1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_dir2.h" 28 #include "xfs_dmapi.h" 29 #include "xfs_mount.h" 30 #include "xfs_error.h" 31 #include "xfs_bmap_btree.h" 32 #include "xfs_alloc_btree.h" 33 #include "xfs_ialloc_btree.h" 34 #include "xfs_dir2_sf.h" 35 #include "xfs_attr_sf.h" 36 #include "xfs_dinode.h" 37 #include "xfs_inode.h" 38 #include "xfs_inode_item.h" 39 #include "xfs_imap.h" 40 #include "xfs_alloc.h" 41 #include "xfs_ialloc.h" 42 #include "xfs_log_priv.h" 43 #include "xfs_buf_item.h" 44 #include "xfs_log_recover.h" 45 #include "xfs_extfree_item.h" 46 #include "xfs_trans_priv.h" 47 #include "xfs_quota.h" 48 #include "xfs_rw.h" 49 #include "xfs_utils.h" 50 51 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *); 52 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t); 53 STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q, 54 xlog_recover_item_t *item); 55 #if defined(DEBUG) 56 STATIC void xlog_recover_check_summary(xlog_t *); 57 STATIC void xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int); 58 #else 59 #define xlog_recover_check_summary(log) 60 #define xlog_recover_check_ail(mp, lip, gen) 61 #endif 62 63 64 /* 65 * Sector aligned buffer routines for buffer create/read/write/access 66 */ 67 68 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \ 69 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \ 70 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) ) 71 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask) 72 73 xfs_buf_t * 74 xlog_get_bp( 75 xlog_t *log, 76 int num_bblks) 77 { 78 ASSERT(num_bblks > 0); 79 80 if (log->l_sectbb_log) { 81 if (num_bblks > 1) 82 num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1); 83 num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks); 84 } 85 return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp); 86 } 87 88 void 89 xlog_put_bp( 90 xfs_buf_t *bp) 91 { 92 xfs_buf_free(bp); 93 } 94 95 96 /* 97 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 98 */ 99 int 100 xlog_bread( 101 xlog_t *log, 102 xfs_daddr_t blk_no, 103 int nbblks, 104 xfs_buf_t *bp) 105 { 106 int error; 107 108 if (log->l_sectbb_log) { 109 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no); 110 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); 111 } 112 113 ASSERT(nbblks > 0); 114 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); 115 ASSERT(bp); 116 117 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 118 XFS_BUF_READ(bp); 119 XFS_BUF_BUSY(bp); 120 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); 121 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); 122 123 xfsbdstrat(log->l_mp, bp); 124 error = xfs_iowait(bp); 125 if (error) 126 xfs_ioerror_alert("xlog_bread", log->l_mp, 127 bp, XFS_BUF_ADDR(bp)); 128 return error; 129 } 130 131 /* 132 * Write out the buffer at the given block for the given number of blocks. 133 * The buffer is kept locked across the write and is returned locked. 134 * This can only be used for synchronous log writes. 135 */ 136 STATIC int 137 xlog_bwrite( 138 xlog_t *log, 139 xfs_daddr_t blk_no, 140 int nbblks, 141 xfs_buf_t *bp) 142 { 143 int error; 144 145 if (log->l_sectbb_log) { 146 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no); 147 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); 148 } 149 150 ASSERT(nbblks > 0); 151 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); 152 153 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 154 XFS_BUF_ZEROFLAGS(bp); 155 XFS_BUF_BUSY(bp); 156 XFS_BUF_HOLD(bp); 157 XFS_BUF_PSEMA(bp, PRIBIO); 158 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); 159 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); 160 161 if ((error = xfs_bwrite(log->l_mp, bp))) 162 xfs_ioerror_alert("xlog_bwrite", log->l_mp, 163 bp, XFS_BUF_ADDR(bp)); 164 return error; 165 } 166 167 STATIC xfs_caddr_t 168 xlog_align( 169 xlog_t *log, 170 xfs_daddr_t blk_no, 171 int nbblks, 172 xfs_buf_t *bp) 173 { 174 xfs_caddr_t ptr; 175 176 if (!log->l_sectbb_log) 177 return XFS_BUF_PTR(bp); 178 179 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask); 180 ASSERT(XFS_BUF_SIZE(bp) >= 181 BBTOB(nbblks + (blk_no & log->l_sectbb_mask))); 182 return ptr; 183 } 184 185 #ifdef DEBUG 186 /* 187 * dump debug superblock and log record information 188 */ 189 STATIC void 190 xlog_header_check_dump( 191 xfs_mount_t *mp, 192 xlog_rec_header_t *head) 193 { 194 int b; 195 196 cmn_err(CE_DEBUG, "%s: SB : uuid = ", __func__); 197 for (b = 0; b < 16; b++) 198 cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]); 199 cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT); 200 cmn_err(CE_DEBUG, " log : uuid = "); 201 for (b = 0; b < 16; b++) 202 cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]); 203 cmn_err(CE_DEBUG, ", fmt = %d\n", be32_to_cpu(head->h_fmt)); 204 } 205 #else 206 #define xlog_header_check_dump(mp, head) 207 #endif 208 209 /* 210 * check log record header for recovery 211 */ 212 STATIC int 213 xlog_header_check_recover( 214 xfs_mount_t *mp, 215 xlog_rec_header_t *head) 216 { 217 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM); 218 219 /* 220 * IRIX doesn't write the h_fmt field and leaves it zeroed 221 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 222 * a dirty log created in IRIX. 223 */ 224 if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) { 225 xlog_warn( 226 "XFS: dirty log written in incompatible format - can't recover"); 227 xlog_header_check_dump(mp, head); 228 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 229 XFS_ERRLEVEL_HIGH, mp); 230 return XFS_ERROR(EFSCORRUPTED); 231 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 232 xlog_warn( 233 "XFS: dirty log entry has mismatched uuid - can't recover"); 234 xlog_header_check_dump(mp, head); 235 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 236 XFS_ERRLEVEL_HIGH, mp); 237 return XFS_ERROR(EFSCORRUPTED); 238 } 239 return 0; 240 } 241 242 /* 243 * read the head block of the log and check the header 244 */ 245 STATIC int 246 xlog_header_check_mount( 247 xfs_mount_t *mp, 248 xlog_rec_header_t *head) 249 { 250 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM); 251 252 if (uuid_is_nil(&head->h_fs_uuid)) { 253 /* 254 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 255 * h_fs_uuid is nil, we assume this log was last mounted 256 * by IRIX and continue. 257 */ 258 xlog_warn("XFS: nil uuid in log - IRIX style log"); 259 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 260 xlog_warn("XFS: log has mismatched uuid - can't recover"); 261 xlog_header_check_dump(mp, head); 262 XFS_ERROR_REPORT("xlog_header_check_mount", 263 XFS_ERRLEVEL_HIGH, mp); 264 return XFS_ERROR(EFSCORRUPTED); 265 } 266 return 0; 267 } 268 269 STATIC void 270 xlog_recover_iodone( 271 struct xfs_buf *bp) 272 { 273 xfs_mount_t *mp; 274 275 ASSERT(XFS_BUF_FSPRIVATE(bp, void *)); 276 277 if (XFS_BUF_GETERROR(bp)) { 278 /* 279 * We're not going to bother about retrying 280 * this during recovery. One strike! 281 */ 282 mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *); 283 xfs_ioerror_alert("xlog_recover_iodone", 284 mp, bp, XFS_BUF_ADDR(bp)); 285 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 286 } 287 XFS_BUF_SET_FSPRIVATE(bp, NULL); 288 XFS_BUF_CLR_IODONE_FUNC(bp); 289 xfs_biodone(bp); 290 } 291 292 /* 293 * This routine finds (to an approximation) the first block in the physical 294 * log which contains the given cycle. It uses a binary search algorithm. 295 * Note that the algorithm can not be perfect because the disk will not 296 * necessarily be perfect. 297 */ 298 STATIC int 299 xlog_find_cycle_start( 300 xlog_t *log, 301 xfs_buf_t *bp, 302 xfs_daddr_t first_blk, 303 xfs_daddr_t *last_blk, 304 uint cycle) 305 { 306 xfs_caddr_t offset; 307 xfs_daddr_t mid_blk; 308 uint mid_cycle; 309 int error; 310 311 mid_blk = BLK_AVG(first_blk, *last_blk); 312 while (mid_blk != first_blk && mid_blk != *last_blk) { 313 if ((error = xlog_bread(log, mid_blk, 1, bp))) 314 return error; 315 offset = xlog_align(log, mid_blk, 1, bp); 316 mid_cycle = xlog_get_cycle(offset); 317 if (mid_cycle == cycle) { 318 *last_blk = mid_blk; 319 /* last_half_cycle == mid_cycle */ 320 } else { 321 first_blk = mid_blk; 322 /* first_half_cycle == mid_cycle */ 323 } 324 mid_blk = BLK_AVG(first_blk, *last_blk); 325 } 326 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) || 327 (mid_blk == *last_blk && mid_blk-1 == first_blk)); 328 329 return 0; 330 } 331 332 /* 333 * Check that the range of blocks does not contain the cycle number 334 * given. The scan needs to occur from front to back and the ptr into the 335 * region must be updated since a later routine will need to perform another 336 * test. If the region is completely good, we end up returning the same 337 * last block number. 338 * 339 * Set blkno to -1 if we encounter no errors. This is an invalid block number 340 * since we don't ever expect logs to get this large. 341 */ 342 STATIC int 343 xlog_find_verify_cycle( 344 xlog_t *log, 345 xfs_daddr_t start_blk, 346 int nbblks, 347 uint stop_on_cycle_no, 348 xfs_daddr_t *new_blk) 349 { 350 xfs_daddr_t i, j; 351 uint cycle; 352 xfs_buf_t *bp; 353 xfs_daddr_t bufblks; 354 xfs_caddr_t buf = NULL; 355 int error = 0; 356 357 bufblks = 1 << ffs(nbblks); 358 359 while (!(bp = xlog_get_bp(log, bufblks))) { 360 /* can't get enough memory to do everything in one big buffer */ 361 bufblks >>= 1; 362 if (bufblks <= log->l_sectbb_log) 363 return ENOMEM; 364 } 365 366 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 367 int bcount; 368 369 bcount = min(bufblks, (start_blk + nbblks - i)); 370 371 if ((error = xlog_bread(log, i, bcount, bp))) 372 goto out; 373 374 buf = xlog_align(log, i, bcount, bp); 375 for (j = 0; j < bcount; j++) { 376 cycle = xlog_get_cycle(buf); 377 if (cycle == stop_on_cycle_no) { 378 *new_blk = i+j; 379 goto out; 380 } 381 382 buf += BBSIZE; 383 } 384 } 385 386 *new_blk = -1; 387 388 out: 389 xlog_put_bp(bp); 390 return error; 391 } 392 393 /* 394 * Potentially backup over partial log record write. 395 * 396 * In the typical case, last_blk is the number of the block directly after 397 * a good log record. Therefore, we subtract one to get the block number 398 * of the last block in the given buffer. extra_bblks contains the number 399 * of blocks we would have read on a previous read. This happens when the 400 * last log record is split over the end of the physical log. 401 * 402 * extra_bblks is the number of blocks potentially verified on a previous 403 * call to this routine. 404 */ 405 STATIC int 406 xlog_find_verify_log_record( 407 xlog_t *log, 408 xfs_daddr_t start_blk, 409 xfs_daddr_t *last_blk, 410 int extra_bblks) 411 { 412 xfs_daddr_t i; 413 xfs_buf_t *bp; 414 xfs_caddr_t offset = NULL; 415 xlog_rec_header_t *head = NULL; 416 int error = 0; 417 int smallmem = 0; 418 int num_blks = *last_blk - start_blk; 419 int xhdrs; 420 421 ASSERT(start_blk != 0 || *last_blk != start_blk); 422 423 if (!(bp = xlog_get_bp(log, num_blks))) { 424 if (!(bp = xlog_get_bp(log, 1))) 425 return ENOMEM; 426 smallmem = 1; 427 } else { 428 if ((error = xlog_bread(log, start_blk, num_blks, bp))) 429 goto out; 430 offset = xlog_align(log, start_blk, num_blks, bp); 431 offset += ((num_blks - 1) << BBSHIFT); 432 } 433 434 for (i = (*last_blk) - 1; i >= 0; i--) { 435 if (i < start_blk) { 436 /* valid log record not found */ 437 xlog_warn( 438 "XFS: Log inconsistent (didn't find previous header)"); 439 ASSERT(0); 440 error = XFS_ERROR(EIO); 441 goto out; 442 } 443 444 if (smallmem) { 445 if ((error = xlog_bread(log, i, 1, bp))) 446 goto out; 447 offset = xlog_align(log, i, 1, bp); 448 } 449 450 head = (xlog_rec_header_t *)offset; 451 452 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno)) 453 break; 454 455 if (!smallmem) 456 offset -= BBSIZE; 457 } 458 459 /* 460 * We hit the beginning of the physical log & still no header. Return 461 * to caller. If caller can handle a return of -1, then this routine 462 * will be called again for the end of the physical log. 463 */ 464 if (i == -1) { 465 error = -1; 466 goto out; 467 } 468 469 /* 470 * We have the final block of the good log (the first block 471 * of the log record _before_ the head. So we check the uuid. 472 */ 473 if ((error = xlog_header_check_mount(log->l_mp, head))) 474 goto out; 475 476 /* 477 * We may have found a log record header before we expected one. 478 * last_blk will be the 1st block # with a given cycle #. We may end 479 * up reading an entire log record. In this case, we don't want to 480 * reset last_blk. Only when last_blk points in the middle of a log 481 * record do we update last_blk. 482 */ 483 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 484 uint h_size = be32_to_cpu(head->h_size); 485 486 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 487 if (h_size % XLOG_HEADER_CYCLE_SIZE) 488 xhdrs++; 489 } else { 490 xhdrs = 1; 491 } 492 493 if (*last_blk - i + extra_bblks != 494 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 495 *last_blk = i; 496 497 out: 498 xlog_put_bp(bp); 499 return error; 500 } 501 502 /* 503 * Head is defined to be the point of the log where the next log write 504 * write could go. This means that incomplete LR writes at the end are 505 * eliminated when calculating the head. We aren't guaranteed that previous 506 * LR have complete transactions. We only know that a cycle number of 507 * current cycle number -1 won't be present in the log if we start writing 508 * from our current block number. 509 * 510 * last_blk contains the block number of the first block with a given 511 * cycle number. 512 * 513 * Return: zero if normal, non-zero if error. 514 */ 515 STATIC int 516 xlog_find_head( 517 xlog_t *log, 518 xfs_daddr_t *return_head_blk) 519 { 520 xfs_buf_t *bp; 521 xfs_caddr_t offset; 522 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 523 int num_scan_bblks; 524 uint first_half_cycle, last_half_cycle; 525 uint stop_on_cycle; 526 int error, log_bbnum = log->l_logBBsize; 527 528 /* Is the end of the log device zeroed? */ 529 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) { 530 *return_head_blk = first_blk; 531 532 /* Is the whole lot zeroed? */ 533 if (!first_blk) { 534 /* Linux XFS shouldn't generate totally zeroed logs - 535 * mkfs etc write a dummy unmount record to a fresh 536 * log so we can store the uuid in there 537 */ 538 xlog_warn("XFS: totally zeroed log"); 539 } 540 541 return 0; 542 } else if (error) { 543 xlog_warn("XFS: empty log check failed"); 544 return error; 545 } 546 547 first_blk = 0; /* get cycle # of 1st block */ 548 bp = xlog_get_bp(log, 1); 549 if (!bp) 550 return ENOMEM; 551 if ((error = xlog_bread(log, 0, 1, bp))) 552 goto bp_err; 553 offset = xlog_align(log, 0, 1, bp); 554 first_half_cycle = xlog_get_cycle(offset); 555 556 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 557 if ((error = xlog_bread(log, last_blk, 1, bp))) 558 goto bp_err; 559 offset = xlog_align(log, last_blk, 1, bp); 560 last_half_cycle = xlog_get_cycle(offset); 561 ASSERT(last_half_cycle != 0); 562 563 /* 564 * If the 1st half cycle number is equal to the last half cycle number, 565 * then the entire log is stamped with the same cycle number. In this 566 * case, head_blk can't be set to zero (which makes sense). The below 567 * math doesn't work out properly with head_blk equal to zero. Instead, 568 * we set it to log_bbnum which is an invalid block number, but this 569 * value makes the math correct. If head_blk doesn't changed through 570 * all the tests below, *head_blk is set to zero at the very end rather 571 * than log_bbnum. In a sense, log_bbnum and zero are the same block 572 * in a circular file. 573 */ 574 if (first_half_cycle == last_half_cycle) { 575 /* 576 * In this case we believe that the entire log should have 577 * cycle number last_half_cycle. We need to scan backwards 578 * from the end verifying that there are no holes still 579 * containing last_half_cycle - 1. If we find such a hole, 580 * then the start of that hole will be the new head. The 581 * simple case looks like 582 * x | x ... | x - 1 | x 583 * Another case that fits this picture would be 584 * x | x + 1 | x ... | x 585 * In this case the head really is somewhere at the end of the 586 * log, as one of the latest writes at the beginning was 587 * incomplete. 588 * One more case is 589 * x | x + 1 | x ... | x - 1 | x 590 * This is really the combination of the above two cases, and 591 * the head has to end up at the start of the x-1 hole at the 592 * end of the log. 593 * 594 * In the 256k log case, we will read from the beginning to the 595 * end of the log and search for cycle numbers equal to x-1. 596 * We don't worry about the x+1 blocks that we encounter, 597 * because we know that they cannot be the head since the log 598 * started with x. 599 */ 600 head_blk = log_bbnum; 601 stop_on_cycle = last_half_cycle - 1; 602 } else { 603 /* 604 * In this case we want to find the first block with cycle 605 * number matching last_half_cycle. We expect the log to be 606 * some variation on 607 * x + 1 ... | x ... 608 * The first block with cycle number x (last_half_cycle) will 609 * be where the new head belongs. First we do a binary search 610 * for the first occurrence of last_half_cycle. The binary 611 * search may not be totally accurate, so then we scan back 612 * from there looking for occurrences of last_half_cycle before 613 * us. If that backwards scan wraps around the beginning of 614 * the log, then we look for occurrences of last_half_cycle - 1 615 * at the end of the log. The cases we're looking for look 616 * like 617 * x + 1 ... | x | x + 1 | x ... 618 * ^ binary search stopped here 619 * or 620 * x + 1 ... | x ... | x - 1 | x 621 * <---------> less than scan distance 622 */ 623 stop_on_cycle = last_half_cycle; 624 if ((error = xlog_find_cycle_start(log, bp, first_blk, 625 &head_blk, last_half_cycle))) 626 goto bp_err; 627 } 628 629 /* 630 * Now validate the answer. Scan back some number of maximum possible 631 * blocks and make sure each one has the expected cycle number. The 632 * maximum is determined by the total possible amount of buffering 633 * in the in-core log. The following number can be made tighter if 634 * we actually look at the block size of the filesystem. 635 */ 636 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 637 if (head_blk >= num_scan_bblks) { 638 /* 639 * We are guaranteed that the entire check can be performed 640 * in one buffer. 641 */ 642 start_blk = head_blk - num_scan_bblks; 643 if ((error = xlog_find_verify_cycle(log, 644 start_blk, num_scan_bblks, 645 stop_on_cycle, &new_blk))) 646 goto bp_err; 647 if (new_blk != -1) 648 head_blk = new_blk; 649 } else { /* need to read 2 parts of log */ 650 /* 651 * We are going to scan backwards in the log in two parts. 652 * First we scan the physical end of the log. In this part 653 * of the log, we are looking for blocks with cycle number 654 * last_half_cycle - 1. 655 * If we find one, then we know that the log starts there, as 656 * we've found a hole that didn't get written in going around 657 * the end of the physical log. The simple case for this is 658 * x + 1 ... | x ... | x - 1 | x 659 * <---------> less than scan distance 660 * If all of the blocks at the end of the log have cycle number 661 * last_half_cycle, then we check the blocks at the start of 662 * the log looking for occurrences of last_half_cycle. If we 663 * find one, then our current estimate for the location of the 664 * first occurrence of last_half_cycle is wrong and we move 665 * back to the hole we've found. This case looks like 666 * x + 1 ... | x | x + 1 | x ... 667 * ^ binary search stopped here 668 * Another case we need to handle that only occurs in 256k 669 * logs is 670 * x + 1 ... | x ... | x+1 | x ... 671 * ^ binary search stops here 672 * In a 256k log, the scan at the end of the log will see the 673 * x + 1 blocks. We need to skip past those since that is 674 * certainly not the head of the log. By searching for 675 * last_half_cycle-1 we accomplish that. 676 */ 677 start_blk = log_bbnum - num_scan_bblks + head_blk; 678 ASSERT(head_blk <= INT_MAX && 679 (xfs_daddr_t) num_scan_bblks - head_blk >= 0); 680 if ((error = xlog_find_verify_cycle(log, start_blk, 681 num_scan_bblks - (int)head_blk, 682 (stop_on_cycle - 1), &new_blk))) 683 goto bp_err; 684 if (new_blk != -1) { 685 head_blk = new_blk; 686 goto bad_blk; 687 } 688 689 /* 690 * Scan beginning of log now. The last part of the physical 691 * log is good. This scan needs to verify that it doesn't find 692 * the last_half_cycle. 693 */ 694 start_blk = 0; 695 ASSERT(head_blk <= INT_MAX); 696 if ((error = xlog_find_verify_cycle(log, 697 start_blk, (int)head_blk, 698 stop_on_cycle, &new_blk))) 699 goto bp_err; 700 if (new_blk != -1) 701 head_blk = new_blk; 702 } 703 704 bad_blk: 705 /* 706 * Now we need to make sure head_blk is not pointing to a block in 707 * the middle of a log record. 708 */ 709 num_scan_bblks = XLOG_REC_SHIFT(log); 710 if (head_blk >= num_scan_bblks) { 711 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 712 713 /* start ptr at last block ptr before head_blk */ 714 if ((error = xlog_find_verify_log_record(log, start_blk, 715 &head_blk, 0)) == -1) { 716 error = XFS_ERROR(EIO); 717 goto bp_err; 718 } else if (error) 719 goto bp_err; 720 } else { 721 start_blk = 0; 722 ASSERT(head_blk <= INT_MAX); 723 if ((error = xlog_find_verify_log_record(log, start_blk, 724 &head_blk, 0)) == -1) { 725 /* We hit the beginning of the log during our search */ 726 start_blk = log_bbnum - num_scan_bblks + head_blk; 727 new_blk = log_bbnum; 728 ASSERT(start_blk <= INT_MAX && 729 (xfs_daddr_t) log_bbnum-start_blk >= 0); 730 ASSERT(head_blk <= INT_MAX); 731 if ((error = xlog_find_verify_log_record(log, 732 start_blk, &new_blk, 733 (int)head_blk)) == -1) { 734 error = XFS_ERROR(EIO); 735 goto bp_err; 736 } else if (error) 737 goto bp_err; 738 if (new_blk != log_bbnum) 739 head_blk = new_blk; 740 } else if (error) 741 goto bp_err; 742 } 743 744 xlog_put_bp(bp); 745 if (head_blk == log_bbnum) 746 *return_head_blk = 0; 747 else 748 *return_head_blk = head_blk; 749 /* 750 * When returning here, we have a good block number. Bad block 751 * means that during a previous crash, we didn't have a clean break 752 * from cycle number N to cycle number N-1. In this case, we need 753 * to find the first block with cycle number N-1. 754 */ 755 return 0; 756 757 bp_err: 758 xlog_put_bp(bp); 759 760 if (error) 761 xlog_warn("XFS: failed to find log head"); 762 return error; 763 } 764 765 /* 766 * Find the sync block number or the tail of the log. 767 * 768 * This will be the block number of the last record to have its 769 * associated buffers synced to disk. Every log record header has 770 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 771 * to get a sync block number. The only concern is to figure out which 772 * log record header to believe. 773 * 774 * The following algorithm uses the log record header with the largest 775 * lsn. The entire log record does not need to be valid. We only care 776 * that the header is valid. 777 * 778 * We could speed up search by using current head_blk buffer, but it is not 779 * available. 780 */ 781 int 782 xlog_find_tail( 783 xlog_t *log, 784 xfs_daddr_t *head_blk, 785 xfs_daddr_t *tail_blk) 786 { 787 xlog_rec_header_t *rhead; 788 xlog_op_header_t *op_head; 789 xfs_caddr_t offset = NULL; 790 xfs_buf_t *bp; 791 int error, i, found; 792 xfs_daddr_t umount_data_blk; 793 xfs_daddr_t after_umount_blk; 794 xfs_lsn_t tail_lsn; 795 int hblks; 796 797 found = 0; 798 799 /* 800 * Find previous log record 801 */ 802 if ((error = xlog_find_head(log, head_blk))) 803 return error; 804 805 bp = xlog_get_bp(log, 1); 806 if (!bp) 807 return ENOMEM; 808 if (*head_blk == 0) { /* special case */ 809 if ((error = xlog_bread(log, 0, 1, bp))) 810 goto bread_err; 811 offset = xlog_align(log, 0, 1, bp); 812 if (xlog_get_cycle(offset) == 0) { 813 *tail_blk = 0; 814 /* leave all other log inited values alone */ 815 goto exit; 816 } 817 } 818 819 /* 820 * Search backwards looking for log record header block 821 */ 822 ASSERT(*head_blk < INT_MAX); 823 for (i = (int)(*head_blk) - 1; i >= 0; i--) { 824 if ((error = xlog_bread(log, i, 1, bp))) 825 goto bread_err; 826 offset = xlog_align(log, i, 1, bp); 827 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) { 828 found = 1; 829 break; 830 } 831 } 832 /* 833 * If we haven't found the log record header block, start looking 834 * again from the end of the physical log. XXXmiken: There should be 835 * a check here to make sure we didn't search more than N blocks in 836 * the previous code. 837 */ 838 if (!found) { 839 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) { 840 if ((error = xlog_bread(log, i, 1, bp))) 841 goto bread_err; 842 offset = xlog_align(log, i, 1, bp); 843 if (XLOG_HEADER_MAGIC_NUM == 844 be32_to_cpu(*(__be32 *)offset)) { 845 found = 2; 846 break; 847 } 848 } 849 } 850 if (!found) { 851 xlog_warn("XFS: xlog_find_tail: couldn't find sync record"); 852 ASSERT(0); 853 return XFS_ERROR(EIO); 854 } 855 856 /* find blk_no of tail of log */ 857 rhead = (xlog_rec_header_t *)offset; 858 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 859 860 /* 861 * Reset log values according to the state of the log when we 862 * crashed. In the case where head_blk == 0, we bump curr_cycle 863 * one because the next write starts a new cycle rather than 864 * continuing the cycle of the last good log record. At this 865 * point we have guaranteed that all partial log records have been 866 * accounted for. Therefore, we know that the last good log record 867 * written was complete and ended exactly on the end boundary 868 * of the physical log. 869 */ 870 log->l_prev_block = i; 871 log->l_curr_block = (int)*head_blk; 872 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 873 if (found == 2) 874 log->l_curr_cycle++; 875 log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn); 876 log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn); 877 log->l_grant_reserve_cycle = log->l_curr_cycle; 878 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block); 879 log->l_grant_write_cycle = log->l_curr_cycle; 880 log->l_grant_write_bytes = BBTOB(log->l_curr_block); 881 882 /* 883 * Look for unmount record. If we find it, then we know there 884 * was a clean unmount. Since 'i' could be the last block in 885 * the physical log, we convert to a log block before comparing 886 * to the head_blk. 887 * 888 * Save the current tail lsn to use to pass to 889 * xlog_clear_stale_blocks() below. We won't want to clear the 890 * unmount record if there is one, so we pass the lsn of the 891 * unmount record rather than the block after it. 892 */ 893 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 894 int h_size = be32_to_cpu(rhead->h_size); 895 int h_version = be32_to_cpu(rhead->h_version); 896 897 if ((h_version & XLOG_VERSION_2) && 898 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 899 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 900 if (h_size % XLOG_HEADER_CYCLE_SIZE) 901 hblks++; 902 } else { 903 hblks = 1; 904 } 905 } else { 906 hblks = 1; 907 } 908 after_umount_blk = (i + hblks + (int) 909 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize; 910 tail_lsn = log->l_tail_lsn; 911 if (*head_blk == after_umount_blk && 912 be32_to_cpu(rhead->h_num_logops) == 1) { 913 umount_data_blk = (i + hblks) % log->l_logBBsize; 914 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) { 915 goto bread_err; 916 } 917 offset = xlog_align(log, umount_data_blk, 1, bp); 918 op_head = (xlog_op_header_t *)offset; 919 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 920 /* 921 * Set tail and last sync so that newly written 922 * log records will point recovery to after the 923 * current unmount record. 924 */ 925 log->l_tail_lsn = 926 xlog_assign_lsn(log->l_curr_cycle, 927 after_umount_blk); 928 log->l_last_sync_lsn = 929 xlog_assign_lsn(log->l_curr_cycle, 930 after_umount_blk); 931 *tail_blk = after_umount_blk; 932 933 /* 934 * Note that the unmount was clean. If the unmount 935 * was not clean, we need to know this to rebuild the 936 * superblock counters from the perag headers if we 937 * have a filesystem using non-persistent counters. 938 */ 939 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 940 } 941 } 942 943 /* 944 * Make sure that there are no blocks in front of the head 945 * with the same cycle number as the head. This can happen 946 * because we allow multiple outstanding log writes concurrently, 947 * and the later writes might make it out before earlier ones. 948 * 949 * We use the lsn from before modifying it so that we'll never 950 * overwrite the unmount record after a clean unmount. 951 * 952 * Do this only if we are going to recover the filesystem 953 * 954 * NOTE: This used to say "if (!readonly)" 955 * However on Linux, we can & do recover a read-only filesystem. 956 * We only skip recovery if NORECOVERY is specified on mount, 957 * in which case we would not be here. 958 * 959 * But... if the -device- itself is readonly, just skip this. 960 * We can't recover this device anyway, so it won't matter. 961 */ 962 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) { 963 error = xlog_clear_stale_blocks(log, tail_lsn); 964 } 965 966 bread_err: 967 exit: 968 xlog_put_bp(bp); 969 970 if (error) 971 xlog_warn("XFS: failed to locate log tail"); 972 return error; 973 } 974 975 /* 976 * Is the log zeroed at all? 977 * 978 * The last binary search should be changed to perform an X block read 979 * once X becomes small enough. You can then search linearly through 980 * the X blocks. This will cut down on the number of reads we need to do. 981 * 982 * If the log is partially zeroed, this routine will pass back the blkno 983 * of the first block with cycle number 0. It won't have a complete LR 984 * preceding it. 985 * 986 * Return: 987 * 0 => the log is completely written to 988 * -1 => use *blk_no as the first block of the log 989 * >0 => error has occurred 990 */ 991 STATIC int 992 xlog_find_zeroed( 993 xlog_t *log, 994 xfs_daddr_t *blk_no) 995 { 996 xfs_buf_t *bp; 997 xfs_caddr_t offset; 998 uint first_cycle, last_cycle; 999 xfs_daddr_t new_blk, last_blk, start_blk; 1000 xfs_daddr_t num_scan_bblks; 1001 int error, log_bbnum = log->l_logBBsize; 1002 1003 *blk_no = 0; 1004 1005 /* check totally zeroed log */ 1006 bp = xlog_get_bp(log, 1); 1007 if (!bp) 1008 return ENOMEM; 1009 if ((error = xlog_bread(log, 0, 1, bp))) 1010 goto bp_err; 1011 offset = xlog_align(log, 0, 1, bp); 1012 first_cycle = xlog_get_cycle(offset); 1013 if (first_cycle == 0) { /* completely zeroed log */ 1014 *blk_no = 0; 1015 xlog_put_bp(bp); 1016 return -1; 1017 } 1018 1019 /* check partially zeroed log */ 1020 if ((error = xlog_bread(log, log_bbnum-1, 1, bp))) 1021 goto bp_err; 1022 offset = xlog_align(log, log_bbnum-1, 1, bp); 1023 last_cycle = xlog_get_cycle(offset); 1024 if (last_cycle != 0) { /* log completely written to */ 1025 xlog_put_bp(bp); 1026 return 0; 1027 } else if (first_cycle != 1) { 1028 /* 1029 * If the cycle of the last block is zero, the cycle of 1030 * the first block must be 1. If it's not, maybe we're 1031 * not looking at a log... Bail out. 1032 */ 1033 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)"); 1034 return XFS_ERROR(EINVAL); 1035 } 1036 1037 /* we have a partially zeroed log */ 1038 last_blk = log_bbnum-1; 1039 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1040 goto bp_err; 1041 1042 /* 1043 * Validate the answer. Because there is no way to guarantee that 1044 * the entire log is made up of log records which are the same size, 1045 * we scan over the defined maximum blocks. At this point, the maximum 1046 * is not chosen to mean anything special. XXXmiken 1047 */ 1048 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1049 ASSERT(num_scan_bblks <= INT_MAX); 1050 1051 if (last_blk < num_scan_bblks) 1052 num_scan_bblks = last_blk; 1053 start_blk = last_blk - num_scan_bblks; 1054 1055 /* 1056 * We search for any instances of cycle number 0 that occur before 1057 * our current estimate of the head. What we're trying to detect is 1058 * 1 ... | 0 | 1 | 0... 1059 * ^ binary search ends here 1060 */ 1061 if ((error = xlog_find_verify_cycle(log, start_blk, 1062 (int)num_scan_bblks, 0, &new_blk))) 1063 goto bp_err; 1064 if (new_blk != -1) 1065 last_blk = new_blk; 1066 1067 /* 1068 * Potentially backup over partial log record write. We don't need 1069 * to search the end of the log because we know it is zero. 1070 */ 1071 if ((error = xlog_find_verify_log_record(log, start_blk, 1072 &last_blk, 0)) == -1) { 1073 error = XFS_ERROR(EIO); 1074 goto bp_err; 1075 } else if (error) 1076 goto bp_err; 1077 1078 *blk_no = last_blk; 1079 bp_err: 1080 xlog_put_bp(bp); 1081 if (error) 1082 return error; 1083 return -1; 1084 } 1085 1086 /* 1087 * These are simple subroutines used by xlog_clear_stale_blocks() below 1088 * to initialize a buffer full of empty log record headers and write 1089 * them into the log. 1090 */ 1091 STATIC void 1092 xlog_add_record( 1093 xlog_t *log, 1094 xfs_caddr_t buf, 1095 int cycle, 1096 int block, 1097 int tail_cycle, 1098 int tail_block) 1099 { 1100 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1101 1102 memset(buf, 0, BBSIZE); 1103 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1104 recp->h_cycle = cpu_to_be32(cycle); 1105 recp->h_version = cpu_to_be32( 1106 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1107 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1108 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1109 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1110 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1111 } 1112 1113 STATIC int 1114 xlog_write_log_records( 1115 xlog_t *log, 1116 int cycle, 1117 int start_block, 1118 int blocks, 1119 int tail_cycle, 1120 int tail_block) 1121 { 1122 xfs_caddr_t offset; 1123 xfs_buf_t *bp; 1124 int balign, ealign; 1125 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1); 1126 int end_block = start_block + blocks; 1127 int bufblks; 1128 int error = 0; 1129 int i, j = 0; 1130 1131 bufblks = 1 << ffs(blocks); 1132 while (!(bp = xlog_get_bp(log, bufblks))) { 1133 bufblks >>= 1; 1134 if (bufblks <= log->l_sectbb_log) 1135 return ENOMEM; 1136 } 1137 1138 /* We may need to do a read at the start to fill in part of 1139 * the buffer in the starting sector not covered by the first 1140 * write below. 1141 */ 1142 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block); 1143 if (balign != start_block) { 1144 if ((error = xlog_bread(log, start_block, 1, bp))) { 1145 xlog_put_bp(bp); 1146 return error; 1147 } 1148 j = start_block - balign; 1149 } 1150 1151 for (i = start_block; i < end_block; i += bufblks) { 1152 int bcount, endcount; 1153 1154 bcount = min(bufblks, end_block - start_block); 1155 endcount = bcount - j; 1156 1157 /* We may need to do a read at the end to fill in part of 1158 * the buffer in the final sector not covered by the write. 1159 * If this is the same sector as the above read, skip it. 1160 */ 1161 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block); 1162 if (j == 0 && (start_block + endcount > ealign)) { 1163 offset = XFS_BUF_PTR(bp); 1164 balign = BBTOB(ealign - start_block); 1165 error = XFS_BUF_SET_PTR(bp, offset + balign, 1166 BBTOB(sectbb)); 1167 if (!error) 1168 error = xlog_bread(log, ealign, sectbb, bp); 1169 if (!error) 1170 error = XFS_BUF_SET_PTR(bp, offset, bufblks); 1171 if (error) 1172 break; 1173 } 1174 1175 offset = xlog_align(log, start_block, endcount, bp); 1176 for (; j < endcount; j++) { 1177 xlog_add_record(log, offset, cycle, i+j, 1178 tail_cycle, tail_block); 1179 offset += BBSIZE; 1180 } 1181 error = xlog_bwrite(log, start_block, endcount, bp); 1182 if (error) 1183 break; 1184 start_block += endcount; 1185 j = 0; 1186 } 1187 xlog_put_bp(bp); 1188 return error; 1189 } 1190 1191 /* 1192 * This routine is called to blow away any incomplete log writes out 1193 * in front of the log head. We do this so that we won't become confused 1194 * if we come up, write only a little bit more, and then crash again. 1195 * If we leave the partial log records out there, this situation could 1196 * cause us to think those partial writes are valid blocks since they 1197 * have the current cycle number. We get rid of them by overwriting them 1198 * with empty log records with the old cycle number rather than the 1199 * current one. 1200 * 1201 * The tail lsn is passed in rather than taken from 1202 * the log so that we will not write over the unmount record after a 1203 * clean unmount in a 512 block log. Doing so would leave the log without 1204 * any valid log records in it until a new one was written. If we crashed 1205 * during that time we would not be able to recover. 1206 */ 1207 STATIC int 1208 xlog_clear_stale_blocks( 1209 xlog_t *log, 1210 xfs_lsn_t tail_lsn) 1211 { 1212 int tail_cycle, head_cycle; 1213 int tail_block, head_block; 1214 int tail_distance, max_distance; 1215 int distance; 1216 int error; 1217 1218 tail_cycle = CYCLE_LSN(tail_lsn); 1219 tail_block = BLOCK_LSN(tail_lsn); 1220 head_cycle = log->l_curr_cycle; 1221 head_block = log->l_curr_block; 1222 1223 /* 1224 * Figure out the distance between the new head of the log 1225 * and the tail. We want to write over any blocks beyond the 1226 * head that we may have written just before the crash, but 1227 * we don't want to overwrite the tail of the log. 1228 */ 1229 if (head_cycle == tail_cycle) { 1230 /* 1231 * The tail is behind the head in the physical log, 1232 * so the distance from the head to the tail is the 1233 * distance from the head to the end of the log plus 1234 * the distance from the beginning of the log to the 1235 * tail. 1236 */ 1237 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1238 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1239 XFS_ERRLEVEL_LOW, log->l_mp); 1240 return XFS_ERROR(EFSCORRUPTED); 1241 } 1242 tail_distance = tail_block + (log->l_logBBsize - head_block); 1243 } else { 1244 /* 1245 * The head is behind the tail in the physical log, 1246 * so the distance from the head to the tail is just 1247 * the tail block minus the head block. 1248 */ 1249 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1250 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1251 XFS_ERRLEVEL_LOW, log->l_mp); 1252 return XFS_ERROR(EFSCORRUPTED); 1253 } 1254 tail_distance = tail_block - head_block; 1255 } 1256 1257 /* 1258 * If the head is right up against the tail, we can't clear 1259 * anything. 1260 */ 1261 if (tail_distance <= 0) { 1262 ASSERT(tail_distance == 0); 1263 return 0; 1264 } 1265 1266 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1267 /* 1268 * Take the smaller of the maximum amount of outstanding I/O 1269 * we could have and the distance to the tail to clear out. 1270 * We take the smaller so that we don't overwrite the tail and 1271 * we don't waste all day writing from the head to the tail 1272 * for no reason. 1273 */ 1274 max_distance = MIN(max_distance, tail_distance); 1275 1276 if ((head_block + max_distance) <= log->l_logBBsize) { 1277 /* 1278 * We can stomp all the blocks we need to without 1279 * wrapping around the end of the log. Just do it 1280 * in a single write. Use the cycle number of the 1281 * current cycle minus one so that the log will look like: 1282 * n ... | n - 1 ... 1283 */ 1284 error = xlog_write_log_records(log, (head_cycle - 1), 1285 head_block, max_distance, tail_cycle, 1286 tail_block); 1287 if (error) 1288 return error; 1289 } else { 1290 /* 1291 * We need to wrap around the end of the physical log in 1292 * order to clear all the blocks. Do it in two separate 1293 * I/Os. The first write should be from the head to the 1294 * end of the physical log, and it should use the current 1295 * cycle number minus one just like above. 1296 */ 1297 distance = log->l_logBBsize - head_block; 1298 error = xlog_write_log_records(log, (head_cycle - 1), 1299 head_block, distance, tail_cycle, 1300 tail_block); 1301 1302 if (error) 1303 return error; 1304 1305 /* 1306 * Now write the blocks at the start of the physical log. 1307 * This writes the remainder of the blocks we want to clear. 1308 * It uses the current cycle number since we're now on the 1309 * same cycle as the head so that we get: 1310 * n ... n ... | n - 1 ... 1311 * ^^^^^ blocks we're writing 1312 */ 1313 distance = max_distance - (log->l_logBBsize - head_block); 1314 error = xlog_write_log_records(log, head_cycle, 0, distance, 1315 tail_cycle, tail_block); 1316 if (error) 1317 return error; 1318 } 1319 1320 return 0; 1321 } 1322 1323 /****************************************************************************** 1324 * 1325 * Log recover routines 1326 * 1327 ****************************************************************************** 1328 */ 1329 1330 STATIC xlog_recover_t * 1331 xlog_recover_find_tid( 1332 xlog_recover_t *q, 1333 xlog_tid_t tid) 1334 { 1335 xlog_recover_t *p = q; 1336 1337 while (p != NULL) { 1338 if (p->r_log_tid == tid) 1339 break; 1340 p = p->r_next; 1341 } 1342 return p; 1343 } 1344 1345 STATIC void 1346 xlog_recover_put_hashq( 1347 xlog_recover_t **q, 1348 xlog_recover_t *trans) 1349 { 1350 trans->r_next = *q; 1351 *q = trans; 1352 } 1353 1354 STATIC void 1355 xlog_recover_add_item( 1356 xlog_recover_item_t **itemq) 1357 { 1358 xlog_recover_item_t *item; 1359 1360 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 1361 xlog_recover_insert_item_backq(itemq, item); 1362 } 1363 1364 STATIC int 1365 xlog_recover_add_to_cont_trans( 1366 xlog_recover_t *trans, 1367 xfs_caddr_t dp, 1368 int len) 1369 { 1370 xlog_recover_item_t *item; 1371 xfs_caddr_t ptr, old_ptr; 1372 int old_len; 1373 1374 item = trans->r_itemq; 1375 if (item == NULL) { 1376 /* finish copying rest of trans header */ 1377 xlog_recover_add_item(&trans->r_itemq); 1378 ptr = (xfs_caddr_t) &trans->r_theader + 1379 sizeof(xfs_trans_header_t) - len; 1380 memcpy(ptr, dp, len); /* d, s, l */ 1381 return 0; 1382 } 1383 item = item->ri_prev; 1384 1385 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 1386 old_len = item->ri_buf[item->ri_cnt-1].i_len; 1387 1388 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u); 1389 memcpy(&ptr[old_len], dp, len); /* d, s, l */ 1390 item->ri_buf[item->ri_cnt-1].i_len += len; 1391 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 1392 return 0; 1393 } 1394 1395 /* 1396 * The next region to add is the start of a new region. It could be 1397 * a whole region or it could be the first part of a new region. Because 1398 * of this, the assumption here is that the type and size fields of all 1399 * format structures fit into the first 32 bits of the structure. 1400 * 1401 * This works because all regions must be 32 bit aligned. Therefore, we 1402 * either have both fields or we have neither field. In the case we have 1403 * neither field, the data part of the region is zero length. We only have 1404 * a log_op_header and can throw away the header since a new one will appear 1405 * later. If we have at least 4 bytes, then we can determine how many regions 1406 * will appear in the current log item. 1407 */ 1408 STATIC int 1409 xlog_recover_add_to_trans( 1410 xlog_recover_t *trans, 1411 xfs_caddr_t dp, 1412 int len) 1413 { 1414 xfs_inode_log_format_t *in_f; /* any will do */ 1415 xlog_recover_item_t *item; 1416 xfs_caddr_t ptr; 1417 1418 if (!len) 1419 return 0; 1420 item = trans->r_itemq; 1421 if (item == NULL) { 1422 ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC); 1423 if (len == sizeof(xfs_trans_header_t)) 1424 xlog_recover_add_item(&trans->r_itemq); 1425 memcpy(&trans->r_theader, dp, len); /* d, s, l */ 1426 return 0; 1427 } 1428 1429 ptr = kmem_alloc(len, KM_SLEEP); 1430 memcpy(ptr, dp, len); 1431 in_f = (xfs_inode_log_format_t *)ptr; 1432 1433 if (item->ri_prev->ri_total != 0 && 1434 item->ri_prev->ri_total == item->ri_prev->ri_cnt) { 1435 xlog_recover_add_item(&trans->r_itemq); 1436 } 1437 item = trans->r_itemq; 1438 item = item->ri_prev; 1439 1440 if (item->ri_total == 0) { /* first region to be added */ 1441 item->ri_total = in_f->ilf_size; 1442 ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM); 1443 item->ri_buf = kmem_zalloc((item->ri_total * 1444 sizeof(xfs_log_iovec_t)), KM_SLEEP); 1445 } 1446 ASSERT(item->ri_total > item->ri_cnt); 1447 /* Description region is ri_buf[0] */ 1448 item->ri_buf[item->ri_cnt].i_addr = ptr; 1449 item->ri_buf[item->ri_cnt].i_len = len; 1450 item->ri_cnt++; 1451 return 0; 1452 } 1453 1454 STATIC void 1455 xlog_recover_new_tid( 1456 xlog_recover_t **q, 1457 xlog_tid_t tid, 1458 xfs_lsn_t lsn) 1459 { 1460 xlog_recover_t *trans; 1461 1462 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP); 1463 trans->r_log_tid = tid; 1464 trans->r_lsn = lsn; 1465 xlog_recover_put_hashq(q, trans); 1466 } 1467 1468 STATIC int 1469 xlog_recover_unlink_tid( 1470 xlog_recover_t **q, 1471 xlog_recover_t *trans) 1472 { 1473 xlog_recover_t *tp; 1474 int found = 0; 1475 1476 ASSERT(trans != NULL); 1477 if (trans == *q) { 1478 *q = (*q)->r_next; 1479 } else { 1480 tp = *q; 1481 while (tp) { 1482 if (tp->r_next == trans) { 1483 found = 1; 1484 break; 1485 } 1486 tp = tp->r_next; 1487 } 1488 if (!found) { 1489 xlog_warn( 1490 "XFS: xlog_recover_unlink_tid: trans not found"); 1491 ASSERT(0); 1492 return XFS_ERROR(EIO); 1493 } 1494 tp->r_next = tp->r_next->r_next; 1495 } 1496 return 0; 1497 } 1498 1499 STATIC void 1500 xlog_recover_insert_item_backq( 1501 xlog_recover_item_t **q, 1502 xlog_recover_item_t *item) 1503 { 1504 if (*q == NULL) { 1505 item->ri_prev = item->ri_next = item; 1506 *q = item; 1507 } else { 1508 item->ri_next = *q; 1509 item->ri_prev = (*q)->ri_prev; 1510 (*q)->ri_prev = item; 1511 item->ri_prev->ri_next = item; 1512 } 1513 } 1514 1515 STATIC void 1516 xlog_recover_insert_item_frontq( 1517 xlog_recover_item_t **q, 1518 xlog_recover_item_t *item) 1519 { 1520 xlog_recover_insert_item_backq(q, item); 1521 *q = item; 1522 } 1523 1524 STATIC int 1525 xlog_recover_reorder_trans( 1526 xlog_recover_t *trans) 1527 { 1528 xlog_recover_item_t *first_item, *itemq, *itemq_next; 1529 xfs_buf_log_format_t *buf_f; 1530 ushort flags = 0; 1531 1532 first_item = itemq = trans->r_itemq; 1533 trans->r_itemq = NULL; 1534 do { 1535 itemq_next = itemq->ri_next; 1536 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr; 1537 1538 switch (ITEM_TYPE(itemq)) { 1539 case XFS_LI_BUF: 1540 flags = buf_f->blf_flags; 1541 if (!(flags & XFS_BLI_CANCEL)) { 1542 xlog_recover_insert_item_frontq(&trans->r_itemq, 1543 itemq); 1544 break; 1545 } 1546 case XFS_LI_INODE: 1547 case XFS_LI_DQUOT: 1548 case XFS_LI_QUOTAOFF: 1549 case XFS_LI_EFD: 1550 case XFS_LI_EFI: 1551 xlog_recover_insert_item_backq(&trans->r_itemq, itemq); 1552 break; 1553 default: 1554 xlog_warn( 1555 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation"); 1556 ASSERT(0); 1557 return XFS_ERROR(EIO); 1558 } 1559 itemq = itemq_next; 1560 } while (first_item != itemq); 1561 return 0; 1562 } 1563 1564 /* 1565 * Build up the table of buf cancel records so that we don't replay 1566 * cancelled data in the second pass. For buffer records that are 1567 * not cancel records, there is nothing to do here so we just return. 1568 * 1569 * If we get a cancel record which is already in the table, this indicates 1570 * that the buffer was cancelled multiple times. In order to ensure 1571 * that during pass 2 we keep the record in the table until we reach its 1572 * last occurrence in the log, we keep a reference count in the cancel 1573 * record in the table to tell us how many times we expect to see this 1574 * record during the second pass. 1575 */ 1576 STATIC void 1577 xlog_recover_do_buffer_pass1( 1578 xlog_t *log, 1579 xfs_buf_log_format_t *buf_f) 1580 { 1581 xfs_buf_cancel_t *bcp; 1582 xfs_buf_cancel_t *nextp; 1583 xfs_buf_cancel_t *prevp; 1584 xfs_buf_cancel_t **bucket; 1585 xfs_daddr_t blkno = 0; 1586 uint len = 0; 1587 ushort flags = 0; 1588 1589 switch (buf_f->blf_type) { 1590 case XFS_LI_BUF: 1591 blkno = buf_f->blf_blkno; 1592 len = buf_f->blf_len; 1593 flags = buf_f->blf_flags; 1594 break; 1595 } 1596 1597 /* 1598 * If this isn't a cancel buffer item, then just return. 1599 */ 1600 if (!(flags & XFS_BLI_CANCEL)) 1601 return; 1602 1603 /* 1604 * Insert an xfs_buf_cancel record into the hash table of 1605 * them. If there is already an identical record, bump 1606 * its reference count. 1607 */ 1608 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % 1609 XLOG_BC_TABLE_SIZE]; 1610 /* 1611 * If the hash bucket is empty then just insert a new record into 1612 * the bucket. 1613 */ 1614 if (*bucket == NULL) { 1615 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), 1616 KM_SLEEP); 1617 bcp->bc_blkno = blkno; 1618 bcp->bc_len = len; 1619 bcp->bc_refcount = 1; 1620 bcp->bc_next = NULL; 1621 *bucket = bcp; 1622 return; 1623 } 1624 1625 /* 1626 * The hash bucket is not empty, so search for duplicates of our 1627 * record. If we find one them just bump its refcount. If not 1628 * then add us at the end of the list. 1629 */ 1630 prevp = NULL; 1631 nextp = *bucket; 1632 while (nextp != NULL) { 1633 if (nextp->bc_blkno == blkno && nextp->bc_len == len) { 1634 nextp->bc_refcount++; 1635 return; 1636 } 1637 prevp = nextp; 1638 nextp = nextp->bc_next; 1639 } 1640 ASSERT(prevp != NULL); 1641 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), 1642 KM_SLEEP); 1643 bcp->bc_blkno = blkno; 1644 bcp->bc_len = len; 1645 bcp->bc_refcount = 1; 1646 bcp->bc_next = NULL; 1647 prevp->bc_next = bcp; 1648 } 1649 1650 /* 1651 * Check to see whether the buffer being recovered has a corresponding 1652 * entry in the buffer cancel record table. If it does then return 1 1653 * so that it will be cancelled, otherwise return 0. If the buffer is 1654 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement 1655 * the refcount on the entry in the table and remove it from the table 1656 * if this is the last reference. 1657 * 1658 * We remove the cancel record from the table when we encounter its 1659 * last occurrence in the log so that if the same buffer is re-used 1660 * again after its last cancellation we actually replay the changes 1661 * made at that point. 1662 */ 1663 STATIC int 1664 xlog_check_buffer_cancelled( 1665 xlog_t *log, 1666 xfs_daddr_t blkno, 1667 uint len, 1668 ushort flags) 1669 { 1670 xfs_buf_cancel_t *bcp; 1671 xfs_buf_cancel_t *prevp; 1672 xfs_buf_cancel_t **bucket; 1673 1674 if (log->l_buf_cancel_table == NULL) { 1675 /* 1676 * There is nothing in the table built in pass one, 1677 * so this buffer must not be cancelled. 1678 */ 1679 ASSERT(!(flags & XFS_BLI_CANCEL)); 1680 return 0; 1681 } 1682 1683 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % 1684 XLOG_BC_TABLE_SIZE]; 1685 bcp = *bucket; 1686 if (bcp == NULL) { 1687 /* 1688 * There is no corresponding entry in the table built 1689 * in pass one, so this buffer has not been cancelled. 1690 */ 1691 ASSERT(!(flags & XFS_BLI_CANCEL)); 1692 return 0; 1693 } 1694 1695 /* 1696 * Search for an entry in the buffer cancel table that 1697 * matches our buffer. 1698 */ 1699 prevp = NULL; 1700 while (bcp != NULL) { 1701 if (bcp->bc_blkno == blkno && bcp->bc_len == len) { 1702 /* 1703 * We've go a match, so return 1 so that the 1704 * recovery of this buffer is cancelled. 1705 * If this buffer is actually a buffer cancel 1706 * log item, then decrement the refcount on the 1707 * one in the table and remove it if this is the 1708 * last reference. 1709 */ 1710 if (flags & XFS_BLI_CANCEL) { 1711 bcp->bc_refcount--; 1712 if (bcp->bc_refcount == 0) { 1713 if (prevp == NULL) { 1714 *bucket = bcp->bc_next; 1715 } else { 1716 prevp->bc_next = bcp->bc_next; 1717 } 1718 kmem_free(bcp); 1719 } 1720 } 1721 return 1; 1722 } 1723 prevp = bcp; 1724 bcp = bcp->bc_next; 1725 } 1726 /* 1727 * We didn't find a corresponding entry in the table, so 1728 * return 0 so that the buffer is NOT cancelled. 1729 */ 1730 ASSERT(!(flags & XFS_BLI_CANCEL)); 1731 return 0; 1732 } 1733 1734 STATIC int 1735 xlog_recover_do_buffer_pass2( 1736 xlog_t *log, 1737 xfs_buf_log_format_t *buf_f) 1738 { 1739 xfs_daddr_t blkno = 0; 1740 ushort flags = 0; 1741 uint len = 0; 1742 1743 switch (buf_f->blf_type) { 1744 case XFS_LI_BUF: 1745 blkno = buf_f->blf_blkno; 1746 flags = buf_f->blf_flags; 1747 len = buf_f->blf_len; 1748 break; 1749 } 1750 1751 return xlog_check_buffer_cancelled(log, blkno, len, flags); 1752 } 1753 1754 /* 1755 * Perform recovery for a buffer full of inodes. In these buffers, 1756 * the only data which should be recovered is that which corresponds 1757 * to the di_next_unlinked pointers in the on disk inode structures. 1758 * The rest of the data for the inodes is always logged through the 1759 * inodes themselves rather than the inode buffer and is recovered 1760 * in xlog_recover_do_inode_trans(). 1761 * 1762 * The only time when buffers full of inodes are fully recovered is 1763 * when the buffer is full of newly allocated inodes. In this case 1764 * the buffer will not be marked as an inode buffer and so will be 1765 * sent to xlog_recover_do_reg_buffer() below during recovery. 1766 */ 1767 STATIC int 1768 xlog_recover_do_inode_buffer( 1769 xfs_mount_t *mp, 1770 xlog_recover_item_t *item, 1771 xfs_buf_t *bp, 1772 xfs_buf_log_format_t *buf_f) 1773 { 1774 int i; 1775 int item_index; 1776 int bit; 1777 int nbits; 1778 int reg_buf_offset; 1779 int reg_buf_bytes; 1780 int next_unlinked_offset; 1781 int inodes_per_buf; 1782 xfs_agino_t *logged_nextp; 1783 xfs_agino_t *buffer_nextp; 1784 unsigned int *data_map = NULL; 1785 unsigned int map_size = 0; 1786 1787 switch (buf_f->blf_type) { 1788 case XFS_LI_BUF: 1789 data_map = buf_f->blf_data_map; 1790 map_size = buf_f->blf_map_size; 1791 break; 1792 } 1793 /* 1794 * Set the variables corresponding to the current region to 1795 * 0 so that we'll initialize them on the first pass through 1796 * the loop. 1797 */ 1798 reg_buf_offset = 0; 1799 reg_buf_bytes = 0; 1800 bit = 0; 1801 nbits = 0; 1802 item_index = 0; 1803 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog; 1804 for (i = 0; i < inodes_per_buf; i++) { 1805 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 1806 offsetof(xfs_dinode_t, di_next_unlinked); 1807 1808 while (next_unlinked_offset >= 1809 (reg_buf_offset + reg_buf_bytes)) { 1810 /* 1811 * The next di_next_unlinked field is beyond 1812 * the current logged region. Find the next 1813 * logged region that contains or is beyond 1814 * the current di_next_unlinked field. 1815 */ 1816 bit += nbits; 1817 bit = xfs_next_bit(data_map, map_size, bit); 1818 1819 /* 1820 * If there are no more logged regions in the 1821 * buffer, then we're done. 1822 */ 1823 if (bit == -1) { 1824 return 0; 1825 } 1826 1827 nbits = xfs_contig_bits(data_map, map_size, 1828 bit); 1829 ASSERT(nbits > 0); 1830 reg_buf_offset = bit << XFS_BLI_SHIFT; 1831 reg_buf_bytes = nbits << XFS_BLI_SHIFT; 1832 item_index++; 1833 } 1834 1835 /* 1836 * If the current logged region starts after the current 1837 * di_next_unlinked field, then move on to the next 1838 * di_next_unlinked field. 1839 */ 1840 if (next_unlinked_offset < reg_buf_offset) { 1841 continue; 1842 } 1843 1844 ASSERT(item->ri_buf[item_index].i_addr != NULL); 1845 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0); 1846 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp)); 1847 1848 /* 1849 * The current logged region contains a copy of the 1850 * current di_next_unlinked field. Extract its value 1851 * and copy it to the buffer copy. 1852 */ 1853 logged_nextp = (xfs_agino_t *) 1854 ((char *)(item->ri_buf[item_index].i_addr) + 1855 (next_unlinked_offset - reg_buf_offset)); 1856 if (unlikely(*logged_nextp == 0)) { 1857 xfs_fs_cmn_err(CE_ALERT, mp, 1858 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field", 1859 item, bp); 1860 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 1861 XFS_ERRLEVEL_LOW, mp); 1862 return XFS_ERROR(EFSCORRUPTED); 1863 } 1864 1865 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp, 1866 next_unlinked_offset); 1867 *buffer_nextp = *logged_nextp; 1868 } 1869 1870 return 0; 1871 } 1872 1873 /* 1874 * Perform a 'normal' buffer recovery. Each logged region of the 1875 * buffer should be copied over the corresponding region in the 1876 * given buffer. The bitmap in the buf log format structure indicates 1877 * where to place the logged data. 1878 */ 1879 /*ARGSUSED*/ 1880 STATIC void 1881 xlog_recover_do_reg_buffer( 1882 xlog_recover_item_t *item, 1883 xfs_buf_t *bp, 1884 xfs_buf_log_format_t *buf_f) 1885 { 1886 int i; 1887 int bit; 1888 int nbits; 1889 unsigned int *data_map = NULL; 1890 unsigned int map_size = 0; 1891 int error; 1892 1893 switch (buf_f->blf_type) { 1894 case XFS_LI_BUF: 1895 data_map = buf_f->blf_data_map; 1896 map_size = buf_f->blf_map_size; 1897 break; 1898 } 1899 bit = 0; 1900 i = 1; /* 0 is the buf format structure */ 1901 while (1) { 1902 bit = xfs_next_bit(data_map, map_size, bit); 1903 if (bit == -1) 1904 break; 1905 nbits = xfs_contig_bits(data_map, map_size, bit); 1906 ASSERT(nbits > 0); 1907 ASSERT(item->ri_buf[i].i_addr != NULL); 1908 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0); 1909 ASSERT(XFS_BUF_COUNT(bp) >= 1910 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT)); 1911 1912 /* 1913 * Do a sanity check if this is a dquot buffer. Just checking 1914 * the first dquot in the buffer should do. XXXThis is 1915 * probably a good thing to do for other buf types also. 1916 */ 1917 error = 0; 1918 if (buf_f->blf_flags & 1919 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) { 1920 error = xfs_qm_dqcheck((xfs_disk_dquot_t *) 1921 item->ri_buf[i].i_addr, 1922 -1, 0, XFS_QMOPT_DOWARN, 1923 "dquot_buf_recover"); 1924 } 1925 if (!error) 1926 memcpy(xfs_buf_offset(bp, 1927 (uint)bit << XFS_BLI_SHIFT), /* dest */ 1928 item->ri_buf[i].i_addr, /* source */ 1929 nbits<<XFS_BLI_SHIFT); /* length */ 1930 i++; 1931 bit += nbits; 1932 } 1933 1934 /* Shouldn't be any more regions */ 1935 ASSERT(i == item->ri_total); 1936 } 1937 1938 /* 1939 * Do some primitive error checking on ondisk dquot data structures. 1940 */ 1941 int 1942 xfs_qm_dqcheck( 1943 xfs_disk_dquot_t *ddq, 1944 xfs_dqid_t id, 1945 uint type, /* used only when IO_dorepair is true */ 1946 uint flags, 1947 char *str) 1948 { 1949 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq; 1950 int errs = 0; 1951 1952 /* 1953 * We can encounter an uninitialized dquot buffer for 2 reasons: 1954 * 1. If we crash while deleting the quotainode(s), and those blks got 1955 * used for user data. This is because we take the path of regular 1956 * file deletion; however, the size field of quotainodes is never 1957 * updated, so all the tricks that we play in itruncate_finish 1958 * don't quite matter. 1959 * 1960 * 2. We don't play the quota buffers when there's a quotaoff logitem. 1961 * But the allocation will be replayed so we'll end up with an 1962 * uninitialized quota block. 1963 * 1964 * This is all fine; things are still consistent, and we haven't lost 1965 * any quota information. Just don't complain about bad dquot blks. 1966 */ 1967 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) { 1968 if (flags & XFS_QMOPT_DOWARN) 1969 cmn_err(CE_ALERT, 1970 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x", 1971 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC); 1972 errs++; 1973 } 1974 if (ddq->d_version != XFS_DQUOT_VERSION) { 1975 if (flags & XFS_QMOPT_DOWARN) 1976 cmn_err(CE_ALERT, 1977 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x", 1978 str, id, ddq->d_version, XFS_DQUOT_VERSION); 1979 errs++; 1980 } 1981 1982 if (ddq->d_flags != XFS_DQ_USER && 1983 ddq->d_flags != XFS_DQ_PROJ && 1984 ddq->d_flags != XFS_DQ_GROUP) { 1985 if (flags & XFS_QMOPT_DOWARN) 1986 cmn_err(CE_ALERT, 1987 "%s : XFS dquot ID 0x%x, unknown flags 0x%x", 1988 str, id, ddq->d_flags); 1989 errs++; 1990 } 1991 1992 if (id != -1 && id != be32_to_cpu(ddq->d_id)) { 1993 if (flags & XFS_QMOPT_DOWARN) 1994 cmn_err(CE_ALERT, 1995 "%s : ondisk-dquot 0x%p, ID mismatch: " 1996 "0x%x expected, found id 0x%x", 1997 str, ddq, id, be32_to_cpu(ddq->d_id)); 1998 errs++; 1999 } 2000 2001 if (!errs && ddq->d_id) { 2002 if (ddq->d_blk_softlimit && 2003 be64_to_cpu(ddq->d_bcount) >= 2004 be64_to_cpu(ddq->d_blk_softlimit)) { 2005 if (!ddq->d_btimer) { 2006 if (flags & XFS_QMOPT_DOWARN) 2007 cmn_err(CE_ALERT, 2008 "%s : Dquot ID 0x%x (0x%p) " 2009 "BLK TIMER NOT STARTED", 2010 str, (int)be32_to_cpu(ddq->d_id), ddq); 2011 errs++; 2012 } 2013 } 2014 if (ddq->d_ino_softlimit && 2015 be64_to_cpu(ddq->d_icount) >= 2016 be64_to_cpu(ddq->d_ino_softlimit)) { 2017 if (!ddq->d_itimer) { 2018 if (flags & XFS_QMOPT_DOWARN) 2019 cmn_err(CE_ALERT, 2020 "%s : Dquot ID 0x%x (0x%p) " 2021 "INODE TIMER NOT STARTED", 2022 str, (int)be32_to_cpu(ddq->d_id), ddq); 2023 errs++; 2024 } 2025 } 2026 if (ddq->d_rtb_softlimit && 2027 be64_to_cpu(ddq->d_rtbcount) >= 2028 be64_to_cpu(ddq->d_rtb_softlimit)) { 2029 if (!ddq->d_rtbtimer) { 2030 if (flags & XFS_QMOPT_DOWARN) 2031 cmn_err(CE_ALERT, 2032 "%s : Dquot ID 0x%x (0x%p) " 2033 "RTBLK TIMER NOT STARTED", 2034 str, (int)be32_to_cpu(ddq->d_id), ddq); 2035 errs++; 2036 } 2037 } 2038 } 2039 2040 if (!errs || !(flags & XFS_QMOPT_DQREPAIR)) 2041 return errs; 2042 2043 if (flags & XFS_QMOPT_DOWARN) 2044 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id); 2045 2046 /* 2047 * Typically, a repair is only requested by quotacheck. 2048 */ 2049 ASSERT(id != -1); 2050 ASSERT(flags & XFS_QMOPT_DQREPAIR); 2051 memset(d, 0, sizeof(xfs_dqblk_t)); 2052 2053 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC); 2054 d->dd_diskdq.d_version = XFS_DQUOT_VERSION; 2055 d->dd_diskdq.d_flags = type; 2056 d->dd_diskdq.d_id = cpu_to_be32(id); 2057 2058 return errs; 2059 } 2060 2061 /* 2062 * Perform a dquot buffer recovery. 2063 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type 2064 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2065 * Else, treat it as a regular buffer and do recovery. 2066 */ 2067 STATIC void 2068 xlog_recover_do_dquot_buffer( 2069 xfs_mount_t *mp, 2070 xlog_t *log, 2071 xlog_recover_item_t *item, 2072 xfs_buf_t *bp, 2073 xfs_buf_log_format_t *buf_f) 2074 { 2075 uint type; 2076 2077 /* 2078 * Filesystems are required to send in quota flags at mount time. 2079 */ 2080 if (mp->m_qflags == 0) { 2081 return; 2082 } 2083 2084 type = 0; 2085 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF) 2086 type |= XFS_DQ_USER; 2087 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF) 2088 type |= XFS_DQ_PROJ; 2089 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF) 2090 type |= XFS_DQ_GROUP; 2091 /* 2092 * This type of quotas was turned off, so ignore this buffer 2093 */ 2094 if (log->l_quotaoffs_flag & type) 2095 return; 2096 2097 xlog_recover_do_reg_buffer(item, bp, buf_f); 2098 } 2099 2100 /* 2101 * This routine replays a modification made to a buffer at runtime. 2102 * There are actually two types of buffer, regular and inode, which 2103 * are handled differently. Inode buffers are handled differently 2104 * in that we only recover a specific set of data from them, namely 2105 * the inode di_next_unlinked fields. This is because all other inode 2106 * data is actually logged via inode records and any data we replay 2107 * here which overlaps that may be stale. 2108 * 2109 * When meta-data buffers are freed at run time we log a buffer item 2110 * with the XFS_BLI_CANCEL bit set to indicate that previous copies 2111 * of the buffer in the log should not be replayed at recovery time. 2112 * This is so that if the blocks covered by the buffer are reused for 2113 * file data before we crash we don't end up replaying old, freed 2114 * meta-data into a user's file. 2115 * 2116 * To handle the cancellation of buffer log items, we make two passes 2117 * over the log during recovery. During the first we build a table of 2118 * those buffers which have been cancelled, and during the second we 2119 * only replay those buffers which do not have corresponding cancel 2120 * records in the table. See xlog_recover_do_buffer_pass[1,2] above 2121 * for more details on the implementation of the table of cancel records. 2122 */ 2123 STATIC int 2124 xlog_recover_do_buffer_trans( 2125 xlog_t *log, 2126 xlog_recover_item_t *item, 2127 int pass) 2128 { 2129 xfs_buf_log_format_t *buf_f; 2130 xfs_mount_t *mp; 2131 xfs_buf_t *bp; 2132 int error; 2133 int cancel; 2134 xfs_daddr_t blkno; 2135 int len; 2136 ushort flags; 2137 2138 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr; 2139 2140 if (pass == XLOG_RECOVER_PASS1) { 2141 /* 2142 * In this pass we're only looking for buf items 2143 * with the XFS_BLI_CANCEL bit set. 2144 */ 2145 xlog_recover_do_buffer_pass1(log, buf_f); 2146 return 0; 2147 } else { 2148 /* 2149 * In this pass we want to recover all the buffers 2150 * which have not been cancelled and are not 2151 * cancellation buffers themselves. The routine 2152 * we call here will tell us whether or not to 2153 * continue with the replay of this buffer. 2154 */ 2155 cancel = xlog_recover_do_buffer_pass2(log, buf_f); 2156 if (cancel) { 2157 return 0; 2158 } 2159 } 2160 switch (buf_f->blf_type) { 2161 case XFS_LI_BUF: 2162 blkno = buf_f->blf_blkno; 2163 len = buf_f->blf_len; 2164 flags = buf_f->blf_flags; 2165 break; 2166 default: 2167 xfs_fs_cmn_err(CE_ALERT, log->l_mp, 2168 "xfs_log_recover: unknown buffer type 0x%x, logdev %s", 2169 buf_f->blf_type, log->l_mp->m_logname ? 2170 log->l_mp->m_logname : "internal"); 2171 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans", 2172 XFS_ERRLEVEL_LOW, log->l_mp); 2173 return XFS_ERROR(EFSCORRUPTED); 2174 } 2175 2176 mp = log->l_mp; 2177 if (flags & XFS_BLI_INODE_BUF) { 2178 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len, 2179 XFS_BUF_LOCK); 2180 } else { 2181 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0); 2182 } 2183 if (XFS_BUF_ISERROR(bp)) { 2184 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp, 2185 bp, blkno); 2186 error = XFS_BUF_GETERROR(bp); 2187 xfs_buf_relse(bp); 2188 return error; 2189 } 2190 2191 error = 0; 2192 if (flags & XFS_BLI_INODE_BUF) { 2193 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2194 } else if (flags & 2195 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) { 2196 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2197 } else { 2198 xlog_recover_do_reg_buffer(item, bp, buf_f); 2199 } 2200 if (error) 2201 return XFS_ERROR(error); 2202 2203 /* 2204 * Perform delayed write on the buffer. Asynchronous writes will be 2205 * slower when taking into account all the buffers to be flushed. 2206 * 2207 * Also make sure that only inode buffers with good sizes stay in 2208 * the buffer cache. The kernel moves inodes in buffers of 1 block 2209 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode 2210 * buffers in the log can be a different size if the log was generated 2211 * by an older kernel using unclustered inode buffers or a newer kernel 2212 * running with a different inode cluster size. Regardless, if the 2213 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE) 2214 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep 2215 * the buffer out of the buffer cache so that the buffer won't 2216 * overlap with future reads of those inodes. 2217 */ 2218 if (XFS_DINODE_MAGIC == 2219 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && 2220 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize, 2221 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) { 2222 XFS_BUF_STALE(bp); 2223 error = xfs_bwrite(mp, bp); 2224 } else { 2225 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || 2226 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); 2227 XFS_BUF_SET_FSPRIVATE(bp, mp); 2228 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2229 xfs_bdwrite(mp, bp); 2230 } 2231 2232 return (error); 2233 } 2234 2235 STATIC int 2236 xlog_recover_do_inode_trans( 2237 xlog_t *log, 2238 xlog_recover_item_t *item, 2239 int pass) 2240 { 2241 xfs_inode_log_format_t *in_f; 2242 xfs_mount_t *mp; 2243 xfs_buf_t *bp; 2244 xfs_imap_t imap; 2245 xfs_dinode_t *dip; 2246 xfs_ino_t ino; 2247 int len; 2248 xfs_caddr_t src; 2249 xfs_caddr_t dest; 2250 int error; 2251 int attr_index; 2252 uint fields; 2253 xfs_icdinode_t *dicp; 2254 int need_free = 0; 2255 2256 if (pass == XLOG_RECOVER_PASS1) { 2257 return 0; 2258 } 2259 2260 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) { 2261 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr; 2262 } else { 2263 in_f = (xfs_inode_log_format_t *)kmem_alloc( 2264 sizeof(xfs_inode_log_format_t), KM_SLEEP); 2265 need_free = 1; 2266 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 2267 if (error) 2268 goto error; 2269 } 2270 ino = in_f->ilf_ino; 2271 mp = log->l_mp; 2272 if (ITEM_TYPE(item) == XFS_LI_INODE) { 2273 imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno; 2274 imap.im_len = in_f->ilf_len; 2275 imap.im_boffset = in_f->ilf_boffset; 2276 } else { 2277 /* 2278 * It's an old inode format record. We don't know where 2279 * its cluster is located on disk, and we can't allow 2280 * xfs_imap() to figure it out because the inode btrees 2281 * are not ready to be used. Therefore do not pass the 2282 * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give 2283 * us only the single block in which the inode lives 2284 * rather than its cluster, so we must make sure to 2285 * invalidate the buffer when we write it out below. 2286 */ 2287 imap.im_blkno = 0; 2288 error = xfs_imap(log->l_mp, NULL, ino, &imap, 0); 2289 if (error) 2290 goto error; 2291 } 2292 2293 /* 2294 * Inode buffers can be freed, look out for it, 2295 * and do not replay the inode. 2296 */ 2297 if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) { 2298 error = 0; 2299 goto error; 2300 } 2301 2302 bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len, 2303 XFS_BUF_LOCK); 2304 if (XFS_BUF_ISERROR(bp)) { 2305 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp, 2306 bp, imap.im_blkno); 2307 error = XFS_BUF_GETERROR(bp); 2308 xfs_buf_relse(bp); 2309 goto error; 2310 } 2311 error = 0; 2312 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 2313 dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 2314 2315 /* 2316 * Make sure the place we're flushing out to really looks 2317 * like an inode! 2318 */ 2319 if (unlikely(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC)) { 2320 xfs_buf_relse(bp); 2321 xfs_fs_cmn_err(CE_ALERT, mp, 2322 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld", 2323 dip, bp, ino); 2324 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)", 2325 XFS_ERRLEVEL_LOW, mp); 2326 error = EFSCORRUPTED; 2327 goto error; 2328 } 2329 dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr); 2330 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { 2331 xfs_buf_relse(bp); 2332 xfs_fs_cmn_err(CE_ALERT, mp, 2333 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld", 2334 item, ino); 2335 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)", 2336 XFS_ERRLEVEL_LOW, mp); 2337 error = EFSCORRUPTED; 2338 goto error; 2339 } 2340 2341 /* Skip replay when the on disk inode is newer than the log one */ 2342 if (dicp->di_flushiter < be16_to_cpu(dip->di_core.di_flushiter)) { 2343 /* 2344 * Deal with the wrap case, DI_MAX_FLUSH is less 2345 * than smaller numbers 2346 */ 2347 if (be16_to_cpu(dip->di_core.di_flushiter) == DI_MAX_FLUSH && 2348 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) { 2349 /* do nothing */ 2350 } else { 2351 xfs_buf_relse(bp); 2352 error = 0; 2353 goto error; 2354 } 2355 } 2356 /* Take the opportunity to reset the flush iteration count */ 2357 dicp->di_flushiter = 0; 2358 2359 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) { 2360 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2361 (dicp->di_format != XFS_DINODE_FMT_BTREE)) { 2362 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)", 2363 XFS_ERRLEVEL_LOW, mp, dicp); 2364 xfs_buf_relse(bp); 2365 xfs_fs_cmn_err(CE_ALERT, mp, 2366 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2367 item, dip, bp, ino); 2368 error = EFSCORRUPTED; 2369 goto error; 2370 } 2371 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) { 2372 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2373 (dicp->di_format != XFS_DINODE_FMT_BTREE) && 2374 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { 2375 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)", 2376 XFS_ERRLEVEL_LOW, mp, dicp); 2377 xfs_buf_relse(bp); 2378 xfs_fs_cmn_err(CE_ALERT, mp, 2379 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2380 item, dip, bp, ino); 2381 error = EFSCORRUPTED; 2382 goto error; 2383 } 2384 } 2385 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ 2386 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)", 2387 XFS_ERRLEVEL_LOW, mp, dicp); 2388 xfs_buf_relse(bp); 2389 xfs_fs_cmn_err(CE_ALERT, mp, 2390 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", 2391 item, dip, bp, ino, 2392 dicp->di_nextents + dicp->di_anextents, 2393 dicp->di_nblocks); 2394 error = EFSCORRUPTED; 2395 goto error; 2396 } 2397 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { 2398 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)", 2399 XFS_ERRLEVEL_LOW, mp, dicp); 2400 xfs_buf_relse(bp); 2401 xfs_fs_cmn_err(CE_ALERT, mp, 2402 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x", 2403 item, dip, bp, ino, dicp->di_forkoff); 2404 error = EFSCORRUPTED; 2405 goto error; 2406 } 2407 if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) { 2408 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)", 2409 XFS_ERRLEVEL_LOW, mp, dicp); 2410 xfs_buf_relse(bp); 2411 xfs_fs_cmn_err(CE_ALERT, mp, 2412 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p", 2413 item->ri_buf[1].i_len, item); 2414 error = EFSCORRUPTED; 2415 goto error; 2416 } 2417 2418 /* The core is in in-core format */ 2419 xfs_dinode_to_disk(&dip->di_core, 2420 (xfs_icdinode_t *)item->ri_buf[1].i_addr); 2421 2422 /* the rest is in on-disk format */ 2423 if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) { 2424 memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t), 2425 item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t), 2426 item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t)); 2427 } 2428 2429 fields = in_f->ilf_fields; 2430 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { 2431 case XFS_ILOG_DEV: 2432 dip->di_u.di_dev = cpu_to_be32(in_f->ilf_u.ilfu_rdev); 2433 break; 2434 case XFS_ILOG_UUID: 2435 dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid; 2436 break; 2437 } 2438 2439 if (in_f->ilf_size == 2) 2440 goto write_inode_buffer; 2441 len = item->ri_buf[2].i_len; 2442 src = item->ri_buf[2].i_addr; 2443 ASSERT(in_f->ilf_size <= 4); 2444 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 2445 ASSERT(!(fields & XFS_ILOG_DFORK) || 2446 (len == in_f->ilf_dsize)); 2447 2448 switch (fields & XFS_ILOG_DFORK) { 2449 case XFS_ILOG_DDATA: 2450 case XFS_ILOG_DEXT: 2451 memcpy(&dip->di_u, src, len); 2452 break; 2453 2454 case XFS_ILOG_DBROOT: 2455 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len, 2456 &(dip->di_u.di_bmbt), 2457 XFS_DFORK_DSIZE(dip, mp)); 2458 break; 2459 2460 default: 2461 /* 2462 * There are no data fork flags set. 2463 */ 2464 ASSERT((fields & XFS_ILOG_DFORK) == 0); 2465 break; 2466 } 2467 2468 /* 2469 * If we logged any attribute data, recover it. There may or 2470 * may not have been any other non-core data logged in this 2471 * transaction. 2472 */ 2473 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 2474 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 2475 attr_index = 3; 2476 } else { 2477 attr_index = 2; 2478 } 2479 len = item->ri_buf[attr_index].i_len; 2480 src = item->ri_buf[attr_index].i_addr; 2481 ASSERT(len == in_f->ilf_asize); 2482 2483 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 2484 case XFS_ILOG_ADATA: 2485 case XFS_ILOG_AEXT: 2486 dest = XFS_DFORK_APTR(dip); 2487 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 2488 memcpy(dest, src, len); 2489 break; 2490 2491 case XFS_ILOG_ABROOT: 2492 dest = XFS_DFORK_APTR(dip); 2493 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len, 2494 (xfs_bmdr_block_t*)dest, 2495 XFS_DFORK_ASIZE(dip, mp)); 2496 break; 2497 2498 default: 2499 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag"); 2500 ASSERT(0); 2501 xfs_buf_relse(bp); 2502 error = EIO; 2503 goto error; 2504 } 2505 } 2506 2507 write_inode_buffer: 2508 if (ITEM_TYPE(item) == XFS_LI_INODE) { 2509 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || 2510 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); 2511 XFS_BUF_SET_FSPRIVATE(bp, mp); 2512 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2513 xfs_bdwrite(mp, bp); 2514 } else { 2515 XFS_BUF_STALE(bp); 2516 error = xfs_bwrite(mp, bp); 2517 } 2518 2519 error: 2520 if (need_free) 2521 kmem_free(in_f); 2522 return XFS_ERROR(error); 2523 } 2524 2525 /* 2526 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t 2527 * structure, so that we know not to do any dquot item or dquot buffer recovery, 2528 * of that type. 2529 */ 2530 STATIC int 2531 xlog_recover_do_quotaoff_trans( 2532 xlog_t *log, 2533 xlog_recover_item_t *item, 2534 int pass) 2535 { 2536 xfs_qoff_logformat_t *qoff_f; 2537 2538 if (pass == XLOG_RECOVER_PASS2) { 2539 return (0); 2540 } 2541 2542 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr; 2543 ASSERT(qoff_f); 2544 2545 /* 2546 * The logitem format's flag tells us if this was user quotaoff, 2547 * group/project quotaoff or both. 2548 */ 2549 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 2550 log->l_quotaoffs_flag |= XFS_DQ_USER; 2551 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 2552 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 2553 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 2554 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 2555 2556 return (0); 2557 } 2558 2559 /* 2560 * Recover a dquot record 2561 */ 2562 STATIC int 2563 xlog_recover_do_dquot_trans( 2564 xlog_t *log, 2565 xlog_recover_item_t *item, 2566 int pass) 2567 { 2568 xfs_mount_t *mp; 2569 xfs_buf_t *bp; 2570 struct xfs_disk_dquot *ddq, *recddq; 2571 int error; 2572 xfs_dq_logformat_t *dq_f; 2573 uint type; 2574 2575 if (pass == XLOG_RECOVER_PASS1) { 2576 return 0; 2577 } 2578 mp = log->l_mp; 2579 2580 /* 2581 * Filesystems are required to send in quota flags at mount time. 2582 */ 2583 if (mp->m_qflags == 0) 2584 return (0); 2585 2586 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr; 2587 ASSERT(recddq); 2588 /* 2589 * This type of quotas was turned off, so ignore this record. 2590 */ 2591 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 2592 ASSERT(type); 2593 if (log->l_quotaoffs_flag & type) 2594 return (0); 2595 2596 /* 2597 * At this point we know that quota was _not_ turned off. 2598 * Since the mount flags are not indicating to us otherwise, this 2599 * must mean that quota is on, and the dquot needs to be replayed. 2600 * Remember that we may not have fully recovered the superblock yet, 2601 * so we can't do the usual trick of looking at the SB quota bits. 2602 * 2603 * The other possibility, of course, is that the quota subsystem was 2604 * removed since the last mount - ENOSYS. 2605 */ 2606 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr; 2607 ASSERT(dq_f); 2608 if ((error = xfs_qm_dqcheck(recddq, 2609 dq_f->qlf_id, 2610 0, XFS_QMOPT_DOWARN, 2611 "xlog_recover_do_dquot_trans (log copy)"))) { 2612 return XFS_ERROR(EIO); 2613 } 2614 ASSERT(dq_f->qlf_len == 1); 2615 2616 error = xfs_read_buf(mp, mp->m_ddev_targp, 2617 dq_f->qlf_blkno, 2618 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 2619 0, &bp); 2620 if (error) { 2621 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp, 2622 bp, dq_f->qlf_blkno); 2623 return error; 2624 } 2625 ASSERT(bp); 2626 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset); 2627 2628 /* 2629 * At least the magic num portion should be on disk because this 2630 * was among a chunk of dquots created earlier, and we did some 2631 * minimal initialization then. 2632 */ 2633 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2634 "xlog_recover_do_dquot_trans")) { 2635 xfs_buf_relse(bp); 2636 return XFS_ERROR(EIO); 2637 } 2638 2639 memcpy(ddq, recddq, item->ri_buf[1].i_len); 2640 2641 ASSERT(dq_f->qlf_size == 2); 2642 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || 2643 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); 2644 XFS_BUF_SET_FSPRIVATE(bp, mp); 2645 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2646 xfs_bdwrite(mp, bp); 2647 2648 return (0); 2649 } 2650 2651 /* 2652 * This routine is called to create an in-core extent free intent 2653 * item from the efi format structure which was logged on disk. 2654 * It allocates an in-core efi, copies the extents from the format 2655 * structure into it, and adds the efi to the AIL with the given 2656 * LSN. 2657 */ 2658 STATIC int 2659 xlog_recover_do_efi_trans( 2660 xlog_t *log, 2661 xlog_recover_item_t *item, 2662 xfs_lsn_t lsn, 2663 int pass) 2664 { 2665 int error; 2666 xfs_mount_t *mp; 2667 xfs_efi_log_item_t *efip; 2668 xfs_efi_log_format_t *efi_formatp; 2669 2670 if (pass == XLOG_RECOVER_PASS1) { 2671 return 0; 2672 } 2673 2674 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr; 2675 2676 mp = log->l_mp; 2677 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 2678 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]), 2679 &(efip->efi_format)))) { 2680 xfs_efi_item_free(efip); 2681 return error; 2682 } 2683 efip->efi_next_extent = efi_formatp->efi_nextents; 2684 efip->efi_flags |= XFS_EFI_COMMITTED; 2685 2686 spin_lock(&mp->m_ail_lock); 2687 /* 2688 * xfs_trans_update_ail() drops the AIL lock. 2689 */ 2690 xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn); 2691 return 0; 2692 } 2693 2694 2695 /* 2696 * This routine is called when an efd format structure is found in 2697 * a committed transaction in the log. It's purpose is to cancel 2698 * the corresponding efi if it was still in the log. To do this 2699 * it searches the AIL for the efi with an id equal to that in the 2700 * efd format structure. If we find it, we remove the efi from the 2701 * AIL and free it. 2702 */ 2703 STATIC void 2704 xlog_recover_do_efd_trans( 2705 xlog_t *log, 2706 xlog_recover_item_t *item, 2707 int pass) 2708 { 2709 xfs_mount_t *mp; 2710 xfs_efd_log_format_t *efd_formatp; 2711 xfs_efi_log_item_t *efip = NULL; 2712 xfs_log_item_t *lip; 2713 int gen; 2714 __uint64_t efi_id; 2715 2716 if (pass == XLOG_RECOVER_PASS1) { 2717 return; 2718 } 2719 2720 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr; 2721 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 2722 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 2723 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 2724 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 2725 efi_id = efd_formatp->efd_efi_id; 2726 2727 /* 2728 * Search for the efi with the id in the efd format structure 2729 * in the AIL. 2730 */ 2731 mp = log->l_mp; 2732 spin_lock(&mp->m_ail_lock); 2733 lip = xfs_trans_first_ail(mp, &gen); 2734 while (lip != NULL) { 2735 if (lip->li_type == XFS_LI_EFI) { 2736 efip = (xfs_efi_log_item_t *)lip; 2737 if (efip->efi_format.efi_id == efi_id) { 2738 /* 2739 * xfs_trans_delete_ail() drops the 2740 * AIL lock. 2741 */ 2742 xfs_trans_delete_ail(mp, lip); 2743 xfs_efi_item_free(efip); 2744 return; 2745 } 2746 } 2747 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 2748 } 2749 spin_unlock(&mp->m_ail_lock); 2750 } 2751 2752 /* 2753 * Perform the transaction 2754 * 2755 * If the transaction modifies a buffer or inode, do it now. Otherwise, 2756 * EFIs and EFDs get queued up by adding entries into the AIL for them. 2757 */ 2758 STATIC int 2759 xlog_recover_do_trans( 2760 xlog_t *log, 2761 xlog_recover_t *trans, 2762 int pass) 2763 { 2764 int error = 0; 2765 xlog_recover_item_t *item, *first_item; 2766 2767 if ((error = xlog_recover_reorder_trans(trans))) 2768 return error; 2769 first_item = item = trans->r_itemq; 2770 do { 2771 /* 2772 * we don't need to worry about the block number being 2773 * truncated in > 1 TB buffers because in user-land, 2774 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so 2775 * the blknos will get through the user-mode buffer 2776 * cache properly. The only bad case is o32 kernels 2777 * where xfs_daddr_t is 32-bits but mount will warn us 2778 * off a > 1 TB filesystem before we get here. 2779 */ 2780 if ((ITEM_TYPE(item) == XFS_LI_BUF)) { 2781 if ((error = xlog_recover_do_buffer_trans(log, item, 2782 pass))) 2783 break; 2784 } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) { 2785 if ((error = xlog_recover_do_inode_trans(log, item, 2786 pass))) 2787 break; 2788 } else if (ITEM_TYPE(item) == XFS_LI_EFI) { 2789 if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn, 2790 pass))) 2791 break; 2792 } else if (ITEM_TYPE(item) == XFS_LI_EFD) { 2793 xlog_recover_do_efd_trans(log, item, pass); 2794 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) { 2795 if ((error = xlog_recover_do_dquot_trans(log, item, 2796 pass))) 2797 break; 2798 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) { 2799 if ((error = xlog_recover_do_quotaoff_trans(log, item, 2800 pass))) 2801 break; 2802 } else { 2803 xlog_warn("XFS: xlog_recover_do_trans"); 2804 ASSERT(0); 2805 error = XFS_ERROR(EIO); 2806 break; 2807 } 2808 item = item->ri_next; 2809 } while (first_item != item); 2810 2811 return error; 2812 } 2813 2814 /* 2815 * Free up any resources allocated by the transaction 2816 * 2817 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 2818 */ 2819 STATIC void 2820 xlog_recover_free_trans( 2821 xlog_recover_t *trans) 2822 { 2823 xlog_recover_item_t *first_item, *item, *free_item; 2824 int i; 2825 2826 item = first_item = trans->r_itemq; 2827 do { 2828 free_item = item; 2829 item = item->ri_next; 2830 /* Free the regions in the item. */ 2831 for (i = 0; i < free_item->ri_cnt; i++) { 2832 kmem_free(free_item->ri_buf[i].i_addr); 2833 } 2834 /* Free the item itself */ 2835 kmem_free(free_item->ri_buf); 2836 kmem_free(free_item); 2837 } while (first_item != item); 2838 /* Free the transaction recover structure */ 2839 kmem_free(trans); 2840 } 2841 2842 STATIC int 2843 xlog_recover_commit_trans( 2844 xlog_t *log, 2845 xlog_recover_t **q, 2846 xlog_recover_t *trans, 2847 int pass) 2848 { 2849 int error; 2850 2851 if ((error = xlog_recover_unlink_tid(q, trans))) 2852 return error; 2853 if ((error = xlog_recover_do_trans(log, trans, pass))) 2854 return error; 2855 xlog_recover_free_trans(trans); /* no error */ 2856 return 0; 2857 } 2858 2859 STATIC int 2860 xlog_recover_unmount_trans( 2861 xlog_recover_t *trans) 2862 { 2863 /* Do nothing now */ 2864 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR"); 2865 return 0; 2866 } 2867 2868 /* 2869 * There are two valid states of the r_state field. 0 indicates that the 2870 * transaction structure is in a normal state. We have either seen the 2871 * start of the transaction or the last operation we added was not a partial 2872 * operation. If the last operation we added to the transaction was a 2873 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 2874 * 2875 * NOTE: skip LRs with 0 data length. 2876 */ 2877 STATIC int 2878 xlog_recover_process_data( 2879 xlog_t *log, 2880 xlog_recover_t *rhash[], 2881 xlog_rec_header_t *rhead, 2882 xfs_caddr_t dp, 2883 int pass) 2884 { 2885 xfs_caddr_t lp; 2886 int num_logops; 2887 xlog_op_header_t *ohead; 2888 xlog_recover_t *trans; 2889 xlog_tid_t tid; 2890 int error; 2891 unsigned long hash; 2892 uint flags; 2893 2894 lp = dp + be32_to_cpu(rhead->h_len); 2895 num_logops = be32_to_cpu(rhead->h_num_logops); 2896 2897 /* check the log format matches our own - else we can't recover */ 2898 if (xlog_header_check_recover(log->l_mp, rhead)) 2899 return (XFS_ERROR(EIO)); 2900 2901 while ((dp < lp) && num_logops) { 2902 ASSERT(dp + sizeof(xlog_op_header_t) <= lp); 2903 ohead = (xlog_op_header_t *)dp; 2904 dp += sizeof(xlog_op_header_t); 2905 if (ohead->oh_clientid != XFS_TRANSACTION && 2906 ohead->oh_clientid != XFS_LOG) { 2907 xlog_warn( 2908 "XFS: xlog_recover_process_data: bad clientid"); 2909 ASSERT(0); 2910 return (XFS_ERROR(EIO)); 2911 } 2912 tid = be32_to_cpu(ohead->oh_tid); 2913 hash = XLOG_RHASH(tid); 2914 trans = xlog_recover_find_tid(rhash[hash], tid); 2915 if (trans == NULL) { /* not found; add new tid */ 2916 if (ohead->oh_flags & XLOG_START_TRANS) 2917 xlog_recover_new_tid(&rhash[hash], tid, 2918 be64_to_cpu(rhead->h_lsn)); 2919 } else { 2920 if (dp + be32_to_cpu(ohead->oh_len) > lp) { 2921 xlog_warn( 2922 "XFS: xlog_recover_process_data: bad length"); 2923 WARN_ON(1); 2924 return (XFS_ERROR(EIO)); 2925 } 2926 flags = ohead->oh_flags & ~XLOG_END_TRANS; 2927 if (flags & XLOG_WAS_CONT_TRANS) 2928 flags &= ~XLOG_CONTINUE_TRANS; 2929 switch (flags) { 2930 case XLOG_COMMIT_TRANS: 2931 error = xlog_recover_commit_trans(log, 2932 &rhash[hash], trans, pass); 2933 break; 2934 case XLOG_UNMOUNT_TRANS: 2935 error = xlog_recover_unmount_trans(trans); 2936 break; 2937 case XLOG_WAS_CONT_TRANS: 2938 error = xlog_recover_add_to_cont_trans(trans, 2939 dp, be32_to_cpu(ohead->oh_len)); 2940 break; 2941 case XLOG_START_TRANS: 2942 xlog_warn( 2943 "XFS: xlog_recover_process_data: bad transaction"); 2944 ASSERT(0); 2945 error = XFS_ERROR(EIO); 2946 break; 2947 case 0: 2948 case XLOG_CONTINUE_TRANS: 2949 error = xlog_recover_add_to_trans(trans, 2950 dp, be32_to_cpu(ohead->oh_len)); 2951 break; 2952 default: 2953 xlog_warn( 2954 "XFS: xlog_recover_process_data: bad flag"); 2955 ASSERT(0); 2956 error = XFS_ERROR(EIO); 2957 break; 2958 } 2959 if (error) 2960 return error; 2961 } 2962 dp += be32_to_cpu(ohead->oh_len); 2963 num_logops--; 2964 } 2965 return 0; 2966 } 2967 2968 /* 2969 * Process an extent free intent item that was recovered from 2970 * the log. We need to free the extents that it describes. 2971 */ 2972 STATIC int 2973 xlog_recover_process_efi( 2974 xfs_mount_t *mp, 2975 xfs_efi_log_item_t *efip) 2976 { 2977 xfs_efd_log_item_t *efdp; 2978 xfs_trans_t *tp; 2979 int i; 2980 int error = 0; 2981 xfs_extent_t *extp; 2982 xfs_fsblock_t startblock_fsb; 2983 2984 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED)); 2985 2986 /* 2987 * First check the validity of the extents described by the 2988 * EFI. If any are bad, then assume that all are bad and 2989 * just toss the EFI. 2990 */ 2991 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 2992 extp = &(efip->efi_format.efi_extents[i]); 2993 startblock_fsb = XFS_BB_TO_FSB(mp, 2994 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 2995 if ((startblock_fsb == 0) || 2996 (extp->ext_len == 0) || 2997 (startblock_fsb >= mp->m_sb.sb_dblocks) || 2998 (extp->ext_len >= mp->m_sb.sb_agblocks)) { 2999 /* 3000 * This will pull the EFI from the AIL and 3001 * free the memory associated with it. 3002 */ 3003 xfs_efi_release(efip, efip->efi_format.efi_nextents); 3004 return XFS_ERROR(EIO); 3005 } 3006 } 3007 3008 tp = xfs_trans_alloc(mp, 0); 3009 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0); 3010 if (error) 3011 goto abort_error; 3012 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 3013 3014 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3015 extp = &(efip->efi_format.efi_extents[i]); 3016 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len); 3017 if (error) 3018 goto abort_error; 3019 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start, 3020 extp->ext_len); 3021 } 3022 3023 efip->efi_flags |= XFS_EFI_RECOVERED; 3024 error = xfs_trans_commit(tp, 0); 3025 return error; 3026 3027 abort_error: 3028 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3029 return error; 3030 } 3031 3032 /* 3033 * Verify that once we've encountered something other than an EFI 3034 * in the AIL that there are no more EFIs in the AIL. 3035 */ 3036 #if defined(DEBUG) 3037 STATIC void 3038 xlog_recover_check_ail( 3039 xfs_mount_t *mp, 3040 xfs_log_item_t *lip, 3041 int gen) 3042 { 3043 int orig_gen = gen; 3044 3045 do { 3046 ASSERT(lip->li_type != XFS_LI_EFI); 3047 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 3048 /* 3049 * The check will be bogus if we restart from the 3050 * beginning of the AIL, so ASSERT that we don't. 3051 * We never should since we're holding the AIL lock 3052 * the entire time. 3053 */ 3054 ASSERT(gen == orig_gen); 3055 } while (lip != NULL); 3056 } 3057 #endif /* DEBUG */ 3058 3059 /* 3060 * When this is called, all of the EFIs which did not have 3061 * corresponding EFDs should be in the AIL. What we do now 3062 * is free the extents associated with each one. 3063 * 3064 * Since we process the EFIs in normal transactions, they 3065 * will be removed at some point after the commit. This prevents 3066 * us from just walking down the list processing each one. 3067 * We'll use a flag in the EFI to skip those that we've already 3068 * processed and use the AIL iteration mechanism's generation 3069 * count to try to speed this up at least a bit. 3070 * 3071 * When we start, we know that the EFIs are the only things in 3072 * the AIL. As we process them, however, other items are added 3073 * to the AIL. Since everything added to the AIL must come after 3074 * everything already in the AIL, we stop processing as soon as 3075 * we see something other than an EFI in the AIL. 3076 */ 3077 STATIC int 3078 xlog_recover_process_efis( 3079 xlog_t *log) 3080 { 3081 xfs_log_item_t *lip; 3082 xfs_efi_log_item_t *efip; 3083 int gen; 3084 xfs_mount_t *mp; 3085 int error = 0; 3086 3087 mp = log->l_mp; 3088 spin_lock(&mp->m_ail_lock); 3089 3090 lip = xfs_trans_first_ail(mp, &gen); 3091 while (lip != NULL) { 3092 /* 3093 * We're done when we see something other than an EFI. 3094 */ 3095 if (lip->li_type != XFS_LI_EFI) { 3096 xlog_recover_check_ail(mp, lip, gen); 3097 break; 3098 } 3099 3100 /* 3101 * Skip EFIs that we've already processed. 3102 */ 3103 efip = (xfs_efi_log_item_t *)lip; 3104 if (efip->efi_flags & XFS_EFI_RECOVERED) { 3105 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 3106 continue; 3107 } 3108 3109 spin_unlock(&mp->m_ail_lock); 3110 error = xlog_recover_process_efi(mp, efip); 3111 if (error) 3112 return error; 3113 spin_lock(&mp->m_ail_lock); 3114 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 3115 } 3116 spin_unlock(&mp->m_ail_lock); 3117 return error; 3118 } 3119 3120 /* 3121 * This routine performs a transaction to null out a bad inode pointer 3122 * in an agi unlinked inode hash bucket. 3123 */ 3124 STATIC void 3125 xlog_recover_clear_agi_bucket( 3126 xfs_mount_t *mp, 3127 xfs_agnumber_t agno, 3128 int bucket) 3129 { 3130 xfs_trans_t *tp; 3131 xfs_agi_t *agi; 3132 xfs_buf_t *agibp; 3133 int offset; 3134 int error; 3135 3136 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); 3137 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0); 3138 if (!error) 3139 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 3140 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 3141 XFS_FSS_TO_BB(mp, 1), 0, &agibp); 3142 if (error) 3143 goto out_abort; 3144 3145 error = EINVAL; 3146 agi = XFS_BUF_TO_AGI(agibp); 3147 if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC) 3148 goto out_abort; 3149 3150 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 3151 offset = offsetof(xfs_agi_t, agi_unlinked) + 3152 (sizeof(xfs_agino_t) * bucket); 3153 xfs_trans_log_buf(tp, agibp, offset, 3154 (offset + sizeof(xfs_agino_t) - 1)); 3155 3156 error = xfs_trans_commit(tp, 0); 3157 if (error) 3158 goto out_error; 3159 return; 3160 3161 out_abort: 3162 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3163 out_error: 3164 xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: " 3165 "failed to clear agi %d. Continuing.", agno); 3166 return; 3167 } 3168 3169 /* 3170 * xlog_iunlink_recover 3171 * 3172 * This is called during recovery to process any inodes which 3173 * we unlinked but not freed when the system crashed. These 3174 * inodes will be on the lists in the AGI blocks. What we do 3175 * here is scan all the AGIs and fully truncate and free any 3176 * inodes found on the lists. Each inode is removed from the 3177 * lists when it has been fully truncated and is freed. The 3178 * freeing of the inode and its removal from the list must be 3179 * atomic. 3180 */ 3181 void 3182 xlog_recover_process_iunlinks( 3183 xlog_t *log) 3184 { 3185 xfs_mount_t *mp; 3186 xfs_agnumber_t agno; 3187 xfs_agi_t *agi; 3188 xfs_buf_t *agibp; 3189 xfs_buf_t *ibp; 3190 xfs_dinode_t *dip; 3191 xfs_inode_t *ip; 3192 xfs_agino_t agino; 3193 xfs_ino_t ino; 3194 int bucket; 3195 int error; 3196 uint mp_dmevmask; 3197 3198 mp = log->l_mp; 3199 3200 /* 3201 * Prevent any DMAPI event from being sent while in this function. 3202 */ 3203 mp_dmevmask = mp->m_dmevmask; 3204 mp->m_dmevmask = 0; 3205 3206 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3207 /* 3208 * Find the agi for this ag. 3209 */ 3210 agibp = xfs_buf_read(mp->m_ddev_targp, 3211 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 3212 XFS_FSS_TO_BB(mp, 1), 0); 3213 if (XFS_BUF_ISERROR(agibp)) { 3214 xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)", 3215 log->l_mp, agibp, 3216 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp))); 3217 } 3218 agi = XFS_BUF_TO_AGI(agibp); 3219 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum)); 3220 3221 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 3222 3223 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 3224 while (agino != NULLAGINO) { 3225 3226 /* 3227 * Release the agi buffer so that it can 3228 * be acquired in the normal course of the 3229 * transaction to truncate and free the inode. 3230 */ 3231 xfs_buf_relse(agibp); 3232 3233 ino = XFS_AGINO_TO_INO(mp, agno, agino); 3234 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0); 3235 ASSERT(error || (ip != NULL)); 3236 3237 if (!error) { 3238 /* 3239 * Get the on disk inode to find the 3240 * next inode in the bucket. 3241 */ 3242 error = xfs_itobp(mp, NULL, ip, &dip, 3243 &ibp, 0, 0, 3244 XFS_BUF_LOCK); 3245 ASSERT(error || (dip != NULL)); 3246 } 3247 3248 if (!error) { 3249 ASSERT(ip->i_d.di_nlink == 0); 3250 3251 /* setup for the next pass */ 3252 agino = be32_to_cpu( 3253 dip->di_next_unlinked); 3254 xfs_buf_relse(ibp); 3255 /* 3256 * Prevent any DMAPI event from 3257 * being sent when the 3258 * reference on the inode is 3259 * dropped. 3260 */ 3261 ip->i_d.di_dmevmask = 0; 3262 3263 /* 3264 * If this is a new inode, handle 3265 * it specially. Otherwise, 3266 * just drop our reference to the 3267 * inode. If there are no 3268 * other references, this will 3269 * send the inode to 3270 * xfs_inactive() which will 3271 * truncate the file and free 3272 * the inode. 3273 */ 3274 if (ip->i_d.di_mode == 0) 3275 xfs_iput_new(ip, 0); 3276 else 3277 IRELE(ip); 3278 } else { 3279 /* 3280 * We can't read in the inode 3281 * this bucket points to, or 3282 * this inode is messed up. Just 3283 * ditch this bucket of inodes. We 3284 * will lose some inodes and space, 3285 * but at least we won't hang. Call 3286 * xlog_recover_clear_agi_bucket() 3287 * to perform a transaction to clear 3288 * the inode pointer in the bucket. 3289 */ 3290 xlog_recover_clear_agi_bucket(mp, agno, 3291 bucket); 3292 3293 agino = NULLAGINO; 3294 } 3295 3296 /* 3297 * Reacquire the agibuffer and continue around 3298 * the loop. 3299 */ 3300 agibp = xfs_buf_read(mp->m_ddev_targp, 3301 XFS_AG_DADDR(mp, agno, 3302 XFS_AGI_DADDR(mp)), 3303 XFS_FSS_TO_BB(mp, 1), 0); 3304 if (XFS_BUF_ISERROR(agibp)) { 3305 xfs_ioerror_alert( 3306 "xlog_recover_process_iunlinks(#2)", 3307 log->l_mp, agibp, 3308 XFS_AG_DADDR(mp, agno, 3309 XFS_AGI_DADDR(mp))); 3310 } 3311 agi = XFS_BUF_TO_AGI(agibp); 3312 ASSERT(XFS_AGI_MAGIC == be32_to_cpu( 3313 agi->agi_magicnum)); 3314 } 3315 } 3316 3317 /* 3318 * Release the buffer for the current agi so we can 3319 * go on to the next one. 3320 */ 3321 xfs_buf_relse(agibp); 3322 } 3323 3324 mp->m_dmevmask = mp_dmevmask; 3325 } 3326 3327 3328 #ifdef DEBUG 3329 STATIC void 3330 xlog_pack_data_checksum( 3331 xlog_t *log, 3332 xlog_in_core_t *iclog, 3333 int size) 3334 { 3335 int i; 3336 __be32 *up; 3337 uint chksum = 0; 3338 3339 up = (__be32 *)iclog->ic_datap; 3340 /* divide length by 4 to get # words */ 3341 for (i = 0; i < (size >> 2); i++) { 3342 chksum ^= be32_to_cpu(*up); 3343 up++; 3344 } 3345 iclog->ic_header.h_chksum = cpu_to_be32(chksum); 3346 } 3347 #else 3348 #define xlog_pack_data_checksum(log, iclog, size) 3349 #endif 3350 3351 /* 3352 * Stamp cycle number in every block 3353 */ 3354 void 3355 xlog_pack_data( 3356 xlog_t *log, 3357 xlog_in_core_t *iclog, 3358 int roundoff) 3359 { 3360 int i, j, k; 3361 int size = iclog->ic_offset + roundoff; 3362 __be32 cycle_lsn; 3363 xfs_caddr_t dp; 3364 xlog_in_core_2_t *xhdr; 3365 3366 xlog_pack_data_checksum(log, iclog, size); 3367 3368 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 3369 3370 dp = iclog->ic_datap; 3371 for (i = 0; i < BTOBB(size) && 3372 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3373 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 3374 *(__be32 *)dp = cycle_lsn; 3375 dp += BBSIZE; 3376 } 3377 3378 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3379 xhdr = (xlog_in_core_2_t *)&iclog->ic_header; 3380 for ( ; i < BTOBB(size); i++) { 3381 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3382 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3383 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 3384 *(__be32 *)dp = cycle_lsn; 3385 dp += BBSIZE; 3386 } 3387 3388 for (i = 1; i < log->l_iclog_heads; i++) { 3389 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 3390 } 3391 } 3392 } 3393 3394 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY) 3395 STATIC void 3396 xlog_unpack_data_checksum( 3397 xlog_rec_header_t *rhead, 3398 xfs_caddr_t dp, 3399 xlog_t *log) 3400 { 3401 __be32 *up = (__be32 *)dp; 3402 uint chksum = 0; 3403 int i; 3404 3405 /* divide length by 4 to get # words */ 3406 for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) { 3407 chksum ^= be32_to_cpu(*up); 3408 up++; 3409 } 3410 if (chksum != be32_to_cpu(rhead->h_chksum)) { 3411 if (rhead->h_chksum || 3412 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) { 3413 cmn_err(CE_DEBUG, 3414 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n", 3415 be32_to_cpu(rhead->h_chksum), chksum); 3416 cmn_err(CE_DEBUG, 3417 "XFS: Disregard message if filesystem was created with non-DEBUG kernel"); 3418 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3419 cmn_err(CE_DEBUG, 3420 "XFS: LogR this is a LogV2 filesystem\n"); 3421 } 3422 log->l_flags |= XLOG_CHKSUM_MISMATCH; 3423 } 3424 } 3425 } 3426 #else 3427 #define xlog_unpack_data_checksum(rhead, dp, log) 3428 #endif 3429 3430 STATIC void 3431 xlog_unpack_data( 3432 xlog_rec_header_t *rhead, 3433 xfs_caddr_t dp, 3434 xlog_t *log) 3435 { 3436 int i, j, k; 3437 xlog_in_core_2_t *xhdr; 3438 3439 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 3440 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3441 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 3442 dp += BBSIZE; 3443 } 3444 3445 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3446 xhdr = (xlog_in_core_2_t *)rhead; 3447 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 3448 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3449 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3450 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 3451 dp += BBSIZE; 3452 } 3453 } 3454 3455 xlog_unpack_data_checksum(rhead, dp, log); 3456 } 3457 3458 STATIC int 3459 xlog_valid_rec_header( 3460 xlog_t *log, 3461 xlog_rec_header_t *rhead, 3462 xfs_daddr_t blkno) 3463 { 3464 int hlen; 3465 3466 if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) { 3467 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 3468 XFS_ERRLEVEL_LOW, log->l_mp); 3469 return XFS_ERROR(EFSCORRUPTED); 3470 } 3471 if (unlikely( 3472 (!rhead->h_version || 3473 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { 3474 xlog_warn("XFS: %s: unrecognised log version (%d).", 3475 __func__, be32_to_cpu(rhead->h_version)); 3476 return XFS_ERROR(EIO); 3477 } 3478 3479 /* LR body must have data or it wouldn't have been written */ 3480 hlen = be32_to_cpu(rhead->h_len); 3481 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 3482 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 3483 XFS_ERRLEVEL_LOW, log->l_mp); 3484 return XFS_ERROR(EFSCORRUPTED); 3485 } 3486 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 3487 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 3488 XFS_ERRLEVEL_LOW, log->l_mp); 3489 return XFS_ERROR(EFSCORRUPTED); 3490 } 3491 return 0; 3492 } 3493 3494 /* 3495 * Read the log from tail to head and process the log records found. 3496 * Handle the two cases where the tail and head are in the same cycle 3497 * and where the active portion of the log wraps around the end of 3498 * the physical log separately. The pass parameter is passed through 3499 * to the routines called to process the data and is not looked at 3500 * here. 3501 */ 3502 STATIC int 3503 xlog_do_recovery_pass( 3504 xlog_t *log, 3505 xfs_daddr_t head_blk, 3506 xfs_daddr_t tail_blk, 3507 int pass) 3508 { 3509 xlog_rec_header_t *rhead; 3510 xfs_daddr_t blk_no; 3511 xfs_caddr_t bufaddr, offset; 3512 xfs_buf_t *hbp, *dbp; 3513 int error = 0, h_size; 3514 int bblks, split_bblks; 3515 int hblks, split_hblks, wrapped_hblks; 3516 xlog_recover_t *rhash[XLOG_RHASH_SIZE]; 3517 3518 ASSERT(head_blk != tail_blk); 3519 3520 /* 3521 * Read the header of the tail block and get the iclog buffer size from 3522 * h_size. Use this to tell how many sectors make up the log header. 3523 */ 3524 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3525 /* 3526 * When using variable length iclogs, read first sector of 3527 * iclog header and extract the header size from it. Get a 3528 * new hbp that is the correct size. 3529 */ 3530 hbp = xlog_get_bp(log, 1); 3531 if (!hbp) 3532 return ENOMEM; 3533 if ((error = xlog_bread(log, tail_blk, 1, hbp))) 3534 goto bread_err1; 3535 offset = xlog_align(log, tail_blk, 1, hbp); 3536 rhead = (xlog_rec_header_t *)offset; 3537 error = xlog_valid_rec_header(log, rhead, tail_blk); 3538 if (error) 3539 goto bread_err1; 3540 h_size = be32_to_cpu(rhead->h_size); 3541 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 3542 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 3543 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 3544 if (h_size % XLOG_HEADER_CYCLE_SIZE) 3545 hblks++; 3546 xlog_put_bp(hbp); 3547 hbp = xlog_get_bp(log, hblks); 3548 } else { 3549 hblks = 1; 3550 } 3551 } else { 3552 ASSERT(log->l_sectbb_log == 0); 3553 hblks = 1; 3554 hbp = xlog_get_bp(log, 1); 3555 h_size = XLOG_BIG_RECORD_BSIZE; 3556 } 3557 3558 if (!hbp) 3559 return ENOMEM; 3560 dbp = xlog_get_bp(log, BTOBB(h_size)); 3561 if (!dbp) { 3562 xlog_put_bp(hbp); 3563 return ENOMEM; 3564 } 3565 3566 memset(rhash, 0, sizeof(rhash)); 3567 if (tail_blk <= head_blk) { 3568 for (blk_no = tail_blk; blk_no < head_blk; ) { 3569 if ((error = xlog_bread(log, blk_no, hblks, hbp))) 3570 goto bread_err2; 3571 offset = xlog_align(log, blk_no, hblks, hbp); 3572 rhead = (xlog_rec_header_t *)offset; 3573 error = xlog_valid_rec_header(log, rhead, blk_no); 3574 if (error) 3575 goto bread_err2; 3576 3577 /* blocks in data section */ 3578 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3579 error = xlog_bread(log, blk_no + hblks, bblks, dbp); 3580 if (error) 3581 goto bread_err2; 3582 offset = xlog_align(log, blk_no + hblks, bblks, dbp); 3583 xlog_unpack_data(rhead, offset, log); 3584 if ((error = xlog_recover_process_data(log, 3585 rhash, rhead, offset, pass))) 3586 goto bread_err2; 3587 blk_no += bblks + hblks; 3588 } 3589 } else { 3590 /* 3591 * Perform recovery around the end of the physical log. 3592 * When the head is not on the same cycle number as the tail, 3593 * we can't do a sequential recovery as above. 3594 */ 3595 blk_no = tail_blk; 3596 while (blk_no < log->l_logBBsize) { 3597 /* 3598 * Check for header wrapping around physical end-of-log 3599 */ 3600 offset = NULL; 3601 split_hblks = 0; 3602 wrapped_hblks = 0; 3603 if (blk_no + hblks <= log->l_logBBsize) { 3604 /* Read header in one read */ 3605 error = xlog_bread(log, blk_no, hblks, hbp); 3606 if (error) 3607 goto bread_err2; 3608 offset = xlog_align(log, blk_no, hblks, hbp); 3609 } else { 3610 /* This LR is split across physical log end */ 3611 if (blk_no != log->l_logBBsize) { 3612 /* some data before physical log end */ 3613 ASSERT(blk_no <= INT_MAX); 3614 split_hblks = log->l_logBBsize - (int)blk_no; 3615 ASSERT(split_hblks > 0); 3616 if ((error = xlog_bread(log, blk_no, 3617 split_hblks, hbp))) 3618 goto bread_err2; 3619 offset = xlog_align(log, blk_no, 3620 split_hblks, hbp); 3621 } 3622 /* 3623 * Note: this black magic still works with 3624 * large sector sizes (non-512) only because: 3625 * - we increased the buffer size originally 3626 * by 1 sector giving us enough extra space 3627 * for the second read; 3628 * - the log start is guaranteed to be sector 3629 * aligned; 3630 * - we read the log end (LR header start) 3631 * _first_, then the log start (LR header end) 3632 * - order is important. 3633 */ 3634 wrapped_hblks = hblks - split_hblks; 3635 bufaddr = XFS_BUF_PTR(hbp); 3636 error = XFS_BUF_SET_PTR(hbp, 3637 bufaddr + BBTOB(split_hblks), 3638 BBTOB(hblks - split_hblks)); 3639 if (!error) 3640 error = xlog_bread(log, 0, 3641 wrapped_hblks, hbp); 3642 if (!error) 3643 error = XFS_BUF_SET_PTR(hbp, bufaddr, 3644 BBTOB(hblks)); 3645 if (error) 3646 goto bread_err2; 3647 if (!offset) 3648 offset = xlog_align(log, 0, 3649 wrapped_hblks, hbp); 3650 } 3651 rhead = (xlog_rec_header_t *)offset; 3652 error = xlog_valid_rec_header(log, rhead, 3653 split_hblks ? blk_no : 0); 3654 if (error) 3655 goto bread_err2; 3656 3657 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3658 blk_no += hblks; 3659 3660 /* Read in data for log record */ 3661 if (blk_no + bblks <= log->l_logBBsize) { 3662 error = xlog_bread(log, blk_no, bblks, dbp); 3663 if (error) 3664 goto bread_err2; 3665 offset = xlog_align(log, blk_no, bblks, dbp); 3666 } else { 3667 /* This log record is split across the 3668 * physical end of log */ 3669 offset = NULL; 3670 split_bblks = 0; 3671 if (blk_no != log->l_logBBsize) { 3672 /* some data is before the physical 3673 * end of log */ 3674 ASSERT(!wrapped_hblks); 3675 ASSERT(blk_no <= INT_MAX); 3676 split_bblks = 3677 log->l_logBBsize - (int)blk_no; 3678 ASSERT(split_bblks > 0); 3679 if ((error = xlog_bread(log, blk_no, 3680 split_bblks, dbp))) 3681 goto bread_err2; 3682 offset = xlog_align(log, blk_no, 3683 split_bblks, dbp); 3684 } 3685 /* 3686 * Note: this black magic still works with 3687 * large sector sizes (non-512) only because: 3688 * - we increased the buffer size originally 3689 * by 1 sector giving us enough extra space 3690 * for the second read; 3691 * - the log start is guaranteed to be sector 3692 * aligned; 3693 * - we read the log end (LR header start) 3694 * _first_, then the log start (LR header end) 3695 * - order is important. 3696 */ 3697 bufaddr = XFS_BUF_PTR(dbp); 3698 error = XFS_BUF_SET_PTR(dbp, 3699 bufaddr + BBTOB(split_bblks), 3700 BBTOB(bblks - split_bblks)); 3701 if (!error) 3702 error = xlog_bread(log, wrapped_hblks, 3703 bblks - split_bblks, 3704 dbp); 3705 if (!error) 3706 error = XFS_BUF_SET_PTR(dbp, bufaddr, 3707 h_size); 3708 if (error) 3709 goto bread_err2; 3710 if (!offset) 3711 offset = xlog_align(log, wrapped_hblks, 3712 bblks - split_bblks, dbp); 3713 } 3714 xlog_unpack_data(rhead, offset, log); 3715 if ((error = xlog_recover_process_data(log, rhash, 3716 rhead, offset, pass))) 3717 goto bread_err2; 3718 blk_no += bblks; 3719 } 3720 3721 ASSERT(blk_no >= log->l_logBBsize); 3722 blk_no -= log->l_logBBsize; 3723 3724 /* read first part of physical log */ 3725 while (blk_no < head_blk) { 3726 if ((error = xlog_bread(log, blk_no, hblks, hbp))) 3727 goto bread_err2; 3728 offset = xlog_align(log, blk_no, hblks, hbp); 3729 rhead = (xlog_rec_header_t *)offset; 3730 error = xlog_valid_rec_header(log, rhead, blk_no); 3731 if (error) 3732 goto bread_err2; 3733 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3734 if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp))) 3735 goto bread_err2; 3736 offset = xlog_align(log, blk_no+hblks, bblks, dbp); 3737 xlog_unpack_data(rhead, offset, log); 3738 if ((error = xlog_recover_process_data(log, rhash, 3739 rhead, offset, pass))) 3740 goto bread_err2; 3741 blk_no += bblks + hblks; 3742 } 3743 } 3744 3745 bread_err2: 3746 xlog_put_bp(dbp); 3747 bread_err1: 3748 xlog_put_bp(hbp); 3749 return error; 3750 } 3751 3752 /* 3753 * Do the recovery of the log. We actually do this in two phases. 3754 * The two passes are necessary in order to implement the function 3755 * of cancelling a record written into the log. The first pass 3756 * determines those things which have been cancelled, and the 3757 * second pass replays log items normally except for those which 3758 * have been cancelled. The handling of the replay and cancellations 3759 * takes place in the log item type specific routines. 3760 * 3761 * The table of items which have cancel records in the log is allocated 3762 * and freed at this level, since only here do we know when all of 3763 * the log recovery has been completed. 3764 */ 3765 STATIC int 3766 xlog_do_log_recovery( 3767 xlog_t *log, 3768 xfs_daddr_t head_blk, 3769 xfs_daddr_t tail_blk) 3770 { 3771 int error; 3772 3773 ASSERT(head_blk != tail_blk); 3774 3775 /* 3776 * First do a pass to find all of the cancelled buf log items. 3777 * Store them in the buf_cancel_table for use in the second pass. 3778 */ 3779 log->l_buf_cancel_table = 3780 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE * 3781 sizeof(xfs_buf_cancel_t*), 3782 KM_SLEEP); 3783 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3784 XLOG_RECOVER_PASS1); 3785 if (error != 0) { 3786 kmem_free(log->l_buf_cancel_table); 3787 log->l_buf_cancel_table = NULL; 3788 return error; 3789 } 3790 /* 3791 * Then do a second pass to actually recover the items in the log. 3792 * When it is complete free the table of buf cancel items. 3793 */ 3794 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3795 XLOG_RECOVER_PASS2); 3796 #ifdef DEBUG 3797 if (!error) { 3798 int i; 3799 3800 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3801 ASSERT(log->l_buf_cancel_table[i] == NULL); 3802 } 3803 #endif /* DEBUG */ 3804 3805 kmem_free(log->l_buf_cancel_table); 3806 log->l_buf_cancel_table = NULL; 3807 3808 return error; 3809 } 3810 3811 /* 3812 * Do the actual recovery 3813 */ 3814 STATIC int 3815 xlog_do_recover( 3816 xlog_t *log, 3817 xfs_daddr_t head_blk, 3818 xfs_daddr_t tail_blk) 3819 { 3820 int error; 3821 xfs_buf_t *bp; 3822 xfs_sb_t *sbp; 3823 3824 /* 3825 * First replay the images in the log. 3826 */ 3827 error = xlog_do_log_recovery(log, head_blk, tail_blk); 3828 if (error) { 3829 return error; 3830 } 3831 3832 XFS_bflush(log->l_mp->m_ddev_targp); 3833 3834 /* 3835 * If IO errors happened during recovery, bail out. 3836 */ 3837 if (XFS_FORCED_SHUTDOWN(log->l_mp)) { 3838 return (EIO); 3839 } 3840 3841 /* 3842 * We now update the tail_lsn since much of the recovery has completed 3843 * and there may be space available to use. If there were no extent 3844 * or iunlinks, we can free up the entire log and set the tail_lsn to 3845 * be the last_sync_lsn. This was set in xlog_find_tail to be the 3846 * lsn of the last known good LR on disk. If there are extent frees 3847 * or iunlinks they will have some entries in the AIL; so we look at 3848 * the AIL to determine how to set the tail_lsn. 3849 */ 3850 xlog_assign_tail_lsn(log->l_mp); 3851 3852 /* 3853 * Now that we've finished replaying all buffer and inode 3854 * updates, re-read in the superblock. 3855 */ 3856 bp = xfs_getsb(log->l_mp, 0); 3857 XFS_BUF_UNDONE(bp); 3858 ASSERT(!(XFS_BUF_ISWRITE(bp))); 3859 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp))); 3860 XFS_BUF_READ(bp); 3861 XFS_BUF_UNASYNC(bp); 3862 xfsbdstrat(log->l_mp, bp); 3863 error = xfs_iowait(bp); 3864 if (error) { 3865 xfs_ioerror_alert("xlog_do_recover", 3866 log->l_mp, bp, XFS_BUF_ADDR(bp)); 3867 ASSERT(0); 3868 xfs_buf_relse(bp); 3869 return error; 3870 } 3871 3872 /* Convert superblock from on-disk format */ 3873 sbp = &log->l_mp->m_sb; 3874 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 3875 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); 3876 ASSERT(xfs_sb_good_version(sbp)); 3877 xfs_buf_relse(bp); 3878 3879 /* We've re-read the superblock so re-initialize per-cpu counters */ 3880 xfs_icsb_reinit_counters(log->l_mp); 3881 3882 xlog_recover_check_summary(log); 3883 3884 /* Normal transactions can now occur */ 3885 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 3886 return 0; 3887 } 3888 3889 /* 3890 * Perform recovery and re-initialize some log variables in xlog_find_tail. 3891 * 3892 * Return error or zero. 3893 */ 3894 int 3895 xlog_recover( 3896 xlog_t *log) 3897 { 3898 xfs_daddr_t head_blk, tail_blk; 3899 int error; 3900 3901 /* find the tail of the log */ 3902 if ((error = xlog_find_tail(log, &head_blk, &tail_blk))) 3903 return error; 3904 3905 if (tail_blk != head_blk) { 3906 /* There used to be a comment here: 3907 * 3908 * disallow recovery on read-only mounts. note -- mount 3909 * checks for ENOSPC and turns it into an intelligent 3910 * error message. 3911 * ...but this is no longer true. Now, unless you specify 3912 * NORECOVERY (in which case this function would never be 3913 * called), we just go ahead and recover. We do this all 3914 * under the vfs layer, so we can get away with it unless 3915 * the device itself is read-only, in which case we fail. 3916 */ 3917 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 3918 return error; 3919 } 3920 3921 cmn_err(CE_NOTE, 3922 "Starting XFS recovery on filesystem: %s (logdev: %s)", 3923 log->l_mp->m_fsname, log->l_mp->m_logname ? 3924 log->l_mp->m_logname : "internal"); 3925 3926 error = xlog_do_recover(log, head_blk, tail_blk); 3927 log->l_flags |= XLOG_RECOVERY_NEEDED; 3928 } 3929 return error; 3930 } 3931 3932 /* 3933 * In the first part of recovery we replay inodes and buffers and build 3934 * up the list of extent free items which need to be processed. Here 3935 * we process the extent free items and clean up the on disk unlinked 3936 * inode lists. This is separated from the first part of recovery so 3937 * that the root and real-time bitmap inodes can be read in from disk in 3938 * between the two stages. This is necessary so that we can free space 3939 * in the real-time portion of the file system. 3940 */ 3941 int 3942 xlog_recover_finish( 3943 xlog_t *log) 3944 { 3945 /* 3946 * Now we're ready to do the transactions needed for the 3947 * rest of recovery. Start with completing all the extent 3948 * free intent records and then process the unlinked inode 3949 * lists. At this point, we essentially run in normal mode 3950 * except that we're still performing recovery actions 3951 * rather than accepting new requests. 3952 */ 3953 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 3954 int error; 3955 error = xlog_recover_process_efis(log); 3956 if (error) { 3957 cmn_err(CE_ALERT, 3958 "Failed to recover EFIs on filesystem: %s", 3959 log->l_mp->m_fsname); 3960 return error; 3961 } 3962 /* 3963 * Sync the log to get all the EFIs out of the AIL. 3964 * This isn't absolutely necessary, but it helps in 3965 * case the unlink transactions would have problems 3966 * pushing the EFIs out of the way. 3967 */ 3968 xfs_log_force(log->l_mp, (xfs_lsn_t)0, 3969 (XFS_LOG_FORCE | XFS_LOG_SYNC)); 3970 3971 xlog_recover_process_iunlinks(log); 3972 3973 xlog_recover_check_summary(log); 3974 3975 cmn_err(CE_NOTE, 3976 "Ending XFS recovery on filesystem: %s (logdev: %s)", 3977 log->l_mp->m_fsname, log->l_mp->m_logname ? 3978 log->l_mp->m_logname : "internal"); 3979 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 3980 } else { 3981 cmn_err(CE_DEBUG, 3982 "!Ending clean XFS mount for filesystem: %s\n", 3983 log->l_mp->m_fsname); 3984 } 3985 return 0; 3986 } 3987 3988 3989 #if defined(DEBUG) 3990 /* 3991 * Read all of the agf and agi counters and check that they 3992 * are consistent with the superblock counters. 3993 */ 3994 void 3995 xlog_recover_check_summary( 3996 xlog_t *log) 3997 { 3998 xfs_mount_t *mp; 3999 xfs_agf_t *agfp; 4000 xfs_agi_t *agip; 4001 xfs_buf_t *agfbp; 4002 xfs_buf_t *agibp; 4003 xfs_daddr_t agfdaddr; 4004 xfs_daddr_t agidaddr; 4005 xfs_buf_t *sbbp; 4006 #ifdef XFS_LOUD_RECOVERY 4007 xfs_sb_t *sbp; 4008 #endif 4009 xfs_agnumber_t agno; 4010 __uint64_t freeblks; 4011 __uint64_t itotal; 4012 __uint64_t ifree; 4013 4014 mp = log->l_mp; 4015 4016 freeblks = 0LL; 4017 itotal = 0LL; 4018 ifree = 0LL; 4019 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 4020 agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp)); 4021 agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr, 4022 XFS_FSS_TO_BB(mp, 1), 0); 4023 if (XFS_BUF_ISERROR(agfbp)) { 4024 xfs_ioerror_alert("xlog_recover_check_summary(agf)", 4025 mp, agfbp, agfdaddr); 4026 } 4027 agfp = XFS_BUF_TO_AGF(agfbp); 4028 ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum)); 4029 ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum))); 4030 ASSERT(be32_to_cpu(agfp->agf_seqno) == agno); 4031 4032 freeblks += be32_to_cpu(agfp->agf_freeblks) + 4033 be32_to_cpu(agfp->agf_flcount); 4034 xfs_buf_relse(agfbp); 4035 4036 agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); 4037 agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr, 4038 XFS_FSS_TO_BB(mp, 1), 0); 4039 if (XFS_BUF_ISERROR(agibp)) { 4040 xfs_ioerror_alert("xlog_recover_check_summary(agi)", 4041 mp, agibp, agidaddr); 4042 } 4043 agip = XFS_BUF_TO_AGI(agibp); 4044 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum)); 4045 ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum))); 4046 ASSERT(be32_to_cpu(agip->agi_seqno) == agno); 4047 4048 itotal += be32_to_cpu(agip->agi_count); 4049 ifree += be32_to_cpu(agip->agi_freecount); 4050 xfs_buf_relse(agibp); 4051 } 4052 4053 sbbp = xfs_getsb(mp, 0); 4054 #ifdef XFS_LOUD_RECOVERY 4055 sbp = &mp->m_sb; 4056 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp)); 4057 cmn_err(CE_NOTE, 4058 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu", 4059 sbp->sb_icount, itotal); 4060 cmn_err(CE_NOTE, 4061 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu", 4062 sbp->sb_ifree, ifree); 4063 cmn_err(CE_NOTE, 4064 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu", 4065 sbp->sb_fdblocks, freeblks); 4066 #if 0 4067 /* 4068 * This is turned off until I account for the allocation 4069 * btree blocks which live in free space. 4070 */ 4071 ASSERT(sbp->sb_icount == itotal); 4072 ASSERT(sbp->sb_ifree == ifree); 4073 ASSERT(sbp->sb_fdblocks == freeblks); 4074 #endif 4075 #endif 4076 xfs_buf_relse(sbbp); 4077 } 4078 #endif /* DEBUG */ 4079