1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_dir2.h" 28 #include "xfs_dmapi.h" 29 #include "xfs_mount.h" 30 #include "xfs_error.h" 31 #include "xfs_bmap_btree.h" 32 #include "xfs_alloc_btree.h" 33 #include "xfs_ialloc_btree.h" 34 #include "xfs_dir2_sf.h" 35 #include "xfs_attr_sf.h" 36 #include "xfs_dinode.h" 37 #include "xfs_inode.h" 38 #include "xfs_inode_item.h" 39 #include "xfs_alloc.h" 40 #include "xfs_ialloc.h" 41 #include "xfs_log_priv.h" 42 #include "xfs_buf_item.h" 43 #include "xfs_log_recover.h" 44 #include "xfs_extfree_item.h" 45 #include "xfs_trans_priv.h" 46 #include "xfs_quota.h" 47 #include "xfs_rw.h" 48 #include "xfs_utils.h" 49 50 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *); 51 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t); 52 STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q, 53 xlog_recover_item_t *item); 54 #if defined(DEBUG) 55 STATIC void xlog_recover_check_summary(xlog_t *); 56 #else 57 #define xlog_recover_check_summary(log) 58 #endif 59 60 61 /* 62 * Sector aligned buffer routines for buffer create/read/write/access 63 */ 64 65 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \ 66 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \ 67 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) ) 68 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask) 69 70 xfs_buf_t * 71 xlog_get_bp( 72 xlog_t *log, 73 int nbblks) 74 { 75 if (nbblks <= 0 || nbblks > log->l_logBBsize) { 76 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks); 77 XFS_ERROR_REPORT("xlog_get_bp(1)", 78 XFS_ERRLEVEL_HIGH, log->l_mp); 79 return NULL; 80 } 81 82 if (log->l_sectbb_log) { 83 if (nbblks > 1) 84 nbblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1); 85 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); 86 } 87 return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp); 88 } 89 90 void 91 xlog_put_bp( 92 xfs_buf_t *bp) 93 { 94 xfs_buf_free(bp); 95 } 96 97 98 /* 99 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 100 */ 101 int 102 xlog_bread( 103 xlog_t *log, 104 xfs_daddr_t blk_no, 105 int nbblks, 106 xfs_buf_t *bp) 107 { 108 int error; 109 110 if (nbblks <= 0 || nbblks > log->l_logBBsize) { 111 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks); 112 XFS_ERROR_REPORT("xlog_bread(1)", 113 XFS_ERRLEVEL_HIGH, log->l_mp); 114 return EFSCORRUPTED; 115 } 116 117 if (log->l_sectbb_log) { 118 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no); 119 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); 120 } 121 122 ASSERT(nbblks > 0); 123 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); 124 ASSERT(bp); 125 126 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 127 XFS_BUF_READ(bp); 128 XFS_BUF_BUSY(bp); 129 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); 130 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); 131 132 xfsbdstrat(log->l_mp, bp); 133 error = xfs_iowait(bp); 134 if (error) 135 xfs_ioerror_alert("xlog_bread", log->l_mp, 136 bp, XFS_BUF_ADDR(bp)); 137 return error; 138 } 139 140 /* 141 * Write out the buffer at the given block for the given number of blocks. 142 * The buffer is kept locked across the write and is returned locked. 143 * This can only be used for synchronous log writes. 144 */ 145 STATIC int 146 xlog_bwrite( 147 xlog_t *log, 148 xfs_daddr_t blk_no, 149 int nbblks, 150 xfs_buf_t *bp) 151 { 152 int error; 153 154 if (nbblks <= 0 || nbblks > log->l_logBBsize) { 155 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks); 156 XFS_ERROR_REPORT("xlog_bwrite(1)", 157 XFS_ERRLEVEL_HIGH, log->l_mp); 158 return EFSCORRUPTED; 159 } 160 161 if (log->l_sectbb_log) { 162 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no); 163 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); 164 } 165 166 ASSERT(nbblks > 0); 167 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); 168 169 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 170 XFS_BUF_ZEROFLAGS(bp); 171 XFS_BUF_BUSY(bp); 172 XFS_BUF_HOLD(bp); 173 XFS_BUF_PSEMA(bp, PRIBIO); 174 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); 175 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); 176 177 if ((error = xfs_bwrite(log->l_mp, bp))) 178 xfs_ioerror_alert("xlog_bwrite", log->l_mp, 179 bp, XFS_BUF_ADDR(bp)); 180 return error; 181 } 182 183 STATIC xfs_caddr_t 184 xlog_align( 185 xlog_t *log, 186 xfs_daddr_t blk_no, 187 int nbblks, 188 xfs_buf_t *bp) 189 { 190 xfs_caddr_t ptr; 191 192 if (!log->l_sectbb_log) 193 return XFS_BUF_PTR(bp); 194 195 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask); 196 ASSERT(XFS_BUF_SIZE(bp) >= 197 BBTOB(nbblks + (blk_no & log->l_sectbb_mask))); 198 return ptr; 199 } 200 201 #ifdef DEBUG 202 /* 203 * dump debug superblock and log record information 204 */ 205 STATIC void 206 xlog_header_check_dump( 207 xfs_mount_t *mp, 208 xlog_rec_header_t *head) 209 { 210 int b; 211 212 cmn_err(CE_DEBUG, "%s: SB : uuid = ", __func__); 213 for (b = 0; b < 16; b++) 214 cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]); 215 cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT); 216 cmn_err(CE_DEBUG, " log : uuid = "); 217 for (b = 0; b < 16; b++) 218 cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]); 219 cmn_err(CE_DEBUG, ", fmt = %d\n", be32_to_cpu(head->h_fmt)); 220 } 221 #else 222 #define xlog_header_check_dump(mp, head) 223 #endif 224 225 /* 226 * check log record header for recovery 227 */ 228 STATIC int 229 xlog_header_check_recover( 230 xfs_mount_t *mp, 231 xlog_rec_header_t *head) 232 { 233 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM); 234 235 /* 236 * IRIX doesn't write the h_fmt field and leaves it zeroed 237 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 238 * a dirty log created in IRIX. 239 */ 240 if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) { 241 xlog_warn( 242 "XFS: dirty log written in incompatible format - can't recover"); 243 xlog_header_check_dump(mp, head); 244 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 245 XFS_ERRLEVEL_HIGH, mp); 246 return XFS_ERROR(EFSCORRUPTED); 247 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 248 xlog_warn( 249 "XFS: dirty log entry has mismatched uuid - can't recover"); 250 xlog_header_check_dump(mp, head); 251 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 252 XFS_ERRLEVEL_HIGH, mp); 253 return XFS_ERROR(EFSCORRUPTED); 254 } 255 return 0; 256 } 257 258 /* 259 * read the head block of the log and check the header 260 */ 261 STATIC int 262 xlog_header_check_mount( 263 xfs_mount_t *mp, 264 xlog_rec_header_t *head) 265 { 266 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM); 267 268 if (uuid_is_nil(&head->h_fs_uuid)) { 269 /* 270 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 271 * h_fs_uuid is nil, we assume this log was last mounted 272 * by IRIX and continue. 273 */ 274 xlog_warn("XFS: nil uuid in log - IRIX style log"); 275 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 276 xlog_warn("XFS: log has mismatched uuid - can't recover"); 277 xlog_header_check_dump(mp, head); 278 XFS_ERROR_REPORT("xlog_header_check_mount", 279 XFS_ERRLEVEL_HIGH, mp); 280 return XFS_ERROR(EFSCORRUPTED); 281 } 282 return 0; 283 } 284 285 STATIC void 286 xlog_recover_iodone( 287 struct xfs_buf *bp) 288 { 289 if (XFS_BUF_GETERROR(bp)) { 290 /* 291 * We're not going to bother about retrying 292 * this during recovery. One strike! 293 */ 294 xfs_ioerror_alert("xlog_recover_iodone", 295 bp->b_mount, bp, XFS_BUF_ADDR(bp)); 296 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR); 297 } 298 bp->b_mount = NULL; 299 XFS_BUF_CLR_IODONE_FUNC(bp); 300 xfs_biodone(bp); 301 } 302 303 /* 304 * This routine finds (to an approximation) the first block in the physical 305 * log which contains the given cycle. It uses a binary search algorithm. 306 * Note that the algorithm can not be perfect because the disk will not 307 * necessarily be perfect. 308 */ 309 STATIC int 310 xlog_find_cycle_start( 311 xlog_t *log, 312 xfs_buf_t *bp, 313 xfs_daddr_t first_blk, 314 xfs_daddr_t *last_blk, 315 uint cycle) 316 { 317 xfs_caddr_t offset; 318 xfs_daddr_t mid_blk; 319 uint mid_cycle; 320 int error; 321 322 mid_blk = BLK_AVG(first_blk, *last_blk); 323 while (mid_blk != first_blk && mid_blk != *last_blk) { 324 if ((error = xlog_bread(log, mid_blk, 1, bp))) 325 return error; 326 offset = xlog_align(log, mid_blk, 1, bp); 327 mid_cycle = xlog_get_cycle(offset); 328 if (mid_cycle == cycle) { 329 *last_blk = mid_blk; 330 /* last_half_cycle == mid_cycle */ 331 } else { 332 first_blk = mid_blk; 333 /* first_half_cycle == mid_cycle */ 334 } 335 mid_blk = BLK_AVG(first_blk, *last_blk); 336 } 337 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) || 338 (mid_blk == *last_blk && mid_blk-1 == first_blk)); 339 340 return 0; 341 } 342 343 /* 344 * Check that the range of blocks does not contain the cycle number 345 * given. The scan needs to occur from front to back and the ptr into the 346 * region must be updated since a later routine will need to perform another 347 * test. If the region is completely good, we end up returning the same 348 * last block number. 349 * 350 * Set blkno to -1 if we encounter no errors. This is an invalid block number 351 * since we don't ever expect logs to get this large. 352 */ 353 STATIC int 354 xlog_find_verify_cycle( 355 xlog_t *log, 356 xfs_daddr_t start_blk, 357 int nbblks, 358 uint stop_on_cycle_no, 359 xfs_daddr_t *new_blk) 360 { 361 xfs_daddr_t i, j; 362 uint cycle; 363 xfs_buf_t *bp; 364 xfs_daddr_t bufblks; 365 xfs_caddr_t buf = NULL; 366 int error = 0; 367 368 bufblks = 1 << ffs(nbblks); 369 370 while (!(bp = xlog_get_bp(log, bufblks))) { 371 /* can't get enough memory to do everything in one big buffer */ 372 bufblks >>= 1; 373 if (bufblks <= log->l_sectbb_log) 374 return ENOMEM; 375 } 376 377 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 378 int bcount; 379 380 bcount = min(bufblks, (start_blk + nbblks - i)); 381 382 if ((error = xlog_bread(log, i, bcount, bp))) 383 goto out; 384 385 buf = xlog_align(log, i, bcount, bp); 386 for (j = 0; j < bcount; j++) { 387 cycle = xlog_get_cycle(buf); 388 if (cycle == stop_on_cycle_no) { 389 *new_blk = i+j; 390 goto out; 391 } 392 393 buf += BBSIZE; 394 } 395 } 396 397 *new_blk = -1; 398 399 out: 400 xlog_put_bp(bp); 401 return error; 402 } 403 404 /* 405 * Potentially backup over partial log record write. 406 * 407 * In the typical case, last_blk is the number of the block directly after 408 * a good log record. Therefore, we subtract one to get the block number 409 * of the last block in the given buffer. extra_bblks contains the number 410 * of blocks we would have read on a previous read. This happens when the 411 * last log record is split over the end of the physical log. 412 * 413 * extra_bblks is the number of blocks potentially verified on a previous 414 * call to this routine. 415 */ 416 STATIC int 417 xlog_find_verify_log_record( 418 xlog_t *log, 419 xfs_daddr_t start_blk, 420 xfs_daddr_t *last_blk, 421 int extra_bblks) 422 { 423 xfs_daddr_t i; 424 xfs_buf_t *bp; 425 xfs_caddr_t offset = NULL; 426 xlog_rec_header_t *head = NULL; 427 int error = 0; 428 int smallmem = 0; 429 int num_blks = *last_blk - start_blk; 430 int xhdrs; 431 432 ASSERT(start_blk != 0 || *last_blk != start_blk); 433 434 if (!(bp = xlog_get_bp(log, num_blks))) { 435 if (!(bp = xlog_get_bp(log, 1))) 436 return ENOMEM; 437 smallmem = 1; 438 } else { 439 if ((error = xlog_bread(log, start_blk, num_blks, bp))) 440 goto out; 441 offset = xlog_align(log, start_blk, num_blks, bp); 442 offset += ((num_blks - 1) << BBSHIFT); 443 } 444 445 for (i = (*last_blk) - 1; i >= 0; i--) { 446 if (i < start_blk) { 447 /* valid log record not found */ 448 xlog_warn( 449 "XFS: Log inconsistent (didn't find previous header)"); 450 ASSERT(0); 451 error = XFS_ERROR(EIO); 452 goto out; 453 } 454 455 if (smallmem) { 456 if ((error = xlog_bread(log, i, 1, bp))) 457 goto out; 458 offset = xlog_align(log, i, 1, bp); 459 } 460 461 head = (xlog_rec_header_t *)offset; 462 463 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno)) 464 break; 465 466 if (!smallmem) 467 offset -= BBSIZE; 468 } 469 470 /* 471 * We hit the beginning of the physical log & still no header. Return 472 * to caller. If caller can handle a return of -1, then this routine 473 * will be called again for the end of the physical log. 474 */ 475 if (i == -1) { 476 error = -1; 477 goto out; 478 } 479 480 /* 481 * We have the final block of the good log (the first block 482 * of the log record _before_ the head. So we check the uuid. 483 */ 484 if ((error = xlog_header_check_mount(log->l_mp, head))) 485 goto out; 486 487 /* 488 * We may have found a log record header before we expected one. 489 * last_blk will be the 1st block # with a given cycle #. We may end 490 * up reading an entire log record. In this case, we don't want to 491 * reset last_blk. Only when last_blk points in the middle of a log 492 * record do we update last_blk. 493 */ 494 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 495 uint h_size = be32_to_cpu(head->h_size); 496 497 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 498 if (h_size % XLOG_HEADER_CYCLE_SIZE) 499 xhdrs++; 500 } else { 501 xhdrs = 1; 502 } 503 504 if (*last_blk - i + extra_bblks != 505 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 506 *last_blk = i; 507 508 out: 509 xlog_put_bp(bp); 510 return error; 511 } 512 513 /* 514 * Head is defined to be the point of the log where the next log write 515 * write could go. This means that incomplete LR writes at the end are 516 * eliminated when calculating the head. We aren't guaranteed that previous 517 * LR have complete transactions. We only know that a cycle number of 518 * current cycle number -1 won't be present in the log if we start writing 519 * from our current block number. 520 * 521 * last_blk contains the block number of the first block with a given 522 * cycle number. 523 * 524 * Return: zero if normal, non-zero if error. 525 */ 526 STATIC int 527 xlog_find_head( 528 xlog_t *log, 529 xfs_daddr_t *return_head_blk) 530 { 531 xfs_buf_t *bp; 532 xfs_caddr_t offset; 533 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 534 int num_scan_bblks; 535 uint first_half_cycle, last_half_cycle; 536 uint stop_on_cycle; 537 int error, log_bbnum = log->l_logBBsize; 538 539 /* Is the end of the log device zeroed? */ 540 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) { 541 *return_head_blk = first_blk; 542 543 /* Is the whole lot zeroed? */ 544 if (!first_blk) { 545 /* Linux XFS shouldn't generate totally zeroed logs - 546 * mkfs etc write a dummy unmount record to a fresh 547 * log so we can store the uuid in there 548 */ 549 xlog_warn("XFS: totally zeroed log"); 550 } 551 552 return 0; 553 } else if (error) { 554 xlog_warn("XFS: empty log check failed"); 555 return error; 556 } 557 558 first_blk = 0; /* get cycle # of 1st block */ 559 bp = xlog_get_bp(log, 1); 560 if (!bp) 561 return ENOMEM; 562 if ((error = xlog_bread(log, 0, 1, bp))) 563 goto bp_err; 564 offset = xlog_align(log, 0, 1, bp); 565 first_half_cycle = xlog_get_cycle(offset); 566 567 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 568 if ((error = xlog_bread(log, last_blk, 1, bp))) 569 goto bp_err; 570 offset = xlog_align(log, last_blk, 1, bp); 571 last_half_cycle = xlog_get_cycle(offset); 572 ASSERT(last_half_cycle != 0); 573 574 /* 575 * If the 1st half cycle number is equal to the last half cycle number, 576 * then the entire log is stamped with the same cycle number. In this 577 * case, head_blk can't be set to zero (which makes sense). The below 578 * math doesn't work out properly with head_blk equal to zero. Instead, 579 * we set it to log_bbnum which is an invalid block number, but this 580 * value makes the math correct. If head_blk doesn't changed through 581 * all the tests below, *head_blk is set to zero at the very end rather 582 * than log_bbnum. In a sense, log_bbnum and zero are the same block 583 * in a circular file. 584 */ 585 if (first_half_cycle == last_half_cycle) { 586 /* 587 * In this case we believe that the entire log should have 588 * cycle number last_half_cycle. We need to scan backwards 589 * from the end verifying that there are no holes still 590 * containing last_half_cycle - 1. If we find such a hole, 591 * then the start of that hole will be the new head. The 592 * simple case looks like 593 * x | x ... | x - 1 | x 594 * Another case that fits this picture would be 595 * x | x + 1 | x ... | x 596 * In this case the head really is somewhere at the end of the 597 * log, as one of the latest writes at the beginning was 598 * incomplete. 599 * One more case is 600 * x | x + 1 | x ... | x - 1 | x 601 * This is really the combination of the above two cases, and 602 * the head has to end up at the start of the x-1 hole at the 603 * end of the log. 604 * 605 * In the 256k log case, we will read from the beginning to the 606 * end of the log and search for cycle numbers equal to x-1. 607 * We don't worry about the x+1 blocks that we encounter, 608 * because we know that they cannot be the head since the log 609 * started with x. 610 */ 611 head_blk = log_bbnum; 612 stop_on_cycle = last_half_cycle - 1; 613 } else { 614 /* 615 * In this case we want to find the first block with cycle 616 * number matching last_half_cycle. We expect the log to be 617 * some variation on 618 * x + 1 ... | x ... 619 * The first block with cycle number x (last_half_cycle) will 620 * be where the new head belongs. First we do a binary search 621 * for the first occurrence of last_half_cycle. The binary 622 * search may not be totally accurate, so then we scan back 623 * from there looking for occurrences of last_half_cycle before 624 * us. If that backwards scan wraps around the beginning of 625 * the log, then we look for occurrences of last_half_cycle - 1 626 * at the end of the log. The cases we're looking for look 627 * like 628 * x + 1 ... | x | x + 1 | x ... 629 * ^ binary search stopped here 630 * or 631 * x + 1 ... | x ... | x - 1 | x 632 * <---------> less than scan distance 633 */ 634 stop_on_cycle = last_half_cycle; 635 if ((error = xlog_find_cycle_start(log, bp, first_blk, 636 &head_blk, last_half_cycle))) 637 goto bp_err; 638 } 639 640 /* 641 * Now validate the answer. Scan back some number of maximum possible 642 * blocks and make sure each one has the expected cycle number. The 643 * maximum is determined by the total possible amount of buffering 644 * in the in-core log. The following number can be made tighter if 645 * we actually look at the block size of the filesystem. 646 */ 647 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 648 if (head_blk >= num_scan_bblks) { 649 /* 650 * We are guaranteed that the entire check can be performed 651 * in one buffer. 652 */ 653 start_blk = head_blk - num_scan_bblks; 654 if ((error = xlog_find_verify_cycle(log, 655 start_blk, num_scan_bblks, 656 stop_on_cycle, &new_blk))) 657 goto bp_err; 658 if (new_blk != -1) 659 head_blk = new_blk; 660 } else { /* need to read 2 parts of log */ 661 /* 662 * We are going to scan backwards in the log in two parts. 663 * First we scan the physical end of the log. In this part 664 * of the log, we are looking for blocks with cycle number 665 * last_half_cycle - 1. 666 * If we find one, then we know that the log starts there, as 667 * we've found a hole that didn't get written in going around 668 * the end of the physical log. The simple case for this is 669 * x + 1 ... | x ... | x - 1 | x 670 * <---------> less than scan distance 671 * If all of the blocks at the end of the log have cycle number 672 * last_half_cycle, then we check the blocks at the start of 673 * the log looking for occurrences of last_half_cycle. If we 674 * find one, then our current estimate for the location of the 675 * first occurrence of last_half_cycle is wrong and we move 676 * back to the hole we've found. This case looks like 677 * x + 1 ... | x | x + 1 | x ... 678 * ^ binary search stopped here 679 * Another case we need to handle that only occurs in 256k 680 * logs is 681 * x + 1 ... | x ... | x+1 | x ... 682 * ^ binary search stops here 683 * In a 256k log, the scan at the end of the log will see the 684 * x + 1 blocks. We need to skip past those since that is 685 * certainly not the head of the log. By searching for 686 * last_half_cycle-1 we accomplish that. 687 */ 688 start_blk = log_bbnum - num_scan_bblks + head_blk; 689 ASSERT(head_blk <= INT_MAX && 690 (xfs_daddr_t) num_scan_bblks - head_blk >= 0); 691 if ((error = xlog_find_verify_cycle(log, start_blk, 692 num_scan_bblks - (int)head_blk, 693 (stop_on_cycle - 1), &new_blk))) 694 goto bp_err; 695 if (new_blk != -1) { 696 head_blk = new_blk; 697 goto bad_blk; 698 } 699 700 /* 701 * Scan beginning of log now. The last part of the physical 702 * log is good. This scan needs to verify that it doesn't find 703 * the last_half_cycle. 704 */ 705 start_blk = 0; 706 ASSERT(head_blk <= INT_MAX); 707 if ((error = xlog_find_verify_cycle(log, 708 start_blk, (int)head_blk, 709 stop_on_cycle, &new_blk))) 710 goto bp_err; 711 if (new_blk != -1) 712 head_blk = new_blk; 713 } 714 715 bad_blk: 716 /* 717 * Now we need to make sure head_blk is not pointing to a block in 718 * the middle of a log record. 719 */ 720 num_scan_bblks = XLOG_REC_SHIFT(log); 721 if (head_blk >= num_scan_bblks) { 722 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 723 724 /* start ptr at last block ptr before head_blk */ 725 if ((error = xlog_find_verify_log_record(log, start_blk, 726 &head_blk, 0)) == -1) { 727 error = XFS_ERROR(EIO); 728 goto bp_err; 729 } else if (error) 730 goto bp_err; 731 } else { 732 start_blk = 0; 733 ASSERT(head_blk <= INT_MAX); 734 if ((error = xlog_find_verify_log_record(log, start_blk, 735 &head_blk, 0)) == -1) { 736 /* We hit the beginning of the log during our search */ 737 start_blk = log_bbnum - num_scan_bblks + head_blk; 738 new_blk = log_bbnum; 739 ASSERT(start_blk <= INT_MAX && 740 (xfs_daddr_t) log_bbnum-start_blk >= 0); 741 ASSERT(head_blk <= INT_MAX); 742 if ((error = xlog_find_verify_log_record(log, 743 start_blk, &new_blk, 744 (int)head_blk)) == -1) { 745 error = XFS_ERROR(EIO); 746 goto bp_err; 747 } else if (error) 748 goto bp_err; 749 if (new_blk != log_bbnum) 750 head_blk = new_blk; 751 } else if (error) 752 goto bp_err; 753 } 754 755 xlog_put_bp(bp); 756 if (head_blk == log_bbnum) 757 *return_head_blk = 0; 758 else 759 *return_head_blk = head_blk; 760 /* 761 * When returning here, we have a good block number. Bad block 762 * means that during a previous crash, we didn't have a clean break 763 * from cycle number N to cycle number N-1. In this case, we need 764 * to find the first block with cycle number N-1. 765 */ 766 return 0; 767 768 bp_err: 769 xlog_put_bp(bp); 770 771 if (error) 772 xlog_warn("XFS: failed to find log head"); 773 return error; 774 } 775 776 /* 777 * Find the sync block number or the tail of the log. 778 * 779 * This will be the block number of the last record to have its 780 * associated buffers synced to disk. Every log record header has 781 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 782 * to get a sync block number. The only concern is to figure out which 783 * log record header to believe. 784 * 785 * The following algorithm uses the log record header with the largest 786 * lsn. The entire log record does not need to be valid. We only care 787 * that the header is valid. 788 * 789 * We could speed up search by using current head_blk buffer, but it is not 790 * available. 791 */ 792 int 793 xlog_find_tail( 794 xlog_t *log, 795 xfs_daddr_t *head_blk, 796 xfs_daddr_t *tail_blk) 797 { 798 xlog_rec_header_t *rhead; 799 xlog_op_header_t *op_head; 800 xfs_caddr_t offset = NULL; 801 xfs_buf_t *bp; 802 int error, i, found; 803 xfs_daddr_t umount_data_blk; 804 xfs_daddr_t after_umount_blk; 805 xfs_lsn_t tail_lsn; 806 int hblks; 807 808 found = 0; 809 810 /* 811 * Find previous log record 812 */ 813 if ((error = xlog_find_head(log, head_blk))) 814 return error; 815 816 bp = xlog_get_bp(log, 1); 817 if (!bp) 818 return ENOMEM; 819 if (*head_blk == 0) { /* special case */ 820 if ((error = xlog_bread(log, 0, 1, bp))) 821 goto bread_err; 822 offset = xlog_align(log, 0, 1, bp); 823 if (xlog_get_cycle(offset) == 0) { 824 *tail_blk = 0; 825 /* leave all other log inited values alone */ 826 goto exit; 827 } 828 } 829 830 /* 831 * Search backwards looking for log record header block 832 */ 833 ASSERT(*head_blk < INT_MAX); 834 for (i = (int)(*head_blk) - 1; i >= 0; i--) { 835 if ((error = xlog_bread(log, i, 1, bp))) 836 goto bread_err; 837 offset = xlog_align(log, i, 1, bp); 838 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) { 839 found = 1; 840 break; 841 } 842 } 843 /* 844 * If we haven't found the log record header block, start looking 845 * again from the end of the physical log. XXXmiken: There should be 846 * a check here to make sure we didn't search more than N blocks in 847 * the previous code. 848 */ 849 if (!found) { 850 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) { 851 if ((error = xlog_bread(log, i, 1, bp))) 852 goto bread_err; 853 offset = xlog_align(log, i, 1, bp); 854 if (XLOG_HEADER_MAGIC_NUM == 855 be32_to_cpu(*(__be32 *)offset)) { 856 found = 2; 857 break; 858 } 859 } 860 } 861 if (!found) { 862 xlog_warn("XFS: xlog_find_tail: couldn't find sync record"); 863 ASSERT(0); 864 return XFS_ERROR(EIO); 865 } 866 867 /* find blk_no of tail of log */ 868 rhead = (xlog_rec_header_t *)offset; 869 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 870 871 /* 872 * Reset log values according to the state of the log when we 873 * crashed. In the case where head_blk == 0, we bump curr_cycle 874 * one because the next write starts a new cycle rather than 875 * continuing the cycle of the last good log record. At this 876 * point we have guaranteed that all partial log records have been 877 * accounted for. Therefore, we know that the last good log record 878 * written was complete and ended exactly on the end boundary 879 * of the physical log. 880 */ 881 log->l_prev_block = i; 882 log->l_curr_block = (int)*head_blk; 883 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 884 if (found == 2) 885 log->l_curr_cycle++; 886 log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn); 887 log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn); 888 log->l_grant_reserve_cycle = log->l_curr_cycle; 889 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block); 890 log->l_grant_write_cycle = log->l_curr_cycle; 891 log->l_grant_write_bytes = BBTOB(log->l_curr_block); 892 893 /* 894 * Look for unmount record. If we find it, then we know there 895 * was a clean unmount. Since 'i' could be the last block in 896 * the physical log, we convert to a log block before comparing 897 * to the head_blk. 898 * 899 * Save the current tail lsn to use to pass to 900 * xlog_clear_stale_blocks() below. We won't want to clear the 901 * unmount record if there is one, so we pass the lsn of the 902 * unmount record rather than the block after it. 903 */ 904 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 905 int h_size = be32_to_cpu(rhead->h_size); 906 int h_version = be32_to_cpu(rhead->h_version); 907 908 if ((h_version & XLOG_VERSION_2) && 909 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 910 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 911 if (h_size % XLOG_HEADER_CYCLE_SIZE) 912 hblks++; 913 } else { 914 hblks = 1; 915 } 916 } else { 917 hblks = 1; 918 } 919 after_umount_blk = (i + hblks + (int) 920 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize; 921 tail_lsn = log->l_tail_lsn; 922 if (*head_blk == after_umount_blk && 923 be32_to_cpu(rhead->h_num_logops) == 1) { 924 umount_data_blk = (i + hblks) % log->l_logBBsize; 925 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) { 926 goto bread_err; 927 } 928 offset = xlog_align(log, umount_data_blk, 1, bp); 929 op_head = (xlog_op_header_t *)offset; 930 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 931 /* 932 * Set tail and last sync so that newly written 933 * log records will point recovery to after the 934 * current unmount record. 935 */ 936 log->l_tail_lsn = 937 xlog_assign_lsn(log->l_curr_cycle, 938 after_umount_blk); 939 log->l_last_sync_lsn = 940 xlog_assign_lsn(log->l_curr_cycle, 941 after_umount_blk); 942 *tail_blk = after_umount_blk; 943 944 /* 945 * Note that the unmount was clean. If the unmount 946 * was not clean, we need to know this to rebuild the 947 * superblock counters from the perag headers if we 948 * have a filesystem using non-persistent counters. 949 */ 950 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 951 } 952 } 953 954 /* 955 * Make sure that there are no blocks in front of the head 956 * with the same cycle number as the head. This can happen 957 * because we allow multiple outstanding log writes concurrently, 958 * and the later writes might make it out before earlier ones. 959 * 960 * We use the lsn from before modifying it so that we'll never 961 * overwrite the unmount record after a clean unmount. 962 * 963 * Do this only if we are going to recover the filesystem 964 * 965 * NOTE: This used to say "if (!readonly)" 966 * However on Linux, we can & do recover a read-only filesystem. 967 * We only skip recovery if NORECOVERY is specified on mount, 968 * in which case we would not be here. 969 * 970 * But... if the -device- itself is readonly, just skip this. 971 * We can't recover this device anyway, so it won't matter. 972 */ 973 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) { 974 error = xlog_clear_stale_blocks(log, tail_lsn); 975 } 976 977 bread_err: 978 exit: 979 xlog_put_bp(bp); 980 981 if (error) 982 xlog_warn("XFS: failed to locate log tail"); 983 return error; 984 } 985 986 /* 987 * Is the log zeroed at all? 988 * 989 * The last binary search should be changed to perform an X block read 990 * once X becomes small enough. You can then search linearly through 991 * the X blocks. This will cut down on the number of reads we need to do. 992 * 993 * If the log is partially zeroed, this routine will pass back the blkno 994 * of the first block with cycle number 0. It won't have a complete LR 995 * preceding it. 996 * 997 * Return: 998 * 0 => the log is completely written to 999 * -1 => use *blk_no as the first block of the log 1000 * >0 => error has occurred 1001 */ 1002 STATIC int 1003 xlog_find_zeroed( 1004 xlog_t *log, 1005 xfs_daddr_t *blk_no) 1006 { 1007 xfs_buf_t *bp; 1008 xfs_caddr_t offset; 1009 uint first_cycle, last_cycle; 1010 xfs_daddr_t new_blk, last_blk, start_blk; 1011 xfs_daddr_t num_scan_bblks; 1012 int error, log_bbnum = log->l_logBBsize; 1013 1014 *blk_no = 0; 1015 1016 /* check totally zeroed log */ 1017 bp = xlog_get_bp(log, 1); 1018 if (!bp) 1019 return ENOMEM; 1020 if ((error = xlog_bread(log, 0, 1, bp))) 1021 goto bp_err; 1022 offset = xlog_align(log, 0, 1, bp); 1023 first_cycle = xlog_get_cycle(offset); 1024 if (first_cycle == 0) { /* completely zeroed log */ 1025 *blk_no = 0; 1026 xlog_put_bp(bp); 1027 return -1; 1028 } 1029 1030 /* check partially zeroed log */ 1031 if ((error = xlog_bread(log, log_bbnum-1, 1, bp))) 1032 goto bp_err; 1033 offset = xlog_align(log, log_bbnum-1, 1, bp); 1034 last_cycle = xlog_get_cycle(offset); 1035 if (last_cycle != 0) { /* log completely written to */ 1036 xlog_put_bp(bp); 1037 return 0; 1038 } else if (first_cycle != 1) { 1039 /* 1040 * If the cycle of the last block is zero, the cycle of 1041 * the first block must be 1. If it's not, maybe we're 1042 * not looking at a log... Bail out. 1043 */ 1044 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)"); 1045 return XFS_ERROR(EINVAL); 1046 } 1047 1048 /* we have a partially zeroed log */ 1049 last_blk = log_bbnum-1; 1050 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1051 goto bp_err; 1052 1053 /* 1054 * Validate the answer. Because there is no way to guarantee that 1055 * the entire log is made up of log records which are the same size, 1056 * we scan over the defined maximum blocks. At this point, the maximum 1057 * is not chosen to mean anything special. XXXmiken 1058 */ 1059 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1060 ASSERT(num_scan_bblks <= INT_MAX); 1061 1062 if (last_blk < num_scan_bblks) 1063 num_scan_bblks = last_blk; 1064 start_blk = last_blk - num_scan_bblks; 1065 1066 /* 1067 * We search for any instances of cycle number 0 that occur before 1068 * our current estimate of the head. What we're trying to detect is 1069 * 1 ... | 0 | 1 | 0... 1070 * ^ binary search ends here 1071 */ 1072 if ((error = xlog_find_verify_cycle(log, start_blk, 1073 (int)num_scan_bblks, 0, &new_blk))) 1074 goto bp_err; 1075 if (new_blk != -1) 1076 last_blk = new_blk; 1077 1078 /* 1079 * Potentially backup over partial log record write. We don't need 1080 * to search the end of the log because we know it is zero. 1081 */ 1082 if ((error = xlog_find_verify_log_record(log, start_blk, 1083 &last_blk, 0)) == -1) { 1084 error = XFS_ERROR(EIO); 1085 goto bp_err; 1086 } else if (error) 1087 goto bp_err; 1088 1089 *blk_no = last_blk; 1090 bp_err: 1091 xlog_put_bp(bp); 1092 if (error) 1093 return error; 1094 return -1; 1095 } 1096 1097 /* 1098 * These are simple subroutines used by xlog_clear_stale_blocks() below 1099 * to initialize a buffer full of empty log record headers and write 1100 * them into the log. 1101 */ 1102 STATIC void 1103 xlog_add_record( 1104 xlog_t *log, 1105 xfs_caddr_t buf, 1106 int cycle, 1107 int block, 1108 int tail_cycle, 1109 int tail_block) 1110 { 1111 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1112 1113 memset(buf, 0, BBSIZE); 1114 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1115 recp->h_cycle = cpu_to_be32(cycle); 1116 recp->h_version = cpu_to_be32( 1117 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1118 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1119 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1120 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1121 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1122 } 1123 1124 STATIC int 1125 xlog_write_log_records( 1126 xlog_t *log, 1127 int cycle, 1128 int start_block, 1129 int blocks, 1130 int tail_cycle, 1131 int tail_block) 1132 { 1133 xfs_caddr_t offset; 1134 xfs_buf_t *bp; 1135 int balign, ealign; 1136 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1); 1137 int end_block = start_block + blocks; 1138 int bufblks; 1139 int error = 0; 1140 int i, j = 0; 1141 1142 bufblks = 1 << ffs(blocks); 1143 while (!(bp = xlog_get_bp(log, bufblks))) { 1144 bufblks >>= 1; 1145 if (bufblks <= log->l_sectbb_log) 1146 return ENOMEM; 1147 } 1148 1149 /* We may need to do a read at the start to fill in part of 1150 * the buffer in the starting sector not covered by the first 1151 * write below. 1152 */ 1153 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block); 1154 if (balign != start_block) { 1155 if ((error = xlog_bread(log, start_block, 1, bp))) { 1156 xlog_put_bp(bp); 1157 return error; 1158 } 1159 j = start_block - balign; 1160 } 1161 1162 for (i = start_block; i < end_block; i += bufblks) { 1163 int bcount, endcount; 1164 1165 bcount = min(bufblks, end_block - start_block); 1166 endcount = bcount - j; 1167 1168 /* We may need to do a read at the end to fill in part of 1169 * the buffer in the final sector not covered by the write. 1170 * If this is the same sector as the above read, skip it. 1171 */ 1172 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block); 1173 if (j == 0 && (start_block + endcount > ealign)) { 1174 offset = XFS_BUF_PTR(bp); 1175 balign = BBTOB(ealign - start_block); 1176 error = XFS_BUF_SET_PTR(bp, offset + balign, 1177 BBTOB(sectbb)); 1178 if (!error) 1179 error = xlog_bread(log, ealign, sectbb, bp); 1180 if (!error) 1181 error = XFS_BUF_SET_PTR(bp, offset, bufblks); 1182 if (error) 1183 break; 1184 } 1185 1186 offset = xlog_align(log, start_block, endcount, bp); 1187 for (; j < endcount; j++) { 1188 xlog_add_record(log, offset, cycle, i+j, 1189 tail_cycle, tail_block); 1190 offset += BBSIZE; 1191 } 1192 error = xlog_bwrite(log, start_block, endcount, bp); 1193 if (error) 1194 break; 1195 start_block += endcount; 1196 j = 0; 1197 } 1198 xlog_put_bp(bp); 1199 return error; 1200 } 1201 1202 /* 1203 * This routine is called to blow away any incomplete log writes out 1204 * in front of the log head. We do this so that we won't become confused 1205 * if we come up, write only a little bit more, and then crash again. 1206 * If we leave the partial log records out there, this situation could 1207 * cause us to think those partial writes are valid blocks since they 1208 * have the current cycle number. We get rid of them by overwriting them 1209 * with empty log records with the old cycle number rather than the 1210 * current one. 1211 * 1212 * The tail lsn is passed in rather than taken from 1213 * the log so that we will not write over the unmount record after a 1214 * clean unmount in a 512 block log. Doing so would leave the log without 1215 * any valid log records in it until a new one was written. If we crashed 1216 * during that time we would not be able to recover. 1217 */ 1218 STATIC int 1219 xlog_clear_stale_blocks( 1220 xlog_t *log, 1221 xfs_lsn_t tail_lsn) 1222 { 1223 int tail_cycle, head_cycle; 1224 int tail_block, head_block; 1225 int tail_distance, max_distance; 1226 int distance; 1227 int error; 1228 1229 tail_cycle = CYCLE_LSN(tail_lsn); 1230 tail_block = BLOCK_LSN(tail_lsn); 1231 head_cycle = log->l_curr_cycle; 1232 head_block = log->l_curr_block; 1233 1234 /* 1235 * Figure out the distance between the new head of the log 1236 * and the tail. We want to write over any blocks beyond the 1237 * head that we may have written just before the crash, but 1238 * we don't want to overwrite the tail of the log. 1239 */ 1240 if (head_cycle == tail_cycle) { 1241 /* 1242 * The tail is behind the head in the physical log, 1243 * so the distance from the head to the tail is the 1244 * distance from the head to the end of the log plus 1245 * the distance from the beginning of the log to the 1246 * tail. 1247 */ 1248 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1249 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1250 XFS_ERRLEVEL_LOW, log->l_mp); 1251 return XFS_ERROR(EFSCORRUPTED); 1252 } 1253 tail_distance = tail_block + (log->l_logBBsize - head_block); 1254 } else { 1255 /* 1256 * The head is behind the tail in the physical log, 1257 * so the distance from the head to the tail is just 1258 * the tail block minus the head block. 1259 */ 1260 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1261 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1262 XFS_ERRLEVEL_LOW, log->l_mp); 1263 return XFS_ERROR(EFSCORRUPTED); 1264 } 1265 tail_distance = tail_block - head_block; 1266 } 1267 1268 /* 1269 * If the head is right up against the tail, we can't clear 1270 * anything. 1271 */ 1272 if (tail_distance <= 0) { 1273 ASSERT(tail_distance == 0); 1274 return 0; 1275 } 1276 1277 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1278 /* 1279 * Take the smaller of the maximum amount of outstanding I/O 1280 * we could have and the distance to the tail to clear out. 1281 * We take the smaller so that we don't overwrite the tail and 1282 * we don't waste all day writing from the head to the tail 1283 * for no reason. 1284 */ 1285 max_distance = MIN(max_distance, tail_distance); 1286 1287 if ((head_block + max_distance) <= log->l_logBBsize) { 1288 /* 1289 * We can stomp all the blocks we need to without 1290 * wrapping around the end of the log. Just do it 1291 * in a single write. Use the cycle number of the 1292 * current cycle minus one so that the log will look like: 1293 * n ... | n - 1 ... 1294 */ 1295 error = xlog_write_log_records(log, (head_cycle - 1), 1296 head_block, max_distance, tail_cycle, 1297 tail_block); 1298 if (error) 1299 return error; 1300 } else { 1301 /* 1302 * We need to wrap around the end of the physical log in 1303 * order to clear all the blocks. Do it in two separate 1304 * I/Os. The first write should be from the head to the 1305 * end of the physical log, and it should use the current 1306 * cycle number minus one just like above. 1307 */ 1308 distance = log->l_logBBsize - head_block; 1309 error = xlog_write_log_records(log, (head_cycle - 1), 1310 head_block, distance, tail_cycle, 1311 tail_block); 1312 1313 if (error) 1314 return error; 1315 1316 /* 1317 * Now write the blocks at the start of the physical log. 1318 * This writes the remainder of the blocks we want to clear. 1319 * It uses the current cycle number since we're now on the 1320 * same cycle as the head so that we get: 1321 * n ... n ... | n - 1 ... 1322 * ^^^^^ blocks we're writing 1323 */ 1324 distance = max_distance - (log->l_logBBsize - head_block); 1325 error = xlog_write_log_records(log, head_cycle, 0, distance, 1326 tail_cycle, tail_block); 1327 if (error) 1328 return error; 1329 } 1330 1331 return 0; 1332 } 1333 1334 /****************************************************************************** 1335 * 1336 * Log recover routines 1337 * 1338 ****************************************************************************** 1339 */ 1340 1341 STATIC xlog_recover_t * 1342 xlog_recover_find_tid( 1343 xlog_recover_t *q, 1344 xlog_tid_t tid) 1345 { 1346 xlog_recover_t *p = q; 1347 1348 while (p != NULL) { 1349 if (p->r_log_tid == tid) 1350 break; 1351 p = p->r_next; 1352 } 1353 return p; 1354 } 1355 1356 STATIC void 1357 xlog_recover_put_hashq( 1358 xlog_recover_t **q, 1359 xlog_recover_t *trans) 1360 { 1361 trans->r_next = *q; 1362 *q = trans; 1363 } 1364 1365 STATIC void 1366 xlog_recover_add_item( 1367 xlog_recover_item_t **itemq) 1368 { 1369 xlog_recover_item_t *item; 1370 1371 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 1372 xlog_recover_insert_item_backq(itemq, item); 1373 } 1374 1375 STATIC int 1376 xlog_recover_add_to_cont_trans( 1377 xlog_recover_t *trans, 1378 xfs_caddr_t dp, 1379 int len) 1380 { 1381 xlog_recover_item_t *item; 1382 xfs_caddr_t ptr, old_ptr; 1383 int old_len; 1384 1385 item = trans->r_itemq; 1386 if (item == NULL) { 1387 /* finish copying rest of trans header */ 1388 xlog_recover_add_item(&trans->r_itemq); 1389 ptr = (xfs_caddr_t) &trans->r_theader + 1390 sizeof(xfs_trans_header_t) - len; 1391 memcpy(ptr, dp, len); /* d, s, l */ 1392 return 0; 1393 } 1394 item = item->ri_prev; 1395 1396 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 1397 old_len = item->ri_buf[item->ri_cnt-1].i_len; 1398 1399 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u); 1400 memcpy(&ptr[old_len], dp, len); /* d, s, l */ 1401 item->ri_buf[item->ri_cnt-1].i_len += len; 1402 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 1403 return 0; 1404 } 1405 1406 /* 1407 * The next region to add is the start of a new region. It could be 1408 * a whole region or it could be the first part of a new region. Because 1409 * of this, the assumption here is that the type and size fields of all 1410 * format structures fit into the first 32 bits of the structure. 1411 * 1412 * This works because all regions must be 32 bit aligned. Therefore, we 1413 * either have both fields or we have neither field. In the case we have 1414 * neither field, the data part of the region is zero length. We only have 1415 * a log_op_header and can throw away the header since a new one will appear 1416 * later. If we have at least 4 bytes, then we can determine how many regions 1417 * will appear in the current log item. 1418 */ 1419 STATIC int 1420 xlog_recover_add_to_trans( 1421 xlog_recover_t *trans, 1422 xfs_caddr_t dp, 1423 int len) 1424 { 1425 xfs_inode_log_format_t *in_f; /* any will do */ 1426 xlog_recover_item_t *item; 1427 xfs_caddr_t ptr; 1428 1429 if (!len) 1430 return 0; 1431 item = trans->r_itemq; 1432 if (item == NULL) { 1433 /* we need to catch log corruptions here */ 1434 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 1435 xlog_warn("XFS: xlog_recover_add_to_trans: " 1436 "bad header magic number"); 1437 ASSERT(0); 1438 return XFS_ERROR(EIO); 1439 } 1440 if (len == sizeof(xfs_trans_header_t)) 1441 xlog_recover_add_item(&trans->r_itemq); 1442 memcpy(&trans->r_theader, dp, len); /* d, s, l */ 1443 return 0; 1444 } 1445 1446 ptr = kmem_alloc(len, KM_SLEEP); 1447 memcpy(ptr, dp, len); 1448 in_f = (xfs_inode_log_format_t *)ptr; 1449 1450 if (item->ri_prev->ri_total != 0 && 1451 item->ri_prev->ri_total == item->ri_prev->ri_cnt) { 1452 xlog_recover_add_item(&trans->r_itemq); 1453 } 1454 item = trans->r_itemq; 1455 item = item->ri_prev; 1456 1457 if (item->ri_total == 0) { /* first region to be added */ 1458 if (in_f->ilf_size == 0 || 1459 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 1460 xlog_warn( 1461 "XFS: bad number of regions (%d) in inode log format", 1462 in_f->ilf_size); 1463 ASSERT(0); 1464 return XFS_ERROR(EIO); 1465 } 1466 1467 item->ri_total = in_f->ilf_size; 1468 item->ri_buf = 1469 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 1470 KM_SLEEP); 1471 } 1472 ASSERT(item->ri_total > item->ri_cnt); 1473 /* Description region is ri_buf[0] */ 1474 item->ri_buf[item->ri_cnt].i_addr = ptr; 1475 item->ri_buf[item->ri_cnt].i_len = len; 1476 item->ri_cnt++; 1477 return 0; 1478 } 1479 1480 STATIC void 1481 xlog_recover_new_tid( 1482 xlog_recover_t **q, 1483 xlog_tid_t tid, 1484 xfs_lsn_t lsn) 1485 { 1486 xlog_recover_t *trans; 1487 1488 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP); 1489 trans->r_log_tid = tid; 1490 trans->r_lsn = lsn; 1491 xlog_recover_put_hashq(q, trans); 1492 } 1493 1494 STATIC int 1495 xlog_recover_unlink_tid( 1496 xlog_recover_t **q, 1497 xlog_recover_t *trans) 1498 { 1499 xlog_recover_t *tp; 1500 int found = 0; 1501 1502 ASSERT(trans != NULL); 1503 if (trans == *q) { 1504 *q = (*q)->r_next; 1505 } else { 1506 tp = *q; 1507 while (tp) { 1508 if (tp->r_next == trans) { 1509 found = 1; 1510 break; 1511 } 1512 tp = tp->r_next; 1513 } 1514 if (!found) { 1515 xlog_warn( 1516 "XFS: xlog_recover_unlink_tid: trans not found"); 1517 ASSERT(0); 1518 return XFS_ERROR(EIO); 1519 } 1520 tp->r_next = tp->r_next->r_next; 1521 } 1522 return 0; 1523 } 1524 1525 STATIC void 1526 xlog_recover_insert_item_backq( 1527 xlog_recover_item_t **q, 1528 xlog_recover_item_t *item) 1529 { 1530 if (*q == NULL) { 1531 item->ri_prev = item->ri_next = item; 1532 *q = item; 1533 } else { 1534 item->ri_next = *q; 1535 item->ri_prev = (*q)->ri_prev; 1536 (*q)->ri_prev = item; 1537 item->ri_prev->ri_next = item; 1538 } 1539 } 1540 1541 STATIC void 1542 xlog_recover_insert_item_frontq( 1543 xlog_recover_item_t **q, 1544 xlog_recover_item_t *item) 1545 { 1546 xlog_recover_insert_item_backq(q, item); 1547 *q = item; 1548 } 1549 1550 STATIC int 1551 xlog_recover_reorder_trans( 1552 xlog_recover_t *trans) 1553 { 1554 xlog_recover_item_t *first_item, *itemq, *itemq_next; 1555 xfs_buf_log_format_t *buf_f; 1556 ushort flags = 0; 1557 1558 first_item = itemq = trans->r_itemq; 1559 trans->r_itemq = NULL; 1560 do { 1561 itemq_next = itemq->ri_next; 1562 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr; 1563 1564 switch (ITEM_TYPE(itemq)) { 1565 case XFS_LI_BUF: 1566 flags = buf_f->blf_flags; 1567 if (!(flags & XFS_BLI_CANCEL)) { 1568 xlog_recover_insert_item_frontq(&trans->r_itemq, 1569 itemq); 1570 break; 1571 } 1572 case XFS_LI_INODE: 1573 case XFS_LI_DQUOT: 1574 case XFS_LI_QUOTAOFF: 1575 case XFS_LI_EFD: 1576 case XFS_LI_EFI: 1577 xlog_recover_insert_item_backq(&trans->r_itemq, itemq); 1578 break; 1579 default: 1580 xlog_warn( 1581 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation"); 1582 ASSERT(0); 1583 return XFS_ERROR(EIO); 1584 } 1585 itemq = itemq_next; 1586 } while (first_item != itemq); 1587 return 0; 1588 } 1589 1590 /* 1591 * Build up the table of buf cancel records so that we don't replay 1592 * cancelled data in the second pass. For buffer records that are 1593 * not cancel records, there is nothing to do here so we just return. 1594 * 1595 * If we get a cancel record which is already in the table, this indicates 1596 * that the buffer was cancelled multiple times. In order to ensure 1597 * that during pass 2 we keep the record in the table until we reach its 1598 * last occurrence in the log, we keep a reference count in the cancel 1599 * record in the table to tell us how many times we expect to see this 1600 * record during the second pass. 1601 */ 1602 STATIC void 1603 xlog_recover_do_buffer_pass1( 1604 xlog_t *log, 1605 xfs_buf_log_format_t *buf_f) 1606 { 1607 xfs_buf_cancel_t *bcp; 1608 xfs_buf_cancel_t *nextp; 1609 xfs_buf_cancel_t *prevp; 1610 xfs_buf_cancel_t **bucket; 1611 xfs_daddr_t blkno = 0; 1612 uint len = 0; 1613 ushort flags = 0; 1614 1615 switch (buf_f->blf_type) { 1616 case XFS_LI_BUF: 1617 blkno = buf_f->blf_blkno; 1618 len = buf_f->blf_len; 1619 flags = buf_f->blf_flags; 1620 break; 1621 } 1622 1623 /* 1624 * If this isn't a cancel buffer item, then just return. 1625 */ 1626 if (!(flags & XFS_BLI_CANCEL)) 1627 return; 1628 1629 /* 1630 * Insert an xfs_buf_cancel record into the hash table of 1631 * them. If there is already an identical record, bump 1632 * its reference count. 1633 */ 1634 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % 1635 XLOG_BC_TABLE_SIZE]; 1636 /* 1637 * If the hash bucket is empty then just insert a new record into 1638 * the bucket. 1639 */ 1640 if (*bucket == NULL) { 1641 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), 1642 KM_SLEEP); 1643 bcp->bc_blkno = blkno; 1644 bcp->bc_len = len; 1645 bcp->bc_refcount = 1; 1646 bcp->bc_next = NULL; 1647 *bucket = bcp; 1648 return; 1649 } 1650 1651 /* 1652 * The hash bucket is not empty, so search for duplicates of our 1653 * record. If we find one them just bump its refcount. If not 1654 * then add us at the end of the list. 1655 */ 1656 prevp = NULL; 1657 nextp = *bucket; 1658 while (nextp != NULL) { 1659 if (nextp->bc_blkno == blkno && nextp->bc_len == len) { 1660 nextp->bc_refcount++; 1661 return; 1662 } 1663 prevp = nextp; 1664 nextp = nextp->bc_next; 1665 } 1666 ASSERT(prevp != NULL); 1667 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), 1668 KM_SLEEP); 1669 bcp->bc_blkno = blkno; 1670 bcp->bc_len = len; 1671 bcp->bc_refcount = 1; 1672 bcp->bc_next = NULL; 1673 prevp->bc_next = bcp; 1674 } 1675 1676 /* 1677 * Check to see whether the buffer being recovered has a corresponding 1678 * entry in the buffer cancel record table. If it does then return 1 1679 * so that it will be cancelled, otherwise return 0. If the buffer is 1680 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement 1681 * the refcount on the entry in the table and remove it from the table 1682 * if this is the last reference. 1683 * 1684 * We remove the cancel record from the table when we encounter its 1685 * last occurrence in the log so that if the same buffer is re-used 1686 * again after its last cancellation we actually replay the changes 1687 * made at that point. 1688 */ 1689 STATIC int 1690 xlog_check_buffer_cancelled( 1691 xlog_t *log, 1692 xfs_daddr_t blkno, 1693 uint len, 1694 ushort flags) 1695 { 1696 xfs_buf_cancel_t *bcp; 1697 xfs_buf_cancel_t *prevp; 1698 xfs_buf_cancel_t **bucket; 1699 1700 if (log->l_buf_cancel_table == NULL) { 1701 /* 1702 * There is nothing in the table built in pass one, 1703 * so this buffer must not be cancelled. 1704 */ 1705 ASSERT(!(flags & XFS_BLI_CANCEL)); 1706 return 0; 1707 } 1708 1709 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % 1710 XLOG_BC_TABLE_SIZE]; 1711 bcp = *bucket; 1712 if (bcp == NULL) { 1713 /* 1714 * There is no corresponding entry in the table built 1715 * in pass one, so this buffer has not been cancelled. 1716 */ 1717 ASSERT(!(flags & XFS_BLI_CANCEL)); 1718 return 0; 1719 } 1720 1721 /* 1722 * Search for an entry in the buffer cancel table that 1723 * matches our buffer. 1724 */ 1725 prevp = NULL; 1726 while (bcp != NULL) { 1727 if (bcp->bc_blkno == blkno && bcp->bc_len == len) { 1728 /* 1729 * We've go a match, so return 1 so that the 1730 * recovery of this buffer is cancelled. 1731 * If this buffer is actually a buffer cancel 1732 * log item, then decrement the refcount on the 1733 * one in the table and remove it if this is the 1734 * last reference. 1735 */ 1736 if (flags & XFS_BLI_CANCEL) { 1737 bcp->bc_refcount--; 1738 if (bcp->bc_refcount == 0) { 1739 if (prevp == NULL) { 1740 *bucket = bcp->bc_next; 1741 } else { 1742 prevp->bc_next = bcp->bc_next; 1743 } 1744 kmem_free(bcp); 1745 } 1746 } 1747 return 1; 1748 } 1749 prevp = bcp; 1750 bcp = bcp->bc_next; 1751 } 1752 /* 1753 * We didn't find a corresponding entry in the table, so 1754 * return 0 so that the buffer is NOT cancelled. 1755 */ 1756 ASSERT(!(flags & XFS_BLI_CANCEL)); 1757 return 0; 1758 } 1759 1760 STATIC int 1761 xlog_recover_do_buffer_pass2( 1762 xlog_t *log, 1763 xfs_buf_log_format_t *buf_f) 1764 { 1765 xfs_daddr_t blkno = 0; 1766 ushort flags = 0; 1767 uint len = 0; 1768 1769 switch (buf_f->blf_type) { 1770 case XFS_LI_BUF: 1771 blkno = buf_f->blf_blkno; 1772 flags = buf_f->blf_flags; 1773 len = buf_f->blf_len; 1774 break; 1775 } 1776 1777 return xlog_check_buffer_cancelled(log, blkno, len, flags); 1778 } 1779 1780 /* 1781 * Perform recovery for a buffer full of inodes. In these buffers, 1782 * the only data which should be recovered is that which corresponds 1783 * to the di_next_unlinked pointers in the on disk inode structures. 1784 * The rest of the data for the inodes is always logged through the 1785 * inodes themselves rather than the inode buffer and is recovered 1786 * in xlog_recover_do_inode_trans(). 1787 * 1788 * The only time when buffers full of inodes are fully recovered is 1789 * when the buffer is full of newly allocated inodes. In this case 1790 * the buffer will not be marked as an inode buffer and so will be 1791 * sent to xlog_recover_do_reg_buffer() below during recovery. 1792 */ 1793 STATIC int 1794 xlog_recover_do_inode_buffer( 1795 xfs_mount_t *mp, 1796 xlog_recover_item_t *item, 1797 xfs_buf_t *bp, 1798 xfs_buf_log_format_t *buf_f) 1799 { 1800 int i; 1801 int item_index; 1802 int bit; 1803 int nbits; 1804 int reg_buf_offset; 1805 int reg_buf_bytes; 1806 int next_unlinked_offset; 1807 int inodes_per_buf; 1808 xfs_agino_t *logged_nextp; 1809 xfs_agino_t *buffer_nextp; 1810 unsigned int *data_map = NULL; 1811 unsigned int map_size = 0; 1812 1813 switch (buf_f->blf_type) { 1814 case XFS_LI_BUF: 1815 data_map = buf_f->blf_data_map; 1816 map_size = buf_f->blf_map_size; 1817 break; 1818 } 1819 /* 1820 * Set the variables corresponding to the current region to 1821 * 0 so that we'll initialize them on the first pass through 1822 * the loop. 1823 */ 1824 reg_buf_offset = 0; 1825 reg_buf_bytes = 0; 1826 bit = 0; 1827 nbits = 0; 1828 item_index = 0; 1829 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog; 1830 for (i = 0; i < inodes_per_buf; i++) { 1831 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 1832 offsetof(xfs_dinode_t, di_next_unlinked); 1833 1834 while (next_unlinked_offset >= 1835 (reg_buf_offset + reg_buf_bytes)) { 1836 /* 1837 * The next di_next_unlinked field is beyond 1838 * the current logged region. Find the next 1839 * logged region that contains or is beyond 1840 * the current di_next_unlinked field. 1841 */ 1842 bit += nbits; 1843 bit = xfs_next_bit(data_map, map_size, bit); 1844 1845 /* 1846 * If there are no more logged regions in the 1847 * buffer, then we're done. 1848 */ 1849 if (bit == -1) { 1850 return 0; 1851 } 1852 1853 nbits = xfs_contig_bits(data_map, map_size, 1854 bit); 1855 ASSERT(nbits > 0); 1856 reg_buf_offset = bit << XFS_BLI_SHIFT; 1857 reg_buf_bytes = nbits << XFS_BLI_SHIFT; 1858 item_index++; 1859 } 1860 1861 /* 1862 * If the current logged region starts after the current 1863 * di_next_unlinked field, then move on to the next 1864 * di_next_unlinked field. 1865 */ 1866 if (next_unlinked_offset < reg_buf_offset) { 1867 continue; 1868 } 1869 1870 ASSERT(item->ri_buf[item_index].i_addr != NULL); 1871 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0); 1872 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp)); 1873 1874 /* 1875 * The current logged region contains a copy of the 1876 * current di_next_unlinked field. Extract its value 1877 * and copy it to the buffer copy. 1878 */ 1879 logged_nextp = (xfs_agino_t *) 1880 ((char *)(item->ri_buf[item_index].i_addr) + 1881 (next_unlinked_offset - reg_buf_offset)); 1882 if (unlikely(*logged_nextp == 0)) { 1883 xfs_fs_cmn_err(CE_ALERT, mp, 1884 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field", 1885 item, bp); 1886 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 1887 XFS_ERRLEVEL_LOW, mp); 1888 return XFS_ERROR(EFSCORRUPTED); 1889 } 1890 1891 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp, 1892 next_unlinked_offset); 1893 *buffer_nextp = *logged_nextp; 1894 } 1895 1896 return 0; 1897 } 1898 1899 /* 1900 * Perform a 'normal' buffer recovery. Each logged region of the 1901 * buffer should be copied over the corresponding region in the 1902 * given buffer. The bitmap in the buf log format structure indicates 1903 * where to place the logged data. 1904 */ 1905 /*ARGSUSED*/ 1906 STATIC void 1907 xlog_recover_do_reg_buffer( 1908 xlog_recover_item_t *item, 1909 xfs_buf_t *bp, 1910 xfs_buf_log_format_t *buf_f) 1911 { 1912 int i; 1913 int bit; 1914 int nbits; 1915 unsigned int *data_map = NULL; 1916 unsigned int map_size = 0; 1917 int error; 1918 1919 switch (buf_f->blf_type) { 1920 case XFS_LI_BUF: 1921 data_map = buf_f->blf_data_map; 1922 map_size = buf_f->blf_map_size; 1923 break; 1924 } 1925 bit = 0; 1926 i = 1; /* 0 is the buf format structure */ 1927 while (1) { 1928 bit = xfs_next_bit(data_map, map_size, bit); 1929 if (bit == -1) 1930 break; 1931 nbits = xfs_contig_bits(data_map, map_size, bit); 1932 ASSERT(nbits > 0); 1933 ASSERT(item->ri_buf[i].i_addr != NULL); 1934 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0); 1935 ASSERT(XFS_BUF_COUNT(bp) >= 1936 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT)); 1937 1938 /* 1939 * Do a sanity check if this is a dquot buffer. Just checking 1940 * the first dquot in the buffer should do. XXXThis is 1941 * probably a good thing to do for other buf types also. 1942 */ 1943 error = 0; 1944 if (buf_f->blf_flags & 1945 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) { 1946 error = xfs_qm_dqcheck((xfs_disk_dquot_t *) 1947 item->ri_buf[i].i_addr, 1948 -1, 0, XFS_QMOPT_DOWARN, 1949 "dquot_buf_recover"); 1950 } 1951 if (!error) 1952 memcpy(xfs_buf_offset(bp, 1953 (uint)bit << XFS_BLI_SHIFT), /* dest */ 1954 item->ri_buf[i].i_addr, /* source */ 1955 nbits<<XFS_BLI_SHIFT); /* length */ 1956 i++; 1957 bit += nbits; 1958 } 1959 1960 /* Shouldn't be any more regions */ 1961 ASSERT(i == item->ri_total); 1962 } 1963 1964 /* 1965 * Do some primitive error checking on ondisk dquot data structures. 1966 */ 1967 int 1968 xfs_qm_dqcheck( 1969 xfs_disk_dquot_t *ddq, 1970 xfs_dqid_t id, 1971 uint type, /* used only when IO_dorepair is true */ 1972 uint flags, 1973 char *str) 1974 { 1975 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq; 1976 int errs = 0; 1977 1978 /* 1979 * We can encounter an uninitialized dquot buffer for 2 reasons: 1980 * 1. If we crash while deleting the quotainode(s), and those blks got 1981 * used for user data. This is because we take the path of regular 1982 * file deletion; however, the size field of quotainodes is never 1983 * updated, so all the tricks that we play in itruncate_finish 1984 * don't quite matter. 1985 * 1986 * 2. We don't play the quota buffers when there's a quotaoff logitem. 1987 * But the allocation will be replayed so we'll end up with an 1988 * uninitialized quota block. 1989 * 1990 * This is all fine; things are still consistent, and we haven't lost 1991 * any quota information. Just don't complain about bad dquot blks. 1992 */ 1993 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) { 1994 if (flags & XFS_QMOPT_DOWARN) 1995 cmn_err(CE_ALERT, 1996 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x", 1997 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC); 1998 errs++; 1999 } 2000 if (ddq->d_version != XFS_DQUOT_VERSION) { 2001 if (flags & XFS_QMOPT_DOWARN) 2002 cmn_err(CE_ALERT, 2003 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x", 2004 str, id, ddq->d_version, XFS_DQUOT_VERSION); 2005 errs++; 2006 } 2007 2008 if (ddq->d_flags != XFS_DQ_USER && 2009 ddq->d_flags != XFS_DQ_PROJ && 2010 ddq->d_flags != XFS_DQ_GROUP) { 2011 if (flags & XFS_QMOPT_DOWARN) 2012 cmn_err(CE_ALERT, 2013 "%s : XFS dquot ID 0x%x, unknown flags 0x%x", 2014 str, id, ddq->d_flags); 2015 errs++; 2016 } 2017 2018 if (id != -1 && id != be32_to_cpu(ddq->d_id)) { 2019 if (flags & XFS_QMOPT_DOWARN) 2020 cmn_err(CE_ALERT, 2021 "%s : ondisk-dquot 0x%p, ID mismatch: " 2022 "0x%x expected, found id 0x%x", 2023 str, ddq, id, be32_to_cpu(ddq->d_id)); 2024 errs++; 2025 } 2026 2027 if (!errs && ddq->d_id) { 2028 if (ddq->d_blk_softlimit && 2029 be64_to_cpu(ddq->d_bcount) >= 2030 be64_to_cpu(ddq->d_blk_softlimit)) { 2031 if (!ddq->d_btimer) { 2032 if (flags & XFS_QMOPT_DOWARN) 2033 cmn_err(CE_ALERT, 2034 "%s : Dquot ID 0x%x (0x%p) " 2035 "BLK TIMER NOT STARTED", 2036 str, (int)be32_to_cpu(ddq->d_id), ddq); 2037 errs++; 2038 } 2039 } 2040 if (ddq->d_ino_softlimit && 2041 be64_to_cpu(ddq->d_icount) >= 2042 be64_to_cpu(ddq->d_ino_softlimit)) { 2043 if (!ddq->d_itimer) { 2044 if (flags & XFS_QMOPT_DOWARN) 2045 cmn_err(CE_ALERT, 2046 "%s : Dquot ID 0x%x (0x%p) " 2047 "INODE TIMER NOT STARTED", 2048 str, (int)be32_to_cpu(ddq->d_id), ddq); 2049 errs++; 2050 } 2051 } 2052 if (ddq->d_rtb_softlimit && 2053 be64_to_cpu(ddq->d_rtbcount) >= 2054 be64_to_cpu(ddq->d_rtb_softlimit)) { 2055 if (!ddq->d_rtbtimer) { 2056 if (flags & XFS_QMOPT_DOWARN) 2057 cmn_err(CE_ALERT, 2058 "%s : Dquot ID 0x%x (0x%p) " 2059 "RTBLK TIMER NOT STARTED", 2060 str, (int)be32_to_cpu(ddq->d_id), ddq); 2061 errs++; 2062 } 2063 } 2064 } 2065 2066 if (!errs || !(flags & XFS_QMOPT_DQREPAIR)) 2067 return errs; 2068 2069 if (flags & XFS_QMOPT_DOWARN) 2070 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id); 2071 2072 /* 2073 * Typically, a repair is only requested by quotacheck. 2074 */ 2075 ASSERT(id != -1); 2076 ASSERT(flags & XFS_QMOPT_DQREPAIR); 2077 memset(d, 0, sizeof(xfs_dqblk_t)); 2078 2079 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC); 2080 d->dd_diskdq.d_version = XFS_DQUOT_VERSION; 2081 d->dd_diskdq.d_flags = type; 2082 d->dd_diskdq.d_id = cpu_to_be32(id); 2083 2084 return errs; 2085 } 2086 2087 /* 2088 * Perform a dquot buffer recovery. 2089 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type 2090 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2091 * Else, treat it as a regular buffer and do recovery. 2092 */ 2093 STATIC void 2094 xlog_recover_do_dquot_buffer( 2095 xfs_mount_t *mp, 2096 xlog_t *log, 2097 xlog_recover_item_t *item, 2098 xfs_buf_t *bp, 2099 xfs_buf_log_format_t *buf_f) 2100 { 2101 uint type; 2102 2103 /* 2104 * Filesystems are required to send in quota flags at mount time. 2105 */ 2106 if (mp->m_qflags == 0) { 2107 return; 2108 } 2109 2110 type = 0; 2111 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF) 2112 type |= XFS_DQ_USER; 2113 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF) 2114 type |= XFS_DQ_PROJ; 2115 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF) 2116 type |= XFS_DQ_GROUP; 2117 /* 2118 * This type of quotas was turned off, so ignore this buffer 2119 */ 2120 if (log->l_quotaoffs_flag & type) 2121 return; 2122 2123 xlog_recover_do_reg_buffer(item, bp, buf_f); 2124 } 2125 2126 /* 2127 * This routine replays a modification made to a buffer at runtime. 2128 * There are actually two types of buffer, regular and inode, which 2129 * are handled differently. Inode buffers are handled differently 2130 * in that we only recover a specific set of data from them, namely 2131 * the inode di_next_unlinked fields. This is because all other inode 2132 * data is actually logged via inode records and any data we replay 2133 * here which overlaps that may be stale. 2134 * 2135 * When meta-data buffers are freed at run time we log a buffer item 2136 * with the XFS_BLI_CANCEL bit set to indicate that previous copies 2137 * of the buffer in the log should not be replayed at recovery time. 2138 * This is so that if the blocks covered by the buffer are reused for 2139 * file data before we crash we don't end up replaying old, freed 2140 * meta-data into a user's file. 2141 * 2142 * To handle the cancellation of buffer log items, we make two passes 2143 * over the log during recovery. During the first we build a table of 2144 * those buffers which have been cancelled, and during the second we 2145 * only replay those buffers which do not have corresponding cancel 2146 * records in the table. See xlog_recover_do_buffer_pass[1,2] above 2147 * for more details on the implementation of the table of cancel records. 2148 */ 2149 STATIC int 2150 xlog_recover_do_buffer_trans( 2151 xlog_t *log, 2152 xlog_recover_item_t *item, 2153 int pass) 2154 { 2155 xfs_buf_log_format_t *buf_f; 2156 xfs_mount_t *mp; 2157 xfs_buf_t *bp; 2158 int error; 2159 int cancel; 2160 xfs_daddr_t blkno; 2161 int len; 2162 ushort flags; 2163 2164 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr; 2165 2166 if (pass == XLOG_RECOVER_PASS1) { 2167 /* 2168 * In this pass we're only looking for buf items 2169 * with the XFS_BLI_CANCEL bit set. 2170 */ 2171 xlog_recover_do_buffer_pass1(log, buf_f); 2172 return 0; 2173 } else { 2174 /* 2175 * In this pass we want to recover all the buffers 2176 * which have not been cancelled and are not 2177 * cancellation buffers themselves. The routine 2178 * we call here will tell us whether or not to 2179 * continue with the replay of this buffer. 2180 */ 2181 cancel = xlog_recover_do_buffer_pass2(log, buf_f); 2182 if (cancel) { 2183 return 0; 2184 } 2185 } 2186 switch (buf_f->blf_type) { 2187 case XFS_LI_BUF: 2188 blkno = buf_f->blf_blkno; 2189 len = buf_f->blf_len; 2190 flags = buf_f->blf_flags; 2191 break; 2192 default: 2193 xfs_fs_cmn_err(CE_ALERT, log->l_mp, 2194 "xfs_log_recover: unknown buffer type 0x%x, logdev %s", 2195 buf_f->blf_type, log->l_mp->m_logname ? 2196 log->l_mp->m_logname : "internal"); 2197 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans", 2198 XFS_ERRLEVEL_LOW, log->l_mp); 2199 return XFS_ERROR(EFSCORRUPTED); 2200 } 2201 2202 mp = log->l_mp; 2203 if (flags & XFS_BLI_INODE_BUF) { 2204 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len, 2205 XFS_BUF_LOCK); 2206 } else { 2207 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0); 2208 } 2209 if (XFS_BUF_ISERROR(bp)) { 2210 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp, 2211 bp, blkno); 2212 error = XFS_BUF_GETERROR(bp); 2213 xfs_buf_relse(bp); 2214 return error; 2215 } 2216 2217 error = 0; 2218 if (flags & XFS_BLI_INODE_BUF) { 2219 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2220 } else if (flags & 2221 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) { 2222 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2223 } else { 2224 xlog_recover_do_reg_buffer(item, bp, buf_f); 2225 } 2226 if (error) 2227 return XFS_ERROR(error); 2228 2229 /* 2230 * Perform delayed write on the buffer. Asynchronous writes will be 2231 * slower when taking into account all the buffers to be flushed. 2232 * 2233 * Also make sure that only inode buffers with good sizes stay in 2234 * the buffer cache. The kernel moves inodes in buffers of 1 block 2235 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode 2236 * buffers in the log can be a different size if the log was generated 2237 * by an older kernel using unclustered inode buffers or a newer kernel 2238 * running with a different inode cluster size. Regardless, if the 2239 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE) 2240 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep 2241 * the buffer out of the buffer cache so that the buffer won't 2242 * overlap with future reads of those inodes. 2243 */ 2244 if (XFS_DINODE_MAGIC == 2245 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && 2246 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize, 2247 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) { 2248 XFS_BUF_STALE(bp); 2249 error = xfs_bwrite(mp, bp); 2250 } else { 2251 ASSERT(bp->b_mount == NULL || bp->b_mount == mp); 2252 bp->b_mount = mp; 2253 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2254 xfs_bdwrite(mp, bp); 2255 } 2256 2257 return (error); 2258 } 2259 2260 STATIC int 2261 xlog_recover_do_inode_trans( 2262 xlog_t *log, 2263 xlog_recover_item_t *item, 2264 int pass) 2265 { 2266 xfs_inode_log_format_t *in_f; 2267 xfs_mount_t *mp; 2268 xfs_buf_t *bp; 2269 xfs_dinode_t *dip; 2270 xfs_ino_t ino; 2271 int len; 2272 xfs_caddr_t src; 2273 xfs_caddr_t dest; 2274 int error; 2275 int attr_index; 2276 uint fields; 2277 xfs_icdinode_t *dicp; 2278 int need_free = 0; 2279 2280 if (pass == XLOG_RECOVER_PASS1) { 2281 return 0; 2282 } 2283 2284 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) { 2285 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr; 2286 } else { 2287 in_f = (xfs_inode_log_format_t *)kmem_alloc( 2288 sizeof(xfs_inode_log_format_t), KM_SLEEP); 2289 need_free = 1; 2290 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 2291 if (error) 2292 goto error; 2293 } 2294 ino = in_f->ilf_ino; 2295 mp = log->l_mp; 2296 2297 /* 2298 * Inode buffers can be freed, look out for it, 2299 * and do not replay the inode. 2300 */ 2301 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, 2302 in_f->ilf_len, 0)) { 2303 error = 0; 2304 goto error; 2305 } 2306 2307 bp = xfs_buf_read_flags(mp->m_ddev_targp, in_f->ilf_blkno, 2308 in_f->ilf_len, XFS_BUF_LOCK); 2309 if (XFS_BUF_ISERROR(bp)) { 2310 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp, 2311 bp, in_f->ilf_blkno); 2312 error = XFS_BUF_GETERROR(bp); 2313 xfs_buf_relse(bp); 2314 goto error; 2315 } 2316 error = 0; 2317 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 2318 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset); 2319 2320 /* 2321 * Make sure the place we're flushing out to really looks 2322 * like an inode! 2323 */ 2324 if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) { 2325 xfs_buf_relse(bp); 2326 xfs_fs_cmn_err(CE_ALERT, mp, 2327 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld", 2328 dip, bp, ino); 2329 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)", 2330 XFS_ERRLEVEL_LOW, mp); 2331 error = EFSCORRUPTED; 2332 goto error; 2333 } 2334 dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr); 2335 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { 2336 xfs_buf_relse(bp); 2337 xfs_fs_cmn_err(CE_ALERT, mp, 2338 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld", 2339 item, ino); 2340 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)", 2341 XFS_ERRLEVEL_LOW, mp); 2342 error = EFSCORRUPTED; 2343 goto error; 2344 } 2345 2346 /* Skip replay when the on disk inode is newer than the log one */ 2347 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) { 2348 /* 2349 * Deal with the wrap case, DI_MAX_FLUSH is less 2350 * than smaller numbers 2351 */ 2352 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && 2353 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) { 2354 /* do nothing */ 2355 } else { 2356 xfs_buf_relse(bp); 2357 error = 0; 2358 goto error; 2359 } 2360 } 2361 /* Take the opportunity to reset the flush iteration count */ 2362 dicp->di_flushiter = 0; 2363 2364 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) { 2365 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2366 (dicp->di_format != XFS_DINODE_FMT_BTREE)) { 2367 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)", 2368 XFS_ERRLEVEL_LOW, mp, dicp); 2369 xfs_buf_relse(bp); 2370 xfs_fs_cmn_err(CE_ALERT, mp, 2371 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2372 item, dip, bp, ino); 2373 error = EFSCORRUPTED; 2374 goto error; 2375 } 2376 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) { 2377 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2378 (dicp->di_format != XFS_DINODE_FMT_BTREE) && 2379 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { 2380 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)", 2381 XFS_ERRLEVEL_LOW, mp, dicp); 2382 xfs_buf_relse(bp); 2383 xfs_fs_cmn_err(CE_ALERT, mp, 2384 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2385 item, dip, bp, ino); 2386 error = EFSCORRUPTED; 2387 goto error; 2388 } 2389 } 2390 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ 2391 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)", 2392 XFS_ERRLEVEL_LOW, mp, dicp); 2393 xfs_buf_relse(bp); 2394 xfs_fs_cmn_err(CE_ALERT, mp, 2395 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", 2396 item, dip, bp, ino, 2397 dicp->di_nextents + dicp->di_anextents, 2398 dicp->di_nblocks); 2399 error = EFSCORRUPTED; 2400 goto error; 2401 } 2402 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { 2403 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)", 2404 XFS_ERRLEVEL_LOW, mp, dicp); 2405 xfs_buf_relse(bp); 2406 xfs_fs_cmn_err(CE_ALERT, mp, 2407 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x", 2408 item, dip, bp, ino, dicp->di_forkoff); 2409 error = EFSCORRUPTED; 2410 goto error; 2411 } 2412 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) { 2413 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)", 2414 XFS_ERRLEVEL_LOW, mp, dicp); 2415 xfs_buf_relse(bp); 2416 xfs_fs_cmn_err(CE_ALERT, mp, 2417 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p", 2418 item->ri_buf[1].i_len, item); 2419 error = EFSCORRUPTED; 2420 goto error; 2421 } 2422 2423 /* The core is in in-core format */ 2424 xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr); 2425 2426 /* the rest is in on-disk format */ 2427 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) { 2428 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode), 2429 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode), 2430 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode)); 2431 } 2432 2433 fields = in_f->ilf_fields; 2434 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { 2435 case XFS_ILOG_DEV: 2436 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); 2437 break; 2438 case XFS_ILOG_UUID: 2439 memcpy(XFS_DFORK_DPTR(dip), 2440 &in_f->ilf_u.ilfu_uuid, 2441 sizeof(uuid_t)); 2442 break; 2443 } 2444 2445 if (in_f->ilf_size == 2) 2446 goto write_inode_buffer; 2447 len = item->ri_buf[2].i_len; 2448 src = item->ri_buf[2].i_addr; 2449 ASSERT(in_f->ilf_size <= 4); 2450 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 2451 ASSERT(!(fields & XFS_ILOG_DFORK) || 2452 (len == in_f->ilf_dsize)); 2453 2454 switch (fields & XFS_ILOG_DFORK) { 2455 case XFS_ILOG_DDATA: 2456 case XFS_ILOG_DEXT: 2457 memcpy(XFS_DFORK_DPTR(dip), src, len); 2458 break; 2459 2460 case XFS_ILOG_DBROOT: 2461 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, 2462 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), 2463 XFS_DFORK_DSIZE(dip, mp)); 2464 break; 2465 2466 default: 2467 /* 2468 * There are no data fork flags set. 2469 */ 2470 ASSERT((fields & XFS_ILOG_DFORK) == 0); 2471 break; 2472 } 2473 2474 /* 2475 * If we logged any attribute data, recover it. There may or 2476 * may not have been any other non-core data logged in this 2477 * transaction. 2478 */ 2479 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 2480 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 2481 attr_index = 3; 2482 } else { 2483 attr_index = 2; 2484 } 2485 len = item->ri_buf[attr_index].i_len; 2486 src = item->ri_buf[attr_index].i_addr; 2487 ASSERT(len == in_f->ilf_asize); 2488 2489 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 2490 case XFS_ILOG_ADATA: 2491 case XFS_ILOG_AEXT: 2492 dest = XFS_DFORK_APTR(dip); 2493 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 2494 memcpy(dest, src, len); 2495 break; 2496 2497 case XFS_ILOG_ABROOT: 2498 dest = XFS_DFORK_APTR(dip); 2499 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, 2500 len, (xfs_bmdr_block_t*)dest, 2501 XFS_DFORK_ASIZE(dip, mp)); 2502 break; 2503 2504 default: 2505 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag"); 2506 ASSERT(0); 2507 xfs_buf_relse(bp); 2508 error = EIO; 2509 goto error; 2510 } 2511 } 2512 2513 write_inode_buffer: 2514 if (ITEM_TYPE(item) == XFS_LI_INODE) { 2515 ASSERT(bp->b_mount == NULL || bp->b_mount == mp); 2516 bp->b_mount = mp; 2517 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2518 xfs_bdwrite(mp, bp); 2519 } else { 2520 XFS_BUF_STALE(bp); 2521 error = xfs_bwrite(mp, bp); 2522 } 2523 2524 error: 2525 if (need_free) 2526 kmem_free(in_f); 2527 return XFS_ERROR(error); 2528 } 2529 2530 /* 2531 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t 2532 * structure, so that we know not to do any dquot item or dquot buffer recovery, 2533 * of that type. 2534 */ 2535 STATIC int 2536 xlog_recover_do_quotaoff_trans( 2537 xlog_t *log, 2538 xlog_recover_item_t *item, 2539 int pass) 2540 { 2541 xfs_qoff_logformat_t *qoff_f; 2542 2543 if (pass == XLOG_RECOVER_PASS2) { 2544 return (0); 2545 } 2546 2547 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr; 2548 ASSERT(qoff_f); 2549 2550 /* 2551 * The logitem format's flag tells us if this was user quotaoff, 2552 * group/project quotaoff or both. 2553 */ 2554 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 2555 log->l_quotaoffs_flag |= XFS_DQ_USER; 2556 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 2557 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 2558 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 2559 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 2560 2561 return (0); 2562 } 2563 2564 /* 2565 * Recover a dquot record 2566 */ 2567 STATIC int 2568 xlog_recover_do_dquot_trans( 2569 xlog_t *log, 2570 xlog_recover_item_t *item, 2571 int pass) 2572 { 2573 xfs_mount_t *mp; 2574 xfs_buf_t *bp; 2575 struct xfs_disk_dquot *ddq, *recddq; 2576 int error; 2577 xfs_dq_logformat_t *dq_f; 2578 uint type; 2579 2580 if (pass == XLOG_RECOVER_PASS1) { 2581 return 0; 2582 } 2583 mp = log->l_mp; 2584 2585 /* 2586 * Filesystems are required to send in quota flags at mount time. 2587 */ 2588 if (mp->m_qflags == 0) 2589 return (0); 2590 2591 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr; 2592 ASSERT(recddq); 2593 /* 2594 * This type of quotas was turned off, so ignore this record. 2595 */ 2596 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 2597 ASSERT(type); 2598 if (log->l_quotaoffs_flag & type) 2599 return (0); 2600 2601 /* 2602 * At this point we know that quota was _not_ turned off. 2603 * Since the mount flags are not indicating to us otherwise, this 2604 * must mean that quota is on, and the dquot needs to be replayed. 2605 * Remember that we may not have fully recovered the superblock yet, 2606 * so we can't do the usual trick of looking at the SB quota bits. 2607 * 2608 * The other possibility, of course, is that the quota subsystem was 2609 * removed since the last mount - ENOSYS. 2610 */ 2611 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr; 2612 ASSERT(dq_f); 2613 if ((error = xfs_qm_dqcheck(recddq, 2614 dq_f->qlf_id, 2615 0, XFS_QMOPT_DOWARN, 2616 "xlog_recover_do_dquot_trans (log copy)"))) { 2617 return XFS_ERROR(EIO); 2618 } 2619 ASSERT(dq_f->qlf_len == 1); 2620 2621 error = xfs_read_buf(mp, mp->m_ddev_targp, 2622 dq_f->qlf_blkno, 2623 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 2624 0, &bp); 2625 if (error) { 2626 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp, 2627 bp, dq_f->qlf_blkno); 2628 return error; 2629 } 2630 ASSERT(bp); 2631 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset); 2632 2633 /* 2634 * At least the magic num portion should be on disk because this 2635 * was among a chunk of dquots created earlier, and we did some 2636 * minimal initialization then. 2637 */ 2638 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2639 "xlog_recover_do_dquot_trans")) { 2640 xfs_buf_relse(bp); 2641 return XFS_ERROR(EIO); 2642 } 2643 2644 memcpy(ddq, recddq, item->ri_buf[1].i_len); 2645 2646 ASSERT(dq_f->qlf_size == 2); 2647 ASSERT(bp->b_mount == NULL || bp->b_mount == mp); 2648 bp->b_mount = mp; 2649 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2650 xfs_bdwrite(mp, bp); 2651 2652 return (0); 2653 } 2654 2655 /* 2656 * This routine is called to create an in-core extent free intent 2657 * item from the efi format structure which was logged on disk. 2658 * It allocates an in-core efi, copies the extents from the format 2659 * structure into it, and adds the efi to the AIL with the given 2660 * LSN. 2661 */ 2662 STATIC int 2663 xlog_recover_do_efi_trans( 2664 xlog_t *log, 2665 xlog_recover_item_t *item, 2666 xfs_lsn_t lsn, 2667 int pass) 2668 { 2669 int error; 2670 xfs_mount_t *mp; 2671 xfs_efi_log_item_t *efip; 2672 xfs_efi_log_format_t *efi_formatp; 2673 2674 if (pass == XLOG_RECOVER_PASS1) { 2675 return 0; 2676 } 2677 2678 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr; 2679 2680 mp = log->l_mp; 2681 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 2682 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]), 2683 &(efip->efi_format)))) { 2684 xfs_efi_item_free(efip); 2685 return error; 2686 } 2687 efip->efi_next_extent = efi_formatp->efi_nextents; 2688 efip->efi_flags |= XFS_EFI_COMMITTED; 2689 2690 spin_lock(&log->l_ailp->xa_lock); 2691 /* 2692 * xfs_trans_ail_update() drops the AIL lock. 2693 */ 2694 xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn); 2695 return 0; 2696 } 2697 2698 2699 /* 2700 * This routine is called when an efd format structure is found in 2701 * a committed transaction in the log. It's purpose is to cancel 2702 * the corresponding efi if it was still in the log. To do this 2703 * it searches the AIL for the efi with an id equal to that in the 2704 * efd format structure. If we find it, we remove the efi from the 2705 * AIL and free it. 2706 */ 2707 STATIC void 2708 xlog_recover_do_efd_trans( 2709 xlog_t *log, 2710 xlog_recover_item_t *item, 2711 int pass) 2712 { 2713 xfs_efd_log_format_t *efd_formatp; 2714 xfs_efi_log_item_t *efip = NULL; 2715 xfs_log_item_t *lip; 2716 __uint64_t efi_id; 2717 struct xfs_ail_cursor cur; 2718 struct xfs_ail *ailp = log->l_ailp; 2719 2720 if (pass == XLOG_RECOVER_PASS1) { 2721 return; 2722 } 2723 2724 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr; 2725 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 2726 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 2727 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 2728 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 2729 efi_id = efd_formatp->efd_efi_id; 2730 2731 /* 2732 * Search for the efi with the id in the efd format structure 2733 * in the AIL. 2734 */ 2735 spin_lock(&ailp->xa_lock); 2736 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 2737 while (lip != NULL) { 2738 if (lip->li_type == XFS_LI_EFI) { 2739 efip = (xfs_efi_log_item_t *)lip; 2740 if (efip->efi_format.efi_id == efi_id) { 2741 /* 2742 * xfs_trans_ail_delete() drops the 2743 * AIL lock. 2744 */ 2745 xfs_trans_ail_delete(ailp, lip); 2746 xfs_efi_item_free(efip); 2747 spin_lock(&ailp->xa_lock); 2748 break; 2749 } 2750 } 2751 lip = xfs_trans_ail_cursor_next(ailp, &cur); 2752 } 2753 xfs_trans_ail_cursor_done(ailp, &cur); 2754 spin_unlock(&ailp->xa_lock); 2755 } 2756 2757 /* 2758 * Perform the transaction 2759 * 2760 * If the transaction modifies a buffer or inode, do it now. Otherwise, 2761 * EFIs and EFDs get queued up by adding entries into the AIL for them. 2762 */ 2763 STATIC int 2764 xlog_recover_do_trans( 2765 xlog_t *log, 2766 xlog_recover_t *trans, 2767 int pass) 2768 { 2769 int error = 0; 2770 xlog_recover_item_t *item, *first_item; 2771 2772 if ((error = xlog_recover_reorder_trans(trans))) 2773 return error; 2774 first_item = item = trans->r_itemq; 2775 do { 2776 /* 2777 * we don't need to worry about the block number being 2778 * truncated in > 1 TB buffers because in user-land, 2779 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so 2780 * the blknos will get through the user-mode buffer 2781 * cache properly. The only bad case is o32 kernels 2782 * where xfs_daddr_t is 32-bits but mount will warn us 2783 * off a > 1 TB filesystem before we get here. 2784 */ 2785 if ((ITEM_TYPE(item) == XFS_LI_BUF)) { 2786 if ((error = xlog_recover_do_buffer_trans(log, item, 2787 pass))) 2788 break; 2789 } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) { 2790 if ((error = xlog_recover_do_inode_trans(log, item, 2791 pass))) 2792 break; 2793 } else if (ITEM_TYPE(item) == XFS_LI_EFI) { 2794 if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn, 2795 pass))) 2796 break; 2797 } else if (ITEM_TYPE(item) == XFS_LI_EFD) { 2798 xlog_recover_do_efd_trans(log, item, pass); 2799 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) { 2800 if ((error = xlog_recover_do_dquot_trans(log, item, 2801 pass))) 2802 break; 2803 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) { 2804 if ((error = xlog_recover_do_quotaoff_trans(log, item, 2805 pass))) 2806 break; 2807 } else { 2808 xlog_warn("XFS: xlog_recover_do_trans"); 2809 ASSERT(0); 2810 error = XFS_ERROR(EIO); 2811 break; 2812 } 2813 item = item->ri_next; 2814 } while (first_item != item); 2815 2816 return error; 2817 } 2818 2819 /* 2820 * Free up any resources allocated by the transaction 2821 * 2822 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 2823 */ 2824 STATIC void 2825 xlog_recover_free_trans( 2826 xlog_recover_t *trans) 2827 { 2828 xlog_recover_item_t *first_item, *item, *free_item; 2829 int i; 2830 2831 item = first_item = trans->r_itemq; 2832 do { 2833 free_item = item; 2834 item = item->ri_next; 2835 /* Free the regions in the item. */ 2836 for (i = 0; i < free_item->ri_cnt; i++) { 2837 kmem_free(free_item->ri_buf[i].i_addr); 2838 } 2839 /* Free the item itself */ 2840 kmem_free(free_item->ri_buf); 2841 kmem_free(free_item); 2842 } while (first_item != item); 2843 /* Free the transaction recover structure */ 2844 kmem_free(trans); 2845 } 2846 2847 STATIC int 2848 xlog_recover_commit_trans( 2849 xlog_t *log, 2850 xlog_recover_t **q, 2851 xlog_recover_t *trans, 2852 int pass) 2853 { 2854 int error; 2855 2856 if ((error = xlog_recover_unlink_tid(q, trans))) 2857 return error; 2858 if ((error = xlog_recover_do_trans(log, trans, pass))) 2859 return error; 2860 xlog_recover_free_trans(trans); /* no error */ 2861 return 0; 2862 } 2863 2864 STATIC int 2865 xlog_recover_unmount_trans( 2866 xlog_recover_t *trans) 2867 { 2868 /* Do nothing now */ 2869 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR"); 2870 return 0; 2871 } 2872 2873 /* 2874 * There are two valid states of the r_state field. 0 indicates that the 2875 * transaction structure is in a normal state. We have either seen the 2876 * start of the transaction or the last operation we added was not a partial 2877 * operation. If the last operation we added to the transaction was a 2878 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 2879 * 2880 * NOTE: skip LRs with 0 data length. 2881 */ 2882 STATIC int 2883 xlog_recover_process_data( 2884 xlog_t *log, 2885 xlog_recover_t *rhash[], 2886 xlog_rec_header_t *rhead, 2887 xfs_caddr_t dp, 2888 int pass) 2889 { 2890 xfs_caddr_t lp; 2891 int num_logops; 2892 xlog_op_header_t *ohead; 2893 xlog_recover_t *trans; 2894 xlog_tid_t tid; 2895 int error; 2896 unsigned long hash; 2897 uint flags; 2898 2899 lp = dp + be32_to_cpu(rhead->h_len); 2900 num_logops = be32_to_cpu(rhead->h_num_logops); 2901 2902 /* check the log format matches our own - else we can't recover */ 2903 if (xlog_header_check_recover(log->l_mp, rhead)) 2904 return (XFS_ERROR(EIO)); 2905 2906 while ((dp < lp) && num_logops) { 2907 ASSERT(dp + sizeof(xlog_op_header_t) <= lp); 2908 ohead = (xlog_op_header_t *)dp; 2909 dp += sizeof(xlog_op_header_t); 2910 if (ohead->oh_clientid != XFS_TRANSACTION && 2911 ohead->oh_clientid != XFS_LOG) { 2912 xlog_warn( 2913 "XFS: xlog_recover_process_data: bad clientid"); 2914 ASSERT(0); 2915 return (XFS_ERROR(EIO)); 2916 } 2917 tid = be32_to_cpu(ohead->oh_tid); 2918 hash = XLOG_RHASH(tid); 2919 trans = xlog_recover_find_tid(rhash[hash], tid); 2920 if (trans == NULL) { /* not found; add new tid */ 2921 if (ohead->oh_flags & XLOG_START_TRANS) 2922 xlog_recover_new_tid(&rhash[hash], tid, 2923 be64_to_cpu(rhead->h_lsn)); 2924 } else { 2925 if (dp + be32_to_cpu(ohead->oh_len) > lp) { 2926 xlog_warn( 2927 "XFS: xlog_recover_process_data: bad length"); 2928 WARN_ON(1); 2929 return (XFS_ERROR(EIO)); 2930 } 2931 flags = ohead->oh_flags & ~XLOG_END_TRANS; 2932 if (flags & XLOG_WAS_CONT_TRANS) 2933 flags &= ~XLOG_CONTINUE_TRANS; 2934 switch (flags) { 2935 case XLOG_COMMIT_TRANS: 2936 error = xlog_recover_commit_trans(log, 2937 &rhash[hash], trans, pass); 2938 break; 2939 case XLOG_UNMOUNT_TRANS: 2940 error = xlog_recover_unmount_trans(trans); 2941 break; 2942 case XLOG_WAS_CONT_TRANS: 2943 error = xlog_recover_add_to_cont_trans(trans, 2944 dp, be32_to_cpu(ohead->oh_len)); 2945 break; 2946 case XLOG_START_TRANS: 2947 xlog_warn( 2948 "XFS: xlog_recover_process_data: bad transaction"); 2949 ASSERT(0); 2950 error = XFS_ERROR(EIO); 2951 break; 2952 case 0: 2953 case XLOG_CONTINUE_TRANS: 2954 error = xlog_recover_add_to_trans(trans, 2955 dp, be32_to_cpu(ohead->oh_len)); 2956 break; 2957 default: 2958 xlog_warn( 2959 "XFS: xlog_recover_process_data: bad flag"); 2960 ASSERT(0); 2961 error = XFS_ERROR(EIO); 2962 break; 2963 } 2964 if (error) 2965 return error; 2966 } 2967 dp += be32_to_cpu(ohead->oh_len); 2968 num_logops--; 2969 } 2970 return 0; 2971 } 2972 2973 /* 2974 * Process an extent free intent item that was recovered from 2975 * the log. We need to free the extents that it describes. 2976 */ 2977 STATIC int 2978 xlog_recover_process_efi( 2979 xfs_mount_t *mp, 2980 xfs_efi_log_item_t *efip) 2981 { 2982 xfs_efd_log_item_t *efdp; 2983 xfs_trans_t *tp; 2984 int i; 2985 int error = 0; 2986 xfs_extent_t *extp; 2987 xfs_fsblock_t startblock_fsb; 2988 2989 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED)); 2990 2991 /* 2992 * First check the validity of the extents described by the 2993 * EFI. If any are bad, then assume that all are bad and 2994 * just toss the EFI. 2995 */ 2996 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 2997 extp = &(efip->efi_format.efi_extents[i]); 2998 startblock_fsb = XFS_BB_TO_FSB(mp, 2999 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 3000 if ((startblock_fsb == 0) || 3001 (extp->ext_len == 0) || 3002 (startblock_fsb >= mp->m_sb.sb_dblocks) || 3003 (extp->ext_len >= mp->m_sb.sb_agblocks)) { 3004 /* 3005 * This will pull the EFI from the AIL and 3006 * free the memory associated with it. 3007 */ 3008 xfs_efi_release(efip, efip->efi_format.efi_nextents); 3009 return XFS_ERROR(EIO); 3010 } 3011 } 3012 3013 tp = xfs_trans_alloc(mp, 0); 3014 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0); 3015 if (error) 3016 goto abort_error; 3017 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 3018 3019 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3020 extp = &(efip->efi_format.efi_extents[i]); 3021 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len); 3022 if (error) 3023 goto abort_error; 3024 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start, 3025 extp->ext_len); 3026 } 3027 3028 efip->efi_flags |= XFS_EFI_RECOVERED; 3029 error = xfs_trans_commit(tp, 0); 3030 return error; 3031 3032 abort_error: 3033 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3034 return error; 3035 } 3036 3037 /* 3038 * When this is called, all of the EFIs which did not have 3039 * corresponding EFDs should be in the AIL. What we do now 3040 * is free the extents associated with each one. 3041 * 3042 * Since we process the EFIs in normal transactions, they 3043 * will be removed at some point after the commit. This prevents 3044 * us from just walking down the list processing each one. 3045 * We'll use a flag in the EFI to skip those that we've already 3046 * processed and use the AIL iteration mechanism's generation 3047 * count to try to speed this up at least a bit. 3048 * 3049 * When we start, we know that the EFIs are the only things in 3050 * the AIL. As we process them, however, other items are added 3051 * to the AIL. Since everything added to the AIL must come after 3052 * everything already in the AIL, we stop processing as soon as 3053 * we see something other than an EFI in the AIL. 3054 */ 3055 STATIC int 3056 xlog_recover_process_efis( 3057 xlog_t *log) 3058 { 3059 xfs_log_item_t *lip; 3060 xfs_efi_log_item_t *efip; 3061 int error = 0; 3062 struct xfs_ail_cursor cur; 3063 struct xfs_ail *ailp; 3064 3065 ailp = log->l_ailp; 3066 spin_lock(&ailp->xa_lock); 3067 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3068 while (lip != NULL) { 3069 /* 3070 * We're done when we see something other than an EFI. 3071 * There should be no EFIs left in the AIL now. 3072 */ 3073 if (lip->li_type != XFS_LI_EFI) { 3074 #ifdef DEBUG 3075 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 3076 ASSERT(lip->li_type != XFS_LI_EFI); 3077 #endif 3078 break; 3079 } 3080 3081 /* 3082 * Skip EFIs that we've already processed. 3083 */ 3084 efip = (xfs_efi_log_item_t *)lip; 3085 if (efip->efi_flags & XFS_EFI_RECOVERED) { 3086 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3087 continue; 3088 } 3089 3090 spin_unlock(&ailp->xa_lock); 3091 error = xlog_recover_process_efi(log->l_mp, efip); 3092 spin_lock(&ailp->xa_lock); 3093 if (error) 3094 goto out; 3095 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3096 } 3097 out: 3098 xfs_trans_ail_cursor_done(ailp, &cur); 3099 spin_unlock(&ailp->xa_lock); 3100 return error; 3101 } 3102 3103 /* 3104 * This routine performs a transaction to null out a bad inode pointer 3105 * in an agi unlinked inode hash bucket. 3106 */ 3107 STATIC void 3108 xlog_recover_clear_agi_bucket( 3109 xfs_mount_t *mp, 3110 xfs_agnumber_t agno, 3111 int bucket) 3112 { 3113 xfs_trans_t *tp; 3114 xfs_agi_t *agi; 3115 xfs_buf_t *agibp; 3116 int offset; 3117 int error; 3118 3119 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); 3120 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 3121 0, 0, 0); 3122 if (error) 3123 goto out_abort; 3124 3125 error = xfs_read_agi(mp, tp, agno, &agibp); 3126 if (error) 3127 goto out_abort; 3128 3129 agi = XFS_BUF_TO_AGI(agibp); 3130 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 3131 offset = offsetof(xfs_agi_t, agi_unlinked) + 3132 (sizeof(xfs_agino_t) * bucket); 3133 xfs_trans_log_buf(tp, agibp, offset, 3134 (offset + sizeof(xfs_agino_t) - 1)); 3135 3136 error = xfs_trans_commit(tp, 0); 3137 if (error) 3138 goto out_error; 3139 return; 3140 3141 out_abort: 3142 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3143 out_error: 3144 xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: " 3145 "failed to clear agi %d. Continuing.", agno); 3146 return; 3147 } 3148 3149 STATIC xfs_agino_t 3150 xlog_recover_process_one_iunlink( 3151 struct xfs_mount *mp, 3152 xfs_agnumber_t agno, 3153 xfs_agino_t agino, 3154 int bucket) 3155 { 3156 struct xfs_buf *ibp; 3157 struct xfs_dinode *dip; 3158 struct xfs_inode *ip; 3159 xfs_ino_t ino; 3160 int error; 3161 3162 ino = XFS_AGINO_TO_INO(mp, agno, agino); 3163 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0); 3164 if (error) 3165 goto fail; 3166 3167 /* 3168 * Get the on disk inode to find the next inode in the bucket. 3169 */ 3170 error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XFS_BUF_LOCK); 3171 if (error) 3172 goto fail_iput; 3173 3174 ASSERT(ip->i_d.di_nlink == 0); 3175 ASSERT(ip->i_d.di_mode != 0); 3176 3177 /* setup for the next pass */ 3178 agino = be32_to_cpu(dip->di_next_unlinked); 3179 xfs_buf_relse(ibp); 3180 3181 /* 3182 * Prevent any DMAPI event from being sent when the reference on 3183 * the inode is dropped. 3184 */ 3185 ip->i_d.di_dmevmask = 0; 3186 3187 IRELE(ip); 3188 return agino; 3189 3190 fail_iput: 3191 IRELE(ip); 3192 fail: 3193 /* 3194 * We can't read in the inode this bucket points to, or this inode 3195 * is messed up. Just ditch this bucket of inodes. We will lose 3196 * some inodes and space, but at least we won't hang. 3197 * 3198 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 3199 * clear the inode pointer in the bucket. 3200 */ 3201 xlog_recover_clear_agi_bucket(mp, agno, bucket); 3202 return NULLAGINO; 3203 } 3204 3205 /* 3206 * xlog_iunlink_recover 3207 * 3208 * This is called during recovery to process any inodes which 3209 * we unlinked but not freed when the system crashed. These 3210 * inodes will be on the lists in the AGI blocks. What we do 3211 * here is scan all the AGIs and fully truncate and free any 3212 * inodes found on the lists. Each inode is removed from the 3213 * lists when it has been fully truncated and is freed. The 3214 * freeing of the inode and its removal from the list must be 3215 * atomic. 3216 */ 3217 void 3218 xlog_recover_process_iunlinks( 3219 xlog_t *log) 3220 { 3221 xfs_mount_t *mp; 3222 xfs_agnumber_t agno; 3223 xfs_agi_t *agi; 3224 xfs_buf_t *agibp; 3225 xfs_agino_t agino; 3226 int bucket; 3227 int error; 3228 uint mp_dmevmask; 3229 3230 mp = log->l_mp; 3231 3232 /* 3233 * Prevent any DMAPI event from being sent while in this function. 3234 */ 3235 mp_dmevmask = mp->m_dmevmask; 3236 mp->m_dmevmask = 0; 3237 3238 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3239 /* 3240 * Find the agi for this ag. 3241 */ 3242 error = xfs_read_agi(mp, NULL, agno, &agibp); 3243 if (error) { 3244 /* 3245 * AGI is b0rked. Don't process it. 3246 * 3247 * We should probably mark the filesystem as corrupt 3248 * after we've recovered all the ag's we can.... 3249 */ 3250 continue; 3251 } 3252 agi = XFS_BUF_TO_AGI(agibp); 3253 3254 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 3255 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 3256 while (agino != NULLAGINO) { 3257 /* 3258 * Release the agi buffer so that it can 3259 * be acquired in the normal course of the 3260 * transaction to truncate and free the inode. 3261 */ 3262 xfs_buf_relse(agibp); 3263 3264 agino = xlog_recover_process_one_iunlink(mp, 3265 agno, agino, bucket); 3266 3267 /* 3268 * Reacquire the agibuffer and continue around 3269 * the loop. This should never fail as we know 3270 * the buffer was good earlier on. 3271 */ 3272 error = xfs_read_agi(mp, NULL, agno, &agibp); 3273 ASSERT(error == 0); 3274 agi = XFS_BUF_TO_AGI(agibp); 3275 } 3276 } 3277 3278 /* 3279 * Release the buffer for the current agi so we can 3280 * go on to the next one. 3281 */ 3282 xfs_buf_relse(agibp); 3283 } 3284 3285 mp->m_dmevmask = mp_dmevmask; 3286 } 3287 3288 3289 #ifdef DEBUG 3290 STATIC void 3291 xlog_pack_data_checksum( 3292 xlog_t *log, 3293 xlog_in_core_t *iclog, 3294 int size) 3295 { 3296 int i; 3297 __be32 *up; 3298 uint chksum = 0; 3299 3300 up = (__be32 *)iclog->ic_datap; 3301 /* divide length by 4 to get # words */ 3302 for (i = 0; i < (size >> 2); i++) { 3303 chksum ^= be32_to_cpu(*up); 3304 up++; 3305 } 3306 iclog->ic_header.h_chksum = cpu_to_be32(chksum); 3307 } 3308 #else 3309 #define xlog_pack_data_checksum(log, iclog, size) 3310 #endif 3311 3312 /* 3313 * Stamp cycle number in every block 3314 */ 3315 void 3316 xlog_pack_data( 3317 xlog_t *log, 3318 xlog_in_core_t *iclog, 3319 int roundoff) 3320 { 3321 int i, j, k; 3322 int size = iclog->ic_offset + roundoff; 3323 __be32 cycle_lsn; 3324 xfs_caddr_t dp; 3325 3326 xlog_pack_data_checksum(log, iclog, size); 3327 3328 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 3329 3330 dp = iclog->ic_datap; 3331 for (i = 0; i < BTOBB(size) && 3332 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3333 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 3334 *(__be32 *)dp = cycle_lsn; 3335 dp += BBSIZE; 3336 } 3337 3338 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3339 xlog_in_core_2_t *xhdr = iclog->ic_data; 3340 3341 for ( ; i < BTOBB(size); i++) { 3342 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3343 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3344 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 3345 *(__be32 *)dp = cycle_lsn; 3346 dp += BBSIZE; 3347 } 3348 3349 for (i = 1; i < log->l_iclog_heads; i++) { 3350 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 3351 } 3352 } 3353 } 3354 3355 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY) 3356 STATIC void 3357 xlog_unpack_data_checksum( 3358 xlog_rec_header_t *rhead, 3359 xfs_caddr_t dp, 3360 xlog_t *log) 3361 { 3362 __be32 *up = (__be32 *)dp; 3363 uint chksum = 0; 3364 int i; 3365 3366 /* divide length by 4 to get # words */ 3367 for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) { 3368 chksum ^= be32_to_cpu(*up); 3369 up++; 3370 } 3371 if (chksum != be32_to_cpu(rhead->h_chksum)) { 3372 if (rhead->h_chksum || 3373 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) { 3374 cmn_err(CE_DEBUG, 3375 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n", 3376 be32_to_cpu(rhead->h_chksum), chksum); 3377 cmn_err(CE_DEBUG, 3378 "XFS: Disregard message if filesystem was created with non-DEBUG kernel"); 3379 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3380 cmn_err(CE_DEBUG, 3381 "XFS: LogR this is a LogV2 filesystem\n"); 3382 } 3383 log->l_flags |= XLOG_CHKSUM_MISMATCH; 3384 } 3385 } 3386 } 3387 #else 3388 #define xlog_unpack_data_checksum(rhead, dp, log) 3389 #endif 3390 3391 STATIC void 3392 xlog_unpack_data( 3393 xlog_rec_header_t *rhead, 3394 xfs_caddr_t dp, 3395 xlog_t *log) 3396 { 3397 int i, j, k; 3398 3399 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 3400 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3401 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 3402 dp += BBSIZE; 3403 } 3404 3405 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3406 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 3407 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 3408 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3409 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3410 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 3411 dp += BBSIZE; 3412 } 3413 } 3414 3415 xlog_unpack_data_checksum(rhead, dp, log); 3416 } 3417 3418 STATIC int 3419 xlog_valid_rec_header( 3420 xlog_t *log, 3421 xlog_rec_header_t *rhead, 3422 xfs_daddr_t blkno) 3423 { 3424 int hlen; 3425 3426 if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) { 3427 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 3428 XFS_ERRLEVEL_LOW, log->l_mp); 3429 return XFS_ERROR(EFSCORRUPTED); 3430 } 3431 if (unlikely( 3432 (!rhead->h_version || 3433 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { 3434 xlog_warn("XFS: %s: unrecognised log version (%d).", 3435 __func__, be32_to_cpu(rhead->h_version)); 3436 return XFS_ERROR(EIO); 3437 } 3438 3439 /* LR body must have data or it wouldn't have been written */ 3440 hlen = be32_to_cpu(rhead->h_len); 3441 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 3442 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 3443 XFS_ERRLEVEL_LOW, log->l_mp); 3444 return XFS_ERROR(EFSCORRUPTED); 3445 } 3446 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 3447 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 3448 XFS_ERRLEVEL_LOW, log->l_mp); 3449 return XFS_ERROR(EFSCORRUPTED); 3450 } 3451 return 0; 3452 } 3453 3454 /* 3455 * Read the log from tail to head and process the log records found. 3456 * Handle the two cases where the tail and head are in the same cycle 3457 * and where the active portion of the log wraps around the end of 3458 * the physical log separately. The pass parameter is passed through 3459 * to the routines called to process the data and is not looked at 3460 * here. 3461 */ 3462 STATIC int 3463 xlog_do_recovery_pass( 3464 xlog_t *log, 3465 xfs_daddr_t head_blk, 3466 xfs_daddr_t tail_blk, 3467 int pass) 3468 { 3469 xlog_rec_header_t *rhead; 3470 xfs_daddr_t blk_no; 3471 xfs_caddr_t bufaddr, offset; 3472 xfs_buf_t *hbp, *dbp; 3473 int error = 0, h_size; 3474 int bblks, split_bblks; 3475 int hblks, split_hblks, wrapped_hblks; 3476 xlog_recover_t *rhash[XLOG_RHASH_SIZE]; 3477 3478 ASSERT(head_blk != tail_blk); 3479 3480 /* 3481 * Read the header of the tail block and get the iclog buffer size from 3482 * h_size. Use this to tell how many sectors make up the log header. 3483 */ 3484 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3485 /* 3486 * When using variable length iclogs, read first sector of 3487 * iclog header and extract the header size from it. Get a 3488 * new hbp that is the correct size. 3489 */ 3490 hbp = xlog_get_bp(log, 1); 3491 if (!hbp) 3492 return ENOMEM; 3493 if ((error = xlog_bread(log, tail_blk, 1, hbp))) 3494 goto bread_err1; 3495 offset = xlog_align(log, tail_blk, 1, hbp); 3496 rhead = (xlog_rec_header_t *)offset; 3497 error = xlog_valid_rec_header(log, rhead, tail_blk); 3498 if (error) 3499 goto bread_err1; 3500 h_size = be32_to_cpu(rhead->h_size); 3501 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 3502 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 3503 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 3504 if (h_size % XLOG_HEADER_CYCLE_SIZE) 3505 hblks++; 3506 xlog_put_bp(hbp); 3507 hbp = xlog_get_bp(log, hblks); 3508 } else { 3509 hblks = 1; 3510 } 3511 } else { 3512 ASSERT(log->l_sectbb_log == 0); 3513 hblks = 1; 3514 hbp = xlog_get_bp(log, 1); 3515 h_size = XLOG_BIG_RECORD_BSIZE; 3516 } 3517 3518 if (!hbp) 3519 return ENOMEM; 3520 dbp = xlog_get_bp(log, BTOBB(h_size)); 3521 if (!dbp) { 3522 xlog_put_bp(hbp); 3523 return ENOMEM; 3524 } 3525 3526 memset(rhash, 0, sizeof(rhash)); 3527 if (tail_blk <= head_blk) { 3528 for (blk_no = tail_blk; blk_no < head_blk; ) { 3529 if ((error = xlog_bread(log, blk_no, hblks, hbp))) 3530 goto bread_err2; 3531 offset = xlog_align(log, blk_no, hblks, hbp); 3532 rhead = (xlog_rec_header_t *)offset; 3533 error = xlog_valid_rec_header(log, rhead, blk_no); 3534 if (error) 3535 goto bread_err2; 3536 3537 /* blocks in data section */ 3538 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3539 error = xlog_bread(log, blk_no + hblks, bblks, dbp); 3540 if (error) 3541 goto bread_err2; 3542 offset = xlog_align(log, blk_no + hblks, bblks, dbp); 3543 xlog_unpack_data(rhead, offset, log); 3544 if ((error = xlog_recover_process_data(log, 3545 rhash, rhead, offset, pass))) 3546 goto bread_err2; 3547 blk_no += bblks + hblks; 3548 } 3549 } else { 3550 /* 3551 * Perform recovery around the end of the physical log. 3552 * When the head is not on the same cycle number as the tail, 3553 * we can't do a sequential recovery as above. 3554 */ 3555 blk_no = tail_blk; 3556 while (blk_no < log->l_logBBsize) { 3557 /* 3558 * Check for header wrapping around physical end-of-log 3559 */ 3560 offset = NULL; 3561 split_hblks = 0; 3562 wrapped_hblks = 0; 3563 if (blk_no + hblks <= log->l_logBBsize) { 3564 /* Read header in one read */ 3565 error = xlog_bread(log, blk_no, hblks, hbp); 3566 if (error) 3567 goto bread_err2; 3568 offset = xlog_align(log, blk_no, hblks, hbp); 3569 } else { 3570 /* This LR is split across physical log end */ 3571 if (blk_no != log->l_logBBsize) { 3572 /* some data before physical log end */ 3573 ASSERT(blk_no <= INT_MAX); 3574 split_hblks = log->l_logBBsize - (int)blk_no; 3575 ASSERT(split_hblks > 0); 3576 if ((error = xlog_bread(log, blk_no, 3577 split_hblks, hbp))) 3578 goto bread_err2; 3579 offset = xlog_align(log, blk_no, 3580 split_hblks, hbp); 3581 } 3582 /* 3583 * Note: this black magic still works with 3584 * large sector sizes (non-512) only because: 3585 * - we increased the buffer size originally 3586 * by 1 sector giving us enough extra space 3587 * for the second read; 3588 * - the log start is guaranteed to be sector 3589 * aligned; 3590 * - we read the log end (LR header start) 3591 * _first_, then the log start (LR header end) 3592 * - order is important. 3593 */ 3594 wrapped_hblks = hblks - split_hblks; 3595 bufaddr = XFS_BUF_PTR(hbp); 3596 error = XFS_BUF_SET_PTR(hbp, 3597 bufaddr + BBTOB(split_hblks), 3598 BBTOB(hblks - split_hblks)); 3599 if (!error) 3600 error = xlog_bread(log, 0, 3601 wrapped_hblks, hbp); 3602 if (!error) 3603 error = XFS_BUF_SET_PTR(hbp, bufaddr, 3604 BBTOB(hblks)); 3605 if (error) 3606 goto bread_err2; 3607 if (!offset) 3608 offset = xlog_align(log, 0, 3609 wrapped_hblks, hbp); 3610 } 3611 rhead = (xlog_rec_header_t *)offset; 3612 error = xlog_valid_rec_header(log, rhead, 3613 split_hblks ? blk_no : 0); 3614 if (error) 3615 goto bread_err2; 3616 3617 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3618 blk_no += hblks; 3619 3620 /* Read in data for log record */ 3621 if (blk_no + bblks <= log->l_logBBsize) { 3622 error = xlog_bread(log, blk_no, bblks, dbp); 3623 if (error) 3624 goto bread_err2; 3625 offset = xlog_align(log, blk_no, bblks, dbp); 3626 } else { 3627 /* This log record is split across the 3628 * physical end of log */ 3629 offset = NULL; 3630 split_bblks = 0; 3631 if (blk_no != log->l_logBBsize) { 3632 /* some data is before the physical 3633 * end of log */ 3634 ASSERT(!wrapped_hblks); 3635 ASSERT(blk_no <= INT_MAX); 3636 split_bblks = 3637 log->l_logBBsize - (int)blk_no; 3638 ASSERT(split_bblks > 0); 3639 if ((error = xlog_bread(log, blk_no, 3640 split_bblks, dbp))) 3641 goto bread_err2; 3642 offset = xlog_align(log, blk_no, 3643 split_bblks, dbp); 3644 } 3645 /* 3646 * Note: this black magic still works with 3647 * large sector sizes (non-512) only because: 3648 * - we increased the buffer size originally 3649 * by 1 sector giving us enough extra space 3650 * for the second read; 3651 * - the log start is guaranteed to be sector 3652 * aligned; 3653 * - we read the log end (LR header start) 3654 * _first_, then the log start (LR header end) 3655 * - order is important. 3656 */ 3657 bufaddr = XFS_BUF_PTR(dbp); 3658 error = XFS_BUF_SET_PTR(dbp, 3659 bufaddr + BBTOB(split_bblks), 3660 BBTOB(bblks - split_bblks)); 3661 if (!error) 3662 error = xlog_bread(log, wrapped_hblks, 3663 bblks - split_bblks, 3664 dbp); 3665 if (!error) 3666 error = XFS_BUF_SET_PTR(dbp, bufaddr, 3667 h_size); 3668 if (error) 3669 goto bread_err2; 3670 if (!offset) 3671 offset = xlog_align(log, wrapped_hblks, 3672 bblks - split_bblks, dbp); 3673 } 3674 xlog_unpack_data(rhead, offset, log); 3675 if ((error = xlog_recover_process_data(log, rhash, 3676 rhead, offset, pass))) 3677 goto bread_err2; 3678 blk_no += bblks; 3679 } 3680 3681 ASSERT(blk_no >= log->l_logBBsize); 3682 blk_no -= log->l_logBBsize; 3683 3684 /* read first part of physical log */ 3685 while (blk_no < head_blk) { 3686 if ((error = xlog_bread(log, blk_no, hblks, hbp))) 3687 goto bread_err2; 3688 offset = xlog_align(log, blk_no, hblks, hbp); 3689 rhead = (xlog_rec_header_t *)offset; 3690 error = xlog_valid_rec_header(log, rhead, blk_no); 3691 if (error) 3692 goto bread_err2; 3693 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3694 if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp))) 3695 goto bread_err2; 3696 offset = xlog_align(log, blk_no+hblks, bblks, dbp); 3697 xlog_unpack_data(rhead, offset, log); 3698 if ((error = xlog_recover_process_data(log, rhash, 3699 rhead, offset, pass))) 3700 goto bread_err2; 3701 blk_no += bblks + hblks; 3702 } 3703 } 3704 3705 bread_err2: 3706 xlog_put_bp(dbp); 3707 bread_err1: 3708 xlog_put_bp(hbp); 3709 return error; 3710 } 3711 3712 /* 3713 * Do the recovery of the log. We actually do this in two phases. 3714 * The two passes are necessary in order to implement the function 3715 * of cancelling a record written into the log. The first pass 3716 * determines those things which have been cancelled, and the 3717 * second pass replays log items normally except for those which 3718 * have been cancelled. The handling of the replay and cancellations 3719 * takes place in the log item type specific routines. 3720 * 3721 * The table of items which have cancel records in the log is allocated 3722 * and freed at this level, since only here do we know when all of 3723 * the log recovery has been completed. 3724 */ 3725 STATIC int 3726 xlog_do_log_recovery( 3727 xlog_t *log, 3728 xfs_daddr_t head_blk, 3729 xfs_daddr_t tail_blk) 3730 { 3731 int error; 3732 3733 ASSERT(head_blk != tail_blk); 3734 3735 /* 3736 * First do a pass to find all of the cancelled buf log items. 3737 * Store them in the buf_cancel_table for use in the second pass. 3738 */ 3739 log->l_buf_cancel_table = 3740 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE * 3741 sizeof(xfs_buf_cancel_t*), 3742 KM_SLEEP); 3743 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3744 XLOG_RECOVER_PASS1); 3745 if (error != 0) { 3746 kmem_free(log->l_buf_cancel_table); 3747 log->l_buf_cancel_table = NULL; 3748 return error; 3749 } 3750 /* 3751 * Then do a second pass to actually recover the items in the log. 3752 * When it is complete free the table of buf cancel items. 3753 */ 3754 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3755 XLOG_RECOVER_PASS2); 3756 #ifdef DEBUG 3757 if (!error) { 3758 int i; 3759 3760 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3761 ASSERT(log->l_buf_cancel_table[i] == NULL); 3762 } 3763 #endif /* DEBUG */ 3764 3765 kmem_free(log->l_buf_cancel_table); 3766 log->l_buf_cancel_table = NULL; 3767 3768 return error; 3769 } 3770 3771 /* 3772 * Do the actual recovery 3773 */ 3774 STATIC int 3775 xlog_do_recover( 3776 xlog_t *log, 3777 xfs_daddr_t head_blk, 3778 xfs_daddr_t tail_blk) 3779 { 3780 int error; 3781 xfs_buf_t *bp; 3782 xfs_sb_t *sbp; 3783 3784 /* 3785 * First replay the images in the log. 3786 */ 3787 error = xlog_do_log_recovery(log, head_blk, tail_blk); 3788 if (error) { 3789 return error; 3790 } 3791 3792 XFS_bflush(log->l_mp->m_ddev_targp); 3793 3794 /* 3795 * If IO errors happened during recovery, bail out. 3796 */ 3797 if (XFS_FORCED_SHUTDOWN(log->l_mp)) { 3798 return (EIO); 3799 } 3800 3801 /* 3802 * We now update the tail_lsn since much of the recovery has completed 3803 * and there may be space available to use. If there were no extent 3804 * or iunlinks, we can free up the entire log and set the tail_lsn to 3805 * be the last_sync_lsn. This was set in xlog_find_tail to be the 3806 * lsn of the last known good LR on disk. If there are extent frees 3807 * or iunlinks they will have some entries in the AIL; so we look at 3808 * the AIL to determine how to set the tail_lsn. 3809 */ 3810 xlog_assign_tail_lsn(log->l_mp); 3811 3812 /* 3813 * Now that we've finished replaying all buffer and inode 3814 * updates, re-read in the superblock. 3815 */ 3816 bp = xfs_getsb(log->l_mp, 0); 3817 XFS_BUF_UNDONE(bp); 3818 ASSERT(!(XFS_BUF_ISWRITE(bp))); 3819 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp))); 3820 XFS_BUF_READ(bp); 3821 XFS_BUF_UNASYNC(bp); 3822 xfsbdstrat(log->l_mp, bp); 3823 error = xfs_iowait(bp); 3824 if (error) { 3825 xfs_ioerror_alert("xlog_do_recover", 3826 log->l_mp, bp, XFS_BUF_ADDR(bp)); 3827 ASSERT(0); 3828 xfs_buf_relse(bp); 3829 return error; 3830 } 3831 3832 /* Convert superblock from on-disk format */ 3833 sbp = &log->l_mp->m_sb; 3834 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 3835 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); 3836 ASSERT(xfs_sb_good_version(sbp)); 3837 xfs_buf_relse(bp); 3838 3839 /* We've re-read the superblock so re-initialize per-cpu counters */ 3840 xfs_icsb_reinit_counters(log->l_mp); 3841 3842 xlog_recover_check_summary(log); 3843 3844 /* Normal transactions can now occur */ 3845 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 3846 return 0; 3847 } 3848 3849 /* 3850 * Perform recovery and re-initialize some log variables in xlog_find_tail. 3851 * 3852 * Return error or zero. 3853 */ 3854 int 3855 xlog_recover( 3856 xlog_t *log) 3857 { 3858 xfs_daddr_t head_blk, tail_blk; 3859 int error; 3860 3861 /* find the tail of the log */ 3862 if ((error = xlog_find_tail(log, &head_blk, &tail_blk))) 3863 return error; 3864 3865 if (tail_blk != head_blk) { 3866 /* There used to be a comment here: 3867 * 3868 * disallow recovery on read-only mounts. note -- mount 3869 * checks for ENOSPC and turns it into an intelligent 3870 * error message. 3871 * ...but this is no longer true. Now, unless you specify 3872 * NORECOVERY (in which case this function would never be 3873 * called), we just go ahead and recover. We do this all 3874 * under the vfs layer, so we can get away with it unless 3875 * the device itself is read-only, in which case we fail. 3876 */ 3877 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 3878 return error; 3879 } 3880 3881 cmn_err(CE_NOTE, 3882 "Starting XFS recovery on filesystem: %s (logdev: %s)", 3883 log->l_mp->m_fsname, log->l_mp->m_logname ? 3884 log->l_mp->m_logname : "internal"); 3885 3886 error = xlog_do_recover(log, head_blk, tail_blk); 3887 log->l_flags |= XLOG_RECOVERY_NEEDED; 3888 } 3889 return error; 3890 } 3891 3892 /* 3893 * In the first part of recovery we replay inodes and buffers and build 3894 * up the list of extent free items which need to be processed. Here 3895 * we process the extent free items and clean up the on disk unlinked 3896 * inode lists. This is separated from the first part of recovery so 3897 * that the root and real-time bitmap inodes can be read in from disk in 3898 * between the two stages. This is necessary so that we can free space 3899 * in the real-time portion of the file system. 3900 */ 3901 int 3902 xlog_recover_finish( 3903 xlog_t *log) 3904 { 3905 /* 3906 * Now we're ready to do the transactions needed for the 3907 * rest of recovery. Start with completing all the extent 3908 * free intent records and then process the unlinked inode 3909 * lists. At this point, we essentially run in normal mode 3910 * except that we're still performing recovery actions 3911 * rather than accepting new requests. 3912 */ 3913 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 3914 int error; 3915 error = xlog_recover_process_efis(log); 3916 if (error) { 3917 cmn_err(CE_ALERT, 3918 "Failed to recover EFIs on filesystem: %s", 3919 log->l_mp->m_fsname); 3920 return error; 3921 } 3922 /* 3923 * Sync the log to get all the EFIs out of the AIL. 3924 * This isn't absolutely necessary, but it helps in 3925 * case the unlink transactions would have problems 3926 * pushing the EFIs out of the way. 3927 */ 3928 xfs_log_force(log->l_mp, (xfs_lsn_t)0, 3929 (XFS_LOG_FORCE | XFS_LOG_SYNC)); 3930 3931 xlog_recover_process_iunlinks(log); 3932 3933 xlog_recover_check_summary(log); 3934 3935 cmn_err(CE_NOTE, 3936 "Ending XFS recovery on filesystem: %s (logdev: %s)", 3937 log->l_mp->m_fsname, log->l_mp->m_logname ? 3938 log->l_mp->m_logname : "internal"); 3939 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 3940 } else { 3941 cmn_err(CE_DEBUG, 3942 "!Ending clean XFS mount for filesystem: %s\n", 3943 log->l_mp->m_fsname); 3944 } 3945 return 0; 3946 } 3947 3948 3949 #if defined(DEBUG) 3950 /* 3951 * Read all of the agf and agi counters and check that they 3952 * are consistent with the superblock counters. 3953 */ 3954 void 3955 xlog_recover_check_summary( 3956 xlog_t *log) 3957 { 3958 xfs_mount_t *mp; 3959 xfs_agf_t *agfp; 3960 xfs_buf_t *agfbp; 3961 xfs_buf_t *agibp; 3962 xfs_buf_t *sbbp; 3963 #ifdef XFS_LOUD_RECOVERY 3964 xfs_sb_t *sbp; 3965 #endif 3966 xfs_agnumber_t agno; 3967 __uint64_t freeblks; 3968 __uint64_t itotal; 3969 __uint64_t ifree; 3970 int error; 3971 3972 mp = log->l_mp; 3973 3974 freeblks = 0LL; 3975 itotal = 0LL; 3976 ifree = 0LL; 3977 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3978 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 3979 if (error) { 3980 xfs_fs_cmn_err(CE_ALERT, mp, 3981 "xlog_recover_check_summary(agf)" 3982 "agf read failed agno %d error %d", 3983 agno, error); 3984 } else { 3985 agfp = XFS_BUF_TO_AGF(agfbp); 3986 freeblks += be32_to_cpu(agfp->agf_freeblks) + 3987 be32_to_cpu(agfp->agf_flcount); 3988 xfs_buf_relse(agfbp); 3989 } 3990 3991 error = xfs_read_agi(mp, NULL, agno, &agibp); 3992 if (!error) { 3993 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 3994 3995 itotal += be32_to_cpu(agi->agi_count); 3996 ifree += be32_to_cpu(agi->agi_freecount); 3997 xfs_buf_relse(agibp); 3998 } 3999 } 4000 4001 sbbp = xfs_getsb(mp, 0); 4002 #ifdef XFS_LOUD_RECOVERY 4003 sbp = &mp->m_sb; 4004 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp)); 4005 cmn_err(CE_NOTE, 4006 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu", 4007 sbp->sb_icount, itotal); 4008 cmn_err(CE_NOTE, 4009 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu", 4010 sbp->sb_ifree, ifree); 4011 cmn_err(CE_NOTE, 4012 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu", 4013 sbp->sb_fdblocks, freeblks); 4014 #if 0 4015 /* 4016 * This is turned off until I account for the allocation 4017 * btree blocks which live in free space. 4018 */ 4019 ASSERT(sbp->sb_icount == itotal); 4020 ASSERT(sbp->sb_ifree == ifree); 4021 ASSERT(sbp->sb_fdblocks == freeblks); 4022 #endif 4023 #endif 4024 xfs_buf_relse(sbbp); 4025 } 4026 #endif /* DEBUG */ 4027