break;
2459 
2460 	case XFS_ILOG_DBROOT:
2461 		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2462 				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2463 				 XFS_DFORK_DSIZE(dip, mp));
2464 		break;
2465 
2466 	default:
2467 		/*
2468 		 * There are no data fork flags set.
2469 		 */
2470 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
2471 		break;
2472 	}
2473 
2474 	/*
2475 	 * If we logged any attribute data, recover it.  There may or
2476 	 * may not have been any other non-core data logged in this
2477 	 * transaction.
2478 	 */
2479 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2480 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2481 			attr_index = 3;
2482 		} else {
2483 			attr_index = 2;
2484 		}
2485 		len = item->ri_buf[attr_index].i_len;
2486 		src = item->ri_buf[attr_index].i_addr;
2487 		ASSERT(len == in_f->ilf_asize);
2488 
2489 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2490 		case XFS_ILOG_ADATA:
2491 		case XFS_ILOG_AEXT:
2492 			dest = XFS_DFORK_APTR(dip);
2493 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2494 			memcpy(dest, src, len);
2495 			break;
2496 
2497 		case XFS_ILOG_ABROOT:
2498 			dest = XFS_DFORK_APTR(dip);
2499 			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2500 					 len, (xfs_bmdr_block_t*)dest,
2501 					 XFS_DFORK_ASIZE(dip, mp));
2502 			break;
2503 
2504 		default:
2505 			xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2506 			ASSERT(0);
2507 			xfs_buf_relse(bp);
2508 			error = EIO;
2509 			goto error;
2510 		}
2511 	}
2512 
2513 write_inode_buffer:
2514 	if (ITEM_TYPE(item) == XFS_LI_INODE) {
2515 		ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2516 		bp->b_mount = mp;
2517 		XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2518 		xfs_bdwrite(mp, bp);
2519 	} else {
2520 		XFS_BUF_STALE(bp);
2521 		error = xfs_bwrite(mp, bp);
2522 	}
2523 
2524 error:
2525 	if (need_free)
2526 		kmem_free(in_f);
2527 	return XFS_ERROR(error);
2528 }
2529 
2530 /*
2531  * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2532  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2533  * of that type.
2534  */
2535 STATIC int
2536 xlog_recover_do_quotaoff_trans(
2537 	xlog_t			*log,
2538 	xlog_recover_item_t	*item,
2539 	int			pass)
2540 {
2541 	xfs_qoff_logformat_t	*qoff_f;
2542 
2543 	if (pass == XLOG_RECOVER_PASS2) {
2544 		return (0);
2545 	}
2546 
2547 	qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2548 	ASSERT(qoff_f);
2549 
2550 	/*
2551 	 * The logitem format's flag tells us if this was user quotaoff,
2552 	 * group/project quotaoff or both.
2553 	 */
2554 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2555 		log->l_quotaoffs_flag |= XFS_DQ_USER;
2556 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2557 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2558 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2559 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2560 
2561 	return (0);
2562 }
2563 
2564 /*
2565  * Recover a dquot record
2566  */
2567 STATIC int
2568 xlog_recover_do_dquot_trans(
2569 	xlog_t			*log,
2570 	xlog_recover_item_t	*item,
2571 	int			pass)
2572 {
2573 	xfs_mount_t		*mp;
2574 	xfs_buf_t		*bp;
2575 	struct xfs_disk_dquot	*ddq, *recddq;
2576 	int			error;
2577 	xfs_dq_logformat_t	*dq_f;
2578 	uint			type;
2579 
2580 	if (pass == XLOG_RECOVER_PASS1) {
2581 		return 0;
2582 	}
2583 	mp = log->l_mp;
2584 
2585 	/*
2586 	 * Filesystems are required to send in quota flags at mount time.
2587 	 */
2588 	if (mp->m_qflags == 0)
2589 		return (0);
2590 
2591 	recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2592 	ASSERT(recddq);
2593 	/*
2594 	 * This type of quotas was turned off, so ignore this record.
2595 	 */
2596 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2597 	ASSERT(type);
2598 	if (log->l_quotaoffs_flag & type)
2599 		return (0);
2600 
2601 	/*
2602 	 * At this point we know that quota was _not_ turned off.
2603 	 * Since the mount flags are not indicating to us otherwise, this
2604 	 * must mean that quota is on, and the dquot needs to be replayed.
2605 	 * Remember that we may not have fully recovered the superblock yet,
2606 	 * so we can't do the usual trick of looking at the SB quota bits.
2607 	 *
2608 	 * The other possibility, of course, is that the quota subsystem was
2609 	 * removed since the last mount - ENOSYS.
2610 	 */
2611 	dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2612 	ASSERT(dq_f);
2613 	if ((error = xfs_qm_dqcheck(recddq,
2614 			   dq_f->qlf_id,
2615 			   0, XFS_QMOPT_DOWARN,
2616 			   "xlog_recover_do_dquot_trans (log copy)"))) {
2617 		return XFS_ERROR(EIO);
2618 	}
2619 	ASSERT(dq_f->qlf_len == 1);
2620 
2621 	error = xfs_read_buf(mp, mp->m_ddev_targp,
2622 			     dq_f->qlf_blkno,
2623 			     XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2624 			     0, &bp);
2625 	if (error) {
2626 		xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2627 				  bp, dq_f->qlf_blkno);
2628 		return error;
2629 	}
2630 	ASSERT(bp);
2631 	ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2632 
2633 	/*
2634 	 * At least the magic num portion should be on disk because this
2635 	 * was among a chunk of dquots created earlier, and we did some
2636 	 * minimal initialization then.
2637 	 */
2638 	if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2639 			   "xlog_recover_do_dquot_trans")) {
2640 		xfs_buf_relse(bp);
2641 		return XFS_ERROR(EIO);
2642 	}
2643 
2644 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
2645 
2646 	ASSERT(dq_f->qlf_size == 2);
2647 	ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2648 	bp->b_mount = mp;
2649 	XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2650 	xfs_bdwrite(mp, bp);
2651 
2652 	return (0);
2653 }
2654 
2655 /*
2656  * This routine is called to create an in-core extent free intent
2657  * item from the efi format structure which was logged on disk.
2658  * It allocates an in-core efi, copies the extents from the format
2659  * structure into it, and adds the efi to the AIL with the given
2660  * LSN.
2661  */
2662 STATIC int
2663 xlog_recover_do_efi_trans(
2664 	xlog_t			*log,
2665 	xlog_recover_item_t	*item,
2666 	xfs_lsn_t		lsn,
2667 	int			pass)
2668 {
2669 	int			error;
2670 	xfs_mount_t		*mp;
2671 	xfs_efi_log_item_t	*efip;
2672 	xfs_efi_log_format_t	*efi_formatp;
2673 
2674 	if (pass == XLOG_RECOVER_PASS1) {
2675 		return 0;
2676 	}
2677 
2678 	efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2679 
2680 	mp = log->l_mp;
2681 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2682 	if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2683 					 &(efip->efi_format)))) {
2684 		xfs_efi_item_free(efip);
2685 		return error;
2686 	}
2687 	efip->efi_next_extent = efi_formatp->efi_nextents;
2688 	efip->efi_flags |= XFS_EFI_COMMITTED;
2689 
2690 	spin_lock(&log->l_ailp->xa_lock);
2691 	/*
2692 	 * xfs_trans_ail_update() drops the AIL lock.
2693 	 */
2694 	xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
2695 	return 0;
2696 }
2697 
2698 
2699 /*
2700  * This routine is called when an efd format structure is found in
2701  * a committed transaction in the log.  It's purpose is to cancel
2702  * the corresponding efi if it was still in the log.  To do this
2703  * it searches the AIL for the efi with an id equal to that in the
2704  * efd format structure.  If we find it, we remove the efi from the
2705  * AIL and free it.
2706  */
2707 STATIC void
2708 xlog_recover_do_efd_trans(
2709 	xlog_t			*log,
2710 	xlog_recover_item_t	*item,
2711 	int			pass)
2712 {
2713 	xfs_efd_log_format_t	*efd_formatp;
2714 	xfs_efi_log_item_t	*efip = NULL;
2715 	xfs_log_item_t		*lip;
2716 	__uint64_t		efi_id;
2717 	struct xfs_ail_cursor	cur;
2718 	struct xfs_ail		*ailp = log->l_ailp;
2719 
2720 	if (pass == XLOG_RECOVER_PASS1) {
2721 		return;
2722 	}
2723 
2724 	efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2725 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2726 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2727 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2728 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2729 	efi_id = efd_formatp->efd_efi_id;
2730 
2731 	/*
2732 	 * Search for the efi with the id in the efd format structure
2733 	 * in the AIL.
2734 	 */
2735 	spin_lock(&ailp->xa_lock);
2736 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2737 	while (lip != NULL) {
2738 		if (lip->li_type == XFS_LI_EFI) {
2739 			efip = (xfs_efi_log_item_t *)lip;
2740 			if (efip->efi_format.efi_id == efi_id) {
2741 				/*
2742 				 * xfs_trans_ail_delete() drops the
2743 				 * AIL lock.
2744 				 */
2745 				xfs_trans_ail_delete(ailp, lip);
2746 				xfs_efi_item_free(efip);
2747 				spin_lock(&ailp->xa_lock);
2748 				break;
2749 			}
2750 		}
2751 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
2752 	}
2753 	xfs_trans_ail_cursor_done(ailp, &cur);
2754 	spin_unlock(&ailp->xa_lock);
2755 }
2756 
2757 /*
2758  * Perform the transaction
2759  *
2760  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2761  * EFIs and EFDs get queued up by adding entries into the AIL for them.
2762  */
2763 STATIC int
2764 xlog_recover_do_trans(
2765 	xlog_t			*log,
2766 	xlog_recover_t		*trans,
2767 	int			pass)
2768 {
2769 	int			error = 0;
2770 	xlog_recover_item_t	*item, *first_item;
2771 
2772 	if ((error = xlog_recover_reorder_trans(trans)))
2773 		return error;
2774 	first_item = item = trans->r_itemq;
2775 	do {
2776 		/*
2777 		 * we don't need to worry about the block number being
2778 		 * truncated in > 1 TB buffers because in user-land,
2779 		 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
2780 		 * the blknos will get through the user-mode buffer
2781 		 * cache properly.  The only bad case is o32 kernels
2782 		 * where xfs_daddr_t is 32-bits but mount will warn us
2783 		 * off a > 1 TB filesystem before we get here.
2784 		 */
2785 		if ((ITEM_TYPE(item) == XFS_LI_BUF)) {
2786 			if  ((error = xlog_recover_do_buffer_trans(log, item,
2787 								 pass)))
2788 				break;
2789 		} else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
2790 			if ((error = xlog_recover_do_inode_trans(log, item,
2791 								pass)))
2792 				break;
2793 		} else if (ITEM_TYPE(item) == XFS_LI_EFI) {
2794 			if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2795 						  pass)))
2796 				break;
2797 		} else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2798 			xlog_recover_do_efd_trans(log, item, pass);
2799 		} else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2800 			if ((error = xlog_recover_do_dquot_trans(log, item,
2801 								   pass)))
2802 					break;
2803 		} else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2804 			if ((error = xlog_recover_do_quotaoff_trans(log, item,
2805 								   pass)))
2806 					break;
2807 		} else {
2808 			xlog_warn("XFS: xlog_recover_do_trans");
2809 			ASSERT(0);
2810 			error = XFS_ERROR(EIO);
2811 			break;
2812 		}
2813 		item = item->ri_next;
2814 	} while (first_item != item);
2815 
2816 	return error;
2817 }
2818 
2819 /*
2820  * Free up any resources allocated by the transaction
2821  *
2822  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2823  */
2824 STATIC void
2825 xlog_recover_free_trans(
2826 	xlog_recover_t		*trans)
2827 {
2828 	xlog_recover_item_t	*first_item, *item, *free_item;
2829 	int			i;
2830 
2831 	item = first_item = trans->r_itemq;
2832 	do {
2833 		free_item = item;
2834 		item = item->ri_next;
2835 		 /* Free the regions in the item. */
2836 		for (i = 0; i < free_item->ri_cnt; i++) {
2837 			kmem_free(free_item->ri_buf[i].i_addr);
2838 		}
2839 		/* Free the item itself */
2840 		kmem_free(free_item->ri_buf);
2841 		kmem_free(free_item);
2842 	} while (first_item != item);
2843 	/* Free the transaction recover structure */
2844 	kmem_free(trans);
2845 }
2846 
2847 STATIC int
2848 xlog_recover_commit_trans(
2849 	xlog_t			*log,
2850 	xlog_recover_t		**q,
2851 	xlog_recover_t		*trans,
2852 	int			pass)
2853 {
2854 	int			error;
2855 
2856 	if ((error = xlog_recover_unlink_tid(q, trans)))
2857 		return error;
2858 	if ((error = xlog_recover_do_trans(log, trans, pass)))
2859 		return error;
2860 	xlog_recover_free_trans(trans);			/* no error */
2861 	return 0;
2862 }
2863 
2864 STATIC int
2865 xlog_recover_unmount_trans(
2866 	xlog_recover_t		*trans)
2867 {
2868 	/* Do nothing now */
2869 	xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2870 	return 0;
2871 }
2872 
2873 /*
2874  * There are two valid states of the r_state field.  0 indicates that the
2875  * transaction structure is in a normal state.  We have either seen the
2876  * start of the transaction or the last operation we added was not a partial
2877  * operation.  If the last operation we added to the transaction was a
2878  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2879  *
2880  * NOTE: skip LRs with 0 data length.
2881  */
2882 STATIC int
2883 xlog_recover_process_data(
2884 	xlog_t			*log,
2885 	xlog_recover_t		*rhash[],
2886 	xlog_rec_header_t	*rhead,
2887 	xfs_caddr_t		dp,
2888 	int			pass)
2889 {
2890 	xfs_caddr_t		lp;
2891 	int			num_logops;
2892 	xlog_op_header_t	*ohead;
2893 	xlog_recover_t		*trans;
2894 	xlog_tid_t		tid;
2895 	int			error;
2896 	unsigned long		hash;
2897 	uint			flags;
2898 
2899 	lp = dp + be32_to_cpu(rhead->h_len);
2900 	num_logops = be32_to_cpu(rhead->h_num_logops);
2901 
2902 	/* check the log format matches our own - else we can't recover */
2903 	if (xlog_header_check_recover(log->l_mp, rhead))
2904 		return (XFS_ERROR(EIO));
2905 
2906 	while ((dp < lp) && num_logops) {
2907 		ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2908 		ohead = (xlog_op_header_t *)dp;
2909 		dp += sizeof(xlog_op_header_t);
2910 		if (ohead->oh_clientid != XFS_TRANSACTION &&
2911 		    ohead->oh_clientid != XFS_LOG) {
2912 			xlog_warn(
2913 		"XFS: xlog_recover_process_data: bad clientid");
2914 			ASSERT(0);
2915 			return (XFS_ERROR(EIO));
2916 		}
2917 		tid = be32_to_cpu(ohead->oh_tid);
2918 		hash = XLOG_RHASH(tid);
2919 		trans = xlog_recover_find_tid(rhash[hash], tid);
2920 		if (trans == NULL) {		   /* not found; add new tid */
2921 			if (ohead->oh_flags & XLOG_START_TRANS)
2922 				xlog_recover_new_tid(&rhash[hash], tid,
2923 					be64_to_cpu(rhead->h_lsn));
2924 		} else {
2925 			if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2926 				xlog_warn(
2927 			"XFS: xlog_recover_process_data: bad length");
2928 				WARN_ON(1);
2929 				return (XFS_ERROR(EIO));
2930 			}
2931 			flags = ohead->oh_flags & ~XLOG_END_TRANS;
2932 			if (flags & XLOG_WAS_CONT_TRANS)
2933 				flags &= ~XLOG_CONTINUE_TRANS;
2934 			switch (flags) {
2935 			case XLOG_COMMIT_TRANS:
2936 				error = xlog_recover_commit_trans(log,
2937 						&rhash[hash], trans, pass);
2938 				break;
2939 			case XLOG_UNMOUNT_TRANS:
2940 				error = xlog_recover_unmount_trans(trans);
2941 				break;
2942 			case XLOG_WAS_CONT_TRANS:
2943 				error = xlog_recover_add_to_cont_trans(trans,
2944 						dp, be32_to_cpu(ohead->oh_len));
2945 				break;
2946 			case XLOG_START_TRANS:
2947 				xlog_warn(
2948 			"XFS: xlog_recover_process_data: bad transaction");
2949 				ASSERT(0);
2950 				error = XFS_ERROR(EIO);
2951 				break;
2952 			case 0:
2953 			case XLOG_CONTINUE_TRANS:
2954 				error = xlog_recover_add_to_trans(trans,
2955 						dp, be32_to_cpu(ohead->oh_len));
2956 				break;
2957 			default:
2958 				xlog_warn(
2959 			"XFS: xlog_recover_process_data: bad flag");
2960 				ASSERT(0);
2961 				error = XFS_ERROR(EIO);
2962 				break;
2963 			}
2964 			if (error)
2965 				return error;
2966 		}
2967 		dp += be32_to_cpu(ohead->oh_len);
2968 		num_logops--;
2969 	}
2970 	return 0;
2971 }
2972 
2973 /*
2974  * Process an extent free intent item that was recovered from
2975  * the log.  We need to free the extents that it describes.
2976  */
2977 STATIC int
2978 xlog_recover_process_efi(
2979 	xfs_mount_t		*mp,
2980 	xfs_efi_log_item_t	*efip)
2981 {
2982 	xfs_efd_log_item_t	*efdp;
2983 	xfs_trans_t		*tp;
2984 	int			i;
2985 	int			error = 0;
2986 	xfs_extent_t		*extp;
2987 	xfs_fsblock_t		startblock_fsb;
2988 
2989 	ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
2990 
2991 	/*
2992 	 * First check the validity of the extents described by the
2993 	 * EFI.  If any are bad, then assume that all are bad and
2994 	 * just toss the EFI.
2995 	 */
2996 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2997 		extp = &(efip->efi_format.efi_extents[i]);
2998 		startblock_fsb = XFS_BB_TO_FSB(mp,
2999 				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
3000 		if ((startblock_fsb == 0) ||
3001 		    (extp->ext_len == 0) ||
3002 		    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3003 		    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3004 			/*
3005 			 * This will pull the EFI from the AIL and
3006 			 * free the memory associated with it.
3007 			 */
3008 			xfs_efi_release(efip, efip->efi_format.efi_nextents);
3009 			return XFS_ERROR(EIO);
3010 		}
3011 	}
3012 
3013 	tp = xfs_trans_alloc(mp, 0);
3014 	error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3015 	if (error)
3016 		goto abort_error;
3017 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3018 
3019 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3020 		extp = &(efip->efi_format.efi_extents[i]);
3021 		error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3022 		if (error)
3023 			goto abort_error;
3024 		xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3025 					 extp->ext_len);
3026 	}
3027 
3028 	efip->efi_flags |= XFS_EFI_RECOVERED;
3029 	error = xfs_trans_commit(tp, 0);
3030 	return error;
3031 
3032 abort_error:
3033 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3034 	return error;
3035 }
3036 
3037 /*
3038  * When this is called, all of the EFIs which did not have
3039  * corresponding EFDs should be in the AIL.  What we do now
3040  * is free the extents associated with each one.
3041  *
3042  * Since we process the EFIs in normal transactions, they
3043  * will be removed at some point after the commit.  This prevents
3044  * us from just walking down the list processing each one.
3045  * We'll use a flag in the EFI to skip those that we've already
3046  * processed and use the AIL iteration mechanism's generation
3047  * count to try to speed this up at least a bit.
3048  *
3049  * When we start, we know that the EFIs are the only things in
3050  * the AIL.  As we process them, however, other items are added
3051  * to the AIL.  Since everything added to the AIL must come after
3052  * everything already in the AIL, we stop processing as soon as
3053  * we see something other than an EFI in the AIL.
3054  */
3055 STATIC int
3056 xlog_recover_process_efis(
3057 	xlog_t			*log)
3058 {
3059 	xfs_log_item_t		*lip;
3060 	xfs_efi_log_item_t	*efip;
3061 	int			error = 0;
3062 	struct xfs_ail_cursor	cur;
3063 	struct xfs_ail		*ailp;
3064 
3065 	ailp = log->l_ailp;
3066 	spin_lock(&ailp->xa_lock);
3067 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3068 	while (lip != NULL) {
3069 		/*
3070 		 * We're done when we see something other than an EFI.
3071 		 * There should be no EFIs left in the AIL now.
3072 		 */
3073 		if (lip->li_type != XFS_LI_EFI) {
3074 #ifdef DEBUG
3075 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3076 				ASSERT(lip->li_type != XFS_LI_EFI);
3077 #endif
3078 			break;
3079 		}
3080 
3081 		/*
3082 		 * Skip EFIs that we've already processed.
3083 		 */
3084 		efip = (xfs_efi_log_item_t *)lip;
3085 		if (efip->efi_flags & XFS_EFI_RECOVERED) {
3086 			lip = xfs_trans_ail_cursor_next(ailp, &cur);
3087 			continue;
3088 		}
3089 
3090 		spin_unlock(&ailp->xa_lock);
3091 		error = xlog_recover_process_efi(log->l_mp, efip);
3092 		spin_lock(&ailp->xa_lock);
3093 		if (error)
3094 			goto out;
3095 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3096 	}
3097 out:
3098 	xfs_trans_ail_cursor_done(ailp, &cur);
3099 	spin_unlock(&ailp->xa_lock);
3100 	return error;
3101 }
3102 
3103 /*
3104  * This routine performs a transaction to null out a bad inode pointer
3105  * in an agi unlinked inode hash bucket.
3106  */
3107 STATIC void
3108 xlog_recover_clear_agi_bucket(
3109 	xfs_mount_t	*mp,
3110 	xfs_agnumber_t	agno,
3111 	int		bucket)
3112 {
3113 	xfs_trans_t	*tp;
3114 	xfs_agi_t	*agi;
3115 	xfs_buf_t	*agibp;
3116 	int		offset;
3117 	int		error;
3118 
3119 	tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3120 	error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3121 				  0, 0, 0);
3122 	if (error)
3123 		goto out_abort;
3124 
3125 	error = xfs_read_agi(mp, tp, agno, &agibp);
3126 	if (error)
3127 		goto out_abort;
3128 
3129 	agi = XFS_BUF_TO_AGI(agibp);
3130 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3131 	offset = offsetof(xfs_agi_t, agi_unlinked) +
3132 		 (sizeof(xfs_agino_t) * bucket);
3133 	xfs_trans_log_buf(tp, agibp, offset,
3134 			  (offset + sizeof(xfs_agino_t) - 1));
3135 
3136 	error = xfs_trans_commit(tp, 0);
3137 	if (error)
3138 		goto out_error;
3139 	return;
3140 
3141 out_abort:
3142 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3143 out_error:
3144 	xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3145 			"failed to clear agi %d. Continuing.", agno);
3146 	return;
3147 }
3148 
3149 STATIC xfs_agino_t
3150 xlog_recover_process_one_iunlink(
3151 	struct xfs_mount		*mp,
3152 	xfs_agnumber_t			agno,
3153 	xfs_agino_t			agino,
3154 	int				bucket)
3155 {
3156 	struct xfs_buf			*ibp;
3157 	struct xfs_dinode		*dip;
3158 	struct xfs_inode		*ip;
3159 	xfs_ino_t			ino;
3160 	int				error;
3161 
3162 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
3163 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3164 	if (error)
3165 		goto fail;
3166 
3167 	/*
3168 	 * Get the on disk inode to find the next inode in the bucket.
3169 	 */
3170 	error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XFS_BUF_LOCK);
3171 	if (error)
3172 		goto fail_iput;
3173 
3174 	ASSERT(ip->i_d.di_nlink == 0);
3175 	ASSERT(ip->i_d.di_mode != 0);
3176 
3177 	/* setup for the next pass */
3178 	agino = be32_to_cpu(dip->di_next_unlinked);
3179 	xfs_buf_relse(ibp);
3180 
3181 	/*
3182 	 * Prevent any DMAPI event from being sent when the reference on
3183 	 * the inode is dropped.
3184 	 */
3185 	ip->i_d.di_dmevmask = 0;
3186 
3187 	IRELE(ip);
3188 	return agino;
3189 
3190  fail_iput:
3191 	IRELE(ip);
3192  fail:
3193 	/*
3194 	 * We can't read in the inode this bucket points to, or this inode
3195 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
3196 	 * some inodes and space, but at least we won't hang.
3197 	 *
3198 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3199 	 * clear the inode pointer in the bucket.
3200 	 */
3201 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
3202 	return NULLAGINO;
3203 }
3204 
3205 /*
3206  * xlog_iunlink_recover
3207  *
3208  * This is called during recovery to process any inodes which
3209  * we unlinked but not freed when the system crashed.  These
3210  * inodes will be on the lists in the AGI blocks.  What we do
3211  * here is scan all the AGIs and fully truncate and free any
3212  * inodes found on the lists.  Each inode is removed from the
3213  * lists when it has been fully truncated and is freed.  The
3214  * freeing of the inode and its removal from the list must be
3215  * atomic.
3216  */
3217 void
3218 xlog_recover_process_iunlinks(
3219 	xlog_t		*log)
3220 {
3221 	xfs_mount_t	*mp;
3222 	xfs_agnumber_t	agno;
3223 	xfs_agi_t	*agi;
3224 	xfs_buf_t	*agibp;
3225 	xfs_agino_t	agino;
3226 	int		bucket;
3227 	int		error;
3228 	uint		mp_dmevmask;
3229 
3230 	mp = log->l_mp;
3231 
3232 	/*
3233 	 * Prevent any DMAPI event from being sent while in this function.
3234 	 */
3235 	mp_dmevmask = mp->m_dmevmask;
3236 	mp->m_dmevmask = 0;
3237 
3238 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3239 		/*
3240 		 * Find the agi for this ag.
3241 		 */
3242 		error = xfs_read_agi(mp, NULL, agno, &agibp);
3243 		if (error) {
3244 			/*
3245 			 * AGI is b0rked. Don't process it.
3246 			 *
3247 			 * We should probably mark the filesystem as corrupt
3248 			 * after we've recovered all the ag's we can....
3249 			 */
3250 			continue;
3251 		}
3252 		agi = XFS_BUF_TO_AGI(agibp);
3253 
3254 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3255 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3256 			while (agino != NULLAGINO) {
3257 				/*
3258 				 * Release the agi buffer so that it can
3259 				 * be acquired in the normal course of the
3260 				 * transaction to truncate and free the inode.
3261 				 */
3262 				xfs_buf_relse(agibp);
3263 
3264 				agino = xlog_recover_process_one_iunlink(mp,
3265 							agno, agino, bucket);
3266 
3267 				/*
3268 				 * Reacquire the agibuffer and continue around
3269 				 * the loop. This should never fail as we know
3270 				 * the buffer was good earlier on.
3271 				 */
3272 				error = xfs_read_agi(mp, NULL, agno, &agibp);
3273 				ASSERT(error == 0);
3274 				agi = XFS_BUF_TO_AGI(agibp);
3275 			}
3276 		}
3277 
3278 		/*
3279 		 * Release the buffer for the current agi so we can
3280 		 * go on to the next one.
3281 		 */
3282 		xfs_buf_relse(agibp);
3283 	}
3284 
3285 	mp->m_dmevmask = mp_dmevmask;
3286 }
3287 
3288 
3289 #ifdef DEBUG
3290 STATIC void
3291 xlog_pack_data_checksum(
3292 	xlog_t		*log,
3293 	xlog_in_core_t	*iclog,
3294 	int		size)
3295 {
3296 	int		i;
3297 	__be32		*up;
3298 	uint		chksum = 0;
3299 
3300 	up = (__be32 *)iclog->ic_datap;
3301 	/* divide length by 4 to get # words */
3302 	for (i = 0; i < (size >> 2); i++) {
3303 		chksum ^= be32_to_cpu(*up);
3304 		up++;
3305 	}
3306 	iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3307 }
3308 #else
3309 #define xlog_pack_data_checksum(log, iclog, size)
3310 #endif
3311 
3312 /*
3313  * Stamp cycle number in every block
3314  */
3315 void
3316 xlog_pack_data(
3317 	xlog_t			*log,
3318 	xlog_in_core_t		*iclog,
3319 	int			roundoff)
3320 {
3321 	int			i, j, k;
3322 	int			size = iclog->ic_offset + roundoff;
3323 	__be32			cycle_lsn;
3324 	xfs_caddr_t		dp;
3325 
3326 	xlog_pack_data_checksum(log, iclog, size);
3327 
3328 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3329 
3330 	dp = iclog->ic_datap;
3331 	for (i = 0; i < BTOBB(size) &&
3332 		i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3333 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3334 		*(__be32 *)dp = cycle_lsn;
3335 		dp += BBSIZE;
3336 	}
3337 
3338 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3339 		xlog_in_core_2_t *xhdr = iclog->ic_data;
3340 
3341 		for ( ; i < BTOBB(size); i++) {
3342 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3343 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3344 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3345 			*(__be32 *)dp = cycle_lsn;
3346 			dp += BBSIZE;
3347 		}
3348 
3349 		for (i = 1; i < log->l_iclog_heads; i++) {
3350 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3351 		}
3352 	}
3353 }
3354 
3355 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3356 STATIC void
3357 xlog_unpack_data_checksum(
3358 	xlog_rec_header_t	*rhead,
3359 	xfs_caddr_t		dp,
3360 	xlog_t			*log)
3361 {
3362 	__be32			*up = (__be32 *)dp;
3363 	uint			chksum = 0;
3364 	int			i;
3365 
3366 	/* divide length by 4 to get # words */
3367 	for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
3368 		chksum ^= be32_to_cpu(*up);
3369 		up++;
3370 	}
3371 	if (chksum != be32_to_cpu(rhead->h_chksum)) {
3372 	    if (rhead->h_chksum ||
3373 		((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3374 		    cmn_err(CE_DEBUG,
3375 			"XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
3376 			    be32_to_cpu(rhead->h_chksum), chksum);
3377 		    cmn_err(CE_DEBUG,
3378 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3379 		    if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3380 			    cmn_err(CE_DEBUG,
3381 				"XFS: LogR this is a LogV2 filesystem\n");
3382 		    }
3383 		    log->l_flags |= XLOG_CHKSUM_MISMATCH;
3384 	    }
3385 	}
3386 }
3387 #else
3388 #define xlog_unpack_data_checksum(rhead, dp, log)
3389 #endif
3390 
3391 STATIC void
3392 xlog_unpack_data(
3393 	xlog_rec_header_t	*rhead,
3394 	xfs_caddr_t		dp,
3395 	xlog_t			*log)
3396 {
3397 	int			i, j, k;
3398 
3399 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3400 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3401 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3402 		dp += BBSIZE;
3403 	}
3404 
3405 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3406 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3407 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3408 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3409 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3410 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3411 			dp += BBSIZE;
3412 		}
3413 	}
3414 
3415 	xlog_unpack_data_checksum(rhead, dp, log);
3416 }
3417 
3418 STATIC int
3419 xlog_valid_rec_header(
3420 	xlog_t			*log,
3421 	xlog_rec_header_t	*rhead,
3422 	xfs_daddr_t		blkno)
3423 {
3424 	int			hlen;
3425 
3426 	if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
3427 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3428 				XFS_ERRLEVEL_LOW, log->l_mp);
3429 		return XFS_ERROR(EFSCORRUPTED);
3430 	}
3431 	if (unlikely(
3432 	    (!rhead->h_version ||
3433 	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3434 		xlog_warn("XFS: %s: unrecognised log version (%d).",
3435 			__func__, be32_to_cpu(rhead->h_version));
3436 		return XFS_ERROR(EIO);
3437 	}
3438 
3439 	/* LR body must have data or it wouldn't have been written */
3440 	hlen = be32_to_cpu(rhead->h_len);
3441 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3442 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3443 				XFS_ERRLEVEL_LOW, log->l_mp);
3444 		return XFS_ERROR(EFSCORRUPTED);
3445 	}
3446 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3447 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3448 				XFS_ERRLEVEL_LOW, log->l_mp);
3449 		return XFS_ERROR(EFSCORRUPTED);
3450 	}
3451 	return 0;
3452 }
3453 
3454 /*
3455  * Read the log from tail to head and process the log records found.
3456  * Handle the two cases where the tail and head are in the same cycle
3457  * and where the active portion of the log wraps around the end of
3458  * the physical log separately.  The pass parameter is passed through
3459  * to the routines called to process the data and is not looked at
3460  * here.
3461  */
3462 STATIC int
3463 xlog_do_recovery_pass(
3464 	xlog_t			*log,
3465 	xfs_daddr_t		head_blk,
3466 	xfs_daddr_t		tail_blk,
3467 	int			pass)
3468 {
3469 	xlog_rec_header_t	*rhead;
3470 	xfs_daddr_t		blk_no;
3471 	xfs_caddr_t		bufaddr, offset;
3472 	xfs_buf_t		*hbp, *dbp;
3473 	int			error = 0, h_size;
3474 	int			bblks, split_bblks;
3475 	int			hblks, split_hblks, wrapped_hblks;
3476 	xlog_recover_t		*rhash[XLOG_RHASH_SIZE];
3477 
3478 	ASSERT(head_blk != tail_blk);
3479 
3480 	/*
3481 	 * Read the header of the tail block and get the iclog buffer size from
3482 	 * h_size.  Use this to tell how many sectors make up the log header.
3483 	 */
3484 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3485 		/*
3486 		 * When using variable length iclogs, read first sector of
3487 		 * iclog header and extract the header size from it.  Get a
3488 		 * new hbp that is the correct size.
3489 		 */
3490 		hbp = xlog_get_bp(log, 1);
3491 		if (!hbp)
3492 			return ENOMEM;
3493 		if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3494 			goto bread_err1;
3495 		offset = xlog_align(log, tail_blk, 1, hbp);
3496 		rhead = (xlog_rec_header_t *)offset;
3497 		error = xlog_valid_rec_header(log, rhead, tail_blk);
3498 		if (error)
3499 			goto bread_err1;
3500 		h_size = be32_to_cpu(rhead->h_size);
3501 		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3502 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3503 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3504 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
3505 				hblks++;
3506 			xlog_put_bp(hbp);
3507 			hbp = xlog_get_bp(log, hblks);
3508 		} else {
3509 			hblks = 1;
3510 		}
3511 	} else {
3512 		ASSERT(log->l_sectbb_log == 0);
3513 		hblks = 1;
3514 		hbp = xlog_get_bp(log, 1);
3515 		h_size = XLOG_BIG_RECORD_BSIZE;
3516 	}
3517 
3518 	if (!hbp)
3519 		return ENOMEM;
3520 	dbp = xlog_get_bp(log, BTOBB(h_size));
3521 	if (!dbp) {
3522 		xlog_put_bp(hbp);
3523 		return ENOMEM;
3524 	}
3525 
3526 	memset(rhash, 0, sizeof(rhash));
3527 	if (tail_blk <= head_blk) {
3528 		for (blk_no = tail_blk; blk_no < head_blk; ) {
3529 			if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3530 				goto bread_err2;
3531 			offset = xlog_align(log, blk_no, hblks, hbp);
3532 			rhead = (xlog_rec_header_t *)offset;
3533 			error = xlog_valid_rec_header(log, rhead, blk_no);
3534 			if (error)
3535 				goto bread_err2;
3536 
3537 			/* blocks in data section */
3538 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3539 			error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3540 			if (error)
3541 				goto bread_err2;
3542 			offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3543 			xlog_unpack_data(rhead, offset, log);
3544 			if ((error = xlog_recover_process_data(log,
3545 						rhash, rhead, offset, pass)))
3546 				goto bread_err2;
3547 			blk_no += bblks + hblks;
3548 		}
3549 	} else {
3550 		/*
3551 		 * Perform recovery around the end of the physical log.
3552 		 * When the head is not on the same cycle number as the tail,
3553 		 * we can't do a sequential recovery as above.
3554 		 */
3555 		blk_no = tail_blk;
3556 		while (blk_no < log->l_logBBsize) {
3557 			/*
3558 			 * Check for header wrapping around physical end-of-log
3559 			 */
3560 			offset = NULL;
3561 			split_hblks = 0;
3562 			wrapped_hblks = 0;
3563 			if (blk_no + hblks <= log->l_logBBsize) {
3564 				/* Read header in one read */
3565 				error = xlog_bread(log, blk_no, hblks, hbp);
3566 				if (error)
3567 					goto bread_err2;
3568 				offset = xlog_align(log, blk_no, hblks, hbp);
3569 			} else {
3570 				/* This LR is split across physical log end */
3571 				if (blk_no != log->l_logBBsize) {
3572 					/* some data before physical log end */
3573 					ASSERT(blk_no <= INT_MAX);
3574 					split_hblks = log->l_logBBsize - (int)blk_no;
3575 					ASSERT(split_hblks > 0);
3576 					if ((error = xlog_bread(log, blk_no,
3577 							split_hblks, hbp)))
3578 						goto bread_err2;
3579 					offset = xlog_align(log, blk_no,
3580 							split_hblks, hbp);
3581 				}
3582 				/*
3583 				 * Note: this black magic still works with
3584 				 * large sector sizes (non-512) only because:
3585 				 * - we increased the buffer size originally
3586 				 *   by 1 sector giving us enough extra space
3587 				 *   for the second read;
3588 				 * - the log start is guaranteed to be sector
3589 				 *   aligned;
3590 				 * - we read the log end (LR header start)
3591 				 *   _first_, then the log start (LR header end)
3592 				 *   - order is important.
3593 				 */
3594 				wrapped_hblks = hblks - split_hblks;
3595 				bufaddr = XFS_BUF_PTR(hbp);
3596 				error = XFS_BUF_SET_PTR(hbp,
3597 						bufaddr + BBTOB(split_hblks),
3598 						BBTOB(hblks - split_hblks));
3599 				if (!error)
3600 					error = xlog_bread(log, 0,
3601 							wrapped_hblks, hbp);
3602 				if (!error)
3603 					error = XFS_BUF_SET_PTR(hbp, bufaddr,
3604 							BBTOB(hblks));
3605 				if (error)
3606 					goto bread_err2;
3607 				if (!offset)
3608 					offset = xlog_align(log, 0,
3609 							wrapped_hblks, hbp);
3610 			}
3611 			rhead = (xlog_rec_header_t *)offset;
3612 			error = xlog_valid_rec_header(log, rhead,
3613 						split_hblks ? blk_no : 0);
3614 			if (error)
3615 				goto bread_err2;
3616 
3617 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3618 			blk_no += hblks;
3619 
3620 			/* Read in data for log record */
3621 			if (blk_no + bblks <= log->l_logBBsize) {
3622 				error = xlog_bread(log, blk_no, bblks, dbp);
3623 				if (error)
3624 					goto bread_err2;
3625 				offset = xlog_align(log, blk_no, bblks, dbp);
3626 			} else {
3627 				/* This log record is split across the
3628 				 * physical end of log */
3629 				offset = NULL;
3630 				split_bblks = 0;
3631 				if (blk_no != log->l_logBBsize) {
3632 					/* some data is before the physical
3633 					 * end of log */
3634 					ASSERT(!wrapped_hblks);
3635 					ASSERT(blk_no <= INT_MAX);
3636 					split_bblks =
3637 						log->l_logBBsize - (int)blk_no;
3638 					ASSERT(split_bblks > 0);
3639 					if ((error = xlog_bread(log, blk_no,
3640 							split_bblks, dbp)))
3641 						goto bread_err2;
3642 					offset = xlog_align(log, blk_no,
3643 							split_bblks, dbp);
3644 				}
3645 				/*
3646 				 * Note: this black magic still works with
3647 				 * large sector sizes (non-512) only because:
3648 				 * - we increased the buffer size originally
3649 				 *   by 1 sector giving us enough extra space
3650 				 *   for the second read;
3651 				 * - the log start is guaranteed to be sector
3652 				 *   aligned;
3653 				 * - we read the log end (LR header start)
3654 				 *   _first_, then the log start (LR header end)
3655 				 *   - order is important.
3656 				 */
3657 				bufaddr = XFS_BUF_PTR(dbp);
3658 				error = XFS_BUF_SET_PTR(dbp,
3659 						bufaddr + BBTOB(split_bblks),
3660 						BBTOB(bblks - split_bblks));
3661 				if (!error)
3662 					error = xlog_bread(log, wrapped_hblks,
3663 							bblks - split_bblks,
3664 							dbp);
3665 				if (!error)
3666 					error = XFS_BUF_SET_PTR(dbp, bufaddr,
3667 							h_size);
3668 				if (error)
3669 					goto bread_err2;
3670 				if (!offset)
3671 					offset = xlog_align(log, wrapped_hblks,
3672 						bblks - split_bblks, dbp);
3673 			}
3674 			xlog_unpack_data(rhead, offset, log);
3675 			if ((error = xlog_recover_process_data(log, rhash,
3676 							rhead, offset, pass)))
3677 				goto bread_err2;
3678 			blk_no += bblks;
3679 		}
3680 
3681 		ASSERT(blk_no >= log->l_logBBsize);
3682 		blk_no -= log->l_logBBsize;
3683 
3684 		/* read first part of physical log */
3685 		while (blk_no < head_blk) {
3686 			if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3687 				goto bread_err2;
3688 			offset = xlog_align(log, blk_no, hblks, hbp);
3689 			rhead = (xlog_rec_header_t *)offset;
3690 			error = xlog_valid_rec_header(log, rhead, blk_no);
3691 			if (error)
3692 				goto bread_err2;
3693 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3694 			if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3695 				goto bread_err2;
3696 			offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3697 			xlog_unpack_data(rhead, offset, log);
3698 			if ((error = xlog_recover_process_data(log, rhash,
3699 							rhead, offset, pass)))
3700 				goto bread_err2;
3701 			blk_no += bblks + hblks;
3702 		}
3703 	}
3704 
3705  bread_err2:
3706 	xlog_put_bp(dbp);
3707  bread_err1:
3708 	xlog_put_bp(hbp);
3709 	return error;
3710 }
3711 
3712 /*
3713  * Do the recovery of the log.  We actually do this in two phases.
3714  * The two passes are necessary in order to implement the function
3715  * of cancelling a record written into the log.  The first pass
3716  * determines those things which have been cancelled, and the
3717  * second pass replays log items normally except for those which
3718  * have been cancelled.  The handling of the replay and cancellations
3719  * takes place in the log item type specific routines.
3720  *
3721  * The table of items which have cancel records in the log is allocated
3722  * and freed at this level, since only here do we know when all of
3723  * the log recovery has been completed.
3724  */
3725 STATIC int
3726 xlog_do_log_recovery(
3727 	xlog_t		*log,
3728 	xfs_daddr_t	head_blk,
3729 	xfs_daddr_t	tail_blk)
3730 {
3731 	int		error;
3732 
3733 	ASSERT(head_blk != tail_blk);
3734 
3735 	/*
3736 	 * First do a pass to find all of the cancelled buf log items.
3737 	 * Store them in the buf_cancel_table for use in the second pass.
3738 	 */
3739 	log->l_buf_cancel_table =
3740 		(xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3741 						 sizeof(xfs_buf_cancel_t*),
3742 						 KM_SLEEP);
3743 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3744 				      XLOG_RECOVER_PASS1);
3745 	if (error != 0) {
3746 		kmem_free(log->l_buf_cancel_table);
3747 		log->l_buf_cancel_table = NULL;
3748 		return error;
3749 	}
3750 	/*
3751 	 * Then do a second pass to actually recover the items in the log.
3752 	 * When it is complete free the table of buf cancel items.
3753 	 */
3754 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3755 				      XLOG_RECOVER_PASS2);
3756 #ifdef DEBUG
3757 	if (!error) {
3758 		int	i;
3759 
3760 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3761 			ASSERT(log->l_buf_cancel_table[i] == NULL);
3762 	}
3763 #endif	/* DEBUG */
3764 
3765 	kmem_free(log->l_buf_cancel_table);
3766 	log->l_buf_cancel_table = NULL;
3767 
3768 	return error;
3769 }
3770 
3771 /*
3772  * Do the actual recovery
3773  */
3774 STATIC int
3775 xlog_do_recover(
3776 	xlog_t		*log,
3777 	xfs_daddr_t	head_blk,
3778 	xfs_daddr_t	tail_blk)
3779 {
3780 	int		error;
3781 	xfs_buf_t	*bp;
3782 	xfs_sb_t	*sbp;
3783 
3784 	/*
3785 	 * First replay the images in the log.
3786 	 */
3787 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
3788 	if (error) {
3789 		return error;
3790 	}
3791 
3792 	XFS_bflush(log->l_mp->m_ddev_targp);
3793 
3794 	/*
3795 	 * If IO errors happened during recovery, bail out.
3796 	 */
3797 	if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3798 		return (EIO);
3799 	}
3800 
3801 	/*
3802 	 * We now update the tail_lsn since much of the recovery has completed
3803 	 * and there may be space available to use.  If there were no extent
3804 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
3805 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3806 	 * lsn of the last known good LR on disk.  If there are extent frees
3807 	 * or iunlinks they will have some entries in the AIL; so we look at
3808 	 * the AIL to determine how to set the tail_lsn.
3809 	 */
3810 	xlog_assign_tail_lsn(log->l_mp);
3811 
3812 	/*
3813 	 * Now that we've finished replaying all buffer and inode
3814 	 * updates, re-read in the superblock.
3815 	 */
3816 	bp = xfs_getsb(log->l_mp, 0);
3817 	XFS_BUF_UNDONE(bp);
3818 	ASSERT(!(XFS_BUF_ISWRITE(bp)));
3819 	ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3820 	XFS_BUF_READ(bp);
3821 	XFS_BUF_UNASYNC(bp);
3822 	xfsbdstrat(log->l_mp, bp);
3823 	error = xfs_iowait(bp);
3824 	if (error) {
3825 		xfs_ioerror_alert("xlog_do_recover",
3826 				  log->l_mp, bp, XFS_BUF_ADDR(bp));
3827 		ASSERT(0);
3828 		xfs_buf_relse(bp);
3829 		return error;
3830 	}
3831 
3832 	/* Convert superblock from on-disk format */
3833 	sbp = &log->l_mp->m_sb;
3834 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3835 	ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3836 	ASSERT(xfs_sb_good_version(sbp));
3837 	xfs_buf_relse(bp);
3838 
3839 	/* We've re-read the superblock so re-initialize per-cpu counters */
3840 	xfs_icsb_reinit_counters(log->l_mp);
3841 
3842 	xlog_recover_check_summary(log);
3843 
3844 	/* Normal transactions can now occur */
3845 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3846 	return 0;
3847 }
3848 
3849 /*
3850  * Perform recovery and re-initialize some log variables in xlog_find_tail.
3851  *
3852  * Return error or zero.
3853  */
3854 int
3855 xlog_recover(
3856 	xlog_t		*log)
3857 {
3858 	xfs_daddr_t	head_blk, tail_blk;
3859 	int		error;
3860 
3861 	/* find the tail of the log */
3862 	if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3863 		return error;
3864 
3865 	if (tail_blk != head_blk) {
3866 		/* There used to be a comment here:
3867 		 *
3868 		 * disallow recovery on read-only mounts.  note -- mount
3869 		 * checks for ENOSPC and turns it into an intelligent
3870 		 * error message.
3871 		 * ...but this is no longer true.  Now, unless you specify
3872 		 * NORECOVERY (in which case this function would never be
3873 		 * called), we just go ahead and recover.  We do this all
3874 		 * under the vfs layer, so we can get away with it unless
3875 		 * the device itself is read-only, in which case we fail.
3876 		 */
3877 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3878 			return error;
3879 		}
3880 
3881 		cmn_err(CE_NOTE,
3882 			"Starting XFS recovery on filesystem: %s (logdev: %s)",
3883 			log->l_mp->m_fsname, log->l_mp->m_logname ?
3884 			log->l_mp->m_logname : "internal");
3885 
3886 		error = xlog_do_recover(log, head_blk, tail_blk);
3887 		log->l_flags |= XLOG_RECOVERY_NEEDED;
3888 	}
3889 	return error;
3890 }
3891 
3892 /*
3893  * In the first part of recovery we replay inodes and buffers and build
3894  * up the list of extent free items which need to be processed.  Here
3895  * we process the extent free items and clean up the on disk unlinked
3896  * inode lists.  This is separated from the first part of recovery so
3897  * that the root and real-time bitmap inodes can be read in from disk in
3898  * between the two stages.  This is necessary so that we can free space
3899  * in the real-time portion of the file system.
3900  */
3901 int
3902 xlog_recover_finish(
3903 	xlog_t		*log)
3904 {
3905 	/*
3906 	 * Now we're ready to do the transactions needed for the
3907 	 * rest of recovery.  Start with completing all the extent
3908 	 * free intent records and then process the unlinked inode
3909 	 * lists.  At this point, we essentially run in normal mode
3910 	 * except that we're still performing recovery actions
3911 	 * rather than accepting new requests.
3912 	 */
3913 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3914 		int	error;
3915 		error = xlog_recover_process_efis(log);
3916 		if (error) {
3917 			cmn_err(CE_ALERT,
3918 				"Failed to recover EFIs on filesystem: %s",
3919 				log->l_mp->m_fsname);
3920 			return error;
3921 		}
3922 		/*
3923 		 * Sync the log to get all the EFIs out of the AIL.
3924 		 * This isn't absolutely necessary, but it helps in
3925 		 * case the unlink transactions would have problems
3926 		 * pushing the EFIs out of the way.
3927 		 */
3928 		xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3929 			      (XFS_LOG_FORCE | XFS_LOG_SYNC));
3930 
3931 		xlog_recover_process_iunlinks(log);
3932 
3933 		xlog_recover_check_summary(log);
3934 
3935 		cmn_err(CE_NOTE,
3936 			"Ending XFS recovery on filesystem: %s (logdev: %s)",
3937 			log->l_mp->m_fsname, log->l_mp->m_logname ?
3938 			log->l_mp->m_logname : "internal");
3939 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3940 	} else {
3941 		cmn_err(CE_DEBUG,
3942 			"!Ending clean XFS mount for filesystem: %s\n",
3943 			log->l_mp->m_fsname);
3944 	}
3945 	return 0;
3946 }
3947 
3948 
3949 #if defined(DEBUG)
3950 /*
3951  * Read all of the agf and agi counters and check that they
3952  * are consistent with the superblock counters.
3953  */
3954 void
3955 xlog_recover_check_summary(
3956 	xlog_t		*log)
3957 {
3958 	xfs_mount_t	*mp;
3959 	xfs_agf_t	*agfp;
3960 	xfs_buf_t	*agfbp;
3961 	xfs_buf_t	*agibp;
3962 	xfs_buf_t	*sbbp;
3963 #ifdef XFS_LOUD_RECOVERY
3964 	xfs_sb_t	*sbp;
3965 #endif
3966 	xfs_agnumber_t	agno;
3967 	__uint64_t	freeblks;
3968 	__uint64_t	itotal;
3969 	__uint64_t	ifree;
3970 	int		error;
3971 
3972 	mp = log->l_mp;
3973 
3974 	freeblks = 0LL;
3975 	itotal = 0LL;
3976 	ifree = 0LL;
3977 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3978 		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3979 		if (error) {
3980 			xfs_fs_cmn_err(CE_ALERT, mp,
3981 					"xlog_recover_check_summary(agf)"
3982 					"agf read failed agno %d error %d",
3983 							agno, error);
3984 		} else {
3985 			agfp = XFS_BUF_TO_AGF(agfbp);
3986 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
3987 				    be32_to_cpu(agfp->agf_flcount);
3988 			xfs_buf_relse(agfbp);
3989 		}
3990 
3991 		error = xfs_read_agi(mp, NULL, agno, &agibp);
3992 		if (!error) {
3993 			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
3994 
3995 			itotal += be32_to_cpu(agi->agi_count);
3996 			ifree += be32_to_cpu(agi->agi_freecount);
3997 			xfs_buf_relse(agibp);
3998 		}
3999 	}
4000 
4001 	sbbp = xfs_getsb(mp, 0);
4002 #ifdef XFS_LOUD_RECOVERY
4003 	sbp = &mp->m_sb;
4004 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
4005 	cmn_err(CE_NOTE,
4006 		"xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4007 		sbp->sb_icount, itotal);
4008 	cmn_err(CE_NOTE,
4009 		"xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4010 		sbp->sb_ifree, ifree);
4011 	cmn_err(CE_NOTE,
4012 		"xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4013 		sbp->sb_fdblocks, freeblks);
4014 #if 0
4015 	/*
4016 	 * This is turned off until I account for the allocation
4017 	 * btree blocks which live in free space.
4018 	 */
4019 	ASSERT(sbp->sb_icount == itotal);
4020 	ASSERT(sbp->sb_ifree == ifree);
4021 	ASSERT(sbp->sb_fdblocks == freeblks);
4022 #endif
4023 #endif
4024 	xfs_buf_relse(sbbp);
4025 }
4026 #endif /* DEBUG */
4027