xref: /openbmc/linux/fs/xfs/xfs_log_recover.c (revision b830f94f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_trans.h"
18 #include "xfs_log.h"
19 #include "xfs_log_priv.h"
20 #include "xfs_log_recover.h"
21 #include "xfs_inode_item.h"
22 #include "xfs_extfree_item.h"
23 #include "xfs_trans_priv.h"
24 #include "xfs_alloc.h"
25 #include "xfs_ialloc.h"
26 #include "xfs_quota.h"
27 #include "xfs_trace.h"
28 #include "xfs_icache.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_error.h"
31 #include "xfs_dir2.h"
32 #include "xfs_rmap_item.h"
33 #include "xfs_buf_item.h"
34 #include "xfs_refcount_item.h"
35 #include "xfs_bmap_item.h"
36 
37 #define BLK_AVG(blk1, blk2)	((blk1+blk2) >> 1)
38 
39 STATIC int
40 xlog_find_zeroed(
41 	struct xlog	*,
42 	xfs_daddr_t	*);
43 STATIC int
44 xlog_clear_stale_blocks(
45 	struct xlog	*,
46 	xfs_lsn_t);
47 #if defined(DEBUG)
48 STATIC void
49 xlog_recover_check_summary(
50 	struct xlog *);
51 #else
52 #define	xlog_recover_check_summary(log)
53 #endif
54 STATIC int
55 xlog_do_recovery_pass(
56         struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
57 
58 /*
59  * This structure is used during recovery to record the buf log items which
60  * have been canceled and should not be replayed.
61  */
62 struct xfs_buf_cancel {
63 	xfs_daddr_t		bc_blkno;
64 	uint			bc_len;
65 	int			bc_refcount;
66 	struct list_head	bc_list;
67 };
68 
69 /*
70  * Sector aligned buffer routines for buffer create/read/write/access
71  */
72 
73 /*
74  * Verify the log-relative block number and length in basic blocks are valid for
75  * an operation involving the given XFS log buffer. Returns true if the fields
76  * are valid, false otherwise.
77  */
78 static inline bool
79 xlog_verify_bno(
80 	struct xlog	*log,
81 	xfs_daddr_t	blk_no,
82 	int		bbcount)
83 {
84 	if (blk_no < 0 || blk_no >= log->l_logBBsize)
85 		return false;
86 	if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
87 		return false;
88 	return true;
89 }
90 
91 /*
92  * Allocate a buffer to hold log data.  The buffer needs to be able to map to
93  * a range of nbblks basic blocks at any valid offset within the log.
94  */
95 static char *
96 xlog_alloc_buffer(
97 	struct xlog	*log,
98 	int		nbblks)
99 {
100 	/*
101 	 * Pass log block 0 since we don't have an addr yet, buffer will be
102 	 * verified on read.
103 	 */
104 	if (!xlog_verify_bno(log, 0, nbblks)) {
105 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
106 			nbblks);
107 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
108 		return NULL;
109 	}
110 
111 	/*
112 	 * We do log I/O in units of log sectors (a power-of-2 multiple of the
113 	 * basic block size), so we round up the requested size to accommodate
114 	 * the basic blocks required for complete log sectors.
115 	 *
116 	 * In addition, the buffer may be used for a non-sector-aligned block
117 	 * offset, in which case an I/O of the requested size could extend
118 	 * beyond the end of the buffer.  If the requested size is only 1 basic
119 	 * block it will never straddle a sector boundary, so this won't be an
120 	 * issue.  Nor will this be a problem if the log I/O is done in basic
121 	 * blocks (sector size 1).  But otherwise we extend the buffer by one
122 	 * extra log sector to ensure there's space to accommodate this
123 	 * possibility.
124 	 */
125 	if (nbblks > 1 && log->l_sectBBsize > 1)
126 		nbblks += log->l_sectBBsize;
127 	nbblks = round_up(nbblks, log->l_sectBBsize);
128 	return kmem_alloc_large(BBTOB(nbblks), KM_MAYFAIL);
129 }
130 
131 /*
132  * Return the address of the start of the given block number's data
133  * in a log buffer.  The buffer covers a log sector-aligned region.
134  */
135 static inline unsigned int
136 xlog_align(
137 	struct xlog	*log,
138 	xfs_daddr_t	blk_no)
139 {
140 	return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1));
141 }
142 
143 static int
144 xlog_do_io(
145 	struct xlog		*log,
146 	xfs_daddr_t		blk_no,
147 	unsigned int		nbblks,
148 	char			*data,
149 	unsigned int		op)
150 {
151 	int			error;
152 
153 	if (!xlog_verify_bno(log, blk_no, nbblks)) {
154 		xfs_warn(log->l_mp,
155 			 "Invalid log block/length (0x%llx, 0x%x) for buffer",
156 			 blk_no, nbblks);
157 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
158 		return -EFSCORRUPTED;
159 	}
160 
161 	blk_no = round_down(blk_no, log->l_sectBBsize);
162 	nbblks = round_up(nbblks, log->l_sectBBsize);
163 	ASSERT(nbblks > 0);
164 
165 	error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no,
166 			BBTOB(nbblks), data, op);
167 	if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) {
168 		xfs_alert(log->l_mp,
169 			  "log recovery %s I/O error at daddr 0x%llx len %d error %d",
170 			  op == REQ_OP_WRITE ? "write" : "read",
171 			  blk_no, nbblks, error);
172 	}
173 	return error;
174 }
175 
176 STATIC int
177 xlog_bread_noalign(
178 	struct xlog	*log,
179 	xfs_daddr_t	blk_no,
180 	int		nbblks,
181 	char		*data)
182 {
183 	return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
184 }
185 
186 STATIC int
187 xlog_bread(
188 	struct xlog	*log,
189 	xfs_daddr_t	blk_no,
190 	int		nbblks,
191 	char		*data,
192 	char		**offset)
193 {
194 	int		error;
195 
196 	error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
197 	if (!error)
198 		*offset = data + xlog_align(log, blk_no);
199 	return error;
200 }
201 
202 STATIC int
203 xlog_bwrite(
204 	struct xlog	*log,
205 	xfs_daddr_t	blk_no,
206 	int		nbblks,
207 	char		*data)
208 {
209 	return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE);
210 }
211 
212 #ifdef DEBUG
213 /*
214  * dump debug superblock and log record information
215  */
216 STATIC void
217 xlog_header_check_dump(
218 	xfs_mount_t		*mp,
219 	xlog_rec_header_t	*head)
220 {
221 	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
222 		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
223 	xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
224 		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
225 }
226 #else
227 #define xlog_header_check_dump(mp, head)
228 #endif
229 
230 /*
231  * check log record header for recovery
232  */
233 STATIC int
234 xlog_header_check_recover(
235 	xfs_mount_t		*mp,
236 	xlog_rec_header_t	*head)
237 {
238 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
239 
240 	/*
241 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
242 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
243 	 * a dirty log created in IRIX.
244 	 */
245 	if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
246 		xfs_warn(mp,
247 	"dirty log written in incompatible format - can't recover");
248 		xlog_header_check_dump(mp, head);
249 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
250 				 XFS_ERRLEVEL_HIGH, mp);
251 		return -EFSCORRUPTED;
252 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
253 		xfs_warn(mp,
254 	"dirty log entry has mismatched uuid - can't recover");
255 		xlog_header_check_dump(mp, head);
256 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
257 				 XFS_ERRLEVEL_HIGH, mp);
258 		return -EFSCORRUPTED;
259 	}
260 	return 0;
261 }
262 
263 /*
264  * read the head block of the log and check the header
265  */
266 STATIC int
267 xlog_header_check_mount(
268 	xfs_mount_t		*mp,
269 	xlog_rec_header_t	*head)
270 {
271 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
272 
273 	if (uuid_is_null(&head->h_fs_uuid)) {
274 		/*
275 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
276 		 * h_fs_uuid is null, we assume this log was last mounted
277 		 * by IRIX and continue.
278 		 */
279 		xfs_warn(mp, "null uuid in log - IRIX style log");
280 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
281 		xfs_warn(mp, "log has mismatched uuid - can't recover");
282 		xlog_header_check_dump(mp, head);
283 		XFS_ERROR_REPORT("xlog_header_check_mount",
284 				 XFS_ERRLEVEL_HIGH, mp);
285 		return -EFSCORRUPTED;
286 	}
287 	return 0;
288 }
289 
290 STATIC void
291 xlog_recover_iodone(
292 	struct xfs_buf	*bp)
293 {
294 	if (bp->b_error) {
295 		/*
296 		 * We're not going to bother about retrying
297 		 * this during recovery. One strike!
298 		 */
299 		if (!XFS_FORCED_SHUTDOWN(bp->b_mount)) {
300 			xfs_buf_ioerror_alert(bp, __func__);
301 			xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
302 		}
303 	}
304 
305 	/*
306 	 * On v5 supers, a bli could be attached to update the metadata LSN.
307 	 * Clean it up.
308 	 */
309 	if (bp->b_log_item)
310 		xfs_buf_item_relse(bp);
311 	ASSERT(bp->b_log_item == NULL);
312 
313 	bp->b_iodone = NULL;
314 	xfs_buf_ioend(bp);
315 }
316 
317 /*
318  * This routine finds (to an approximation) the first block in the physical
319  * log which contains the given cycle.  It uses a binary search algorithm.
320  * Note that the algorithm can not be perfect because the disk will not
321  * necessarily be perfect.
322  */
323 STATIC int
324 xlog_find_cycle_start(
325 	struct xlog	*log,
326 	char		*buffer,
327 	xfs_daddr_t	first_blk,
328 	xfs_daddr_t	*last_blk,
329 	uint		cycle)
330 {
331 	char		*offset;
332 	xfs_daddr_t	mid_blk;
333 	xfs_daddr_t	end_blk;
334 	uint		mid_cycle;
335 	int		error;
336 
337 	end_blk = *last_blk;
338 	mid_blk = BLK_AVG(first_blk, end_blk);
339 	while (mid_blk != first_blk && mid_blk != end_blk) {
340 		error = xlog_bread(log, mid_blk, 1, buffer, &offset);
341 		if (error)
342 			return error;
343 		mid_cycle = xlog_get_cycle(offset);
344 		if (mid_cycle == cycle)
345 			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
346 		else
347 			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
348 		mid_blk = BLK_AVG(first_blk, end_blk);
349 	}
350 	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
351 	       (mid_blk == end_blk && mid_blk-1 == first_blk));
352 
353 	*last_blk = end_blk;
354 
355 	return 0;
356 }
357 
358 /*
359  * Check that a range of blocks does not contain stop_on_cycle_no.
360  * Fill in *new_blk with the block offset where such a block is
361  * found, or with -1 (an invalid block number) if there is no such
362  * block in the range.  The scan needs to occur from front to back
363  * and the pointer into the region must be updated since a later
364  * routine will need to perform another test.
365  */
366 STATIC int
367 xlog_find_verify_cycle(
368 	struct xlog	*log,
369 	xfs_daddr_t	start_blk,
370 	int		nbblks,
371 	uint		stop_on_cycle_no,
372 	xfs_daddr_t	*new_blk)
373 {
374 	xfs_daddr_t	i, j;
375 	uint		cycle;
376 	char		*buffer;
377 	xfs_daddr_t	bufblks;
378 	char		*buf = NULL;
379 	int		error = 0;
380 
381 	/*
382 	 * Greedily allocate a buffer big enough to handle the full
383 	 * range of basic blocks we'll be examining.  If that fails,
384 	 * try a smaller size.  We need to be able to read at least
385 	 * a log sector, or we're out of luck.
386 	 */
387 	bufblks = 1 << ffs(nbblks);
388 	while (bufblks > log->l_logBBsize)
389 		bufblks >>= 1;
390 	while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
391 		bufblks >>= 1;
392 		if (bufblks < log->l_sectBBsize)
393 			return -ENOMEM;
394 	}
395 
396 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
397 		int	bcount;
398 
399 		bcount = min(bufblks, (start_blk + nbblks - i));
400 
401 		error = xlog_bread(log, i, bcount, buffer, &buf);
402 		if (error)
403 			goto out;
404 
405 		for (j = 0; j < bcount; j++) {
406 			cycle = xlog_get_cycle(buf);
407 			if (cycle == stop_on_cycle_no) {
408 				*new_blk = i+j;
409 				goto out;
410 			}
411 
412 			buf += BBSIZE;
413 		}
414 	}
415 
416 	*new_blk = -1;
417 
418 out:
419 	kmem_free(buffer);
420 	return error;
421 }
422 
423 /*
424  * Potentially backup over partial log record write.
425  *
426  * In the typical case, last_blk is the number of the block directly after
427  * a good log record.  Therefore, we subtract one to get the block number
428  * of the last block in the given buffer.  extra_bblks contains the number
429  * of blocks we would have read on a previous read.  This happens when the
430  * last log record is split over the end of the physical log.
431  *
432  * extra_bblks is the number of blocks potentially verified on a previous
433  * call to this routine.
434  */
435 STATIC int
436 xlog_find_verify_log_record(
437 	struct xlog		*log,
438 	xfs_daddr_t		start_blk,
439 	xfs_daddr_t		*last_blk,
440 	int			extra_bblks)
441 {
442 	xfs_daddr_t		i;
443 	char			*buffer;
444 	char			*offset = NULL;
445 	xlog_rec_header_t	*head = NULL;
446 	int			error = 0;
447 	int			smallmem = 0;
448 	int			num_blks = *last_blk - start_blk;
449 	int			xhdrs;
450 
451 	ASSERT(start_blk != 0 || *last_blk != start_blk);
452 
453 	buffer = xlog_alloc_buffer(log, num_blks);
454 	if (!buffer) {
455 		buffer = xlog_alloc_buffer(log, 1);
456 		if (!buffer)
457 			return -ENOMEM;
458 		smallmem = 1;
459 	} else {
460 		error = xlog_bread(log, start_blk, num_blks, buffer, &offset);
461 		if (error)
462 			goto out;
463 		offset += ((num_blks - 1) << BBSHIFT);
464 	}
465 
466 	for (i = (*last_blk) - 1; i >= 0; i--) {
467 		if (i < start_blk) {
468 			/* valid log record not found */
469 			xfs_warn(log->l_mp,
470 		"Log inconsistent (didn't find previous header)");
471 			ASSERT(0);
472 			error = -EIO;
473 			goto out;
474 		}
475 
476 		if (smallmem) {
477 			error = xlog_bread(log, i, 1, buffer, &offset);
478 			if (error)
479 				goto out;
480 		}
481 
482 		head = (xlog_rec_header_t *)offset;
483 
484 		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
485 			break;
486 
487 		if (!smallmem)
488 			offset -= BBSIZE;
489 	}
490 
491 	/*
492 	 * We hit the beginning of the physical log & still no header.  Return
493 	 * to caller.  If caller can handle a return of -1, then this routine
494 	 * will be called again for the end of the physical log.
495 	 */
496 	if (i == -1) {
497 		error = 1;
498 		goto out;
499 	}
500 
501 	/*
502 	 * We have the final block of the good log (the first block
503 	 * of the log record _before_ the head. So we check the uuid.
504 	 */
505 	if ((error = xlog_header_check_mount(log->l_mp, head)))
506 		goto out;
507 
508 	/*
509 	 * We may have found a log record header before we expected one.
510 	 * last_blk will be the 1st block # with a given cycle #.  We may end
511 	 * up reading an entire log record.  In this case, we don't want to
512 	 * reset last_blk.  Only when last_blk points in the middle of a log
513 	 * record do we update last_blk.
514 	 */
515 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
516 		uint	h_size = be32_to_cpu(head->h_size);
517 
518 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
519 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
520 			xhdrs++;
521 	} else {
522 		xhdrs = 1;
523 	}
524 
525 	if (*last_blk - i + extra_bblks !=
526 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
527 		*last_blk = i;
528 
529 out:
530 	kmem_free(buffer);
531 	return error;
532 }
533 
534 /*
535  * Head is defined to be the point of the log where the next log write
536  * could go.  This means that incomplete LR writes at the end are
537  * eliminated when calculating the head.  We aren't guaranteed that previous
538  * LR have complete transactions.  We only know that a cycle number of
539  * current cycle number -1 won't be present in the log if we start writing
540  * from our current block number.
541  *
542  * last_blk contains the block number of the first block with a given
543  * cycle number.
544  *
545  * Return: zero if normal, non-zero if error.
546  */
547 STATIC int
548 xlog_find_head(
549 	struct xlog	*log,
550 	xfs_daddr_t	*return_head_blk)
551 {
552 	char		*buffer;
553 	char		*offset;
554 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
555 	int		num_scan_bblks;
556 	uint		first_half_cycle, last_half_cycle;
557 	uint		stop_on_cycle;
558 	int		error, log_bbnum = log->l_logBBsize;
559 
560 	/* Is the end of the log device zeroed? */
561 	error = xlog_find_zeroed(log, &first_blk);
562 	if (error < 0) {
563 		xfs_warn(log->l_mp, "empty log check failed");
564 		return error;
565 	}
566 	if (error == 1) {
567 		*return_head_blk = first_blk;
568 
569 		/* Is the whole lot zeroed? */
570 		if (!first_blk) {
571 			/* Linux XFS shouldn't generate totally zeroed logs -
572 			 * mkfs etc write a dummy unmount record to a fresh
573 			 * log so we can store the uuid in there
574 			 */
575 			xfs_warn(log->l_mp, "totally zeroed log");
576 		}
577 
578 		return 0;
579 	}
580 
581 	first_blk = 0;			/* get cycle # of 1st block */
582 	buffer = xlog_alloc_buffer(log, 1);
583 	if (!buffer)
584 		return -ENOMEM;
585 
586 	error = xlog_bread(log, 0, 1, buffer, &offset);
587 	if (error)
588 		goto out_free_buffer;
589 
590 	first_half_cycle = xlog_get_cycle(offset);
591 
592 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
593 	error = xlog_bread(log, last_blk, 1, buffer, &offset);
594 	if (error)
595 		goto out_free_buffer;
596 
597 	last_half_cycle = xlog_get_cycle(offset);
598 	ASSERT(last_half_cycle != 0);
599 
600 	/*
601 	 * If the 1st half cycle number is equal to the last half cycle number,
602 	 * then the entire log is stamped with the same cycle number.  In this
603 	 * case, head_blk can't be set to zero (which makes sense).  The below
604 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
605 	 * we set it to log_bbnum which is an invalid block number, but this
606 	 * value makes the math correct.  If head_blk doesn't changed through
607 	 * all the tests below, *head_blk is set to zero at the very end rather
608 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
609 	 * in a circular file.
610 	 */
611 	if (first_half_cycle == last_half_cycle) {
612 		/*
613 		 * In this case we believe that the entire log should have
614 		 * cycle number last_half_cycle.  We need to scan backwards
615 		 * from the end verifying that there are no holes still
616 		 * containing last_half_cycle - 1.  If we find such a hole,
617 		 * then the start of that hole will be the new head.  The
618 		 * simple case looks like
619 		 *        x | x ... | x - 1 | x
620 		 * Another case that fits this picture would be
621 		 *        x | x + 1 | x ... | x
622 		 * In this case the head really is somewhere at the end of the
623 		 * log, as one of the latest writes at the beginning was
624 		 * incomplete.
625 		 * One more case is
626 		 *        x | x + 1 | x ... | x - 1 | x
627 		 * This is really the combination of the above two cases, and
628 		 * the head has to end up at the start of the x-1 hole at the
629 		 * end of the log.
630 		 *
631 		 * In the 256k log case, we will read from the beginning to the
632 		 * end of the log and search for cycle numbers equal to x-1.
633 		 * We don't worry about the x+1 blocks that we encounter,
634 		 * because we know that they cannot be the head since the log
635 		 * started with x.
636 		 */
637 		head_blk = log_bbnum;
638 		stop_on_cycle = last_half_cycle - 1;
639 	} else {
640 		/*
641 		 * In this case we want to find the first block with cycle
642 		 * number matching last_half_cycle.  We expect the log to be
643 		 * some variation on
644 		 *        x + 1 ... | x ... | x
645 		 * The first block with cycle number x (last_half_cycle) will
646 		 * be where the new head belongs.  First we do a binary search
647 		 * for the first occurrence of last_half_cycle.  The binary
648 		 * search may not be totally accurate, so then we scan back
649 		 * from there looking for occurrences of last_half_cycle before
650 		 * us.  If that backwards scan wraps around the beginning of
651 		 * the log, then we look for occurrences of last_half_cycle - 1
652 		 * at the end of the log.  The cases we're looking for look
653 		 * like
654 		 *                               v binary search stopped here
655 		 *        x + 1 ... | x | x + 1 | x ... | x
656 		 *                   ^ but we want to locate this spot
657 		 * or
658 		 *        <---------> less than scan distance
659 		 *        x + 1 ... | x ... | x - 1 | x
660 		 *                           ^ we want to locate this spot
661 		 */
662 		stop_on_cycle = last_half_cycle;
663 		error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk,
664 				last_half_cycle);
665 		if (error)
666 			goto out_free_buffer;
667 	}
668 
669 	/*
670 	 * Now validate the answer.  Scan back some number of maximum possible
671 	 * blocks and make sure each one has the expected cycle number.  The
672 	 * maximum is determined by the total possible amount of buffering
673 	 * in the in-core log.  The following number can be made tighter if
674 	 * we actually look at the block size of the filesystem.
675 	 */
676 	num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
677 	if (head_blk >= num_scan_bblks) {
678 		/*
679 		 * We are guaranteed that the entire check can be performed
680 		 * in one buffer.
681 		 */
682 		start_blk = head_blk - num_scan_bblks;
683 		if ((error = xlog_find_verify_cycle(log,
684 						start_blk, num_scan_bblks,
685 						stop_on_cycle, &new_blk)))
686 			goto out_free_buffer;
687 		if (new_blk != -1)
688 			head_blk = new_blk;
689 	} else {		/* need to read 2 parts of log */
690 		/*
691 		 * We are going to scan backwards in the log in two parts.
692 		 * First we scan the physical end of the log.  In this part
693 		 * of the log, we are looking for blocks with cycle number
694 		 * last_half_cycle - 1.
695 		 * If we find one, then we know that the log starts there, as
696 		 * we've found a hole that didn't get written in going around
697 		 * the end of the physical log.  The simple case for this is
698 		 *        x + 1 ... | x ... | x - 1 | x
699 		 *        <---------> less than scan distance
700 		 * If all of the blocks at the end of the log have cycle number
701 		 * last_half_cycle, then we check the blocks at the start of
702 		 * the log looking for occurrences of last_half_cycle.  If we
703 		 * find one, then our current estimate for the location of the
704 		 * first occurrence of last_half_cycle is wrong and we move
705 		 * back to the hole we've found.  This case looks like
706 		 *        x + 1 ... | x | x + 1 | x ...
707 		 *                               ^ binary search stopped here
708 		 * Another case we need to handle that only occurs in 256k
709 		 * logs is
710 		 *        x + 1 ... | x ... | x+1 | x ...
711 		 *                   ^ binary search stops here
712 		 * In a 256k log, the scan at the end of the log will see the
713 		 * x + 1 blocks.  We need to skip past those since that is
714 		 * certainly not the head of the log.  By searching for
715 		 * last_half_cycle-1 we accomplish that.
716 		 */
717 		ASSERT(head_blk <= INT_MAX &&
718 			(xfs_daddr_t) num_scan_bblks >= head_blk);
719 		start_blk = log_bbnum - (num_scan_bblks - head_blk);
720 		if ((error = xlog_find_verify_cycle(log, start_blk,
721 					num_scan_bblks - (int)head_blk,
722 					(stop_on_cycle - 1), &new_blk)))
723 			goto out_free_buffer;
724 		if (new_blk != -1) {
725 			head_blk = new_blk;
726 			goto validate_head;
727 		}
728 
729 		/*
730 		 * Scan beginning of log now.  The last part of the physical
731 		 * log is good.  This scan needs to verify that it doesn't find
732 		 * the last_half_cycle.
733 		 */
734 		start_blk = 0;
735 		ASSERT(head_blk <= INT_MAX);
736 		if ((error = xlog_find_verify_cycle(log,
737 					start_blk, (int)head_blk,
738 					stop_on_cycle, &new_blk)))
739 			goto out_free_buffer;
740 		if (new_blk != -1)
741 			head_blk = new_blk;
742 	}
743 
744 validate_head:
745 	/*
746 	 * Now we need to make sure head_blk is not pointing to a block in
747 	 * the middle of a log record.
748 	 */
749 	num_scan_bblks = XLOG_REC_SHIFT(log);
750 	if (head_blk >= num_scan_bblks) {
751 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
752 
753 		/* start ptr at last block ptr before head_blk */
754 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
755 		if (error == 1)
756 			error = -EIO;
757 		if (error)
758 			goto out_free_buffer;
759 	} else {
760 		start_blk = 0;
761 		ASSERT(head_blk <= INT_MAX);
762 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
763 		if (error < 0)
764 			goto out_free_buffer;
765 		if (error == 1) {
766 			/* We hit the beginning of the log during our search */
767 			start_blk = log_bbnum - (num_scan_bblks - head_blk);
768 			new_blk = log_bbnum;
769 			ASSERT(start_blk <= INT_MAX &&
770 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
771 			ASSERT(head_blk <= INT_MAX);
772 			error = xlog_find_verify_log_record(log, start_blk,
773 							&new_blk, (int)head_blk);
774 			if (error == 1)
775 				error = -EIO;
776 			if (error)
777 				goto out_free_buffer;
778 			if (new_blk != log_bbnum)
779 				head_blk = new_blk;
780 		} else if (error)
781 			goto out_free_buffer;
782 	}
783 
784 	kmem_free(buffer);
785 	if (head_blk == log_bbnum)
786 		*return_head_blk = 0;
787 	else
788 		*return_head_blk = head_blk;
789 	/*
790 	 * When returning here, we have a good block number.  Bad block
791 	 * means that during a previous crash, we didn't have a clean break
792 	 * from cycle number N to cycle number N-1.  In this case, we need
793 	 * to find the first block with cycle number N-1.
794 	 */
795 	return 0;
796 
797 out_free_buffer:
798 	kmem_free(buffer);
799 	if (error)
800 		xfs_warn(log->l_mp, "failed to find log head");
801 	return error;
802 }
803 
804 /*
805  * Seek backwards in the log for log record headers.
806  *
807  * Given a starting log block, walk backwards until we find the provided number
808  * of records or hit the provided tail block. The return value is the number of
809  * records encountered or a negative error code. The log block and buffer
810  * pointer of the last record seen are returned in rblk and rhead respectively.
811  */
812 STATIC int
813 xlog_rseek_logrec_hdr(
814 	struct xlog		*log,
815 	xfs_daddr_t		head_blk,
816 	xfs_daddr_t		tail_blk,
817 	int			count,
818 	char			*buffer,
819 	xfs_daddr_t		*rblk,
820 	struct xlog_rec_header	**rhead,
821 	bool			*wrapped)
822 {
823 	int			i;
824 	int			error;
825 	int			found = 0;
826 	char			*offset = NULL;
827 	xfs_daddr_t		end_blk;
828 
829 	*wrapped = false;
830 
831 	/*
832 	 * Walk backwards from the head block until we hit the tail or the first
833 	 * block in the log.
834 	 */
835 	end_blk = head_blk > tail_blk ? tail_blk : 0;
836 	for (i = (int) head_blk - 1; i >= end_blk; i--) {
837 		error = xlog_bread(log, i, 1, buffer, &offset);
838 		if (error)
839 			goto out_error;
840 
841 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
842 			*rblk = i;
843 			*rhead = (struct xlog_rec_header *) offset;
844 			if (++found == count)
845 				break;
846 		}
847 	}
848 
849 	/*
850 	 * If we haven't hit the tail block or the log record header count,
851 	 * start looking again from the end of the physical log. Note that
852 	 * callers can pass head == tail if the tail is not yet known.
853 	 */
854 	if (tail_blk >= head_blk && found != count) {
855 		for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
856 			error = xlog_bread(log, i, 1, buffer, &offset);
857 			if (error)
858 				goto out_error;
859 
860 			if (*(__be32 *)offset ==
861 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
862 				*wrapped = true;
863 				*rblk = i;
864 				*rhead = (struct xlog_rec_header *) offset;
865 				if (++found == count)
866 					break;
867 			}
868 		}
869 	}
870 
871 	return found;
872 
873 out_error:
874 	return error;
875 }
876 
877 /*
878  * Seek forward in the log for log record headers.
879  *
880  * Given head and tail blocks, walk forward from the tail block until we find
881  * the provided number of records or hit the head block. The return value is the
882  * number of records encountered or a negative error code. The log block and
883  * buffer pointer of the last record seen are returned in rblk and rhead
884  * respectively.
885  */
886 STATIC int
887 xlog_seek_logrec_hdr(
888 	struct xlog		*log,
889 	xfs_daddr_t		head_blk,
890 	xfs_daddr_t		tail_blk,
891 	int			count,
892 	char			*buffer,
893 	xfs_daddr_t		*rblk,
894 	struct xlog_rec_header	**rhead,
895 	bool			*wrapped)
896 {
897 	int			i;
898 	int			error;
899 	int			found = 0;
900 	char			*offset = NULL;
901 	xfs_daddr_t		end_blk;
902 
903 	*wrapped = false;
904 
905 	/*
906 	 * Walk forward from the tail block until we hit the head or the last
907 	 * block in the log.
908 	 */
909 	end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
910 	for (i = (int) tail_blk; i <= end_blk; i++) {
911 		error = xlog_bread(log, i, 1, buffer, &offset);
912 		if (error)
913 			goto out_error;
914 
915 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
916 			*rblk = i;
917 			*rhead = (struct xlog_rec_header *) offset;
918 			if (++found == count)
919 				break;
920 		}
921 	}
922 
923 	/*
924 	 * If we haven't hit the head block or the log record header count,
925 	 * start looking again from the start of the physical log.
926 	 */
927 	if (tail_blk > head_blk && found != count) {
928 		for (i = 0; i < (int) head_blk; i++) {
929 			error = xlog_bread(log, i, 1, buffer, &offset);
930 			if (error)
931 				goto out_error;
932 
933 			if (*(__be32 *)offset ==
934 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
935 				*wrapped = true;
936 				*rblk = i;
937 				*rhead = (struct xlog_rec_header *) offset;
938 				if (++found == count)
939 					break;
940 			}
941 		}
942 	}
943 
944 	return found;
945 
946 out_error:
947 	return error;
948 }
949 
950 /*
951  * Calculate distance from head to tail (i.e., unused space in the log).
952  */
953 static inline int
954 xlog_tail_distance(
955 	struct xlog	*log,
956 	xfs_daddr_t	head_blk,
957 	xfs_daddr_t	tail_blk)
958 {
959 	if (head_blk < tail_blk)
960 		return tail_blk - head_blk;
961 
962 	return tail_blk + (log->l_logBBsize - head_blk);
963 }
964 
965 /*
966  * Verify the log tail. This is particularly important when torn or incomplete
967  * writes have been detected near the front of the log and the head has been
968  * walked back accordingly.
969  *
970  * We also have to handle the case where the tail was pinned and the head
971  * blocked behind the tail right before a crash. If the tail had been pushed
972  * immediately prior to the crash and the subsequent checkpoint was only
973  * partially written, it's possible it overwrote the last referenced tail in the
974  * log with garbage. This is not a coherency problem because the tail must have
975  * been pushed before it can be overwritten, but appears as log corruption to
976  * recovery because we have no way to know the tail was updated if the
977  * subsequent checkpoint didn't write successfully.
978  *
979  * Therefore, CRC check the log from tail to head. If a failure occurs and the
980  * offending record is within max iclog bufs from the head, walk the tail
981  * forward and retry until a valid tail is found or corruption is detected out
982  * of the range of a possible overwrite.
983  */
984 STATIC int
985 xlog_verify_tail(
986 	struct xlog		*log,
987 	xfs_daddr_t		head_blk,
988 	xfs_daddr_t		*tail_blk,
989 	int			hsize)
990 {
991 	struct xlog_rec_header	*thead;
992 	char			*buffer;
993 	xfs_daddr_t		first_bad;
994 	int			error = 0;
995 	bool			wrapped;
996 	xfs_daddr_t		tmp_tail;
997 	xfs_daddr_t		orig_tail = *tail_blk;
998 
999 	buffer = xlog_alloc_buffer(log, 1);
1000 	if (!buffer)
1001 		return -ENOMEM;
1002 
1003 	/*
1004 	 * Make sure the tail points to a record (returns positive count on
1005 	 * success).
1006 	 */
1007 	error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer,
1008 			&tmp_tail, &thead, &wrapped);
1009 	if (error < 0)
1010 		goto out;
1011 	if (*tail_blk != tmp_tail)
1012 		*tail_blk = tmp_tail;
1013 
1014 	/*
1015 	 * Run a CRC check from the tail to the head. We can't just check
1016 	 * MAX_ICLOGS records past the tail because the tail may point to stale
1017 	 * blocks cleared during the search for the head/tail. These blocks are
1018 	 * overwritten with zero-length records and thus record count is not a
1019 	 * reliable indicator of the iclog state before a crash.
1020 	 */
1021 	first_bad = 0;
1022 	error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1023 				      XLOG_RECOVER_CRCPASS, &first_bad);
1024 	while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1025 		int	tail_distance;
1026 
1027 		/*
1028 		 * Is corruption within range of the head? If so, retry from
1029 		 * the next record. Otherwise return an error.
1030 		 */
1031 		tail_distance = xlog_tail_distance(log, head_blk, first_bad);
1032 		if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
1033 			break;
1034 
1035 		/* skip to the next record; returns positive count on success */
1036 		error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2,
1037 				buffer, &tmp_tail, &thead, &wrapped);
1038 		if (error < 0)
1039 			goto out;
1040 
1041 		*tail_blk = tmp_tail;
1042 		first_bad = 0;
1043 		error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1044 					      XLOG_RECOVER_CRCPASS, &first_bad);
1045 	}
1046 
1047 	if (!error && *tail_blk != orig_tail)
1048 		xfs_warn(log->l_mp,
1049 		"Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1050 			 orig_tail, *tail_blk);
1051 out:
1052 	kmem_free(buffer);
1053 	return error;
1054 }
1055 
1056 /*
1057  * Detect and trim torn writes from the head of the log.
1058  *
1059  * Storage without sector atomicity guarantees can result in torn writes in the
1060  * log in the event of a crash. Our only means to detect this scenario is via
1061  * CRC verification. While we can't always be certain that CRC verification
1062  * failure is due to a torn write vs. an unrelated corruption, we do know that
1063  * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1064  * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1065  * the log and treat failures in this range as torn writes as a matter of
1066  * policy. In the event of CRC failure, the head is walked back to the last good
1067  * record in the log and the tail is updated from that record and verified.
1068  */
1069 STATIC int
1070 xlog_verify_head(
1071 	struct xlog		*log,
1072 	xfs_daddr_t		*head_blk,	/* in/out: unverified head */
1073 	xfs_daddr_t		*tail_blk,	/* out: tail block */
1074 	char			*buffer,
1075 	xfs_daddr_t		*rhead_blk,	/* start blk of last record */
1076 	struct xlog_rec_header	**rhead,	/* ptr to last record */
1077 	bool			*wrapped)	/* last rec. wraps phys. log */
1078 {
1079 	struct xlog_rec_header	*tmp_rhead;
1080 	char			*tmp_buffer;
1081 	xfs_daddr_t		first_bad;
1082 	xfs_daddr_t		tmp_rhead_blk;
1083 	int			found;
1084 	int			error;
1085 	bool			tmp_wrapped;
1086 
1087 	/*
1088 	 * Check the head of the log for torn writes. Search backwards from the
1089 	 * head until we hit the tail or the maximum number of log record I/Os
1090 	 * that could have been in flight at one time. Use a temporary buffer so
1091 	 * we don't trash the rhead/buffer pointers from the caller.
1092 	 */
1093 	tmp_buffer = xlog_alloc_buffer(log, 1);
1094 	if (!tmp_buffer)
1095 		return -ENOMEM;
1096 	error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1097 				      XLOG_MAX_ICLOGS, tmp_buffer,
1098 				      &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped);
1099 	kmem_free(tmp_buffer);
1100 	if (error < 0)
1101 		return error;
1102 
1103 	/*
1104 	 * Now run a CRC verification pass over the records starting at the
1105 	 * block found above to the current head. If a CRC failure occurs, the
1106 	 * log block of the first bad record is saved in first_bad.
1107 	 */
1108 	error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1109 				      XLOG_RECOVER_CRCPASS, &first_bad);
1110 	if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1111 		/*
1112 		 * We've hit a potential torn write. Reset the error and warn
1113 		 * about it.
1114 		 */
1115 		error = 0;
1116 		xfs_warn(log->l_mp,
1117 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1118 			 first_bad, *head_blk);
1119 
1120 		/*
1121 		 * Get the header block and buffer pointer for the last good
1122 		 * record before the bad record.
1123 		 *
1124 		 * Note that xlog_find_tail() clears the blocks at the new head
1125 		 * (i.e., the records with invalid CRC) if the cycle number
1126 		 * matches the the current cycle.
1127 		 */
1128 		found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1,
1129 				buffer, rhead_blk, rhead, wrapped);
1130 		if (found < 0)
1131 			return found;
1132 		if (found == 0)		/* XXX: right thing to do here? */
1133 			return -EIO;
1134 
1135 		/*
1136 		 * Reset the head block to the starting block of the first bad
1137 		 * log record and set the tail block based on the last good
1138 		 * record.
1139 		 *
1140 		 * Bail out if the updated head/tail match as this indicates
1141 		 * possible corruption outside of the acceptable
1142 		 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1143 		 */
1144 		*head_blk = first_bad;
1145 		*tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1146 		if (*head_blk == *tail_blk) {
1147 			ASSERT(0);
1148 			return 0;
1149 		}
1150 	}
1151 	if (error)
1152 		return error;
1153 
1154 	return xlog_verify_tail(log, *head_blk, tail_blk,
1155 				be32_to_cpu((*rhead)->h_size));
1156 }
1157 
1158 /*
1159  * We need to make sure we handle log wrapping properly, so we can't use the
1160  * calculated logbno directly. Make sure it wraps to the correct bno inside the
1161  * log.
1162  *
1163  * The log is limited to 32 bit sizes, so we use the appropriate modulus
1164  * operation here and cast it back to a 64 bit daddr on return.
1165  */
1166 static inline xfs_daddr_t
1167 xlog_wrap_logbno(
1168 	struct xlog		*log,
1169 	xfs_daddr_t		bno)
1170 {
1171 	int			mod;
1172 
1173 	div_s64_rem(bno, log->l_logBBsize, &mod);
1174 	return mod;
1175 }
1176 
1177 /*
1178  * Check whether the head of the log points to an unmount record. In other
1179  * words, determine whether the log is clean. If so, update the in-core state
1180  * appropriately.
1181  */
1182 static int
1183 xlog_check_unmount_rec(
1184 	struct xlog		*log,
1185 	xfs_daddr_t		*head_blk,
1186 	xfs_daddr_t		*tail_blk,
1187 	struct xlog_rec_header	*rhead,
1188 	xfs_daddr_t		rhead_blk,
1189 	char			*buffer,
1190 	bool			*clean)
1191 {
1192 	struct xlog_op_header	*op_head;
1193 	xfs_daddr_t		umount_data_blk;
1194 	xfs_daddr_t		after_umount_blk;
1195 	int			hblks;
1196 	int			error;
1197 	char			*offset;
1198 
1199 	*clean = false;
1200 
1201 	/*
1202 	 * Look for unmount record. If we find it, then we know there was a
1203 	 * clean unmount. Since 'i' could be the last block in the physical
1204 	 * log, we convert to a log block before comparing to the head_blk.
1205 	 *
1206 	 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1207 	 * below. We won't want to clear the unmount record if there is one, so
1208 	 * we pass the lsn of the unmount record rather than the block after it.
1209 	 */
1210 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1211 		int	h_size = be32_to_cpu(rhead->h_size);
1212 		int	h_version = be32_to_cpu(rhead->h_version);
1213 
1214 		if ((h_version & XLOG_VERSION_2) &&
1215 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1216 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1217 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
1218 				hblks++;
1219 		} else {
1220 			hblks = 1;
1221 		}
1222 	} else {
1223 		hblks = 1;
1224 	}
1225 
1226 	after_umount_blk = xlog_wrap_logbno(log,
1227 			rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
1228 
1229 	if (*head_blk == after_umount_blk &&
1230 	    be32_to_cpu(rhead->h_num_logops) == 1) {
1231 		umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
1232 		error = xlog_bread(log, umount_data_blk, 1, buffer, &offset);
1233 		if (error)
1234 			return error;
1235 
1236 		op_head = (struct xlog_op_header *)offset;
1237 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1238 			/*
1239 			 * Set tail and last sync so that newly written log
1240 			 * records will point recovery to after the current
1241 			 * unmount record.
1242 			 */
1243 			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1244 					log->l_curr_cycle, after_umount_blk);
1245 			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1246 					log->l_curr_cycle, after_umount_blk);
1247 			*tail_blk = after_umount_blk;
1248 
1249 			*clean = true;
1250 		}
1251 	}
1252 
1253 	return 0;
1254 }
1255 
1256 static void
1257 xlog_set_state(
1258 	struct xlog		*log,
1259 	xfs_daddr_t		head_blk,
1260 	struct xlog_rec_header	*rhead,
1261 	xfs_daddr_t		rhead_blk,
1262 	bool			bump_cycle)
1263 {
1264 	/*
1265 	 * Reset log values according to the state of the log when we
1266 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
1267 	 * one because the next write starts a new cycle rather than
1268 	 * continuing the cycle of the last good log record.  At this
1269 	 * point we have guaranteed that all partial log records have been
1270 	 * accounted for.  Therefore, we know that the last good log record
1271 	 * written was complete and ended exactly on the end boundary
1272 	 * of the physical log.
1273 	 */
1274 	log->l_prev_block = rhead_blk;
1275 	log->l_curr_block = (int)head_blk;
1276 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1277 	if (bump_cycle)
1278 		log->l_curr_cycle++;
1279 	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1280 	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1281 	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1282 					BBTOB(log->l_curr_block));
1283 	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1284 					BBTOB(log->l_curr_block));
1285 }
1286 
1287 /*
1288  * Find the sync block number or the tail of the log.
1289  *
1290  * This will be the block number of the last record to have its
1291  * associated buffers synced to disk.  Every log record header has
1292  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
1293  * to get a sync block number.  The only concern is to figure out which
1294  * log record header to believe.
1295  *
1296  * The following algorithm uses the log record header with the largest
1297  * lsn.  The entire log record does not need to be valid.  We only care
1298  * that the header is valid.
1299  *
1300  * We could speed up search by using current head_blk buffer, but it is not
1301  * available.
1302  */
1303 STATIC int
1304 xlog_find_tail(
1305 	struct xlog		*log,
1306 	xfs_daddr_t		*head_blk,
1307 	xfs_daddr_t		*tail_blk)
1308 {
1309 	xlog_rec_header_t	*rhead;
1310 	char			*offset = NULL;
1311 	char			*buffer;
1312 	int			error;
1313 	xfs_daddr_t		rhead_blk;
1314 	xfs_lsn_t		tail_lsn;
1315 	bool			wrapped = false;
1316 	bool			clean = false;
1317 
1318 	/*
1319 	 * Find previous log record
1320 	 */
1321 	if ((error = xlog_find_head(log, head_blk)))
1322 		return error;
1323 	ASSERT(*head_blk < INT_MAX);
1324 
1325 	buffer = xlog_alloc_buffer(log, 1);
1326 	if (!buffer)
1327 		return -ENOMEM;
1328 	if (*head_blk == 0) {				/* special case */
1329 		error = xlog_bread(log, 0, 1, buffer, &offset);
1330 		if (error)
1331 			goto done;
1332 
1333 		if (xlog_get_cycle(offset) == 0) {
1334 			*tail_blk = 0;
1335 			/* leave all other log inited values alone */
1336 			goto done;
1337 		}
1338 	}
1339 
1340 	/*
1341 	 * Search backwards through the log looking for the log record header
1342 	 * block. This wraps all the way back around to the head so something is
1343 	 * seriously wrong if we can't find it.
1344 	 */
1345 	error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer,
1346 				      &rhead_blk, &rhead, &wrapped);
1347 	if (error < 0)
1348 		return error;
1349 	if (!error) {
1350 		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1351 		return -EIO;
1352 	}
1353 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1354 
1355 	/*
1356 	 * Set the log state based on the current head record.
1357 	 */
1358 	xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1359 	tail_lsn = atomic64_read(&log->l_tail_lsn);
1360 
1361 	/*
1362 	 * Look for an unmount record at the head of the log. This sets the log
1363 	 * state to determine whether recovery is necessary.
1364 	 */
1365 	error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1366 				       rhead_blk, buffer, &clean);
1367 	if (error)
1368 		goto done;
1369 
1370 	/*
1371 	 * Verify the log head if the log is not clean (e.g., we have anything
1372 	 * but an unmount record at the head). This uses CRC verification to
1373 	 * detect and trim torn writes. If discovered, CRC failures are
1374 	 * considered torn writes and the log head is trimmed accordingly.
1375 	 *
1376 	 * Note that we can only run CRC verification when the log is dirty
1377 	 * because there's no guarantee that the log data behind an unmount
1378 	 * record is compatible with the current architecture.
1379 	 */
1380 	if (!clean) {
1381 		xfs_daddr_t	orig_head = *head_blk;
1382 
1383 		error = xlog_verify_head(log, head_blk, tail_blk, buffer,
1384 					 &rhead_blk, &rhead, &wrapped);
1385 		if (error)
1386 			goto done;
1387 
1388 		/* update in-core state again if the head changed */
1389 		if (*head_blk != orig_head) {
1390 			xlog_set_state(log, *head_blk, rhead, rhead_blk,
1391 				       wrapped);
1392 			tail_lsn = atomic64_read(&log->l_tail_lsn);
1393 			error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1394 						       rhead, rhead_blk, buffer,
1395 						       &clean);
1396 			if (error)
1397 				goto done;
1398 		}
1399 	}
1400 
1401 	/*
1402 	 * Note that the unmount was clean. If the unmount was not clean, we
1403 	 * need to know this to rebuild the superblock counters from the perag
1404 	 * headers if we have a filesystem using non-persistent counters.
1405 	 */
1406 	if (clean)
1407 		log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1408 
1409 	/*
1410 	 * Make sure that there are no blocks in front of the head
1411 	 * with the same cycle number as the head.  This can happen
1412 	 * because we allow multiple outstanding log writes concurrently,
1413 	 * and the later writes might make it out before earlier ones.
1414 	 *
1415 	 * We use the lsn from before modifying it so that we'll never
1416 	 * overwrite the unmount record after a clean unmount.
1417 	 *
1418 	 * Do this only if we are going to recover the filesystem
1419 	 *
1420 	 * NOTE: This used to say "if (!readonly)"
1421 	 * However on Linux, we can & do recover a read-only filesystem.
1422 	 * We only skip recovery if NORECOVERY is specified on mount,
1423 	 * in which case we would not be here.
1424 	 *
1425 	 * But... if the -device- itself is readonly, just skip this.
1426 	 * We can't recover this device anyway, so it won't matter.
1427 	 */
1428 	if (!xfs_readonly_buftarg(log->l_targ))
1429 		error = xlog_clear_stale_blocks(log, tail_lsn);
1430 
1431 done:
1432 	kmem_free(buffer);
1433 
1434 	if (error)
1435 		xfs_warn(log->l_mp, "failed to locate log tail");
1436 	return error;
1437 }
1438 
1439 /*
1440  * Is the log zeroed at all?
1441  *
1442  * The last binary search should be changed to perform an X block read
1443  * once X becomes small enough.  You can then search linearly through
1444  * the X blocks.  This will cut down on the number of reads we need to do.
1445  *
1446  * If the log is partially zeroed, this routine will pass back the blkno
1447  * of the first block with cycle number 0.  It won't have a complete LR
1448  * preceding it.
1449  *
1450  * Return:
1451  *	0  => the log is completely written to
1452  *	1 => use *blk_no as the first block of the log
1453  *	<0 => error has occurred
1454  */
1455 STATIC int
1456 xlog_find_zeroed(
1457 	struct xlog	*log,
1458 	xfs_daddr_t	*blk_no)
1459 {
1460 	char		*buffer;
1461 	char		*offset;
1462 	uint	        first_cycle, last_cycle;
1463 	xfs_daddr_t	new_blk, last_blk, start_blk;
1464 	xfs_daddr_t     num_scan_bblks;
1465 	int	        error, log_bbnum = log->l_logBBsize;
1466 
1467 	*blk_no = 0;
1468 
1469 	/* check totally zeroed log */
1470 	buffer = xlog_alloc_buffer(log, 1);
1471 	if (!buffer)
1472 		return -ENOMEM;
1473 	error = xlog_bread(log, 0, 1, buffer, &offset);
1474 	if (error)
1475 		goto out_free_buffer;
1476 
1477 	first_cycle = xlog_get_cycle(offset);
1478 	if (first_cycle == 0) {		/* completely zeroed log */
1479 		*blk_no = 0;
1480 		kmem_free(buffer);
1481 		return 1;
1482 	}
1483 
1484 	/* check partially zeroed log */
1485 	error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset);
1486 	if (error)
1487 		goto out_free_buffer;
1488 
1489 	last_cycle = xlog_get_cycle(offset);
1490 	if (last_cycle != 0) {		/* log completely written to */
1491 		kmem_free(buffer);
1492 		return 0;
1493 	}
1494 
1495 	/* we have a partially zeroed log */
1496 	last_blk = log_bbnum-1;
1497 	error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0);
1498 	if (error)
1499 		goto out_free_buffer;
1500 
1501 	/*
1502 	 * Validate the answer.  Because there is no way to guarantee that
1503 	 * the entire log is made up of log records which are the same size,
1504 	 * we scan over the defined maximum blocks.  At this point, the maximum
1505 	 * is not chosen to mean anything special.   XXXmiken
1506 	 */
1507 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1508 	ASSERT(num_scan_bblks <= INT_MAX);
1509 
1510 	if (last_blk < num_scan_bblks)
1511 		num_scan_bblks = last_blk;
1512 	start_blk = last_blk - num_scan_bblks;
1513 
1514 	/*
1515 	 * We search for any instances of cycle number 0 that occur before
1516 	 * our current estimate of the head.  What we're trying to detect is
1517 	 *        1 ... | 0 | 1 | 0...
1518 	 *                       ^ binary search ends here
1519 	 */
1520 	if ((error = xlog_find_verify_cycle(log, start_blk,
1521 					 (int)num_scan_bblks, 0, &new_blk)))
1522 		goto out_free_buffer;
1523 	if (new_blk != -1)
1524 		last_blk = new_blk;
1525 
1526 	/*
1527 	 * Potentially backup over partial log record write.  We don't need
1528 	 * to search the end of the log because we know it is zero.
1529 	 */
1530 	error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1531 	if (error == 1)
1532 		error = -EIO;
1533 	if (error)
1534 		goto out_free_buffer;
1535 
1536 	*blk_no = last_blk;
1537 out_free_buffer:
1538 	kmem_free(buffer);
1539 	if (error)
1540 		return error;
1541 	return 1;
1542 }
1543 
1544 /*
1545  * These are simple subroutines used by xlog_clear_stale_blocks() below
1546  * to initialize a buffer full of empty log record headers and write
1547  * them into the log.
1548  */
1549 STATIC void
1550 xlog_add_record(
1551 	struct xlog		*log,
1552 	char			*buf,
1553 	int			cycle,
1554 	int			block,
1555 	int			tail_cycle,
1556 	int			tail_block)
1557 {
1558 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1559 
1560 	memset(buf, 0, BBSIZE);
1561 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1562 	recp->h_cycle = cpu_to_be32(cycle);
1563 	recp->h_version = cpu_to_be32(
1564 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1565 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1566 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1567 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1568 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1569 }
1570 
1571 STATIC int
1572 xlog_write_log_records(
1573 	struct xlog	*log,
1574 	int		cycle,
1575 	int		start_block,
1576 	int		blocks,
1577 	int		tail_cycle,
1578 	int		tail_block)
1579 {
1580 	char		*offset;
1581 	char		*buffer;
1582 	int		balign, ealign;
1583 	int		sectbb = log->l_sectBBsize;
1584 	int		end_block = start_block + blocks;
1585 	int		bufblks;
1586 	int		error = 0;
1587 	int		i, j = 0;
1588 
1589 	/*
1590 	 * Greedily allocate a buffer big enough to handle the full
1591 	 * range of basic blocks to be written.  If that fails, try
1592 	 * a smaller size.  We need to be able to write at least a
1593 	 * log sector, or we're out of luck.
1594 	 */
1595 	bufblks = 1 << ffs(blocks);
1596 	while (bufblks > log->l_logBBsize)
1597 		bufblks >>= 1;
1598 	while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
1599 		bufblks >>= 1;
1600 		if (bufblks < sectbb)
1601 			return -ENOMEM;
1602 	}
1603 
1604 	/* We may need to do a read at the start to fill in part of
1605 	 * the buffer in the starting sector not covered by the first
1606 	 * write below.
1607 	 */
1608 	balign = round_down(start_block, sectbb);
1609 	if (balign != start_block) {
1610 		error = xlog_bread_noalign(log, start_block, 1, buffer);
1611 		if (error)
1612 			goto out_free_buffer;
1613 
1614 		j = start_block - balign;
1615 	}
1616 
1617 	for (i = start_block; i < end_block; i += bufblks) {
1618 		int		bcount, endcount;
1619 
1620 		bcount = min(bufblks, end_block - start_block);
1621 		endcount = bcount - j;
1622 
1623 		/* We may need to do a read at the end to fill in part of
1624 		 * the buffer in the final sector not covered by the write.
1625 		 * If this is the same sector as the above read, skip it.
1626 		 */
1627 		ealign = round_down(end_block, sectbb);
1628 		if (j == 0 && (start_block + endcount > ealign)) {
1629 			error = xlog_bread_noalign(log, ealign, sectbb,
1630 					buffer + BBTOB(ealign - start_block));
1631 			if (error)
1632 				break;
1633 
1634 		}
1635 
1636 		offset = buffer + xlog_align(log, start_block);
1637 		for (; j < endcount; j++) {
1638 			xlog_add_record(log, offset, cycle, i+j,
1639 					tail_cycle, tail_block);
1640 			offset += BBSIZE;
1641 		}
1642 		error = xlog_bwrite(log, start_block, endcount, buffer);
1643 		if (error)
1644 			break;
1645 		start_block += endcount;
1646 		j = 0;
1647 	}
1648 
1649 out_free_buffer:
1650 	kmem_free(buffer);
1651 	return error;
1652 }
1653 
1654 /*
1655  * This routine is called to blow away any incomplete log writes out
1656  * in front of the log head.  We do this so that we won't become confused
1657  * if we come up, write only a little bit more, and then crash again.
1658  * If we leave the partial log records out there, this situation could
1659  * cause us to think those partial writes are valid blocks since they
1660  * have the current cycle number.  We get rid of them by overwriting them
1661  * with empty log records with the old cycle number rather than the
1662  * current one.
1663  *
1664  * The tail lsn is passed in rather than taken from
1665  * the log so that we will not write over the unmount record after a
1666  * clean unmount in a 512 block log.  Doing so would leave the log without
1667  * any valid log records in it until a new one was written.  If we crashed
1668  * during that time we would not be able to recover.
1669  */
1670 STATIC int
1671 xlog_clear_stale_blocks(
1672 	struct xlog	*log,
1673 	xfs_lsn_t	tail_lsn)
1674 {
1675 	int		tail_cycle, head_cycle;
1676 	int		tail_block, head_block;
1677 	int		tail_distance, max_distance;
1678 	int		distance;
1679 	int		error;
1680 
1681 	tail_cycle = CYCLE_LSN(tail_lsn);
1682 	tail_block = BLOCK_LSN(tail_lsn);
1683 	head_cycle = log->l_curr_cycle;
1684 	head_block = log->l_curr_block;
1685 
1686 	/*
1687 	 * Figure out the distance between the new head of the log
1688 	 * and the tail.  We want to write over any blocks beyond the
1689 	 * head that we may have written just before the crash, but
1690 	 * we don't want to overwrite the tail of the log.
1691 	 */
1692 	if (head_cycle == tail_cycle) {
1693 		/*
1694 		 * The tail is behind the head in the physical log,
1695 		 * so the distance from the head to the tail is the
1696 		 * distance from the head to the end of the log plus
1697 		 * the distance from the beginning of the log to the
1698 		 * tail.
1699 		 */
1700 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1701 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1702 					 XFS_ERRLEVEL_LOW, log->l_mp);
1703 			return -EFSCORRUPTED;
1704 		}
1705 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1706 	} else {
1707 		/*
1708 		 * The head is behind the tail in the physical log,
1709 		 * so the distance from the head to the tail is just
1710 		 * the tail block minus the head block.
1711 		 */
1712 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1713 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1714 					 XFS_ERRLEVEL_LOW, log->l_mp);
1715 			return -EFSCORRUPTED;
1716 		}
1717 		tail_distance = tail_block - head_block;
1718 	}
1719 
1720 	/*
1721 	 * If the head is right up against the tail, we can't clear
1722 	 * anything.
1723 	 */
1724 	if (tail_distance <= 0) {
1725 		ASSERT(tail_distance == 0);
1726 		return 0;
1727 	}
1728 
1729 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1730 	/*
1731 	 * Take the smaller of the maximum amount of outstanding I/O
1732 	 * we could have and the distance to the tail to clear out.
1733 	 * We take the smaller so that we don't overwrite the tail and
1734 	 * we don't waste all day writing from the head to the tail
1735 	 * for no reason.
1736 	 */
1737 	max_distance = min(max_distance, tail_distance);
1738 
1739 	if ((head_block + max_distance) <= log->l_logBBsize) {
1740 		/*
1741 		 * We can stomp all the blocks we need to without
1742 		 * wrapping around the end of the log.  Just do it
1743 		 * in a single write.  Use the cycle number of the
1744 		 * current cycle minus one so that the log will look like:
1745 		 *     n ... | n - 1 ...
1746 		 */
1747 		error = xlog_write_log_records(log, (head_cycle - 1),
1748 				head_block, max_distance, tail_cycle,
1749 				tail_block);
1750 		if (error)
1751 			return error;
1752 	} else {
1753 		/*
1754 		 * We need to wrap around the end of the physical log in
1755 		 * order to clear all the blocks.  Do it in two separate
1756 		 * I/Os.  The first write should be from the head to the
1757 		 * end of the physical log, and it should use the current
1758 		 * cycle number minus one just like above.
1759 		 */
1760 		distance = log->l_logBBsize - head_block;
1761 		error = xlog_write_log_records(log, (head_cycle - 1),
1762 				head_block, distance, tail_cycle,
1763 				tail_block);
1764 
1765 		if (error)
1766 			return error;
1767 
1768 		/*
1769 		 * Now write the blocks at the start of the physical log.
1770 		 * This writes the remainder of the blocks we want to clear.
1771 		 * It uses the current cycle number since we're now on the
1772 		 * same cycle as the head so that we get:
1773 		 *    n ... n ... | n - 1 ...
1774 		 *    ^^^^^ blocks we're writing
1775 		 */
1776 		distance = max_distance - (log->l_logBBsize - head_block);
1777 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1778 				tail_cycle, tail_block);
1779 		if (error)
1780 			return error;
1781 	}
1782 
1783 	return 0;
1784 }
1785 
1786 /******************************************************************************
1787  *
1788  *		Log recover routines
1789  *
1790  ******************************************************************************
1791  */
1792 
1793 /*
1794  * Sort the log items in the transaction.
1795  *
1796  * The ordering constraints are defined by the inode allocation and unlink
1797  * behaviour. The rules are:
1798  *
1799  *	1. Every item is only logged once in a given transaction. Hence it
1800  *	   represents the last logged state of the item. Hence ordering is
1801  *	   dependent on the order in which operations need to be performed so
1802  *	   required initial conditions are always met.
1803  *
1804  *	2. Cancelled buffers are recorded in pass 1 in a separate table and
1805  *	   there's nothing to replay from them so we can simply cull them
1806  *	   from the transaction. However, we can't do that until after we've
1807  *	   replayed all the other items because they may be dependent on the
1808  *	   cancelled buffer and replaying the cancelled buffer can remove it
1809  *	   form the cancelled buffer table. Hence they have tobe done last.
1810  *
1811  *	3. Inode allocation buffers must be replayed before inode items that
1812  *	   read the buffer and replay changes into it. For filesystems using the
1813  *	   ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1814  *	   treated the same as inode allocation buffers as they create and
1815  *	   initialise the buffers directly.
1816  *
1817  *	4. Inode unlink buffers must be replayed after inode items are replayed.
1818  *	   This ensures that inodes are completely flushed to the inode buffer
1819  *	   in a "free" state before we remove the unlinked inode list pointer.
1820  *
1821  * Hence the ordering needs to be inode allocation buffers first, inode items
1822  * second, inode unlink buffers third and cancelled buffers last.
1823  *
1824  * But there's a problem with that - we can't tell an inode allocation buffer
1825  * apart from a regular buffer, so we can't separate them. We can, however,
1826  * tell an inode unlink buffer from the others, and so we can separate them out
1827  * from all the other buffers and move them to last.
1828  *
1829  * Hence, 4 lists, in order from head to tail:
1830  *	- buffer_list for all buffers except cancelled/inode unlink buffers
1831  *	- item_list for all non-buffer items
1832  *	- inode_buffer_list for inode unlink buffers
1833  *	- cancel_list for the cancelled buffers
1834  *
1835  * Note that we add objects to the tail of the lists so that first-to-last
1836  * ordering is preserved within the lists. Adding objects to the head of the
1837  * list means when we traverse from the head we walk them in last-to-first
1838  * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1839  * but for all other items there may be specific ordering that we need to
1840  * preserve.
1841  */
1842 STATIC int
1843 xlog_recover_reorder_trans(
1844 	struct xlog		*log,
1845 	struct xlog_recover	*trans,
1846 	int			pass)
1847 {
1848 	xlog_recover_item_t	*item, *n;
1849 	int			error = 0;
1850 	LIST_HEAD(sort_list);
1851 	LIST_HEAD(cancel_list);
1852 	LIST_HEAD(buffer_list);
1853 	LIST_HEAD(inode_buffer_list);
1854 	LIST_HEAD(inode_list);
1855 
1856 	list_splice_init(&trans->r_itemq, &sort_list);
1857 	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1858 		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1859 
1860 		switch (ITEM_TYPE(item)) {
1861 		case XFS_LI_ICREATE:
1862 			list_move_tail(&item->ri_list, &buffer_list);
1863 			break;
1864 		case XFS_LI_BUF:
1865 			if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1866 				trace_xfs_log_recover_item_reorder_head(log,
1867 							trans, item, pass);
1868 				list_move(&item->ri_list, &cancel_list);
1869 				break;
1870 			}
1871 			if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1872 				list_move(&item->ri_list, &inode_buffer_list);
1873 				break;
1874 			}
1875 			list_move_tail(&item->ri_list, &buffer_list);
1876 			break;
1877 		case XFS_LI_INODE:
1878 		case XFS_LI_DQUOT:
1879 		case XFS_LI_QUOTAOFF:
1880 		case XFS_LI_EFD:
1881 		case XFS_LI_EFI:
1882 		case XFS_LI_RUI:
1883 		case XFS_LI_RUD:
1884 		case XFS_LI_CUI:
1885 		case XFS_LI_CUD:
1886 		case XFS_LI_BUI:
1887 		case XFS_LI_BUD:
1888 			trace_xfs_log_recover_item_reorder_tail(log,
1889 							trans, item, pass);
1890 			list_move_tail(&item->ri_list, &inode_list);
1891 			break;
1892 		default:
1893 			xfs_warn(log->l_mp,
1894 				"%s: unrecognized type of log operation",
1895 				__func__);
1896 			ASSERT(0);
1897 			/*
1898 			 * return the remaining items back to the transaction
1899 			 * item list so they can be freed in caller.
1900 			 */
1901 			if (!list_empty(&sort_list))
1902 				list_splice_init(&sort_list, &trans->r_itemq);
1903 			error = -EIO;
1904 			goto out;
1905 		}
1906 	}
1907 out:
1908 	ASSERT(list_empty(&sort_list));
1909 	if (!list_empty(&buffer_list))
1910 		list_splice(&buffer_list, &trans->r_itemq);
1911 	if (!list_empty(&inode_list))
1912 		list_splice_tail(&inode_list, &trans->r_itemq);
1913 	if (!list_empty(&inode_buffer_list))
1914 		list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1915 	if (!list_empty(&cancel_list))
1916 		list_splice_tail(&cancel_list, &trans->r_itemq);
1917 	return error;
1918 }
1919 
1920 /*
1921  * Build up the table of buf cancel records so that we don't replay
1922  * cancelled data in the second pass.  For buffer records that are
1923  * not cancel records, there is nothing to do here so we just return.
1924  *
1925  * If we get a cancel record which is already in the table, this indicates
1926  * that the buffer was cancelled multiple times.  In order to ensure
1927  * that during pass 2 we keep the record in the table until we reach its
1928  * last occurrence in the log, we keep a reference count in the cancel
1929  * record in the table to tell us how many times we expect to see this
1930  * record during the second pass.
1931  */
1932 STATIC int
1933 xlog_recover_buffer_pass1(
1934 	struct xlog			*log,
1935 	struct xlog_recover_item	*item)
1936 {
1937 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1938 	struct list_head	*bucket;
1939 	struct xfs_buf_cancel	*bcp;
1940 
1941 	/*
1942 	 * If this isn't a cancel buffer item, then just return.
1943 	 */
1944 	if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1945 		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1946 		return 0;
1947 	}
1948 
1949 	/*
1950 	 * Insert an xfs_buf_cancel record into the hash table of them.
1951 	 * If there is already an identical record, bump its reference count.
1952 	 */
1953 	bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1954 	list_for_each_entry(bcp, bucket, bc_list) {
1955 		if (bcp->bc_blkno == buf_f->blf_blkno &&
1956 		    bcp->bc_len == buf_f->blf_len) {
1957 			bcp->bc_refcount++;
1958 			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1959 			return 0;
1960 		}
1961 	}
1962 
1963 	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1964 	bcp->bc_blkno = buf_f->blf_blkno;
1965 	bcp->bc_len = buf_f->blf_len;
1966 	bcp->bc_refcount = 1;
1967 	list_add_tail(&bcp->bc_list, bucket);
1968 
1969 	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1970 	return 0;
1971 }
1972 
1973 /*
1974  * Check to see whether the buffer being recovered has a corresponding
1975  * entry in the buffer cancel record table. If it is, return the cancel
1976  * buffer structure to the caller.
1977  */
1978 STATIC struct xfs_buf_cancel *
1979 xlog_peek_buffer_cancelled(
1980 	struct xlog		*log,
1981 	xfs_daddr_t		blkno,
1982 	uint			len,
1983 	unsigned short			flags)
1984 {
1985 	struct list_head	*bucket;
1986 	struct xfs_buf_cancel	*bcp;
1987 
1988 	if (!log->l_buf_cancel_table) {
1989 		/* empty table means no cancelled buffers in the log */
1990 		ASSERT(!(flags & XFS_BLF_CANCEL));
1991 		return NULL;
1992 	}
1993 
1994 	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1995 	list_for_each_entry(bcp, bucket, bc_list) {
1996 		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1997 			return bcp;
1998 	}
1999 
2000 	/*
2001 	 * We didn't find a corresponding entry in the table, so return 0 so
2002 	 * that the buffer is NOT cancelled.
2003 	 */
2004 	ASSERT(!(flags & XFS_BLF_CANCEL));
2005 	return NULL;
2006 }
2007 
2008 /*
2009  * If the buffer is being cancelled then return 1 so that it will be cancelled,
2010  * otherwise return 0.  If the buffer is actually a buffer cancel item
2011  * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2012  * table and remove it from the table if this is the last reference.
2013  *
2014  * We remove the cancel record from the table when we encounter its last
2015  * occurrence in the log so that if the same buffer is re-used again after its
2016  * last cancellation we actually replay the changes made at that point.
2017  */
2018 STATIC int
2019 xlog_check_buffer_cancelled(
2020 	struct xlog		*log,
2021 	xfs_daddr_t		blkno,
2022 	uint			len,
2023 	unsigned short			flags)
2024 {
2025 	struct xfs_buf_cancel	*bcp;
2026 
2027 	bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2028 	if (!bcp)
2029 		return 0;
2030 
2031 	/*
2032 	 * We've go a match, so return 1 so that the recovery of this buffer
2033 	 * is cancelled.  If this buffer is actually a buffer cancel log
2034 	 * item, then decrement the refcount on the one in the table and
2035 	 * remove it if this is the last reference.
2036 	 */
2037 	if (flags & XFS_BLF_CANCEL) {
2038 		if (--bcp->bc_refcount == 0) {
2039 			list_del(&bcp->bc_list);
2040 			kmem_free(bcp);
2041 		}
2042 	}
2043 	return 1;
2044 }
2045 
2046 /*
2047  * Perform recovery for a buffer full of inodes.  In these buffers, the only
2048  * data which should be recovered is that which corresponds to the
2049  * di_next_unlinked pointers in the on disk inode structures.  The rest of the
2050  * data for the inodes is always logged through the inodes themselves rather
2051  * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2052  *
2053  * The only time when buffers full of inodes are fully recovered is when the
2054  * buffer is full of newly allocated inodes.  In this case the buffer will
2055  * not be marked as an inode buffer and so will be sent to
2056  * xlog_recover_do_reg_buffer() below during recovery.
2057  */
2058 STATIC int
2059 xlog_recover_do_inode_buffer(
2060 	struct xfs_mount	*mp,
2061 	xlog_recover_item_t	*item,
2062 	struct xfs_buf		*bp,
2063 	xfs_buf_log_format_t	*buf_f)
2064 {
2065 	int			i;
2066 	int			item_index = 0;
2067 	int			bit = 0;
2068 	int			nbits = 0;
2069 	int			reg_buf_offset = 0;
2070 	int			reg_buf_bytes = 0;
2071 	int			next_unlinked_offset;
2072 	int			inodes_per_buf;
2073 	xfs_agino_t		*logged_nextp;
2074 	xfs_agino_t		*buffer_nextp;
2075 
2076 	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2077 
2078 	/*
2079 	 * Post recovery validation only works properly on CRC enabled
2080 	 * filesystems.
2081 	 */
2082 	if (xfs_sb_version_hascrc(&mp->m_sb))
2083 		bp->b_ops = &xfs_inode_buf_ops;
2084 
2085 	inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog;
2086 	for (i = 0; i < inodes_per_buf; i++) {
2087 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2088 			offsetof(xfs_dinode_t, di_next_unlinked);
2089 
2090 		while (next_unlinked_offset >=
2091 		       (reg_buf_offset + reg_buf_bytes)) {
2092 			/*
2093 			 * The next di_next_unlinked field is beyond
2094 			 * the current logged region.  Find the next
2095 			 * logged region that contains or is beyond
2096 			 * the current di_next_unlinked field.
2097 			 */
2098 			bit += nbits;
2099 			bit = xfs_next_bit(buf_f->blf_data_map,
2100 					   buf_f->blf_map_size, bit);
2101 
2102 			/*
2103 			 * If there are no more logged regions in the
2104 			 * buffer, then we're done.
2105 			 */
2106 			if (bit == -1)
2107 				return 0;
2108 
2109 			nbits = xfs_contig_bits(buf_f->blf_data_map,
2110 						buf_f->blf_map_size, bit);
2111 			ASSERT(nbits > 0);
2112 			reg_buf_offset = bit << XFS_BLF_SHIFT;
2113 			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2114 			item_index++;
2115 		}
2116 
2117 		/*
2118 		 * If the current logged region starts after the current
2119 		 * di_next_unlinked field, then move on to the next
2120 		 * di_next_unlinked field.
2121 		 */
2122 		if (next_unlinked_offset < reg_buf_offset)
2123 			continue;
2124 
2125 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
2126 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2127 		ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length));
2128 
2129 		/*
2130 		 * The current logged region contains a copy of the
2131 		 * current di_next_unlinked field.  Extract its value
2132 		 * and copy it to the buffer copy.
2133 		 */
2134 		logged_nextp = item->ri_buf[item_index].i_addr +
2135 				next_unlinked_offset - reg_buf_offset;
2136 		if (unlikely(*logged_nextp == 0)) {
2137 			xfs_alert(mp,
2138 		"Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
2139 		"Trying to replay bad (0) inode di_next_unlinked field.",
2140 				item, bp);
2141 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2142 					 XFS_ERRLEVEL_LOW, mp);
2143 			return -EFSCORRUPTED;
2144 		}
2145 
2146 		buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
2147 		*buffer_nextp = *logged_nextp;
2148 
2149 		/*
2150 		 * If necessary, recalculate the CRC in the on-disk inode. We
2151 		 * have to leave the inode in a consistent state for whoever
2152 		 * reads it next....
2153 		 */
2154 		xfs_dinode_calc_crc(mp,
2155 				xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2156 
2157 	}
2158 
2159 	return 0;
2160 }
2161 
2162 /*
2163  * V5 filesystems know the age of the buffer on disk being recovered. We can
2164  * have newer objects on disk than we are replaying, and so for these cases we
2165  * don't want to replay the current change as that will make the buffer contents
2166  * temporarily invalid on disk.
2167  *
2168  * The magic number might not match the buffer type we are going to recover
2169  * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
2170  * extract the LSN of the existing object in the buffer based on it's current
2171  * magic number.  If we don't recognise the magic number in the buffer, then
2172  * return a LSN of -1 so that the caller knows it was an unrecognised block and
2173  * so can recover the buffer.
2174  *
2175  * Note: we cannot rely solely on magic number matches to determine that the
2176  * buffer has a valid LSN - we also need to verify that it belongs to this
2177  * filesystem, so we need to extract the object's LSN and compare it to that
2178  * which we read from the superblock. If the UUIDs don't match, then we've got a
2179  * stale metadata block from an old filesystem instance that we need to recover
2180  * over the top of.
2181  */
2182 static xfs_lsn_t
2183 xlog_recover_get_buf_lsn(
2184 	struct xfs_mount	*mp,
2185 	struct xfs_buf		*bp)
2186 {
2187 	uint32_t		magic32;
2188 	uint16_t		magic16;
2189 	uint16_t		magicda;
2190 	void			*blk = bp->b_addr;
2191 	uuid_t			*uuid;
2192 	xfs_lsn_t		lsn = -1;
2193 
2194 	/* v4 filesystems always recover immediately */
2195 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2196 		goto recover_immediately;
2197 
2198 	magic32 = be32_to_cpu(*(__be32 *)blk);
2199 	switch (magic32) {
2200 	case XFS_ABTB_CRC_MAGIC:
2201 	case XFS_ABTC_CRC_MAGIC:
2202 	case XFS_ABTB_MAGIC:
2203 	case XFS_ABTC_MAGIC:
2204 	case XFS_RMAP_CRC_MAGIC:
2205 	case XFS_REFC_CRC_MAGIC:
2206 	case XFS_IBT_CRC_MAGIC:
2207 	case XFS_IBT_MAGIC: {
2208 		struct xfs_btree_block *btb = blk;
2209 
2210 		lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2211 		uuid = &btb->bb_u.s.bb_uuid;
2212 		break;
2213 	}
2214 	case XFS_BMAP_CRC_MAGIC:
2215 	case XFS_BMAP_MAGIC: {
2216 		struct xfs_btree_block *btb = blk;
2217 
2218 		lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2219 		uuid = &btb->bb_u.l.bb_uuid;
2220 		break;
2221 	}
2222 	case XFS_AGF_MAGIC:
2223 		lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2224 		uuid = &((struct xfs_agf *)blk)->agf_uuid;
2225 		break;
2226 	case XFS_AGFL_MAGIC:
2227 		lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2228 		uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2229 		break;
2230 	case XFS_AGI_MAGIC:
2231 		lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2232 		uuid = &((struct xfs_agi *)blk)->agi_uuid;
2233 		break;
2234 	case XFS_SYMLINK_MAGIC:
2235 		lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2236 		uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2237 		break;
2238 	case XFS_DIR3_BLOCK_MAGIC:
2239 	case XFS_DIR3_DATA_MAGIC:
2240 	case XFS_DIR3_FREE_MAGIC:
2241 		lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2242 		uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2243 		break;
2244 	case XFS_ATTR3_RMT_MAGIC:
2245 		/*
2246 		 * Remote attr blocks are written synchronously, rather than
2247 		 * being logged. That means they do not contain a valid LSN
2248 		 * (i.e. transactionally ordered) in them, and hence any time we
2249 		 * see a buffer to replay over the top of a remote attribute
2250 		 * block we should simply do so.
2251 		 */
2252 		goto recover_immediately;
2253 	case XFS_SB_MAGIC:
2254 		/*
2255 		 * superblock uuids are magic. We may or may not have a
2256 		 * sb_meta_uuid on disk, but it will be set in the in-core
2257 		 * superblock. We set the uuid pointer for verification
2258 		 * according to the superblock feature mask to ensure we check
2259 		 * the relevant UUID in the superblock.
2260 		 */
2261 		lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2262 		if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2263 			uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2264 		else
2265 			uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2266 		break;
2267 	default:
2268 		break;
2269 	}
2270 
2271 	if (lsn != (xfs_lsn_t)-1) {
2272 		if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2273 			goto recover_immediately;
2274 		return lsn;
2275 	}
2276 
2277 	magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2278 	switch (magicda) {
2279 	case XFS_DIR3_LEAF1_MAGIC:
2280 	case XFS_DIR3_LEAFN_MAGIC:
2281 	case XFS_DA3_NODE_MAGIC:
2282 		lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2283 		uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2284 		break;
2285 	default:
2286 		break;
2287 	}
2288 
2289 	if (lsn != (xfs_lsn_t)-1) {
2290 		if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2291 			goto recover_immediately;
2292 		return lsn;
2293 	}
2294 
2295 	/*
2296 	 * We do individual object checks on dquot and inode buffers as they
2297 	 * have their own individual LSN records. Also, we could have a stale
2298 	 * buffer here, so we have to at least recognise these buffer types.
2299 	 *
2300 	 * A notd complexity here is inode unlinked list processing - it logs
2301 	 * the inode directly in the buffer, but we don't know which inodes have
2302 	 * been modified, and there is no global buffer LSN. Hence we need to
2303 	 * recover all inode buffer types immediately. This problem will be
2304 	 * fixed by logical logging of the unlinked list modifications.
2305 	 */
2306 	magic16 = be16_to_cpu(*(__be16 *)blk);
2307 	switch (magic16) {
2308 	case XFS_DQUOT_MAGIC:
2309 	case XFS_DINODE_MAGIC:
2310 		goto recover_immediately;
2311 	default:
2312 		break;
2313 	}
2314 
2315 	/* unknown buffer contents, recover immediately */
2316 
2317 recover_immediately:
2318 	return (xfs_lsn_t)-1;
2319 
2320 }
2321 
2322 /*
2323  * Validate the recovered buffer is of the correct type and attach the
2324  * appropriate buffer operations to them for writeback. Magic numbers are in a
2325  * few places:
2326  *	the first 16 bits of the buffer (inode buffer, dquot buffer),
2327  *	the first 32 bits of the buffer (most blocks),
2328  *	inside a struct xfs_da_blkinfo at the start of the buffer.
2329  */
2330 static void
2331 xlog_recover_validate_buf_type(
2332 	struct xfs_mount	*mp,
2333 	struct xfs_buf		*bp,
2334 	xfs_buf_log_format_t	*buf_f,
2335 	xfs_lsn_t		current_lsn)
2336 {
2337 	struct xfs_da_blkinfo	*info = bp->b_addr;
2338 	uint32_t		magic32;
2339 	uint16_t		magic16;
2340 	uint16_t		magicda;
2341 	char			*warnmsg = NULL;
2342 
2343 	/*
2344 	 * We can only do post recovery validation on items on CRC enabled
2345 	 * fielsystems as we need to know when the buffer was written to be able
2346 	 * to determine if we should have replayed the item. If we replay old
2347 	 * metadata over a newer buffer, then it will enter a temporarily
2348 	 * inconsistent state resulting in verification failures. Hence for now
2349 	 * just avoid the verification stage for non-crc filesystems
2350 	 */
2351 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2352 		return;
2353 
2354 	magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2355 	magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2356 	magicda = be16_to_cpu(info->magic);
2357 	switch (xfs_blft_from_flags(buf_f)) {
2358 	case XFS_BLFT_BTREE_BUF:
2359 		switch (magic32) {
2360 		case XFS_ABTB_CRC_MAGIC:
2361 		case XFS_ABTB_MAGIC:
2362 			bp->b_ops = &xfs_bnobt_buf_ops;
2363 			break;
2364 		case XFS_ABTC_CRC_MAGIC:
2365 		case XFS_ABTC_MAGIC:
2366 			bp->b_ops = &xfs_cntbt_buf_ops;
2367 			break;
2368 		case XFS_IBT_CRC_MAGIC:
2369 		case XFS_IBT_MAGIC:
2370 			bp->b_ops = &xfs_inobt_buf_ops;
2371 			break;
2372 		case XFS_FIBT_CRC_MAGIC:
2373 		case XFS_FIBT_MAGIC:
2374 			bp->b_ops = &xfs_finobt_buf_ops;
2375 			break;
2376 		case XFS_BMAP_CRC_MAGIC:
2377 		case XFS_BMAP_MAGIC:
2378 			bp->b_ops = &xfs_bmbt_buf_ops;
2379 			break;
2380 		case XFS_RMAP_CRC_MAGIC:
2381 			bp->b_ops = &xfs_rmapbt_buf_ops;
2382 			break;
2383 		case XFS_REFC_CRC_MAGIC:
2384 			bp->b_ops = &xfs_refcountbt_buf_ops;
2385 			break;
2386 		default:
2387 			warnmsg = "Bad btree block magic!";
2388 			break;
2389 		}
2390 		break;
2391 	case XFS_BLFT_AGF_BUF:
2392 		if (magic32 != XFS_AGF_MAGIC) {
2393 			warnmsg = "Bad AGF block magic!";
2394 			break;
2395 		}
2396 		bp->b_ops = &xfs_agf_buf_ops;
2397 		break;
2398 	case XFS_BLFT_AGFL_BUF:
2399 		if (magic32 != XFS_AGFL_MAGIC) {
2400 			warnmsg = "Bad AGFL block magic!";
2401 			break;
2402 		}
2403 		bp->b_ops = &xfs_agfl_buf_ops;
2404 		break;
2405 	case XFS_BLFT_AGI_BUF:
2406 		if (magic32 != XFS_AGI_MAGIC) {
2407 			warnmsg = "Bad AGI block magic!";
2408 			break;
2409 		}
2410 		bp->b_ops = &xfs_agi_buf_ops;
2411 		break;
2412 	case XFS_BLFT_UDQUOT_BUF:
2413 	case XFS_BLFT_PDQUOT_BUF:
2414 	case XFS_BLFT_GDQUOT_BUF:
2415 #ifdef CONFIG_XFS_QUOTA
2416 		if (magic16 != XFS_DQUOT_MAGIC) {
2417 			warnmsg = "Bad DQUOT block magic!";
2418 			break;
2419 		}
2420 		bp->b_ops = &xfs_dquot_buf_ops;
2421 #else
2422 		xfs_alert(mp,
2423 	"Trying to recover dquots without QUOTA support built in!");
2424 		ASSERT(0);
2425 #endif
2426 		break;
2427 	case XFS_BLFT_DINO_BUF:
2428 		if (magic16 != XFS_DINODE_MAGIC) {
2429 			warnmsg = "Bad INODE block magic!";
2430 			break;
2431 		}
2432 		bp->b_ops = &xfs_inode_buf_ops;
2433 		break;
2434 	case XFS_BLFT_SYMLINK_BUF:
2435 		if (magic32 != XFS_SYMLINK_MAGIC) {
2436 			warnmsg = "Bad symlink block magic!";
2437 			break;
2438 		}
2439 		bp->b_ops = &xfs_symlink_buf_ops;
2440 		break;
2441 	case XFS_BLFT_DIR_BLOCK_BUF:
2442 		if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2443 		    magic32 != XFS_DIR3_BLOCK_MAGIC) {
2444 			warnmsg = "Bad dir block magic!";
2445 			break;
2446 		}
2447 		bp->b_ops = &xfs_dir3_block_buf_ops;
2448 		break;
2449 	case XFS_BLFT_DIR_DATA_BUF:
2450 		if (magic32 != XFS_DIR2_DATA_MAGIC &&
2451 		    magic32 != XFS_DIR3_DATA_MAGIC) {
2452 			warnmsg = "Bad dir data magic!";
2453 			break;
2454 		}
2455 		bp->b_ops = &xfs_dir3_data_buf_ops;
2456 		break;
2457 	case XFS_BLFT_DIR_FREE_BUF:
2458 		if (magic32 != XFS_DIR2_FREE_MAGIC &&
2459 		    magic32 != XFS_DIR3_FREE_MAGIC) {
2460 			warnmsg = "Bad dir3 free magic!";
2461 			break;
2462 		}
2463 		bp->b_ops = &xfs_dir3_free_buf_ops;
2464 		break;
2465 	case XFS_BLFT_DIR_LEAF1_BUF:
2466 		if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2467 		    magicda != XFS_DIR3_LEAF1_MAGIC) {
2468 			warnmsg = "Bad dir leaf1 magic!";
2469 			break;
2470 		}
2471 		bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2472 		break;
2473 	case XFS_BLFT_DIR_LEAFN_BUF:
2474 		if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2475 		    magicda != XFS_DIR3_LEAFN_MAGIC) {
2476 			warnmsg = "Bad dir leafn magic!";
2477 			break;
2478 		}
2479 		bp->b_ops = &xfs_dir3_leafn_buf_ops;
2480 		break;
2481 	case XFS_BLFT_DA_NODE_BUF:
2482 		if (magicda != XFS_DA_NODE_MAGIC &&
2483 		    magicda != XFS_DA3_NODE_MAGIC) {
2484 			warnmsg = "Bad da node magic!";
2485 			break;
2486 		}
2487 		bp->b_ops = &xfs_da3_node_buf_ops;
2488 		break;
2489 	case XFS_BLFT_ATTR_LEAF_BUF:
2490 		if (magicda != XFS_ATTR_LEAF_MAGIC &&
2491 		    magicda != XFS_ATTR3_LEAF_MAGIC) {
2492 			warnmsg = "Bad attr leaf magic!";
2493 			break;
2494 		}
2495 		bp->b_ops = &xfs_attr3_leaf_buf_ops;
2496 		break;
2497 	case XFS_BLFT_ATTR_RMT_BUF:
2498 		if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2499 			warnmsg = "Bad attr remote magic!";
2500 			break;
2501 		}
2502 		bp->b_ops = &xfs_attr3_rmt_buf_ops;
2503 		break;
2504 	case XFS_BLFT_SB_BUF:
2505 		if (magic32 != XFS_SB_MAGIC) {
2506 			warnmsg = "Bad SB block magic!";
2507 			break;
2508 		}
2509 		bp->b_ops = &xfs_sb_buf_ops;
2510 		break;
2511 #ifdef CONFIG_XFS_RT
2512 	case XFS_BLFT_RTBITMAP_BUF:
2513 	case XFS_BLFT_RTSUMMARY_BUF:
2514 		/* no magic numbers for verification of RT buffers */
2515 		bp->b_ops = &xfs_rtbuf_ops;
2516 		break;
2517 #endif /* CONFIG_XFS_RT */
2518 	default:
2519 		xfs_warn(mp, "Unknown buffer type %d!",
2520 			 xfs_blft_from_flags(buf_f));
2521 		break;
2522 	}
2523 
2524 	/*
2525 	 * Nothing else to do in the case of a NULL current LSN as this means
2526 	 * the buffer is more recent than the change in the log and will be
2527 	 * skipped.
2528 	 */
2529 	if (current_lsn == NULLCOMMITLSN)
2530 		return;
2531 
2532 	if (warnmsg) {
2533 		xfs_warn(mp, warnmsg);
2534 		ASSERT(0);
2535 	}
2536 
2537 	/*
2538 	 * We must update the metadata LSN of the buffer as it is written out to
2539 	 * ensure that older transactions never replay over this one and corrupt
2540 	 * the buffer. This can occur if log recovery is interrupted at some
2541 	 * point after the current transaction completes, at which point a
2542 	 * subsequent mount starts recovery from the beginning.
2543 	 *
2544 	 * Write verifiers update the metadata LSN from log items attached to
2545 	 * the buffer. Therefore, initialize a bli purely to carry the LSN to
2546 	 * the verifier. We'll clean it up in our ->iodone() callback.
2547 	 */
2548 	if (bp->b_ops) {
2549 		struct xfs_buf_log_item	*bip;
2550 
2551 		ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
2552 		bp->b_iodone = xlog_recover_iodone;
2553 		xfs_buf_item_init(bp, mp);
2554 		bip = bp->b_log_item;
2555 		bip->bli_item.li_lsn = current_lsn;
2556 	}
2557 }
2558 
2559 /*
2560  * Perform a 'normal' buffer recovery.  Each logged region of the
2561  * buffer should be copied over the corresponding region in the
2562  * given buffer.  The bitmap in the buf log format structure indicates
2563  * where to place the logged data.
2564  */
2565 STATIC void
2566 xlog_recover_do_reg_buffer(
2567 	struct xfs_mount	*mp,
2568 	xlog_recover_item_t	*item,
2569 	struct xfs_buf		*bp,
2570 	xfs_buf_log_format_t	*buf_f,
2571 	xfs_lsn_t		current_lsn)
2572 {
2573 	int			i;
2574 	int			bit;
2575 	int			nbits;
2576 	xfs_failaddr_t		fa;
2577 
2578 	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2579 
2580 	bit = 0;
2581 	i = 1;  /* 0 is the buf format structure */
2582 	while (1) {
2583 		bit = xfs_next_bit(buf_f->blf_data_map,
2584 				   buf_f->blf_map_size, bit);
2585 		if (bit == -1)
2586 			break;
2587 		nbits = xfs_contig_bits(buf_f->blf_data_map,
2588 					buf_f->blf_map_size, bit);
2589 		ASSERT(nbits > 0);
2590 		ASSERT(item->ri_buf[i].i_addr != NULL);
2591 		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2592 		ASSERT(BBTOB(bp->b_length) >=
2593 		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2594 
2595 		/*
2596 		 * The dirty regions logged in the buffer, even though
2597 		 * contiguous, may span multiple chunks. This is because the
2598 		 * dirty region may span a physical page boundary in a buffer
2599 		 * and hence be split into two separate vectors for writing into
2600 		 * the log. Hence we need to trim nbits back to the length of
2601 		 * the current region being copied out of the log.
2602 		 */
2603 		if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2604 			nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2605 
2606 		/*
2607 		 * Do a sanity check if this is a dquot buffer. Just checking
2608 		 * the first dquot in the buffer should do. XXXThis is
2609 		 * probably a good thing to do for other buf types also.
2610 		 */
2611 		fa = NULL;
2612 		if (buf_f->blf_flags &
2613 		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2614 			if (item->ri_buf[i].i_addr == NULL) {
2615 				xfs_alert(mp,
2616 					"XFS: NULL dquot in %s.", __func__);
2617 				goto next;
2618 			}
2619 			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2620 				xfs_alert(mp,
2621 					"XFS: dquot too small (%d) in %s.",
2622 					item->ri_buf[i].i_len, __func__);
2623 				goto next;
2624 			}
2625 			fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr,
2626 					       -1, 0);
2627 			if (fa) {
2628 				xfs_alert(mp,
2629 	"dquot corrupt at %pS trying to replay into block 0x%llx",
2630 					fa, bp->b_bn);
2631 				goto next;
2632 			}
2633 		}
2634 
2635 		memcpy(xfs_buf_offset(bp,
2636 			(uint)bit << XFS_BLF_SHIFT),	/* dest */
2637 			item->ri_buf[i].i_addr,		/* source */
2638 			nbits<<XFS_BLF_SHIFT);		/* length */
2639  next:
2640 		i++;
2641 		bit += nbits;
2642 	}
2643 
2644 	/* Shouldn't be any more regions */
2645 	ASSERT(i == item->ri_total);
2646 
2647 	xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
2648 }
2649 
2650 /*
2651  * Perform a dquot buffer recovery.
2652  * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2653  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2654  * Else, treat it as a regular buffer and do recovery.
2655  *
2656  * Return false if the buffer was tossed and true if we recovered the buffer to
2657  * indicate to the caller if the buffer needs writing.
2658  */
2659 STATIC bool
2660 xlog_recover_do_dquot_buffer(
2661 	struct xfs_mount		*mp,
2662 	struct xlog			*log,
2663 	struct xlog_recover_item	*item,
2664 	struct xfs_buf			*bp,
2665 	struct xfs_buf_log_format	*buf_f)
2666 {
2667 	uint			type;
2668 
2669 	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2670 
2671 	/*
2672 	 * Filesystems are required to send in quota flags at mount time.
2673 	 */
2674 	if (!mp->m_qflags)
2675 		return false;
2676 
2677 	type = 0;
2678 	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2679 		type |= XFS_DQ_USER;
2680 	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2681 		type |= XFS_DQ_PROJ;
2682 	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2683 		type |= XFS_DQ_GROUP;
2684 	/*
2685 	 * This type of quotas was turned off, so ignore this buffer
2686 	 */
2687 	if (log->l_quotaoffs_flag & type)
2688 		return false;
2689 
2690 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
2691 	return true;
2692 }
2693 
2694 /*
2695  * This routine replays a modification made to a buffer at runtime.
2696  * There are actually two types of buffer, regular and inode, which
2697  * are handled differently.  Inode buffers are handled differently
2698  * in that we only recover a specific set of data from them, namely
2699  * the inode di_next_unlinked fields.  This is because all other inode
2700  * data is actually logged via inode records and any data we replay
2701  * here which overlaps that may be stale.
2702  *
2703  * When meta-data buffers are freed at run time we log a buffer item
2704  * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2705  * of the buffer in the log should not be replayed at recovery time.
2706  * This is so that if the blocks covered by the buffer are reused for
2707  * file data before we crash we don't end up replaying old, freed
2708  * meta-data into a user's file.
2709  *
2710  * To handle the cancellation of buffer log items, we make two passes
2711  * over the log during recovery.  During the first we build a table of
2712  * those buffers which have been cancelled, and during the second we
2713  * only replay those buffers which do not have corresponding cancel
2714  * records in the table.  See xlog_recover_buffer_pass[1,2] above
2715  * for more details on the implementation of the table of cancel records.
2716  */
2717 STATIC int
2718 xlog_recover_buffer_pass2(
2719 	struct xlog			*log,
2720 	struct list_head		*buffer_list,
2721 	struct xlog_recover_item	*item,
2722 	xfs_lsn_t			current_lsn)
2723 {
2724 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2725 	xfs_mount_t		*mp = log->l_mp;
2726 	xfs_buf_t		*bp;
2727 	int			error;
2728 	uint			buf_flags;
2729 	xfs_lsn_t		lsn;
2730 
2731 	/*
2732 	 * In this pass we only want to recover all the buffers which have
2733 	 * not been cancelled and are not cancellation buffers themselves.
2734 	 */
2735 	if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2736 			buf_f->blf_len, buf_f->blf_flags)) {
2737 		trace_xfs_log_recover_buf_cancel(log, buf_f);
2738 		return 0;
2739 	}
2740 
2741 	trace_xfs_log_recover_buf_recover(log, buf_f);
2742 
2743 	buf_flags = 0;
2744 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2745 		buf_flags |= XBF_UNMAPPED;
2746 
2747 	bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2748 			  buf_flags, NULL);
2749 	if (!bp)
2750 		return -ENOMEM;
2751 	error = bp->b_error;
2752 	if (error) {
2753 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2754 		goto out_release;
2755 	}
2756 
2757 	/*
2758 	 * Recover the buffer only if we get an LSN from it and it's less than
2759 	 * the lsn of the transaction we are replaying.
2760 	 *
2761 	 * Note that we have to be extremely careful of readahead here.
2762 	 * Readahead does not attach verfiers to the buffers so if we don't
2763 	 * actually do any replay after readahead because of the LSN we found
2764 	 * in the buffer if more recent than that current transaction then we
2765 	 * need to attach the verifier directly. Failure to do so can lead to
2766 	 * future recovery actions (e.g. EFI and unlinked list recovery) can
2767 	 * operate on the buffers and they won't get the verifier attached. This
2768 	 * can lead to blocks on disk having the correct content but a stale
2769 	 * CRC.
2770 	 *
2771 	 * It is safe to assume these clean buffers are currently up to date.
2772 	 * If the buffer is dirtied by a later transaction being replayed, then
2773 	 * the verifier will be reset to match whatever recover turns that
2774 	 * buffer into.
2775 	 */
2776 	lsn = xlog_recover_get_buf_lsn(mp, bp);
2777 	if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2778 		trace_xfs_log_recover_buf_skip(log, buf_f);
2779 		xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
2780 		goto out_release;
2781 	}
2782 
2783 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2784 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2785 		if (error)
2786 			goto out_release;
2787 	} else if (buf_f->blf_flags &
2788 		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2789 		bool	dirty;
2790 
2791 		dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2792 		if (!dirty)
2793 			goto out_release;
2794 	} else {
2795 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
2796 	}
2797 
2798 	/*
2799 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2800 	 * slower when taking into account all the buffers to be flushed.
2801 	 *
2802 	 * Also make sure that only inode buffers with good sizes stay in
2803 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2804 	 * or inode_cluster_size bytes, whichever is bigger.  The inode
2805 	 * buffers in the log can be a different size if the log was generated
2806 	 * by an older kernel using unclustered inode buffers or a newer kernel
2807 	 * running with a different inode cluster size.  Regardless, if the
2808 	 * the inode buffer size isn't max(blocksize, inode_cluster_size)
2809 	 * for *our* value of inode_cluster_size, then we need to keep
2810 	 * the buffer out of the buffer cache so that the buffer won't
2811 	 * overlap with future reads of those inodes.
2812 	 */
2813 	if (XFS_DINODE_MAGIC ==
2814 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2815 	    (BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) {
2816 		xfs_buf_stale(bp);
2817 		error = xfs_bwrite(bp);
2818 	} else {
2819 		ASSERT(bp->b_mount == mp);
2820 		bp->b_iodone = xlog_recover_iodone;
2821 		xfs_buf_delwri_queue(bp, buffer_list);
2822 	}
2823 
2824 out_release:
2825 	xfs_buf_relse(bp);
2826 	return error;
2827 }
2828 
2829 /*
2830  * Inode fork owner changes
2831  *
2832  * If we have been told that we have to reparent the inode fork, it's because an
2833  * extent swap operation on a CRC enabled filesystem has been done and we are
2834  * replaying it. We need to walk the BMBT of the appropriate fork and change the
2835  * owners of it.
2836  *
2837  * The complexity here is that we don't have an inode context to work with, so
2838  * after we've replayed the inode we need to instantiate one.  This is where the
2839  * fun begins.
2840  *
2841  * We are in the middle of log recovery, so we can't run transactions. That
2842  * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2843  * that will result in the corresponding iput() running the inode through
2844  * xfs_inactive(). If we've just replayed an inode core that changes the link
2845  * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2846  * transactions (bad!).
2847  *
2848  * So, to avoid this, we instantiate an inode directly from the inode core we've
2849  * just recovered. We have the buffer still locked, and all we really need to
2850  * instantiate is the inode core and the forks being modified. We can do this
2851  * manually, then run the inode btree owner change, and then tear down the
2852  * xfs_inode without having to run any transactions at all.
2853  *
2854  * Also, because we don't have a transaction context available here but need to
2855  * gather all the buffers we modify for writeback so we pass the buffer_list
2856  * instead for the operation to use.
2857  */
2858 
2859 STATIC int
2860 xfs_recover_inode_owner_change(
2861 	struct xfs_mount	*mp,
2862 	struct xfs_dinode	*dip,
2863 	struct xfs_inode_log_format *in_f,
2864 	struct list_head	*buffer_list)
2865 {
2866 	struct xfs_inode	*ip;
2867 	int			error;
2868 
2869 	ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2870 
2871 	ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2872 	if (!ip)
2873 		return -ENOMEM;
2874 
2875 	/* instantiate the inode */
2876 	xfs_inode_from_disk(ip, dip);
2877 	ASSERT(ip->i_d.di_version >= 3);
2878 
2879 	error = xfs_iformat_fork(ip, dip);
2880 	if (error)
2881 		goto out_free_ip;
2882 
2883 	if (!xfs_inode_verify_forks(ip)) {
2884 		error = -EFSCORRUPTED;
2885 		goto out_free_ip;
2886 	}
2887 
2888 	if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2889 		ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2890 		error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2891 					      ip->i_ino, buffer_list);
2892 		if (error)
2893 			goto out_free_ip;
2894 	}
2895 
2896 	if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2897 		ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2898 		error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2899 					      ip->i_ino, buffer_list);
2900 		if (error)
2901 			goto out_free_ip;
2902 	}
2903 
2904 out_free_ip:
2905 	xfs_inode_free(ip);
2906 	return error;
2907 }
2908 
2909 STATIC int
2910 xlog_recover_inode_pass2(
2911 	struct xlog			*log,
2912 	struct list_head		*buffer_list,
2913 	struct xlog_recover_item	*item,
2914 	xfs_lsn_t			current_lsn)
2915 {
2916 	struct xfs_inode_log_format	*in_f;
2917 	xfs_mount_t		*mp = log->l_mp;
2918 	xfs_buf_t		*bp;
2919 	xfs_dinode_t		*dip;
2920 	int			len;
2921 	char			*src;
2922 	char			*dest;
2923 	int			error;
2924 	int			attr_index;
2925 	uint			fields;
2926 	struct xfs_log_dinode	*ldip;
2927 	uint			isize;
2928 	int			need_free = 0;
2929 
2930 	if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
2931 		in_f = item->ri_buf[0].i_addr;
2932 	} else {
2933 		in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), KM_SLEEP);
2934 		need_free = 1;
2935 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2936 		if (error)
2937 			goto error;
2938 	}
2939 
2940 	/*
2941 	 * Inode buffers can be freed, look out for it,
2942 	 * and do not replay the inode.
2943 	 */
2944 	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2945 					in_f->ilf_len, 0)) {
2946 		error = 0;
2947 		trace_xfs_log_recover_inode_cancel(log, in_f);
2948 		goto error;
2949 	}
2950 	trace_xfs_log_recover_inode_recover(log, in_f);
2951 
2952 	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2953 			  &xfs_inode_buf_ops);
2954 	if (!bp) {
2955 		error = -ENOMEM;
2956 		goto error;
2957 	}
2958 	error = bp->b_error;
2959 	if (error) {
2960 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2961 		goto out_release;
2962 	}
2963 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2964 	dip = xfs_buf_offset(bp, in_f->ilf_boffset);
2965 
2966 	/*
2967 	 * Make sure the place we're flushing out to really looks
2968 	 * like an inode!
2969 	 */
2970 	if (unlikely(!xfs_verify_magic16(bp, dip->di_magic))) {
2971 		xfs_alert(mp,
2972 	"%s: Bad inode magic number, dip = "PTR_FMT", dino bp = "PTR_FMT", ino = %Ld",
2973 			__func__, dip, bp, in_f->ilf_ino);
2974 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2975 				 XFS_ERRLEVEL_LOW, mp);
2976 		error = -EFSCORRUPTED;
2977 		goto out_release;
2978 	}
2979 	ldip = item->ri_buf[1].i_addr;
2980 	if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
2981 		xfs_alert(mp,
2982 			"%s: Bad inode log record, rec ptr "PTR_FMT", ino %Ld",
2983 			__func__, item, in_f->ilf_ino);
2984 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2985 				 XFS_ERRLEVEL_LOW, mp);
2986 		error = -EFSCORRUPTED;
2987 		goto out_release;
2988 	}
2989 
2990 	/*
2991 	 * If the inode has an LSN in it, recover the inode only if it's less
2992 	 * than the lsn of the transaction we are replaying. Note: we still
2993 	 * need to replay an owner change even though the inode is more recent
2994 	 * than the transaction as there is no guarantee that all the btree
2995 	 * blocks are more recent than this transaction, too.
2996 	 */
2997 	if (dip->di_version >= 3) {
2998 		xfs_lsn_t	lsn = be64_to_cpu(dip->di_lsn);
2999 
3000 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3001 			trace_xfs_log_recover_inode_skip(log, in_f);
3002 			error = 0;
3003 			goto out_owner_change;
3004 		}
3005 	}
3006 
3007 	/*
3008 	 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3009 	 * are transactional and if ordering is necessary we can determine that
3010 	 * more accurately by the LSN field in the V3 inode core. Don't trust
3011 	 * the inode versions we might be changing them here - use the
3012 	 * superblock flag to determine whether we need to look at di_flushiter
3013 	 * to skip replay when the on disk inode is newer than the log one
3014 	 */
3015 	if (!xfs_sb_version_hascrc(&mp->m_sb) &&
3016 	    ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
3017 		/*
3018 		 * Deal with the wrap case, DI_MAX_FLUSH is less
3019 		 * than smaller numbers
3020 		 */
3021 		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
3022 		    ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
3023 			/* do nothing */
3024 		} else {
3025 			trace_xfs_log_recover_inode_skip(log, in_f);
3026 			error = 0;
3027 			goto out_release;
3028 		}
3029 	}
3030 
3031 	/* Take the opportunity to reset the flush iteration count */
3032 	ldip->di_flushiter = 0;
3033 
3034 	if (unlikely(S_ISREG(ldip->di_mode))) {
3035 		if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3036 		    (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
3037 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3038 					 XFS_ERRLEVEL_LOW, mp, ldip,
3039 					 sizeof(*ldip));
3040 			xfs_alert(mp,
3041 		"%s: Bad regular inode log record, rec ptr "PTR_FMT", "
3042 		"ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
3043 				__func__, item, dip, bp, in_f->ilf_ino);
3044 			error = -EFSCORRUPTED;
3045 			goto out_release;
3046 		}
3047 	} else if (unlikely(S_ISDIR(ldip->di_mode))) {
3048 		if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3049 		    (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3050 		    (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
3051 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3052 					     XFS_ERRLEVEL_LOW, mp, ldip,
3053 					     sizeof(*ldip));
3054 			xfs_alert(mp,
3055 		"%s: Bad dir inode log record, rec ptr "PTR_FMT", "
3056 		"ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
3057 				__func__, item, dip, bp, in_f->ilf_ino);
3058 			error = -EFSCORRUPTED;
3059 			goto out_release;
3060 		}
3061 	}
3062 	if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
3063 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3064 				     XFS_ERRLEVEL_LOW, mp, ldip,
3065 				     sizeof(*ldip));
3066 		xfs_alert(mp,
3067 	"%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3068 	"dino bp "PTR_FMT", ino %Ld, total extents = %d, nblocks = %Ld",
3069 			__func__, item, dip, bp, in_f->ilf_ino,
3070 			ldip->di_nextents + ldip->di_anextents,
3071 			ldip->di_nblocks);
3072 		error = -EFSCORRUPTED;
3073 		goto out_release;
3074 	}
3075 	if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
3076 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3077 				     XFS_ERRLEVEL_LOW, mp, ldip,
3078 				     sizeof(*ldip));
3079 		xfs_alert(mp,
3080 	"%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3081 	"dino bp "PTR_FMT", ino %Ld, forkoff 0x%x", __func__,
3082 			item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
3083 		error = -EFSCORRUPTED;
3084 		goto out_release;
3085 	}
3086 	isize = xfs_log_dinode_size(ldip->di_version);
3087 	if (unlikely(item->ri_buf[1].i_len > isize)) {
3088 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3089 				     XFS_ERRLEVEL_LOW, mp, ldip,
3090 				     sizeof(*ldip));
3091 		xfs_alert(mp,
3092 			"%s: Bad inode log record length %d, rec ptr "PTR_FMT,
3093 			__func__, item->ri_buf[1].i_len, item);
3094 		error = -EFSCORRUPTED;
3095 		goto out_release;
3096 	}
3097 
3098 	/* recover the log dinode inode into the on disk inode */
3099 	xfs_log_dinode_to_disk(ldip, dip);
3100 
3101 	fields = in_f->ilf_fields;
3102 	if (fields & XFS_ILOG_DEV)
3103 		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3104 
3105 	if (in_f->ilf_size == 2)
3106 		goto out_owner_change;
3107 	len = item->ri_buf[2].i_len;
3108 	src = item->ri_buf[2].i_addr;
3109 	ASSERT(in_f->ilf_size <= 4);
3110 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3111 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
3112 	       (len == in_f->ilf_dsize));
3113 
3114 	switch (fields & XFS_ILOG_DFORK) {
3115 	case XFS_ILOG_DDATA:
3116 	case XFS_ILOG_DEXT:
3117 		memcpy(XFS_DFORK_DPTR(dip), src, len);
3118 		break;
3119 
3120 	case XFS_ILOG_DBROOT:
3121 		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3122 				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3123 				 XFS_DFORK_DSIZE(dip, mp));
3124 		break;
3125 
3126 	default:
3127 		/*
3128 		 * There are no data fork flags set.
3129 		 */
3130 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
3131 		break;
3132 	}
3133 
3134 	/*
3135 	 * If we logged any attribute data, recover it.  There may or
3136 	 * may not have been any other non-core data logged in this
3137 	 * transaction.
3138 	 */
3139 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3140 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3141 			attr_index = 3;
3142 		} else {
3143 			attr_index = 2;
3144 		}
3145 		len = item->ri_buf[attr_index].i_len;
3146 		src = item->ri_buf[attr_index].i_addr;
3147 		ASSERT(len == in_f->ilf_asize);
3148 
3149 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3150 		case XFS_ILOG_ADATA:
3151 		case XFS_ILOG_AEXT:
3152 			dest = XFS_DFORK_APTR(dip);
3153 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3154 			memcpy(dest, src, len);
3155 			break;
3156 
3157 		case XFS_ILOG_ABROOT:
3158 			dest = XFS_DFORK_APTR(dip);
3159 			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3160 					 len, (xfs_bmdr_block_t*)dest,
3161 					 XFS_DFORK_ASIZE(dip, mp));
3162 			break;
3163 
3164 		default:
3165 			xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3166 			ASSERT(0);
3167 			error = -EIO;
3168 			goto out_release;
3169 		}
3170 	}
3171 
3172 out_owner_change:
3173 	/* Recover the swapext owner change unless inode has been deleted */
3174 	if ((in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) &&
3175 	    (dip->di_mode != 0))
3176 		error = xfs_recover_inode_owner_change(mp, dip, in_f,
3177 						       buffer_list);
3178 	/* re-generate the checksum. */
3179 	xfs_dinode_calc_crc(log->l_mp, dip);
3180 
3181 	ASSERT(bp->b_mount == mp);
3182 	bp->b_iodone = xlog_recover_iodone;
3183 	xfs_buf_delwri_queue(bp, buffer_list);
3184 
3185 out_release:
3186 	xfs_buf_relse(bp);
3187 error:
3188 	if (need_free)
3189 		kmem_free(in_f);
3190 	return error;
3191 }
3192 
3193 /*
3194  * Recover QUOTAOFF records. We simply make a note of it in the xlog
3195  * structure, so that we know not to do any dquot item or dquot buffer recovery,
3196  * of that type.
3197  */
3198 STATIC int
3199 xlog_recover_quotaoff_pass1(
3200 	struct xlog			*log,
3201 	struct xlog_recover_item	*item)
3202 {
3203 	xfs_qoff_logformat_t	*qoff_f = item->ri_buf[0].i_addr;
3204 	ASSERT(qoff_f);
3205 
3206 	/*
3207 	 * The logitem format's flag tells us if this was user quotaoff,
3208 	 * group/project quotaoff or both.
3209 	 */
3210 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3211 		log->l_quotaoffs_flag |= XFS_DQ_USER;
3212 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3213 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3214 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3215 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3216 
3217 	return 0;
3218 }
3219 
3220 /*
3221  * Recover a dquot record
3222  */
3223 STATIC int
3224 xlog_recover_dquot_pass2(
3225 	struct xlog			*log,
3226 	struct list_head		*buffer_list,
3227 	struct xlog_recover_item	*item,
3228 	xfs_lsn_t			current_lsn)
3229 {
3230 	xfs_mount_t		*mp = log->l_mp;
3231 	xfs_buf_t		*bp;
3232 	struct xfs_disk_dquot	*ddq, *recddq;
3233 	xfs_failaddr_t		fa;
3234 	int			error;
3235 	xfs_dq_logformat_t	*dq_f;
3236 	uint			type;
3237 
3238 
3239 	/*
3240 	 * Filesystems are required to send in quota flags at mount time.
3241 	 */
3242 	if (mp->m_qflags == 0)
3243 		return 0;
3244 
3245 	recddq = item->ri_buf[1].i_addr;
3246 	if (recddq == NULL) {
3247 		xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3248 		return -EIO;
3249 	}
3250 	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
3251 		xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3252 			item->ri_buf[1].i_len, __func__);
3253 		return -EIO;
3254 	}
3255 
3256 	/*
3257 	 * This type of quotas was turned off, so ignore this record.
3258 	 */
3259 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3260 	ASSERT(type);
3261 	if (log->l_quotaoffs_flag & type)
3262 		return 0;
3263 
3264 	/*
3265 	 * At this point we know that quota was _not_ turned off.
3266 	 * Since the mount flags are not indicating to us otherwise, this
3267 	 * must mean that quota is on, and the dquot needs to be replayed.
3268 	 * Remember that we may not have fully recovered the superblock yet,
3269 	 * so we can't do the usual trick of looking at the SB quota bits.
3270 	 *
3271 	 * The other possibility, of course, is that the quota subsystem was
3272 	 * removed since the last mount - ENOSYS.
3273 	 */
3274 	dq_f = item->ri_buf[0].i_addr;
3275 	ASSERT(dq_f);
3276 	fa = xfs_dquot_verify(mp, recddq, dq_f->qlf_id, 0);
3277 	if (fa) {
3278 		xfs_alert(mp, "corrupt dquot ID 0x%x in log at %pS",
3279 				dq_f->qlf_id, fa);
3280 		return -EIO;
3281 	}
3282 	ASSERT(dq_f->qlf_len == 1);
3283 
3284 	/*
3285 	 * At this point we are assuming that the dquots have been allocated
3286 	 * and hence the buffer has valid dquots stamped in it. It should,
3287 	 * therefore, pass verifier validation. If the dquot is bad, then the
3288 	 * we'll return an error here, so we don't need to specifically check
3289 	 * the dquot in the buffer after the verifier has run.
3290 	 */
3291 	error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3292 				   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3293 				   &xfs_dquot_buf_ops);
3294 	if (error)
3295 		return error;
3296 
3297 	ASSERT(bp);
3298 	ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3299 
3300 	/*
3301 	 * If the dquot has an LSN in it, recover the dquot only if it's less
3302 	 * than the lsn of the transaction we are replaying.
3303 	 */
3304 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3305 		struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3306 		xfs_lsn_t	lsn = be64_to_cpu(dqb->dd_lsn);
3307 
3308 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3309 			goto out_release;
3310 		}
3311 	}
3312 
3313 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
3314 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3315 		xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3316 				 XFS_DQUOT_CRC_OFF);
3317 	}
3318 
3319 	ASSERT(dq_f->qlf_size == 2);
3320 	ASSERT(bp->b_mount == mp);
3321 	bp->b_iodone = xlog_recover_iodone;
3322 	xfs_buf_delwri_queue(bp, buffer_list);
3323 
3324 out_release:
3325 	xfs_buf_relse(bp);
3326 	return 0;
3327 }
3328 
3329 /*
3330  * This routine is called to create an in-core extent free intent
3331  * item from the efi format structure which was logged on disk.
3332  * It allocates an in-core efi, copies the extents from the format
3333  * structure into it, and adds the efi to the AIL with the given
3334  * LSN.
3335  */
3336 STATIC int
3337 xlog_recover_efi_pass2(
3338 	struct xlog			*log,
3339 	struct xlog_recover_item	*item,
3340 	xfs_lsn_t			lsn)
3341 {
3342 	int				error;
3343 	struct xfs_mount		*mp = log->l_mp;
3344 	struct xfs_efi_log_item		*efip;
3345 	struct xfs_efi_log_format	*efi_formatp;
3346 
3347 	efi_formatp = item->ri_buf[0].i_addr;
3348 
3349 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3350 	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3351 	if (error) {
3352 		xfs_efi_item_free(efip);
3353 		return error;
3354 	}
3355 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3356 
3357 	spin_lock(&log->l_ailp->ail_lock);
3358 	/*
3359 	 * The EFI has two references. One for the EFD and one for EFI to ensure
3360 	 * it makes it into the AIL. Insert the EFI into the AIL directly and
3361 	 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3362 	 * AIL lock.
3363 	 */
3364 	xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3365 	xfs_efi_release(efip);
3366 	return 0;
3367 }
3368 
3369 
3370 /*
3371  * This routine is called when an EFD format structure is found in a committed
3372  * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3373  * was still in the log. To do this it searches the AIL for the EFI with an id
3374  * equal to that in the EFD format structure. If we find it we drop the EFD
3375  * reference, which removes the EFI from the AIL and frees it.
3376  */
3377 STATIC int
3378 xlog_recover_efd_pass2(
3379 	struct xlog			*log,
3380 	struct xlog_recover_item	*item)
3381 {
3382 	xfs_efd_log_format_t	*efd_formatp;
3383 	xfs_efi_log_item_t	*efip = NULL;
3384 	struct xfs_log_item	*lip;
3385 	uint64_t		efi_id;
3386 	struct xfs_ail_cursor	cur;
3387 	struct xfs_ail		*ailp = log->l_ailp;
3388 
3389 	efd_formatp = item->ri_buf[0].i_addr;
3390 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3391 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3392 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3393 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3394 	efi_id = efd_formatp->efd_efi_id;
3395 
3396 	/*
3397 	 * Search for the EFI with the id in the EFD format structure in the
3398 	 * AIL.
3399 	 */
3400 	spin_lock(&ailp->ail_lock);
3401 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3402 	while (lip != NULL) {
3403 		if (lip->li_type == XFS_LI_EFI) {
3404 			efip = (xfs_efi_log_item_t *)lip;
3405 			if (efip->efi_format.efi_id == efi_id) {
3406 				/*
3407 				 * Drop the EFD reference to the EFI. This
3408 				 * removes the EFI from the AIL and frees it.
3409 				 */
3410 				spin_unlock(&ailp->ail_lock);
3411 				xfs_efi_release(efip);
3412 				spin_lock(&ailp->ail_lock);
3413 				break;
3414 			}
3415 		}
3416 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3417 	}
3418 
3419 	xfs_trans_ail_cursor_done(&cur);
3420 	spin_unlock(&ailp->ail_lock);
3421 
3422 	return 0;
3423 }
3424 
3425 /*
3426  * This routine is called to create an in-core extent rmap update
3427  * item from the rui format structure which was logged on disk.
3428  * It allocates an in-core rui, copies the extents from the format
3429  * structure into it, and adds the rui to the AIL with the given
3430  * LSN.
3431  */
3432 STATIC int
3433 xlog_recover_rui_pass2(
3434 	struct xlog			*log,
3435 	struct xlog_recover_item	*item,
3436 	xfs_lsn_t			lsn)
3437 {
3438 	int				error;
3439 	struct xfs_mount		*mp = log->l_mp;
3440 	struct xfs_rui_log_item		*ruip;
3441 	struct xfs_rui_log_format	*rui_formatp;
3442 
3443 	rui_formatp = item->ri_buf[0].i_addr;
3444 
3445 	ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3446 	error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3447 	if (error) {
3448 		xfs_rui_item_free(ruip);
3449 		return error;
3450 	}
3451 	atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3452 
3453 	spin_lock(&log->l_ailp->ail_lock);
3454 	/*
3455 	 * The RUI has two references. One for the RUD and one for RUI to ensure
3456 	 * it makes it into the AIL. Insert the RUI into the AIL directly and
3457 	 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3458 	 * AIL lock.
3459 	 */
3460 	xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3461 	xfs_rui_release(ruip);
3462 	return 0;
3463 }
3464 
3465 
3466 /*
3467  * This routine is called when an RUD format structure is found in a committed
3468  * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3469  * was still in the log. To do this it searches the AIL for the RUI with an id
3470  * equal to that in the RUD format structure. If we find it we drop the RUD
3471  * reference, which removes the RUI from the AIL and frees it.
3472  */
3473 STATIC int
3474 xlog_recover_rud_pass2(
3475 	struct xlog			*log,
3476 	struct xlog_recover_item	*item)
3477 {
3478 	struct xfs_rud_log_format	*rud_formatp;
3479 	struct xfs_rui_log_item		*ruip = NULL;
3480 	struct xfs_log_item		*lip;
3481 	uint64_t			rui_id;
3482 	struct xfs_ail_cursor		cur;
3483 	struct xfs_ail			*ailp = log->l_ailp;
3484 
3485 	rud_formatp = item->ri_buf[0].i_addr;
3486 	ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
3487 	rui_id = rud_formatp->rud_rui_id;
3488 
3489 	/*
3490 	 * Search for the RUI with the id in the RUD format structure in the
3491 	 * AIL.
3492 	 */
3493 	spin_lock(&ailp->ail_lock);
3494 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3495 	while (lip != NULL) {
3496 		if (lip->li_type == XFS_LI_RUI) {
3497 			ruip = (struct xfs_rui_log_item *)lip;
3498 			if (ruip->rui_format.rui_id == rui_id) {
3499 				/*
3500 				 * Drop the RUD reference to the RUI. This
3501 				 * removes the RUI from the AIL and frees it.
3502 				 */
3503 				spin_unlock(&ailp->ail_lock);
3504 				xfs_rui_release(ruip);
3505 				spin_lock(&ailp->ail_lock);
3506 				break;
3507 			}
3508 		}
3509 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3510 	}
3511 
3512 	xfs_trans_ail_cursor_done(&cur);
3513 	spin_unlock(&ailp->ail_lock);
3514 
3515 	return 0;
3516 }
3517 
3518 /*
3519  * Copy an CUI format buffer from the given buf, and into the destination
3520  * CUI format structure.  The CUI/CUD items were designed not to need any
3521  * special alignment handling.
3522  */
3523 static int
3524 xfs_cui_copy_format(
3525 	struct xfs_log_iovec		*buf,
3526 	struct xfs_cui_log_format	*dst_cui_fmt)
3527 {
3528 	struct xfs_cui_log_format	*src_cui_fmt;
3529 	uint				len;
3530 
3531 	src_cui_fmt = buf->i_addr;
3532 	len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents);
3533 
3534 	if (buf->i_len == len) {
3535 		memcpy(dst_cui_fmt, src_cui_fmt, len);
3536 		return 0;
3537 	}
3538 	return -EFSCORRUPTED;
3539 }
3540 
3541 /*
3542  * This routine is called to create an in-core extent refcount update
3543  * item from the cui format structure which was logged on disk.
3544  * It allocates an in-core cui, copies the extents from the format
3545  * structure into it, and adds the cui to the AIL with the given
3546  * LSN.
3547  */
3548 STATIC int
3549 xlog_recover_cui_pass2(
3550 	struct xlog			*log,
3551 	struct xlog_recover_item	*item,
3552 	xfs_lsn_t			lsn)
3553 {
3554 	int				error;
3555 	struct xfs_mount		*mp = log->l_mp;
3556 	struct xfs_cui_log_item		*cuip;
3557 	struct xfs_cui_log_format	*cui_formatp;
3558 
3559 	cui_formatp = item->ri_buf[0].i_addr;
3560 
3561 	cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
3562 	error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format);
3563 	if (error) {
3564 		xfs_cui_item_free(cuip);
3565 		return error;
3566 	}
3567 	atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
3568 
3569 	spin_lock(&log->l_ailp->ail_lock);
3570 	/*
3571 	 * The CUI has two references. One for the CUD and one for CUI to ensure
3572 	 * it makes it into the AIL. Insert the CUI into the AIL directly and
3573 	 * drop the CUI reference. Note that xfs_trans_ail_update() drops the
3574 	 * AIL lock.
3575 	 */
3576 	xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn);
3577 	xfs_cui_release(cuip);
3578 	return 0;
3579 }
3580 
3581 
3582 /*
3583  * This routine is called when an CUD format structure is found in a committed
3584  * transaction in the log. Its purpose is to cancel the corresponding CUI if it
3585  * was still in the log. To do this it searches the AIL for the CUI with an id
3586  * equal to that in the CUD format structure. If we find it we drop the CUD
3587  * reference, which removes the CUI from the AIL and frees it.
3588  */
3589 STATIC int
3590 xlog_recover_cud_pass2(
3591 	struct xlog			*log,
3592 	struct xlog_recover_item	*item)
3593 {
3594 	struct xfs_cud_log_format	*cud_formatp;
3595 	struct xfs_cui_log_item		*cuip = NULL;
3596 	struct xfs_log_item		*lip;
3597 	uint64_t			cui_id;
3598 	struct xfs_ail_cursor		cur;
3599 	struct xfs_ail			*ailp = log->l_ailp;
3600 
3601 	cud_formatp = item->ri_buf[0].i_addr;
3602 	if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format))
3603 		return -EFSCORRUPTED;
3604 	cui_id = cud_formatp->cud_cui_id;
3605 
3606 	/*
3607 	 * Search for the CUI with the id in the CUD format structure in the
3608 	 * AIL.
3609 	 */
3610 	spin_lock(&ailp->ail_lock);
3611 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3612 	while (lip != NULL) {
3613 		if (lip->li_type == XFS_LI_CUI) {
3614 			cuip = (struct xfs_cui_log_item *)lip;
3615 			if (cuip->cui_format.cui_id == cui_id) {
3616 				/*
3617 				 * Drop the CUD reference to the CUI. This
3618 				 * removes the CUI from the AIL and frees it.
3619 				 */
3620 				spin_unlock(&ailp->ail_lock);
3621 				xfs_cui_release(cuip);
3622 				spin_lock(&ailp->ail_lock);
3623 				break;
3624 			}
3625 		}
3626 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3627 	}
3628 
3629 	xfs_trans_ail_cursor_done(&cur);
3630 	spin_unlock(&ailp->ail_lock);
3631 
3632 	return 0;
3633 }
3634 
3635 /*
3636  * Copy an BUI format buffer from the given buf, and into the destination
3637  * BUI format structure.  The BUI/BUD items were designed not to need any
3638  * special alignment handling.
3639  */
3640 static int
3641 xfs_bui_copy_format(
3642 	struct xfs_log_iovec		*buf,
3643 	struct xfs_bui_log_format	*dst_bui_fmt)
3644 {
3645 	struct xfs_bui_log_format	*src_bui_fmt;
3646 	uint				len;
3647 
3648 	src_bui_fmt = buf->i_addr;
3649 	len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents);
3650 
3651 	if (buf->i_len == len) {
3652 		memcpy(dst_bui_fmt, src_bui_fmt, len);
3653 		return 0;
3654 	}
3655 	return -EFSCORRUPTED;
3656 }
3657 
3658 /*
3659  * This routine is called to create an in-core extent bmap update
3660  * item from the bui format structure which was logged on disk.
3661  * It allocates an in-core bui, copies the extents from the format
3662  * structure into it, and adds the bui to the AIL with the given
3663  * LSN.
3664  */
3665 STATIC int
3666 xlog_recover_bui_pass2(
3667 	struct xlog			*log,
3668 	struct xlog_recover_item	*item,
3669 	xfs_lsn_t			lsn)
3670 {
3671 	int				error;
3672 	struct xfs_mount		*mp = log->l_mp;
3673 	struct xfs_bui_log_item		*buip;
3674 	struct xfs_bui_log_format	*bui_formatp;
3675 
3676 	bui_formatp = item->ri_buf[0].i_addr;
3677 
3678 	if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS)
3679 		return -EFSCORRUPTED;
3680 	buip = xfs_bui_init(mp);
3681 	error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format);
3682 	if (error) {
3683 		xfs_bui_item_free(buip);
3684 		return error;
3685 	}
3686 	atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents);
3687 
3688 	spin_lock(&log->l_ailp->ail_lock);
3689 	/*
3690 	 * The RUI has two references. One for the RUD and one for RUI to ensure
3691 	 * it makes it into the AIL. Insert the RUI into the AIL directly and
3692 	 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3693 	 * AIL lock.
3694 	 */
3695 	xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn);
3696 	xfs_bui_release(buip);
3697 	return 0;
3698 }
3699 
3700 
3701 /*
3702  * This routine is called when an BUD format structure is found in a committed
3703  * transaction in the log. Its purpose is to cancel the corresponding BUI if it
3704  * was still in the log. To do this it searches the AIL for the BUI with an id
3705  * equal to that in the BUD format structure. If we find it we drop the BUD
3706  * reference, which removes the BUI from the AIL and frees it.
3707  */
3708 STATIC int
3709 xlog_recover_bud_pass2(
3710 	struct xlog			*log,
3711 	struct xlog_recover_item	*item)
3712 {
3713 	struct xfs_bud_log_format	*bud_formatp;
3714 	struct xfs_bui_log_item		*buip = NULL;
3715 	struct xfs_log_item		*lip;
3716 	uint64_t			bui_id;
3717 	struct xfs_ail_cursor		cur;
3718 	struct xfs_ail			*ailp = log->l_ailp;
3719 
3720 	bud_formatp = item->ri_buf[0].i_addr;
3721 	if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format))
3722 		return -EFSCORRUPTED;
3723 	bui_id = bud_formatp->bud_bui_id;
3724 
3725 	/*
3726 	 * Search for the BUI with the id in the BUD format structure in the
3727 	 * AIL.
3728 	 */
3729 	spin_lock(&ailp->ail_lock);
3730 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3731 	while (lip != NULL) {
3732 		if (lip->li_type == XFS_LI_BUI) {
3733 			buip = (struct xfs_bui_log_item *)lip;
3734 			if (buip->bui_format.bui_id == bui_id) {
3735 				/*
3736 				 * Drop the BUD reference to the BUI. This
3737 				 * removes the BUI from the AIL and frees it.
3738 				 */
3739 				spin_unlock(&ailp->ail_lock);
3740 				xfs_bui_release(buip);
3741 				spin_lock(&ailp->ail_lock);
3742 				break;
3743 			}
3744 		}
3745 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3746 	}
3747 
3748 	xfs_trans_ail_cursor_done(&cur);
3749 	spin_unlock(&ailp->ail_lock);
3750 
3751 	return 0;
3752 }
3753 
3754 /*
3755  * This routine is called when an inode create format structure is found in a
3756  * committed transaction in the log.  It's purpose is to initialise the inodes
3757  * being allocated on disk. This requires us to get inode cluster buffers that
3758  * match the range to be initialised, stamped with inode templates and written
3759  * by delayed write so that subsequent modifications will hit the cached buffer
3760  * and only need writing out at the end of recovery.
3761  */
3762 STATIC int
3763 xlog_recover_do_icreate_pass2(
3764 	struct xlog		*log,
3765 	struct list_head	*buffer_list,
3766 	xlog_recover_item_t	*item)
3767 {
3768 	struct xfs_mount	*mp = log->l_mp;
3769 	struct xfs_icreate_log	*icl;
3770 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
3771 	xfs_agnumber_t		agno;
3772 	xfs_agblock_t		agbno;
3773 	unsigned int		count;
3774 	unsigned int		isize;
3775 	xfs_agblock_t		length;
3776 	int			bb_per_cluster;
3777 	int			cancel_count;
3778 	int			nbufs;
3779 	int			i;
3780 
3781 	icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3782 	if (icl->icl_type != XFS_LI_ICREATE) {
3783 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3784 		return -EINVAL;
3785 	}
3786 
3787 	if (icl->icl_size != 1) {
3788 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3789 		return -EINVAL;
3790 	}
3791 
3792 	agno = be32_to_cpu(icl->icl_ag);
3793 	if (agno >= mp->m_sb.sb_agcount) {
3794 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3795 		return -EINVAL;
3796 	}
3797 	agbno = be32_to_cpu(icl->icl_agbno);
3798 	if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3799 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3800 		return -EINVAL;
3801 	}
3802 	isize = be32_to_cpu(icl->icl_isize);
3803 	if (isize != mp->m_sb.sb_inodesize) {
3804 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3805 		return -EINVAL;
3806 	}
3807 	count = be32_to_cpu(icl->icl_count);
3808 	if (!count) {
3809 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3810 		return -EINVAL;
3811 	}
3812 	length = be32_to_cpu(icl->icl_length);
3813 	if (!length || length >= mp->m_sb.sb_agblocks) {
3814 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3815 		return -EINVAL;
3816 	}
3817 
3818 	/*
3819 	 * The inode chunk is either full or sparse and we only support
3820 	 * m_ino_geo.ialloc_min_blks sized sparse allocations at this time.
3821 	 */
3822 	if (length != igeo->ialloc_blks &&
3823 	    length != igeo->ialloc_min_blks) {
3824 		xfs_warn(log->l_mp,
3825 			 "%s: unsupported chunk length", __FUNCTION__);
3826 		return -EINVAL;
3827 	}
3828 
3829 	/* verify inode count is consistent with extent length */
3830 	if ((count >> mp->m_sb.sb_inopblog) != length) {
3831 		xfs_warn(log->l_mp,
3832 			 "%s: inconsistent inode count and chunk length",
3833 			 __FUNCTION__);
3834 		return -EINVAL;
3835 	}
3836 
3837 	/*
3838 	 * The icreate transaction can cover multiple cluster buffers and these
3839 	 * buffers could have been freed and reused. Check the individual
3840 	 * buffers for cancellation so we don't overwrite anything written after
3841 	 * a cancellation.
3842 	 */
3843 	bb_per_cluster = XFS_FSB_TO_BB(mp, igeo->blocks_per_cluster);
3844 	nbufs = length / igeo->blocks_per_cluster;
3845 	for (i = 0, cancel_count = 0; i < nbufs; i++) {
3846 		xfs_daddr_t	daddr;
3847 
3848 		daddr = XFS_AGB_TO_DADDR(mp, agno,
3849 				agbno + i * igeo->blocks_per_cluster);
3850 		if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3851 			cancel_count++;
3852 	}
3853 
3854 	/*
3855 	 * We currently only use icreate for a single allocation at a time. This
3856 	 * means we should expect either all or none of the buffers to be
3857 	 * cancelled. Be conservative and skip replay if at least one buffer is
3858 	 * cancelled, but warn the user that something is awry if the buffers
3859 	 * are not consistent.
3860 	 *
3861 	 * XXX: This must be refined to only skip cancelled clusters once we use
3862 	 * icreate for multiple chunk allocations.
3863 	 */
3864 	ASSERT(!cancel_count || cancel_count == nbufs);
3865 	if (cancel_count) {
3866 		if (cancel_count != nbufs)
3867 			xfs_warn(mp,
3868 	"WARNING: partial inode chunk cancellation, skipped icreate.");
3869 		trace_xfs_log_recover_icreate_cancel(log, icl);
3870 		return 0;
3871 	}
3872 
3873 	trace_xfs_log_recover_icreate_recover(log, icl);
3874 	return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3875 				     length, be32_to_cpu(icl->icl_gen));
3876 }
3877 
3878 STATIC void
3879 xlog_recover_buffer_ra_pass2(
3880 	struct xlog                     *log,
3881 	struct xlog_recover_item        *item)
3882 {
3883 	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
3884 	struct xfs_mount		*mp = log->l_mp;
3885 
3886 	if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3887 			buf_f->blf_len, buf_f->blf_flags)) {
3888 		return;
3889 	}
3890 
3891 	xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3892 				buf_f->blf_len, NULL);
3893 }
3894 
3895 STATIC void
3896 xlog_recover_inode_ra_pass2(
3897 	struct xlog                     *log,
3898 	struct xlog_recover_item        *item)
3899 {
3900 	struct xfs_inode_log_format	ilf_buf;
3901 	struct xfs_inode_log_format	*ilfp;
3902 	struct xfs_mount		*mp = log->l_mp;
3903 	int			error;
3904 
3905 	if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3906 		ilfp = item->ri_buf[0].i_addr;
3907 	} else {
3908 		ilfp = &ilf_buf;
3909 		memset(ilfp, 0, sizeof(*ilfp));
3910 		error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3911 		if (error)
3912 			return;
3913 	}
3914 
3915 	if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3916 		return;
3917 
3918 	xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3919 				ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3920 }
3921 
3922 STATIC void
3923 xlog_recover_dquot_ra_pass2(
3924 	struct xlog			*log,
3925 	struct xlog_recover_item	*item)
3926 {
3927 	struct xfs_mount	*mp = log->l_mp;
3928 	struct xfs_disk_dquot	*recddq;
3929 	struct xfs_dq_logformat	*dq_f;
3930 	uint			type;
3931 	int			len;
3932 
3933 
3934 	if (mp->m_qflags == 0)
3935 		return;
3936 
3937 	recddq = item->ri_buf[1].i_addr;
3938 	if (recddq == NULL)
3939 		return;
3940 	if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3941 		return;
3942 
3943 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3944 	ASSERT(type);
3945 	if (log->l_quotaoffs_flag & type)
3946 		return;
3947 
3948 	dq_f = item->ri_buf[0].i_addr;
3949 	ASSERT(dq_f);
3950 	ASSERT(dq_f->qlf_len == 1);
3951 
3952 	len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
3953 	if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
3954 		return;
3955 
3956 	xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
3957 			  &xfs_dquot_buf_ra_ops);
3958 }
3959 
3960 STATIC void
3961 xlog_recover_ra_pass2(
3962 	struct xlog			*log,
3963 	struct xlog_recover_item	*item)
3964 {
3965 	switch (ITEM_TYPE(item)) {
3966 	case XFS_LI_BUF:
3967 		xlog_recover_buffer_ra_pass2(log, item);
3968 		break;
3969 	case XFS_LI_INODE:
3970 		xlog_recover_inode_ra_pass2(log, item);
3971 		break;
3972 	case XFS_LI_DQUOT:
3973 		xlog_recover_dquot_ra_pass2(log, item);
3974 		break;
3975 	case XFS_LI_EFI:
3976 	case XFS_LI_EFD:
3977 	case XFS_LI_QUOTAOFF:
3978 	case XFS_LI_RUI:
3979 	case XFS_LI_RUD:
3980 	case XFS_LI_CUI:
3981 	case XFS_LI_CUD:
3982 	case XFS_LI_BUI:
3983 	case XFS_LI_BUD:
3984 	default:
3985 		break;
3986 	}
3987 }
3988 
3989 STATIC int
3990 xlog_recover_commit_pass1(
3991 	struct xlog			*log,
3992 	struct xlog_recover		*trans,
3993 	struct xlog_recover_item	*item)
3994 {
3995 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3996 
3997 	switch (ITEM_TYPE(item)) {
3998 	case XFS_LI_BUF:
3999 		return xlog_recover_buffer_pass1(log, item);
4000 	case XFS_LI_QUOTAOFF:
4001 		return xlog_recover_quotaoff_pass1(log, item);
4002 	case XFS_LI_INODE:
4003 	case XFS_LI_EFI:
4004 	case XFS_LI_EFD:
4005 	case XFS_LI_DQUOT:
4006 	case XFS_LI_ICREATE:
4007 	case XFS_LI_RUI:
4008 	case XFS_LI_RUD:
4009 	case XFS_LI_CUI:
4010 	case XFS_LI_CUD:
4011 	case XFS_LI_BUI:
4012 	case XFS_LI_BUD:
4013 		/* nothing to do in pass 1 */
4014 		return 0;
4015 	default:
4016 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4017 			__func__, ITEM_TYPE(item));
4018 		ASSERT(0);
4019 		return -EIO;
4020 	}
4021 }
4022 
4023 STATIC int
4024 xlog_recover_commit_pass2(
4025 	struct xlog			*log,
4026 	struct xlog_recover		*trans,
4027 	struct list_head		*buffer_list,
4028 	struct xlog_recover_item	*item)
4029 {
4030 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
4031 
4032 	switch (ITEM_TYPE(item)) {
4033 	case XFS_LI_BUF:
4034 		return xlog_recover_buffer_pass2(log, buffer_list, item,
4035 						 trans->r_lsn);
4036 	case XFS_LI_INODE:
4037 		return xlog_recover_inode_pass2(log, buffer_list, item,
4038 						 trans->r_lsn);
4039 	case XFS_LI_EFI:
4040 		return xlog_recover_efi_pass2(log, item, trans->r_lsn);
4041 	case XFS_LI_EFD:
4042 		return xlog_recover_efd_pass2(log, item);
4043 	case XFS_LI_RUI:
4044 		return xlog_recover_rui_pass2(log, item, trans->r_lsn);
4045 	case XFS_LI_RUD:
4046 		return xlog_recover_rud_pass2(log, item);
4047 	case XFS_LI_CUI:
4048 		return xlog_recover_cui_pass2(log, item, trans->r_lsn);
4049 	case XFS_LI_CUD:
4050 		return xlog_recover_cud_pass2(log, item);
4051 	case XFS_LI_BUI:
4052 		return xlog_recover_bui_pass2(log, item, trans->r_lsn);
4053 	case XFS_LI_BUD:
4054 		return xlog_recover_bud_pass2(log, item);
4055 	case XFS_LI_DQUOT:
4056 		return xlog_recover_dquot_pass2(log, buffer_list, item,
4057 						trans->r_lsn);
4058 	case XFS_LI_ICREATE:
4059 		return xlog_recover_do_icreate_pass2(log, buffer_list, item);
4060 	case XFS_LI_QUOTAOFF:
4061 		/* nothing to do in pass2 */
4062 		return 0;
4063 	default:
4064 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4065 			__func__, ITEM_TYPE(item));
4066 		ASSERT(0);
4067 		return -EIO;
4068 	}
4069 }
4070 
4071 STATIC int
4072 xlog_recover_items_pass2(
4073 	struct xlog                     *log,
4074 	struct xlog_recover             *trans,
4075 	struct list_head                *buffer_list,
4076 	struct list_head                *item_list)
4077 {
4078 	struct xlog_recover_item	*item;
4079 	int				error = 0;
4080 
4081 	list_for_each_entry(item, item_list, ri_list) {
4082 		error = xlog_recover_commit_pass2(log, trans,
4083 					  buffer_list, item);
4084 		if (error)
4085 			return error;
4086 	}
4087 
4088 	return error;
4089 }
4090 
4091 /*
4092  * Perform the transaction.
4093  *
4094  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
4095  * EFIs and EFDs get queued up by adding entries into the AIL for them.
4096  */
4097 STATIC int
4098 xlog_recover_commit_trans(
4099 	struct xlog		*log,
4100 	struct xlog_recover	*trans,
4101 	int			pass,
4102 	struct list_head	*buffer_list)
4103 {
4104 	int				error = 0;
4105 	int				items_queued = 0;
4106 	struct xlog_recover_item	*item;
4107 	struct xlog_recover_item	*next;
4108 	LIST_HEAD			(ra_list);
4109 	LIST_HEAD			(done_list);
4110 
4111 	#define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
4112 
4113 	hlist_del_init(&trans->r_list);
4114 
4115 	error = xlog_recover_reorder_trans(log, trans, pass);
4116 	if (error)
4117 		return error;
4118 
4119 	list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
4120 		switch (pass) {
4121 		case XLOG_RECOVER_PASS1:
4122 			error = xlog_recover_commit_pass1(log, trans, item);
4123 			break;
4124 		case XLOG_RECOVER_PASS2:
4125 			xlog_recover_ra_pass2(log, item);
4126 			list_move_tail(&item->ri_list, &ra_list);
4127 			items_queued++;
4128 			if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
4129 				error = xlog_recover_items_pass2(log, trans,
4130 						buffer_list, &ra_list);
4131 				list_splice_tail_init(&ra_list, &done_list);
4132 				items_queued = 0;
4133 			}
4134 
4135 			break;
4136 		default:
4137 			ASSERT(0);
4138 		}
4139 
4140 		if (error)
4141 			goto out;
4142 	}
4143 
4144 out:
4145 	if (!list_empty(&ra_list)) {
4146 		if (!error)
4147 			error = xlog_recover_items_pass2(log, trans,
4148 					buffer_list, &ra_list);
4149 		list_splice_tail_init(&ra_list, &done_list);
4150 	}
4151 
4152 	if (!list_empty(&done_list))
4153 		list_splice_init(&done_list, &trans->r_itemq);
4154 
4155 	return error;
4156 }
4157 
4158 STATIC void
4159 xlog_recover_add_item(
4160 	struct list_head	*head)
4161 {
4162 	xlog_recover_item_t	*item;
4163 
4164 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
4165 	INIT_LIST_HEAD(&item->ri_list);
4166 	list_add_tail(&item->ri_list, head);
4167 }
4168 
4169 STATIC int
4170 xlog_recover_add_to_cont_trans(
4171 	struct xlog		*log,
4172 	struct xlog_recover	*trans,
4173 	char			*dp,
4174 	int			len)
4175 {
4176 	xlog_recover_item_t	*item;
4177 	char			*ptr, *old_ptr;
4178 	int			old_len;
4179 
4180 	/*
4181 	 * If the transaction is empty, the header was split across this and the
4182 	 * previous record. Copy the rest of the header.
4183 	 */
4184 	if (list_empty(&trans->r_itemq)) {
4185 		ASSERT(len <= sizeof(struct xfs_trans_header));
4186 		if (len > sizeof(struct xfs_trans_header)) {
4187 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
4188 			return -EIO;
4189 		}
4190 
4191 		xlog_recover_add_item(&trans->r_itemq);
4192 		ptr = (char *)&trans->r_theader +
4193 				sizeof(struct xfs_trans_header) - len;
4194 		memcpy(ptr, dp, len);
4195 		return 0;
4196 	}
4197 
4198 	/* take the tail entry */
4199 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4200 
4201 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
4202 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
4203 
4204 	ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP);
4205 	memcpy(&ptr[old_len], dp, len);
4206 	item->ri_buf[item->ri_cnt-1].i_len += len;
4207 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
4208 	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
4209 	return 0;
4210 }
4211 
4212 /*
4213  * The next region to add is the start of a new region.  It could be
4214  * a whole region or it could be the first part of a new region.  Because
4215  * of this, the assumption here is that the type and size fields of all
4216  * format structures fit into the first 32 bits of the structure.
4217  *
4218  * This works because all regions must be 32 bit aligned.  Therefore, we
4219  * either have both fields or we have neither field.  In the case we have
4220  * neither field, the data part of the region is zero length.  We only have
4221  * a log_op_header and can throw away the header since a new one will appear
4222  * later.  If we have at least 4 bytes, then we can determine how many regions
4223  * will appear in the current log item.
4224  */
4225 STATIC int
4226 xlog_recover_add_to_trans(
4227 	struct xlog		*log,
4228 	struct xlog_recover	*trans,
4229 	char			*dp,
4230 	int			len)
4231 {
4232 	struct xfs_inode_log_format	*in_f;			/* any will do */
4233 	xlog_recover_item_t	*item;
4234 	char			*ptr;
4235 
4236 	if (!len)
4237 		return 0;
4238 	if (list_empty(&trans->r_itemq)) {
4239 		/* we need to catch log corruptions here */
4240 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
4241 			xfs_warn(log->l_mp, "%s: bad header magic number",
4242 				__func__);
4243 			ASSERT(0);
4244 			return -EIO;
4245 		}
4246 
4247 		if (len > sizeof(struct xfs_trans_header)) {
4248 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
4249 			ASSERT(0);
4250 			return -EIO;
4251 		}
4252 
4253 		/*
4254 		 * The transaction header can be arbitrarily split across op
4255 		 * records. If we don't have the whole thing here, copy what we
4256 		 * do have and handle the rest in the next record.
4257 		 */
4258 		if (len == sizeof(struct xfs_trans_header))
4259 			xlog_recover_add_item(&trans->r_itemq);
4260 		memcpy(&trans->r_theader, dp, len);
4261 		return 0;
4262 	}
4263 
4264 	ptr = kmem_alloc(len, KM_SLEEP);
4265 	memcpy(ptr, dp, len);
4266 	in_f = (struct xfs_inode_log_format *)ptr;
4267 
4268 	/* take the tail entry */
4269 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4270 	if (item->ri_total != 0 &&
4271 	     item->ri_total == item->ri_cnt) {
4272 		/* tail item is in use, get a new one */
4273 		xlog_recover_add_item(&trans->r_itemq);
4274 		item = list_entry(trans->r_itemq.prev,
4275 					xlog_recover_item_t, ri_list);
4276 	}
4277 
4278 	if (item->ri_total == 0) {		/* first region to be added */
4279 		if (in_f->ilf_size == 0 ||
4280 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4281 			xfs_warn(log->l_mp,
4282 		"bad number of regions (%d) in inode log format",
4283 				  in_f->ilf_size);
4284 			ASSERT(0);
4285 			kmem_free(ptr);
4286 			return -EIO;
4287 		}
4288 
4289 		item->ri_total = in_f->ilf_size;
4290 		item->ri_buf =
4291 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4292 				    KM_SLEEP);
4293 	}
4294 	ASSERT(item->ri_total > item->ri_cnt);
4295 	/* Description region is ri_buf[0] */
4296 	item->ri_buf[item->ri_cnt].i_addr = ptr;
4297 	item->ri_buf[item->ri_cnt].i_len  = len;
4298 	item->ri_cnt++;
4299 	trace_xfs_log_recover_item_add(log, trans, item, 0);
4300 	return 0;
4301 }
4302 
4303 /*
4304  * Free up any resources allocated by the transaction
4305  *
4306  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4307  */
4308 STATIC void
4309 xlog_recover_free_trans(
4310 	struct xlog_recover	*trans)
4311 {
4312 	xlog_recover_item_t	*item, *n;
4313 	int			i;
4314 
4315 	hlist_del_init(&trans->r_list);
4316 
4317 	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4318 		/* Free the regions in the item. */
4319 		list_del(&item->ri_list);
4320 		for (i = 0; i < item->ri_cnt; i++)
4321 			kmem_free(item->ri_buf[i].i_addr);
4322 		/* Free the item itself */
4323 		kmem_free(item->ri_buf);
4324 		kmem_free(item);
4325 	}
4326 	/* Free the transaction recover structure */
4327 	kmem_free(trans);
4328 }
4329 
4330 /*
4331  * On error or completion, trans is freed.
4332  */
4333 STATIC int
4334 xlog_recovery_process_trans(
4335 	struct xlog		*log,
4336 	struct xlog_recover	*trans,
4337 	char			*dp,
4338 	unsigned int		len,
4339 	unsigned int		flags,
4340 	int			pass,
4341 	struct list_head	*buffer_list)
4342 {
4343 	int			error = 0;
4344 	bool			freeit = false;
4345 
4346 	/* mask off ophdr transaction container flags */
4347 	flags &= ~XLOG_END_TRANS;
4348 	if (flags & XLOG_WAS_CONT_TRANS)
4349 		flags &= ~XLOG_CONTINUE_TRANS;
4350 
4351 	/*
4352 	 * Callees must not free the trans structure. We'll decide if we need to
4353 	 * free it or not based on the operation being done and it's result.
4354 	 */
4355 	switch (flags) {
4356 	/* expected flag values */
4357 	case 0:
4358 	case XLOG_CONTINUE_TRANS:
4359 		error = xlog_recover_add_to_trans(log, trans, dp, len);
4360 		break;
4361 	case XLOG_WAS_CONT_TRANS:
4362 		error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4363 		break;
4364 	case XLOG_COMMIT_TRANS:
4365 		error = xlog_recover_commit_trans(log, trans, pass,
4366 						  buffer_list);
4367 		/* success or fail, we are now done with this transaction. */
4368 		freeit = true;
4369 		break;
4370 
4371 	/* unexpected flag values */
4372 	case XLOG_UNMOUNT_TRANS:
4373 		/* just skip trans */
4374 		xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
4375 		freeit = true;
4376 		break;
4377 	case XLOG_START_TRANS:
4378 	default:
4379 		xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4380 		ASSERT(0);
4381 		error = -EIO;
4382 		break;
4383 	}
4384 	if (error || freeit)
4385 		xlog_recover_free_trans(trans);
4386 	return error;
4387 }
4388 
4389 /*
4390  * Lookup the transaction recovery structure associated with the ID in the
4391  * current ophdr. If the transaction doesn't exist and the start flag is set in
4392  * the ophdr, then allocate a new transaction for future ID matches to find.
4393  * Either way, return what we found during the lookup - an existing transaction
4394  * or nothing.
4395  */
4396 STATIC struct xlog_recover *
4397 xlog_recover_ophdr_to_trans(
4398 	struct hlist_head	rhash[],
4399 	struct xlog_rec_header	*rhead,
4400 	struct xlog_op_header	*ohead)
4401 {
4402 	struct xlog_recover	*trans;
4403 	xlog_tid_t		tid;
4404 	struct hlist_head	*rhp;
4405 
4406 	tid = be32_to_cpu(ohead->oh_tid);
4407 	rhp = &rhash[XLOG_RHASH(tid)];
4408 	hlist_for_each_entry(trans, rhp, r_list) {
4409 		if (trans->r_log_tid == tid)
4410 			return trans;
4411 	}
4412 
4413 	/*
4414 	 * skip over non-start transaction headers - we could be
4415 	 * processing slack space before the next transaction starts
4416 	 */
4417 	if (!(ohead->oh_flags & XLOG_START_TRANS))
4418 		return NULL;
4419 
4420 	ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4421 
4422 	/*
4423 	 * This is a new transaction so allocate a new recovery container to
4424 	 * hold the recovery ops that will follow.
4425 	 */
4426 	trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
4427 	trans->r_log_tid = tid;
4428 	trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4429 	INIT_LIST_HEAD(&trans->r_itemq);
4430 	INIT_HLIST_NODE(&trans->r_list);
4431 	hlist_add_head(&trans->r_list, rhp);
4432 
4433 	/*
4434 	 * Nothing more to do for this ophdr. Items to be added to this new
4435 	 * transaction will be in subsequent ophdr containers.
4436 	 */
4437 	return NULL;
4438 }
4439 
4440 STATIC int
4441 xlog_recover_process_ophdr(
4442 	struct xlog		*log,
4443 	struct hlist_head	rhash[],
4444 	struct xlog_rec_header	*rhead,
4445 	struct xlog_op_header	*ohead,
4446 	char			*dp,
4447 	char			*end,
4448 	int			pass,
4449 	struct list_head	*buffer_list)
4450 {
4451 	struct xlog_recover	*trans;
4452 	unsigned int		len;
4453 	int			error;
4454 
4455 	/* Do we understand who wrote this op? */
4456 	if (ohead->oh_clientid != XFS_TRANSACTION &&
4457 	    ohead->oh_clientid != XFS_LOG) {
4458 		xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4459 			__func__, ohead->oh_clientid);
4460 		ASSERT(0);
4461 		return -EIO;
4462 	}
4463 
4464 	/*
4465 	 * Check the ophdr contains all the data it is supposed to contain.
4466 	 */
4467 	len = be32_to_cpu(ohead->oh_len);
4468 	if (dp + len > end) {
4469 		xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4470 		WARN_ON(1);
4471 		return -EIO;
4472 	}
4473 
4474 	trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4475 	if (!trans) {
4476 		/* nothing to do, so skip over this ophdr */
4477 		return 0;
4478 	}
4479 
4480 	/*
4481 	 * The recovered buffer queue is drained only once we know that all
4482 	 * recovery items for the current LSN have been processed. This is
4483 	 * required because:
4484 	 *
4485 	 * - Buffer write submission updates the metadata LSN of the buffer.
4486 	 * - Log recovery skips items with a metadata LSN >= the current LSN of
4487 	 *   the recovery item.
4488 	 * - Separate recovery items against the same metadata buffer can share
4489 	 *   a current LSN. I.e., consider that the LSN of a recovery item is
4490 	 *   defined as the starting LSN of the first record in which its
4491 	 *   transaction appears, that a record can hold multiple transactions,
4492 	 *   and/or that a transaction can span multiple records.
4493 	 *
4494 	 * In other words, we are allowed to submit a buffer from log recovery
4495 	 * once per current LSN. Otherwise, we may incorrectly skip recovery
4496 	 * items and cause corruption.
4497 	 *
4498 	 * We don't know up front whether buffers are updated multiple times per
4499 	 * LSN. Therefore, track the current LSN of each commit log record as it
4500 	 * is processed and drain the queue when it changes. Use commit records
4501 	 * because they are ordered correctly by the logging code.
4502 	 */
4503 	if (log->l_recovery_lsn != trans->r_lsn &&
4504 	    ohead->oh_flags & XLOG_COMMIT_TRANS) {
4505 		error = xfs_buf_delwri_submit(buffer_list);
4506 		if (error)
4507 			return error;
4508 		log->l_recovery_lsn = trans->r_lsn;
4509 	}
4510 
4511 	return xlog_recovery_process_trans(log, trans, dp, len,
4512 					   ohead->oh_flags, pass, buffer_list);
4513 }
4514 
4515 /*
4516  * There are two valid states of the r_state field.  0 indicates that the
4517  * transaction structure is in a normal state.  We have either seen the
4518  * start of the transaction or the last operation we added was not a partial
4519  * operation.  If the last operation we added to the transaction was a
4520  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4521  *
4522  * NOTE: skip LRs with 0 data length.
4523  */
4524 STATIC int
4525 xlog_recover_process_data(
4526 	struct xlog		*log,
4527 	struct hlist_head	rhash[],
4528 	struct xlog_rec_header	*rhead,
4529 	char			*dp,
4530 	int			pass,
4531 	struct list_head	*buffer_list)
4532 {
4533 	struct xlog_op_header	*ohead;
4534 	char			*end;
4535 	int			num_logops;
4536 	int			error;
4537 
4538 	end = dp + be32_to_cpu(rhead->h_len);
4539 	num_logops = be32_to_cpu(rhead->h_num_logops);
4540 
4541 	/* check the log format matches our own - else we can't recover */
4542 	if (xlog_header_check_recover(log->l_mp, rhead))
4543 		return -EIO;
4544 
4545 	trace_xfs_log_recover_record(log, rhead, pass);
4546 	while ((dp < end) && num_logops) {
4547 
4548 		ohead = (struct xlog_op_header *)dp;
4549 		dp += sizeof(*ohead);
4550 		ASSERT(dp <= end);
4551 
4552 		/* errors will abort recovery */
4553 		error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4554 						   dp, end, pass, buffer_list);
4555 		if (error)
4556 			return error;
4557 
4558 		dp += be32_to_cpu(ohead->oh_len);
4559 		num_logops--;
4560 	}
4561 	return 0;
4562 }
4563 
4564 /* Recover the EFI if necessary. */
4565 STATIC int
4566 xlog_recover_process_efi(
4567 	struct xfs_mount		*mp,
4568 	struct xfs_ail			*ailp,
4569 	struct xfs_log_item		*lip)
4570 {
4571 	struct xfs_efi_log_item		*efip;
4572 	int				error;
4573 
4574 	/*
4575 	 * Skip EFIs that we've already processed.
4576 	 */
4577 	efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4578 	if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4579 		return 0;
4580 
4581 	spin_unlock(&ailp->ail_lock);
4582 	error = xfs_efi_recover(mp, efip);
4583 	spin_lock(&ailp->ail_lock);
4584 
4585 	return error;
4586 }
4587 
4588 /* Release the EFI since we're cancelling everything. */
4589 STATIC void
4590 xlog_recover_cancel_efi(
4591 	struct xfs_mount		*mp,
4592 	struct xfs_ail			*ailp,
4593 	struct xfs_log_item		*lip)
4594 {
4595 	struct xfs_efi_log_item		*efip;
4596 
4597 	efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4598 
4599 	spin_unlock(&ailp->ail_lock);
4600 	xfs_efi_release(efip);
4601 	spin_lock(&ailp->ail_lock);
4602 }
4603 
4604 /* Recover the RUI if necessary. */
4605 STATIC int
4606 xlog_recover_process_rui(
4607 	struct xfs_mount		*mp,
4608 	struct xfs_ail			*ailp,
4609 	struct xfs_log_item		*lip)
4610 {
4611 	struct xfs_rui_log_item		*ruip;
4612 	int				error;
4613 
4614 	/*
4615 	 * Skip RUIs that we've already processed.
4616 	 */
4617 	ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4618 	if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4619 		return 0;
4620 
4621 	spin_unlock(&ailp->ail_lock);
4622 	error = xfs_rui_recover(mp, ruip);
4623 	spin_lock(&ailp->ail_lock);
4624 
4625 	return error;
4626 }
4627 
4628 /* Release the RUI since we're cancelling everything. */
4629 STATIC void
4630 xlog_recover_cancel_rui(
4631 	struct xfs_mount		*mp,
4632 	struct xfs_ail			*ailp,
4633 	struct xfs_log_item		*lip)
4634 {
4635 	struct xfs_rui_log_item		*ruip;
4636 
4637 	ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4638 
4639 	spin_unlock(&ailp->ail_lock);
4640 	xfs_rui_release(ruip);
4641 	spin_lock(&ailp->ail_lock);
4642 }
4643 
4644 /* Recover the CUI if necessary. */
4645 STATIC int
4646 xlog_recover_process_cui(
4647 	struct xfs_trans		*parent_tp,
4648 	struct xfs_ail			*ailp,
4649 	struct xfs_log_item		*lip)
4650 {
4651 	struct xfs_cui_log_item		*cuip;
4652 	int				error;
4653 
4654 	/*
4655 	 * Skip CUIs that we've already processed.
4656 	 */
4657 	cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4658 	if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags))
4659 		return 0;
4660 
4661 	spin_unlock(&ailp->ail_lock);
4662 	error = xfs_cui_recover(parent_tp, cuip);
4663 	spin_lock(&ailp->ail_lock);
4664 
4665 	return error;
4666 }
4667 
4668 /* Release the CUI since we're cancelling everything. */
4669 STATIC void
4670 xlog_recover_cancel_cui(
4671 	struct xfs_mount		*mp,
4672 	struct xfs_ail			*ailp,
4673 	struct xfs_log_item		*lip)
4674 {
4675 	struct xfs_cui_log_item		*cuip;
4676 
4677 	cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4678 
4679 	spin_unlock(&ailp->ail_lock);
4680 	xfs_cui_release(cuip);
4681 	spin_lock(&ailp->ail_lock);
4682 }
4683 
4684 /* Recover the BUI if necessary. */
4685 STATIC int
4686 xlog_recover_process_bui(
4687 	struct xfs_trans		*parent_tp,
4688 	struct xfs_ail			*ailp,
4689 	struct xfs_log_item		*lip)
4690 {
4691 	struct xfs_bui_log_item		*buip;
4692 	int				error;
4693 
4694 	/*
4695 	 * Skip BUIs that we've already processed.
4696 	 */
4697 	buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4698 	if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags))
4699 		return 0;
4700 
4701 	spin_unlock(&ailp->ail_lock);
4702 	error = xfs_bui_recover(parent_tp, buip);
4703 	spin_lock(&ailp->ail_lock);
4704 
4705 	return error;
4706 }
4707 
4708 /* Release the BUI since we're cancelling everything. */
4709 STATIC void
4710 xlog_recover_cancel_bui(
4711 	struct xfs_mount		*mp,
4712 	struct xfs_ail			*ailp,
4713 	struct xfs_log_item		*lip)
4714 {
4715 	struct xfs_bui_log_item		*buip;
4716 
4717 	buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4718 
4719 	spin_unlock(&ailp->ail_lock);
4720 	xfs_bui_release(buip);
4721 	spin_lock(&ailp->ail_lock);
4722 }
4723 
4724 /* Is this log item a deferred action intent? */
4725 static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4726 {
4727 	switch (lip->li_type) {
4728 	case XFS_LI_EFI:
4729 	case XFS_LI_RUI:
4730 	case XFS_LI_CUI:
4731 	case XFS_LI_BUI:
4732 		return true;
4733 	default:
4734 		return false;
4735 	}
4736 }
4737 
4738 /* Take all the collected deferred ops and finish them in order. */
4739 static int
4740 xlog_finish_defer_ops(
4741 	struct xfs_trans	*parent_tp)
4742 {
4743 	struct xfs_mount	*mp = parent_tp->t_mountp;
4744 	struct xfs_trans	*tp;
4745 	int64_t			freeblks;
4746 	uint			resblks;
4747 	int			error;
4748 
4749 	/*
4750 	 * We're finishing the defer_ops that accumulated as a result of
4751 	 * recovering unfinished intent items during log recovery.  We
4752 	 * reserve an itruncate transaction because it is the largest
4753 	 * permanent transaction type.  Since we're the only user of the fs
4754 	 * right now, take 93% (15/16) of the available free blocks.  Use
4755 	 * weird math to avoid a 64-bit division.
4756 	 */
4757 	freeblks = percpu_counter_sum(&mp->m_fdblocks);
4758 	if (freeblks <= 0)
4759 		return -ENOSPC;
4760 	resblks = min_t(int64_t, UINT_MAX, freeblks);
4761 	resblks = (resblks * 15) >> 4;
4762 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks,
4763 			0, XFS_TRANS_RESERVE, &tp);
4764 	if (error)
4765 		return error;
4766 	/* transfer all collected dfops to this transaction */
4767 	xfs_defer_move(tp, parent_tp);
4768 
4769 	return xfs_trans_commit(tp);
4770 }
4771 
4772 /*
4773  * When this is called, all of the log intent items which did not have
4774  * corresponding log done items should be in the AIL.  What we do now
4775  * is update the data structures associated with each one.
4776  *
4777  * Since we process the log intent items in normal transactions, they
4778  * will be removed at some point after the commit.  This prevents us
4779  * from just walking down the list processing each one.  We'll use a
4780  * flag in the intent item to skip those that we've already processed
4781  * and use the AIL iteration mechanism's generation count to try to
4782  * speed this up at least a bit.
4783  *
4784  * When we start, we know that the intents are the only things in the
4785  * AIL.  As we process them, however, other items are added to the
4786  * AIL.
4787  */
4788 STATIC int
4789 xlog_recover_process_intents(
4790 	struct xlog		*log)
4791 {
4792 	struct xfs_trans	*parent_tp;
4793 	struct xfs_ail_cursor	cur;
4794 	struct xfs_log_item	*lip;
4795 	struct xfs_ail		*ailp;
4796 	int			error;
4797 #if defined(DEBUG) || defined(XFS_WARN)
4798 	xfs_lsn_t		last_lsn;
4799 #endif
4800 
4801 	/*
4802 	 * The intent recovery handlers commit transactions to complete recovery
4803 	 * for individual intents, but any new deferred operations that are
4804 	 * queued during that process are held off until the very end. The
4805 	 * purpose of this transaction is to serve as a container for deferred
4806 	 * operations. Each intent recovery handler must transfer dfops here
4807 	 * before its local transaction commits, and we'll finish the entire
4808 	 * list below.
4809 	 */
4810 	error = xfs_trans_alloc_empty(log->l_mp, &parent_tp);
4811 	if (error)
4812 		return error;
4813 
4814 	ailp = log->l_ailp;
4815 	spin_lock(&ailp->ail_lock);
4816 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4817 #if defined(DEBUG) || defined(XFS_WARN)
4818 	last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
4819 #endif
4820 	while (lip != NULL) {
4821 		/*
4822 		 * We're done when we see something other than an intent.
4823 		 * There should be no intents left in the AIL now.
4824 		 */
4825 		if (!xlog_item_is_intent(lip)) {
4826 #ifdef DEBUG
4827 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4828 				ASSERT(!xlog_item_is_intent(lip));
4829 #endif
4830 			break;
4831 		}
4832 
4833 		/*
4834 		 * We should never see a redo item with a LSN higher than
4835 		 * the last transaction we found in the log at the start
4836 		 * of recovery.
4837 		 */
4838 		ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
4839 
4840 		/*
4841 		 * NOTE: If your intent processing routine can create more
4842 		 * deferred ops, you /must/ attach them to the dfops in this
4843 		 * routine or else those subsequent intents will get
4844 		 * replayed in the wrong order!
4845 		 */
4846 		switch (lip->li_type) {
4847 		case XFS_LI_EFI:
4848 			error = xlog_recover_process_efi(log->l_mp, ailp, lip);
4849 			break;
4850 		case XFS_LI_RUI:
4851 			error = xlog_recover_process_rui(log->l_mp, ailp, lip);
4852 			break;
4853 		case XFS_LI_CUI:
4854 			error = xlog_recover_process_cui(parent_tp, ailp, lip);
4855 			break;
4856 		case XFS_LI_BUI:
4857 			error = xlog_recover_process_bui(parent_tp, ailp, lip);
4858 			break;
4859 		}
4860 		if (error)
4861 			goto out;
4862 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
4863 	}
4864 out:
4865 	xfs_trans_ail_cursor_done(&cur);
4866 	spin_unlock(&ailp->ail_lock);
4867 	if (!error)
4868 		error = xlog_finish_defer_ops(parent_tp);
4869 	xfs_trans_cancel(parent_tp);
4870 
4871 	return error;
4872 }
4873 
4874 /*
4875  * A cancel occurs when the mount has failed and we're bailing out.
4876  * Release all pending log intent items so they don't pin the AIL.
4877  */
4878 STATIC void
4879 xlog_recover_cancel_intents(
4880 	struct xlog		*log)
4881 {
4882 	struct xfs_log_item	*lip;
4883 	struct xfs_ail_cursor	cur;
4884 	struct xfs_ail		*ailp;
4885 
4886 	ailp = log->l_ailp;
4887 	spin_lock(&ailp->ail_lock);
4888 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4889 	while (lip != NULL) {
4890 		/*
4891 		 * We're done when we see something other than an intent.
4892 		 * There should be no intents left in the AIL now.
4893 		 */
4894 		if (!xlog_item_is_intent(lip)) {
4895 #ifdef DEBUG
4896 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4897 				ASSERT(!xlog_item_is_intent(lip));
4898 #endif
4899 			break;
4900 		}
4901 
4902 		switch (lip->li_type) {
4903 		case XFS_LI_EFI:
4904 			xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4905 			break;
4906 		case XFS_LI_RUI:
4907 			xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4908 			break;
4909 		case XFS_LI_CUI:
4910 			xlog_recover_cancel_cui(log->l_mp, ailp, lip);
4911 			break;
4912 		case XFS_LI_BUI:
4913 			xlog_recover_cancel_bui(log->l_mp, ailp, lip);
4914 			break;
4915 		}
4916 
4917 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
4918 	}
4919 
4920 	xfs_trans_ail_cursor_done(&cur);
4921 	spin_unlock(&ailp->ail_lock);
4922 }
4923 
4924 /*
4925  * This routine performs a transaction to null out a bad inode pointer
4926  * in an agi unlinked inode hash bucket.
4927  */
4928 STATIC void
4929 xlog_recover_clear_agi_bucket(
4930 	xfs_mount_t	*mp,
4931 	xfs_agnumber_t	agno,
4932 	int		bucket)
4933 {
4934 	xfs_trans_t	*tp;
4935 	xfs_agi_t	*agi;
4936 	xfs_buf_t	*agibp;
4937 	int		offset;
4938 	int		error;
4939 
4940 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
4941 	if (error)
4942 		goto out_error;
4943 
4944 	error = xfs_read_agi(mp, tp, agno, &agibp);
4945 	if (error)
4946 		goto out_abort;
4947 
4948 	agi = XFS_BUF_TO_AGI(agibp);
4949 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
4950 	offset = offsetof(xfs_agi_t, agi_unlinked) +
4951 		 (sizeof(xfs_agino_t) * bucket);
4952 	xfs_trans_log_buf(tp, agibp, offset,
4953 			  (offset + sizeof(xfs_agino_t) - 1));
4954 
4955 	error = xfs_trans_commit(tp);
4956 	if (error)
4957 		goto out_error;
4958 	return;
4959 
4960 out_abort:
4961 	xfs_trans_cancel(tp);
4962 out_error:
4963 	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
4964 	return;
4965 }
4966 
4967 STATIC xfs_agino_t
4968 xlog_recover_process_one_iunlink(
4969 	struct xfs_mount		*mp,
4970 	xfs_agnumber_t			agno,
4971 	xfs_agino_t			agino,
4972 	int				bucket)
4973 {
4974 	struct xfs_buf			*ibp;
4975 	struct xfs_dinode		*dip;
4976 	struct xfs_inode		*ip;
4977 	xfs_ino_t			ino;
4978 	int				error;
4979 
4980 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
4981 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
4982 	if (error)
4983 		goto fail;
4984 
4985 	/*
4986 	 * Get the on disk inode to find the next inode in the bucket.
4987 	 */
4988 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
4989 	if (error)
4990 		goto fail_iput;
4991 
4992 	xfs_iflags_clear(ip, XFS_IRECOVERY);
4993 	ASSERT(VFS_I(ip)->i_nlink == 0);
4994 	ASSERT(VFS_I(ip)->i_mode != 0);
4995 
4996 	/* setup for the next pass */
4997 	agino = be32_to_cpu(dip->di_next_unlinked);
4998 	xfs_buf_relse(ibp);
4999 
5000 	/*
5001 	 * Prevent any DMAPI event from being sent when the reference on
5002 	 * the inode is dropped.
5003 	 */
5004 	ip->i_d.di_dmevmask = 0;
5005 
5006 	xfs_irele(ip);
5007 	return agino;
5008 
5009  fail_iput:
5010 	xfs_irele(ip);
5011  fail:
5012 	/*
5013 	 * We can't read in the inode this bucket points to, or this inode
5014 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
5015 	 * some inodes and space, but at least we won't hang.
5016 	 *
5017 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
5018 	 * clear the inode pointer in the bucket.
5019 	 */
5020 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
5021 	return NULLAGINO;
5022 }
5023 
5024 /*
5025  * xlog_iunlink_recover
5026  *
5027  * This is called during recovery to process any inodes which
5028  * we unlinked but not freed when the system crashed.  These
5029  * inodes will be on the lists in the AGI blocks.  What we do
5030  * here is scan all the AGIs and fully truncate and free any
5031  * inodes found on the lists.  Each inode is removed from the
5032  * lists when it has been fully truncated and is freed.  The
5033  * freeing of the inode and its removal from the list must be
5034  * atomic.
5035  */
5036 STATIC void
5037 xlog_recover_process_iunlinks(
5038 	struct xlog	*log)
5039 {
5040 	xfs_mount_t	*mp;
5041 	xfs_agnumber_t	agno;
5042 	xfs_agi_t	*agi;
5043 	xfs_buf_t	*agibp;
5044 	xfs_agino_t	agino;
5045 	int		bucket;
5046 	int		error;
5047 
5048 	mp = log->l_mp;
5049 
5050 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5051 		/*
5052 		 * Find the agi for this ag.
5053 		 */
5054 		error = xfs_read_agi(mp, NULL, agno, &agibp);
5055 		if (error) {
5056 			/*
5057 			 * AGI is b0rked. Don't process it.
5058 			 *
5059 			 * We should probably mark the filesystem as corrupt
5060 			 * after we've recovered all the ag's we can....
5061 			 */
5062 			continue;
5063 		}
5064 		/*
5065 		 * Unlock the buffer so that it can be acquired in the normal
5066 		 * course of the transaction to truncate and free each inode.
5067 		 * Because we are not racing with anyone else here for the AGI
5068 		 * buffer, we don't even need to hold it locked to read the
5069 		 * initial unlinked bucket entries out of the buffer. We keep
5070 		 * buffer reference though, so that it stays pinned in memory
5071 		 * while we need the buffer.
5072 		 */
5073 		agi = XFS_BUF_TO_AGI(agibp);
5074 		xfs_buf_unlock(agibp);
5075 
5076 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
5077 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
5078 			while (agino != NULLAGINO) {
5079 				agino = xlog_recover_process_one_iunlink(mp,
5080 							agno, agino, bucket);
5081 			}
5082 		}
5083 		xfs_buf_rele(agibp);
5084 	}
5085 }
5086 
5087 STATIC void
5088 xlog_unpack_data(
5089 	struct xlog_rec_header	*rhead,
5090 	char			*dp,
5091 	struct xlog		*log)
5092 {
5093 	int			i, j, k;
5094 
5095 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
5096 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
5097 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
5098 		dp += BBSIZE;
5099 	}
5100 
5101 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5102 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
5103 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
5104 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5105 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5106 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
5107 			dp += BBSIZE;
5108 		}
5109 	}
5110 }
5111 
5112 /*
5113  * CRC check, unpack and process a log record.
5114  */
5115 STATIC int
5116 xlog_recover_process(
5117 	struct xlog		*log,
5118 	struct hlist_head	rhash[],
5119 	struct xlog_rec_header	*rhead,
5120 	char			*dp,
5121 	int			pass,
5122 	struct list_head	*buffer_list)
5123 {
5124 	__le32			old_crc = rhead->h_crc;
5125 	__le32			crc;
5126 
5127 	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
5128 
5129 	/*
5130 	 * Nothing else to do if this is a CRC verification pass. Just return
5131 	 * if this a record with a non-zero crc. Unfortunately, mkfs always
5132 	 * sets old_crc to 0 so we must consider this valid even on v5 supers.
5133 	 * Otherwise, return EFSBADCRC on failure so the callers up the stack
5134 	 * know precisely what failed.
5135 	 */
5136 	if (pass == XLOG_RECOVER_CRCPASS) {
5137 		if (old_crc && crc != old_crc)
5138 			return -EFSBADCRC;
5139 		return 0;
5140 	}
5141 
5142 	/*
5143 	 * We're in the normal recovery path. Issue a warning if and only if the
5144 	 * CRC in the header is non-zero. This is an advisory warning and the
5145 	 * zero CRC check prevents warnings from being emitted when upgrading
5146 	 * the kernel from one that does not add CRCs by default.
5147 	 */
5148 	if (crc != old_crc) {
5149 		if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
5150 			xfs_alert(log->l_mp,
5151 		"log record CRC mismatch: found 0x%x, expected 0x%x.",
5152 					le32_to_cpu(old_crc),
5153 					le32_to_cpu(crc));
5154 			xfs_hex_dump(dp, 32);
5155 		}
5156 
5157 		/*
5158 		 * If the filesystem is CRC enabled, this mismatch becomes a
5159 		 * fatal log corruption failure.
5160 		 */
5161 		if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
5162 			return -EFSCORRUPTED;
5163 	}
5164 
5165 	xlog_unpack_data(rhead, dp, log);
5166 
5167 	return xlog_recover_process_data(log, rhash, rhead, dp, pass,
5168 					 buffer_list);
5169 }
5170 
5171 STATIC int
5172 xlog_valid_rec_header(
5173 	struct xlog		*log,
5174 	struct xlog_rec_header	*rhead,
5175 	xfs_daddr_t		blkno)
5176 {
5177 	int			hlen;
5178 
5179 	if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
5180 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
5181 				XFS_ERRLEVEL_LOW, log->l_mp);
5182 		return -EFSCORRUPTED;
5183 	}
5184 	if (unlikely(
5185 	    (!rhead->h_version ||
5186 	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
5187 		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
5188 			__func__, be32_to_cpu(rhead->h_version));
5189 		return -EIO;
5190 	}
5191 
5192 	/* LR body must have data or it wouldn't have been written */
5193 	hlen = be32_to_cpu(rhead->h_len);
5194 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
5195 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
5196 				XFS_ERRLEVEL_LOW, log->l_mp);
5197 		return -EFSCORRUPTED;
5198 	}
5199 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
5200 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
5201 				XFS_ERRLEVEL_LOW, log->l_mp);
5202 		return -EFSCORRUPTED;
5203 	}
5204 	return 0;
5205 }
5206 
5207 /*
5208  * Read the log from tail to head and process the log records found.
5209  * Handle the two cases where the tail and head are in the same cycle
5210  * and where the active portion of the log wraps around the end of
5211  * the physical log separately.  The pass parameter is passed through
5212  * to the routines called to process the data and is not looked at
5213  * here.
5214  */
5215 STATIC int
5216 xlog_do_recovery_pass(
5217 	struct xlog		*log,
5218 	xfs_daddr_t		head_blk,
5219 	xfs_daddr_t		tail_blk,
5220 	int			pass,
5221 	xfs_daddr_t		*first_bad)	/* out: first bad log rec */
5222 {
5223 	xlog_rec_header_t	*rhead;
5224 	xfs_daddr_t		blk_no, rblk_no;
5225 	xfs_daddr_t		rhead_blk;
5226 	char			*offset;
5227 	char			*hbp, *dbp;
5228 	int			error = 0, h_size, h_len;
5229 	int			error2 = 0;
5230 	int			bblks, split_bblks;
5231 	int			hblks, split_hblks, wrapped_hblks;
5232 	int			i;
5233 	struct hlist_head	rhash[XLOG_RHASH_SIZE];
5234 	LIST_HEAD		(buffer_list);
5235 
5236 	ASSERT(head_blk != tail_blk);
5237 	blk_no = rhead_blk = tail_blk;
5238 
5239 	for (i = 0; i < XLOG_RHASH_SIZE; i++)
5240 		INIT_HLIST_HEAD(&rhash[i]);
5241 
5242 	/*
5243 	 * Read the header of the tail block and get the iclog buffer size from
5244 	 * h_size.  Use this to tell how many sectors make up the log header.
5245 	 */
5246 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5247 		/*
5248 		 * When using variable length iclogs, read first sector of
5249 		 * iclog header and extract the header size from it.  Get a
5250 		 * new hbp that is the correct size.
5251 		 */
5252 		hbp = xlog_alloc_buffer(log, 1);
5253 		if (!hbp)
5254 			return -ENOMEM;
5255 
5256 		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
5257 		if (error)
5258 			goto bread_err1;
5259 
5260 		rhead = (xlog_rec_header_t *)offset;
5261 		error = xlog_valid_rec_header(log, rhead, tail_blk);
5262 		if (error)
5263 			goto bread_err1;
5264 
5265 		/*
5266 		 * xfsprogs has a bug where record length is based on lsunit but
5267 		 * h_size (iclog size) is hardcoded to 32k. Now that we
5268 		 * unconditionally CRC verify the unmount record, this means the
5269 		 * log buffer can be too small for the record and cause an
5270 		 * overrun.
5271 		 *
5272 		 * Detect this condition here. Use lsunit for the buffer size as
5273 		 * long as this looks like the mkfs case. Otherwise, return an
5274 		 * error to avoid a buffer overrun.
5275 		 */
5276 		h_size = be32_to_cpu(rhead->h_size);
5277 		h_len = be32_to_cpu(rhead->h_len);
5278 		if (h_len > h_size) {
5279 			if (h_len <= log->l_mp->m_logbsize &&
5280 			    be32_to_cpu(rhead->h_num_logops) == 1) {
5281 				xfs_warn(log->l_mp,
5282 		"invalid iclog size (%d bytes), using lsunit (%d bytes)",
5283 					 h_size, log->l_mp->m_logbsize);
5284 				h_size = log->l_mp->m_logbsize;
5285 			} else
5286 				return -EFSCORRUPTED;
5287 		}
5288 
5289 		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
5290 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
5291 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
5292 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
5293 				hblks++;
5294 			kmem_free(hbp);
5295 			hbp = xlog_alloc_buffer(log, hblks);
5296 		} else {
5297 			hblks = 1;
5298 		}
5299 	} else {
5300 		ASSERT(log->l_sectBBsize == 1);
5301 		hblks = 1;
5302 		hbp = xlog_alloc_buffer(log, 1);
5303 		h_size = XLOG_BIG_RECORD_BSIZE;
5304 	}
5305 
5306 	if (!hbp)
5307 		return -ENOMEM;
5308 	dbp = xlog_alloc_buffer(log, BTOBB(h_size));
5309 	if (!dbp) {
5310 		kmem_free(hbp);
5311 		return -ENOMEM;
5312 	}
5313 
5314 	memset(rhash, 0, sizeof(rhash));
5315 	if (tail_blk > head_blk) {
5316 		/*
5317 		 * Perform recovery around the end of the physical log.
5318 		 * When the head is not on the same cycle number as the tail,
5319 		 * we can't do a sequential recovery.
5320 		 */
5321 		while (blk_no < log->l_logBBsize) {
5322 			/*
5323 			 * Check for header wrapping around physical end-of-log
5324 			 */
5325 			offset = hbp;
5326 			split_hblks = 0;
5327 			wrapped_hblks = 0;
5328 			if (blk_no + hblks <= log->l_logBBsize) {
5329 				/* Read header in one read */
5330 				error = xlog_bread(log, blk_no, hblks, hbp,
5331 						   &offset);
5332 				if (error)
5333 					goto bread_err2;
5334 			} else {
5335 				/* This LR is split across physical log end */
5336 				if (blk_no != log->l_logBBsize) {
5337 					/* some data before physical log end */
5338 					ASSERT(blk_no <= INT_MAX);
5339 					split_hblks = log->l_logBBsize - (int)blk_no;
5340 					ASSERT(split_hblks > 0);
5341 					error = xlog_bread(log, blk_no,
5342 							   split_hblks, hbp,
5343 							   &offset);
5344 					if (error)
5345 						goto bread_err2;
5346 				}
5347 
5348 				/*
5349 				 * Note: this black magic still works with
5350 				 * large sector sizes (non-512) only because:
5351 				 * - we increased the buffer size originally
5352 				 *   by 1 sector giving us enough extra space
5353 				 *   for the second read;
5354 				 * - the log start is guaranteed to be sector
5355 				 *   aligned;
5356 				 * - we read the log end (LR header start)
5357 				 *   _first_, then the log start (LR header end)
5358 				 *   - order is important.
5359 				 */
5360 				wrapped_hblks = hblks - split_hblks;
5361 				error = xlog_bread_noalign(log, 0,
5362 						wrapped_hblks,
5363 						offset + BBTOB(split_hblks));
5364 				if (error)
5365 					goto bread_err2;
5366 			}
5367 			rhead = (xlog_rec_header_t *)offset;
5368 			error = xlog_valid_rec_header(log, rhead,
5369 						split_hblks ? blk_no : 0);
5370 			if (error)
5371 				goto bread_err2;
5372 
5373 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5374 			blk_no += hblks;
5375 
5376 			/*
5377 			 * Read the log record data in multiple reads if it
5378 			 * wraps around the end of the log. Note that if the
5379 			 * header already wrapped, blk_no could point past the
5380 			 * end of the log. The record data is contiguous in
5381 			 * that case.
5382 			 */
5383 			if (blk_no + bblks <= log->l_logBBsize ||
5384 			    blk_no >= log->l_logBBsize) {
5385 				rblk_no = xlog_wrap_logbno(log, blk_no);
5386 				error = xlog_bread(log, rblk_no, bblks, dbp,
5387 						   &offset);
5388 				if (error)
5389 					goto bread_err2;
5390 			} else {
5391 				/* This log record is split across the
5392 				 * physical end of log */
5393 				offset = dbp;
5394 				split_bblks = 0;
5395 				if (blk_no != log->l_logBBsize) {
5396 					/* some data is before the physical
5397 					 * end of log */
5398 					ASSERT(!wrapped_hblks);
5399 					ASSERT(blk_no <= INT_MAX);
5400 					split_bblks =
5401 						log->l_logBBsize - (int)blk_no;
5402 					ASSERT(split_bblks > 0);
5403 					error = xlog_bread(log, blk_no,
5404 							split_bblks, dbp,
5405 							&offset);
5406 					if (error)
5407 						goto bread_err2;
5408 				}
5409 
5410 				/*
5411 				 * Note: this black magic still works with
5412 				 * large sector sizes (non-512) only because:
5413 				 * - we increased the buffer size originally
5414 				 *   by 1 sector giving us enough extra space
5415 				 *   for the second read;
5416 				 * - the log start is guaranteed to be sector
5417 				 *   aligned;
5418 				 * - we read the log end (LR header start)
5419 				 *   _first_, then the log start (LR header end)
5420 				 *   - order is important.
5421 				 */
5422 				error = xlog_bread_noalign(log, 0,
5423 						bblks - split_bblks,
5424 						offset + BBTOB(split_bblks));
5425 				if (error)
5426 					goto bread_err2;
5427 			}
5428 
5429 			error = xlog_recover_process(log, rhash, rhead, offset,
5430 						     pass, &buffer_list);
5431 			if (error)
5432 				goto bread_err2;
5433 
5434 			blk_no += bblks;
5435 			rhead_blk = blk_no;
5436 		}
5437 
5438 		ASSERT(blk_no >= log->l_logBBsize);
5439 		blk_no -= log->l_logBBsize;
5440 		rhead_blk = blk_no;
5441 	}
5442 
5443 	/* read first part of physical log */
5444 	while (blk_no < head_blk) {
5445 		error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5446 		if (error)
5447 			goto bread_err2;
5448 
5449 		rhead = (xlog_rec_header_t *)offset;
5450 		error = xlog_valid_rec_header(log, rhead, blk_no);
5451 		if (error)
5452 			goto bread_err2;
5453 
5454 		/* blocks in data section */
5455 		bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5456 		error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5457 				   &offset);
5458 		if (error)
5459 			goto bread_err2;
5460 
5461 		error = xlog_recover_process(log, rhash, rhead, offset, pass,
5462 					     &buffer_list);
5463 		if (error)
5464 			goto bread_err2;
5465 
5466 		blk_no += bblks + hblks;
5467 		rhead_blk = blk_no;
5468 	}
5469 
5470  bread_err2:
5471 	kmem_free(dbp);
5472  bread_err1:
5473 	kmem_free(hbp);
5474 
5475 	/*
5476 	 * Submit buffers that have been added from the last record processed,
5477 	 * regardless of error status.
5478 	 */
5479 	if (!list_empty(&buffer_list))
5480 		error2 = xfs_buf_delwri_submit(&buffer_list);
5481 
5482 	if (error && first_bad)
5483 		*first_bad = rhead_blk;
5484 
5485 	/*
5486 	 * Transactions are freed at commit time but transactions without commit
5487 	 * records on disk are never committed. Free any that may be left in the
5488 	 * hash table.
5489 	 */
5490 	for (i = 0; i < XLOG_RHASH_SIZE; i++) {
5491 		struct hlist_node	*tmp;
5492 		struct xlog_recover	*trans;
5493 
5494 		hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
5495 			xlog_recover_free_trans(trans);
5496 	}
5497 
5498 	return error ? error : error2;
5499 }
5500 
5501 /*
5502  * Do the recovery of the log.  We actually do this in two phases.
5503  * The two passes are necessary in order to implement the function
5504  * of cancelling a record written into the log.  The first pass
5505  * determines those things which have been cancelled, and the
5506  * second pass replays log items normally except for those which
5507  * have been cancelled.  The handling of the replay and cancellations
5508  * takes place in the log item type specific routines.
5509  *
5510  * The table of items which have cancel records in the log is allocated
5511  * and freed at this level, since only here do we know when all of
5512  * the log recovery has been completed.
5513  */
5514 STATIC int
5515 xlog_do_log_recovery(
5516 	struct xlog	*log,
5517 	xfs_daddr_t	head_blk,
5518 	xfs_daddr_t	tail_blk)
5519 {
5520 	int		error, i;
5521 
5522 	ASSERT(head_blk != tail_blk);
5523 
5524 	/*
5525 	 * First do a pass to find all of the cancelled buf log items.
5526 	 * Store them in the buf_cancel_table for use in the second pass.
5527 	 */
5528 	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5529 						 sizeof(struct list_head),
5530 						 KM_SLEEP);
5531 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5532 		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5533 
5534 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5535 				      XLOG_RECOVER_PASS1, NULL);
5536 	if (error != 0) {
5537 		kmem_free(log->l_buf_cancel_table);
5538 		log->l_buf_cancel_table = NULL;
5539 		return error;
5540 	}
5541 	/*
5542 	 * Then do a second pass to actually recover the items in the log.
5543 	 * When it is complete free the table of buf cancel items.
5544 	 */
5545 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5546 				      XLOG_RECOVER_PASS2, NULL);
5547 #ifdef DEBUG
5548 	if (!error) {
5549 		int	i;
5550 
5551 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5552 			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
5553 	}
5554 #endif	/* DEBUG */
5555 
5556 	kmem_free(log->l_buf_cancel_table);
5557 	log->l_buf_cancel_table = NULL;
5558 
5559 	return error;
5560 }
5561 
5562 /*
5563  * Do the actual recovery
5564  */
5565 STATIC int
5566 xlog_do_recover(
5567 	struct xlog	*log,
5568 	xfs_daddr_t	head_blk,
5569 	xfs_daddr_t	tail_blk)
5570 {
5571 	struct xfs_mount *mp = log->l_mp;
5572 	int		error;
5573 	xfs_buf_t	*bp;
5574 	xfs_sb_t	*sbp;
5575 
5576 	trace_xfs_log_recover(log, head_blk, tail_blk);
5577 
5578 	/*
5579 	 * First replay the images in the log.
5580 	 */
5581 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
5582 	if (error)
5583 		return error;
5584 
5585 	/*
5586 	 * If IO errors happened during recovery, bail out.
5587 	 */
5588 	if (XFS_FORCED_SHUTDOWN(mp)) {
5589 		return -EIO;
5590 	}
5591 
5592 	/*
5593 	 * We now update the tail_lsn since much of the recovery has completed
5594 	 * and there may be space available to use.  If there were no extent
5595 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
5596 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
5597 	 * lsn of the last known good LR on disk.  If there are extent frees
5598 	 * or iunlinks they will have some entries in the AIL; so we look at
5599 	 * the AIL to determine how to set the tail_lsn.
5600 	 */
5601 	xlog_assign_tail_lsn(mp);
5602 
5603 	/*
5604 	 * Now that we've finished replaying all buffer and inode
5605 	 * updates, re-read in the superblock and reverify it.
5606 	 */
5607 	bp = xfs_getsb(mp);
5608 	bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
5609 	ASSERT(!(bp->b_flags & XBF_WRITE));
5610 	bp->b_flags |= XBF_READ;
5611 	bp->b_ops = &xfs_sb_buf_ops;
5612 
5613 	error = xfs_buf_submit(bp);
5614 	if (error) {
5615 		if (!XFS_FORCED_SHUTDOWN(mp)) {
5616 			xfs_buf_ioerror_alert(bp, __func__);
5617 			ASSERT(0);
5618 		}
5619 		xfs_buf_relse(bp);
5620 		return error;
5621 	}
5622 
5623 	/* Convert superblock from on-disk format */
5624 	sbp = &mp->m_sb;
5625 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
5626 	xfs_buf_relse(bp);
5627 
5628 	/* re-initialise in-core superblock and geometry structures */
5629 	xfs_reinit_percpu_counters(mp);
5630 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5631 	if (error) {
5632 		xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5633 		return error;
5634 	}
5635 	mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5636 
5637 	xlog_recover_check_summary(log);
5638 
5639 	/* Normal transactions can now occur */
5640 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5641 	return 0;
5642 }
5643 
5644 /*
5645  * Perform recovery and re-initialize some log variables in xlog_find_tail.
5646  *
5647  * Return error or zero.
5648  */
5649 int
5650 xlog_recover(
5651 	struct xlog	*log)
5652 {
5653 	xfs_daddr_t	head_blk, tail_blk;
5654 	int		error;
5655 
5656 	/* find the tail of the log */
5657 	error = xlog_find_tail(log, &head_blk, &tail_blk);
5658 	if (error)
5659 		return error;
5660 
5661 	/*
5662 	 * The superblock was read before the log was available and thus the LSN
5663 	 * could not be verified. Check the superblock LSN against the current
5664 	 * LSN now that it's known.
5665 	 */
5666 	if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5667 	    !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5668 		return -EINVAL;
5669 
5670 	if (tail_blk != head_blk) {
5671 		/* There used to be a comment here:
5672 		 *
5673 		 * disallow recovery on read-only mounts.  note -- mount
5674 		 * checks for ENOSPC and turns it into an intelligent
5675 		 * error message.
5676 		 * ...but this is no longer true.  Now, unless you specify
5677 		 * NORECOVERY (in which case this function would never be
5678 		 * called), we just go ahead and recover.  We do this all
5679 		 * under the vfs layer, so we can get away with it unless
5680 		 * the device itself is read-only, in which case we fail.
5681 		 */
5682 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5683 			return error;
5684 		}
5685 
5686 		/*
5687 		 * Version 5 superblock log feature mask validation. We know the
5688 		 * log is dirty so check if there are any unknown log features
5689 		 * in what we need to recover. If there are unknown features
5690 		 * (e.g. unsupported transactions, then simply reject the
5691 		 * attempt at recovery before touching anything.
5692 		 */
5693 		if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5694 		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5695 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5696 			xfs_warn(log->l_mp,
5697 "Superblock has unknown incompatible log features (0x%x) enabled.",
5698 				(log->l_mp->m_sb.sb_features_log_incompat &
5699 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5700 			xfs_warn(log->l_mp,
5701 "The log can not be fully and/or safely recovered by this kernel.");
5702 			xfs_warn(log->l_mp,
5703 "Please recover the log on a kernel that supports the unknown features.");
5704 			return -EINVAL;
5705 		}
5706 
5707 		/*
5708 		 * Delay log recovery if the debug hook is set. This is debug
5709 		 * instrumention to coordinate simulation of I/O failures with
5710 		 * log recovery.
5711 		 */
5712 		if (xfs_globals.log_recovery_delay) {
5713 			xfs_notice(log->l_mp,
5714 				"Delaying log recovery for %d seconds.",
5715 				xfs_globals.log_recovery_delay);
5716 			msleep(xfs_globals.log_recovery_delay * 1000);
5717 		}
5718 
5719 		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5720 				log->l_mp->m_logname ? log->l_mp->m_logname
5721 						     : "internal");
5722 
5723 		error = xlog_do_recover(log, head_blk, tail_blk);
5724 		log->l_flags |= XLOG_RECOVERY_NEEDED;
5725 	}
5726 	return error;
5727 }
5728 
5729 /*
5730  * In the first part of recovery we replay inodes and buffers and build
5731  * up the list of extent free items which need to be processed.  Here
5732  * we process the extent free items and clean up the on disk unlinked
5733  * inode lists.  This is separated from the first part of recovery so
5734  * that the root and real-time bitmap inodes can be read in from disk in
5735  * between the two stages.  This is necessary so that we can free space
5736  * in the real-time portion of the file system.
5737  */
5738 int
5739 xlog_recover_finish(
5740 	struct xlog	*log)
5741 {
5742 	/*
5743 	 * Now we're ready to do the transactions needed for the
5744 	 * rest of recovery.  Start with completing all the extent
5745 	 * free intent records and then process the unlinked inode
5746 	 * lists.  At this point, we essentially run in normal mode
5747 	 * except that we're still performing recovery actions
5748 	 * rather than accepting new requests.
5749 	 */
5750 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5751 		int	error;
5752 		error = xlog_recover_process_intents(log);
5753 		if (error) {
5754 			xfs_alert(log->l_mp, "Failed to recover intents");
5755 			return error;
5756 		}
5757 
5758 		/*
5759 		 * Sync the log to get all the intents out of the AIL.
5760 		 * This isn't absolutely necessary, but it helps in
5761 		 * case the unlink transactions would have problems
5762 		 * pushing the intents out of the way.
5763 		 */
5764 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
5765 
5766 		xlog_recover_process_iunlinks(log);
5767 
5768 		xlog_recover_check_summary(log);
5769 
5770 		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5771 				log->l_mp->m_logname ? log->l_mp->m_logname
5772 						     : "internal");
5773 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5774 	} else {
5775 		xfs_info(log->l_mp, "Ending clean mount");
5776 	}
5777 	return 0;
5778 }
5779 
5780 void
5781 xlog_recover_cancel(
5782 	struct xlog	*log)
5783 {
5784 	if (log->l_flags & XLOG_RECOVERY_NEEDED)
5785 		xlog_recover_cancel_intents(log);
5786 }
5787 
5788 #if defined(DEBUG)
5789 /*
5790  * Read all of the agf and agi counters and check that they
5791  * are consistent with the superblock counters.
5792  */
5793 STATIC void
5794 xlog_recover_check_summary(
5795 	struct xlog	*log)
5796 {
5797 	xfs_mount_t	*mp;
5798 	xfs_agf_t	*agfp;
5799 	xfs_buf_t	*agfbp;
5800 	xfs_buf_t	*agibp;
5801 	xfs_agnumber_t	agno;
5802 	uint64_t	freeblks;
5803 	uint64_t	itotal;
5804 	uint64_t	ifree;
5805 	int		error;
5806 
5807 	mp = log->l_mp;
5808 
5809 	freeblks = 0LL;
5810 	itotal = 0LL;
5811 	ifree = 0LL;
5812 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5813 		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5814 		if (error) {
5815 			xfs_alert(mp, "%s agf read failed agno %d error %d",
5816 						__func__, agno, error);
5817 		} else {
5818 			agfp = XFS_BUF_TO_AGF(agfbp);
5819 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
5820 				    be32_to_cpu(agfp->agf_flcount);
5821 			xfs_buf_relse(agfbp);
5822 		}
5823 
5824 		error = xfs_read_agi(mp, NULL, agno, &agibp);
5825 		if (error) {
5826 			xfs_alert(mp, "%s agi read failed agno %d error %d",
5827 						__func__, agno, error);
5828 		} else {
5829 			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
5830 
5831 			itotal += be32_to_cpu(agi->agi_count);
5832 			ifree += be32_to_cpu(agi->agi_freecount);
5833 			xfs_buf_relse(agibp);
5834 		}
5835 	}
5836 }
5837 #endif /* DEBUG */
5838