1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_da_format.h" 17 #include "xfs_da_btree.h" 18 #include "xfs_inode.h" 19 #include "xfs_trans.h" 20 #include "xfs_log.h" 21 #include "xfs_log_priv.h" 22 #include "xfs_log_recover.h" 23 #include "xfs_inode_item.h" 24 #include "xfs_extfree_item.h" 25 #include "xfs_trans_priv.h" 26 #include "xfs_alloc.h" 27 #include "xfs_ialloc.h" 28 #include "xfs_quota.h" 29 #include "xfs_cksum.h" 30 #include "xfs_trace.h" 31 #include "xfs_icache.h" 32 #include "xfs_bmap_btree.h" 33 #include "xfs_error.h" 34 #include "xfs_dir2.h" 35 #include "xfs_rmap_item.h" 36 #include "xfs_buf_item.h" 37 #include "xfs_refcount_item.h" 38 #include "xfs_bmap_item.h" 39 40 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) 41 42 STATIC int 43 xlog_find_zeroed( 44 struct xlog *, 45 xfs_daddr_t *); 46 STATIC int 47 xlog_clear_stale_blocks( 48 struct xlog *, 49 xfs_lsn_t); 50 #if defined(DEBUG) 51 STATIC void 52 xlog_recover_check_summary( 53 struct xlog *); 54 #else 55 #define xlog_recover_check_summary(log) 56 #endif 57 STATIC int 58 xlog_do_recovery_pass( 59 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *); 60 61 /* 62 * This structure is used during recovery to record the buf log items which 63 * have been canceled and should not be replayed. 64 */ 65 struct xfs_buf_cancel { 66 xfs_daddr_t bc_blkno; 67 uint bc_len; 68 int bc_refcount; 69 struct list_head bc_list; 70 }; 71 72 /* 73 * Sector aligned buffer routines for buffer create/read/write/access 74 */ 75 76 /* 77 * Verify the log-relative block number and length in basic blocks are valid for 78 * an operation involving the given XFS log buffer. Returns true if the fields 79 * are valid, false otherwise. 80 */ 81 static inline bool 82 xlog_verify_bp( 83 struct xlog *log, 84 xfs_daddr_t blk_no, 85 int bbcount) 86 { 87 if (blk_no < 0 || blk_no >= log->l_logBBsize) 88 return false; 89 if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize) 90 return false; 91 return true; 92 } 93 94 /* 95 * Allocate a buffer to hold log data. The buffer needs to be able 96 * to map to a range of nbblks basic blocks at any valid (basic 97 * block) offset within the log. 98 */ 99 STATIC xfs_buf_t * 100 xlog_get_bp( 101 struct xlog *log, 102 int nbblks) 103 { 104 struct xfs_buf *bp; 105 106 /* 107 * Pass log block 0 since we don't have an addr yet, buffer will be 108 * verified on read. 109 */ 110 if (!xlog_verify_bp(log, 0, nbblks)) { 111 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 112 nbblks); 113 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 114 return NULL; 115 } 116 117 /* 118 * We do log I/O in units of log sectors (a power-of-2 119 * multiple of the basic block size), so we round up the 120 * requested size to accommodate the basic blocks required 121 * for complete log sectors. 122 * 123 * In addition, the buffer may be used for a non-sector- 124 * aligned block offset, in which case an I/O of the 125 * requested size could extend beyond the end of the 126 * buffer. If the requested size is only 1 basic block it 127 * will never straddle a sector boundary, so this won't be 128 * an issue. Nor will this be a problem if the log I/O is 129 * done in basic blocks (sector size 1). But otherwise we 130 * extend the buffer by one extra log sector to ensure 131 * there's space to accommodate this possibility. 132 */ 133 if (nbblks > 1 && log->l_sectBBsize > 1) 134 nbblks += log->l_sectBBsize; 135 nbblks = round_up(nbblks, log->l_sectBBsize); 136 137 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0); 138 if (bp) 139 xfs_buf_unlock(bp); 140 return bp; 141 } 142 143 STATIC void 144 xlog_put_bp( 145 xfs_buf_t *bp) 146 { 147 xfs_buf_free(bp); 148 } 149 150 /* 151 * Return the address of the start of the given block number's data 152 * in a log buffer. The buffer covers a log sector-aligned region. 153 */ 154 STATIC char * 155 xlog_align( 156 struct xlog *log, 157 xfs_daddr_t blk_no, 158 int nbblks, 159 struct xfs_buf *bp) 160 { 161 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1); 162 163 ASSERT(offset + nbblks <= bp->b_length); 164 return bp->b_addr + BBTOB(offset); 165 } 166 167 168 /* 169 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 170 */ 171 STATIC int 172 xlog_bread_noalign( 173 struct xlog *log, 174 xfs_daddr_t blk_no, 175 int nbblks, 176 struct xfs_buf *bp) 177 { 178 int error; 179 180 if (!xlog_verify_bp(log, blk_no, nbblks)) { 181 xfs_warn(log->l_mp, 182 "Invalid log block/length (0x%llx, 0x%x) for buffer", 183 blk_no, nbblks); 184 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 185 return -EFSCORRUPTED; 186 } 187 188 blk_no = round_down(blk_no, log->l_sectBBsize); 189 nbblks = round_up(nbblks, log->l_sectBBsize); 190 191 ASSERT(nbblks > 0); 192 ASSERT(nbblks <= bp->b_length); 193 194 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 195 bp->b_flags |= XBF_READ; 196 bp->b_io_length = nbblks; 197 bp->b_error = 0; 198 199 error = xfs_buf_submit(bp); 200 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) 201 xfs_buf_ioerror_alert(bp, __func__); 202 return error; 203 } 204 205 STATIC int 206 xlog_bread( 207 struct xlog *log, 208 xfs_daddr_t blk_no, 209 int nbblks, 210 struct xfs_buf *bp, 211 char **offset) 212 { 213 int error; 214 215 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 216 if (error) 217 return error; 218 219 *offset = xlog_align(log, blk_no, nbblks, bp); 220 return 0; 221 } 222 223 /* 224 * Read at an offset into the buffer. Returns with the buffer in it's original 225 * state regardless of the result of the read. 226 */ 227 STATIC int 228 xlog_bread_offset( 229 struct xlog *log, 230 xfs_daddr_t blk_no, /* block to read from */ 231 int nbblks, /* blocks to read */ 232 struct xfs_buf *bp, 233 char *offset) 234 { 235 char *orig_offset = bp->b_addr; 236 int orig_len = BBTOB(bp->b_length); 237 int error, error2; 238 239 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks)); 240 if (error) 241 return error; 242 243 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 244 245 /* must reset buffer pointer even on error */ 246 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len); 247 if (error) 248 return error; 249 return error2; 250 } 251 252 /* 253 * Write out the buffer at the given block for the given number of blocks. 254 * The buffer is kept locked across the write and is returned locked. 255 * This can only be used for synchronous log writes. 256 */ 257 STATIC int 258 xlog_bwrite( 259 struct xlog *log, 260 xfs_daddr_t blk_no, 261 int nbblks, 262 struct xfs_buf *bp) 263 { 264 int error; 265 266 if (!xlog_verify_bp(log, blk_no, nbblks)) { 267 xfs_warn(log->l_mp, 268 "Invalid log block/length (0x%llx, 0x%x) for buffer", 269 blk_no, nbblks); 270 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 271 return -EFSCORRUPTED; 272 } 273 274 blk_no = round_down(blk_no, log->l_sectBBsize); 275 nbblks = round_up(nbblks, log->l_sectBBsize); 276 277 ASSERT(nbblks > 0); 278 ASSERT(nbblks <= bp->b_length); 279 280 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 281 xfs_buf_hold(bp); 282 xfs_buf_lock(bp); 283 bp->b_io_length = nbblks; 284 bp->b_error = 0; 285 286 error = xfs_bwrite(bp); 287 if (error) 288 xfs_buf_ioerror_alert(bp, __func__); 289 xfs_buf_relse(bp); 290 return error; 291 } 292 293 #ifdef DEBUG 294 /* 295 * dump debug superblock and log record information 296 */ 297 STATIC void 298 xlog_header_check_dump( 299 xfs_mount_t *mp, 300 xlog_rec_header_t *head) 301 { 302 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d", 303 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 304 xfs_debug(mp, " log : uuid = %pU, fmt = %d", 305 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 306 } 307 #else 308 #define xlog_header_check_dump(mp, head) 309 #endif 310 311 /* 312 * check log record header for recovery 313 */ 314 STATIC int 315 xlog_header_check_recover( 316 xfs_mount_t *mp, 317 xlog_rec_header_t *head) 318 { 319 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 320 321 /* 322 * IRIX doesn't write the h_fmt field and leaves it zeroed 323 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 324 * a dirty log created in IRIX. 325 */ 326 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) { 327 xfs_warn(mp, 328 "dirty log written in incompatible format - can't recover"); 329 xlog_header_check_dump(mp, head); 330 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 331 XFS_ERRLEVEL_HIGH, mp); 332 return -EFSCORRUPTED; 333 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 334 xfs_warn(mp, 335 "dirty log entry has mismatched uuid - can't recover"); 336 xlog_header_check_dump(mp, head); 337 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 338 XFS_ERRLEVEL_HIGH, mp); 339 return -EFSCORRUPTED; 340 } 341 return 0; 342 } 343 344 /* 345 * read the head block of the log and check the header 346 */ 347 STATIC int 348 xlog_header_check_mount( 349 xfs_mount_t *mp, 350 xlog_rec_header_t *head) 351 { 352 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 353 354 if (uuid_is_null(&head->h_fs_uuid)) { 355 /* 356 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 357 * h_fs_uuid is null, we assume this log was last mounted 358 * by IRIX and continue. 359 */ 360 xfs_warn(mp, "null uuid in log - IRIX style log"); 361 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 362 xfs_warn(mp, "log has mismatched uuid - can't recover"); 363 xlog_header_check_dump(mp, head); 364 XFS_ERROR_REPORT("xlog_header_check_mount", 365 XFS_ERRLEVEL_HIGH, mp); 366 return -EFSCORRUPTED; 367 } 368 return 0; 369 } 370 371 STATIC void 372 xlog_recover_iodone( 373 struct xfs_buf *bp) 374 { 375 if (bp->b_error) { 376 /* 377 * We're not going to bother about retrying 378 * this during recovery. One strike! 379 */ 380 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 381 xfs_buf_ioerror_alert(bp, __func__); 382 xfs_force_shutdown(bp->b_target->bt_mount, 383 SHUTDOWN_META_IO_ERROR); 384 } 385 } 386 387 /* 388 * On v5 supers, a bli could be attached to update the metadata LSN. 389 * Clean it up. 390 */ 391 if (bp->b_log_item) 392 xfs_buf_item_relse(bp); 393 ASSERT(bp->b_log_item == NULL); 394 395 bp->b_iodone = NULL; 396 xfs_buf_ioend(bp); 397 } 398 399 /* 400 * This routine finds (to an approximation) the first block in the physical 401 * log which contains the given cycle. It uses a binary search algorithm. 402 * Note that the algorithm can not be perfect because the disk will not 403 * necessarily be perfect. 404 */ 405 STATIC int 406 xlog_find_cycle_start( 407 struct xlog *log, 408 struct xfs_buf *bp, 409 xfs_daddr_t first_blk, 410 xfs_daddr_t *last_blk, 411 uint cycle) 412 { 413 char *offset; 414 xfs_daddr_t mid_blk; 415 xfs_daddr_t end_blk; 416 uint mid_cycle; 417 int error; 418 419 end_blk = *last_blk; 420 mid_blk = BLK_AVG(first_blk, end_blk); 421 while (mid_blk != first_blk && mid_blk != end_blk) { 422 error = xlog_bread(log, mid_blk, 1, bp, &offset); 423 if (error) 424 return error; 425 mid_cycle = xlog_get_cycle(offset); 426 if (mid_cycle == cycle) 427 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 428 else 429 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 430 mid_blk = BLK_AVG(first_blk, end_blk); 431 } 432 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 433 (mid_blk == end_blk && mid_blk-1 == first_blk)); 434 435 *last_blk = end_blk; 436 437 return 0; 438 } 439 440 /* 441 * Check that a range of blocks does not contain stop_on_cycle_no. 442 * Fill in *new_blk with the block offset where such a block is 443 * found, or with -1 (an invalid block number) if there is no such 444 * block in the range. The scan needs to occur from front to back 445 * and the pointer into the region must be updated since a later 446 * routine will need to perform another test. 447 */ 448 STATIC int 449 xlog_find_verify_cycle( 450 struct xlog *log, 451 xfs_daddr_t start_blk, 452 int nbblks, 453 uint stop_on_cycle_no, 454 xfs_daddr_t *new_blk) 455 { 456 xfs_daddr_t i, j; 457 uint cycle; 458 xfs_buf_t *bp; 459 xfs_daddr_t bufblks; 460 char *buf = NULL; 461 int error = 0; 462 463 /* 464 * Greedily allocate a buffer big enough to handle the full 465 * range of basic blocks we'll be examining. If that fails, 466 * try a smaller size. We need to be able to read at least 467 * a log sector, or we're out of luck. 468 */ 469 bufblks = 1 << ffs(nbblks); 470 while (bufblks > log->l_logBBsize) 471 bufblks >>= 1; 472 while (!(bp = xlog_get_bp(log, bufblks))) { 473 bufblks >>= 1; 474 if (bufblks < log->l_sectBBsize) 475 return -ENOMEM; 476 } 477 478 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 479 int bcount; 480 481 bcount = min(bufblks, (start_blk + nbblks - i)); 482 483 error = xlog_bread(log, i, bcount, bp, &buf); 484 if (error) 485 goto out; 486 487 for (j = 0; j < bcount; j++) { 488 cycle = xlog_get_cycle(buf); 489 if (cycle == stop_on_cycle_no) { 490 *new_blk = i+j; 491 goto out; 492 } 493 494 buf += BBSIZE; 495 } 496 } 497 498 *new_blk = -1; 499 500 out: 501 xlog_put_bp(bp); 502 return error; 503 } 504 505 /* 506 * Potentially backup over partial log record write. 507 * 508 * In the typical case, last_blk is the number of the block directly after 509 * a good log record. Therefore, we subtract one to get the block number 510 * of the last block in the given buffer. extra_bblks contains the number 511 * of blocks we would have read on a previous read. This happens when the 512 * last log record is split over the end of the physical log. 513 * 514 * extra_bblks is the number of blocks potentially verified on a previous 515 * call to this routine. 516 */ 517 STATIC int 518 xlog_find_verify_log_record( 519 struct xlog *log, 520 xfs_daddr_t start_blk, 521 xfs_daddr_t *last_blk, 522 int extra_bblks) 523 { 524 xfs_daddr_t i; 525 xfs_buf_t *bp; 526 char *offset = NULL; 527 xlog_rec_header_t *head = NULL; 528 int error = 0; 529 int smallmem = 0; 530 int num_blks = *last_blk - start_blk; 531 int xhdrs; 532 533 ASSERT(start_blk != 0 || *last_blk != start_blk); 534 535 if (!(bp = xlog_get_bp(log, num_blks))) { 536 if (!(bp = xlog_get_bp(log, 1))) 537 return -ENOMEM; 538 smallmem = 1; 539 } else { 540 error = xlog_bread(log, start_blk, num_blks, bp, &offset); 541 if (error) 542 goto out; 543 offset += ((num_blks - 1) << BBSHIFT); 544 } 545 546 for (i = (*last_blk) - 1; i >= 0; i--) { 547 if (i < start_blk) { 548 /* valid log record not found */ 549 xfs_warn(log->l_mp, 550 "Log inconsistent (didn't find previous header)"); 551 ASSERT(0); 552 error = -EIO; 553 goto out; 554 } 555 556 if (smallmem) { 557 error = xlog_bread(log, i, 1, bp, &offset); 558 if (error) 559 goto out; 560 } 561 562 head = (xlog_rec_header_t *)offset; 563 564 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 565 break; 566 567 if (!smallmem) 568 offset -= BBSIZE; 569 } 570 571 /* 572 * We hit the beginning of the physical log & still no header. Return 573 * to caller. If caller can handle a return of -1, then this routine 574 * will be called again for the end of the physical log. 575 */ 576 if (i == -1) { 577 error = 1; 578 goto out; 579 } 580 581 /* 582 * We have the final block of the good log (the first block 583 * of the log record _before_ the head. So we check the uuid. 584 */ 585 if ((error = xlog_header_check_mount(log->l_mp, head))) 586 goto out; 587 588 /* 589 * We may have found a log record header before we expected one. 590 * last_blk will be the 1st block # with a given cycle #. We may end 591 * up reading an entire log record. In this case, we don't want to 592 * reset last_blk. Only when last_blk points in the middle of a log 593 * record do we update last_blk. 594 */ 595 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 596 uint h_size = be32_to_cpu(head->h_size); 597 598 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 599 if (h_size % XLOG_HEADER_CYCLE_SIZE) 600 xhdrs++; 601 } else { 602 xhdrs = 1; 603 } 604 605 if (*last_blk - i + extra_bblks != 606 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 607 *last_blk = i; 608 609 out: 610 xlog_put_bp(bp); 611 return error; 612 } 613 614 /* 615 * Head is defined to be the point of the log where the next log write 616 * could go. This means that incomplete LR writes at the end are 617 * eliminated when calculating the head. We aren't guaranteed that previous 618 * LR have complete transactions. We only know that a cycle number of 619 * current cycle number -1 won't be present in the log if we start writing 620 * from our current block number. 621 * 622 * last_blk contains the block number of the first block with a given 623 * cycle number. 624 * 625 * Return: zero if normal, non-zero if error. 626 */ 627 STATIC int 628 xlog_find_head( 629 struct xlog *log, 630 xfs_daddr_t *return_head_blk) 631 { 632 xfs_buf_t *bp; 633 char *offset; 634 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 635 int num_scan_bblks; 636 uint first_half_cycle, last_half_cycle; 637 uint stop_on_cycle; 638 int error, log_bbnum = log->l_logBBsize; 639 640 /* Is the end of the log device zeroed? */ 641 error = xlog_find_zeroed(log, &first_blk); 642 if (error < 0) { 643 xfs_warn(log->l_mp, "empty log check failed"); 644 return error; 645 } 646 if (error == 1) { 647 *return_head_blk = first_blk; 648 649 /* Is the whole lot zeroed? */ 650 if (!first_blk) { 651 /* Linux XFS shouldn't generate totally zeroed logs - 652 * mkfs etc write a dummy unmount record to a fresh 653 * log so we can store the uuid in there 654 */ 655 xfs_warn(log->l_mp, "totally zeroed log"); 656 } 657 658 return 0; 659 } 660 661 first_blk = 0; /* get cycle # of 1st block */ 662 bp = xlog_get_bp(log, 1); 663 if (!bp) 664 return -ENOMEM; 665 666 error = xlog_bread(log, 0, 1, bp, &offset); 667 if (error) 668 goto bp_err; 669 670 first_half_cycle = xlog_get_cycle(offset); 671 672 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 673 error = xlog_bread(log, last_blk, 1, bp, &offset); 674 if (error) 675 goto bp_err; 676 677 last_half_cycle = xlog_get_cycle(offset); 678 ASSERT(last_half_cycle != 0); 679 680 /* 681 * If the 1st half cycle number is equal to the last half cycle number, 682 * then the entire log is stamped with the same cycle number. In this 683 * case, head_blk can't be set to zero (which makes sense). The below 684 * math doesn't work out properly with head_blk equal to zero. Instead, 685 * we set it to log_bbnum which is an invalid block number, but this 686 * value makes the math correct. If head_blk doesn't changed through 687 * all the tests below, *head_blk is set to zero at the very end rather 688 * than log_bbnum. In a sense, log_bbnum and zero are the same block 689 * in a circular file. 690 */ 691 if (first_half_cycle == last_half_cycle) { 692 /* 693 * In this case we believe that the entire log should have 694 * cycle number last_half_cycle. We need to scan backwards 695 * from the end verifying that there are no holes still 696 * containing last_half_cycle - 1. If we find such a hole, 697 * then the start of that hole will be the new head. The 698 * simple case looks like 699 * x | x ... | x - 1 | x 700 * Another case that fits this picture would be 701 * x | x + 1 | x ... | x 702 * In this case the head really is somewhere at the end of the 703 * log, as one of the latest writes at the beginning was 704 * incomplete. 705 * One more case is 706 * x | x + 1 | x ... | x - 1 | x 707 * This is really the combination of the above two cases, and 708 * the head has to end up at the start of the x-1 hole at the 709 * end of the log. 710 * 711 * In the 256k log case, we will read from the beginning to the 712 * end of the log and search for cycle numbers equal to x-1. 713 * We don't worry about the x+1 blocks that we encounter, 714 * because we know that they cannot be the head since the log 715 * started with x. 716 */ 717 head_blk = log_bbnum; 718 stop_on_cycle = last_half_cycle - 1; 719 } else { 720 /* 721 * In this case we want to find the first block with cycle 722 * number matching last_half_cycle. We expect the log to be 723 * some variation on 724 * x + 1 ... | x ... | x 725 * The first block with cycle number x (last_half_cycle) will 726 * be where the new head belongs. First we do a binary search 727 * for the first occurrence of last_half_cycle. The binary 728 * search may not be totally accurate, so then we scan back 729 * from there looking for occurrences of last_half_cycle before 730 * us. If that backwards scan wraps around the beginning of 731 * the log, then we look for occurrences of last_half_cycle - 1 732 * at the end of the log. The cases we're looking for look 733 * like 734 * v binary search stopped here 735 * x + 1 ... | x | x + 1 | x ... | x 736 * ^ but we want to locate this spot 737 * or 738 * <---------> less than scan distance 739 * x + 1 ... | x ... | x - 1 | x 740 * ^ we want to locate this spot 741 */ 742 stop_on_cycle = last_half_cycle; 743 if ((error = xlog_find_cycle_start(log, bp, first_blk, 744 &head_blk, last_half_cycle))) 745 goto bp_err; 746 } 747 748 /* 749 * Now validate the answer. Scan back some number of maximum possible 750 * blocks and make sure each one has the expected cycle number. The 751 * maximum is determined by the total possible amount of buffering 752 * in the in-core log. The following number can be made tighter if 753 * we actually look at the block size of the filesystem. 754 */ 755 num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log)); 756 if (head_blk >= num_scan_bblks) { 757 /* 758 * We are guaranteed that the entire check can be performed 759 * in one buffer. 760 */ 761 start_blk = head_blk - num_scan_bblks; 762 if ((error = xlog_find_verify_cycle(log, 763 start_blk, num_scan_bblks, 764 stop_on_cycle, &new_blk))) 765 goto bp_err; 766 if (new_blk != -1) 767 head_blk = new_blk; 768 } else { /* need to read 2 parts of log */ 769 /* 770 * We are going to scan backwards in the log in two parts. 771 * First we scan the physical end of the log. In this part 772 * of the log, we are looking for blocks with cycle number 773 * last_half_cycle - 1. 774 * If we find one, then we know that the log starts there, as 775 * we've found a hole that didn't get written in going around 776 * the end of the physical log. The simple case for this is 777 * x + 1 ... | x ... | x - 1 | x 778 * <---------> less than scan distance 779 * If all of the blocks at the end of the log have cycle number 780 * last_half_cycle, then we check the blocks at the start of 781 * the log looking for occurrences of last_half_cycle. If we 782 * find one, then our current estimate for the location of the 783 * first occurrence of last_half_cycle is wrong and we move 784 * back to the hole we've found. This case looks like 785 * x + 1 ... | x | x + 1 | x ... 786 * ^ binary search stopped here 787 * Another case we need to handle that only occurs in 256k 788 * logs is 789 * x + 1 ... | x ... | x+1 | x ... 790 * ^ binary search stops here 791 * In a 256k log, the scan at the end of the log will see the 792 * x + 1 blocks. We need to skip past those since that is 793 * certainly not the head of the log. By searching for 794 * last_half_cycle-1 we accomplish that. 795 */ 796 ASSERT(head_blk <= INT_MAX && 797 (xfs_daddr_t) num_scan_bblks >= head_blk); 798 start_blk = log_bbnum - (num_scan_bblks - head_blk); 799 if ((error = xlog_find_verify_cycle(log, start_blk, 800 num_scan_bblks - (int)head_blk, 801 (stop_on_cycle - 1), &new_blk))) 802 goto bp_err; 803 if (new_blk != -1) { 804 head_blk = new_blk; 805 goto validate_head; 806 } 807 808 /* 809 * Scan beginning of log now. The last part of the physical 810 * log is good. This scan needs to verify that it doesn't find 811 * the last_half_cycle. 812 */ 813 start_blk = 0; 814 ASSERT(head_blk <= INT_MAX); 815 if ((error = xlog_find_verify_cycle(log, 816 start_blk, (int)head_blk, 817 stop_on_cycle, &new_blk))) 818 goto bp_err; 819 if (new_blk != -1) 820 head_blk = new_blk; 821 } 822 823 validate_head: 824 /* 825 * Now we need to make sure head_blk is not pointing to a block in 826 * the middle of a log record. 827 */ 828 num_scan_bblks = XLOG_REC_SHIFT(log); 829 if (head_blk >= num_scan_bblks) { 830 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 831 832 /* start ptr at last block ptr before head_blk */ 833 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 834 if (error == 1) 835 error = -EIO; 836 if (error) 837 goto bp_err; 838 } else { 839 start_blk = 0; 840 ASSERT(head_blk <= INT_MAX); 841 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 842 if (error < 0) 843 goto bp_err; 844 if (error == 1) { 845 /* We hit the beginning of the log during our search */ 846 start_blk = log_bbnum - (num_scan_bblks - head_blk); 847 new_blk = log_bbnum; 848 ASSERT(start_blk <= INT_MAX && 849 (xfs_daddr_t) log_bbnum-start_blk >= 0); 850 ASSERT(head_blk <= INT_MAX); 851 error = xlog_find_verify_log_record(log, start_blk, 852 &new_blk, (int)head_blk); 853 if (error == 1) 854 error = -EIO; 855 if (error) 856 goto bp_err; 857 if (new_blk != log_bbnum) 858 head_blk = new_blk; 859 } else if (error) 860 goto bp_err; 861 } 862 863 xlog_put_bp(bp); 864 if (head_blk == log_bbnum) 865 *return_head_blk = 0; 866 else 867 *return_head_blk = head_blk; 868 /* 869 * When returning here, we have a good block number. Bad block 870 * means that during a previous crash, we didn't have a clean break 871 * from cycle number N to cycle number N-1. In this case, we need 872 * to find the first block with cycle number N-1. 873 */ 874 return 0; 875 876 bp_err: 877 xlog_put_bp(bp); 878 879 if (error) 880 xfs_warn(log->l_mp, "failed to find log head"); 881 return error; 882 } 883 884 /* 885 * Seek backwards in the log for log record headers. 886 * 887 * Given a starting log block, walk backwards until we find the provided number 888 * of records or hit the provided tail block. The return value is the number of 889 * records encountered or a negative error code. The log block and buffer 890 * pointer of the last record seen are returned in rblk and rhead respectively. 891 */ 892 STATIC int 893 xlog_rseek_logrec_hdr( 894 struct xlog *log, 895 xfs_daddr_t head_blk, 896 xfs_daddr_t tail_blk, 897 int count, 898 struct xfs_buf *bp, 899 xfs_daddr_t *rblk, 900 struct xlog_rec_header **rhead, 901 bool *wrapped) 902 { 903 int i; 904 int error; 905 int found = 0; 906 char *offset = NULL; 907 xfs_daddr_t end_blk; 908 909 *wrapped = false; 910 911 /* 912 * Walk backwards from the head block until we hit the tail or the first 913 * block in the log. 914 */ 915 end_blk = head_blk > tail_blk ? tail_blk : 0; 916 for (i = (int) head_blk - 1; i >= end_blk; i--) { 917 error = xlog_bread(log, i, 1, bp, &offset); 918 if (error) 919 goto out_error; 920 921 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 922 *rblk = i; 923 *rhead = (struct xlog_rec_header *) offset; 924 if (++found == count) 925 break; 926 } 927 } 928 929 /* 930 * If we haven't hit the tail block or the log record header count, 931 * start looking again from the end of the physical log. Note that 932 * callers can pass head == tail if the tail is not yet known. 933 */ 934 if (tail_blk >= head_blk && found != count) { 935 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) { 936 error = xlog_bread(log, i, 1, bp, &offset); 937 if (error) 938 goto out_error; 939 940 if (*(__be32 *)offset == 941 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 942 *wrapped = true; 943 *rblk = i; 944 *rhead = (struct xlog_rec_header *) offset; 945 if (++found == count) 946 break; 947 } 948 } 949 } 950 951 return found; 952 953 out_error: 954 return error; 955 } 956 957 /* 958 * Seek forward in the log for log record headers. 959 * 960 * Given head and tail blocks, walk forward from the tail block until we find 961 * the provided number of records or hit the head block. The return value is the 962 * number of records encountered or a negative error code. The log block and 963 * buffer pointer of the last record seen are returned in rblk and rhead 964 * respectively. 965 */ 966 STATIC int 967 xlog_seek_logrec_hdr( 968 struct xlog *log, 969 xfs_daddr_t head_blk, 970 xfs_daddr_t tail_blk, 971 int count, 972 struct xfs_buf *bp, 973 xfs_daddr_t *rblk, 974 struct xlog_rec_header **rhead, 975 bool *wrapped) 976 { 977 int i; 978 int error; 979 int found = 0; 980 char *offset = NULL; 981 xfs_daddr_t end_blk; 982 983 *wrapped = false; 984 985 /* 986 * Walk forward from the tail block until we hit the head or the last 987 * block in the log. 988 */ 989 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1; 990 for (i = (int) tail_blk; i <= end_blk; i++) { 991 error = xlog_bread(log, i, 1, bp, &offset); 992 if (error) 993 goto out_error; 994 995 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 996 *rblk = i; 997 *rhead = (struct xlog_rec_header *) offset; 998 if (++found == count) 999 break; 1000 } 1001 } 1002 1003 /* 1004 * If we haven't hit the head block or the log record header count, 1005 * start looking again from the start of the physical log. 1006 */ 1007 if (tail_blk > head_blk && found != count) { 1008 for (i = 0; i < (int) head_blk; i++) { 1009 error = xlog_bread(log, i, 1, bp, &offset); 1010 if (error) 1011 goto out_error; 1012 1013 if (*(__be32 *)offset == 1014 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 1015 *wrapped = true; 1016 *rblk = i; 1017 *rhead = (struct xlog_rec_header *) offset; 1018 if (++found == count) 1019 break; 1020 } 1021 } 1022 } 1023 1024 return found; 1025 1026 out_error: 1027 return error; 1028 } 1029 1030 /* 1031 * Calculate distance from head to tail (i.e., unused space in the log). 1032 */ 1033 static inline int 1034 xlog_tail_distance( 1035 struct xlog *log, 1036 xfs_daddr_t head_blk, 1037 xfs_daddr_t tail_blk) 1038 { 1039 if (head_blk < tail_blk) 1040 return tail_blk - head_blk; 1041 1042 return tail_blk + (log->l_logBBsize - head_blk); 1043 } 1044 1045 /* 1046 * Verify the log tail. This is particularly important when torn or incomplete 1047 * writes have been detected near the front of the log and the head has been 1048 * walked back accordingly. 1049 * 1050 * We also have to handle the case where the tail was pinned and the head 1051 * blocked behind the tail right before a crash. If the tail had been pushed 1052 * immediately prior to the crash and the subsequent checkpoint was only 1053 * partially written, it's possible it overwrote the last referenced tail in the 1054 * log with garbage. This is not a coherency problem because the tail must have 1055 * been pushed before it can be overwritten, but appears as log corruption to 1056 * recovery because we have no way to know the tail was updated if the 1057 * subsequent checkpoint didn't write successfully. 1058 * 1059 * Therefore, CRC check the log from tail to head. If a failure occurs and the 1060 * offending record is within max iclog bufs from the head, walk the tail 1061 * forward and retry until a valid tail is found or corruption is detected out 1062 * of the range of a possible overwrite. 1063 */ 1064 STATIC int 1065 xlog_verify_tail( 1066 struct xlog *log, 1067 xfs_daddr_t head_blk, 1068 xfs_daddr_t *tail_blk, 1069 int hsize) 1070 { 1071 struct xlog_rec_header *thead; 1072 struct xfs_buf *bp; 1073 xfs_daddr_t first_bad; 1074 int error = 0; 1075 bool wrapped; 1076 xfs_daddr_t tmp_tail; 1077 xfs_daddr_t orig_tail = *tail_blk; 1078 1079 bp = xlog_get_bp(log, 1); 1080 if (!bp) 1081 return -ENOMEM; 1082 1083 /* 1084 * Make sure the tail points to a record (returns positive count on 1085 * success). 1086 */ 1087 error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, bp, 1088 &tmp_tail, &thead, &wrapped); 1089 if (error < 0) 1090 goto out; 1091 if (*tail_blk != tmp_tail) 1092 *tail_blk = tmp_tail; 1093 1094 /* 1095 * Run a CRC check from the tail to the head. We can't just check 1096 * MAX_ICLOGS records past the tail because the tail may point to stale 1097 * blocks cleared during the search for the head/tail. These blocks are 1098 * overwritten with zero-length records and thus record count is not a 1099 * reliable indicator of the iclog state before a crash. 1100 */ 1101 first_bad = 0; 1102 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 1103 XLOG_RECOVER_CRCPASS, &first_bad); 1104 while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 1105 int tail_distance; 1106 1107 /* 1108 * Is corruption within range of the head? If so, retry from 1109 * the next record. Otherwise return an error. 1110 */ 1111 tail_distance = xlog_tail_distance(log, head_blk, first_bad); 1112 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize)) 1113 break; 1114 1115 /* skip to the next record; returns positive count on success */ 1116 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, bp, 1117 &tmp_tail, &thead, &wrapped); 1118 if (error < 0) 1119 goto out; 1120 1121 *tail_blk = tmp_tail; 1122 first_bad = 0; 1123 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 1124 XLOG_RECOVER_CRCPASS, &first_bad); 1125 } 1126 1127 if (!error && *tail_blk != orig_tail) 1128 xfs_warn(log->l_mp, 1129 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx", 1130 orig_tail, *tail_blk); 1131 out: 1132 xlog_put_bp(bp); 1133 return error; 1134 } 1135 1136 /* 1137 * Detect and trim torn writes from the head of the log. 1138 * 1139 * Storage without sector atomicity guarantees can result in torn writes in the 1140 * log in the event of a crash. Our only means to detect this scenario is via 1141 * CRC verification. While we can't always be certain that CRC verification 1142 * failure is due to a torn write vs. an unrelated corruption, we do know that 1143 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at 1144 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of 1145 * the log and treat failures in this range as torn writes as a matter of 1146 * policy. In the event of CRC failure, the head is walked back to the last good 1147 * record in the log and the tail is updated from that record and verified. 1148 */ 1149 STATIC int 1150 xlog_verify_head( 1151 struct xlog *log, 1152 xfs_daddr_t *head_blk, /* in/out: unverified head */ 1153 xfs_daddr_t *tail_blk, /* out: tail block */ 1154 struct xfs_buf *bp, 1155 xfs_daddr_t *rhead_blk, /* start blk of last record */ 1156 struct xlog_rec_header **rhead, /* ptr to last record */ 1157 bool *wrapped) /* last rec. wraps phys. log */ 1158 { 1159 struct xlog_rec_header *tmp_rhead; 1160 struct xfs_buf *tmp_bp; 1161 xfs_daddr_t first_bad; 1162 xfs_daddr_t tmp_rhead_blk; 1163 int found; 1164 int error; 1165 bool tmp_wrapped; 1166 1167 /* 1168 * Check the head of the log for torn writes. Search backwards from the 1169 * head until we hit the tail or the maximum number of log record I/Os 1170 * that could have been in flight at one time. Use a temporary buffer so 1171 * we don't trash the rhead/bp pointers from the caller. 1172 */ 1173 tmp_bp = xlog_get_bp(log, 1); 1174 if (!tmp_bp) 1175 return -ENOMEM; 1176 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk, 1177 XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk, 1178 &tmp_rhead, &tmp_wrapped); 1179 xlog_put_bp(tmp_bp); 1180 if (error < 0) 1181 return error; 1182 1183 /* 1184 * Now run a CRC verification pass over the records starting at the 1185 * block found above to the current head. If a CRC failure occurs, the 1186 * log block of the first bad record is saved in first_bad. 1187 */ 1188 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk, 1189 XLOG_RECOVER_CRCPASS, &first_bad); 1190 if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 1191 /* 1192 * We've hit a potential torn write. Reset the error and warn 1193 * about it. 1194 */ 1195 error = 0; 1196 xfs_warn(log->l_mp, 1197 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.", 1198 first_bad, *head_blk); 1199 1200 /* 1201 * Get the header block and buffer pointer for the last good 1202 * record before the bad record. 1203 * 1204 * Note that xlog_find_tail() clears the blocks at the new head 1205 * (i.e., the records with invalid CRC) if the cycle number 1206 * matches the the current cycle. 1207 */ 1208 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp, 1209 rhead_blk, rhead, wrapped); 1210 if (found < 0) 1211 return found; 1212 if (found == 0) /* XXX: right thing to do here? */ 1213 return -EIO; 1214 1215 /* 1216 * Reset the head block to the starting block of the first bad 1217 * log record and set the tail block based on the last good 1218 * record. 1219 * 1220 * Bail out if the updated head/tail match as this indicates 1221 * possible corruption outside of the acceptable 1222 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair... 1223 */ 1224 *head_blk = first_bad; 1225 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn)); 1226 if (*head_blk == *tail_blk) { 1227 ASSERT(0); 1228 return 0; 1229 } 1230 } 1231 if (error) 1232 return error; 1233 1234 return xlog_verify_tail(log, *head_blk, tail_blk, 1235 be32_to_cpu((*rhead)->h_size)); 1236 } 1237 1238 /* 1239 * We need to make sure we handle log wrapping properly, so we can't use the 1240 * calculated logbno directly. Make sure it wraps to the correct bno inside the 1241 * log. 1242 * 1243 * The log is limited to 32 bit sizes, so we use the appropriate modulus 1244 * operation here and cast it back to a 64 bit daddr on return. 1245 */ 1246 static inline xfs_daddr_t 1247 xlog_wrap_logbno( 1248 struct xlog *log, 1249 xfs_daddr_t bno) 1250 { 1251 int mod; 1252 1253 div_s64_rem(bno, log->l_logBBsize, &mod); 1254 return mod; 1255 } 1256 1257 /* 1258 * Check whether the head of the log points to an unmount record. In other 1259 * words, determine whether the log is clean. If so, update the in-core state 1260 * appropriately. 1261 */ 1262 static int 1263 xlog_check_unmount_rec( 1264 struct xlog *log, 1265 xfs_daddr_t *head_blk, 1266 xfs_daddr_t *tail_blk, 1267 struct xlog_rec_header *rhead, 1268 xfs_daddr_t rhead_blk, 1269 struct xfs_buf *bp, 1270 bool *clean) 1271 { 1272 struct xlog_op_header *op_head; 1273 xfs_daddr_t umount_data_blk; 1274 xfs_daddr_t after_umount_blk; 1275 int hblks; 1276 int error; 1277 char *offset; 1278 1279 *clean = false; 1280 1281 /* 1282 * Look for unmount record. If we find it, then we know there was a 1283 * clean unmount. Since 'i' could be the last block in the physical 1284 * log, we convert to a log block before comparing to the head_blk. 1285 * 1286 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks() 1287 * below. We won't want to clear the unmount record if there is one, so 1288 * we pass the lsn of the unmount record rather than the block after it. 1289 */ 1290 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1291 int h_size = be32_to_cpu(rhead->h_size); 1292 int h_version = be32_to_cpu(rhead->h_version); 1293 1294 if ((h_version & XLOG_VERSION_2) && 1295 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 1296 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 1297 if (h_size % XLOG_HEADER_CYCLE_SIZE) 1298 hblks++; 1299 } else { 1300 hblks = 1; 1301 } 1302 } else { 1303 hblks = 1; 1304 } 1305 1306 after_umount_blk = xlog_wrap_logbno(log, 1307 rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len))); 1308 1309 if (*head_blk == after_umount_blk && 1310 be32_to_cpu(rhead->h_num_logops) == 1) { 1311 umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks); 1312 error = xlog_bread(log, umount_data_blk, 1, bp, &offset); 1313 if (error) 1314 return error; 1315 1316 op_head = (struct xlog_op_header *)offset; 1317 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 1318 /* 1319 * Set tail and last sync so that newly written log 1320 * records will point recovery to after the current 1321 * unmount record. 1322 */ 1323 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1324 log->l_curr_cycle, after_umount_blk); 1325 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1326 log->l_curr_cycle, after_umount_blk); 1327 *tail_blk = after_umount_blk; 1328 1329 *clean = true; 1330 } 1331 } 1332 1333 return 0; 1334 } 1335 1336 static void 1337 xlog_set_state( 1338 struct xlog *log, 1339 xfs_daddr_t head_blk, 1340 struct xlog_rec_header *rhead, 1341 xfs_daddr_t rhead_blk, 1342 bool bump_cycle) 1343 { 1344 /* 1345 * Reset log values according to the state of the log when we 1346 * crashed. In the case where head_blk == 0, we bump curr_cycle 1347 * one because the next write starts a new cycle rather than 1348 * continuing the cycle of the last good log record. At this 1349 * point we have guaranteed that all partial log records have been 1350 * accounted for. Therefore, we know that the last good log record 1351 * written was complete and ended exactly on the end boundary 1352 * of the physical log. 1353 */ 1354 log->l_prev_block = rhead_blk; 1355 log->l_curr_block = (int)head_blk; 1356 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 1357 if (bump_cycle) 1358 log->l_curr_cycle++; 1359 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); 1360 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); 1361 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, 1362 BBTOB(log->l_curr_block)); 1363 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, 1364 BBTOB(log->l_curr_block)); 1365 } 1366 1367 /* 1368 * Find the sync block number or the tail of the log. 1369 * 1370 * This will be the block number of the last record to have its 1371 * associated buffers synced to disk. Every log record header has 1372 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 1373 * to get a sync block number. The only concern is to figure out which 1374 * log record header to believe. 1375 * 1376 * The following algorithm uses the log record header with the largest 1377 * lsn. The entire log record does not need to be valid. We only care 1378 * that the header is valid. 1379 * 1380 * We could speed up search by using current head_blk buffer, but it is not 1381 * available. 1382 */ 1383 STATIC int 1384 xlog_find_tail( 1385 struct xlog *log, 1386 xfs_daddr_t *head_blk, 1387 xfs_daddr_t *tail_blk) 1388 { 1389 xlog_rec_header_t *rhead; 1390 char *offset = NULL; 1391 xfs_buf_t *bp; 1392 int error; 1393 xfs_daddr_t rhead_blk; 1394 xfs_lsn_t tail_lsn; 1395 bool wrapped = false; 1396 bool clean = false; 1397 1398 /* 1399 * Find previous log record 1400 */ 1401 if ((error = xlog_find_head(log, head_blk))) 1402 return error; 1403 ASSERT(*head_blk < INT_MAX); 1404 1405 bp = xlog_get_bp(log, 1); 1406 if (!bp) 1407 return -ENOMEM; 1408 if (*head_blk == 0) { /* special case */ 1409 error = xlog_bread(log, 0, 1, bp, &offset); 1410 if (error) 1411 goto done; 1412 1413 if (xlog_get_cycle(offset) == 0) { 1414 *tail_blk = 0; 1415 /* leave all other log inited values alone */ 1416 goto done; 1417 } 1418 } 1419 1420 /* 1421 * Search backwards through the log looking for the log record header 1422 * block. This wraps all the way back around to the head so something is 1423 * seriously wrong if we can't find it. 1424 */ 1425 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp, 1426 &rhead_blk, &rhead, &wrapped); 1427 if (error < 0) 1428 return error; 1429 if (!error) { 1430 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); 1431 return -EIO; 1432 } 1433 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 1434 1435 /* 1436 * Set the log state based on the current head record. 1437 */ 1438 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped); 1439 tail_lsn = atomic64_read(&log->l_tail_lsn); 1440 1441 /* 1442 * Look for an unmount record at the head of the log. This sets the log 1443 * state to determine whether recovery is necessary. 1444 */ 1445 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead, 1446 rhead_blk, bp, &clean); 1447 if (error) 1448 goto done; 1449 1450 /* 1451 * Verify the log head if the log is not clean (e.g., we have anything 1452 * but an unmount record at the head). This uses CRC verification to 1453 * detect and trim torn writes. If discovered, CRC failures are 1454 * considered torn writes and the log head is trimmed accordingly. 1455 * 1456 * Note that we can only run CRC verification when the log is dirty 1457 * because there's no guarantee that the log data behind an unmount 1458 * record is compatible with the current architecture. 1459 */ 1460 if (!clean) { 1461 xfs_daddr_t orig_head = *head_blk; 1462 1463 error = xlog_verify_head(log, head_blk, tail_blk, bp, 1464 &rhead_blk, &rhead, &wrapped); 1465 if (error) 1466 goto done; 1467 1468 /* update in-core state again if the head changed */ 1469 if (*head_blk != orig_head) { 1470 xlog_set_state(log, *head_blk, rhead, rhead_blk, 1471 wrapped); 1472 tail_lsn = atomic64_read(&log->l_tail_lsn); 1473 error = xlog_check_unmount_rec(log, head_blk, tail_blk, 1474 rhead, rhead_blk, bp, 1475 &clean); 1476 if (error) 1477 goto done; 1478 } 1479 } 1480 1481 /* 1482 * Note that the unmount was clean. If the unmount was not clean, we 1483 * need to know this to rebuild the superblock counters from the perag 1484 * headers if we have a filesystem using non-persistent counters. 1485 */ 1486 if (clean) 1487 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 1488 1489 /* 1490 * Make sure that there are no blocks in front of the head 1491 * with the same cycle number as the head. This can happen 1492 * because we allow multiple outstanding log writes concurrently, 1493 * and the later writes might make it out before earlier ones. 1494 * 1495 * We use the lsn from before modifying it so that we'll never 1496 * overwrite the unmount record after a clean unmount. 1497 * 1498 * Do this only if we are going to recover the filesystem 1499 * 1500 * NOTE: This used to say "if (!readonly)" 1501 * However on Linux, we can & do recover a read-only filesystem. 1502 * We only skip recovery if NORECOVERY is specified on mount, 1503 * in which case we would not be here. 1504 * 1505 * But... if the -device- itself is readonly, just skip this. 1506 * We can't recover this device anyway, so it won't matter. 1507 */ 1508 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) 1509 error = xlog_clear_stale_blocks(log, tail_lsn); 1510 1511 done: 1512 xlog_put_bp(bp); 1513 1514 if (error) 1515 xfs_warn(log->l_mp, "failed to locate log tail"); 1516 return error; 1517 } 1518 1519 /* 1520 * Is the log zeroed at all? 1521 * 1522 * The last binary search should be changed to perform an X block read 1523 * once X becomes small enough. You can then search linearly through 1524 * the X blocks. This will cut down on the number of reads we need to do. 1525 * 1526 * If the log is partially zeroed, this routine will pass back the blkno 1527 * of the first block with cycle number 0. It won't have a complete LR 1528 * preceding it. 1529 * 1530 * Return: 1531 * 0 => the log is completely written to 1532 * 1 => use *blk_no as the first block of the log 1533 * <0 => error has occurred 1534 */ 1535 STATIC int 1536 xlog_find_zeroed( 1537 struct xlog *log, 1538 xfs_daddr_t *blk_no) 1539 { 1540 xfs_buf_t *bp; 1541 char *offset; 1542 uint first_cycle, last_cycle; 1543 xfs_daddr_t new_blk, last_blk, start_blk; 1544 xfs_daddr_t num_scan_bblks; 1545 int error, log_bbnum = log->l_logBBsize; 1546 1547 *blk_no = 0; 1548 1549 /* check totally zeroed log */ 1550 bp = xlog_get_bp(log, 1); 1551 if (!bp) 1552 return -ENOMEM; 1553 error = xlog_bread(log, 0, 1, bp, &offset); 1554 if (error) 1555 goto bp_err; 1556 1557 first_cycle = xlog_get_cycle(offset); 1558 if (first_cycle == 0) { /* completely zeroed log */ 1559 *blk_no = 0; 1560 xlog_put_bp(bp); 1561 return 1; 1562 } 1563 1564 /* check partially zeroed log */ 1565 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset); 1566 if (error) 1567 goto bp_err; 1568 1569 last_cycle = xlog_get_cycle(offset); 1570 if (last_cycle != 0) { /* log completely written to */ 1571 xlog_put_bp(bp); 1572 return 0; 1573 } else if (first_cycle != 1) { 1574 /* 1575 * If the cycle of the last block is zero, the cycle of 1576 * the first block must be 1. If it's not, maybe we're 1577 * not looking at a log... Bail out. 1578 */ 1579 xfs_warn(log->l_mp, 1580 "Log inconsistent or not a log (last==0, first!=1)"); 1581 error = -EINVAL; 1582 goto bp_err; 1583 } 1584 1585 /* we have a partially zeroed log */ 1586 last_blk = log_bbnum-1; 1587 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1588 goto bp_err; 1589 1590 /* 1591 * Validate the answer. Because there is no way to guarantee that 1592 * the entire log is made up of log records which are the same size, 1593 * we scan over the defined maximum blocks. At this point, the maximum 1594 * is not chosen to mean anything special. XXXmiken 1595 */ 1596 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1597 ASSERT(num_scan_bblks <= INT_MAX); 1598 1599 if (last_blk < num_scan_bblks) 1600 num_scan_bblks = last_blk; 1601 start_blk = last_blk - num_scan_bblks; 1602 1603 /* 1604 * We search for any instances of cycle number 0 that occur before 1605 * our current estimate of the head. What we're trying to detect is 1606 * 1 ... | 0 | 1 | 0... 1607 * ^ binary search ends here 1608 */ 1609 if ((error = xlog_find_verify_cycle(log, start_blk, 1610 (int)num_scan_bblks, 0, &new_blk))) 1611 goto bp_err; 1612 if (new_blk != -1) 1613 last_blk = new_blk; 1614 1615 /* 1616 * Potentially backup over partial log record write. We don't need 1617 * to search the end of the log because we know it is zero. 1618 */ 1619 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0); 1620 if (error == 1) 1621 error = -EIO; 1622 if (error) 1623 goto bp_err; 1624 1625 *blk_no = last_blk; 1626 bp_err: 1627 xlog_put_bp(bp); 1628 if (error) 1629 return error; 1630 return 1; 1631 } 1632 1633 /* 1634 * These are simple subroutines used by xlog_clear_stale_blocks() below 1635 * to initialize a buffer full of empty log record headers and write 1636 * them into the log. 1637 */ 1638 STATIC void 1639 xlog_add_record( 1640 struct xlog *log, 1641 char *buf, 1642 int cycle, 1643 int block, 1644 int tail_cycle, 1645 int tail_block) 1646 { 1647 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1648 1649 memset(buf, 0, BBSIZE); 1650 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1651 recp->h_cycle = cpu_to_be32(cycle); 1652 recp->h_version = cpu_to_be32( 1653 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1654 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1655 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1656 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1657 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1658 } 1659 1660 STATIC int 1661 xlog_write_log_records( 1662 struct xlog *log, 1663 int cycle, 1664 int start_block, 1665 int blocks, 1666 int tail_cycle, 1667 int tail_block) 1668 { 1669 char *offset; 1670 xfs_buf_t *bp; 1671 int balign, ealign; 1672 int sectbb = log->l_sectBBsize; 1673 int end_block = start_block + blocks; 1674 int bufblks; 1675 int error = 0; 1676 int i, j = 0; 1677 1678 /* 1679 * Greedily allocate a buffer big enough to handle the full 1680 * range of basic blocks to be written. If that fails, try 1681 * a smaller size. We need to be able to write at least a 1682 * log sector, or we're out of luck. 1683 */ 1684 bufblks = 1 << ffs(blocks); 1685 while (bufblks > log->l_logBBsize) 1686 bufblks >>= 1; 1687 while (!(bp = xlog_get_bp(log, bufblks))) { 1688 bufblks >>= 1; 1689 if (bufblks < sectbb) 1690 return -ENOMEM; 1691 } 1692 1693 /* We may need to do a read at the start to fill in part of 1694 * the buffer in the starting sector not covered by the first 1695 * write below. 1696 */ 1697 balign = round_down(start_block, sectbb); 1698 if (balign != start_block) { 1699 error = xlog_bread_noalign(log, start_block, 1, bp); 1700 if (error) 1701 goto out_put_bp; 1702 1703 j = start_block - balign; 1704 } 1705 1706 for (i = start_block; i < end_block; i += bufblks) { 1707 int bcount, endcount; 1708 1709 bcount = min(bufblks, end_block - start_block); 1710 endcount = bcount - j; 1711 1712 /* We may need to do a read at the end to fill in part of 1713 * the buffer in the final sector not covered by the write. 1714 * If this is the same sector as the above read, skip it. 1715 */ 1716 ealign = round_down(end_block, sectbb); 1717 if (j == 0 && (start_block + endcount > ealign)) { 1718 offset = bp->b_addr + BBTOB(ealign - start_block); 1719 error = xlog_bread_offset(log, ealign, sectbb, 1720 bp, offset); 1721 if (error) 1722 break; 1723 1724 } 1725 1726 offset = xlog_align(log, start_block, endcount, bp); 1727 for (; j < endcount; j++) { 1728 xlog_add_record(log, offset, cycle, i+j, 1729 tail_cycle, tail_block); 1730 offset += BBSIZE; 1731 } 1732 error = xlog_bwrite(log, start_block, endcount, bp); 1733 if (error) 1734 break; 1735 start_block += endcount; 1736 j = 0; 1737 } 1738 1739 out_put_bp: 1740 xlog_put_bp(bp); 1741 return error; 1742 } 1743 1744 /* 1745 * This routine is called to blow away any incomplete log writes out 1746 * in front of the log head. We do this so that we won't become confused 1747 * if we come up, write only a little bit more, and then crash again. 1748 * If we leave the partial log records out there, this situation could 1749 * cause us to think those partial writes are valid blocks since they 1750 * have the current cycle number. We get rid of them by overwriting them 1751 * with empty log records with the old cycle number rather than the 1752 * current one. 1753 * 1754 * The tail lsn is passed in rather than taken from 1755 * the log so that we will not write over the unmount record after a 1756 * clean unmount in a 512 block log. Doing so would leave the log without 1757 * any valid log records in it until a new one was written. If we crashed 1758 * during that time we would not be able to recover. 1759 */ 1760 STATIC int 1761 xlog_clear_stale_blocks( 1762 struct xlog *log, 1763 xfs_lsn_t tail_lsn) 1764 { 1765 int tail_cycle, head_cycle; 1766 int tail_block, head_block; 1767 int tail_distance, max_distance; 1768 int distance; 1769 int error; 1770 1771 tail_cycle = CYCLE_LSN(tail_lsn); 1772 tail_block = BLOCK_LSN(tail_lsn); 1773 head_cycle = log->l_curr_cycle; 1774 head_block = log->l_curr_block; 1775 1776 /* 1777 * Figure out the distance between the new head of the log 1778 * and the tail. We want to write over any blocks beyond the 1779 * head that we may have written just before the crash, but 1780 * we don't want to overwrite the tail of the log. 1781 */ 1782 if (head_cycle == tail_cycle) { 1783 /* 1784 * The tail is behind the head in the physical log, 1785 * so the distance from the head to the tail is the 1786 * distance from the head to the end of the log plus 1787 * the distance from the beginning of the log to the 1788 * tail. 1789 */ 1790 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1791 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1792 XFS_ERRLEVEL_LOW, log->l_mp); 1793 return -EFSCORRUPTED; 1794 } 1795 tail_distance = tail_block + (log->l_logBBsize - head_block); 1796 } else { 1797 /* 1798 * The head is behind the tail in the physical log, 1799 * so the distance from the head to the tail is just 1800 * the tail block minus the head block. 1801 */ 1802 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1803 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1804 XFS_ERRLEVEL_LOW, log->l_mp); 1805 return -EFSCORRUPTED; 1806 } 1807 tail_distance = tail_block - head_block; 1808 } 1809 1810 /* 1811 * If the head is right up against the tail, we can't clear 1812 * anything. 1813 */ 1814 if (tail_distance <= 0) { 1815 ASSERT(tail_distance == 0); 1816 return 0; 1817 } 1818 1819 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1820 /* 1821 * Take the smaller of the maximum amount of outstanding I/O 1822 * we could have and the distance to the tail to clear out. 1823 * We take the smaller so that we don't overwrite the tail and 1824 * we don't waste all day writing from the head to the tail 1825 * for no reason. 1826 */ 1827 max_distance = min(max_distance, tail_distance); 1828 1829 if ((head_block + max_distance) <= log->l_logBBsize) { 1830 /* 1831 * We can stomp all the blocks we need to without 1832 * wrapping around the end of the log. Just do it 1833 * in a single write. Use the cycle number of the 1834 * current cycle minus one so that the log will look like: 1835 * n ... | n - 1 ... 1836 */ 1837 error = xlog_write_log_records(log, (head_cycle - 1), 1838 head_block, max_distance, tail_cycle, 1839 tail_block); 1840 if (error) 1841 return error; 1842 } else { 1843 /* 1844 * We need to wrap around the end of the physical log in 1845 * order to clear all the blocks. Do it in two separate 1846 * I/Os. The first write should be from the head to the 1847 * end of the physical log, and it should use the current 1848 * cycle number minus one just like above. 1849 */ 1850 distance = log->l_logBBsize - head_block; 1851 error = xlog_write_log_records(log, (head_cycle - 1), 1852 head_block, distance, tail_cycle, 1853 tail_block); 1854 1855 if (error) 1856 return error; 1857 1858 /* 1859 * Now write the blocks at the start of the physical log. 1860 * This writes the remainder of the blocks we want to clear. 1861 * It uses the current cycle number since we're now on the 1862 * same cycle as the head so that we get: 1863 * n ... n ... | n - 1 ... 1864 * ^^^^^ blocks we're writing 1865 */ 1866 distance = max_distance - (log->l_logBBsize - head_block); 1867 error = xlog_write_log_records(log, head_cycle, 0, distance, 1868 tail_cycle, tail_block); 1869 if (error) 1870 return error; 1871 } 1872 1873 return 0; 1874 } 1875 1876 /****************************************************************************** 1877 * 1878 * Log recover routines 1879 * 1880 ****************************************************************************** 1881 */ 1882 1883 /* 1884 * Sort the log items in the transaction. 1885 * 1886 * The ordering constraints are defined by the inode allocation and unlink 1887 * behaviour. The rules are: 1888 * 1889 * 1. Every item is only logged once in a given transaction. Hence it 1890 * represents the last logged state of the item. Hence ordering is 1891 * dependent on the order in which operations need to be performed so 1892 * required initial conditions are always met. 1893 * 1894 * 2. Cancelled buffers are recorded in pass 1 in a separate table and 1895 * there's nothing to replay from them so we can simply cull them 1896 * from the transaction. However, we can't do that until after we've 1897 * replayed all the other items because they may be dependent on the 1898 * cancelled buffer and replaying the cancelled buffer can remove it 1899 * form the cancelled buffer table. Hence they have tobe done last. 1900 * 1901 * 3. Inode allocation buffers must be replayed before inode items that 1902 * read the buffer and replay changes into it. For filesystems using the 1903 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get 1904 * treated the same as inode allocation buffers as they create and 1905 * initialise the buffers directly. 1906 * 1907 * 4. Inode unlink buffers must be replayed after inode items are replayed. 1908 * This ensures that inodes are completely flushed to the inode buffer 1909 * in a "free" state before we remove the unlinked inode list pointer. 1910 * 1911 * Hence the ordering needs to be inode allocation buffers first, inode items 1912 * second, inode unlink buffers third and cancelled buffers last. 1913 * 1914 * But there's a problem with that - we can't tell an inode allocation buffer 1915 * apart from a regular buffer, so we can't separate them. We can, however, 1916 * tell an inode unlink buffer from the others, and so we can separate them out 1917 * from all the other buffers and move them to last. 1918 * 1919 * Hence, 4 lists, in order from head to tail: 1920 * - buffer_list for all buffers except cancelled/inode unlink buffers 1921 * - item_list for all non-buffer items 1922 * - inode_buffer_list for inode unlink buffers 1923 * - cancel_list for the cancelled buffers 1924 * 1925 * Note that we add objects to the tail of the lists so that first-to-last 1926 * ordering is preserved within the lists. Adding objects to the head of the 1927 * list means when we traverse from the head we walk them in last-to-first 1928 * order. For cancelled buffers and inode unlink buffers this doesn't matter, 1929 * but for all other items there may be specific ordering that we need to 1930 * preserve. 1931 */ 1932 STATIC int 1933 xlog_recover_reorder_trans( 1934 struct xlog *log, 1935 struct xlog_recover *trans, 1936 int pass) 1937 { 1938 xlog_recover_item_t *item, *n; 1939 int error = 0; 1940 LIST_HEAD(sort_list); 1941 LIST_HEAD(cancel_list); 1942 LIST_HEAD(buffer_list); 1943 LIST_HEAD(inode_buffer_list); 1944 LIST_HEAD(inode_list); 1945 1946 list_splice_init(&trans->r_itemq, &sort_list); 1947 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1948 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1949 1950 switch (ITEM_TYPE(item)) { 1951 case XFS_LI_ICREATE: 1952 list_move_tail(&item->ri_list, &buffer_list); 1953 break; 1954 case XFS_LI_BUF: 1955 if (buf_f->blf_flags & XFS_BLF_CANCEL) { 1956 trace_xfs_log_recover_item_reorder_head(log, 1957 trans, item, pass); 1958 list_move(&item->ri_list, &cancel_list); 1959 break; 1960 } 1961 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 1962 list_move(&item->ri_list, &inode_buffer_list); 1963 break; 1964 } 1965 list_move_tail(&item->ri_list, &buffer_list); 1966 break; 1967 case XFS_LI_INODE: 1968 case XFS_LI_DQUOT: 1969 case XFS_LI_QUOTAOFF: 1970 case XFS_LI_EFD: 1971 case XFS_LI_EFI: 1972 case XFS_LI_RUI: 1973 case XFS_LI_RUD: 1974 case XFS_LI_CUI: 1975 case XFS_LI_CUD: 1976 case XFS_LI_BUI: 1977 case XFS_LI_BUD: 1978 trace_xfs_log_recover_item_reorder_tail(log, 1979 trans, item, pass); 1980 list_move_tail(&item->ri_list, &inode_list); 1981 break; 1982 default: 1983 xfs_warn(log->l_mp, 1984 "%s: unrecognized type of log operation", 1985 __func__); 1986 ASSERT(0); 1987 /* 1988 * return the remaining items back to the transaction 1989 * item list so they can be freed in caller. 1990 */ 1991 if (!list_empty(&sort_list)) 1992 list_splice_init(&sort_list, &trans->r_itemq); 1993 error = -EIO; 1994 goto out; 1995 } 1996 } 1997 out: 1998 ASSERT(list_empty(&sort_list)); 1999 if (!list_empty(&buffer_list)) 2000 list_splice(&buffer_list, &trans->r_itemq); 2001 if (!list_empty(&inode_list)) 2002 list_splice_tail(&inode_list, &trans->r_itemq); 2003 if (!list_empty(&inode_buffer_list)) 2004 list_splice_tail(&inode_buffer_list, &trans->r_itemq); 2005 if (!list_empty(&cancel_list)) 2006 list_splice_tail(&cancel_list, &trans->r_itemq); 2007 return error; 2008 } 2009 2010 /* 2011 * Build up the table of buf cancel records so that we don't replay 2012 * cancelled data in the second pass. For buffer records that are 2013 * not cancel records, there is nothing to do here so we just return. 2014 * 2015 * If we get a cancel record which is already in the table, this indicates 2016 * that the buffer was cancelled multiple times. In order to ensure 2017 * that during pass 2 we keep the record in the table until we reach its 2018 * last occurrence in the log, we keep a reference count in the cancel 2019 * record in the table to tell us how many times we expect to see this 2020 * record during the second pass. 2021 */ 2022 STATIC int 2023 xlog_recover_buffer_pass1( 2024 struct xlog *log, 2025 struct xlog_recover_item *item) 2026 { 2027 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2028 struct list_head *bucket; 2029 struct xfs_buf_cancel *bcp; 2030 2031 /* 2032 * If this isn't a cancel buffer item, then just return. 2033 */ 2034 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 2035 trace_xfs_log_recover_buf_not_cancel(log, buf_f); 2036 return 0; 2037 } 2038 2039 /* 2040 * Insert an xfs_buf_cancel record into the hash table of them. 2041 * If there is already an identical record, bump its reference count. 2042 */ 2043 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno); 2044 list_for_each_entry(bcp, bucket, bc_list) { 2045 if (bcp->bc_blkno == buf_f->blf_blkno && 2046 bcp->bc_len == buf_f->blf_len) { 2047 bcp->bc_refcount++; 2048 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f); 2049 return 0; 2050 } 2051 } 2052 2053 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP); 2054 bcp->bc_blkno = buf_f->blf_blkno; 2055 bcp->bc_len = buf_f->blf_len; 2056 bcp->bc_refcount = 1; 2057 list_add_tail(&bcp->bc_list, bucket); 2058 2059 trace_xfs_log_recover_buf_cancel_add(log, buf_f); 2060 return 0; 2061 } 2062 2063 /* 2064 * Check to see whether the buffer being recovered has a corresponding 2065 * entry in the buffer cancel record table. If it is, return the cancel 2066 * buffer structure to the caller. 2067 */ 2068 STATIC struct xfs_buf_cancel * 2069 xlog_peek_buffer_cancelled( 2070 struct xlog *log, 2071 xfs_daddr_t blkno, 2072 uint len, 2073 unsigned short flags) 2074 { 2075 struct list_head *bucket; 2076 struct xfs_buf_cancel *bcp; 2077 2078 if (!log->l_buf_cancel_table) { 2079 /* empty table means no cancelled buffers in the log */ 2080 ASSERT(!(flags & XFS_BLF_CANCEL)); 2081 return NULL; 2082 } 2083 2084 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); 2085 list_for_each_entry(bcp, bucket, bc_list) { 2086 if (bcp->bc_blkno == blkno && bcp->bc_len == len) 2087 return bcp; 2088 } 2089 2090 /* 2091 * We didn't find a corresponding entry in the table, so return 0 so 2092 * that the buffer is NOT cancelled. 2093 */ 2094 ASSERT(!(flags & XFS_BLF_CANCEL)); 2095 return NULL; 2096 } 2097 2098 /* 2099 * If the buffer is being cancelled then return 1 so that it will be cancelled, 2100 * otherwise return 0. If the buffer is actually a buffer cancel item 2101 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the 2102 * table and remove it from the table if this is the last reference. 2103 * 2104 * We remove the cancel record from the table when we encounter its last 2105 * occurrence in the log so that if the same buffer is re-used again after its 2106 * last cancellation we actually replay the changes made at that point. 2107 */ 2108 STATIC int 2109 xlog_check_buffer_cancelled( 2110 struct xlog *log, 2111 xfs_daddr_t blkno, 2112 uint len, 2113 unsigned short flags) 2114 { 2115 struct xfs_buf_cancel *bcp; 2116 2117 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags); 2118 if (!bcp) 2119 return 0; 2120 2121 /* 2122 * We've go a match, so return 1 so that the recovery of this buffer 2123 * is cancelled. If this buffer is actually a buffer cancel log 2124 * item, then decrement the refcount on the one in the table and 2125 * remove it if this is the last reference. 2126 */ 2127 if (flags & XFS_BLF_CANCEL) { 2128 if (--bcp->bc_refcount == 0) { 2129 list_del(&bcp->bc_list); 2130 kmem_free(bcp); 2131 } 2132 } 2133 return 1; 2134 } 2135 2136 /* 2137 * Perform recovery for a buffer full of inodes. In these buffers, the only 2138 * data which should be recovered is that which corresponds to the 2139 * di_next_unlinked pointers in the on disk inode structures. The rest of the 2140 * data for the inodes is always logged through the inodes themselves rather 2141 * than the inode buffer and is recovered in xlog_recover_inode_pass2(). 2142 * 2143 * The only time when buffers full of inodes are fully recovered is when the 2144 * buffer is full of newly allocated inodes. In this case the buffer will 2145 * not be marked as an inode buffer and so will be sent to 2146 * xlog_recover_do_reg_buffer() below during recovery. 2147 */ 2148 STATIC int 2149 xlog_recover_do_inode_buffer( 2150 struct xfs_mount *mp, 2151 xlog_recover_item_t *item, 2152 struct xfs_buf *bp, 2153 xfs_buf_log_format_t *buf_f) 2154 { 2155 int i; 2156 int item_index = 0; 2157 int bit = 0; 2158 int nbits = 0; 2159 int reg_buf_offset = 0; 2160 int reg_buf_bytes = 0; 2161 int next_unlinked_offset; 2162 int inodes_per_buf; 2163 xfs_agino_t *logged_nextp; 2164 xfs_agino_t *buffer_nextp; 2165 2166 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); 2167 2168 /* 2169 * Post recovery validation only works properly on CRC enabled 2170 * filesystems. 2171 */ 2172 if (xfs_sb_version_hascrc(&mp->m_sb)) 2173 bp->b_ops = &xfs_inode_buf_ops; 2174 2175 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog; 2176 for (i = 0; i < inodes_per_buf; i++) { 2177 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 2178 offsetof(xfs_dinode_t, di_next_unlinked); 2179 2180 while (next_unlinked_offset >= 2181 (reg_buf_offset + reg_buf_bytes)) { 2182 /* 2183 * The next di_next_unlinked field is beyond 2184 * the current logged region. Find the next 2185 * logged region that contains or is beyond 2186 * the current di_next_unlinked field. 2187 */ 2188 bit += nbits; 2189 bit = xfs_next_bit(buf_f->blf_data_map, 2190 buf_f->blf_map_size, bit); 2191 2192 /* 2193 * If there are no more logged regions in the 2194 * buffer, then we're done. 2195 */ 2196 if (bit == -1) 2197 return 0; 2198 2199 nbits = xfs_contig_bits(buf_f->blf_data_map, 2200 buf_f->blf_map_size, bit); 2201 ASSERT(nbits > 0); 2202 reg_buf_offset = bit << XFS_BLF_SHIFT; 2203 reg_buf_bytes = nbits << XFS_BLF_SHIFT; 2204 item_index++; 2205 } 2206 2207 /* 2208 * If the current logged region starts after the current 2209 * di_next_unlinked field, then move on to the next 2210 * di_next_unlinked field. 2211 */ 2212 if (next_unlinked_offset < reg_buf_offset) 2213 continue; 2214 2215 ASSERT(item->ri_buf[item_index].i_addr != NULL); 2216 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); 2217 ASSERT((reg_buf_offset + reg_buf_bytes) <= 2218 BBTOB(bp->b_io_length)); 2219 2220 /* 2221 * The current logged region contains a copy of the 2222 * current di_next_unlinked field. Extract its value 2223 * and copy it to the buffer copy. 2224 */ 2225 logged_nextp = item->ri_buf[item_index].i_addr + 2226 next_unlinked_offset - reg_buf_offset; 2227 if (unlikely(*logged_nextp == 0)) { 2228 xfs_alert(mp, 2229 "Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). " 2230 "Trying to replay bad (0) inode di_next_unlinked field.", 2231 item, bp); 2232 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 2233 XFS_ERRLEVEL_LOW, mp); 2234 return -EFSCORRUPTED; 2235 } 2236 2237 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset); 2238 *buffer_nextp = *logged_nextp; 2239 2240 /* 2241 * If necessary, recalculate the CRC in the on-disk inode. We 2242 * have to leave the inode in a consistent state for whoever 2243 * reads it next.... 2244 */ 2245 xfs_dinode_calc_crc(mp, 2246 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); 2247 2248 } 2249 2250 return 0; 2251 } 2252 2253 /* 2254 * V5 filesystems know the age of the buffer on disk being recovered. We can 2255 * have newer objects on disk than we are replaying, and so for these cases we 2256 * don't want to replay the current change as that will make the buffer contents 2257 * temporarily invalid on disk. 2258 * 2259 * The magic number might not match the buffer type we are going to recover 2260 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence 2261 * extract the LSN of the existing object in the buffer based on it's current 2262 * magic number. If we don't recognise the magic number in the buffer, then 2263 * return a LSN of -1 so that the caller knows it was an unrecognised block and 2264 * so can recover the buffer. 2265 * 2266 * Note: we cannot rely solely on magic number matches to determine that the 2267 * buffer has a valid LSN - we also need to verify that it belongs to this 2268 * filesystem, so we need to extract the object's LSN and compare it to that 2269 * which we read from the superblock. If the UUIDs don't match, then we've got a 2270 * stale metadata block from an old filesystem instance that we need to recover 2271 * over the top of. 2272 */ 2273 static xfs_lsn_t 2274 xlog_recover_get_buf_lsn( 2275 struct xfs_mount *mp, 2276 struct xfs_buf *bp) 2277 { 2278 uint32_t magic32; 2279 uint16_t magic16; 2280 uint16_t magicda; 2281 void *blk = bp->b_addr; 2282 uuid_t *uuid; 2283 xfs_lsn_t lsn = -1; 2284 2285 /* v4 filesystems always recover immediately */ 2286 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2287 goto recover_immediately; 2288 2289 magic32 = be32_to_cpu(*(__be32 *)blk); 2290 switch (magic32) { 2291 case XFS_ABTB_CRC_MAGIC: 2292 case XFS_ABTC_CRC_MAGIC: 2293 case XFS_ABTB_MAGIC: 2294 case XFS_ABTC_MAGIC: 2295 case XFS_RMAP_CRC_MAGIC: 2296 case XFS_REFC_CRC_MAGIC: 2297 case XFS_IBT_CRC_MAGIC: 2298 case XFS_IBT_MAGIC: { 2299 struct xfs_btree_block *btb = blk; 2300 2301 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn); 2302 uuid = &btb->bb_u.s.bb_uuid; 2303 break; 2304 } 2305 case XFS_BMAP_CRC_MAGIC: 2306 case XFS_BMAP_MAGIC: { 2307 struct xfs_btree_block *btb = blk; 2308 2309 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn); 2310 uuid = &btb->bb_u.l.bb_uuid; 2311 break; 2312 } 2313 case XFS_AGF_MAGIC: 2314 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn); 2315 uuid = &((struct xfs_agf *)blk)->agf_uuid; 2316 break; 2317 case XFS_AGFL_MAGIC: 2318 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn); 2319 uuid = &((struct xfs_agfl *)blk)->agfl_uuid; 2320 break; 2321 case XFS_AGI_MAGIC: 2322 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn); 2323 uuid = &((struct xfs_agi *)blk)->agi_uuid; 2324 break; 2325 case XFS_SYMLINK_MAGIC: 2326 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn); 2327 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid; 2328 break; 2329 case XFS_DIR3_BLOCK_MAGIC: 2330 case XFS_DIR3_DATA_MAGIC: 2331 case XFS_DIR3_FREE_MAGIC: 2332 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn); 2333 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid; 2334 break; 2335 case XFS_ATTR3_RMT_MAGIC: 2336 /* 2337 * Remote attr blocks are written synchronously, rather than 2338 * being logged. That means they do not contain a valid LSN 2339 * (i.e. transactionally ordered) in them, and hence any time we 2340 * see a buffer to replay over the top of a remote attribute 2341 * block we should simply do so. 2342 */ 2343 goto recover_immediately; 2344 case XFS_SB_MAGIC: 2345 /* 2346 * superblock uuids are magic. We may or may not have a 2347 * sb_meta_uuid on disk, but it will be set in the in-core 2348 * superblock. We set the uuid pointer for verification 2349 * according to the superblock feature mask to ensure we check 2350 * the relevant UUID in the superblock. 2351 */ 2352 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn); 2353 if (xfs_sb_version_hasmetauuid(&mp->m_sb)) 2354 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid; 2355 else 2356 uuid = &((struct xfs_dsb *)blk)->sb_uuid; 2357 break; 2358 default: 2359 break; 2360 } 2361 2362 if (lsn != (xfs_lsn_t)-1) { 2363 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid)) 2364 goto recover_immediately; 2365 return lsn; 2366 } 2367 2368 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic); 2369 switch (magicda) { 2370 case XFS_DIR3_LEAF1_MAGIC: 2371 case XFS_DIR3_LEAFN_MAGIC: 2372 case XFS_DA3_NODE_MAGIC: 2373 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn); 2374 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid; 2375 break; 2376 default: 2377 break; 2378 } 2379 2380 if (lsn != (xfs_lsn_t)-1) { 2381 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid)) 2382 goto recover_immediately; 2383 return lsn; 2384 } 2385 2386 /* 2387 * We do individual object checks on dquot and inode buffers as they 2388 * have their own individual LSN records. Also, we could have a stale 2389 * buffer here, so we have to at least recognise these buffer types. 2390 * 2391 * A notd complexity here is inode unlinked list processing - it logs 2392 * the inode directly in the buffer, but we don't know which inodes have 2393 * been modified, and there is no global buffer LSN. Hence we need to 2394 * recover all inode buffer types immediately. This problem will be 2395 * fixed by logical logging of the unlinked list modifications. 2396 */ 2397 magic16 = be16_to_cpu(*(__be16 *)blk); 2398 switch (magic16) { 2399 case XFS_DQUOT_MAGIC: 2400 case XFS_DINODE_MAGIC: 2401 goto recover_immediately; 2402 default: 2403 break; 2404 } 2405 2406 /* unknown buffer contents, recover immediately */ 2407 2408 recover_immediately: 2409 return (xfs_lsn_t)-1; 2410 2411 } 2412 2413 /* 2414 * Validate the recovered buffer is of the correct type and attach the 2415 * appropriate buffer operations to them for writeback. Magic numbers are in a 2416 * few places: 2417 * the first 16 bits of the buffer (inode buffer, dquot buffer), 2418 * the first 32 bits of the buffer (most blocks), 2419 * inside a struct xfs_da_blkinfo at the start of the buffer. 2420 */ 2421 static void 2422 xlog_recover_validate_buf_type( 2423 struct xfs_mount *mp, 2424 struct xfs_buf *bp, 2425 xfs_buf_log_format_t *buf_f, 2426 xfs_lsn_t current_lsn) 2427 { 2428 struct xfs_da_blkinfo *info = bp->b_addr; 2429 uint32_t magic32; 2430 uint16_t magic16; 2431 uint16_t magicda; 2432 char *warnmsg = NULL; 2433 2434 /* 2435 * We can only do post recovery validation on items on CRC enabled 2436 * fielsystems as we need to know when the buffer was written to be able 2437 * to determine if we should have replayed the item. If we replay old 2438 * metadata over a newer buffer, then it will enter a temporarily 2439 * inconsistent state resulting in verification failures. Hence for now 2440 * just avoid the verification stage for non-crc filesystems 2441 */ 2442 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2443 return; 2444 2445 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr); 2446 magic16 = be16_to_cpu(*(__be16*)bp->b_addr); 2447 magicda = be16_to_cpu(info->magic); 2448 switch (xfs_blft_from_flags(buf_f)) { 2449 case XFS_BLFT_BTREE_BUF: 2450 switch (magic32) { 2451 case XFS_ABTB_CRC_MAGIC: 2452 case XFS_ABTC_CRC_MAGIC: 2453 case XFS_ABTB_MAGIC: 2454 case XFS_ABTC_MAGIC: 2455 bp->b_ops = &xfs_allocbt_buf_ops; 2456 break; 2457 case XFS_IBT_CRC_MAGIC: 2458 case XFS_FIBT_CRC_MAGIC: 2459 case XFS_IBT_MAGIC: 2460 case XFS_FIBT_MAGIC: 2461 bp->b_ops = &xfs_inobt_buf_ops; 2462 break; 2463 case XFS_BMAP_CRC_MAGIC: 2464 case XFS_BMAP_MAGIC: 2465 bp->b_ops = &xfs_bmbt_buf_ops; 2466 break; 2467 case XFS_RMAP_CRC_MAGIC: 2468 bp->b_ops = &xfs_rmapbt_buf_ops; 2469 break; 2470 case XFS_REFC_CRC_MAGIC: 2471 bp->b_ops = &xfs_refcountbt_buf_ops; 2472 break; 2473 default: 2474 warnmsg = "Bad btree block magic!"; 2475 break; 2476 } 2477 break; 2478 case XFS_BLFT_AGF_BUF: 2479 if (magic32 != XFS_AGF_MAGIC) { 2480 warnmsg = "Bad AGF block magic!"; 2481 break; 2482 } 2483 bp->b_ops = &xfs_agf_buf_ops; 2484 break; 2485 case XFS_BLFT_AGFL_BUF: 2486 if (magic32 != XFS_AGFL_MAGIC) { 2487 warnmsg = "Bad AGFL block magic!"; 2488 break; 2489 } 2490 bp->b_ops = &xfs_agfl_buf_ops; 2491 break; 2492 case XFS_BLFT_AGI_BUF: 2493 if (magic32 != XFS_AGI_MAGIC) { 2494 warnmsg = "Bad AGI block magic!"; 2495 break; 2496 } 2497 bp->b_ops = &xfs_agi_buf_ops; 2498 break; 2499 case XFS_BLFT_UDQUOT_BUF: 2500 case XFS_BLFT_PDQUOT_BUF: 2501 case XFS_BLFT_GDQUOT_BUF: 2502 #ifdef CONFIG_XFS_QUOTA 2503 if (magic16 != XFS_DQUOT_MAGIC) { 2504 warnmsg = "Bad DQUOT block magic!"; 2505 break; 2506 } 2507 bp->b_ops = &xfs_dquot_buf_ops; 2508 #else 2509 xfs_alert(mp, 2510 "Trying to recover dquots without QUOTA support built in!"); 2511 ASSERT(0); 2512 #endif 2513 break; 2514 case XFS_BLFT_DINO_BUF: 2515 if (magic16 != XFS_DINODE_MAGIC) { 2516 warnmsg = "Bad INODE block magic!"; 2517 break; 2518 } 2519 bp->b_ops = &xfs_inode_buf_ops; 2520 break; 2521 case XFS_BLFT_SYMLINK_BUF: 2522 if (magic32 != XFS_SYMLINK_MAGIC) { 2523 warnmsg = "Bad symlink block magic!"; 2524 break; 2525 } 2526 bp->b_ops = &xfs_symlink_buf_ops; 2527 break; 2528 case XFS_BLFT_DIR_BLOCK_BUF: 2529 if (magic32 != XFS_DIR2_BLOCK_MAGIC && 2530 magic32 != XFS_DIR3_BLOCK_MAGIC) { 2531 warnmsg = "Bad dir block magic!"; 2532 break; 2533 } 2534 bp->b_ops = &xfs_dir3_block_buf_ops; 2535 break; 2536 case XFS_BLFT_DIR_DATA_BUF: 2537 if (magic32 != XFS_DIR2_DATA_MAGIC && 2538 magic32 != XFS_DIR3_DATA_MAGIC) { 2539 warnmsg = "Bad dir data magic!"; 2540 break; 2541 } 2542 bp->b_ops = &xfs_dir3_data_buf_ops; 2543 break; 2544 case XFS_BLFT_DIR_FREE_BUF: 2545 if (magic32 != XFS_DIR2_FREE_MAGIC && 2546 magic32 != XFS_DIR3_FREE_MAGIC) { 2547 warnmsg = "Bad dir3 free magic!"; 2548 break; 2549 } 2550 bp->b_ops = &xfs_dir3_free_buf_ops; 2551 break; 2552 case XFS_BLFT_DIR_LEAF1_BUF: 2553 if (magicda != XFS_DIR2_LEAF1_MAGIC && 2554 magicda != XFS_DIR3_LEAF1_MAGIC) { 2555 warnmsg = "Bad dir leaf1 magic!"; 2556 break; 2557 } 2558 bp->b_ops = &xfs_dir3_leaf1_buf_ops; 2559 break; 2560 case XFS_BLFT_DIR_LEAFN_BUF: 2561 if (magicda != XFS_DIR2_LEAFN_MAGIC && 2562 magicda != XFS_DIR3_LEAFN_MAGIC) { 2563 warnmsg = "Bad dir leafn magic!"; 2564 break; 2565 } 2566 bp->b_ops = &xfs_dir3_leafn_buf_ops; 2567 break; 2568 case XFS_BLFT_DA_NODE_BUF: 2569 if (magicda != XFS_DA_NODE_MAGIC && 2570 magicda != XFS_DA3_NODE_MAGIC) { 2571 warnmsg = "Bad da node magic!"; 2572 break; 2573 } 2574 bp->b_ops = &xfs_da3_node_buf_ops; 2575 break; 2576 case XFS_BLFT_ATTR_LEAF_BUF: 2577 if (magicda != XFS_ATTR_LEAF_MAGIC && 2578 magicda != XFS_ATTR3_LEAF_MAGIC) { 2579 warnmsg = "Bad attr leaf magic!"; 2580 break; 2581 } 2582 bp->b_ops = &xfs_attr3_leaf_buf_ops; 2583 break; 2584 case XFS_BLFT_ATTR_RMT_BUF: 2585 if (magic32 != XFS_ATTR3_RMT_MAGIC) { 2586 warnmsg = "Bad attr remote magic!"; 2587 break; 2588 } 2589 bp->b_ops = &xfs_attr3_rmt_buf_ops; 2590 break; 2591 case XFS_BLFT_SB_BUF: 2592 if (magic32 != XFS_SB_MAGIC) { 2593 warnmsg = "Bad SB block magic!"; 2594 break; 2595 } 2596 bp->b_ops = &xfs_sb_buf_ops; 2597 break; 2598 #ifdef CONFIG_XFS_RT 2599 case XFS_BLFT_RTBITMAP_BUF: 2600 case XFS_BLFT_RTSUMMARY_BUF: 2601 /* no magic numbers for verification of RT buffers */ 2602 bp->b_ops = &xfs_rtbuf_ops; 2603 break; 2604 #endif /* CONFIG_XFS_RT */ 2605 default: 2606 xfs_warn(mp, "Unknown buffer type %d!", 2607 xfs_blft_from_flags(buf_f)); 2608 break; 2609 } 2610 2611 /* 2612 * Nothing else to do in the case of a NULL current LSN as this means 2613 * the buffer is more recent than the change in the log and will be 2614 * skipped. 2615 */ 2616 if (current_lsn == NULLCOMMITLSN) 2617 return; 2618 2619 if (warnmsg) { 2620 xfs_warn(mp, warnmsg); 2621 ASSERT(0); 2622 } 2623 2624 /* 2625 * We must update the metadata LSN of the buffer as it is written out to 2626 * ensure that older transactions never replay over this one and corrupt 2627 * the buffer. This can occur if log recovery is interrupted at some 2628 * point after the current transaction completes, at which point a 2629 * subsequent mount starts recovery from the beginning. 2630 * 2631 * Write verifiers update the metadata LSN from log items attached to 2632 * the buffer. Therefore, initialize a bli purely to carry the LSN to 2633 * the verifier. We'll clean it up in our ->iodone() callback. 2634 */ 2635 if (bp->b_ops) { 2636 struct xfs_buf_log_item *bip; 2637 2638 ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone); 2639 bp->b_iodone = xlog_recover_iodone; 2640 xfs_buf_item_init(bp, mp); 2641 bip = bp->b_log_item; 2642 bip->bli_item.li_lsn = current_lsn; 2643 } 2644 } 2645 2646 /* 2647 * Perform a 'normal' buffer recovery. Each logged region of the 2648 * buffer should be copied over the corresponding region in the 2649 * given buffer. The bitmap in the buf log format structure indicates 2650 * where to place the logged data. 2651 */ 2652 STATIC void 2653 xlog_recover_do_reg_buffer( 2654 struct xfs_mount *mp, 2655 xlog_recover_item_t *item, 2656 struct xfs_buf *bp, 2657 xfs_buf_log_format_t *buf_f, 2658 xfs_lsn_t current_lsn) 2659 { 2660 int i; 2661 int bit; 2662 int nbits; 2663 xfs_failaddr_t fa; 2664 2665 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); 2666 2667 bit = 0; 2668 i = 1; /* 0 is the buf format structure */ 2669 while (1) { 2670 bit = xfs_next_bit(buf_f->blf_data_map, 2671 buf_f->blf_map_size, bit); 2672 if (bit == -1) 2673 break; 2674 nbits = xfs_contig_bits(buf_f->blf_data_map, 2675 buf_f->blf_map_size, bit); 2676 ASSERT(nbits > 0); 2677 ASSERT(item->ri_buf[i].i_addr != NULL); 2678 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); 2679 ASSERT(BBTOB(bp->b_io_length) >= 2680 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); 2681 2682 /* 2683 * The dirty regions logged in the buffer, even though 2684 * contiguous, may span multiple chunks. This is because the 2685 * dirty region may span a physical page boundary in a buffer 2686 * and hence be split into two separate vectors for writing into 2687 * the log. Hence we need to trim nbits back to the length of 2688 * the current region being copied out of the log. 2689 */ 2690 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT)) 2691 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT; 2692 2693 /* 2694 * Do a sanity check if this is a dquot buffer. Just checking 2695 * the first dquot in the buffer should do. XXXThis is 2696 * probably a good thing to do for other buf types also. 2697 */ 2698 fa = NULL; 2699 if (buf_f->blf_flags & 2700 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2701 if (item->ri_buf[i].i_addr == NULL) { 2702 xfs_alert(mp, 2703 "XFS: NULL dquot in %s.", __func__); 2704 goto next; 2705 } 2706 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) { 2707 xfs_alert(mp, 2708 "XFS: dquot too small (%d) in %s.", 2709 item->ri_buf[i].i_len, __func__); 2710 goto next; 2711 } 2712 fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr, 2713 -1, 0); 2714 if (fa) { 2715 xfs_alert(mp, 2716 "dquot corrupt at %pS trying to replay into block 0x%llx", 2717 fa, bp->b_bn); 2718 goto next; 2719 } 2720 } 2721 2722 memcpy(xfs_buf_offset(bp, 2723 (uint)bit << XFS_BLF_SHIFT), /* dest */ 2724 item->ri_buf[i].i_addr, /* source */ 2725 nbits<<XFS_BLF_SHIFT); /* length */ 2726 next: 2727 i++; 2728 bit += nbits; 2729 } 2730 2731 /* Shouldn't be any more regions */ 2732 ASSERT(i == item->ri_total); 2733 2734 xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn); 2735 } 2736 2737 /* 2738 * Perform a dquot buffer recovery. 2739 * Simple algorithm: if we have found a QUOTAOFF log item of the same type 2740 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2741 * Else, treat it as a regular buffer and do recovery. 2742 * 2743 * Return false if the buffer was tossed and true if we recovered the buffer to 2744 * indicate to the caller if the buffer needs writing. 2745 */ 2746 STATIC bool 2747 xlog_recover_do_dquot_buffer( 2748 struct xfs_mount *mp, 2749 struct xlog *log, 2750 struct xlog_recover_item *item, 2751 struct xfs_buf *bp, 2752 struct xfs_buf_log_format *buf_f) 2753 { 2754 uint type; 2755 2756 trace_xfs_log_recover_buf_dquot_buf(log, buf_f); 2757 2758 /* 2759 * Filesystems are required to send in quota flags at mount time. 2760 */ 2761 if (!mp->m_qflags) 2762 return false; 2763 2764 type = 0; 2765 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) 2766 type |= XFS_DQ_USER; 2767 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) 2768 type |= XFS_DQ_PROJ; 2769 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) 2770 type |= XFS_DQ_GROUP; 2771 /* 2772 * This type of quotas was turned off, so ignore this buffer 2773 */ 2774 if (log->l_quotaoffs_flag & type) 2775 return false; 2776 2777 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN); 2778 return true; 2779 } 2780 2781 /* 2782 * This routine replays a modification made to a buffer at runtime. 2783 * There are actually two types of buffer, regular and inode, which 2784 * are handled differently. Inode buffers are handled differently 2785 * in that we only recover a specific set of data from them, namely 2786 * the inode di_next_unlinked fields. This is because all other inode 2787 * data is actually logged via inode records and any data we replay 2788 * here which overlaps that may be stale. 2789 * 2790 * When meta-data buffers are freed at run time we log a buffer item 2791 * with the XFS_BLF_CANCEL bit set to indicate that previous copies 2792 * of the buffer in the log should not be replayed at recovery time. 2793 * This is so that if the blocks covered by the buffer are reused for 2794 * file data before we crash we don't end up replaying old, freed 2795 * meta-data into a user's file. 2796 * 2797 * To handle the cancellation of buffer log items, we make two passes 2798 * over the log during recovery. During the first we build a table of 2799 * those buffers which have been cancelled, and during the second we 2800 * only replay those buffers which do not have corresponding cancel 2801 * records in the table. See xlog_recover_buffer_pass[1,2] above 2802 * for more details on the implementation of the table of cancel records. 2803 */ 2804 STATIC int 2805 xlog_recover_buffer_pass2( 2806 struct xlog *log, 2807 struct list_head *buffer_list, 2808 struct xlog_recover_item *item, 2809 xfs_lsn_t current_lsn) 2810 { 2811 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2812 xfs_mount_t *mp = log->l_mp; 2813 xfs_buf_t *bp; 2814 int error; 2815 uint buf_flags; 2816 xfs_lsn_t lsn; 2817 2818 /* 2819 * In this pass we only want to recover all the buffers which have 2820 * not been cancelled and are not cancellation buffers themselves. 2821 */ 2822 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno, 2823 buf_f->blf_len, buf_f->blf_flags)) { 2824 trace_xfs_log_recover_buf_cancel(log, buf_f); 2825 return 0; 2826 } 2827 2828 trace_xfs_log_recover_buf_recover(log, buf_f); 2829 2830 buf_flags = 0; 2831 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) 2832 buf_flags |= XBF_UNMAPPED; 2833 2834 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, 2835 buf_flags, NULL); 2836 if (!bp) 2837 return -ENOMEM; 2838 error = bp->b_error; 2839 if (error) { 2840 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)"); 2841 goto out_release; 2842 } 2843 2844 /* 2845 * Recover the buffer only if we get an LSN from it and it's less than 2846 * the lsn of the transaction we are replaying. 2847 * 2848 * Note that we have to be extremely careful of readahead here. 2849 * Readahead does not attach verfiers to the buffers so if we don't 2850 * actually do any replay after readahead because of the LSN we found 2851 * in the buffer if more recent than that current transaction then we 2852 * need to attach the verifier directly. Failure to do so can lead to 2853 * future recovery actions (e.g. EFI and unlinked list recovery) can 2854 * operate on the buffers and they won't get the verifier attached. This 2855 * can lead to blocks on disk having the correct content but a stale 2856 * CRC. 2857 * 2858 * It is safe to assume these clean buffers are currently up to date. 2859 * If the buffer is dirtied by a later transaction being replayed, then 2860 * the verifier will be reset to match whatever recover turns that 2861 * buffer into. 2862 */ 2863 lsn = xlog_recover_get_buf_lsn(mp, bp); 2864 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 2865 trace_xfs_log_recover_buf_skip(log, buf_f); 2866 xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN); 2867 goto out_release; 2868 } 2869 2870 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 2871 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2872 if (error) 2873 goto out_release; 2874 } else if (buf_f->blf_flags & 2875 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2876 bool dirty; 2877 2878 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2879 if (!dirty) 2880 goto out_release; 2881 } else { 2882 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn); 2883 } 2884 2885 /* 2886 * Perform delayed write on the buffer. Asynchronous writes will be 2887 * slower when taking into account all the buffers to be flushed. 2888 * 2889 * Also make sure that only inode buffers with good sizes stay in 2890 * the buffer cache. The kernel moves inodes in buffers of 1 block 2891 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode 2892 * buffers in the log can be a different size if the log was generated 2893 * by an older kernel using unclustered inode buffers or a newer kernel 2894 * running with a different inode cluster size. Regardless, if the 2895 * the inode buffer size isn't max(blocksize, mp->m_inode_cluster_size) 2896 * for *our* value of mp->m_inode_cluster_size, then we need to keep 2897 * the buffer out of the buffer cache so that the buffer won't 2898 * overlap with future reads of those inodes. 2899 */ 2900 if (XFS_DINODE_MAGIC == 2901 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && 2902 (BBTOB(bp->b_io_length) != max(log->l_mp->m_sb.sb_blocksize, 2903 (uint32_t)log->l_mp->m_inode_cluster_size))) { 2904 xfs_buf_stale(bp); 2905 error = xfs_bwrite(bp); 2906 } else { 2907 ASSERT(bp->b_target->bt_mount == mp); 2908 bp->b_iodone = xlog_recover_iodone; 2909 xfs_buf_delwri_queue(bp, buffer_list); 2910 } 2911 2912 out_release: 2913 xfs_buf_relse(bp); 2914 return error; 2915 } 2916 2917 /* 2918 * Inode fork owner changes 2919 * 2920 * If we have been told that we have to reparent the inode fork, it's because an 2921 * extent swap operation on a CRC enabled filesystem has been done and we are 2922 * replaying it. We need to walk the BMBT of the appropriate fork and change the 2923 * owners of it. 2924 * 2925 * The complexity here is that we don't have an inode context to work with, so 2926 * after we've replayed the inode we need to instantiate one. This is where the 2927 * fun begins. 2928 * 2929 * We are in the middle of log recovery, so we can't run transactions. That 2930 * means we cannot use cache coherent inode instantiation via xfs_iget(), as 2931 * that will result in the corresponding iput() running the inode through 2932 * xfs_inactive(). If we've just replayed an inode core that changes the link 2933 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run 2934 * transactions (bad!). 2935 * 2936 * So, to avoid this, we instantiate an inode directly from the inode core we've 2937 * just recovered. We have the buffer still locked, and all we really need to 2938 * instantiate is the inode core and the forks being modified. We can do this 2939 * manually, then run the inode btree owner change, and then tear down the 2940 * xfs_inode without having to run any transactions at all. 2941 * 2942 * Also, because we don't have a transaction context available here but need to 2943 * gather all the buffers we modify for writeback so we pass the buffer_list 2944 * instead for the operation to use. 2945 */ 2946 2947 STATIC int 2948 xfs_recover_inode_owner_change( 2949 struct xfs_mount *mp, 2950 struct xfs_dinode *dip, 2951 struct xfs_inode_log_format *in_f, 2952 struct list_head *buffer_list) 2953 { 2954 struct xfs_inode *ip; 2955 int error; 2956 2957 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)); 2958 2959 ip = xfs_inode_alloc(mp, in_f->ilf_ino); 2960 if (!ip) 2961 return -ENOMEM; 2962 2963 /* instantiate the inode */ 2964 xfs_inode_from_disk(ip, dip); 2965 ASSERT(ip->i_d.di_version >= 3); 2966 2967 error = xfs_iformat_fork(ip, dip); 2968 if (error) 2969 goto out_free_ip; 2970 2971 if (!xfs_inode_verify_forks(ip)) { 2972 error = -EFSCORRUPTED; 2973 goto out_free_ip; 2974 } 2975 2976 if (in_f->ilf_fields & XFS_ILOG_DOWNER) { 2977 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT); 2978 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK, 2979 ip->i_ino, buffer_list); 2980 if (error) 2981 goto out_free_ip; 2982 } 2983 2984 if (in_f->ilf_fields & XFS_ILOG_AOWNER) { 2985 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT); 2986 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK, 2987 ip->i_ino, buffer_list); 2988 if (error) 2989 goto out_free_ip; 2990 } 2991 2992 out_free_ip: 2993 xfs_inode_free(ip); 2994 return error; 2995 } 2996 2997 STATIC int 2998 xlog_recover_inode_pass2( 2999 struct xlog *log, 3000 struct list_head *buffer_list, 3001 struct xlog_recover_item *item, 3002 xfs_lsn_t current_lsn) 3003 { 3004 struct xfs_inode_log_format *in_f; 3005 xfs_mount_t *mp = log->l_mp; 3006 xfs_buf_t *bp; 3007 xfs_dinode_t *dip; 3008 int len; 3009 char *src; 3010 char *dest; 3011 int error; 3012 int attr_index; 3013 uint fields; 3014 struct xfs_log_dinode *ldip; 3015 uint isize; 3016 int need_free = 0; 3017 3018 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { 3019 in_f = item->ri_buf[0].i_addr; 3020 } else { 3021 in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), KM_SLEEP); 3022 need_free = 1; 3023 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 3024 if (error) 3025 goto error; 3026 } 3027 3028 /* 3029 * Inode buffers can be freed, look out for it, 3030 * and do not replay the inode. 3031 */ 3032 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, 3033 in_f->ilf_len, 0)) { 3034 error = 0; 3035 trace_xfs_log_recover_inode_cancel(log, in_f); 3036 goto error; 3037 } 3038 trace_xfs_log_recover_inode_recover(log, in_f); 3039 3040 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0, 3041 &xfs_inode_buf_ops); 3042 if (!bp) { 3043 error = -ENOMEM; 3044 goto error; 3045 } 3046 error = bp->b_error; 3047 if (error) { 3048 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)"); 3049 goto out_release; 3050 } 3051 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 3052 dip = xfs_buf_offset(bp, in_f->ilf_boffset); 3053 3054 /* 3055 * Make sure the place we're flushing out to really looks 3056 * like an inode! 3057 */ 3058 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) { 3059 xfs_alert(mp, 3060 "%s: Bad inode magic number, dip = "PTR_FMT", dino bp = "PTR_FMT", ino = %Ld", 3061 __func__, dip, bp, in_f->ilf_ino); 3062 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)", 3063 XFS_ERRLEVEL_LOW, mp); 3064 error = -EFSCORRUPTED; 3065 goto out_release; 3066 } 3067 ldip = item->ri_buf[1].i_addr; 3068 if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) { 3069 xfs_alert(mp, 3070 "%s: Bad inode log record, rec ptr "PTR_FMT", ino %Ld", 3071 __func__, item, in_f->ilf_ino); 3072 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)", 3073 XFS_ERRLEVEL_LOW, mp); 3074 error = -EFSCORRUPTED; 3075 goto out_release; 3076 } 3077 3078 /* 3079 * If the inode has an LSN in it, recover the inode only if it's less 3080 * than the lsn of the transaction we are replaying. Note: we still 3081 * need to replay an owner change even though the inode is more recent 3082 * than the transaction as there is no guarantee that all the btree 3083 * blocks are more recent than this transaction, too. 3084 */ 3085 if (dip->di_version >= 3) { 3086 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn); 3087 3088 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 3089 trace_xfs_log_recover_inode_skip(log, in_f); 3090 error = 0; 3091 goto out_owner_change; 3092 } 3093 } 3094 3095 /* 3096 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes 3097 * are transactional and if ordering is necessary we can determine that 3098 * more accurately by the LSN field in the V3 inode core. Don't trust 3099 * the inode versions we might be changing them here - use the 3100 * superblock flag to determine whether we need to look at di_flushiter 3101 * to skip replay when the on disk inode is newer than the log one 3102 */ 3103 if (!xfs_sb_version_hascrc(&mp->m_sb) && 3104 ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) { 3105 /* 3106 * Deal with the wrap case, DI_MAX_FLUSH is less 3107 * than smaller numbers 3108 */ 3109 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && 3110 ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) { 3111 /* do nothing */ 3112 } else { 3113 trace_xfs_log_recover_inode_skip(log, in_f); 3114 error = 0; 3115 goto out_release; 3116 } 3117 } 3118 3119 /* Take the opportunity to reset the flush iteration count */ 3120 ldip->di_flushiter = 0; 3121 3122 if (unlikely(S_ISREG(ldip->di_mode))) { 3123 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) && 3124 (ldip->di_format != XFS_DINODE_FMT_BTREE)) { 3125 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)", 3126 XFS_ERRLEVEL_LOW, mp, ldip, 3127 sizeof(*ldip)); 3128 xfs_alert(mp, 3129 "%s: Bad regular inode log record, rec ptr "PTR_FMT", " 3130 "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld", 3131 __func__, item, dip, bp, in_f->ilf_ino); 3132 error = -EFSCORRUPTED; 3133 goto out_release; 3134 } 3135 } else if (unlikely(S_ISDIR(ldip->di_mode))) { 3136 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) && 3137 (ldip->di_format != XFS_DINODE_FMT_BTREE) && 3138 (ldip->di_format != XFS_DINODE_FMT_LOCAL)) { 3139 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)", 3140 XFS_ERRLEVEL_LOW, mp, ldip, 3141 sizeof(*ldip)); 3142 xfs_alert(mp, 3143 "%s: Bad dir inode log record, rec ptr "PTR_FMT", " 3144 "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld", 3145 __func__, item, dip, bp, in_f->ilf_ino); 3146 error = -EFSCORRUPTED; 3147 goto out_release; 3148 } 3149 } 3150 if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){ 3151 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)", 3152 XFS_ERRLEVEL_LOW, mp, ldip, 3153 sizeof(*ldip)); 3154 xfs_alert(mp, 3155 "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", " 3156 "dino bp "PTR_FMT", ino %Ld, total extents = %d, nblocks = %Ld", 3157 __func__, item, dip, bp, in_f->ilf_ino, 3158 ldip->di_nextents + ldip->di_anextents, 3159 ldip->di_nblocks); 3160 error = -EFSCORRUPTED; 3161 goto out_release; 3162 } 3163 if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) { 3164 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)", 3165 XFS_ERRLEVEL_LOW, mp, ldip, 3166 sizeof(*ldip)); 3167 xfs_alert(mp, 3168 "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", " 3169 "dino bp "PTR_FMT", ino %Ld, forkoff 0x%x", __func__, 3170 item, dip, bp, in_f->ilf_ino, ldip->di_forkoff); 3171 error = -EFSCORRUPTED; 3172 goto out_release; 3173 } 3174 isize = xfs_log_dinode_size(ldip->di_version); 3175 if (unlikely(item->ri_buf[1].i_len > isize)) { 3176 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)", 3177 XFS_ERRLEVEL_LOW, mp, ldip, 3178 sizeof(*ldip)); 3179 xfs_alert(mp, 3180 "%s: Bad inode log record length %d, rec ptr "PTR_FMT, 3181 __func__, item->ri_buf[1].i_len, item); 3182 error = -EFSCORRUPTED; 3183 goto out_release; 3184 } 3185 3186 /* recover the log dinode inode into the on disk inode */ 3187 xfs_log_dinode_to_disk(ldip, dip); 3188 3189 fields = in_f->ilf_fields; 3190 if (fields & XFS_ILOG_DEV) 3191 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); 3192 3193 if (in_f->ilf_size == 2) 3194 goto out_owner_change; 3195 len = item->ri_buf[2].i_len; 3196 src = item->ri_buf[2].i_addr; 3197 ASSERT(in_f->ilf_size <= 4); 3198 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 3199 ASSERT(!(fields & XFS_ILOG_DFORK) || 3200 (len == in_f->ilf_dsize)); 3201 3202 switch (fields & XFS_ILOG_DFORK) { 3203 case XFS_ILOG_DDATA: 3204 case XFS_ILOG_DEXT: 3205 memcpy(XFS_DFORK_DPTR(dip), src, len); 3206 break; 3207 3208 case XFS_ILOG_DBROOT: 3209 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, 3210 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), 3211 XFS_DFORK_DSIZE(dip, mp)); 3212 break; 3213 3214 default: 3215 /* 3216 * There are no data fork flags set. 3217 */ 3218 ASSERT((fields & XFS_ILOG_DFORK) == 0); 3219 break; 3220 } 3221 3222 /* 3223 * If we logged any attribute data, recover it. There may or 3224 * may not have been any other non-core data logged in this 3225 * transaction. 3226 */ 3227 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 3228 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 3229 attr_index = 3; 3230 } else { 3231 attr_index = 2; 3232 } 3233 len = item->ri_buf[attr_index].i_len; 3234 src = item->ri_buf[attr_index].i_addr; 3235 ASSERT(len == in_f->ilf_asize); 3236 3237 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 3238 case XFS_ILOG_ADATA: 3239 case XFS_ILOG_AEXT: 3240 dest = XFS_DFORK_APTR(dip); 3241 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 3242 memcpy(dest, src, len); 3243 break; 3244 3245 case XFS_ILOG_ABROOT: 3246 dest = XFS_DFORK_APTR(dip); 3247 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, 3248 len, (xfs_bmdr_block_t*)dest, 3249 XFS_DFORK_ASIZE(dip, mp)); 3250 break; 3251 3252 default: 3253 xfs_warn(log->l_mp, "%s: Invalid flag", __func__); 3254 ASSERT(0); 3255 error = -EIO; 3256 goto out_release; 3257 } 3258 } 3259 3260 out_owner_change: 3261 /* Recover the swapext owner change unless inode has been deleted */ 3262 if ((in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) && 3263 (dip->di_mode != 0)) 3264 error = xfs_recover_inode_owner_change(mp, dip, in_f, 3265 buffer_list); 3266 /* re-generate the checksum. */ 3267 xfs_dinode_calc_crc(log->l_mp, dip); 3268 3269 ASSERT(bp->b_target->bt_mount == mp); 3270 bp->b_iodone = xlog_recover_iodone; 3271 xfs_buf_delwri_queue(bp, buffer_list); 3272 3273 out_release: 3274 xfs_buf_relse(bp); 3275 error: 3276 if (need_free) 3277 kmem_free(in_f); 3278 return error; 3279 } 3280 3281 /* 3282 * Recover QUOTAOFF records. We simply make a note of it in the xlog 3283 * structure, so that we know not to do any dquot item or dquot buffer recovery, 3284 * of that type. 3285 */ 3286 STATIC int 3287 xlog_recover_quotaoff_pass1( 3288 struct xlog *log, 3289 struct xlog_recover_item *item) 3290 { 3291 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr; 3292 ASSERT(qoff_f); 3293 3294 /* 3295 * The logitem format's flag tells us if this was user quotaoff, 3296 * group/project quotaoff or both. 3297 */ 3298 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 3299 log->l_quotaoffs_flag |= XFS_DQ_USER; 3300 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 3301 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 3302 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 3303 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 3304 3305 return 0; 3306 } 3307 3308 /* 3309 * Recover a dquot record 3310 */ 3311 STATIC int 3312 xlog_recover_dquot_pass2( 3313 struct xlog *log, 3314 struct list_head *buffer_list, 3315 struct xlog_recover_item *item, 3316 xfs_lsn_t current_lsn) 3317 { 3318 xfs_mount_t *mp = log->l_mp; 3319 xfs_buf_t *bp; 3320 struct xfs_disk_dquot *ddq, *recddq; 3321 xfs_failaddr_t fa; 3322 int error; 3323 xfs_dq_logformat_t *dq_f; 3324 uint type; 3325 3326 3327 /* 3328 * Filesystems are required to send in quota flags at mount time. 3329 */ 3330 if (mp->m_qflags == 0) 3331 return 0; 3332 3333 recddq = item->ri_buf[1].i_addr; 3334 if (recddq == NULL) { 3335 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__); 3336 return -EIO; 3337 } 3338 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) { 3339 xfs_alert(log->l_mp, "dquot too small (%d) in %s.", 3340 item->ri_buf[1].i_len, __func__); 3341 return -EIO; 3342 } 3343 3344 /* 3345 * This type of quotas was turned off, so ignore this record. 3346 */ 3347 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 3348 ASSERT(type); 3349 if (log->l_quotaoffs_flag & type) 3350 return 0; 3351 3352 /* 3353 * At this point we know that quota was _not_ turned off. 3354 * Since the mount flags are not indicating to us otherwise, this 3355 * must mean that quota is on, and the dquot needs to be replayed. 3356 * Remember that we may not have fully recovered the superblock yet, 3357 * so we can't do the usual trick of looking at the SB quota bits. 3358 * 3359 * The other possibility, of course, is that the quota subsystem was 3360 * removed since the last mount - ENOSYS. 3361 */ 3362 dq_f = item->ri_buf[0].i_addr; 3363 ASSERT(dq_f); 3364 fa = xfs_dquot_verify(mp, recddq, dq_f->qlf_id, 0); 3365 if (fa) { 3366 xfs_alert(mp, "corrupt dquot ID 0x%x in log at %pS", 3367 dq_f->qlf_id, fa); 3368 return -EIO; 3369 } 3370 ASSERT(dq_f->qlf_len == 1); 3371 3372 /* 3373 * At this point we are assuming that the dquots have been allocated 3374 * and hence the buffer has valid dquots stamped in it. It should, 3375 * therefore, pass verifier validation. If the dquot is bad, then the 3376 * we'll return an error here, so we don't need to specifically check 3377 * the dquot in the buffer after the verifier has run. 3378 */ 3379 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno, 3380 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp, 3381 &xfs_dquot_buf_ops); 3382 if (error) 3383 return error; 3384 3385 ASSERT(bp); 3386 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset); 3387 3388 /* 3389 * If the dquot has an LSN in it, recover the dquot only if it's less 3390 * than the lsn of the transaction we are replaying. 3391 */ 3392 if (xfs_sb_version_hascrc(&mp->m_sb)) { 3393 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq; 3394 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn); 3395 3396 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 3397 goto out_release; 3398 } 3399 } 3400 3401 memcpy(ddq, recddq, item->ri_buf[1].i_len); 3402 if (xfs_sb_version_hascrc(&mp->m_sb)) { 3403 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk), 3404 XFS_DQUOT_CRC_OFF); 3405 } 3406 3407 ASSERT(dq_f->qlf_size == 2); 3408 ASSERT(bp->b_target->bt_mount == mp); 3409 bp->b_iodone = xlog_recover_iodone; 3410 xfs_buf_delwri_queue(bp, buffer_list); 3411 3412 out_release: 3413 xfs_buf_relse(bp); 3414 return 0; 3415 } 3416 3417 /* 3418 * This routine is called to create an in-core extent free intent 3419 * item from the efi format structure which was logged on disk. 3420 * It allocates an in-core efi, copies the extents from the format 3421 * structure into it, and adds the efi to the AIL with the given 3422 * LSN. 3423 */ 3424 STATIC int 3425 xlog_recover_efi_pass2( 3426 struct xlog *log, 3427 struct xlog_recover_item *item, 3428 xfs_lsn_t lsn) 3429 { 3430 int error; 3431 struct xfs_mount *mp = log->l_mp; 3432 struct xfs_efi_log_item *efip; 3433 struct xfs_efi_log_format *efi_formatp; 3434 3435 efi_formatp = item->ri_buf[0].i_addr; 3436 3437 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 3438 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); 3439 if (error) { 3440 xfs_efi_item_free(efip); 3441 return error; 3442 } 3443 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 3444 3445 spin_lock(&log->l_ailp->ail_lock); 3446 /* 3447 * The EFI has two references. One for the EFD and one for EFI to ensure 3448 * it makes it into the AIL. Insert the EFI into the AIL directly and 3449 * drop the EFI reference. Note that xfs_trans_ail_update() drops the 3450 * AIL lock. 3451 */ 3452 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn); 3453 xfs_efi_release(efip); 3454 return 0; 3455 } 3456 3457 3458 /* 3459 * This routine is called when an EFD format structure is found in a committed 3460 * transaction in the log. Its purpose is to cancel the corresponding EFI if it 3461 * was still in the log. To do this it searches the AIL for the EFI with an id 3462 * equal to that in the EFD format structure. If we find it we drop the EFD 3463 * reference, which removes the EFI from the AIL and frees it. 3464 */ 3465 STATIC int 3466 xlog_recover_efd_pass2( 3467 struct xlog *log, 3468 struct xlog_recover_item *item) 3469 { 3470 xfs_efd_log_format_t *efd_formatp; 3471 xfs_efi_log_item_t *efip = NULL; 3472 xfs_log_item_t *lip; 3473 uint64_t efi_id; 3474 struct xfs_ail_cursor cur; 3475 struct xfs_ail *ailp = log->l_ailp; 3476 3477 efd_formatp = item->ri_buf[0].i_addr; 3478 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 3479 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 3480 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 3481 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 3482 efi_id = efd_formatp->efd_efi_id; 3483 3484 /* 3485 * Search for the EFI with the id in the EFD format structure in the 3486 * AIL. 3487 */ 3488 spin_lock(&ailp->ail_lock); 3489 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3490 while (lip != NULL) { 3491 if (lip->li_type == XFS_LI_EFI) { 3492 efip = (xfs_efi_log_item_t *)lip; 3493 if (efip->efi_format.efi_id == efi_id) { 3494 /* 3495 * Drop the EFD reference to the EFI. This 3496 * removes the EFI from the AIL and frees it. 3497 */ 3498 spin_unlock(&ailp->ail_lock); 3499 xfs_efi_release(efip); 3500 spin_lock(&ailp->ail_lock); 3501 break; 3502 } 3503 } 3504 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3505 } 3506 3507 xfs_trans_ail_cursor_done(&cur); 3508 spin_unlock(&ailp->ail_lock); 3509 3510 return 0; 3511 } 3512 3513 /* 3514 * This routine is called to create an in-core extent rmap update 3515 * item from the rui format structure which was logged on disk. 3516 * It allocates an in-core rui, copies the extents from the format 3517 * structure into it, and adds the rui to the AIL with the given 3518 * LSN. 3519 */ 3520 STATIC int 3521 xlog_recover_rui_pass2( 3522 struct xlog *log, 3523 struct xlog_recover_item *item, 3524 xfs_lsn_t lsn) 3525 { 3526 int error; 3527 struct xfs_mount *mp = log->l_mp; 3528 struct xfs_rui_log_item *ruip; 3529 struct xfs_rui_log_format *rui_formatp; 3530 3531 rui_formatp = item->ri_buf[0].i_addr; 3532 3533 ruip = xfs_rui_init(mp, rui_formatp->rui_nextents); 3534 error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format); 3535 if (error) { 3536 xfs_rui_item_free(ruip); 3537 return error; 3538 } 3539 atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents); 3540 3541 spin_lock(&log->l_ailp->ail_lock); 3542 /* 3543 * The RUI has two references. One for the RUD and one for RUI to ensure 3544 * it makes it into the AIL. Insert the RUI into the AIL directly and 3545 * drop the RUI reference. Note that xfs_trans_ail_update() drops the 3546 * AIL lock. 3547 */ 3548 xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn); 3549 xfs_rui_release(ruip); 3550 return 0; 3551 } 3552 3553 3554 /* 3555 * This routine is called when an RUD format structure is found in a committed 3556 * transaction in the log. Its purpose is to cancel the corresponding RUI if it 3557 * was still in the log. To do this it searches the AIL for the RUI with an id 3558 * equal to that in the RUD format structure. If we find it we drop the RUD 3559 * reference, which removes the RUI from the AIL and frees it. 3560 */ 3561 STATIC int 3562 xlog_recover_rud_pass2( 3563 struct xlog *log, 3564 struct xlog_recover_item *item) 3565 { 3566 struct xfs_rud_log_format *rud_formatp; 3567 struct xfs_rui_log_item *ruip = NULL; 3568 struct xfs_log_item *lip; 3569 uint64_t rui_id; 3570 struct xfs_ail_cursor cur; 3571 struct xfs_ail *ailp = log->l_ailp; 3572 3573 rud_formatp = item->ri_buf[0].i_addr; 3574 ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format)); 3575 rui_id = rud_formatp->rud_rui_id; 3576 3577 /* 3578 * Search for the RUI with the id in the RUD format structure in the 3579 * AIL. 3580 */ 3581 spin_lock(&ailp->ail_lock); 3582 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3583 while (lip != NULL) { 3584 if (lip->li_type == XFS_LI_RUI) { 3585 ruip = (struct xfs_rui_log_item *)lip; 3586 if (ruip->rui_format.rui_id == rui_id) { 3587 /* 3588 * Drop the RUD reference to the RUI. This 3589 * removes the RUI from the AIL and frees it. 3590 */ 3591 spin_unlock(&ailp->ail_lock); 3592 xfs_rui_release(ruip); 3593 spin_lock(&ailp->ail_lock); 3594 break; 3595 } 3596 } 3597 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3598 } 3599 3600 xfs_trans_ail_cursor_done(&cur); 3601 spin_unlock(&ailp->ail_lock); 3602 3603 return 0; 3604 } 3605 3606 /* 3607 * Copy an CUI format buffer from the given buf, and into the destination 3608 * CUI format structure. The CUI/CUD items were designed not to need any 3609 * special alignment handling. 3610 */ 3611 static int 3612 xfs_cui_copy_format( 3613 struct xfs_log_iovec *buf, 3614 struct xfs_cui_log_format *dst_cui_fmt) 3615 { 3616 struct xfs_cui_log_format *src_cui_fmt; 3617 uint len; 3618 3619 src_cui_fmt = buf->i_addr; 3620 len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents); 3621 3622 if (buf->i_len == len) { 3623 memcpy(dst_cui_fmt, src_cui_fmt, len); 3624 return 0; 3625 } 3626 return -EFSCORRUPTED; 3627 } 3628 3629 /* 3630 * This routine is called to create an in-core extent refcount update 3631 * item from the cui format structure which was logged on disk. 3632 * It allocates an in-core cui, copies the extents from the format 3633 * structure into it, and adds the cui to the AIL with the given 3634 * LSN. 3635 */ 3636 STATIC int 3637 xlog_recover_cui_pass2( 3638 struct xlog *log, 3639 struct xlog_recover_item *item, 3640 xfs_lsn_t lsn) 3641 { 3642 int error; 3643 struct xfs_mount *mp = log->l_mp; 3644 struct xfs_cui_log_item *cuip; 3645 struct xfs_cui_log_format *cui_formatp; 3646 3647 cui_formatp = item->ri_buf[0].i_addr; 3648 3649 cuip = xfs_cui_init(mp, cui_formatp->cui_nextents); 3650 error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format); 3651 if (error) { 3652 xfs_cui_item_free(cuip); 3653 return error; 3654 } 3655 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents); 3656 3657 spin_lock(&log->l_ailp->ail_lock); 3658 /* 3659 * The CUI has two references. One for the CUD and one for CUI to ensure 3660 * it makes it into the AIL. Insert the CUI into the AIL directly and 3661 * drop the CUI reference. Note that xfs_trans_ail_update() drops the 3662 * AIL lock. 3663 */ 3664 xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn); 3665 xfs_cui_release(cuip); 3666 return 0; 3667 } 3668 3669 3670 /* 3671 * This routine is called when an CUD format structure is found in a committed 3672 * transaction in the log. Its purpose is to cancel the corresponding CUI if it 3673 * was still in the log. To do this it searches the AIL for the CUI with an id 3674 * equal to that in the CUD format structure. If we find it we drop the CUD 3675 * reference, which removes the CUI from the AIL and frees it. 3676 */ 3677 STATIC int 3678 xlog_recover_cud_pass2( 3679 struct xlog *log, 3680 struct xlog_recover_item *item) 3681 { 3682 struct xfs_cud_log_format *cud_formatp; 3683 struct xfs_cui_log_item *cuip = NULL; 3684 struct xfs_log_item *lip; 3685 uint64_t cui_id; 3686 struct xfs_ail_cursor cur; 3687 struct xfs_ail *ailp = log->l_ailp; 3688 3689 cud_formatp = item->ri_buf[0].i_addr; 3690 if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) 3691 return -EFSCORRUPTED; 3692 cui_id = cud_formatp->cud_cui_id; 3693 3694 /* 3695 * Search for the CUI with the id in the CUD format structure in the 3696 * AIL. 3697 */ 3698 spin_lock(&ailp->ail_lock); 3699 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3700 while (lip != NULL) { 3701 if (lip->li_type == XFS_LI_CUI) { 3702 cuip = (struct xfs_cui_log_item *)lip; 3703 if (cuip->cui_format.cui_id == cui_id) { 3704 /* 3705 * Drop the CUD reference to the CUI. This 3706 * removes the CUI from the AIL and frees it. 3707 */ 3708 spin_unlock(&ailp->ail_lock); 3709 xfs_cui_release(cuip); 3710 spin_lock(&ailp->ail_lock); 3711 break; 3712 } 3713 } 3714 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3715 } 3716 3717 xfs_trans_ail_cursor_done(&cur); 3718 spin_unlock(&ailp->ail_lock); 3719 3720 return 0; 3721 } 3722 3723 /* 3724 * Copy an BUI format buffer from the given buf, and into the destination 3725 * BUI format structure. The BUI/BUD items were designed not to need any 3726 * special alignment handling. 3727 */ 3728 static int 3729 xfs_bui_copy_format( 3730 struct xfs_log_iovec *buf, 3731 struct xfs_bui_log_format *dst_bui_fmt) 3732 { 3733 struct xfs_bui_log_format *src_bui_fmt; 3734 uint len; 3735 3736 src_bui_fmt = buf->i_addr; 3737 len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents); 3738 3739 if (buf->i_len == len) { 3740 memcpy(dst_bui_fmt, src_bui_fmt, len); 3741 return 0; 3742 } 3743 return -EFSCORRUPTED; 3744 } 3745 3746 /* 3747 * This routine is called to create an in-core extent bmap update 3748 * item from the bui format structure which was logged on disk. 3749 * It allocates an in-core bui, copies the extents from the format 3750 * structure into it, and adds the bui to the AIL with the given 3751 * LSN. 3752 */ 3753 STATIC int 3754 xlog_recover_bui_pass2( 3755 struct xlog *log, 3756 struct xlog_recover_item *item, 3757 xfs_lsn_t lsn) 3758 { 3759 int error; 3760 struct xfs_mount *mp = log->l_mp; 3761 struct xfs_bui_log_item *buip; 3762 struct xfs_bui_log_format *bui_formatp; 3763 3764 bui_formatp = item->ri_buf[0].i_addr; 3765 3766 if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS) 3767 return -EFSCORRUPTED; 3768 buip = xfs_bui_init(mp); 3769 error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format); 3770 if (error) { 3771 xfs_bui_item_free(buip); 3772 return error; 3773 } 3774 atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents); 3775 3776 spin_lock(&log->l_ailp->ail_lock); 3777 /* 3778 * The RUI has two references. One for the RUD and one for RUI to ensure 3779 * it makes it into the AIL. Insert the RUI into the AIL directly and 3780 * drop the RUI reference. Note that xfs_trans_ail_update() drops the 3781 * AIL lock. 3782 */ 3783 xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn); 3784 xfs_bui_release(buip); 3785 return 0; 3786 } 3787 3788 3789 /* 3790 * This routine is called when an BUD format structure is found in a committed 3791 * transaction in the log. Its purpose is to cancel the corresponding BUI if it 3792 * was still in the log. To do this it searches the AIL for the BUI with an id 3793 * equal to that in the BUD format structure. If we find it we drop the BUD 3794 * reference, which removes the BUI from the AIL and frees it. 3795 */ 3796 STATIC int 3797 xlog_recover_bud_pass2( 3798 struct xlog *log, 3799 struct xlog_recover_item *item) 3800 { 3801 struct xfs_bud_log_format *bud_formatp; 3802 struct xfs_bui_log_item *buip = NULL; 3803 struct xfs_log_item *lip; 3804 uint64_t bui_id; 3805 struct xfs_ail_cursor cur; 3806 struct xfs_ail *ailp = log->l_ailp; 3807 3808 bud_formatp = item->ri_buf[0].i_addr; 3809 if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format)) 3810 return -EFSCORRUPTED; 3811 bui_id = bud_formatp->bud_bui_id; 3812 3813 /* 3814 * Search for the BUI with the id in the BUD format structure in the 3815 * AIL. 3816 */ 3817 spin_lock(&ailp->ail_lock); 3818 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3819 while (lip != NULL) { 3820 if (lip->li_type == XFS_LI_BUI) { 3821 buip = (struct xfs_bui_log_item *)lip; 3822 if (buip->bui_format.bui_id == bui_id) { 3823 /* 3824 * Drop the BUD reference to the BUI. This 3825 * removes the BUI from the AIL and frees it. 3826 */ 3827 spin_unlock(&ailp->ail_lock); 3828 xfs_bui_release(buip); 3829 spin_lock(&ailp->ail_lock); 3830 break; 3831 } 3832 } 3833 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3834 } 3835 3836 xfs_trans_ail_cursor_done(&cur); 3837 spin_unlock(&ailp->ail_lock); 3838 3839 return 0; 3840 } 3841 3842 /* 3843 * This routine is called when an inode create format structure is found in a 3844 * committed transaction in the log. It's purpose is to initialise the inodes 3845 * being allocated on disk. This requires us to get inode cluster buffers that 3846 * match the range to be initialised, stamped with inode templates and written 3847 * by delayed write so that subsequent modifications will hit the cached buffer 3848 * and only need writing out at the end of recovery. 3849 */ 3850 STATIC int 3851 xlog_recover_do_icreate_pass2( 3852 struct xlog *log, 3853 struct list_head *buffer_list, 3854 xlog_recover_item_t *item) 3855 { 3856 struct xfs_mount *mp = log->l_mp; 3857 struct xfs_icreate_log *icl; 3858 xfs_agnumber_t agno; 3859 xfs_agblock_t agbno; 3860 unsigned int count; 3861 unsigned int isize; 3862 xfs_agblock_t length; 3863 int blks_per_cluster; 3864 int bb_per_cluster; 3865 int cancel_count; 3866 int nbufs; 3867 int i; 3868 3869 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr; 3870 if (icl->icl_type != XFS_LI_ICREATE) { 3871 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type"); 3872 return -EINVAL; 3873 } 3874 3875 if (icl->icl_size != 1) { 3876 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size"); 3877 return -EINVAL; 3878 } 3879 3880 agno = be32_to_cpu(icl->icl_ag); 3881 if (agno >= mp->m_sb.sb_agcount) { 3882 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno"); 3883 return -EINVAL; 3884 } 3885 agbno = be32_to_cpu(icl->icl_agbno); 3886 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) { 3887 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno"); 3888 return -EINVAL; 3889 } 3890 isize = be32_to_cpu(icl->icl_isize); 3891 if (isize != mp->m_sb.sb_inodesize) { 3892 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize"); 3893 return -EINVAL; 3894 } 3895 count = be32_to_cpu(icl->icl_count); 3896 if (!count) { 3897 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count"); 3898 return -EINVAL; 3899 } 3900 length = be32_to_cpu(icl->icl_length); 3901 if (!length || length >= mp->m_sb.sb_agblocks) { 3902 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length"); 3903 return -EINVAL; 3904 } 3905 3906 /* 3907 * The inode chunk is either full or sparse and we only support 3908 * m_ialloc_min_blks sized sparse allocations at this time. 3909 */ 3910 if (length != mp->m_ialloc_blks && 3911 length != mp->m_ialloc_min_blks) { 3912 xfs_warn(log->l_mp, 3913 "%s: unsupported chunk length", __FUNCTION__); 3914 return -EINVAL; 3915 } 3916 3917 /* verify inode count is consistent with extent length */ 3918 if ((count >> mp->m_sb.sb_inopblog) != length) { 3919 xfs_warn(log->l_mp, 3920 "%s: inconsistent inode count and chunk length", 3921 __FUNCTION__); 3922 return -EINVAL; 3923 } 3924 3925 /* 3926 * The icreate transaction can cover multiple cluster buffers and these 3927 * buffers could have been freed and reused. Check the individual 3928 * buffers for cancellation so we don't overwrite anything written after 3929 * a cancellation. 3930 */ 3931 blks_per_cluster = xfs_icluster_size_fsb(mp); 3932 bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster); 3933 nbufs = length / blks_per_cluster; 3934 for (i = 0, cancel_count = 0; i < nbufs; i++) { 3935 xfs_daddr_t daddr; 3936 3937 daddr = XFS_AGB_TO_DADDR(mp, agno, 3938 agbno + i * blks_per_cluster); 3939 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0)) 3940 cancel_count++; 3941 } 3942 3943 /* 3944 * We currently only use icreate for a single allocation at a time. This 3945 * means we should expect either all or none of the buffers to be 3946 * cancelled. Be conservative and skip replay if at least one buffer is 3947 * cancelled, but warn the user that something is awry if the buffers 3948 * are not consistent. 3949 * 3950 * XXX: This must be refined to only skip cancelled clusters once we use 3951 * icreate for multiple chunk allocations. 3952 */ 3953 ASSERT(!cancel_count || cancel_count == nbufs); 3954 if (cancel_count) { 3955 if (cancel_count != nbufs) 3956 xfs_warn(mp, 3957 "WARNING: partial inode chunk cancellation, skipped icreate."); 3958 trace_xfs_log_recover_icreate_cancel(log, icl); 3959 return 0; 3960 } 3961 3962 trace_xfs_log_recover_icreate_recover(log, icl); 3963 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno, 3964 length, be32_to_cpu(icl->icl_gen)); 3965 } 3966 3967 STATIC void 3968 xlog_recover_buffer_ra_pass2( 3969 struct xlog *log, 3970 struct xlog_recover_item *item) 3971 { 3972 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr; 3973 struct xfs_mount *mp = log->l_mp; 3974 3975 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno, 3976 buf_f->blf_len, buf_f->blf_flags)) { 3977 return; 3978 } 3979 3980 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno, 3981 buf_f->blf_len, NULL); 3982 } 3983 3984 STATIC void 3985 xlog_recover_inode_ra_pass2( 3986 struct xlog *log, 3987 struct xlog_recover_item *item) 3988 { 3989 struct xfs_inode_log_format ilf_buf; 3990 struct xfs_inode_log_format *ilfp; 3991 struct xfs_mount *mp = log->l_mp; 3992 int error; 3993 3994 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { 3995 ilfp = item->ri_buf[0].i_addr; 3996 } else { 3997 ilfp = &ilf_buf; 3998 memset(ilfp, 0, sizeof(*ilfp)); 3999 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp); 4000 if (error) 4001 return; 4002 } 4003 4004 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0)) 4005 return; 4006 4007 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno, 4008 ilfp->ilf_len, &xfs_inode_buf_ra_ops); 4009 } 4010 4011 STATIC void 4012 xlog_recover_dquot_ra_pass2( 4013 struct xlog *log, 4014 struct xlog_recover_item *item) 4015 { 4016 struct xfs_mount *mp = log->l_mp; 4017 struct xfs_disk_dquot *recddq; 4018 struct xfs_dq_logformat *dq_f; 4019 uint type; 4020 int len; 4021 4022 4023 if (mp->m_qflags == 0) 4024 return; 4025 4026 recddq = item->ri_buf[1].i_addr; 4027 if (recddq == NULL) 4028 return; 4029 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot)) 4030 return; 4031 4032 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 4033 ASSERT(type); 4034 if (log->l_quotaoffs_flag & type) 4035 return; 4036 4037 dq_f = item->ri_buf[0].i_addr; 4038 ASSERT(dq_f); 4039 ASSERT(dq_f->qlf_len == 1); 4040 4041 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len); 4042 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0)) 4043 return; 4044 4045 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len, 4046 &xfs_dquot_buf_ra_ops); 4047 } 4048 4049 STATIC void 4050 xlog_recover_ra_pass2( 4051 struct xlog *log, 4052 struct xlog_recover_item *item) 4053 { 4054 switch (ITEM_TYPE(item)) { 4055 case XFS_LI_BUF: 4056 xlog_recover_buffer_ra_pass2(log, item); 4057 break; 4058 case XFS_LI_INODE: 4059 xlog_recover_inode_ra_pass2(log, item); 4060 break; 4061 case XFS_LI_DQUOT: 4062 xlog_recover_dquot_ra_pass2(log, item); 4063 break; 4064 case XFS_LI_EFI: 4065 case XFS_LI_EFD: 4066 case XFS_LI_QUOTAOFF: 4067 case XFS_LI_RUI: 4068 case XFS_LI_RUD: 4069 case XFS_LI_CUI: 4070 case XFS_LI_CUD: 4071 case XFS_LI_BUI: 4072 case XFS_LI_BUD: 4073 default: 4074 break; 4075 } 4076 } 4077 4078 STATIC int 4079 xlog_recover_commit_pass1( 4080 struct xlog *log, 4081 struct xlog_recover *trans, 4082 struct xlog_recover_item *item) 4083 { 4084 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1); 4085 4086 switch (ITEM_TYPE(item)) { 4087 case XFS_LI_BUF: 4088 return xlog_recover_buffer_pass1(log, item); 4089 case XFS_LI_QUOTAOFF: 4090 return xlog_recover_quotaoff_pass1(log, item); 4091 case XFS_LI_INODE: 4092 case XFS_LI_EFI: 4093 case XFS_LI_EFD: 4094 case XFS_LI_DQUOT: 4095 case XFS_LI_ICREATE: 4096 case XFS_LI_RUI: 4097 case XFS_LI_RUD: 4098 case XFS_LI_CUI: 4099 case XFS_LI_CUD: 4100 case XFS_LI_BUI: 4101 case XFS_LI_BUD: 4102 /* nothing to do in pass 1 */ 4103 return 0; 4104 default: 4105 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 4106 __func__, ITEM_TYPE(item)); 4107 ASSERT(0); 4108 return -EIO; 4109 } 4110 } 4111 4112 STATIC int 4113 xlog_recover_commit_pass2( 4114 struct xlog *log, 4115 struct xlog_recover *trans, 4116 struct list_head *buffer_list, 4117 struct xlog_recover_item *item) 4118 { 4119 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2); 4120 4121 switch (ITEM_TYPE(item)) { 4122 case XFS_LI_BUF: 4123 return xlog_recover_buffer_pass2(log, buffer_list, item, 4124 trans->r_lsn); 4125 case XFS_LI_INODE: 4126 return xlog_recover_inode_pass2(log, buffer_list, item, 4127 trans->r_lsn); 4128 case XFS_LI_EFI: 4129 return xlog_recover_efi_pass2(log, item, trans->r_lsn); 4130 case XFS_LI_EFD: 4131 return xlog_recover_efd_pass2(log, item); 4132 case XFS_LI_RUI: 4133 return xlog_recover_rui_pass2(log, item, trans->r_lsn); 4134 case XFS_LI_RUD: 4135 return xlog_recover_rud_pass2(log, item); 4136 case XFS_LI_CUI: 4137 return xlog_recover_cui_pass2(log, item, trans->r_lsn); 4138 case XFS_LI_CUD: 4139 return xlog_recover_cud_pass2(log, item); 4140 case XFS_LI_BUI: 4141 return xlog_recover_bui_pass2(log, item, trans->r_lsn); 4142 case XFS_LI_BUD: 4143 return xlog_recover_bud_pass2(log, item); 4144 case XFS_LI_DQUOT: 4145 return xlog_recover_dquot_pass2(log, buffer_list, item, 4146 trans->r_lsn); 4147 case XFS_LI_ICREATE: 4148 return xlog_recover_do_icreate_pass2(log, buffer_list, item); 4149 case XFS_LI_QUOTAOFF: 4150 /* nothing to do in pass2 */ 4151 return 0; 4152 default: 4153 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 4154 __func__, ITEM_TYPE(item)); 4155 ASSERT(0); 4156 return -EIO; 4157 } 4158 } 4159 4160 STATIC int 4161 xlog_recover_items_pass2( 4162 struct xlog *log, 4163 struct xlog_recover *trans, 4164 struct list_head *buffer_list, 4165 struct list_head *item_list) 4166 { 4167 struct xlog_recover_item *item; 4168 int error = 0; 4169 4170 list_for_each_entry(item, item_list, ri_list) { 4171 error = xlog_recover_commit_pass2(log, trans, 4172 buffer_list, item); 4173 if (error) 4174 return error; 4175 } 4176 4177 return error; 4178 } 4179 4180 /* 4181 * Perform the transaction. 4182 * 4183 * If the transaction modifies a buffer or inode, do it now. Otherwise, 4184 * EFIs and EFDs get queued up by adding entries into the AIL for them. 4185 */ 4186 STATIC int 4187 xlog_recover_commit_trans( 4188 struct xlog *log, 4189 struct xlog_recover *trans, 4190 int pass, 4191 struct list_head *buffer_list) 4192 { 4193 int error = 0; 4194 int items_queued = 0; 4195 struct xlog_recover_item *item; 4196 struct xlog_recover_item *next; 4197 LIST_HEAD (ra_list); 4198 LIST_HEAD (done_list); 4199 4200 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100 4201 4202 hlist_del_init(&trans->r_list); 4203 4204 error = xlog_recover_reorder_trans(log, trans, pass); 4205 if (error) 4206 return error; 4207 4208 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) { 4209 switch (pass) { 4210 case XLOG_RECOVER_PASS1: 4211 error = xlog_recover_commit_pass1(log, trans, item); 4212 break; 4213 case XLOG_RECOVER_PASS2: 4214 xlog_recover_ra_pass2(log, item); 4215 list_move_tail(&item->ri_list, &ra_list); 4216 items_queued++; 4217 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) { 4218 error = xlog_recover_items_pass2(log, trans, 4219 buffer_list, &ra_list); 4220 list_splice_tail_init(&ra_list, &done_list); 4221 items_queued = 0; 4222 } 4223 4224 break; 4225 default: 4226 ASSERT(0); 4227 } 4228 4229 if (error) 4230 goto out; 4231 } 4232 4233 out: 4234 if (!list_empty(&ra_list)) { 4235 if (!error) 4236 error = xlog_recover_items_pass2(log, trans, 4237 buffer_list, &ra_list); 4238 list_splice_tail_init(&ra_list, &done_list); 4239 } 4240 4241 if (!list_empty(&done_list)) 4242 list_splice_init(&done_list, &trans->r_itemq); 4243 4244 return error; 4245 } 4246 4247 STATIC void 4248 xlog_recover_add_item( 4249 struct list_head *head) 4250 { 4251 xlog_recover_item_t *item; 4252 4253 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 4254 INIT_LIST_HEAD(&item->ri_list); 4255 list_add_tail(&item->ri_list, head); 4256 } 4257 4258 STATIC int 4259 xlog_recover_add_to_cont_trans( 4260 struct xlog *log, 4261 struct xlog_recover *trans, 4262 char *dp, 4263 int len) 4264 { 4265 xlog_recover_item_t *item; 4266 char *ptr, *old_ptr; 4267 int old_len; 4268 4269 /* 4270 * If the transaction is empty, the header was split across this and the 4271 * previous record. Copy the rest of the header. 4272 */ 4273 if (list_empty(&trans->r_itemq)) { 4274 ASSERT(len <= sizeof(struct xfs_trans_header)); 4275 if (len > sizeof(struct xfs_trans_header)) { 4276 xfs_warn(log->l_mp, "%s: bad header length", __func__); 4277 return -EIO; 4278 } 4279 4280 xlog_recover_add_item(&trans->r_itemq); 4281 ptr = (char *)&trans->r_theader + 4282 sizeof(struct xfs_trans_header) - len; 4283 memcpy(ptr, dp, len); 4284 return 0; 4285 } 4286 4287 /* take the tail entry */ 4288 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 4289 4290 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 4291 old_len = item->ri_buf[item->ri_cnt-1].i_len; 4292 4293 ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP); 4294 memcpy(&ptr[old_len], dp, len); 4295 item->ri_buf[item->ri_cnt-1].i_len += len; 4296 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 4297 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 4298 return 0; 4299 } 4300 4301 /* 4302 * The next region to add is the start of a new region. It could be 4303 * a whole region or it could be the first part of a new region. Because 4304 * of this, the assumption here is that the type and size fields of all 4305 * format structures fit into the first 32 bits of the structure. 4306 * 4307 * This works because all regions must be 32 bit aligned. Therefore, we 4308 * either have both fields or we have neither field. In the case we have 4309 * neither field, the data part of the region is zero length. We only have 4310 * a log_op_header and can throw away the header since a new one will appear 4311 * later. If we have at least 4 bytes, then we can determine how many regions 4312 * will appear in the current log item. 4313 */ 4314 STATIC int 4315 xlog_recover_add_to_trans( 4316 struct xlog *log, 4317 struct xlog_recover *trans, 4318 char *dp, 4319 int len) 4320 { 4321 struct xfs_inode_log_format *in_f; /* any will do */ 4322 xlog_recover_item_t *item; 4323 char *ptr; 4324 4325 if (!len) 4326 return 0; 4327 if (list_empty(&trans->r_itemq)) { 4328 /* we need to catch log corruptions here */ 4329 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 4330 xfs_warn(log->l_mp, "%s: bad header magic number", 4331 __func__); 4332 ASSERT(0); 4333 return -EIO; 4334 } 4335 4336 if (len > sizeof(struct xfs_trans_header)) { 4337 xfs_warn(log->l_mp, "%s: bad header length", __func__); 4338 ASSERT(0); 4339 return -EIO; 4340 } 4341 4342 /* 4343 * The transaction header can be arbitrarily split across op 4344 * records. If we don't have the whole thing here, copy what we 4345 * do have and handle the rest in the next record. 4346 */ 4347 if (len == sizeof(struct xfs_trans_header)) 4348 xlog_recover_add_item(&trans->r_itemq); 4349 memcpy(&trans->r_theader, dp, len); 4350 return 0; 4351 } 4352 4353 ptr = kmem_alloc(len, KM_SLEEP); 4354 memcpy(ptr, dp, len); 4355 in_f = (struct xfs_inode_log_format *)ptr; 4356 4357 /* take the tail entry */ 4358 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 4359 if (item->ri_total != 0 && 4360 item->ri_total == item->ri_cnt) { 4361 /* tail item is in use, get a new one */ 4362 xlog_recover_add_item(&trans->r_itemq); 4363 item = list_entry(trans->r_itemq.prev, 4364 xlog_recover_item_t, ri_list); 4365 } 4366 4367 if (item->ri_total == 0) { /* first region to be added */ 4368 if (in_f->ilf_size == 0 || 4369 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 4370 xfs_warn(log->l_mp, 4371 "bad number of regions (%d) in inode log format", 4372 in_f->ilf_size); 4373 ASSERT(0); 4374 kmem_free(ptr); 4375 return -EIO; 4376 } 4377 4378 item->ri_total = in_f->ilf_size; 4379 item->ri_buf = 4380 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 4381 KM_SLEEP); 4382 } 4383 ASSERT(item->ri_total > item->ri_cnt); 4384 /* Description region is ri_buf[0] */ 4385 item->ri_buf[item->ri_cnt].i_addr = ptr; 4386 item->ri_buf[item->ri_cnt].i_len = len; 4387 item->ri_cnt++; 4388 trace_xfs_log_recover_item_add(log, trans, item, 0); 4389 return 0; 4390 } 4391 4392 /* 4393 * Free up any resources allocated by the transaction 4394 * 4395 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 4396 */ 4397 STATIC void 4398 xlog_recover_free_trans( 4399 struct xlog_recover *trans) 4400 { 4401 xlog_recover_item_t *item, *n; 4402 int i; 4403 4404 hlist_del_init(&trans->r_list); 4405 4406 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 4407 /* Free the regions in the item. */ 4408 list_del(&item->ri_list); 4409 for (i = 0; i < item->ri_cnt; i++) 4410 kmem_free(item->ri_buf[i].i_addr); 4411 /* Free the item itself */ 4412 kmem_free(item->ri_buf); 4413 kmem_free(item); 4414 } 4415 /* Free the transaction recover structure */ 4416 kmem_free(trans); 4417 } 4418 4419 /* 4420 * On error or completion, trans is freed. 4421 */ 4422 STATIC int 4423 xlog_recovery_process_trans( 4424 struct xlog *log, 4425 struct xlog_recover *trans, 4426 char *dp, 4427 unsigned int len, 4428 unsigned int flags, 4429 int pass, 4430 struct list_head *buffer_list) 4431 { 4432 int error = 0; 4433 bool freeit = false; 4434 4435 /* mask off ophdr transaction container flags */ 4436 flags &= ~XLOG_END_TRANS; 4437 if (flags & XLOG_WAS_CONT_TRANS) 4438 flags &= ~XLOG_CONTINUE_TRANS; 4439 4440 /* 4441 * Callees must not free the trans structure. We'll decide if we need to 4442 * free it or not based on the operation being done and it's result. 4443 */ 4444 switch (flags) { 4445 /* expected flag values */ 4446 case 0: 4447 case XLOG_CONTINUE_TRANS: 4448 error = xlog_recover_add_to_trans(log, trans, dp, len); 4449 break; 4450 case XLOG_WAS_CONT_TRANS: 4451 error = xlog_recover_add_to_cont_trans(log, trans, dp, len); 4452 break; 4453 case XLOG_COMMIT_TRANS: 4454 error = xlog_recover_commit_trans(log, trans, pass, 4455 buffer_list); 4456 /* success or fail, we are now done with this transaction. */ 4457 freeit = true; 4458 break; 4459 4460 /* unexpected flag values */ 4461 case XLOG_UNMOUNT_TRANS: 4462 /* just skip trans */ 4463 xfs_warn(log->l_mp, "%s: Unmount LR", __func__); 4464 freeit = true; 4465 break; 4466 case XLOG_START_TRANS: 4467 default: 4468 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags); 4469 ASSERT(0); 4470 error = -EIO; 4471 break; 4472 } 4473 if (error || freeit) 4474 xlog_recover_free_trans(trans); 4475 return error; 4476 } 4477 4478 /* 4479 * Lookup the transaction recovery structure associated with the ID in the 4480 * current ophdr. If the transaction doesn't exist and the start flag is set in 4481 * the ophdr, then allocate a new transaction for future ID matches to find. 4482 * Either way, return what we found during the lookup - an existing transaction 4483 * or nothing. 4484 */ 4485 STATIC struct xlog_recover * 4486 xlog_recover_ophdr_to_trans( 4487 struct hlist_head rhash[], 4488 struct xlog_rec_header *rhead, 4489 struct xlog_op_header *ohead) 4490 { 4491 struct xlog_recover *trans; 4492 xlog_tid_t tid; 4493 struct hlist_head *rhp; 4494 4495 tid = be32_to_cpu(ohead->oh_tid); 4496 rhp = &rhash[XLOG_RHASH(tid)]; 4497 hlist_for_each_entry(trans, rhp, r_list) { 4498 if (trans->r_log_tid == tid) 4499 return trans; 4500 } 4501 4502 /* 4503 * skip over non-start transaction headers - we could be 4504 * processing slack space before the next transaction starts 4505 */ 4506 if (!(ohead->oh_flags & XLOG_START_TRANS)) 4507 return NULL; 4508 4509 ASSERT(be32_to_cpu(ohead->oh_len) == 0); 4510 4511 /* 4512 * This is a new transaction so allocate a new recovery container to 4513 * hold the recovery ops that will follow. 4514 */ 4515 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP); 4516 trans->r_log_tid = tid; 4517 trans->r_lsn = be64_to_cpu(rhead->h_lsn); 4518 INIT_LIST_HEAD(&trans->r_itemq); 4519 INIT_HLIST_NODE(&trans->r_list); 4520 hlist_add_head(&trans->r_list, rhp); 4521 4522 /* 4523 * Nothing more to do for this ophdr. Items to be added to this new 4524 * transaction will be in subsequent ophdr containers. 4525 */ 4526 return NULL; 4527 } 4528 4529 STATIC int 4530 xlog_recover_process_ophdr( 4531 struct xlog *log, 4532 struct hlist_head rhash[], 4533 struct xlog_rec_header *rhead, 4534 struct xlog_op_header *ohead, 4535 char *dp, 4536 char *end, 4537 int pass, 4538 struct list_head *buffer_list) 4539 { 4540 struct xlog_recover *trans; 4541 unsigned int len; 4542 int error; 4543 4544 /* Do we understand who wrote this op? */ 4545 if (ohead->oh_clientid != XFS_TRANSACTION && 4546 ohead->oh_clientid != XFS_LOG) { 4547 xfs_warn(log->l_mp, "%s: bad clientid 0x%x", 4548 __func__, ohead->oh_clientid); 4549 ASSERT(0); 4550 return -EIO; 4551 } 4552 4553 /* 4554 * Check the ophdr contains all the data it is supposed to contain. 4555 */ 4556 len = be32_to_cpu(ohead->oh_len); 4557 if (dp + len > end) { 4558 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len); 4559 WARN_ON(1); 4560 return -EIO; 4561 } 4562 4563 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead); 4564 if (!trans) { 4565 /* nothing to do, so skip over this ophdr */ 4566 return 0; 4567 } 4568 4569 /* 4570 * The recovered buffer queue is drained only once we know that all 4571 * recovery items for the current LSN have been processed. This is 4572 * required because: 4573 * 4574 * - Buffer write submission updates the metadata LSN of the buffer. 4575 * - Log recovery skips items with a metadata LSN >= the current LSN of 4576 * the recovery item. 4577 * - Separate recovery items against the same metadata buffer can share 4578 * a current LSN. I.e., consider that the LSN of a recovery item is 4579 * defined as the starting LSN of the first record in which its 4580 * transaction appears, that a record can hold multiple transactions, 4581 * and/or that a transaction can span multiple records. 4582 * 4583 * In other words, we are allowed to submit a buffer from log recovery 4584 * once per current LSN. Otherwise, we may incorrectly skip recovery 4585 * items and cause corruption. 4586 * 4587 * We don't know up front whether buffers are updated multiple times per 4588 * LSN. Therefore, track the current LSN of each commit log record as it 4589 * is processed and drain the queue when it changes. Use commit records 4590 * because they are ordered correctly by the logging code. 4591 */ 4592 if (log->l_recovery_lsn != trans->r_lsn && 4593 ohead->oh_flags & XLOG_COMMIT_TRANS) { 4594 error = xfs_buf_delwri_submit(buffer_list); 4595 if (error) 4596 return error; 4597 log->l_recovery_lsn = trans->r_lsn; 4598 } 4599 4600 return xlog_recovery_process_trans(log, trans, dp, len, 4601 ohead->oh_flags, pass, buffer_list); 4602 } 4603 4604 /* 4605 * There are two valid states of the r_state field. 0 indicates that the 4606 * transaction structure is in a normal state. We have either seen the 4607 * start of the transaction or the last operation we added was not a partial 4608 * operation. If the last operation we added to the transaction was a 4609 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 4610 * 4611 * NOTE: skip LRs with 0 data length. 4612 */ 4613 STATIC int 4614 xlog_recover_process_data( 4615 struct xlog *log, 4616 struct hlist_head rhash[], 4617 struct xlog_rec_header *rhead, 4618 char *dp, 4619 int pass, 4620 struct list_head *buffer_list) 4621 { 4622 struct xlog_op_header *ohead; 4623 char *end; 4624 int num_logops; 4625 int error; 4626 4627 end = dp + be32_to_cpu(rhead->h_len); 4628 num_logops = be32_to_cpu(rhead->h_num_logops); 4629 4630 /* check the log format matches our own - else we can't recover */ 4631 if (xlog_header_check_recover(log->l_mp, rhead)) 4632 return -EIO; 4633 4634 trace_xfs_log_recover_record(log, rhead, pass); 4635 while ((dp < end) && num_logops) { 4636 4637 ohead = (struct xlog_op_header *)dp; 4638 dp += sizeof(*ohead); 4639 ASSERT(dp <= end); 4640 4641 /* errors will abort recovery */ 4642 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead, 4643 dp, end, pass, buffer_list); 4644 if (error) 4645 return error; 4646 4647 dp += be32_to_cpu(ohead->oh_len); 4648 num_logops--; 4649 } 4650 return 0; 4651 } 4652 4653 /* Recover the EFI if necessary. */ 4654 STATIC int 4655 xlog_recover_process_efi( 4656 struct xfs_mount *mp, 4657 struct xfs_ail *ailp, 4658 struct xfs_log_item *lip) 4659 { 4660 struct xfs_efi_log_item *efip; 4661 int error; 4662 4663 /* 4664 * Skip EFIs that we've already processed. 4665 */ 4666 efip = container_of(lip, struct xfs_efi_log_item, efi_item); 4667 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) 4668 return 0; 4669 4670 spin_unlock(&ailp->ail_lock); 4671 error = xfs_efi_recover(mp, efip); 4672 spin_lock(&ailp->ail_lock); 4673 4674 return error; 4675 } 4676 4677 /* Release the EFI since we're cancelling everything. */ 4678 STATIC void 4679 xlog_recover_cancel_efi( 4680 struct xfs_mount *mp, 4681 struct xfs_ail *ailp, 4682 struct xfs_log_item *lip) 4683 { 4684 struct xfs_efi_log_item *efip; 4685 4686 efip = container_of(lip, struct xfs_efi_log_item, efi_item); 4687 4688 spin_unlock(&ailp->ail_lock); 4689 xfs_efi_release(efip); 4690 spin_lock(&ailp->ail_lock); 4691 } 4692 4693 /* Recover the RUI if necessary. */ 4694 STATIC int 4695 xlog_recover_process_rui( 4696 struct xfs_mount *mp, 4697 struct xfs_ail *ailp, 4698 struct xfs_log_item *lip) 4699 { 4700 struct xfs_rui_log_item *ruip; 4701 int error; 4702 4703 /* 4704 * Skip RUIs that we've already processed. 4705 */ 4706 ruip = container_of(lip, struct xfs_rui_log_item, rui_item); 4707 if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags)) 4708 return 0; 4709 4710 spin_unlock(&ailp->ail_lock); 4711 error = xfs_rui_recover(mp, ruip); 4712 spin_lock(&ailp->ail_lock); 4713 4714 return error; 4715 } 4716 4717 /* Release the RUI since we're cancelling everything. */ 4718 STATIC void 4719 xlog_recover_cancel_rui( 4720 struct xfs_mount *mp, 4721 struct xfs_ail *ailp, 4722 struct xfs_log_item *lip) 4723 { 4724 struct xfs_rui_log_item *ruip; 4725 4726 ruip = container_of(lip, struct xfs_rui_log_item, rui_item); 4727 4728 spin_unlock(&ailp->ail_lock); 4729 xfs_rui_release(ruip); 4730 spin_lock(&ailp->ail_lock); 4731 } 4732 4733 /* Recover the CUI if necessary. */ 4734 STATIC int 4735 xlog_recover_process_cui( 4736 struct xfs_trans *parent_tp, 4737 struct xfs_ail *ailp, 4738 struct xfs_log_item *lip) 4739 { 4740 struct xfs_cui_log_item *cuip; 4741 int error; 4742 4743 /* 4744 * Skip CUIs that we've already processed. 4745 */ 4746 cuip = container_of(lip, struct xfs_cui_log_item, cui_item); 4747 if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags)) 4748 return 0; 4749 4750 spin_unlock(&ailp->ail_lock); 4751 error = xfs_cui_recover(parent_tp, cuip); 4752 spin_lock(&ailp->ail_lock); 4753 4754 return error; 4755 } 4756 4757 /* Release the CUI since we're cancelling everything. */ 4758 STATIC void 4759 xlog_recover_cancel_cui( 4760 struct xfs_mount *mp, 4761 struct xfs_ail *ailp, 4762 struct xfs_log_item *lip) 4763 { 4764 struct xfs_cui_log_item *cuip; 4765 4766 cuip = container_of(lip, struct xfs_cui_log_item, cui_item); 4767 4768 spin_unlock(&ailp->ail_lock); 4769 xfs_cui_release(cuip); 4770 spin_lock(&ailp->ail_lock); 4771 } 4772 4773 /* Recover the BUI if necessary. */ 4774 STATIC int 4775 xlog_recover_process_bui( 4776 struct xfs_trans *parent_tp, 4777 struct xfs_ail *ailp, 4778 struct xfs_log_item *lip) 4779 { 4780 struct xfs_bui_log_item *buip; 4781 int error; 4782 4783 /* 4784 * Skip BUIs that we've already processed. 4785 */ 4786 buip = container_of(lip, struct xfs_bui_log_item, bui_item); 4787 if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags)) 4788 return 0; 4789 4790 spin_unlock(&ailp->ail_lock); 4791 error = xfs_bui_recover(parent_tp, buip); 4792 spin_lock(&ailp->ail_lock); 4793 4794 return error; 4795 } 4796 4797 /* Release the BUI since we're cancelling everything. */ 4798 STATIC void 4799 xlog_recover_cancel_bui( 4800 struct xfs_mount *mp, 4801 struct xfs_ail *ailp, 4802 struct xfs_log_item *lip) 4803 { 4804 struct xfs_bui_log_item *buip; 4805 4806 buip = container_of(lip, struct xfs_bui_log_item, bui_item); 4807 4808 spin_unlock(&ailp->ail_lock); 4809 xfs_bui_release(buip); 4810 spin_lock(&ailp->ail_lock); 4811 } 4812 4813 /* Is this log item a deferred action intent? */ 4814 static inline bool xlog_item_is_intent(struct xfs_log_item *lip) 4815 { 4816 switch (lip->li_type) { 4817 case XFS_LI_EFI: 4818 case XFS_LI_RUI: 4819 case XFS_LI_CUI: 4820 case XFS_LI_BUI: 4821 return true; 4822 default: 4823 return false; 4824 } 4825 } 4826 4827 /* Take all the collected deferred ops and finish them in order. */ 4828 static int 4829 xlog_finish_defer_ops( 4830 struct xfs_trans *parent_tp) 4831 { 4832 struct xfs_mount *mp = parent_tp->t_mountp; 4833 struct xfs_trans *tp; 4834 int64_t freeblks; 4835 uint resblks; 4836 int error; 4837 4838 /* 4839 * We're finishing the defer_ops that accumulated as a result of 4840 * recovering unfinished intent items during log recovery. We 4841 * reserve an itruncate transaction because it is the largest 4842 * permanent transaction type. Since we're the only user of the fs 4843 * right now, take 93% (15/16) of the available free blocks. Use 4844 * weird math to avoid a 64-bit division. 4845 */ 4846 freeblks = percpu_counter_sum(&mp->m_fdblocks); 4847 if (freeblks <= 0) 4848 return -ENOSPC; 4849 resblks = min_t(int64_t, UINT_MAX, freeblks); 4850 resblks = (resblks * 15) >> 4; 4851 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks, 4852 0, XFS_TRANS_RESERVE, &tp); 4853 if (error) 4854 return error; 4855 /* transfer all collected dfops to this transaction */ 4856 xfs_defer_move(tp, parent_tp); 4857 4858 return xfs_trans_commit(tp); 4859 } 4860 4861 /* 4862 * When this is called, all of the log intent items which did not have 4863 * corresponding log done items should be in the AIL. What we do now 4864 * is update the data structures associated with each one. 4865 * 4866 * Since we process the log intent items in normal transactions, they 4867 * will be removed at some point after the commit. This prevents us 4868 * from just walking down the list processing each one. We'll use a 4869 * flag in the intent item to skip those that we've already processed 4870 * and use the AIL iteration mechanism's generation count to try to 4871 * speed this up at least a bit. 4872 * 4873 * When we start, we know that the intents are the only things in the 4874 * AIL. As we process them, however, other items are added to the 4875 * AIL. 4876 */ 4877 STATIC int 4878 xlog_recover_process_intents( 4879 struct xlog *log) 4880 { 4881 struct xfs_trans *parent_tp; 4882 struct xfs_ail_cursor cur; 4883 struct xfs_log_item *lip; 4884 struct xfs_ail *ailp; 4885 int error; 4886 #if defined(DEBUG) || defined(XFS_WARN) 4887 xfs_lsn_t last_lsn; 4888 #endif 4889 4890 /* 4891 * The intent recovery handlers commit transactions to complete recovery 4892 * for individual intents, but any new deferred operations that are 4893 * queued during that process are held off until the very end. The 4894 * purpose of this transaction is to serve as a container for deferred 4895 * operations. Each intent recovery handler must transfer dfops here 4896 * before its local transaction commits, and we'll finish the entire 4897 * list below. 4898 */ 4899 error = xfs_trans_alloc_empty(log->l_mp, &parent_tp); 4900 if (error) 4901 return error; 4902 4903 ailp = log->l_ailp; 4904 spin_lock(&ailp->ail_lock); 4905 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 4906 #if defined(DEBUG) || defined(XFS_WARN) 4907 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block); 4908 #endif 4909 while (lip != NULL) { 4910 /* 4911 * We're done when we see something other than an intent. 4912 * There should be no intents left in the AIL now. 4913 */ 4914 if (!xlog_item_is_intent(lip)) { 4915 #ifdef DEBUG 4916 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 4917 ASSERT(!xlog_item_is_intent(lip)); 4918 #endif 4919 break; 4920 } 4921 4922 /* 4923 * We should never see a redo item with a LSN higher than 4924 * the last transaction we found in the log at the start 4925 * of recovery. 4926 */ 4927 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0); 4928 4929 /* 4930 * NOTE: If your intent processing routine can create more 4931 * deferred ops, you /must/ attach them to the dfops in this 4932 * routine or else those subsequent intents will get 4933 * replayed in the wrong order! 4934 */ 4935 switch (lip->li_type) { 4936 case XFS_LI_EFI: 4937 error = xlog_recover_process_efi(log->l_mp, ailp, lip); 4938 break; 4939 case XFS_LI_RUI: 4940 error = xlog_recover_process_rui(log->l_mp, ailp, lip); 4941 break; 4942 case XFS_LI_CUI: 4943 error = xlog_recover_process_cui(parent_tp, ailp, lip); 4944 break; 4945 case XFS_LI_BUI: 4946 error = xlog_recover_process_bui(parent_tp, ailp, lip); 4947 break; 4948 } 4949 if (error) 4950 goto out; 4951 lip = xfs_trans_ail_cursor_next(ailp, &cur); 4952 } 4953 out: 4954 xfs_trans_ail_cursor_done(&cur); 4955 spin_unlock(&ailp->ail_lock); 4956 if (!error) 4957 error = xlog_finish_defer_ops(parent_tp); 4958 xfs_trans_cancel(parent_tp); 4959 4960 return error; 4961 } 4962 4963 /* 4964 * A cancel occurs when the mount has failed and we're bailing out. 4965 * Release all pending log intent items so they don't pin the AIL. 4966 */ 4967 STATIC int 4968 xlog_recover_cancel_intents( 4969 struct xlog *log) 4970 { 4971 struct xfs_log_item *lip; 4972 int error = 0; 4973 struct xfs_ail_cursor cur; 4974 struct xfs_ail *ailp; 4975 4976 ailp = log->l_ailp; 4977 spin_lock(&ailp->ail_lock); 4978 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 4979 while (lip != NULL) { 4980 /* 4981 * We're done when we see something other than an intent. 4982 * There should be no intents left in the AIL now. 4983 */ 4984 if (!xlog_item_is_intent(lip)) { 4985 #ifdef DEBUG 4986 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 4987 ASSERT(!xlog_item_is_intent(lip)); 4988 #endif 4989 break; 4990 } 4991 4992 switch (lip->li_type) { 4993 case XFS_LI_EFI: 4994 xlog_recover_cancel_efi(log->l_mp, ailp, lip); 4995 break; 4996 case XFS_LI_RUI: 4997 xlog_recover_cancel_rui(log->l_mp, ailp, lip); 4998 break; 4999 case XFS_LI_CUI: 5000 xlog_recover_cancel_cui(log->l_mp, ailp, lip); 5001 break; 5002 case XFS_LI_BUI: 5003 xlog_recover_cancel_bui(log->l_mp, ailp, lip); 5004 break; 5005 } 5006 5007 lip = xfs_trans_ail_cursor_next(ailp, &cur); 5008 } 5009 5010 xfs_trans_ail_cursor_done(&cur); 5011 spin_unlock(&ailp->ail_lock); 5012 return error; 5013 } 5014 5015 /* 5016 * This routine performs a transaction to null out a bad inode pointer 5017 * in an agi unlinked inode hash bucket. 5018 */ 5019 STATIC void 5020 xlog_recover_clear_agi_bucket( 5021 xfs_mount_t *mp, 5022 xfs_agnumber_t agno, 5023 int bucket) 5024 { 5025 xfs_trans_t *tp; 5026 xfs_agi_t *agi; 5027 xfs_buf_t *agibp; 5028 int offset; 5029 int error; 5030 5031 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp); 5032 if (error) 5033 goto out_error; 5034 5035 error = xfs_read_agi(mp, tp, agno, &agibp); 5036 if (error) 5037 goto out_abort; 5038 5039 agi = XFS_BUF_TO_AGI(agibp); 5040 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 5041 offset = offsetof(xfs_agi_t, agi_unlinked) + 5042 (sizeof(xfs_agino_t) * bucket); 5043 xfs_trans_log_buf(tp, agibp, offset, 5044 (offset + sizeof(xfs_agino_t) - 1)); 5045 5046 error = xfs_trans_commit(tp); 5047 if (error) 5048 goto out_error; 5049 return; 5050 5051 out_abort: 5052 xfs_trans_cancel(tp); 5053 out_error: 5054 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); 5055 return; 5056 } 5057 5058 STATIC xfs_agino_t 5059 xlog_recover_process_one_iunlink( 5060 struct xfs_mount *mp, 5061 xfs_agnumber_t agno, 5062 xfs_agino_t agino, 5063 int bucket) 5064 { 5065 struct xfs_buf *ibp; 5066 struct xfs_dinode *dip; 5067 struct xfs_inode *ip; 5068 xfs_ino_t ino; 5069 int error; 5070 5071 ino = XFS_AGINO_TO_INO(mp, agno, agino); 5072 error = xfs_iget(mp, NULL, ino, 0, 0, &ip); 5073 if (error) 5074 goto fail; 5075 5076 /* 5077 * Get the on disk inode to find the next inode in the bucket. 5078 */ 5079 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0); 5080 if (error) 5081 goto fail_iput; 5082 5083 xfs_iflags_clear(ip, XFS_IRECOVERY); 5084 ASSERT(VFS_I(ip)->i_nlink == 0); 5085 ASSERT(VFS_I(ip)->i_mode != 0); 5086 5087 /* setup for the next pass */ 5088 agino = be32_to_cpu(dip->di_next_unlinked); 5089 xfs_buf_relse(ibp); 5090 5091 /* 5092 * Prevent any DMAPI event from being sent when the reference on 5093 * the inode is dropped. 5094 */ 5095 ip->i_d.di_dmevmask = 0; 5096 5097 xfs_irele(ip); 5098 return agino; 5099 5100 fail_iput: 5101 xfs_irele(ip); 5102 fail: 5103 /* 5104 * We can't read in the inode this bucket points to, or this inode 5105 * is messed up. Just ditch this bucket of inodes. We will lose 5106 * some inodes and space, but at least we won't hang. 5107 * 5108 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 5109 * clear the inode pointer in the bucket. 5110 */ 5111 xlog_recover_clear_agi_bucket(mp, agno, bucket); 5112 return NULLAGINO; 5113 } 5114 5115 /* 5116 * xlog_iunlink_recover 5117 * 5118 * This is called during recovery to process any inodes which 5119 * we unlinked but not freed when the system crashed. These 5120 * inodes will be on the lists in the AGI blocks. What we do 5121 * here is scan all the AGIs and fully truncate and free any 5122 * inodes found on the lists. Each inode is removed from the 5123 * lists when it has been fully truncated and is freed. The 5124 * freeing of the inode and its removal from the list must be 5125 * atomic. 5126 */ 5127 STATIC void 5128 xlog_recover_process_iunlinks( 5129 struct xlog *log) 5130 { 5131 xfs_mount_t *mp; 5132 xfs_agnumber_t agno; 5133 xfs_agi_t *agi; 5134 xfs_buf_t *agibp; 5135 xfs_agino_t agino; 5136 int bucket; 5137 int error; 5138 5139 mp = log->l_mp; 5140 5141 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 5142 /* 5143 * Find the agi for this ag. 5144 */ 5145 error = xfs_read_agi(mp, NULL, agno, &agibp); 5146 if (error) { 5147 /* 5148 * AGI is b0rked. Don't process it. 5149 * 5150 * We should probably mark the filesystem as corrupt 5151 * after we've recovered all the ag's we can.... 5152 */ 5153 continue; 5154 } 5155 /* 5156 * Unlock the buffer so that it can be acquired in the normal 5157 * course of the transaction to truncate and free each inode. 5158 * Because we are not racing with anyone else here for the AGI 5159 * buffer, we don't even need to hold it locked to read the 5160 * initial unlinked bucket entries out of the buffer. We keep 5161 * buffer reference though, so that it stays pinned in memory 5162 * while we need the buffer. 5163 */ 5164 agi = XFS_BUF_TO_AGI(agibp); 5165 xfs_buf_unlock(agibp); 5166 5167 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 5168 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 5169 while (agino != NULLAGINO) { 5170 agino = xlog_recover_process_one_iunlink(mp, 5171 agno, agino, bucket); 5172 } 5173 } 5174 xfs_buf_rele(agibp); 5175 } 5176 } 5177 5178 STATIC int 5179 xlog_unpack_data( 5180 struct xlog_rec_header *rhead, 5181 char *dp, 5182 struct xlog *log) 5183 { 5184 int i, j, k; 5185 5186 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 5187 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 5188 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 5189 dp += BBSIZE; 5190 } 5191 5192 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 5193 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 5194 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 5195 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 5196 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 5197 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 5198 dp += BBSIZE; 5199 } 5200 } 5201 5202 return 0; 5203 } 5204 5205 /* 5206 * CRC check, unpack and process a log record. 5207 */ 5208 STATIC int 5209 xlog_recover_process( 5210 struct xlog *log, 5211 struct hlist_head rhash[], 5212 struct xlog_rec_header *rhead, 5213 char *dp, 5214 int pass, 5215 struct list_head *buffer_list) 5216 { 5217 int error; 5218 __le32 old_crc = rhead->h_crc; 5219 __le32 crc; 5220 5221 5222 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); 5223 5224 /* 5225 * Nothing else to do if this is a CRC verification pass. Just return 5226 * if this a record with a non-zero crc. Unfortunately, mkfs always 5227 * sets old_crc to 0 so we must consider this valid even on v5 supers. 5228 * Otherwise, return EFSBADCRC on failure so the callers up the stack 5229 * know precisely what failed. 5230 */ 5231 if (pass == XLOG_RECOVER_CRCPASS) { 5232 if (old_crc && crc != old_crc) 5233 return -EFSBADCRC; 5234 return 0; 5235 } 5236 5237 /* 5238 * We're in the normal recovery path. Issue a warning if and only if the 5239 * CRC in the header is non-zero. This is an advisory warning and the 5240 * zero CRC check prevents warnings from being emitted when upgrading 5241 * the kernel from one that does not add CRCs by default. 5242 */ 5243 if (crc != old_crc) { 5244 if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) { 5245 xfs_alert(log->l_mp, 5246 "log record CRC mismatch: found 0x%x, expected 0x%x.", 5247 le32_to_cpu(old_crc), 5248 le32_to_cpu(crc)); 5249 xfs_hex_dump(dp, 32); 5250 } 5251 5252 /* 5253 * If the filesystem is CRC enabled, this mismatch becomes a 5254 * fatal log corruption failure. 5255 */ 5256 if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) 5257 return -EFSCORRUPTED; 5258 } 5259 5260 error = xlog_unpack_data(rhead, dp, log); 5261 if (error) 5262 return error; 5263 5264 return xlog_recover_process_data(log, rhash, rhead, dp, pass, 5265 buffer_list); 5266 } 5267 5268 STATIC int 5269 xlog_valid_rec_header( 5270 struct xlog *log, 5271 struct xlog_rec_header *rhead, 5272 xfs_daddr_t blkno) 5273 { 5274 int hlen; 5275 5276 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) { 5277 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 5278 XFS_ERRLEVEL_LOW, log->l_mp); 5279 return -EFSCORRUPTED; 5280 } 5281 if (unlikely( 5282 (!rhead->h_version || 5283 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { 5284 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", 5285 __func__, be32_to_cpu(rhead->h_version)); 5286 return -EIO; 5287 } 5288 5289 /* LR body must have data or it wouldn't have been written */ 5290 hlen = be32_to_cpu(rhead->h_len); 5291 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 5292 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 5293 XFS_ERRLEVEL_LOW, log->l_mp); 5294 return -EFSCORRUPTED; 5295 } 5296 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 5297 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 5298 XFS_ERRLEVEL_LOW, log->l_mp); 5299 return -EFSCORRUPTED; 5300 } 5301 return 0; 5302 } 5303 5304 /* 5305 * Read the log from tail to head and process the log records found. 5306 * Handle the two cases where the tail and head are in the same cycle 5307 * and where the active portion of the log wraps around the end of 5308 * the physical log separately. The pass parameter is passed through 5309 * to the routines called to process the data and is not looked at 5310 * here. 5311 */ 5312 STATIC int 5313 xlog_do_recovery_pass( 5314 struct xlog *log, 5315 xfs_daddr_t head_blk, 5316 xfs_daddr_t tail_blk, 5317 int pass, 5318 xfs_daddr_t *first_bad) /* out: first bad log rec */ 5319 { 5320 xlog_rec_header_t *rhead; 5321 xfs_daddr_t blk_no, rblk_no; 5322 xfs_daddr_t rhead_blk; 5323 char *offset; 5324 xfs_buf_t *hbp, *dbp; 5325 int error = 0, h_size, h_len; 5326 int error2 = 0; 5327 int bblks, split_bblks; 5328 int hblks, split_hblks, wrapped_hblks; 5329 int i; 5330 struct hlist_head rhash[XLOG_RHASH_SIZE]; 5331 LIST_HEAD (buffer_list); 5332 5333 ASSERT(head_blk != tail_blk); 5334 blk_no = rhead_blk = tail_blk; 5335 5336 for (i = 0; i < XLOG_RHASH_SIZE; i++) 5337 INIT_HLIST_HEAD(&rhash[i]); 5338 5339 /* 5340 * Read the header of the tail block and get the iclog buffer size from 5341 * h_size. Use this to tell how many sectors make up the log header. 5342 */ 5343 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 5344 /* 5345 * When using variable length iclogs, read first sector of 5346 * iclog header and extract the header size from it. Get a 5347 * new hbp that is the correct size. 5348 */ 5349 hbp = xlog_get_bp(log, 1); 5350 if (!hbp) 5351 return -ENOMEM; 5352 5353 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 5354 if (error) 5355 goto bread_err1; 5356 5357 rhead = (xlog_rec_header_t *)offset; 5358 error = xlog_valid_rec_header(log, rhead, tail_blk); 5359 if (error) 5360 goto bread_err1; 5361 5362 /* 5363 * xfsprogs has a bug where record length is based on lsunit but 5364 * h_size (iclog size) is hardcoded to 32k. Now that we 5365 * unconditionally CRC verify the unmount record, this means the 5366 * log buffer can be too small for the record and cause an 5367 * overrun. 5368 * 5369 * Detect this condition here. Use lsunit for the buffer size as 5370 * long as this looks like the mkfs case. Otherwise, return an 5371 * error to avoid a buffer overrun. 5372 */ 5373 h_size = be32_to_cpu(rhead->h_size); 5374 h_len = be32_to_cpu(rhead->h_len); 5375 if (h_len > h_size) { 5376 if (h_len <= log->l_mp->m_logbsize && 5377 be32_to_cpu(rhead->h_num_logops) == 1) { 5378 xfs_warn(log->l_mp, 5379 "invalid iclog size (%d bytes), using lsunit (%d bytes)", 5380 h_size, log->l_mp->m_logbsize); 5381 h_size = log->l_mp->m_logbsize; 5382 } else 5383 return -EFSCORRUPTED; 5384 } 5385 5386 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 5387 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 5388 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 5389 if (h_size % XLOG_HEADER_CYCLE_SIZE) 5390 hblks++; 5391 xlog_put_bp(hbp); 5392 hbp = xlog_get_bp(log, hblks); 5393 } else { 5394 hblks = 1; 5395 } 5396 } else { 5397 ASSERT(log->l_sectBBsize == 1); 5398 hblks = 1; 5399 hbp = xlog_get_bp(log, 1); 5400 h_size = XLOG_BIG_RECORD_BSIZE; 5401 } 5402 5403 if (!hbp) 5404 return -ENOMEM; 5405 dbp = xlog_get_bp(log, BTOBB(h_size)); 5406 if (!dbp) { 5407 xlog_put_bp(hbp); 5408 return -ENOMEM; 5409 } 5410 5411 memset(rhash, 0, sizeof(rhash)); 5412 if (tail_blk > head_blk) { 5413 /* 5414 * Perform recovery around the end of the physical log. 5415 * When the head is not on the same cycle number as the tail, 5416 * we can't do a sequential recovery. 5417 */ 5418 while (blk_no < log->l_logBBsize) { 5419 /* 5420 * Check for header wrapping around physical end-of-log 5421 */ 5422 offset = hbp->b_addr; 5423 split_hblks = 0; 5424 wrapped_hblks = 0; 5425 if (blk_no + hblks <= log->l_logBBsize) { 5426 /* Read header in one read */ 5427 error = xlog_bread(log, blk_no, hblks, hbp, 5428 &offset); 5429 if (error) 5430 goto bread_err2; 5431 } else { 5432 /* This LR is split across physical log end */ 5433 if (blk_no != log->l_logBBsize) { 5434 /* some data before physical log end */ 5435 ASSERT(blk_no <= INT_MAX); 5436 split_hblks = log->l_logBBsize - (int)blk_no; 5437 ASSERT(split_hblks > 0); 5438 error = xlog_bread(log, blk_no, 5439 split_hblks, hbp, 5440 &offset); 5441 if (error) 5442 goto bread_err2; 5443 } 5444 5445 /* 5446 * Note: this black magic still works with 5447 * large sector sizes (non-512) only because: 5448 * - we increased the buffer size originally 5449 * by 1 sector giving us enough extra space 5450 * for the second read; 5451 * - the log start is guaranteed to be sector 5452 * aligned; 5453 * - we read the log end (LR header start) 5454 * _first_, then the log start (LR header end) 5455 * - order is important. 5456 */ 5457 wrapped_hblks = hblks - split_hblks; 5458 error = xlog_bread_offset(log, 0, 5459 wrapped_hblks, hbp, 5460 offset + BBTOB(split_hblks)); 5461 if (error) 5462 goto bread_err2; 5463 } 5464 rhead = (xlog_rec_header_t *)offset; 5465 error = xlog_valid_rec_header(log, rhead, 5466 split_hblks ? blk_no : 0); 5467 if (error) 5468 goto bread_err2; 5469 5470 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 5471 blk_no += hblks; 5472 5473 /* 5474 * Read the log record data in multiple reads if it 5475 * wraps around the end of the log. Note that if the 5476 * header already wrapped, blk_no could point past the 5477 * end of the log. The record data is contiguous in 5478 * that case. 5479 */ 5480 if (blk_no + bblks <= log->l_logBBsize || 5481 blk_no >= log->l_logBBsize) { 5482 rblk_no = xlog_wrap_logbno(log, blk_no); 5483 error = xlog_bread(log, rblk_no, bblks, dbp, 5484 &offset); 5485 if (error) 5486 goto bread_err2; 5487 } else { 5488 /* This log record is split across the 5489 * physical end of log */ 5490 offset = dbp->b_addr; 5491 split_bblks = 0; 5492 if (blk_no != log->l_logBBsize) { 5493 /* some data is before the physical 5494 * end of log */ 5495 ASSERT(!wrapped_hblks); 5496 ASSERT(blk_no <= INT_MAX); 5497 split_bblks = 5498 log->l_logBBsize - (int)blk_no; 5499 ASSERT(split_bblks > 0); 5500 error = xlog_bread(log, blk_no, 5501 split_bblks, dbp, 5502 &offset); 5503 if (error) 5504 goto bread_err2; 5505 } 5506 5507 /* 5508 * Note: this black magic still works with 5509 * large sector sizes (non-512) only because: 5510 * - we increased the buffer size originally 5511 * by 1 sector giving us enough extra space 5512 * for the second read; 5513 * - the log start is guaranteed to be sector 5514 * aligned; 5515 * - we read the log end (LR header start) 5516 * _first_, then the log start (LR header end) 5517 * - order is important. 5518 */ 5519 error = xlog_bread_offset(log, 0, 5520 bblks - split_bblks, dbp, 5521 offset + BBTOB(split_bblks)); 5522 if (error) 5523 goto bread_err2; 5524 } 5525 5526 error = xlog_recover_process(log, rhash, rhead, offset, 5527 pass, &buffer_list); 5528 if (error) 5529 goto bread_err2; 5530 5531 blk_no += bblks; 5532 rhead_blk = blk_no; 5533 } 5534 5535 ASSERT(blk_no >= log->l_logBBsize); 5536 blk_no -= log->l_logBBsize; 5537 rhead_blk = blk_no; 5538 } 5539 5540 /* read first part of physical log */ 5541 while (blk_no < head_blk) { 5542 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 5543 if (error) 5544 goto bread_err2; 5545 5546 rhead = (xlog_rec_header_t *)offset; 5547 error = xlog_valid_rec_header(log, rhead, blk_no); 5548 if (error) 5549 goto bread_err2; 5550 5551 /* blocks in data section */ 5552 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 5553 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 5554 &offset); 5555 if (error) 5556 goto bread_err2; 5557 5558 error = xlog_recover_process(log, rhash, rhead, offset, pass, 5559 &buffer_list); 5560 if (error) 5561 goto bread_err2; 5562 5563 blk_no += bblks + hblks; 5564 rhead_blk = blk_no; 5565 } 5566 5567 bread_err2: 5568 xlog_put_bp(dbp); 5569 bread_err1: 5570 xlog_put_bp(hbp); 5571 5572 /* 5573 * Submit buffers that have been added from the last record processed, 5574 * regardless of error status. 5575 */ 5576 if (!list_empty(&buffer_list)) 5577 error2 = xfs_buf_delwri_submit(&buffer_list); 5578 5579 if (error && first_bad) 5580 *first_bad = rhead_blk; 5581 5582 /* 5583 * Transactions are freed at commit time but transactions without commit 5584 * records on disk are never committed. Free any that may be left in the 5585 * hash table. 5586 */ 5587 for (i = 0; i < XLOG_RHASH_SIZE; i++) { 5588 struct hlist_node *tmp; 5589 struct xlog_recover *trans; 5590 5591 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list) 5592 xlog_recover_free_trans(trans); 5593 } 5594 5595 return error ? error : error2; 5596 } 5597 5598 /* 5599 * Do the recovery of the log. We actually do this in two phases. 5600 * The two passes are necessary in order to implement the function 5601 * of cancelling a record written into the log. The first pass 5602 * determines those things which have been cancelled, and the 5603 * second pass replays log items normally except for those which 5604 * have been cancelled. The handling of the replay and cancellations 5605 * takes place in the log item type specific routines. 5606 * 5607 * The table of items which have cancel records in the log is allocated 5608 * and freed at this level, since only here do we know when all of 5609 * the log recovery has been completed. 5610 */ 5611 STATIC int 5612 xlog_do_log_recovery( 5613 struct xlog *log, 5614 xfs_daddr_t head_blk, 5615 xfs_daddr_t tail_blk) 5616 { 5617 int error, i; 5618 5619 ASSERT(head_blk != tail_blk); 5620 5621 /* 5622 * First do a pass to find all of the cancelled buf log items. 5623 * Store them in the buf_cancel_table for use in the second pass. 5624 */ 5625 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * 5626 sizeof(struct list_head), 5627 KM_SLEEP); 5628 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 5629 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); 5630 5631 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 5632 XLOG_RECOVER_PASS1, NULL); 5633 if (error != 0) { 5634 kmem_free(log->l_buf_cancel_table); 5635 log->l_buf_cancel_table = NULL; 5636 return error; 5637 } 5638 /* 5639 * Then do a second pass to actually recover the items in the log. 5640 * When it is complete free the table of buf cancel items. 5641 */ 5642 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 5643 XLOG_RECOVER_PASS2, NULL); 5644 #ifdef DEBUG 5645 if (!error) { 5646 int i; 5647 5648 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 5649 ASSERT(list_empty(&log->l_buf_cancel_table[i])); 5650 } 5651 #endif /* DEBUG */ 5652 5653 kmem_free(log->l_buf_cancel_table); 5654 log->l_buf_cancel_table = NULL; 5655 5656 return error; 5657 } 5658 5659 /* 5660 * Do the actual recovery 5661 */ 5662 STATIC int 5663 xlog_do_recover( 5664 struct xlog *log, 5665 xfs_daddr_t head_blk, 5666 xfs_daddr_t tail_blk) 5667 { 5668 struct xfs_mount *mp = log->l_mp; 5669 int error; 5670 xfs_buf_t *bp; 5671 xfs_sb_t *sbp; 5672 5673 trace_xfs_log_recover(log, head_blk, tail_blk); 5674 5675 /* 5676 * First replay the images in the log. 5677 */ 5678 error = xlog_do_log_recovery(log, head_blk, tail_blk); 5679 if (error) 5680 return error; 5681 5682 /* 5683 * If IO errors happened during recovery, bail out. 5684 */ 5685 if (XFS_FORCED_SHUTDOWN(mp)) { 5686 return -EIO; 5687 } 5688 5689 /* 5690 * We now update the tail_lsn since much of the recovery has completed 5691 * and there may be space available to use. If there were no extent 5692 * or iunlinks, we can free up the entire log and set the tail_lsn to 5693 * be the last_sync_lsn. This was set in xlog_find_tail to be the 5694 * lsn of the last known good LR on disk. If there are extent frees 5695 * or iunlinks they will have some entries in the AIL; so we look at 5696 * the AIL to determine how to set the tail_lsn. 5697 */ 5698 xlog_assign_tail_lsn(mp); 5699 5700 /* 5701 * Now that we've finished replaying all buffer and inode 5702 * updates, re-read in the superblock and reverify it. 5703 */ 5704 bp = xfs_getsb(mp, 0); 5705 bp->b_flags &= ~(XBF_DONE | XBF_ASYNC); 5706 ASSERT(!(bp->b_flags & XBF_WRITE)); 5707 bp->b_flags |= XBF_READ; 5708 bp->b_ops = &xfs_sb_buf_ops; 5709 5710 error = xfs_buf_submit(bp); 5711 if (error) { 5712 if (!XFS_FORCED_SHUTDOWN(mp)) { 5713 xfs_buf_ioerror_alert(bp, __func__); 5714 ASSERT(0); 5715 } 5716 xfs_buf_relse(bp); 5717 return error; 5718 } 5719 5720 /* Convert superblock from on-disk format */ 5721 sbp = &mp->m_sb; 5722 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 5723 xfs_buf_relse(bp); 5724 5725 /* re-initialise in-core superblock and geometry structures */ 5726 xfs_reinit_percpu_counters(mp); 5727 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 5728 if (error) { 5729 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error); 5730 return error; 5731 } 5732 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp); 5733 5734 xlog_recover_check_summary(log); 5735 5736 /* Normal transactions can now occur */ 5737 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 5738 return 0; 5739 } 5740 5741 /* 5742 * Perform recovery and re-initialize some log variables in xlog_find_tail. 5743 * 5744 * Return error or zero. 5745 */ 5746 int 5747 xlog_recover( 5748 struct xlog *log) 5749 { 5750 xfs_daddr_t head_blk, tail_blk; 5751 int error; 5752 5753 /* find the tail of the log */ 5754 error = xlog_find_tail(log, &head_blk, &tail_blk); 5755 if (error) 5756 return error; 5757 5758 /* 5759 * The superblock was read before the log was available and thus the LSN 5760 * could not be verified. Check the superblock LSN against the current 5761 * LSN now that it's known. 5762 */ 5763 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) && 5764 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn)) 5765 return -EINVAL; 5766 5767 if (tail_blk != head_blk) { 5768 /* There used to be a comment here: 5769 * 5770 * disallow recovery on read-only mounts. note -- mount 5771 * checks for ENOSPC and turns it into an intelligent 5772 * error message. 5773 * ...but this is no longer true. Now, unless you specify 5774 * NORECOVERY (in which case this function would never be 5775 * called), we just go ahead and recover. We do this all 5776 * under the vfs layer, so we can get away with it unless 5777 * the device itself is read-only, in which case we fail. 5778 */ 5779 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 5780 return error; 5781 } 5782 5783 /* 5784 * Version 5 superblock log feature mask validation. We know the 5785 * log is dirty so check if there are any unknown log features 5786 * in what we need to recover. If there are unknown features 5787 * (e.g. unsupported transactions, then simply reject the 5788 * attempt at recovery before touching anything. 5789 */ 5790 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 && 5791 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, 5792 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { 5793 xfs_warn(log->l_mp, 5794 "Superblock has unknown incompatible log features (0x%x) enabled.", 5795 (log->l_mp->m_sb.sb_features_log_incompat & 5796 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 5797 xfs_warn(log->l_mp, 5798 "The log can not be fully and/or safely recovered by this kernel."); 5799 xfs_warn(log->l_mp, 5800 "Please recover the log on a kernel that supports the unknown features."); 5801 return -EINVAL; 5802 } 5803 5804 /* 5805 * Delay log recovery if the debug hook is set. This is debug 5806 * instrumention to coordinate simulation of I/O failures with 5807 * log recovery. 5808 */ 5809 if (xfs_globals.log_recovery_delay) { 5810 xfs_notice(log->l_mp, 5811 "Delaying log recovery for %d seconds.", 5812 xfs_globals.log_recovery_delay); 5813 msleep(xfs_globals.log_recovery_delay * 1000); 5814 } 5815 5816 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", 5817 log->l_mp->m_logname ? log->l_mp->m_logname 5818 : "internal"); 5819 5820 error = xlog_do_recover(log, head_blk, tail_blk); 5821 log->l_flags |= XLOG_RECOVERY_NEEDED; 5822 } 5823 return error; 5824 } 5825 5826 /* 5827 * In the first part of recovery we replay inodes and buffers and build 5828 * up the list of extent free items which need to be processed. Here 5829 * we process the extent free items and clean up the on disk unlinked 5830 * inode lists. This is separated from the first part of recovery so 5831 * that the root and real-time bitmap inodes can be read in from disk in 5832 * between the two stages. This is necessary so that we can free space 5833 * in the real-time portion of the file system. 5834 */ 5835 int 5836 xlog_recover_finish( 5837 struct xlog *log) 5838 { 5839 /* 5840 * Now we're ready to do the transactions needed for the 5841 * rest of recovery. Start with completing all the extent 5842 * free intent records and then process the unlinked inode 5843 * lists. At this point, we essentially run in normal mode 5844 * except that we're still performing recovery actions 5845 * rather than accepting new requests. 5846 */ 5847 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 5848 int error; 5849 error = xlog_recover_process_intents(log); 5850 if (error) { 5851 xfs_alert(log->l_mp, "Failed to recover intents"); 5852 return error; 5853 } 5854 5855 /* 5856 * Sync the log to get all the intents out of the AIL. 5857 * This isn't absolutely necessary, but it helps in 5858 * case the unlink transactions would have problems 5859 * pushing the intents out of the way. 5860 */ 5861 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 5862 5863 xlog_recover_process_iunlinks(log); 5864 5865 xlog_recover_check_summary(log); 5866 5867 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", 5868 log->l_mp->m_logname ? log->l_mp->m_logname 5869 : "internal"); 5870 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 5871 } else { 5872 xfs_info(log->l_mp, "Ending clean mount"); 5873 } 5874 return 0; 5875 } 5876 5877 int 5878 xlog_recover_cancel( 5879 struct xlog *log) 5880 { 5881 int error = 0; 5882 5883 if (log->l_flags & XLOG_RECOVERY_NEEDED) 5884 error = xlog_recover_cancel_intents(log); 5885 5886 return error; 5887 } 5888 5889 #if defined(DEBUG) 5890 /* 5891 * Read all of the agf and agi counters and check that they 5892 * are consistent with the superblock counters. 5893 */ 5894 STATIC void 5895 xlog_recover_check_summary( 5896 struct xlog *log) 5897 { 5898 xfs_mount_t *mp; 5899 xfs_agf_t *agfp; 5900 xfs_buf_t *agfbp; 5901 xfs_buf_t *agibp; 5902 xfs_agnumber_t agno; 5903 uint64_t freeblks; 5904 uint64_t itotal; 5905 uint64_t ifree; 5906 int error; 5907 5908 mp = log->l_mp; 5909 5910 freeblks = 0LL; 5911 itotal = 0LL; 5912 ifree = 0LL; 5913 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 5914 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 5915 if (error) { 5916 xfs_alert(mp, "%s agf read failed agno %d error %d", 5917 __func__, agno, error); 5918 } else { 5919 agfp = XFS_BUF_TO_AGF(agfbp); 5920 freeblks += be32_to_cpu(agfp->agf_freeblks) + 5921 be32_to_cpu(agfp->agf_flcount); 5922 xfs_buf_relse(agfbp); 5923 } 5924 5925 error = xfs_read_agi(mp, NULL, agno, &agibp); 5926 if (error) { 5927 xfs_alert(mp, "%s agi read failed agno %d error %d", 5928 __func__, agno, error); 5929 } else { 5930 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 5931 5932 itotal += be32_to_cpu(agi->agi_count); 5933 ifree += be32_to_cpu(agi->agi_freecount); 5934 xfs_buf_relse(agibp); 5935 } 5936 } 5937 } 5938 #endif /* DEBUG */ 5939