1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_mount.h" 28 #include "xfs_error.h" 29 #include "xfs_bmap_btree.h" 30 #include "xfs_alloc_btree.h" 31 #include "xfs_ialloc_btree.h" 32 #include "xfs_dinode.h" 33 #include "xfs_inode.h" 34 #include "xfs_inode_item.h" 35 #include "xfs_alloc.h" 36 #include "xfs_ialloc.h" 37 #include "xfs_log_priv.h" 38 #include "xfs_buf_item.h" 39 #include "xfs_log_recover.h" 40 #include "xfs_extfree_item.h" 41 #include "xfs_trans_priv.h" 42 #include "xfs_quota.h" 43 #include "xfs_utils.h" 44 #include "xfs_trace.h" 45 46 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *); 47 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t); 48 #if defined(DEBUG) 49 STATIC void xlog_recover_check_summary(xlog_t *); 50 #else 51 #define xlog_recover_check_summary(log) 52 #endif 53 54 /* 55 * This structure is used during recovery to record the buf log items which 56 * have been canceled and should not be replayed. 57 */ 58 struct xfs_buf_cancel { 59 xfs_daddr_t bc_blkno; 60 uint bc_len; 61 int bc_refcount; 62 struct list_head bc_list; 63 }; 64 65 /* 66 * Sector aligned buffer routines for buffer create/read/write/access 67 */ 68 69 /* 70 * Verify the given count of basic blocks is valid number of blocks 71 * to specify for an operation involving the given XFS log buffer. 72 * Returns nonzero if the count is valid, 0 otherwise. 73 */ 74 75 static inline int 76 xlog_buf_bbcount_valid( 77 xlog_t *log, 78 int bbcount) 79 { 80 return bbcount > 0 && bbcount <= log->l_logBBsize; 81 } 82 83 /* 84 * Allocate a buffer to hold log data. The buffer needs to be able 85 * to map to a range of nbblks basic blocks at any valid (basic 86 * block) offset within the log. 87 */ 88 STATIC xfs_buf_t * 89 xlog_get_bp( 90 xlog_t *log, 91 int nbblks) 92 { 93 struct xfs_buf *bp; 94 95 if (!xlog_buf_bbcount_valid(log, nbblks)) { 96 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 97 nbblks); 98 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 99 return NULL; 100 } 101 102 /* 103 * We do log I/O in units of log sectors (a power-of-2 104 * multiple of the basic block size), so we round up the 105 * requested size to accommodate the basic blocks required 106 * for complete log sectors. 107 * 108 * In addition, the buffer may be used for a non-sector- 109 * aligned block offset, in which case an I/O of the 110 * requested size could extend beyond the end of the 111 * buffer. If the requested size is only 1 basic block it 112 * will never straddle a sector boundary, so this won't be 113 * an issue. Nor will this be a problem if the log I/O is 114 * done in basic blocks (sector size 1). But otherwise we 115 * extend the buffer by one extra log sector to ensure 116 * there's space to accommodate this possibility. 117 */ 118 if (nbblks > 1 && log->l_sectBBsize > 1) 119 nbblks += log->l_sectBBsize; 120 nbblks = round_up(nbblks, log->l_sectBBsize); 121 122 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0); 123 if (bp) 124 xfs_buf_unlock(bp); 125 return bp; 126 } 127 128 STATIC void 129 xlog_put_bp( 130 xfs_buf_t *bp) 131 { 132 xfs_buf_free(bp); 133 } 134 135 /* 136 * Return the address of the start of the given block number's data 137 * in a log buffer. The buffer covers a log sector-aligned region. 138 */ 139 STATIC xfs_caddr_t 140 xlog_align( 141 xlog_t *log, 142 xfs_daddr_t blk_no, 143 int nbblks, 144 xfs_buf_t *bp) 145 { 146 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1); 147 148 ASSERT(offset + nbblks <= bp->b_length); 149 return bp->b_addr + BBTOB(offset); 150 } 151 152 153 /* 154 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 155 */ 156 STATIC int 157 xlog_bread_noalign( 158 xlog_t *log, 159 xfs_daddr_t blk_no, 160 int nbblks, 161 xfs_buf_t *bp) 162 { 163 int error; 164 165 if (!xlog_buf_bbcount_valid(log, nbblks)) { 166 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 167 nbblks); 168 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 169 return EFSCORRUPTED; 170 } 171 172 blk_no = round_down(blk_no, log->l_sectBBsize); 173 nbblks = round_up(nbblks, log->l_sectBBsize); 174 175 ASSERT(nbblks > 0); 176 ASSERT(nbblks <= bp->b_length); 177 178 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 179 XFS_BUF_READ(bp); 180 bp->b_io_length = nbblks; 181 bp->b_error = 0; 182 183 xfsbdstrat(log->l_mp, bp); 184 error = xfs_buf_iowait(bp); 185 if (error) 186 xfs_buf_ioerror_alert(bp, __func__); 187 return error; 188 } 189 190 STATIC int 191 xlog_bread( 192 xlog_t *log, 193 xfs_daddr_t blk_no, 194 int nbblks, 195 xfs_buf_t *bp, 196 xfs_caddr_t *offset) 197 { 198 int error; 199 200 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 201 if (error) 202 return error; 203 204 *offset = xlog_align(log, blk_no, nbblks, bp); 205 return 0; 206 } 207 208 /* 209 * Read at an offset into the buffer. Returns with the buffer in it's original 210 * state regardless of the result of the read. 211 */ 212 STATIC int 213 xlog_bread_offset( 214 xlog_t *log, 215 xfs_daddr_t blk_no, /* block to read from */ 216 int nbblks, /* blocks to read */ 217 xfs_buf_t *bp, 218 xfs_caddr_t offset) 219 { 220 xfs_caddr_t orig_offset = bp->b_addr; 221 int orig_len = BBTOB(bp->b_length); 222 int error, error2; 223 224 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks)); 225 if (error) 226 return error; 227 228 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 229 230 /* must reset buffer pointer even on error */ 231 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len); 232 if (error) 233 return error; 234 return error2; 235 } 236 237 /* 238 * Write out the buffer at the given block for the given number of blocks. 239 * The buffer is kept locked across the write and is returned locked. 240 * This can only be used for synchronous log writes. 241 */ 242 STATIC int 243 xlog_bwrite( 244 xlog_t *log, 245 xfs_daddr_t blk_no, 246 int nbblks, 247 xfs_buf_t *bp) 248 { 249 int error; 250 251 if (!xlog_buf_bbcount_valid(log, nbblks)) { 252 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 253 nbblks); 254 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 255 return EFSCORRUPTED; 256 } 257 258 blk_no = round_down(blk_no, log->l_sectBBsize); 259 nbblks = round_up(nbblks, log->l_sectBBsize); 260 261 ASSERT(nbblks > 0); 262 ASSERT(nbblks <= bp->b_length); 263 264 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 265 XFS_BUF_ZEROFLAGS(bp); 266 xfs_buf_hold(bp); 267 xfs_buf_lock(bp); 268 bp->b_io_length = nbblks; 269 bp->b_error = 0; 270 271 error = xfs_bwrite(bp); 272 if (error) 273 xfs_buf_ioerror_alert(bp, __func__); 274 xfs_buf_relse(bp); 275 return error; 276 } 277 278 #ifdef DEBUG 279 /* 280 * dump debug superblock and log record information 281 */ 282 STATIC void 283 xlog_header_check_dump( 284 xfs_mount_t *mp, 285 xlog_rec_header_t *head) 286 { 287 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n", 288 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 289 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n", 290 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 291 } 292 #else 293 #define xlog_header_check_dump(mp, head) 294 #endif 295 296 /* 297 * check log record header for recovery 298 */ 299 STATIC int 300 xlog_header_check_recover( 301 xfs_mount_t *mp, 302 xlog_rec_header_t *head) 303 { 304 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 305 306 /* 307 * IRIX doesn't write the h_fmt field and leaves it zeroed 308 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 309 * a dirty log created in IRIX. 310 */ 311 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) { 312 xfs_warn(mp, 313 "dirty log written in incompatible format - can't recover"); 314 xlog_header_check_dump(mp, head); 315 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 316 XFS_ERRLEVEL_HIGH, mp); 317 return XFS_ERROR(EFSCORRUPTED); 318 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 319 xfs_warn(mp, 320 "dirty log entry has mismatched uuid - can't recover"); 321 xlog_header_check_dump(mp, head); 322 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 323 XFS_ERRLEVEL_HIGH, mp); 324 return XFS_ERROR(EFSCORRUPTED); 325 } 326 return 0; 327 } 328 329 /* 330 * read the head block of the log and check the header 331 */ 332 STATIC int 333 xlog_header_check_mount( 334 xfs_mount_t *mp, 335 xlog_rec_header_t *head) 336 { 337 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 338 339 if (uuid_is_nil(&head->h_fs_uuid)) { 340 /* 341 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 342 * h_fs_uuid is nil, we assume this log was last mounted 343 * by IRIX and continue. 344 */ 345 xfs_warn(mp, "nil uuid in log - IRIX style log"); 346 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 347 xfs_warn(mp, "log has mismatched uuid - can't recover"); 348 xlog_header_check_dump(mp, head); 349 XFS_ERROR_REPORT("xlog_header_check_mount", 350 XFS_ERRLEVEL_HIGH, mp); 351 return XFS_ERROR(EFSCORRUPTED); 352 } 353 return 0; 354 } 355 356 STATIC void 357 xlog_recover_iodone( 358 struct xfs_buf *bp) 359 { 360 if (bp->b_error) { 361 /* 362 * We're not going to bother about retrying 363 * this during recovery. One strike! 364 */ 365 xfs_buf_ioerror_alert(bp, __func__); 366 xfs_force_shutdown(bp->b_target->bt_mount, 367 SHUTDOWN_META_IO_ERROR); 368 } 369 bp->b_iodone = NULL; 370 xfs_buf_ioend(bp, 0); 371 } 372 373 /* 374 * This routine finds (to an approximation) the first block in the physical 375 * log which contains the given cycle. It uses a binary search algorithm. 376 * Note that the algorithm can not be perfect because the disk will not 377 * necessarily be perfect. 378 */ 379 STATIC int 380 xlog_find_cycle_start( 381 xlog_t *log, 382 xfs_buf_t *bp, 383 xfs_daddr_t first_blk, 384 xfs_daddr_t *last_blk, 385 uint cycle) 386 { 387 xfs_caddr_t offset; 388 xfs_daddr_t mid_blk; 389 xfs_daddr_t end_blk; 390 uint mid_cycle; 391 int error; 392 393 end_blk = *last_blk; 394 mid_blk = BLK_AVG(first_blk, end_blk); 395 while (mid_blk != first_blk && mid_blk != end_blk) { 396 error = xlog_bread(log, mid_blk, 1, bp, &offset); 397 if (error) 398 return error; 399 mid_cycle = xlog_get_cycle(offset); 400 if (mid_cycle == cycle) 401 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 402 else 403 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 404 mid_blk = BLK_AVG(first_blk, end_blk); 405 } 406 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 407 (mid_blk == end_blk && mid_blk-1 == first_blk)); 408 409 *last_blk = end_blk; 410 411 return 0; 412 } 413 414 /* 415 * Check that a range of blocks does not contain stop_on_cycle_no. 416 * Fill in *new_blk with the block offset where such a block is 417 * found, or with -1 (an invalid block number) if there is no such 418 * block in the range. The scan needs to occur from front to back 419 * and the pointer into the region must be updated since a later 420 * routine will need to perform another test. 421 */ 422 STATIC int 423 xlog_find_verify_cycle( 424 xlog_t *log, 425 xfs_daddr_t start_blk, 426 int nbblks, 427 uint stop_on_cycle_no, 428 xfs_daddr_t *new_blk) 429 { 430 xfs_daddr_t i, j; 431 uint cycle; 432 xfs_buf_t *bp; 433 xfs_daddr_t bufblks; 434 xfs_caddr_t buf = NULL; 435 int error = 0; 436 437 /* 438 * Greedily allocate a buffer big enough to handle the full 439 * range of basic blocks we'll be examining. If that fails, 440 * try a smaller size. We need to be able to read at least 441 * a log sector, or we're out of luck. 442 */ 443 bufblks = 1 << ffs(nbblks); 444 while (bufblks > log->l_logBBsize) 445 bufblks >>= 1; 446 while (!(bp = xlog_get_bp(log, bufblks))) { 447 bufblks >>= 1; 448 if (bufblks < log->l_sectBBsize) 449 return ENOMEM; 450 } 451 452 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 453 int bcount; 454 455 bcount = min(bufblks, (start_blk + nbblks - i)); 456 457 error = xlog_bread(log, i, bcount, bp, &buf); 458 if (error) 459 goto out; 460 461 for (j = 0; j < bcount; j++) { 462 cycle = xlog_get_cycle(buf); 463 if (cycle == stop_on_cycle_no) { 464 *new_blk = i+j; 465 goto out; 466 } 467 468 buf += BBSIZE; 469 } 470 } 471 472 *new_blk = -1; 473 474 out: 475 xlog_put_bp(bp); 476 return error; 477 } 478 479 /* 480 * Potentially backup over partial log record write. 481 * 482 * In the typical case, last_blk is the number of the block directly after 483 * a good log record. Therefore, we subtract one to get the block number 484 * of the last block in the given buffer. extra_bblks contains the number 485 * of blocks we would have read on a previous read. This happens when the 486 * last log record is split over the end of the physical log. 487 * 488 * extra_bblks is the number of blocks potentially verified on a previous 489 * call to this routine. 490 */ 491 STATIC int 492 xlog_find_verify_log_record( 493 xlog_t *log, 494 xfs_daddr_t start_blk, 495 xfs_daddr_t *last_blk, 496 int extra_bblks) 497 { 498 xfs_daddr_t i; 499 xfs_buf_t *bp; 500 xfs_caddr_t offset = NULL; 501 xlog_rec_header_t *head = NULL; 502 int error = 0; 503 int smallmem = 0; 504 int num_blks = *last_blk - start_blk; 505 int xhdrs; 506 507 ASSERT(start_blk != 0 || *last_blk != start_blk); 508 509 if (!(bp = xlog_get_bp(log, num_blks))) { 510 if (!(bp = xlog_get_bp(log, 1))) 511 return ENOMEM; 512 smallmem = 1; 513 } else { 514 error = xlog_bread(log, start_blk, num_blks, bp, &offset); 515 if (error) 516 goto out; 517 offset += ((num_blks - 1) << BBSHIFT); 518 } 519 520 for (i = (*last_blk) - 1; i >= 0; i--) { 521 if (i < start_blk) { 522 /* valid log record not found */ 523 xfs_warn(log->l_mp, 524 "Log inconsistent (didn't find previous header)"); 525 ASSERT(0); 526 error = XFS_ERROR(EIO); 527 goto out; 528 } 529 530 if (smallmem) { 531 error = xlog_bread(log, i, 1, bp, &offset); 532 if (error) 533 goto out; 534 } 535 536 head = (xlog_rec_header_t *)offset; 537 538 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 539 break; 540 541 if (!smallmem) 542 offset -= BBSIZE; 543 } 544 545 /* 546 * We hit the beginning of the physical log & still no header. Return 547 * to caller. If caller can handle a return of -1, then this routine 548 * will be called again for the end of the physical log. 549 */ 550 if (i == -1) { 551 error = -1; 552 goto out; 553 } 554 555 /* 556 * We have the final block of the good log (the first block 557 * of the log record _before_ the head. So we check the uuid. 558 */ 559 if ((error = xlog_header_check_mount(log->l_mp, head))) 560 goto out; 561 562 /* 563 * We may have found a log record header before we expected one. 564 * last_blk will be the 1st block # with a given cycle #. We may end 565 * up reading an entire log record. In this case, we don't want to 566 * reset last_blk. Only when last_blk points in the middle of a log 567 * record do we update last_blk. 568 */ 569 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 570 uint h_size = be32_to_cpu(head->h_size); 571 572 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 573 if (h_size % XLOG_HEADER_CYCLE_SIZE) 574 xhdrs++; 575 } else { 576 xhdrs = 1; 577 } 578 579 if (*last_blk - i + extra_bblks != 580 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 581 *last_blk = i; 582 583 out: 584 xlog_put_bp(bp); 585 return error; 586 } 587 588 /* 589 * Head is defined to be the point of the log where the next log write 590 * write could go. This means that incomplete LR writes at the end are 591 * eliminated when calculating the head. We aren't guaranteed that previous 592 * LR have complete transactions. We only know that a cycle number of 593 * current cycle number -1 won't be present in the log if we start writing 594 * from our current block number. 595 * 596 * last_blk contains the block number of the first block with a given 597 * cycle number. 598 * 599 * Return: zero if normal, non-zero if error. 600 */ 601 STATIC int 602 xlog_find_head( 603 xlog_t *log, 604 xfs_daddr_t *return_head_blk) 605 { 606 xfs_buf_t *bp; 607 xfs_caddr_t offset; 608 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 609 int num_scan_bblks; 610 uint first_half_cycle, last_half_cycle; 611 uint stop_on_cycle; 612 int error, log_bbnum = log->l_logBBsize; 613 614 /* Is the end of the log device zeroed? */ 615 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) { 616 *return_head_blk = first_blk; 617 618 /* Is the whole lot zeroed? */ 619 if (!first_blk) { 620 /* Linux XFS shouldn't generate totally zeroed logs - 621 * mkfs etc write a dummy unmount record to a fresh 622 * log so we can store the uuid in there 623 */ 624 xfs_warn(log->l_mp, "totally zeroed log"); 625 } 626 627 return 0; 628 } else if (error) { 629 xfs_warn(log->l_mp, "empty log check failed"); 630 return error; 631 } 632 633 first_blk = 0; /* get cycle # of 1st block */ 634 bp = xlog_get_bp(log, 1); 635 if (!bp) 636 return ENOMEM; 637 638 error = xlog_bread(log, 0, 1, bp, &offset); 639 if (error) 640 goto bp_err; 641 642 first_half_cycle = xlog_get_cycle(offset); 643 644 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 645 error = xlog_bread(log, last_blk, 1, bp, &offset); 646 if (error) 647 goto bp_err; 648 649 last_half_cycle = xlog_get_cycle(offset); 650 ASSERT(last_half_cycle != 0); 651 652 /* 653 * If the 1st half cycle number is equal to the last half cycle number, 654 * then the entire log is stamped with the same cycle number. In this 655 * case, head_blk can't be set to zero (which makes sense). The below 656 * math doesn't work out properly with head_blk equal to zero. Instead, 657 * we set it to log_bbnum which is an invalid block number, but this 658 * value makes the math correct. If head_blk doesn't changed through 659 * all the tests below, *head_blk is set to zero at the very end rather 660 * than log_bbnum. In a sense, log_bbnum and zero are the same block 661 * in a circular file. 662 */ 663 if (first_half_cycle == last_half_cycle) { 664 /* 665 * In this case we believe that the entire log should have 666 * cycle number last_half_cycle. We need to scan backwards 667 * from the end verifying that there are no holes still 668 * containing last_half_cycle - 1. If we find such a hole, 669 * then the start of that hole will be the new head. The 670 * simple case looks like 671 * x | x ... | x - 1 | x 672 * Another case that fits this picture would be 673 * x | x + 1 | x ... | x 674 * In this case the head really is somewhere at the end of the 675 * log, as one of the latest writes at the beginning was 676 * incomplete. 677 * One more case is 678 * x | x + 1 | x ... | x - 1 | x 679 * This is really the combination of the above two cases, and 680 * the head has to end up at the start of the x-1 hole at the 681 * end of the log. 682 * 683 * In the 256k log case, we will read from the beginning to the 684 * end of the log and search for cycle numbers equal to x-1. 685 * We don't worry about the x+1 blocks that we encounter, 686 * because we know that they cannot be the head since the log 687 * started with x. 688 */ 689 head_blk = log_bbnum; 690 stop_on_cycle = last_half_cycle - 1; 691 } else { 692 /* 693 * In this case we want to find the first block with cycle 694 * number matching last_half_cycle. We expect the log to be 695 * some variation on 696 * x + 1 ... | x ... | x 697 * The first block with cycle number x (last_half_cycle) will 698 * be where the new head belongs. First we do a binary search 699 * for the first occurrence of last_half_cycle. The binary 700 * search may not be totally accurate, so then we scan back 701 * from there looking for occurrences of last_half_cycle before 702 * us. If that backwards scan wraps around the beginning of 703 * the log, then we look for occurrences of last_half_cycle - 1 704 * at the end of the log. The cases we're looking for look 705 * like 706 * v binary search stopped here 707 * x + 1 ... | x | x + 1 | x ... | x 708 * ^ but we want to locate this spot 709 * or 710 * <---------> less than scan distance 711 * x + 1 ... | x ... | x - 1 | x 712 * ^ we want to locate this spot 713 */ 714 stop_on_cycle = last_half_cycle; 715 if ((error = xlog_find_cycle_start(log, bp, first_blk, 716 &head_blk, last_half_cycle))) 717 goto bp_err; 718 } 719 720 /* 721 * Now validate the answer. Scan back some number of maximum possible 722 * blocks and make sure each one has the expected cycle number. The 723 * maximum is determined by the total possible amount of buffering 724 * in the in-core log. The following number can be made tighter if 725 * we actually look at the block size of the filesystem. 726 */ 727 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 728 if (head_blk >= num_scan_bblks) { 729 /* 730 * We are guaranteed that the entire check can be performed 731 * in one buffer. 732 */ 733 start_blk = head_blk - num_scan_bblks; 734 if ((error = xlog_find_verify_cycle(log, 735 start_blk, num_scan_bblks, 736 stop_on_cycle, &new_blk))) 737 goto bp_err; 738 if (new_blk != -1) 739 head_blk = new_blk; 740 } else { /* need to read 2 parts of log */ 741 /* 742 * We are going to scan backwards in the log in two parts. 743 * First we scan the physical end of the log. In this part 744 * of the log, we are looking for blocks with cycle number 745 * last_half_cycle - 1. 746 * If we find one, then we know that the log starts there, as 747 * we've found a hole that didn't get written in going around 748 * the end of the physical log. The simple case for this is 749 * x + 1 ... | x ... | x - 1 | x 750 * <---------> less than scan distance 751 * If all of the blocks at the end of the log have cycle number 752 * last_half_cycle, then we check the blocks at the start of 753 * the log looking for occurrences of last_half_cycle. If we 754 * find one, then our current estimate for the location of the 755 * first occurrence of last_half_cycle is wrong and we move 756 * back to the hole we've found. This case looks like 757 * x + 1 ... | x | x + 1 | x ... 758 * ^ binary search stopped here 759 * Another case we need to handle that only occurs in 256k 760 * logs is 761 * x + 1 ... | x ... | x+1 | x ... 762 * ^ binary search stops here 763 * In a 256k log, the scan at the end of the log will see the 764 * x + 1 blocks. We need to skip past those since that is 765 * certainly not the head of the log. By searching for 766 * last_half_cycle-1 we accomplish that. 767 */ 768 ASSERT(head_blk <= INT_MAX && 769 (xfs_daddr_t) num_scan_bblks >= head_blk); 770 start_blk = log_bbnum - (num_scan_bblks - head_blk); 771 if ((error = xlog_find_verify_cycle(log, start_blk, 772 num_scan_bblks - (int)head_blk, 773 (stop_on_cycle - 1), &new_blk))) 774 goto bp_err; 775 if (new_blk != -1) { 776 head_blk = new_blk; 777 goto validate_head; 778 } 779 780 /* 781 * Scan beginning of log now. The last part of the physical 782 * log is good. This scan needs to verify that it doesn't find 783 * the last_half_cycle. 784 */ 785 start_blk = 0; 786 ASSERT(head_blk <= INT_MAX); 787 if ((error = xlog_find_verify_cycle(log, 788 start_blk, (int)head_blk, 789 stop_on_cycle, &new_blk))) 790 goto bp_err; 791 if (new_blk != -1) 792 head_blk = new_blk; 793 } 794 795 validate_head: 796 /* 797 * Now we need to make sure head_blk is not pointing to a block in 798 * the middle of a log record. 799 */ 800 num_scan_bblks = XLOG_REC_SHIFT(log); 801 if (head_blk >= num_scan_bblks) { 802 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 803 804 /* start ptr at last block ptr before head_blk */ 805 if ((error = xlog_find_verify_log_record(log, start_blk, 806 &head_blk, 0)) == -1) { 807 error = XFS_ERROR(EIO); 808 goto bp_err; 809 } else if (error) 810 goto bp_err; 811 } else { 812 start_blk = 0; 813 ASSERT(head_blk <= INT_MAX); 814 if ((error = xlog_find_verify_log_record(log, start_blk, 815 &head_blk, 0)) == -1) { 816 /* We hit the beginning of the log during our search */ 817 start_blk = log_bbnum - (num_scan_bblks - head_blk); 818 new_blk = log_bbnum; 819 ASSERT(start_blk <= INT_MAX && 820 (xfs_daddr_t) log_bbnum-start_blk >= 0); 821 ASSERT(head_blk <= INT_MAX); 822 if ((error = xlog_find_verify_log_record(log, 823 start_blk, &new_blk, 824 (int)head_blk)) == -1) { 825 error = XFS_ERROR(EIO); 826 goto bp_err; 827 } else if (error) 828 goto bp_err; 829 if (new_blk != log_bbnum) 830 head_blk = new_blk; 831 } else if (error) 832 goto bp_err; 833 } 834 835 xlog_put_bp(bp); 836 if (head_blk == log_bbnum) 837 *return_head_blk = 0; 838 else 839 *return_head_blk = head_blk; 840 /* 841 * When returning here, we have a good block number. Bad block 842 * means that during a previous crash, we didn't have a clean break 843 * from cycle number N to cycle number N-1. In this case, we need 844 * to find the first block with cycle number N-1. 845 */ 846 return 0; 847 848 bp_err: 849 xlog_put_bp(bp); 850 851 if (error) 852 xfs_warn(log->l_mp, "failed to find log head"); 853 return error; 854 } 855 856 /* 857 * Find the sync block number or the tail of the log. 858 * 859 * This will be the block number of the last record to have its 860 * associated buffers synced to disk. Every log record header has 861 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 862 * to get a sync block number. The only concern is to figure out which 863 * log record header to believe. 864 * 865 * The following algorithm uses the log record header with the largest 866 * lsn. The entire log record does not need to be valid. We only care 867 * that the header is valid. 868 * 869 * We could speed up search by using current head_blk buffer, but it is not 870 * available. 871 */ 872 STATIC int 873 xlog_find_tail( 874 xlog_t *log, 875 xfs_daddr_t *head_blk, 876 xfs_daddr_t *tail_blk) 877 { 878 xlog_rec_header_t *rhead; 879 xlog_op_header_t *op_head; 880 xfs_caddr_t offset = NULL; 881 xfs_buf_t *bp; 882 int error, i, found; 883 xfs_daddr_t umount_data_blk; 884 xfs_daddr_t after_umount_blk; 885 xfs_lsn_t tail_lsn; 886 int hblks; 887 888 found = 0; 889 890 /* 891 * Find previous log record 892 */ 893 if ((error = xlog_find_head(log, head_blk))) 894 return error; 895 896 bp = xlog_get_bp(log, 1); 897 if (!bp) 898 return ENOMEM; 899 if (*head_blk == 0) { /* special case */ 900 error = xlog_bread(log, 0, 1, bp, &offset); 901 if (error) 902 goto done; 903 904 if (xlog_get_cycle(offset) == 0) { 905 *tail_blk = 0; 906 /* leave all other log inited values alone */ 907 goto done; 908 } 909 } 910 911 /* 912 * Search backwards looking for log record header block 913 */ 914 ASSERT(*head_blk < INT_MAX); 915 for (i = (int)(*head_blk) - 1; i >= 0; i--) { 916 error = xlog_bread(log, i, 1, bp, &offset); 917 if (error) 918 goto done; 919 920 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 921 found = 1; 922 break; 923 } 924 } 925 /* 926 * If we haven't found the log record header block, start looking 927 * again from the end of the physical log. XXXmiken: There should be 928 * a check here to make sure we didn't search more than N blocks in 929 * the previous code. 930 */ 931 if (!found) { 932 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) { 933 error = xlog_bread(log, i, 1, bp, &offset); 934 if (error) 935 goto done; 936 937 if (*(__be32 *)offset == 938 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 939 found = 2; 940 break; 941 } 942 } 943 } 944 if (!found) { 945 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); 946 ASSERT(0); 947 return XFS_ERROR(EIO); 948 } 949 950 /* find blk_no of tail of log */ 951 rhead = (xlog_rec_header_t *)offset; 952 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 953 954 /* 955 * Reset log values according to the state of the log when we 956 * crashed. In the case where head_blk == 0, we bump curr_cycle 957 * one because the next write starts a new cycle rather than 958 * continuing the cycle of the last good log record. At this 959 * point we have guaranteed that all partial log records have been 960 * accounted for. Therefore, we know that the last good log record 961 * written was complete and ended exactly on the end boundary 962 * of the physical log. 963 */ 964 log->l_prev_block = i; 965 log->l_curr_block = (int)*head_blk; 966 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 967 if (found == 2) 968 log->l_curr_cycle++; 969 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); 970 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); 971 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, 972 BBTOB(log->l_curr_block)); 973 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, 974 BBTOB(log->l_curr_block)); 975 976 /* 977 * Look for unmount record. If we find it, then we know there 978 * was a clean unmount. Since 'i' could be the last block in 979 * the physical log, we convert to a log block before comparing 980 * to the head_blk. 981 * 982 * Save the current tail lsn to use to pass to 983 * xlog_clear_stale_blocks() below. We won't want to clear the 984 * unmount record if there is one, so we pass the lsn of the 985 * unmount record rather than the block after it. 986 */ 987 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 988 int h_size = be32_to_cpu(rhead->h_size); 989 int h_version = be32_to_cpu(rhead->h_version); 990 991 if ((h_version & XLOG_VERSION_2) && 992 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 993 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 994 if (h_size % XLOG_HEADER_CYCLE_SIZE) 995 hblks++; 996 } else { 997 hblks = 1; 998 } 999 } else { 1000 hblks = 1; 1001 } 1002 after_umount_blk = (i + hblks + (int) 1003 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize; 1004 tail_lsn = atomic64_read(&log->l_tail_lsn); 1005 if (*head_blk == after_umount_blk && 1006 be32_to_cpu(rhead->h_num_logops) == 1) { 1007 umount_data_blk = (i + hblks) % log->l_logBBsize; 1008 error = xlog_bread(log, umount_data_blk, 1, bp, &offset); 1009 if (error) 1010 goto done; 1011 1012 op_head = (xlog_op_header_t *)offset; 1013 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 1014 /* 1015 * Set tail and last sync so that newly written 1016 * log records will point recovery to after the 1017 * current unmount record. 1018 */ 1019 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1020 log->l_curr_cycle, after_umount_blk); 1021 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1022 log->l_curr_cycle, after_umount_blk); 1023 *tail_blk = after_umount_blk; 1024 1025 /* 1026 * Note that the unmount was clean. If the unmount 1027 * was not clean, we need to know this to rebuild the 1028 * superblock counters from the perag headers if we 1029 * have a filesystem using non-persistent counters. 1030 */ 1031 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 1032 } 1033 } 1034 1035 /* 1036 * Make sure that there are no blocks in front of the head 1037 * with the same cycle number as the head. This can happen 1038 * because we allow multiple outstanding log writes concurrently, 1039 * and the later writes might make it out before earlier ones. 1040 * 1041 * We use the lsn from before modifying it so that we'll never 1042 * overwrite the unmount record after a clean unmount. 1043 * 1044 * Do this only if we are going to recover the filesystem 1045 * 1046 * NOTE: This used to say "if (!readonly)" 1047 * However on Linux, we can & do recover a read-only filesystem. 1048 * We only skip recovery if NORECOVERY is specified on mount, 1049 * in which case we would not be here. 1050 * 1051 * But... if the -device- itself is readonly, just skip this. 1052 * We can't recover this device anyway, so it won't matter. 1053 */ 1054 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) 1055 error = xlog_clear_stale_blocks(log, tail_lsn); 1056 1057 done: 1058 xlog_put_bp(bp); 1059 1060 if (error) 1061 xfs_warn(log->l_mp, "failed to locate log tail"); 1062 return error; 1063 } 1064 1065 /* 1066 * Is the log zeroed at all? 1067 * 1068 * The last binary search should be changed to perform an X block read 1069 * once X becomes small enough. You can then search linearly through 1070 * the X blocks. This will cut down on the number of reads we need to do. 1071 * 1072 * If the log is partially zeroed, this routine will pass back the blkno 1073 * of the first block with cycle number 0. It won't have a complete LR 1074 * preceding it. 1075 * 1076 * Return: 1077 * 0 => the log is completely written to 1078 * -1 => use *blk_no as the first block of the log 1079 * >0 => error has occurred 1080 */ 1081 STATIC int 1082 xlog_find_zeroed( 1083 xlog_t *log, 1084 xfs_daddr_t *blk_no) 1085 { 1086 xfs_buf_t *bp; 1087 xfs_caddr_t offset; 1088 uint first_cycle, last_cycle; 1089 xfs_daddr_t new_blk, last_blk, start_blk; 1090 xfs_daddr_t num_scan_bblks; 1091 int error, log_bbnum = log->l_logBBsize; 1092 1093 *blk_no = 0; 1094 1095 /* check totally zeroed log */ 1096 bp = xlog_get_bp(log, 1); 1097 if (!bp) 1098 return ENOMEM; 1099 error = xlog_bread(log, 0, 1, bp, &offset); 1100 if (error) 1101 goto bp_err; 1102 1103 first_cycle = xlog_get_cycle(offset); 1104 if (first_cycle == 0) { /* completely zeroed log */ 1105 *blk_no = 0; 1106 xlog_put_bp(bp); 1107 return -1; 1108 } 1109 1110 /* check partially zeroed log */ 1111 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset); 1112 if (error) 1113 goto bp_err; 1114 1115 last_cycle = xlog_get_cycle(offset); 1116 if (last_cycle != 0) { /* log completely written to */ 1117 xlog_put_bp(bp); 1118 return 0; 1119 } else if (first_cycle != 1) { 1120 /* 1121 * If the cycle of the last block is zero, the cycle of 1122 * the first block must be 1. If it's not, maybe we're 1123 * not looking at a log... Bail out. 1124 */ 1125 xfs_warn(log->l_mp, 1126 "Log inconsistent or not a log (last==0, first!=1)"); 1127 return XFS_ERROR(EINVAL); 1128 } 1129 1130 /* we have a partially zeroed log */ 1131 last_blk = log_bbnum-1; 1132 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1133 goto bp_err; 1134 1135 /* 1136 * Validate the answer. Because there is no way to guarantee that 1137 * the entire log is made up of log records which are the same size, 1138 * we scan over the defined maximum blocks. At this point, the maximum 1139 * is not chosen to mean anything special. XXXmiken 1140 */ 1141 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1142 ASSERT(num_scan_bblks <= INT_MAX); 1143 1144 if (last_blk < num_scan_bblks) 1145 num_scan_bblks = last_blk; 1146 start_blk = last_blk - num_scan_bblks; 1147 1148 /* 1149 * We search for any instances of cycle number 0 that occur before 1150 * our current estimate of the head. What we're trying to detect is 1151 * 1 ... | 0 | 1 | 0... 1152 * ^ binary search ends here 1153 */ 1154 if ((error = xlog_find_verify_cycle(log, start_blk, 1155 (int)num_scan_bblks, 0, &new_blk))) 1156 goto bp_err; 1157 if (new_blk != -1) 1158 last_blk = new_blk; 1159 1160 /* 1161 * Potentially backup over partial log record write. We don't need 1162 * to search the end of the log because we know it is zero. 1163 */ 1164 if ((error = xlog_find_verify_log_record(log, start_blk, 1165 &last_blk, 0)) == -1) { 1166 error = XFS_ERROR(EIO); 1167 goto bp_err; 1168 } else if (error) 1169 goto bp_err; 1170 1171 *blk_no = last_blk; 1172 bp_err: 1173 xlog_put_bp(bp); 1174 if (error) 1175 return error; 1176 return -1; 1177 } 1178 1179 /* 1180 * These are simple subroutines used by xlog_clear_stale_blocks() below 1181 * to initialize a buffer full of empty log record headers and write 1182 * them into the log. 1183 */ 1184 STATIC void 1185 xlog_add_record( 1186 xlog_t *log, 1187 xfs_caddr_t buf, 1188 int cycle, 1189 int block, 1190 int tail_cycle, 1191 int tail_block) 1192 { 1193 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1194 1195 memset(buf, 0, BBSIZE); 1196 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1197 recp->h_cycle = cpu_to_be32(cycle); 1198 recp->h_version = cpu_to_be32( 1199 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1200 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1201 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1202 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1203 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1204 } 1205 1206 STATIC int 1207 xlog_write_log_records( 1208 xlog_t *log, 1209 int cycle, 1210 int start_block, 1211 int blocks, 1212 int tail_cycle, 1213 int tail_block) 1214 { 1215 xfs_caddr_t offset; 1216 xfs_buf_t *bp; 1217 int balign, ealign; 1218 int sectbb = log->l_sectBBsize; 1219 int end_block = start_block + blocks; 1220 int bufblks; 1221 int error = 0; 1222 int i, j = 0; 1223 1224 /* 1225 * Greedily allocate a buffer big enough to handle the full 1226 * range of basic blocks to be written. If that fails, try 1227 * a smaller size. We need to be able to write at least a 1228 * log sector, or we're out of luck. 1229 */ 1230 bufblks = 1 << ffs(blocks); 1231 while (bufblks > log->l_logBBsize) 1232 bufblks >>= 1; 1233 while (!(bp = xlog_get_bp(log, bufblks))) { 1234 bufblks >>= 1; 1235 if (bufblks < sectbb) 1236 return ENOMEM; 1237 } 1238 1239 /* We may need to do a read at the start to fill in part of 1240 * the buffer in the starting sector not covered by the first 1241 * write below. 1242 */ 1243 balign = round_down(start_block, sectbb); 1244 if (balign != start_block) { 1245 error = xlog_bread_noalign(log, start_block, 1, bp); 1246 if (error) 1247 goto out_put_bp; 1248 1249 j = start_block - balign; 1250 } 1251 1252 for (i = start_block; i < end_block; i += bufblks) { 1253 int bcount, endcount; 1254 1255 bcount = min(bufblks, end_block - start_block); 1256 endcount = bcount - j; 1257 1258 /* We may need to do a read at the end to fill in part of 1259 * the buffer in the final sector not covered by the write. 1260 * If this is the same sector as the above read, skip it. 1261 */ 1262 ealign = round_down(end_block, sectbb); 1263 if (j == 0 && (start_block + endcount > ealign)) { 1264 offset = bp->b_addr + BBTOB(ealign - start_block); 1265 error = xlog_bread_offset(log, ealign, sectbb, 1266 bp, offset); 1267 if (error) 1268 break; 1269 1270 } 1271 1272 offset = xlog_align(log, start_block, endcount, bp); 1273 for (; j < endcount; j++) { 1274 xlog_add_record(log, offset, cycle, i+j, 1275 tail_cycle, tail_block); 1276 offset += BBSIZE; 1277 } 1278 error = xlog_bwrite(log, start_block, endcount, bp); 1279 if (error) 1280 break; 1281 start_block += endcount; 1282 j = 0; 1283 } 1284 1285 out_put_bp: 1286 xlog_put_bp(bp); 1287 return error; 1288 } 1289 1290 /* 1291 * This routine is called to blow away any incomplete log writes out 1292 * in front of the log head. We do this so that we won't become confused 1293 * if we come up, write only a little bit more, and then crash again. 1294 * If we leave the partial log records out there, this situation could 1295 * cause us to think those partial writes are valid blocks since they 1296 * have the current cycle number. We get rid of them by overwriting them 1297 * with empty log records with the old cycle number rather than the 1298 * current one. 1299 * 1300 * The tail lsn is passed in rather than taken from 1301 * the log so that we will not write over the unmount record after a 1302 * clean unmount in a 512 block log. Doing so would leave the log without 1303 * any valid log records in it until a new one was written. If we crashed 1304 * during that time we would not be able to recover. 1305 */ 1306 STATIC int 1307 xlog_clear_stale_blocks( 1308 xlog_t *log, 1309 xfs_lsn_t tail_lsn) 1310 { 1311 int tail_cycle, head_cycle; 1312 int tail_block, head_block; 1313 int tail_distance, max_distance; 1314 int distance; 1315 int error; 1316 1317 tail_cycle = CYCLE_LSN(tail_lsn); 1318 tail_block = BLOCK_LSN(tail_lsn); 1319 head_cycle = log->l_curr_cycle; 1320 head_block = log->l_curr_block; 1321 1322 /* 1323 * Figure out the distance between the new head of the log 1324 * and the tail. We want to write over any blocks beyond the 1325 * head that we may have written just before the crash, but 1326 * we don't want to overwrite the tail of the log. 1327 */ 1328 if (head_cycle == tail_cycle) { 1329 /* 1330 * The tail is behind the head in the physical log, 1331 * so the distance from the head to the tail is the 1332 * distance from the head to the end of the log plus 1333 * the distance from the beginning of the log to the 1334 * tail. 1335 */ 1336 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1337 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1338 XFS_ERRLEVEL_LOW, log->l_mp); 1339 return XFS_ERROR(EFSCORRUPTED); 1340 } 1341 tail_distance = tail_block + (log->l_logBBsize - head_block); 1342 } else { 1343 /* 1344 * The head is behind the tail in the physical log, 1345 * so the distance from the head to the tail is just 1346 * the tail block minus the head block. 1347 */ 1348 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1349 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1350 XFS_ERRLEVEL_LOW, log->l_mp); 1351 return XFS_ERROR(EFSCORRUPTED); 1352 } 1353 tail_distance = tail_block - head_block; 1354 } 1355 1356 /* 1357 * If the head is right up against the tail, we can't clear 1358 * anything. 1359 */ 1360 if (tail_distance <= 0) { 1361 ASSERT(tail_distance == 0); 1362 return 0; 1363 } 1364 1365 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1366 /* 1367 * Take the smaller of the maximum amount of outstanding I/O 1368 * we could have and the distance to the tail to clear out. 1369 * We take the smaller so that we don't overwrite the tail and 1370 * we don't waste all day writing from the head to the tail 1371 * for no reason. 1372 */ 1373 max_distance = MIN(max_distance, tail_distance); 1374 1375 if ((head_block + max_distance) <= log->l_logBBsize) { 1376 /* 1377 * We can stomp all the blocks we need to without 1378 * wrapping around the end of the log. Just do it 1379 * in a single write. Use the cycle number of the 1380 * current cycle minus one so that the log will look like: 1381 * n ... | n - 1 ... 1382 */ 1383 error = xlog_write_log_records(log, (head_cycle - 1), 1384 head_block, max_distance, tail_cycle, 1385 tail_block); 1386 if (error) 1387 return error; 1388 } else { 1389 /* 1390 * We need to wrap around the end of the physical log in 1391 * order to clear all the blocks. Do it in two separate 1392 * I/Os. The first write should be from the head to the 1393 * end of the physical log, and it should use the current 1394 * cycle number minus one just like above. 1395 */ 1396 distance = log->l_logBBsize - head_block; 1397 error = xlog_write_log_records(log, (head_cycle - 1), 1398 head_block, distance, tail_cycle, 1399 tail_block); 1400 1401 if (error) 1402 return error; 1403 1404 /* 1405 * Now write the blocks at the start of the physical log. 1406 * This writes the remainder of the blocks we want to clear. 1407 * It uses the current cycle number since we're now on the 1408 * same cycle as the head so that we get: 1409 * n ... n ... | n - 1 ... 1410 * ^^^^^ blocks we're writing 1411 */ 1412 distance = max_distance - (log->l_logBBsize - head_block); 1413 error = xlog_write_log_records(log, head_cycle, 0, distance, 1414 tail_cycle, tail_block); 1415 if (error) 1416 return error; 1417 } 1418 1419 return 0; 1420 } 1421 1422 /****************************************************************************** 1423 * 1424 * Log recover routines 1425 * 1426 ****************************************************************************** 1427 */ 1428 1429 STATIC xlog_recover_t * 1430 xlog_recover_find_tid( 1431 struct hlist_head *head, 1432 xlog_tid_t tid) 1433 { 1434 xlog_recover_t *trans; 1435 struct hlist_node *n; 1436 1437 hlist_for_each_entry(trans, n, head, r_list) { 1438 if (trans->r_log_tid == tid) 1439 return trans; 1440 } 1441 return NULL; 1442 } 1443 1444 STATIC void 1445 xlog_recover_new_tid( 1446 struct hlist_head *head, 1447 xlog_tid_t tid, 1448 xfs_lsn_t lsn) 1449 { 1450 xlog_recover_t *trans; 1451 1452 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP); 1453 trans->r_log_tid = tid; 1454 trans->r_lsn = lsn; 1455 INIT_LIST_HEAD(&trans->r_itemq); 1456 1457 INIT_HLIST_NODE(&trans->r_list); 1458 hlist_add_head(&trans->r_list, head); 1459 } 1460 1461 STATIC void 1462 xlog_recover_add_item( 1463 struct list_head *head) 1464 { 1465 xlog_recover_item_t *item; 1466 1467 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 1468 INIT_LIST_HEAD(&item->ri_list); 1469 list_add_tail(&item->ri_list, head); 1470 } 1471 1472 STATIC int 1473 xlog_recover_add_to_cont_trans( 1474 struct log *log, 1475 xlog_recover_t *trans, 1476 xfs_caddr_t dp, 1477 int len) 1478 { 1479 xlog_recover_item_t *item; 1480 xfs_caddr_t ptr, old_ptr; 1481 int old_len; 1482 1483 if (list_empty(&trans->r_itemq)) { 1484 /* finish copying rest of trans header */ 1485 xlog_recover_add_item(&trans->r_itemq); 1486 ptr = (xfs_caddr_t) &trans->r_theader + 1487 sizeof(xfs_trans_header_t) - len; 1488 memcpy(ptr, dp, len); /* d, s, l */ 1489 return 0; 1490 } 1491 /* take the tail entry */ 1492 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 1493 1494 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 1495 old_len = item->ri_buf[item->ri_cnt-1].i_len; 1496 1497 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP); 1498 memcpy(&ptr[old_len], dp, len); /* d, s, l */ 1499 item->ri_buf[item->ri_cnt-1].i_len += len; 1500 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 1501 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 1502 return 0; 1503 } 1504 1505 /* 1506 * The next region to add is the start of a new region. It could be 1507 * a whole region or it could be the first part of a new region. Because 1508 * of this, the assumption here is that the type and size fields of all 1509 * format structures fit into the first 32 bits of the structure. 1510 * 1511 * This works because all regions must be 32 bit aligned. Therefore, we 1512 * either have both fields or we have neither field. In the case we have 1513 * neither field, the data part of the region is zero length. We only have 1514 * a log_op_header and can throw away the header since a new one will appear 1515 * later. If we have at least 4 bytes, then we can determine how many regions 1516 * will appear in the current log item. 1517 */ 1518 STATIC int 1519 xlog_recover_add_to_trans( 1520 struct log *log, 1521 xlog_recover_t *trans, 1522 xfs_caddr_t dp, 1523 int len) 1524 { 1525 xfs_inode_log_format_t *in_f; /* any will do */ 1526 xlog_recover_item_t *item; 1527 xfs_caddr_t ptr; 1528 1529 if (!len) 1530 return 0; 1531 if (list_empty(&trans->r_itemq)) { 1532 /* we need to catch log corruptions here */ 1533 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 1534 xfs_warn(log->l_mp, "%s: bad header magic number", 1535 __func__); 1536 ASSERT(0); 1537 return XFS_ERROR(EIO); 1538 } 1539 if (len == sizeof(xfs_trans_header_t)) 1540 xlog_recover_add_item(&trans->r_itemq); 1541 memcpy(&trans->r_theader, dp, len); /* d, s, l */ 1542 return 0; 1543 } 1544 1545 ptr = kmem_alloc(len, KM_SLEEP); 1546 memcpy(ptr, dp, len); 1547 in_f = (xfs_inode_log_format_t *)ptr; 1548 1549 /* take the tail entry */ 1550 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 1551 if (item->ri_total != 0 && 1552 item->ri_total == item->ri_cnt) { 1553 /* tail item is in use, get a new one */ 1554 xlog_recover_add_item(&trans->r_itemq); 1555 item = list_entry(trans->r_itemq.prev, 1556 xlog_recover_item_t, ri_list); 1557 } 1558 1559 if (item->ri_total == 0) { /* first region to be added */ 1560 if (in_f->ilf_size == 0 || 1561 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 1562 xfs_warn(log->l_mp, 1563 "bad number of regions (%d) in inode log format", 1564 in_f->ilf_size); 1565 ASSERT(0); 1566 return XFS_ERROR(EIO); 1567 } 1568 1569 item->ri_total = in_f->ilf_size; 1570 item->ri_buf = 1571 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 1572 KM_SLEEP); 1573 } 1574 ASSERT(item->ri_total > item->ri_cnt); 1575 /* Description region is ri_buf[0] */ 1576 item->ri_buf[item->ri_cnt].i_addr = ptr; 1577 item->ri_buf[item->ri_cnt].i_len = len; 1578 item->ri_cnt++; 1579 trace_xfs_log_recover_item_add(log, trans, item, 0); 1580 return 0; 1581 } 1582 1583 /* 1584 * Sort the log items in the transaction. Cancelled buffers need 1585 * to be put first so they are processed before any items that might 1586 * modify the buffers. If they are cancelled, then the modifications 1587 * don't need to be replayed. 1588 */ 1589 STATIC int 1590 xlog_recover_reorder_trans( 1591 struct log *log, 1592 xlog_recover_t *trans, 1593 int pass) 1594 { 1595 xlog_recover_item_t *item, *n; 1596 LIST_HEAD(sort_list); 1597 1598 list_splice_init(&trans->r_itemq, &sort_list); 1599 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1600 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1601 1602 switch (ITEM_TYPE(item)) { 1603 case XFS_LI_BUF: 1604 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 1605 trace_xfs_log_recover_item_reorder_head(log, 1606 trans, item, pass); 1607 list_move(&item->ri_list, &trans->r_itemq); 1608 break; 1609 } 1610 case XFS_LI_INODE: 1611 case XFS_LI_DQUOT: 1612 case XFS_LI_QUOTAOFF: 1613 case XFS_LI_EFD: 1614 case XFS_LI_EFI: 1615 trace_xfs_log_recover_item_reorder_tail(log, 1616 trans, item, pass); 1617 list_move_tail(&item->ri_list, &trans->r_itemq); 1618 break; 1619 default: 1620 xfs_warn(log->l_mp, 1621 "%s: unrecognized type of log operation", 1622 __func__); 1623 ASSERT(0); 1624 return XFS_ERROR(EIO); 1625 } 1626 } 1627 ASSERT(list_empty(&sort_list)); 1628 return 0; 1629 } 1630 1631 /* 1632 * Build up the table of buf cancel records so that we don't replay 1633 * cancelled data in the second pass. For buffer records that are 1634 * not cancel records, there is nothing to do here so we just return. 1635 * 1636 * If we get a cancel record which is already in the table, this indicates 1637 * that the buffer was cancelled multiple times. In order to ensure 1638 * that during pass 2 we keep the record in the table until we reach its 1639 * last occurrence in the log, we keep a reference count in the cancel 1640 * record in the table to tell us how many times we expect to see this 1641 * record during the second pass. 1642 */ 1643 STATIC int 1644 xlog_recover_buffer_pass1( 1645 struct log *log, 1646 xlog_recover_item_t *item) 1647 { 1648 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1649 struct list_head *bucket; 1650 struct xfs_buf_cancel *bcp; 1651 1652 /* 1653 * If this isn't a cancel buffer item, then just return. 1654 */ 1655 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 1656 trace_xfs_log_recover_buf_not_cancel(log, buf_f); 1657 return 0; 1658 } 1659 1660 /* 1661 * Insert an xfs_buf_cancel record into the hash table of them. 1662 * If there is already an identical record, bump its reference count. 1663 */ 1664 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno); 1665 list_for_each_entry(bcp, bucket, bc_list) { 1666 if (bcp->bc_blkno == buf_f->blf_blkno && 1667 bcp->bc_len == buf_f->blf_len) { 1668 bcp->bc_refcount++; 1669 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f); 1670 return 0; 1671 } 1672 } 1673 1674 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP); 1675 bcp->bc_blkno = buf_f->blf_blkno; 1676 bcp->bc_len = buf_f->blf_len; 1677 bcp->bc_refcount = 1; 1678 list_add_tail(&bcp->bc_list, bucket); 1679 1680 trace_xfs_log_recover_buf_cancel_add(log, buf_f); 1681 return 0; 1682 } 1683 1684 /* 1685 * Check to see whether the buffer being recovered has a corresponding 1686 * entry in the buffer cancel record table. If it does then return 1 1687 * so that it will be cancelled, otherwise return 0. If the buffer is 1688 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement 1689 * the refcount on the entry in the table and remove it from the table 1690 * if this is the last reference. 1691 * 1692 * We remove the cancel record from the table when we encounter its 1693 * last occurrence in the log so that if the same buffer is re-used 1694 * again after its last cancellation we actually replay the changes 1695 * made at that point. 1696 */ 1697 STATIC int 1698 xlog_check_buffer_cancelled( 1699 struct log *log, 1700 xfs_daddr_t blkno, 1701 uint len, 1702 ushort flags) 1703 { 1704 struct list_head *bucket; 1705 struct xfs_buf_cancel *bcp; 1706 1707 if (log->l_buf_cancel_table == NULL) { 1708 /* 1709 * There is nothing in the table built in pass one, 1710 * so this buffer must not be cancelled. 1711 */ 1712 ASSERT(!(flags & XFS_BLF_CANCEL)); 1713 return 0; 1714 } 1715 1716 /* 1717 * Search for an entry in the cancel table that matches our buffer. 1718 */ 1719 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); 1720 list_for_each_entry(bcp, bucket, bc_list) { 1721 if (bcp->bc_blkno == blkno && bcp->bc_len == len) 1722 goto found; 1723 } 1724 1725 /* 1726 * We didn't find a corresponding entry in the table, so return 0 so 1727 * that the buffer is NOT cancelled. 1728 */ 1729 ASSERT(!(flags & XFS_BLF_CANCEL)); 1730 return 0; 1731 1732 found: 1733 /* 1734 * We've go a match, so return 1 so that the recovery of this buffer 1735 * is cancelled. If this buffer is actually a buffer cancel log 1736 * item, then decrement the refcount on the one in the table and 1737 * remove it if this is the last reference. 1738 */ 1739 if (flags & XFS_BLF_CANCEL) { 1740 if (--bcp->bc_refcount == 0) { 1741 list_del(&bcp->bc_list); 1742 kmem_free(bcp); 1743 } 1744 } 1745 return 1; 1746 } 1747 1748 /* 1749 * Perform recovery for a buffer full of inodes. In these buffers, the only 1750 * data which should be recovered is that which corresponds to the 1751 * di_next_unlinked pointers in the on disk inode structures. The rest of the 1752 * data for the inodes is always logged through the inodes themselves rather 1753 * than the inode buffer and is recovered in xlog_recover_inode_pass2(). 1754 * 1755 * The only time when buffers full of inodes are fully recovered is when the 1756 * buffer is full of newly allocated inodes. In this case the buffer will 1757 * not be marked as an inode buffer and so will be sent to 1758 * xlog_recover_do_reg_buffer() below during recovery. 1759 */ 1760 STATIC int 1761 xlog_recover_do_inode_buffer( 1762 struct xfs_mount *mp, 1763 xlog_recover_item_t *item, 1764 struct xfs_buf *bp, 1765 xfs_buf_log_format_t *buf_f) 1766 { 1767 int i; 1768 int item_index = 0; 1769 int bit = 0; 1770 int nbits = 0; 1771 int reg_buf_offset = 0; 1772 int reg_buf_bytes = 0; 1773 int next_unlinked_offset; 1774 int inodes_per_buf; 1775 xfs_agino_t *logged_nextp; 1776 xfs_agino_t *buffer_nextp; 1777 1778 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); 1779 1780 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog; 1781 for (i = 0; i < inodes_per_buf; i++) { 1782 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 1783 offsetof(xfs_dinode_t, di_next_unlinked); 1784 1785 while (next_unlinked_offset >= 1786 (reg_buf_offset + reg_buf_bytes)) { 1787 /* 1788 * The next di_next_unlinked field is beyond 1789 * the current logged region. Find the next 1790 * logged region that contains or is beyond 1791 * the current di_next_unlinked field. 1792 */ 1793 bit += nbits; 1794 bit = xfs_next_bit(buf_f->blf_data_map, 1795 buf_f->blf_map_size, bit); 1796 1797 /* 1798 * If there are no more logged regions in the 1799 * buffer, then we're done. 1800 */ 1801 if (bit == -1) 1802 return 0; 1803 1804 nbits = xfs_contig_bits(buf_f->blf_data_map, 1805 buf_f->blf_map_size, bit); 1806 ASSERT(nbits > 0); 1807 reg_buf_offset = bit << XFS_BLF_SHIFT; 1808 reg_buf_bytes = nbits << XFS_BLF_SHIFT; 1809 item_index++; 1810 } 1811 1812 /* 1813 * If the current logged region starts after the current 1814 * di_next_unlinked field, then move on to the next 1815 * di_next_unlinked field. 1816 */ 1817 if (next_unlinked_offset < reg_buf_offset) 1818 continue; 1819 1820 ASSERT(item->ri_buf[item_index].i_addr != NULL); 1821 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); 1822 ASSERT((reg_buf_offset + reg_buf_bytes) <= 1823 BBTOB(bp->b_io_length)); 1824 1825 /* 1826 * The current logged region contains a copy of the 1827 * current di_next_unlinked field. Extract its value 1828 * and copy it to the buffer copy. 1829 */ 1830 logged_nextp = item->ri_buf[item_index].i_addr + 1831 next_unlinked_offset - reg_buf_offset; 1832 if (unlikely(*logged_nextp == 0)) { 1833 xfs_alert(mp, 1834 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). " 1835 "Trying to replay bad (0) inode di_next_unlinked field.", 1836 item, bp); 1837 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 1838 XFS_ERRLEVEL_LOW, mp); 1839 return XFS_ERROR(EFSCORRUPTED); 1840 } 1841 1842 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp, 1843 next_unlinked_offset); 1844 *buffer_nextp = *logged_nextp; 1845 } 1846 1847 return 0; 1848 } 1849 1850 /* 1851 * Perform a 'normal' buffer recovery. Each logged region of the 1852 * buffer should be copied over the corresponding region in the 1853 * given buffer. The bitmap in the buf log format structure indicates 1854 * where to place the logged data. 1855 */ 1856 STATIC void 1857 xlog_recover_do_reg_buffer( 1858 struct xfs_mount *mp, 1859 xlog_recover_item_t *item, 1860 struct xfs_buf *bp, 1861 xfs_buf_log_format_t *buf_f) 1862 { 1863 int i; 1864 int bit; 1865 int nbits; 1866 int error; 1867 1868 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); 1869 1870 bit = 0; 1871 i = 1; /* 0 is the buf format structure */ 1872 while (1) { 1873 bit = xfs_next_bit(buf_f->blf_data_map, 1874 buf_f->blf_map_size, bit); 1875 if (bit == -1) 1876 break; 1877 nbits = xfs_contig_bits(buf_f->blf_data_map, 1878 buf_f->blf_map_size, bit); 1879 ASSERT(nbits > 0); 1880 ASSERT(item->ri_buf[i].i_addr != NULL); 1881 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); 1882 ASSERT(BBTOB(bp->b_io_length) >= 1883 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); 1884 1885 /* 1886 * Do a sanity check if this is a dquot buffer. Just checking 1887 * the first dquot in the buffer should do. XXXThis is 1888 * probably a good thing to do for other buf types also. 1889 */ 1890 error = 0; 1891 if (buf_f->blf_flags & 1892 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 1893 if (item->ri_buf[i].i_addr == NULL) { 1894 xfs_alert(mp, 1895 "XFS: NULL dquot in %s.", __func__); 1896 goto next; 1897 } 1898 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) { 1899 xfs_alert(mp, 1900 "XFS: dquot too small (%d) in %s.", 1901 item->ri_buf[i].i_len, __func__); 1902 goto next; 1903 } 1904 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr, 1905 -1, 0, XFS_QMOPT_DOWARN, 1906 "dquot_buf_recover"); 1907 if (error) 1908 goto next; 1909 } 1910 1911 memcpy(xfs_buf_offset(bp, 1912 (uint)bit << XFS_BLF_SHIFT), /* dest */ 1913 item->ri_buf[i].i_addr, /* source */ 1914 nbits<<XFS_BLF_SHIFT); /* length */ 1915 next: 1916 i++; 1917 bit += nbits; 1918 } 1919 1920 /* Shouldn't be any more regions */ 1921 ASSERT(i == item->ri_total); 1922 } 1923 1924 /* 1925 * Do some primitive error checking on ondisk dquot data structures. 1926 */ 1927 int 1928 xfs_qm_dqcheck( 1929 struct xfs_mount *mp, 1930 xfs_disk_dquot_t *ddq, 1931 xfs_dqid_t id, 1932 uint type, /* used only when IO_dorepair is true */ 1933 uint flags, 1934 char *str) 1935 { 1936 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq; 1937 int errs = 0; 1938 1939 /* 1940 * We can encounter an uninitialized dquot buffer for 2 reasons: 1941 * 1. If we crash while deleting the quotainode(s), and those blks got 1942 * used for user data. This is because we take the path of regular 1943 * file deletion; however, the size field of quotainodes is never 1944 * updated, so all the tricks that we play in itruncate_finish 1945 * don't quite matter. 1946 * 1947 * 2. We don't play the quota buffers when there's a quotaoff logitem. 1948 * But the allocation will be replayed so we'll end up with an 1949 * uninitialized quota block. 1950 * 1951 * This is all fine; things are still consistent, and we haven't lost 1952 * any quota information. Just don't complain about bad dquot blks. 1953 */ 1954 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) { 1955 if (flags & XFS_QMOPT_DOWARN) 1956 xfs_alert(mp, 1957 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x", 1958 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC); 1959 errs++; 1960 } 1961 if (ddq->d_version != XFS_DQUOT_VERSION) { 1962 if (flags & XFS_QMOPT_DOWARN) 1963 xfs_alert(mp, 1964 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x", 1965 str, id, ddq->d_version, XFS_DQUOT_VERSION); 1966 errs++; 1967 } 1968 1969 if (ddq->d_flags != XFS_DQ_USER && 1970 ddq->d_flags != XFS_DQ_PROJ && 1971 ddq->d_flags != XFS_DQ_GROUP) { 1972 if (flags & XFS_QMOPT_DOWARN) 1973 xfs_alert(mp, 1974 "%s : XFS dquot ID 0x%x, unknown flags 0x%x", 1975 str, id, ddq->d_flags); 1976 errs++; 1977 } 1978 1979 if (id != -1 && id != be32_to_cpu(ddq->d_id)) { 1980 if (flags & XFS_QMOPT_DOWARN) 1981 xfs_alert(mp, 1982 "%s : ondisk-dquot 0x%p, ID mismatch: " 1983 "0x%x expected, found id 0x%x", 1984 str, ddq, id, be32_to_cpu(ddq->d_id)); 1985 errs++; 1986 } 1987 1988 if (!errs && ddq->d_id) { 1989 if (ddq->d_blk_softlimit && 1990 be64_to_cpu(ddq->d_bcount) > 1991 be64_to_cpu(ddq->d_blk_softlimit)) { 1992 if (!ddq->d_btimer) { 1993 if (flags & XFS_QMOPT_DOWARN) 1994 xfs_alert(mp, 1995 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED", 1996 str, (int)be32_to_cpu(ddq->d_id), ddq); 1997 errs++; 1998 } 1999 } 2000 if (ddq->d_ino_softlimit && 2001 be64_to_cpu(ddq->d_icount) > 2002 be64_to_cpu(ddq->d_ino_softlimit)) { 2003 if (!ddq->d_itimer) { 2004 if (flags & XFS_QMOPT_DOWARN) 2005 xfs_alert(mp, 2006 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED", 2007 str, (int)be32_to_cpu(ddq->d_id), ddq); 2008 errs++; 2009 } 2010 } 2011 if (ddq->d_rtb_softlimit && 2012 be64_to_cpu(ddq->d_rtbcount) > 2013 be64_to_cpu(ddq->d_rtb_softlimit)) { 2014 if (!ddq->d_rtbtimer) { 2015 if (flags & XFS_QMOPT_DOWARN) 2016 xfs_alert(mp, 2017 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED", 2018 str, (int)be32_to_cpu(ddq->d_id), ddq); 2019 errs++; 2020 } 2021 } 2022 } 2023 2024 if (!errs || !(flags & XFS_QMOPT_DQREPAIR)) 2025 return errs; 2026 2027 if (flags & XFS_QMOPT_DOWARN) 2028 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id); 2029 2030 /* 2031 * Typically, a repair is only requested by quotacheck. 2032 */ 2033 ASSERT(id != -1); 2034 ASSERT(flags & XFS_QMOPT_DQREPAIR); 2035 memset(d, 0, sizeof(xfs_dqblk_t)); 2036 2037 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC); 2038 d->dd_diskdq.d_version = XFS_DQUOT_VERSION; 2039 d->dd_diskdq.d_flags = type; 2040 d->dd_diskdq.d_id = cpu_to_be32(id); 2041 2042 return errs; 2043 } 2044 2045 /* 2046 * Perform a dquot buffer recovery. 2047 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type 2048 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2049 * Else, treat it as a regular buffer and do recovery. 2050 */ 2051 STATIC void 2052 xlog_recover_do_dquot_buffer( 2053 xfs_mount_t *mp, 2054 xlog_t *log, 2055 xlog_recover_item_t *item, 2056 xfs_buf_t *bp, 2057 xfs_buf_log_format_t *buf_f) 2058 { 2059 uint type; 2060 2061 trace_xfs_log_recover_buf_dquot_buf(log, buf_f); 2062 2063 /* 2064 * Filesystems are required to send in quota flags at mount time. 2065 */ 2066 if (mp->m_qflags == 0) { 2067 return; 2068 } 2069 2070 type = 0; 2071 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) 2072 type |= XFS_DQ_USER; 2073 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) 2074 type |= XFS_DQ_PROJ; 2075 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) 2076 type |= XFS_DQ_GROUP; 2077 /* 2078 * This type of quotas was turned off, so ignore this buffer 2079 */ 2080 if (log->l_quotaoffs_flag & type) 2081 return; 2082 2083 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2084 } 2085 2086 /* 2087 * This routine replays a modification made to a buffer at runtime. 2088 * There are actually two types of buffer, regular and inode, which 2089 * are handled differently. Inode buffers are handled differently 2090 * in that we only recover a specific set of data from them, namely 2091 * the inode di_next_unlinked fields. This is because all other inode 2092 * data is actually logged via inode records and any data we replay 2093 * here which overlaps that may be stale. 2094 * 2095 * When meta-data buffers are freed at run time we log a buffer item 2096 * with the XFS_BLF_CANCEL bit set to indicate that previous copies 2097 * of the buffer in the log should not be replayed at recovery time. 2098 * This is so that if the blocks covered by the buffer are reused for 2099 * file data before we crash we don't end up replaying old, freed 2100 * meta-data into a user's file. 2101 * 2102 * To handle the cancellation of buffer log items, we make two passes 2103 * over the log during recovery. During the first we build a table of 2104 * those buffers which have been cancelled, and during the second we 2105 * only replay those buffers which do not have corresponding cancel 2106 * records in the table. See xlog_recover_do_buffer_pass[1,2] above 2107 * for more details on the implementation of the table of cancel records. 2108 */ 2109 STATIC int 2110 xlog_recover_buffer_pass2( 2111 xlog_t *log, 2112 struct list_head *buffer_list, 2113 xlog_recover_item_t *item) 2114 { 2115 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2116 xfs_mount_t *mp = log->l_mp; 2117 xfs_buf_t *bp; 2118 int error; 2119 uint buf_flags; 2120 2121 /* 2122 * In this pass we only want to recover all the buffers which have 2123 * not been cancelled and are not cancellation buffers themselves. 2124 */ 2125 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno, 2126 buf_f->blf_len, buf_f->blf_flags)) { 2127 trace_xfs_log_recover_buf_cancel(log, buf_f); 2128 return 0; 2129 } 2130 2131 trace_xfs_log_recover_buf_recover(log, buf_f); 2132 2133 buf_flags = 0; 2134 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) 2135 buf_flags |= XBF_UNMAPPED; 2136 2137 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, 2138 buf_flags); 2139 if (!bp) 2140 return XFS_ERROR(ENOMEM); 2141 error = bp->b_error; 2142 if (error) { 2143 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)"); 2144 xfs_buf_relse(bp); 2145 return error; 2146 } 2147 2148 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 2149 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2150 } else if (buf_f->blf_flags & 2151 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2152 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2153 } else { 2154 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2155 } 2156 if (error) 2157 return XFS_ERROR(error); 2158 2159 /* 2160 * Perform delayed write on the buffer. Asynchronous writes will be 2161 * slower when taking into account all the buffers to be flushed. 2162 * 2163 * Also make sure that only inode buffers with good sizes stay in 2164 * the buffer cache. The kernel moves inodes in buffers of 1 block 2165 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode 2166 * buffers in the log can be a different size if the log was generated 2167 * by an older kernel using unclustered inode buffers or a newer kernel 2168 * running with a different inode cluster size. Regardless, if the 2169 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE) 2170 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep 2171 * the buffer out of the buffer cache so that the buffer won't 2172 * overlap with future reads of those inodes. 2173 */ 2174 if (XFS_DINODE_MAGIC == 2175 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && 2176 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize, 2177 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) { 2178 xfs_buf_stale(bp); 2179 error = xfs_bwrite(bp); 2180 } else { 2181 ASSERT(bp->b_target->bt_mount == mp); 2182 bp->b_iodone = xlog_recover_iodone; 2183 xfs_buf_delwri_queue(bp, buffer_list); 2184 } 2185 2186 xfs_buf_relse(bp); 2187 return error; 2188 } 2189 2190 STATIC int 2191 xlog_recover_inode_pass2( 2192 xlog_t *log, 2193 struct list_head *buffer_list, 2194 xlog_recover_item_t *item) 2195 { 2196 xfs_inode_log_format_t *in_f; 2197 xfs_mount_t *mp = log->l_mp; 2198 xfs_buf_t *bp; 2199 xfs_dinode_t *dip; 2200 int len; 2201 xfs_caddr_t src; 2202 xfs_caddr_t dest; 2203 int error; 2204 int attr_index; 2205 uint fields; 2206 xfs_icdinode_t *dicp; 2207 int need_free = 0; 2208 2209 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) { 2210 in_f = item->ri_buf[0].i_addr; 2211 } else { 2212 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP); 2213 need_free = 1; 2214 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 2215 if (error) 2216 goto error; 2217 } 2218 2219 /* 2220 * Inode buffers can be freed, look out for it, 2221 * and do not replay the inode. 2222 */ 2223 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, 2224 in_f->ilf_len, 0)) { 2225 error = 0; 2226 trace_xfs_log_recover_inode_cancel(log, in_f); 2227 goto error; 2228 } 2229 trace_xfs_log_recover_inode_recover(log, in_f); 2230 2231 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0); 2232 if (!bp) { 2233 error = ENOMEM; 2234 goto error; 2235 } 2236 error = bp->b_error; 2237 if (error) { 2238 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)"); 2239 xfs_buf_relse(bp); 2240 goto error; 2241 } 2242 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 2243 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset); 2244 2245 /* 2246 * Make sure the place we're flushing out to really looks 2247 * like an inode! 2248 */ 2249 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) { 2250 xfs_buf_relse(bp); 2251 xfs_alert(mp, 2252 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld", 2253 __func__, dip, bp, in_f->ilf_ino); 2254 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)", 2255 XFS_ERRLEVEL_LOW, mp); 2256 error = EFSCORRUPTED; 2257 goto error; 2258 } 2259 dicp = item->ri_buf[1].i_addr; 2260 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { 2261 xfs_buf_relse(bp); 2262 xfs_alert(mp, 2263 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld", 2264 __func__, item, in_f->ilf_ino); 2265 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)", 2266 XFS_ERRLEVEL_LOW, mp); 2267 error = EFSCORRUPTED; 2268 goto error; 2269 } 2270 2271 /* Skip replay when the on disk inode is newer than the log one */ 2272 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) { 2273 /* 2274 * Deal with the wrap case, DI_MAX_FLUSH is less 2275 * than smaller numbers 2276 */ 2277 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && 2278 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) { 2279 /* do nothing */ 2280 } else { 2281 xfs_buf_relse(bp); 2282 trace_xfs_log_recover_inode_skip(log, in_f); 2283 error = 0; 2284 goto error; 2285 } 2286 } 2287 /* Take the opportunity to reset the flush iteration count */ 2288 dicp->di_flushiter = 0; 2289 2290 if (unlikely(S_ISREG(dicp->di_mode))) { 2291 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2292 (dicp->di_format != XFS_DINODE_FMT_BTREE)) { 2293 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)", 2294 XFS_ERRLEVEL_LOW, mp, dicp); 2295 xfs_buf_relse(bp); 2296 xfs_alert(mp, 2297 "%s: Bad regular inode log record, rec ptr 0x%p, " 2298 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2299 __func__, item, dip, bp, in_f->ilf_ino); 2300 error = EFSCORRUPTED; 2301 goto error; 2302 } 2303 } else if (unlikely(S_ISDIR(dicp->di_mode))) { 2304 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2305 (dicp->di_format != XFS_DINODE_FMT_BTREE) && 2306 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { 2307 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)", 2308 XFS_ERRLEVEL_LOW, mp, dicp); 2309 xfs_buf_relse(bp); 2310 xfs_alert(mp, 2311 "%s: Bad dir inode log record, rec ptr 0x%p, " 2312 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2313 __func__, item, dip, bp, in_f->ilf_ino); 2314 error = EFSCORRUPTED; 2315 goto error; 2316 } 2317 } 2318 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ 2319 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)", 2320 XFS_ERRLEVEL_LOW, mp, dicp); 2321 xfs_buf_relse(bp); 2322 xfs_alert(mp, 2323 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 2324 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", 2325 __func__, item, dip, bp, in_f->ilf_ino, 2326 dicp->di_nextents + dicp->di_anextents, 2327 dicp->di_nblocks); 2328 error = EFSCORRUPTED; 2329 goto error; 2330 } 2331 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { 2332 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)", 2333 XFS_ERRLEVEL_LOW, mp, dicp); 2334 xfs_buf_relse(bp); 2335 xfs_alert(mp, 2336 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 2337 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__, 2338 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff); 2339 error = EFSCORRUPTED; 2340 goto error; 2341 } 2342 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) { 2343 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)", 2344 XFS_ERRLEVEL_LOW, mp, dicp); 2345 xfs_buf_relse(bp); 2346 xfs_alert(mp, 2347 "%s: Bad inode log record length %d, rec ptr 0x%p", 2348 __func__, item->ri_buf[1].i_len, item); 2349 error = EFSCORRUPTED; 2350 goto error; 2351 } 2352 2353 /* The core is in in-core format */ 2354 xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr); 2355 2356 /* the rest is in on-disk format */ 2357 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) { 2358 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode), 2359 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode), 2360 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode)); 2361 } 2362 2363 fields = in_f->ilf_fields; 2364 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { 2365 case XFS_ILOG_DEV: 2366 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); 2367 break; 2368 case XFS_ILOG_UUID: 2369 memcpy(XFS_DFORK_DPTR(dip), 2370 &in_f->ilf_u.ilfu_uuid, 2371 sizeof(uuid_t)); 2372 break; 2373 } 2374 2375 if (in_f->ilf_size == 2) 2376 goto write_inode_buffer; 2377 len = item->ri_buf[2].i_len; 2378 src = item->ri_buf[2].i_addr; 2379 ASSERT(in_f->ilf_size <= 4); 2380 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 2381 ASSERT(!(fields & XFS_ILOG_DFORK) || 2382 (len == in_f->ilf_dsize)); 2383 2384 switch (fields & XFS_ILOG_DFORK) { 2385 case XFS_ILOG_DDATA: 2386 case XFS_ILOG_DEXT: 2387 memcpy(XFS_DFORK_DPTR(dip), src, len); 2388 break; 2389 2390 case XFS_ILOG_DBROOT: 2391 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, 2392 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), 2393 XFS_DFORK_DSIZE(dip, mp)); 2394 break; 2395 2396 default: 2397 /* 2398 * There are no data fork flags set. 2399 */ 2400 ASSERT((fields & XFS_ILOG_DFORK) == 0); 2401 break; 2402 } 2403 2404 /* 2405 * If we logged any attribute data, recover it. There may or 2406 * may not have been any other non-core data logged in this 2407 * transaction. 2408 */ 2409 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 2410 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 2411 attr_index = 3; 2412 } else { 2413 attr_index = 2; 2414 } 2415 len = item->ri_buf[attr_index].i_len; 2416 src = item->ri_buf[attr_index].i_addr; 2417 ASSERT(len == in_f->ilf_asize); 2418 2419 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 2420 case XFS_ILOG_ADATA: 2421 case XFS_ILOG_AEXT: 2422 dest = XFS_DFORK_APTR(dip); 2423 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 2424 memcpy(dest, src, len); 2425 break; 2426 2427 case XFS_ILOG_ABROOT: 2428 dest = XFS_DFORK_APTR(dip); 2429 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, 2430 len, (xfs_bmdr_block_t*)dest, 2431 XFS_DFORK_ASIZE(dip, mp)); 2432 break; 2433 2434 default: 2435 xfs_warn(log->l_mp, "%s: Invalid flag", __func__); 2436 ASSERT(0); 2437 xfs_buf_relse(bp); 2438 error = EIO; 2439 goto error; 2440 } 2441 } 2442 2443 write_inode_buffer: 2444 ASSERT(bp->b_target->bt_mount == mp); 2445 bp->b_iodone = xlog_recover_iodone; 2446 xfs_buf_delwri_queue(bp, buffer_list); 2447 xfs_buf_relse(bp); 2448 error: 2449 if (need_free) 2450 kmem_free(in_f); 2451 return XFS_ERROR(error); 2452 } 2453 2454 /* 2455 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t 2456 * structure, so that we know not to do any dquot item or dquot buffer recovery, 2457 * of that type. 2458 */ 2459 STATIC int 2460 xlog_recover_quotaoff_pass1( 2461 xlog_t *log, 2462 xlog_recover_item_t *item) 2463 { 2464 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr; 2465 ASSERT(qoff_f); 2466 2467 /* 2468 * The logitem format's flag tells us if this was user quotaoff, 2469 * group/project quotaoff or both. 2470 */ 2471 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 2472 log->l_quotaoffs_flag |= XFS_DQ_USER; 2473 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 2474 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 2475 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 2476 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 2477 2478 return (0); 2479 } 2480 2481 /* 2482 * Recover a dquot record 2483 */ 2484 STATIC int 2485 xlog_recover_dquot_pass2( 2486 xlog_t *log, 2487 struct list_head *buffer_list, 2488 xlog_recover_item_t *item) 2489 { 2490 xfs_mount_t *mp = log->l_mp; 2491 xfs_buf_t *bp; 2492 struct xfs_disk_dquot *ddq, *recddq; 2493 int error; 2494 xfs_dq_logformat_t *dq_f; 2495 uint type; 2496 2497 2498 /* 2499 * Filesystems are required to send in quota flags at mount time. 2500 */ 2501 if (mp->m_qflags == 0) 2502 return (0); 2503 2504 recddq = item->ri_buf[1].i_addr; 2505 if (recddq == NULL) { 2506 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__); 2507 return XFS_ERROR(EIO); 2508 } 2509 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) { 2510 xfs_alert(log->l_mp, "dquot too small (%d) in %s.", 2511 item->ri_buf[1].i_len, __func__); 2512 return XFS_ERROR(EIO); 2513 } 2514 2515 /* 2516 * This type of quotas was turned off, so ignore this record. 2517 */ 2518 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 2519 ASSERT(type); 2520 if (log->l_quotaoffs_flag & type) 2521 return (0); 2522 2523 /* 2524 * At this point we know that quota was _not_ turned off. 2525 * Since the mount flags are not indicating to us otherwise, this 2526 * must mean that quota is on, and the dquot needs to be replayed. 2527 * Remember that we may not have fully recovered the superblock yet, 2528 * so we can't do the usual trick of looking at the SB quota bits. 2529 * 2530 * The other possibility, of course, is that the quota subsystem was 2531 * removed since the last mount - ENOSYS. 2532 */ 2533 dq_f = item->ri_buf[0].i_addr; 2534 ASSERT(dq_f); 2535 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2536 "xlog_recover_dquot_pass2 (log copy)"); 2537 if (error) 2538 return XFS_ERROR(EIO); 2539 ASSERT(dq_f->qlf_len == 1); 2540 2541 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno, 2542 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp); 2543 if (error) 2544 return error; 2545 2546 ASSERT(bp); 2547 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset); 2548 2549 /* 2550 * At least the magic num portion should be on disk because this 2551 * was among a chunk of dquots created earlier, and we did some 2552 * minimal initialization then. 2553 */ 2554 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2555 "xlog_recover_dquot_pass2"); 2556 if (error) { 2557 xfs_buf_relse(bp); 2558 return XFS_ERROR(EIO); 2559 } 2560 2561 memcpy(ddq, recddq, item->ri_buf[1].i_len); 2562 2563 ASSERT(dq_f->qlf_size == 2); 2564 ASSERT(bp->b_target->bt_mount == mp); 2565 bp->b_iodone = xlog_recover_iodone; 2566 xfs_buf_delwri_queue(bp, buffer_list); 2567 xfs_buf_relse(bp); 2568 2569 return (0); 2570 } 2571 2572 /* 2573 * This routine is called to create an in-core extent free intent 2574 * item from the efi format structure which was logged on disk. 2575 * It allocates an in-core efi, copies the extents from the format 2576 * structure into it, and adds the efi to the AIL with the given 2577 * LSN. 2578 */ 2579 STATIC int 2580 xlog_recover_efi_pass2( 2581 xlog_t *log, 2582 xlog_recover_item_t *item, 2583 xfs_lsn_t lsn) 2584 { 2585 int error; 2586 xfs_mount_t *mp = log->l_mp; 2587 xfs_efi_log_item_t *efip; 2588 xfs_efi_log_format_t *efi_formatp; 2589 2590 efi_formatp = item->ri_buf[0].i_addr; 2591 2592 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 2593 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]), 2594 &(efip->efi_format)))) { 2595 xfs_efi_item_free(efip); 2596 return error; 2597 } 2598 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 2599 2600 spin_lock(&log->l_ailp->xa_lock); 2601 /* 2602 * xfs_trans_ail_update() drops the AIL lock. 2603 */ 2604 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn); 2605 return 0; 2606 } 2607 2608 2609 /* 2610 * This routine is called when an efd format structure is found in 2611 * a committed transaction in the log. It's purpose is to cancel 2612 * the corresponding efi if it was still in the log. To do this 2613 * it searches the AIL for the efi with an id equal to that in the 2614 * efd format structure. If we find it, we remove the efi from the 2615 * AIL and free it. 2616 */ 2617 STATIC int 2618 xlog_recover_efd_pass2( 2619 xlog_t *log, 2620 xlog_recover_item_t *item) 2621 { 2622 xfs_efd_log_format_t *efd_formatp; 2623 xfs_efi_log_item_t *efip = NULL; 2624 xfs_log_item_t *lip; 2625 __uint64_t efi_id; 2626 struct xfs_ail_cursor cur; 2627 struct xfs_ail *ailp = log->l_ailp; 2628 2629 efd_formatp = item->ri_buf[0].i_addr; 2630 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 2631 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 2632 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 2633 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 2634 efi_id = efd_formatp->efd_efi_id; 2635 2636 /* 2637 * Search for the efi with the id in the efd format structure 2638 * in the AIL. 2639 */ 2640 spin_lock(&ailp->xa_lock); 2641 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 2642 while (lip != NULL) { 2643 if (lip->li_type == XFS_LI_EFI) { 2644 efip = (xfs_efi_log_item_t *)lip; 2645 if (efip->efi_format.efi_id == efi_id) { 2646 /* 2647 * xfs_trans_ail_delete() drops the 2648 * AIL lock. 2649 */ 2650 xfs_trans_ail_delete(ailp, lip, 2651 SHUTDOWN_CORRUPT_INCORE); 2652 xfs_efi_item_free(efip); 2653 spin_lock(&ailp->xa_lock); 2654 break; 2655 } 2656 } 2657 lip = xfs_trans_ail_cursor_next(ailp, &cur); 2658 } 2659 xfs_trans_ail_cursor_done(ailp, &cur); 2660 spin_unlock(&ailp->xa_lock); 2661 2662 return 0; 2663 } 2664 2665 /* 2666 * Free up any resources allocated by the transaction 2667 * 2668 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 2669 */ 2670 STATIC void 2671 xlog_recover_free_trans( 2672 struct xlog_recover *trans) 2673 { 2674 xlog_recover_item_t *item, *n; 2675 int i; 2676 2677 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 2678 /* Free the regions in the item. */ 2679 list_del(&item->ri_list); 2680 for (i = 0; i < item->ri_cnt; i++) 2681 kmem_free(item->ri_buf[i].i_addr); 2682 /* Free the item itself */ 2683 kmem_free(item->ri_buf); 2684 kmem_free(item); 2685 } 2686 /* Free the transaction recover structure */ 2687 kmem_free(trans); 2688 } 2689 2690 STATIC int 2691 xlog_recover_commit_pass1( 2692 struct log *log, 2693 struct xlog_recover *trans, 2694 xlog_recover_item_t *item) 2695 { 2696 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1); 2697 2698 switch (ITEM_TYPE(item)) { 2699 case XFS_LI_BUF: 2700 return xlog_recover_buffer_pass1(log, item); 2701 case XFS_LI_QUOTAOFF: 2702 return xlog_recover_quotaoff_pass1(log, item); 2703 case XFS_LI_INODE: 2704 case XFS_LI_EFI: 2705 case XFS_LI_EFD: 2706 case XFS_LI_DQUOT: 2707 /* nothing to do in pass 1 */ 2708 return 0; 2709 default: 2710 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 2711 __func__, ITEM_TYPE(item)); 2712 ASSERT(0); 2713 return XFS_ERROR(EIO); 2714 } 2715 } 2716 2717 STATIC int 2718 xlog_recover_commit_pass2( 2719 struct log *log, 2720 struct xlog_recover *trans, 2721 struct list_head *buffer_list, 2722 xlog_recover_item_t *item) 2723 { 2724 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2); 2725 2726 switch (ITEM_TYPE(item)) { 2727 case XFS_LI_BUF: 2728 return xlog_recover_buffer_pass2(log, buffer_list, item); 2729 case XFS_LI_INODE: 2730 return xlog_recover_inode_pass2(log, buffer_list, item); 2731 case XFS_LI_EFI: 2732 return xlog_recover_efi_pass2(log, item, trans->r_lsn); 2733 case XFS_LI_EFD: 2734 return xlog_recover_efd_pass2(log, item); 2735 case XFS_LI_DQUOT: 2736 return xlog_recover_dquot_pass2(log, buffer_list, item); 2737 case XFS_LI_QUOTAOFF: 2738 /* nothing to do in pass2 */ 2739 return 0; 2740 default: 2741 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 2742 __func__, ITEM_TYPE(item)); 2743 ASSERT(0); 2744 return XFS_ERROR(EIO); 2745 } 2746 } 2747 2748 /* 2749 * Perform the transaction. 2750 * 2751 * If the transaction modifies a buffer or inode, do it now. Otherwise, 2752 * EFIs and EFDs get queued up by adding entries into the AIL for them. 2753 */ 2754 STATIC int 2755 xlog_recover_commit_trans( 2756 struct log *log, 2757 struct xlog_recover *trans, 2758 int pass) 2759 { 2760 int error = 0, error2; 2761 xlog_recover_item_t *item; 2762 LIST_HEAD (buffer_list); 2763 2764 hlist_del(&trans->r_list); 2765 2766 error = xlog_recover_reorder_trans(log, trans, pass); 2767 if (error) 2768 return error; 2769 2770 list_for_each_entry(item, &trans->r_itemq, ri_list) { 2771 switch (pass) { 2772 case XLOG_RECOVER_PASS1: 2773 error = xlog_recover_commit_pass1(log, trans, item); 2774 break; 2775 case XLOG_RECOVER_PASS2: 2776 error = xlog_recover_commit_pass2(log, trans, 2777 &buffer_list, item); 2778 break; 2779 default: 2780 ASSERT(0); 2781 } 2782 2783 if (error) 2784 goto out; 2785 } 2786 2787 xlog_recover_free_trans(trans); 2788 2789 out: 2790 error2 = xfs_buf_delwri_submit(&buffer_list); 2791 return error ? error : error2; 2792 } 2793 2794 STATIC int 2795 xlog_recover_unmount_trans( 2796 struct log *log, 2797 xlog_recover_t *trans) 2798 { 2799 /* Do nothing now */ 2800 xfs_warn(log->l_mp, "%s: Unmount LR", __func__); 2801 return 0; 2802 } 2803 2804 /* 2805 * There are two valid states of the r_state field. 0 indicates that the 2806 * transaction structure is in a normal state. We have either seen the 2807 * start of the transaction or the last operation we added was not a partial 2808 * operation. If the last operation we added to the transaction was a 2809 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 2810 * 2811 * NOTE: skip LRs with 0 data length. 2812 */ 2813 STATIC int 2814 xlog_recover_process_data( 2815 xlog_t *log, 2816 struct hlist_head rhash[], 2817 xlog_rec_header_t *rhead, 2818 xfs_caddr_t dp, 2819 int pass) 2820 { 2821 xfs_caddr_t lp; 2822 int num_logops; 2823 xlog_op_header_t *ohead; 2824 xlog_recover_t *trans; 2825 xlog_tid_t tid; 2826 int error; 2827 unsigned long hash; 2828 uint flags; 2829 2830 lp = dp + be32_to_cpu(rhead->h_len); 2831 num_logops = be32_to_cpu(rhead->h_num_logops); 2832 2833 /* check the log format matches our own - else we can't recover */ 2834 if (xlog_header_check_recover(log->l_mp, rhead)) 2835 return (XFS_ERROR(EIO)); 2836 2837 while ((dp < lp) && num_logops) { 2838 ASSERT(dp + sizeof(xlog_op_header_t) <= lp); 2839 ohead = (xlog_op_header_t *)dp; 2840 dp += sizeof(xlog_op_header_t); 2841 if (ohead->oh_clientid != XFS_TRANSACTION && 2842 ohead->oh_clientid != XFS_LOG) { 2843 xfs_warn(log->l_mp, "%s: bad clientid 0x%x", 2844 __func__, ohead->oh_clientid); 2845 ASSERT(0); 2846 return (XFS_ERROR(EIO)); 2847 } 2848 tid = be32_to_cpu(ohead->oh_tid); 2849 hash = XLOG_RHASH(tid); 2850 trans = xlog_recover_find_tid(&rhash[hash], tid); 2851 if (trans == NULL) { /* not found; add new tid */ 2852 if (ohead->oh_flags & XLOG_START_TRANS) 2853 xlog_recover_new_tid(&rhash[hash], tid, 2854 be64_to_cpu(rhead->h_lsn)); 2855 } else { 2856 if (dp + be32_to_cpu(ohead->oh_len) > lp) { 2857 xfs_warn(log->l_mp, "%s: bad length 0x%x", 2858 __func__, be32_to_cpu(ohead->oh_len)); 2859 WARN_ON(1); 2860 return (XFS_ERROR(EIO)); 2861 } 2862 flags = ohead->oh_flags & ~XLOG_END_TRANS; 2863 if (flags & XLOG_WAS_CONT_TRANS) 2864 flags &= ~XLOG_CONTINUE_TRANS; 2865 switch (flags) { 2866 case XLOG_COMMIT_TRANS: 2867 error = xlog_recover_commit_trans(log, 2868 trans, pass); 2869 break; 2870 case XLOG_UNMOUNT_TRANS: 2871 error = xlog_recover_unmount_trans(log, trans); 2872 break; 2873 case XLOG_WAS_CONT_TRANS: 2874 error = xlog_recover_add_to_cont_trans(log, 2875 trans, dp, 2876 be32_to_cpu(ohead->oh_len)); 2877 break; 2878 case XLOG_START_TRANS: 2879 xfs_warn(log->l_mp, "%s: bad transaction", 2880 __func__); 2881 ASSERT(0); 2882 error = XFS_ERROR(EIO); 2883 break; 2884 case 0: 2885 case XLOG_CONTINUE_TRANS: 2886 error = xlog_recover_add_to_trans(log, trans, 2887 dp, be32_to_cpu(ohead->oh_len)); 2888 break; 2889 default: 2890 xfs_warn(log->l_mp, "%s: bad flag 0x%x", 2891 __func__, flags); 2892 ASSERT(0); 2893 error = XFS_ERROR(EIO); 2894 break; 2895 } 2896 if (error) 2897 return error; 2898 } 2899 dp += be32_to_cpu(ohead->oh_len); 2900 num_logops--; 2901 } 2902 return 0; 2903 } 2904 2905 /* 2906 * Process an extent free intent item that was recovered from 2907 * the log. We need to free the extents that it describes. 2908 */ 2909 STATIC int 2910 xlog_recover_process_efi( 2911 xfs_mount_t *mp, 2912 xfs_efi_log_item_t *efip) 2913 { 2914 xfs_efd_log_item_t *efdp; 2915 xfs_trans_t *tp; 2916 int i; 2917 int error = 0; 2918 xfs_extent_t *extp; 2919 xfs_fsblock_t startblock_fsb; 2920 2921 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)); 2922 2923 /* 2924 * First check the validity of the extents described by the 2925 * EFI. If any are bad, then assume that all are bad and 2926 * just toss the EFI. 2927 */ 2928 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 2929 extp = &(efip->efi_format.efi_extents[i]); 2930 startblock_fsb = XFS_BB_TO_FSB(mp, 2931 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 2932 if ((startblock_fsb == 0) || 2933 (extp->ext_len == 0) || 2934 (startblock_fsb >= mp->m_sb.sb_dblocks) || 2935 (extp->ext_len >= mp->m_sb.sb_agblocks)) { 2936 /* 2937 * This will pull the EFI from the AIL and 2938 * free the memory associated with it. 2939 */ 2940 xfs_efi_release(efip, efip->efi_format.efi_nextents); 2941 return XFS_ERROR(EIO); 2942 } 2943 } 2944 2945 tp = xfs_trans_alloc(mp, 0); 2946 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0); 2947 if (error) 2948 goto abort_error; 2949 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 2950 2951 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 2952 extp = &(efip->efi_format.efi_extents[i]); 2953 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len); 2954 if (error) 2955 goto abort_error; 2956 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start, 2957 extp->ext_len); 2958 } 2959 2960 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); 2961 error = xfs_trans_commit(tp, 0); 2962 return error; 2963 2964 abort_error: 2965 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 2966 return error; 2967 } 2968 2969 /* 2970 * When this is called, all of the EFIs which did not have 2971 * corresponding EFDs should be in the AIL. What we do now 2972 * is free the extents associated with each one. 2973 * 2974 * Since we process the EFIs in normal transactions, they 2975 * will be removed at some point after the commit. This prevents 2976 * us from just walking down the list processing each one. 2977 * We'll use a flag in the EFI to skip those that we've already 2978 * processed and use the AIL iteration mechanism's generation 2979 * count to try to speed this up at least a bit. 2980 * 2981 * When we start, we know that the EFIs are the only things in 2982 * the AIL. As we process them, however, other items are added 2983 * to the AIL. Since everything added to the AIL must come after 2984 * everything already in the AIL, we stop processing as soon as 2985 * we see something other than an EFI in the AIL. 2986 */ 2987 STATIC int 2988 xlog_recover_process_efis( 2989 xlog_t *log) 2990 { 2991 xfs_log_item_t *lip; 2992 xfs_efi_log_item_t *efip; 2993 int error = 0; 2994 struct xfs_ail_cursor cur; 2995 struct xfs_ail *ailp; 2996 2997 ailp = log->l_ailp; 2998 spin_lock(&ailp->xa_lock); 2999 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3000 while (lip != NULL) { 3001 /* 3002 * We're done when we see something other than an EFI. 3003 * There should be no EFIs left in the AIL now. 3004 */ 3005 if (lip->li_type != XFS_LI_EFI) { 3006 #ifdef DEBUG 3007 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 3008 ASSERT(lip->li_type != XFS_LI_EFI); 3009 #endif 3010 break; 3011 } 3012 3013 /* 3014 * Skip EFIs that we've already processed. 3015 */ 3016 efip = (xfs_efi_log_item_t *)lip; 3017 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) { 3018 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3019 continue; 3020 } 3021 3022 spin_unlock(&ailp->xa_lock); 3023 error = xlog_recover_process_efi(log->l_mp, efip); 3024 spin_lock(&ailp->xa_lock); 3025 if (error) 3026 goto out; 3027 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3028 } 3029 out: 3030 xfs_trans_ail_cursor_done(ailp, &cur); 3031 spin_unlock(&ailp->xa_lock); 3032 return error; 3033 } 3034 3035 /* 3036 * This routine performs a transaction to null out a bad inode pointer 3037 * in an agi unlinked inode hash bucket. 3038 */ 3039 STATIC void 3040 xlog_recover_clear_agi_bucket( 3041 xfs_mount_t *mp, 3042 xfs_agnumber_t agno, 3043 int bucket) 3044 { 3045 xfs_trans_t *tp; 3046 xfs_agi_t *agi; 3047 xfs_buf_t *agibp; 3048 int offset; 3049 int error; 3050 3051 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); 3052 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 3053 0, 0, 0); 3054 if (error) 3055 goto out_abort; 3056 3057 error = xfs_read_agi(mp, tp, agno, &agibp); 3058 if (error) 3059 goto out_abort; 3060 3061 agi = XFS_BUF_TO_AGI(agibp); 3062 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 3063 offset = offsetof(xfs_agi_t, agi_unlinked) + 3064 (sizeof(xfs_agino_t) * bucket); 3065 xfs_trans_log_buf(tp, agibp, offset, 3066 (offset + sizeof(xfs_agino_t) - 1)); 3067 3068 error = xfs_trans_commit(tp, 0); 3069 if (error) 3070 goto out_error; 3071 return; 3072 3073 out_abort: 3074 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3075 out_error: 3076 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); 3077 return; 3078 } 3079 3080 STATIC xfs_agino_t 3081 xlog_recover_process_one_iunlink( 3082 struct xfs_mount *mp, 3083 xfs_agnumber_t agno, 3084 xfs_agino_t agino, 3085 int bucket) 3086 { 3087 struct xfs_buf *ibp; 3088 struct xfs_dinode *dip; 3089 struct xfs_inode *ip; 3090 xfs_ino_t ino; 3091 int error; 3092 3093 ino = XFS_AGINO_TO_INO(mp, agno, agino); 3094 error = xfs_iget(mp, NULL, ino, 0, 0, &ip); 3095 if (error) 3096 goto fail; 3097 3098 /* 3099 * Get the on disk inode to find the next inode in the bucket. 3100 */ 3101 error = xfs_itobp(mp, NULL, ip, &dip, &ibp, 0); 3102 if (error) 3103 goto fail_iput; 3104 3105 ASSERT(ip->i_d.di_nlink == 0); 3106 ASSERT(ip->i_d.di_mode != 0); 3107 3108 /* setup for the next pass */ 3109 agino = be32_to_cpu(dip->di_next_unlinked); 3110 xfs_buf_relse(ibp); 3111 3112 /* 3113 * Prevent any DMAPI event from being sent when the reference on 3114 * the inode is dropped. 3115 */ 3116 ip->i_d.di_dmevmask = 0; 3117 3118 IRELE(ip); 3119 return agino; 3120 3121 fail_iput: 3122 IRELE(ip); 3123 fail: 3124 /* 3125 * We can't read in the inode this bucket points to, or this inode 3126 * is messed up. Just ditch this bucket of inodes. We will lose 3127 * some inodes and space, but at least we won't hang. 3128 * 3129 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 3130 * clear the inode pointer in the bucket. 3131 */ 3132 xlog_recover_clear_agi_bucket(mp, agno, bucket); 3133 return NULLAGINO; 3134 } 3135 3136 /* 3137 * xlog_iunlink_recover 3138 * 3139 * This is called during recovery to process any inodes which 3140 * we unlinked but not freed when the system crashed. These 3141 * inodes will be on the lists in the AGI blocks. What we do 3142 * here is scan all the AGIs and fully truncate and free any 3143 * inodes found on the lists. Each inode is removed from the 3144 * lists when it has been fully truncated and is freed. The 3145 * freeing of the inode and its removal from the list must be 3146 * atomic. 3147 */ 3148 STATIC void 3149 xlog_recover_process_iunlinks( 3150 xlog_t *log) 3151 { 3152 xfs_mount_t *mp; 3153 xfs_agnumber_t agno; 3154 xfs_agi_t *agi; 3155 xfs_buf_t *agibp; 3156 xfs_agino_t agino; 3157 int bucket; 3158 int error; 3159 uint mp_dmevmask; 3160 3161 mp = log->l_mp; 3162 3163 /* 3164 * Prevent any DMAPI event from being sent while in this function. 3165 */ 3166 mp_dmevmask = mp->m_dmevmask; 3167 mp->m_dmevmask = 0; 3168 3169 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3170 /* 3171 * Find the agi for this ag. 3172 */ 3173 error = xfs_read_agi(mp, NULL, agno, &agibp); 3174 if (error) { 3175 /* 3176 * AGI is b0rked. Don't process it. 3177 * 3178 * We should probably mark the filesystem as corrupt 3179 * after we've recovered all the ag's we can.... 3180 */ 3181 continue; 3182 } 3183 /* 3184 * Unlock the buffer so that it can be acquired in the normal 3185 * course of the transaction to truncate and free each inode. 3186 * Because we are not racing with anyone else here for the AGI 3187 * buffer, we don't even need to hold it locked to read the 3188 * initial unlinked bucket entries out of the buffer. We keep 3189 * buffer reference though, so that it stays pinned in memory 3190 * while we need the buffer. 3191 */ 3192 agi = XFS_BUF_TO_AGI(agibp); 3193 xfs_buf_unlock(agibp); 3194 3195 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 3196 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 3197 while (agino != NULLAGINO) { 3198 agino = xlog_recover_process_one_iunlink(mp, 3199 agno, agino, bucket); 3200 } 3201 } 3202 xfs_buf_rele(agibp); 3203 } 3204 3205 mp->m_dmevmask = mp_dmevmask; 3206 } 3207 3208 3209 #ifdef DEBUG 3210 STATIC void 3211 xlog_pack_data_checksum( 3212 xlog_t *log, 3213 xlog_in_core_t *iclog, 3214 int size) 3215 { 3216 int i; 3217 __be32 *up; 3218 uint chksum = 0; 3219 3220 up = (__be32 *)iclog->ic_datap; 3221 /* divide length by 4 to get # words */ 3222 for (i = 0; i < (size >> 2); i++) { 3223 chksum ^= be32_to_cpu(*up); 3224 up++; 3225 } 3226 iclog->ic_header.h_chksum = cpu_to_be32(chksum); 3227 } 3228 #else 3229 #define xlog_pack_data_checksum(log, iclog, size) 3230 #endif 3231 3232 /* 3233 * Stamp cycle number in every block 3234 */ 3235 void 3236 xlog_pack_data( 3237 xlog_t *log, 3238 xlog_in_core_t *iclog, 3239 int roundoff) 3240 { 3241 int i, j, k; 3242 int size = iclog->ic_offset + roundoff; 3243 __be32 cycle_lsn; 3244 xfs_caddr_t dp; 3245 3246 xlog_pack_data_checksum(log, iclog, size); 3247 3248 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 3249 3250 dp = iclog->ic_datap; 3251 for (i = 0; i < BTOBB(size) && 3252 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3253 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 3254 *(__be32 *)dp = cycle_lsn; 3255 dp += BBSIZE; 3256 } 3257 3258 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3259 xlog_in_core_2_t *xhdr = iclog->ic_data; 3260 3261 for ( ; i < BTOBB(size); i++) { 3262 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3263 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3264 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 3265 *(__be32 *)dp = cycle_lsn; 3266 dp += BBSIZE; 3267 } 3268 3269 for (i = 1; i < log->l_iclog_heads; i++) { 3270 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 3271 } 3272 } 3273 } 3274 3275 STATIC void 3276 xlog_unpack_data( 3277 xlog_rec_header_t *rhead, 3278 xfs_caddr_t dp, 3279 xlog_t *log) 3280 { 3281 int i, j, k; 3282 3283 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 3284 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3285 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 3286 dp += BBSIZE; 3287 } 3288 3289 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3290 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 3291 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 3292 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3293 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3294 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 3295 dp += BBSIZE; 3296 } 3297 } 3298 } 3299 3300 STATIC int 3301 xlog_valid_rec_header( 3302 xlog_t *log, 3303 xlog_rec_header_t *rhead, 3304 xfs_daddr_t blkno) 3305 { 3306 int hlen; 3307 3308 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) { 3309 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 3310 XFS_ERRLEVEL_LOW, log->l_mp); 3311 return XFS_ERROR(EFSCORRUPTED); 3312 } 3313 if (unlikely( 3314 (!rhead->h_version || 3315 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { 3316 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", 3317 __func__, be32_to_cpu(rhead->h_version)); 3318 return XFS_ERROR(EIO); 3319 } 3320 3321 /* LR body must have data or it wouldn't have been written */ 3322 hlen = be32_to_cpu(rhead->h_len); 3323 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 3324 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 3325 XFS_ERRLEVEL_LOW, log->l_mp); 3326 return XFS_ERROR(EFSCORRUPTED); 3327 } 3328 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 3329 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 3330 XFS_ERRLEVEL_LOW, log->l_mp); 3331 return XFS_ERROR(EFSCORRUPTED); 3332 } 3333 return 0; 3334 } 3335 3336 /* 3337 * Read the log from tail to head and process the log records found. 3338 * Handle the two cases where the tail and head are in the same cycle 3339 * and where the active portion of the log wraps around the end of 3340 * the physical log separately. The pass parameter is passed through 3341 * to the routines called to process the data and is not looked at 3342 * here. 3343 */ 3344 STATIC int 3345 xlog_do_recovery_pass( 3346 xlog_t *log, 3347 xfs_daddr_t head_blk, 3348 xfs_daddr_t tail_blk, 3349 int pass) 3350 { 3351 xlog_rec_header_t *rhead; 3352 xfs_daddr_t blk_no; 3353 xfs_caddr_t offset; 3354 xfs_buf_t *hbp, *dbp; 3355 int error = 0, h_size; 3356 int bblks, split_bblks; 3357 int hblks, split_hblks, wrapped_hblks; 3358 struct hlist_head rhash[XLOG_RHASH_SIZE]; 3359 3360 ASSERT(head_blk != tail_blk); 3361 3362 /* 3363 * Read the header of the tail block and get the iclog buffer size from 3364 * h_size. Use this to tell how many sectors make up the log header. 3365 */ 3366 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3367 /* 3368 * When using variable length iclogs, read first sector of 3369 * iclog header and extract the header size from it. Get a 3370 * new hbp that is the correct size. 3371 */ 3372 hbp = xlog_get_bp(log, 1); 3373 if (!hbp) 3374 return ENOMEM; 3375 3376 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 3377 if (error) 3378 goto bread_err1; 3379 3380 rhead = (xlog_rec_header_t *)offset; 3381 error = xlog_valid_rec_header(log, rhead, tail_blk); 3382 if (error) 3383 goto bread_err1; 3384 h_size = be32_to_cpu(rhead->h_size); 3385 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 3386 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 3387 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 3388 if (h_size % XLOG_HEADER_CYCLE_SIZE) 3389 hblks++; 3390 xlog_put_bp(hbp); 3391 hbp = xlog_get_bp(log, hblks); 3392 } else { 3393 hblks = 1; 3394 } 3395 } else { 3396 ASSERT(log->l_sectBBsize == 1); 3397 hblks = 1; 3398 hbp = xlog_get_bp(log, 1); 3399 h_size = XLOG_BIG_RECORD_BSIZE; 3400 } 3401 3402 if (!hbp) 3403 return ENOMEM; 3404 dbp = xlog_get_bp(log, BTOBB(h_size)); 3405 if (!dbp) { 3406 xlog_put_bp(hbp); 3407 return ENOMEM; 3408 } 3409 3410 memset(rhash, 0, sizeof(rhash)); 3411 if (tail_blk <= head_blk) { 3412 for (blk_no = tail_blk; blk_no < head_blk; ) { 3413 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 3414 if (error) 3415 goto bread_err2; 3416 3417 rhead = (xlog_rec_header_t *)offset; 3418 error = xlog_valid_rec_header(log, rhead, blk_no); 3419 if (error) 3420 goto bread_err2; 3421 3422 /* blocks in data section */ 3423 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3424 error = xlog_bread(log, blk_no + hblks, bblks, dbp, 3425 &offset); 3426 if (error) 3427 goto bread_err2; 3428 3429 xlog_unpack_data(rhead, offset, log); 3430 if ((error = xlog_recover_process_data(log, 3431 rhash, rhead, offset, pass))) 3432 goto bread_err2; 3433 blk_no += bblks + hblks; 3434 } 3435 } else { 3436 /* 3437 * Perform recovery around the end of the physical log. 3438 * When the head is not on the same cycle number as the tail, 3439 * we can't do a sequential recovery as above. 3440 */ 3441 blk_no = tail_blk; 3442 while (blk_no < log->l_logBBsize) { 3443 /* 3444 * Check for header wrapping around physical end-of-log 3445 */ 3446 offset = hbp->b_addr; 3447 split_hblks = 0; 3448 wrapped_hblks = 0; 3449 if (blk_no + hblks <= log->l_logBBsize) { 3450 /* Read header in one read */ 3451 error = xlog_bread(log, blk_no, hblks, hbp, 3452 &offset); 3453 if (error) 3454 goto bread_err2; 3455 } else { 3456 /* This LR is split across physical log end */ 3457 if (blk_no != log->l_logBBsize) { 3458 /* some data before physical log end */ 3459 ASSERT(blk_no <= INT_MAX); 3460 split_hblks = log->l_logBBsize - (int)blk_no; 3461 ASSERT(split_hblks > 0); 3462 error = xlog_bread(log, blk_no, 3463 split_hblks, hbp, 3464 &offset); 3465 if (error) 3466 goto bread_err2; 3467 } 3468 3469 /* 3470 * Note: this black magic still works with 3471 * large sector sizes (non-512) only because: 3472 * - we increased the buffer size originally 3473 * by 1 sector giving us enough extra space 3474 * for the second read; 3475 * - the log start is guaranteed to be sector 3476 * aligned; 3477 * - we read the log end (LR header start) 3478 * _first_, then the log start (LR header end) 3479 * - order is important. 3480 */ 3481 wrapped_hblks = hblks - split_hblks; 3482 error = xlog_bread_offset(log, 0, 3483 wrapped_hblks, hbp, 3484 offset + BBTOB(split_hblks)); 3485 if (error) 3486 goto bread_err2; 3487 } 3488 rhead = (xlog_rec_header_t *)offset; 3489 error = xlog_valid_rec_header(log, rhead, 3490 split_hblks ? blk_no : 0); 3491 if (error) 3492 goto bread_err2; 3493 3494 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3495 blk_no += hblks; 3496 3497 /* Read in data for log record */ 3498 if (blk_no + bblks <= log->l_logBBsize) { 3499 error = xlog_bread(log, blk_no, bblks, dbp, 3500 &offset); 3501 if (error) 3502 goto bread_err2; 3503 } else { 3504 /* This log record is split across the 3505 * physical end of log */ 3506 offset = dbp->b_addr; 3507 split_bblks = 0; 3508 if (blk_no != log->l_logBBsize) { 3509 /* some data is before the physical 3510 * end of log */ 3511 ASSERT(!wrapped_hblks); 3512 ASSERT(blk_no <= INT_MAX); 3513 split_bblks = 3514 log->l_logBBsize - (int)blk_no; 3515 ASSERT(split_bblks > 0); 3516 error = xlog_bread(log, blk_no, 3517 split_bblks, dbp, 3518 &offset); 3519 if (error) 3520 goto bread_err2; 3521 } 3522 3523 /* 3524 * Note: this black magic still works with 3525 * large sector sizes (non-512) only because: 3526 * - we increased the buffer size originally 3527 * by 1 sector giving us enough extra space 3528 * for the second read; 3529 * - the log start is guaranteed to be sector 3530 * aligned; 3531 * - we read the log end (LR header start) 3532 * _first_, then the log start (LR header end) 3533 * - order is important. 3534 */ 3535 error = xlog_bread_offset(log, 0, 3536 bblks - split_bblks, hbp, 3537 offset + BBTOB(split_bblks)); 3538 if (error) 3539 goto bread_err2; 3540 } 3541 xlog_unpack_data(rhead, offset, log); 3542 if ((error = xlog_recover_process_data(log, rhash, 3543 rhead, offset, pass))) 3544 goto bread_err2; 3545 blk_no += bblks; 3546 } 3547 3548 ASSERT(blk_no >= log->l_logBBsize); 3549 blk_no -= log->l_logBBsize; 3550 3551 /* read first part of physical log */ 3552 while (blk_no < head_blk) { 3553 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 3554 if (error) 3555 goto bread_err2; 3556 3557 rhead = (xlog_rec_header_t *)offset; 3558 error = xlog_valid_rec_header(log, rhead, blk_no); 3559 if (error) 3560 goto bread_err2; 3561 3562 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3563 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 3564 &offset); 3565 if (error) 3566 goto bread_err2; 3567 3568 xlog_unpack_data(rhead, offset, log); 3569 if ((error = xlog_recover_process_data(log, rhash, 3570 rhead, offset, pass))) 3571 goto bread_err2; 3572 blk_no += bblks + hblks; 3573 } 3574 } 3575 3576 bread_err2: 3577 xlog_put_bp(dbp); 3578 bread_err1: 3579 xlog_put_bp(hbp); 3580 return error; 3581 } 3582 3583 /* 3584 * Do the recovery of the log. We actually do this in two phases. 3585 * The two passes are necessary in order to implement the function 3586 * of cancelling a record written into the log. The first pass 3587 * determines those things which have been cancelled, and the 3588 * second pass replays log items normally except for those which 3589 * have been cancelled. The handling of the replay and cancellations 3590 * takes place in the log item type specific routines. 3591 * 3592 * The table of items which have cancel records in the log is allocated 3593 * and freed at this level, since only here do we know when all of 3594 * the log recovery has been completed. 3595 */ 3596 STATIC int 3597 xlog_do_log_recovery( 3598 xlog_t *log, 3599 xfs_daddr_t head_blk, 3600 xfs_daddr_t tail_blk) 3601 { 3602 int error, i; 3603 3604 ASSERT(head_blk != tail_blk); 3605 3606 /* 3607 * First do a pass to find all of the cancelled buf log items. 3608 * Store them in the buf_cancel_table for use in the second pass. 3609 */ 3610 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * 3611 sizeof(struct list_head), 3612 KM_SLEEP); 3613 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3614 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); 3615 3616 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3617 XLOG_RECOVER_PASS1); 3618 if (error != 0) { 3619 kmem_free(log->l_buf_cancel_table); 3620 log->l_buf_cancel_table = NULL; 3621 return error; 3622 } 3623 /* 3624 * Then do a second pass to actually recover the items in the log. 3625 * When it is complete free the table of buf cancel items. 3626 */ 3627 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3628 XLOG_RECOVER_PASS2); 3629 #ifdef DEBUG 3630 if (!error) { 3631 int i; 3632 3633 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3634 ASSERT(list_empty(&log->l_buf_cancel_table[i])); 3635 } 3636 #endif /* DEBUG */ 3637 3638 kmem_free(log->l_buf_cancel_table); 3639 log->l_buf_cancel_table = NULL; 3640 3641 return error; 3642 } 3643 3644 /* 3645 * Do the actual recovery 3646 */ 3647 STATIC int 3648 xlog_do_recover( 3649 xlog_t *log, 3650 xfs_daddr_t head_blk, 3651 xfs_daddr_t tail_blk) 3652 { 3653 int error; 3654 xfs_buf_t *bp; 3655 xfs_sb_t *sbp; 3656 3657 /* 3658 * First replay the images in the log. 3659 */ 3660 error = xlog_do_log_recovery(log, head_blk, tail_blk); 3661 if (error) 3662 return error; 3663 3664 /* 3665 * If IO errors happened during recovery, bail out. 3666 */ 3667 if (XFS_FORCED_SHUTDOWN(log->l_mp)) { 3668 return (EIO); 3669 } 3670 3671 /* 3672 * We now update the tail_lsn since much of the recovery has completed 3673 * and there may be space available to use. If there were no extent 3674 * or iunlinks, we can free up the entire log and set the tail_lsn to 3675 * be the last_sync_lsn. This was set in xlog_find_tail to be the 3676 * lsn of the last known good LR on disk. If there are extent frees 3677 * or iunlinks they will have some entries in the AIL; so we look at 3678 * the AIL to determine how to set the tail_lsn. 3679 */ 3680 xlog_assign_tail_lsn(log->l_mp); 3681 3682 /* 3683 * Now that we've finished replaying all buffer and inode 3684 * updates, re-read in the superblock. 3685 */ 3686 bp = xfs_getsb(log->l_mp, 0); 3687 XFS_BUF_UNDONE(bp); 3688 ASSERT(!(XFS_BUF_ISWRITE(bp))); 3689 XFS_BUF_READ(bp); 3690 XFS_BUF_UNASYNC(bp); 3691 xfsbdstrat(log->l_mp, bp); 3692 error = xfs_buf_iowait(bp); 3693 if (error) { 3694 xfs_buf_ioerror_alert(bp, __func__); 3695 ASSERT(0); 3696 xfs_buf_relse(bp); 3697 return error; 3698 } 3699 3700 /* Convert superblock from on-disk format */ 3701 sbp = &log->l_mp->m_sb; 3702 xfs_sb_from_disk(log->l_mp, XFS_BUF_TO_SBP(bp)); 3703 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); 3704 ASSERT(xfs_sb_good_version(sbp)); 3705 xfs_buf_relse(bp); 3706 3707 /* We've re-read the superblock so re-initialize per-cpu counters */ 3708 xfs_icsb_reinit_counters(log->l_mp); 3709 3710 xlog_recover_check_summary(log); 3711 3712 /* Normal transactions can now occur */ 3713 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 3714 return 0; 3715 } 3716 3717 /* 3718 * Perform recovery and re-initialize some log variables in xlog_find_tail. 3719 * 3720 * Return error or zero. 3721 */ 3722 int 3723 xlog_recover( 3724 xlog_t *log) 3725 { 3726 xfs_daddr_t head_blk, tail_blk; 3727 int error; 3728 3729 /* find the tail of the log */ 3730 if ((error = xlog_find_tail(log, &head_blk, &tail_blk))) 3731 return error; 3732 3733 if (tail_blk != head_blk) { 3734 /* There used to be a comment here: 3735 * 3736 * disallow recovery on read-only mounts. note -- mount 3737 * checks for ENOSPC and turns it into an intelligent 3738 * error message. 3739 * ...but this is no longer true. Now, unless you specify 3740 * NORECOVERY (in which case this function would never be 3741 * called), we just go ahead and recover. We do this all 3742 * under the vfs layer, so we can get away with it unless 3743 * the device itself is read-only, in which case we fail. 3744 */ 3745 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 3746 return error; 3747 } 3748 3749 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", 3750 log->l_mp->m_logname ? log->l_mp->m_logname 3751 : "internal"); 3752 3753 error = xlog_do_recover(log, head_blk, tail_blk); 3754 log->l_flags |= XLOG_RECOVERY_NEEDED; 3755 } 3756 return error; 3757 } 3758 3759 /* 3760 * In the first part of recovery we replay inodes and buffers and build 3761 * up the list of extent free items which need to be processed. Here 3762 * we process the extent free items and clean up the on disk unlinked 3763 * inode lists. This is separated from the first part of recovery so 3764 * that the root and real-time bitmap inodes can be read in from disk in 3765 * between the two stages. This is necessary so that we can free space 3766 * in the real-time portion of the file system. 3767 */ 3768 int 3769 xlog_recover_finish( 3770 xlog_t *log) 3771 { 3772 /* 3773 * Now we're ready to do the transactions needed for the 3774 * rest of recovery. Start with completing all the extent 3775 * free intent records and then process the unlinked inode 3776 * lists. At this point, we essentially run in normal mode 3777 * except that we're still performing recovery actions 3778 * rather than accepting new requests. 3779 */ 3780 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 3781 int error; 3782 error = xlog_recover_process_efis(log); 3783 if (error) { 3784 xfs_alert(log->l_mp, "Failed to recover EFIs"); 3785 return error; 3786 } 3787 /* 3788 * Sync the log to get all the EFIs out of the AIL. 3789 * This isn't absolutely necessary, but it helps in 3790 * case the unlink transactions would have problems 3791 * pushing the EFIs out of the way. 3792 */ 3793 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 3794 3795 xlog_recover_process_iunlinks(log); 3796 3797 xlog_recover_check_summary(log); 3798 3799 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", 3800 log->l_mp->m_logname ? log->l_mp->m_logname 3801 : "internal"); 3802 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 3803 } else { 3804 xfs_info(log->l_mp, "Ending clean mount"); 3805 } 3806 return 0; 3807 } 3808 3809 3810 #if defined(DEBUG) 3811 /* 3812 * Read all of the agf and agi counters and check that they 3813 * are consistent with the superblock counters. 3814 */ 3815 void 3816 xlog_recover_check_summary( 3817 xlog_t *log) 3818 { 3819 xfs_mount_t *mp; 3820 xfs_agf_t *agfp; 3821 xfs_buf_t *agfbp; 3822 xfs_buf_t *agibp; 3823 xfs_agnumber_t agno; 3824 __uint64_t freeblks; 3825 __uint64_t itotal; 3826 __uint64_t ifree; 3827 int error; 3828 3829 mp = log->l_mp; 3830 3831 freeblks = 0LL; 3832 itotal = 0LL; 3833 ifree = 0LL; 3834 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3835 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 3836 if (error) { 3837 xfs_alert(mp, "%s agf read failed agno %d error %d", 3838 __func__, agno, error); 3839 } else { 3840 agfp = XFS_BUF_TO_AGF(agfbp); 3841 freeblks += be32_to_cpu(agfp->agf_freeblks) + 3842 be32_to_cpu(agfp->agf_flcount); 3843 xfs_buf_relse(agfbp); 3844 } 3845 3846 error = xfs_read_agi(mp, NULL, agno, &agibp); 3847 if (error) { 3848 xfs_alert(mp, "%s agi read failed agno %d error %d", 3849 __func__, agno, error); 3850 } else { 3851 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 3852 3853 itotal += be32_to_cpu(agi->agi_count); 3854 ifree += be32_to_cpu(agi->agi_freecount); 3855 xfs_buf_relse(agibp); 3856 } 3857 } 3858 } 3859 #endif /* DEBUG */ 3860