xref: /openbmc/linux/fs/xfs/xfs_log_recover.c (revision b34081f1)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_alloc.h"
37 #include "xfs_ialloc.h"
38 #include "xfs_log_priv.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_log_recover.h"
41 #include "xfs_extfree_item.h"
42 #include "xfs_trans_priv.h"
43 #include "xfs_quota.h"
44 #include "xfs_cksum.h"
45 #include "xfs_trace.h"
46 #include "xfs_icache.h"
47 #include "xfs_icreate_item.h"
48 
49 /* Need all the magic numbers and buffer ops structures from these headers */
50 #include "xfs_symlink.h"
51 #include "xfs_da_btree.h"
52 #include "xfs_dir2_format.h"
53 #include "xfs_dir2.h"
54 #include "xfs_attr_leaf.h"
55 #include "xfs_attr_remote.h"
56 
57 #define BLK_AVG(blk1, blk2)	((blk1+blk2) >> 1)
58 
59 STATIC int
60 xlog_find_zeroed(
61 	struct xlog	*,
62 	xfs_daddr_t	*);
63 STATIC int
64 xlog_clear_stale_blocks(
65 	struct xlog	*,
66 	xfs_lsn_t);
67 #if defined(DEBUG)
68 STATIC void
69 xlog_recover_check_summary(
70 	struct xlog *);
71 #else
72 #define	xlog_recover_check_summary(log)
73 #endif
74 
75 /*
76  * This structure is used during recovery to record the buf log items which
77  * have been canceled and should not be replayed.
78  */
79 struct xfs_buf_cancel {
80 	xfs_daddr_t		bc_blkno;
81 	uint			bc_len;
82 	int			bc_refcount;
83 	struct list_head	bc_list;
84 };
85 
86 /*
87  * Sector aligned buffer routines for buffer create/read/write/access
88  */
89 
90 /*
91  * Verify the given count of basic blocks is valid number of blocks
92  * to specify for an operation involving the given XFS log buffer.
93  * Returns nonzero if the count is valid, 0 otherwise.
94  */
95 
96 static inline int
97 xlog_buf_bbcount_valid(
98 	struct xlog	*log,
99 	int		bbcount)
100 {
101 	return bbcount > 0 && bbcount <= log->l_logBBsize;
102 }
103 
104 /*
105  * Allocate a buffer to hold log data.  The buffer needs to be able
106  * to map to a range of nbblks basic blocks at any valid (basic
107  * block) offset within the log.
108  */
109 STATIC xfs_buf_t *
110 xlog_get_bp(
111 	struct xlog	*log,
112 	int		nbblks)
113 {
114 	struct xfs_buf	*bp;
115 
116 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
117 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
118 			nbblks);
119 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
120 		return NULL;
121 	}
122 
123 	/*
124 	 * We do log I/O in units of log sectors (a power-of-2
125 	 * multiple of the basic block size), so we round up the
126 	 * requested size to accommodate the basic blocks required
127 	 * for complete log sectors.
128 	 *
129 	 * In addition, the buffer may be used for a non-sector-
130 	 * aligned block offset, in which case an I/O of the
131 	 * requested size could extend beyond the end of the
132 	 * buffer.  If the requested size is only 1 basic block it
133 	 * will never straddle a sector boundary, so this won't be
134 	 * an issue.  Nor will this be a problem if the log I/O is
135 	 * done in basic blocks (sector size 1).  But otherwise we
136 	 * extend the buffer by one extra log sector to ensure
137 	 * there's space to accommodate this possibility.
138 	 */
139 	if (nbblks > 1 && log->l_sectBBsize > 1)
140 		nbblks += log->l_sectBBsize;
141 	nbblks = round_up(nbblks, log->l_sectBBsize);
142 
143 	bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
144 	if (bp)
145 		xfs_buf_unlock(bp);
146 	return bp;
147 }
148 
149 STATIC void
150 xlog_put_bp(
151 	xfs_buf_t	*bp)
152 {
153 	xfs_buf_free(bp);
154 }
155 
156 /*
157  * Return the address of the start of the given block number's data
158  * in a log buffer.  The buffer covers a log sector-aligned region.
159  */
160 STATIC xfs_caddr_t
161 xlog_align(
162 	struct xlog	*log,
163 	xfs_daddr_t	blk_no,
164 	int		nbblks,
165 	struct xfs_buf	*bp)
166 {
167 	xfs_daddr_t	offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
168 
169 	ASSERT(offset + nbblks <= bp->b_length);
170 	return bp->b_addr + BBTOB(offset);
171 }
172 
173 
174 /*
175  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
176  */
177 STATIC int
178 xlog_bread_noalign(
179 	struct xlog	*log,
180 	xfs_daddr_t	blk_no,
181 	int		nbblks,
182 	struct xfs_buf	*bp)
183 {
184 	int		error;
185 
186 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
187 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
188 			nbblks);
189 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
190 		return EFSCORRUPTED;
191 	}
192 
193 	blk_no = round_down(blk_no, log->l_sectBBsize);
194 	nbblks = round_up(nbblks, log->l_sectBBsize);
195 
196 	ASSERT(nbblks > 0);
197 	ASSERT(nbblks <= bp->b_length);
198 
199 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
200 	XFS_BUF_READ(bp);
201 	bp->b_io_length = nbblks;
202 	bp->b_error = 0;
203 
204 	xfsbdstrat(log->l_mp, bp);
205 	error = xfs_buf_iowait(bp);
206 	if (error)
207 		xfs_buf_ioerror_alert(bp, __func__);
208 	return error;
209 }
210 
211 STATIC int
212 xlog_bread(
213 	struct xlog	*log,
214 	xfs_daddr_t	blk_no,
215 	int		nbblks,
216 	struct xfs_buf	*bp,
217 	xfs_caddr_t	*offset)
218 {
219 	int		error;
220 
221 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
222 	if (error)
223 		return error;
224 
225 	*offset = xlog_align(log, blk_no, nbblks, bp);
226 	return 0;
227 }
228 
229 /*
230  * Read at an offset into the buffer. Returns with the buffer in it's original
231  * state regardless of the result of the read.
232  */
233 STATIC int
234 xlog_bread_offset(
235 	struct xlog	*log,
236 	xfs_daddr_t	blk_no,		/* block to read from */
237 	int		nbblks,		/* blocks to read */
238 	struct xfs_buf	*bp,
239 	xfs_caddr_t	offset)
240 {
241 	xfs_caddr_t	orig_offset = bp->b_addr;
242 	int		orig_len = BBTOB(bp->b_length);
243 	int		error, error2;
244 
245 	error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
246 	if (error)
247 		return error;
248 
249 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
250 
251 	/* must reset buffer pointer even on error */
252 	error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
253 	if (error)
254 		return error;
255 	return error2;
256 }
257 
258 /*
259  * Write out the buffer at the given block for the given number of blocks.
260  * The buffer is kept locked across the write and is returned locked.
261  * This can only be used for synchronous log writes.
262  */
263 STATIC int
264 xlog_bwrite(
265 	struct xlog	*log,
266 	xfs_daddr_t	blk_no,
267 	int		nbblks,
268 	struct xfs_buf	*bp)
269 {
270 	int		error;
271 
272 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
273 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
274 			nbblks);
275 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
276 		return EFSCORRUPTED;
277 	}
278 
279 	blk_no = round_down(blk_no, log->l_sectBBsize);
280 	nbblks = round_up(nbblks, log->l_sectBBsize);
281 
282 	ASSERT(nbblks > 0);
283 	ASSERT(nbblks <= bp->b_length);
284 
285 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
286 	XFS_BUF_ZEROFLAGS(bp);
287 	xfs_buf_hold(bp);
288 	xfs_buf_lock(bp);
289 	bp->b_io_length = nbblks;
290 	bp->b_error = 0;
291 
292 	error = xfs_bwrite(bp);
293 	if (error)
294 		xfs_buf_ioerror_alert(bp, __func__);
295 	xfs_buf_relse(bp);
296 	return error;
297 }
298 
299 #ifdef DEBUG
300 /*
301  * dump debug superblock and log record information
302  */
303 STATIC void
304 xlog_header_check_dump(
305 	xfs_mount_t		*mp,
306 	xlog_rec_header_t	*head)
307 {
308 	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d\n",
309 		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
310 	xfs_debug(mp, "    log : uuid = %pU, fmt = %d\n",
311 		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
312 }
313 #else
314 #define xlog_header_check_dump(mp, head)
315 #endif
316 
317 /*
318  * check log record header for recovery
319  */
320 STATIC int
321 xlog_header_check_recover(
322 	xfs_mount_t		*mp,
323 	xlog_rec_header_t	*head)
324 {
325 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
326 
327 	/*
328 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
329 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
330 	 * a dirty log created in IRIX.
331 	 */
332 	if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
333 		xfs_warn(mp,
334 	"dirty log written in incompatible format - can't recover");
335 		xlog_header_check_dump(mp, head);
336 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
337 				 XFS_ERRLEVEL_HIGH, mp);
338 		return XFS_ERROR(EFSCORRUPTED);
339 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
340 		xfs_warn(mp,
341 	"dirty log entry has mismatched uuid - can't recover");
342 		xlog_header_check_dump(mp, head);
343 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
344 				 XFS_ERRLEVEL_HIGH, mp);
345 		return XFS_ERROR(EFSCORRUPTED);
346 	}
347 	return 0;
348 }
349 
350 /*
351  * read the head block of the log and check the header
352  */
353 STATIC int
354 xlog_header_check_mount(
355 	xfs_mount_t		*mp,
356 	xlog_rec_header_t	*head)
357 {
358 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
359 
360 	if (uuid_is_nil(&head->h_fs_uuid)) {
361 		/*
362 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
363 		 * h_fs_uuid is nil, we assume this log was last mounted
364 		 * by IRIX and continue.
365 		 */
366 		xfs_warn(mp, "nil uuid in log - IRIX style log");
367 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
368 		xfs_warn(mp, "log has mismatched uuid - can't recover");
369 		xlog_header_check_dump(mp, head);
370 		XFS_ERROR_REPORT("xlog_header_check_mount",
371 				 XFS_ERRLEVEL_HIGH, mp);
372 		return XFS_ERROR(EFSCORRUPTED);
373 	}
374 	return 0;
375 }
376 
377 STATIC void
378 xlog_recover_iodone(
379 	struct xfs_buf	*bp)
380 {
381 	if (bp->b_error) {
382 		/*
383 		 * We're not going to bother about retrying
384 		 * this during recovery. One strike!
385 		 */
386 		xfs_buf_ioerror_alert(bp, __func__);
387 		xfs_force_shutdown(bp->b_target->bt_mount,
388 					SHUTDOWN_META_IO_ERROR);
389 	}
390 	bp->b_iodone = NULL;
391 	xfs_buf_ioend(bp, 0);
392 }
393 
394 /*
395  * This routine finds (to an approximation) the first block in the physical
396  * log which contains the given cycle.  It uses a binary search algorithm.
397  * Note that the algorithm can not be perfect because the disk will not
398  * necessarily be perfect.
399  */
400 STATIC int
401 xlog_find_cycle_start(
402 	struct xlog	*log,
403 	struct xfs_buf	*bp,
404 	xfs_daddr_t	first_blk,
405 	xfs_daddr_t	*last_blk,
406 	uint		cycle)
407 {
408 	xfs_caddr_t	offset;
409 	xfs_daddr_t	mid_blk;
410 	xfs_daddr_t	end_blk;
411 	uint		mid_cycle;
412 	int		error;
413 
414 	end_blk = *last_blk;
415 	mid_blk = BLK_AVG(first_blk, end_blk);
416 	while (mid_blk != first_blk && mid_blk != end_blk) {
417 		error = xlog_bread(log, mid_blk, 1, bp, &offset);
418 		if (error)
419 			return error;
420 		mid_cycle = xlog_get_cycle(offset);
421 		if (mid_cycle == cycle)
422 			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
423 		else
424 			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
425 		mid_blk = BLK_AVG(first_blk, end_blk);
426 	}
427 	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
428 	       (mid_blk == end_blk && mid_blk-1 == first_blk));
429 
430 	*last_blk = end_blk;
431 
432 	return 0;
433 }
434 
435 /*
436  * Check that a range of blocks does not contain stop_on_cycle_no.
437  * Fill in *new_blk with the block offset where such a block is
438  * found, or with -1 (an invalid block number) if there is no such
439  * block in the range.  The scan needs to occur from front to back
440  * and the pointer into the region must be updated since a later
441  * routine will need to perform another test.
442  */
443 STATIC int
444 xlog_find_verify_cycle(
445 	struct xlog	*log,
446 	xfs_daddr_t	start_blk,
447 	int		nbblks,
448 	uint		stop_on_cycle_no,
449 	xfs_daddr_t	*new_blk)
450 {
451 	xfs_daddr_t	i, j;
452 	uint		cycle;
453 	xfs_buf_t	*bp;
454 	xfs_daddr_t	bufblks;
455 	xfs_caddr_t	buf = NULL;
456 	int		error = 0;
457 
458 	/*
459 	 * Greedily allocate a buffer big enough to handle the full
460 	 * range of basic blocks we'll be examining.  If that fails,
461 	 * try a smaller size.  We need to be able to read at least
462 	 * a log sector, or we're out of luck.
463 	 */
464 	bufblks = 1 << ffs(nbblks);
465 	while (bufblks > log->l_logBBsize)
466 		bufblks >>= 1;
467 	while (!(bp = xlog_get_bp(log, bufblks))) {
468 		bufblks >>= 1;
469 		if (bufblks < log->l_sectBBsize)
470 			return ENOMEM;
471 	}
472 
473 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
474 		int	bcount;
475 
476 		bcount = min(bufblks, (start_blk + nbblks - i));
477 
478 		error = xlog_bread(log, i, bcount, bp, &buf);
479 		if (error)
480 			goto out;
481 
482 		for (j = 0; j < bcount; j++) {
483 			cycle = xlog_get_cycle(buf);
484 			if (cycle == stop_on_cycle_no) {
485 				*new_blk = i+j;
486 				goto out;
487 			}
488 
489 			buf += BBSIZE;
490 		}
491 	}
492 
493 	*new_blk = -1;
494 
495 out:
496 	xlog_put_bp(bp);
497 	return error;
498 }
499 
500 /*
501  * Potentially backup over partial log record write.
502  *
503  * In the typical case, last_blk is the number of the block directly after
504  * a good log record.  Therefore, we subtract one to get the block number
505  * of the last block in the given buffer.  extra_bblks contains the number
506  * of blocks we would have read on a previous read.  This happens when the
507  * last log record is split over the end of the physical log.
508  *
509  * extra_bblks is the number of blocks potentially verified on a previous
510  * call to this routine.
511  */
512 STATIC int
513 xlog_find_verify_log_record(
514 	struct xlog		*log,
515 	xfs_daddr_t		start_blk,
516 	xfs_daddr_t		*last_blk,
517 	int			extra_bblks)
518 {
519 	xfs_daddr_t		i;
520 	xfs_buf_t		*bp;
521 	xfs_caddr_t		offset = NULL;
522 	xlog_rec_header_t	*head = NULL;
523 	int			error = 0;
524 	int			smallmem = 0;
525 	int			num_blks = *last_blk - start_blk;
526 	int			xhdrs;
527 
528 	ASSERT(start_blk != 0 || *last_blk != start_blk);
529 
530 	if (!(bp = xlog_get_bp(log, num_blks))) {
531 		if (!(bp = xlog_get_bp(log, 1)))
532 			return ENOMEM;
533 		smallmem = 1;
534 	} else {
535 		error = xlog_bread(log, start_blk, num_blks, bp, &offset);
536 		if (error)
537 			goto out;
538 		offset += ((num_blks - 1) << BBSHIFT);
539 	}
540 
541 	for (i = (*last_blk) - 1; i >= 0; i--) {
542 		if (i < start_blk) {
543 			/* valid log record not found */
544 			xfs_warn(log->l_mp,
545 		"Log inconsistent (didn't find previous header)");
546 			ASSERT(0);
547 			error = XFS_ERROR(EIO);
548 			goto out;
549 		}
550 
551 		if (smallmem) {
552 			error = xlog_bread(log, i, 1, bp, &offset);
553 			if (error)
554 				goto out;
555 		}
556 
557 		head = (xlog_rec_header_t *)offset;
558 
559 		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
560 			break;
561 
562 		if (!smallmem)
563 			offset -= BBSIZE;
564 	}
565 
566 	/*
567 	 * We hit the beginning of the physical log & still no header.  Return
568 	 * to caller.  If caller can handle a return of -1, then this routine
569 	 * will be called again for the end of the physical log.
570 	 */
571 	if (i == -1) {
572 		error = -1;
573 		goto out;
574 	}
575 
576 	/*
577 	 * We have the final block of the good log (the first block
578 	 * of the log record _before_ the head. So we check the uuid.
579 	 */
580 	if ((error = xlog_header_check_mount(log->l_mp, head)))
581 		goto out;
582 
583 	/*
584 	 * We may have found a log record header before we expected one.
585 	 * last_blk will be the 1st block # with a given cycle #.  We may end
586 	 * up reading an entire log record.  In this case, we don't want to
587 	 * reset last_blk.  Only when last_blk points in the middle of a log
588 	 * record do we update last_blk.
589 	 */
590 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
591 		uint	h_size = be32_to_cpu(head->h_size);
592 
593 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
594 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
595 			xhdrs++;
596 	} else {
597 		xhdrs = 1;
598 	}
599 
600 	if (*last_blk - i + extra_bblks !=
601 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
602 		*last_blk = i;
603 
604 out:
605 	xlog_put_bp(bp);
606 	return error;
607 }
608 
609 /*
610  * Head is defined to be the point of the log where the next log write
611  * could go.  This means that incomplete LR writes at the end are
612  * eliminated when calculating the head.  We aren't guaranteed that previous
613  * LR have complete transactions.  We only know that a cycle number of
614  * current cycle number -1 won't be present in the log if we start writing
615  * from our current block number.
616  *
617  * last_blk contains the block number of the first block with a given
618  * cycle number.
619  *
620  * Return: zero if normal, non-zero if error.
621  */
622 STATIC int
623 xlog_find_head(
624 	struct xlog	*log,
625 	xfs_daddr_t	*return_head_blk)
626 {
627 	xfs_buf_t	*bp;
628 	xfs_caddr_t	offset;
629 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
630 	int		num_scan_bblks;
631 	uint		first_half_cycle, last_half_cycle;
632 	uint		stop_on_cycle;
633 	int		error, log_bbnum = log->l_logBBsize;
634 
635 	/* Is the end of the log device zeroed? */
636 	if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
637 		*return_head_blk = first_blk;
638 
639 		/* Is the whole lot zeroed? */
640 		if (!first_blk) {
641 			/* Linux XFS shouldn't generate totally zeroed logs -
642 			 * mkfs etc write a dummy unmount record to a fresh
643 			 * log so we can store the uuid in there
644 			 */
645 			xfs_warn(log->l_mp, "totally zeroed log");
646 		}
647 
648 		return 0;
649 	} else if (error) {
650 		xfs_warn(log->l_mp, "empty log check failed");
651 		return error;
652 	}
653 
654 	first_blk = 0;			/* get cycle # of 1st block */
655 	bp = xlog_get_bp(log, 1);
656 	if (!bp)
657 		return ENOMEM;
658 
659 	error = xlog_bread(log, 0, 1, bp, &offset);
660 	if (error)
661 		goto bp_err;
662 
663 	first_half_cycle = xlog_get_cycle(offset);
664 
665 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
666 	error = xlog_bread(log, last_blk, 1, bp, &offset);
667 	if (error)
668 		goto bp_err;
669 
670 	last_half_cycle = xlog_get_cycle(offset);
671 	ASSERT(last_half_cycle != 0);
672 
673 	/*
674 	 * If the 1st half cycle number is equal to the last half cycle number,
675 	 * then the entire log is stamped with the same cycle number.  In this
676 	 * case, head_blk can't be set to zero (which makes sense).  The below
677 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
678 	 * we set it to log_bbnum which is an invalid block number, but this
679 	 * value makes the math correct.  If head_blk doesn't changed through
680 	 * all the tests below, *head_blk is set to zero at the very end rather
681 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
682 	 * in a circular file.
683 	 */
684 	if (first_half_cycle == last_half_cycle) {
685 		/*
686 		 * In this case we believe that the entire log should have
687 		 * cycle number last_half_cycle.  We need to scan backwards
688 		 * from the end verifying that there are no holes still
689 		 * containing last_half_cycle - 1.  If we find such a hole,
690 		 * then the start of that hole will be the new head.  The
691 		 * simple case looks like
692 		 *        x | x ... | x - 1 | x
693 		 * Another case that fits this picture would be
694 		 *        x | x + 1 | x ... | x
695 		 * In this case the head really is somewhere at the end of the
696 		 * log, as one of the latest writes at the beginning was
697 		 * incomplete.
698 		 * One more case is
699 		 *        x | x + 1 | x ... | x - 1 | x
700 		 * This is really the combination of the above two cases, and
701 		 * the head has to end up at the start of the x-1 hole at the
702 		 * end of the log.
703 		 *
704 		 * In the 256k log case, we will read from the beginning to the
705 		 * end of the log and search for cycle numbers equal to x-1.
706 		 * We don't worry about the x+1 blocks that we encounter,
707 		 * because we know that they cannot be the head since the log
708 		 * started with x.
709 		 */
710 		head_blk = log_bbnum;
711 		stop_on_cycle = last_half_cycle - 1;
712 	} else {
713 		/*
714 		 * In this case we want to find the first block with cycle
715 		 * number matching last_half_cycle.  We expect the log to be
716 		 * some variation on
717 		 *        x + 1 ... | x ... | x
718 		 * The first block with cycle number x (last_half_cycle) will
719 		 * be where the new head belongs.  First we do a binary search
720 		 * for the first occurrence of last_half_cycle.  The binary
721 		 * search may not be totally accurate, so then we scan back
722 		 * from there looking for occurrences of last_half_cycle before
723 		 * us.  If that backwards scan wraps around the beginning of
724 		 * the log, then we look for occurrences of last_half_cycle - 1
725 		 * at the end of the log.  The cases we're looking for look
726 		 * like
727 		 *                               v binary search stopped here
728 		 *        x + 1 ... | x | x + 1 | x ... | x
729 		 *                   ^ but we want to locate this spot
730 		 * or
731 		 *        <---------> less than scan distance
732 		 *        x + 1 ... | x ... | x - 1 | x
733 		 *                           ^ we want to locate this spot
734 		 */
735 		stop_on_cycle = last_half_cycle;
736 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
737 						&head_blk, last_half_cycle)))
738 			goto bp_err;
739 	}
740 
741 	/*
742 	 * Now validate the answer.  Scan back some number of maximum possible
743 	 * blocks and make sure each one has the expected cycle number.  The
744 	 * maximum is determined by the total possible amount of buffering
745 	 * in the in-core log.  The following number can be made tighter if
746 	 * we actually look at the block size of the filesystem.
747 	 */
748 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
749 	if (head_blk >= num_scan_bblks) {
750 		/*
751 		 * We are guaranteed that the entire check can be performed
752 		 * in one buffer.
753 		 */
754 		start_blk = head_blk - num_scan_bblks;
755 		if ((error = xlog_find_verify_cycle(log,
756 						start_blk, num_scan_bblks,
757 						stop_on_cycle, &new_blk)))
758 			goto bp_err;
759 		if (new_blk != -1)
760 			head_blk = new_blk;
761 	} else {		/* need to read 2 parts of log */
762 		/*
763 		 * We are going to scan backwards in the log in two parts.
764 		 * First we scan the physical end of the log.  In this part
765 		 * of the log, we are looking for blocks with cycle number
766 		 * last_half_cycle - 1.
767 		 * If we find one, then we know that the log starts there, as
768 		 * we've found a hole that didn't get written in going around
769 		 * the end of the physical log.  The simple case for this is
770 		 *        x + 1 ... | x ... | x - 1 | x
771 		 *        <---------> less than scan distance
772 		 * If all of the blocks at the end of the log have cycle number
773 		 * last_half_cycle, then we check the blocks at the start of
774 		 * the log looking for occurrences of last_half_cycle.  If we
775 		 * find one, then our current estimate for the location of the
776 		 * first occurrence of last_half_cycle is wrong and we move
777 		 * back to the hole we've found.  This case looks like
778 		 *        x + 1 ... | x | x + 1 | x ...
779 		 *                               ^ binary search stopped here
780 		 * Another case we need to handle that only occurs in 256k
781 		 * logs is
782 		 *        x + 1 ... | x ... | x+1 | x ...
783 		 *                   ^ binary search stops here
784 		 * In a 256k log, the scan at the end of the log will see the
785 		 * x + 1 blocks.  We need to skip past those since that is
786 		 * certainly not the head of the log.  By searching for
787 		 * last_half_cycle-1 we accomplish that.
788 		 */
789 		ASSERT(head_blk <= INT_MAX &&
790 			(xfs_daddr_t) num_scan_bblks >= head_blk);
791 		start_blk = log_bbnum - (num_scan_bblks - head_blk);
792 		if ((error = xlog_find_verify_cycle(log, start_blk,
793 					num_scan_bblks - (int)head_blk,
794 					(stop_on_cycle - 1), &new_blk)))
795 			goto bp_err;
796 		if (new_blk != -1) {
797 			head_blk = new_blk;
798 			goto validate_head;
799 		}
800 
801 		/*
802 		 * Scan beginning of log now.  The last part of the physical
803 		 * log is good.  This scan needs to verify that it doesn't find
804 		 * the last_half_cycle.
805 		 */
806 		start_blk = 0;
807 		ASSERT(head_blk <= INT_MAX);
808 		if ((error = xlog_find_verify_cycle(log,
809 					start_blk, (int)head_blk,
810 					stop_on_cycle, &new_blk)))
811 			goto bp_err;
812 		if (new_blk != -1)
813 			head_blk = new_blk;
814 	}
815 
816 validate_head:
817 	/*
818 	 * Now we need to make sure head_blk is not pointing to a block in
819 	 * the middle of a log record.
820 	 */
821 	num_scan_bblks = XLOG_REC_SHIFT(log);
822 	if (head_blk >= num_scan_bblks) {
823 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
824 
825 		/* start ptr at last block ptr before head_blk */
826 		if ((error = xlog_find_verify_log_record(log, start_blk,
827 							&head_blk, 0)) == -1) {
828 			error = XFS_ERROR(EIO);
829 			goto bp_err;
830 		} else if (error)
831 			goto bp_err;
832 	} else {
833 		start_blk = 0;
834 		ASSERT(head_blk <= INT_MAX);
835 		if ((error = xlog_find_verify_log_record(log, start_blk,
836 							&head_blk, 0)) == -1) {
837 			/* We hit the beginning of the log during our search */
838 			start_blk = log_bbnum - (num_scan_bblks - head_blk);
839 			new_blk = log_bbnum;
840 			ASSERT(start_blk <= INT_MAX &&
841 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
842 			ASSERT(head_blk <= INT_MAX);
843 			if ((error = xlog_find_verify_log_record(log,
844 							start_blk, &new_blk,
845 							(int)head_blk)) == -1) {
846 				error = XFS_ERROR(EIO);
847 				goto bp_err;
848 			} else if (error)
849 				goto bp_err;
850 			if (new_blk != log_bbnum)
851 				head_blk = new_blk;
852 		} else if (error)
853 			goto bp_err;
854 	}
855 
856 	xlog_put_bp(bp);
857 	if (head_blk == log_bbnum)
858 		*return_head_blk = 0;
859 	else
860 		*return_head_blk = head_blk;
861 	/*
862 	 * When returning here, we have a good block number.  Bad block
863 	 * means that during a previous crash, we didn't have a clean break
864 	 * from cycle number N to cycle number N-1.  In this case, we need
865 	 * to find the first block with cycle number N-1.
866 	 */
867 	return 0;
868 
869  bp_err:
870 	xlog_put_bp(bp);
871 
872 	if (error)
873 		xfs_warn(log->l_mp, "failed to find log head");
874 	return error;
875 }
876 
877 /*
878  * Find the sync block number or the tail of the log.
879  *
880  * This will be the block number of the last record to have its
881  * associated buffers synced to disk.  Every log record header has
882  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
883  * to get a sync block number.  The only concern is to figure out which
884  * log record header to believe.
885  *
886  * The following algorithm uses the log record header with the largest
887  * lsn.  The entire log record does not need to be valid.  We only care
888  * that the header is valid.
889  *
890  * We could speed up search by using current head_blk buffer, but it is not
891  * available.
892  */
893 STATIC int
894 xlog_find_tail(
895 	struct xlog		*log,
896 	xfs_daddr_t		*head_blk,
897 	xfs_daddr_t		*tail_blk)
898 {
899 	xlog_rec_header_t	*rhead;
900 	xlog_op_header_t	*op_head;
901 	xfs_caddr_t		offset = NULL;
902 	xfs_buf_t		*bp;
903 	int			error, i, found;
904 	xfs_daddr_t		umount_data_blk;
905 	xfs_daddr_t		after_umount_blk;
906 	xfs_lsn_t		tail_lsn;
907 	int			hblks;
908 
909 	found = 0;
910 
911 	/*
912 	 * Find previous log record
913 	 */
914 	if ((error = xlog_find_head(log, head_blk)))
915 		return error;
916 
917 	bp = xlog_get_bp(log, 1);
918 	if (!bp)
919 		return ENOMEM;
920 	if (*head_blk == 0) {				/* special case */
921 		error = xlog_bread(log, 0, 1, bp, &offset);
922 		if (error)
923 			goto done;
924 
925 		if (xlog_get_cycle(offset) == 0) {
926 			*tail_blk = 0;
927 			/* leave all other log inited values alone */
928 			goto done;
929 		}
930 	}
931 
932 	/*
933 	 * Search backwards looking for log record header block
934 	 */
935 	ASSERT(*head_blk < INT_MAX);
936 	for (i = (int)(*head_blk) - 1; i >= 0; i--) {
937 		error = xlog_bread(log, i, 1, bp, &offset);
938 		if (error)
939 			goto done;
940 
941 		if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
942 			found = 1;
943 			break;
944 		}
945 	}
946 	/*
947 	 * If we haven't found the log record header block, start looking
948 	 * again from the end of the physical log.  XXXmiken: There should be
949 	 * a check here to make sure we didn't search more than N blocks in
950 	 * the previous code.
951 	 */
952 	if (!found) {
953 		for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
954 			error = xlog_bread(log, i, 1, bp, &offset);
955 			if (error)
956 				goto done;
957 
958 			if (*(__be32 *)offset ==
959 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
960 				found = 2;
961 				break;
962 			}
963 		}
964 	}
965 	if (!found) {
966 		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
967 		xlog_put_bp(bp);
968 		ASSERT(0);
969 		return XFS_ERROR(EIO);
970 	}
971 
972 	/* find blk_no of tail of log */
973 	rhead = (xlog_rec_header_t *)offset;
974 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
975 
976 	/*
977 	 * Reset log values according to the state of the log when we
978 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
979 	 * one because the next write starts a new cycle rather than
980 	 * continuing the cycle of the last good log record.  At this
981 	 * point we have guaranteed that all partial log records have been
982 	 * accounted for.  Therefore, we know that the last good log record
983 	 * written was complete and ended exactly on the end boundary
984 	 * of the physical log.
985 	 */
986 	log->l_prev_block = i;
987 	log->l_curr_block = (int)*head_blk;
988 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
989 	if (found == 2)
990 		log->l_curr_cycle++;
991 	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
992 	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
993 	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
994 					BBTOB(log->l_curr_block));
995 	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
996 					BBTOB(log->l_curr_block));
997 
998 	/*
999 	 * Look for unmount record.  If we find it, then we know there
1000 	 * was a clean unmount.  Since 'i' could be the last block in
1001 	 * the physical log, we convert to a log block before comparing
1002 	 * to the head_blk.
1003 	 *
1004 	 * Save the current tail lsn to use to pass to
1005 	 * xlog_clear_stale_blocks() below.  We won't want to clear the
1006 	 * unmount record if there is one, so we pass the lsn of the
1007 	 * unmount record rather than the block after it.
1008 	 */
1009 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1010 		int	h_size = be32_to_cpu(rhead->h_size);
1011 		int	h_version = be32_to_cpu(rhead->h_version);
1012 
1013 		if ((h_version & XLOG_VERSION_2) &&
1014 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1015 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1016 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
1017 				hblks++;
1018 		} else {
1019 			hblks = 1;
1020 		}
1021 	} else {
1022 		hblks = 1;
1023 	}
1024 	after_umount_blk = (i + hblks + (int)
1025 		BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1026 	tail_lsn = atomic64_read(&log->l_tail_lsn);
1027 	if (*head_blk == after_umount_blk &&
1028 	    be32_to_cpu(rhead->h_num_logops) == 1) {
1029 		umount_data_blk = (i + hblks) % log->l_logBBsize;
1030 		error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1031 		if (error)
1032 			goto done;
1033 
1034 		op_head = (xlog_op_header_t *)offset;
1035 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1036 			/*
1037 			 * Set tail and last sync so that newly written
1038 			 * log records will point recovery to after the
1039 			 * current unmount record.
1040 			 */
1041 			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1042 					log->l_curr_cycle, after_umount_blk);
1043 			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1044 					log->l_curr_cycle, after_umount_blk);
1045 			*tail_blk = after_umount_blk;
1046 
1047 			/*
1048 			 * Note that the unmount was clean. If the unmount
1049 			 * was not clean, we need to know this to rebuild the
1050 			 * superblock counters from the perag headers if we
1051 			 * have a filesystem using non-persistent counters.
1052 			 */
1053 			log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1054 		}
1055 	}
1056 
1057 	/*
1058 	 * Make sure that there are no blocks in front of the head
1059 	 * with the same cycle number as the head.  This can happen
1060 	 * because we allow multiple outstanding log writes concurrently,
1061 	 * and the later writes might make it out before earlier ones.
1062 	 *
1063 	 * We use the lsn from before modifying it so that we'll never
1064 	 * overwrite the unmount record after a clean unmount.
1065 	 *
1066 	 * Do this only if we are going to recover the filesystem
1067 	 *
1068 	 * NOTE: This used to say "if (!readonly)"
1069 	 * However on Linux, we can & do recover a read-only filesystem.
1070 	 * We only skip recovery if NORECOVERY is specified on mount,
1071 	 * in which case we would not be here.
1072 	 *
1073 	 * But... if the -device- itself is readonly, just skip this.
1074 	 * We can't recover this device anyway, so it won't matter.
1075 	 */
1076 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1077 		error = xlog_clear_stale_blocks(log, tail_lsn);
1078 
1079 done:
1080 	xlog_put_bp(bp);
1081 
1082 	if (error)
1083 		xfs_warn(log->l_mp, "failed to locate log tail");
1084 	return error;
1085 }
1086 
1087 /*
1088  * Is the log zeroed at all?
1089  *
1090  * The last binary search should be changed to perform an X block read
1091  * once X becomes small enough.  You can then search linearly through
1092  * the X blocks.  This will cut down on the number of reads we need to do.
1093  *
1094  * If the log is partially zeroed, this routine will pass back the blkno
1095  * of the first block with cycle number 0.  It won't have a complete LR
1096  * preceding it.
1097  *
1098  * Return:
1099  *	0  => the log is completely written to
1100  *	-1 => use *blk_no as the first block of the log
1101  *	>0 => error has occurred
1102  */
1103 STATIC int
1104 xlog_find_zeroed(
1105 	struct xlog	*log,
1106 	xfs_daddr_t	*blk_no)
1107 {
1108 	xfs_buf_t	*bp;
1109 	xfs_caddr_t	offset;
1110 	uint	        first_cycle, last_cycle;
1111 	xfs_daddr_t	new_blk, last_blk, start_blk;
1112 	xfs_daddr_t     num_scan_bblks;
1113 	int	        error, log_bbnum = log->l_logBBsize;
1114 
1115 	*blk_no = 0;
1116 
1117 	/* check totally zeroed log */
1118 	bp = xlog_get_bp(log, 1);
1119 	if (!bp)
1120 		return ENOMEM;
1121 	error = xlog_bread(log, 0, 1, bp, &offset);
1122 	if (error)
1123 		goto bp_err;
1124 
1125 	first_cycle = xlog_get_cycle(offset);
1126 	if (first_cycle == 0) {		/* completely zeroed log */
1127 		*blk_no = 0;
1128 		xlog_put_bp(bp);
1129 		return -1;
1130 	}
1131 
1132 	/* check partially zeroed log */
1133 	error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1134 	if (error)
1135 		goto bp_err;
1136 
1137 	last_cycle = xlog_get_cycle(offset);
1138 	if (last_cycle != 0) {		/* log completely written to */
1139 		xlog_put_bp(bp);
1140 		return 0;
1141 	} else if (first_cycle != 1) {
1142 		/*
1143 		 * If the cycle of the last block is zero, the cycle of
1144 		 * the first block must be 1. If it's not, maybe we're
1145 		 * not looking at a log... Bail out.
1146 		 */
1147 		xfs_warn(log->l_mp,
1148 			"Log inconsistent or not a log (last==0, first!=1)");
1149 		error = XFS_ERROR(EINVAL);
1150 		goto bp_err;
1151 	}
1152 
1153 	/* we have a partially zeroed log */
1154 	last_blk = log_bbnum-1;
1155 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1156 		goto bp_err;
1157 
1158 	/*
1159 	 * Validate the answer.  Because there is no way to guarantee that
1160 	 * the entire log is made up of log records which are the same size,
1161 	 * we scan over the defined maximum blocks.  At this point, the maximum
1162 	 * is not chosen to mean anything special.   XXXmiken
1163 	 */
1164 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1165 	ASSERT(num_scan_bblks <= INT_MAX);
1166 
1167 	if (last_blk < num_scan_bblks)
1168 		num_scan_bblks = last_blk;
1169 	start_blk = last_blk - num_scan_bblks;
1170 
1171 	/*
1172 	 * We search for any instances of cycle number 0 that occur before
1173 	 * our current estimate of the head.  What we're trying to detect is
1174 	 *        1 ... | 0 | 1 | 0...
1175 	 *                       ^ binary search ends here
1176 	 */
1177 	if ((error = xlog_find_verify_cycle(log, start_blk,
1178 					 (int)num_scan_bblks, 0, &new_blk)))
1179 		goto bp_err;
1180 	if (new_blk != -1)
1181 		last_blk = new_blk;
1182 
1183 	/*
1184 	 * Potentially backup over partial log record write.  We don't need
1185 	 * to search the end of the log because we know it is zero.
1186 	 */
1187 	if ((error = xlog_find_verify_log_record(log, start_blk,
1188 				&last_blk, 0)) == -1) {
1189 	    error = XFS_ERROR(EIO);
1190 	    goto bp_err;
1191 	} else if (error)
1192 	    goto bp_err;
1193 
1194 	*blk_no = last_blk;
1195 bp_err:
1196 	xlog_put_bp(bp);
1197 	if (error)
1198 		return error;
1199 	return -1;
1200 }
1201 
1202 /*
1203  * These are simple subroutines used by xlog_clear_stale_blocks() below
1204  * to initialize a buffer full of empty log record headers and write
1205  * them into the log.
1206  */
1207 STATIC void
1208 xlog_add_record(
1209 	struct xlog		*log,
1210 	xfs_caddr_t		buf,
1211 	int			cycle,
1212 	int			block,
1213 	int			tail_cycle,
1214 	int			tail_block)
1215 {
1216 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1217 
1218 	memset(buf, 0, BBSIZE);
1219 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1220 	recp->h_cycle = cpu_to_be32(cycle);
1221 	recp->h_version = cpu_to_be32(
1222 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1223 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1224 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1225 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1226 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1227 }
1228 
1229 STATIC int
1230 xlog_write_log_records(
1231 	struct xlog	*log,
1232 	int		cycle,
1233 	int		start_block,
1234 	int		blocks,
1235 	int		tail_cycle,
1236 	int		tail_block)
1237 {
1238 	xfs_caddr_t	offset;
1239 	xfs_buf_t	*bp;
1240 	int		balign, ealign;
1241 	int		sectbb = log->l_sectBBsize;
1242 	int		end_block = start_block + blocks;
1243 	int		bufblks;
1244 	int		error = 0;
1245 	int		i, j = 0;
1246 
1247 	/*
1248 	 * Greedily allocate a buffer big enough to handle the full
1249 	 * range of basic blocks to be written.  If that fails, try
1250 	 * a smaller size.  We need to be able to write at least a
1251 	 * log sector, or we're out of luck.
1252 	 */
1253 	bufblks = 1 << ffs(blocks);
1254 	while (bufblks > log->l_logBBsize)
1255 		bufblks >>= 1;
1256 	while (!(bp = xlog_get_bp(log, bufblks))) {
1257 		bufblks >>= 1;
1258 		if (bufblks < sectbb)
1259 			return ENOMEM;
1260 	}
1261 
1262 	/* We may need to do a read at the start to fill in part of
1263 	 * the buffer in the starting sector not covered by the first
1264 	 * write below.
1265 	 */
1266 	balign = round_down(start_block, sectbb);
1267 	if (balign != start_block) {
1268 		error = xlog_bread_noalign(log, start_block, 1, bp);
1269 		if (error)
1270 			goto out_put_bp;
1271 
1272 		j = start_block - balign;
1273 	}
1274 
1275 	for (i = start_block; i < end_block; i += bufblks) {
1276 		int		bcount, endcount;
1277 
1278 		bcount = min(bufblks, end_block - start_block);
1279 		endcount = bcount - j;
1280 
1281 		/* We may need to do a read at the end to fill in part of
1282 		 * the buffer in the final sector not covered by the write.
1283 		 * If this is the same sector as the above read, skip it.
1284 		 */
1285 		ealign = round_down(end_block, sectbb);
1286 		if (j == 0 && (start_block + endcount > ealign)) {
1287 			offset = bp->b_addr + BBTOB(ealign - start_block);
1288 			error = xlog_bread_offset(log, ealign, sectbb,
1289 							bp, offset);
1290 			if (error)
1291 				break;
1292 
1293 		}
1294 
1295 		offset = xlog_align(log, start_block, endcount, bp);
1296 		for (; j < endcount; j++) {
1297 			xlog_add_record(log, offset, cycle, i+j,
1298 					tail_cycle, tail_block);
1299 			offset += BBSIZE;
1300 		}
1301 		error = xlog_bwrite(log, start_block, endcount, bp);
1302 		if (error)
1303 			break;
1304 		start_block += endcount;
1305 		j = 0;
1306 	}
1307 
1308  out_put_bp:
1309 	xlog_put_bp(bp);
1310 	return error;
1311 }
1312 
1313 /*
1314  * This routine is called to blow away any incomplete log writes out
1315  * in front of the log head.  We do this so that we won't become confused
1316  * if we come up, write only a little bit more, and then crash again.
1317  * If we leave the partial log records out there, this situation could
1318  * cause us to think those partial writes are valid blocks since they
1319  * have the current cycle number.  We get rid of them by overwriting them
1320  * with empty log records with the old cycle number rather than the
1321  * current one.
1322  *
1323  * The tail lsn is passed in rather than taken from
1324  * the log so that we will not write over the unmount record after a
1325  * clean unmount in a 512 block log.  Doing so would leave the log without
1326  * any valid log records in it until a new one was written.  If we crashed
1327  * during that time we would not be able to recover.
1328  */
1329 STATIC int
1330 xlog_clear_stale_blocks(
1331 	struct xlog	*log,
1332 	xfs_lsn_t	tail_lsn)
1333 {
1334 	int		tail_cycle, head_cycle;
1335 	int		tail_block, head_block;
1336 	int		tail_distance, max_distance;
1337 	int		distance;
1338 	int		error;
1339 
1340 	tail_cycle = CYCLE_LSN(tail_lsn);
1341 	tail_block = BLOCK_LSN(tail_lsn);
1342 	head_cycle = log->l_curr_cycle;
1343 	head_block = log->l_curr_block;
1344 
1345 	/*
1346 	 * Figure out the distance between the new head of the log
1347 	 * and the tail.  We want to write over any blocks beyond the
1348 	 * head that we may have written just before the crash, but
1349 	 * we don't want to overwrite the tail of the log.
1350 	 */
1351 	if (head_cycle == tail_cycle) {
1352 		/*
1353 		 * The tail is behind the head in the physical log,
1354 		 * so the distance from the head to the tail is the
1355 		 * distance from the head to the end of the log plus
1356 		 * the distance from the beginning of the log to the
1357 		 * tail.
1358 		 */
1359 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1360 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1361 					 XFS_ERRLEVEL_LOW, log->l_mp);
1362 			return XFS_ERROR(EFSCORRUPTED);
1363 		}
1364 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1365 	} else {
1366 		/*
1367 		 * The head is behind the tail in the physical log,
1368 		 * so the distance from the head to the tail is just
1369 		 * the tail block minus the head block.
1370 		 */
1371 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1372 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1373 					 XFS_ERRLEVEL_LOW, log->l_mp);
1374 			return XFS_ERROR(EFSCORRUPTED);
1375 		}
1376 		tail_distance = tail_block - head_block;
1377 	}
1378 
1379 	/*
1380 	 * If the head is right up against the tail, we can't clear
1381 	 * anything.
1382 	 */
1383 	if (tail_distance <= 0) {
1384 		ASSERT(tail_distance == 0);
1385 		return 0;
1386 	}
1387 
1388 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1389 	/*
1390 	 * Take the smaller of the maximum amount of outstanding I/O
1391 	 * we could have and the distance to the tail to clear out.
1392 	 * We take the smaller so that we don't overwrite the tail and
1393 	 * we don't waste all day writing from the head to the tail
1394 	 * for no reason.
1395 	 */
1396 	max_distance = MIN(max_distance, tail_distance);
1397 
1398 	if ((head_block + max_distance) <= log->l_logBBsize) {
1399 		/*
1400 		 * We can stomp all the blocks we need to without
1401 		 * wrapping around the end of the log.  Just do it
1402 		 * in a single write.  Use the cycle number of the
1403 		 * current cycle minus one so that the log will look like:
1404 		 *     n ... | n - 1 ...
1405 		 */
1406 		error = xlog_write_log_records(log, (head_cycle - 1),
1407 				head_block, max_distance, tail_cycle,
1408 				tail_block);
1409 		if (error)
1410 			return error;
1411 	} else {
1412 		/*
1413 		 * We need to wrap around the end of the physical log in
1414 		 * order to clear all the blocks.  Do it in two separate
1415 		 * I/Os.  The first write should be from the head to the
1416 		 * end of the physical log, and it should use the current
1417 		 * cycle number minus one just like above.
1418 		 */
1419 		distance = log->l_logBBsize - head_block;
1420 		error = xlog_write_log_records(log, (head_cycle - 1),
1421 				head_block, distance, tail_cycle,
1422 				tail_block);
1423 
1424 		if (error)
1425 			return error;
1426 
1427 		/*
1428 		 * Now write the blocks at the start of the physical log.
1429 		 * This writes the remainder of the blocks we want to clear.
1430 		 * It uses the current cycle number since we're now on the
1431 		 * same cycle as the head so that we get:
1432 		 *    n ... n ... | n - 1 ...
1433 		 *    ^^^^^ blocks we're writing
1434 		 */
1435 		distance = max_distance - (log->l_logBBsize - head_block);
1436 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1437 				tail_cycle, tail_block);
1438 		if (error)
1439 			return error;
1440 	}
1441 
1442 	return 0;
1443 }
1444 
1445 /******************************************************************************
1446  *
1447  *		Log recover routines
1448  *
1449  ******************************************************************************
1450  */
1451 
1452 STATIC xlog_recover_t *
1453 xlog_recover_find_tid(
1454 	struct hlist_head	*head,
1455 	xlog_tid_t		tid)
1456 {
1457 	xlog_recover_t		*trans;
1458 
1459 	hlist_for_each_entry(trans, head, r_list) {
1460 		if (trans->r_log_tid == tid)
1461 			return trans;
1462 	}
1463 	return NULL;
1464 }
1465 
1466 STATIC void
1467 xlog_recover_new_tid(
1468 	struct hlist_head	*head,
1469 	xlog_tid_t		tid,
1470 	xfs_lsn_t		lsn)
1471 {
1472 	xlog_recover_t		*trans;
1473 
1474 	trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1475 	trans->r_log_tid   = tid;
1476 	trans->r_lsn	   = lsn;
1477 	INIT_LIST_HEAD(&trans->r_itemq);
1478 
1479 	INIT_HLIST_NODE(&trans->r_list);
1480 	hlist_add_head(&trans->r_list, head);
1481 }
1482 
1483 STATIC void
1484 xlog_recover_add_item(
1485 	struct list_head	*head)
1486 {
1487 	xlog_recover_item_t	*item;
1488 
1489 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1490 	INIT_LIST_HEAD(&item->ri_list);
1491 	list_add_tail(&item->ri_list, head);
1492 }
1493 
1494 STATIC int
1495 xlog_recover_add_to_cont_trans(
1496 	struct xlog		*log,
1497 	struct xlog_recover	*trans,
1498 	xfs_caddr_t		dp,
1499 	int			len)
1500 {
1501 	xlog_recover_item_t	*item;
1502 	xfs_caddr_t		ptr, old_ptr;
1503 	int			old_len;
1504 
1505 	if (list_empty(&trans->r_itemq)) {
1506 		/* finish copying rest of trans header */
1507 		xlog_recover_add_item(&trans->r_itemq);
1508 		ptr = (xfs_caddr_t) &trans->r_theader +
1509 				sizeof(xfs_trans_header_t) - len;
1510 		memcpy(ptr, dp, len); /* d, s, l */
1511 		return 0;
1512 	}
1513 	/* take the tail entry */
1514 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1515 
1516 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1517 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
1518 
1519 	ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1520 	memcpy(&ptr[old_len], dp, len); /* d, s, l */
1521 	item->ri_buf[item->ri_cnt-1].i_len += len;
1522 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1523 	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1524 	return 0;
1525 }
1526 
1527 /*
1528  * The next region to add is the start of a new region.  It could be
1529  * a whole region or it could be the first part of a new region.  Because
1530  * of this, the assumption here is that the type and size fields of all
1531  * format structures fit into the first 32 bits of the structure.
1532  *
1533  * This works because all regions must be 32 bit aligned.  Therefore, we
1534  * either have both fields or we have neither field.  In the case we have
1535  * neither field, the data part of the region is zero length.  We only have
1536  * a log_op_header and can throw away the header since a new one will appear
1537  * later.  If we have at least 4 bytes, then we can determine how many regions
1538  * will appear in the current log item.
1539  */
1540 STATIC int
1541 xlog_recover_add_to_trans(
1542 	struct xlog		*log,
1543 	struct xlog_recover	*trans,
1544 	xfs_caddr_t		dp,
1545 	int			len)
1546 {
1547 	xfs_inode_log_format_t	*in_f;			/* any will do */
1548 	xlog_recover_item_t	*item;
1549 	xfs_caddr_t		ptr;
1550 
1551 	if (!len)
1552 		return 0;
1553 	if (list_empty(&trans->r_itemq)) {
1554 		/* we need to catch log corruptions here */
1555 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1556 			xfs_warn(log->l_mp, "%s: bad header magic number",
1557 				__func__);
1558 			ASSERT(0);
1559 			return XFS_ERROR(EIO);
1560 		}
1561 		if (len == sizeof(xfs_trans_header_t))
1562 			xlog_recover_add_item(&trans->r_itemq);
1563 		memcpy(&trans->r_theader, dp, len); /* d, s, l */
1564 		return 0;
1565 	}
1566 
1567 	ptr = kmem_alloc(len, KM_SLEEP);
1568 	memcpy(ptr, dp, len);
1569 	in_f = (xfs_inode_log_format_t *)ptr;
1570 
1571 	/* take the tail entry */
1572 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1573 	if (item->ri_total != 0 &&
1574 	     item->ri_total == item->ri_cnt) {
1575 		/* tail item is in use, get a new one */
1576 		xlog_recover_add_item(&trans->r_itemq);
1577 		item = list_entry(trans->r_itemq.prev,
1578 					xlog_recover_item_t, ri_list);
1579 	}
1580 
1581 	if (item->ri_total == 0) {		/* first region to be added */
1582 		if (in_f->ilf_size == 0 ||
1583 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1584 			xfs_warn(log->l_mp,
1585 		"bad number of regions (%d) in inode log format",
1586 				  in_f->ilf_size);
1587 			ASSERT(0);
1588 			return XFS_ERROR(EIO);
1589 		}
1590 
1591 		item->ri_total = in_f->ilf_size;
1592 		item->ri_buf =
1593 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1594 				    KM_SLEEP);
1595 	}
1596 	ASSERT(item->ri_total > item->ri_cnt);
1597 	/* Description region is ri_buf[0] */
1598 	item->ri_buf[item->ri_cnt].i_addr = ptr;
1599 	item->ri_buf[item->ri_cnt].i_len  = len;
1600 	item->ri_cnt++;
1601 	trace_xfs_log_recover_item_add(log, trans, item, 0);
1602 	return 0;
1603 }
1604 
1605 /*
1606  * Sort the log items in the transaction.
1607  *
1608  * The ordering constraints are defined by the inode allocation and unlink
1609  * behaviour. The rules are:
1610  *
1611  *	1. Every item is only logged once in a given transaction. Hence it
1612  *	   represents the last logged state of the item. Hence ordering is
1613  *	   dependent on the order in which operations need to be performed so
1614  *	   required initial conditions are always met.
1615  *
1616  *	2. Cancelled buffers are recorded in pass 1 in a separate table and
1617  *	   there's nothing to replay from them so we can simply cull them
1618  *	   from the transaction. However, we can't do that until after we've
1619  *	   replayed all the other items because they may be dependent on the
1620  *	   cancelled buffer and replaying the cancelled buffer can remove it
1621  *	   form the cancelled buffer table. Hence they have tobe done last.
1622  *
1623  *	3. Inode allocation buffers must be replayed before inode items that
1624  *	   read the buffer and replay changes into it. For filesystems using the
1625  *	   ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1626  *	   treated the same as inode allocation buffers as they create and
1627  *	   initialise the buffers directly.
1628  *
1629  *	4. Inode unlink buffers must be replayed after inode items are replayed.
1630  *	   This ensures that inodes are completely flushed to the inode buffer
1631  *	   in a "free" state before we remove the unlinked inode list pointer.
1632  *
1633  * Hence the ordering needs to be inode allocation buffers first, inode items
1634  * second, inode unlink buffers third and cancelled buffers last.
1635  *
1636  * But there's a problem with that - we can't tell an inode allocation buffer
1637  * apart from a regular buffer, so we can't separate them. We can, however,
1638  * tell an inode unlink buffer from the others, and so we can separate them out
1639  * from all the other buffers and move them to last.
1640  *
1641  * Hence, 4 lists, in order from head to tail:
1642  *	- buffer_list for all buffers except cancelled/inode unlink buffers
1643  *	- item_list for all non-buffer items
1644  *	- inode_buffer_list for inode unlink buffers
1645  *	- cancel_list for the cancelled buffers
1646  *
1647  * Note that we add objects to the tail of the lists so that first-to-last
1648  * ordering is preserved within the lists. Adding objects to the head of the
1649  * list means when we traverse from the head we walk them in last-to-first
1650  * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1651  * but for all other items there may be specific ordering that we need to
1652  * preserve.
1653  */
1654 STATIC int
1655 xlog_recover_reorder_trans(
1656 	struct xlog		*log,
1657 	struct xlog_recover	*trans,
1658 	int			pass)
1659 {
1660 	xlog_recover_item_t	*item, *n;
1661 	LIST_HEAD(sort_list);
1662 	LIST_HEAD(cancel_list);
1663 	LIST_HEAD(buffer_list);
1664 	LIST_HEAD(inode_buffer_list);
1665 	LIST_HEAD(inode_list);
1666 
1667 	list_splice_init(&trans->r_itemq, &sort_list);
1668 	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1669 		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1670 
1671 		switch (ITEM_TYPE(item)) {
1672 		case XFS_LI_ICREATE:
1673 			list_move_tail(&item->ri_list, &buffer_list);
1674 			break;
1675 		case XFS_LI_BUF:
1676 			if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1677 				trace_xfs_log_recover_item_reorder_head(log,
1678 							trans, item, pass);
1679 				list_move(&item->ri_list, &cancel_list);
1680 				break;
1681 			}
1682 			if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1683 				list_move(&item->ri_list, &inode_buffer_list);
1684 				break;
1685 			}
1686 			list_move_tail(&item->ri_list, &buffer_list);
1687 			break;
1688 		case XFS_LI_INODE:
1689 		case XFS_LI_DQUOT:
1690 		case XFS_LI_QUOTAOFF:
1691 		case XFS_LI_EFD:
1692 		case XFS_LI_EFI:
1693 			trace_xfs_log_recover_item_reorder_tail(log,
1694 							trans, item, pass);
1695 			list_move_tail(&item->ri_list, &inode_list);
1696 			break;
1697 		default:
1698 			xfs_warn(log->l_mp,
1699 				"%s: unrecognized type of log operation",
1700 				__func__);
1701 			ASSERT(0);
1702 			return XFS_ERROR(EIO);
1703 		}
1704 	}
1705 	ASSERT(list_empty(&sort_list));
1706 	if (!list_empty(&buffer_list))
1707 		list_splice(&buffer_list, &trans->r_itemq);
1708 	if (!list_empty(&inode_list))
1709 		list_splice_tail(&inode_list, &trans->r_itemq);
1710 	if (!list_empty(&inode_buffer_list))
1711 		list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1712 	if (!list_empty(&cancel_list))
1713 		list_splice_tail(&cancel_list, &trans->r_itemq);
1714 	return 0;
1715 }
1716 
1717 /*
1718  * Build up the table of buf cancel records so that we don't replay
1719  * cancelled data in the second pass.  For buffer records that are
1720  * not cancel records, there is nothing to do here so we just return.
1721  *
1722  * If we get a cancel record which is already in the table, this indicates
1723  * that the buffer was cancelled multiple times.  In order to ensure
1724  * that during pass 2 we keep the record in the table until we reach its
1725  * last occurrence in the log, we keep a reference count in the cancel
1726  * record in the table to tell us how many times we expect to see this
1727  * record during the second pass.
1728  */
1729 STATIC int
1730 xlog_recover_buffer_pass1(
1731 	struct xlog			*log,
1732 	struct xlog_recover_item	*item)
1733 {
1734 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1735 	struct list_head	*bucket;
1736 	struct xfs_buf_cancel	*bcp;
1737 
1738 	/*
1739 	 * If this isn't a cancel buffer item, then just return.
1740 	 */
1741 	if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1742 		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1743 		return 0;
1744 	}
1745 
1746 	/*
1747 	 * Insert an xfs_buf_cancel record into the hash table of them.
1748 	 * If there is already an identical record, bump its reference count.
1749 	 */
1750 	bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1751 	list_for_each_entry(bcp, bucket, bc_list) {
1752 		if (bcp->bc_blkno == buf_f->blf_blkno &&
1753 		    bcp->bc_len == buf_f->blf_len) {
1754 			bcp->bc_refcount++;
1755 			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1756 			return 0;
1757 		}
1758 	}
1759 
1760 	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1761 	bcp->bc_blkno = buf_f->blf_blkno;
1762 	bcp->bc_len = buf_f->blf_len;
1763 	bcp->bc_refcount = 1;
1764 	list_add_tail(&bcp->bc_list, bucket);
1765 
1766 	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1767 	return 0;
1768 }
1769 
1770 /*
1771  * Check to see whether the buffer being recovered has a corresponding
1772  * entry in the buffer cancel record table. If it is, return the cancel
1773  * buffer structure to the caller.
1774  */
1775 STATIC struct xfs_buf_cancel *
1776 xlog_peek_buffer_cancelled(
1777 	struct xlog		*log,
1778 	xfs_daddr_t		blkno,
1779 	uint			len,
1780 	ushort			flags)
1781 {
1782 	struct list_head	*bucket;
1783 	struct xfs_buf_cancel	*bcp;
1784 
1785 	if (!log->l_buf_cancel_table) {
1786 		/* empty table means no cancelled buffers in the log */
1787 		ASSERT(!(flags & XFS_BLF_CANCEL));
1788 		return NULL;
1789 	}
1790 
1791 	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1792 	list_for_each_entry(bcp, bucket, bc_list) {
1793 		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1794 			return bcp;
1795 	}
1796 
1797 	/*
1798 	 * We didn't find a corresponding entry in the table, so return 0 so
1799 	 * that the buffer is NOT cancelled.
1800 	 */
1801 	ASSERT(!(flags & XFS_BLF_CANCEL));
1802 	return NULL;
1803 }
1804 
1805 /*
1806  * If the buffer is being cancelled then return 1 so that it will be cancelled,
1807  * otherwise return 0.  If the buffer is actually a buffer cancel item
1808  * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
1809  * table and remove it from the table if this is the last reference.
1810  *
1811  * We remove the cancel record from the table when we encounter its last
1812  * occurrence in the log so that if the same buffer is re-used again after its
1813  * last cancellation we actually replay the changes made at that point.
1814  */
1815 STATIC int
1816 xlog_check_buffer_cancelled(
1817 	struct xlog		*log,
1818 	xfs_daddr_t		blkno,
1819 	uint			len,
1820 	ushort			flags)
1821 {
1822 	struct xfs_buf_cancel	*bcp;
1823 
1824 	bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
1825 	if (!bcp)
1826 		return 0;
1827 
1828 	/*
1829 	 * We've go a match, so return 1 so that the recovery of this buffer
1830 	 * is cancelled.  If this buffer is actually a buffer cancel log
1831 	 * item, then decrement the refcount on the one in the table and
1832 	 * remove it if this is the last reference.
1833 	 */
1834 	if (flags & XFS_BLF_CANCEL) {
1835 		if (--bcp->bc_refcount == 0) {
1836 			list_del(&bcp->bc_list);
1837 			kmem_free(bcp);
1838 		}
1839 	}
1840 	return 1;
1841 }
1842 
1843 /*
1844  * Perform recovery for a buffer full of inodes.  In these buffers, the only
1845  * data which should be recovered is that which corresponds to the
1846  * di_next_unlinked pointers in the on disk inode structures.  The rest of the
1847  * data for the inodes is always logged through the inodes themselves rather
1848  * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1849  *
1850  * The only time when buffers full of inodes are fully recovered is when the
1851  * buffer is full of newly allocated inodes.  In this case the buffer will
1852  * not be marked as an inode buffer and so will be sent to
1853  * xlog_recover_do_reg_buffer() below during recovery.
1854  */
1855 STATIC int
1856 xlog_recover_do_inode_buffer(
1857 	struct xfs_mount	*mp,
1858 	xlog_recover_item_t	*item,
1859 	struct xfs_buf		*bp,
1860 	xfs_buf_log_format_t	*buf_f)
1861 {
1862 	int			i;
1863 	int			item_index = 0;
1864 	int			bit = 0;
1865 	int			nbits = 0;
1866 	int			reg_buf_offset = 0;
1867 	int			reg_buf_bytes = 0;
1868 	int			next_unlinked_offset;
1869 	int			inodes_per_buf;
1870 	xfs_agino_t		*logged_nextp;
1871 	xfs_agino_t		*buffer_nextp;
1872 
1873 	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1874 
1875 	/*
1876 	 * Post recovery validation only works properly on CRC enabled
1877 	 * filesystems.
1878 	 */
1879 	if (xfs_sb_version_hascrc(&mp->m_sb))
1880 		bp->b_ops = &xfs_inode_buf_ops;
1881 
1882 	inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1883 	for (i = 0; i < inodes_per_buf; i++) {
1884 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1885 			offsetof(xfs_dinode_t, di_next_unlinked);
1886 
1887 		while (next_unlinked_offset >=
1888 		       (reg_buf_offset + reg_buf_bytes)) {
1889 			/*
1890 			 * The next di_next_unlinked field is beyond
1891 			 * the current logged region.  Find the next
1892 			 * logged region that contains or is beyond
1893 			 * the current di_next_unlinked field.
1894 			 */
1895 			bit += nbits;
1896 			bit = xfs_next_bit(buf_f->blf_data_map,
1897 					   buf_f->blf_map_size, bit);
1898 
1899 			/*
1900 			 * If there are no more logged regions in the
1901 			 * buffer, then we're done.
1902 			 */
1903 			if (bit == -1)
1904 				return 0;
1905 
1906 			nbits = xfs_contig_bits(buf_f->blf_data_map,
1907 						buf_f->blf_map_size, bit);
1908 			ASSERT(nbits > 0);
1909 			reg_buf_offset = bit << XFS_BLF_SHIFT;
1910 			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1911 			item_index++;
1912 		}
1913 
1914 		/*
1915 		 * If the current logged region starts after the current
1916 		 * di_next_unlinked field, then move on to the next
1917 		 * di_next_unlinked field.
1918 		 */
1919 		if (next_unlinked_offset < reg_buf_offset)
1920 			continue;
1921 
1922 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
1923 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1924 		ASSERT((reg_buf_offset + reg_buf_bytes) <=
1925 							BBTOB(bp->b_io_length));
1926 
1927 		/*
1928 		 * The current logged region contains a copy of the
1929 		 * current di_next_unlinked field.  Extract its value
1930 		 * and copy it to the buffer copy.
1931 		 */
1932 		logged_nextp = item->ri_buf[item_index].i_addr +
1933 				next_unlinked_offset - reg_buf_offset;
1934 		if (unlikely(*logged_nextp == 0)) {
1935 			xfs_alert(mp,
1936 		"Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1937 		"Trying to replay bad (0) inode di_next_unlinked field.",
1938 				item, bp);
1939 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1940 					 XFS_ERRLEVEL_LOW, mp);
1941 			return XFS_ERROR(EFSCORRUPTED);
1942 		}
1943 
1944 		buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1945 					      next_unlinked_offset);
1946 		*buffer_nextp = *logged_nextp;
1947 
1948 		/*
1949 		 * If necessary, recalculate the CRC in the on-disk inode. We
1950 		 * have to leave the inode in a consistent state for whoever
1951 		 * reads it next....
1952 		 */
1953 		xfs_dinode_calc_crc(mp, (struct xfs_dinode *)
1954 				xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
1955 
1956 	}
1957 
1958 	return 0;
1959 }
1960 
1961 /*
1962  * V5 filesystems know the age of the buffer on disk being recovered. We can
1963  * have newer objects on disk than we are replaying, and so for these cases we
1964  * don't want to replay the current change as that will make the buffer contents
1965  * temporarily invalid on disk.
1966  *
1967  * The magic number might not match the buffer type we are going to recover
1968  * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
1969  * extract the LSN of the existing object in the buffer based on it's current
1970  * magic number.  If we don't recognise the magic number in the buffer, then
1971  * return a LSN of -1 so that the caller knows it was an unrecognised block and
1972  * so can recover the buffer.
1973  */
1974 static xfs_lsn_t
1975 xlog_recover_get_buf_lsn(
1976 	struct xfs_mount	*mp,
1977 	struct xfs_buf		*bp)
1978 {
1979 	__uint32_t		magic32;
1980 	__uint16_t		magic16;
1981 	__uint16_t		magicda;
1982 	void			*blk = bp->b_addr;
1983 
1984 	/* v4 filesystems always recover immediately */
1985 	if (!xfs_sb_version_hascrc(&mp->m_sb))
1986 		goto recover_immediately;
1987 
1988 	magic32 = be32_to_cpu(*(__be32 *)blk);
1989 	switch (magic32) {
1990 	case XFS_ABTB_CRC_MAGIC:
1991 	case XFS_ABTC_CRC_MAGIC:
1992 	case XFS_ABTB_MAGIC:
1993 	case XFS_ABTC_MAGIC:
1994 	case XFS_IBT_CRC_MAGIC:
1995 	case XFS_IBT_MAGIC:
1996 		return be64_to_cpu(
1997 				((struct xfs_btree_block *)blk)->bb_u.s.bb_lsn);
1998 	case XFS_BMAP_CRC_MAGIC:
1999 	case XFS_BMAP_MAGIC:
2000 		return be64_to_cpu(
2001 				((struct xfs_btree_block *)blk)->bb_u.l.bb_lsn);
2002 	case XFS_AGF_MAGIC:
2003 		return be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2004 	case XFS_AGFL_MAGIC:
2005 		return be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2006 	case XFS_AGI_MAGIC:
2007 		return be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2008 	case XFS_SYMLINK_MAGIC:
2009 		return be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2010 	case XFS_DIR3_BLOCK_MAGIC:
2011 	case XFS_DIR3_DATA_MAGIC:
2012 	case XFS_DIR3_FREE_MAGIC:
2013 		return be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2014 	case XFS_ATTR3_RMT_MAGIC:
2015 		return be64_to_cpu(((struct xfs_attr3_rmt_hdr *)blk)->rm_lsn);
2016 	case XFS_SB_MAGIC:
2017 		return be64_to_cpu(((struct xfs_sb *)blk)->sb_lsn);
2018 	default:
2019 		break;
2020 	}
2021 
2022 	magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2023 	switch (magicda) {
2024 	case XFS_DIR3_LEAF1_MAGIC:
2025 	case XFS_DIR3_LEAFN_MAGIC:
2026 	case XFS_DA3_NODE_MAGIC:
2027 		return be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2028 	default:
2029 		break;
2030 	}
2031 
2032 	/*
2033 	 * We do individual object checks on dquot and inode buffers as they
2034 	 * have their own individual LSN records. Also, we could have a stale
2035 	 * buffer here, so we have to at least recognise these buffer types.
2036 	 *
2037 	 * A notd complexity here is inode unlinked list processing - it logs
2038 	 * the inode directly in the buffer, but we don't know which inodes have
2039 	 * been modified, and there is no global buffer LSN. Hence we need to
2040 	 * recover all inode buffer types immediately. This problem will be
2041 	 * fixed by logical logging of the unlinked list modifications.
2042 	 */
2043 	magic16 = be16_to_cpu(*(__be16 *)blk);
2044 	switch (magic16) {
2045 	case XFS_DQUOT_MAGIC:
2046 	case XFS_DINODE_MAGIC:
2047 		goto recover_immediately;
2048 	default:
2049 		break;
2050 	}
2051 
2052 	/* unknown buffer contents, recover immediately */
2053 
2054 recover_immediately:
2055 	return (xfs_lsn_t)-1;
2056 
2057 }
2058 
2059 /*
2060  * Validate the recovered buffer is of the correct type and attach the
2061  * appropriate buffer operations to them for writeback. Magic numbers are in a
2062  * few places:
2063  *	the first 16 bits of the buffer (inode buffer, dquot buffer),
2064  *	the first 32 bits of the buffer (most blocks),
2065  *	inside a struct xfs_da_blkinfo at the start of the buffer.
2066  */
2067 static void
2068 xlog_recover_validate_buf_type(
2069 	struct xfs_mount	*mp,
2070 	struct xfs_buf		*bp,
2071 	xfs_buf_log_format_t	*buf_f)
2072 {
2073 	struct xfs_da_blkinfo	*info = bp->b_addr;
2074 	__uint32_t		magic32;
2075 	__uint16_t		magic16;
2076 	__uint16_t		magicda;
2077 
2078 	magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2079 	magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2080 	magicda = be16_to_cpu(info->magic);
2081 	switch (xfs_blft_from_flags(buf_f)) {
2082 	case XFS_BLFT_BTREE_BUF:
2083 		switch (magic32) {
2084 		case XFS_ABTB_CRC_MAGIC:
2085 		case XFS_ABTC_CRC_MAGIC:
2086 		case XFS_ABTB_MAGIC:
2087 		case XFS_ABTC_MAGIC:
2088 			bp->b_ops = &xfs_allocbt_buf_ops;
2089 			break;
2090 		case XFS_IBT_CRC_MAGIC:
2091 		case XFS_IBT_MAGIC:
2092 			bp->b_ops = &xfs_inobt_buf_ops;
2093 			break;
2094 		case XFS_BMAP_CRC_MAGIC:
2095 		case XFS_BMAP_MAGIC:
2096 			bp->b_ops = &xfs_bmbt_buf_ops;
2097 			break;
2098 		default:
2099 			xfs_warn(mp, "Bad btree block magic!");
2100 			ASSERT(0);
2101 			break;
2102 		}
2103 		break;
2104 	case XFS_BLFT_AGF_BUF:
2105 		if (magic32 != XFS_AGF_MAGIC) {
2106 			xfs_warn(mp, "Bad AGF block magic!");
2107 			ASSERT(0);
2108 			break;
2109 		}
2110 		bp->b_ops = &xfs_agf_buf_ops;
2111 		break;
2112 	case XFS_BLFT_AGFL_BUF:
2113 		if (!xfs_sb_version_hascrc(&mp->m_sb))
2114 			break;
2115 		if (magic32 != XFS_AGFL_MAGIC) {
2116 			xfs_warn(mp, "Bad AGFL block magic!");
2117 			ASSERT(0);
2118 			break;
2119 		}
2120 		bp->b_ops = &xfs_agfl_buf_ops;
2121 		break;
2122 	case XFS_BLFT_AGI_BUF:
2123 		if (magic32 != XFS_AGI_MAGIC) {
2124 			xfs_warn(mp, "Bad AGI block magic!");
2125 			ASSERT(0);
2126 			break;
2127 		}
2128 		bp->b_ops = &xfs_agi_buf_ops;
2129 		break;
2130 	case XFS_BLFT_UDQUOT_BUF:
2131 	case XFS_BLFT_PDQUOT_BUF:
2132 	case XFS_BLFT_GDQUOT_BUF:
2133 #ifdef CONFIG_XFS_QUOTA
2134 		if (magic16 != XFS_DQUOT_MAGIC) {
2135 			xfs_warn(mp, "Bad DQUOT block magic!");
2136 			ASSERT(0);
2137 			break;
2138 		}
2139 		bp->b_ops = &xfs_dquot_buf_ops;
2140 #else
2141 		xfs_alert(mp,
2142 	"Trying to recover dquots without QUOTA support built in!");
2143 		ASSERT(0);
2144 #endif
2145 		break;
2146 	case XFS_BLFT_DINO_BUF:
2147 		/*
2148 		 * we get here with inode allocation buffers, not buffers that
2149 		 * track unlinked list changes.
2150 		 */
2151 		if (magic16 != XFS_DINODE_MAGIC) {
2152 			xfs_warn(mp, "Bad INODE block magic!");
2153 			ASSERT(0);
2154 			break;
2155 		}
2156 		bp->b_ops = &xfs_inode_buf_ops;
2157 		break;
2158 	case XFS_BLFT_SYMLINK_BUF:
2159 		if (magic32 != XFS_SYMLINK_MAGIC) {
2160 			xfs_warn(mp, "Bad symlink block magic!");
2161 			ASSERT(0);
2162 			break;
2163 		}
2164 		bp->b_ops = &xfs_symlink_buf_ops;
2165 		break;
2166 	case XFS_BLFT_DIR_BLOCK_BUF:
2167 		if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2168 		    magic32 != XFS_DIR3_BLOCK_MAGIC) {
2169 			xfs_warn(mp, "Bad dir block magic!");
2170 			ASSERT(0);
2171 			break;
2172 		}
2173 		bp->b_ops = &xfs_dir3_block_buf_ops;
2174 		break;
2175 	case XFS_BLFT_DIR_DATA_BUF:
2176 		if (magic32 != XFS_DIR2_DATA_MAGIC &&
2177 		    magic32 != XFS_DIR3_DATA_MAGIC) {
2178 			xfs_warn(mp, "Bad dir data magic!");
2179 			ASSERT(0);
2180 			break;
2181 		}
2182 		bp->b_ops = &xfs_dir3_data_buf_ops;
2183 		break;
2184 	case XFS_BLFT_DIR_FREE_BUF:
2185 		if (magic32 != XFS_DIR2_FREE_MAGIC &&
2186 		    magic32 != XFS_DIR3_FREE_MAGIC) {
2187 			xfs_warn(mp, "Bad dir3 free magic!");
2188 			ASSERT(0);
2189 			break;
2190 		}
2191 		bp->b_ops = &xfs_dir3_free_buf_ops;
2192 		break;
2193 	case XFS_BLFT_DIR_LEAF1_BUF:
2194 		if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2195 		    magicda != XFS_DIR3_LEAF1_MAGIC) {
2196 			xfs_warn(mp, "Bad dir leaf1 magic!");
2197 			ASSERT(0);
2198 			break;
2199 		}
2200 		bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2201 		break;
2202 	case XFS_BLFT_DIR_LEAFN_BUF:
2203 		if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2204 		    magicda != XFS_DIR3_LEAFN_MAGIC) {
2205 			xfs_warn(mp, "Bad dir leafn magic!");
2206 			ASSERT(0);
2207 			break;
2208 		}
2209 		bp->b_ops = &xfs_dir3_leafn_buf_ops;
2210 		break;
2211 	case XFS_BLFT_DA_NODE_BUF:
2212 		if (magicda != XFS_DA_NODE_MAGIC &&
2213 		    magicda != XFS_DA3_NODE_MAGIC) {
2214 			xfs_warn(mp, "Bad da node magic!");
2215 			ASSERT(0);
2216 			break;
2217 		}
2218 		bp->b_ops = &xfs_da3_node_buf_ops;
2219 		break;
2220 	case XFS_BLFT_ATTR_LEAF_BUF:
2221 		if (magicda != XFS_ATTR_LEAF_MAGIC &&
2222 		    magicda != XFS_ATTR3_LEAF_MAGIC) {
2223 			xfs_warn(mp, "Bad attr leaf magic!");
2224 			ASSERT(0);
2225 			break;
2226 		}
2227 		bp->b_ops = &xfs_attr3_leaf_buf_ops;
2228 		break;
2229 	case XFS_BLFT_ATTR_RMT_BUF:
2230 		if (!xfs_sb_version_hascrc(&mp->m_sb))
2231 			break;
2232 		if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2233 			xfs_warn(mp, "Bad attr remote magic!");
2234 			ASSERT(0);
2235 			break;
2236 		}
2237 		bp->b_ops = &xfs_attr3_rmt_buf_ops;
2238 		break;
2239 	case XFS_BLFT_SB_BUF:
2240 		if (magic32 != XFS_SB_MAGIC) {
2241 			xfs_warn(mp, "Bad SB block magic!");
2242 			ASSERT(0);
2243 			break;
2244 		}
2245 		bp->b_ops = &xfs_sb_buf_ops;
2246 		break;
2247 	default:
2248 		xfs_warn(mp, "Unknown buffer type %d!",
2249 			 xfs_blft_from_flags(buf_f));
2250 		break;
2251 	}
2252 }
2253 
2254 /*
2255  * Perform a 'normal' buffer recovery.  Each logged region of the
2256  * buffer should be copied over the corresponding region in the
2257  * given buffer.  The bitmap in the buf log format structure indicates
2258  * where to place the logged data.
2259  */
2260 STATIC void
2261 xlog_recover_do_reg_buffer(
2262 	struct xfs_mount	*mp,
2263 	xlog_recover_item_t	*item,
2264 	struct xfs_buf		*bp,
2265 	xfs_buf_log_format_t	*buf_f)
2266 {
2267 	int			i;
2268 	int			bit;
2269 	int			nbits;
2270 	int                     error;
2271 
2272 	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2273 
2274 	bit = 0;
2275 	i = 1;  /* 0 is the buf format structure */
2276 	while (1) {
2277 		bit = xfs_next_bit(buf_f->blf_data_map,
2278 				   buf_f->blf_map_size, bit);
2279 		if (bit == -1)
2280 			break;
2281 		nbits = xfs_contig_bits(buf_f->blf_data_map,
2282 					buf_f->blf_map_size, bit);
2283 		ASSERT(nbits > 0);
2284 		ASSERT(item->ri_buf[i].i_addr != NULL);
2285 		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2286 		ASSERT(BBTOB(bp->b_io_length) >=
2287 		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2288 
2289 		/*
2290 		 * The dirty regions logged in the buffer, even though
2291 		 * contiguous, may span multiple chunks. This is because the
2292 		 * dirty region may span a physical page boundary in a buffer
2293 		 * and hence be split into two separate vectors for writing into
2294 		 * the log. Hence we need to trim nbits back to the length of
2295 		 * the current region being copied out of the log.
2296 		 */
2297 		if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2298 			nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2299 
2300 		/*
2301 		 * Do a sanity check if this is a dquot buffer. Just checking
2302 		 * the first dquot in the buffer should do. XXXThis is
2303 		 * probably a good thing to do for other buf types also.
2304 		 */
2305 		error = 0;
2306 		if (buf_f->blf_flags &
2307 		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2308 			if (item->ri_buf[i].i_addr == NULL) {
2309 				xfs_alert(mp,
2310 					"XFS: NULL dquot in %s.", __func__);
2311 				goto next;
2312 			}
2313 			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2314 				xfs_alert(mp,
2315 					"XFS: dquot too small (%d) in %s.",
2316 					item->ri_buf[i].i_len, __func__);
2317 				goto next;
2318 			}
2319 			error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
2320 					       -1, 0, XFS_QMOPT_DOWARN,
2321 					       "dquot_buf_recover");
2322 			if (error)
2323 				goto next;
2324 		}
2325 
2326 		memcpy(xfs_buf_offset(bp,
2327 			(uint)bit << XFS_BLF_SHIFT),	/* dest */
2328 			item->ri_buf[i].i_addr,		/* source */
2329 			nbits<<XFS_BLF_SHIFT);		/* length */
2330  next:
2331 		i++;
2332 		bit += nbits;
2333 	}
2334 
2335 	/* Shouldn't be any more regions */
2336 	ASSERT(i == item->ri_total);
2337 
2338 	/*
2339 	 * We can only do post recovery validation on items on CRC enabled
2340 	 * fielsystems as we need to know when the buffer was written to be able
2341 	 * to determine if we should have replayed the item. If we replay old
2342 	 * metadata over a newer buffer, then it will enter a temporarily
2343 	 * inconsistent state resulting in verification failures. Hence for now
2344 	 * just avoid the verification stage for non-crc filesystems
2345 	 */
2346 	if (xfs_sb_version_hascrc(&mp->m_sb))
2347 		xlog_recover_validate_buf_type(mp, bp, buf_f);
2348 }
2349 
2350 /*
2351  * Do some primitive error checking on ondisk dquot data structures.
2352  */
2353 int
2354 xfs_qm_dqcheck(
2355 	struct xfs_mount *mp,
2356 	xfs_disk_dquot_t *ddq,
2357 	xfs_dqid_t	 id,
2358 	uint		 type,	  /* used only when IO_dorepair is true */
2359 	uint		 flags,
2360 	char		 *str)
2361 {
2362 	xfs_dqblk_t	 *d = (xfs_dqblk_t *)ddq;
2363 	int		errs = 0;
2364 
2365 	/*
2366 	 * We can encounter an uninitialized dquot buffer for 2 reasons:
2367 	 * 1. If we crash while deleting the quotainode(s), and those blks got
2368 	 *    used for user data. This is because we take the path of regular
2369 	 *    file deletion; however, the size field of quotainodes is never
2370 	 *    updated, so all the tricks that we play in itruncate_finish
2371 	 *    don't quite matter.
2372 	 *
2373 	 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2374 	 *    But the allocation will be replayed so we'll end up with an
2375 	 *    uninitialized quota block.
2376 	 *
2377 	 * This is all fine; things are still consistent, and we haven't lost
2378 	 * any quota information. Just don't complain about bad dquot blks.
2379 	 */
2380 	if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
2381 		if (flags & XFS_QMOPT_DOWARN)
2382 			xfs_alert(mp,
2383 			"%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2384 			str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
2385 		errs++;
2386 	}
2387 	if (ddq->d_version != XFS_DQUOT_VERSION) {
2388 		if (flags & XFS_QMOPT_DOWARN)
2389 			xfs_alert(mp,
2390 			"%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2391 			str, id, ddq->d_version, XFS_DQUOT_VERSION);
2392 		errs++;
2393 	}
2394 
2395 	if (ddq->d_flags != XFS_DQ_USER &&
2396 	    ddq->d_flags != XFS_DQ_PROJ &&
2397 	    ddq->d_flags != XFS_DQ_GROUP) {
2398 		if (flags & XFS_QMOPT_DOWARN)
2399 			xfs_alert(mp,
2400 			"%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2401 			str, id, ddq->d_flags);
2402 		errs++;
2403 	}
2404 
2405 	if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2406 		if (flags & XFS_QMOPT_DOWARN)
2407 			xfs_alert(mp,
2408 			"%s : ondisk-dquot 0x%p, ID mismatch: "
2409 			"0x%x expected, found id 0x%x",
2410 			str, ddq, id, be32_to_cpu(ddq->d_id));
2411 		errs++;
2412 	}
2413 
2414 	if (!errs && ddq->d_id) {
2415 		if (ddq->d_blk_softlimit &&
2416 		    be64_to_cpu(ddq->d_bcount) >
2417 				be64_to_cpu(ddq->d_blk_softlimit)) {
2418 			if (!ddq->d_btimer) {
2419 				if (flags & XFS_QMOPT_DOWARN)
2420 					xfs_alert(mp,
2421 			"%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
2422 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2423 				errs++;
2424 			}
2425 		}
2426 		if (ddq->d_ino_softlimit &&
2427 		    be64_to_cpu(ddq->d_icount) >
2428 				be64_to_cpu(ddq->d_ino_softlimit)) {
2429 			if (!ddq->d_itimer) {
2430 				if (flags & XFS_QMOPT_DOWARN)
2431 					xfs_alert(mp,
2432 			"%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
2433 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2434 				errs++;
2435 			}
2436 		}
2437 		if (ddq->d_rtb_softlimit &&
2438 		    be64_to_cpu(ddq->d_rtbcount) >
2439 				be64_to_cpu(ddq->d_rtb_softlimit)) {
2440 			if (!ddq->d_rtbtimer) {
2441 				if (flags & XFS_QMOPT_DOWARN)
2442 					xfs_alert(mp,
2443 			"%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
2444 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2445 				errs++;
2446 			}
2447 		}
2448 	}
2449 
2450 	if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2451 		return errs;
2452 
2453 	if (flags & XFS_QMOPT_DOWARN)
2454 		xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
2455 
2456 	/*
2457 	 * Typically, a repair is only requested by quotacheck.
2458 	 */
2459 	ASSERT(id != -1);
2460 	ASSERT(flags & XFS_QMOPT_DQREPAIR);
2461 	memset(d, 0, sizeof(xfs_dqblk_t));
2462 
2463 	d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2464 	d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2465 	d->dd_diskdq.d_flags = type;
2466 	d->dd_diskdq.d_id = cpu_to_be32(id);
2467 
2468 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
2469 		uuid_copy(&d->dd_uuid, &mp->m_sb.sb_uuid);
2470 		xfs_update_cksum((char *)d, sizeof(struct xfs_dqblk),
2471 				 XFS_DQUOT_CRC_OFF);
2472 	}
2473 
2474 	return errs;
2475 }
2476 
2477 /*
2478  * Perform a dquot buffer recovery.
2479  * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2480  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2481  * Else, treat it as a regular buffer and do recovery.
2482  */
2483 STATIC void
2484 xlog_recover_do_dquot_buffer(
2485 	struct xfs_mount		*mp,
2486 	struct xlog			*log,
2487 	struct xlog_recover_item	*item,
2488 	struct xfs_buf			*bp,
2489 	struct xfs_buf_log_format	*buf_f)
2490 {
2491 	uint			type;
2492 
2493 	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2494 
2495 	/*
2496 	 * Filesystems are required to send in quota flags at mount time.
2497 	 */
2498 	if (mp->m_qflags == 0) {
2499 		return;
2500 	}
2501 
2502 	type = 0;
2503 	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2504 		type |= XFS_DQ_USER;
2505 	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2506 		type |= XFS_DQ_PROJ;
2507 	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2508 		type |= XFS_DQ_GROUP;
2509 	/*
2510 	 * This type of quotas was turned off, so ignore this buffer
2511 	 */
2512 	if (log->l_quotaoffs_flag & type)
2513 		return;
2514 
2515 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2516 }
2517 
2518 /*
2519  * This routine replays a modification made to a buffer at runtime.
2520  * There are actually two types of buffer, regular and inode, which
2521  * are handled differently.  Inode buffers are handled differently
2522  * in that we only recover a specific set of data from them, namely
2523  * the inode di_next_unlinked fields.  This is because all other inode
2524  * data is actually logged via inode records and any data we replay
2525  * here which overlaps that may be stale.
2526  *
2527  * When meta-data buffers are freed at run time we log a buffer item
2528  * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2529  * of the buffer in the log should not be replayed at recovery time.
2530  * This is so that if the blocks covered by the buffer are reused for
2531  * file data before we crash we don't end up replaying old, freed
2532  * meta-data into a user's file.
2533  *
2534  * To handle the cancellation of buffer log items, we make two passes
2535  * over the log during recovery.  During the first we build a table of
2536  * those buffers which have been cancelled, and during the second we
2537  * only replay those buffers which do not have corresponding cancel
2538  * records in the table.  See xlog_recover_buffer_pass[1,2] above
2539  * for more details on the implementation of the table of cancel records.
2540  */
2541 STATIC int
2542 xlog_recover_buffer_pass2(
2543 	struct xlog			*log,
2544 	struct list_head		*buffer_list,
2545 	struct xlog_recover_item	*item,
2546 	xfs_lsn_t			current_lsn)
2547 {
2548 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2549 	xfs_mount_t		*mp = log->l_mp;
2550 	xfs_buf_t		*bp;
2551 	int			error;
2552 	uint			buf_flags;
2553 	xfs_lsn_t		lsn;
2554 
2555 	/*
2556 	 * In this pass we only want to recover all the buffers which have
2557 	 * not been cancelled and are not cancellation buffers themselves.
2558 	 */
2559 	if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2560 			buf_f->blf_len, buf_f->blf_flags)) {
2561 		trace_xfs_log_recover_buf_cancel(log, buf_f);
2562 		return 0;
2563 	}
2564 
2565 	trace_xfs_log_recover_buf_recover(log, buf_f);
2566 
2567 	buf_flags = 0;
2568 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2569 		buf_flags |= XBF_UNMAPPED;
2570 
2571 	bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2572 			  buf_flags, NULL);
2573 	if (!bp)
2574 		return XFS_ERROR(ENOMEM);
2575 	error = bp->b_error;
2576 	if (error) {
2577 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2578 		goto out_release;
2579 	}
2580 
2581 	/*
2582 	 * recover the buffer only if we get an LSN from it and it's less than
2583 	 * the lsn of the transaction we are replaying.
2584 	 */
2585 	lsn = xlog_recover_get_buf_lsn(mp, bp);
2586 	if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0)
2587 		goto out_release;
2588 
2589 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2590 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2591 	} else if (buf_f->blf_flags &
2592 		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2593 		xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2594 	} else {
2595 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2596 	}
2597 	if (error)
2598 		goto out_release;
2599 
2600 	/*
2601 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2602 	 * slower when taking into account all the buffers to be flushed.
2603 	 *
2604 	 * Also make sure that only inode buffers with good sizes stay in
2605 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2606 	 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2607 	 * buffers in the log can be a different size if the log was generated
2608 	 * by an older kernel using unclustered inode buffers or a newer kernel
2609 	 * running with a different inode cluster size.  Regardless, if the
2610 	 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2611 	 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2612 	 * the buffer out of the buffer cache so that the buffer won't
2613 	 * overlap with future reads of those inodes.
2614 	 */
2615 	if (XFS_DINODE_MAGIC ==
2616 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2617 	    (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2618 			(__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2619 		xfs_buf_stale(bp);
2620 		error = xfs_bwrite(bp);
2621 	} else {
2622 		ASSERT(bp->b_target->bt_mount == mp);
2623 		bp->b_iodone = xlog_recover_iodone;
2624 		xfs_buf_delwri_queue(bp, buffer_list);
2625 	}
2626 
2627 out_release:
2628 	xfs_buf_relse(bp);
2629 	return error;
2630 }
2631 
2632 STATIC int
2633 xlog_recover_inode_pass2(
2634 	struct xlog			*log,
2635 	struct list_head		*buffer_list,
2636 	struct xlog_recover_item	*item,
2637 	xfs_lsn_t			current_lsn)
2638 {
2639 	xfs_inode_log_format_t	*in_f;
2640 	xfs_mount_t		*mp = log->l_mp;
2641 	xfs_buf_t		*bp;
2642 	xfs_dinode_t		*dip;
2643 	int			len;
2644 	xfs_caddr_t		src;
2645 	xfs_caddr_t		dest;
2646 	int			error;
2647 	int			attr_index;
2648 	uint			fields;
2649 	xfs_icdinode_t		*dicp;
2650 	uint			isize;
2651 	int			need_free = 0;
2652 
2653 	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2654 		in_f = item->ri_buf[0].i_addr;
2655 	} else {
2656 		in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2657 		need_free = 1;
2658 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2659 		if (error)
2660 			goto error;
2661 	}
2662 
2663 	/*
2664 	 * Inode buffers can be freed, look out for it,
2665 	 * and do not replay the inode.
2666 	 */
2667 	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2668 					in_f->ilf_len, 0)) {
2669 		error = 0;
2670 		trace_xfs_log_recover_inode_cancel(log, in_f);
2671 		goto error;
2672 	}
2673 	trace_xfs_log_recover_inode_recover(log, in_f);
2674 
2675 	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2676 			  &xfs_inode_buf_ops);
2677 	if (!bp) {
2678 		error = ENOMEM;
2679 		goto error;
2680 	}
2681 	error = bp->b_error;
2682 	if (error) {
2683 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2684 		xfs_buf_relse(bp);
2685 		goto error;
2686 	}
2687 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2688 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2689 
2690 	/*
2691 	 * Make sure the place we're flushing out to really looks
2692 	 * like an inode!
2693 	 */
2694 	if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2695 		xfs_buf_relse(bp);
2696 		xfs_alert(mp,
2697 	"%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2698 			__func__, dip, bp, in_f->ilf_ino);
2699 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2700 				 XFS_ERRLEVEL_LOW, mp);
2701 		error = EFSCORRUPTED;
2702 		goto error;
2703 	}
2704 	dicp = item->ri_buf[1].i_addr;
2705 	if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2706 		xfs_buf_relse(bp);
2707 		xfs_alert(mp,
2708 			"%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2709 			__func__, item, in_f->ilf_ino);
2710 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2711 				 XFS_ERRLEVEL_LOW, mp);
2712 		error = EFSCORRUPTED;
2713 		goto error;
2714 	}
2715 
2716 	/*
2717 	 * If the inode has an LSN in it, recover the inode only if it's less
2718 	 * than the lsn of the transaction we are replaying.
2719 	 */
2720 	if (dip->di_version >= 3) {
2721 		xfs_lsn_t	lsn = be64_to_cpu(dip->di_lsn);
2722 
2723 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2724 			trace_xfs_log_recover_inode_skip(log, in_f);
2725 			error = 0;
2726 			goto out_release;
2727 		}
2728 	}
2729 
2730 	/*
2731 	 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2732 	 * are transactional and if ordering is necessary we can determine that
2733 	 * more accurately by the LSN field in the V3 inode core. Don't trust
2734 	 * the inode versions we might be changing them here - use the
2735 	 * superblock flag to determine whether we need to look at di_flushiter
2736 	 * to skip replay when the on disk inode is newer than the log one
2737 	 */
2738 	if (!xfs_sb_version_hascrc(&mp->m_sb) &&
2739 	    dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2740 		/*
2741 		 * Deal with the wrap case, DI_MAX_FLUSH is less
2742 		 * than smaller numbers
2743 		 */
2744 		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2745 		    dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2746 			/* do nothing */
2747 		} else {
2748 			xfs_buf_relse(bp);
2749 			trace_xfs_log_recover_inode_skip(log, in_f);
2750 			error = 0;
2751 			goto error;
2752 		}
2753 	}
2754 
2755 	/* Take the opportunity to reset the flush iteration count */
2756 	dicp->di_flushiter = 0;
2757 
2758 	if (unlikely(S_ISREG(dicp->di_mode))) {
2759 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2760 		    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2761 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2762 					 XFS_ERRLEVEL_LOW, mp, dicp);
2763 			xfs_buf_relse(bp);
2764 			xfs_alert(mp,
2765 		"%s: Bad regular inode log record, rec ptr 0x%p, "
2766 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2767 				__func__, item, dip, bp, in_f->ilf_ino);
2768 			error = EFSCORRUPTED;
2769 			goto error;
2770 		}
2771 	} else if (unlikely(S_ISDIR(dicp->di_mode))) {
2772 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2773 		    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2774 		    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2775 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2776 					     XFS_ERRLEVEL_LOW, mp, dicp);
2777 			xfs_buf_relse(bp);
2778 			xfs_alert(mp,
2779 		"%s: Bad dir inode log record, rec ptr 0x%p, "
2780 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2781 				__func__, item, dip, bp, in_f->ilf_ino);
2782 			error = EFSCORRUPTED;
2783 			goto error;
2784 		}
2785 	}
2786 	if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2787 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2788 				     XFS_ERRLEVEL_LOW, mp, dicp);
2789 		xfs_buf_relse(bp);
2790 		xfs_alert(mp,
2791 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2792 	"dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2793 			__func__, item, dip, bp, in_f->ilf_ino,
2794 			dicp->di_nextents + dicp->di_anextents,
2795 			dicp->di_nblocks);
2796 		error = EFSCORRUPTED;
2797 		goto error;
2798 	}
2799 	if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2800 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2801 				     XFS_ERRLEVEL_LOW, mp, dicp);
2802 		xfs_buf_relse(bp);
2803 		xfs_alert(mp,
2804 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2805 	"dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2806 			item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2807 		error = EFSCORRUPTED;
2808 		goto error;
2809 	}
2810 	isize = xfs_icdinode_size(dicp->di_version);
2811 	if (unlikely(item->ri_buf[1].i_len > isize)) {
2812 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2813 				     XFS_ERRLEVEL_LOW, mp, dicp);
2814 		xfs_buf_relse(bp);
2815 		xfs_alert(mp,
2816 			"%s: Bad inode log record length %d, rec ptr 0x%p",
2817 			__func__, item->ri_buf[1].i_len, item);
2818 		error = EFSCORRUPTED;
2819 		goto error;
2820 	}
2821 
2822 	/* The core is in in-core format */
2823 	xfs_dinode_to_disk(dip, dicp);
2824 
2825 	/* the rest is in on-disk format */
2826 	if (item->ri_buf[1].i_len > isize) {
2827 		memcpy((char *)dip + isize,
2828 			item->ri_buf[1].i_addr + isize,
2829 			item->ri_buf[1].i_len - isize);
2830 	}
2831 
2832 	fields = in_f->ilf_fields;
2833 	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2834 	case XFS_ILOG_DEV:
2835 		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2836 		break;
2837 	case XFS_ILOG_UUID:
2838 		memcpy(XFS_DFORK_DPTR(dip),
2839 		       &in_f->ilf_u.ilfu_uuid,
2840 		       sizeof(uuid_t));
2841 		break;
2842 	}
2843 
2844 	if (in_f->ilf_size == 2)
2845 		goto write_inode_buffer;
2846 	len = item->ri_buf[2].i_len;
2847 	src = item->ri_buf[2].i_addr;
2848 	ASSERT(in_f->ilf_size <= 4);
2849 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2850 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
2851 	       (len == in_f->ilf_dsize));
2852 
2853 	switch (fields & XFS_ILOG_DFORK) {
2854 	case XFS_ILOG_DDATA:
2855 	case XFS_ILOG_DEXT:
2856 		memcpy(XFS_DFORK_DPTR(dip), src, len);
2857 		break;
2858 
2859 	case XFS_ILOG_DBROOT:
2860 		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2861 				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2862 				 XFS_DFORK_DSIZE(dip, mp));
2863 		break;
2864 
2865 	default:
2866 		/*
2867 		 * There are no data fork flags set.
2868 		 */
2869 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
2870 		break;
2871 	}
2872 
2873 	/*
2874 	 * If we logged any attribute data, recover it.  There may or
2875 	 * may not have been any other non-core data logged in this
2876 	 * transaction.
2877 	 */
2878 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2879 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2880 			attr_index = 3;
2881 		} else {
2882 			attr_index = 2;
2883 		}
2884 		len = item->ri_buf[attr_index].i_len;
2885 		src = item->ri_buf[attr_index].i_addr;
2886 		ASSERT(len == in_f->ilf_asize);
2887 
2888 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2889 		case XFS_ILOG_ADATA:
2890 		case XFS_ILOG_AEXT:
2891 			dest = XFS_DFORK_APTR(dip);
2892 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2893 			memcpy(dest, src, len);
2894 			break;
2895 
2896 		case XFS_ILOG_ABROOT:
2897 			dest = XFS_DFORK_APTR(dip);
2898 			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2899 					 len, (xfs_bmdr_block_t*)dest,
2900 					 XFS_DFORK_ASIZE(dip, mp));
2901 			break;
2902 
2903 		default:
2904 			xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2905 			ASSERT(0);
2906 			xfs_buf_relse(bp);
2907 			error = EIO;
2908 			goto error;
2909 		}
2910 	}
2911 
2912 write_inode_buffer:
2913 	/* re-generate the checksum. */
2914 	xfs_dinode_calc_crc(log->l_mp, dip);
2915 
2916 	ASSERT(bp->b_target->bt_mount == mp);
2917 	bp->b_iodone = xlog_recover_iodone;
2918 	xfs_buf_delwri_queue(bp, buffer_list);
2919 
2920 out_release:
2921 	xfs_buf_relse(bp);
2922 error:
2923 	if (need_free)
2924 		kmem_free(in_f);
2925 	return XFS_ERROR(error);
2926 }
2927 
2928 /*
2929  * Recover QUOTAOFF records. We simply make a note of it in the xlog
2930  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2931  * of that type.
2932  */
2933 STATIC int
2934 xlog_recover_quotaoff_pass1(
2935 	struct xlog			*log,
2936 	struct xlog_recover_item	*item)
2937 {
2938 	xfs_qoff_logformat_t	*qoff_f = item->ri_buf[0].i_addr;
2939 	ASSERT(qoff_f);
2940 
2941 	/*
2942 	 * The logitem format's flag tells us if this was user quotaoff,
2943 	 * group/project quotaoff or both.
2944 	 */
2945 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2946 		log->l_quotaoffs_flag |= XFS_DQ_USER;
2947 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2948 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2949 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2950 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2951 
2952 	return (0);
2953 }
2954 
2955 /*
2956  * Recover a dquot record
2957  */
2958 STATIC int
2959 xlog_recover_dquot_pass2(
2960 	struct xlog			*log,
2961 	struct list_head		*buffer_list,
2962 	struct xlog_recover_item	*item,
2963 	xfs_lsn_t			current_lsn)
2964 {
2965 	xfs_mount_t		*mp = log->l_mp;
2966 	xfs_buf_t		*bp;
2967 	struct xfs_disk_dquot	*ddq, *recddq;
2968 	int			error;
2969 	xfs_dq_logformat_t	*dq_f;
2970 	uint			type;
2971 
2972 
2973 	/*
2974 	 * Filesystems are required to send in quota flags at mount time.
2975 	 */
2976 	if (mp->m_qflags == 0)
2977 		return (0);
2978 
2979 	recddq = item->ri_buf[1].i_addr;
2980 	if (recddq == NULL) {
2981 		xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2982 		return XFS_ERROR(EIO);
2983 	}
2984 	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2985 		xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2986 			item->ri_buf[1].i_len, __func__);
2987 		return XFS_ERROR(EIO);
2988 	}
2989 
2990 	/*
2991 	 * This type of quotas was turned off, so ignore this record.
2992 	 */
2993 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2994 	ASSERT(type);
2995 	if (log->l_quotaoffs_flag & type)
2996 		return (0);
2997 
2998 	/*
2999 	 * At this point we know that quota was _not_ turned off.
3000 	 * Since the mount flags are not indicating to us otherwise, this
3001 	 * must mean that quota is on, and the dquot needs to be replayed.
3002 	 * Remember that we may not have fully recovered the superblock yet,
3003 	 * so we can't do the usual trick of looking at the SB quota bits.
3004 	 *
3005 	 * The other possibility, of course, is that the quota subsystem was
3006 	 * removed since the last mount - ENOSYS.
3007 	 */
3008 	dq_f = item->ri_buf[0].i_addr;
3009 	ASSERT(dq_f);
3010 	error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3011 			   "xlog_recover_dquot_pass2 (log copy)");
3012 	if (error)
3013 		return XFS_ERROR(EIO);
3014 	ASSERT(dq_f->qlf_len == 1);
3015 
3016 	error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3017 				   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3018 				   NULL);
3019 	if (error)
3020 		return error;
3021 
3022 	ASSERT(bp);
3023 	ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
3024 
3025 	/*
3026 	 * At least the magic num portion should be on disk because this
3027 	 * was among a chunk of dquots created earlier, and we did some
3028 	 * minimal initialization then.
3029 	 */
3030 	error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3031 			   "xlog_recover_dquot_pass2");
3032 	if (error) {
3033 		xfs_buf_relse(bp);
3034 		return XFS_ERROR(EIO);
3035 	}
3036 
3037 	/*
3038 	 * If the dquot has an LSN in it, recover the dquot only if it's less
3039 	 * than the lsn of the transaction we are replaying.
3040 	 */
3041 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3042 		struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3043 		xfs_lsn_t	lsn = be64_to_cpu(dqb->dd_lsn);
3044 
3045 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3046 			goto out_release;
3047 		}
3048 	}
3049 
3050 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
3051 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3052 		xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3053 				 XFS_DQUOT_CRC_OFF);
3054 	}
3055 
3056 	ASSERT(dq_f->qlf_size == 2);
3057 	ASSERT(bp->b_target->bt_mount == mp);
3058 	bp->b_iodone = xlog_recover_iodone;
3059 	xfs_buf_delwri_queue(bp, buffer_list);
3060 
3061 out_release:
3062 	xfs_buf_relse(bp);
3063 	return 0;
3064 }
3065 
3066 /*
3067  * This routine is called to create an in-core extent free intent
3068  * item from the efi format structure which was logged on disk.
3069  * It allocates an in-core efi, copies the extents from the format
3070  * structure into it, and adds the efi to the AIL with the given
3071  * LSN.
3072  */
3073 STATIC int
3074 xlog_recover_efi_pass2(
3075 	struct xlog			*log,
3076 	struct xlog_recover_item	*item,
3077 	xfs_lsn_t			lsn)
3078 {
3079 	int			error;
3080 	xfs_mount_t		*mp = log->l_mp;
3081 	xfs_efi_log_item_t	*efip;
3082 	xfs_efi_log_format_t	*efi_formatp;
3083 
3084 	efi_formatp = item->ri_buf[0].i_addr;
3085 
3086 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3087 	if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
3088 					 &(efip->efi_format)))) {
3089 		xfs_efi_item_free(efip);
3090 		return error;
3091 	}
3092 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3093 
3094 	spin_lock(&log->l_ailp->xa_lock);
3095 	/*
3096 	 * xfs_trans_ail_update() drops the AIL lock.
3097 	 */
3098 	xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3099 	return 0;
3100 }
3101 
3102 
3103 /*
3104  * This routine is called when an efd format structure is found in
3105  * a committed transaction in the log.  It's purpose is to cancel
3106  * the corresponding efi if it was still in the log.  To do this
3107  * it searches the AIL for the efi with an id equal to that in the
3108  * efd format structure.  If we find it, we remove the efi from the
3109  * AIL and free it.
3110  */
3111 STATIC int
3112 xlog_recover_efd_pass2(
3113 	struct xlog			*log,
3114 	struct xlog_recover_item	*item)
3115 {
3116 	xfs_efd_log_format_t	*efd_formatp;
3117 	xfs_efi_log_item_t	*efip = NULL;
3118 	xfs_log_item_t		*lip;
3119 	__uint64_t		efi_id;
3120 	struct xfs_ail_cursor	cur;
3121 	struct xfs_ail		*ailp = log->l_ailp;
3122 
3123 	efd_formatp = item->ri_buf[0].i_addr;
3124 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3125 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3126 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3127 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3128 	efi_id = efd_formatp->efd_efi_id;
3129 
3130 	/*
3131 	 * Search for the efi with the id in the efd format structure
3132 	 * in the AIL.
3133 	 */
3134 	spin_lock(&ailp->xa_lock);
3135 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3136 	while (lip != NULL) {
3137 		if (lip->li_type == XFS_LI_EFI) {
3138 			efip = (xfs_efi_log_item_t *)lip;
3139 			if (efip->efi_format.efi_id == efi_id) {
3140 				/*
3141 				 * xfs_trans_ail_delete() drops the
3142 				 * AIL lock.
3143 				 */
3144 				xfs_trans_ail_delete(ailp, lip,
3145 						     SHUTDOWN_CORRUPT_INCORE);
3146 				xfs_efi_item_free(efip);
3147 				spin_lock(&ailp->xa_lock);
3148 				break;
3149 			}
3150 		}
3151 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3152 	}
3153 	xfs_trans_ail_cursor_done(ailp, &cur);
3154 	spin_unlock(&ailp->xa_lock);
3155 
3156 	return 0;
3157 }
3158 
3159 /*
3160  * This routine is called when an inode create format structure is found in a
3161  * committed transaction in the log.  It's purpose is to initialise the inodes
3162  * being allocated on disk. This requires us to get inode cluster buffers that
3163  * match the range to be intialised, stamped with inode templates and written
3164  * by delayed write so that subsequent modifications will hit the cached buffer
3165  * and only need writing out at the end of recovery.
3166  */
3167 STATIC int
3168 xlog_recover_do_icreate_pass2(
3169 	struct xlog		*log,
3170 	struct list_head	*buffer_list,
3171 	xlog_recover_item_t	*item)
3172 {
3173 	struct xfs_mount	*mp = log->l_mp;
3174 	struct xfs_icreate_log	*icl;
3175 	xfs_agnumber_t		agno;
3176 	xfs_agblock_t		agbno;
3177 	unsigned int		count;
3178 	unsigned int		isize;
3179 	xfs_agblock_t		length;
3180 
3181 	icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3182 	if (icl->icl_type != XFS_LI_ICREATE) {
3183 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3184 		return EINVAL;
3185 	}
3186 
3187 	if (icl->icl_size != 1) {
3188 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3189 		return EINVAL;
3190 	}
3191 
3192 	agno = be32_to_cpu(icl->icl_ag);
3193 	if (agno >= mp->m_sb.sb_agcount) {
3194 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3195 		return EINVAL;
3196 	}
3197 	agbno = be32_to_cpu(icl->icl_agbno);
3198 	if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3199 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3200 		return EINVAL;
3201 	}
3202 	isize = be32_to_cpu(icl->icl_isize);
3203 	if (isize != mp->m_sb.sb_inodesize) {
3204 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3205 		return EINVAL;
3206 	}
3207 	count = be32_to_cpu(icl->icl_count);
3208 	if (!count) {
3209 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3210 		return EINVAL;
3211 	}
3212 	length = be32_to_cpu(icl->icl_length);
3213 	if (!length || length >= mp->m_sb.sb_agblocks) {
3214 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3215 		return EINVAL;
3216 	}
3217 
3218 	/* existing allocation is fixed value */
3219 	ASSERT(count == XFS_IALLOC_INODES(mp));
3220 	ASSERT(length == XFS_IALLOC_BLOCKS(mp));
3221 	if (count != XFS_IALLOC_INODES(mp) ||
3222 	     length != XFS_IALLOC_BLOCKS(mp)) {
3223 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2");
3224 		return EINVAL;
3225 	}
3226 
3227 	/*
3228 	 * Inode buffers can be freed. Do not replay the inode initialisation as
3229 	 * we could be overwriting something written after this inode buffer was
3230 	 * cancelled.
3231 	 *
3232 	 * XXX: we need to iterate all buffers and only init those that are not
3233 	 * cancelled. I think that a more fine grained factoring of
3234 	 * xfs_ialloc_inode_init may be appropriate here to enable this to be
3235 	 * done easily.
3236 	 */
3237 	if (xlog_check_buffer_cancelled(log,
3238 			XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0))
3239 		return 0;
3240 
3241 	xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length,
3242 					be32_to_cpu(icl->icl_gen));
3243 	return 0;
3244 }
3245 
3246 /*
3247  * Free up any resources allocated by the transaction
3248  *
3249  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3250  */
3251 STATIC void
3252 xlog_recover_free_trans(
3253 	struct xlog_recover	*trans)
3254 {
3255 	xlog_recover_item_t	*item, *n;
3256 	int			i;
3257 
3258 	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3259 		/* Free the regions in the item. */
3260 		list_del(&item->ri_list);
3261 		for (i = 0; i < item->ri_cnt; i++)
3262 			kmem_free(item->ri_buf[i].i_addr);
3263 		/* Free the item itself */
3264 		kmem_free(item->ri_buf);
3265 		kmem_free(item);
3266 	}
3267 	/* Free the transaction recover structure */
3268 	kmem_free(trans);
3269 }
3270 
3271 STATIC void
3272 xlog_recover_buffer_ra_pass2(
3273 	struct xlog                     *log,
3274 	struct xlog_recover_item        *item)
3275 {
3276 	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
3277 	struct xfs_mount		*mp = log->l_mp;
3278 
3279 	if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3280 			buf_f->blf_len, buf_f->blf_flags)) {
3281 		return;
3282 	}
3283 
3284 	xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3285 				buf_f->blf_len, NULL);
3286 }
3287 
3288 STATIC void
3289 xlog_recover_inode_ra_pass2(
3290 	struct xlog                     *log,
3291 	struct xlog_recover_item        *item)
3292 {
3293 	struct xfs_inode_log_format	ilf_buf;
3294 	struct xfs_inode_log_format	*ilfp;
3295 	struct xfs_mount		*mp = log->l_mp;
3296 	int			error;
3297 
3298 	if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3299 		ilfp = item->ri_buf[0].i_addr;
3300 	} else {
3301 		ilfp = &ilf_buf;
3302 		memset(ilfp, 0, sizeof(*ilfp));
3303 		error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3304 		if (error)
3305 			return;
3306 	}
3307 
3308 	if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3309 		return;
3310 
3311 	xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3312 				ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3313 }
3314 
3315 STATIC void
3316 xlog_recover_dquot_ra_pass2(
3317 	struct xlog			*log,
3318 	struct xlog_recover_item	*item)
3319 {
3320 	struct xfs_mount	*mp = log->l_mp;
3321 	struct xfs_disk_dquot	*recddq;
3322 	struct xfs_dq_logformat	*dq_f;
3323 	uint			type;
3324 
3325 
3326 	if (mp->m_qflags == 0)
3327 		return;
3328 
3329 	recddq = item->ri_buf[1].i_addr;
3330 	if (recddq == NULL)
3331 		return;
3332 	if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3333 		return;
3334 
3335 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3336 	ASSERT(type);
3337 	if (log->l_quotaoffs_flag & type)
3338 		return;
3339 
3340 	dq_f = item->ri_buf[0].i_addr;
3341 	ASSERT(dq_f);
3342 	ASSERT(dq_f->qlf_len == 1);
3343 
3344 	xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno,
3345 			  XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL);
3346 }
3347 
3348 STATIC void
3349 xlog_recover_ra_pass2(
3350 	struct xlog			*log,
3351 	struct xlog_recover_item	*item)
3352 {
3353 	switch (ITEM_TYPE(item)) {
3354 	case XFS_LI_BUF:
3355 		xlog_recover_buffer_ra_pass2(log, item);
3356 		break;
3357 	case XFS_LI_INODE:
3358 		xlog_recover_inode_ra_pass2(log, item);
3359 		break;
3360 	case XFS_LI_DQUOT:
3361 		xlog_recover_dquot_ra_pass2(log, item);
3362 		break;
3363 	case XFS_LI_EFI:
3364 	case XFS_LI_EFD:
3365 	case XFS_LI_QUOTAOFF:
3366 	default:
3367 		break;
3368 	}
3369 }
3370 
3371 STATIC int
3372 xlog_recover_commit_pass1(
3373 	struct xlog			*log,
3374 	struct xlog_recover		*trans,
3375 	struct xlog_recover_item	*item)
3376 {
3377 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3378 
3379 	switch (ITEM_TYPE(item)) {
3380 	case XFS_LI_BUF:
3381 		return xlog_recover_buffer_pass1(log, item);
3382 	case XFS_LI_QUOTAOFF:
3383 		return xlog_recover_quotaoff_pass1(log, item);
3384 	case XFS_LI_INODE:
3385 	case XFS_LI_EFI:
3386 	case XFS_LI_EFD:
3387 	case XFS_LI_DQUOT:
3388 	case XFS_LI_ICREATE:
3389 		/* nothing to do in pass 1 */
3390 		return 0;
3391 	default:
3392 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3393 			__func__, ITEM_TYPE(item));
3394 		ASSERT(0);
3395 		return XFS_ERROR(EIO);
3396 	}
3397 }
3398 
3399 STATIC int
3400 xlog_recover_commit_pass2(
3401 	struct xlog			*log,
3402 	struct xlog_recover		*trans,
3403 	struct list_head		*buffer_list,
3404 	struct xlog_recover_item	*item)
3405 {
3406 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3407 
3408 	switch (ITEM_TYPE(item)) {
3409 	case XFS_LI_BUF:
3410 		return xlog_recover_buffer_pass2(log, buffer_list, item,
3411 						 trans->r_lsn);
3412 	case XFS_LI_INODE:
3413 		return xlog_recover_inode_pass2(log, buffer_list, item,
3414 						 trans->r_lsn);
3415 	case XFS_LI_EFI:
3416 		return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3417 	case XFS_LI_EFD:
3418 		return xlog_recover_efd_pass2(log, item);
3419 	case XFS_LI_DQUOT:
3420 		return xlog_recover_dquot_pass2(log, buffer_list, item,
3421 						trans->r_lsn);
3422 	case XFS_LI_ICREATE:
3423 		return xlog_recover_do_icreate_pass2(log, buffer_list, item);
3424 	case XFS_LI_QUOTAOFF:
3425 		/* nothing to do in pass2 */
3426 		return 0;
3427 	default:
3428 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3429 			__func__, ITEM_TYPE(item));
3430 		ASSERT(0);
3431 		return XFS_ERROR(EIO);
3432 	}
3433 }
3434 
3435 STATIC int
3436 xlog_recover_items_pass2(
3437 	struct xlog                     *log,
3438 	struct xlog_recover             *trans,
3439 	struct list_head                *buffer_list,
3440 	struct list_head                *item_list)
3441 {
3442 	struct xlog_recover_item	*item;
3443 	int				error = 0;
3444 
3445 	list_for_each_entry(item, item_list, ri_list) {
3446 		error = xlog_recover_commit_pass2(log, trans,
3447 					  buffer_list, item);
3448 		if (error)
3449 			return error;
3450 	}
3451 
3452 	return error;
3453 }
3454 
3455 /*
3456  * Perform the transaction.
3457  *
3458  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
3459  * EFIs and EFDs get queued up by adding entries into the AIL for them.
3460  */
3461 STATIC int
3462 xlog_recover_commit_trans(
3463 	struct xlog		*log,
3464 	struct xlog_recover	*trans,
3465 	int			pass)
3466 {
3467 	int				error = 0;
3468 	int				error2;
3469 	int				items_queued = 0;
3470 	struct xlog_recover_item	*item;
3471 	struct xlog_recover_item	*next;
3472 	LIST_HEAD			(buffer_list);
3473 	LIST_HEAD			(ra_list);
3474 	LIST_HEAD			(done_list);
3475 
3476 	#define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
3477 
3478 	hlist_del(&trans->r_list);
3479 
3480 	error = xlog_recover_reorder_trans(log, trans, pass);
3481 	if (error)
3482 		return error;
3483 
3484 	list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
3485 		switch (pass) {
3486 		case XLOG_RECOVER_PASS1:
3487 			error = xlog_recover_commit_pass1(log, trans, item);
3488 			break;
3489 		case XLOG_RECOVER_PASS2:
3490 			xlog_recover_ra_pass2(log, item);
3491 			list_move_tail(&item->ri_list, &ra_list);
3492 			items_queued++;
3493 			if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3494 				error = xlog_recover_items_pass2(log, trans,
3495 						&buffer_list, &ra_list);
3496 				list_splice_tail_init(&ra_list, &done_list);
3497 				items_queued = 0;
3498 			}
3499 
3500 			break;
3501 		default:
3502 			ASSERT(0);
3503 		}
3504 
3505 		if (error)
3506 			goto out;
3507 	}
3508 
3509 out:
3510 	if (!list_empty(&ra_list)) {
3511 		if (!error)
3512 			error = xlog_recover_items_pass2(log, trans,
3513 					&buffer_list, &ra_list);
3514 		list_splice_tail_init(&ra_list, &done_list);
3515 	}
3516 
3517 	if (!list_empty(&done_list))
3518 		list_splice_init(&done_list, &trans->r_itemq);
3519 
3520 	xlog_recover_free_trans(trans);
3521 
3522 	error2 = xfs_buf_delwri_submit(&buffer_list);
3523 	return error ? error : error2;
3524 }
3525 
3526 STATIC int
3527 xlog_recover_unmount_trans(
3528 	struct xlog		*log,
3529 	struct xlog_recover	*trans)
3530 {
3531 	/* Do nothing now */
3532 	xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
3533 	return 0;
3534 }
3535 
3536 /*
3537  * There are two valid states of the r_state field.  0 indicates that the
3538  * transaction structure is in a normal state.  We have either seen the
3539  * start of the transaction or the last operation we added was not a partial
3540  * operation.  If the last operation we added to the transaction was a
3541  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3542  *
3543  * NOTE: skip LRs with 0 data length.
3544  */
3545 STATIC int
3546 xlog_recover_process_data(
3547 	struct xlog		*log,
3548 	struct hlist_head	rhash[],
3549 	struct xlog_rec_header	*rhead,
3550 	xfs_caddr_t		dp,
3551 	int			pass)
3552 {
3553 	xfs_caddr_t		lp;
3554 	int			num_logops;
3555 	xlog_op_header_t	*ohead;
3556 	xlog_recover_t		*trans;
3557 	xlog_tid_t		tid;
3558 	int			error;
3559 	unsigned long		hash;
3560 	uint			flags;
3561 
3562 	lp = dp + be32_to_cpu(rhead->h_len);
3563 	num_logops = be32_to_cpu(rhead->h_num_logops);
3564 
3565 	/* check the log format matches our own - else we can't recover */
3566 	if (xlog_header_check_recover(log->l_mp, rhead))
3567 		return (XFS_ERROR(EIO));
3568 
3569 	while ((dp < lp) && num_logops) {
3570 		ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
3571 		ohead = (xlog_op_header_t *)dp;
3572 		dp += sizeof(xlog_op_header_t);
3573 		if (ohead->oh_clientid != XFS_TRANSACTION &&
3574 		    ohead->oh_clientid != XFS_LOG) {
3575 			xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3576 					__func__, ohead->oh_clientid);
3577 			ASSERT(0);
3578 			return (XFS_ERROR(EIO));
3579 		}
3580 		tid = be32_to_cpu(ohead->oh_tid);
3581 		hash = XLOG_RHASH(tid);
3582 		trans = xlog_recover_find_tid(&rhash[hash], tid);
3583 		if (trans == NULL) {		   /* not found; add new tid */
3584 			if (ohead->oh_flags & XLOG_START_TRANS)
3585 				xlog_recover_new_tid(&rhash[hash], tid,
3586 					be64_to_cpu(rhead->h_lsn));
3587 		} else {
3588 			if (dp + be32_to_cpu(ohead->oh_len) > lp) {
3589 				xfs_warn(log->l_mp, "%s: bad length 0x%x",
3590 					__func__, be32_to_cpu(ohead->oh_len));
3591 				WARN_ON(1);
3592 				return (XFS_ERROR(EIO));
3593 			}
3594 			flags = ohead->oh_flags & ~XLOG_END_TRANS;
3595 			if (flags & XLOG_WAS_CONT_TRANS)
3596 				flags &= ~XLOG_CONTINUE_TRANS;
3597 			switch (flags) {
3598 			case XLOG_COMMIT_TRANS:
3599 				error = xlog_recover_commit_trans(log,
3600 								trans, pass);
3601 				break;
3602 			case XLOG_UNMOUNT_TRANS:
3603 				error = xlog_recover_unmount_trans(log, trans);
3604 				break;
3605 			case XLOG_WAS_CONT_TRANS:
3606 				error = xlog_recover_add_to_cont_trans(log,
3607 						trans, dp,
3608 						be32_to_cpu(ohead->oh_len));
3609 				break;
3610 			case XLOG_START_TRANS:
3611 				xfs_warn(log->l_mp, "%s: bad transaction",
3612 					__func__);
3613 				ASSERT(0);
3614 				error = XFS_ERROR(EIO);
3615 				break;
3616 			case 0:
3617 			case XLOG_CONTINUE_TRANS:
3618 				error = xlog_recover_add_to_trans(log, trans,
3619 						dp, be32_to_cpu(ohead->oh_len));
3620 				break;
3621 			default:
3622 				xfs_warn(log->l_mp, "%s: bad flag 0x%x",
3623 					__func__, flags);
3624 				ASSERT(0);
3625 				error = XFS_ERROR(EIO);
3626 				break;
3627 			}
3628 			if (error)
3629 				return error;
3630 		}
3631 		dp += be32_to_cpu(ohead->oh_len);
3632 		num_logops--;
3633 	}
3634 	return 0;
3635 }
3636 
3637 /*
3638  * Process an extent free intent item that was recovered from
3639  * the log.  We need to free the extents that it describes.
3640  */
3641 STATIC int
3642 xlog_recover_process_efi(
3643 	xfs_mount_t		*mp,
3644 	xfs_efi_log_item_t	*efip)
3645 {
3646 	xfs_efd_log_item_t	*efdp;
3647 	xfs_trans_t		*tp;
3648 	int			i;
3649 	int			error = 0;
3650 	xfs_extent_t		*extp;
3651 	xfs_fsblock_t		startblock_fsb;
3652 
3653 	ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
3654 
3655 	/*
3656 	 * First check the validity of the extents described by the
3657 	 * EFI.  If any are bad, then assume that all are bad and
3658 	 * just toss the EFI.
3659 	 */
3660 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3661 		extp = &(efip->efi_format.efi_extents[i]);
3662 		startblock_fsb = XFS_BB_TO_FSB(mp,
3663 				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
3664 		if ((startblock_fsb == 0) ||
3665 		    (extp->ext_len == 0) ||
3666 		    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3667 		    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3668 			/*
3669 			 * This will pull the EFI from the AIL and
3670 			 * free the memory associated with it.
3671 			 */
3672 			set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3673 			xfs_efi_release(efip, efip->efi_format.efi_nextents);
3674 			return XFS_ERROR(EIO);
3675 		}
3676 	}
3677 
3678 	tp = xfs_trans_alloc(mp, 0);
3679 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
3680 	if (error)
3681 		goto abort_error;
3682 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3683 
3684 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3685 		extp = &(efip->efi_format.efi_extents[i]);
3686 		error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3687 		if (error)
3688 			goto abort_error;
3689 		xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3690 					 extp->ext_len);
3691 	}
3692 
3693 	set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3694 	error = xfs_trans_commit(tp, 0);
3695 	return error;
3696 
3697 abort_error:
3698 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3699 	return error;
3700 }
3701 
3702 /*
3703  * When this is called, all of the EFIs which did not have
3704  * corresponding EFDs should be in the AIL.  What we do now
3705  * is free the extents associated with each one.
3706  *
3707  * Since we process the EFIs in normal transactions, they
3708  * will be removed at some point after the commit.  This prevents
3709  * us from just walking down the list processing each one.
3710  * We'll use a flag in the EFI to skip those that we've already
3711  * processed and use the AIL iteration mechanism's generation
3712  * count to try to speed this up at least a bit.
3713  *
3714  * When we start, we know that the EFIs are the only things in
3715  * the AIL.  As we process them, however, other items are added
3716  * to the AIL.  Since everything added to the AIL must come after
3717  * everything already in the AIL, we stop processing as soon as
3718  * we see something other than an EFI in the AIL.
3719  */
3720 STATIC int
3721 xlog_recover_process_efis(
3722 	struct xlog	*log)
3723 {
3724 	xfs_log_item_t		*lip;
3725 	xfs_efi_log_item_t	*efip;
3726 	int			error = 0;
3727 	struct xfs_ail_cursor	cur;
3728 	struct xfs_ail		*ailp;
3729 
3730 	ailp = log->l_ailp;
3731 	spin_lock(&ailp->xa_lock);
3732 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3733 	while (lip != NULL) {
3734 		/*
3735 		 * We're done when we see something other than an EFI.
3736 		 * There should be no EFIs left in the AIL now.
3737 		 */
3738 		if (lip->li_type != XFS_LI_EFI) {
3739 #ifdef DEBUG
3740 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3741 				ASSERT(lip->li_type != XFS_LI_EFI);
3742 #endif
3743 			break;
3744 		}
3745 
3746 		/*
3747 		 * Skip EFIs that we've already processed.
3748 		 */
3749 		efip = (xfs_efi_log_item_t *)lip;
3750 		if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3751 			lip = xfs_trans_ail_cursor_next(ailp, &cur);
3752 			continue;
3753 		}
3754 
3755 		spin_unlock(&ailp->xa_lock);
3756 		error = xlog_recover_process_efi(log->l_mp, efip);
3757 		spin_lock(&ailp->xa_lock);
3758 		if (error)
3759 			goto out;
3760 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3761 	}
3762 out:
3763 	xfs_trans_ail_cursor_done(ailp, &cur);
3764 	spin_unlock(&ailp->xa_lock);
3765 	return error;
3766 }
3767 
3768 /*
3769  * This routine performs a transaction to null out a bad inode pointer
3770  * in an agi unlinked inode hash bucket.
3771  */
3772 STATIC void
3773 xlog_recover_clear_agi_bucket(
3774 	xfs_mount_t	*mp,
3775 	xfs_agnumber_t	agno,
3776 	int		bucket)
3777 {
3778 	xfs_trans_t	*tp;
3779 	xfs_agi_t	*agi;
3780 	xfs_buf_t	*agibp;
3781 	int		offset;
3782 	int		error;
3783 
3784 	tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3785 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
3786 	if (error)
3787 		goto out_abort;
3788 
3789 	error = xfs_read_agi(mp, tp, agno, &agibp);
3790 	if (error)
3791 		goto out_abort;
3792 
3793 	agi = XFS_BUF_TO_AGI(agibp);
3794 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3795 	offset = offsetof(xfs_agi_t, agi_unlinked) +
3796 		 (sizeof(xfs_agino_t) * bucket);
3797 	xfs_trans_log_buf(tp, agibp, offset,
3798 			  (offset + sizeof(xfs_agino_t) - 1));
3799 
3800 	error = xfs_trans_commit(tp, 0);
3801 	if (error)
3802 		goto out_error;
3803 	return;
3804 
3805 out_abort:
3806 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3807 out_error:
3808 	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3809 	return;
3810 }
3811 
3812 STATIC xfs_agino_t
3813 xlog_recover_process_one_iunlink(
3814 	struct xfs_mount		*mp,
3815 	xfs_agnumber_t			agno,
3816 	xfs_agino_t			agino,
3817 	int				bucket)
3818 {
3819 	struct xfs_buf			*ibp;
3820 	struct xfs_dinode		*dip;
3821 	struct xfs_inode		*ip;
3822 	xfs_ino_t			ino;
3823 	int				error;
3824 
3825 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
3826 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3827 	if (error)
3828 		goto fail;
3829 
3830 	/*
3831 	 * Get the on disk inode to find the next inode in the bucket.
3832 	 */
3833 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
3834 	if (error)
3835 		goto fail_iput;
3836 
3837 	ASSERT(ip->i_d.di_nlink == 0);
3838 	ASSERT(ip->i_d.di_mode != 0);
3839 
3840 	/* setup for the next pass */
3841 	agino = be32_to_cpu(dip->di_next_unlinked);
3842 	xfs_buf_relse(ibp);
3843 
3844 	/*
3845 	 * Prevent any DMAPI event from being sent when the reference on
3846 	 * the inode is dropped.
3847 	 */
3848 	ip->i_d.di_dmevmask = 0;
3849 
3850 	IRELE(ip);
3851 	return agino;
3852 
3853  fail_iput:
3854 	IRELE(ip);
3855  fail:
3856 	/*
3857 	 * We can't read in the inode this bucket points to, or this inode
3858 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
3859 	 * some inodes and space, but at least we won't hang.
3860 	 *
3861 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3862 	 * clear the inode pointer in the bucket.
3863 	 */
3864 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
3865 	return NULLAGINO;
3866 }
3867 
3868 /*
3869  * xlog_iunlink_recover
3870  *
3871  * This is called during recovery to process any inodes which
3872  * we unlinked but not freed when the system crashed.  These
3873  * inodes will be on the lists in the AGI blocks.  What we do
3874  * here is scan all the AGIs and fully truncate and free any
3875  * inodes found on the lists.  Each inode is removed from the
3876  * lists when it has been fully truncated and is freed.  The
3877  * freeing of the inode and its removal from the list must be
3878  * atomic.
3879  */
3880 STATIC void
3881 xlog_recover_process_iunlinks(
3882 	struct xlog	*log)
3883 {
3884 	xfs_mount_t	*mp;
3885 	xfs_agnumber_t	agno;
3886 	xfs_agi_t	*agi;
3887 	xfs_buf_t	*agibp;
3888 	xfs_agino_t	agino;
3889 	int		bucket;
3890 	int		error;
3891 	uint		mp_dmevmask;
3892 
3893 	mp = log->l_mp;
3894 
3895 	/*
3896 	 * Prevent any DMAPI event from being sent while in this function.
3897 	 */
3898 	mp_dmevmask = mp->m_dmevmask;
3899 	mp->m_dmevmask = 0;
3900 
3901 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3902 		/*
3903 		 * Find the agi for this ag.
3904 		 */
3905 		error = xfs_read_agi(mp, NULL, agno, &agibp);
3906 		if (error) {
3907 			/*
3908 			 * AGI is b0rked. Don't process it.
3909 			 *
3910 			 * We should probably mark the filesystem as corrupt
3911 			 * after we've recovered all the ag's we can....
3912 			 */
3913 			continue;
3914 		}
3915 		/*
3916 		 * Unlock the buffer so that it can be acquired in the normal
3917 		 * course of the transaction to truncate and free each inode.
3918 		 * Because we are not racing with anyone else here for the AGI
3919 		 * buffer, we don't even need to hold it locked to read the
3920 		 * initial unlinked bucket entries out of the buffer. We keep
3921 		 * buffer reference though, so that it stays pinned in memory
3922 		 * while we need the buffer.
3923 		 */
3924 		agi = XFS_BUF_TO_AGI(agibp);
3925 		xfs_buf_unlock(agibp);
3926 
3927 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3928 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3929 			while (agino != NULLAGINO) {
3930 				agino = xlog_recover_process_one_iunlink(mp,
3931 							agno, agino, bucket);
3932 			}
3933 		}
3934 		xfs_buf_rele(agibp);
3935 	}
3936 
3937 	mp->m_dmevmask = mp_dmevmask;
3938 }
3939 
3940 /*
3941  * Upack the log buffer data and crc check it. If the check fails, issue a
3942  * warning if and only if the CRC in the header is non-zero. This makes the
3943  * check an advisory warning, and the zero CRC check will prevent failure
3944  * warnings from being emitted when upgrading the kernel from one that does not
3945  * add CRCs by default.
3946  *
3947  * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
3948  * corruption failure
3949  */
3950 STATIC int
3951 xlog_unpack_data_crc(
3952 	struct xlog_rec_header	*rhead,
3953 	xfs_caddr_t		dp,
3954 	struct xlog		*log)
3955 {
3956 	__le32			crc;
3957 
3958 	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
3959 	if (crc != rhead->h_crc) {
3960 		if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
3961 			xfs_alert(log->l_mp,
3962 		"log record CRC mismatch: found 0x%x, expected 0x%x.\n",
3963 					le32_to_cpu(rhead->h_crc),
3964 					le32_to_cpu(crc));
3965 			xfs_hex_dump(dp, 32);
3966 		}
3967 
3968 		/*
3969 		 * If we've detected a log record corruption, then we can't
3970 		 * recover past this point. Abort recovery if we are enforcing
3971 		 * CRC protection by punting an error back up the stack.
3972 		 */
3973 		if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
3974 			return EFSCORRUPTED;
3975 	}
3976 
3977 	return 0;
3978 }
3979 
3980 STATIC int
3981 xlog_unpack_data(
3982 	struct xlog_rec_header	*rhead,
3983 	xfs_caddr_t		dp,
3984 	struct xlog		*log)
3985 {
3986 	int			i, j, k;
3987 	int			error;
3988 
3989 	error = xlog_unpack_data_crc(rhead, dp, log);
3990 	if (error)
3991 		return error;
3992 
3993 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3994 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3995 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3996 		dp += BBSIZE;
3997 	}
3998 
3999 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4000 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
4001 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
4002 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4003 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4004 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
4005 			dp += BBSIZE;
4006 		}
4007 	}
4008 
4009 	return 0;
4010 }
4011 
4012 STATIC int
4013 xlog_valid_rec_header(
4014 	struct xlog		*log,
4015 	struct xlog_rec_header	*rhead,
4016 	xfs_daddr_t		blkno)
4017 {
4018 	int			hlen;
4019 
4020 	if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
4021 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4022 				XFS_ERRLEVEL_LOW, log->l_mp);
4023 		return XFS_ERROR(EFSCORRUPTED);
4024 	}
4025 	if (unlikely(
4026 	    (!rhead->h_version ||
4027 	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
4028 		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
4029 			__func__, be32_to_cpu(rhead->h_version));
4030 		return XFS_ERROR(EIO);
4031 	}
4032 
4033 	/* LR body must have data or it wouldn't have been written */
4034 	hlen = be32_to_cpu(rhead->h_len);
4035 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4036 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4037 				XFS_ERRLEVEL_LOW, log->l_mp);
4038 		return XFS_ERROR(EFSCORRUPTED);
4039 	}
4040 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4041 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4042 				XFS_ERRLEVEL_LOW, log->l_mp);
4043 		return XFS_ERROR(EFSCORRUPTED);
4044 	}
4045 	return 0;
4046 }
4047 
4048 /*
4049  * Read the log from tail to head and process the log records found.
4050  * Handle the two cases where the tail and head are in the same cycle
4051  * and where the active portion of the log wraps around the end of
4052  * the physical log separately.  The pass parameter is passed through
4053  * to the routines called to process the data and is not looked at
4054  * here.
4055  */
4056 STATIC int
4057 xlog_do_recovery_pass(
4058 	struct xlog		*log,
4059 	xfs_daddr_t		head_blk,
4060 	xfs_daddr_t		tail_blk,
4061 	int			pass)
4062 {
4063 	xlog_rec_header_t	*rhead;
4064 	xfs_daddr_t		blk_no;
4065 	xfs_caddr_t		offset;
4066 	xfs_buf_t		*hbp, *dbp;
4067 	int			error = 0, h_size;
4068 	int			bblks, split_bblks;
4069 	int			hblks, split_hblks, wrapped_hblks;
4070 	struct hlist_head	rhash[XLOG_RHASH_SIZE];
4071 
4072 	ASSERT(head_blk != tail_blk);
4073 
4074 	/*
4075 	 * Read the header of the tail block and get the iclog buffer size from
4076 	 * h_size.  Use this to tell how many sectors make up the log header.
4077 	 */
4078 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4079 		/*
4080 		 * When using variable length iclogs, read first sector of
4081 		 * iclog header and extract the header size from it.  Get a
4082 		 * new hbp that is the correct size.
4083 		 */
4084 		hbp = xlog_get_bp(log, 1);
4085 		if (!hbp)
4086 			return ENOMEM;
4087 
4088 		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4089 		if (error)
4090 			goto bread_err1;
4091 
4092 		rhead = (xlog_rec_header_t *)offset;
4093 		error = xlog_valid_rec_header(log, rhead, tail_blk);
4094 		if (error)
4095 			goto bread_err1;
4096 		h_size = be32_to_cpu(rhead->h_size);
4097 		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
4098 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4099 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4100 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
4101 				hblks++;
4102 			xlog_put_bp(hbp);
4103 			hbp = xlog_get_bp(log, hblks);
4104 		} else {
4105 			hblks = 1;
4106 		}
4107 	} else {
4108 		ASSERT(log->l_sectBBsize == 1);
4109 		hblks = 1;
4110 		hbp = xlog_get_bp(log, 1);
4111 		h_size = XLOG_BIG_RECORD_BSIZE;
4112 	}
4113 
4114 	if (!hbp)
4115 		return ENOMEM;
4116 	dbp = xlog_get_bp(log, BTOBB(h_size));
4117 	if (!dbp) {
4118 		xlog_put_bp(hbp);
4119 		return ENOMEM;
4120 	}
4121 
4122 	memset(rhash, 0, sizeof(rhash));
4123 	if (tail_blk <= head_blk) {
4124 		for (blk_no = tail_blk; blk_no < head_blk; ) {
4125 			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4126 			if (error)
4127 				goto bread_err2;
4128 
4129 			rhead = (xlog_rec_header_t *)offset;
4130 			error = xlog_valid_rec_header(log, rhead, blk_no);
4131 			if (error)
4132 				goto bread_err2;
4133 
4134 			/* blocks in data section */
4135 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4136 			error = xlog_bread(log, blk_no + hblks, bblks, dbp,
4137 					   &offset);
4138 			if (error)
4139 				goto bread_err2;
4140 
4141 			error = xlog_unpack_data(rhead, offset, log);
4142 			if (error)
4143 				goto bread_err2;
4144 
4145 			error = xlog_recover_process_data(log,
4146 						rhash, rhead, offset, pass);
4147 			if (error)
4148 				goto bread_err2;
4149 			blk_no += bblks + hblks;
4150 		}
4151 	} else {
4152 		/*
4153 		 * Perform recovery around the end of the physical log.
4154 		 * When the head is not on the same cycle number as the tail,
4155 		 * we can't do a sequential recovery as above.
4156 		 */
4157 		blk_no = tail_blk;
4158 		while (blk_no < log->l_logBBsize) {
4159 			/*
4160 			 * Check for header wrapping around physical end-of-log
4161 			 */
4162 			offset = hbp->b_addr;
4163 			split_hblks = 0;
4164 			wrapped_hblks = 0;
4165 			if (blk_no + hblks <= log->l_logBBsize) {
4166 				/* Read header in one read */
4167 				error = xlog_bread(log, blk_no, hblks, hbp,
4168 						   &offset);
4169 				if (error)
4170 					goto bread_err2;
4171 			} else {
4172 				/* This LR is split across physical log end */
4173 				if (blk_no != log->l_logBBsize) {
4174 					/* some data before physical log end */
4175 					ASSERT(blk_no <= INT_MAX);
4176 					split_hblks = log->l_logBBsize - (int)blk_no;
4177 					ASSERT(split_hblks > 0);
4178 					error = xlog_bread(log, blk_no,
4179 							   split_hblks, hbp,
4180 							   &offset);
4181 					if (error)
4182 						goto bread_err2;
4183 				}
4184 
4185 				/*
4186 				 * Note: this black magic still works with
4187 				 * large sector sizes (non-512) only because:
4188 				 * - we increased the buffer size originally
4189 				 *   by 1 sector giving us enough extra space
4190 				 *   for the second read;
4191 				 * - the log start is guaranteed to be sector
4192 				 *   aligned;
4193 				 * - we read the log end (LR header start)
4194 				 *   _first_, then the log start (LR header end)
4195 				 *   - order is important.
4196 				 */
4197 				wrapped_hblks = hblks - split_hblks;
4198 				error = xlog_bread_offset(log, 0,
4199 						wrapped_hblks, hbp,
4200 						offset + BBTOB(split_hblks));
4201 				if (error)
4202 					goto bread_err2;
4203 			}
4204 			rhead = (xlog_rec_header_t *)offset;
4205 			error = xlog_valid_rec_header(log, rhead,
4206 						split_hblks ? blk_no : 0);
4207 			if (error)
4208 				goto bread_err2;
4209 
4210 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4211 			blk_no += hblks;
4212 
4213 			/* Read in data for log record */
4214 			if (blk_no + bblks <= log->l_logBBsize) {
4215 				error = xlog_bread(log, blk_no, bblks, dbp,
4216 						   &offset);
4217 				if (error)
4218 					goto bread_err2;
4219 			} else {
4220 				/* This log record is split across the
4221 				 * physical end of log */
4222 				offset = dbp->b_addr;
4223 				split_bblks = 0;
4224 				if (blk_no != log->l_logBBsize) {
4225 					/* some data is before the physical
4226 					 * end of log */
4227 					ASSERT(!wrapped_hblks);
4228 					ASSERT(blk_no <= INT_MAX);
4229 					split_bblks =
4230 						log->l_logBBsize - (int)blk_no;
4231 					ASSERT(split_bblks > 0);
4232 					error = xlog_bread(log, blk_no,
4233 							split_bblks, dbp,
4234 							&offset);
4235 					if (error)
4236 						goto bread_err2;
4237 				}
4238 
4239 				/*
4240 				 * Note: this black magic still works with
4241 				 * large sector sizes (non-512) only because:
4242 				 * - we increased the buffer size originally
4243 				 *   by 1 sector giving us enough extra space
4244 				 *   for the second read;
4245 				 * - the log start is guaranteed to be sector
4246 				 *   aligned;
4247 				 * - we read the log end (LR header start)
4248 				 *   _first_, then the log start (LR header end)
4249 				 *   - order is important.
4250 				 */
4251 				error = xlog_bread_offset(log, 0,
4252 						bblks - split_bblks, dbp,
4253 						offset + BBTOB(split_bblks));
4254 				if (error)
4255 					goto bread_err2;
4256 			}
4257 
4258 			error = xlog_unpack_data(rhead, offset, log);
4259 			if (error)
4260 				goto bread_err2;
4261 
4262 			error = xlog_recover_process_data(log, rhash,
4263 							rhead, offset, pass);
4264 			if (error)
4265 				goto bread_err2;
4266 			blk_no += bblks;
4267 		}
4268 
4269 		ASSERT(blk_no >= log->l_logBBsize);
4270 		blk_no -= log->l_logBBsize;
4271 
4272 		/* read first part of physical log */
4273 		while (blk_no < head_blk) {
4274 			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4275 			if (error)
4276 				goto bread_err2;
4277 
4278 			rhead = (xlog_rec_header_t *)offset;
4279 			error = xlog_valid_rec_header(log, rhead, blk_no);
4280 			if (error)
4281 				goto bread_err2;
4282 
4283 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4284 			error = xlog_bread(log, blk_no+hblks, bblks, dbp,
4285 					   &offset);
4286 			if (error)
4287 				goto bread_err2;
4288 
4289 			error = xlog_unpack_data(rhead, offset, log);
4290 			if (error)
4291 				goto bread_err2;
4292 
4293 			error = xlog_recover_process_data(log, rhash,
4294 							rhead, offset, pass);
4295 			if (error)
4296 				goto bread_err2;
4297 			blk_no += bblks + hblks;
4298 		}
4299 	}
4300 
4301  bread_err2:
4302 	xlog_put_bp(dbp);
4303  bread_err1:
4304 	xlog_put_bp(hbp);
4305 	return error;
4306 }
4307 
4308 /*
4309  * Do the recovery of the log.  We actually do this in two phases.
4310  * The two passes are necessary in order to implement the function
4311  * of cancelling a record written into the log.  The first pass
4312  * determines those things which have been cancelled, and the
4313  * second pass replays log items normally except for those which
4314  * have been cancelled.  The handling of the replay and cancellations
4315  * takes place in the log item type specific routines.
4316  *
4317  * The table of items which have cancel records in the log is allocated
4318  * and freed at this level, since only here do we know when all of
4319  * the log recovery has been completed.
4320  */
4321 STATIC int
4322 xlog_do_log_recovery(
4323 	struct xlog	*log,
4324 	xfs_daddr_t	head_blk,
4325 	xfs_daddr_t	tail_blk)
4326 {
4327 	int		error, i;
4328 
4329 	ASSERT(head_blk != tail_blk);
4330 
4331 	/*
4332 	 * First do a pass to find all of the cancelled buf log items.
4333 	 * Store them in the buf_cancel_table for use in the second pass.
4334 	 */
4335 	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4336 						 sizeof(struct list_head),
4337 						 KM_SLEEP);
4338 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4339 		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4340 
4341 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4342 				      XLOG_RECOVER_PASS1);
4343 	if (error != 0) {
4344 		kmem_free(log->l_buf_cancel_table);
4345 		log->l_buf_cancel_table = NULL;
4346 		return error;
4347 	}
4348 	/*
4349 	 * Then do a second pass to actually recover the items in the log.
4350 	 * When it is complete free the table of buf cancel items.
4351 	 */
4352 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4353 				      XLOG_RECOVER_PASS2);
4354 #ifdef DEBUG
4355 	if (!error) {
4356 		int	i;
4357 
4358 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4359 			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
4360 	}
4361 #endif	/* DEBUG */
4362 
4363 	kmem_free(log->l_buf_cancel_table);
4364 	log->l_buf_cancel_table = NULL;
4365 
4366 	return error;
4367 }
4368 
4369 /*
4370  * Do the actual recovery
4371  */
4372 STATIC int
4373 xlog_do_recover(
4374 	struct xlog	*log,
4375 	xfs_daddr_t	head_blk,
4376 	xfs_daddr_t	tail_blk)
4377 {
4378 	int		error;
4379 	xfs_buf_t	*bp;
4380 	xfs_sb_t	*sbp;
4381 
4382 	/*
4383 	 * First replay the images in the log.
4384 	 */
4385 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
4386 	if (error)
4387 		return error;
4388 
4389 	/*
4390 	 * If IO errors happened during recovery, bail out.
4391 	 */
4392 	if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4393 		return (EIO);
4394 	}
4395 
4396 	/*
4397 	 * We now update the tail_lsn since much of the recovery has completed
4398 	 * and there may be space available to use.  If there were no extent
4399 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
4400 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
4401 	 * lsn of the last known good LR on disk.  If there are extent frees
4402 	 * or iunlinks they will have some entries in the AIL; so we look at
4403 	 * the AIL to determine how to set the tail_lsn.
4404 	 */
4405 	xlog_assign_tail_lsn(log->l_mp);
4406 
4407 	/*
4408 	 * Now that we've finished replaying all buffer and inode
4409 	 * updates, re-read in the superblock and reverify it.
4410 	 */
4411 	bp = xfs_getsb(log->l_mp, 0);
4412 	XFS_BUF_UNDONE(bp);
4413 	ASSERT(!(XFS_BUF_ISWRITE(bp)));
4414 	XFS_BUF_READ(bp);
4415 	XFS_BUF_UNASYNC(bp);
4416 	bp->b_ops = &xfs_sb_buf_ops;
4417 	xfsbdstrat(log->l_mp, bp);
4418 	error = xfs_buf_iowait(bp);
4419 	if (error) {
4420 		xfs_buf_ioerror_alert(bp, __func__);
4421 		ASSERT(0);
4422 		xfs_buf_relse(bp);
4423 		return error;
4424 	}
4425 
4426 	/* Convert superblock from on-disk format */
4427 	sbp = &log->l_mp->m_sb;
4428 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
4429 	ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
4430 	ASSERT(xfs_sb_good_version(sbp));
4431 	xfs_buf_relse(bp);
4432 
4433 	/* We've re-read the superblock so re-initialize per-cpu counters */
4434 	xfs_icsb_reinit_counters(log->l_mp);
4435 
4436 	xlog_recover_check_summary(log);
4437 
4438 	/* Normal transactions can now occur */
4439 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4440 	return 0;
4441 }
4442 
4443 /*
4444  * Perform recovery and re-initialize some log variables in xlog_find_tail.
4445  *
4446  * Return error or zero.
4447  */
4448 int
4449 xlog_recover(
4450 	struct xlog	*log)
4451 {
4452 	xfs_daddr_t	head_blk, tail_blk;
4453 	int		error;
4454 
4455 	/* find the tail of the log */
4456 	if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
4457 		return error;
4458 
4459 	if (tail_blk != head_blk) {
4460 		/* There used to be a comment here:
4461 		 *
4462 		 * disallow recovery on read-only mounts.  note -- mount
4463 		 * checks for ENOSPC and turns it into an intelligent
4464 		 * error message.
4465 		 * ...but this is no longer true.  Now, unless you specify
4466 		 * NORECOVERY (in which case this function would never be
4467 		 * called), we just go ahead and recover.  We do this all
4468 		 * under the vfs layer, so we can get away with it unless
4469 		 * the device itself is read-only, in which case we fail.
4470 		 */
4471 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
4472 			return error;
4473 		}
4474 
4475 		/*
4476 		 * Version 5 superblock log feature mask validation. We know the
4477 		 * log is dirty so check if there are any unknown log features
4478 		 * in what we need to recover. If there are unknown features
4479 		 * (e.g. unsupported transactions, then simply reject the
4480 		 * attempt at recovery before touching anything.
4481 		 */
4482 		if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
4483 		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
4484 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
4485 			xfs_warn(log->l_mp,
4486 "Superblock has unknown incompatible log features (0x%x) enabled.\n"
4487 "The log can not be fully and/or safely recovered by this kernel.\n"
4488 "Please recover the log on a kernel that supports the unknown features.",
4489 				(log->l_mp->m_sb.sb_features_log_incompat &
4490 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
4491 			return EINVAL;
4492 		}
4493 
4494 		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
4495 				log->l_mp->m_logname ? log->l_mp->m_logname
4496 						     : "internal");
4497 
4498 		error = xlog_do_recover(log, head_blk, tail_blk);
4499 		log->l_flags |= XLOG_RECOVERY_NEEDED;
4500 	}
4501 	return error;
4502 }
4503 
4504 /*
4505  * In the first part of recovery we replay inodes and buffers and build
4506  * up the list of extent free items which need to be processed.  Here
4507  * we process the extent free items and clean up the on disk unlinked
4508  * inode lists.  This is separated from the first part of recovery so
4509  * that the root and real-time bitmap inodes can be read in from disk in
4510  * between the two stages.  This is necessary so that we can free space
4511  * in the real-time portion of the file system.
4512  */
4513 int
4514 xlog_recover_finish(
4515 	struct xlog	*log)
4516 {
4517 	/*
4518 	 * Now we're ready to do the transactions needed for the
4519 	 * rest of recovery.  Start with completing all the extent
4520 	 * free intent records and then process the unlinked inode
4521 	 * lists.  At this point, we essentially run in normal mode
4522 	 * except that we're still performing recovery actions
4523 	 * rather than accepting new requests.
4524 	 */
4525 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
4526 		int	error;
4527 		error = xlog_recover_process_efis(log);
4528 		if (error) {
4529 			xfs_alert(log->l_mp, "Failed to recover EFIs");
4530 			return error;
4531 		}
4532 		/*
4533 		 * Sync the log to get all the EFIs out of the AIL.
4534 		 * This isn't absolutely necessary, but it helps in
4535 		 * case the unlink transactions would have problems
4536 		 * pushing the EFIs out of the way.
4537 		 */
4538 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
4539 
4540 		xlog_recover_process_iunlinks(log);
4541 
4542 		xlog_recover_check_summary(log);
4543 
4544 		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4545 				log->l_mp->m_logname ? log->l_mp->m_logname
4546 						     : "internal");
4547 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4548 	} else {
4549 		xfs_info(log->l_mp, "Ending clean mount");
4550 	}
4551 	return 0;
4552 }
4553 
4554 
4555 #if defined(DEBUG)
4556 /*
4557  * Read all of the agf and agi counters and check that they
4558  * are consistent with the superblock counters.
4559  */
4560 void
4561 xlog_recover_check_summary(
4562 	struct xlog	*log)
4563 {
4564 	xfs_mount_t	*mp;
4565 	xfs_agf_t	*agfp;
4566 	xfs_buf_t	*agfbp;
4567 	xfs_buf_t	*agibp;
4568 	xfs_agnumber_t	agno;
4569 	__uint64_t	freeblks;
4570 	__uint64_t	itotal;
4571 	__uint64_t	ifree;
4572 	int		error;
4573 
4574 	mp = log->l_mp;
4575 
4576 	freeblks = 0LL;
4577 	itotal = 0LL;
4578 	ifree = 0LL;
4579 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4580 		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4581 		if (error) {
4582 			xfs_alert(mp, "%s agf read failed agno %d error %d",
4583 						__func__, agno, error);
4584 		} else {
4585 			agfp = XFS_BUF_TO_AGF(agfbp);
4586 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
4587 				    be32_to_cpu(agfp->agf_flcount);
4588 			xfs_buf_relse(agfbp);
4589 		}
4590 
4591 		error = xfs_read_agi(mp, NULL, agno, &agibp);
4592 		if (error) {
4593 			xfs_alert(mp, "%s agi read failed agno %d error %d",
4594 						__func__, agno, error);
4595 		} else {
4596 			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
4597 
4598 			itotal += be32_to_cpu(agi->agi_count);
4599 			ifree += be32_to_cpu(agi->agi_freecount);
4600 			xfs_buf_relse(agibp);
4601 		}
4602 	}
4603 }
4604 #endif /* DEBUG */
4605