1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_sb.h" 26 #include "xfs_mount.h" 27 #include "xfs_defer.h" 28 #include "xfs_da_format.h" 29 #include "xfs_da_btree.h" 30 #include "xfs_inode.h" 31 #include "xfs_trans.h" 32 #include "xfs_log.h" 33 #include "xfs_log_priv.h" 34 #include "xfs_log_recover.h" 35 #include "xfs_inode_item.h" 36 #include "xfs_extfree_item.h" 37 #include "xfs_trans_priv.h" 38 #include "xfs_alloc.h" 39 #include "xfs_ialloc.h" 40 #include "xfs_quota.h" 41 #include "xfs_cksum.h" 42 #include "xfs_trace.h" 43 #include "xfs_icache.h" 44 #include "xfs_bmap_btree.h" 45 #include "xfs_error.h" 46 #include "xfs_dir2.h" 47 #include "xfs_rmap_item.h" 48 #include "xfs_buf_item.h" 49 #include "xfs_refcount_item.h" 50 #include "xfs_bmap_item.h" 51 52 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) 53 54 STATIC int 55 xlog_find_zeroed( 56 struct xlog *, 57 xfs_daddr_t *); 58 STATIC int 59 xlog_clear_stale_blocks( 60 struct xlog *, 61 xfs_lsn_t); 62 #if defined(DEBUG) 63 STATIC void 64 xlog_recover_check_summary( 65 struct xlog *); 66 #else 67 #define xlog_recover_check_summary(log) 68 #endif 69 STATIC int 70 xlog_do_recovery_pass( 71 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *); 72 73 /* 74 * This structure is used during recovery to record the buf log items which 75 * have been canceled and should not be replayed. 76 */ 77 struct xfs_buf_cancel { 78 xfs_daddr_t bc_blkno; 79 uint bc_len; 80 int bc_refcount; 81 struct list_head bc_list; 82 }; 83 84 /* 85 * Sector aligned buffer routines for buffer create/read/write/access 86 */ 87 88 /* 89 * Verify the log-relative block number and length in basic blocks are valid for 90 * an operation involving the given XFS log buffer. Returns true if the fields 91 * are valid, false otherwise. 92 */ 93 static inline bool 94 xlog_verify_bp( 95 struct xlog *log, 96 xfs_daddr_t blk_no, 97 int bbcount) 98 { 99 if (blk_no < 0 || blk_no >= log->l_logBBsize) 100 return false; 101 if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize) 102 return false; 103 return true; 104 } 105 106 /* 107 * Allocate a buffer to hold log data. The buffer needs to be able 108 * to map to a range of nbblks basic blocks at any valid (basic 109 * block) offset within the log. 110 */ 111 STATIC xfs_buf_t * 112 xlog_get_bp( 113 struct xlog *log, 114 int nbblks) 115 { 116 struct xfs_buf *bp; 117 118 /* 119 * Pass log block 0 since we don't have an addr yet, buffer will be 120 * verified on read. 121 */ 122 if (!xlog_verify_bp(log, 0, nbblks)) { 123 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 124 nbblks); 125 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 126 return NULL; 127 } 128 129 /* 130 * We do log I/O in units of log sectors (a power-of-2 131 * multiple of the basic block size), so we round up the 132 * requested size to accommodate the basic blocks required 133 * for complete log sectors. 134 * 135 * In addition, the buffer may be used for a non-sector- 136 * aligned block offset, in which case an I/O of the 137 * requested size could extend beyond the end of the 138 * buffer. If the requested size is only 1 basic block it 139 * will never straddle a sector boundary, so this won't be 140 * an issue. Nor will this be a problem if the log I/O is 141 * done in basic blocks (sector size 1). But otherwise we 142 * extend the buffer by one extra log sector to ensure 143 * there's space to accommodate this possibility. 144 */ 145 if (nbblks > 1 && log->l_sectBBsize > 1) 146 nbblks += log->l_sectBBsize; 147 nbblks = round_up(nbblks, log->l_sectBBsize); 148 149 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0); 150 if (bp) 151 xfs_buf_unlock(bp); 152 return bp; 153 } 154 155 STATIC void 156 xlog_put_bp( 157 xfs_buf_t *bp) 158 { 159 xfs_buf_free(bp); 160 } 161 162 /* 163 * Return the address of the start of the given block number's data 164 * in a log buffer. The buffer covers a log sector-aligned region. 165 */ 166 STATIC char * 167 xlog_align( 168 struct xlog *log, 169 xfs_daddr_t blk_no, 170 int nbblks, 171 struct xfs_buf *bp) 172 { 173 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1); 174 175 ASSERT(offset + nbblks <= bp->b_length); 176 return bp->b_addr + BBTOB(offset); 177 } 178 179 180 /* 181 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 182 */ 183 STATIC int 184 xlog_bread_noalign( 185 struct xlog *log, 186 xfs_daddr_t blk_no, 187 int nbblks, 188 struct xfs_buf *bp) 189 { 190 int error; 191 192 if (!xlog_verify_bp(log, blk_no, nbblks)) { 193 xfs_warn(log->l_mp, 194 "Invalid log block/length (0x%llx, 0x%x) for buffer", 195 blk_no, nbblks); 196 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 197 return -EFSCORRUPTED; 198 } 199 200 blk_no = round_down(blk_no, log->l_sectBBsize); 201 nbblks = round_up(nbblks, log->l_sectBBsize); 202 203 ASSERT(nbblks > 0); 204 ASSERT(nbblks <= bp->b_length); 205 206 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 207 bp->b_flags |= XBF_READ; 208 bp->b_io_length = nbblks; 209 bp->b_error = 0; 210 211 error = xfs_buf_submit_wait(bp); 212 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) 213 xfs_buf_ioerror_alert(bp, __func__); 214 return error; 215 } 216 217 STATIC int 218 xlog_bread( 219 struct xlog *log, 220 xfs_daddr_t blk_no, 221 int nbblks, 222 struct xfs_buf *bp, 223 char **offset) 224 { 225 int error; 226 227 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 228 if (error) 229 return error; 230 231 *offset = xlog_align(log, blk_no, nbblks, bp); 232 return 0; 233 } 234 235 /* 236 * Read at an offset into the buffer. Returns with the buffer in it's original 237 * state regardless of the result of the read. 238 */ 239 STATIC int 240 xlog_bread_offset( 241 struct xlog *log, 242 xfs_daddr_t blk_no, /* block to read from */ 243 int nbblks, /* blocks to read */ 244 struct xfs_buf *bp, 245 char *offset) 246 { 247 char *orig_offset = bp->b_addr; 248 int orig_len = BBTOB(bp->b_length); 249 int error, error2; 250 251 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks)); 252 if (error) 253 return error; 254 255 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 256 257 /* must reset buffer pointer even on error */ 258 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len); 259 if (error) 260 return error; 261 return error2; 262 } 263 264 /* 265 * Write out the buffer at the given block for the given number of blocks. 266 * The buffer is kept locked across the write and is returned locked. 267 * This can only be used for synchronous log writes. 268 */ 269 STATIC int 270 xlog_bwrite( 271 struct xlog *log, 272 xfs_daddr_t blk_no, 273 int nbblks, 274 struct xfs_buf *bp) 275 { 276 int error; 277 278 if (!xlog_verify_bp(log, blk_no, nbblks)) { 279 xfs_warn(log->l_mp, 280 "Invalid log block/length (0x%llx, 0x%x) for buffer", 281 blk_no, nbblks); 282 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 283 return -EFSCORRUPTED; 284 } 285 286 blk_no = round_down(blk_no, log->l_sectBBsize); 287 nbblks = round_up(nbblks, log->l_sectBBsize); 288 289 ASSERT(nbblks > 0); 290 ASSERT(nbblks <= bp->b_length); 291 292 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 293 xfs_buf_hold(bp); 294 xfs_buf_lock(bp); 295 bp->b_io_length = nbblks; 296 bp->b_error = 0; 297 298 error = xfs_bwrite(bp); 299 if (error) 300 xfs_buf_ioerror_alert(bp, __func__); 301 xfs_buf_relse(bp); 302 return error; 303 } 304 305 #ifdef DEBUG 306 /* 307 * dump debug superblock and log record information 308 */ 309 STATIC void 310 xlog_header_check_dump( 311 xfs_mount_t *mp, 312 xlog_rec_header_t *head) 313 { 314 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d", 315 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 316 xfs_debug(mp, " log : uuid = %pU, fmt = %d", 317 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 318 } 319 #else 320 #define xlog_header_check_dump(mp, head) 321 #endif 322 323 /* 324 * check log record header for recovery 325 */ 326 STATIC int 327 xlog_header_check_recover( 328 xfs_mount_t *mp, 329 xlog_rec_header_t *head) 330 { 331 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 332 333 /* 334 * IRIX doesn't write the h_fmt field and leaves it zeroed 335 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 336 * a dirty log created in IRIX. 337 */ 338 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) { 339 xfs_warn(mp, 340 "dirty log written in incompatible format - can't recover"); 341 xlog_header_check_dump(mp, head); 342 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 343 XFS_ERRLEVEL_HIGH, mp); 344 return -EFSCORRUPTED; 345 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 346 xfs_warn(mp, 347 "dirty log entry has mismatched uuid - can't recover"); 348 xlog_header_check_dump(mp, head); 349 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 350 XFS_ERRLEVEL_HIGH, mp); 351 return -EFSCORRUPTED; 352 } 353 return 0; 354 } 355 356 /* 357 * read the head block of the log and check the header 358 */ 359 STATIC int 360 xlog_header_check_mount( 361 xfs_mount_t *mp, 362 xlog_rec_header_t *head) 363 { 364 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 365 366 if (uuid_is_null(&head->h_fs_uuid)) { 367 /* 368 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 369 * h_fs_uuid is null, we assume this log was last mounted 370 * by IRIX and continue. 371 */ 372 xfs_warn(mp, "null uuid in log - IRIX style log"); 373 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 374 xfs_warn(mp, "log has mismatched uuid - can't recover"); 375 xlog_header_check_dump(mp, head); 376 XFS_ERROR_REPORT("xlog_header_check_mount", 377 XFS_ERRLEVEL_HIGH, mp); 378 return -EFSCORRUPTED; 379 } 380 return 0; 381 } 382 383 STATIC void 384 xlog_recover_iodone( 385 struct xfs_buf *bp) 386 { 387 if (bp->b_error) { 388 /* 389 * We're not going to bother about retrying 390 * this during recovery. One strike! 391 */ 392 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 393 xfs_buf_ioerror_alert(bp, __func__); 394 xfs_force_shutdown(bp->b_target->bt_mount, 395 SHUTDOWN_META_IO_ERROR); 396 } 397 } 398 399 /* 400 * On v5 supers, a bli could be attached to update the metadata LSN. 401 * Clean it up. 402 */ 403 if (bp->b_log_item) 404 xfs_buf_item_relse(bp); 405 ASSERT(bp->b_log_item == NULL); 406 407 bp->b_iodone = NULL; 408 xfs_buf_ioend(bp); 409 } 410 411 /* 412 * This routine finds (to an approximation) the first block in the physical 413 * log which contains the given cycle. It uses a binary search algorithm. 414 * Note that the algorithm can not be perfect because the disk will not 415 * necessarily be perfect. 416 */ 417 STATIC int 418 xlog_find_cycle_start( 419 struct xlog *log, 420 struct xfs_buf *bp, 421 xfs_daddr_t first_blk, 422 xfs_daddr_t *last_blk, 423 uint cycle) 424 { 425 char *offset; 426 xfs_daddr_t mid_blk; 427 xfs_daddr_t end_blk; 428 uint mid_cycle; 429 int error; 430 431 end_blk = *last_blk; 432 mid_blk = BLK_AVG(first_blk, end_blk); 433 while (mid_blk != first_blk && mid_blk != end_blk) { 434 error = xlog_bread(log, mid_blk, 1, bp, &offset); 435 if (error) 436 return error; 437 mid_cycle = xlog_get_cycle(offset); 438 if (mid_cycle == cycle) 439 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 440 else 441 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 442 mid_blk = BLK_AVG(first_blk, end_blk); 443 } 444 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 445 (mid_blk == end_blk && mid_blk-1 == first_blk)); 446 447 *last_blk = end_blk; 448 449 return 0; 450 } 451 452 /* 453 * Check that a range of blocks does not contain stop_on_cycle_no. 454 * Fill in *new_blk with the block offset where such a block is 455 * found, or with -1 (an invalid block number) if there is no such 456 * block in the range. The scan needs to occur from front to back 457 * and the pointer into the region must be updated since a later 458 * routine will need to perform another test. 459 */ 460 STATIC int 461 xlog_find_verify_cycle( 462 struct xlog *log, 463 xfs_daddr_t start_blk, 464 int nbblks, 465 uint stop_on_cycle_no, 466 xfs_daddr_t *new_blk) 467 { 468 xfs_daddr_t i, j; 469 uint cycle; 470 xfs_buf_t *bp; 471 xfs_daddr_t bufblks; 472 char *buf = NULL; 473 int error = 0; 474 475 /* 476 * Greedily allocate a buffer big enough to handle the full 477 * range of basic blocks we'll be examining. If that fails, 478 * try a smaller size. We need to be able to read at least 479 * a log sector, or we're out of luck. 480 */ 481 bufblks = 1 << ffs(nbblks); 482 while (bufblks > log->l_logBBsize) 483 bufblks >>= 1; 484 while (!(bp = xlog_get_bp(log, bufblks))) { 485 bufblks >>= 1; 486 if (bufblks < log->l_sectBBsize) 487 return -ENOMEM; 488 } 489 490 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 491 int bcount; 492 493 bcount = min(bufblks, (start_blk + nbblks - i)); 494 495 error = xlog_bread(log, i, bcount, bp, &buf); 496 if (error) 497 goto out; 498 499 for (j = 0; j < bcount; j++) { 500 cycle = xlog_get_cycle(buf); 501 if (cycle == stop_on_cycle_no) { 502 *new_blk = i+j; 503 goto out; 504 } 505 506 buf += BBSIZE; 507 } 508 } 509 510 *new_blk = -1; 511 512 out: 513 xlog_put_bp(bp); 514 return error; 515 } 516 517 /* 518 * Potentially backup over partial log record write. 519 * 520 * In the typical case, last_blk is the number of the block directly after 521 * a good log record. Therefore, we subtract one to get the block number 522 * of the last block in the given buffer. extra_bblks contains the number 523 * of blocks we would have read on a previous read. This happens when the 524 * last log record is split over the end of the physical log. 525 * 526 * extra_bblks is the number of blocks potentially verified on a previous 527 * call to this routine. 528 */ 529 STATIC int 530 xlog_find_verify_log_record( 531 struct xlog *log, 532 xfs_daddr_t start_blk, 533 xfs_daddr_t *last_blk, 534 int extra_bblks) 535 { 536 xfs_daddr_t i; 537 xfs_buf_t *bp; 538 char *offset = NULL; 539 xlog_rec_header_t *head = NULL; 540 int error = 0; 541 int smallmem = 0; 542 int num_blks = *last_blk - start_blk; 543 int xhdrs; 544 545 ASSERT(start_blk != 0 || *last_blk != start_blk); 546 547 if (!(bp = xlog_get_bp(log, num_blks))) { 548 if (!(bp = xlog_get_bp(log, 1))) 549 return -ENOMEM; 550 smallmem = 1; 551 } else { 552 error = xlog_bread(log, start_blk, num_blks, bp, &offset); 553 if (error) 554 goto out; 555 offset += ((num_blks - 1) << BBSHIFT); 556 } 557 558 for (i = (*last_blk) - 1; i >= 0; i--) { 559 if (i < start_blk) { 560 /* valid log record not found */ 561 xfs_warn(log->l_mp, 562 "Log inconsistent (didn't find previous header)"); 563 ASSERT(0); 564 error = -EIO; 565 goto out; 566 } 567 568 if (smallmem) { 569 error = xlog_bread(log, i, 1, bp, &offset); 570 if (error) 571 goto out; 572 } 573 574 head = (xlog_rec_header_t *)offset; 575 576 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 577 break; 578 579 if (!smallmem) 580 offset -= BBSIZE; 581 } 582 583 /* 584 * We hit the beginning of the physical log & still no header. Return 585 * to caller. If caller can handle a return of -1, then this routine 586 * will be called again for the end of the physical log. 587 */ 588 if (i == -1) { 589 error = 1; 590 goto out; 591 } 592 593 /* 594 * We have the final block of the good log (the first block 595 * of the log record _before_ the head. So we check the uuid. 596 */ 597 if ((error = xlog_header_check_mount(log->l_mp, head))) 598 goto out; 599 600 /* 601 * We may have found a log record header before we expected one. 602 * last_blk will be the 1st block # with a given cycle #. We may end 603 * up reading an entire log record. In this case, we don't want to 604 * reset last_blk. Only when last_blk points in the middle of a log 605 * record do we update last_blk. 606 */ 607 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 608 uint h_size = be32_to_cpu(head->h_size); 609 610 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 611 if (h_size % XLOG_HEADER_CYCLE_SIZE) 612 xhdrs++; 613 } else { 614 xhdrs = 1; 615 } 616 617 if (*last_blk - i + extra_bblks != 618 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 619 *last_blk = i; 620 621 out: 622 xlog_put_bp(bp); 623 return error; 624 } 625 626 /* 627 * Head is defined to be the point of the log where the next log write 628 * could go. This means that incomplete LR writes at the end are 629 * eliminated when calculating the head. We aren't guaranteed that previous 630 * LR have complete transactions. We only know that a cycle number of 631 * current cycle number -1 won't be present in the log if we start writing 632 * from our current block number. 633 * 634 * last_blk contains the block number of the first block with a given 635 * cycle number. 636 * 637 * Return: zero if normal, non-zero if error. 638 */ 639 STATIC int 640 xlog_find_head( 641 struct xlog *log, 642 xfs_daddr_t *return_head_blk) 643 { 644 xfs_buf_t *bp; 645 char *offset; 646 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 647 int num_scan_bblks; 648 uint first_half_cycle, last_half_cycle; 649 uint stop_on_cycle; 650 int error, log_bbnum = log->l_logBBsize; 651 652 /* Is the end of the log device zeroed? */ 653 error = xlog_find_zeroed(log, &first_blk); 654 if (error < 0) { 655 xfs_warn(log->l_mp, "empty log check failed"); 656 return error; 657 } 658 if (error == 1) { 659 *return_head_blk = first_blk; 660 661 /* Is the whole lot zeroed? */ 662 if (!first_blk) { 663 /* Linux XFS shouldn't generate totally zeroed logs - 664 * mkfs etc write a dummy unmount record to a fresh 665 * log so we can store the uuid in there 666 */ 667 xfs_warn(log->l_mp, "totally zeroed log"); 668 } 669 670 return 0; 671 } 672 673 first_blk = 0; /* get cycle # of 1st block */ 674 bp = xlog_get_bp(log, 1); 675 if (!bp) 676 return -ENOMEM; 677 678 error = xlog_bread(log, 0, 1, bp, &offset); 679 if (error) 680 goto bp_err; 681 682 first_half_cycle = xlog_get_cycle(offset); 683 684 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 685 error = xlog_bread(log, last_blk, 1, bp, &offset); 686 if (error) 687 goto bp_err; 688 689 last_half_cycle = xlog_get_cycle(offset); 690 ASSERT(last_half_cycle != 0); 691 692 /* 693 * If the 1st half cycle number is equal to the last half cycle number, 694 * then the entire log is stamped with the same cycle number. In this 695 * case, head_blk can't be set to zero (which makes sense). The below 696 * math doesn't work out properly with head_blk equal to zero. Instead, 697 * we set it to log_bbnum which is an invalid block number, but this 698 * value makes the math correct. If head_blk doesn't changed through 699 * all the tests below, *head_blk is set to zero at the very end rather 700 * than log_bbnum. In a sense, log_bbnum and zero are the same block 701 * in a circular file. 702 */ 703 if (first_half_cycle == last_half_cycle) { 704 /* 705 * In this case we believe that the entire log should have 706 * cycle number last_half_cycle. We need to scan backwards 707 * from the end verifying that there are no holes still 708 * containing last_half_cycle - 1. If we find such a hole, 709 * then the start of that hole will be the new head. The 710 * simple case looks like 711 * x | x ... | x - 1 | x 712 * Another case that fits this picture would be 713 * x | x + 1 | x ... | x 714 * In this case the head really is somewhere at the end of the 715 * log, as one of the latest writes at the beginning was 716 * incomplete. 717 * One more case is 718 * x | x + 1 | x ... | x - 1 | x 719 * This is really the combination of the above two cases, and 720 * the head has to end up at the start of the x-1 hole at the 721 * end of the log. 722 * 723 * In the 256k log case, we will read from the beginning to the 724 * end of the log and search for cycle numbers equal to x-1. 725 * We don't worry about the x+1 blocks that we encounter, 726 * because we know that they cannot be the head since the log 727 * started with x. 728 */ 729 head_blk = log_bbnum; 730 stop_on_cycle = last_half_cycle - 1; 731 } else { 732 /* 733 * In this case we want to find the first block with cycle 734 * number matching last_half_cycle. We expect the log to be 735 * some variation on 736 * x + 1 ... | x ... | x 737 * The first block with cycle number x (last_half_cycle) will 738 * be where the new head belongs. First we do a binary search 739 * for the first occurrence of last_half_cycle. The binary 740 * search may not be totally accurate, so then we scan back 741 * from there looking for occurrences of last_half_cycle before 742 * us. If that backwards scan wraps around the beginning of 743 * the log, then we look for occurrences of last_half_cycle - 1 744 * at the end of the log. The cases we're looking for look 745 * like 746 * v binary search stopped here 747 * x + 1 ... | x | x + 1 | x ... | x 748 * ^ but we want to locate this spot 749 * or 750 * <---------> less than scan distance 751 * x + 1 ... | x ... | x - 1 | x 752 * ^ we want to locate this spot 753 */ 754 stop_on_cycle = last_half_cycle; 755 if ((error = xlog_find_cycle_start(log, bp, first_blk, 756 &head_blk, last_half_cycle))) 757 goto bp_err; 758 } 759 760 /* 761 * Now validate the answer. Scan back some number of maximum possible 762 * blocks and make sure each one has the expected cycle number. The 763 * maximum is determined by the total possible amount of buffering 764 * in the in-core log. The following number can be made tighter if 765 * we actually look at the block size of the filesystem. 766 */ 767 num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log)); 768 if (head_blk >= num_scan_bblks) { 769 /* 770 * We are guaranteed that the entire check can be performed 771 * in one buffer. 772 */ 773 start_blk = head_blk - num_scan_bblks; 774 if ((error = xlog_find_verify_cycle(log, 775 start_blk, num_scan_bblks, 776 stop_on_cycle, &new_blk))) 777 goto bp_err; 778 if (new_blk != -1) 779 head_blk = new_blk; 780 } else { /* need to read 2 parts of log */ 781 /* 782 * We are going to scan backwards in the log in two parts. 783 * First we scan the physical end of the log. In this part 784 * of the log, we are looking for blocks with cycle number 785 * last_half_cycle - 1. 786 * If we find one, then we know that the log starts there, as 787 * we've found a hole that didn't get written in going around 788 * the end of the physical log. The simple case for this is 789 * x + 1 ... | x ... | x - 1 | x 790 * <---------> less than scan distance 791 * If all of the blocks at the end of the log have cycle number 792 * last_half_cycle, then we check the blocks at the start of 793 * the log looking for occurrences of last_half_cycle. If we 794 * find one, then our current estimate for the location of the 795 * first occurrence of last_half_cycle is wrong and we move 796 * back to the hole we've found. This case looks like 797 * x + 1 ... | x | x + 1 | x ... 798 * ^ binary search stopped here 799 * Another case we need to handle that only occurs in 256k 800 * logs is 801 * x + 1 ... | x ... | x+1 | x ... 802 * ^ binary search stops here 803 * In a 256k log, the scan at the end of the log will see the 804 * x + 1 blocks. We need to skip past those since that is 805 * certainly not the head of the log. By searching for 806 * last_half_cycle-1 we accomplish that. 807 */ 808 ASSERT(head_blk <= INT_MAX && 809 (xfs_daddr_t) num_scan_bblks >= head_blk); 810 start_blk = log_bbnum - (num_scan_bblks - head_blk); 811 if ((error = xlog_find_verify_cycle(log, start_blk, 812 num_scan_bblks - (int)head_blk, 813 (stop_on_cycle - 1), &new_blk))) 814 goto bp_err; 815 if (new_blk != -1) { 816 head_blk = new_blk; 817 goto validate_head; 818 } 819 820 /* 821 * Scan beginning of log now. The last part of the physical 822 * log is good. This scan needs to verify that it doesn't find 823 * the last_half_cycle. 824 */ 825 start_blk = 0; 826 ASSERT(head_blk <= INT_MAX); 827 if ((error = xlog_find_verify_cycle(log, 828 start_blk, (int)head_blk, 829 stop_on_cycle, &new_blk))) 830 goto bp_err; 831 if (new_blk != -1) 832 head_blk = new_blk; 833 } 834 835 validate_head: 836 /* 837 * Now we need to make sure head_blk is not pointing to a block in 838 * the middle of a log record. 839 */ 840 num_scan_bblks = XLOG_REC_SHIFT(log); 841 if (head_blk >= num_scan_bblks) { 842 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 843 844 /* start ptr at last block ptr before head_blk */ 845 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 846 if (error == 1) 847 error = -EIO; 848 if (error) 849 goto bp_err; 850 } else { 851 start_blk = 0; 852 ASSERT(head_blk <= INT_MAX); 853 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 854 if (error < 0) 855 goto bp_err; 856 if (error == 1) { 857 /* We hit the beginning of the log during our search */ 858 start_blk = log_bbnum - (num_scan_bblks - head_blk); 859 new_blk = log_bbnum; 860 ASSERT(start_blk <= INT_MAX && 861 (xfs_daddr_t) log_bbnum-start_blk >= 0); 862 ASSERT(head_blk <= INT_MAX); 863 error = xlog_find_verify_log_record(log, start_blk, 864 &new_blk, (int)head_blk); 865 if (error == 1) 866 error = -EIO; 867 if (error) 868 goto bp_err; 869 if (new_blk != log_bbnum) 870 head_blk = new_blk; 871 } else if (error) 872 goto bp_err; 873 } 874 875 xlog_put_bp(bp); 876 if (head_blk == log_bbnum) 877 *return_head_blk = 0; 878 else 879 *return_head_blk = head_blk; 880 /* 881 * When returning here, we have a good block number. Bad block 882 * means that during a previous crash, we didn't have a clean break 883 * from cycle number N to cycle number N-1. In this case, we need 884 * to find the first block with cycle number N-1. 885 */ 886 return 0; 887 888 bp_err: 889 xlog_put_bp(bp); 890 891 if (error) 892 xfs_warn(log->l_mp, "failed to find log head"); 893 return error; 894 } 895 896 /* 897 * Seek backwards in the log for log record headers. 898 * 899 * Given a starting log block, walk backwards until we find the provided number 900 * of records or hit the provided tail block. The return value is the number of 901 * records encountered or a negative error code. The log block and buffer 902 * pointer of the last record seen are returned in rblk and rhead respectively. 903 */ 904 STATIC int 905 xlog_rseek_logrec_hdr( 906 struct xlog *log, 907 xfs_daddr_t head_blk, 908 xfs_daddr_t tail_blk, 909 int count, 910 struct xfs_buf *bp, 911 xfs_daddr_t *rblk, 912 struct xlog_rec_header **rhead, 913 bool *wrapped) 914 { 915 int i; 916 int error; 917 int found = 0; 918 char *offset = NULL; 919 xfs_daddr_t end_blk; 920 921 *wrapped = false; 922 923 /* 924 * Walk backwards from the head block until we hit the tail or the first 925 * block in the log. 926 */ 927 end_blk = head_blk > tail_blk ? tail_blk : 0; 928 for (i = (int) head_blk - 1; i >= end_blk; i--) { 929 error = xlog_bread(log, i, 1, bp, &offset); 930 if (error) 931 goto out_error; 932 933 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 934 *rblk = i; 935 *rhead = (struct xlog_rec_header *) offset; 936 if (++found == count) 937 break; 938 } 939 } 940 941 /* 942 * If we haven't hit the tail block or the log record header count, 943 * start looking again from the end of the physical log. Note that 944 * callers can pass head == tail if the tail is not yet known. 945 */ 946 if (tail_blk >= head_blk && found != count) { 947 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) { 948 error = xlog_bread(log, i, 1, bp, &offset); 949 if (error) 950 goto out_error; 951 952 if (*(__be32 *)offset == 953 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 954 *wrapped = true; 955 *rblk = i; 956 *rhead = (struct xlog_rec_header *) offset; 957 if (++found == count) 958 break; 959 } 960 } 961 } 962 963 return found; 964 965 out_error: 966 return error; 967 } 968 969 /* 970 * Seek forward in the log for log record headers. 971 * 972 * Given head and tail blocks, walk forward from the tail block until we find 973 * the provided number of records or hit the head block. The return value is the 974 * number of records encountered or a negative error code. The log block and 975 * buffer pointer of the last record seen are returned in rblk and rhead 976 * respectively. 977 */ 978 STATIC int 979 xlog_seek_logrec_hdr( 980 struct xlog *log, 981 xfs_daddr_t head_blk, 982 xfs_daddr_t tail_blk, 983 int count, 984 struct xfs_buf *bp, 985 xfs_daddr_t *rblk, 986 struct xlog_rec_header **rhead, 987 bool *wrapped) 988 { 989 int i; 990 int error; 991 int found = 0; 992 char *offset = NULL; 993 xfs_daddr_t end_blk; 994 995 *wrapped = false; 996 997 /* 998 * Walk forward from the tail block until we hit the head or the last 999 * block in the log. 1000 */ 1001 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1; 1002 for (i = (int) tail_blk; i <= end_blk; i++) { 1003 error = xlog_bread(log, i, 1, bp, &offset); 1004 if (error) 1005 goto out_error; 1006 1007 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 1008 *rblk = i; 1009 *rhead = (struct xlog_rec_header *) offset; 1010 if (++found == count) 1011 break; 1012 } 1013 } 1014 1015 /* 1016 * If we haven't hit the head block or the log record header count, 1017 * start looking again from the start of the physical log. 1018 */ 1019 if (tail_blk > head_blk && found != count) { 1020 for (i = 0; i < (int) head_blk; i++) { 1021 error = xlog_bread(log, i, 1, bp, &offset); 1022 if (error) 1023 goto out_error; 1024 1025 if (*(__be32 *)offset == 1026 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 1027 *wrapped = true; 1028 *rblk = i; 1029 *rhead = (struct xlog_rec_header *) offset; 1030 if (++found == count) 1031 break; 1032 } 1033 } 1034 } 1035 1036 return found; 1037 1038 out_error: 1039 return error; 1040 } 1041 1042 /* 1043 * Calculate distance from head to tail (i.e., unused space in the log). 1044 */ 1045 static inline int 1046 xlog_tail_distance( 1047 struct xlog *log, 1048 xfs_daddr_t head_blk, 1049 xfs_daddr_t tail_blk) 1050 { 1051 if (head_blk < tail_blk) 1052 return tail_blk - head_blk; 1053 1054 return tail_blk + (log->l_logBBsize - head_blk); 1055 } 1056 1057 /* 1058 * Verify the log tail. This is particularly important when torn or incomplete 1059 * writes have been detected near the front of the log and the head has been 1060 * walked back accordingly. 1061 * 1062 * We also have to handle the case where the tail was pinned and the head 1063 * blocked behind the tail right before a crash. If the tail had been pushed 1064 * immediately prior to the crash and the subsequent checkpoint was only 1065 * partially written, it's possible it overwrote the last referenced tail in the 1066 * log with garbage. This is not a coherency problem because the tail must have 1067 * been pushed before it can be overwritten, but appears as log corruption to 1068 * recovery because we have no way to know the tail was updated if the 1069 * subsequent checkpoint didn't write successfully. 1070 * 1071 * Therefore, CRC check the log from tail to head. If a failure occurs and the 1072 * offending record is within max iclog bufs from the head, walk the tail 1073 * forward and retry until a valid tail is found or corruption is detected out 1074 * of the range of a possible overwrite. 1075 */ 1076 STATIC int 1077 xlog_verify_tail( 1078 struct xlog *log, 1079 xfs_daddr_t head_blk, 1080 xfs_daddr_t *tail_blk, 1081 int hsize) 1082 { 1083 struct xlog_rec_header *thead; 1084 struct xfs_buf *bp; 1085 xfs_daddr_t first_bad; 1086 int error = 0; 1087 bool wrapped; 1088 xfs_daddr_t tmp_tail; 1089 xfs_daddr_t orig_tail = *tail_blk; 1090 1091 bp = xlog_get_bp(log, 1); 1092 if (!bp) 1093 return -ENOMEM; 1094 1095 /* 1096 * Make sure the tail points to a record (returns positive count on 1097 * success). 1098 */ 1099 error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, bp, 1100 &tmp_tail, &thead, &wrapped); 1101 if (error < 0) 1102 goto out; 1103 if (*tail_blk != tmp_tail) 1104 *tail_blk = tmp_tail; 1105 1106 /* 1107 * Run a CRC check from the tail to the head. We can't just check 1108 * MAX_ICLOGS records past the tail because the tail may point to stale 1109 * blocks cleared during the search for the head/tail. These blocks are 1110 * overwritten with zero-length records and thus record count is not a 1111 * reliable indicator of the iclog state before a crash. 1112 */ 1113 first_bad = 0; 1114 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 1115 XLOG_RECOVER_CRCPASS, &first_bad); 1116 while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 1117 int tail_distance; 1118 1119 /* 1120 * Is corruption within range of the head? If so, retry from 1121 * the next record. Otherwise return an error. 1122 */ 1123 tail_distance = xlog_tail_distance(log, head_blk, first_bad); 1124 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize)) 1125 break; 1126 1127 /* skip to the next record; returns positive count on success */ 1128 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, bp, 1129 &tmp_tail, &thead, &wrapped); 1130 if (error < 0) 1131 goto out; 1132 1133 *tail_blk = tmp_tail; 1134 first_bad = 0; 1135 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 1136 XLOG_RECOVER_CRCPASS, &first_bad); 1137 } 1138 1139 if (!error && *tail_blk != orig_tail) 1140 xfs_warn(log->l_mp, 1141 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx", 1142 orig_tail, *tail_blk); 1143 out: 1144 xlog_put_bp(bp); 1145 return error; 1146 } 1147 1148 /* 1149 * Detect and trim torn writes from the head of the log. 1150 * 1151 * Storage without sector atomicity guarantees can result in torn writes in the 1152 * log in the event of a crash. Our only means to detect this scenario is via 1153 * CRC verification. While we can't always be certain that CRC verification 1154 * failure is due to a torn write vs. an unrelated corruption, we do know that 1155 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at 1156 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of 1157 * the log and treat failures in this range as torn writes as a matter of 1158 * policy. In the event of CRC failure, the head is walked back to the last good 1159 * record in the log and the tail is updated from that record and verified. 1160 */ 1161 STATIC int 1162 xlog_verify_head( 1163 struct xlog *log, 1164 xfs_daddr_t *head_blk, /* in/out: unverified head */ 1165 xfs_daddr_t *tail_blk, /* out: tail block */ 1166 struct xfs_buf *bp, 1167 xfs_daddr_t *rhead_blk, /* start blk of last record */ 1168 struct xlog_rec_header **rhead, /* ptr to last record */ 1169 bool *wrapped) /* last rec. wraps phys. log */ 1170 { 1171 struct xlog_rec_header *tmp_rhead; 1172 struct xfs_buf *tmp_bp; 1173 xfs_daddr_t first_bad; 1174 xfs_daddr_t tmp_rhead_blk; 1175 int found; 1176 int error; 1177 bool tmp_wrapped; 1178 1179 /* 1180 * Check the head of the log for torn writes. Search backwards from the 1181 * head until we hit the tail or the maximum number of log record I/Os 1182 * that could have been in flight at one time. Use a temporary buffer so 1183 * we don't trash the rhead/bp pointers from the caller. 1184 */ 1185 tmp_bp = xlog_get_bp(log, 1); 1186 if (!tmp_bp) 1187 return -ENOMEM; 1188 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk, 1189 XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk, 1190 &tmp_rhead, &tmp_wrapped); 1191 xlog_put_bp(tmp_bp); 1192 if (error < 0) 1193 return error; 1194 1195 /* 1196 * Now run a CRC verification pass over the records starting at the 1197 * block found above to the current head. If a CRC failure occurs, the 1198 * log block of the first bad record is saved in first_bad. 1199 */ 1200 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk, 1201 XLOG_RECOVER_CRCPASS, &first_bad); 1202 if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 1203 /* 1204 * We've hit a potential torn write. Reset the error and warn 1205 * about it. 1206 */ 1207 error = 0; 1208 xfs_warn(log->l_mp, 1209 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.", 1210 first_bad, *head_blk); 1211 1212 /* 1213 * Get the header block and buffer pointer for the last good 1214 * record before the bad record. 1215 * 1216 * Note that xlog_find_tail() clears the blocks at the new head 1217 * (i.e., the records with invalid CRC) if the cycle number 1218 * matches the the current cycle. 1219 */ 1220 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp, 1221 rhead_blk, rhead, wrapped); 1222 if (found < 0) 1223 return found; 1224 if (found == 0) /* XXX: right thing to do here? */ 1225 return -EIO; 1226 1227 /* 1228 * Reset the head block to the starting block of the first bad 1229 * log record and set the tail block based on the last good 1230 * record. 1231 * 1232 * Bail out if the updated head/tail match as this indicates 1233 * possible corruption outside of the acceptable 1234 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair... 1235 */ 1236 *head_blk = first_bad; 1237 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn)); 1238 if (*head_blk == *tail_blk) { 1239 ASSERT(0); 1240 return 0; 1241 } 1242 } 1243 if (error) 1244 return error; 1245 1246 return xlog_verify_tail(log, *head_blk, tail_blk, 1247 be32_to_cpu((*rhead)->h_size)); 1248 } 1249 1250 /* 1251 * Check whether the head of the log points to an unmount record. In other 1252 * words, determine whether the log is clean. If so, update the in-core state 1253 * appropriately. 1254 */ 1255 static int 1256 xlog_check_unmount_rec( 1257 struct xlog *log, 1258 xfs_daddr_t *head_blk, 1259 xfs_daddr_t *tail_blk, 1260 struct xlog_rec_header *rhead, 1261 xfs_daddr_t rhead_blk, 1262 struct xfs_buf *bp, 1263 bool *clean) 1264 { 1265 struct xlog_op_header *op_head; 1266 xfs_daddr_t umount_data_blk; 1267 xfs_daddr_t after_umount_blk; 1268 int hblks; 1269 int error; 1270 char *offset; 1271 1272 *clean = false; 1273 1274 /* 1275 * Look for unmount record. If we find it, then we know there was a 1276 * clean unmount. Since 'i' could be the last block in the physical 1277 * log, we convert to a log block before comparing to the head_blk. 1278 * 1279 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks() 1280 * below. We won't want to clear the unmount record if there is one, so 1281 * we pass the lsn of the unmount record rather than the block after it. 1282 */ 1283 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1284 int h_size = be32_to_cpu(rhead->h_size); 1285 int h_version = be32_to_cpu(rhead->h_version); 1286 1287 if ((h_version & XLOG_VERSION_2) && 1288 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 1289 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 1290 if (h_size % XLOG_HEADER_CYCLE_SIZE) 1291 hblks++; 1292 } else { 1293 hblks = 1; 1294 } 1295 } else { 1296 hblks = 1; 1297 } 1298 after_umount_blk = rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)); 1299 after_umount_blk = do_mod(after_umount_blk, log->l_logBBsize); 1300 if (*head_blk == after_umount_blk && 1301 be32_to_cpu(rhead->h_num_logops) == 1) { 1302 umount_data_blk = rhead_blk + hblks; 1303 umount_data_blk = do_mod(umount_data_blk, log->l_logBBsize); 1304 error = xlog_bread(log, umount_data_blk, 1, bp, &offset); 1305 if (error) 1306 return error; 1307 1308 op_head = (struct xlog_op_header *)offset; 1309 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 1310 /* 1311 * Set tail and last sync so that newly written log 1312 * records will point recovery to after the current 1313 * unmount record. 1314 */ 1315 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1316 log->l_curr_cycle, after_umount_blk); 1317 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1318 log->l_curr_cycle, after_umount_blk); 1319 *tail_blk = after_umount_blk; 1320 1321 *clean = true; 1322 } 1323 } 1324 1325 return 0; 1326 } 1327 1328 static void 1329 xlog_set_state( 1330 struct xlog *log, 1331 xfs_daddr_t head_blk, 1332 struct xlog_rec_header *rhead, 1333 xfs_daddr_t rhead_blk, 1334 bool bump_cycle) 1335 { 1336 /* 1337 * Reset log values according to the state of the log when we 1338 * crashed. In the case where head_blk == 0, we bump curr_cycle 1339 * one because the next write starts a new cycle rather than 1340 * continuing the cycle of the last good log record. At this 1341 * point we have guaranteed that all partial log records have been 1342 * accounted for. Therefore, we know that the last good log record 1343 * written was complete and ended exactly on the end boundary 1344 * of the physical log. 1345 */ 1346 log->l_prev_block = rhead_blk; 1347 log->l_curr_block = (int)head_blk; 1348 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 1349 if (bump_cycle) 1350 log->l_curr_cycle++; 1351 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); 1352 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); 1353 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, 1354 BBTOB(log->l_curr_block)); 1355 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, 1356 BBTOB(log->l_curr_block)); 1357 } 1358 1359 /* 1360 * Find the sync block number or the tail of the log. 1361 * 1362 * This will be the block number of the last record to have its 1363 * associated buffers synced to disk. Every log record header has 1364 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 1365 * to get a sync block number. The only concern is to figure out which 1366 * log record header to believe. 1367 * 1368 * The following algorithm uses the log record header with the largest 1369 * lsn. The entire log record does not need to be valid. We only care 1370 * that the header is valid. 1371 * 1372 * We could speed up search by using current head_blk buffer, but it is not 1373 * available. 1374 */ 1375 STATIC int 1376 xlog_find_tail( 1377 struct xlog *log, 1378 xfs_daddr_t *head_blk, 1379 xfs_daddr_t *tail_blk) 1380 { 1381 xlog_rec_header_t *rhead; 1382 char *offset = NULL; 1383 xfs_buf_t *bp; 1384 int error; 1385 xfs_daddr_t rhead_blk; 1386 xfs_lsn_t tail_lsn; 1387 bool wrapped = false; 1388 bool clean = false; 1389 1390 /* 1391 * Find previous log record 1392 */ 1393 if ((error = xlog_find_head(log, head_blk))) 1394 return error; 1395 ASSERT(*head_blk < INT_MAX); 1396 1397 bp = xlog_get_bp(log, 1); 1398 if (!bp) 1399 return -ENOMEM; 1400 if (*head_blk == 0) { /* special case */ 1401 error = xlog_bread(log, 0, 1, bp, &offset); 1402 if (error) 1403 goto done; 1404 1405 if (xlog_get_cycle(offset) == 0) { 1406 *tail_blk = 0; 1407 /* leave all other log inited values alone */ 1408 goto done; 1409 } 1410 } 1411 1412 /* 1413 * Search backwards through the log looking for the log record header 1414 * block. This wraps all the way back around to the head so something is 1415 * seriously wrong if we can't find it. 1416 */ 1417 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp, 1418 &rhead_blk, &rhead, &wrapped); 1419 if (error < 0) 1420 return error; 1421 if (!error) { 1422 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); 1423 return -EIO; 1424 } 1425 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 1426 1427 /* 1428 * Set the log state based on the current head record. 1429 */ 1430 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped); 1431 tail_lsn = atomic64_read(&log->l_tail_lsn); 1432 1433 /* 1434 * Look for an unmount record at the head of the log. This sets the log 1435 * state to determine whether recovery is necessary. 1436 */ 1437 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead, 1438 rhead_blk, bp, &clean); 1439 if (error) 1440 goto done; 1441 1442 /* 1443 * Verify the log head if the log is not clean (e.g., we have anything 1444 * but an unmount record at the head). This uses CRC verification to 1445 * detect and trim torn writes. If discovered, CRC failures are 1446 * considered torn writes and the log head is trimmed accordingly. 1447 * 1448 * Note that we can only run CRC verification when the log is dirty 1449 * because there's no guarantee that the log data behind an unmount 1450 * record is compatible with the current architecture. 1451 */ 1452 if (!clean) { 1453 xfs_daddr_t orig_head = *head_blk; 1454 1455 error = xlog_verify_head(log, head_blk, tail_blk, bp, 1456 &rhead_blk, &rhead, &wrapped); 1457 if (error) 1458 goto done; 1459 1460 /* update in-core state again if the head changed */ 1461 if (*head_blk != orig_head) { 1462 xlog_set_state(log, *head_blk, rhead, rhead_blk, 1463 wrapped); 1464 tail_lsn = atomic64_read(&log->l_tail_lsn); 1465 error = xlog_check_unmount_rec(log, head_blk, tail_blk, 1466 rhead, rhead_blk, bp, 1467 &clean); 1468 if (error) 1469 goto done; 1470 } 1471 } 1472 1473 /* 1474 * Note that the unmount was clean. If the unmount was not clean, we 1475 * need to know this to rebuild the superblock counters from the perag 1476 * headers if we have a filesystem using non-persistent counters. 1477 */ 1478 if (clean) 1479 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 1480 1481 /* 1482 * Make sure that there are no blocks in front of the head 1483 * with the same cycle number as the head. This can happen 1484 * because we allow multiple outstanding log writes concurrently, 1485 * and the later writes might make it out before earlier ones. 1486 * 1487 * We use the lsn from before modifying it so that we'll never 1488 * overwrite the unmount record after a clean unmount. 1489 * 1490 * Do this only if we are going to recover the filesystem 1491 * 1492 * NOTE: This used to say "if (!readonly)" 1493 * However on Linux, we can & do recover a read-only filesystem. 1494 * We only skip recovery if NORECOVERY is specified on mount, 1495 * in which case we would not be here. 1496 * 1497 * But... if the -device- itself is readonly, just skip this. 1498 * We can't recover this device anyway, so it won't matter. 1499 */ 1500 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) 1501 error = xlog_clear_stale_blocks(log, tail_lsn); 1502 1503 done: 1504 xlog_put_bp(bp); 1505 1506 if (error) 1507 xfs_warn(log->l_mp, "failed to locate log tail"); 1508 return error; 1509 } 1510 1511 /* 1512 * Is the log zeroed at all? 1513 * 1514 * The last binary search should be changed to perform an X block read 1515 * once X becomes small enough. You can then search linearly through 1516 * the X blocks. This will cut down on the number of reads we need to do. 1517 * 1518 * If the log is partially zeroed, this routine will pass back the blkno 1519 * of the first block with cycle number 0. It won't have a complete LR 1520 * preceding it. 1521 * 1522 * Return: 1523 * 0 => the log is completely written to 1524 * 1 => use *blk_no as the first block of the log 1525 * <0 => error has occurred 1526 */ 1527 STATIC int 1528 xlog_find_zeroed( 1529 struct xlog *log, 1530 xfs_daddr_t *blk_no) 1531 { 1532 xfs_buf_t *bp; 1533 char *offset; 1534 uint first_cycle, last_cycle; 1535 xfs_daddr_t new_blk, last_blk, start_blk; 1536 xfs_daddr_t num_scan_bblks; 1537 int error, log_bbnum = log->l_logBBsize; 1538 1539 *blk_no = 0; 1540 1541 /* check totally zeroed log */ 1542 bp = xlog_get_bp(log, 1); 1543 if (!bp) 1544 return -ENOMEM; 1545 error = xlog_bread(log, 0, 1, bp, &offset); 1546 if (error) 1547 goto bp_err; 1548 1549 first_cycle = xlog_get_cycle(offset); 1550 if (first_cycle == 0) { /* completely zeroed log */ 1551 *blk_no = 0; 1552 xlog_put_bp(bp); 1553 return 1; 1554 } 1555 1556 /* check partially zeroed log */ 1557 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset); 1558 if (error) 1559 goto bp_err; 1560 1561 last_cycle = xlog_get_cycle(offset); 1562 if (last_cycle != 0) { /* log completely written to */ 1563 xlog_put_bp(bp); 1564 return 0; 1565 } else if (first_cycle != 1) { 1566 /* 1567 * If the cycle of the last block is zero, the cycle of 1568 * the first block must be 1. If it's not, maybe we're 1569 * not looking at a log... Bail out. 1570 */ 1571 xfs_warn(log->l_mp, 1572 "Log inconsistent or not a log (last==0, first!=1)"); 1573 error = -EINVAL; 1574 goto bp_err; 1575 } 1576 1577 /* we have a partially zeroed log */ 1578 last_blk = log_bbnum-1; 1579 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1580 goto bp_err; 1581 1582 /* 1583 * Validate the answer. Because there is no way to guarantee that 1584 * the entire log is made up of log records which are the same size, 1585 * we scan over the defined maximum blocks. At this point, the maximum 1586 * is not chosen to mean anything special. XXXmiken 1587 */ 1588 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1589 ASSERT(num_scan_bblks <= INT_MAX); 1590 1591 if (last_blk < num_scan_bblks) 1592 num_scan_bblks = last_blk; 1593 start_blk = last_blk - num_scan_bblks; 1594 1595 /* 1596 * We search for any instances of cycle number 0 that occur before 1597 * our current estimate of the head. What we're trying to detect is 1598 * 1 ... | 0 | 1 | 0... 1599 * ^ binary search ends here 1600 */ 1601 if ((error = xlog_find_verify_cycle(log, start_blk, 1602 (int)num_scan_bblks, 0, &new_blk))) 1603 goto bp_err; 1604 if (new_blk != -1) 1605 last_blk = new_blk; 1606 1607 /* 1608 * Potentially backup over partial log record write. We don't need 1609 * to search the end of the log because we know it is zero. 1610 */ 1611 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0); 1612 if (error == 1) 1613 error = -EIO; 1614 if (error) 1615 goto bp_err; 1616 1617 *blk_no = last_blk; 1618 bp_err: 1619 xlog_put_bp(bp); 1620 if (error) 1621 return error; 1622 return 1; 1623 } 1624 1625 /* 1626 * These are simple subroutines used by xlog_clear_stale_blocks() below 1627 * to initialize a buffer full of empty log record headers and write 1628 * them into the log. 1629 */ 1630 STATIC void 1631 xlog_add_record( 1632 struct xlog *log, 1633 char *buf, 1634 int cycle, 1635 int block, 1636 int tail_cycle, 1637 int tail_block) 1638 { 1639 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1640 1641 memset(buf, 0, BBSIZE); 1642 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1643 recp->h_cycle = cpu_to_be32(cycle); 1644 recp->h_version = cpu_to_be32( 1645 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1646 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1647 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1648 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1649 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1650 } 1651 1652 STATIC int 1653 xlog_write_log_records( 1654 struct xlog *log, 1655 int cycle, 1656 int start_block, 1657 int blocks, 1658 int tail_cycle, 1659 int tail_block) 1660 { 1661 char *offset; 1662 xfs_buf_t *bp; 1663 int balign, ealign; 1664 int sectbb = log->l_sectBBsize; 1665 int end_block = start_block + blocks; 1666 int bufblks; 1667 int error = 0; 1668 int i, j = 0; 1669 1670 /* 1671 * Greedily allocate a buffer big enough to handle the full 1672 * range of basic blocks to be written. If that fails, try 1673 * a smaller size. We need to be able to write at least a 1674 * log sector, or we're out of luck. 1675 */ 1676 bufblks = 1 << ffs(blocks); 1677 while (bufblks > log->l_logBBsize) 1678 bufblks >>= 1; 1679 while (!(bp = xlog_get_bp(log, bufblks))) { 1680 bufblks >>= 1; 1681 if (bufblks < sectbb) 1682 return -ENOMEM; 1683 } 1684 1685 /* We may need to do a read at the start to fill in part of 1686 * the buffer in the starting sector not covered by the first 1687 * write below. 1688 */ 1689 balign = round_down(start_block, sectbb); 1690 if (balign != start_block) { 1691 error = xlog_bread_noalign(log, start_block, 1, bp); 1692 if (error) 1693 goto out_put_bp; 1694 1695 j = start_block - balign; 1696 } 1697 1698 for (i = start_block; i < end_block; i += bufblks) { 1699 int bcount, endcount; 1700 1701 bcount = min(bufblks, end_block - start_block); 1702 endcount = bcount - j; 1703 1704 /* We may need to do a read at the end to fill in part of 1705 * the buffer in the final sector not covered by the write. 1706 * If this is the same sector as the above read, skip it. 1707 */ 1708 ealign = round_down(end_block, sectbb); 1709 if (j == 0 && (start_block + endcount > ealign)) { 1710 offset = bp->b_addr + BBTOB(ealign - start_block); 1711 error = xlog_bread_offset(log, ealign, sectbb, 1712 bp, offset); 1713 if (error) 1714 break; 1715 1716 } 1717 1718 offset = xlog_align(log, start_block, endcount, bp); 1719 for (; j < endcount; j++) { 1720 xlog_add_record(log, offset, cycle, i+j, 1721 tail_cycle, tail_block); 1722 offset += BBSIZE; 1723 } 1724 error = xlog_bwrite(log, start_block, endcount, bp); 1725 if (error) 1726 break; 1727 start_block += endcount; 1728 j = 0; 1729 } 1730 1731 out_put_bp: 1732 xlog_put_bp(bp); 1733 return error; 1734 } 1735 1736 /* 1737 * This routine is called to blow away any incomplete log writes out 1738 * in front of the log head. We do this so that we won't become confused 1739 * if we come up, write only a little bit more, and then crash again. 1740 * If we leave the partial log records out there, this situation could 1741 * cause us to think those partial writes are valid blocks since they 1742 * have the current cycle number. We get rid of them by overwriting them 1743 * with empty log records with the old cycle number rather than the 1744 * current one. 1745 * 1746 * The tail lsn is passed in rather than taken from 1747 * the log so that we will not write over the unmount record after a 1748 * clean unmount in a 512 block log. Doing so would leave the log without 1749 * any valid log records in it until a new one was written. If we crashed 1750 * during that time we would not be able to recover. 1751 */ 1752 STATIC int 1753 xlog_clear_stale_blocks( 1754 struct xlog *log, 1755 xfs_lsn_t tail_lsn) 1756 { 1757 int tail_cycle, head_cycle; 1758 int tail_block, head_block; 1759 int tail_distance, max_distance; 1760 int distance; 1761 int error; 1762 1763 tail_cycle = CYCLE_LSN(tail_lsn); 1764 tail_block = BLOCK_LSN(tail_lsn); 1765 head_cycle = log->l_curr_cycle; 1766 head_block = log->l_curr_block; 1767 1768 /* 1769 * Figure out the distance between the new head of the log 1770 * and the tail. We want to write over any blocks beyond the 1771 * head that we may have written just before the crash, but 1772 * we don't want to overwrite the tail of the log. 1773 */ 1774 if (head_cycle == tail_cycle) { 1775 /* 1776 * The tail is behind the head in the physical log, 1777 * so the distance from the head to the tail is the 1778 * distance from the head to the end of the log plus 1779 * the distance from the beginning of the log to the 1780 * tail. 1781 */ 1782 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1783 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1784 XFS_ERRLEVEL_LOW, log->l_mp); 1785 return -EFSCORRUPTED; 1786 } 1787 tail_distance = tail_block + (log->l_logBBsize - head_block); 1788 } else { 1789 /* 1790 * The head is behind the tail in the physical log, 1791 * so the distance from the head to the tail is just 1792 * the tail block minus the head block. 1793 */ 1794 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1795 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1796 XFS_ERRLEVEL_LOW, log->l_mp); 1797 return -EFSCORRUPTED; 1798 } 1799 tail_distance = tail_block - head_block; 1800 } 1801 1802 /* 1803 * If the head is right up against the tail, we can't clear 1804 * anything. 1805 */ 1806 if (tail_distance <= 0) { 1807 ASSERT(tail_distance == 0); 1808 return 0; 1809 } 1810 1811 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1812 /* 1813 * Take the smaller of the maximum amount of outstanding I/O 1814 * we could have and the distance to the tail to clear out. 1815 * We take the smaller so that we don't overwrite the tail and 1816 * we don't waste all day writing from the head to the tail 1817 * for no reason. 1818 */ 1819 max_distance = MIN(max_distance, tail_distance); 1820 1821 if ((head_block + max_distance) <= log->l_logBBsize) { 1822 /* 1823 * We can stomp all the blocks we need to without 1824 * wrapping around the end of the log. Just do it 1825 * in a single write. Use the cycle number of the 1826 * current cycle minus one so that the log will look like: 1827 * n ... | n - 1 ... 1828 */ 1829 error = xlog_write_log_records(log, (head_cycle - 1), 1830 head_block, max_distance, tail_cycle, 1831 tail_block); 1832 if (error) 1833 return error; 1834 } else { 1835 /* 1836 * We need to wrap around the end of the physical log in 1837 * order to clear all the blocks. Do it in two separate 1838 * I/Os. The first write should be from the head to the 1839 * end of the physical log, and it should use the current 1840 * cycle number minus one just like above. 1841 */ 1842 distance = log->l_logBBsize - head_block; 1843 error = xlog_write_log_records(log, (head_cycle - 1), 1844 head_block, distance, tail_cycle, 1845 tail_block); 1846 1847 if (error) 1848 return error; 1849 1850 /* 1851 * Now write the blocks at the start of the physical log. 1852 * This writes the remainder of the blocks we want to clear. 1853 * It uses the current cycle number since we're now on the 1854 * same cycle as the head so that we get: 1855 * n ... n ... | n - 1 ... 1856 * ^^^^^ blocks we're writing 1857 */ 1858 distance = max_distance - (log->l_logBBsize - head_block); 1859 error = xlog_write_log_records(log, head_cycle, 0, distance, 1860 tail_cycle, tail_block); 1861 if (error) 1862 return error; 1863 } 1864 1865 return 0; 1866 } 1867 1868 /****************************************************************************** 1869 * 1870 * Log recover routines 1871 * 1872 ****************************************************************************** 1873 */ 1874 1875 /* 1876 * Sort the log items in the transaction. 1877 * 1878 * The ordering constraints are defined by the inode allocation and unlink 1879 * behaviour. The rules are: 1880 * 1881 * 1. Every item is only logged once in a given transaction. Hence it 1882 * represents the last logged state of the item. Hence ordering is 1883 * dependent on the order in which operations need to be performed so 1884 * required initial conditions are always met. 1885 * 1886 * 2. Cancelled buffers are recorded in pass 1 in a separate table and 1887 * there's nothing to replay from them so we can simply cull them 1888 * from the transaction. However, we can't do that until after we've 1889 * replayed all the other items because they may be dependent on the 1890 * cancelled buffer and replaying the cancelled buffer can remove it 1891 * form the cancelled buffer table. Hence they have tobe done last. 1892 * 1893 * 3. Inode allocation buffers must be replayed before inode items that 1894 * read the buffer and replay changes into it. For filesystems using the 1895 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get 1896 * treated the same as inode allocation buffers as they create and 1897 * initialise the buffers directly. 1898 * 1899 * 4. Inode unlink buffers must be replayed after inode items are replayed. 1900 * This ensures that inodes are completely flushed to the inode buffer 1901 * in a "free" state before we remove the unlinked inode list pointer. 1902 * 1903 * Hence the ordering needs to be inode allocation buffers first, inode items 1904 * second, inode unlink buffers third and cancelled buffers last. 1905 * 1906 * But there's a problem with that - we can't tell an inode allocation buffer 1907 * apart from a regular buffer, so we can't separate them. We can, however, 1908 * tell an inode unlink buffer from the others, and so we can separate them out 1909 * from all the other buffers and move them to last. 1910 * 1911 * Hence, 4 lists, in order from head to tail: 1912 * - buffer_list for all buffers except cancelled/inode unlink buffers 1913 * - item_list for all non-buffer items 1914 * - inode_buffer_list for inode unlink buffers 1915 * - cancel_list for the cancelled buffers 1916 * 1917 * Note that we add objects to the tail of the lists so that first-to-last 1918 * ordering is preserved within the lists. Adding objects to the head of the 1919 * list means when we traverse from the head we walk them in last-to-first 1920 * order. For cancelled buffers and inode unlink buffers this doesn't matter, 1921 * but for all other items there may be specific ordering that we need to 1922 * preserve. 1923 */ 1924 STATIC int 1925 xlog_recover_reorder_trans( 1926 struct xlog *log, 1927 struct xlog_recover *trans, 1928 int pass) 1929 { 1930 xlog_recover_item_t *item, *n; 1931 int error = 0; 1932 LIST_HEAD(sort_list); 1933 LIST_HEAD(cancel_list); 1934 LIST_HEAD(buffer_list); 1935 LIST_HEAD(inode_buffer_list); 1936 LIST_HEAD(inode_list); 1937 1938 list_splice_init(&trans->r_itemq, &sort_list); 1939 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1940 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1941 1942 switch (ITEM_TYPE(item)) { 1943 case XFS_LI_ICREATE: 1944 list_move_tail(&item->ri_list, &buffer_list); 1945 break; 1946 case XFS_LI_BUF: 1947 if (buf_f->blf_flags & XFS_BLF_CANCEL) { 1948 trace_xfs_log_recover_item_reorder_head(log, 1949 trans, item, pass); 1950 list_move(&item->ri_list, &cancel_list); 1951 break; 1952 } 1953 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 1954 list_move(&item->ri_list, &inode_buffer_list); 1955 break; 1956 } 1957 list_move_tail(&item->ri_list, &buffer_list); 1958 break; 1959 case XFS_LI_INODE: 1960 case XFS_LI_DQUOT: 1961 case XFS_LI_QUOTAOFF: 1962 case XFS_LI_EFD: 1963 case XFS_LI_EFI: 1964 case XFS_LI_RUI: 1965 case XFS_LI_RUD: 1966 case XFS_LI_CUI: 1967 case XFS_LI_CUD: 1968 case XFS_LI_BUI: 1969 case XFS_LI_BUD: 1970 trace_xfs_log_recover_item_reorder_tail(log, 1971 trans, item, pass); 1972 list_move_tail(&item->ri_list, &inode_list); 1973 break; 1974 default: 1975 xfs_warn(log->l_mp, 1976 "%s: unrecognized type of log operation", 1977 __func__); 1978 ASSERT(0); 1979 /* 1980 * return the remaining items back to the transaction 1981 * item list so they can be freed in caller. 1982 */ 1983 if (!list_empty(&sort_list)) 1984 list_splice_init(&sort_list, &trans->r_itemq); 1985 error = -EIO; 1986 goto out; 1987 } 1988 } 1989 out: 1990 ASSERT(list_empty(&sort_list)); 1991 if (!list_empty(&buffer_list)) 1992 list_splice(&buffer_list, &trans->r_itemq); 1993 if (!list_empty(&inode_list)) 1994 list_splice_tail(&inode_list, &trans->r_itemq); 1995 if (!list_empty(&inode_buffer_list)) 1996 list_splice_tail(&inode_buffer_list, &trans->r_itemq); 1997 if (!list_empty(&cancel_list)) 1998 list_splice_tail(&cancel_list, &trans->r_itemq); 1999 return error; 2000 } 2001 2002 /* 2003 * Build up the table of buf cancel records so that we don't replay 2004 * cancelled data in the second pass. For buffer records that are 2005 * not cancel records, there is nothing to do here so we just return. 2006 * 2007 * If we get a cancel record which is already in the table, this indicates 2008 * that the buffer was cancelled multiple times. In order to ensure 2009 * that during pass 2 we keep the record in the table until we reach its 2010 * last occurrence in the log, we keep a reference count in the cancel 2011 * record in the table to tell us how many times we expect to see this 2012 * record during the second pass. 2013 */ 2014 STATIC int 2015 xlog_recover_buffer_pass1( 2016 struct xlog *log, 2017 struct xlog_recover_item *item) 2018 { 2019 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2020 struct list_head *bucket; 2021 struct xfs_buf_cancel *bcp; 2022 2023 /* 2024 * If this isn't a cancel buffer item, then just return. 2025 */ 2026 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 2027 trace_xfs_log_recover_buf_not_cancel(log, buf_f); 2028 return 0; 2029 } 2030 2031 /* 2032 * Insert an xfs_buf_cancel record into the hash table of them. 2033 * If there is already an identical record, bump its reference count. 2034 */ 2035 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno); 2036 list_for_each_entry(bcp, bucket, bc_list) { 2037 if (bcp->bc_blkno == buf_f->blf_blkno && 2038 bcp->bc_len == buf_f->blf_len) { 2039 bcp->bc_refcount++; 2040 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f); 2041 return 0; 2042 } 2043 } 2044 2045 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP); 2046 bcp->bc_blkno = buf_f->blf_blkno; 2047 bcp->bc_len = buf_f->blf_len; 2048 bcp->bc_refcount = 1; 2049 list_add_tail(&bcp->bc_list, bucket); 2050 2051 trace_xfs_log_recover_buf_cancel_add(log, buf_f); 2052 return 0; 2053 } 2054 2055 /* 2056 * Check to see whether the buffer being recovered has a corresponding 2057 * entry in the buffer cancel record table. If it is, return the cancel 2058 * buffer structure to the caller. 2059 */ 2060 STATIC struct xfs_buf_cancel * 2061 xlog_peek_buffer_cancelled( 2062 struct xlog *log, 2063 xfs_daddr_t blkno, 2064 uint len, 2065 unsigned short flags) 2066 { 2067 struct list_head *bucket; 2068 struct xfs_buf_cancel *bcp; 2069 2070 if (!log->l_buf_cancel_table) { 2071 /* empty table means no cancelled buffers in the log */ 2072 ASSERT(!(flags & XFS_BLF_CANCEL)); 2073 return NULL; 2074 } 2075 2076 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); 2077 list_for_each_entry(bcp, bucket, bc_list) { 2078 if (bcp->bc_blkno == blkno && bcp->bc_len == len) 2079 return bcp; 2080 } 2081 2082 /* 2083 * We didn't find a corresponding entry in the table, so return 0 so 2084 * that the buffer is NOT cancelled. 2085 */ 2086 ASSERT(!(flags & XFS_BLF_CANCEL)); 2087 return NULL; 2088 } 2089 2090 /* 2091 * If the buffer is being cancelled then return 1 so that it will be cancelled, 2092 * otherwise return 0. If the buffer is actually a buffer cancel item 2093 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the 2094 * table and remove it from the table if this is the last reference. 2095 * 2096 * We remove the cancel record from the table when we encounter its last 2097 * occurrence in the log so that if the same buffer is re-used again after its 2098 * last cancellation we actually replay the changes made at that point. 2099 */ 2100 STATIC int 2101 xlog_check_buffer_cancelled( 2102 struct xlog *log, 2103 xfs_daddr_t blkno, 2104 uint len, 2105 unsigned short flags) 2106 { 2107 struct xfs_buf_cancel *bcp; 2108 2109 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags); 2110 if (!bcp) 2111 return 0; 2112 2113 /* 2114 * We've go a match, so return 1 so that the recovery of this buffer 2115 * is cancelled. If this buffer is actually a buffer cancel log 2116 * item, then decrement the refcount on the one in the table and 2117 * remove it if this is the last reference. 2118 */ 2119 if (flags & XFS_BLF_CANCEL) { 2120 if (--bcp->bc_refcount == 0) { 2121 list_del(&bcp->bc_list); 2122 kmem_free(bcp); 2123 } 2124 } 2125 return 1; 2126 } 2127 2128 /* 2129 * Perform recovery for a buffer full of inodes. In these buffers, the only 2130 * data which should be recovered is that which corresponds to the 2131 * di_next_unlinked pointers in the on disk inode structures. The rest of the 2132 * data for the inodes is always logged through the inodes themselves rather 2133 * than the inode buffer and is recovered in xlog_recover_inode_pass2(). 2134 * 2135 * The only time when buffers full of inodes are fully recovered is when the 2136 * buffer is full of newly allocated inodes. In this case the buffer will 2137 * not be marked as an inode buffer and so will be sent to 2138 * xlog_recover_do_reg_buffer() below during recovery. 2139 */ 2140 STATIC int 2141 xlog_recover_do_inode_buffer( 2142 struct xfs_mount *mp, 2143 xlog_recover_item_t *item, 2144 struct xfs_buf *bp, 2145 xfs_buf_log_format_t *buf_f) 2146 { 2147 int i; 2148 int item_index = 0; 2149 int bit = 0; 2150 int nbits = 0; 2151 int reg_buf_offset = 0; 2152 int reg_buf_bytes = 0; 2153 int next_unlinked_offset; 2154 int inodes_per_buf; 2155 xfs_agino_t *logged_nextp; 2156 xfs_agino_t *buffer_nextp; 2157 2158 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); 2159 2160 /* 2161 * Post recovery validation only works properly on CRC enabled 2162 * filesystems. 2163 */ 2164 if (xfs_sb_version_hascrc(&mp->m_sb)) 2165 bp->b_ops = &xfs_inode_buf_ops; 2166 2167 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog; 2168 for (i = 0; i < inodes_per_buf; i++) { 2169 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 2170 offsetof(xfs_dinode_t, di_next_unlinked); 2171 2172 while (next_unlinked_offset >= 2173 (reg_buf_offset + reg_buf_bytes)) { 2174 /* 2175 * The next di_next_unlinked field is beyond 2176 * the current logged region. Find the next 2177 * logged region that contains or is beyond 2178 * the current di_next_unlinked field. 2179 */ 2180 bit += nbits; 2181 bit = xfs_next_bit(buf_f->blf_data_map, 2182 buf_f->blf_map_size, bit); 2183 2184 /* 2185 * If there are no more logged regions in the 2186 * buffer, then we're done. 2187 */ 2188 if (bit == -1) 2189 return 0; 2190 2191 nbits = xfs_contig_bits(buf_f->blf_data_map, 2192 buf_f->blf_map_size, bit); 2193 ASSERT(nbits > 0); 2194 reg_buf_offset = bit << XFS_BLF_SHIFT; 2195 reg_buf_bytes = nbits << XFS_BLF_SHIFT; 2196 item_index++; 2197 } 2198 2199 /* 2200 * If the current logged region starts after the current 2201 * di_next_unlinked field, then move on to the next 2202 * di_next_unlinked field. 2203 */ 2204 if (next_unlinked_offset < reg_buf_offset) 2205 continue; 2206 2207 ASSERT(item->ri_buf[item_index].i_addr != NULL); 2208 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); 2209 ASSERT((reg_buf_offset + reg_buf_bytes) <= 2210 BBTOB(bp->b_io_length)); 2211 2212 /* 2213 * The current logged region contains a copy of the 2214 * current di_next_unlinked field. Extract its value 2215 * and copy it to the buffer copy. 2216 */ 2217 logged_nextp = item->ri_buf[item_index].i_addr + 2218 next_unlinked_offset - reg_buf_offset; 2219 if (unlikely(*logged_nextp == 0)) { 2220 xfs_alert(mp, 2221 "Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). " 2222 "Trying to replay bad (0) inode di_next_unlinked field.", 2223 item, bp); 2224 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 2225 XFS_ERRLEVEL_LOW, mp); 2226 return -EFSCORRUPTED; 2227 } 2228 2229 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset); 2230 *buffer_nextp = *logged_nextp; 2231 2232 /* 2233 * If necessary, recalculate the CRC in the on-disk inode. We 2234 * have to leave the inode in a consistent state for whoever 2235 * reads it next.... 2236 */ 2237 xfs_dinode_calc_crc(mp, 2238 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); 2239 2240 } 2241 2242 return 0; 2243 } 2244 2245 /* 2246 * V5 filesystems know the age of the buffer on disk being recovered. We can 2247 * have newer objects on disk than we are replaying, and so for these cases we 2248 * don't want to replay the current change as that will make the buffer contents 2249 * temporarily invalid on disk. 2250 * 2251 * The magic number might not match the buffer type we are going to recover 2252 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence 2253 * extract the LSN of the existing object in the buffer based on it's current 2254 * magic number. If we don't recognise the magic number in the buffer, then 2255 * return a LSN of -1 so that the caller knows it was an unrecognised block and 2256 * so can recover the buffer. 2257 * 2258 * Note: we cannot rely solely on magic number matches to determine that the 2259 * buffer has a valid LSN - we also need to verify that it belongs to this 2260 * filesystem, so we need to extract the object's LSN and compare it to that 2261 * which we read from the superblock. If the UUIDs don't match, then we've got a 2262 * stale metadata block from an old filesystem instance that we need to recover 2263 * over the top of. 2264 */ 2265 static xfs_lsn_t 2266 xlog_recover_get_buf_lsn( 2267 struct xfs_mount *mp, 2268 struct xfs_buf *bp) 2269 { 2270 uint32_t magic32; 2271 uint16_t magic16; 2272 uint16_t magicda; 2273 void *blk = bp->b_addr; 2274 uuid_t *uuid; 2275 xfs_lsn_t lsn = -1; 2276 2277 /* v4 filesystems always recover immediately */ 2278 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2279 goto recover_immediately; 2280 2281 magic32 = be32_to_cpu(*(__be32 *)blk); 2282 switch (magic32) { 2283 case XFS_ABTB_CRC_MAGIC: 2284 case XFS_ABTC_CRC_MAGIC: 2285 case XFS_ABTB_MAGIC: 2286 case XFS_ABTC_MAGIC: 2287 case XFS_RMAP_CRC_MAGIC: 2288 case XFS_REFC_CRC_MAGIC: 2289 case XFS_IBT_CRC_MAGIC: 2290 case XFS_IBT_MAGIC: { 2291 struct xfs_btree_block *btb = blk; 2292 2293 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn); 2294 uuid = &btb->bb_u.s.bb_uuid; 2295 break; 2296 } 2297 case XFS_BMAP_CRC_MAGIC: 2298 case XFS_BMAP_MAGIC: { 2299 struct xfs_btree_block *btb = blk; 2300 2301 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn); 2302 uuid = &btb->bb_u.l.bb_uuid; 2303 break; 2304 } 2305 case XFS_AGF_MAGIC: 2306 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn); 2307 uuid = &((struct xfs_agf *)blk)->agf_uuid; 2308 break; 2309 case XFS_AGFL_MAGIC: 2310 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn); 2311 uuid = &((struct xfs_agfl *)blk)->agfl_uuid; 2312 break; 2313 case XFS_AGI_MAGIC: 2314 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn); 2315 uuid = &((struct xfs_agi *)blk)->agi_uuid; 2316 break; 2317 case XFS_SYMLINK_MAGIC: 2318 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn); 2319 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid; 2320 break; 2321 case XFS_DIR3_BLOCK_MAGIC: 2322 case XFS_DIR3_DATA_MAGIC: 2323 case XFS_DIR3_FREE_MAGIC: 2324 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn); 2325 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid; 2326 break; 2327 case XFS_ATTR3_RMT_MAGIC: 2328 /* 2329 * Remote attr blocks are written synchronously, rather than 2330 * being logged. That means they do not contain a valid LSN 2331 * (i.e. transactionally ordered) in them, and hence any time we 2332 * see a buffer to replay over the top of a remote attribute 2333 * block we should simply do so. 2334 */ 2335 goto recover_immediately; 2336 case XFS_SB_MAGIC: 2337 /* 2338 * superblock uuids are magic. We may or may not have a 2339 * sb_meta_uuid on disk, but it will be set in the in-core 2340 * superblock. We set the uuid pointer for verification 2341 * according to the superblock feature mask to ensure we check 2342 * the relevant UUID in the superblock. 2343 */ 2344 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn); 2345 if (xfs_sb_version_hasmetauuid(&mp->m_sb)) 2346 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid; 2347 else 2348 uuid = &((struct xfs_dsb *)blk)->sb_uuid; 2349 break; 2350 default: 2351 break; 2352 } 2353 2354 if (lsn != (xfs_lsn_t)-1) { 2355 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid)) 2356 goto recover_immediately; 2357 return lsn; 2358 } 2359 2360 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic); 2361 switch (magicda) { 2362 case XFS_DIR3_LEAF1_MAGIC: 2363 case XFS_DIR3_LEAFN_MAGIC: 2364 case XFS_DA3_NODE_MAGIC: 2365 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn); 2366 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid; 2367 break; 2368 default: 2369 break; 2370 } 2371 2372 if (lsn != (xfs_lsn_t)-1) { 2373 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid)) 2374 goto recover_immediately; 2375 return lsn; 2376 } 2377 2378 /* 2379 * We do individual object checks on dquot and inode buffers as they 2380 * have their own individual LSN records. Also, we could have a stale 2381 * buffer here, so we have to at least recognise these buffer types. 2382 * 2383 * A notd complexity here is inode unlinked list processing - it logs 2384 * the inode directly in the buffer, but we don't know which inodes have 2385 * been modified, and there is no global buffer LSN. Hence we need to 2386 * recover all inode buffer types immediately. This problem will be 2387 * fixed by logical logging of the unlinked list modifications. 2388 */ 2389 magic16 = be16_to_cpu(*(__be16 *)blk); 2390 switch (magic16) { 2391 case XFS_DQUOT_MAGIC: 2392 case XFS_DINODE_MAGIC: 2393 goto recover_immediately; 2394 default: 2395 break; 2396 } 2397 2398 /* unknown buffer contents, recover immediately */ 2399 2400 recover_immediately: 2401 return (xfs_lsn_t)-1; 2402 2403 } 2404 2405 /* 2406 * Validate the recovered buffer is of the correct type and attach the 2407 * appropriate buffer operations to them for writeback. Magic numbers are in a 2408 * few places: 2409 * the first 16 bits of the buffer (inode buffer, dquot buffer), 2410 * the first 32 bits of the buffer (most blocks), 2411 * inside a struct xfs_da_blkinfo at the start of the buffer. 2412 */ 2413 static void 2414 xlog_recover_validate_buf_type( 2415 struct xfs_mount *mp, 2416 struct xfs_buf *bp, 2417 xfs_buf_log_format_t *buf_f, 2418 xfs_lsn_t current_lsn) 2419 { 2420 struct xfs_da_blkinfo *info = bp->b_addr; 2421 uint32_t magic32; 2422 uint16_t magic16; 2423 uint16_t magicda; 2424 char *warnmsg = NULL; 2425 2426 /* 2427 * We can only do post recovery validation on items on CRC enabled 2428 * fielsystems as we need to know when the buffer was written to be able 2429 * to determine if we should have replayed the item. If we replay old 2430 * metadata over a newer buffer, then it will enter a temporarily 2431 * inconsistent state resulting in verification failures. Hence for now 2432 * just avoid the verification stage for non-crc filesystems 2433 */ 2434 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2435 return; 2436 2437 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr); 2438 magic16 = be16_to_cpu(*(__be16*)bp->b_addr); 2439 magicda = be16_to_cpu(info->magic); 2440 switch (xfs_blft_from_flags(buf_f)) { 2441 case XFS_BLFT_BTREE_BUF: 2442 switch (magic32) { 2443 case XFS_ABTB_CRC_MAGIC: 2444 case XFS_ABTC_CRC_MAGIC: 2445 case XFS_ABTB_MAGIC: 2446 case XFS_ABTC_MAGIC: 2447 bp->b_ops = &xfs_allocbt_buf_ops; 2448 break; 2449 case XFS_IBT_CRC_MAGIC: 2450 case XFS_FIBT_CRC_MAGIC: 2451 case XFS_IBT_MAGIC: 2452 case XFS_FIBT_MAGIC: 2453 bp->b_ops = &xfs_inobt_buf_ops; 2454 break; 2455 case XFS_BMAP_CRC_MAGIC: 2456 case XFS_BMAP_MAGIC: 2457 bp->b_ops = &xfs_bmbt_buf_ops; 2458 break; 2459 case XFS_RMAP_CRC_MAGIC: 2460 bp->b_ops = &xfs_rmapbt_buf_ops; 2461 break; 2462 case XFS_REFC_CRC_MAGIC: 2463 bp->b_ops = &xfs_refcountbt_buf_ops; 2464 break; 2465 default: 2466 warnmsg = "Bad btree block magic!"; 2467 break; 2468 } 2469 break; 2470 case XFS_BLFT_AGF_BUF: 2471 if (magic32 != XFS_AGF_MAGIC) { 2472 warnmsg = "Bad AGF block magic!"; 2473 break; 2474 } 2475 bp->b_ops = &xfs_agf_buf_ops; 2476 break; 2477 case XFS_BLFT_AGFL_BUF: 2478 if (magic32 != XFS_AGFL_MAGIC) { 2479 warnmsg = "Bad AGFL block magic!"; 2480 break; 2481 } 2482 bp->b_ops = &xfs_agfl_buf_ops; 2483 break; 2484 case XFS_BLFT_AGI_BUF: 2485 if (magic32 != XFS_AGI_MAGIC) { 2486 warnmsg = "Bad AGI block magic!"; 2487 break; 2488 } 2489 bp->b_ops = &xfs_agi_buf_ops; 2490 break; 2491 case XFS_BLFT_UDQUOT_BUF: 2492 case XFS_BLFT_PDQUOT_BUF: 2493 case XFS_BLFT_GDQUOT_BUF: 2494 #ifdef CONFIG_XFS_QUOTA 2495 if (magic16 != XFS_DQUOT_MAGIC) { 2496 warnmsg = "Bad DQUOT block magic!"; 2497 break; 2498 } 2499 bp->b_ops = &xfs_dquot_buf_ops; 2500 #else 2501 xfs_alert(mp, 2502 "Trying to recover dquots without QUOTA support built in!"); 2503 ASSERT(0); 2504 #endif 2505 break; 2506 case XFS_BLFT_DINO_BUF: 2507 if (magic16 != XFS_DINODE_MAGIC) { 2508 warnmsg = "Bad INODE block magic!"; 2509 break; 2510 } 2511 bp->b_ops = &xfs_inode_buf_ops; 2512 break; 2513 case XFS_BLFT_SYMLINK_BUF: 2514 if (magic32 != XFS_SYMLINK_MAGIC) { 2515 warnmsg = "Bad symlink block magic!"; 2516 break; 2517 } 2518 bp->b_ops = &xfs_symlink_buf_ops; 2519 break; 2520 case XFS_BLFT_DIR_BLOCK_BUF: 2521 if (magic32 != XFS_DIR2_BLOCK_MAGIC && 2522 magic32 != XFS_DIR3_BLOCK_MAGIC) { 2523 warnmsg = "Bad dir block magic!"; 2524 break; 2525 } 2526 bp->b_ops = &xfs_dir3_block_buf_ops; 2527 break; 2528 case XFS_BLFT_DIR_DATA_BUF: 2529 if (magic32 != XFS_DIR2_DATA_MAGIC && 2530 magic32 != XFS_DIR3_DATA_MAGIC) { 2531 warnmsg = "Bad dir data magic!"; 2532 break; 2533 } 2534 bp->b_ops = &xfs_dir3_data_buf_ops; 2535 break; 2536 case XFS_BLFT_DIR_FREE_BUF: 2537 if (magic32 != XFS_DIR2_FREE_MAGIC && 2538 magic32 != XFS_DIR3_FREE_MAGIC) { 2539 warnmsg = "Bad dir3 free magic!"; 2540 break; 2541 } 2542 bp->b_ops = &xfs_dir3_free_buf_ops; 2543 break; 2544 case XFS_BLFT_DIR_LEAF1_BUF: 2545 if (magicda != XFS_DIR2_LEAF1_MAGIC && 2546 magicda != XFS_DIR3_LEAF1_MAGIC) { 2547 warnmsg = "Bad dir leaf1 magic!"; 2548 break; 2549 } 2550 bp->b_ops = &xfs_dir3_leaf1_buf_ops; 2551 break; 2552 case XFS_BLFT_DIR_LEAFN_BUF: 2553 if (magicda != XFS_DIR2_LEAFN_MAGIC && 2554 magicda != XFS_DIR3_LEAFN_MAGIC) { 2555 warnmsg = "Bad dir leafn magic!"; 2556 break; 2557 } 2558 bp->b_ops = &xfs_dir3_leafn_buf_ops; 2559 break; 2560 case XFS_BLFT_DA_NODE_BUF: 2561 if (magicda != XFS_DA_NODE_MAGIC && 2562 magicda != XFS_DA3_NODE_MAGIC) { 2563 warnmsg = "Bad da node magic!"; 2564 break; 2565 } 2566 bp->b_ops = &xfs_da3_node_buf_ops; 2567 break; 2568 case XFS_BLFT_ATTR_LEAF_BUF: 2569 if (magicda != XFS_ATTR_LEAF_MAGIC && 2570 magicda != XFS_ATTR3_LEAF_MAGIC) { 2571 warnmsg = "Bad attr leaf magic!"; 2572 break; 2573 } 2574 bp->b_ops = &xfs_attr3_leaf_buf_ops; 2575 break; 2576 case XFS_BLFT_ATTR_RMT_BUF: 2577 if (magic32 != XFS_ATTR3_RMT_MAGIC) { 2578 warnmsg = "Bad attr remote magic!"; 2579 break; 2580 } 2581 bp->b_ops = &xfs_attr3_rmt_buf_ops; 2582 break; 2583 case XFS_BLFT_SB_BUF: 2584 if (magic32 != XFS_SB_MAGIC) { 2585 warnmsg = "Bad SB block magic!"; 2586 break; 2587 } 2588 bp->b_ops = &xfs_sb_buf_ops; 2589 break; 2590 #ifdef CONFIG_XFS_RT 2591 case XFS_BLFT_RTBITMAP_BUF: 2592 case XFS_BLFT_RTSUMMARY_BUF: 2593 /* no magic numbers for verification of RT buffers */ 2594 bp->b_ops = &xfs_rtbuf_ops; 2595 break; 2596 #endif /* CONFIG_XFS_RT */ 2597 default: 2598 xfs_warn(mp, "Unknown buffer type %d!", 2599 xfs_blft_from_flags(buf_f)); 2600 break; 2601 } 2602 2603 /* 2604 * Nothing else to do in the case of a NULL current LSN as this means 2605 * the buffer is more recent than the change in the log and will be 2606 * skipped. 2607 */ 2608 if (current_lsn == NULLCOMMITLSN) 2609 return; 2610 2611 if (warnmsg) { 2612 xfs_warn(mp, warnmsg); 2613 ASSERT(0); 2614 } 2615 2616 /* 2617 * We must update the metadata LSN of the buffer as it is written out to 2618 * ensure that older transactions never replay over this one and corrupt 2619 * the buffer. This can occur if log recovery is interrupted at some 2620 * point after the current transaction completes, at which point a 2621 * subsequent mount starts recovery from the beginning. 2622 * 2623 * Write verifiers update the metadata LSN from log items attached to 2624 * the buffer. Therefore, initialize a bli purely to carry the LSN to 2625 * the verifier. We'll clean it up in our ->iodone() callback. 2626 */ 2627 if (bp->b_ops) { 2628 struct xfs_buf_log_item *bip; 2629 2630 ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone); 2631 bp->b_iodone = xlog_recover_iodone; 2632 xfs_buf_item_init(bp, mp); 2633 bip = bp->b_log_item; 2634 bip->bli_item.li_lsn = current_lsn; 2635 } 2636 } 2637 2638 /* 2639 * Perform a 'normal' buffer recovery. Each logged region of the 2640 * buffer should be copied over the corresponding region in the 2641 * given buffer. The bitmap in the buf log format structure indicates 2642 * where to place the logged data. 2643 */ 2644 STATIC void 2645 xlog_recover_do_reg_buffer( 2646 struct xfs_mount *mp, 2647 xlog_recover_item_t *item, 2648 struct xfs_buf *bp, 2649 xfs_buf_log_format_t *buf_f, 2650 xfs_lsn_t current_lsn) 2651 { 2652 int i; 2653 int bit; 2654 int nbits; 2655 xfs_failaddr_t fa; 2656 2657 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); 2658 2659 bit = 0; 2660 i = 1; /* 0 is the buf format structure */ 2661 while (1) { 2662 bit = xfs_next_bit(buf_f->blf_data_map, 2663 buf_f->blf_map_size, bit); 2664 if (bit == -1) 2665 break; 2666 nbits = xfs_contig_bits(buf_f->blf_data_map, 2667 buf_f->blf_map_size, bit); 2668 ASSERT(nbits > 0); 2669 ASSERT(item->ri_buf[i].i_addr != NULL); 2670 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); 2671 ASSERT(BBTOB(bp->b_io_length) >= 2672 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); 2673 2674 /* 2675 * The dirty regions logged in the buffer, even though 2676 * contiguous, may span multiple chunks. This is because the 2677 * dirty region may span a physical page boundary in a buffer 2678 * and hence be split into two separate vectors for writing into 2679 * the log. Hence we need to trim nbits back to the length of 2680 * the current region being copied out of the log. 2681 */ 2682 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT)) 2683 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT; 2684 2685 /* 2686 * Do a sanity check if this is a dquot buffer. Just checking 2687 * the first dquot in the buffer should do. XXXThis is 2688 * probably a good thing to do for other buf types also. 2689 */ 2690 fa = NULL; 2691 if (buf_f->blf_flags & 2692 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2693 if (item->ri_buf[i].i_addr == NULL) { 2694 xfs_alert(mp, 2695 "XFS: NULL dquot in %s.", __func__); 2696 goto next; 2697 } 2698 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) { 2699 xfs_alert(mp, 2700 "XFS: dquot too small (%d) in %s.", 2701 item->ri_buf[i].i_len, __func__); 2702 goto next; 2703 } 2704 fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr, 2705 -1, 0, 0); 2706 if (fa) { 2707 xfs_alert(mp, 2708 "dquot corrupt at %pS trying to replay into block 0x%llx", 2709 fa, bp->b_bn); 2710 goto next; 2711 } 2712 } 2713 2714 memcpy(xfs_buf_offset(bp, 2715 (uint)bit << XFS_BLF_SHIFT), /* dest */ 2716 item->ri_buf[i].i_addr, /* source */ 2717 nbits<<XFS_BLF_SHIFT); /* length */ 2718 next: 2719 i++; 2720 bit += nbits; 2721 } 2722 2723 /* Shouldn't be any more regions */ 2724 ASSERT(i == item->ri_total); 2725 2726 xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn); 2727 } 2728 2729 /* 2730 * Perform a dquot buffer recovery. 2731 * Simple algorithm: if we have found a QUOTAOFF log item of the same type 2732 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2733 * Else, treat it as a regular buffer and do recovery. 2734 * 2735 * Return false if the buffer was tossed and true if we recovered the buffer to 2736 * indicate to the caller if the buffer needs writing. 2737 */ 2738 STATIC bool 2739 xlog_recover_do_dquot_buffer( 2740 struct xfs_mount *mp, 2741 struct xlog *log, 2742 struct xlog_recover_item *item, 2743 struct xfs_buf *bp, 2744 struct xfs_buf_log_format *buf_f) 2745 { 2746 uint type; 2747 2748 trace_xfs_log_recover_buf_dquot_buf(log, buf_f); 2749 2750 /* 2751 * Filesystems are required to send in quota flags at mount time. 2752 */ 2753 if (!mp->m_qflags) 2754 return false; 2755 2756 type = 0; 2757 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) 2758 type |= XFS_DQ_USER; 2759 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) 2760 type |= XFS_DQ_PROJ; 2761 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) 2762 type |= XFS_DQ_GROUP; 2763 /* 2764 * This type of quotas was turned off, so ignore this buffer 2765 */ 2766 if (log->l_quotaoffs_flag & type) 2767 return false; 2768 2769 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN); 2770 return true; 2771 } 2772 2773 /* 2774 * This routine replays a modification made to a buffer at runtime. 2775 * There are actually two types of buffer, regular and inode, which 2776 * are handled differently. Inode buffers are handled differently 2777 * in that we only recover a specific set of data from them, namely 2778 * the inode di_next_unlinked fields. This is because all other inode 2779 * data is actually logged via inode records and any data we replay 2780 * here which overlaps that may be stale. 2781 * 2782 * When meta-data buffers are freed at run time we log a buffer item 2783 * with the XFS_BLF_CANCEL bit set to indicate that previous copies 2784 * of the buffer in the log should not be replayed at recovery time. 2785 * This is so that if the blocks covered by the buffer are reused for 2786 * file data before we crash we don't end up replaying old, freed 2787 * meta-data into a user's file. 2788 * 2789 * To handle the cancellation of buffer log items, we make two passes 2790 * over the log during recovery. During the first we build a table of 2791 * those buffers which have been cancelled, and during the second we 2792 * only replay those buffers which do not have corresponding cancel 2793 * records in the table. See xlog_recover_buffer_pass[1,2] above 2794 * for more details on the implementation of the table of cancel records. 2795 */ 2796 STATIC int 2797 xlog_recover_buffer_pass2( 2798 struct xlog *log, 2799 struct list_head *buffer_list, 2800 struct xlog_recover_item *item, 2801 xfs_lsn_t current_lsn) 2802 { 2803 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2804 xfs_mount_t *mp = log->l_mp; 2805 xfs_buf_t *bp; 2806 int error; 2807 uint buf_flags; 2808 xfs_lsn_t lsn; 2809 2810 /* 2811 * In this pass we only want to recover all the buffers which have 2812 * not been cancelled and are not cancellation buffers themselves. 2813 */ 2814 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno, 2815 buf_f->blf_len, buf_f->blf_flags)) { 2816 trace_xfs_log_recover_buf_cancel(log, buf_f); 2817 return 0; 2818 } 2819 2820 trace_xfs_log_recover_buf_recover(log, buf_f); 2821 2822 buf_flags = 0; 2823 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) 2824 buf_flags |= XBF_UNMAPPED; 2825 2826 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, 2827 buf_flags, NULL); 2828 if (!bp) 2829 return -ENOMEM; 2830 error = bp->b_error; 2831 if (error) { 2832 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)"); 2833 goto out_release; 2834 } 2835 2836 /* 2837 * Recover the buffer only if we get an LSN from it and it's less than 2838 * the lsn of the transaction we are replaying. 2839 * 2840 * Note that we have to be extremely careful of readahead here. 2841 * Readahead does not attach verfiers to the buffers so if we don't 2842 * actually do any replay after readahead because of the LSN we found 2843 * in the buffer if more recent than that current transaction then we 2844 * need to attach the verifier directly. Failure to do so can lead to 2845 * future recovery actions (e.g. EFI and unlinked list recovery) can 2846 * operate on the buffers and they won't get the verifier attached. This 2847 * can lead to blocks on disk having the correct content but a stale 2848 * CRC. 2849 * 2850 * It is safe to assume these clean buffers are currently up to date. 2851 * If the buffer is dirtied by a later transaction being replayed, then 2852 * the verifier will be reset to match whatever recover turns that 2853 * buffer into. 2854 */ 2855 lsn = xlog_recover_get_buf_lsn(mp, bp); 2856 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 2857 trace_xfs_log_recover_buf_skip(log, buf_f); 2858 xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN); 2859 goto out_release; 2860 } 2861 2862 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 2863 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2864 if (error) 2865 goto out_release; 2866 } else if (buf_f->blf_flags & 2867 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2868 bool dirty; 2869 2870 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2871 if (!dirty) 2872 goto out_release; 2873 } else { 2874 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn); 2875 } 2876 2877 /* 2878 * Perform delayed write on the buffer. Asynchronous writes will be 2879 * slower when taking into account all the buffers to be flushed. 2880 * 2881 * Also make sure that only inode buffers with good sizes stay in 2882 * the buffer cache. The kernel moves inodes in buffers of 1 block 2883 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode 2884 * buffers in the log can be a different size if the log was generated 2885 * by an older kernel using unclustered inode buffers or a newer kernel 2886 * running with a different inode cluster size. Regardless, if the 2887 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size) 2888 * for *our* value of mp->m_inode_cluster_size, then we need to keep 2889 * the buffer out of the buffer cache so that the buffer won't 2890 * overlap with future reads of those inodes. 2891 */ 2892 if (XFS_DINODE_MAGIC == 2893 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && 2894 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize, 2895 (uint32_t)log->l_mp->m_inode_cluster_size))) { 2896 xfs_buf_stale(bp); 2897 error = xfs_bwrite(bp); 2898 } else { 2899 ASSERT(bp->b_target->bt_mount == mp); 2900 bp->b_iodone = xlog_recover_iodone; 2901 xfs_buf_delwri_queue(bp, buffer_list); 2902 } 2903 2904 out_release: 2905 xfs_buf_relse(bp); 2906 return error; 2907 } 2908 2909 /* 2910 * Inode fork owner changes 2911 * 2912 * If we have been told that we have to reparent the inode fork, it's because an 2913 * extent swap operation on a CRC enabled filesystem has been done and we are 2914 * replaying it. We need to walk the BMBT of the appropriate fork and change the 2915 * owners of it. 2916 * 2917 * The complexity here is that we don't have an inode context to work with, so 2918 * after we've replayed the inode we need to instantiate one. This is where the 2919 * fun begins. 2920 * 2921 * We are in the middle of log recovery, so we can't run transactions. That 2922 * means we cannot use cache coherent inode instantiation via xfs_iget(), as 2923 * that will result in the corresponding iput() running the inode through 2924 * xfs_inactive(). If we've just replayed an inode core that changes the link 2925 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run 2926 * transactions (bad!). 2927 * 2928 * So, to avoid this, we instantiate an inode directly from the inode core we've 2929 * just recovered. We have the buffer still locked, and all we really need to 2930 * instantiate is the inode core and the forks being modified. We can do this 2931 * manually, then run the inode btree owner change, and then tear down the 2932 * xfs_inode without having to run any transactions at all. 2933 * 2934 * Also, because we don't have a transaction context available here but need to 2935 * gather all the buffers we modify for writeback so we pass the buffer_list 2936 * instead for the operation to use. 2937 */ 2938 2939 STATIC int 2940 xfs_recover_inode_owner_change( 2941 struct xfs_mount *mp, 2942 struct xfs_dinode *dip, 2943 struct xfs_inode_log_format *in_f, 2944 struct list_head *buffer_list) 2945 { 2946 struct xfs_inode *ip; 2947 int error; 2948 2949 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)); 2950 2951 ip = xfs_inode_alloc(mp, in_f->ilf_ino); 2952 if (!ip) 2953 return -ENOMEM; 2954 2955 /* instantiate the inode */ 2956 xfs_inode_from_disk(ip, dip); 2957 ASSERT(ip->i_d.di_version >= 3); 2958 2959 error = xfs_iformat_fork(ip, dip); 2960 if (error) 2961 goto out_free_ip; 2962 2963 if (!xfs_inode_verify_forks(ip)) { 2964 error = -EFSCORRUPTED; 2965 goto out_free_ip; 2966 } 2967 2968 if (in_f->ilf_fields & XFS_ILOG_DOWNER) { 2969 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT); 2970 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK, 2971 ip->i_ino, buffer_list); 2972 if (error) 2973 goto out_free_ip; 2974 } 2975 2976 if (in_f->ilf_fields & XFS_ILOG_AOWNER) { 2977 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT); 2978 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK, 2979 ip->i_ino, buffer_list); 2980 if (error) 2981 goto out_free_ip; 2982 } 2983 2984 out_free_ip: 2985 xfs_inode_free(ip); 2986 return error; 2987 } 2988 2989 STATIC int 2990 xlog_recover_inode_pass2( 2991 struct xlog *log, 2992 struct list_head *buffer_list, 2993 struct xlog_recover_item *item, 2994 xfs_lsn_t current_lsn) 2995 { 2996 struct xfs_inode_log_format *in_f; 2997 xfs_mount_t *mp = log->l_mp; 2998 xfs_buf_t *bp; 2999 xfs_dinode_t *dip; 3000 int len; 3001 char *src; 3002 char *dest; 3003 int error; 3004 int attr_index; 3005 uint fields; 3006 struct xfs_log_dinode *ldip; 3007 uint isize; 3008 int need_free = 0; 3009 3010 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { 3011 in_f = item->ri_buf[0].i_addr; 3012 } else { 3013 in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), KM_SLEEP); 3014 need_free = 1; 3015 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 3016 if (error) 3017 goto error; 3018 } 3019 3020 /* 3021 * Inode buffers can be freed, look out for it, 3022 * and do not replay the inode. 3023 */ 3024 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, 3025 in_f->ilf_len, 0)) { 3026 error = 0; 3027 trace_xfs_log_recover_inode_cancel(log, in_f); 3028 goto error; 3029 } 3030 trace_xfs_log_recover_inode_recover(log, in_f); 3031 3032 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0, 3033 &xfs_inode_buf_ops); 3034 if (!bp) { 3035 error = -ENOMEM; 3036 goto error; 3037 } 3038 error = bp->b_error; 3039 if (error) { 3040 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)"); 3041 goto out_release; 3042 } 3043 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 3044 dip = xfs_buf_offset(bp, in_f->ilf_boffset); 3045 3046 /* 3047 * Make sure the place we're flushing out to really looks 3048 * like an inode! 3049 */ 3050 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) { 3051 xfs_alert(mp, 3052 "%s: Bad inode magic number, dip = "PTR_FMT", dino bp = "PTR_FMT", ino = %Ld", 3053 __func__, dip, bp, in_f->ilf_ino); 3054 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)", 3055 XFS_ERRLEVEL_LOW, mp); 3056 error = -EFSCORRUPTED; 3057 goto out_release; 3058 } 3059 ldip = item->ri_buf[1].i_addr; 3060 if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) { 3061 xfs_alert(mp, 3062 "%s: Bad inode log record, rec ptr "PTR_FMT", ino %Ld", 3063 __func__, item, in_f->ilf_ino); 3064 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)", 3065 XFS_ERRLEVEL_LOW, mp); 3066 error = -EFSCORRUPTED; 3067 goto out_release; 3068 } 3069 3070 /* 3071 * If the inode has an LSN in it, recover the inode only if it's less 3072 * than the lsn of the transaction we are replaying. Note: we still 3073 * need to replay an owner change even though the inode is more recent 3074 * than the transaction as there is no guarantee that all the btree 3075 * blocks are more recent than this transaction, too. 3076 */ 3077 if (dip->di_version >= 3) { 3078 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn); 3079 3080 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 3081 trace_xfs_log_recover_inode_skip(log, in_f); 3082 error = 0; 3083 goto out_owner_change; 3084 } 3085 } 3086 3087 /* 3088 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes 3089 * are transactional and if ordering is necessary we can determine that 3090 * more accurately by the LSN field in the V3 inode core. Don't trust 3091 * the inode versions we might be changing them here - use the 3092 * superblock flag to determine whether we need to look at di_flushiter 3093 * to skip replay when the on disk inode is newer than the log one 3094 */ 3095 if (!xfs_sb_version_hascrc(&mp->m_sb) && 3096 ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) { 3097 /* 3098 * Deal with the wrap case, DI_MAX_FLUSH is less 3099 * than smaller numbers 3100 */ 3101 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && 3102 ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) { 3103 /* do nothing */ 3104 } else { 3105 trace_xfs_log_recover_inode_skip(log, in_f); 3106 error = 0; 3107 goto out_release; 3108 } 3109 } 3110 3111 /* Take the opportunity to reset the flush iteration count */ 3112 ldip->di_flushiter = 0; 3113 3114 if (unlikely(S_ISREG(ldip->di_mode))) { 3115 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) && 3116 (ldip->di_format != XFS_DINODE_FMT_BTREE)) { 3117 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)", 3118 XFS_ERRLEVEL_LOW, mp, ldip); 3119 xfs_alert(mp, 3120 "%s: Bad regular inode log record, rec ptr "PTR_FMT", " 3121 "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld", 3122 __func__, item, dip, bp, in_f->ilf_ino); 3123 error = -EFSCORRUPTED; 3124 goto out_release; 3125 } 3126 } else if (unlikely(S_ISDIR(ldip->di_mode))) { 3127 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) && 3128 (ldip->di_format != XFS_DINODE_FMT_BTREE) && 3129 (ldip->di_format != XFS_DINODE_FMT_LOCAL)) { 3130 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)", 3131 XFS_ERRLEVEL_LOW, mp, ldip); 3132 xfs_alert(mp, 3133 "%s: Bad dir inode log record, rec ptr "PTR_FMT", " 3134 "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld", 3135 __func__, item, dip, bp, in_f->ilf_ino); 3136 error = -EFSCORRUPTED; 3137 goto out_release; 3138 } 3139 } 3140 if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){ 3141 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)", 3142 XFS_ERRLEVEL_LOW, mp, ldip); 3143 xfs_alert(mp, 3144 "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", " 3145 "dino bp "PTR_FMT", ino %Ld, total extents = %d, nblocks = %Ld", 3146 __func__, item, dip, bp, in_f->ilf_ino, 3147 ldip->di_nextents + ldip->di_anextents, 3148 ldip->di_nblocks); 3149 error = -EFSCORRUPTED; 3150 goto out_release; 3151 } 3152 if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) { 3153 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)", 3154 XFS_ERRLEVEL_LOW, mp, ldip); 3155 xfs_alert(mp, 3156 "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", " 3157 "dino bp "PTR_FMT", ino %Ld, forkoff 0x%x", __func__, 3158 item, dip, bp, in_f->ilf_ino, ldip->di_forkoff); 3159 error = -EFSCORRUPTED; 3160 goto out_release; 3161 } 3162 isize = xfs_log_dinode_size(ldip->di_version); 3163 if (unlikely(item->ri_buf[1].i_len > isize)) { 3164 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)", 3165 XFS_ERRLEVEL_LOW, mp, ldip); 3166 xfs_alert(mp, 3167 "%s: Bad inode log record length %d, rec ptr "PTR_FMT, 3168 __func__, item->ri_buf[1].i_len, item); 3169 error = -EFSCORRUPTED; 3170 goto out_release; 3171 } 3172 3173 /* recover the log dinode inode into the on disk inode */ 3174 xfs_log_dinode_to_disk(ldip, dip); 3175 3176 fields = in_f->ilf_fields; 3177 if (fields & XFS_ILOG_DEV) 3178 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); 3179 3180 if (in_f->ilf_size == 2) 3181 goto out_owner_change; 3182 len = item->ri_buf[2].i_len; 3183 src = item->ri_buf[2].i_addr; 3184 ASSERT(in_f->ilf_size <= 4); 3185 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 3186 ASSERT(!(fields & XFS_ILOG_DFORK) || 3187 (len == in_f->ilf_dsize)); 3188 3189 switch (fields & XFS_ILOG_DFORK) { 3190 case XFS_ILOG_DDATA: 3191 case XFS_ILOG_DEXT: 3192 memcpy(XFS_DFORK_DPTR(dip), src, len); 3193 break; 3194 3195 case XFS_ILOG_DBROOT: 3196 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, 3197 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), 3198 XFS_DFORK_DSIZE(dip, mp)); 3199 break; 3200 3201 default: 3202 /* 3203 * There are no data fork flags set. 3204 */ 3205 ASSERT((fields & XFS_ILOG_DFORK) == 0); 3206 break; 3207 } 3208 3209 /* 3210 * If we logged any attribute data, recover it. There may or 3211 * may not have been any other non-core data logged in this 3212 * transaction. 3213 */ 3214 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 3215 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 3216 attr_index = 3; 3217 } else { 3218 attr_index = 2; 3219 } 3220 len = item->ri_buf[attr_index].i_len; 3221 src = item->ri_buf[attr_index].i_addr; 3222 ASSERT(len == in_f->ilf_asize); 3223 3224 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 3225 case XFS_ILOG_ADATA: 3226 case XFS_ILOG_AEXT: 3227 dest = XFS_DFORK_APTR(dip); 3228 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 3229 memcpy(dest, src, len); 3230 break; 3231 3232 case XFS_ILOG_ABROOT: 3233 dest = XFS_DFORK_APTR(dip); 3234 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, 3235 len, (xfs_bmdr_block_t*)dest, 3236 XFS_DFORK_ASIZE(dip, mp)); 3237 break; 3238 3239 default: 3240 xfs_warn(log->l_mp, "%s: Invalid flag", __func__); 3241 ASSERT(0); 3242 error = -EIO; 3243 goto out_release; 3244 } 3245 } 3246 3247 out_owner_change: 3248 /* Recover the swapext owner change unless inode has been deleted */ 3249 if ((in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) && 3250 (dip->di_mode != 0)) 3251 error = xfs_recover_inode_owner_change(mp, dip, in_f, 3252 buffer_list); 3253 /* re-generate the checksum. */ 3254 xfs_dinode_calc_crc(log->l_mp, dip); 3255 3256 ASSERT(bp->b_target->bt_mount == mp); 3257 bp->b_iodone = xlog_recover_iodone; 3258 xfs_buf_delwri_queue(bp, buffer_list); 3259 3260 out_release: 3261 xfs_buf_relse(bp); 3262 error: 3263 if (need_free) 3264 kmem_free(in_f); 3265 return error; 3266 } 3267 3268 /* 3269 * Recover QUOTAOFF records. We simply make a note of it in the xlog 3270 * structure, so that we know not to do any dquot item or dquot buffer recovery, 3271 * of that type. 3272 */ 3273 STATIC int 3274 xlog_recover_quotaoff_pass1( 3275 struct xlog *log, 3276 struct xlog_recover_item *item) 3277 { 3278 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr; 3279 ASSERT(qoff_f); 3280 3281 /* 3282 * The logitem format's flag tells us if this was user quotaoff, 3283 * group/project quotaoff or both. 3284 */ 3285 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 3286 log->l_quotaoffs_flag |= XFS_DQ_USER; 3287 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 3288 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 3289 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 3290 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 3291 3292 return 0; 3293 } 3294 3295 /* 3296 * Recover a dquot record 3297 */ 3298 STATIC int 3299 xlog_recover_dquot_pass2( 3300 struct xlog *log, 3301 struct list_head *buffer_list, 3302 struct xlog_recover_item *item, 3303 xfs_lsn_t current_lsn) 3304 { 3305 xfs_mount_t *mp = log->l_mp; 3306 xfs_buf_t *bp; 3307 struct xfs_disk_dquot *ddq, *recddq; 3308 xfs_failaddr_t fa; 3309 int error; 3310 xfs_dq_logformat_t *dq_f; 3311 uint type; 3312 3313 3314 /* 3315 * Filesystems are required to send in quota flags at mount time. 3316 */ 3317 if (mp->m_qflags == 0) 3318 return 0; 3319 3320 recddq = item->ri_buf[1].i_addr; 3321 if (recddq == NULL) { 3322 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__); 3323 return -EIO; 3324 } 3325 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) { 3326 xfs_alert(log->l_mp, "dquot too small (%d) in %s.", 3327 item->ri_buf[1].i_len, __func__); 3328 return -EIO; 3329 } 3330 3331 /* 3332 * This type of quotas was turned off, so ignore this record. 3333 */ 3334 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 3335 ASSERT(type); 3336 if (log->l_quotaoffs_flag & type) 3337 return 0; 3338 3339 /* 3340 * At this point we know that quota was _not_ turned off. 3341 * Since the mount flags are not indicating to us otherwise, this 3342 * must mean that quota is on, and the dquot needs to be replayed. 3343 * Remember that we may not have fully recovered the superblock yet, 3344 * so we can't do the usual trick of looking at the SB quota bits. 3345 * 3346 * The other possibility, of course, is that the quota subsystem was 3347 * removed since the last mount - ENOSYS. 3348 */ 3349 dq_f = item->ri_buf[0].i_addr; 3350 ASSERT(dq_f); 3351 fa = xfs_dquot_verify(mp, recddq, dq_f->qlf_id, 0, 0); 3352 if (fa) { 3353 xfs_alert(mp, "corrupt dquot ID 0x%x in log at %pS", 3354 dq_f->qlf_id, fa); 3355 return -EIO; 3356 } 3357 ASSERT(dq_f->qlf_len == 1); 3358 3359 /* 3360 * At this point we are assuming that the dquots have been allocated 3361 * and hence the buffer has valid dquots stamped in it. It should, 3362 * therefore, pass verifier validation. If the dquot is bad, then the 3363 * we'll return an error here, so we don't need to specifically check 3364 * the dquot in the buffer after the verifier has run. 3365 */ 3366 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno, 3367 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp, 3368 &xfs_dquot_buf_ops); 3369 if (error) 3370 return error; 3371 3372 ASSERT(bp); 3373 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset); 3374 3375 /* 3376 * If the dquot has an LSN in it, recover the dquot only if it's less 3377 * than the lsn of the transaction we are replaying. 3378 */ 3379 if (xfs_sb_version_hascrc(&mp->m_sb)) { 3380 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq; 3381 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn); 3382 3383 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 3384 goto out_release; 3385 } 3386 } 3387 3388 memcpy(ddq, recddq, item->ri_buf[1].i_len); 3389 if (xfs_sb_version_hascrc(&mp->m_sb)) { 3390 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk), 3391 XFS_DQUOT_CRC_OFF); 3392 } 3393 3394 ASSERT(dq_f->qlf_size == 2); 3395 ASSERT(bp->b_target->bt_mount == mp); 3396 bp->b_iodone = xlog_recover_iodone; 3397 xfs_buf_delwri_queue(bp, buffer_list); 3398 3399 out_release: 3400 xfs_buf_relse(bp); 3401 return 0; 3402 } 3403 3404 /* 3405 * This routine is called to create an in-core extent free intent 3406 * item from the efi format structure which was logged on disk. 3407 * It allocates an in-core efi, copies the extents from the format 3408 * structure into it, and adds the efi to the AIL with the given 3409 * LSN. 3410 */ 3411 STATIC int 3412 xlog_recover_efi_pass2( 3413 struct xlog *log, 3414 struct xlog_recover_item *item, 3415 xfs_lsn_t lsn) 3416 { 3417 int error; 3418 struct xfs_mount *mp = log->l_mp; 3419 struct xfs_efi_log_item *efip; 3420 struct xfs_efi_log_format *efi_formatp; 3421 3422 efi_formatp = item->ri_buf[0].i_addr; 3423 3424 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 3425 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); 3426 if (error) { 3427 xfs_efi_item_free(efip); 3428 return error; 3429 } 3430 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 3431 3432 spin_lock(&log->l_ailp->ail_lock); 3433 /* 3434 * The EFI has two references. One for the EFD and one for EFI to ensure 3435 * it makes it into the AIL. Insert the EFI into the AIL directly and 3436 * drop the EFI reference. Note that xfs_trans_ail_update() drops the 3437 * AIL lock. 3438 */ 3439 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn); 3440 xfs_efi_release(efip); 3441 return 0; 3442 } 3443 3444 3445 /* 3446 * This routine is called when an EFD format structure is found in a committed 3447 * transaction in the log. Its purpose is to cancel the corresponding EFI if it 3448 * was still in the log. To do this it searches the AIL for the EFI with an id 3449 * equal to that in the EFD format structure. If we find it we drop the EFD 3450 * reference, which removes the EFI from the AIL and frees it. 3451 */ 3452 STATIC int 3453 xlog_recover_efd_pass2( 3454 struct xlog *log, 3455 struct xlog_recover_item *item) 3456 { 3457 xfs_efd_log_format_t *efd_formatp; 3458 xfs_efi_log_item_t *efip = NULL; 3459 xfs_log_item_t *lip; 3460 uint64_t efi_id; 3461 struct xfs_ail_cursor cur; 3462 struct xfs_ail *ailp = log->l_ailp; 3463 3464 efd_formatp = item->ri_buf[0].i_addr; 3465 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 3466 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 3467 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 3468 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 3469 efi_id = efd_formatp->efd_efi_id; 3470 3471 /* 3472 * Search for the EFI with the id in the EFD format structure in the 3473 * AIL. 3474 */ 3475 spin_lock(&ailp->ail_lock); 3476 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3477 while (lip != NULL) { 3478 if (lip->li_type == XFS_LI_EFI) { 3479 efip = (xfs_efi_log_item_t *)lip; 3480 if (efip->efi_format.efi_id == efi_id) { 3481 /* 3482 * Drop the EFD reference to the EFI. This 3483 * removes the EFI from the AIL and frees it. 3484 */ 3485 spin_unlock(&ailp->ail_lock); 3486 xfs_efi_release(efip); 3487 spin_lock(&ailp->ail_lock); 3488 break; 3489 } 3490 } 3491 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3492 } 3493 3494 xfs_trans_ail_cursor_done(&cur); 3495 spin_unlock(&ailp->ail_lock); 3496 3497 return 0; 3498 } 3499 3500 /* 3501 * This routine is called to create an in-core extent rmap update 3502 * item from the rui format structure which was logged on disk. 3503 * It allocates an in-core rui, copies the extents from the format 3504 * structure into it, and adds the rui to the AIL with the given 3505 * LSN. 3506 */ 3507 STATIC int 3508 xlog_recover_rui_pass2( 3509 struct xlog *log, 3510 struct xlog_recover_item *item, 3511 xfs_lsn_t lsn) 3512 { 3513 int error; 3514 struct xfs_mount *mp = log->l_mp; 3515 struct xfs_rui_log_item *ruip; 3516 struct xfs_rui_log_format *rui_formatp; 3517 3518 rui_formatp = item->ri_buf[0].i_addr; 3519 3520 ruip = xfs_rui_init(mp, rui_formatp->rui_nextents); 3521 error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format); 3522 if (error) { 3523 xfs_rui_item_free(ruip); 3524 return error; 3525 } 3526 atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents); 3527 3528 spin_lock(&log->l_ailp->ail_lock); 3529 /* 3530 * The RUI has two references. One for the RUD and one for RUI to ensure 3531 * it makes it into the AIL. Insert the RUI into the AIL directly and 3532 * drop the RUI reference. Note that xfs_trans_ail_update() drops the 3533 * AIL lock. 3534 */ 3535 xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn); 3536 xfs_rui_release(ruip); 3537 return 0; 3538 } 3539 3540 3541 /* 3542 * This routine is called when an RUD format structure is found in a committed 3543 * transaction in the log. Its purpose is to cancel the corresponding RUI if it 3544 * was still in the log. To do this it searches the AIL for the RUI with an id 3545 * equal to that in the RUD format structure. If we find it we drop the RUD 3546 * reference, which removes the RUI from the AIL and frees it. 3547 */ 3548 STATIC int 3549 xlog_recover_rud_pass2( 3550 struct xlog *log, 3551 struct xlog_recover_item *item) 3552 { 3553 struct xfs_rud_log_format *rud_formatp; 3554 struct xfs_rui_log_item *ruip = NULL; 3555 struct xfs_log_item *lip; 3556 uint64_t rui_id; 3557 struct xfs_ail_cursor cur; 3558 struct xfs_ail *ailp = log->l_ailp; 3559 3560 rud_formatp = item->ri_buf[0].i_addr; 3561 ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format)); 3562 rui_id = rud_formatp->rud_rui_id; 3563 3564 /* 3565 * Search for the RUI with the id in the RUD format structure in the 3566 * AIL. 3567 */ 3568 spin_lock(&ailp->ail_lock); 3569 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3570 while (lip != NULL) { 3571 if (lip->li_type == XFS_LI_RUI) { 3572 ruip = (struct xfs_rui_log_item *)lip; 3573 if (ruip->rui_format.rui_id == rui_id) { 3574 /* 3575 * Drop the RUD reference to the RUI. This 3576 * removes the RUI from the AIL and frees it. 3577 */ 3578 spin_unlock(&ailp->ail_lock); 3579 xfs_rui_release(ruip); 3580 spin_lock(&ailp->ail_lock); 3581 break; 3582 } 3583 } 3584 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3585 } 3586 3587 xfs_trans_ail_cursor_done(&cur); 3588 spin_unlock(&ailp->ail_lock); 3589 3590 return 0; 3591 } 3592 3593 /* 3594 * Copy an CUI format buffer from the given buf, and into the destination 3595 * CUI format structure. The CUI/CUD items were designed not to need any 3596 * special alignment handling. 3597 */ 3598 static int 3599 xfs_cui_copy_format( 3600 struct xfs_log_iovec *buf, 3601 struct xfs_cui_log_format *dst_cui_fmt) 3602 { 3603 struct xfs_cui_log_format *src_cui_fmt; 3604 uint len; 3605 3606 src_cui_fmt = buf->i_addr; 3607 len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents); 3608 3609 if (buf->i_len == len) { 3610 memcpy(dst_cui_fmt, src_cui_fmt, len); 3611 return 0; 3612 } 3613 return -EFSCORRUPTED; 3614 } 3615 3616 /* 3617 * This routine is called to create an in-core extent refcount update 3618 * item from the cui format structure which was logged on disk. 3619 * It allocates an in-core cui, copies the extents from the format 3620 * structure into it, and adds the cui to the AIL with the given 3621 * LSN. 3622 */ 3623 STATIC int 3624 xlog_recover_cui_pass2( 3625 struct xlog *log, 3626 struct xlog_recover_item *item, 3627 xfs_lsn_t lsn) 3628 { 3629 int error; 3630 struct xfs_mount *mp = log->l_mp; 3631 struct xfs_cui_log_item *cuip; 3632 struct xfs_cui_log_format *cui_formatp; 3633 3634 cui_formatp = item->ri_buf[0].i_addr; 3635 3636 cuip = xfs_cui_init(mp, cui_formatp->cui_nextents); 3637 error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format); 3638 if (error) { 3639 xfs_cui_item_free(cuip); 3640 return error; 3641 } 3642 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents); 3643 3644 spin_lock(&log->l_ailp->ail_lock); 3645 /* 3646 * The CUI has two references. One for the CUD and one for CUI to ensure 3647 * it makes it into the AIL. Insert the CUI into the AIL directly and 3648 * drop the CUI reference. Note that xfs_trans_ail_update() drops the 3649 * AIL lock. 3650 */ 3651 xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn); 3652 xfs_cui_release(cuip); 3653 return 0; 3654 } 3655 3656 3657 /* 3658 * This routine is called when an CUD format structure is found in a committed 3659 * transaction in the log. Its purpose is to cancel the corresponding CUI if it 3660 * was still in the log. To do this it searches the AIL for the CUI with an id 3661 * equal to that in the CUD format structure. If we find it we drop the CUD 3662 * reference, which removes the CUI from the AIL and frees it. 3663 */ 3664 STATIC int 3665 xlog_recover_cud_pass2( 3666 struct xlog *log, 3667 struct xlog_recover_item *item) 3668 { 3669 struct xfs_cud_log_format *cud_formatp; 3670 struct xfs_cui_log_item *cuip = NULL; 3671 struct xfs_log_item *lip; 3672 uint64_t cui_id; 3673 struct xfs_ail_cursor cur; 3674 struct xfs_ail *ailp = log->l_ailp; 3675 3676 cud_formatp = item->ri_buf[0].i_addr; 3677 if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) 3678 return -EFSCORRUPTED; 3679 cui_id = cud_formatp->cud_cui_id; 3680 3681 /* 3682 * Search for the CUI with the id in the CUD format structure in the 3683 * AIL. 3684 */ 3685 spin_lock(&ailp->ail_lock); 3686 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3687 while (lip != NULL) { 3688 if (lip->li_type == XFS_LI_CUI) { 3689 cuip = (struct xfs_cui_log_item *)lip; 3690 if (cuip->cui_format.cui_id == cui_id) { 3691 /* 3692 * Drop the CUD reference to the CUI. This 3693 * removes the CUI from the AIL and frees it. 3694 */ 3695 spin_unlock(&ailp->ail_lock); 3696 xfs_cui_release(cuip); 3697 spin_lock(&ailp->ail_lock); 3698 break; 3699 } 3700 } 3701 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3702 } 3703 3704 xfs_trans_ail_cursor_done(&cur); 3705 spin_unlock(&ailp->ail_lock); 3706 3707 return 0; 3708 } 3709 3710 /* 3711 * Copy an BUI format buffer from the given buf, and into the destination 3712 * BUI format structure. The BUI/BUD items were designed not to need any 3713 * special alignment handling. 3714 */ 3715 static int 3716 xfs_bui_copy_format( 3717 struct xfs_log_iovec *buf, 3718 struct xfs_bui_log_format *dst_bui_fmt) 3719 { 3720 struct xfs_bui_log_format *src_bui_fmt; 3721 uint len; 3722 3723 src_bui_fmt = buf->i_addr; 3724 len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents); 3725 3726 if (buf->i_len == len) { 3727 memcpy(dst_bui_fmt, src_bui_fmt, len); 3728 return 0; 3729 } 3730 return -EFSCORRUPTED; 3731 } 3732 3733 /* 3734 * This routine is called to create an in-core extent bmap update 3735 * item from the bui format structure which was logged on disk. 3736 * It allocates an in-core bui, copies the extents from the format 3737 * structure into it, and adds the bui to the AIL with the given 3738 * LSN. 3739 */ 3740 STATIC int 3741 xlog_recover_bui_pass2( 3742 struct xlog *log, 3743 struct xlog_recover_item *item, 3744 xfs_lsn_t lsn) 3745 { 3746 int error; 3747 struct xfs_mount *mp = log->l_mp; 3748 struct xfs_bui_log_item *buip; 3749 struct xfs_bui_log_format *bui_formatp; 3750 3751 bui_formatp = item->ri_buf[0].i_addr; 3752 3753 if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS) 3754 return -EFSCORRUPTED; 3755 buip = xfs_bui_init(mp); 3756 error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format); 3757 if (error) { 3758 xfs_bui_item_free(buip); 3759 return error; 3760 } 3761 atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents); 3762 3763 spin_lock(&log->l_ailp->ail_lock); 3764 /* 3765 * The RUI has two references. One for the RUD and one for RUI to ensure 3766 * it makes it into the AIL. Insert the RUI into the AIL directly and 3767 * drop the RUI reference. Note that xfs_trans_ail_update() drops the 3768 * AIL lock. 3769 */ 3770 xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn); 3771 xfs_bui_release(buip); 3772 return 0; 3773 } 3774 3775 3776 /* 3777 * This routine is called when an BUD format structure is found in a committed 3778 * transaction in the log. Its purpose is to cancel the corresponding BUI if it 3779 * was still in the log. To do this it searches the AIL for the BUI with an id 3780 * equal to that in the BUD format structure. If we find it we drop the BUD 3781 * reference, which removes the BUI from the AIL and frees it. 3782 */ 3783 STATIC int 3784 xlog_recover_bud_pass2( 3785 struct xlog *log, 3786 struct xlog_recover_item *item) 3787 { 3788 struct xfs_bud_log_format *bud_formatp; 3789 struct xfs_bui_log_item *buip = NULL; 3790 struct xfs_log_item *lip; 3791 uint64_t bui_id; 3792 struct xfs_ail_cursor cur; 3793 struct xfs_ail *ailp = log->l_ailp; 3794 3795 bud_formatp = item->ri_buf[0].i_addr; 3796 if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format)) 3797 return -EFSCORRUPTED; 3798 bui_id = bud_formatp->bud_bui_id; 3799 3800 /* 3801 * Search for the BUI with the id in the BUD format structure in the 3802 * AIL. 3803 */ 3804 spin_lock(&ailp->ail_lock); 3805 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3806 while (lip != NULL) { 3807 if (lip->li_type == XFS_LI_BUI) { 3808 buip = (struct xfs_bui_log_item *)lip; 3809 if (buip->bui_format.bui_id == bui_id) { 3810 /* 3811 * Drop the BUD reference to the BUI. This 3812 * removes the BUI from the AIL and frees it. 3813 */ 3814 spin_unlock(&ailp->ail_lock); 3815 xfs_bui_release(buip); 3816 spin_lock(&ailp->ail_lock); 3817 break; 3818 } 3819 } 3820 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3821 } 3822 3823 xfs_trans_ail_cursor_done(&cur); 3824 spin_unlock(&ailp->ail_lock); 3825 3826 return 0; 3827 } 3828 3829 /* 3830 * This routine is called when an inode create format structure is found in a 3831 * committed transaction in the log. It's purpose is to initialise the inodes 3832 * being allocated on disk. This requires us to get inode cluster buffers that 3833 * match the range to be initialised, stamped with inode templates and written 3834 * by delayed write so that subsequent modifications will hit the cached buffer 3835 * and only need writing out at the end of recovery. 3836 */ 3837 STATIC int 3838 xlog_recover_do_icreate_pass2( 3839 struct xlog *log, 3840 struct list_head *buffer_list, 3841 xlog_recover_item_t *item) 3842 { 3843 struct xfs_mount *mp = log->l_mp; 3844 struct xfs_icreate_log *icl; 3845 xfs_agnumber_t agno; 3846 xfs_agblock_t agbno; 3847 unsigned int count; 3848 unsigned int isize; 3849 xfs_agblock_t length; 3850 int blks_per_cluster; 3851 int bb_per_cluster; 3852 int cancel_count; 3853 int nbufs; 3854 int i; 3855 3856 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr; 3857 if (icl->icl_type != XFS_LI_ICREATE) { 3858 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type"); 3859 return -EINVAL; 3860 } 3861 3862 if (icl->icl_size != 1) { 3863 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size"); 3864 return -EINVAL; 3865 } 3866 3867 agno = be32_to_cpu(icl->icl_ag); 3868 if (agno >= mp->m_sb.sb_agcount) { 3869 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno"); 3870 return -EINVAL; 3871 } 3872 agbno = be32_to_cpu(icl->icl_agbno); 3873 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) { 3874 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno"); 3875 return -EINVAL; 3876 } 3877 isize = be32_to_cpu(icl->icl_isize); 3878 if (isize != mp->m_sb.sb_inodesize) { 3879 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize"); 3880 return -EINVAL; 3881 } 3882 count = be32_to_cpu(icl->icl_count); 3883 if (!count) { 3884 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count"); 3885 return -EINVAL; 3886 } 3887 length = be32_to_cpu(icl->icl_length); 3888 if (!length || length >= mp->m_sb.sb_agblocks) { 3889 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length"); 3890 return -EINVAL; 3891 } 3892 3893 /* 3894 * The inode chunk is either full or sparse and we only support 3895 * m_ialloc_min_blks sized sparse allocations at this time. 3896 */ 3897 if (length != mp->m_ialloc_blks && 3898 length != mp->m_ialloc_min_blks) { 3899 xfs_warn(log->l_mp, 3900 "%s: unsupported chunk length", __FUNCTION__); 3901 return -EINVAL; 3902 } 3903 3904 /* verify inode count is consistent with extent length */ 3905 if ((count >> mp->m_sb.sb_inopblog) != length) { 3906 xfs_warn(log->l_mp, 3907 "%s: inconsistent inode count and chunk length", 3908 __FUNCTION__); 3909 return -EINVAL; 3910 } 3911 3912 /* 3913 * The icreate transaction can cover multiple cluster buffers and these 3914 * buffers could have been freed and reused. Check the individual 3915 * buffers for cancellation so we don't overwrite anything written after 3916 * a cancellation. 3917 */ 3918 blks_per_cluster = xfs_icluster_size_fsb(mp); 3919 bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster); 3920 nbufs = length / blks_per_cluster; 3921 for (i = 0, cancel_count = 0; i < nbufs; i++) { 3922 xfs_daddr_t daddr; 3923 3924 daddr = XFS_AGB_TO_DADDR(mp, agno, 3925 agbno + i * blks_per_cluster); 3926 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0)) 3927 cancel_count++; 3928 } 3929 3930 /* 3931 * We currently only use icreate for a single allocation at a time. This 3932 * means we should expect either all or none of the buffers to be 3933 * cancelled. Be conservative and skip replay if at least one buffer is 3934 * cancelled, but warn the user that something is awry if the buffers 3935 * are not consistent. 3936 * 3937 * XXX: This must be refined to only skip cancelled clusters once we use 3938 * icreate for multiple chunk allocations. 3939 */ 3940 ASSERT(!cancel_count || cancel_count == nbufs); 3941 if (cancel_count) { 3942 if (cancel_count != nbufs) 3943 xfs_warn(mp, 3944 "WARNING: partial inode chunk cancellation, skipped icreate."); 3945 trace_xfs_log_recover_icreate_cancel(log, icl); 3946 return 0; 3947 } 3948 3949 trace_xfs_log_recover_icreate_recover(log, icl); 3950 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno, 3951 length, be32_to_cpu(icl->icl_gen)); 3952 } 3953 3954 STATIC void 3955 xlog_recover_buffer_ra_pass2( 3956 struct xlog *log, 3957 struct xlog_recover_item *item) 3958 { 3959 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr; 3960 struct xfs_mount *mp = log->l_mp; 3961 3962 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno, 3963 buf_f->blf_len, buf_f->blf_flags)) { 3964 return; 3965 } 3966 3967 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno, 3968 buf_f->blf_len, NULL); 3969 } 3970 3971 STATIC void 3972 xlog_recover_inode_ra_pass2( 3973 struct xlog *log, 3974 struct xlog_recover_item *item) 3975 { 3976 struct xfs_inode_log_format ilf_buf; 3977 struct xfs_inode_log_format *ilfp; 3978 struct xfs_mount *mp = log->l_mp; 3979 int error; 3980 3981 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { 3982 ilfp = item->ri_buf[0].i_addr; 3983 } else { 3984 ilfp = &ilf_buf; 3985 memset(ilfp, 0, sizeof(*ilfp)); 3986 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp); 3987 if (error) 3988 return; 3989 } 3990 3991 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0)) 3992 return; 3993 3994 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno, 3995 ilfp->ilf_len, &xfs_inode_buf_ra_ops); 3996 } 3997 3998 STATIC void 3999 xlog_recover_dquot_ra_pass2( 4000 struct xlog *log, 4001 struct xlog_recover_item *item) 4002 { 4003 struct xfs_mount *mp = log->l_mp; 4004 struct xfs_disk_dquot *recddq; 4005 struct xfs_dq_logformat *dq_f; 4006 uint type; 4007 int len; 4008 4009 4010 if (mp->m_qflags == 0) 4011 return; 4012 4013 recddq = item->ri_buf[1].i_addr; 4014 if (recddq == NULL) 4015 return; 4016 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot)) 4017 return; 4018 4019 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 4020 ASSERT(type); 4021 if (log->l_quotaoffs_flag & type) 4022 return; 4023 4024 dq_f = item->ri_buf[0].i_addr; 4025 ASSERT(dq_f); 4026 ASSERT(dq_f->qlf_len == 1); 4027 4028 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len); 4029 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0)) 4030 return; 4031 4032 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len, 4033 &xfs_dquot_buf_ra_ops); 4034 } 4035 4036 STATIC void 4037 xlog_recover_ra_pass2( 4038 struct xlog *log, 4039 struct xlog_recover_item *item) 4040 { 4041 switch (ITEM_TYPE(item)) { 4042 case XFS_LI_BUF: 4043 xlog_recover_buffer_ra_pass2(log, item); 4044 break; 4045 case XFS_LI_INODE: 4046 xlog_recover_inode_ra_pass2(log, item); 4047 break; 4048 case XFS_LI_DQUOT: 4049 xlog_recover_dquot_ra_pass2(log, item); 4050 break; 4051 case XFS_LI_EFI: 4052 case XFS_LI_EFD: 4053 case XFS_LI_QUOTAOFF: 4054 case XFS_LI_RUI: 4055 case XFS_LI_RUD: 4056 case XFS_LI_CUI: 4057 case XFS_LI_CUD: 4058 case XFS_LI_BUI: 4059 case XFS_LI_BUD: 4060 default: 4061 break; 4062 } 4063 } 4064 4065 STATIC int 4066 xlog_recover_commit_pass1( 4067 struct xlog *log, 4068 struct xlog_recover *trans, 4069 struct xlog_recover_item *item) 4070 { 4071 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1); 4072 4073 switch (ITEM_TYPE(item)) { 4074 case XFS_LI_BUF: 4075 return xlog_recover_buffer_pass1(log, item); 4076 case XFS_LI_QUOTAOFF: 4077 return xlog_recover_quotaoff_pass1(log, item); 4078 case XFS_LI_INODE: 4079 case XFS_LI_EFI: 4080 case XFS_LI_EFD: 4081 case XFS_LI_DQUOT: 4082 case XFS_LI_ICREATE: 4083 case XFS_LI_RUI: 4084 case XFS_LI_RUD: 4085 case XFS_LI_CUI: 4086 case XFS_LI_CUD: 4087 case XFS_LI_BUI: 4088 case XFS_LI_BUD: 4089 /* nothing to do in pass 1 */ 4090 return 0; 4091 default: 4092 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 4093 __func__, ITEM_TYPE(item)); 4094 ASSERT(0); 4095 return -EIO; 4096 } 4097 } 4098 4099 STATIC int 4100 xlog_recover_commit_pass2( 4101 struct xlog *log, 4102 struct xlog_recover *trans, 4103 struct list_head *buffer_list, 4104 struct xlog_recover_item *item) 4105 { 4106 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2); 4107 4108 switch (ITEM_TYPE(item)) { 4109 case XFS_LI_BUF: 4110 return xlog_recover_buffer_pass2(log, buffer_list, item, 4111 trans->r_lsn); 4112 case XFS_LI_INODE: 4113 return xlog_recover_inode_pass2(log, buffer_list, item, 4114 trans->r_lsn); 4115 case XFS_LI_EFI: 4116 return xlog_recover_efi_pass2(log, item, trans->r_lsn); 4117 case XFS_LI_EFD: 4118 return xlog_recover_efd_pass2(log, item); 4119 case XFS_LI_RUI: 4120 return xlog_recover_rui_pass2(log, item, trans->r_lsn); 4121 case XFS_LI_RUD: 4122 return xlog_recover_rud_pass2(log, item); 4123 case XFS_LI_CUI: 4124 return xlog_recover_cui_pass2(log, item, trans->r_lsn); 4125 case XFS_LI_CUD: 4126 return xlog_recover_cud_pass2(log, item); 4127 case XFS_LI_BUI: 4128 return xlog_recover_bui_pass2(log, item, trans->r_lsn); 4129 case XFS_LI_BUD: 4130 return xlog_recover_bud_pass2(log, item); 4131 case XFS_LI_DQUOT: 4132 return xlog_recover_dquot_pass2(log, buffer_list, item, 4133 trans->r_lsn); 4134 case XFS_LI_ICREATE: 4135 return xlog_recover_do_icreate_pass2(log, buffer_list, item); 4136 case XFS_LI_QUOTAOFF: 4137 /* nothing to do in pass2 */ 4138 return 0; 4139 default: 4140 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 4141 __func__, ITEM_TYPE(item)); 4142 ASSERT(0); 4143 return -EIO; 4144 } 4145 } 4146 4147 STATIC int 4148 xlog_recover_items_pass2( 4149 struct xlog *log, 4150 struct xlog_recover *trans, 4151 struct list_head *buffer_list, 4152 struct list_head *item_list) 4153 { 4154 struct xlog_recover_item *item; 4155 int error = 0; 4156 4157 list_for_each_entry(item, item_list, ri_list) { 4158 error = xlog_recover_commit_pass2(log, trans, 4159 buffer_list, item); 4160 if (error) 4161 return error; 4162 } 4163 4164 return error; 4165 } 4166 4167 /* 4168 * Perform the transaction. 4169 * 4170 * If the transaction modifies a buffer or inode, do it now. Otherwise, 4171 * EFIs and EFDs get queued up by adding entries into the AIL for them. 4172 */ 4173 STATIC int 4174 xlog_recover_commit_trans( 4175 struct xlog *log, 4176 struct xlog_recover *trans, 4177 int pass, 4178 struct list_head *buffer_list) 4179 { 4180 int error = 0; 4181 int items_queued = 0; 4182 struct xlog_recover_item *item; 4183 struct xlog_recover_item *next; 4184 LIST_HEAD (ra_list); 4185 LIST_HEAD (done_list); 4186 4187 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100 4188 4189 hlist_del_init(&trans->r_list); 4190 4191 error = xlog_recover_reorder_trans(log, trans, pass); 4192 if (error) 4193 return error; 4194 4195 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) { 4196 switch (pass) { 4197 case XLOG_RECOVER_PASS1: 4198 error = xlog_recover_commit_pass1(log, trans, item); 4199 break; 4200 case XLOG_RECOVER_PASS2: 4201 xlog_recover_ra_pass2(log, item); 4202 list_move_tail(&item->ri_list, &ra_list); 4203 items_queued++; 4204 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) { 4205 error = xlog_recover_items_pass2(log, trans, 4206 buffer_list, &ra_list); 4207 list_splice_tail_init(&ra_list, &done_list); 4208 items_queued = 0; 4209 } 4210 4211 break; 4212 default: 4213 ASSERT(0); 4214 } 4215 4216 if (error) 4217 goto out; 4218 } 4219 4220 out: 4221 if (!list_empty(&ra_list)) { 4222 if (!error) 4223 error = xlog_recover_items_pass2(log, trans, 4224 buffer_list, &ra_list); 4225 list_splice_tail_init(&ra_list, &done_list); 4226 } 4227 4228 if (!list_empty(&done_list)) 4229 list_splice_init(&done_list, &trans->r_itemq); 4230 4231 return error; 4232 } 4233 4234 STATIC void 4235 xlog_recover_add_item( 4236 struct list_head *head) 4237 { 4238 xlog_recover_item_t *item; 4239 4240 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 4241 INIT_LIST_HEAD(&item->ri_list); 4242 list_add_tail(&item->ri_list, head); 4243 } 4244 4245 STATIC int 4246 xlog_recover_add_to_cont_trans( 4247 struct xlog *log, 4248 struct xlog_recover *trans, 4249 char *dp, 4250 int len) 4251 { 4252 xlog_recover_item_t *item; 4253 char *ptr, *old_ptr; 4254 int old_len; 4255 4256 /* 4257 * If the transaction is empty, the header was split across this and the 4258 * previous record. Copy the rest of the header. 4259 */ 4260 if (list_empty(&trans->r_itemq)) { 4261 ASSERT(len <= sizeof(struct xfs_trans_header)); 4262 if (len > sizeof(struct xfs_trans_header)) { 4263 xfs_warn(log->l_mp, "%s: bad header length", __func__); 4264 return -EIO; 4265 } 4266 4267 xlog_recover_add_item(&trans->r_itemq); 4268 ptr = (char *)&trans->r_theader + 4269 sizeof(struct xfs_trans_header) - len; 4270 memcpy(ptr, dp, len); 4271 return 0; 4272 } 4273 4274 /* take the tail entry */ 4275 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 4276 4277 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 4278 old_len = item->ri_buf[item->ri_cnt-1].i_len; 4279 4280 ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP); 4281 memcpy(&ptr[old_len], dp, len); 4282 item->ri_buf[item->ri_cnt-1].i_len += len; 4283 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 4284 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 4285 return 0; 4286 } 4287 4288 /* 4289 * The next region to add is the start of a new region. It could be 4290 * a whole region or it could be the first part of a new region. Because 4291 * of this, the assumption here is that the type and size fields of all 4292 * format structures fit into the first 32 bits of the structure. 4293 * 4294 * This works because all regions must be 32 bit aligned. Therefore, we 4295 * either have both fields or we have neither field. In the case we have 4296 * neither field, the data part of the region is zero length. We only have 4297 * a log_op_header and can throw away the header since a new one will appear 4298 * later. If we have at least 4 bytes, then we can determine how many regions 4299 * will appear in the current log item. 4300 */ 4301 STATIC int 4302 xlog_recover_add_to_trans( 4303 struct xlog *log, 4304 struct xlog_recover *trans, 4305 char *dp, 4306 int len) 4307 { 4308 struct xfs_inode_log_format *in_f; /* any will do */ 4309 xlog_recover_item_t *item; 4310 char *ptr; 4311 4312 if (!len) 4313 return 0; 4314 if (list_empty(&trans->r_itemq)) { 4315 /* we need to catch log corruptions here */ 4316 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 4317 xfs_warn(log->l_mp, "%s: bad header magic number", 4318 __func__); 4319 ASSERT(0); 4320 return -EIO; 4321 } 4322 4323 if (len > sizeof(struct xfs_trans_header)) { 4324 xfs_warn(log->l_mp, "%s: bad header length", __func__); 4325 ASSERT(0); 4326 return -EIO; 4327 } 4328 4329 /* 4330 * The transaction header can be arbitrarily split across op 4331 * records. If we don't have the whole thing here, copy what we 4332 * do have and handle the rest in the next record. 4333 */ 4334 if (len == sizeof(struct xfs_trans_header)) 4335 xlog_recover_add_item(&trans->r_itemq); 4336 memcpy(&trans->r_theader, dp, len); 4337 return 0; 4338 } 4339 4340 ptr = kmem_alloc(len, KM_SLEEP); 4341 memcpy(ptr, dp, len); 4342 in_f = (struct xfs_inode_log_format *)ptr; 4343 4344 /* take the tail entry */ 4345 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 4346 if (item->ri_total != 0 && 4347 item->ri_total == item->ri_cnt) { 4348 /* tail item is in use, get a new one */ 4349 xlog_recover_add_item(&trans->r_itemq); 4350 item = list_entry(trans->r_itemq.prev, 4351 xlog_recover_item_t, ri_list); 4352 } 4353 4354 if (item->ri_total == 0) { /* first region to be added */ 4355 if (in_f->ilf_size == 0 || 4356 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 4357 xfs_warn(log->l_mp, 4358 "bad number of regions (%d) in inode log format", 4359 in_f->ilf_size); 4360 ASSERT(0); 4361 kmem_free(ptr); 4362 return -EIO; 4363 } 4364 4365 item->ri_total = in_f->ilf_size; 4366 item->ri_buf = 4367 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 4368 KM_SLEEP); 4369 } 4370 ASSERT(item->ri_total > item->ri_cnt); 4371 /* Description region is ri_buf[0] */ 4372 item->ri_buf[item->ri_cnt].i_addr = ptr; 4373 item->ri_buf[item->ri_cnt].i_len = len; 4374 item->ri_cnt++; 4375 trace_xfs_log_recover_item_add(log, trans, item, 0); 4376 return 0; 4377 } 4378 4379 /* 4380 * Free up any resources allocated by the transaction 4381 * 4382 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 4383 */ 4384 STATIC void 4385 xlog_recover_free_trans( 4386 struct xlog_recover *trans) 4387 { 4388 xlog_recover_item_t *item, *n; 4389 int i; 4390 4391 hlist_del_init(&trans->r_list); 4392 4393 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 4394 /* Free the regions in the item. */ 4395 list_del(&item->ri_list); 4396 for (i = 0; i < item->ri_cnt; i++) 4397 kmem_free(item->ri_buf[i].i_addr); 4398 /* Free the item itself */ 4399 kmem_free(item->ri_buf); 4400 kmem_free(item); 4401 } 4402 /* Free the transaction recover structure */ 4403 kmem_free(trans); 4404 } 4405 4406 /* 4407 * On error or completion, trans is freed. 4408 */ 4409 STATIC int 4410 xlog_recovery_process_trans( 4411 struct xlog *log, 4412 struct xlog_recover *trans, 4413 char *dp, 4414 unsigned int len, 4415 unsigned int flags, 4416 int pass, 4417 struct list_head *buffer_list) 4418 { 4419 int error = 0; 4420 bool freeit = false; 4421 4422 /* mask off ophdr transaction container flags */ 4423 flags &= ~XLOG_END_TRANS; 4424 if (flags & XLOG_WAS_CONT_TRANS) 4425 flags &= ~XLOG_CONTINUE_TRANS; 4426 4427 /* 4428 * Callees must not free the trans structure. We'll decide if we need to 4429 * free it or not based on the operation being done and it's result. 4430 */ 4431 switch (flags) { 4432 /* expected flag values */ 4433 case 0: 4434 case XLOG_CONTINUE_TRANS: 4435 error = xlog_recover_add_to_trans(log, trans, dp, len); 4436 break; 4437 case XLOG_WAS_CONT_TRANS: 4438 error = xlog_recover_add_to_cont_trans(log, trans, dp, len); 4439 break; 4440 case XLOG_COMMIT_TRANS: 4441 error = xlog_recover_commit_trans(log, trans, pass, 4442 buffer_list); 4443 /* success or fail, we are now done with this transaction. */ 4444 freeit = true; 4445 break; 4446 4447 /* unexpected flag values */ 4448 case XLOG_UNMOUNT_TRANS: 4449 /* just skip trans */ 4450 xfs_warn(log->l_mp, "%s: Unmount LR", __func__); 4451 freeit = true; 4452 break; 4453 case XLOG_START_TRANS: 4454 default: 4455 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags); 4456 ASSERT(0); 4457 error = -EIO; 4458 break; 4459 } 4460 if (error || freeit) 4461 xlog_recover_free_trans(trans); 4462 return error; 4463 } 4464 4465 /* 4466 * Lookup the transaction recovery structure associated with the ID in the 4467 * current ophdr. If the transaction doesn't exist and the start flag is set in 4468 * the ophdr, then allocate a new transaction for future ID matches to find. 4469 * Either way, return what we found during the lookup - an existing transaction 4470 * or nothing. 4471 */ 4472 STATIC struct xlog_recover * 4473 xlog_recover_ophdr_to_trans( 4474 struct hlist_head rhash[], 4475 struct xlog_rec_header *rhead, 4476 struct xlog_op_header *ohead) 4477 { 4478 struct xlog_recover *trans; 4479 xlog_tid_t tid; 4480 struct hlist_head *rhp; 4481 4482 tid = be32_to_cpu(ohead->oh_tid); 4483 rhp = &rhash[XLOG_RHASH(tid)]; 4484 hlist_for_each_entry(trans, rhp, r_list) { 4485 if (trans->r_log_tid == tid) 4486 return trans; 4487 } 4488 4489 /* 4490 * skip over non-start transaction headers - we could be 4491 * processing slack space before the next transaction starts 4492 */ 4493 if (!(ohead->oh_flags & XLOG_START_TRANS)) 4494 return NULL; 4495 4496 ASSERT(be32_to_cpu(ohead->oh_len) == 0); 4497 4498 /* 4499 * This is a new transaction so allocate a new recovery container to 4500 * hold the recovery ops that will follow. 4501 */ 4502 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP); 4503 trans->r_log_tid = tid; 4504 trans->r_lsn = be64_to_cpu(rhead->h_lsn); 4505 INIT_LIST_HEAD(&trans->r_itemq); 4506 INIT_HLIST_NODE(&trans->r_list); 4507 hlist_add_head(&trans->r_list, rhp); 4508 4509 /* 4510 * Nothing more to do for this ophdr. Items to be added to this new 4511 * transaction will be in subsequent ophdr containers. 4512 */ 4513 return NULL; 4514 } 4515 4516 STATIC int 4517 xlog_recover_process_ophdr( 4518 struct xlog *log, 4519 struct hlist_head rhash[], 4520 struct xlog_rec_header *rhead, 4521 struct xlog_op_header *ohead, 4522 char *dp, 4523 char *end, 4524 int pass, 4525 struct list_head *buffer_list) 4526 { 4527 struct xlog_recover *trans; 4528 unsigned int len; 4529 int error; 4530 4531 /* Do we understand who wrote this op? */ 4532 if (ohead->oh_clientid != XFS_TRANSACTION && 4533 ohead->oh_clientid != XFS_LOG) { 4534 xfs_warn(log->l_mp, "%s: bad clientid 0x%x", 4535 __func__, ohead->oh_clientid); 4536 ASSERT(0); 4537 return -EIO; 4538 } 4539 4540 /* 4541 * Check the ophdr contains all the data it is supposed to contain. 4542 */ 4543 len = be32_to_cpu(ohead->oh_len); 4544 if (dp + len > end) { 4545 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len); 4546 WARN_ON(1); 4547 return -EIO; 4548 } 4549 4550 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead); 4551 if (!trans) { 4552 /* nothing to do, so skip over this ophdr */ 4553 return 0; 4554 } 4555 4556 /* 4557 * The recovered buffer queue is drained only once we know that all 4558 * recovery items for the current LSN have been processed. This is 4559 * required because: 4560 * 4561 * - Buffer write submission updates the metadata LSN of the buffer. 4562 * - Log recovery skips items with a metadata LSN >= the current LSN of 4563 * the recovery item. 4564 * - Separate recovery items against the same metadata buffer can share 4565 * a current LSN. I.e., consider that the LSN of a recovery item is 4566 * defined as the starting LSN of the first record in which its 4567 * transaction appears, that a record can hold multiple transactions, 4568 * and/or that a transaction can span multiple records. 4569 * 4570 * In other words, we are allowed to submit a buffer from log recovery 4571 * once per current LSN. Otherwise, we may incorrectly skip recovery 4572 * items and cause corruption. 4573 * 4574 * We don't know up front whether buffers are updated multiple times per 4575 * LSN. Therefore, track the current LSN of each commit log record as it 4576 * is processed and drain the queue when it changes. Use commit records 4577 * because they are ordered correctly by the logging code. 4578 */ 4579 if (log->l_recovery_lsn != trans->r_lsn && 4580 ohead->oh_flags & XLOG_COMMIT_TRANS) { 4581 error = xfs_buf_delwri_submit(buffer_list); 4582 if (error) 4583 return error; 4584 log->l_recovery_lsn = trans->r_lsn; 4585 } 4586 4587 return xlog_recovery_process_trans(log, trans, dp, len, 4588 ohead->oh_flags, pass, buffer_list); 4589 } 4590 4591 /* 4592 * There are two valid states of the r_state field. 0 indicates that the 4593 * transaction structure is in a normal state. We have either seen the 4594 * start of the transaction or the last operation we added was not a partial 4595 * operation. If the last operation we added to the transaction was a 4596 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 4597 * 4598 * NOTE: skip LRs with 0 data length. 4599 */ 4600 STATIC int 4601 xlog_recover_process_data( 4602 struct xlog *log, 4603 struct hlist_head rhash[], 4604 struct xlog_rec_header *rhead, 4605 char *dp, 4606 int pass, 4607 struct list_head *buffer_list) 4608 { 4609 struct xlog_op_header *ohead; 4610 char *end; 4611 int num_logops; 4612 int error; 4613 4614 end = dp + be32_to_cpu(rhead->h_len); 4615 num_logops = be32_to_cpu(rhead->h_num_logops); 4616 4617 /* check the log format matches our own - else we can't recover */ 4618 if (xlog_header_check_recover(log->l_mp, rhead)) 4619 return -EIO; 4620 4621 trace_xfs_log_recover_record(log, rhead, pass); 4622 while ((dp < end) && num_logops) { 4623 4624 ohead = (struct xlog_op_header *)dp; 4625 dp += sizeof(*ohead); 4626 ASSERT(dp <= end); 4627 4628 /* errors will abort recovery */ 4629 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead, 4630 dp, end, pass, buffer_list); 4631 if (error) 4632 return error; 4633 4634 dp += be32_to_cpu(ohead->oh_len); 4635 num_logops--; 4636 } 4637 return 0; 4638 } 4639 4640 /* Recover the EFI if necessary. */ 4641 STATIC int 4642 xlog_recover_process_efi( 4643 struct xfs_mount *mp, 4644 struct xfs_ail *ailp, 4645 struct xfs_log_item *lip) 4646 { 4647 struct xfs_efi_log_item *efip; 4648 int error; 4649 4650 /* 4651 * Skip EFIs that we've already processed. 4652 */ 4653 efip = container_of(lip, struct xfs_efi_log_item, efi_item); 4654 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) 4655 return 0; 4656 4657 spin_unlock(&ailp->ail_lock); 4658 error = xfs_efi_recover(mp, efip); 4659 spin_lock(&ailp->ail_lock); 4660 4661 return error; 4662 } 4663 4664 /* Release the EFI since we're cancelling everything. */ 4665 STATIC void 4666 xlog_recover_cancel_efi( 4667 struct xfs_mount *mp, 4668 struct xfs_ail *ailp, 4669 struct xfs_log_item *lip) 4670 { 4671 struct xfs_efi_log_item *efip; 4672 4673 efip = container_of(lip, struct xfs_efi_log_item, efi_item); 4674 4675 spin_unlock(&ailp->ail_lock); 4676 xfs_efi_release(efip); 4677 spin_lock(&ailp->ail_lock); 4678 } 4679 4680 /* Recover the RUI if necessary. */ 4681 STATIC int 4682 xlog_recover_process_rui( 4683 struct xfs_mount *mp, 4684 struct xfs_ail *ailp, 4685 struct xfs_log_item *lip) 4686 { 4687 struct xfs_rui_log_item *ruip; 4688 int error; 4689 4690 /* 4691 * Skip RUIs that we've already processed. 4692 */ 4693 ruip = container_of(lip, struct xfs_rui_log_item, rui_item); 4694 if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags)) 4695 return 0; 4696 4697 spin_unlock(&ailp->ail_lock); 4698 error = xfs_rui_recover(mp, ruip); 4699 spin_lock(&ailp->ail_lock); 4700 4701 return error; 4702 } 4703 4704 /* Release the RUI since we're cancelling everything. */ 4705 STATIC void 4706 xlog_recover_cancel_rui( 4707 struct xfs_mount *mp, 4708 struct xfs_ail *ailp, 4709 struct xfs_log_item *lip) 4710 { 4711 struct xfs_rui_log_item *ruip; 4712 4713 ruip = container_of(lip, struct xfs_rui_log_item, rui_item); 4714 4715 spin_unlock(&ailp->ail_lock); 4716 xfs_rui_release(ruip); 4717 spin_lock(&ailp->ail_lock); 4718 } 4719 4720 /* Recover the CUI if necessary. */ 4721 STATIC int 4722 xlog_recover_process_cui( 4723 struct xfs_mount *mp, 4724 struct xfs_ail *ailp, 4725 struct xfs_log_item *lip, 4726 struct xfs_defer_ops *dfops) 4727 { 4728 struct xfs_cui_log_item *cuip; 4729 int error; 4730 4731 /* 4732 * Skip CUIs that we've already processed. 4733 */ 4734 cuip = container_of(lip, struct xfs_cui_log_item, cui_item); 4735 if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags)) 4736 return 0; 4737 4738 spin_unlock(&ailp->ail_lock); 4739 error = xfs_cui_recover(mp, cuip, dfops); 4740 spin_lock(&ailp->ail_lock); 4741 4742 return error; 4743 } 4744 4745 /* Release the CUI since we're cancelling everything. */ 4746 STATIC void 4747 xlog_recover_cancel_cui( 4748 struct xfs_mount *mp, 4749 struct xfs_ail *ailp, 4750 struct xfs_log_item *lip) 4751 { 4752 struct xfs_cui_log_item *cuip; 4753 4754 cuip = container_of(lip, struct xfs_cui_log_item, cui_item); 4755 4756 spin_unlock(&ailp->ail_lock); 4757 xfs_cui_release(cuip); 4758 spin_lock(&ailp->ail_lock); 4759 } 4760 4761 /* Recover the BUI if necessary. */ 4762 STATIC int 4763 xlog_recover_process_bui( 4764 struct xfs_mount *mp, 4765 struct xfs_ail *ailp, 4766 struct xfs_log_item *lip, 4767 struct xfs_defer_ops *dfops) 4768 { 4769 struct xfs_bui_log_item *buip; 4770 int error; 4771 4772 /* 4773 * Skip BUIs that we've already processed. 4774 */ 4775 buip = container_of(lip, struct xfs_bui_log_item, bui_item); 4776 if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags)) 4777 return 0; 4778 4779 spin_unlock(&ailp->ail_lock); 4780 error = xfs_bui_recover(mp, buip, dfops); 4781 spin_lock(&ailp->ail_lock); 4782 4783 return error; 4784 } 4785 4786 /* Release the BUI since we're cancelling everything. */ 4787 STATIC void 4788 xlog_recover_cancel_bui( 4789 struct xfs_mount *mp, 4790 struct xfs_ail *ailp, 4791 struct xfs_log_item *lip) 4792 { 4793 struct xfs_bui_log_item *buip; 4794 4795 buip = container_of(lip, struct xfs_bui_log_item, bui_item); 4796 4797 spin_unlock(&ailp->ail_lock); 4798 xfs_bui_release(buip); 4799 spin_lock(&ailp->ail_lock); 4800 } 4801 4802 /* Is this log item a deferred action intent? */ 4803 static inline bool xlog_item_is_intent(struct xfs_log_item *lip) 4804 { 4805 switch (lip->li_type) { 4806 case XFS_LI_EFI: 4807 case XFS_LI_RUI: 4808 case XFS_LI_CUI: 4809 case XFS_LI_BUI: 4810 return true; 4811 default: 4812 return false; 4813 } 4814 } 4815 4816 /* Take all the collected deferred ops and finish them in order. */ 4817 static int 4818 xlog_finish_defer_ops( 4819 struct xfs_mount *mp, 4820 struct xfs_defer_ops *dfops) 4821 { 4822 struct xfs_trans *tp; 4823 int64_t freeblks; 4824 uint resblks; 4825 int error; 4826 4827 /* 4828 * We're finishing the defer_ops that accumulated as a result of 4829 * recovering unfinished intent items during log recovery. We 4830 * reserve an itruncate transaction because it is the largest 4831 * permanent transaction type. Since we're the only user of the fs 4832 * right now, take 93% (15/16) of the available free blocks. Use 4833 * weird math to avoid a 64-bit division. 4834 */ 4835 freeblks = percpu_counter_sum(&mp->m_fdblocks); 4836 if (freeblks <= 0) 4837 return -ENOSPC; 4838 resblks = min_t(int64_t, UINT_MAX, freeblks); 4839 resblks = (resblks * 15) >> 4; 4840 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks, 4841 0, XFS_TRANS_RESERVE, &tp); 4842 if (error) 4843 return error; 4844 4845 error = xfs_defer_finish(&tp, dfops); 4846 if (error) 4847 goto out_cancel; 4848 4849 return xfs_trans_commit(tp); 4850 4851 out_cancel: 4852 xfs_trans_cancel(tp); 4853 return error; 4854 } 4855 4856 /* 4857 * When this is called, all of the log intent items which did not have 4858 * corresponding log done items should be in the AIL. What we do now 4859 * is update the data structures associated with each one. 4860 * 4861 * Since we process the log intent items in normal transactions, they 4862 * will be removed at some point after the commit. This prevents us 4863 * from just walking down the list processing each one. We'll use a 4864 * flag in the intent item to skip those that we've already processed 4865 * and use the AIL iteration mechanism's generation count to try to 4866 * speed this up at least a bit. 4867 * 4868 * When we start, we know that the intents are the only things in the 4869 * AIL. As we process them, however, other items are added to the 4870 * AIL. 4871 */ 4872 STATIC int 4873 xlog_recover_process_intents( 4874 struct xlog *log) 4875 { 4876 struct xfs_defer_ops dfops; 4877 struct xfs_ail_cursor cur; 4878 struct xfs_log_item *lip; 4879 struct xfs_ail *ailp; 4880 xfs_fsblock_t firstfsb; 4881 int error = 0; 4882 #if defined(DEBUG) || defined(XFS_WARN) 4883 xfs_lsn_t last_lsn; 4884 #endif 4885 4886 ailp = log->l_ailp; 4887 spin_lock(&ailp->ail_lock); 4888 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 4889 #if defined(DEBUG) || defined(XFS_WARN) 4890 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block); 4891 #endif 4892 xfs_defer_init(&dfops, &firstfsb); 4893 while (lip != NULL) { 4894 /* 4895 * We're done when we see something other than an intent. 4896 * There should be no intents left in the AIL now. 4897 */ 4898 if (!xlog_item_is_intent(lip)) { 4899 #ifdef DEBUG 4900 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 4901 ASSERT(!xlog_item_is_intent(lip)); 4902 #endif 4903 break; 4904 } 4905 4906 /* 4907 * We should never see a redo item with a LSN higher than 4908 * the last transaction we found in the log at the start 4909 * of recovery. 4910 */ 4911 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0); 4912 4913 /* 4914 * NOTE: If your intent processing routine can create more 4915 * deferred ops, you /must/ attach them to the dfops in this 4916 * routine or else those subsequent intents will get 4917 * replayed in the wrong order! 4918 */ 4919 switch (lip->li_type) { 4920 case XFS_LI_EFI: 4921 error = xlog_recover_process_efi(log->l_mp, ailp, lip); 4922 break; 4923 case XFS_LI_RUI: 4924 error = xlog_recover_process_rui(log->l_mp, ailp, lip); 4925 break; 4926 case XFS_LI_CUI: 4927 error = xlog_recover_process_cui(log->l_mp, ailp, lip, 4928 &dfops); 4929 break; 4930 case XFS_LI_BUI: 4931 error = xlog_recover_process_bui(log->l_mp, ailp, lip, 4932 &dfops); 4933 break; 4934 } 4935 if (error) 4936 goto out; 4937 lip = xfs_trans_ail_cursor_next(ailp, &cur); 4938 } 4939 out: 4940 xfs_trans_ail_cursor_done(&cur); 4941 spin_unlock(&ailp->ail_lock); 4942 if (error) 4943 xfs_defer_cancel(&dfops); 4944 else 4945 error = xlog_finish_defer_ops(log->l_mp, &dfops); 4946 4947 return error; 4948 } 4949 4950 /* 4951 * A cancel occurs when the mount has failed and we're bailing out. 4952 * Release all pending log intent items so they don't pin the AIL. 4953 */ 4954 STATIC int 4955 xlog_recover_cancel_intents( 4956 struct xlog *log) 4957 { 4958 struct xfs_log_item *lip; 4959 int error = 0; 4960 struct xfs_ail_cursor cur; 4961 struct xfs_ail *ailp; 4962 4963 ailp = log->l_ailp; 4964 spin_lock(&ailp->ail_lock); 4965 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 4966 while (lip != NULL) { 4967 /* 4968 * We're done when we see something other than an intent. 4969 * There should be no intents left in the AIL now. 4970 */ 4971 if (!xlog_item_is_intent(lip)) { 4972 #ifdef DEBUG 4973 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 4974 ASSERT(!xlog_item_is_intent(lip)); 4975 #endif 4976 break; 4977 } 4978 4979 switch (lip->li_type) { 4980 case XFS_LI_EFI: 4981 xlog_recover_cancel_efi(log->l_mp, ailp, lip); 4982 break; 4983 case XFS_LI_RUI: 4984 xlog_recover_cancel_rui(log->l_mp, ailp, lip); 4985 break; 4986 case XFS_LI_CUI: 4987 xlog_recover_cancel_cui(log->l_mp, ailp, lip); 4988 break; 4989 case XFS_LI_BUI: 4990 xlog_recover_cancel_bui(log->l_mp, ailp, lip); 4991 break; 4992 } 4993 4994 lip = xfs_trans_ail_cursor_next(ailp, &cur); 4995 } 4996 4997 xfs_trans_ail_cursor_done(&cur); 4998 spin_unlock(&ailp->ail_lock); 4999 return error; 5000 } 5001 5002 /* 5003 * This routine performs a transaction to null out a bad inode pointer 5004 * in an agi unlinked inode hash bucket. 5005 */ 5006 STATIC void 5007 xlog_recover_clear_agi_bucket( 5008 xfs_mount_t *mp, 5009 xfs_agnumber_t agno, 5010 int bucket) 5011 { 5012 xfs_trans_t *tp; 5013 xfs_agi_t *agi; 5014 xfs_buf_t *agibp; 5015 int offset; 5016 int error; 5017 5018 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp); 5019 if (error) 5020 goto out_error; 5021 5022 error = xfs_read_agi(mp, tp, agno, &agibp); 5023 if (error) 5024 goto out_abort; 5025 5026 agi = XFS_BUF_TO_AGI(agibp); 5027 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 5028 offset = offsetof(xfs_agi_t, agi_unlinked) + 5029 (sizeof(xfs_agino_t) * bucket); 5030 xfs_trans_log_buf(tp, agibp, offset, 5031 (offset + sizeof(xfs_agino_t) - 1)); 5032 5033 error = xfs_trans_commit(tp); 5034 if (error) 5035 goto out_error; 5036 return; 5037 5038 out_abort: 5039 xfs_trans_cancel(tp); 5040 out_error: 5041 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); 5042 return; 5043 } 5044 5045 STATIC xfs_agino_t 5046 xlog_recover_process_one_iunlink( 5047 struct xfs_mount *mp, 5048 xfs_agnumber_t agno, 5049 xfs_agino_t agino, 5050 int bucket) 5051 { 5052 struct xfs_buf *ibp; 5053 struct xfs_dinode *dip; 5054 struct xfs_inode *ip; 5055 xfs_ino_t ino; 5056 int error; 5057 5058 ino = XFS_AGINO_TO_INO(mp, agno, agino); 5059 error = xfs_iget(mp, NULL, ino, 0, 0, &ip); 5060 if (error) 5061 goto fail; 5062 5063 /* 5064 * Get the on disk inode to find the next inode in the bucket. 5065 */ 5066 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0); 5067 if (error) 5068 goto fail_iput; 5069 5070 xfs_iflags_clear(ip, XFS_IRECOVERY); 5071 ASSERT(VFS_I(ip)->i_nlink == 0); 5072 ASSERT(VFS_I(ip)->i_mode != 0); 5073 5074 /* setup for the next pass */ 5075 agino = be32_to_cpu(dip->di_next_unlinked); 5076 xfs_buf_relse(ibp); 5077 5078 /* 5079 * Prevent any DMAPI event from being sent when the reference on 5080 * the inode is dropped. 5081 */ 5082 ip->i_d.di_dmevmask = 0; 5083 5084 IRELE(ip); 5085 return agino; 5086 5087 fail_iput: 5088 IRELE(ip); 5089 fail: 5090 /* 5091 * We can't read in the inode this bucket points to, or this inode 5092 * is messed up. Just ditch this bucket of inodes. We will lose 5093 * some inodes and space, but at least we won't hang. 5094 * 5095 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 5096 * clear the inode pointer in the bucket. 5097 */ 5098 xlog_recover_clear_agi_bucket(mp, agno, bucket); 5099 return NULLAGINO; 5100 } 5101 5102 /* 5103 * xlog_iunlink_recover 5104 * 5105 * This is called during recovery to process any inodes which 5106 * we unlinked but not freed when the system crashed. These 5107 * inodes will be on the lists in the AGI blocks. What we do 5108 * here is scan all the AGIs and fully truncate and free any 5109 * inodes found on the lists. Each inode is removed from the 5110 * lists when it has been fully truncated and is freed. The 5111 * freeing of the inode and its removal from the list must be 5112 * atomic. 5113 */ 5114 STATIC void 5115 xlog_recover_process_iunlinks( 5116 struct xlog *log) 5117 { 5118 xfs_mount_t *mp; 5119 xfs_agnumber_t agno; 5120 xfs_agi_t *agi; 5121 xfs_buf_t *agibp; 5122 xfs_agino_t agino; 5123 int bucket; 5124 int error; 5125 5126 mp = log->l_mp; 5127 5128 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 5129 /* 5130 * Find the agi for this ag. 5131 */ 5132 error = xfs_read_agi(mp, NULL, agno, &agibp); 5133 if (error) { 5134 /* 5135 * AGI is b0rked. Don't process it. 5136 * 5137 * We should probably mark the filesystem as corrupt 5138 * after we've recovered all the ag's we can.... 5139 */ 5140 continue; 5141 } 5142 /* 5143 * Unlock the buffer so that it can be acquired in the normal 5144 * course of the transaction to truncate and free each inode. 5145 * Because we are not racing with anyone else here for the AGI 5146 * buffer, we don't even need to hold it locked to read the 5147 * initial unlinked bucket entries out of the buffer. We keep 5148 * buffer reference though, so that it stays pinned in memory 5149 * while we need the buffer. 5150 */ 5151 agi = XFS_BUF_TO_AGI(agibp); 5152 xfs_buf_unlock(agibp); 5153 5154 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 5155 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 5156 while (agino != NULLAGINO) { 5157 agino = xlog_recover_process_one_iunlink(mp, 5158 agno, agino, bucket); 5159 } 5160 } 5161 xfs_buf_rele(agibp); 5162 } 5163 } 5164 5165 STATIC int 5166 xlog_unpack_data( 5167 struct xlog_rec_header *rhead, 5168 char *dp, 5169 struct xlog *log) 5170 { 5171 int i, j, k; 5172 5173 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 5174 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 5175 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 5176 dp += BBSIZE; 5177 } 5178 5179 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 5180 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 5181 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 5182 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 5183 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 5184 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 5185 dp += BBSIZE; 5186 } 5187 } 5188 5189 return 0; 5190 } 5191 5192 /* 5193 * CRC check, unpack and process a log record. 5194 */ 5195 STATIC int 5196 xlog_recover_process( 5197 struct xlog *log, 5198 struct hlist_head rhash[], 5199 struct xlog_rec_header *rhead, 5200 char *dp, 5201 int pass, 5202 struct list_head *buffer_list) 5203 { 5204 int error; 5205 __le32 old_crc = rhead->h_crc; 5206 __le32 crc; 5207 5208 5209 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); 5210 5211 /* 5212 * Nothing else to do if this is a CRC verification pass. Just return 5213 * if this a record with a non-zero crc. Unfortunately, mkfs always 5214 * sets old_crc to 0 so we must consider this valid even on v5 supers. 5215 * Otherwise, return EFSBADCRC on failure so the callers up the stack 5216 * know precisely what failed. 5217 */ 5218 if (pass == XLOG_RECOVER_CRCPASS) { 5219 if (old_crc && crc != old_crc) 5220 return -EFSBADCRC; 5221 return 0; 5222 } 5223 5224 /* 5225 * We're in the normal recovery path. Issue a warning if and only if the 5226 * CRC in the header is non-zero. This is an advisory warning and the 5227 * zero CRC check prevents warnings from being emitted when upgrading 5228 * the kernel from one that does not add CRCs by default. 5229 */ 5230 if (crc != old_crc) { 5231 if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) { 5232 xfs_alert(log->l_mp, 5233 "log record CRC mismatch: found 0x%x, expected 0x%x.", 5234 le32_to_cpu(old_crc), 5235 le32_to_cpu(crc)); 5236 xfs_hex_dump(dp, 32); 5237 } 5238 5239 /* 5240 * If the filesystem is CRC enabled, this mismatch becomes a 5241 * fatal log corruption failure. 5242 */ 5243 if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) 5244 return -EFSCORRUPTED; 5245 } 5246 5247 error = xlog_unpack_data(rhead, dp, log); 5248 if (error) 5249 return error; 5250 5251 return xlog_recover_process_data(log, rhash, rhead, dp, pass, 5252 buffer_list); 5253 } 5254 5255 STATIC int 5256 xlog_valid_rec_header( 5257 struct xlog *log, 5258 struct xlog_rec_header *rhead, 5259 xfs_daddr_t blkno) 5260 { 5261 int hlen; 5262 5263 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) { 5264 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 5265 XFS_ERRLEVEL_LOW, log->l_mp); 5266 return -EFSCORRUPTED; 5267 } 5268 if (unlikely( 5269 (!rhead->h_version || 5270 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { 5271 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", 5272 __func__, be32_to_cpu(rhead->h_version)); 5273 return -EIO; 5274 } 5275 5276 /* LR body must have data or it wouldn't have been written */ 5277 hlen = be32_to_cpu(rhead->h_len); 5278 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 5279 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 5280 XFS_ERRLEVEL_LOW, log->l_mp); 5281 return -EFSCORRUPTED; 5282 } 5283 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 5284 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 5285 XFS_ERRLEVEL_LOW, log->l_mp); 5286 return -EFSCORRUPTED; 5287 } 5288 return 0; 5289 } 5290 5291 /* 5292 * Read the log from tail to head and process the log records found. 5293 * Handle the two cases where the tail and head are in the same cycle 5294 * and where the active portion of the log wraps around the end of 5295 * the physical log separately. The pass parameter is passed through 5296 * to the routines called to process the data and is not looked at 5297 * here. 5298 */ 5299 STATIC int 5300 xlog_do_recovery_pass( 5301 struct xlog *log, 5302 xfs_daddr_t head_blk, 5303 xfs_daddr_t tail_blk, 5304 int pass, 5305 xfs_daddr_t *first_bad) /* out: first bad log rec */ 5306 { 5307 xlog_rec_header_t *rhead; 5308 xfs_daddr_t blk_no, rblk_no; 5309 xfs_daddr_t rhead_blk; 5310 char *offset; 5311 xfs_buf_t *hbp, *dbp; 5312 int error = 0, h_size, h_len; 5313 int error2 = 0; 5314 int bblks, split_bblks; 5315 int hblks, split_hblks, wrapped_hblks; 5316 int i; 5317 struct hlist_head rhash[XLOG_RHASH_SIZE]; 5318 LIST_HEAD (buffer_list); 5319 5320 ASSERT(head_blk != tail_blk); 5321 blk_no = rhead_blk = tail_blk; 5322 5323 for (i = 0; i < XLOG_RHASH_SIZE; i++) 5324 INIT_HLIST_HEAD(&rhash[i]); 5325 5326 /* 5327 * Read the header of the tail block and get the iclog buffer size from 5328 * h_size. Use this to tell how many sectors make up the log header. 5329 */ 5330 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 5331 /* 5332 * When using variable length iclogs, read first sector of 5333 * iclog header and extract the header size from it. Get a 5334 * new hbp that is the correct size. 5335 */ 5336 hbp = xlog_get_bp(log, 1); 5337 if (!hbp) 5338 return -ENOMEM; 5339 5340 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 5341 if (error) 5342 goto bread_err1; 5343 5344 rhead = (xlog_rec_header_t *)offset; 5345 error = xlog_valid_rec_header(log, rhead, tail_blk); 5346 if (error) 5347 goto bread_err1; 5348 5349 /* 5350 * xfsprogs has a bug where record length is based on lsunit but 5351 * h_size (iclog size) is hardcoded to 32k. Now that we 5352 * unconditionally CRC verify the unmount record, this means the 5353 * log buffer can be too small for the record and cause an 5354 * overrun. 5355 * 5356 * Detect this condition here. Use lsunit for the buffer size as 5357 * long as this looks like the mkfs case. Otherwise, return an 5358 * error to avoid a buffer overrun. 5359 */ 5360 h_size = be32_to_cpu(rhead->h_size); 5361 h_len = be32_to_cpu(rhead->h_len); 5362 if (h_len > h_size) { 5363 if (h_len <= log->l_mp->m_logbsize && 5364 be32_to_cpu(rhead->h_num_logops) == 1) { 5365 xfs_warn(log->l_mp, 5366 "invalid iclog size (%d bytes), using lsunit (%d bytes)", 5367 h_size, log->l_mp->m_logbsize); 5368 h_size = log->l_mp->m_logbsize; 5369 } else 5370 return -EFSCORRUPTED; 5371 } 5372 5373 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 5374 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 5375 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 5376 if (h_size % XLOG_HEADER_CYCLE_SIZE) 5377 hblks++; 5378 xlog_put_bp(hbp); 5379 hbp = xlog_get_bp(log, hblks); 5380 } else { 5381 hblks = 1; 5382 } 5383 } else { 5384 ASSERT(log->l_sectBBsize == 1); 5385 hblks = 1; 5386 hbp = xlog_get_bp(log, 1); 5387 h_size = XLOG_BIG_RECORD_BSIZE; 5388 } 5389 5390 if (!hbp) 5391 return -ENOMEM; 5392 dbp = xlog_get_bp(log, BTOBB(h_size)); 5393 if (!dbp) { 5394 xlog_put_bp(hbp); 5395 return -ENOMEM; 5396 } 5397 5398 memset(rhash, 0, sizeof(rhash)); 5399 if (tail_blk > head_blk) { 5400 /* 5401 * Perform recovery around the end of the physical log. 5402 * When the head is not on the same cycle number as the tail, 5403 * we can't do a sequential recovery. 5404 */ 5405 while (blk_no < log->l_logBBsize) { 5406 /* 5407 * Check for header wrapping around physical end-of-log 5408 */ 5409 offset = hbp->b_addr; 5410 split_hblks = 0; 5411 wrapped_hblks = 0; 5412 if (blk_no + hblks <= log->l_logBBsize) { 5413 /* Read header in one read */ 5414 error = xlog_bread(log, blk_no, hblks, hbp, 5415 &offset); 5416 if (error) 5417 goto bread_err2; 5418 } else { 5419 /* This LR is split across physical log end */ 5420 if (blk_no != log->l_logBBsize) { 5421 /* some data before physical log end */ 5422 ASSERT(blk_no <= INT_MAX); 5423 split_hblks = log->l_logBBsize - (int)blk_no; 5424 ASSERT(split_hblks > 0); 5425 error = xlog_bread(log, blk_no, 5426 split_hblks, hbp, 5427 &offset); 5428 if (error) 5429 goto bread_err2; 5430 } 5431 5432 /* 5433 * Note: this black magic still works with 5434 * large sector sizes (non-512) only because: 5435 * - we increased the buffer size originally 5436 * by 1 sector giving us enough extra space 5437 * for the second read; 5438 * - the log start is guaranteed to be sector 5439 * aligned; 5440 * - we read the log end (LR header start) 5441 * _first_, then the log start (LR header end) 5442 * - order is important. 5443 */ 5444 wrapped_hblks = hblks - split_hblks; 5445 error = xlog_bread_offset(log, 0, 5446 wrapped_hblks, hbp, 5447 offset + BBTOB(split_hblks)); 5448 if (error) 5449 goto bread_err2; 5450 } 5451 rhead = (xlog_rec_header_t *)offset; 5452 error = xlog_valid_rec_header(log, rhead, 5453 split_hblks ? blk_no : 0); 5454 if (error) 5455 goto bread_err2; 5456 5457 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 5458 blk_no += hblks; 5459 5460 /* 5461 * Read the log record data in multiple reads if it 5462 * wraps around the end of the log. Note that if the 5463 * header already wrapped, blk_no could point past the 5464 * end of the log. The record data is contiguous in 5465 * that case. 5466 */ 5467 if (blk_no + bblks <= log->l_logBBsize || 5468 blk_no >= log->l_logBBsize) { 5469 /* mod blk_no in case the header wrapped and 5470 * pushed it beyond the end of the log */ 5471 rblk_no = do_mod(blk_no, log->l_logBBsize); 5472 error = xlog_bread(log, rblk_no, bblks, dbp, 5473 &offset); 5474 if (error) 5475 goto bread_err2; 5476 } else { 5477 /* This log record is split across the 5478 * physical end of log */ 5479 offset = dbp->b_addr; 5480 split_bblks = 0; 5481 if (blk_no != log->l_logBBsize) { 5482 /* some data is before the physical 5483 * end of log */ 5484 ASSERT(!wrapped_hblks); 5485 ASSERT(blk_no <= INT_MAX); 5486 split_bblks = 5487 log->l_logBBsize - (int)blk_no; 5488 ASSERT(split_bblks > 0); 5489 error = xlog_bread(log, blk_no, 5490 split_bblks, dbp, 5491 &offset); 5492 if (error) 5493 goto bread_err2; 5494 } 5495 5496 /* 5497 * Note: this black magic still works with 5498 * large sector sizes (non-512) only because: 5499 * - we increased the buffer size originally 5500 * by 1 sector giving us enough extra space 5501 * for the second read; 5502 * - the log start is guaranteed to be sector 5503 * aligned; 5504 * - we read the log end (LR header start) 5505 * _first_, then the log start (LR header end) 5506 * - order is important. 5507 */ 5508 error = xlog_bread_offset(log, 0, 5509 bblks - split_bblks, dbp, 5510 offset + BBTOB(split_bblks)); 5511 if (error) 5512 goto bread_err2; 5513 } 5514 5515 error = xlog_recover_process(log, rhash, rhead, offset, 5516 pass, &buffer_list); 5517 if (error) 5518 goto bread_err2; 5519 5520 blk_no += bblks; 5521 rhead_blk = blk_no; 5522 } 5523 5524 ASSERT(blk_no >= log->l_logBBsize); 5525 blk_no -= log->l_logBBsize; 5526 rhead_blk = blk_no; 5527 } 5528 5529 /* read first part of physical log */ 5530 while (blk_no < head_blk) { 5531 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 5532 if (error) 5533 goto bread_err2; 5534 5535 rhead = (xlog_rec_header_t *)offset; 5536 error = xlog_valid_rec_header(log, rhead, blk_no); 5537 if (error) 5538 goto bread_err2; 5539 5540 /* blocks in data section */ 5541 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 5542 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 5543 &offset); 5544 if (error) 5545 goto bread_err2; 5546 5547 error = xlog_recover_process(log, rhash, rhead, offset, pass, 5548 &buffer_list); 5549 if (error) 5550 goto bread_err2; 5551 5552 blk_no += bblks + hblks; 5553 rhead_blk = blk_no; 5554 } 5555 5556 bread_err2: 5557 xlog_put_bp(dbp); 5558 bread_err1: 5559 xlog_put_bp(hbp); 5560 5561 /* 5562 * Submit buffers that have been added from the last record processed, 5563 * regardless of error status. 5564 */ 5565 if (!list_empty(&buffer_list)) 5566 error2 = xfs_buf_delwri_submit(&buffer_list); 5567 5568 if (error && first_bad) 5569 *first_bad = rhead_blk; 5570 5571 /* 5572 * Transactions are freed at commit time but transactions without commit 5573 * records on disk are never committed. Free any that may be left in the 5574 * hash table. 5575 */ 5576 for (i = 0; i < XLOG_RHASH_SIZE; i++) { 5577 struct hlist_node *tmp; 5578 struct xlog_recover *trans; 5579 5580 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list) 5581 xlog_recover_free_trans(trans); 5582 } 5583 5584 return error ? error : error2; 5585 } 5586 5587 /* 5588 * Do the recovery of the log. We actually do this in two phases. 5589 * The two passes are necessary in order to implement the function 5590 * of cancelling a record written into the log. The first pass 5591 * determines those things which have been cancelled, and the 5592 * second pass replays log items normally except for those which 5593 * have been cancelled. The handling of the replay and cancellations 5594 * takes place in the log item type specific routines. 5595 * 5596 * The table of items which have cancel records in the log is allocated 5597 * and freed at this level, since only here do we know when all of 5598 * the log recovery has been completed. 5599 */ 5600 STATIC int 5601 xlog_do_log_recovery( 5602 struct xlog *log, 5603 xfs_daddr_t head_blk, 5604 xfs_daddr_t tail_blk) 5605 { 5606 int error, i; 5607 5608 ASSERT(head_blk != tail_blk); 5609 5610 /* 5611 * First do a pass to find all of the cancelled buf log items. 5612 * Store them in the buf_cancel_table for use in the second pass. 5613 */ 5614 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * 5615 sizeof(struct list_head), 5616 KM_SLEEP); 5617 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 5618 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); 5619 5620 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 5621 XLOG_RECOVER_PASS1, NULL); 5622 if (error != 0) { 5623 kmem_free(log->l_buf_cancel_table); 5624 log->l_buf_cancel_table = NULL; 5625 return error; 5626 } 5627 /* 5628 * Then do a second pass to actually recover the items in the log. 5629 * When it is complete free the table of buf cancel items. 5630 */ 5631 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 5632 XLOG_RECOVER_PASS2, NULL); 5633 #ifdef DEBUG 5634 if (!error) { 5635 int i; 5636 5637 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 5638 ASSERT(list_empty(&log->l_buf_cancel_table[i])); 5639 } 5640 #endif /* DEBUG */ 5641 5642 kmem_free(log->l_buf_cancel_table); 5643 log->l_buf_cancel_table = NULL; 5644 5645 return error; 5646 } 5647 5648 /* 5649 * Do the actual recovery 5650 */ 5651 STATIC int 5652 xlog_do_recover( 5653 struct xlog *log, 5654 xfs_daddr_t head_blk, 5655 xfs_daddr_t tail_blk) 5656 { 5657 struct xfs_mount *mp = log->l_mp; 5658 int error; 5659 xfs_buf_t *bp; 5660 xfs_sb_t *sbp; 5661 5662 trace_xfs_log_recover(log, head_blk, tail_blk); 5663 5664 /* 5665 * First replay the images in the log. 5666 */ 5667 error = xlog_do_log_recovery(log, head_blk, tail_blk); 5668 if (error) 5669 return error; 5670 5671 /* 5672 * If IO errors happened during recovery, bail out. 5673 */ 5674 if (XFS_FORCED_SHUTDOWN(mp)) { 5675 return -EIO; 5676 } 5677 5678 /* 5679 * We now update the tail_lsn since much of the recovery has completed 5680 * and there may be space available to use. If there were no extent 5681 * or iunlinks, we can free up the entire log and set the tail_lsn to 5682 * be the last_sync_lsn. This was set in xlog_find_tail to be the 5683 * lsn of the last known good LR on disk. If there are extent frees 5684 * or iunlinks they will have some entries in the AIL; so we look at 5685 * the AIL to determine how to set the tail_lsn. 5686 */ 5687 xlog_assign_tail_lsn(mp); 5688 5689 /* 5690 * Now that we've finished replaying all buffer and inode 5691 * updates, re-read in the superblock and reverify it. 5692 */ 5693 bp = xfs_getsb(mp, 0); 5694 bp->b_flags &= ~(XBF_DONE | XBF_ASYNC); 5695 ASSERT(!(bp->b_flags & XBF_WRITE)); 5696 bp->b_flags |= XBF_READ; 5697 bp->b_ops = &xfs_sb_buf_ops; 5698 5699 error = xfs_buf_submit_wait(bp); 5700 if (error) { 5701 if (!XFS_FORCED_SHUTDOWN(mp)) { 5702 xfs_buf_ioerror_alert(bp, __func__); 5703 ASSERT(0); 5704 } 5705 xfs_buf_relse(bp); 5706 return error; 5707 } 5708 5709 /* Convert superblock from on-disk format */ 5710 sbp = &mp->m_sb; 5711 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 5712 xfs_buf_relse(bp); 5713 5714 /* re-initialise in-core superblock and geometry structures */ 5715 xfs_reinit_percpu_counters(mp); 5716 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 5717 if (error) { 5718 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error); 5719 return error; 5720 } 5721 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp); 5722 5723 xlog_recover_check_summary(log); 5724 5725 /* Normal transactions can now occur */ 5726 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 5727 return 0; 5728 } 5729 5730 /* 5731 * Perform recovery and re-initialize some log variables in xlog_find_tail. 5732 * 5733 * Return error or zero. 5734 */ 5735 int 5736 xlog_recover( 5737 struct xlog *log) 5738 { 5739 xfs_daddr_t head_blk, tail_blk; 5740 int error; 5741 5742 /* find the tail of the log */ 5743 error = xlog_find_tail(log, &head_blk, &tail_blk); 5744 if (error) 5745 return error; 5746 5747 /* 5748 * The superblock was read before the log was available and thus the LSN 5749 * could not be verified. Check the superblock LSN against the current 5750 * LSN now that it's known. 5751 */ 5752 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) && 5753 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn)) 5754 return -EINVAL; 5755 5756 if (tail_blk != head_blk) { 5757 /* There used to be a comment here: 5758 * 5759 * disallow recovery on read-only mounts. note -- mount 5760 * checks for ENOSPC and turns it into an intelligent 5761 * error message. 5762 * ...but this is no longer true. Now, unless you specify 5763 * NORECOVERY (in which case this function would never be 5764 * called), we just go ahead and recover. We do this all 5765 * under the vfs layer, so we can get away with it unless 5766 * the device itself is read-only, in which case we fail. 5767 */ 5768 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 5769 return error; 5770 } 5771 5772 /* 5773 * Version 5 superblock log feature mask validation. We know the 5774 * log is dirty so check if there are any unknown log features 5775 * in what we need to recover. If there are unknown features 5776 * (e.g. unsupported transactions, then simply reject the 5777 * attempt at recovery before touching anything. 5778 */ 5779 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 && 5780 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, 5781 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { 5782 xfs_warn(log->l_mp, 5783 "Superblock has unknown incompatible log features (0x%x) enabled.", 5784 (log->l_mp->m_sb.sb_features_log_incompat & 5785 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 5786 xfs_warn(log->l_mp, 5787 "The log can not be fully and/or safely recovered by this kernel."); 5788 xfs_warn(log->l_mp, 5789 "Please recover the log on a kernel that supports the unknown features."); 5790 return -EINVAL; 5791 } 5792 5793 /* 5794 * Delay log recovery if the debug hook is set. This is debug 5795 * instrumention to coordinate simulation of I/O failures with 5796 * log recovery. 5797 */ 5798 if (xfs_globals.log_recovery_delay) { 5799 xfs_notice(log->l_mp, 5800 "Delaying log recovery for %d seconds.", 5801 xfs_globals.log_recovery_delay); 5802 msleep(xfs_globals.log_recovery_delay * 1000); 5803 } 5804 5805 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", 5806 log->l_mp->m_logname ? log->l_mp->m_logname 5807 : "internal"); 5808 5809 error = xlog_do_recover(log, head_blk, tail_blk); 5810 log->l_flags |= XLOG_RECOVERY_NEEDED; 5811 } 5812 return error; 5813 } 5814 5815 /* 5816 * In the first part of recovery we replay inodes and buffers and build 5817 * up the list of extent free items which need to be processed. Here 5818 * we process the extent free items and clean up the on disk unlinked 5819 * inode lists. This is separated from the first part of recovery so 5820 * that the root and real-time bitmap inodes can be read in from disk in 5821 * between the two stages. This is necessary so that we can free space 5822 * in the real-time portion of the file system. 5823 */ 5824 int 5825 xlog_recover_finish( 5826 struct xlog *log) 5827 { 5828 /* 5829 * Now we're ready to do the transactions needed for the 5830 * rest of recovery. Start with completing all the extent 5831 * free intent records and then process the unlinked inode 5832 * lists. At this point, we essentially run in normal mode 5833 * except that we're still performing recovery actions 5834 * rather than accepting new requests. 5835 */ 5836 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 5837 int error; 5838 error = xlog_recover_process_intents(log); 5839 if (error) { 5840 xfs_alert(log->l_mp, "Failed to recover intents"); 5841 return error; 5842 } 5843 5844 /* 5845 * Sync the log to get all the intents out of the AIL. 5846 * This isn't absolutely necessary, but it helps in 5847 * case the unlink transactions would have problems 5848 * pushing the intents out of the way. 5849 */ 5850 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 5851 5852 xlog_recover_process_iunlinks(log); 5853 5854 xlog_recover_check_summary(log); 5855 5856 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", 5857 log->l_mp->m_logname ? log->l_mp->m_logname 5858 : "internal"); 5859 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 5860 } else { 5861 xfs_info(log->l_mp, "Ending clean mount"); 5862 } 5863 return 0; 5864 } 5865 5866 int 5867 xlog_recover_cancel( 5868 struct xlog *log) 5869 { 5870 int error = 0; 5871 5872 if (log->l_flags & XLOG_RECOVERY_NEEDED) 5873 error = xlog_recover_cancel_intents(log); 5874 5875 return error; 5876 } 5877 5878 #if defined(DEBUG) 5879 /* 5880 * Read all of the agf and agi counters and check that they 5881 * are consistent with the superblock counters. 5882 */ 5883 STATIC void 5884 xlog_recover_check_summary( 5885 struct xlog *log) 5886 { 5887 xfs_mount_t *mp; 5888 xfs_agf_t *agfp; 5889 xfs_buf_t *agfbp; 5890 xfs_buf_t *agibp; 5891 xfs_agnumber_t agno; 5892 uint64_t freeblks; 5893 uint64_t itotal; 5894 uint64_t ifree; 5895 int error; 5896 5897 mp = log->l_mp; 5898 5899 freeblks = 0LL; 5900 itotal = 0LL; 5901 ifree = 0LL; 5902 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 5903 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 5904 if (error) { 5905 xfs_alert(mp, "%s agf read failed agno %d error %d", 5906 __func__, agno, error); 5907 } else { 5908 agfp = XFS_BUF_TO_AGF(agfbp); 5909 freeblks += be32_to_cpu(agfp->agf_freeblks) + 5910 be32_to_cpu(agfp->agf_flcount); 5911 xfs_buf_relse(agfbp); 5912 } 5913 5914 error = xfs_read_agi(mp, NULL, agno, &agibp); 5915 if (error) { 5916 xfs_alert(mp, "%s agi read failed agno %d error %d", 5917 __func__, agno, error); 5918 } else { 5919 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 5920 5921 itotal += be32_to_cpu(agi->agi_count); 5922 ifree += be32_to_cpu(agi->agi_freecount); 5923 xfs_buf_relse(agibp); 5924 } 5925 } 5926 } 5927 #endif /* DEBUG */ 5928