1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_mount.h" 28 #include "xfs_error.h" 29 #include "xfs_bmap_btree.h" 30 #include "xfs_alloc_btree.h" 31 #include "xfs_ialloc_btree.h" 32 #include "xfs_dinode.h" 33 #include "xfs_inode.h" 34 #include "xfs_inode_item.h" 35 #include "xfs_alloc.h" 36 #include "xfs_ialloc.h" 37 #include "xfs_log_priv.h" 38 #include "xfs_buf_item.h" 39 #include "xfs_log_recover.h" 40 #include "xfs_extfree_item.h" 41 #include "xfs_trans_priv.h" 42 #include "xfs_quota.h" 43 #include "xfs_utils.h" 44 #include "xfs_cksum.h" 45 #include "xfs_trace.h" 46 #include "xfs_icache.h" 47 48 STATIC int 49 xlog_find_zeroed( 50 struct xlog *, 51 xfs_daddr_t *); 52 STATIC int 53 xlog_clear_stale_blocks( 54 struct xlog *, 55 xfs_lsn_t); 56 #if defined(DEBUG) 57 STATIC void 58 xlog_recover_check_summary( 59 struct xlog *); 60 #else 61 #define xlog_recover_check_summary(log) 62 #endif 63 64 /* 65 * This structure is used during recovery to record the buf log items which 66 * have been canceled and should not be replayed. 67 */ 68 struct xfs_buf_cancel { 69 xfs_daddr_t bc_blkno; 70 uint bc_len; 71 int bc_refcount; 72 struct list_head bc_list; 73 }; 74 75 /* 76 * Sector aligned buffer routines for buffer create/read/write/access 77 */ 78 79 /* 80 * Verify the given count of basic blocks is valid number of blocks 81 * to specify for an operation involving the given XFS log buffer. 82 * Returns nonzero if the count is valid, 0 otherwise. 83 */ 84 85 static inline int 86 xlog_buf_bbcount_valid( 87 struct xlog *log, 88 int bbcount) 89 { 90 return bbcount > 0 && bbcount <= log->l_logBBsize; 91 } 92 93 /* 94 * Allocate a buffer to hold log data. The buffer needs to be able 95 * to map to a range of nbblks basic blocks at any valid (basic 96 * block) offset within the log. 97 */ 98 STATIC xfs_buf_t * 99 xlog_get_bp( 100 struct xlog *log, 101 int nbblks) 102 { 103 struct xfs_buf *bp; 104 105 if (!xlog_buf_bbcount_valid(log, nbblks)) { 106 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 107 nbblks); 108 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 109 return NULL; 110 } 111 112 /* 113 * We do log I/O in units of log sectors (a power-of-2 114 * multiple of the basic block size), so we round up the 115 * requested size to accommodate the basic blocks required 116 * for complete log sectors. 117 * 118 * In addition, the buffer may be used for a non-sector- 119 * aligned block offset, in which case an I/O of the 120 * requested size could extend beyond the end of the 121 * buffer. If the requested size is only 1 basic block it 122 * will never straddle a sector boundary, so this won't be 123 * an issue. Nor will this be a problem if the log I/O is 124 * done in basic blocks (sector size 1). But otherwise we 125 * extend the buffer by one extra log sector to ensure 126 * there's space to accommodate this possibility. 127 */ 128 if (nbblks > 1 && log->l_sectBBsize > 1) 129 nbblks += log->l_sectBBsize; 130 nbblks = round_up(nbblks, log->l_sectBBsize); 131 132 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0); 133 if (bp) 134 xfs_buf_unlock(bp); 135 return bp; 136 } 137 138 STATIC void 139 xlog_put_bp( 140 xfs_buf_t *bp) 141 { 142 xfs_buf_free(bp); 143 } 144 145 /* 146 * Return the address of the start of the given block number's data 147 * in a log buffer. The buffer covers a log sector-aligned region. 148 */ 149 STATIC xfs_caddr_t 150 xlog_align( 151 struct xlog *log, 152 xfs_daddr_t blk_no, 153 int nbblks, 154 struct xfs_buf *bp) 155 { 156 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1); 157 158 ASSERT(offset + nbblks <= bp->b_length); 159 return bp->b_addr + BBTOB(offset); 160 } 161 162 163 /* 164 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 165 */ 166 STATIC int 167 xlog_bread_noalign( 168 struct xlog *log, 169 xfs_daddr_t blk_no, 170 int nbblks, 171 struct xfs_buf *bp) 172 { 173 int error; 174 175 if (!xlog_buf_bbcount_valid(log, nbblks)) { 176 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 177 nbblks); 178 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 179 return EFSCORRUPTED; 180 } 181 182 blk_no = round_down(blk_no, log->l_sectBBsize); 183 nbblks = round_up(nbblks, log->l_sectBBsize); 184 185 ASSERT(nbblks > 0); 186 ASSERT(nbblks <= bp->b_length); 187 188 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 189 XFS_BUF_READ(bp); 190 bp->b_io_length = nbblks; 191 bp->b_error = 0; 192 193 xfsbdstrat(log->l_mp, bp); 194 error = xfs_buf_iowait(bp); 195 if (error) 196 xfs_buf_ioerror_alert(bp, __func__); 197 return error; 198 } 199 200 STATIC int 201 xlog_bread( 202 struct xlog *log, 203 xfs_daddr_t blk_no, 204 int nbblks, 205 struct xfs_buf *bp, 206 xfs_caddr_t *offset) 207 { 208 int error; 209 210 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 211 if (error) 212 return error; 213 214 *offset = xlog_align(log, blk_no, nbblks, bp); 215 return 0; 216 } 217 218 /* 219 * Read at an offset into the buffer. Returns with the buffer in it's original 220 * state regardless of the result of the read. 221 */ 222 STATIC int 223 xlog_bread_offset( 224 struct xlog *log, 225 xfs_daddr_t blk_no, /* block to read from */ 226 int nbblks, /* blocks to read */ 227 struct xfs_buf *bp, 228 xfs_caddr_t offset) 229 { 230 xfs_caddr_t orig_offset = bp->b_addr; 231 int orig_len = BBTOB(bp->b_length); 232 int error, error2; 233 234 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks)); 235 if (error) 236 return error; 237 238 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 239 240 /* must reset buffer pointer even on error */ 241 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len); 242 if (error) 243 return error; 244 return error2; 245 } 246 247 /* 248 * Write out the buffer at the given block for the given number of blocks. 249 * The buffer is kept locked across the write and is returned locked. 250 * This can only be used for synchronous log writes. 251 */ 252 STATIC int 253 xlog_bwrite( 254 struct xlog *log, 255 xfs_daddr_t blk_no, 256 int nbblks, 257 struct xfs_buf *bp) 258 { 259 int error; 260 261 if (!xlog_buf_bbcount_valid(log, nbblks)) { 262 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 263 nbblks); 264 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 265 return EFSCORRUPTED; 266 } 267 268 blk_no = round_down(blk_no, log->l_sectBBsize); 269 nbblks = round_up(nbblks, log->l_sectBBsize); 270 271 ASSERT(nbblks > 0); 272 ASSERT(nbblks <= bp->b_length); 273 274 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 275 XFS_BUF_ZEROFLAGS(bp); 276 xfs_buf_hold(bp); 277 xfs_buf_lock(bp); 278 bp->b_io_length = nbblks; 279 bp->b_error = 0; 280 281 error = xfs_bwrite(bp); 282 if (error) 283 xfs_buf_ioerror_alert(bp, __func__); 284 xfs_buf_relse(bp); 285 return error; 286 } 287 288 #ifdef DEBUG 289 /* 290 * dump debug superblock and log record information 291 */ 292 STATIC void 293 xlog_header_check_dump( 294 xfs_mount_t *mp, 295 xlog_rec_header_t *head) 296 { 297 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n", 298 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 299 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n", 300 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 301 } 302 #else 303 #define xlog_header_check_dump(mp, head) 304 #endif 305 306 /* 307 * check log record header for recovery 308 */ 309 STATIC int 310 xlog_header_check_recover( 311 xfs_mount_t *mp, 312 xlog_rec_header_t *head) 313 { 314 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 315 316 /* 317 * IRIX doesn't write the h_fmt field and leaves it zeroed 318 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 319 * a dirty log created in IRIX. 320 */ 321 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) { 322 xfs_warn(mp, 323 "dirty log written in incompatible format - can't recover"); 324 xlog_header_check_dump(mp, head); 325 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 326 XFS_ERRLEVEL_HIGH, mp); 327 return XFS_ERROR(EFSCORRUPTED); 328 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 329 xfs_warn(mp, 330 "dirty log entry has mismatched uuid - can't recover"); 331 xlog_header_check_dump(mp, head); 332 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 333 XFS_ERRLEVEL_HIGH, mp); 334 return XFS_ERROR(EFSCORRUPTED); 335 } 336 return 0; 337 } 338 339 /* 340 * read the head block of the log and check the header 341 */ 342 STATIC int 343 xlog_header_check_mount( 344 xfs_mount_t *mp, 345 xlog_rec_header_t *head) 346 { 347 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 348 349 if (uuid_is_nil(&head->h_fs_uuid)) { 350 /* 351 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 352 * h_fs_uuid is nil, we assume this log was last mounted 353 * by IRIX and continue. 354 */ 355 xfs_warn(mp, "nil uuid in log - IRIX style log"); 356 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 357 xfs_warn(mp, "log has mismatched uuid - can't recover"); 358 xlog_header_check_dump(mp, head); 359 XFS_ERROR_REPORT("xlog_header_check_mount", 360 XFS_ERRLEVEL_HIGH, mp); 361 return XFS_ERROR(EFSCORRUPTED); 362 } 363 return 0; 364 } 365 366 STATIC void 367 xlog_recover_iodone( 368 struct xfs_buf *bp) 369 { 370 if (bp->b_error) { 371 /* 372 * We're not going to bother about retrying 373 * this during recovery. One strike! 374 */ 375 xfs_buf_ioerror_alert(bp, __func__); 376 xfs_force_shutdown(bp->b_target->bt_mount, 377 SHUTDOWN_META_IO_ERROR); 378 } 379 bp->b_iodone = NULL; 380 xfs_buf_ioend(bp, 0); 381 } 382 383 /* 384 * This routine finds (to an approximation) the first block in the physical 385 * log which contains the given cycle. It uses a binary search algorithm. 386 * Note that the algorithm can not be perfect because the disk will not 387 * necessarily be perfect. 388 */ 389 STATIC int 390 xlog_find_cycle_start( 391 struct xlog *log, 392 struct xfs_buf *bp, 393 xfs_daddr_t first_blk, 394 xfs_daddr_t *last_blk, 395 uint cycle) 396 { 397 xfs_caddr_t offset; 398 xfs_daddr_t mid_blk; 399 xfs_daddr_t end_blk; 400 uint mid_cycle; 401 int error; 402 403 end_blk = *last_blk; 404 mid_blk = BLK_AVG(first_blk, end_blk); 405 while (mid_blk != first_blk && mid_blk != end_blk) { 406 error = xlog_bread(log, mid_blk, 1, bp, &offset); 407 if (error) 408 return error; 409 mid_cycle = xlog_get_cycle(offset); 410 if (mid_cycle == cycle) 411 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 412 else 413 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 414 mid_blk = BLK_AVG(first_blk, end_blk); 415 } 416 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 417 (mid_blk == end_blk && mid_blk-1 == first_blk)); 418 419 *last_blk = end_blk; 420 421 return 0; 422 } 423 424 /* 425 * Check that a range of blocks does not contain stop_on_cycle_no. 426 * Fill in *new_blk with the block offset where such a block is 427 * found, or with -1 (an invalid block number) if there is no such 428 * block in the range. The scan needs to occur from front to back 429 * and the pointer into the region must be updated since a later 430 * routine will need to perform another test. 431 */ 432 STATIC int 433 xlog_find_verify_cycle( 434 struct xlog *log, 435 xfs_daddr_t start_blk, 436 int nbblks, 437 uint stop_on_cycle_no, 438 xfs_daddr_t *new_blk) 439 { 440 xfs_daddr_t i, j; 441 uint cycle; 442 xfs_buf_t *bp; 443 xfs_daddr_t bufblks; 444 xfs_caddr_t buf = NULL; 445 int error = 0; 446 447 /* 448 * Greedily allocate a buffer big enough to handle the full 449 * range of basic blocks we'll be examining. If that fails, 450 * try a smaller size. We need to be able to read at least 451 * a log sector, or we're out of luck. 452 */ 453 bufblks = 1 << ffs(nbblks); 454 while (bufblks > log->l_logBBsize) 455 bufblks >>= 1; 456 while (!(bp = xlog_get_bp(log, bufblks))) { 457 bufblks >>= 1; 458 if (bufblks < log->l_sectBBsize) 459 return ENOMEM; 460 } 461 462 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 463 int bcount; 464 465 bcount = min(bufblks, (start_blk + nbblks - i)); 466 467 error = xlog_bread(log, i, bcount, bp, &buf); 468 if (error) 469 goto out; 470 471 for (j = 0; j < bcount; j++) { 472 cycle = xlog_get_cycle(buf); 473 if (cycle == stop_on_cycle_no) { 474 *new_blk = i+j; 475 goto out; 476 } 477 478 buf += BBSIZE; 479 } 480 } 481 482 *new_blk = -1; 483 484 out: 485 xlog_put_bp(bp); 486 return error; 487 } 488 489 /* 490 * Potentially backup over partial log record write. 491 * 492 * In the typical case, last_blk is the number of the block directly after 493 * a good log record. Therefore, we subtract one to get the block number 494 * of the last block in the given buffer. extra_bblks contains the number 495 * of blocks we would have read on a previous read. This happens when the 496 * last log record is split over the end of the physical log. 497 * 498 * extra_bblks is the number of blocks potentially verified on a previous 499 * call to this routine. 500 */ 501 STATIC int 502 xlog_find_verify_log_record( 503 struct xlog *log, 504 xfs_daddr_t start_blk, 505 xfs_daddr_t *last_blk, 506 int extra_bblks) 507 { 508 xfs_daddr_t i; 509 xfs_buf_t *bp; 510 xfs_caddr_t offset = NULL; 511 xlog_rec_header_t *head = NULL; 512 int error = 0; 513 int smallmem = 0; 514 int num_blks = *last_blk - start_blk; 515 int xhdrs; 516 517 ASSERT(start_blk != 0 || *last_blk != start_blk); 518 519 if (!(bp = xlog_get_bp(log, num_blks))) { 520 if (!(bp = xlog_get_bp(log, 1))) 521 return ENOMEM; 522 smallmem = 1; 523 } else { 524 error = xlog_bread(log, start_blk, num_blks, bp, &offset); 525 if (error) 526 goto out; 527 offset += ((num_blks - 1) << BBSHIFT); 528 } 529 530 for (i = (*last_blk) - 1; i >= 0; i--) { 531 if (i < start_blk) { 532 /* valid log record not found */ 533 xfs_warn(log->l_mp, 534 "Log inconsistent (didn't find previous header)"); 535 ASSERT(0); 536 error = XFS_ERROR(EIO); 537 goto out; 538 } 539 540 if (smallmem) { 541 error = xlog_bread(log, i, 1, bp, &offset); 542 if (error) 543 goto out; 544 } 545 546 head = (xlog_rec_header_t *)offset; 547 548 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 549 break; 550 551 if (!smallmem) 552 offset -= BBSIZE; 553 } 554 555 /* 556 * We hit the beginning of the physical log & still no header. Return 557 * to caller. If caller can handle a return of -1, then this routine 558 * will be called again for the end of the physical log. 559 */ 560 if (i == -1) { 561 error = -1; 562 goto out; 563 } 564 565 /* 566 * We have the final block of the good log (the first block 567 * of the log record _before_ the head. So we check the uuid. 568 */ 569 if ((error = xlog_header_check_mount(log->l_mp, head))) 570 goto out; 571 572 /* 573 * We may have found a log record header before we expected one. 574 * last_blk will be the 1st block # with a given cycle #. We may end 575 * up reading an entire log record. In this case, we don't want to 576 * reset last_blk. Only when last_blk points in the middle of a log 577 * record do we update last_blk. 578 */ 579 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 580 uint h_size = be32_to_cpu(head->h_size); 581 582 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 583 if (h_size % XLOG_HEADER_CYCLE_SIZE) 584 xhdrs++; 585 } else { 586 xhdrs = 1; 587 } 588 589 if (*last_blk - i + extra_bblks != 590 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 591 *last_blk = i; 592 593 out: 594 xlog_put_bp(bp); 595 return error; 596 } 597 598 /* 599 * Head is defined to be the point of the log where the next log write 600 * write could go. This means that incomplete LR writes at the end are 601 * eliminated when calculating the head. We aren't guaranteed that previous 602 * LR have complete transactions. We only know that a cycle number of 603 * current cycle number -1 won't be present in the log if we start writing 604 * from our current block number. 605 * 606 * last_blk contains the block number of the first block with a given 607 * cycle number. 608 * 609 * Return: zero if normal, non-zero if error. 610 */ 611 STATIC int 612 xlog_find_head( 613 struct xlog *log, 614 xfs_daddr_t *return_head_blk) 615 { 616 xfs_buf_t *bp; 617 xfs_caddr_t offset; 618 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 619 int num_scan_bblks; 620 uint first_half_cycle, last_half_cycle; 621 uint stop_on_cycle; 622 int error, log_bbnum = log->l_logBBsize; 623 624 /* Is the end of the log device zeroed? */ 625 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) { 626 *return_head_blk = first_blk; 627 628 /* Is the whole lot zeroed? */ 629 if (!first_blk) { 630 /* Linux XFS shouldn't generate totally zeroed logs - 631 * mkfs etc write a dummy unmount record to a fresh 632 * log so we can store the uuid in there 633 */ 634 xfs_warn(log->l_mp, "totally zeroed log"); 635 } 636 637 return 0; 638 } else if (error) { 639 xfs_warn(log->l_mp, "empty log check failed"); 640 return error; 641 } 642 643 first_blk = 0; /* get cycle # of 1st block */ 644 bp = xlog_get_bp(log, 1); 645 if (!bp) 646 return ENOMEM; 647 648 error = xlog_bread(log, 0, 1, bp, &offset); 649 if (error) 650 goto bp_err; 651 652 first_half_cycle = xlog_get_cycle(offset); 653 654 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 655 error = xlog_bread(log, last_blk, 1, bp, &offset); 656 if (error) 657 goto bp_err; 658 659 last_half_cycle = xlog_get_cycle(offset); 660 ASSERT(last_half_cycle != 0); 661 662 /* 663 * If the 1st half cycle number is equal to the last half cycle number, 664 * then the entire log is stamped with the same cycle number. In this 665 * case, head_blk can't be set to zero (which makes sense). The below 666 * math doesn't work out properly with head_blk equal to zero. Instead, 667 * we set it to log_bbnum which is an invalid block number, but this 668 * value makes the math correct. If head_blk doesn't changed through 669 * all the tests below, *head_blk is set to zero at the very end rather 670 * than log_bbnum. In a sense, log_bbnum and zero are the same block 671 * in a circular file. 672 */ 673 if (first_half_cycle == last_half_cycle) { 674 /* 675 * In this case we believe that the entire log should have 676 * cycle number last_half_cycle. We need to scan backwards 677 * from the end verifying that there are no holes still 678 * containing last_half_cycle - 1. If we find such a hole, 679 * then the start of that hole will be the new head. The 680 * simple case looks like 681 * x | x ... | x - 1 | x 682 * Another case that fits this picture would be 683 * x | x + 1 | x ... | x 684 * In this case the head really is somewhere at the end of the 685 * log, as one of the latest writes at the beginning was 686 * incomplete. 687 * One more case is 688 * x | x + 1 | x ... | x - 1 | x 689 * This is really the combination of the above two cases, and 690 * the head has to end up at the start of the x-1 hole at the 691 * end of the log. 692 * 693 * In the 256k log case, we will read from the beginning to the 694 * end of the log and search for cycle numbers equal to x-1. 695 * We don't worry about the x+1 blocks that we encounter, 696 * because we know that they cannot be the head since the log 697 * started with x. 698 */ 699 head_blk = log_bbnum; 700 stop_on_cycle = last_half_cycle - 1; 701 } else { 702 /* 703 * In this case we want to find the first block with cycle 704 * number matching last_half_cycle. We expect the log to be 705 * some variation on 706 * x + 1 ... | x ... | x 707 * The first block with cycle number x (last_half_cycle) will 708 * be where the new head belongs. First we do a binary search 709 * for the first occurrence of last_half_cycle. The binary 710 * search may not be totally accurate, so then we scan back 711 * from there looking for occurrences of last_half_cycle before 712 * us. If that backwards scan wraps around the beginning of 713 * the log, then we look for occurrences of last_half_cycle - 1 714 * at the end of the log. The cases we're looking for look 715 * like 716 * v binary search stopped here 717 * x + 1 ... | x | x + 1 | x ... | x 718 * ^ but we want to locate this spot 719 * or 720 * <---------> less than scan distance 721 * x + 1 ... | x ... | x - 1 | x 722 * ^ we want to locate this spot 723 */ 724 stop_on_cycle = last_half_cycle; 725 if ((error = xlog_find_cycle_start(log, bp, first_blk, 726 &head_blk, last_half_cycle))) 727 goto bp_err; 728 } 729 730 /* 731 * Now validate the answer. Scan back some number of maximum possible 732 * blocks and make sure each one has the expected cycle number. The 733 * maximum is determined by the total possible amount of buffering 734 * in the in-core log. The following number can be made tighter if 735 * we actually look at the block size of the filesystem. 736 */ 737 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 738 if (head_blk >= num_scan_bblks) { 739 /* 740 * We are guaranteed that the entire check can be performed 741 * in one buffer. 742 */ 743 start_blk = head_blk - num_scan_bblks; 744 if ((error = xlog_find_verify_cycle(log, 745 start_blk, num_scan_bblks, 746 stop_on_cycle, &new_blk))) 747 goto bp_err; 748 if (new_blk != -1) 749 head_blk = new_blk; 750 } else { /* need to read 2 parts of log */ 751 /* 752 * We are going to scan backwards in the log in two parts. 753 * First we scan the physical end of the log. In this part 754 * of the log, we are looking for blocks with cycle number 755 * last_half_cycle - 1. 756 * If we find one, then we know that the log starts there, as 757 * we've found a hole that didn't get written in going around 758 * the end of the physical log. The simple case for this is 759 * x + 1 ... | x ... | x - 1 | x 760 * <---------> less than scan distance 761 * If all of the blocks at the end of the log have cycle number 762 * last_half_cycle, then we check the blocks at the start of 763 * the log looking for occurrences of last_half_cycle. If we 764 * find one, then our current estimate for the location of the 765 * first occurrence of last_half_cycle is wrong and we move 766 * back to the hole we've found. This case looks like 767 * x + 1 ... | x | x + 1 | x ... 768 * ^ binary search stopped here 769 * Another case we need to handle that only occurs in 256k 770 * logs is 771 * x + 1 ... | x ... | x+1 | x ... 772 * ^ binary search stops here 773 * In a 256k log, the scan at the end of the log will see the 774 * x + 1 blocks. We need to skip past those since that is 775 * certainly not the head of the log. By searching for 776 * last_half_cycle-1 we accomplish that. 777 */ 778 ASSERT(head_blk <= INT_MAX && 779 (xfs_daddr_t) num_scan_bblks >= head_blk); 780 start_blk = log_bbnum - (num_scan_bblks - head_blk); 781 if ((error = xlog_find_verify_cycle(log, start_blk, 782 num_scan_bblks - (int)head_blk, 783 (stop_on_cycle - 1), &new_blk))) 784 goto bp_err; 785 if (new_blk != -1) { 786 head_blk = new_blk; 787 goto validate_head; 788 } 789 790 /* 791 * Scan beginning of log now. The last part of the physical 792 * log is good. This scan needs to verify that it doesn't find 793 * the last_half_cycle. 794 */ 795 start_blk = 0; 796 ASSERT(head_blk <= INT_MAX); 797 if ((error = xlog_find_verify_cycle(log, 798 start_blk, (int)head_blk, 799 stop_on_cycle, &new_blk))) 800 goto bp_err; 801 if (new_blk != -1) 802 head_blk = new_blk; 803 } 804 805 validate_head: 806 /* 807 * Now we need to make sure head_blk is not pointing to a block in 808 * the middle of a log record. 809 */ 810 num_scan_bblks = XLOG_REC_SHIFT(log); 811 if (head_blk >= num_scan_bblks) { 812 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 813 814 /* start ptr at last block ptr before head_blk */ 815 if ((error = xlog_find_verify_log_record(log, start_blk, 816 &head_blk, 0)) == -1) { 817 error = XFS_ERROR(EIO); 818 goto bp_err; 819 } else if (error) 820 goto bp_err; 821 } else { 822 start_blk = 0; 823 ASSERT(head_blk <= INT_MAX); 824 if ((error = xlog_find_verify_log_record(log, start_blk, 825 &head_blk, 0)) == -1) { 826 /* We hit the beginning of the log during our search */ 827 start_blk = log_bbnum - (num_scan_bblks - head_blk); 828 new_blk = log_bbnum; 829 ASSERT(start_blk <= INT_MAX && 830 (xfs_daddr_t) log_bbnum-start_blk >= 0); 831 ASSERT(head_blk <= INT_MAX); 832 if ((error = xlog_find_verify_log_record(log, 833 start_blk, &new_blk, 834 (int)head_blk)) == -1) { 835 error = XFS_ERROR(EIO); 836 goto bp_err; 837 } else if (error) 838 goto bp_err; 839 if (new_blk != log_bbnum) 840 head_blk = new_blk; 841 } else if (error) 842 goto bp_err; 843 } 844 845 xlog_put_bp(bp); 846 if (head_blk == log_bbnum) 847 *return_head_blk = 0; 848 else 849 *return_head_blk = head_blk; 850 /* 851 * When returning here, we have a good block number. Bad block 852 * means that during a previous crash, we didn't have a clean break 853 * from cycle number N to cycle number N-1. In this case, we need 854 * to find the first block with cycle number N-1. 855 */ 856 return 0; 857 858 bp_err: 859 xlog_put_bp(bp); 860 861 if (error) 862 xfs_warn(log->l_mp, "failed to find log head"); 863 return error; 864 } 865 866 /* 867 * Find the sync block number or the tail of the log. 868 * 869 * This will be the block number of the last record to have its 870 * associated buffers synced to disk. Every log record header has 871 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 872 * to get a sync block number. The only concern is to figure out which 873 * log record header to believe. 874 * 875 * The following algorithm uses the log record header with the largest 876 * lsn. The entire log record does not need to be valid. We only care 877 * that the header is valid. 878 * 879 * We could speed up search by using current head_blk buffer, but it is not 880 * available. 881 */ 882 STATIC int 883 xlog_find_tail( 884 struct xlog *log, 885 xfs_daddr_t *head_blk, 886 xfs_daddr_t *tail_blk) 887 { 888 xlog_rec_header_t *rhead; 889 xlog_op_header_t *op_head; 890 xfs_caddr_t offset = NULL; 891 xfs_buf_t *bp; 892 int error, i, found; 893 xfs_daddr_t umount_data_blk; 894 xfs_daddr_t after_umount_blk; 895 xfs_lsn_t tail_lsn; 896 int hblks; 897 898 found = 0; 899 900 /* 901 * Find previous log record 902 */ 903 if ((error = xlog_find_head(log, head_blk))) 904 return error; 905 906 bp = xlog_get_bp(log, 1); 907 if (!bp) 908 return ENOMEM; 909 if (*head_blk == 0) { /* special case */ 910 error = xlog_bread(log, 0, 1, bp, &offset); 911 if (error) 912 goto done; 913 914 if (xlog_get_cycle(offset) == 0) { 915 *tail_blk = 0; 916 /* leave all other log inited values alone */ 917 goto done; 918 } 919 } 920 921 /* 922 * Search backwards looking for log record header block 923 */ 924 ASSERT(*head_blk < INT_MAX); 925 for (i = (int)(*head_blk) - 1; i >= 0; i--) { 926 error = xlog_bread(log, i, 1, bp, &offset); 927 if (error) 928 goto done; 929 930 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 931 found = 1; 932 break; 933 } 934 } 935 /* 936 * If we haven't found the log record header block, start looking 937 * again from the end of the physical log. XXXmiken: There should be 938 * a check here to make sure we didn't search more than N blocks in 939 * the previous code. 940 */ 941 if (!found) { 942 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) { 943 error = xlog_bread(log, i, 1, bp, &offset); 944 if (error) 945 goto done; 946 947 if (*(__be32 *)offset == 948 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 949 found = 2; 950 break; 951 } 952 } 953 } 954 if (!found) { 955 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); 956 ASSERT(0); 957 return XFS_ERROR(EIO); 958 } 959 960 /* find blk_no of tail of log */ 961 rhead = (xlog_rec_header_t *)offset; 962 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 963 964 /* 965 * Reset log values according to the state of the log when we 966 * crashed. In the case where head_blk == 0, we bump curr_cycle 967 * one because the next write starts a new cycle rather than 968 * continuing the cycle of the last good log record. At this 969 * point we have guaranteed that all partial log records have been 970 * accounted for. Therefore, we know that the last good log record 971 * written was complete and ended exactly on the end boundary 972 * of the physical log. 973 */ 974 log->l_prev_block = i; 975 log->l_curr_block = (int)*head_blk; 976 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 977 if (found == 2) 978 log->l_curr_cycle++; 979 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); 980 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); 981 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, 982 BBTOB(log->l_curr_block)); 983 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, 984 BBTOB(log->l_curr_block)); 985 986 /* 987 * Look for unmount record. If we find it, then we know there 988 * was a clean unmount. Since 'i' could be the last block in 989 * the physical log, we convert to a log block before comparing 990 * to the head_blk. 991 * 992 * Save the current tail lsn to use to pass to 993 * xlog_clear_stale_blocks() below. We won't want to clear the 994 * unmount record if there is one, so we pass the lsn of the 995 * unmount record rather than the block after it. 996 */ 997 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 998 int h_size = be32_to_cpu(rhead->h_size); 999 int h_version = be32_to_cpu(rhead->h_version); 1000 1001 if ((h_version & XLOG_VERSION_2) && 1002 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 1003 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 1004 if (h_size % XLOG_HEADER_CYCLE_SIZE) 1005 hblks++; 1006 } else { 1007 hblks = 1; 1008 } 1009 } else { 1010 hblks = 1; 1011 } 1012 after_umount_blk = (i + hblks + (int) 1013 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize; 1014 tail_lsn = atomic64_read(&log->l_tail_lsn); 1015 if (*head_blk == after_umount_blk && 1016 be32_to_cpu(rhead->h_num_logops) == 1) { 1017 umount_data_blk = (i + hblks) % log->l_logBBsize; 1018 error = xlog_bread(log, umount_data_blk, 1, bp, &offset); 1019 if (error) 1020 goto done; 1021 1022 op_head = (xlog_op_header_t *)offset; 1023 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 1024 /* 1025 * Set tail and last sync so that newly written 1026 * log records will point recovery to after the 1027 * current unmount record. 1028 */ 1029 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1030 log->l_curr_cycle, after_umount_blk); 1031 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1032 log->l_curr_cycle, after_umount_blk); 1033 *tail_blk = after_umount_blk; 1034 1035 /* 1036 * Note that the unmount was clean. If the unmount 1037 * was not clean, we need to know this to rebuild the 1038 * superblock counters from the perag headers if we 1039 * have a filesystem using non-persistent counters. 1040 */ 1041 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 1042 } 1043 } 1044 1045 /* 1046 * Make sure that there are no blocks in front of the head 1047 * with the same cycle number as the head. This can happen 1048 * because we allow multiple outstanding log writes concurrently, 1049 * and the later writes might make it out before earlier ones. 1050 * 1051 * We use the lsn from before modifying it so that we'll never 1052 * overwrite the unmount record after a clean unmount. 1053 * 1054 * Do this only if we are going to recover the filesystem 1055 * 1056 * NOTE: This used to say "if (!readonly)" 1057 * However on Linux, we can & do recover a read-only filesystem. 1058 * We only skip recovery if NORECOVERY is specified on mount, 1059 * in which case we would not be here. 1060 * 1061 * But... if the -device- itself is readonly, just skip this. 1062 * We can't recover this device anyway, so it won't matter. 1063 */ 1064 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) 1065 error = xlog_clear_stale_blocks(log, tail_lsn); 1066 1067 done: 1068 xlog_put_bp(bp); 1069 1070 if (error) 1071 xfs_warn(log->l_mp, "failed to locate log tail"); 1072 return error; 1073 } 1074 1075 /* 1076 * Is the log zeroed at all? 1077 * 1078 * The last binary search should be changed to perform an X block read 1079 * once X becomes small enough. You can then search linearly through 1080 * the X blocks. This will cut down on the number of reads we need to do. 1081 * 1082 * If the log is partially zeroed, this routine will pass back the blkno 1083 * of the first block with cycle number 0. It won't have a complete LR 1084 * preceding it. 1085 * 1086 * Return: 1087 * 0 => the log is completely written to 1088 * -1 => use *blk_no as the first block of the log 1089 * >0 => error has occurred 1090 */ 1091 STATIC int 1092 xlog_find_zeroed( 1093 struct xlog *log, 1094 xfs_daddr_t *blk_no) 1095 { 1096 xfs_buf_t *bp; 1097 xfs_caddr_t offset; 1098 uint first_cycle, last_cycle; 1099 xfs_daddr_t new_blk, last_blk, start_blk; 1100 xfs_daddr_t num_scan_bblks; 1101 int error, log_bbnum = log->l_logBBsize; 1102 1103 *blk_no = 0; 1104 1105 /* check totally zeroed log */ 1106 bp = xlog_get_bp(log, 1); 1107 if (!bp) 1108 return ENOMEM; 1109 error = xlog_bread(log, 0, 1, bp, &offset); 1110 if (error) 1111 goto bp_err; 1112 1113 first_cycle = xlog_get_cycle(offset); 1114 if (first_cycle == 0) { /* completely zeroed log */ 1115 *blk_no = 0; 1116 xlog_put_bp(bp); 1117 return -1; 1118 } 1119 1120 /* check partially zeroed log */ 1121 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset); 1122 if (error) 1123 goto bp_err; 1124 1125 last_cycle = xlog_get_cycle(offset); 1126 if (last_cycle != 0) { /* log completely written to */ 1127 xlog_put_bp(bp); 1128 return 0; 1129 } else if (first_cycle != 1) { 1130 /* 1131 * If the cycle of the last block is zero, the cycle of 1132 * the first block must be 1. If it's not, maybe we're 1133 * not looking at a log... Bail out. 1134 */ 1135 xfs_warn(log->l_mp, 1136 "Log inconsistent or not a log (last==0, first!=1)"); 1137 return XFS_ERROR(EINVAL); 1138 } 1139 1140 /* we have a partially zeroed log */ 1141 last_blk = log_bbnum-1; 1142 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1143 goto bp_err; 1144 1145 /* 1146 * Validate the answer. Because there is no way to guarantee that 1147 * the entire log is made up of log records which are the same size, 1148 * we scan over the defined maximum blocks. At this point, the maximum 1149 * is not chosen to mean anything special. XXXmiken 1150 */ 1151 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1152 ASSERT(num_scan_bblks <= INT_MAX); 1153 1154 if (last_blk < num_scan_bblks) 1155 num_scan_bblks = last_blk; 1156 start_blk = last_blk - num_scan_bblks; 1157 1158 /* 1159 * We search for any instances of cycle number 0 that occur before 1160 * our current estimate of the head. What we're trying to detect is 1161 * 1 ... | 0 | 1 | 0... 1162 * ^ binary search ends here 1163 */ 1164 if ((error = xlog_find_verify_cycle(log, start_blk, 1165 (int)num_scan_bblks, 0, &new_blk))) 1166 goto bp_err; 1167 if (new_blk != -1) 1168 last_blk = new_blk; 1169 1170 /* 1171 * Potentially backup over partial log record write. We don't need 1172 * to search the end of the log because we know it is zero. 1173 */ 1174 if ((error = xlog_find_verify_log_record(log, start_blk, 1175 &last_blk, 0)) == -1) { 1176 error = XFS_ERROR(EIO); 1177 goto bp_err; 1178 } else if (error) 1179 goto bp_err; 1180 1181 *blk_no = last_blk; 1182 bp_err: 1183 xlog_put_bp(bp); 1184 if (error) 1185 return error; 1186 return -1; 1187 } 1188 1189 /* 1190 * These are simple subroutines used by xlog_clear_stale_blocks() below 1191 * to initialize a buffer full of empty log record headers and write 1192 * them into the log. 1193 */ 1194 STATIC void 1195 xlog_add_record( 1196 struct xlog *log, 1197 xfs_caddr_t buf, 1198 int cycle, 1199 int block, 1200 int tail_cycle, 1201 int tail_block) 1202 { 1203 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1204 1205 memset(buf, 0, BBSIZE); 1206 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1207 recp->h_cycle = cpu_to_be32(cycle); 1208 recp->h_version = cpu_to_be32( 1209 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1210 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1211 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1212 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1213 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1214 } 1215 1216 STATIC int 1217 xlog_write_log_records( 1218 struct xlog *log, 1219 int cycle, 1220 int start_block, 1221 int blocks, 1222 int tail_cycle, 1223 int tail_block) 1224 { 1225 xfs_caddr_t offset; 1226 xfs_buf_t *bp; 1227 int balign, ealign; 1228 int sectbb = log->l_sectBBsize; 1229 int end_block = start_block + blocks; 1230 int bufblks; 1231 int error = 0; 1232 int i, j = 0; 1233 1234 /* 1235 * Greedily allocate a buffer big enough to handle the full 1236 * range of basic blocks to be written. If that fails, try 1237 * a smaller size. We need to be able to write at least a 1238 * log sector, or we're out of luck. 1239 */ 1240 bufblks = 1 << ffs(blocks); 1241 while (bufblks > log->l_logBBsize) 1242 bufblks >>= 1; 1243 while (!(bp = xlog_get_bp(log, bufblks))) { 1244 bufblks >>= 1; 1245 if (bufblks < sectbb) 1246 return ENOMEM; 1247 } 1248 1249 /* We may need to do a read at the start to fill in part of 1250 * the buffer in the starting sector not covered by the first 1251 * write below. 1252 */ 1253 balign = round_down(start_block, sectbb); 1254 if (balign != start_block) { 1255 error = xlog_bread_noalign(log, start_block, 1, bp); 1256 if (error) 1257 goto out_put_bp; 1258 1259 j = start_block - balign; 1260 } 1261 1262 for (i = start_block; i < end_block; i += bufblks) { 1263 int bcount, endcount; 1264 1265 bcount = min(bufblks, end_block - start_block); 1266 endcount = bcount - j; 1267 1268 /* We may need to do a read at the end to fill in part of 1269 * the buffer in the final sector not covered by the write. 1270 * If this is the same sector as the above read, skip it. 1271 */ 1272 ealign = round_down(end_block, sectbb); 1273 if (j == 0 && (start_block + endcount > ealign)) { 1274 offset = bp->b_addr + BBTOB(ealign - start_block); 1275 error = xlog_bread_offset(log, ealign, sectbb, 1276 bp, offset); 1277 if (error) 1278 break; 1279 1280 } 1281 1282 offset = xlog_align(log, start_block, endcount, bp); 1283 for (; j < endcount; j++) { 1284 xlog_add_record(log, offset, cycle, i+j, 1285 tail_cycle, tail_block); 1286 offset += BBSIZE; 1287 } 1288 error = xlog_bwrite(log, start_block, endcount, bp); 1289 if (error) 1290 break; 1291 start_block += endcount; 1292 j = 0; 1293 } 1294 1295 out_put_bp: 1296 xlog_put_bp(bp); 1297 return error; 1298 } 1299 1300 /* 1301 * This routine is called to blow away any incomplete log writes out 1302 * in front of the log head. We do this so that we won't become confused 1303 * if we come up, write only a little bit more, and then crash again. 1304 * If we leave the partial log records out there, this situation could 1305 * cause us to think those partial writes are valid blocks since they 1306 * have the current cycle number. We get rid of them by overwriting them 1307 * with empty log records with the old cycle number rather than the 1308 * current one. 1309 * 1310 * The tail lsn is passed in rather than taken from 1311 * the log so that we will not write over the unmount record after a 1312 * clean unmount in a 512 block log. Doing so would leave the log without 1313 * any valid log records in it until a new one was written. If we crashed 1314 * during that time we would not be able to recover. 1315 */ 1316 STATIC int 1317 xlog_clear_stale_blocks( 1318 struct xlog *log, 1319 xfs_lsn_t tail_lsn) 1320 { 1321 int tail_cycle, head_cycle; 1322 int tail_block, head_block; 1323 int tail_distance, max_distance; 1324 int distance; 1325 int error; 1326 1327 tail_cycle = CYCLE_LSN(tail_lsn); 1328 tail_block = BLOCK_LSN(tail_lsn); 1329 head_cycle = log->l_curr_cycle; 1330 head_block = log->l_curr_block; 1331 1332 /* 1333 * Figure out the distance between the new head of the log 1334 * and the tail. We want to write over any blocks beyond the 1335 * head that we may have written just before the crash, but 1336 * we don't want to overwrite the tail of the log. 1337 */ 1338 if (head_cycle == tail_cycle) { 1339 /* 1340 * The tail is behind the head in the physical log, 1341 * so the distance from the head to the tail is the 1342 * distance from the head to the end of the log plus 1343 * the distance from the beginning of the log to the 1344 * tail. 1345 */ 1346 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1347 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1348 XFS_ERRLEVEL_LOW, log->l_mp); 1349 return XFS_ERROR(EFSCORRUPTED); 1350 } 1351 tail_distance = tail_block + (log->l_logBBsize - head_block); 1352 } else { 1353 /* 1354 * The head is behind the tail in the physical log, 1355 * so the distance from the head to the tail is just 1356 * the tail block minus the head block. 1357 */ 1358 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1359 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1360 XFS_ERRLEVEL_LOW, log->l_mp); 1361 return XFS_ERROR(EFSCORRUPTED); 1362 } 1363 tail_distance = tail_block - head_block; 1364 } 1365 1366 /* 1367 * If the head is right up against the tail, we can't clear 1368 * anything. 1369 */ 1370 if (tail_distance <= 0) { 1371 ASSERT(tail_distance == 0); 1372 return 0; 1373 } 1374 1375 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1376 /* 1377 * Take the smaller of the maximum amount of outstanding I/O 1378 * we could have and the distance to the tail to clear out. 1379 * We take the smaller so that we don't overwrite the tail and 1380 * we don't waste all day writing from the head to the tail 1381 * for no reason. 1382 */ 1383 max_distance = MIN(max_distance, tail_distance); 1384 1385 if ((head_block + max_distance) <= log->l_logBBsize) { 1386 /* 1387 * We can stomp all the blocks we need to without 1388 * wrapping around the end of the log. Just do it 1389 * in a single write. Use the cycle number of the 1390 * current cycle minus one so that the log will look like: 1391 * n ... | n - 1 ... 1392 */ 1393 error = xlog_write_log_records(log, (head_cycle - 1), 1394 head_block, max_distance, tail_cycle, 1395 tail_block); 1396 if (error) 1397 return error; 1398 } else { 1399 /* 1400 * We need to wrap around the end of the physical log in 1401 * order to clear all the blocks. Do it in two separate 1402 * I/Os. The first write should be from the head to the 1403 * end of the physical log, and it should use the current 1404 * cycle number minus one just like above. 1405 */ 1406 distance = log->l_logBBsize - head_block; 1407 error = xlog_write_log_records(log, (head_cycle - 1), 1408 head_block, distance, tail_cycle, 1409 tail_block); 1410 1411 if (error) 1412 return error; 1413 1414 /* 1415 * Now write the blocks at the start of the physical log. 1416 * This writes the remainder of the blocks we want to clear. 1417 * It uses the current cycle number since we're now on the 1418 * same cycle as the head so that we get: 1419 * n ... n ... | n - 1 ... 1420 * ^^^^^ blocks we're writing 1421 */ 1422 distance = max_distance - (log->l_logBBsize - head_block); 1423 error = xlog_write_log_records(log, head_cycle, 0, distance, 1424 tail_cycle, tail_block); 1425 if (error) 1426 return error; 1427 } 1428 1429 return 0; 1430 } 1431 1432 /****************************************************************************** 1433 * 1434 * Log recover routines 1435 * 1436 ****************************************************************************** 1437 */ 1438 1439 STATIC xlog_recover_t * 1440 xlog_recover_find_tid( 1441 struct hlist_head *head, 1442 xlog_tid_t tid) 1443 { 1444 xlog_recover_t *trans; 1445 1446 hlist_for_each_entry(trans, head, r_list) { 1447 if (trans->r_log_tid == tid) 1448 return trans; 1449 } 1450 return NULL; 1451 } 1452 1453 STATIC void 1454 xlog_recover_new_tid( 1455 struct hlist_head *head, 1456 xlog_tid_t tid, 1457 xfs_lsn_t lsn) 1458 { 1459 xlog_recover_t *trans; 1460 1461 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP); 1462 trans->r_log_tid = tid; 1463 trans->r_lsn = lsn; 1464 INIT_LIST_HEAD(&trans->r_itemq); 1465 1466 INIT_HLIST_NODE(&trans->r_list); 1467 hlist_add_head(&trans->r_list, head); 1468 } 1469 1470 STATIC void 1471 xlog_recover_add_item( 1472 struct list_head *head) 1473 { 1474 xlog_recover_item_t *item; 1475 1476 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 1477 INIT_LIST_HEAD(&item->ri_list); 1478 list_add_tail(&item->ri_list, head); 1479 } 1480 1481 STATIC int 1482 xlog_recover_add_to_cont_trans( 1483 struct xlog *log, 1484 struct xlog_recover *trans, 1485 xfs_caddr_t dp, 1486 int len) 1487 { 1488 xlog_recover_item_t *item; 1489 xfs_caddr_t ptr, old_ptr; 1490 int old_len; 1491 1492 if (list_empty(&trans->r_itemq)) { 1493 /* finish copying rest of trans header */ 1494 xlog_recover_add_item(&trans->r_itemq); 1495 ptr = (xfs_caddr_t) &trans->r_theader + 1496 sizeof(xfs_trans_header_t) - len; 1497 memcpy(ptr, dp, len); /* d, s, l */ 1498 return 0; 1499 } 1500 /* take the tail entry */ 1501 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 1502 1503 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 1504 old_len = item->ri_buf[item->ri_cnt-1].i_len; 1505 1506 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP); 1507 memcpy(&ptr[old_len], dp, len); /* d, s, l */ 1508 item->ri_buf[item->ri_cnt-1].i_len += len; 1509 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 1510 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 1511 return 0; 1512 } 1513 1514 /* 1515 * The next region to add is the start of a new region. It could be 1516 * a whole region or it could be the first part of a new region. Because 1517 * of this, the assumption here is that the type and size fields of all 1518 * format structures fit into the first 32 bits of the structure. 1519 * 1520 * This works because all regions must be 32 bit aligned. Therefore, we 1521 * either have both fields or we have neither field. In the case we have 1522 * neither field, the data part of the region is zero length. We only have 1523 * a log_op_header and can throw away the header since a new one will appear 1524 * later. If we have at least 4 bytes, then we can determine how many regions 1525 * will appear in the current log item. 1526 */ 1527 STATIC int 1528 xlog_recover_add_to_trans( 1529 struct xlog *log, 1530 struct xlog_recover *trans, 1531 xfs_caddr_t dp, 1532 int len) 1533 { 1534 xfs_inode_log_format_t *in_f; /* any will do */ 1535 xlog_recover_item_t *item; 1536 xfs_caddr_t ptr; 1537 1538 if (!len) 1539 return 0; 1540 if (list_empty(&trans->r_itemq)) { 1541 /* we need to catch log corruptions here */ 1542 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 1543 xfs_warn(log->l_mp, "%s: bad header magic number", 1544 __func__); 1545 ASSERT(0); 1546 return XFS_ERROR(EIO); 1547 } 1548 if (len == sizeof(xfs_trans_header_t)) 1549 xlog_recover_add_item(&trans->r_itemq); 1550 memcpy(&trans->r_theader, dp, len); /* d, s, l */ 1551 return 0; 1552 } 1553 1554 ptr = kmem_alloc(len, KM_SLEEP); 1555 memcpy(ptr, dp, len); 1556 in_f = (xfs_inode_log_format_t *)ptr; 1557 1558 /* take the tail entry */ 1559 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 1560 if (item->ri_total != 0 && 1561 item->ri_total == item->ri_cnt) { 1562 /* tail item is in use, get a new one */ 1563 xlog_recover_add_item(&trans->r_itemq); 1564 item = list_entry(trans->r_itemq.prev, 1565 xlog_recover_item_t, ri_list); 1566 } 1567 1568 if (item->ri_total == 0) { /* first region to be added */ 1569 if (in_f->ilf_size == 0 || 1570 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 1571 xfs_warn(log->l_mp, 1572 "bad number of regions (%d) in inode log format", 1573 in_f->ilf_size); 1574 ASSERT(0); 1575 return XFS_ERROR(EIO); 1576 } 1577 1578 item->ri_total = in_f->ilf_size; 1579 item->ri_buf = 1580 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 1581 KM_SLEEP); 1582 } 1583 ASSERT(item->ri_total > item->ri_cnt); 1584 /* Description region is ri_buf[0] */ 1585 item->ri_buf[item->ri_cnt].i_addr = ptr; 1586 item->ri_buf[item->ri_cnt].i_len = len; 1587 item->ri_cnt++; 1588 trace_xfs_log_recover_item_add(log, trans, item, 0); 1589 return 0; 1590 } 1591 1592 /* 1593 * Sort the log items in the transaction. Cancelled buffers need 1594 * to be put first so they are processed before any items that might 1595 * modify the buffers. If they are cancelled, then the modifications 1596 * don't need to be replayed. 1597 */ 1598 STATIC int 1599 xlog_recover_reorder_trans( 1600 struct xlog *log, 1601 struct xlog_recover *trans, 1602 int pass) 1603 { 1604 xlog_recover_item_t *item, *n; 1605 LIST_HEAD(sort_list); 1606 1607 list_splice_init(&trans->r_itemq, &sort_list); 1608 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1609 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1610 1611 switch (ITEM_TYPE(item)) { 1612 case XFS_LI_BUF: 1613 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 1614 trace_xfs_log_recover_item_reorder_head(log, 1615 trans, item, pass); 1616 list_move(&item->ri_list, &trans->r_itemq); 1617 break; 1618 } 1619 case XFS_LI_INODE: 1620 case XFS_LI_DQUOT: 1621 case XFS_LI_QUOTAOFF: 1622 case XFS_LI_EFD: 1623 case XFS_LI_EFI: 1624 trace_xfs_log_recover_item_reorder_tail(log, 1625 trans, item, pass); 1626 list_move_tail(&item->ri_list, &trans->r_itemq); 1627 break; 1628 default: 1629 xfs_warn(log->l_mp, 1630 "%s: unrecognized type of log operation", 1631 __func__); 1632 ASSERT(0); 1633 return XFS_ERROR(EIO); 1634 } 1635 } 1636 ASSERT(list_empty(&sort_list)); 1637 return 0; 1638 } 1639 1640 /* 1641 * Build up the table of buf cancel records so that we don't replay 1642 * cancelled data in the second pass. For buffer records that are 1643 * not cancel records, there is nothing to do here so we just return. 1644 * 1645 * If we get a cancel record which is already in the table, this indicates 1646 * that the buffer was cancelled multiple times. In order to ensure 1647 * that during pass 2 we keep the record in the table until we reach its 1648 * last occurrence in the log, we keep a reference count in the cancel 1649 * record in the table to tell us how many times we expect to see this 1650 * record during the second pass. 1651 */ 1652 STATIC int 1653 xlog_recover_buffer_pass1( 1654 struct xlog *log, 1655 struct xlog_recover_item *item) 1656 { 1657 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1658 struct list_head *bucket; 1659 struct xfs_buf_cancel *bcp; 1660 1661 /* 1662 * If this isn't a cancel buffer item, then just return. 1663 */ 1664 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 1665 trace_xfs_log_recover_buf_not_cancel(log, buf_f); 1666 return 0; 1667 } 1668 1669 /* 1670 * Insert an xfs_buf_cancel record into the hash table of them. 1671 * If there is already an identical record, bump its reference count. 1672 */ 1673 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno); 1674 list_for_each_entry(bcp, bucket, bc_list) { 1675 if (bcp->bc_blkno == buf_f->blf_blkno && 1676 bcp->bc_len == buf_f->blf_len) { 1677 bcp->bc_refcount++; 1678 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f); 1679 return 0; 1680 } 1681 } 1682 1683 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP); 1684 bcp->bc_blkno = buf_f->blf_blkno; 1685 bcp->bc_len = buf_f->blf_len; 1686 bcp->bc_refcount = 1; 1687 list_add_tail(&bcp->bc_list, bucket); 1688 1689 trace_xfs_log_recover_buf_cancel_add(log, buf_f); 1690 return 0; 1691 } 1692 1693 /* 1694 * Check to see whether the buffer being recovered has a corresponding 1695 * entry in the buffer cancel record table. If it does then return 1 1696 * so that it will be cancelled, otherwise return 0. If the buffer is 1697 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement 1698 * the refcount on the entry in the table and remove it from the table 1699 * if this is the last reference. 1700 * 1701 * We remove the cancel record from the table when we encounter its 1702 * last occurrence in the log so that if the same buffer is re-used 1703 * again after its last cancellation we actually replay the changes 1704 * made at that point. 1705 */ 1706 STATIC int 1707 xlog_check_buffer_cancelled( 1708 struct xlog *log, 1709 xfs_daddr_t blkno, 1710 uint len, 1711 ushort flags) 1712 { 1713 struct list_head *bucket; 1714 struct xfs_buf_cancel *bcp; 1715 1716 if (log->l_buf_cancel_table == NULL) { 1717 /* 1718 * There is nothing in the table built in pass one, 1719 * so this buffer must not be cancelled. 1720 */ 1721 ASSERT(!(flags & XFS_BLF_CANCEL)); 1722 return 0; 1723 } 1724 1725 /* 1726 * Search for an entry in the cancel table that matches our buffer. 1727 */ 1728 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); 1729 list_for_each_entry(bcp, bucket, bc_list) { 1730 if (bcp->bc_blkno == blkno && bcp->bc_len == len) 1731 goto found; 1732 } 1733 1734 /* 1735 * We didn't find a corresponding entry in the table, so return 0 so 1736 * that the buffer is NOT cancelled. 1737 */ 1738 ASSERT(!(flags & XFS_BLF_CANCEL)); 1739 return 0; 1740 1741 found: 1742 /* 1743 * We've go a match, so return 1 so that the recovery of this buffer 1744 * is cancelled. If this buffer is actually a buffer cancel log 1745 * item, then decrement the refcount on the one in the table and 1746 * remove it if this is the last reference. 1747 */ 1748 if (flags & XFS_BLF_CANCEL) { 1749 if (--bcp->bc_refcount == 0) { 1750 list_del(&bcp->bc_list); 1751 kmem_free(bcp); 1752 } 1753 } 1754 return 1; 1755 } 1756 1757 /* 1758 * Perform recovery for a buffer full of inodes. In these buffers, the only 1759 * data which should be recovered is that which corresponds to the 1760 * di_next_unlinked pointers in the on disk inode structures. The rest of the 1761 * data for the inodes is always logged through the inodes themselves rather 1762 * than the inode buffer and is recovered in xlog_recover_inode_pass2(). 1763 * 1764 * The only time when buffers full of inodes are fully recovered is when the 1765 * buffer is full of newly allocated inodes. In this case the buffer will 1766 * not be marked as an inode buffer and so will be sent to 1767 * xlog_recover_do_reg_buffer() below during recovery. 1768 */ 1769 STATIC int 1770 xlog_recover_do_inode_buffer( 1771 struct xfs_mount *mp, 1772 xlog_recover_item_t *item, 1773 struct xfs_buf *bp, 1774 xfs_buf_log_format_t *buf_f) 1775 { 1776 int i; 1777 int item_index = 0; 1778 int bit = 0; 1779 int nbits = 0; 1780 int reg_buf_offset = 0; 1781 int reg_buf_bytes = 0; 1782 int next_unlinked_offset; 1783 int inodes_per_buf; 1784 xfs_agino_t *logged_nextp; 1785 xfs_agino_t *buffer_nextp; 1786 1787 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); 1788 1789 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog; 1790 for (i = 0; i < inodes_per_buf; i++) { 1791 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 1792 offsetof(xfs_dinode_t, di_next_unlinked); 1793 1794 while (next_unlinked_offset >= 1795 (reg_buf_offset + reg_buf_bytes)) { 1796 /* 1797 * The next di_next_unlinked field is beyond 1798 * the current logged region. Find the next 1799 * logged region that contains or is beyond 1800 * the current di_next_unlinked field. 1801 */ 1802 bit += nbits; 1803 bit = xfs_next_bit(buf_f->blf_data_map, 1804 buf_f->blf_map_size, bit); 1805 1806 /* 1807 * If there are no more logged regions in the 1808 * buffer, then we're done. 1809 */ 1810 if (bit == -1) 1811 return 0; 1812 1813 nbits = xfs_contig_bits(buf_f->blf_data_map, 1814 buf_f->blf_map_size, bit); 1815 ASSERT(nbits > 0); 1816 reg_buf_offset = bit << XFS_BLF_SHIFT; 1817 reg_buf_bytes = nbits << XFS_BLF_SHIFT; 1818 item_index++; 1819 } 1820 1821 /* 1822 * If the current logged region starts after the current 1823 * di_next_unlinked field, then move on to the next 1824 * di_next_unlinked field. 1825 */ 1826 if (next_unlinked_offset < reg_buf_offset) 1827 continue; 1828 1829 ASSERT(item->ri_buf[item_index].i_addr != NULL); 1830 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); 1831 ASSERT((reg_buf_offset + reg_buf_bytes) <= 1832 BBTOB(bp->b_io_length)); 1833 1834 /* 1835 * The current logged region contains a copy of the 1836 * current di_next_unlinked field. Extract its value 1837 * and copy it to the buffer copy. 1838 */ 1839 logged_nextp = item->ri_buf[item_index].i_addr + 1840 next_unlinked_offset - reg_buf_offset; 1841 if (unlikely(*logged_nextp == 0)) { 1842 xfs_alert(mp, 1843 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). " 1844 "Trying to replay bad (0) inode di_next_unlinked field.", 1845 item, bp); 1846 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 1847 XFS_ERRLEVEL_LOW, mp); 1848 return XFS_ERROR(EFSCORRUPTED); 1849 } 1850 1851 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp, 1852 next_unlinked_offset); 1853 *buffer_nextp = *logged_nextp; 1854 } 1855 1856 return 0; 1857 } 1858 1859 /* 1860 * Perform a 'normal' buffer recovery. Each logged region of the 1861 * buffer should be copied over the corresponding region in the 1862 * given buffer. The bitmap in the buf log format structure indicates 1863 * where to place the logged data. 1864 */ 1865 STATIC void 1866 xlog_recover_do_reg_buffer( 1867 struct xfs_mount *mp, 1868 xlog_recover_item_t *item, 1869 struct xfs_buf *bp, 1870 xfs_buf_log_format_t *buf_f) 1871 { 1872 int i; 1873 int bit; 1874 int nbits; 1875 int error; 1876 1877 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); 1878 1879 bit = 0; 1880 i = 1; /* 0 is the buf format structure */ 1881 while (1) { 1882 bit = xfs_next_bit(buf_f->blf_data_map, 1883 buf_f->blf_map_size, bit); 1884 if (bit == -1) 1885 break; 1886 nbits = xfs_contig_bits(buf_f->blf_data_map, 1887 buf_f->blf_map_size, bit); 1888 ASSERT(nbits > 0); 1889 ASSERT(item->ri_buf[i].i_addr != NULL); 1890 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); 1891 ASSERT(BBTOB(bp->b_io_length) >= 1892 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); 1893 1894 /* 1895 * Do a sanity check if this is a dquot buffer. Just checking 1896 * the first dquot in the buffer should do. XXXThis is 1897 * probably a good thing to do for other buf types also. 1898 */ 1899 error = 0; 1900 if (buf_f->blf_flags & 1901 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 1902 if (item->ri_buf[i].i_addr == NULL) { 1903 xfs_alert(mp, 1904 "XFS: NULL dquot in %s.", __func__); 1905 goto next; 1906 } 1907 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) { 1908 xfs_alert(mp, 1909 "XFS: dquot too small (%d) in %s.", 1910 item->ri_buf[i].i_len, __func__); 1911 goto next; 1912 } 1913 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr, 1914 -1, 0, XFS_QMOPT_DOWARN, 1915 "dquot_buf_recover"); 1916 if (error) 1917 goto next; 1918 } 1919 1920 memcpy(xfs_buf_offset(bp, 1921 (uint)bit << XFS_BLF_SHIFT), /* dest */ 1922 item->ri_buf[i].i_addr, /* source */ 1923 nbits<<XFS_BLF_SHIFT); /* length */ 1924 next: 1925 i++; 1926 bit += nbits; 1927 } 1928 1929 /* Shouldn't be any more regions */ 1930 ASSERT(i == item->ri_total); 1931 } 1932 1933 /* 1934 * Do some primitive error checking on ondisk dquot data structures. 1935 */ 1936 int 1937 xfs_qm_dqcheck( 1938 struct xfs_mount *mp, 1939 xfs_disk_dquot_t *ddq, 1940 xfs_dqid_t id, 1941 uint type, /* used only when IO_dorepair is true */ 1942 uint flags, 1943 char *str) 1944 { 1945 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq; 1946 int errs = 0; 1947 1948 /* 1949 * We can encounter an uninitialized dquot buffer for 2 reasons: 1950 * 1. If we crash while deleting the quotainode(s), and those blks got 1951 * used for user data. This is because we take the path of regular 1952 * file deletion; however, the size field of quotainodes is never 1953 * updated, so all the tricks that we play in itruncate_finish 1954 * don't quite matter. 1955 * 1956 * 2. We don't play the quota buffers when there's a quotaoff logitem. 1957 * But the allocation will be replayed so we'll end up with an 1958 * uninitialized quota block. 1959 * 1960 * This is all fine; things are still consistent, and we haven't lost 1961 * any quota information. Just don't complain about bad dquot blks. 1962 */ 1963 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) { 1964 if (flags & XFS_QMOPT_DOWARN) 1965 xfs_alert(mp, 1966 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x", 1967 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC); 1968 errs++; 1969 } 1970 if (ddq->d_version != XFS_DQUOT_VERSION) { 1971 if (flags & XFS_QMOPT_DOWARN) 1972 xfs_alert(mp, 1973 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x", 1974 str, id, ddq->d_version, XFS_DQUOT_VERSION); 1975 errs++; 1976 } 1977 1978 if (ddq->d_flags != XFS_DQ_USER && 1979 ddq->d_flags != XFS_DQ_PROJ && 1980 ddq->d_flags != XFS_DQ_GROUP) { 1981 if (flags & XFS_QMOPT_DOWARN) 1982 xfs_alert(mp, 1983 "%s : XFS dquot ID 0x%x, unknown flags 0x%x", 1984 str, id, ddq->d_flags); 1985 errs++; 1986 } 1987 1988 if (id != -1 && id != be32_to_cpu(ddq->d_id)) { 1989 if (flags & XFS_QMOPT_DOWARN) 1990 xfs_alert(mp, 1991 "%s : ondisk-dquot 0x%p, ID mismatch: " 1992 "0x%x expected, found id 0x%x", 1993 str, ddq, id, be32_to_cpu(ddq->d_id)); 1994 errs++; 1995 } 1996 1997 if (!errs && ddq->d_id) { 1998 if (ddq->d_blk_softlimit && 1999 be64_to_cpu(ddq->d_bcount) > 2000 be64_to_cpu(ddq->d_blk_softlimit)) { 2001 if (!ddq->d_btimer) { 2002 if (flags & XFS_QMOPT_DOWARN) 2003 xfs_alert(mp, 2004 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED", 2005 str, (int)be32_to_cpu(ddq->d_id), ddq); 2006 errs++; 2007 } 2008 } 2009 if (ddq->d_ino_softlimit && 2010 be64_to_cpu(ddq->d_icount) > 2011 be64_to_cpu(ddq->d_ino_softlimit)) { 2012 if (!ddq->d_itimer) { 2013 if (flags & XFS_QMOPT_DOWARN) 2014 xfs_alert(mp, 2015 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED", 2016 str, (int)be32_to_cpu(ddq->d_id), ddq); 2017 errs++; 2018 } 2019 } 2020 if (ddq->d_rtb_softlimit && 2021 be64_to_cpu(ddq->d_rtbcount) > 2022 be64_to_cpu(ddq->d_rtb_softlimit)) { 2023 if (!ddq->d_rtbtimer) { 2024 if (flags & XFS_QMOPT_DOWARN) 2025 xfs_alert(mp, 2026 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED", 2027 str, (int)be32_to_cpu(ddq->d_id), ddq); 2028 errs++; 2029 } 2030 } 2031 } 2032 2033 if (!errs || !(flags & XFS_QMOPT_DQREPAIR)) 2034 return errs; 2035 2036 if (flags & XFS_QMOPT_DOWARN) 2037 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id); 2038 2039 /* 2040 * Typically, a repair is only requested by quotacheck. 2041 */ 2042 ASSERT(id != -1); 2043 ASSERT(flags & XFS_QMOPT_DQREPAIR); 2044 memset(d, 0, sizeof(xfs_dqblk_t)); 2045 2046 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC); 2047 d->dd_diskdq.d_version = XFS_DQUOT_VERSION; 2048 d->dd_diskdq.d_flags = type; 2049 d->dd_diskdq.d_id = cpu_to_be32(id); 2050 2051 return errs; 2052 } 2053 2054 /* 2055 * Perform a dquot buffer recovery. 2056 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type 2057 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2058 * Else, treat it as a regular buffer and do recovery. 2059 */ 2060 STATIC void 2061 xlog_recover_do_dquot_buffer( 2062 struct xfs_mount *mp, 2063 struct xlog *log, 2064 struct xlog_recover_item *item, 2065 struct xfs_buf *bp, 2066 struct xfs_buf_log_format *buf_f) 2067 { 2068 uint type; 2069 2070 trace_xfs_log_recover_buf_dquot_buf(log, buf_f); 2071 2072 /* 2073 * Filesystems are required to send in quota flags at mount time. 2074 */ 2075 if (mp->m_qflags == 0) { 2076 return; 2077 } 2078 2079 type = 0; 2080 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) 2081 type |= XFS_DQ_USER; 2082 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) 2083 type |= XFS_DQ_PROJ; 2084 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) 2085 type |= XFS_DQ_GROUP; 2086 /* 2087 * This type of quotas was turned off, so ignore this buffer 2088 */ 2089 if (log->l_quotaoffs_flag & type) 2090 return; 2091 2092 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2093 } 2094 2095 /* 2096 * This routine replays a modification made to a buffer at runtime. 2097 * There are actually two types of buffer, regular and inode, which 2098 * are handled differently. Inode buffers are handled differently 2099 * in that we only recover a specific set of data from them, namely 2100 * the inode di_next_unlinked fields. This is because all other inode 2101 * data is actually logged via inode records and any data we replay 2102 * here which overlaps that may be stale. 2103 * 2104 * When meta-data buffers are freed at run time we log a buffer item 2105 * with the XFS_BLF_CANCEL bit set to indicate that previous copies 2106 * of the buffer in the log should not be replayed at recovery time. 2107 * This is so that if the blocks covered by the buffer are reused for 2108 * file data before we crash we don't end up replaying old, freed 2109 * meta-data into a user's file. 2110 * 2111 * To handle the cancellation of buffer log items, we make two passes 2112 * over the log during recovery. During the first we build a table of 2113 * those buffers which have been cancelled, and during the second we 2114 * only replay those buffers which do not have corresponding cancel 2115 * records in the table. See xlog_recover_do_buffer_pass[1,2] above 2116 * for more details on the implementation of the table of cancel records. 2117 */ 2118 STATIC int 2119 xlog_recover_buffer_pass2( 2120 struct xlog *log, 2121 struct list_head *buffer_list, 2122 struct xlog_recover_item *item) 2123 { 2124 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2125 xfs_mount_t *mp = log->l_mp; 2126 xfs_buf_t *bp; 2127 int error; 2128 uint buf_flags; 2129 2130 /* 2131 * In this pass we only want to recover all the buffers which have 2132 * not been cancelled and are not cancellation buffers themselves. 2133 */ 2134 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno, 2135 buf_f->blf_len, buf_f->blf_flags)) { 2136 trace_xfs_log_recover_buf_cancel(log, buf_f); 2137 return 0; 2138 } 2139 2140 trace_xfs_log_recover_buf_recover(log, buf_f); 2141 2142 buf_flags = 0; 2143 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) 2144 buf_flags |= XBF_UNMAPPED; 2145 2146 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, 2147 buf_flags, NULL); 2148 if (!bp) 2149 return XFS_ERROR(ENOMEM); 2150 error = bp->b_error; 2151 if (error) { 2152 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)"); 2153 xfs_buf_relse(bp); 2154 return error; 2155 } 2156 2157 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 2158 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2159 } else if (buf_f->blf_flags & 2160 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2161 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2162 } else { 2163 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2164 } 2165 if (error) 2166 return XFS_ERROR(error); 2167 2168 /* 2169 * Perform delayed write on the buffer. Asynchronous writes will be 2170 * slower when taking into account all the buffers to be flushed. 2171 * 2172 * Also make sure that only inode buffers with good sizes stay in 2173 * the buffer cache. The kernel moves inodes in buffers of 1 block 2174 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode 2175 * buffers in the log can be a different size if the log was generated 2176 * by an older kernel using unclustered inode buffers or a newer kernel 2177 * running with a different inode cluster size. Regardless, if the 2178 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE) 2179 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep 2180 * the buffer out of the buffer cache so that the buffer won't 2181 * overlap with future reads of those inodes. 2182 */ 2183 if (XFS_DINODE_MAGIC == 2184 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && 2185 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize, 2186 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) { 2187 xfs_buf_stale(bp); 2188 error = xfs_bwrite(bp); 2189 } else { 2190 ASSERT(bp->b_target->bt_mount == mp); 2191 bp->b_iodone = xlog_recover_iodone; 2192 xfs_buf_delwri_queue(bp, buffer_list); 2193 } 2194 2195 xfs_buf_relse(bp); 2196 return error; 2197 } 2198 2199 STATIC int 2200 xlog_recover_inode_pass2( 2201 struct xlog *log, 2202 struct list_head *buffer_list, 2203 struct xlog_recover_item *item) 2204 { 2205 xfs_inode_log_format_t *in_f; 2206 xfs_mount_t *mp = log->l_mp; 2207 xfs_buf_t *bp; 2208 xfs_dinode_t *dip; 2209 int len; 2210 xfs_caddr_t src; 2211 xfs_caddr_t dest; 2212 int error; 2213 int attr_index; 2214 uint fields; 2215 xfs_icdinode_t *dicp; 2216 int need_free = 0; 2217 2218 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) { 2219 in_f = item->ri_buf[0].i_addr; 2220 } else { 2221 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP); 2222 need_free = 1; 2223 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 2224 if (error) 2225 goto error; 2226 } 2227 2228 /* 2229 * Inode buffers can be freed, look out for it, 2230 * and do not replay the inode. 2231 */ 2232 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, 2233 in_f->ilf_len, 0)) { 2234 error = 0; 2235 trace_xfs_log_recover_inode_cancel(log, in_f); 2236 goto error; 2237 } 2238 trace_xfs_log_recover_inode_recover(log, in_f); 2239 2240 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0, 2241 NULL); 2242 if (!bp) { 2243 error = ENOMEM; 2244 goto error; 2245 } 2246 error = bp->b_error; 2247 if (error) { 2248 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)"); 2249 xfs_buf_relse(bp); 2250 goto error; 2251 } 2252 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 2253 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset); 2254 2255 /* 2256 * Make sure the place we're flushing out to really looks 2257 * like an inode! 2258 */ 2259 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) { 2260 xfs_buf_relse(bp); 2261 xfs_alert(mp, 2262 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld", 2263 __func__, dip, bp, in_f->ilf_ino); 2264 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)", 2265 XFS_ERRLEVEL_LOW, mp); 2266 error = EFSCORRUPTED; 2267 goto error; 2268 } 2269 dicp = item->ri_buf[1].i_addr; 2270 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { 2271 xfs_buf_relse(bp); 2272 xfs_alert(mp, 2273 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld", 2274 __func__, item, in_f->ilf_ino); 2275 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)", 2276 XFS_ERRLEVEL_LOW, mp); 2277 error = EFSCORRUPTED; 2278 goto error; 2279 } 2280 2281 /* Skip replay when the on disk inode is newer than the log one */ 2282 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) { 2283 /* 2284 * Deal with the wrap case, DI_MAX_FLUSH is less 2285 * than smaller numbers 2286 */ 2287 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && 2288 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) { 2289 /* do nothing */ 2290 } else { 2291 xfs_buf_relse(bp); 2292 trace_xfs_log_recover_inode_skip(log, in_f); 2293 error = 0; 2294 goto error; 2295 } 2296 } 2297 /* Take the opportunity to reset the flush iteration count */ 2298 dicp->di_flushiter = 0; 2299 2300 if (unlikely(S_ISREG(dicp->di_mode))) { 2301 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2302 (dicp->di_format != XFS_DINODE_FMT_BTREE)) { 2303 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)", 2304 XFS_ERRLEVEL_LOW, mp, dicp); 2305 xfs_buf_relse(bp); 2306 xfs_alert(mp, 2307 "%s: Bad regular inode log record, rec ptr 0x%p, " 2308 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2309 __func__, item, dip, bp, in_f->ilf_ino); 2310 error = EFSCORRUPTED; 2311 goto error; 2312 } 2313 } else if (unlikely(S_ISDIR(dicp->di_mode))) { 2314 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2315 (dicp->di_format != XFS_DINODE_FMT_BTREE) && 2316 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { 2317 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)", 2318 XFS_ERRLEVEL_LOW, mp, dicp); 2319 xfs_buf_relse(bp); 2320 xfs_alert(mp, 2321 "%s: Bad dir inode log record, rec ptr 0x%p, " 2322 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2323 __func__, item, dip, bp, in_f->ilf_ino); 2324 error = EFSCORRUPTED; 2325 goto error; 2326 } 2327 } 2328 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ 2329 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)", 2330 XFS_ERRLEVEL_LOW, mp, dicp); 2331 xfs_buf_relse(bp); 2332 xfs_alert(mp, 2333 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 2334 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", 2335 __func__, item, dip, bp, in_f->ilf_ino, 2336 dicp->di_nextents + dicp->di_anextents, 2337 dicp->di_nblocks); 2338 error = EFSCORRUPTED; 2339 goto error; 2340 } 2341 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { 2342 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)", 2343 XFS_ERRLEVEL_LOW, mp, dicp); 2344 xfs_buf_relse(bp); 2345 xfs_alert(mp, 2346 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 2347 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__, 2348 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff); 2349 error = EFSCORRUPTED; 2350 goto error; 2351 } 2352 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) { 2353 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)", 2354 XFS_ERRLEVEL_LOW, mp, dicp); 2355 xfs_buf_relse(bp); 2356 xfs_alert(mp, 2357 "%s: Bad inode log record length %d, rec ptr 0x%p", 2358 __func__, item->ri_buf[1].i_len, item); 2359 error = EFSCORRUPTED; 2360 goto error; 2361 } 2362 2363 /* The core is in in-core format */ 2364 xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr); 2365 2366 /* the rest is in on-disk format */ 2367 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) { 2368 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode), 2369 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode), 2370 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode)); 2371 } 2372 2373 fields = in_f->ilf_fields; 2374 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { 2375 case XFS_ILOG_DEV: 2376 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); 2377 break; 2378 case XFS_ILOG_UUID: 2379 memcpy(XFS_DFORK_DPTR(dip), 2380 &in_f->ilf_u.ilfu_uuid, 2381 sizeof(uuid_t)); 2382 break; 2383 } 2384 2385 if (in_f->ilf_size == 2) 2386 goto write_inode_buffer; 2387 len = item->ri_buf[2].i_len; 2388 src = item->ri_buf[2].i_addr; 2389 ASSERT(in_f->ilf_size <= 4); 2390 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 2391 ASSERT(!(fields & XFS_ILOG_DFORK) || 2392 (len == in_f->ilf_dsize)); 2393 2394 switch (fields & XFS_ILOG_DFORK) { 2395 case XFS_ILOG_DDATA: 2396 case XFS_ILOG_DEXT: 2397 memcpy(XFS_DFORK_DPTR(dip), src, len); 2398 break; 2399 2400 case XFS_ILOG_DBROOT: 2401 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, 2402 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), 2403 XFS_DFORK_DSIZE(dip, mp)); 2404 break; 2405 2406 default: 2407 /* 2408 * There are no data fork flags set. 2409 */ 2410 ASSERT((fields & XFS_ILOG_DFORK) == 0); 2411 break; 2412 } 2413 2414 /* 2415 * If we logged any attribute data, recover it. There may or 2416 * may not have been any other non-core data logged in this 2417 * transaction. 2418 */ 2419 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 2420 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 2421 attr_index = 3; 2422 } else { 2423 attr_index = 2; 2424 } 2425 len = item->ri_buf[attr_index].i_len; 2426 src = item->ri_buf[attr_index].i_addr; 2427 ASSERT(len == in_f->ilf_asize); 2428 2429 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 2430 case XFS_ILOG_ADATA: 2431 case XFS_ILOG_AEXT: 2432 dest = XFS_DFORK_APTR(dip); 2433 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 2434 memcpy(dest, src, len); 2435 break; 2436 2437 case XFS_ILOG_ABROOT: 2438 dest = XFS_DFORK_APTR(dip); 2439 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, 2440 len, (xfs_bmdr_block_t*)dest, 2441 XFS_DFORK_ASIZE(dip, mp)); 2442 break; 2443 2444 default: 2445 xfs_warn(log->l_mp, "%s: Invalid flag", __func__); 2446 ASSERT(0); 2447 xfs_buf_relse(bp); 2448 error = EIO; 2449 goto error; 2450 } 2451 } 2452 2453 write_inode_buffer: 2454 ASSERT(bp->b_target->bt_mount == mp); 2455 bp->b_iodone = xlog_recover_iodone; 2456 xfs_buf_delwri_queue(bp, buffer_list); 2457 xfs_buf_relse(bp); 2458 error: 2459 if (need_free) 2460 kmem_free(in_f); 2461 return XFS_ERROR(error); 2462 } 2463 2464 /* 2465 * Recover QUOTAOFF records. We simply make a note of it in the xlog 2466 * structure, so that we know not to do any dquot item or dquot buffer recovery, 2467 * of that type. 2468 */ 2469 STATIC int 2470 xlog_recover_quotaoff_pass1( 2471 struct xlog *log, 2472 struct xlog_recover_item *item) 2473 { 2474 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr; 2475 ASSERT(qoff_f); 2476 2477 /* 2478 * The logitem format's flag tells us if this was user quotaoff, 2479 * group/project quotaoff or both. 2480 */ 2481 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 2482 log->l_quotaoffs_flag |= XFS_DQ_USER; 2483 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 2484 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 2485 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 2486 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 2487 2488 return (0); 2489 } 2490 2491 /* 2492 * Recover a dquot record 2493 */ 2494 STATIC int 2495 xlog_recover_dquot_pass2( 2496 struct xlog *log, 2497 struct list_head *buffer_list, 2498 struct xlog_recover_item *item) 2499 { 2500 xfs_mount_t *mp = log->l_mp; 2501 xfs_buf_t *bp; 2502 struct xfs_disk_dquot *ddq, *recddq; 2503 int error; 2504 xfs_dq_logformat_t *dq_f; 2505 uint type; 2506 2507 2508 /* 2509 * Filesystems are required to send in quota flags at mount time. 2510 */ 2511 if (mp->m_qflags == 0) 2512 return (0); 2513 2514 recddq = item->ri_buf[1].i_addr; 2515 if (recddq == NULL) { 2516 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__); 2517 return XFS_ERROR(EIO); 2518 } 2519 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) { 2520 xfs_alert(log->l_mp, "dquot too small (%d) in %s.", 2521 item->ri_buf[1].i_len, __func__); 2522 return XFS_ERROR(EIO); 2523 } 2524 2525 /* 2526 * This type of quotas was turned off, so ignore this record. 2527 */ 2528 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 2529 ASSERT(type); 2530 if (log->l_quotaoffs_flag & type) 2531 return (0); 2532 2533 /* 2534 * At this point we know that quota was _not_ turned off. 2535 * Since the mount flags are not indicating to us otherwise, this 2536 * must mean that quota is on, and the dquot needs to be replayed. 2537 * Remember that we may not have fully recovered the superblock yet, 2538 * so we can't do the usual trick of looking at the SB quota bits. 2539 * 2540 * The other possibility, of course, is that the quota subsystem was 2541 * removed since the last mount - ENOSYS. 2542 */ 2543 dq_f = item->ri_buf[0].i_addr; 2544 ASSERT(dq_f); 2545 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2546 "xlog_recover_dquot_pass2 (log copy)"); 2547 if (error) 2548 return XFS_ERROR(EIO); 2549 ASSERT(dq_f->qlf_len == 1); 2550 2551 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno, 2552 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp, 2553 NULL); 2554 if (error) 2555 return error; 2556 2557 ASSERT(bp); 2558 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset); 2559 2560 /* 2561 * At least the magic num portion should be on disk because this 2562 * was among a chunk of dquots created earlier, and we did some 2563 * minimal initialization then. 2564 */ 2565 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2566 "xlog_recover_dquot_pass2"); 2567 if (error) { 2568 xfs_buf_relse(bp); 2569 return XFS_ERROR(EIO); 2570 } 2571 2572 memcpy(ddq, recddq, item->ri_buf[1].i_len); 2573 2574 ASSERT(dq_f->qlf_size == 2); 2575 ASSERT(bp->b_target->bt_mount == mp); 2576 bp->b_iodone = xlog_recover_iodone; 2577 xfs_buf_delwri_queue(bp, buffer_list); 2578 xfs_buf_relse(bp); 2579 2580 return (0); 2581 } 2582 2583 /* 2584 * This routine is called to create an in-core extent free intent 2585 * item from the efi format structure which was logged on disk. 2586 * It allocates an in-core efi, copies the extents from the format 2587 * structure into it, and adds the efi to the AIL with the given 2588 * LSN. 2589 */ 2590 STATIC int 2591 xlog_recover_efi_pass2( 2592 struct xlog *log, 2593 struct xlog_recover_item *item, 2594 xfs_lsn_t lsn) 2595 { 2596 int error; 2597 xfs_mount_t *mp = log->l_mp; 2598 xfs_efi_log_item_t *efip; 2599 xfs_efi_log_format_t *efi_formatp; 2600 2601 efi_formatp = item->ri_buf[0].i_addr; 2602 2603 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 2604 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]), 2605 &(efip->efi_format)))) { 2606 xfs_efi_item_free(efip); 2607 return error; 2608 } 2609 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 2610 2611 spin_lock(&log->l_ailp->xa_lock); 2612 /* 2613 * xfs_trans_ail_update() drops the AIL lock. 2614 */ 2615 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn); 2616 return 0; 2617 } 2618 2619 2620 /* 2621 * This routine is called when an efd format structure is found in 2622 * a committed transaction in the log. It's purpose is to cancel 2623 * the corresponding efi if it was still in the log. To do this 2624 * it searches the AIL for the efi with an id equal to that in the 2625 * efd format structure. If we find it, we remove the efi from the 2626 * AIL and free it. 2627 */ 2628 STATIC int 2629 xlog_recover_efd_pass2( 2630 struct xlog *log, 2631 struct xlog_recover_item *item) 2632 { 2633 xfs_efd_log_format_t *efd_formatp; 2634 xfs_efi_log_item_t *efip = NULL; 2635 xfs_log_item_t *lip; 2636 __uint64_t efi_id; 2637 struct xfs_ail_cursor cur; 2638 struct xfs_ail *ailp = log->l_ailp; 2639 2640 efd_formatp = item->ri_buf[0].i_addr; 2641 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 2642 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 2643 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 2644 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 2645 efi_id = efd_formatp->efd_efi_id; 2646 2647 /* 2648 * Search for the efi with the id in the efd format structure 2649 * in the AIL. 2650 */ 2651 spin_lock(&ailp->xa_lock); 2652 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 2653 while (lip != NULL) { 2654 if (lip->li_type == XFS_LI_EFI) { 2655 efip = (xfs_efi_log_item_t *)lip; 2656 if (efip->efi_format.efi_id == efi_id) { 2657 /* 2658 * xfs_trans_ail_delete() drops the 2659 * AIL lock. 2660 */ 2661 xfs_trans_ail_delete(ailp, lip, 2662 SHUTDOWN_CORRUPT_INCORE); 2663 xfs_efi_item_free(efip); 2664 spin_lock(&ailp->xa_lock); 2665 break; 2666 } 2667 } 2668 lip = xfs_trans_ail_cursor_next(ailp, &cur); 2669 } 2670 xfs_trans_ail_cursor_done(ailp, &cur); 2671 spin_unlock(&ailp->xa_lock); 2672 2673 return 0; 2674 } 2675 2676 /* 2677 * Free up any resources allocated by the transaction 2678 * 2679 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 2680 */ 2681 STATIC void 2682 xlog_recover_free_trans( 2683 struct xlog_recover *trans) 2684 { 2685 xlog_recover_item_t *item, *n; 2686 int i; 2687 2688 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 2689 /* Free the regions in the item. */ 2690 list_del(&item->ri_list); 2691 for (i = 0; i < item->ri_cnt; i++) 2692 kmem_free(item->ri_buf[i].i_addr); 2693 /* Free the item itself */ 2694 kmem_free(item->ri_buf); 2695 kmem_free(item); 2696 } 2697 /* Free the transaction recover structure */ 2698 kmem_free(trans); 2699 } 2700 2701 STATIC int 2702 xlog_recover_commit_pass1( 2703 struct xlog *log, 2704 struct xlog_recover *trans, 2705 struct xlog_recover_item *item) 2706 { 2707 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1); 2708 2709 switch (ITEM_TYPE(item)) { 2710 case XFS_LI_BUF: 2711 return xlog_recover_buffer_pass1(log, item); 2712 case XFS_LI_QUOTAOFF: 2713 return xlog_recover_quotaoff_pass1(log, item); 2714 case XFS_LI_INODE: 2715 case XFS_LI_EFI: 2716 case XFS_LI_EFD: 2717 case XFS_LI_DQUOT: 2718 /* nothing to do in pass 1 */ 2719 return 0; 2720 default: 2721 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 2722 __func__, ITEM_TYPE(item)); 2723 ASSERT(0); 2724 return XFS_ERROR(EIO); 2725 } 2726 } 2727 2728 STATIC int 2729 xlog_recover_commit_pass2( 2730 struct xlog *log, 2731 struct xlog_recover *trans, 2732 struct list_head *buffer_list, 2733 struct xlog_recover_item *item) 2734 { 2735 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2); 2736 2737 switch (ITEM_TYPE(item)) { 2738 case XFS_LI_BUF: 2739 return xlog_recover_buffer_pass2(log, buffer_list, item); 2740 case XFS_LI_INODE: 2741 return xlog_recover_inode_pass2(log, buffer_list, item); 2742 case XFS_LI_EFI: 2743 return xlog_recover_efi_pass2(log, item, trans->r_lsn); 2744 case XFS_LI_EFD: 2745 return xlog_recover_efd_pass2(log, item); 2746 case XFS_LI_DQUOT: 2747 return xlog_recover_dquot_pass2(log, buffer_list, item); 2748 case XFS_LI_QUOTAOFF: 2749 /* nothing to do in pass2 */ 2750 return 0; 2751 default: 2752 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 2753 __func__, ITEM_TYPE(item)); 2754 ASSERT(0); 2755 return XFS_ERROR(EIO); 2756 } 2757 } 2758 2759 /* 2760 * Perform the transaction. 2761 * 2762 * If the transaction modifies a buffer or inode, do it now. Otherwise, 2763 * EFIs and EFDs get queued up by adding entries into the AIL for them. 2764 */ 2765 STATIC int 2766 xlog_recover_commit_trans( 2767 struct xlog *log, 2768 struct xlog_recover *trans, 2769 int pass) 2770 { 2771 int error = 0, error2; 2772 xlog_recover_item_t *item; 2773 LIST_HEAD (buffer_list); 2774 2775 hlist_del(&trans->r_list); 2776 2777 error = xlog_recover_reorder_trans(log, trans, pass); 2778 if (error) 2779 return error; 2780 2781 list_for_each_entry(item, &trans->r_itemq, ri_list) { 2782 switch (pass) { 2783 case XLOG_RECOVER_PASS1: 2784 error = xlog_recover_commit_pass1(log, trans, item); 2785 break; 2786 case XLOG_RECOVER_PASS2: 2787 error = xlog_recover_commit_pass2(log, trans, 2788 &buffer_list, item); 2789 break; 2790 default: 2791 ASSERT(0); 2792 } 2793 2794 if (error) 2795 goto out; 2796 } 2797 2798 xlog_recover_free_trans(trans); 2799 2800 out: 2801 error2 = xfs_buf_delwri_submit(&buffer_list); 2802 return error ? error : error2; 2803 } 2804 2805 STATIC int 2806 xlog_recover_unmount_trans( 2807 struct xlog *log, 2808 struct xlog_recover *trans) 2809 { 2810 /* Do nothing now */ 2811 xfs_warn(log->l_mp, "%s: Unmount LR", __func__); 2812 return 0; 2813 } 2814 2815 /* 2816 * There are two valid states of the r_state field. 0 indicates that the 2817 * transaction structure is in a normal state. We have either seen the 2818 * start of the transaction or the last operation we added was not a partial 2819 * operation. If the last operation we added to the transaction was a 2820 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 2821 * 2822 * NOTE: skip LRs with 0 data length. 2823 */ 2824 STATIC int 2825 xlog_recover_process_data( 2826 struct xlog *log, 2827 struct hlist_head rhash[], 2828 struct xlog_rec_header *rhead, 2829 xfs_caddr_t dp, 2830 int pass) 2831 { 2832 xfs_caddr_t lp; 2833 int num_logops; 2834 xlog_op_header_t *ohead; 2835 xlog_recover_t *trans; 2836 xlog_tid_t tid; 2837 int error; 2838 unsigned long hash; 2839 uint flags; 2840 2841 lp = dp + be32_to_cpu(rhead->h_len); 2842 num_logops = be32_to_cpu(rhead->h_num_logops); 2843 2844 /* check the log format matches our own - else we can't recover */ 2845 if (xlog_header_check_recover(log->l_mp, rhead)) 2846 return (XFS_ERROR(EIO)); 2847 2848 while ((dp < lp) && num_logops) { 2849 ASSERT(dp + sizeof(xlog_op_header_t) <= lp); 2850 ohead = (xlog_op_header_t *)dp; 2851 dp += sizeof(xlog_op_header_t); 2852 if (ohead->oh_clientid != XFS_TRANSACTION && 2853 ohead->oh_clientid != XFS_LOG) { 2854 xfs_warn(log->l_mp, "%s: bad clientid 0x%x", 2855 __func__, ohead->oh_clientid); 2856 ASSERT(0); 2857 return (XFS_ERROR(EIO)); 2858 } 2859 tid = be32_to_cpu(ohead->oh_tid); 2860 hash = XLOG_RHASH(tid); 2861 trans = xlog_recover_find_tid(&rhash[hash], tid); 2862 if (trans == NULL) { /* not found; add new tid */ 2863 if (ohead->oh_flags & XLOG_START_TRANS) 2864 xlog_recover_new_tid(&rhash[hash], tid, 2865 be64_to_cpu(rhead->h_lsn)); 2866 } else { 2867 if (dp + be32_to_cpu(ohead->oh_len) > lp) { 2868 xfs_warn(log->l_mp, "%s: bad length 0x%x", 2869 __func__, be32_to_cpu(ohead->oh_len)); 2870 WARN_ON(1); 2871 return (XFS_ERROR(EIO)); 2872 } 2873 flags = ohead->oh_flags & ~XLOG_END_TRANS; 2874 if (flags & XLOG_WAS_CONT_TRANS) 2875 flags &= ~XLOG_CONTINUE_TRANS; 2876 switch (flags) { 2877 case XLOG_COMMIT_TRANS: 2878 error = xlog_recover_commit_trans(log, 2879 trans, pass); 2880 break; 2881 case XLOG_UNMOUNT_TRANS: 2882 error = xlog_recover_unmount_trans(log, trans); 2883 break; 2884 case XLOG_WAS_CONT_TRANS: 2885 error = xlog_recover_add_to_cont_trans(log, 2886 trans, dp, 2887 be32_to_cpu(ohead->oh_len)); 2888 break; 2889 case XLOG_START_TRANS: 2890 xfs_warn(log->l_mp, "%s: bad transaction", 2891 __func__); 2892 ASSERT(0); 2893 error = XFS_ERROR(EIO); 2894 break; 2895 case 0: 2896 case XLOG_CONTINUE_TRANS: 2897 error = xlog_recover_add_to_trans(log, trans, 2898 dp, be32_to_cpu(ohead->oh_len)); 2899 break; 2900 default: 2901 xfs_warn(log->l_mp, "%s: bad flag 0x%x", 2902 __func__, flags); 2903 ASSERT(0); 2904 error = XFS_ERROR(EIO); 2905 break; 2906 } 2907 if (error) 2908 return error; 2909 } 2910 dp += be32_to_cpu(ohead->oh_len); 2911 num_logops--; 2912 } 2913 return 0; 2914 } 2915 2916 /* 2917 * Process an extent free intent item that was recovered from 2918 * the log. We need to free the extents that it describes. 2919 */ 2920 STATIC int 2921 xlog_recover_process_efi( 2922 xfs_mount_t *mp, 2923 xfs_efi_log_item_t *efip) 2924 { 2925 xfs_efd_log_item_t *efdp; 2926 xfs_trans_t *tp; 2927 int i; 2928 int error = 0; 2929 xfs_extent_t *extp; 2930 xfs_fsblock_t startblock_fsb; 2931 2932 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)); 2933 2934 /* 2935 * First check the validity of the extents described by the 2936 * EFI. If any are bad, then assume that all are bad and 2937 * just toss the EFI. 2938 */ 2939 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 2940 extp = &(efip->efi_format.efi_extents[i]); 2941 startblock_fsb = XFS_BB_TO_FSB(mp, 2942 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 2943 if ((startblock_fsb == 0) || 2944 (extp->ext_len == 0) || 2945 (startblock_fsb >= mp->m_sb.sb_dblocks) || 2946 (extp->ext_len >= mp->m_sb.sb_agblocks)) { 2947 /* 2948 * This will pull the EFI from the AIL and 2949 * free the memory associated with it. 2950 */ 2951 xfs_efi_release(efip, efip->efi_format.efi_nextents); 2952 return XFS_ERROR(EIO); 2953 } 2954 } 2955 2956 tp = xfs_trans_alloc(mp, 0); 2957 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0); 2958 if (error) 2959 goto abort_error; 2960 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 2961 2962 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 2963 extp = &(efip->efi_format.efi_extents[i]); 2964 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len); 2965 if (error) 2966 goto abort_error; 2967 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start, 2968 extp->ext_len); 2969 } 2970 2971 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); 2972 error = xfs_trans_commit(tp, 0); 2973 return error; 2974 2975 abort_error: 2976 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 2977 return error; 2978 } 2979 2980 /* 2981 * When this is called, all of the EFIs which did not have 2982 * corresponding EFDs should be in the AIL. What we do now 2983 * is free the extents associated with each one. 2984 * 2985 * Since we process the EFIs in normal transactions, they 2986 * will be removed at some point after the commit. This prevents 2987 * us from just walking down the list processing each one. 2988 * We'll use a flag in the EFI to skip those that we've already 2989 * processed and use the AIL iteration mechanism's generation 2990 * count to try to speed this up at least a bit. 2991 * 2992 * When we start, we know that the EFIs are the only things in 2993 * the AIL. As we process them, however, other items are added 2994 * to the AIL. Since everything added to the AIL must come after 2995 * everything already in the AIL, we stop processing as soon as 2996 * we see something other than an EFI in the AIL. 2997 */ 2998 STATIC int 2999 xlog_recover_process_efis( 3000 struct xlog *log) 3001 { 3002 xfs_log_item_t *lip; 3003 xfs_efi_log_item_t *efip; 3004 int error = 0; 3005 struct xfs_ail_cursor cur; 3006 struct xfs_ail *ailp; 3007 3008 ailp = log->l_ailp; 3009 spin_lock(&ailp->xa_lock); 3010 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3011 while (lip != NULL) { 3012 /* 3013 * We're done when we see something other than an EFI. 3014 * There should be no EFIs left in the AIL now. 3015 */ 3016 if (lip->li_type != XFS_LI_EFI) { 3017 #ifdef DEBUG 3018 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 3019 ASSERT(lip->li_type != XFS_LI_EFI); 3020 #endif 3021 break; 3022 } 3023 3024 /* 3025 * Skip EFIs that we've already processed. 3026 */ 3027 efip = (xfs_efi_log_item_t *)lip; 3028 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) { 3029 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3030 continue; 3031 } 3032 3033 spin_unlock(&ailp->xa_lock); 3034 error = xlog_recover_process_efi(log->l_mp, efip); 3035 spin_lock(&ailp->xa_lock); 3036 if (error) 3037 goto out; 3038 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3039 } 3040 out: 3041 xfs_trans_ail_cursor_done(ailp, &cur); 3042 spin_unlock(&ailp->xa_lock); 3043 return error; 3044 } 3045 3046 /* 3047 * This routine performs a transaction to null out a bad inode pointer 3048 * in an agi unlinked inode hash bucket. 3049 */ 3050 STATIC void 3051 xlog_recover_clear_agi_bucket( 3052 xfs_mount_t *mp, 3053 xfs_agnumber_t agno, 3054 int bucket) 3055 { 3056 xfs_trans_t *tp; 3057 xfs_agi_t *agi; 3058 xfs_buf_t *agibp; 3059 int offset; 3060 int error; 3061 3062 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); 3063 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 3064 0, 0, 0); 3065 if (error) 3066 goto out_abort; 3067 3068 error = xfs_read_agi(mp, tp, agno, &agibp); 3069 if (error) 3070 goto out_abort; 3071 3072 agi = XFS_BUF_TO_AGI(agibp); 3073 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 3074 offset = offsetof(xfs_agi_t, agi_unlinked) + 3075 (sizeof(xfs_agino_t) * bucket); 3076 xfs_trans_log_buf(tp, agibp, offset, 3077 (offset + sizeof(xfs_agino_t) - 1)); 3078 3079 error = xfs_trans_commit(tp, 0); 3080 if (error) 3081 goto out_error; 3082 return; 3083 3084 out_abort: 3085 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3086 out_error: 3087 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); 3088 return; 3089 } 3090 3091 STATIC xfs_agino_t 3092 xlog_recover_process_one_iunlink( 3093 struct xfs_mount *mp, 3094 xfs_agnumber_t agno, 3095 xfs_agino_t agino, 3096 int bucket) 3097 { 3098 struct xfs_buf *ibp; 3099 struct xfs_dinode *dip; 3100 struct xfs_inode *ip; 3101 xfs_ino_t ino; 3102 int error; 3103 3104 ino = XFS_AGINO_TO_INO(mp, agno, agino); 3105 error = xfs_iget(mp, NULL, ino, 0, 0, &ip); 3106 if (error) 3107 goto fail; 3108 3109 /* 3110 * Get the on disk inode to find the next inode in the bucket. 3111 */ 3112 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0); 3113 if (error) 3114 goto fail_iput; 3115 3116 ASSERT(ip->i_d.di_nlink == 0); 3117 ASSERT(ip->i_d.di_mode != 0); 3118 3119 /* setup for the next pass */ 3120 agino = be32_to_cpu(dip->di_next_unlinked); 3121 xfs_buf_relse(ibp); 3122 3123 /* 3124 * Prevent any DMAPI event from being sent when the reference on 3125 * the inode is dropped. 3126 */ 3127 ip->i_d.di_dmevmask = 0; 3128 3129 IRELE(ip); 3130 return agino; 3131 3132 fail_iput: 3133 IRELE(ip); 3134 fail: 3135 /* 3136 * We can't read in the inode this bucket points to, or this inode 3137 * is messed up. Just ditch this bucket of inodes. We will lose 3138 * some inodes and space, but at least we won't hang. 3139 * 3140 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 3141 * clear the inode pointer in the bucket. 3142 */ 3143 xlog_recover_clear_agi_bucket(mp, agno, bucket); 3144 return NULLAGINO; 3145 } 3146 3147 /* 3148 * xlog_iunlink_recover 3149 * 3150 * This is called during recovery to process any inodes which 3151 * we unlinked but not freed when the system crashed. These 3152 * inodes will be on the lists in the AGI blocks. What we do 3153 * here is scan all the AGIs and fully truncate and free any 3154 * inodes found on the lists. Each inode is removed from the 3155 * lists when it has been fully truncated and is freed. The 3156 * freeing of the inode and its removal from the list must be 3157 * atomic. 3158 */ 3159 STATIC void 3160 xlog_recover_process_iunlinks( 3161 struct xlog *log) 3162 { 3163 xfs_mount_t *mp; 3164 xfs_agnumber_t agno; 3165 xfs_agi_t *agi; 3166 xfs_buf_t *agibp; 3167 xfs_agino_t agino; 3168 int bucket; 3169 int error; 3170 uint mp_dmevmask; 3171 3172 mp = log->l_mp; 3173 3174 /* 3175 * Prevent any DMAPI event from being sent while in this function. 3176 */ 3177 mp_dmevmask = mp->m_dmevmask; 3178 mp->m_dmevmask = 0; 3179 3180 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3181 /* 3182 * Find the agi for this ag. 3183 */ 3184 error = xfs_read_agi(mp, NULL, agno, &agibp); 3185 if (error) { 3186 /* 3187 * AGI is b0rked. Don't process it. 3188 * 3189 * We should probably mark the filesystem as corrupt 3190 * after we've recovered all the ag's we can.... 3191 */ 3192 continue; 3193 } 3194 /* 3195 * Unlock the buffer so that it can be acquired in the normal 3196 * course of the transaction to truncate and free each inode. 3197 * Because we are not racing with anyone else here for the AGI 3198 * buffer, we don't even need to hold it locked to read the 3199 * initial unlinked bucket entries out of the buffer. We keep 3200 * buffer reference though, so that it stays pinned in memory 3201 * while we need the buffer. 3202 */ 3203 agi = XFS_BUF_TO_AGI(agibp); 3204 xfs_buf_unlock(agibp); 3205 3206 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 3207 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 3208 while (agino != NULLAGINO) { 3209 agino = xlog_recover_process_one_iunlink(mp, 3210 agno, agino, bucket); 3211 } 3212 } 3213 xfs_buf_rele(agibp); 3214 } 3215 3216 mp->m_dmevmask = mp_dmevmask; 3217 } 3218 3219 /* 3220 * Upack the log buffer data and crc check it. If the check fails, issue a 3221 * warning if and only if the CRC in the header is non-zero. This makes the 3222 * check an advisory warning, and the zero CRC check will prevent failure 3223 * warnings from being emitted when upgrading the kernel from one that does not 3224 * add CRCs by default. 3225 * 3226 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log 3227 * corruption failure 3228 */ 3229 STATIC int 3230 xlog_unpack_data_crc( 3231 struct xlog_rec_header *rhead, 3232 xfs_caddr_t dp, 3233 struct xlog *log) 3234 { 3235 __le32 crc; 3236 3237 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); 3238 if (crc != rhead->h_crc) { 3239 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) { 3240 xfs_alert(log->l_mp, 3241 "log record CRC mismatch: found 0x%x, expected 0x%x.\n", 3242 le32_to_cpu(rhead->h_crc), 3243 le32_to_cpu(crc)); 3244 xfs_hex_dump(dp, 32); 3245 } 3246 3247 /* 3248 * If we've detected a log record corruption, then we can't 3249 * recover past this point. Abort recovery if we are enforcing 3250 * CRC protection by punting an error back up the stack. 3251 */ 3252 if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) 3253 return EFSCORRUPTED; 3254 } 3255 3256 return 0; 3257 } 3258 3259 STATIC int 3260 xlog_unpack_data( 3261 struct xlog_rec_header *rhead, 3262 xfs_caddr_t dp, 3263 struct xlog *log) 3264 { 3265 int i, j, k; 3266 int error; 3267 3268 error = xlog_unpack_data_crc(rhead, dp, log); 3269 if (error) 3270 return error; 3271 3272 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 3273 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3274 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 3275 dp += BBSIZE; 3276 } 3277 3278 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3279 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 3280 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 3281 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3282 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3283 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 3284 dp += BBSIZE; 3285 } 3286 } 3287 3288 return 0; 3289 } 3290 3291 STATIC int 3292 xlog_valid_rec_header( 3293 struct xlog *log, 3294 struct xlog_rec_header *rhead, 3295 xfs_daddr_t blkno) 3296 { 3297 int hlen; 3298 3299 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) { 3300 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 3301 XFS_ERRLEVEL_LOW, log->l_mp); 3302 return XFS_ERROR(EFSCORRUPTED); 3303 } 3304 if (unlikely( 3305 (!rhead->h_version || 3306 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { 3307 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", 3308 __func__, be32_to_cpu(rhead->h_version)); 3309 return XFS_ERROR(EIO); 3310 } 3311 3312 /* LR body must have data or it wouldn't have been written */ 3313 hlen = be32_to_cpu(rhead->h_len); 3314 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 3315 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 3316 XFS_ERRLEVEL_LOW, log->l_mp); 3317 return XFS_ERROR(EFSCORRUPTED); 3318 } 3319 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 3320 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 3321 XFS_ERRLEVEL_LOW, log->l_mp); 3322 return XFS_ERROR(EFSCORRUPTED); 3323 } 3324 return 0; 3325 } 3326 3327 /* 3328 * Read the log from tail to head and process the log records found. 3329 * Handle the two cases where the tail and head are in the same cycle 3330 * and where the active portion of the log wraps around the end of 3331 * the physical log separately. The pass parameter is passed through 3332 * to the routines called to process the data and is not looked at 3333 * here. 3334 */ 3335 STATIC int 3336 xlog_do_recovery_pass( 3337 struct xlog *log, 3338 xfs_daddr_t head_blk, 3339 xfs_daddr_t tail_blk, 3340 int pass) 3341 { 3342 xlog_rec_header_t *rhead; 3343 xfs_daddr_t blk_no; 3344 xfs_caddr_t offset; 3345 xfs_buf_t *hbp, *dbp; 3346 int error = 0, h_size; 3347 int bblks, split_bblks; 3348 int hblks, split_hblks, wrapped_hblks; 3349 struct hlist_head rhash[XLOG_RHASH_SIZE]; 3350 3351 ASSERT(head_blk != tail_blk); 3352 3353 /* 3354 * Read the header of the tail block and get the iclog buffer size from 3355 * h_size. Use this to tell how many sectors make up the log header. 3356 */ 3357 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3358 /* 3359 * When using variable length iclogs, read first sector of 3360 * iclog header and extract the header size from it. Get a 3361 * new hbp that is the correct size. 3362 */ 3363 hbp = xlog_get_bp(log, 1); 3364 if (!hbp) 3365 return ENOMEM; 3366 3367 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 3368 if (error) 3369 goto bread_err1; 3370 3371 rhead = (xlog_rec_header_t *)offset; 3372 error = xlog_valid_rec_header(log, rhead, tail_blk); 3373 if (error) 3374 goto bread_err1; 3375 h_size = be32_to_cpu(rhead->h_size); 3376 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 3377 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 3378 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 3379 if (h_size % XLOG_HEADER_CYCLE_SIZE) 3380 hblks++; 3381 xlog_put_bp(hbp); 3382 hbp = xlog_get_bp(log, hblks); 3383 } else { 3384 hblks = 1; 3385 } 3386 } else { 3387 ASSERT(log->l_sectBBsize == 1); 3388 hblks = 1; 3389 hbp = xlog_get_bp(log, 1); 3390 h_size = XLOG_BIG_RECORD_BSIZE; 3391 } 3392 3393 if (!hbp) 3394 return ENOMEM; 3395 dbp = xlog_get_bp(log, BTOBB(h_size)); 3396 if (!dbp) { 3397 xlog_put_bp(hbp); 3398 return ENOMEM; 3399 } 3400 3401 memset(rhash, 0, sizeof(rhash)); 3402 if (tail_blk <= head_blk) { 3403 for (blk_no = tail_blk; blk_no < head_blk; ) { 3404 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 3405 if (error) 3406 goto bread_err2; 3407 3408 rhead = (xlog_rec_header_t *)offset; 3409 error = xlog_valid_rec_header(log, rhead, blk_no); 3410 if (error) 3411 goto bread_err2; 3412 3413 /* blocks in data section */ 3414 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3415 error = xlog_bread(log, blk_no + hblks, bblks, dbp, 3416 &offset); 3417 if (error) 3418 goto bread_err2; 3419 3420 error = xlog_unpack_data(rhead, offset, log); 3421 if (error) 3422 goto bread_err2; 3423 3424 error = xlog_recover_process_data(log, 3425 rhash, rhead, offset, pass); 3426 if (error) 3427 goto bread_err2; 3428 blk_no += bblks + hblks; 3429 } 3430 } else { 3431 /* 3432 * Perform recovery around the end of the physical log. 3433 * When the head is not on the same cycle number as the tail, 3434 * we can't do a sequential recovery as above. 3435 */ 3436 blk_no = tail_blk; 3437 while (blk_no < log->l_logBBsize) { 3438 /* 3439 * Check for header wrapping around physical end-of-log 3440 */ 3441 offset = hbp->b_addr; 3442 split_hblks = 0; 3443 wrapped_hblks = 0; 3444 if (blk_no + hblks <= log->l_logBBsize) { 3445 /* Read header in one read */ 3446 error = xlog_bread(log, blk_no, hblks, hbp, 3447 &offset); 3448 if (error) 3449 goto bread_err2; 3450 } else { 3451 /* This LR is split across physical log end */ 3452 if (blk_no != log->l_logBBsize) { 3453 /* some data before physical log end */ 3454 ASSERT(blk_no <= INT_MAX); 3455 split_hblks = log->l_logBBsize - (int)blk_no; 3456 ASSERT(split_hblks > 0); 3457 error = xlog_bread(log, blk_no, 3458 split_hblks, hbp, 3459 &offset); 3460 if (error) 3461 goto bread_err2; 3462 } 3463 3464 /* 3465 * Note: this black magic still works with 3466 * large sector sizes (non-512) only because: 3467 * - we increased the buffer size originally 3468 * by 1 sector giving us enough extra space 3469 * for the second read; 3470 * - the log start is guaranteed to be sector 3471 * aligned; 3472 * - we read the log end (LR header start) 3473 * _first_, then the log start (LR header end) 3474 * - order is important. 3475 */ 3476 wrapped_hblks = hblks - split_hblks; 3477 error = xlog_bread_offset(log, 0, 3478 wrapped_hblks, hbp, 3479 offset + BBTOB(split_hblks)); 3480 if (error) 3481 goto bread_err2; 3482 } 3483 rhead = (xlog_rec_header_t *)offset; 3484 error = xlog_valid_rec_header(log, rhead, 3485 split_hblks ? blk_no : 0); 3486 if (error) 3487 goto bread_err2; 3488 3489 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3490 blk_no += hblks; 3491 3492 /* Read in data for log record */ 3493 if (blk_no + bblks <= log->l_logBBsize) { 3494 error = xlog_bread(log, blk_no, bblks, dbp, 3495 &offset); 3496 if (error) 3497 goto bread_err2; 3498 } else { 3499 /* This log record is split across the 3500 * physical end of log */ 3501 offset = dbp->b_addr; 3502 split_bblks = 0; 3503 if (blk_no != log->l_logBBsize) { 3504 /* some data is before the physical 3505 * end of log */ 3506 ASSERT(!wrapped_hblks); 3507 ASSERT(blk_no <= INT_MAX); 3508 split_bblks = 3509 log->l_logBBsize - (int)blk_no; 3510 ASSERT(split_bblks > 0); 3511 error = xlog_bread(log, blk_no, 3512 split_bblks, dbp, 3513 &offset); 3514 if (error) 3515 goto bread_err2; 3516 } 3517 3518 /* 3519 * Note: this black magic still works with 3520 * large sector sizes (non-512) only because: 3521 * - we increased the buffer size originally 3522 * by 1 sector giving us enough extra space 3523 * for the second read; 3524 * - the log start is guaranteed to be sector 3525 * aligned; 3526 * - we read the log end (LR header start) 3527 * _first_, then the log start (LR header end) 3528 * - order is important. 3529 */ 3530 error = xlog_bread_offset(log, 0, 3531 bblks - split_bblks, dbp, 3532 offset + BBTOB(split_bblks)); 3533 if (error) 3534 goto bread_err2; 3535 } 3536 3537 error = xlog_unpack_data(rhead, offset, log); 3538 if (error) 3539 goto bread_err2; 3540 3541 error = xlog_recover_process_data(log, rhash, 3542 rhead, offset, pass); 3543 if (error) 3544 goto bread_err2; 3545 blk_no += bblks; 3546 } 3547 3548 ASSERT(blk_no >= log->l_logBBsize); 3549 blk_no -= log->l_logBBsize; 3550 3551 /* read first part of physical log */ 3552 while (blk_no < head_blk) { 3553 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 3554 if (error) 3555 goto bread_err2; 3556 3557 rhead = (xlog_rec_header_t *)offset; 3558 error = xlog_valid_rec_header(log, rhead, blk_no); 3559 if (error) 3560 goto bread_err2; 3561 3562 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3563 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 3564 &offset); 3565 if (error) 3566 goto bread_err2; 3567 3568 error = xlog_unpack_data(rhead, offset, log); 3569 if (error) 3570 goto bread_err2; 3571 3572 error = xlog_recover_process_data(log, rhash, 3573 rhead, offset, pass); 3574 if (error) 3575 goto bread_err2; 3576 blk_no += bblks + hblks; 3577 } 3578 } 3579 3580 bread_err2: 3581 xlog_put_bp(dbp); 3582 bread_err1: 3583 xlog_put_bp(hbp); 3584 return error; 3585 } 3586 3587 /* 3588 * Do the recovery of the log. We actually do this in two phases. 3589 * The two passes are necessary in order to implement the function 3590 * of cancelling a record written into the log. The first pass 3591 * determines those things which have been cancelled, and the 3592 * second pass replays log items normally except for those which 3593 * have been cancelled. The handling of the replay and cancellations 3594 * takes place in the log item type specific routines. 3595 * 3596 * The table of items which have cancel records in the log is allocated 3597 * and freed at this level, since only here do we know when all of 3598 * the log recovery has been completed. 3599 */ 3600 STATIC int 3601 xlog_do_log_recovery( 3602 struct xlog *log, 3603 xfs_daddr_t head_blk, 3604 xfs_daddr_t tail_blk) 3605 { 3606 int error, i; 3607 3608 ASSERT(head_blk != tail_blk); 3609 3610 /* 3611 * First do a pass to find all of the cancelled buf log items. 3612 * Store them in the buf_cancel_table for use in the second pass. 3613 */ 3614 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * 3615 sizeof(struct list_head), 3616 KM_SLEEP); 3617 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3618 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); 3619 3620 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3621 XLOG_RECOVER_PASS1); 3622 if (error != 0) { 3623 kmem_free(log->l_buf_cancel_table); 3624 log->l_buf_cancel_table = NULL; 3625 return error; 3626 } 3627 /* 3628 * Then do a second pass to actually recover the items in the log. 3629 * When it is complete free the table of buf cancel items. 3630 */ 3631 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3632 XLOG_RECOVER_PASS2); 3633 #ifdef DEBUG 3634 if (!error) { 3635 int i; 3636 3637 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3638 ASSERT(list_empty(&log->l_buf_cancel_table[i])); 3639 } 3640 #endif /* DEBUG */ 3641 3642 kmem_free(log->l_buf_cancel_table); 3643 log->l_buf_cancel_table = NULL; 3644 3645 return error; 3646 } 3647 3648 /* 3649 * Do the actual recovery 3650 */ 3651 STATIC int 3652 xlog_do_recover( 3653 struct xlog *log, 3654 xfs_daddr_t head_blk, 3655 xfs_daddr_t tail_blk) 3656 { 3657 int error; 3658 xfs_buf_t *bp; 3659 xfs_sb_t *sbp; 3660 3661 /* 3662 * First replay the images in the log. 3663 */ 3664 error = xlog_do_log_recovery(log, head_blk, tail_blk); 3665 if (error) 3666 return error; 3667 3668 /* 3669 * If IO errors happened during recovery, bail out. 3670 */ 3671 if (XFS_FORCED_SHUTDOWN(log->l_mp)) { 3672 return (EIO); 3673 } 3674 3675 /* 3676 * We now update the tail_lsn since much of the recovery has completed 3677 * and there may be space available to use. If there were no extent 3678 * or iunlinks, we can free up the entire log and set the tail_lsn to 3679 * be the last_sync_lsn. This was set in xlog_find_tail to be the 3680 * lsn of the last known good LR on disk. If there are extent frees 3681 * or iunlinks they will have some entries in the AIL; so we look at 3682 * the AIL to determine how to set the tail_lsn. 3683 */ 3684 xlog_assign_tail_lsn(log->l_mp); 3685 3686 /* 3687 * Now that we've finished replaying all buffer and inode 3688 * updates, re-read in the superblock and reverify it. 3689 */ 3690 bp = xfs_getsb(log->l_mp, 0); 3691 XFS_BUF_UNDONE(bp); 3692 ASSERT(!(XFS_BUF_ISWRITE(bp))); 3693 XFS_BUF_READ(bp); 3694 XFS_BUF_UNASYNC(bp); 3695 bp->b_ops = &xfs_sb_buf_ops; 3696 xfsbdstrat(log->l_mp, bp); 3697 error = xfs_buf_iowait(bp); 3698 if (error) { 3699 xfs_buf_ioerror_alert(bp, __func__); 3700 ASSERT(0); 3701 xfs_buf_relse(bp); 3702 return error; 3703 } 3704 3705 /* Convert superblock from on-disk format */ 3706 sbp = &log->l_mp->m_sb; 3707 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 3708 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); 3709 ASSERT(xfs_sb_good_version(sbp)); 3710 xfs_buf_relse(bp); 3711 3712 /* We've re-read the superblock so re-initialize per-cpu counters */ 3713 xfs_icsb_reinit_counters(log->l_mp); 3714 3715 xlog_recover_check_summary(log); 3716 3717 /* Normal transactions can now occur */ 3718 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 3719 return 0; 3720 } 3721 3722 /* 3723 * Perform recovery and re-initialize some log variables in xlog_find_tail. 3724 * 3725 * Return error or zero. 3726 */ 3727 int 3728 xlog_recover( 3729 struct xlog *log) 3730 { 3731 xfs_daddr_t head_blk, tail_blk; 3732 int error; 3733 3734 /* find the tail of the log */ 3735 if ((error = xlog_find_tail(log, &head_blk, &tail_blk))) 3736 return error; 3737 3738 if (tail_blk != head_blk) { 3739 /* There used to be a comment here: 3740 * 3741 * disallow recovery on read-only mounts. note -- mount 3742 * checks for ENOSPC and turns it into an intelligent 3743 * error message. 3744 * ...but this is no longer true. Now, unless you specify 3745 * NORECOVERY (in which case this function would never be 3746 * called), we just go ahead and recover. We do this all 3747 * under the vfs layer, so we can get away with it unless 3748 * the device itself is read-only, in which case we fail. 3749 */ 3750 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 3751 return error; 3752 } 3753 3754 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", 3755 log->l_mp->m_logname ? log->l_mp->m_logname 3756 : "internal"); 3757 3758 error = xlog_do_recover(log, head_blk, tail_blk); 3759 log->l_flags |= XLOG_RECOVERY_NEEDED; 3760 } 3761 return error; 3762 } 3763 3764 /* 3765 * In the first part of recovery we replay inodes and buffers and build 3766 * up the list of extent free items which need to be processed. Here 3767 * we process the extent free items and clean up the on disk unlinked 3768 * inode lists. This is separated from the first part of recovery so 3769 * that the root and real-time bitmap inodes can be read in from disk in 3770 * between the two stages. This is necessary so that we can free space 3771 * in the real-time portion of the file system. 3772 */ 3773 int 3774 xlog_recover_finish( 3775 struct xlog *log) 3776 { 3777 /* 3778 * Now we're ready to do the transactions needed for the 3779 * rest of recovery. Start with completing all the extent 3780 * free intent records and then process the unlinked inode 3781 * lists. At this point, we essentially run in normal mode 3782 * except that we're still performing recovery actions 3783 * rather than accepting new requests. 3784 */ 3785 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 3786 int error; 3787 error = xlog_recover_process_efis(log); 3788 if (error) { 3789 xfs_alert(log->l_mp, "Failed to recover EFIs"); 3790 return error; 3791 } 3792 /* 3793 * Sync the log to get all the EFIs out of the AIL. 3794 * This isn't absolutely necessary, but it helps in 3795 * case the unlink transactions would have problems 3796 * pushing the EFIs out of the way. 3797 */ 3798 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 3799 3800 xlog_recover_process_iunlinks(log); 3801 3802 xlog_recover_check_summary(log); 3803 3804 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", 3805 log->l_mp->m_logname ? log->l_mp->m_logname 3806 : "internal"); 3807 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 3808 } else { 3809 xfs_info(log->l_mp, "Ending clean mount"); 3810 } 3811 return 0; 3812 } 3813 3814 3815 #if defined(DEBUG) 3816 /* 3817 * Read all of the agf and agi counters and check that they 3818 * are consistent with the superblock counters. 3819 */ 3820 void 3821 xlog_recover_check_summary( 3822 struct xlog *log) 3823 { 3824 xfs_mount_t *mp; 3825 xfs_agf_t *agfp; 3826 xfs_buf_t *agfbp; 3827 xfs_buf_t *agibp; 3828 xfs_agnumber_t agno; 3829 __uint64_t freeblks; 3830 __uint64_t itotal; 3831 __uint64_t ifree; 3832 int error; 3833 3834 mp = log->l_mp; 3835 3836 freeblks = 0LL; 3837 itotal = 0LL; 3838 ifree = 0LL; 3839 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3840 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 3841 if (error) { 3842 xfs_alert(mp, "%s agf read failed agno %d error %d", 3843 __func__, agno, error); 3844 } else { 3845 agfp = XFS_BUF_TO_AGF(agfbp); 3846 freeblks += be32_to_cpu(agfp->agf_freeblks) + 3847 be32_to_cpu(agfp->agf_flcount); 3848 xfs_buf_relse(agfbp); 3849 } 3850 3851 error = xfs_read_agi(mp, NULL, agno, &agibp); 3852 if (error) { 3853 xfs_alert(mp, "%s agi read failed agno %d error %d", 3854 __func__, agno, error); 3855 } else { 3856 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 3857 3858 itotal += be32_to_cpu(agi->agi_count); 3859 ifree += be32_to_cpu(agi->agi_freecount); 3860 xfs_buf_relse(agibp); 3861 } 3862 } 3863 } 3864 #endif /* DEBUG */ 3865