1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_trans.h" 18 #include "xfs_log.h" 19 #include "xfs_log_priv.h" 20 #include "xfs_log_recover.h" 21 #include "xfs_trans_priv.h" 22 #include "xfs_alloc.h" 23 #include "xfs_ialloc.h" 24 #include "xfs_trace.h" 25 #include "xfs_icache.h" 26 #include "xfs_error.h" 27 #include "xfs_buf_item.h" 28 #include "xfs_ag.h" 29 #include "xfs_quota.h" 30 #include "xfs_reflink.h" 31 32 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) 33 34 STATIC int 35 xlog_find_zeroed( 36 struct xlog *, 37 xfs_daddr_t *); 38 STATIC int 39 xlog_clear_stale_blocks( 40 struct xlog *, 41 xfs_lsn_t); 42 STATIC int 43 xlog_do_recovery_pass( 44 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *); 45 46 /* 47 * Sector aligned buffer routines for buffer create/read/write/access 48 */ 49 50 /* 51 * Verify the log-relative block number and length in basic blocks are valid for 52 * an operation involving the given XFS log buffer. Returns true if the fields 53 * are valid, false otherwise. 54 */ 55 static inline bool 56 xlog_verify_bno( 57 struct xlog *log, 58 xfs_daddr_t blk_no, 59 int bbcount) 60 { 61 if (blk_no < 0 || blk_no >= log->l_logBBsize) 62 return false; 63 if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize) 64 return false; 65 return true; 66 } 67 68 /* 69 * Allocate a buffer to hold log data. The buffer needs to be able to map to 70 * a range of nbblks basic blocks at any valid offset within the log. 71 */ 72 static char * 73 xlog_alloc_buffer( 74 struct xlog *log, 75 int nbblks) 76 { 77 /* 78 * Pass log block 0 since we don't have an addr yet, buffer will be 79 * verified on read. 80 */ 81 if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) { 82 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 83 nbblks); 84 return NULL; 85 } 86 87 /* 88 * We do log I/O in units of log sectors (a power-of-2 multiple of the 89 * basic block size), so we round up the requested size to accommodate 90 * the basic blocks required for complete log sectors. 91 * 92 * In addition, the buffer may be used for a non-sector-aligned block 93 * offset, in which case an I/O of the requested size could extend 94 * beyond the end of the buffer. If the requested size is only 1 basic 95 * block it will never straddle a sector boundary, so this won't be an 96 * issue. Nor will this be a problem if the log I/O is done in basic 97 * blocks (sector size 1). But otherwise we extend the buffer by one 98 * extra log sector to ensure there's space to accommodate this 99 * possibility. 100 */ 101 if (nbblks > 1 && log->l_sectBBsize > 1) 102 nbblks += log->l_sectBBsize; 103 nbblks = round_up(nbblks, log->l_sectBBsize); 104 return kvzalloc(BBTOB(nbblks), GFP_KERNEL | __GFP_RETRY_MAYFAIL); 105 } 106 107 /* 108 * Return the address of the start of the given block number's data 109 * in a log buffer. The buffer covers a log sector-aligned region. 110 */ 111 static inline unsigned int 112 xlog_align( 113 struct xlog *log, 114 xfs_daddr_t blk_no) 115 { 116 return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1)); 117 } 118 119 static int 120 xlog_do_io( 121 struct xlog *log, 122 xfs_daddr_t blk_no, 123 unsigned int nbblks, 124 char *data, 125 enum req_op op) 126 { 127 int error; 128 129 if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) { 130 xfs_warn(log->l_mp, 131 "Invalid log block/length (0x%llx, 0x%x) for buffer", 132 blk_no, nbblks); 133 return -EFSCORRUPTED; 134 } 135 136 blk_no = round_down(blk_no, log->l_sectBBsize); 137 nbblks = round_up(nbblks, log->l_sectBBsize); 138 ASSERT(nbblks > 0); 139 140 error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no, 141 BBTOB(nbblks), data, op); 142 if (error && !xlog_is_shutdown(log)) { 143 xfs_alert(log->l_mp, 144 "log recovery %s I/O error at daddr 0x%llx len %d error %d", 145 op == REQ_OP_WRITE ? "write" : "read", 146 blk_no, nbblks, error); 147 } 148 return error; 149 } 150 151 STATIC int 152 xlog_bread_noalign( 153 struct xlog *log, 154 xfs_daddr_t blk_no, 155 int nbblks, 156 char *data) 157 { 158 return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ); 159 } 160 161 STATIC int 162 xlog_bread( 163 struct xlog *log, 164 xfs_daddr_t blk_no, 165 int nbblks, 166 char *data, 167 char **offset) 168 { 169 int error; 170 171 error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ); 172 if (!error) 173 *offset = data + xlog_align(log, blk_no); 174 return error; 175 } 176 177 STATIC int 178 xlog_bwrite( 179 struct xlog *log, 180 xfs_daddr_t blk_no, 181 int nbblks, 182 char *data) 183 { 184 return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE); 185 } 186 187 #ifdef DEBUG 188 /* 189 * dump debug superblock and log record information 190 */ 191 STATIC void 192 xlog_header_check_dump( 193 xfs_mount_t *mp, 194 xlog_rec_header_t *head) 195 { 196 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d", 197 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 198 xfs_debug(mp, " log : uuid = %pU, fmt = %d", 199 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 200 } 201 #else 202 #define xlog_header_check_dump(mp, head) 203 #endif 204 205 /* 206 * check log record header for recovery 207 */ 208 STATIC int 209 xlog_header_check_recover( 210 xfs_mount_t *mp, 211 xlog_rec_header_t *head) 212 { 213 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 214 215 /* 216 * IRIX doesn't write the h_fmt field and leaves it zeroed 217 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 218 * a dirty log created in IRIX. 219 */ 220 if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) { 221 xfs_warn(mp, 222 "dirty log written in incompatible format - can't recover"); 223 xlog_header_check_dump(mp, head); 224 return -EFSCORRUPTED; 225 } 226 if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid, 227 &head->h_fs_uuid))) { 228 xfs_warn(mp, 229 "dirty log entry has mismatched uuid - can't recover"); 230 xlog_header_check_dump(mp, head); 231 return -EFSCORRUPTED; 232 } 233 return 0; 234 } 235 236 /* 237 * read the head block of the log and check the header 238 */ 239 STATIC int 240 xlog_header_check_mount( 241 xfs_mount_t *mp, 242 xlog_rec_header_t *head) 243 { 244 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 245 246 if (uuid_is_null(&head->h_fs_uuid)) { 247 /* 248 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 249 * h_fs_uuid is null, we assume this log was last mounted 250 * by IRIX and continue. 251 */ 252 xfs_warn(mp, "null uuid in log - IRIX style log"); 253 } else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid, 254 &head->h_fs_uuid))) { 255 xfs_warn(mp, "log has mismatched uuid - can't recover"); 256 xlog_header_check_dump(mp, head); 257 return -EFSCORRUPTED; 258 } 259 return 0; 260 } 261 262 /* 263 * This routine finds (to an approximation) the first block in the physical 264 * log which contains the given cycle. It uses a binary search algorithm. 265 * Note that the algorithm can not be perfect because the disk will not 266 * necessarily be perfect. 267 */ 268 STATIC int 269 xlog_find_cycle_start( 270 struct xlog *log, 271 char *buffer, 272 xfs_daddr_t first_blk, 273 xfs_daddr_t *last_blk, 274 uint cycle) 275 { 276 char *offset; 277 xfs_daddr_t mid_blk; 278 xfs_daddr_t end_blk; 279 uint mid_cycle; 280 int error; 281 282 end_blk = *last_blk; 283 mid_blk = BLK_AVG(first_blk, end_blk); 284 while (mid_blk != first_blk && mid_blk != end_blk) { 285 error = xlog_bread(log, mid_blk, 1, buffer, &offset); 286 if (error) 287 return error; 288 mid_cycle = xlog_get_cycle(offset); 289 if (mid_cycle == cycle) 290 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 291 else 292 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 293 mid_blk = BLK_AVG(first_blk, end_blk); 294 } 295 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 296 (mid_blk == end_blk && mid_blk-1 == first_blk)); 297 298 *last_blk = end_blk; 299 300 return 0; 301 } 302 303 /* 304 * Check that a range of blocks does not contain stop_on_cycle_no. 305 * Fill in *new_blk with the block offset where such a block is 306 * found, or with -1 (an invalid block number) if there is no such 307 * block in the range. The scan needs to occur from front to back 308 * and the pointer into the region must be updated since a later 309 * routine will need to perform another test. 310 */ 311 STATIC int 312 xlog_find_verify_cycle( 313 struct xlog *log, 314 xfs_daddr_t start_blk, 315 int nbblks, 316 uint stop_on_cycle_no, 317 xfs_daddr_t *new_blk) 318 { 319 xfs_daddr_t i, j; 320 uint cycle; 321 char *buffer; 322 xfs_daddr_t bufblks; 323 char *buf = NULL; 324 int error = 0; 325 326 /* 327 * Greedily allocate a buffer big enough to handle the full 328 * range of basic blocks we'll be examining. If that fails, 329 * try a smaller size. We need to be able to read at least 330 * a log sector, or we're out of luck. 331 */ 332 bufblks = roundup_pow_of_two(nbblks); 333 while (bufblks > log->l_logBBsize) 334 bufblks >>= 1; 335 while (!(buffer = xlog_alloc_buffer(log, bufblks))) { 336 bufblks >>= 1; 337 if (bufblks < log->l_sectBBsize) 338 return -ENOMEM; 339 } 340 341 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 342 int bcount; 343 344 bcount = min(bufblks, (start_blk + nbblks - i)); 345 346 error = xlog_bread(log, i, bcount, buffer, &buf); 347 if (error) 348 goto out; 349 350 for (j = 0; j < bcount; j++) { 351 cycle = xlog_get_cycle(buf); 352 if (cycle == stop_on_cycle_no) { 353 *new_blk = i+j; 354 goto out; 355 } 356 357 buf += BBSIZE; 358 } 359 } 360 361 *new_blk = -1; 362 363 out: 364 kmem_free(buffer); 365 return error; 366 } 367 368 static inline int 369 xlog_logrec_hblks(struct xlog *log, struct xlog_rec_header *rh) 370 { 371 if (xfs_has_logv2(log->l_mp)) { 372 int h_size = be32_to_cpu(rh->h_size); 373 374 if ((be32_to_cpu(rh->h_version) & XLOG_VERSION_2) && 375 h_size > XLOG_HEADER_CYCLE_SIZE) 376 return DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE); 377 } 378 return 1; 379 } 380 381 /* 382 * Potentially backup over partial log record write. 383 * 384 * In the typical case, last_blk is the number of the block directly after 385 * a good log record. Therefore, we subtract one to get the block number 386 * of the last block in the given buffer. extra_bblks contains the number 387 * of blocks we would have read on a previous read. This happens when the 388 * last log record is split over the end of the physical log. 389 * 390 * extra_bblks is the number of blocks potentially verified on a previous 391 * call to this routine. 392 */ 393 STATIC int 394 xlog_find_verify_log_record( 395 struct xlog *log, 396 xfs_daddr_t start_blk, 397 xfs_daddr_t *last_blk, 398 int extra_bblks) 399 { 400 xfs_daddr_t i; 401 char *buffer; 402 char *offset = NULL; 403 xlog_rec_header_t *head = NULL; 404 int error = 0; 405 int smallmem = 0; 406 int num_blks = *last_blk - start_blk; 407 int xhdrs; 408 409 ASSERT(start_blk != 0 || *last_blk != start_blk); 410 411 buffer = xlog_alloc_buffer(log, num_blks); 412 if (!buffer) { 413 buffer = xlog_alloc_buffer(log, 1); 414 if (!buffer) 415 return -ENOMEM; 416 smallmem = 1; 417 } else { 418 error = xlog_bread(log, start_blk, num_blks, buffer, &offset); 419 if (error) 420 goto out; 421 offset += ((num_blks - 1) << BBSHIFT); 422 } 423 424 for (i = (*last_blk) - 1; i >= 0; i--) { 425 if (i < start_blk) { 426 /* valid log record not found */ 427 xfs_warn(log->l_mp, 428 "Log inconsistent (didn't find previous header)"); 429 ASSERT(0); 430 error = -EFSCORRUPTED; 431 goto out; 432 } 433 434 if (smallmem) { 435 error = xlog_bread(log, i, 1, buffer, &offset); 436 if (error) 437 goto out; 438 } 439 440 head = (xlog_rec_header_t *)offset; 441 442 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 443 break; 444 445 if (!smallmem) 446 offset -= BBSIZE; 447 } 448 449 /* 450 * We hit the beginning of the physical log & still no header. Return 451 * to caller. If caller can handle a return of -1, then this routine 452 * will be called again for the end of the physical log. 453 */ 454 if (i == -1) { 455 error = 1; 456 goto out; 457 } 458 459 /* 460 * We have the final block of the good log (the first block 461 * of the log record _before_ the head. So we check the uuid. 462 */ 463 if ((error = xlog_header_check_mount(log->l_mp, head))) 464 goto out; 465 466 /* 467 * We may have found a log record header before we expected one. 468 * last_blk will be the 1st block # with a given cycle #. We may end 469 * up reading an entire log record. In this case, we don't want to 470 * reset last_blk. Only when last_blk points in the middle of a log 471 * record do we update last_blk. 472 */ 473 xhdrs = xlog_logrec_hblks(log, head); 474 475 if (*last_blk - i + extra_bblks != 476 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 477 *last_blk = i; 478 479 out: 480 kmem_free(buffer); 481 return error; 482 } 483 484 /* 485 * Head is defined to be the point of the log where the next log write 486 * could go. This means that incomplete LR writes at the end are 487 * eliminated when calculating the head. We aren't guaranteed that previous 488 * LR have complete transactions. We only know that a cycle number of 489 * current cycle number -1 won't be present in the log if we start writing 490 * from our current block number. 491 * 492 * last_blk contains the block number of the first block with a given 493 * cycle number. 494 * 495 * Return: zero if normal, non-zero if error. 496 */ 497 STATIC int 498 xlog_find_head( 499 struct xlog *log, 500 xfs_daddr_t *return_head_blk) 501 { 502 char *buffer; 503 char *offset; 504 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 505 int num_scan_bblks; 506 uint first_half_cycle, last_half_cycle; 507 uint stop_on_cycle; 508 int error, log_bbnum = log->l_logBBsize; 509 510 /* Is the end of the log device zeroed? */ 511 error = xlog_find_zeroed(log, &first_blk); 512 if (error < 0) { 513 xfs_warn(log->l_mp, "empty log check failed"); 514 return error; 515 } 516 if (error == 1) { 517 *return_head_blk = first_blk; 518 519 /* Is the whole lot zeroed? */ 520 if (!first_blk) { 521 /* Linux XFS shouldn't generate totally zeroed logs - 522 * mkfs etc write a dummy unmount record to a fresh 523 * log so we can store the uuid in there 524 */ 525 xfs_warn(log->l_mp, "totally zeroed log"); 526 } 527 528 return 0; 529 } 530 531 first_blk = 0; /* get cycle # of 1st block */ 532 buffer = xlog_alloc_buffer(log, 1); 533 if (!buffer) 534 return -ENOMEM; 535 536 error = xlog_bread(log, 0, 1, buffer, &offset); 537 if (error) 538 goto out_free_buffer; 539 540 first_half_cycle = xlog_get_cycle(offset); 541 542 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 543 error = xlog_bread(log, last_blk, 1, buffer, &offset); 544 if (error) 545 goto out_free_buffer; 546 547 last_half_cycle = xlog_get_cycle(offset); 548 ASSERT(last_half_cycle != 0); 549 550 /* 551 * If the 1st half cycle number is equal to the last half cycle number, 552 * then the entire log is stamped with the same cycle number. In this 553 * case, head_blk can't be set to zero (which makes sense). The below 554 * math doesn't work out properly with head_blk equal to zero. Instead, 555 * we set it to log_bbnum which is an invalid block number, but this 556 * value makes the math correct. If head_blk doesn't changed through 557 * all the tests below, *head_blk is set to zero at the very end rather 558 * than log_bbnum. In a sense, log_bbnum and zero are the same block 559 * in a circular file. 560 */ 561 if (first_half_cycle == last_half_cycle) { 562 /* 563 * In this case we believe that the entire log should have 564 * cycle number last_half_cycle. We need to scan backwards 565 * from the end verifying that there are no holes still 566 * containing last_half_cycle - 1. If we find such a hole, 567 * then the start of that hole will be the new head. The 568 * simple case looks like 569 * x | x ... | x - 1 | x 570 * Another case that fits this picture would be 571 * x | x + 1 | x ... | x 572 * In this case the head really is somewhere at the end of the 573 * log, as one of the latest writes at the beginning was 574 * incomplete. 575 * One more case is 576 * x | x + 1 | x ... | x - 1 | x 577 * This is really the combination of the above two cases, and 578 * the head has to end up at the start of the x-1 hole at the 579 * end of the log. 580 * 581 * In the 256k log case, we will read from the beginning to the 582 * end of the log and search for cycle numbers equal to x-1. 583 * We don't worry about the x+1 blocks that we encounter, 584 * because we know that they cannot be the head since the log 585 * started with x. 586 */ 587 head_blk = log_bbnum; 588 stop_on_cycle = last_half_cycle - 1; 589 } else { 590 /* 591 * In this case we want to find the first block with cycle 592 * number matching last_half_cycle. We expect the log to be 593 * some variation on 594 * x + 1 ... | x ... | x 595 * The first block with cycle number x (last_half_cycle) will 596 * be where the new head belongs. First we do a binary search 597 * for the first occurrence of last_half_cycle. The binary 598 * search may not be totally accurate, so then we scan back 599 * from there looking for occurrences of last_half_cycle before 600 * us. If that backwards scan wraps around the beginning of 601 * the log, then we look for occurrences of last_half_cycle - 1 602 * at the end of the log. The cases we're looking for look 603 * like 604 * v binary search stopped here 605 * x + 1 ... | x | x + 1 | x ... | x 606 * ^ but we want to locate this spot 607 * or 608 * <---------> less than scan distance 609 * x + 1 ... | x ... | x - 1 | x 610 * ^ we want to locate this spot 611 */ 612 stop_on_cycle = last_half_cycle; 613 error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk, 614 last_half_cycle); 615 if (error) 616 goto out_free_buffer; 617 } 618 619 /* 620 * Now validate the answer. Scan back some number of maximum possible 621 * blocks and make sure each one has the expected cycle number. The 622 * maximum is determined by the total possible amount of buffering 623 * in the in-core log. The following number can be made tighter if 624 * we actually look at the block size of the filesystem. 625 */ 626 num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log)); 627 if (head_blk >= num_scan_bblks) { 628 /* 629 * We are guaranteed that the entire check can be performed 630 * in one buffer. 631 */ 632 start_blk = head_blk - num_scan_bblks; 633 if ((error = xlog_find_verify_cycle(log, 634 start_blk, num_scan_bblks, 635 stop_on_cycle, &new_blk))) 636 goto out_free_buffer; 637 if (new_blk != -1) 638 head_blk = new_blk; 639 } else { /* need to read 2 parts of log */ 640 /* 641 * We are going to scan backwards in the log in two parts. 642 * First we scan the physical end of the log. In this part 643 * of the log, we are looking for blocks with cycle number 644 * last_half_cycle - 1. 645 * If we find one, then we know that the log starts there, as 646 * we've found a hole that didn't get written in going around 647 * the end of the physical log. The simple case for this is 648 * x + 1 ... | x ... | x - 1 | x 649 * <---------> less than scan distance 650 * If all of the blocks at the end of the log have cycle number 651 * last_half_cycle, then we check the blocks at the start of 652 * the log looking for occurrences of last_half_cycle. If we 653 * find one, then our current estimate for the location of the 654 * first occurrence of last_half_cycle is wrong and we move 655 * back to the hole we've found. This case looks like 656 * x + 1 ... | x | x + 1 | x ... 657 * ^ binary search stopped here 658 * Another case we need to handle that only occurs in 256k 659 * logs is 660 * x + 1 ... | x ... | x+1 | x ... 661 * ^ binary search stops here 662 * In a 256k log, the scan at the end of the log will see the 663 * x + 1 blocks. We need to skip past those since that is 664 * certainly not the head of the log. By searching for 665 * last_half_cycle-1 we accomplish that. 666 */ 667 ASSERT(head_blk <= INT_MAX && 668 (xfs_daddr_t) num_scan_bblks >= head_blk); 669 start_blk = log_bbnum - (num_scan_bblks - head_blk); 670 if ((error = xlog_find_verify_cycle(log, start_blk, 671 num_scan_bblks - (int)head_blk, 672 (stop_on_cycle - 1), &new_blk))) 673 goto out_free_buffer; 674 if (new_blk != -1) { 675 head_blk = new_blk; 676 goto validate_head; 677 } 678 679 /* 680 * Scan beginning of log now. The last part of the physical 681 * log is good. This scan needs to verify that it doesn't find 682 * the last_half_cycle. 683 */ 684 start_blk = 0; 685 ASSERT(head_blk <= INT_MAX); 686 if ((error = xlog_find_verify_cycle(log, 687 start_blk, (int)head_blk, 688 stop_on_cycle, &new_blk))) 689 goto out_free_buffer; 690 if (new_blk != -1) 691 head_blk = new_blk; 692 } 693 694 validate_head: 695 /* 696 * Now we need to make sure head_blk is not pointing to a block in 697 * the middle of a log record. 698 */ 699 num_scan_bblks = XLOG_REC_SHIFT(log); 700 if (head_blk >= num_scan_bblks) { 701 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 702 703 /* start ptr at last block ptr before head_blk */ 704 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 705 if (error == 1) 706 error = -EIO; 707 if (error) 708 goto out_free_buffer; 709 } else { 710 start_blk = 0; 711 ASSERT(head_blk <= INT_MAX); 712 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 713 if (error < 0) 714 goto out_free_buffer; 715 if (error == 1) { 716 /* We hit the beginning of the log during our search */ 717 start_blk = log_bbnum - (num_scan_bblks - head_blk); 718 new_blk = log_bbnum; 719 ASSERT(start_blk <= INT_MAX && 720 (xfs_daddr_t) log_bbnum-start_blk >= 0); 721 ASSERT(head_blk <= INT_MAX); 722 error = xlog_find_verify_log_record(log, start_blk, 723 &new_blk, (int)head_blk); 724 if (error == 1) 725 error = -EIO; 726 if (error) 727 goto out_free_buffer; 728 if (new_blk != log_bbnum) 729 head_blk = new_blk; 730 } else if (error) 731 goto out_free_buffer; 732 } 733 734 kmem_free(buffer); 735 if (head_blk == log_bbnum) 736 *return_head_blk = 0; 737 else 738 *return_head_blk = head_blk; 739 /* 740 * When returning here, we have a good block number. Bad block 741 * means that during a previous crash, we didn't have a clean break 742 * from cycle number N to cycle number N-1. In this case, we need 743 * to find the first block with cycle number N-1. 744 */ 745 return 0; 746 747 out_free_buffer: 748 kmem_free(buffer); 749 if (error) 750 xfs_warn(log->l_mp, "failed to find log head"); 751 return error; 752 } 753 754 /* 755 * Seek backwards in the log for log record headers. 756 * 757 * Given a starting log block, walk backwards until we find the provided number 758 * of records or hit the provided tail block. The return value is the number of 759 * records encountered or a negative error code. The log block and buffer 760 * pointer of the last record seen are returned in rblk and rhead respectively. 761 */ 762 STATIC int 763 xlog_rseek_logrec_hdr( 764 struct xlog *log, 765 xfs_daddr_t head_blk, 766 xfs_daddr_t tail_blk, 767 int count, 768 char *buffer, 769 xfs_daddr_t *rblk, 770 struct xlog_rec_header **rhead, 771 bool *wrapped) 772 { 773 int i; 774 int error; 775 int found = 0; 776 char *offset = NULL; 777 xfs_daddr_t end_blk; 778 779 *wrapped = false; 780 781 /* 782 * Walk backwards from the head block until we hit the tail or the first 783 * block in the log. 784 */ 785 end_blk = head_blk > tail_blk ? tail_blk : 0; 786 for (i = (int) head_blk - 1; i >= end_blk; i--) { 787 error = xlog_bread(log, i, 1, buffer, &offset); 788 if (error) 789 goto out_error; 790 791 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 792 *rblk = i; 793 *rhead = (struct xlog_rec_header *) offset; 794 if (++found == count) 795 break; 796 } 797 } 798 799 /* 800 * If we haven't hit the tail block or the log record header count, 801 * start looking again from the end of the physical log. Note that 802 * callers can pass head == tail if the tail is not yet known. 803 */ 804 if (tail_blk >= head_blk && found != count) { 805 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) { 806 error = xlog_bread(log, i, 1, buffer, &offset); 807 if (error) 808 goto out_error; 809 810 if (*(__be32 *)offset == 811 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 812 *wrapped = true; 813 *rblk = i; 814 *rhead = (struct xlog_rec_header *) offset; 815 if (++found == count) 816 break; 817 } 818 } 819 } 820 821 return found; 822 823 out_error: 824 return error; 825 } 826 827 /* 828 * Seek forward in the log for log record headers. 829 * 830 * Given head and tail blocks, walk forward from the tail block until we find 831 * the provided number of records or hit the head block. The return value is the 832 * number of records encountered or a negative error code. The log block and 833 * buffer pointer of the last record seen are returned in rblk and rhead 834 * respectively. 835 */ 836 STATIC int 837 xlog_seek_logrec_hdr( 838 struct xlog *log, 839 xfs_daddr_t head_blk, 840 xfs_daddr_t tail_blk, 841 int count, 842 char *buffer, 843 xfs_daddr_t *rblk, 844 struct xlog_rec_header **rhead, 845 bool *wrapped) 846 { 847 int i; 848 int error; 849 int found = 0; 850 char *offset = NULL; 851 xfs_daddr_t end_blk; 852 853 *wrapped = false; 854 855 /* 856 * Walk forward from the tail block until we hit the head or the last 857 * block in the log. 858 */ 859 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1; 860 for (i = (int) tail_blk; i <= end_blk; i++) { 861 error = xlog_bread(log, i, 1, buffer, &offset); 862 if (error) 863 goto out_error; 864 865 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 866 *rblk = i; 867 *rhead = (struct xlog_rec_header *) offset; 868 if (++found == count) 869 break; 870 } 871 } 872 873 /* 874 * If we haven't hit the head block or the log record header count, 875 * start looking again from the start of the physical log. 876 */ 877 if (tail_blk > head_blk && found != count) { 878 for (i = 0; i < (int) head_blk; i++) { 879 error = xlog_bread(log, i, 1, buffer, &offset); 880 if (error) 881 goto out_error; 882 883 if (*(__be32 *)offset == 884 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 885 *wrapped = true; 886 *rblk = i; 887 *rhead = (struct xlog_rec_header *) offset; 888 if (++found == count) 889 break; 890 } 891 } 892 } 893 894 return found; 895 896 out_error: 897 return error; 898 } 899 900 /* 901 * Calculate distance from head to tail (i.e., unused space in the log). 902 */ 903 static inline int 904 xlog_tail_distance( 905 struct xlog *log, 906 xfs_daddr_t head_blk, 907 xfs_daddr_t tail_blk) 908 { 909 if (head_blk < tail_blk) 910 return tail_blk - head_blk; 911 912 return tail_blk + (log->l_logBBsize - head_blk); 913 } 914 915 /* 916 * Verify the log tail. This is particularly important when torn or incomplete 917 * writes have been detected near the front of the log and the head has been 918 * walked back accordingly. 919 * 920 * We also have to handle the case where the tail was pinned and the head 921 * blocked behind the tail right before a crash. If the tail had been pushed 922 * immediately prior to the crash and the subsequent checkpoint was only 923 * partially written, it's possible it overwrote the last referenced tail in the 924 * log with garbage. This is not a coherency problem because the tail must have 925 * been pushed before it can be overwritten, but appears as log corruption to 926 * recovery because we have no way to know the tail was updated if the 927 * subsequent checkpoint didn't write successfully. 928 * 929 * Therefore, CRC check the log from tail to head. If a failure occurs and the 930 * offending record is within max iclog bufs from the head, walk the tail 931 * forward and retry until a valid tail is found or corruption is detected out 932 * of the range of a possible overwrite. 933 */ 934 STATIC int 935 xlog_verify_tail( 936 struct xlog *log, 937 xfs_daddr_t head_blk, 938 xfs_daddr_t *tail_blk, 939 int hsize) 940 { 941 struct xlog_rec_header *thead; 942 char *buffer; 943 xfs_daddr_t first_bad; 944 int error = 0; 945 bool wrapped; 946 xfs_daddr_t tmp_tail; 947 xfs_daddr_t orig_tail = *tail_blk; 948 949 buffer = xlog_alloc_buffer(log, 1); 950 if (!buffer) 951 return -ENOMEM; 952 953 /* 954 * Make sure the tail points to a record (returns positive count on 955 * success). 956 */ 957 error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer, 958 &tmp_tail, &thead, &wrapped); 959 if (error < 0) 960 goto out; 961 if (*tail_blk != tmp_tail) 962 *tail_blk = tmp_tail; 963 964 /* 965 * Run a CRC check from the tail to the head. We can't just check 966 * MAX_ICLOGS records past the tail because the tail may point to stale 967 * blocks cleared during the search for the head/tail. These blocks are 968 * overwritten with zero-length records and thus record count is not a 969 * reliable indicator of the iclog state before a crash. 970 */ 971 first_bad = 0; 972 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 973 XLOG_RECOVER_CRCPASS, &first_bad); 974 while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 975 int tail_distance; 976 977 /* 978 * Is corruption within range of the head? If so, retry from 979 * the next record. Otherwise return an error. 980 */ 981 tail_distance = xlog_tail_distance(log, head_blk, first_bad); 982 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize)) 983 break; 984 985 /* skip to the next record; returns positive count on success */ 986 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, 987 buffer, &tmp_tail, &thead, &wrapped); 988 if (error < 0) 989 goto out; 990 991 *tail_blk = tmp_tail; 992 first_bad = 0; 993 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 994 XLOG_RECOVER_CRCPASS, &first_bad); 995 } 996 997 if (!error && *tail_blk != orig_tail) 998 xfs_warn(log->l_mp, 999 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx", 1000 orig_tail, *tail_blk); 1001 out: 1002 kmem_free(buffer); 1003 return error; 1004 } 1005 1006 /* 1007 * Detect and trim torn writes from the head of the log. 1008 * 1009 * Storage without sector atomicity guarantees can result in torn writes in the 1010 * log in the event of a crash. Our only means to detect this scenario is via 1011 * CRC verification. While we can't always be certain that CRC verification 1012 * failure is due to a torn write vs. an unrelated corruption, we do know that 1013 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at 1014 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of 1015 * the log and treat failures in this range as torn writes as a matter of 1016 * policy. In the event of CRC failure, the head is walked back to the last good 1017 * record in the log and the tail is updated from that record and verified. 1018 */ 1019 STATIC int 1020 xlog_verify_head( 1021 struct xlog *log, 1022 xfs_daddr_t *head_blk, /* in/out: unverified head */ 1023 xfs_daddr_t *tail_blk, /* out: tail block */ 1024 char *buffer, 1025 xfs_daddr_t *rhead_blk, /* start blk of last record */ 1026 struct xlog_rec_header **rhead, /* ptr to last record */ 1027 bool *wrapped) /* last rec. wraps phys. log */ 1028 { 1029 struct xlog_rec_header *tmp_rhead; 1030 char *tmp_buffer; 1031 xfs_daddr_t first_bad; 1032 xfs_daddr_t tmp_rhead_blk; 1033 int found; 1034 int error; 1035 bool tmp_wrapped; 1036 1037 /* 1038 * Check the head of the log for torn writes. Search backwards from the 1039 * head until we hit the tail or the maximum number of log record I/Os 1040 * that could have been in flight at one time. Use a temporary buffer so 1041 * we don't trash the rhead/buffer pointers from the caller. 1042 */ 1043 tmp_buffer = xlog_alloc_buffer(log, 1); 1044 if (!tmp_buffer) 1045 return -ENOMEM; 1046 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk, 1047 XLOG_MAX_ICLOGS, tmp_buffer, 1048 &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped); 1049 kmem_free(tmp_buffer); 1050 if (error < 0) 1051 return error; 1052 1053 /* 1054 * Now run a CRC verification pass over the records starting at the 1055 * block found above to the current head. If a CRC failure occurs, the 1056 * log block of the first bad record is saved in first_bad. 1057 */ 1058 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk, 1059 XLOG_RECOVER_CRCPASS, &first_bad); 1060 if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 1061 /* 1062 * We've hit a potential torn write. Reset the error and warn 1063 * about it. 1064 */ 1065 error = 0; 1066 xfs_warn(log->l_mp, 1067 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.", 1068 first_bad, *head_blk); 1069 1070 /* 1071 * Get the header block and buffer pointer for the last good 1072 * record before the bad record. 1073 * 1074 * Note that xlog_find_tail() clears the blocks at the new head 1075 * (i.e., the records with invalid CRC) if the cycle number 1076 * matches the current cycle. 1077 */ 1078 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, 1079 buffer, rhead_blk, rhead, wrapped); 1080 if (found < 0) 1081 return found; 1082 if (found == 0) /* XXX: right thing to do here? */ 1083 return -EIO; 1084 1085 /* 1086 * Reset the head block to the starting block of the first bad 1087 * log record and set the tail block based on the last good 1088 * record. 1089 * 1090 * Bail out if the updated head/tail match as this indicates 1091 * possible corruption outside of the acceptable 1092 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair... 1093 */ 1094 *head_blk = first_bad; 1095 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn)); 1096 if (*head_blk == *tail_blk) { 1097 ASSERT(0); 1098 return 0; 1099 } 1100 } 1101 if (error) 1102 return error; 1103 1104 return xlog_verify_tail(log, *head_blk, tail_blk, 1105 be32_to_cpu((*rhead)->h_size)); 1106 } 1107 1108 /* 1109 * We need to make sure we handle log wrapping properly, so we can't use the 1110 * calculated logbno directly. Make sure it wraps to the correct bno inside the 1111 * log. 1112 * 1113 * The log is limited to 32 bit sizes, so we use the appropriate modulus 1114 * operation here and cast it back to a 64 bit daddr on return. 1115 */ 1116 static inline xfs_daddr_t 1117 xlog_wrap_logbno( 1118 struct xlog *log, 1119 xfs_daddr_t bno) 1120 { 1121 int mod; 1122 1123 div_s64_rem(bno, log->l_logBBsize, &mod); 1124 return mod; 1125 } 1126 1127 /* 1128 * Check whether the head of the log points to an unmount record. In other 1129 * words, determine whether the log is clean. If so, update the in-core state 1130 * appropriately. 1131 */ 1132 static int 1133 xlog_check_unmount_rec( 1134 struct xlog *log, 1135 xfs_daddr_t *head_blk, 1136 xfs_daddr_t *tail_blk, 1137 struct xlog_rec_header *rhead, 1138 xfs_daddr_t rhead_blk, 1139 char *buffer, 1140 bool *clean) 1141 { 1142 struct xlog_op_header *op_head; 1143 xfs_daddr_t umount_data_blk; 1144 xfs_daddr_t after_umount_blk; 1145 int hblks; 1146 int error; 1147 char *offset; 1148 1149 *clean = false; 1150 1151 /* 1152 * Look for unmount record. If we find it, then we know there was a 1153 * clean unmount. Since 'i' could be the last block in the physical 1154 * log, we convert to a log block before comparing to the head_blk. 1155 * 1156 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks() 1157 * below. We won't want to clear the unmount record if there is one, so 1158 * we pass the lsn of the unmount record rather than the block after it. 1159 */ 1160 hblks = xlog_logrec_hblks(log, rhead); 1161 after_umount_blk = xlog_wrap_logbno(log, 1162 rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len))); 1163 1164 if (*head_blk == after_umount_blk && 1165 be32_to_cpu(rhead->h_num_logops) == 1) { 1166 umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks); 1167 error = xlog_bread(log, umount_data_blk, 1, buffer, &offset); 1168 if (error) 1169 return error; 1170 1171 op_head = (struct xlog_op_header *)offset; 1172 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 1173 /* 1174 * Set tail and last sync so that newly written log 1175 * records will point recovery to after the current 1176 * unmount record. 1177 */ 1178 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1179 log->l_curr_cycle, after_umount_blk); 1180 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1181 log->l_curr_cycle, after_umount_blk); 1182 *tail_blk = after_umount_blk; 1183 1184 *clean = true; 1185 } 1186 } 1187 1188 return 0; 1189 } 1190 1191 static void 1192 xlog_set_state( 1193 struct xlog *log, 1194 xfs_daddr_t head_blk, 1195 struct xlog_rec_header *rhead, 1196 xfs_daddr_t rhead_blk, 1197 bool bump_cycle) 1198 { 1199 /* 1200 * Reset log values according to the state of the log when we 1201 * crashed. In the case where head_blk == 0, we bump curr_cycle 1202 * one because the next write starts a new cycle rather than 1203 * continuing the cycle of the last good log record. At this 1204 * point we have guaranteed that all partial log records have been 1205 * accounted for. Therefore, we know that the last good log record 1206 * written was complete and ended exactly on the end boundary 1207 * of the physical log. 1208 */ 1209 log->l_prev_block = rhead_blk; 1210 log->l_curr_block = (int)head_blk; 1211 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 1212 if (bump_cycle) 1213 log->l_curr_cycle++; 1214 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); 1215 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); 1216 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, 1217 BBTOB(log->l_curr_block)); 1218 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, 1219 BBTOB(log->l_curr_block)); 1220 } 1221 1222 /* 1223 * Find the sync block number or the tail of the log. 1224 * 1225 * This will be the block number of the last record to have its 1226 * associated buffers synced to disk. Every log record header has 1227 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 1228 * to get a sync block number. The only concern is to figure out which 1229 * log record header to believe. 1230 * 1231 * The following algorithm uses the log record header with the largest 1232 * lsn. The entire log record does not need to be valid. We only care 1233 * that the header is valid. 1234 * 1235 * We could speed up search by using current head_blk buffer, but it is not 1236 * available. 1237 */ 1238 STATIC int 1239 xlog_find_tail( 1240 struct xlog *log, 1241 xfs_daddr_t *head_blk, 1242 xfs_daddr_t *tail_blk) 1243 { 1244 xlog_rec_header_t *rhead; 1245 char *offset = NULL; 1246 char *buffer; 1247 int error; 1248 xfs_daddr_t rhead_blk; 1249 xfs_lsn_t tail_lsn; 1250 bool wrapped = false; 1251 bool clean = false; 1252 1253 /* 1254 * Find previous log record 1255 */ 1256 if ((error = xlog_find_head(log, head_blk))) 1257 return error; 1258 ASSERT(*head_blk < INT_MAX); 1259 1260 buffer = xlog_alloc_buffer(log, 1); 1261 if (!buffer) 1262 return -ENOMEM; 1263 if (*head_blk == 0) { /* special case */ 1264 error = xlog_bread(log, 0, 1, buffer, &offset); 1265 if (error) 1266 goto done; 1267 1268 if (xlog_get_cycle(offset) == 0) { 1269 *tail_blk = 0; 1270 /* leave all other log inited values alone */ 1271 goto done; 1272 } 1273 } 1274 1275 /* 1276 * Search backwards through the log looking for the log record header 1277 * block. This wraps all the way back around to the head so something is 1278 * seriously wrong if we can't find it. 1279 */ 1280 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer, 1281 &rhead_blk, &rhead, &wrapped); 1282 if (error < 0) 1283 goto done; 1284 if (!error) { 1285 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); 1286 error = -EFSCORRUPTED; 1287 goto done; 1288 } 1289 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 1290 1291 /* 1292 * Set the log state based on the current head record. 1293 */ 1294 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped); 1295 tail_lsn = atomic64_read(&log->l_tail_lsn); 1296 1297 /* 1298 * Look for an unmount record at the head of the log. This sets the log 1299 * state to determine whether recovery is necessary. 1300 */ 1301 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead, 1302 rhead_blk, buffer, &clean); 1303 if (error) 1304 goto done; 1305 1306 /* 1307 * Verify the log head if the log is not clean (e.g., we have anything 1308 * but an unmount record at the head). This uses CRC verification to 1309 * detect and trim torn writes. If discovered, CRC failures are 1310 * considered torn writes and the log head is trimmed accordingly. 1311 * 1312 * Note that we can only run CRC verification when the log is dirty 1313 * because there's no guarantee that the log data behind an unmount 1314 * record is compatible with the current architecture. 1315 */ 1316 if (!clean) { 1317 xfs_daddr_t orig_head = *head_blk; 1318 1319 error = xlog_verify_head(log, head_blk, tail_blk, buffer, 1320 &rhead_blk, &rhead, &wrapped); 1321 if (error) 1322 goto done; 1323 1324 /* update in-core state again if the head changed */ 1325 if (*head_blk != orig_head) { 1326 xlog_set_state(log, *head_blk, rhead, rhead_blk, 1327 wrapped); 1328 tail_lsn = atomic64_read(&log->l_tail_lsn); 1329 error = xlog_check_unmount_rec(log, head_blk, tail_blk, 1330 rhead, rhead_blk, buffer, 1331 &clean); 1332 if (error) 1333 goto done; 1334 } 1335 } 1336 1337 /* 1338 * Note that the unmount was clean. If the unmount was not clean, we 1339 * need to know this to rebuild the superblock counters from the perag 1340 * headers if we have a filesystem using non-persistent counters. 1341 */ 1342 if (clean) 1343 set_bit(XFS_OPSTATE_CLEAN, &log->l_mp->m_opstate); 1344 1345 /* 1346 * Make sure that there are no blocks in front of the head 1347 * with the same cycle number as the head. This can happen 1348 * because we allow multiple outstanding log writes concurrently, 1349 * and the later writes might make it out before earlier ones. 1350 * 1351 * We use the lsn from before modifying it so that we'll never 1352 * overwrite the unmount record after a clean unmount. 1353 * 1354 * Do this only if we are going to recover the filesystem 1355 * 1356 * NOTE: This used to say "if (!readonly)" 1357 * However on Linux, we can & do recover a read-only filesystem. 1358 * We only skip recovery if NORECOVERY is specified on mount, 1359 * in which case we would not be here. 1360 * 1361 * But... if the -device- itself is readonly, just skip this. 1362 * We can't recover this device anyway, so it won't matter. 1363 */ 1364 if (!xfs_readonly_buftarg(log->l_targ)) 1365 error = xlog_clear_stale_blocks(log, tail_lsn); 1366 1367 done: 1368 kmem_free(buffer); 1369 1370 if (error) 1371 xfs_warn(log->l_mp, "failed to locate log tail"); 1372 return error; 1373 } 1374 1375 /* 1376 * Is the log zeroed at all? 1377 * 1378 * The last binary search should be changed to perform an X block read 1379 * once X becomes small enough. You can then search linearly through 1380 * the X blocks. This will cut down on the number of reads we need to do. 1381 * 1382 * If the log is partially zeroed, this routine will pass back the blkno 1383 * of the first block with cycle number 0. It won't have a complete LR 1384 * preceding it. 1385 * 1386 * Return: 1387 * 0 => the log is completely written to 1388 * 1 => use *blk_no as the first block of the log 1389 * <0 => error has occurred 1390 */ 1391 STATIC int 1392 xlog_find_zeroed( 1393 struct xlog *log, 1394 xfs_daddr_t *blk_no) 1395 { 1396 char *buffer; 1397 char *offset; 1398 uint first_cycle, last_cycle; 1399 xfs_daddr_t new_blk, last_blk, start_blk; 1400 xfs_daddr_t num_scan_bblks; 1401 int error, log_bbnum = log->l_logBBsize; 1402 1403 *blk_no = 0; 1404 1405 /* check totally zeroed log */ 1406 buffer = xlog_alloc_buffer(log, 1); 1407 if (!buffer) 1408 return -ENOMEM; 1409 error = xlog_bread(log, 0, 1, buffer, &offset); 1410 if (error) 1411 goto out_free_buffer; 1412 1413 first_cycle = xlog_get_cycle(offset); 1414 if (first_cycle == 0) { /* completely zeroed log */ 1415 *blk_no = 0; 1416 kmem_free(buffer); 1417 return 1; 1418 } 1419 1420 /* check partially zeroed log */ 1421 error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset); 1422 if (error) 1423 goto out_free_buffer; 1424 1425 last_cycle = xlog_get_cycle(offset); 1426 if (last_cycle != 0) { /* log completely written to */ 1427 kmem_free(buffer); 1428 return 0; 1429 } 1430 1431 /* we have a partially zeroed log */ 1432 last_blk = log_bbnum-1; 1433 error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0); 1434 if (error) 1435 goto out_free_buffer; 1436 1437 /* 1438 * Validate the answer. Because there is no way to guarantee that 1439 * the entire log is made up of log records which are the same size, 1440 * we scan over the defined maximum blocks. At this point, the maximum 1441 * is not chosen to mean anything special. XXXmiken 1442 */ 1443 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1444 ASSERT(num_scan_bblks <= INT_MAX); 1445 1446 if (last_blk < num_scan_bblks) 1447 num_scan_bblks = last_blk; 1448 start_blk = last_blk - num_scan_bblks; 1449 1450 /* 1451 * We search for any instances of cycle number 0 that occur before 1452 * our current estimate of the head. What we're trying to detect is 1453 * 1 ... | 0 | 1 | 0... 1454 * ^ binary search ends here 1455 */ 1456 if ((error = xlog_find_verify_cycle(log, start_blk, 1457 (int)num_scan_bblks, 0, &new_blk))) 1458 goto out_free_buffer; 1459 if (new_blk != -1) 1460 last_blk = new_blk; 1461 1462 /* 1463 * Potentially backup over partial log record write. We don't need 1464 * to search the end of the log because we know it is zero. 1465 */ 1466 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0); 1467 if (error == 1) 1468 error = -EIO; 1469 if (error) 1470 goto out_free_buffer; 1471 1472 *blk_no = last_blk; 1473 out_free_buffer: 1474 kmem_free(buffer); 1475 if (error) 1476 return error; 1477 return 1; 1478 } 1479 1480 /* 1481 * These are simple subroutines used by xlog_clear_stale_blocks() below 1482 * to initialize a buffer full of empty log record headers and write 1483 * them into the log. 1484 */ 1485 STATIC void 1486 xlog_add_record( 1487 struct xlog *log, 1488 char *buf, 1489 int cycle, 1490 int block, 1491 int tail_cycle, 1492 int tail_block) 1493 { 1494 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1495 1496 memset(buf, 0, BBSIZE); 1497 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1498 recp->h_cycle = cpu_to_be32(cycle); 1499 recp->h_version = cpu_to_be32( 1500 xfs_has_logv2(log->l_mp) ? 2 : 1); 1501 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1502 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1503 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1504 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1505 } 1506 1507 STATIC int 1508 xlog_write_log_records( 1509 struct xlog *log, 1510 int cycle, 1511 int start_block, 1512 int blocks, 1513 int tail_cycle, 1514 int tail_block) 1515 { 1516 char *offset; 1517 char *buffer; 1518 int balign, ealign; 1519 int sectbb = log->l_sectBBsize; 1520 int end_block = start_block + blocks; 1521 int bufblks; 1522 int error = 0; 1523 int i, j = 0; 1524 1525 /* 1526 * Greedily allocate a buffer big enough to handle the full 1527 * range of basic blocks to be written. If that fails, try 1528 * a smaller size. We need to be able to write at least a 1529 * log sector, or we're out of luck. 1530 */ 1531 bufblks = roundup_pow_of_two(blocks); 1532 while (bufblks > log->l_logBBsize) 1533 bufblks >>= 1; 1534 while (!(buffer = xlog_alloc_buffer(log, bufblks))) { 1535 bufblks >>= 1; 1536 if (bufblks < sectbb) 1537 return -ENOMEM; 1538 } 1539 1540 /* We may need to do a read at the start to fill in part of 1541 * the buffer in the starting sector not covered by the first 1542 * write below. 1543 */ 1544 balign = round_down(start_block, sectbb); 1545 if (balign != start_block) { 1546 error = xlog_bread_noalign(log, start_block, 1, buffer); 1547 if (error) 1548 goto out_free_buffer; 1549 1550 j = start_block - balign; 1551 } 1552 1553 for (i = start_block; i < end_block; i += bufblks) { 1554 int bcount, endcount; 1555 1556 bcount = min(bufblks, end_block - start_block); 1557 endcount = bcount - j; 1558 1559 /* We may need to do a read at the end to fill in part of 1560 * the buffer in the final sector not covered by the write. 1561 * If this is the same sector as the above read, skip it. 1562 */ 1563 ealign = round_down(end_block, sectbb); 1564 if (j == 0 && (start_block + endcount > ealign)) { 1565 error = xlog_bread_noalign(log, ealign, sectbb, 1566 buffer + BBTOB(ealign - start_block)); 1567 if (error) 1568 break; 1569 1570 } 1571 1572 offset = buffer + xlog_align(log, start_block); 1573 for (; j < endcount; j++) { 1574 xlog_add_record(log, offset, cycle, i+j, 1575 tail_cycle, tail_block); 1576 offset += BBSIZE; 1577 } 1578 error = xlog_bwrite(log, start_block, endcount, buffer); 1579 if (error) 1580 break; 1581 start_block += endcount; 1582 j = 0; 1583 } 1584 1585 out_free_buffer: 1586 kmem_free(buffer); 1587 return error; 1588 } 1589 1590 /* 1591 * This routine is called to blow away any incomplete log writes out 1592 * in front of the log head. We do this so that we won't become confused 1593 * if we come up, write only a little bit more, and then crash again. 1594 * If we leave the partial log records out there, this situation could 1595 * cause us to think those partial writes are valid blocks since they 1596 * have the current cycle number. We get rid of them by overwriting them 1597 * with empty log records with the old cycle number rather than the 1598 * current one. 1599 * 1600 * The tail lsn is passed in rather than taken from 1601 * the log so that we will not write over the unmount record after a 1602 * clean unmount in a 512 block log. Doing so would leave the log without 1603 * any valid log records in it until a new one was written. If we crashed 1604 * during that time we would not be able to recover. 1605 */ 1606 STATIC int 1607 xlog_clear_stale_blocks( 1608 struct xlog *log, 1609 xfs_lsn_t tail_lsn) 1610 { 1611 int tail_cycle, head_cycle; 1612 int tail_block, head_block; 1613 int tail_distance, max_distance; 1614 int distance; 1615 int error; 1616 1617 tail_cycle = CYCLE_LSN(tail_lsn); 1618 tail_block = BLOCK_LSN(tail_lsn); 1619 head_cycle = log->l_curr_cycle; 1620 head_block = log->l_curr_block; 1621 1622 /* 1623 * Figure out the distance between the new head of the log 1624 * and the tail. We want to write over any blocks beyond the 1625 * head that we may have written just before the crash, but 1626 * we don't want to overwrite the tail of the log. 1627 */ 1628 if (head_cycle == tail_cycle) { 1629 /* 1630 * The tail is behind the head in the physical log, 1631 * so the distance from the head to the tail is the 1632 * distance from the head to the end of the log plus 1633 * the distance from the beginning of the log to the 1634 * tail. 1635 */ 1636 if (XFS_IS_CORRUPT(log->l_mp, 1637 head_block < tail_block || 1638 head_block >= log->l_logBBsize)) 1639 return -EFSCORRUPTED; 1640 tail_distance = tail_block + (log->l_logBBsize - head_block); 1641 } else { 1642 /* 1643 * The head is behind the tail in the physical log, 1644 * so the distance from the head to the tail is just 1645 * the tail block minus the head block. 1646 */ 1647 if (XFS_IS_CORRUPT(log->l_mp, 1648 head_block >= tail_block || 1649 head_cycle != tail_cycle + 1)) 1650 return -EFSCORRUPTED; 1651 tail_distance = tail_block - head_block; 1652 } 1653 1654 /* 1655 * If the head is right up against the tail, we can't clear 1656 * anything. 1657 */ 1658 if (tail_distance <= 0) { 1659 ASSERT(tail_distance == 0); 1660 return 0; 1661 } 1662 1663 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1664 /* 1665 * Take the smaller of the maximum amount of outstanding I/O 1666 * we could have and the distance to the tail to clear out. 1667 * We take the smaller so that we don't overwrite the tail and 1668 * we don't waste all day writing from the head to the tail 1669 * for no reason. 1670 */ 1671 max_distance = min(max_distance, tail_distance); 1672 1673 if ((head_block + max_distance) <= log->l_logBBsize) { 1674 /* 1675 * We can stomp all the blocks we need to without 1676 * wrapping around the end of the log. Just do it 1677 * in a single write. Use the cycle number of the 1678 * current cycle minus one so that the log will look like: 1679 * n ... | n - 1 ... 1680 */ 1681 error = xlog_write_log_records(log, (head_cycle - 1), 1682 head_block, max_distance, tail_cycle, 1683 tail_block); 1684 if (error) 1685 return error; 1686 } else { 1687 /* 1688 * We need to wrap around the end of the physical log in 1689 * order to clear all the blocks. Do it in two separate 1690 * I/Os. The first write should be from the head to the 1691 * end of the physical log, and it should use the current 1692 * cycle number minus one just like above. 1693 */ 1694 distance = log->l_logBBsize - head_block; 1695 error = xlog_write_log_records(log, (head_cycle - 1), 1696 head_block, distance, tail_cycle, 1697 tail_block); 1698 1699 if (error) 1700 return error; 1701 1702 /* 1703 * Now write the blocks at the start of the physical log. 1704 * This writes the remainder of the blocks we want to clear. 1705 * It uses the current cycle number since we're now on the 1706 * same cycle as the head so that we get: 1707 * n ... n ... | n - 1 ... 1708 * ^^^^^ blocks we're writing 1709 */ 1710 distance = max_distance - (log->l_logBBsize - head_block); 1711 error = xlog_write_log_records(log, head_cycle, 0, distance, 1712 tail_cycle, tail_block); 1713 if (error) 1714 return error; 1715 } 1716 1717 return 0; 1718 } 1719 1720 /* 1721 * Release the recovered intent item in the AIL that matches the given intent 1722 * type and intent id. 1723 */ 1724 void 1725 xlog_recover_release_intent( 1726 struct xlog *log, 1727 unsigned short intent_type, 1728 uint64_t intent_id) 1729 { 1730 struct xfs_defer_pending *dfp, *n; 1731 1732 list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) { 1733 struct xfs_log_item *lip = dfp->dfp_intent; 1734 1735 if (lip->li_type != intent_type) 1736 continue; 1737 if (!lip->li_ops->iop_match(lip, intent_id)) 1738 continue; 1739 1740 ASSERT(xlog_item_is_intent(lip)); 1741 1742 xfs_defer_cancel_recovery(log->l_mp, dfp); 1743 } 1744 } 1745 1746 int 1747 xlog_recover_iget( 1748 struct xfs_mount *mp, 1749 xfs_ino_t ino, 1750 struct xfs_inode **ipp) 1751 { 1752 int error; 1753 1754 error = xfs_iget(mp, NULL, ino, 0, 0, ipp); 1755 if (error) 1756 return error; 1757 1758 error = xfs_qm_dqattach(*ipp); 1759 if (error) { 1760 xfs_irele(*ipp); 1761 return error; 1762 } 1763 1764 if (VFS_I(*ipp)->i_nlink == 0) 1765 xfs_iflags_set(*ipp, XFS_IRECOVERY); 1766 1767 return 0; 1768 } 1769 1770 /****************************************************************************** 1771 * 1772 * Log recover routines 1773 * 1774 ****************************************************************************** 1775 */ 1776 static const struct xlog_recover_item_ops *xlog_recover_item_ops[] = { 1777 &xlog_buf_item_ops, 1778 &xlog_inode_item_ops, 1779 &xlog_dquot_item_ops, 1780 &xlog_quotaoff_item_ops, 1781 &xlog_icreate_item_ops, 1782 &xlog_efi_item_ops, 1783 &xlog_efd_item_ops, 1784 &xlog_rui_item_ops, 1785 &xlog_rud_item_ops, 1786 &xlog_cui_item_ops, 1787 &xlog_cud_item_ops, 1788 &xlog_bui_item_ops, 1789 &xlog_bud_item_ops, 1790 &xlog_attri_item_ops, 1791 &xlog_attrd_item_ops, 1792 }; 1793 1794 static const struct xlog_recover_item_ops * 1795 xlog_find_item_ops( 1796 struct xlog_recover_item *item) 1797 { 1798 unsigned int i; 1799 1800 for (i = 0; i < ARRAY_SIZE(xlog_recover_item_ops); i++) 1801 if (ITEM_TYPE(item) == xlog_recover_item_ops[i]->item_type) 1802 return xlog_recover_item_ops[i]; 1803 1804 return NULL; 1805 } 1806 1807 /* 1808 * Sort the log items in the transaction. 1809 * 1810 * The ordering constraints are defined by the inode allocation and unlink 1811 * behaviour. The rules are: 1812 * 1813 * 1. Every item is only logged once in a given transaction. Hence it 1814 * represents the last logged state of the item. Hence ordering is 1815 * dependent on the order in which operations need to be performed so 1816 * required initial conditions are always met. 1817 * 1818 * 2. Cancelled buffers are recorded in pass 1 in a separate table and 1819 * there's nothing to replay from them so we can simply cull them 1820 * from the transaction. However, we can't do that until after we've 1821 * replayed all the other items because they may be dependent on the 1822 * cancelled buffer and replaying the cancelled buffer can remove it 1823 * form the cancelled buffer table. Hence they have tobe done last. 1824 * 1825 * 3. Inode allocation buffers must be replayed before inode items that 1826 * read the buffer and replay changes into it. For filesystems using the 1827 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get 1828 * treated the same as inode allocation buffers as they create and 1829 * initialise the buffers directly. 1830 * 1831 * 4. Inode unlink buffers must be replayed after inode items are replayed. 1832 * This ensures that inodes are completely flushed to the inode buffer 1833 * in a "free" state before we remove the unlinked inode list pointer. 1834 * 1835 * Hence the ordering needs to be inode allocation buffers first, inode items 1836 * second, inode unlink buffers third and cancelled buffers last. 1837 * 1838 * But there's a problem with that - we can't tell an inode allocation buffer 1839 * apart from a regular buffer, so we can't separate them. We can, however, 1840 * tell an inode unlink buffer from the others, and so we can separate them out 1841 * from all the other buffers and move them to last. 1842 * 1843 * Hence, 4 lists, in order from head to tail: 1844 * - buffer_list for all buffers except cancelled/inode unlink buffers 1845 * - item_list for all non-buffer items 1846 * - inode_buffer_list for inode unlink buffers 1847 * - cancel_list for the cancelled buffers 1848 * 1849 * Note that we add objects to the tail of the lists so that first-to-last 1850 * ordering is preserved within the lists. Adding objects to the head of the 1851 * list means when we traverse from the head we walk them in last-to-first 1852 * order. For cancelled buffers and inode unlink buffers this doesn't matter, 1853 * but for all other items there may be specific ordering that we need to 1854 * preserve. 1855 */ 1856 STATIC int 1857 xlog_recover_reorder_trans( 1858 struct xlog *log, 1859 struct xlog_recover *trans, 1860 int pass) 1861 { 1862 struct xlog_recover_item *item, *n; 1863 int error = 0; 1864 LIST_HEAD(sort_list); 1865 LIST_HEAD(cancel_list); 1866 LIST_HEAD(buffer_list); 1867 LIST_HEAD(inode_buffer_list); 1868 LIST_HEAD(item_list); 1869 1870 list_splice_init(&trans->r_itemq, &sort_list); 1871 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1872 enum xlog_recover_reorder fate = XLOG_REORDER_ITEM_LIST; 1873 1874 item->ri_ops = xlog_find_item_ops(item); 1875 if (!item->ri_ops) { 1876 xfs_warn(log->l_mp, 1877 "%s: unrecognized type of log operation (%d)", 1878 __func__, ITEM_TYPE(item)); 1879 ASSERT(0); 1880 /* 1881 * return the remaining items back to the transaction 1882 * item list so they can be freed in caller. 1883 */ 1884 if (!list_empty(&sort_list)) 1885 list_splice_init(&sort_list, &trans->r_itemq); 1886 error = -EFSCORRUPTED; 1887 break; 1888 } 1889 1890 if (item->ri_ops->reorder) 1891 fate = item->ri_ops->reorder(item); 1892 1893 switch (fate) { 1894 case XLOG_REORDER_BUFFER_LIST: 1895 list_move_tail(&item->ri_list, &buffer_list); 1896 break; 1897 case XLOG_REORDER_CANCEL_LIST: 1898 trace_xfs_log_recover_item_reorder_head(log, 1899 trans, item, pass); 1900 list_move(&item->ri_list, &cancel_list); 1901 break; 1902 case XLOG_REORDER_INODE_BUFFER_LIST: 1903 list_move(&item->ri_list, &inode_buffer_list); 1904 break; 1905 case XLOG_REORDER_ITEM_LIST: 1906 trace_xfs_log_recover_item_reorder_tail(log, 1907 trans, item, pass); 1908 list_move_tail(&item->ri_list, &item_list); 1909 break; 1910 } 1911 } 1912 1913 ASSERT(list_empty(&sort_list)); 1914 if (!list_empty(&buffer_list)) 1915 list_splice(&buffer_list, &trans->r_itemq); 1916 if (!list_empty(&item_list)) 1917 list_splice_tail(&item_list, &trans->r_itemq); 1918 if (!list_empty(&inode_buffer_list)) 1919 list_splice_tail(&inode_buffer_list, &trans->r_itemq); 1920 if (!list_empty(&cancel_list)) 1921 list_splice_tail(&cancel_list, &trans->r_itemq); 1922 return error; 1923 } 1924 1925 void 1926 xlog_buf_readahead( 1927 struct xlog *log, 1928 xfs_daddr_t blkno, 1929 uint len, 1930 const struct xfs_buf_ops *ops) 1931 { 1932 if (!xlog_is_buffer_cancelled(log, blkno, len)) 1933 xfs_buf_readahead(log->l_mp->m_ddev_targp, blkno, len, ops); 1934 } 1935 1936 /* 1937 * Create a deferred work structure for resuming and tracking the progress of a 1938 * log intent item that was found during recovery. 1939 */ 1940 void 1941 xlog_recover_intent_item( 1942 struct xlog *log, 1943 struct xfs_log_item *lip, 1944 xfs_lsn_t lsn, 1945 unsigned int dfp_type) 1946 { 1947 ASSERT(xlog_item_is_intent(lip)); 1948 1949 xfs_defer_start_recovery(lip, dfp_type, &log->r_dfops); 1950 1951 /* 1952 * Insert the intent into the AIL directly and drop one reference so 1953 * that finishing or canceling the work will drop the other. 1954 */ 1955 xfs_trans_ail_insert(log->l_ailp, lip, lsn); 1956 lip->li_ops->iop_unpin(lip, 0); 1957 } 1958 1959 STATIC int 1960 xlog_recover_items_pass2( 1961 struct xlog *log, 1962 struct xlog_recover *trans, 1963 struct list_head *buffer_list, 1964 struct list_head *item_list) 1965 { 1966 struct xlog_recover_item *item; 1967 int error = 0; 1968 1969 list_for_each_entry(item, item_list, ri_list) { 1970 trace_xfs_log_recover_item_recover(log, trans, item, 1971 XLOG_RECOVER_PASS2); 1972 1973 if (item->ri_ops->commit_pass2) 1974 error = item->ri_ops->commit_pass2(log, buffer_list, 1975 item, trans->r_lsn); 1976 if (error) 1977 return error; 1978 } 1979 1980 return error; 1981 } 1982 1983 /* 1984 * Perform the transaction. 1985 * 1986 * If the transaction modifies a buffer or inode, do it now. Otherwise, 1987 * EFIs and EFDs get queued up by adding entries into the AIL for them. 1988 */ 1989 STATIC int 1990 xlog_recover_commit_trans( 1991 struct xlog *log, 1992 struct xlog_recover *trans, 1993 int pass, 1994 struct list_head *buffer_list) 1995 { 1996 int error = 0; 1997 int items_queued = 0; 1998 struct xlog_recover_item *item; 1999 struct xlog_recover_item *next; 2000 LIST_HEAD (ra_list); 2001 LIST_HEAD (done_list); 2002 2003 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100 2004 2005 hlist_del_init(&trans->r_list); 2006 2007 error = xlog_recover_reorder_trans(log, trans, pass); 2008 if (error) 2009 return error; 2010 2011 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) { 2012 trace_xfs_log_recover_item_recover(log, trans, item, pass); 2013 2014 switch (pass) { 2015 case XLOG_RECOVER_PASS1: 2016 if (item->ri_ops->commit_pass1) 2017 error = item->ri_ops->commit_pass1(log, item); 2018 break; 2019 case XLOG_RECOVER_PASS2: 2020 if (item->ri_ops->ra_pass2) 2021 item->ri_ops->ra_pass2(log, item); 2022 list_move_tail(&item->ri_list, &ra_list); 2023 items_queued++; 2024 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) { 2025 error = xlog_recover_items_pass2(log, trans, 2026 buffer_list, &ra_list); 2027 list_splice_tail_init(&ra_list, &done_list); 2028 items_queued = 0; 2029 } 2030 2031 break; 2032 default: 2033 ASSERT(0); 2034 } 2035 2036 if (error) 2037 goto out; 2038 } 2039 2040 out: 2041 if (!list_empty(&ra_list)) { 2042 if (!error) 2043 error = xlog_recover_items_pass2(log, trans, 2044 buffer_list, &ra_list); 2045 list_splice_tail_init(&ra_list, &done_list); 2046 } 2047 2048 if (!list_empty(&done_list)) 2049 list_splice_init(&done_list, &trans->r_itemq); 2050 2051 return error; 2052 } 2053 2054 STATIC void 2055 xlog_recover_add_item( 2056 struct list_head *head) 2057 { 2058 struct xlog_recover_item *item; 2059 2060 item = kmem_zalloc(sizeof(struct xlog_recover_item), 0); 2061 INIT_LIST_HEAD(&item->ri_list); 2062 list_add_tail(&item->ri_list, head); 2063 } 2064 2065 STATIC int 2066 xlog_recover_add_to_cont_trans( 2067 struct xlog *log, 2068 struct xlog_recover *trans, 2069 char *dp, 2070 int len) 2071 { 2072 struct xlog_recover_item *item; 2073 char *ptr, *old_ptr; 2074 int old_len; 2075 2076 /* 2077 * If the transaction is empty, the header was split across this and the 2078 * previous record. Copy the rest of the header. 2079 */ 2080 if (list_empty(&trans->r_itemq)) { 2081 ASSERT(len <= sizeof(struct xfs_trans_header)); 2082 if (len > sizeof(struct xfs_trans_header)) { 2083 xfs_warn(log->l_mp, "%s: bad header length", __func__); 2084 return -EFSCORRUPTED; 2085 } 2086 2087 xlog_recover_add_item(&trans->r_itemq); 2088 ptr = (char *)&trans->r_theader + 2089 sizeof(struct xfs_trans_header) - len; 2090 memcpy(ptr, dp, len); 2091 return 0; 2092 } 2093 2094 /* take the tail entry */ 2095 item = list_entry(trans->r_itemq.prev, struct xlog_recover_item, 2096 ri_list); 2097 2098 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 2099 old_len = item->ri_buf[item->ri_cnt-1].i_len; 2100 2101 ptr = kvrealloc(old_ptr, old_len, len + old_len, GFP_KERNEL); 2102 if (!ptr) 2103 return -ENOMEM; 2104 memcpy(&ptr[old_len], dp, len); 2105 item->ri_buf[item->ri_cnt-1].i_len += len; 2106 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 2107 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 2108 return 0; 2109 } 2110 2111 /* 2112 * The next region to add is the start of a new region. It could be 2113 * a whole region or it could be the first part of a new region. Because 2114 * of this, the assumption here is that the type and size fields of all 2115 * format structures fit into the first 32 bits of the structure. 2116 * 2117 * This works because all regions must be 32 bit aligned. Therefore, we 2118 * either have both fields or we have neither field. In the case we have 2119 * neither field, the data part of the region is zero length. We only have 2120 * a log_op_header and can throw away the header since a new one will appear 2121 * later. If we have at least 4 bytes, then we can determine how many regions 2122 * will appear in the current log item. 2123 */ 2124 STATIC int 2125 xlog_recover_add_to_trans( 2126 struct xlog *log, 2127 struct xlog_recover *trans, 2128 char *dp, 2129 int len) 2130 { 2131 struct xfs_inode_log_format *in_f; /* any will do */ 2132 struct xlog_recover_item *item; 2133 char *ptr; 2134 2135 if (!len) 2136 return 0; 2137 if (list_empty(&trans->r_itemq)) { 2138 /* we need to catch log corruptions here */ 2139 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 2140 xfs_warn(log->l_mp, "%s: bad header magic number", 2141 __func__); 2142 ASSERT(0); 2143 return -EFSCORRUPTED; 2144 } 2145 2146 if (len > sizeof(struct xfs_trans_header)) { 2147 xfs_warn(log->l_mp, "%s: bad header length", __func__); 2148 ASSERT(0); 2149 return -EFSCORRUPTED; 2150 } 2151 2152 /* 2153 * The transaction header can be arbitrarily split across op 2154 * records. If we don't have the whole thing here, copy what we 2155 * do have and handle the rest in the next record. 2156 */ 2157 if (len == sizeof(struct xfs_trans_header)) 2158 xlog_recover_add_item(&trans->r_itemq); 2159 memcpy(&trans->r_theader, dp, len); 2160 return 0; 2161 } 2162 2163 ptr = kmem_alloc(len, 0); 2164 memcpy(ptr, dp, len); 2165 in_f = (struct xfs_inode_log_format *)ptr; 2166 2167 /* take the tail entry */ 2168 item = list_entry(trans->r_itemq.prev, struct xlog_recover_item, 2169 ri_list); 2170 if (item->ri_total != 0 && 2171 item->ri_total == item->ri_cnt) { 2172 /* tail item is in use, get a new one */ 2173 xlog_recover_add_item(&trans->r_itemq); 2174 item = list_entry(trans->r_itemq.prev, 2175 struct xlog_recover_item, ri_list); 2176 } 2177 2178 if (item->ri_total == 0) { /* first region to be added */ 2179 if (in_f->ilf_size == 0 || 2180 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 2181 xfs_warn(log->l_mp, 2182 "bad number of regions (%d) in inode log format", 2183 in_f->ilf_size); 2184 ASSERT(0); 2185 kmem_free(ptr); 2186 return -EFSCORRUPTED; 2187 } 2188 2189 item->ri_total = in_f->ilf_size; 2190 item->ri_buf = 2191 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 2192 0); 2193 } 2194 2195 if (item->ri_total <= item->ri_cnt) { 2196 xfs_warn(log->l_mp, 2197 "log item region count (%d) overflowed size (%d)", 2198 item->ri_cnt, item->ri_total); 2199 ASSERT(0); 2200 kmem_free(ptr); 2201 return -EFSCORRUPTED; 2202 } 2203 2204 /* Description region is ri_buf[0] */ 2205 item->ri_buf[item->ri_cnt].i_addr = ptr; 2206 item->ri_buf[item->ri_cnt].i_len = len; 2207 item->ri_cnt++; 2208 trace_xfs_log_recover_item_add(log, trans, item, 0); 2209 return 0; 2210 } 2211 2212 /* 2213 * Free up any resources allocated by the transaction 2214 * 2215 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 2216 */ 2217 STATIC void 2218 xlog_recover_free_trans( 2219 struct xlog_recover *trans) 2220 { 2221 struct xlog_recover_item *item, *n; 2222 int i; 2223 2224 hlist_del_init(&trans->r_list); 2225 2226 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 2227 /* Free the regions in the item. */ 2228 list_del(&item->ri_list); 2229 for (i = 0; i < item->ri_cnt; i++) 2230 kmem_free(item->ri_buf[i].i_addr); 2231 /* Free the item itself */ 2232 kmem_free(item->ri_buf); 2233 kmem_free(item); 2234 } 2235 /* Free the transaction recover structure */ 2236 kmem_free(trans); 2237 } 2238 2239 /* 2240 * On error or completion, trans is freed. 2241 */ 2242 STATIC int 2243 xlog_recovery_process_trans( 2244 struct xlog *log, 2245 struct xlog_recover *trans, 2246 char *dp, 2247 unsigned int len, 2248 unsigned int flags, 2249 int pass, 2250 struct list_head *buffer_list) 2251 { 2252 int error = 0; 2253 bool freeit = false; 2254 2255 /* mask off ophdr transaction container flags */ 2256 flags &= ~XLOG_END_TRANS; 2257 if (flags & XLOG_WAS_CONT_TRANS) 2258 flags &= ~XLOG_CONTINUE_TRANS; 2259 2260 /* 2261 * Callees must not free the trans structure. We'll decide if we need to 2262 * free it or not based on the operation being done and it's result. 2263 */ 2264 switch (flags) { 2265 /* expected flag values */ 2266 case 0: 2267 case XLOG_CONTINUE_TRANS: 2268 error = xlog_recover_add_to_trans(log, trans, dp, len); 2269 break; 2270 case XLOG_WAS_CONT_TRANS: 2271 error = xlog_recover_add_to_cont_trans(log, trans, dp, len); 2272 break; 2273 case XLOG_COMMIT_TRANS: 2274 error = xlog_recover_commit_trans(log, trans, pass, 2275 buffer_list); 2276 /* success or fail, we are now done with this transaction. */ 2277 freeit = true; 2278 break; 2279 2280 /* unexpected flag values */ 2281 case XLOG_UNMOUNT_TRANS: 2282 /* just skip trans */ 2283 xfs_warn(log->l_mp, "%s: Unmount LR", __func__); 2284 freeit = true; 2285 break; 2286 case XLOG_START_TRANS: 2287 default: 2288 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags); 2289 ASSERT(0); 2290 error = -EFSCORRUPTED; 2291 break; 2292 } 2293 if (error || freeit) 2294 xlog_recover_free_trans(trans); 2295 return error; 2296 } 2297 2298 /* 2299 * Lookup the transaction recovery structure associated with the ID in the 2300 * current ophdr. If the transaction doesn't exist and the start flag is set in 2301 * the ophdr, then allocate a new transaction for future ID matches to find. 2302 * Either way, return what we found during the lookup - an existing transaction 2303 * or nothing. 2304 */ 2305 STATIC struct xlog_recover * 2306 xlog_recover_ophdr_to_trans( 2307 struct hlist_head rhash[], 2308 struct xlog_rec_header *rhead, 2309 struct xlog_op_header *ohead) 2310 { 2311 struct xlog_recover *trans; 2312 xlog_tid_t tid; 2313 struct hlist_head *rhp; 2314 2315 tid = be32_to_cpu(ohead->oh_tid); 2316 rhp = &rhash[XLOG_RHASH(tid)]; 2317 hlist_for_each_entry(trans, rhp, r_list) { 2318 if (trans->r_log_tid == tid) 2319 return trans; 2320 } 2321 2322 /* 2323 * skip over non-start transaction headers - we could be 2324 * processing slack space before the next transaction starts 2325 */ 2326 if (!(ohead->oh_flags & XLOG_START_TRANS)) 2327 return NULL; 2328 2329 ASSERT(be32_to_cpu(ohead->oh_len) == 0); 2330 2331 /* 2332 * This is a new transaction so allocate a new recovery container to 2333 * hold the recovery ops that will follow. 2334 */ 2335 trans = kmem_zalloc(sizeof(struct xlog_recover), 0); 2336 trans->r_log_tid = tid; 2337 trans->r_lsn = be64_to_cpu(rhead->h_lsn); 2338 INIT_LIST_HEAD(&trans->r_itemq); 2339 INIT_HLIST_NODE(&trans->r_list); 2340 hlist_add_head(&trans->r_list, rhp); 2341 2342 /* 2343 * Nothing more to do for this ophdr. Items to be added to this new 2344 * transaction will be in subsequent ophdr containers. 2345 */ 2346 return NULL; 2347 } 2348 2349 STATIC int 2350 xlog_recover_process_ophdr( 2351 struct xlog *log, 2352 struct hlist_head rhash[], 2353 struct xlog_rec_header *rhead, 2354 struct xlog_op_header *ohead, 2355 char *dp, 2356 char *end, 2357 int pass, 2358 struct list_head *buffer_list) 2359 { 2360 struct xlog_recover *trans; 2361 unsigned int len; 2362 int error; 2363 2364 /* Do we understand who wrote this op? */ 2365 if (ohead->oh_clientid != XFS_TRANSACTION && 2366 ohead->oh_clientid != XFS_LOG) { 2367 xfs_warn(log->l_mp, "%s: bad clientid 0x%x", 2368 __func__, ohead->oh_clientid); 2369 ASSERT(0); 2370 return -EFSCORRUPTED; 2371 } 2372 2373 /* 2374 * Check the ophdr contains all the data it is supposed to contain. 2375 */ 2376 len = be32_to_cpu(ohead->oh_len); 2377 if (dp + len > end) { 2378 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len); 2379 WARN_ON(1); 2380 return -EFSCORRUPTED; 2381 } 2382 2383 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead); 2384 if (!trans) { 2385 /* nothing to do, so skip over this ophdr */ 2386 return 0; 2387 } 2388 2389 /* 2390 * The recovered buffer queue is drained only once we know that all 2391 * recovery items for the current LSN have been processed. This is 2392 * required because: 2393 * 2394 * - Buffer write submission updates the metadata LSN of the buffer. 2395 * - Log recovery skips items with a metadata LSN >= the current LSN of 2396 * the recovery item. 2397 * - Separate recovery items against the same metadata buffer can share 2398 * a current LSN. I.e., consider that the LSN of a recovery item is 2399 * defined as the starting LSN of the first record in which its 2400 * transaction appears, that a record can hold multiple transactions, 2401 * and/or that a transaction can span multiple records. 2402 * 2403 * In other words, we are allowed to submit a buffer from log recovery 2404 * once per current LSN. Otherwise, we may incorrectly skip recovery 2405 * items and cause corruption. 2406 * 2407 * We don't know up front whether buffers are updated multiple times per 2408 * LSN. Therefore, track the current LSN of each commit log record as it 2409 * is processed and drain the queue when it changes. Use commit records 2410 * because they are ordered correctly by the logging code. 2411 */ 2412 if (log->l_recovery_lsn != trans->r_lsn && 2413 ohead->oh_flags & XLOG_COMMIT_TRANS) { 2414 error = xfs_buf_delwri_submit(buffer_list); 2415 if (error) 2416 return error; 2417 log->l_recovery_lsn = trans->r_lsn; 2418 } 2419 2420 return xlog_recovery_process_trans(log, trans, dp, len, 2421 ohead->oh_flags, pass, buffer_list); 2422 } 2423 2424 /* 2425 * There are two valid states of the r_state field. 0 indicates that the 2426 * transaction structure is in a normal state. We have either seen the 2427 * start of the transaction or the last operation we added was not a partial 2428 * operation. If the last operation we added to the transaction was a 2429 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 2430 * 2431 * NOTE: skip LRs with 0 data length. 2432 */ 2433 STATIC int 2434 xlog_recover_process_data( 2435 struct xlog *log, 2436 struct hlist_head rhash[], 2437 struct xlog_rec_header *rhead, 2438 char *dp, 2439 int pass, 2440 struct list_head *buffer_list) 2441 { 2442 struct xlog_op_header *ohead; 2443 char *end; 2444 int num_logops; 2445 int error; 2446 2447 end = dp + be32_to_cpu(rhead->h_len); 2448 num_logops = be32_to_cpu(rhead->h_num_logops); 2449 2450 /* check the log format matches our own - else we can't recover */ 2451 if (xlog_header_check_recover(log->l_mp, rhead)) 2452 return -EIO; 2453 2454 trace_xfs_log_recover_record(log, rhead, pass); 2455 while ((dp < end) && num_logops) { 2456 2457 ohead = (struct xlog_op_header *)dp; 2458 dp += sizeof(*ohead); 2459 if (dp > end) { 2460 xfs_warn(log->l_mp, "%s: op header overrun", __func__); 2461 return -EFSCORRUPTED; 2462 } 2463 2464 /* errors will abort recovery */ 2465 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead, 2466 dp, end, pass, buffer_list); 2467 if (error) 2468 return error; 2469 2470 dp += be32_to_cpu(ohead->oh_len); 2471 num_logops--; 2472 } 2473 return 0; 2474 } 2475 2476 /* Take all the collected deferred ops and finish them in order. */ 2477 static int 2478 xlog_finish_defer_ops( 2479 struct xfs_mount *mp, 2480 struct list_head *capture_list) 2481 { 2482 struct xfs_defer_capture *dfc, *next; 2483 struct xfs_trans *tp; 2484 int error = 0; 2485 2486 list_for_each_entry_safe(dfc, next, capture_list, dfc_list) { 2487 struct xfs_trans_res resv; 2488 struct xfs_defer_resources dres; 2489 2490 /* 2491 * Create a new transaction reservation from the captured 2492 * information. Set logcount to 1 to force the new transaction 2493 * to regrant every roll so that we can make forward progress 2494 * in recovery no matter how full the log might be. 2495 */ 2496 resv.tr_logres = dfc->dfc_logres; 2497 resv.tr_logcount = 1; 2498 resv.tr_logflags = XFS_TRANS_PERM_LOG_RES; 2499 2500 error = xfs_trans_alloc(mp, &resv, dfc->dfc_blkres, 2501 dfc->dfc_rtxres, XFS_TRANS_RESERVE, &tp); 2502 if (error) { 2503 xlog_force_shutdown(mp->m_log, SHUTDOWN_LOG_IO_ERROR); 2504 return error; 2505 } 2506 2507 /* 2508 * Transfer to this new transaction all the dfops we captured 2509 * from recovering a single intent item. 2510 */ 2511 list_del_init(&dfc->dfc_list); 2512 xfs_defer_ops_continue(dfc, tp, &dres); 2513 error = xfs_trans_commit(tp); 2514 xfs_defer_resources_rele(&dres); 2515 if (error) 2516 return error; 2517 } 2518 2519 ASSERT(list_empty(capture_list)); 2520 return 0; 2521 } 2522 2523 /* Release all the captured defer ops and capture structures in this list. */ 2524 static void 2525 xlog_abort_defer_ops( 2526 struct xfs_mount *mp, 2527 struct list_head *capture_list) 2528 { 2529 struct xfs_defer_capture *dfc; 2530 struct xfs_defer_capture *next; 2531 2532 list_for_each_entry_safe(dfc, next, capture_list, dfc_list) { 2533 list_del_init(&dfc->dfc_list); 2534 xfs_defer_ops_capture_abort(mp, dfc); 2535 } 2536 } 2537 2538 /* 2539 * When this is called, all of the log intent items which did not have 2540 * corresponding log done items should be in the AIL. What we do now is update 2541 * the data structures associated with each one. 2542 * 2543 * Since we process the log intent items in normal transactions, they will be 2544 * removed at some point after the commit. This prevents us from just walking 2545 * down the list processing each one. We'll use a flag in the intent item to 2546 * skip those that we've already processed and use the AIL iteration mechanism's 2547 * generation count to try to speed this up at least a bit. 2548 * 2549 * When we start, we know that the intents are the only things in the AIL. As we 2550 * process them, however, other items are added to the AIL. Hence we know we 2551 * have started recovery on all the pending intents when we find an non-intent 2552 * item in the AIL. 2553 */ 2554 STATIC int 2555 xlog_recover_process_intents( 2556 struct xlog *log) 2557 { 2558 LIST_HEAD(capture_list); 2559 struct xfs_defer_pending *dfp, *n; 2560 int error = 0; 2561 #if defined(DEBUG) || defined(XFS_WARN) 2562 xfs_lsn_t last_lsn; 2563 2564 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block); 2565 #endif 2566 2567 list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) { 2568 struct xfs_log_item *lip = dfp->dfp_intent; 2569 const struct xfs_item_ops *ops = lip->li_ops; 2570 2571 ASSERT(xlog_item_is_intent(lip)); 2572 2573 /* 2574 * We should never see a redo item with a LSN higher than 2575 * the last transaction we found in the log at the start 2576 * of recovery. 2577 */ 2578 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0); 2579 2580 /* 2581 * NOTE: If your intent processing routine can create more 2582 * deferred ops, you /must/ attach them to the capture list in 2583 * the recover routine or else those subsequent intents will be 2584 * replayed in the wrong order! 2585 * 2586 * The recovery function can free the log item, so we must not 2587 * access lip after it returns. 2588 */ 2589 error = ops->iop_recover(dfp, &capture_list); 2590 if (error) { 2591 trace_xlog_intent_recovery_failed(log->l_mp, error, 2592 ops->iop_recover); 2593 break; 2594 } 2595 2596 xfs_defer_cancel_recovery(log->l_mp, dfp); 2597 } 2598 if (error) 2599 goto err; 2600 2601 error = xlog_finish_defer_ops(log->l_mp, &capture_list); 2602 if (error) 2603 goto err; 2604 2605 return 0; 2606 err: 2607 xlog_abort_defer_ops(log->l_mp, &capture_list); 2608 return error; 2609 } 2610 2611 /* 2612 * A cancel occurs when the mount has failed and we're bailing out. Release all 2613 * pending log intent items that we haven't started recovery on so they don't 2614 * pin the AIL. 2615 */ 2616 STATIC void 2617 xlog_recover_cancel_intents( 2618 struct xlog *log) 2619 { 2620 struct xfs_defer_pending *dfp, *n; 2621 2622 list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) { 2623 ASSERT(xlog_item_is_intent(dfp->dfp_intent)); 2624 2625 xfs_defer_cancel_recovery(log->l_mp, dfp); 2626 } 2627 } 2628 2629 /* 2630 * Transfer ownership of the recovered log intent item to the recovery 2631 * transaction. 2632 */ 2633 void 2634 xlog_recover_transfer_intent( 2635 struct xfs_trans *tp, 2636 struct xfs_defer_pending *dfp) 2637 { 2638 dfp->dfp_intent = NULL; 2639 } 2640 2641 /* 2642 * This routine performs a transaction to null out a bad inode pointer 2643 * in an agi unlinked inode hash bucket. 2644 */ 2645 STATIC void 2646 xlog_recover_clear_agi_bucket( 2647 struct xfs_perag *pag, 2648 int bucket) 2649 { 2650 struct xfs_mount *mp = pag->pag_mount; 2651 struct xfs_trans *tp; 2652 struct xfs_agi *agi; 2653 struct xfs_buf *agibp; 2654 int offset; 2655 int error; 2656 2657 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp); 2658 if (error) 2659 goto out_error; 2660 2661 error = xfs_read_agi(pag, tp, &agibp); 2662 if (error) 2663 goto out_abort; 2664 2665 agi = agibp->b_addr; 2666 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 2667 offset = offsetof(xfs_agi_t, agi_unlinked) + 2668 (sizeof(xfs_agino_t) * bucket); 2669 xfs_trans_log_buf(tp, agibp, offset, 2670 (offset + sizeof(xfs_agino_t) - 1)); 2671 2672 error = xfs_trans_commit(tp); 2673 if (error) 2674 goto out_error; 2675 return; 2676 2677 out_abort: 2678 xfs_trans_cancel(tp); 2679 out_error: 2680 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, 2681 pag->pag_agno); 2682 return; 2683 } 2684 2685 static int 2686 xlog_recover_iunlink_bucket( 2687 struct xfs_perag *pag, 2688 struct xfs_agi *agi, 2689 int bucket) 2690 { 2691 struct xfs_mount *mp = pag->pag_mount; 2692 struct xfs_inode *prev_ip = NULL; 2693 struct xfs_inode *ip; 2694 xfs_agino_t prev_agino, agino; 2695 int error = 0; 2696 2697 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 2698 while (agino != NULLAGINO) { 2699 error = xfs_iget(mp, NULL, 2700 XFS_AGINO_TO_INO(mp, pag->pag_agno, agino), 2701 0, 0, &ip); 2702 if (error) 2703 break; 2704 2705 ASSERT(VFS_I(ip)->i_nlink == 0); 2706 ASSERT(VFS_I(ip)->i_mode != 0); 2707 xfs_iflags_clear(ip, XFS_IRECOVERY); 2708 agino = ip->i_next_unlinked; 2709 2710 if (prev_ip) { 2711 ip->i_prev_unlinked = prev_agino; 2712 xfs_irele(prev_ip); 2713 2714 /* 2715 * Ensure the inode is removed from the unlinked list 2716 * before we continue so that it won't race with 2717 * building the in-memory list here. This could be 2718 * serialised with the agibp lock, but that just 2719 * serialises via lockstepping and it's much simpler 2720 * just to flush the inodegc queue and wait for it to 2721 * complete. 2722 */ 2723 error = xfs_inodegc_flush(mp); 2724 if (error) 2725 break; 2726 } 2727 2728 prev_agino = agino; 2729 prev_ip = ip; 2730 } 2731 2732 if (prev_ip) { 2733 int error2; 2734 2735 ip->i_prev_unlinked = prev_agino; 2736 xfs_irele(prev_ip); 2737 2738 error2 = xfs_inodegc_flush(mp); 2739 if (error2 && !error) 2740 return error2; 2741 } 2742 return error; 2743 } 2744 2745 /* 2746 * Recover AGI unlinked lists 2747 * 2748 * This is called during recovery to process any inodes which we unlinked but 2749 * not freed when the system crashed. These inodes will be on the lists in the 2750 * AGI blocks. What we do here is scan all the AGIs and fully truncate and free 2751 * any inodes found on the lists. Each inode is removed from the lists when it 2752 * has been fully truncated and is freed. The freeing of the inode and its 2753 * removal from the list must be atomic. 2754 * 2755 * If everything we touch in the agi processing loop is already in memory, this 2756 * loop can hold the cpu for a long time. It runs without lock contention, 2757 * memory allocation contention, the need wait for IO, etc, and so will run 2758 * until we either run out of inodes to process, run low on memory or we run out 2759 * of log space. 2760 * 2761 * This behaviour is bad for latency on single CPU and non-preemptible kernels, 2762 * and can prevent other filesystem work (such as CIL pushes) from running. This 2763 * can lead to deadlocks if the recovery process runs out of log reservation 2764 * space. Hence we need to yield the CPU when there is other kernel work 2765 * scheduled on this CPU to ensure other scheduled work can run without undue 2766 * latency. 2767 */ 2768 static void 2769 xlog_recover_iunlink_ag( 2770 struct xfs_perag *pag) 2771 { 2772 struct xfs_agi *agi; 2773 struct xfs_buf *agibp; 2774 int bucket; 2775 int error; 2776 2777 error = xfs_read_agi(pag, NULL, &agibp); 2778 if (error) { 2779 /* 2780 * AGI is b0rked. Don't process it. 2781 * 2782 * We should probably mark the filesystem as corrupt after we've 2783 * recovered all the ag's we can.... 2784 */ 2785 return; 2786 } 2787 2788 /* 2789 * Unlock the buffer so that it can be acquired in the normal course of 2790 * the transaction to truncate and free each inode. Because we are not 2791 * racing with anyone else here for the AGI buffer, we don't even need 2792 * to hold it locked to read the initial unlinked bucket entries out of 2793 * the buffer. We keep buffer reference though, so that it stays pinned 2794 * in memory while we need the buffer. 2795 */ 2796 agi = agibp->b_addr; 2797 xfs_buf_unlock(agibp); 2798 2799 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 2800 error = xlog_recover_iunlink_bucket(pag, agi, bucket); 2801 if (error) { 2802 /* 2803 * Bucket is unrecoverable, so only a repair scan can 2804 * free the remaining unlinked inodes. Just empty the 2805 * bucket and remaining inodes on it unreferenced and 2806 * unfreeable. 2807 */ 2808 xlog_recover_clear_agi_bucket(pag, bucket); 2809 } 2810 } 2811 2812 xfs_buf_rele(agibp); 2813 } 2814 2815 static void 2816 xlog_recover_process_iunlinks( 2817 struct xlog *log) 2818 { 2819 struct xfs_perag *pag; 2820 xfs_agnumber_t agno; 2821 2822 for_each_perag(log->l_mp, agno, pag) 2823 xlog_recover_iunlink_ag(pag); 2824 } 2825 2826 STATIC void 2827 xlog_unpack_data( 2828 struct xlog_rec_header *rhead, 2829 char *dp, 2830 struct xlog *log) 2831 { 2832 int i, j, k; 2833 2834 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 2835 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 2836 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 2837 dp += BBSIZE; 2838 } 2839 2840 if (xfs_has_logv2(log->l_mp)) { 2841 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 2842 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 2843 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 2844 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 2845 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 2846 dp += BBSIZE; 2847 } 2848 } 2849 } 2850 2851 /* 2852 * CRC check, unpack and process a log record. 2853 */ 2854 STATIC int 2855 xlog_recover_process( 2856 struct xlog *log, 2857 struct hlist_head rhash[], 2858 struct xlog_rec_header *rhead, 2859 char *dp, 2860 int pass, 2861 struct list_head *buffer_list) 2862 { 2863 __le32 old_crc = rhead->h_crc; 2864 __le32 crc; 2865 2866 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); 2867 2868 /* 2869 * Nothing else to do if this is a CRC verification pass. Just return 2870 * if this a record with a non-zero crc. Unfortunately, mkfs always 2871 * sets old_crc to 0 so we must consider this valid even on v5 supers. 2872 * Otherwise, return EFSBADCRC on failure so the callers up the stack 2873 * know precisely what failed. 2874 */ 2875 if (pass == XLOG_RECOVER_CRCPASS) { 2876 if (old_crc && crc != old_crc) 2877 return -EFSBADCRC; 2878 return 0; 2879 } 2880 2881 /* 2882 * We're in the normal recovery path. Issue a warning if and only if the 2883 * CRC in the header is non-zero. This is an advisory warning and the 2884 * zero CRC check prevents warnings from being emitted when upgrading 2885 * the kernel from one that does not add CRCs by default. 2886 */ 2887 if (crc != old_crc) { 2888 if (old_crc || xfs_has_crc(log->l_mp)) { 2889 xfs_alert(log->l_mp, 2890 "log record CRC mismatch: found 0x%x, expected 0x%x.", 2891 le32_to_cpu(old_crc), 2892 le32_to_cpu(crc)); 2893 xfs_hex_dump(dp, 32); 2894 } 2895 2896 /* 2897 * If the filesystem is CRC enabled, this mismatch becomes a 2898 * fatal log corruption failure. 2899 */ 2900 if (xfs_has_crc(log->l_mp)) { 2901 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp); 2902 return -EFSCORRUPTED; 2903 } 2904 } 2905 2906 xlog_unpack_data(rhead, dp, log); 2907 2908 return xlog_recover_process_data(log, rhash, rhead, dp, pass, 2909 buffer_list); 2910 } 2911 2912 STATIC int 2913 xlog_valid_rec_header( 2914 struct xlog *log, 2915 struct xlog_rec_header *rhead, 2916 xfs_daddr_t blkno, 2917 int bufsize) 2918 { 2919 int hlen; 2920 2921 if (XFS_IS_CORRUPT(log->l_mp, 2922 rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) 2923 return -EFSCORRUPTED; 2924 if (XFS_IS_CORRUPT(log->l_mp, 2925 (!rhead->h_version || 2926 (be32_to_cpu(rhead->h_version) & 2927 (~XLOG_VERSION_OKBITS))))) { 2928 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", 2929 __func__, be32_to_cpu(rhead->h_version)); 2930 return -EFSCORRUPTED; 2931 } 2932 2933 /* 2934 * LR body must have data (or it wouldn't have been written) 2935 * and h_len must not be greater than LR buffer size. 2936 */ 2937 hlen = be32_to_cpu(rhead->h_len); 2938 if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > bufsize)) 2939 return -EFSCORRUPTED; 2940 2941 if (XFS_IS_CORRUPT(log->l_mp, 2942 blkno > log->l_logBBsize || blkno > INT_MAX)) 2943 return -EFSCORRUPTED; 2944 return 0; 2945 } 2946 2947 /* 2948 * Read the log from tail to head and process the log records found. 2949 * Handle the two cases where the tail and head are in the same cycle 2950 * and where the active portion of the log wraps around the end of 2951 * the physical log separately. The pass parameter is passed through 2952 * to the routines called to process the data and is not looked at 2953 * here. 2954 */ 2955 STATIC int 2956 xlog_do_recovery_pass( 2957 struct xlog *log, 2958 xfs_daddr_t head_blk, 2959 xfs_daddr_t tail_blk, 2960 int pass, 2961 xfs_daddr_t *first_bad) /* out: first bad log rec */ 2962 { 2963 xlog_rec_header_t *rhead; 2964 xfs_daddr_t blk_no, rblk_no; 2965 xfs_daddr_t rhead_blk; 2966 char *offset; 2967 char *hbp, *dbp; 2968 int error = 0, h_size, h_len; 2969 int error2 = 0; 2970 int bblks, split_bblks; 2971 int hblks = 1, split_hblks, wrapped_hblks; 2972 int i; 2973 struct hlist_head rhash[XLOG_RHASH_SIZE]; 2974 LIST_HEAD (buffer_list); 2975 2976 ASSERT(head_blk != tail_blk); 2977 blk_no = rhead_blk = tail_blk; 2978 2979 for (i = 0; i < XLOG_RHASH_SIZE; i++) 2980 INIT_HLIST_HEAD(&rhash[i]); 2981 2982 /* 2983 * Read the header of the tail block and get the iclog buffer size from 2984 * h_size. Use this to tell how many sectors make up the log header. 2985 */ 2986 if (xfs_has_logv2(log->l_mp)) { 2987 /* 2988 * When using variable length iclogs, read first sector of 2989 * iclog header and extract the header size from it. Get a 2990 * new hbp that is the correct size. 2991 */ 2992 hbp = xlog_alloc_buffer(log, 1); 2993 if (!hbp) 2994 return -ENOMEM; 2995 2996 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 2997 if (error) 2998 goto bread_err1; 2999 3000 rhead = (xlog_rec_header_t *)offset; 3001 3002 /* 3003 * xfsprogs has a bug where record length is based on lsunit but 3004 * h_size (iclog size) is hardcoded to 32k. Now that we 3005 * unconditionally CRC verify the unmount record, this means the 3006 * log buffer can be too small for the record and cause an 3007 * overrun. 3008 * 3009 * Detect this condition here. Use lsunit for the buffer size as 3010 * long as this looks like the mkfs case. Otherwise, return an 3011 * error to avoid a buffer overrun. 3012 */ 3013 h_size = be32_to_cpu(rhead->h_size); 3014 h_len = be32_to_cpu(rhead->h_len); 3015 if (h_len > h_size && h_len <= log->l_mp->m_logbsize && 3016 rhead->h_num_logops == cpu_to_be32(1)) { 3017 xfs_warn(log->l_mp, 3018 "invalid iclog size (%d bytes), using lsunit (%d bytes)", 3019 h_size, log->l_mp->m_logbsize); 3020 h_size = log->l_mp->m_logbsize; 3021 } 3022 3023 error = xlog_valid_rec_header(log, rhead, tail_blk, h_size); 3024 if (error) 3025 goto bread_err1; 3026 3027 /* 3028 * This open codes xlog_logrec_hblks so that we can reuse the 3029 * fixed up h_size value calculated above. Without that we'd 3030 * still allocate the buffer based on the incorrect on-disk 3031 * size. 3032 */ 3033 if (h_size > XLOG_HEADER_CYCLE_SIZE && 3034 (rhead->h_version & cpu_to_be32(XLOG_VERSION_2))) { 3035 hblks = DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE); 3036 if (hblks > 1) { 3037 kmem_free(hbp); 3038 hbp = xlog_alloc_buffer(log, hblks); 3039 } 3040 } 3041 } else { 3042 ASSERT(log->l_sectBBsize == 1); 3043 hbp = xlog_alloc_buffer(log, 1); 3044 h_size = XLOG_BIG_RECORD_BSIZE; 3045 } 3046 3047 if (!hbp) 3048 return -ENOMEM; 3049 dbp = xlog_alloc_buffer(log, BTOBB(h_size)); 3050 if (!dbp) { 3051 kmem_free(hbp); 3052 return -ENOMEM; 3053 } 3054 3055 memset(rhash, 0, sizeof(rhash)); 3056 if (tail_blk > head_blk) { 3057 /* 3058 * Perform recovery around the end of the physical log. 3059 * When the head is not on the same cycle number as the tail, 3060 * we can't do a sequential recovery. 3061 */ 3062 while (blk_no < log->l_logBBsize) { 3063 /* 3064 * Check for header wrapping around physical end-of-log 3065 */ 3066 offset = hbp; 3067 split_hblks = 0; 3068 wrapped_hblks = 0; 3069 if (blk_no + hblks <= log->l_logBBsize) { 3070 /* Read header in one read */ 3071 error = xlog_bread(log, blk_no, hblks, hbp, 3072 &offset); 3073 if (error) 3074 goto bread_err2; 3075 } else { 3076 /* This LR is split across physical log end */ 3077 if (blk_no != log->l_logBBsize) { 3078 /* some data before physical log end */ 3079 ASSERT(blk_no <= INT_MAX); 3080 split_hblks = log->l_logBBsize - (int)blk_no; 3081 ASSERT(split_hblks > 0); 3082 error = xlog_bread(log, blk_no, 3083 split_hblks, hbp, 3084 &offset); 3085 if (error) 3086 goto bread_err2; 3087 } 3088 3089 /* 3090 * Note: this black magic still works with 3091 * large sector sizes (non-512) only because: 3092 * - we increased the buffer size originally 3093 * by 1 sector giving us enough extra space 3094 * for the second read; 3095 * - the log start is guaranteed to be sector 3096 * aligned; 3097 * - we read the log end (LR header start) 3098 * _first_, then the log start (LR header end) 3099 * - order is important. 3100 */ 3101 wrapped_hblks = hblks - split_hblks; 3102 error = xlog_bread_noalign(log, 0, 3103 wrapped_hblks, 3104 offset + BBTOB(split_hblks)); 3105 if (error) 3106 goto bread_err2; 3107 } 3108 rhead = (xlog_rec_header_t *)offset; 3109 error = xlog_valid_rec_header(log, rhead, 3110 split_hblks ? blk_no : 0, h_size); 3111 if (error) 3112 goto bread_err2; 3113 3114 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3115 blk_no += hblks; 3116 3117 /* 3118 * Read the log record data in multiple reads if it 3119 * wraps around the end of the log. Note that if the 3120 * header already wrapped, blk_no could point past the 3121 * end of the log. The record data is contiguous in 3122 * that case. 3123 */ 3124 if (blk_no + bblks <= log->l_logBBsize || 3125 blk_no >= log->l_logBBsize) { 3126 rblk_no = xlog_wrap_logbno(log, blk_no); 3127 error = xlog_bread(log, rblk_no, bblks, dbp, 3128 &offset); 3129 if (error) 3130 goto bread_err2; 3131 } else { 3132 /* This log record is split across the 3133 * physical end of log */ 3134 offset = dbp; 3135 split_bblks = 0; 3136 if (blk_no != log->l_logBBsize) { 3137 /* some data is before the physical 3138 * end of log */ 3139 ASSERT(!wrapped_hblks); 3140 ASSERT(blk_no <= INT_MAX); 3141 split_bblks = 3142 log->l_logBBsize - (int)blk_no; 3143 ASSERT(split_bblks > 0); 3144 error = xlog_bread(log, blk_no, 3145 split_bblks, dbp, 3146 &offset); 3147 if (error) 3148 goto bread_err2; 3149 } 3150 3151 /* 3152 * Note: this black magic still works with 3153 * large sector sizes (non-512) only because: 3154 * - we increased the buffer size originally 3155 * by 1 sector giving us enough extra space 3156 * for the second read; 3157 * - the log start is guaranteed to be sector 3158 * aligned; 3159 * - we read the log end (LR header start) 3160 * _first_, then the log start (LR header end) 3161 * - order is important. 3162 */ 3163 error = xlog_bread_noalign(log, 0, 3164 bblks - split_bblks, 3165 offset + BBTOB(split_bblks)); 3166 if (error) 3167 goto bread_err2; 3168 } 3169 3170 error = xlog_recover_process(log, rhash, rhead, offset, 3171 pass, &buffer_list); 3172 if (error) 3173 goto bread_err2; 3174 3175 blk_no += bblks; 3176 rhead_blk = blk_no; 3177 } 3178 3179 ASSERT(blk_no >= log->l_logBBsize); 3180 blk_no -= log->l_logBBsize; 3181 rhead_blk = blk_no; 3182 } 3183 3184 /* read first part of physical log */ 3185 while (blk_no < head_blk) { 3186 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 3187 if (error) 3188 goto bread_err2; 3189 3190 rhead = (xlog_rec_header_t *)offset; 3191 error = xlog_valid_rec_header(log, rhead, blk_no, h_size); 3192 if (error) 3193 goto bread_err2; 3194 3195 /* blocks in data section */ 3196 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3197 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 3198 &offset); 3199 if (error) 3200 goto bread_err2; 3201 3202 error = xlog_recover_process(log, rhash, rhead, offset, pass, 3203 &buffer_list); 3204 if (error) 3205 goto bread_err2; 3206 3207 blk_no += bblks + hblks; 3208 rhead_blk = blk_no; 3209 } 3210 3211 bread_err2: 3212 kmem_free(dbp); 3213 bread_err1: 3214 kmem_free(hbp); 3215 3216 /* 3217 * Submit buffers that have been dirtied by the last record recovered. 3218 */ 3219 if (!list_empty(&buffer_list)) { 3220 if (error) { 3221 /* 3222 * If there has been an item recovery error then we 3223 * cannot allow partial checkpoint writeback to 3224 * occur. We might have multiple checkpoints with the 3225 * same start LSN in this buffer list, and partial 3226 * writeback of a checkpoint in this situation can 3227 * prevent future recovery of all the changes in the 3228 * checkpoints at this start LSN. 3229 * 3230 * Note: Shutting down the filesystem will result in the 3231 * delwri submission marking all the buffers stale, 3232 * completing them and cleaning up _XBF_LOGRECOVERY 3233 * state without doing any IO. 3234 */ 3235 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 3236 } 3237 error2 = xfs_buf_delwri_submit(&buffer_list); 3238 } 3239 3240 if (error && first_bad) 3241 *first_bad = rhead_blk; 3242 3243 /* 3244 * Transactions are freed at commit time but transactions without commit 3245 * records on disk are never committed. Free any that may be left in the 3246 * hash table. 3247 */ 3248 for (i = 0; i < XLOG_RHASH_SIZE; i++) { 3249 struct hlist_node *tmp; 3250 struct xlog_recover *trans; 3251 3252 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list) 3253 xlog_recover_free_trans(trans); 3254 } 3255 3256 return error ? error : error2; 3257 } 3258 3259 /* 3260 * Do the recovery of the log. We actually do this in two phases. 3261 * The two passes are necessary in order to implement the function 3262 * of cancelling a record written into the log. The first pass 3263 * determines those things which have been cancelled, and the 3264 * second pass replays log items normally except for those which 3265 * have been cancelled. The handling of the replay and cancellations 3266 * takes place in the log item type specific routines. 3267 * 3268 * The table of items which have cancel records in the log is allocated 3269 * and freed at this level, since only here do we know when all of 3270 * the log recovery has been completed. 3271 */ 3272 STATIC int 3273 xlog_do_log_recovery( 3274 struct xlog *log, 3275 xfs_daddr_t head_blk, 3276 xfs_daddr_t tail_blk) 3277 { 3278 int error; 3279 3280 ASSERT(head_blk != tail_blk); 3281 3282 /* 3283 * First do a pass to find all of the cancelled buf log items. 3284 * Store them in the buf_cancel_table for use in the second pass. 3285 */ 3286 error = xlog_alloc_buf_cancel_table(log); 3287 if (error) 3288 return error; 3289 3290 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3291 XLOG_RECOVER_PASS1, NULL); 3292 if (error != 0) 3293 goto out_cancel; 3294 3295 /* 3296 * Then do a second pass to actually recover the items in the log. 3297 * When it is complete free the table of buf cancel items. 3298 */ 3299 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3300 XLOG_RECOVER_PASS2, NULL); 3301 if (!error) 3302 xlog_check_buf_cancel_table(log); 3303 out_cancel: 3304 xlog_free_buf_cancel_table(log); 3305 return error; 3306 } 3307 3308 /* 3309 * Do the actual recovery 3310 */ 3311 STATIC int 3312 xlog_do_recover( 3313 struct xlog *log, 3314 xfs_daddr_t head_blk, 3315 xfs_daddr_t tail_blk) 3316 { 3317 struct xfs_mount *mp = log->l_mp; 3318 struct xfs_buf *bp = mp->m_sb_bp; 3319 struct xfs_sb *sbp = &mp->m_sb; 3320 int error; 3321 3322 trace_xfs_log_recover(log, head_blk, tail_blk); 3323 3324 /* 3325 * First replay the images in the log. 3326 */ 3327 error = xlog_do_log_recovery(log, head_blk, tail_blk); 3328 if (error) 3329 return error; 3330 3331 if (xlog_is_shutdown(log)) 3332 return -EIO; 3333 3334 /* 3335 * We now update the tail_lsn since much of the recovery has completed 3336 * and there may be space available to use. If there were no extent 3337 * or iunlinks, we can free up the entire log and set the tail_lsn to 3338 * be the last_sync_lsn. This was set in xlog_find_tail to be the 3339 * lsn of the last known good LR on disk. If there are extent frees 3340 * or iunlinks they will have some entries in the AIL; so we look at 3341 * the AIL to determine how to set the tail_lsn. 3342 */ 3343 xlog_assign_tail_lsn(mp); 3344 3345 /* 3346 * Now that we've finished replaying all buffer and inode updates, 3347 * re-read the superblock and reverify it. 3348 */ 3349 xfs_buf_lock(bp); 3350 xfs_buf_hold(bp); 3351 error = _xfs_buf_read(bp, XBF_READ); 3352 if (error) { 3353 if (!xlog_is_shutdown(log)) { 3354 xfs_buf_ioerror_alert(bp, __this_address); 3355 ASSERT(0); 3356 } 3357 xfs_buf_relse(bp); 3358 return error; 3359 } 3360 3361 /* Convert superblock from on-disk format */ 3362 xfs_sb_from_disk(sbp, bp->b_addr); 3363 xfs_buf_relse(bp); 3364 3365 /* re-initialise in-core superblock and geometry structures */ 3366 mp->m_features |= xfs_sb_version_to_features(sbp); 3367 xfs_reinit_percpu_counters(mp); 3368 error = xfs_initialize_perag(mp, sbp->sb_agcount, sbp->sb_dblocks, 3369 &mp->m_maxagi); 3370 if (error) { 3371 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error); 3372 return error; 3373 } 3374 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp); 3375 3376 /* Normal transactions can now occur */ 3377 clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate); 3378 return 0; 3379 } 3380 3381 /* 3382 * Perform recovery and re-initialize some log variables in xlog_find_tail. 3383 * 3384 * Return error or zero. 3385 */ 3386 int 3387 xlog_recover( 3388 struct xlog *log) 3389 { 3390 xfs_daddr_t head_blk, tail_blk; 3391 int error; 3392 3393 /* find the tail of the log */ 3394 error = xlog_find_tail(log, &head_blk, &tail_blk); 3395 if (error) 3396 return error; 3397 3398 /* 3399 * The superblock was read before the log was available and thus the LSN 3400 * could not be verified. Check the superblock LSN against the current 3401 * LSN now that it's known. 3402 */ 3403 if (xfs_has_crc(log->l_mp) && 3404 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn)) 3405 return -EINVAL; 3406 3407 if (tail_blk != head_blk) { 3408 /* There used to be a comment here: 3409 * 3410 * disallow recovery on read-only mounts. note -- mount 3411 * checks for ENOSPC and turns it into an intelligent 3412 * error message. 3413 * ...but this is no longer true. Now, unless you specify 3414 * NORECOVERY (in which case this function would never be 3415 * called), we just go ahead and recover. We do this all 3416 * under the vfs layer, so we can get away with it unless 3417 * the device itself is read-only, in which case we fail. 3418 */ 3419 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 3420 return error; 3421 } 3422 3423 /* 3424 * Version 5 superblock log feature mask validation. We know the 3425 * log is dirty so check if there are any unknown log features 3426 * in what we need to recover. If there are unknown features 3427 * (e.g. unsupported transactions, then simply reject the 3428 * attempt at recovery before touching anything. 3429 */ 3430 if (xfs_sb_is_v5(&log->l_mp->m_sb) && 3431 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, 3432 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { 3433 xfs_warn(log->l_mp, 3434 "Superblock has unknown incompatible log features (0x%x) enabled.", 3435 (log->l_mp->m_sb.sb_features_log_incompat & 3436 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 3437 xfs_warn(log->l_mp, 3438 "The log can not be fully and/or safely recovered by this kernel."); 3439 xfs_warn(log->l_mp, 3440 "Please recover the log on a kernel that supports the unknown features."); 3441 return -EINVAL; 3442 } 3443 3444 /* 3445 * Delay log recovery if the debug hook is set. This is debug 3446 * instrumentation to coordinate simulation of I/O failures with 3447 * log recovery. 3448 */ 3449 if (xfs_globals.log_recovery_delay) { 3450 xfs_notice(log->l_mp, 3451 "Delaying log recovery for %d seconds.", 3452 xfs_globals.log_recovery_delay); 3453 msleep(xfs_globals.log_recovery_delay * 1000); 3454 } 3455 3456 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", 3457 log->l_mp->m_logname ? log->l_mp->m_logname 3458 : "internal"); 3459 3460 error = xlog_do_recover(log, head_blk, tail_blk); 3461 set_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate); 3462 } 3463 return error; 3464 } 3465 3466 /* 3467 * In the first part of recovery we replay inodes and buffers and build up the 3468 * list of intents which need to be processed. Here we process the intents and 3469 * clean up the on disk unlinked inode lists. This is separated from the first 3470 * part of recovery so that the root and real-time bitmap inodes can be read in 3471 * from disk in between the two stages. This is necessary so that we can free 3472 * space in the real-time portion of the file system. 3473 */ 3474 int 3475 xlog_recover_finish( 3476 struct xlog *log) 3477 { 3478 int error; 3479 3480 error = xlog_recover_process_intents(log); 3481 if (error) { 3482 /* 3483 * Cancel all the unprocessed intent items now so that we don't 3484 * leave them pinned in the AIL. This can cause the AIL to 3485 * livelock on the pinned item if anyone tries to push the AIL 3486 * (inode reclaim does this) before we get around to 3487 * xfs_log_mount_cancel. 3488 */ 3489 xlog_recover_cancel_intents(log); 3490 xfs_alert(log->l_mp, "Failed to recover intents"); 3491 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 3492 return error; 3493 } 3494 3495 /* 3496 * Sync the log to get all the intents out of the AIL. This isn't 3497 * absolutely necessary, but it helps in case the unlink transactions 3498 * would have problems pushing the intents out of the way. 3499 */ 3500 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 3501 3502 /* 3503 * Now that we've recovered the log and all the intents, we can clear 3504 * the log incompat feature bits in the superblock because there's no 3505 * longer anything to protect. We rely on the AIL push to write out the 3506 * updated superblock after everything else. 3507 */ 3508 if (xfs_clear_incompat_log_features(log->l_mp)) { 3509 error = xfs_sync_sb(log->l_mp, false); 3510 if (error < 0) { 3511 xfs_alert(log->l_mp, 3512 "Failed to clear log incompat features on recovery"); 3513 return error; 3514 } 3515 } 3516 3517 xlog_recover_process_iunlinks(log); 3518 3519 /* 3520 * Recover any CoW staging blocks that are still referenced by the 3521 * ondisk refcount metadata. During mount there cannot be any live 3522 * staging extents as we have not permitted any user modifications. 3523 * Therefore, it is safe to free them all right now, even on a 3524 * read-only mount. 3525 */ 3526 error = xfs_reflink_recover_cow(log->l_mp); 3527 if (error) { 3528 xfs_alert(log->l_mp, 3529 "Failed to recover leftover CoW staging extents, err %d.", 3530 error); 3531 /* 3532 * If we get an error here, make sure the log is shut down 3533 * but return zero so that any log items committed since the 3534 * end of intents processing can be pushed through the CIL 3535 * and AIL. 3536 */ 3537 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 3538 } 3539 3540 return 0; 3541 } 3542 3543 void 3544 xlog_recover_cancel( 3545 struct xlog *log) 3546 { 3547 if (xlog_recovery_needed(log)) 3548 xlog_recover_cancel_intents(log); 3549 } 3550 3551