1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_mount.h" 28 #include "xfs_error.h" 29 #include "xfs_bmap_btree.h" 30 #include "xfs_alloc_btree.h" 31 #include "xfs_ialloc_btree.h" 32 #include "xfs_dinode.h" 33 #include "xfs_inode.h" 34 #include "xfs_inode_item.h" 35 #include "xfs_alloc.h" 36 #include "xfs_ialloc.h" 37 #include "xfs_log_priv.h" 38 #include "xfs_buf_item.h" 39 #include "xfs_log_recover.h" 40 #include "xfs_extfree_item.h" 41 #include "xfs_trans_priv.h" 42 #include "xfs_quota.h" 43 #include "xfs_utils.h" 44 #include "xfs_trace.h" 45 46 STATIC int 47 xlog_find_zeroed( 48 struct xlog *, 49 xfs_daddr_t *); 50 STATIC int 51 xlog_clear_stale_blocks( 52 struct xlog *, 53 xfs_lsn_t); 54 #if defined(DEBUG) 55 STATIC void 56 xlog_recover_check_summary( 57 struct xlog *); 58 #else 59 #define xlog_recover_check_summary(log) 60 #endif 61 62 /* 63 * This structure is used during recovery to record the buf log items which 64 * have been canceled and should not be replayed. 65 */ 66 struct xfs_buf_cancel { 67 xfs_daddr_t bc_blkno; 68 uint bc_len; 69 int bc_refcount; 70 struct list_head bc_list; 71 }; 72 73 /* 74 * Sector aligned buffer routines for buffer create/read/write/access 75 */ 76 77 /* 78 * Verify the given count of basic blocks is valid number of blocks 79 * to specify for an operation involving the given XFS log buffer. 80 * Returns nonzero if the count is valid, 0 otherwise. 81 */ 82 83 static inline int 84 xlog_buf_bbcount_valid( 85 struct xlog *log, 86 int bbcount) 87 { 88 return bbcount > 0 && bbcount <= log->l_logBBsize; 89 } 90 91 /* 92 * Allocate a buffer to hold log data. The buffer needs to be able 93 * to map to a range of nbblks basic blocks at any valid (basic 94 * block) offset within the log. 95 */ 96 STATIC xfs_buf_t * 97 xlog_get_bp( 98 struct xlog *log, 99 int nbblks) 100 { 101 struct xfs_buf *bp; 102 103 if (!xlog_buf_bbcount_valid(log, nbblks)) { 104 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 105 nbblks); 106 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 107 return NULL; 108 } 109 110 /* 111 * We do log I/O in units of log sectors (a power-of-2 112 * multiple of the basic block size), so we round up the 113 * requested size to accommodate the basic blocks required 114 * for complete log sectors. 115 * 116 * In addition, the buffer may be used for a non-sector- 117 * aligned block offset, in which case an I/O of the 118 * requested size could extend beyond the end of the 119 * buffer. If the requested size is only 1 basic block it 120 * will never straddle a sector boundary, so this won't be 121 * an issue. Nor will this be a problem if the log I/O is 122 * done in basic blocks (sector size 1). But otherwise we 123 * extend the buffer by one extra log sector to ensure 124 * there's space to accommodate this possibility. 125 */ 126 if (nbblks > 1 && log->l_sectBBsize > 1) 127 nbblks += log->l_sectBBsize; 128 nbblks = round_up(nbblks, log->l_sectBBsize); 129 130 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0); 131 if (bp) 132 xfs_buf_unlock(bp); 133 return bp; 134 } 135 136 STATIC void 137 xlog_put_bp( 138 xfs_buf_t *bp) 139 { 140 xfs_buf_free(bp); 141 } 142 143 /* 144 * Return the address of the start of the given block number's data 145 * in a log buffer. The buffer covers a log sector-aligned region. 146 */ 147 STATIC xfs_caddr_t 148 xlog_align( 149 struct xlog *log, 150 xfs_daddr_t blk_no, 151 int nbblks, 152 struct xfs_buf *bp) 153 { 154 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1); 155 156 ASSERT(offset + nbblks <= bp->b_length); 157 return bp->b_addr + BBTOB(offset); 158 } 159 160 161 /* 162 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 163 */ 164 STATIC int 165 xlog_bread_noalign( 166 struct xlog *log, 167 xfs_daddr_t blk_no, 168 int nbblks, 169 struct xfs_buf *bp) 170 { 171 int error; 172 173 if (!xlog_buf_bbcount_valid(log, nbblks)) { 174 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 175 nbblks); 176 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 177 return EFSCORRUPTED; 178 } 179 180 blk_no = round_down(blk_no, log->l_sectBBsize); 181 nbblks = round_up(nbblks, log->l_sectBBsize); 182 183 ASSERT(nbblks > 0); 184 ASSERT(nbblks <= bp->b_length); 185 186 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 187 XFS_BUF_READ(bp); 188 bp->b_io_length = nbblks; 189 bp->b_error = 0; 190 191 xfsbdstrat(log->l_mp, bp); 192 error = xfs_buf_iowait(bp); 193 if (error) 194 xfs_buf_ioerror_alert(bp, __func__); 195 return error; 196 } 197 198 STATIC int 199 xlog_bread( 200 struct xlog *log, 201 xfs_daddr_t blk_no, 202 int nbblks, 203 struct xfs_buf *bp, 204 xfs_caddr_t *offset) 205 { 206 int error; 207 208 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 209 if (error) 210 return error; 211 212 *offset = xlog_align(log, blk_no, nbblks, bp); 213 return 0; 214 } 215 216 /* 217 * Read at an offset into the buffer. Returns with the buffer in it's original 218 * state regardless of the result of the read. 219 */ 220 STATIC int 221 xlog_bread_offset( 222 struct xlog *log, 223 xfs_daddr_t blk_no, /* block to read from */ 224 int nbblks, /* blocks to read */ 225 struct xfs_buf *bp, 226 xfs_caddr_t offset) 227 { 228 xfs_caddr_t orig_offset = bp->b_addr; 229 int orig_len = BBTOB(bp->b_length); 230 int error, error2; 231 232 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks)); 233 if (error) 234 return error; 235 236 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 237 238 /* must reset buffer pointer even on error */ 239 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len); 240 if (error) 241 return error; 242 return error2; 243 } 244 245 /* 246 * Write out the buffer at the given block for the given number of blocks. 247 * The buffer is kept locked across the write and is returned locked. 248 * This can only be used for synchronous log writes. 249 */ 250 STATIC int 251 xlog_bwrite( 252 struct xlog *log, 253 xfs_daddr_t blk_no, 254 int nbblks, 255 struct xfs_buf *bp) 256 { 257 int error; 258 259 if (!xlog_buf_bbcount_valid(log, nbblks)) { 260 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 261 nbblks); 262 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 263 return EFSCORRUPTED; 264 } 265 266 blk_no = round_down(blk_no, log->l_sectBBsize); 267 nbblks = round_up(nbblks, log->l_sectBBsize); 268 269 ASSERT(nbblks > 0); 270 ASSERT(nbblks <= bp->b_length); 271 272 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 273 XFS_BUF_ZEROFLAGS(bp); 274 xfs_buf_hold(bp); 275 xfs_buf_lock(bp); 276 bp->b_io_length = nbblks; 277 bp->b_error = 0; 278 279 error = xfs_bwrite(bp); 280 if (error) 281 xfs_buf_ioerror_alert(bp, __func__); 282 xfs_buf_relse(bp); 283 return error; 284 } 285 286 #ifdef DEBUG 287 /* 288 * dump debug superblock and log record information 289 */ 290 STATIC void 291 xlog_header_check_dump( 292 xfs_mount_t *mp, 293 xlog_rec_header_t *head) 294 { 295 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n", 296 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 297 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n", 298 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 299 } 300 #else 301 #define xlog_header_check_dump(mp, head) 302 #endif 303 304 /* 305 * check log record header for recovery 306 */ 307 STATIC int 308 xlog_header_check_recover( 309 xfs_mount_t *mp, 310 xlog_rec_header_t *head) 311 { 312 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 313 314 /* 315 * IRIX doesn't write the h_fmt field and leaves it zeroed 316 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 317 * a dirty log created in IRIX. 318 */ 319 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) { 320 xfs_warn(mp, 321 "dirty log written in incompatible format - can't recover"); 322 xlog_header_check_dump(mp, head); 323 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 324 XFS_ERRLEVEL_HIGH, mp); 325 return XFS_ERROR(EFSCORRUPTED); 326 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 327 xfs_warn(mp, 328 "dirty log entry has mismatched uuid - can't recover"); 329 xlog_header_check_dump(mp, head); 330 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 331 XFS_ERRLEVEL_HIGH, mp); 332 return XFS_ERROR(EFSCORRUPTED); 333 } 334 return 0; 335 } 336 337 /* 338 * read the head block of the log and check the header 339 */ 340 STATIC int 341 xlog_header_check_mount( 342 xfs_mount_t *mp, 343 xlog_rec_header_t *head) 344 { 345 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 346 347 if (uuid_is_nil(&head->h_fs_uuid)) { 348 /* 349 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 350 * h_fs_uuid is nil, we assume this log was last mounted 351 * by IRIX and continue. 352 */ 353 xfs_warn(mp, "nil uuid in log - IRIX style log"); 354 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 355 xfs_warn(mp, "log has mismatched uuid - can't recover"); 356 xlog_header_check_dump(mp, head); 357 XFS_ERROR_REPORT("xlog_header_check_mount", 358 XFS_ERRLEVEL_HIGH, mp); 359 return XFS_ERROR(EFSCORRUPTED); 360 } 361 return 0; 362 } 363 364 STATIC void 365 xlog_recover_iodone( 366 struct xfs_buf *bp) 367 { 368 if (bp->b_error) { 369 /* 370 * We're not going to bother about retrying 371 * this during recovery. One strike! 372 */ 373 xfs_buf_ioerror_alert(bp, __func__); 374 xfs_force_shutdown(bp->b_target->bt_mount, 375 SHUTDOWN_META_IO_ERROR); 376 } 377 bp->b_iodone = NULL; 378 xfs_buf_ioend(bp, 0); 379 } 380 381 /* 382 * This routine finds (to an approximation) the first block in the physical 383 * log which contains the given cycle. It uses a binary search algorithm. 384 * Note that the algorithm can not be perfect because the disk will not 385 * necessarily be perfect. 386 */ 387 STATIC int 388 xlog_find_cycle_start( 389 struct xlog *log, 390 struct xfs_buf *bp, 391 xfs_daddr_t first_blk, 392 xfs_daddr_t *last_blk, 393 uint cycle) 394 { 395 xfs_caddr_t offset; 396 xfs_daddr_t mid_blk; 397 xfs_daddr_t end_blk; 398 uint mid_cycle; 399 int error; 400 401 end_blk = *last_blk; 402 mid_blk = BLK_AVG(first_blk, end_blk); 403 while (mid_blk != first_blk && mid_blk != end_blk) { 404 error = xlog_bread(log, mid_blk, 1, bp, &offset); 405 if (error) 406 return error; 407 mid_cycle = xlog_get_cycle(offset); 408 if (mid_cycle == cycle) 409 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 410 else 411 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 412 mid_blk = BLK_AVG(first_blk, end_blk); 413 } 414 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 415 (mid_blk == end_blk && mid_blk-1 == first_blk)); 416 417 *last_blk = end_blk; 418 419 return 0; 420 } 421 422 /* 423 * Check that a range of blocks does not contain stop_on_cycle_no. 424 * Fill in *new_blk with the block offset where such a block is 425 * found, or with -1 (an invalid block number) if there is no such 426 * block in the range. The scan needs to occur from front to back 427 * and the pointer into the region must be updated since a later 428 * routine will need to perform another test. 429 */ 430 STATIC int 431 xlog_find_verify_cycle( 432 struct xlog *log, 433 xfs_daddr_t start_blk, 434 int nbblks, 435 uint stop_on_cycle_no, 436 xfs_daddr_t *new_blk) 437 { 438 xfs_daddr_t i, j; 439 uint cycle; 440 xfs_buf_t *bp; 441 xfs_daddr_t bufblks; 442 xfs_caddr_t buf = NULL; 443 int error = 0; 444 445 /* 446 * Greedily allocate a buffer big enough to handle the full 447 * range of basic blocks we'll be examining. If that fails, 448 * try a smaller size. We need to be able to read at least 449 * a log sector, or we're out of luck. 450 */ 451 bufblks = 1 << ffs(nbblks); 452 while (bufblks > log->l_logBBsize) 453 bufblks >>= 1; 454 while (!(bp = xlog_get_bp(log, bufblks))) { 455 bufblks >>= 1; 456 if (bufblks < log->l_sectBBsize) 457 return ENOMEM; 458 } 459 460 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 461 int bcount; 462 463 bcount = min(bufblks, (start_blk + nbblks - i)); 464 465 error = xlog_bread(log, i, bcount, bp, &buf); 466 if (error) 467 goto out; 468 469 for (j = 0; j < bcount; j++) { 470 cycle = xlog_get_cycle(buf); 471 if (cycle == stop_on_cycle_no) { 472 *new_blk = i+j; 473 goto out; 474 } 475 476 buf += BBSIZE; 477 } 478 } 479 480 *new_blk = -1; 481 482 out: 483 xlog_put_bp(bp); 484 return error; 485 } 486 487 /* 488 * Potentially backup over partial log record write. 489 * 490 * In the typical case, last_blk is the number of the block directly after 491 * a good log record. Therefore, we subtract one to get the block number 492 * of the last block in the given buffer. extra_bblks contains the number 493 * of blocks we would have read on a previous read. This happens when the 494 * last log record is split over the end of the physical log. 495 * 496 * extra_bblks is the number of blocks potentially verified on a previous 497 * call to this routine. 498 */ 499 STATIC int 500 xlog_find_verify_log_record( 501 struct xlog *log, 502 xfs_daddr_t start_blk, 503 xfs_daddr_t *last_blk, 504 int extra_bblks) 505 { 506 xfs_daddr_t i; 507 xfs_buf_t *bp; 508 xfs_caddr_t offset = NULL; 509 xlog_rec_header_t *head = NULL; 510 int error = 0; 511 int smallmem = 0; 512 int num_blks = *last_blk - start_blk; 513 int xhdrs; 514 515 ASSERT(start_blk != 0 || *last_blk != start_blk); 516 517 if (!(bp = xlog_get_bp(log, num_blks))) { 518 if (!(bp = xlog_get_bp(log, 1))) 519 return ENOMEM; 520 smallmem = 1; 521 } else { 522 error = xlog_bread(log, start_blk, num_blks, bp, &offset); 523 if (error) 524 goto out; 525 offset += ((num_blks - 1) << BBSHIFT); 526 } 527 528 for (i = (*last_blk) - 1; i >= 0; i--) { 529 if (i < start_blk) { 530 /* valid log record not found */ 531 xfs_warn(log->l_mp, 532 "Log inconsistent (didn't find previous header)"); 533 ASSERT(0); 534 error = XFS_ERROR(EIO); 535 goto out; 536 } 537 538 if (smallmem) { 539 error = xlog_bread(log, i, 1, bp, &offset); 540 if (error) 541 goto out; 542 } 543 544 head = (xlog_rec_header_t *)offset; 545 546 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 547 break; 548 549 if (!smallmem) 550 offset -= BBSIZE; 551 } 552 553 /* 554 * We hit the beginning of the physical log & still no header. Return 555 * to caller. If caller can handle a return of -1, then this routine 556 * will be called again for the end of the physical log. 557 */ 558 if (i == -1) { 559 error = -1; 560 goto out; 561 } 562 563 /* 564 * We have the final block of the good log (the first block 565 * of the log record _before_ the head. So we check the uuid. 566 */ 567 if ((error = xlog_header_check_mount(log->l_mp, head))) 568 goto out; 569 570 /* 571 * We may have found a log record header before we expected one. 572 * last_blk will be the 1st block # with a given cycle #. We may end 573 * up reading an entire log record. In this case, we don't want to 574 * reset last_blk. Only when last_blk points in the middle of a log 575 * record do we update last_blk. 576 */ 577 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 578 uint h_size = be32_to_cpu(head->h_size); 579 580 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 581 if (h_size % XLOG_HEADER_CYCLE_SIZE) 582 xhdrs++; 583 } else { 584 xhdrs = 1; 585 } 586 587 if (*last_blk - i + extra_bblks != 588 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 589 *last_blk = i; 590 591 out: 592 xlog_put_bp(bp); 593 return error; 594 } 595 596 /* 597 * Head is defined to be the point of the log where the next log write 598 * write could go. This means that incomplete LR writes at the end are 599 * eliminated when calculating the head. We aren't guaranteed that previous 600 * LR have complete transactions. We only know that a cycle number of 601 * current cycle number -1 won't be present in the log if we start writing 602 * from our current block number. 603 * 604 * last_blk contains the block number of the first block with a given 605 * cycle number. 606 * 607 * Return: zero if normal, non-zero if error. 608 */ 609 STATIC int 610 xlog_find_head( 611 struct xlog *log, 612 xfs_daddr_t *return_head_blk) 613 { 614 xfs_buf_t *bp; 615 xfs_caddr_t offset; 616 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 617 int num_scan_bblks; 618 uint first_half_cycle, last_half_cycle; 619 uint stop_on_cycle; 620 int error, log_bbnum = log->l_logBBsize; 621 622 /* Is the end of the log device zeroed? */ 623 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) { 624 *return_head_blk = first_blk; 625 626 /* Is the whole lot zeroed? */ 627 if (!first_blk) { 628 /* Linux XFS shouldn't generate totally zeroed logs - 629 * mkfs etc write a dummy unmount record to a fresh 630 * log so we can store the uuid in there 631 */ 632 xfs_warn(log->l_mp, "totally zeroed log"); 633 } 634 635 return 0; 636 } else if (error) { 637 xfs_warn(log->l_mp, "empty log check failed"); 638 return error; 639 } 640 641 first_blk = 0; /* get cycle # of 1st block */ 642 bp = xlog_get_bp(log, 1); 643 if (!bp) 644 return ENOMEM; 645 646 error = xlog_bread(log, 0, 1, bp, &offset); 647 if (error) 648 goto bp_err; 649 650 first_half_cycle = xlog_get_cycle(offset); 651 652 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 653 error = xlog_bread(log, last_blk, 1, bp, &offset); 654 if (error) 655 goto bp_err; 656 657 last_half_cycle = xlog_get_cycle(offset); 658 ASSERT(last_half_cycle != 0); 659 660 /* 661 * If the 1st half cycle number is equal to the last half cycle number, 662 * then the entire log is stamped with the same cycle number. In this 663 * case, head_blk can't be set to zero (which makes sense). The below 664 * math doesn't work out properly with head_blk equal to zero. Instead, 665 * we set it to log_bbnum which is an invalid block number, but this 666 * value makes the math correct. If head_blk doesn't changed through 667 * all the tests below, *head_blk is set to zero at the very end rather 668 * than log_bbnum. In a sense, log_bbnum and zero are the same block 669 * in a circular file. 670 */ 671 if (first_half_cycle == last_half_cycle) { 672 /* 673 * In this case we believe that the entire log should have 674 * cycle number last_half_cycle. We need to scan backwards 675 * from the end verifying that there are no holes still 676 * containing last_half_cycle - 1. If we find such a hole, 677 * then the start of that hole will be the new head. The 678 * simple case looks like 679 * x | x ... | x - 1 | x 680 * Another case that fits this picture would be 681 * x | x + 1 | x ... | x 682 * In this case the head really is somewhere at the end of the 683 * log, as one of the latest writes at the beginning was 684 * incomplete. 685 * One more case is 686 * x | x + 1 | x ... | x - 1 | x 687 * This is really the combination of the above two cases, and 688 * the head has to end up at the start of the x-1 hole at the 689 * end of the log. 690 * 691 * In the 256k log case, we will read from the beginning to the 692 * end of the log and search for cycle numbers equal to x-1. 693 * We don't worry about the x+1 blocks that we encounter, 694 * because we know that they cannot be the head since the log 695 * started with x. 696 */ 697 head_blk = log_bbnum; 698 stop_on_cycle = last_half_cycle - 1; 699 } else { 700 /* 701 * In this case we want to find the first block with cycle 702 * number matching last_half_cycle. We expect the log to be 703 * some variation on 704 * x + 1 ... | x ... | x 705 * The first block with cycle number x (last_half_cycle) will 706 * be where the new head belongs. First we do a binary search 707 * for the first occurrence of last_half_cycle. The binary 708 * search may not be totally accurate, so then we scan back 709 * from there looking for occurrences of last_half_cycle before 710 * us. If that backwards scan wraps around the beginning of 711 * the log, then we look for occurrences of last_half_cycle - 1 712 * at the end of the log. The cases we're looking for look 713 * like 714 * v binary search stopped here 715 * x + 1 ... | x | x + 1 | x ... | x 716 * ^ but we want to locate this spot 717 * or 718 * <---------> less than scan distance 719 * x + 1 ... | x ... | x - 1 | x 720 * ^ we want to locate this spot 721 */ 722 stop_on_cycle = last_half_cycle; 723 if ((error = xlog_find_cycle_start(log, bp, first_blk, 724 &head_blk, last_half_cycle))) 725 goto bp_err; 726 } 727 728 /* 729 * Now validate the answer. Scan back some number of maximum possible 730 * blocks and make sure each one has the expected cycle number. The 731 * maximum is determined by the total possible amount of buffering 732 * in the in-core log. The following number can be made tighter if 733 * we actually look at the block size of the filesystem. 734 */ 735 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 736 if (head_blk >= num_scan_bblks) { 737 /* 738 * We are guaranteed that the entire check can be performed 739 * in one buffer. 740 */ 741 start_blk = head_blk - num_scan_bblks; 742 if ((error = xlog_find_verify_cycle(log, 743 start_blk, num_scan_bblks, 744 stop_on_cycle, &new_blk))) 745 goto bp_err; 746 if (new_blk != -1) 747 head_blk = new_blk; 748 } else { /* need to read 2 parts of log */ 749 /* 750 * We are going to scan backwards in the log in two parts. 751 * First we scan the physical end of the log. In this part 752 * of the log, we are looking for blocks with cycle number 753 * last_half_cycle - 1. 754 * If we find one, then we know that the log starts there, as 755 * we've found a hole that didn't get written in going around 756 * the end of the physical log. The simple case for this is 757 * x + 1 ... | x ... | x - 1 | x 758 * <---------> less than scan distance 759 * If all of the blocks at the end of the log have cycle number 760 * last_half_cycle, then we check the blocks at the start of 761 * the log looking for occurrences of last_half_cycle. If we 762 * find one, then our current estimate for the location of the 763 * first occurrence of last_half_cycle is wrong and we move 764 * back to the hole we've found. This case looks like 765 * x + 1 ... | x | x + 1 | x ... 766 * ^ binary search stopped here 767 * Another case we need to handle that only occurs in 256k 768 * logs is 769 * x + 1 ... | x ... | x+1 | x ... 770 * ^ binary search stops here 771 * In a 256k log, the scan at the end of the log will see the 772 * x + 1 blocks. We need to skip past those since that is 773 * certainly not the head of the log. By searching for 774 * last_half_cycle-1 we accomplish that. 775 */ 776 ASSERT(head_blk <= INT_MAX && 777 (xfs_daddr_t) num_scan_bblks >= head_blk); 778 start_blk = log_bbnum - (num_scan_bblks - head_blk); 779 if ((error = xlog_find_verify_cycle(log, start_blk, 780 num_scan_bblks - (int)head_blk, 781 (stop_on_cycle - 1), &new_blk))) 782 goto bp_err; 783 if (new_blk != -1) { 784 head_blk = new_blk; 785 goto validate_head; 786 } 787 788 /* 789 * Scan beginning of log now. The last part of the physical 790 * log is good. This scan needs to verify that it doesn't find 791 * the last_half_cycle. 792 */ 793 start_blk = 0; 794 ASSERT(head_blk <= INT_MAX); 795 if ((error = xlog_find_verify_cycle(log, 796 start_blk, (int)head_blk, 797 stop_on_cycle, &new_blk))) 798 goto bp_err; 799 if (new_blk != -1) 800 head_blk = new_blk; 801 } 802 803 validate_head: 804 /* 805 * Now we need to make sure head_blk is not pointing to a block in 806 * the middle of a log record. 807 */ 808 num_scan_bblks = XLOG_REC_SHIFT(log); 809 if (head_blk >= num_scan_bblks) { 810 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 811 812 /* start ptr at last block ptr before head_blk */ 813 if ((error = xlog_find_verify_log_record(log, start_blk, 814 &head_blk, 0)) == -1) { 815 error = XFS_ERROR(EIO); 816 goto bp_err; 817 } else if (error) 818 goto bp_err; 819 } else { 820 start_blk = 0; 821 ASSERT(head_blk <= INT_MAX); 822 if ((error = xlog_find_verify_log_record(log, start_blk, 823 &head_blk, 0)) == -1) { 824 /* We hit the beginning of the log during our search */ 825 start_blk = log_bbnum - (num_scan_bblks - head_blk); 826 new_blk = log_bbnum; 827 ASSERT(start_blk <= INT_MAX && 828 (xfs_daddr_t) log_bbnum-start_blk >= 0); 829 ASSERT(head_blk <= INT_MAX); 830 if ((error = xlog_find_verify_log_record(log, 831 start_blk, &new_blk, 832 (int)head_blk)) == -1) { 833 error = XFS_ERROR(EIO); 834 goto bp_err; 835 } else if (error) 836 goto bp_err; 837 if (new_blk != log_bbnum) 838 head_blk = new_blk; 839 } else if (error) 840 goto bp_err; 841 } 842 843 xlog_put_bp(bp); 844 if (head_blk == log_bbnum) 845 *return_head_blk = 0; 846 else 847 *return_head_blk = head_blk; 848 /* 849 * When returning here, we have a good block number. Bad block 850 * means that during a previous crash, we didn't have a clean break 851 * from cycle number N to cycle number N-1. In this case, we need 852 * to find the first block with cycle number N-1. 853 */ 854 return 0; 855 856 bp_err: 857 xlog_put_bp(bp); 858 859 if (error) 860 xfs_warn(log->l_mp, "failed to find log head"); 861 return error; 862 } 863 864 /* 865 * Find the sync block number or the tail of the log. 866 * 867 * This will be the block number of the last record to have its 868 * associated buffers synced to disk. Every log record header has 869 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 870 * to get a sync block number. The only concern is to figure out which 871 * log record header to believe. 872 * 873 * The following algorithm uses the log record header with the largest 874 * lsn. The entire log record does not need to be valid. We only care 875 * that the header is valid. 876 * 877 * We could speed up search by using current head_blk buffer, but it is not 878 * available. 879 */ 880 STATIC int 881 xlog_find_tail( 882 struct xlog *log, 883 xfs_daddr_t *head_blk, 884 xfs_daddr_t *tail_blk) 885 { 886 xlog_rec_header_t *rhead; 887 xlog_op_header_t *op_head; 888 xfs_caddr_t offset = NULL; 889 xfs_buf_t *bp; 890 int error, i, found; 891 xfs_daddr_t umount_data_blk; 892 xfs_daddr_t after_umount_blk; 893 xfs_lsn_t tail_lsn; 894 int hblks; 895 896 found = 0; 897 898 /* 899 * Find previous log record 900 */ 901 if ((error = xlog_find_head(log, head_blk))) 902 return error; 903 904 bp = xlog_get_bp(log, 1); 905 if (!bp) 906 return ENOMEM; 907 if (*head_blk == 0) { /* special case */ 908 error = xlog_bread(log, 0, 1, bp, &offset); 909 if (error) 910 goto done; 911 912 if (xlog_get_cycle(offset) == 0) { 913 *tail_blk = 0; 914 /* leave all other log inited values alone */ 915 goto done; 916 } 917 } 918 919 /* 920 * Search backwards looking for log record header block 921 */ 922 ASSERT(*head_blk < INT_MAX); 923 for (i = (int)(*head_blk) - 1; i >= 0; i--) { 924 error = xlog_bread(log, i, 1, bp, &offset); 925 if (error) 926 goto done; 927 928 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 929 found = 1; 930 break; 931 } 932 } 933 /* 934 * If we haven't found the log record header block, start looking 935 * again from the end of the physical log. XXXmiken: There should be 936 * a check here to make sure we didn't search more than N blocks in 937 * the previous code. 938 */ 939 if (!found) { 940 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) { 941 error = xlog_bread(log, i, 1, bp, &offset); 942 if (error) 943 goto done; 944 945 if (*(__be32 *)offset == 946 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 947 found = 2; 948 break; 949 } 950 } 951 } 952 if (!found) { 953 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); 954 ASSERT(0); 955 return XFS_ERROR(EIO); 956 } 957 958 /* find blk_no of tail of log */ 959 rhead = (xlog_rec_header_t *)offset; 960 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 961 962 /* 963 * Reset log values according to the state of the log when we 964 * crashed. In the case where head_blk == 0, we bump curr_cycle 965 * one because the next write starts a new cycle rather than 966 * continuing the cycle of the last good log record. At this 967 * point we have guaranteed that all partial log records have been 968 * accounted for. Therefore, we know that the last good log record 969 * written was complete and ended exactly on the end boundary 970 * of the physical log. 971 */ 972 log->l_prev_block = i; 973 log->l_curr_block = (int)*head_blk; 974 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 975 if (found == 2) 976 log->l_curr_cycle++; 977 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); 978 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); 979 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, 980 BBTOB(log->l_curr_block)); 981 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, 982 BBTOB(log->l_curr_block)); 983 984 /* 985 * Look for unmount record. If we find it, then we know there 986 * was a clean unmount. Since 'i' could be the last block in 987 * the physical log, we convert to a log block before comparing 988 * to the head_blk. 989 * 990 * Save the current tail lsn to use to pass to 991 * xlog_clear_stale_blocks() below. We won't want to clear the 992 * unmount record if there is one, so we pass the lsn of the 993 * unmount record rather than the block after it. 994 */ 995 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 996 int h_size = be32_to_cpu(rhead->h_size); 997 int h_version = be32_to_cpu(rhead->h_version); 998 999 if ((h_version & XLOG_VERSION_2) && 1000 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 1001 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 1002 if (h_size % XLOG_HEADER_CYCLE_SIZE) 1003 hblks++; 1004 } else { 1005 hblks = 1; 1006 } 1007 } else { 1008 hblks = 1; 1009 } 1010 after_umount_blk = (i + hblks + (int) 1011 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize; 1012 tail_lsn = atomic64_read(&log->l_tail_lsn); 1013 if (*head_blk == after_umount_blk && 1014 be32_to_cpu(rhead->h_num_logops) == 1) { 1015 umount_data_blk = (i + hblks) % log->l_logBBsize; 1016 error = xlog_bread(log, umount_data_blk, 1, bp, &offset); 1017 if (error) 1018 goto done; 1019 1020 op_head = (xlog_op_header_t *)offset; 1021 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 1022 /* 1023 * Set tail and last sync so that newly written 1024 * log records will point recovery to after the 1025 * current unmount record. 1026 */ 1027 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1028 log->l_curr_cycle, after_umount_blk); 1029 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1030 log->l_curr_cycle, after_umount_blk); 1031 *tail_blk = after_umount_blk; 1032 1033 /* 1034 * Note that the unmount was clean. If the unmount 1035 * was not clean, we need to know this to rebuild the 1036 * superblock counters from the perag headers if we 1037 * have a filesystem using non-persistent counters. 1038 */ 1039 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 1040 } 1041 } 1042 1043 /* 1044 * Make sure that there are no blocks in front of the head 1045 * with the same cycle number as the head. This can happen 1046 * because we allow multiple outstanding log writes concurrently, 1047 * and the later writes might make it out before earlier ones. 1048 * 1049 * We use the lsn from before modifying it so that we'll never 1050 * overwrite the unmount record after a clean unmount. 1051 * 1052 * Do this only if we are going to recover the filesystem 1053 * 1054 * NOTE: This used to say "if (!readonly)" 1055 * However on Linux, we can & do recover a read-only filesystem. 1056 * We only skip recovery if NORECOVERY is specified on mount, 1057 * in which case we would not be here. 1058 * 1059 * But... if the -device- itself is readonly, just skip this. 1060 * We can't recover this device anyway, so it won't matter. 1061 */ 1062 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) 1063 error = xlog_clear_stale_blocks(log, tail_lsn); 1064 1065 done: 1066 xlog_put_bp(bp); 1067 1068 if (error) 1069 xfs_warn(log->l_mp, "failed to locate log tail"); 1070 return error; 1071 } 1072 1073 /* 1074 * Is the log zeroed at all? 1075 * 1076 * The last binary search should be changed to perform an X block read 1077 * once X becomes small enough. You can then search linearly through 1078 * the X blocks. This will cut down on the number of reads we need to do. 1079 * 1080 * If the log is partially zeroed, this routine will pass back the blkno 1081 * of the first block with cycle number 0. It won't have a complete LR 1082 * preceding it. 1083 * 1084 * Return: 1085 * 0 => the log is completely written to 1086 * -1 => use *blk_no as the first block of the log 1087 * >0 => error has occurred 1088 */ 1089 STATIC int 1090 xlog_find_zeroed( 1091 struct xlog *log, 1092 xfs_daddr_t *blk_no) 1093 { 1094 xfs_buf_t *bp; 1095 xfs_caddr_t offset; 1096 uint first_cycle, last_cycle; 1097 xfs_daddr_t new_blk, last_blk, start_blk; 1098 xfs_daddr_t num_scan_bblks; 1099 int error, log_bbnum = log->l_logBBsize; 1100 1101 *blk_no = 0; 1102 1103 /* check totally zeroed log */ 1104 bp = xlog_get_bp(log, 1); 1105 if (!bp) 1106 return ENOMEM; 1107 error = xlog_bread(log, 0, 1, bp, &offset); 1108 if (error) 1109 goto bp_err; 1110 1111 first_cycle = xlog_get_cycle(offset); 1112 if (first_cycle == 0) { /* completely zeroed log */ 1113 *blk_no = 0; 1114 xlog_put_bp(bp); 1115 return -1; 1116 } 1117 1118 /* check partially zeroed log */ 1119 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset); 1120 if (error) 1121 goto bp_err; 1122 1123 last_cycle = xlog_get_cycle(offset); 1124 if (last_cycle != 0) { /* log completely written to */ 1125 xlog_put_bp(bp); 1126 return 0; 1127 } else if (first_cycle != 1) { 1128 /* 1129 * If the cycle of the last block is zero, the cycle of 1130 * the first block must be 1. If it's not, maybe we're 1131 * not looking at a log... Bail out. 1132 */ 1133 xfs_warn(log->l_mp, 1134 "Log inconsistent or not a log (last==0, first!=1)"); 1135 return XFS_ERROR(EINVAL); 1136 } 1137 1138 /* we have a partially zeroed log */ 1139 last_blk = log_bbnum-1; 1140 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1141 goto bp_err; 1142 1143 /* 1144 * Validate the answer. Because there is no way to guarantee that 1145 * the entire log is made up of log records which are the same size, 1146 * we scan over the defined maximum blocks. At this point, the maximum 1147 * is not chosen to mean anything special. XXXmiken 1148 */ 1149 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1150 ASSERT(num_scan_bblks <= INT_MAX); 1151 1152 if (last_blk < num_scan_bblks) 1153 num_scan_bblks = last_blk; 1154 start_blk = last_blk - num_scan_bblks; 1155 1156 /* 1157 * We search for any instances of cycle number 0 that occur before 1158 * our current estimate of the head. What we're trying to detect is 1159 * 1 ... | 0 | 1 | 0... 1160 * ^ binary search ends here 1161 */ 1162 if ((error = xlog_find_verify_cycle(log, start_blk, 1163 (int)num_scan_bblks, 0, &new_blk))) 1164 goto bp_err; 1165 if (new_blk != -1) 1166 last_blk = new_blk; 1167 1168 /* 1169 * Potentially backup over partial log record write. We don't need 1170 * to search the end of the log because we know it is zero. 1171 */ 1172 if ((error = xlog_find_verify_log_record(log, start_blk, 1173 &last_blk, 0)) == -1) { 1174 error = XFS_ERROR(EIO); 1175 goto bp_err; 1176 } else if (error) 1177 goto bp_err; 1178 1179 *blk_no = last_blk; 1180 bp_err: 1181 xlog_put_bp(bp); 1182 if (error) 1183 return error; 1184 return -1; 1185 } 1186 1187 /* 1188 * These are simple subroutines used by xlog_clear_stale_blocks() below 1189 * to initialize a buffer full of empty log record headers and write 1190 * them into the log. 1191 */ 1192 STATIC void 1193 xlog_add_record( 1194 struct xlog *log, 1195 xfs_caddr_t buf, 1196 int cycle, 1197 int block, 1198 int tail_cycle, 1199 int tail_block) 1200 { 1201 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1202 1203 memset(buf, 0, BBSIZE); 1204 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1205 recp->h_cycle = cpu_to_be32(cycle); 1206 recp->h_version = cpu_to_be32( 1207 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1208 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1209 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1210 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1211 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1212 } 1213 1214 STATIC int 1215 xlog_write_log_records( 1216 struct xlog *log, 1217 int cycle, 1218 int start_block, 1219 int blocks, 1220 int tail_cycle, 1221 int tail_block) 1222 { 1223 xfs_caddr_t offset; 1224 xfs_buf_t *bp; 1225 int balign, ealign; 1226 int sectbb = log->l_sectBBsize; 1227 int end_block = start_block + blocks; 1228 int bufblks; 1229 int error = 0; 1230 int i, j = 0; 1231 1232 /* 1233 * Greedily allocate a buffer big enough to handle the full 1234 * range of basic blocks to be written. If that fails, try 1235 * a smaller size. We need to be able to write at least a 1236 * log sector, or we're out of luck. 1237 */ 1238 bufblks = 1 << ffs(blocks); 1239 while (bufblks > log->l_logBBsize) 1240 bufblks >>= 1; 1241 while (!(bp = xlog_get_bp(log, bufblks))) { 1242 bufblks >>= 1; 1243 if (bufblks < sectbb) 1244 return ENOMEM; 1245 } 1246 1247 /* We may need to do a read at the start to fill in part of 1248 * the buffer in the starting sector not covered by the first 1249 * write below. 1250 */ 1251 balign = round_down(start_block, sectbb); 1252 if (balign != start_block) { 1253 error = xlog_bread_noalign(log, start_block, 1, bp); 1254 if (error) 1255 goto out_put_bp; 1256 1257 j = start_block - balign; 1258 } 1259 1260 for (i = start_block; i < end_block; i += bufblks) { 1261 int bcount, endcount; 1262 1263 bcount = min(bufblks, end_block - start_block); 1264 endcount = bcount - j; 1265 1266 /* We may need to do a read at the end to fill in part of 1267 * the buffer in the final sector not covered by the write. 1268 * If this is the same sector as the above read, skip it. 1269 */ 1270 ealign = round_down(end_block, sectbb); 1271 if (j == 0 && (start_block + endcount > ealign)) { 1272 offset = bp->b_addr + BBTOB(ealign - start_block); 1273 error = xlog_bread_offset(log, ealign, sectbb, 1274 bp, offset); 1275 if (error) 1276 break; 1277 1278 } 1279 1280 offset = xlog_align(log, start_block, endcount, bp); 1281 for (; j < endcount; j++) { 1282 xlog_add_record(log, offset, cycle, i+j, 1283 tail_cycle, tail_block); 1284 offset += BBSIZE; 1285 } 1286 error = xlog_bwrite(log, start_block, endcount, bp); 1287 if (error) 1288 break; 1289 start_block += endcount; 1290 j = 0; 1291 } 1292 1293 out_put_bp: 1294 xlog_put_bp(bp); 1295 return error; 1296 } 1297 1298 /* 1299 * This routine is called to blow away any incomplete log writes out 1300 * in front of the log head. We do this so that we won't become confused 1301 * if we come up, write only a little bit more, and then crash again. 1302 * If we leave the partial log records out there, this situation could 1303 * cause us to think those partial writes are valid blocks since they 1304 * have the current cycle number. We get rid of them by overwriting them 1305 * with empty log records with the old cycle number rather than the 1306 * current one. 1307 * 1308 * The tail lsn is passed in rather than taken from 1309 * the log so that we will not write over the unmount record after a 1310 * clean unmount in a 512 block log. Doing so would leave the log without 1311 * any valid log records in it until a new one was written. If we crashed 1312 * during that time we would not be able to recover. 1313 */ 1314 STATIC int 1315 xlog_clear_stale_blocks( 1316 struct xlog *log, 1317 xfs_lsn_t tail_lsn) 1318 { 1319 int tail_cycle, head_cycle; 1320 int tail_block, head_block; 1321 int tail_distance, max_distance; 1322 int distance; 1323 int error; 1324 1325 tail_cycle = CYCLE_LSN(tail_lsn); 1326 tail_block = BLOCK_LSN(tail_lsn); 1327 head_cycle = log->l_curr_cycle; 1328 head_block = log->l_curr_block; 1329 1330 /* 1331 * Figure out the distance between the new head of the log 1332 * and the tail. We want to write over any blocks beyond the 1333 * head that we may have written just before the crash, but 1334 * we don't want to overwrite the tail of the log. 1335 */ 1336 if (head_cycle == tail_cycle) { 1337 /* 1338 * The tail is behind the head in the physical log, 1339 * so the distance from the head to the tail is the 1340 * distance from the head to the end of the log plus 1341 * the distance from the beginning of the log to the 1342 * tail. 1343 */ 1344 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1345 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1346 XFS_ERRLEVEL_LOW, log->l_mp); 1347 return XFS_ERROR(EFSCORRUPTED); 1348 } 1349 tail_distance = tail_block + (log->l_logBBsize - head_block); 1350 } else { 1351 /* 1352 * The head is behind the tail in the physical log, 1353 * so the distance from the head to the tail is just 1354 * the tail block minus the head block. 1355 */ 1356 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1357 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1358 XFS_ERRLEVEL_LOW, log->l_mp); 1359 return XFS_ERROR(EFSCORRUPTED); 1360 } 1361 tail_distance = tail_block - head_block; 1362 } 1363 1364 /* 1365 * If the head is right up against the tail, we can't clear 1366 * anything. 1367 */ 1368 if (tail_distance <= 0) { 1369 ASSERT(tail_distance == 0); 1370 return 0; 1371 } 1372 1373 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1374 /* 1375 * Take the smaller of the maximum amount of outstanding I/O 1376 * we could have and the distance to the tail to clear out. 1377 * We take the smaller so that we don't overwrite the tail and 1378 * we don't waste all day writing from the head to the tail 1379 * for no reason. 1380 */ 1381 max_distance = MIN(max_distance, tail_distance); 1382 1383 if ((head_block + max_distance) <= log->l_logBBsize) { 1384 /* 1385 * We can stomp all the blocks we need to without 1386 * wrapping around the end of the log. Just do it 1387 * in a single write. Use the cycle number of the 1388 * current cycle minus one so that the log will look like: 1389 * n ... | n - 1 ... 1390 */ 1391 error = xlog_write_log_records(log, (head_cycle - 1), 1392 head_block, max_distance, tail_cycle, 1393 tail_block); 1394 if (error) 1395 return error; 1396 } else { 1397 /* 1398 * We need to wrap around the end of the physical log in 1399 * order to clear all the blocks. Do it in two separate 1400 * I/Os. The first write should be from the head to the 1401 * end of the physical log, and it should use the current 1402 * cycle number minus one just like above. 1403 */ 1404 distance = log->l_logBBsize - head_block; 1405 error = xlog_write_log_records(log, (head_cycle - 1), 1406 head_block, distance, tail_cycle, 1407 tail_block); 1408 1409 if (error) 1410 return error; 1411 1412 /* 1413 * Now write the blocks at the start of the physical log. 1414 * This writes the remainder of the blocks we want to clear. 1415 * It uses the current cycle number since we're now on the 1416 * same cycle as the head so that we get: 1417 * n ... n ... | n - 1 ... 1418 * ^^^^^ blocks we're writing 1419 */ 1420 distance = max_distance - (log->l_logBBsize - head_block); 1421 error = xlog_write_log_records(log, head_cycle, 0, distance, 1422 tail_cycle, tail_block); 1423 if (error) 1424 return error; 1425 } 1426 1427 return 0; 1428 } 1429 1430 /****************************************************************************** 1431 * 1432 * Log recover routines 1433 * 1434 ****************************************************************************** 1435 */ 1436 1437 STATIC xlog_recover_t * 1438 xlog_recover_find_tid( 1439 struct hlist_head *head, 1440 xlog_tid_t tid) 1441 { 1442 xlog_recover_t *trans; 1443 struct hlist_node *n; 1444 1445 hlist_for_each_entry(trans, n, head, r_list) { 1446 if (trans->r_log_tid == tid) 1447 return trans; 1448 } 1449 return NULL; 1450 } 1451 1452 STATIC void 1453 xlog_recover_new_tid( 1454 struct hlist_head *head, 1455 xlog_tid_t tid, 1456 xfs_lsn_t lsn) 1457 { 1458 xlog_recover_t *trans; 1459 1460 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP); 1461 trans->r_log_tid = tid; 1462 trans->r_lsn = lsn; 1463 INIT_LIST_HEAD(&trans->r_itemq); 1464 1465 INIT_HLIST_NODE(&trans->r_list); 1466 hlist_add_head(&trans->r_list, head); 1467 } 1468 1469 STATIC void 1470 xlog_recover_add_item( 1471 struct list_head *head) 1472 { 1473 xlog_recover_item_t *item; 1474 1475 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 1476 INIT_LIST_HEAD(&item->ri_list); 1477 list_add_tail(&item->ri_list, head); 1478 } 1479 1480 STATIC int 1481 xlog_recover_add_to_cont_trans( 1482 struct xlog *log, 1483 struct xlog_recover *trans, 1484 xfs_caddr_t dp, 1485 int len) 1486 { 1487 xlog_recover_item_t *item; 1488 xfs_caddr_t ptr, old_ptr; 1489 int old_len; 1490 1491 if (list_empty(&trans->r_itemq)) { 1492 /* finish copying rest of trans header */ 1493 xlog_recover_add_item(&trans->r_itemq); 1494 ptr = (xfs_caddr_t) &trans->r_theader + 1495 sizeof(xfs_trans_header_t) - len; 1496 memcpy(ptr, dp, len); /* d, s, l */ 1497 return 0; 1498 } 1499 /* take the tail entry */ 1500 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 1501 1502 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 1503 old_len = item->ri_buf[item->ri_cnt-1].i_len; 1504 1505 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP); 1506 memcpy(&ptr[old_len], dp, len); /* d, s, l */ 1507 item->ri_buf[item->ri_cnt-1].i_len += len; 1508 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 1509 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 1510 return 0; 1511 } 1512 1513 /* 1514 * The next region to add is the start of a new region. It could be 1515 * a whole region or it could be the first part of a new region. Because 1516 * of this, the assumption here is that the type and size fields of all 1517 * format structures fit into the first 32 bits of the structure. 1518 * 1519 * This works because all regions must be 32 bit aligned. Therefore, we 1520 * either have both fields or we have neither field. In the case we have 1521 * neither field, the data part of the region is zero length. We only have 1522 * a log_op_header and can throw away the header since a new one will appear 1523 * later. If we have at least 4 bytes, then we can determine how many regions 1524 * will appear in the current log item. 1525 */ 1526 STATIC int 1527 xlog_recover_add_to_trans( 1528 struct xlog *log, 1529 struct xlog_recover *trans, 1530 xfs_caddr_t dp, 1531 int len) 1532 { 1533 xfs_inode_log_format_t *in_f; /* any will do */ 1534 xlog_recover_item_t *item; 1535 xfs_caddr_t ptr; 1536 1537 if (!len) 1538 return 0; 1539 if (list_empty(&trans->r_itemq)) { 1540 /* we need to catch log corruptions here */ 1541 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 1542 xfs_warn(log->l_mp, "%s: bad header magic number", 1543 __func__); 1544 ASSERT(0); 1545 return XFS_ERROR(EIO); 1546 } 1547 if (len == sizeof(xfs_trans_header_t)) 1548 xlog_recover_add_item(&trans->r_itemq); 1549 memcpy(&trans->r_theader, dp, len); /* d, s, l */ 1550 return 0; 1551 } 1552 1553 ptr = kmem_alloc(len, KM_SLEEP); 1554 memcpy(ptr, dp, len); 1555 in_f = (xfs_inode_log_format_t *)ptr; 1556 1557 /* take the tail entry */ 1558 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 1559 if (item->ri_total != 0 && 1560 item->ri_total == item->ri_cnt) { 1561 /* tail item is in use, get a new one */ 1562 xlog_recover_add_item(&trans->r_itemq); 1563 item = list_entry(trans->r_itemq.prev, 1564 xlog_recover_item_t, ri_list); 1565 } 1566 1567 if (item->ri_total == 0) { /* first region to be added */ 1568 if (in_f->ilf_size == 0 || 1569 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 1570 xfs_warn(log->l_mp, 1571 "bad number of regions (%d) in inode log format", 1572 in_f->ilf_size); 1573 ASSERT(0); 1574 return XFS_ERROR(EIO); 1575 } 1576 1577 item->ri_total = in_f->ilf_size; 1578 item->ri_buf = 1579 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 1580 KM_SLEEP); 1581 } 1582 ASSERT(item->ri_total > item->ri_cnt); 1583 /* Description region is ri_buf[0] */ 1584 item->ri_buf[item->ri_cnt].i_addr = ptr; 1585 item->ri_buf[item->ri_cnt].i_len = len; 1586 item->ri_cnt++; 1587 trace_xfs_log_recover_item_add(log, trans, item, 0); 1588 return 0; 1589 } 1590 1591 /* 1592 * Sort the log items in the transaction. Cancelled buffers need 1593 * to be put first so they are processed before any items that might 1594 * modify the buffers. If they are cancelled, then the modifications 1595 * don't need to be replayed. 1596 */ 1597 STATIC int 1598 xlog_recover_reorder_trans( 1599 struct xlog *log, 1600 struct xlog_recover *trans, 1601 int pass) 1602 { 1603 xlog_recover_item_t *item, *n; 1604 LIST_HEAD(sort_list); 1605 1606 list_splice_init(&trans->r_itemq, &sort_list); 1607 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1608 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1609 1610 switch (ITEM_TYPE(item)) { 1611 case XFS_LI_BUF: 1612 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 1613 trace_xfs_log_recover_item_reorder_head(log, 1614 trans, item, pass); 1615 list_move(&item->ri_list, &trans->r_itemq); 1616 break; 1617 } 1618 case XFS_LI_INODE: 1619 case XFS_LI_DQUOT: 1620 case XFS_LI_QUOTAOFF: 1621 case XFS_LI_EFD: 1622 case XFS_LI_EFI: 1623 trace_xfs_log_recover_item_reorder_tail(log, 1624 trans, item, pass); 1625 list_move_tail(&item->ri_list, &trans->r_itemq); 1626 break; 1627 default: 1628 xfs_warn(log->l_mp, 1629 "%s: unrecognized type of log operation", 1630 __func__); 1631 ASSERT(0); 1632 return XFS_ERROR(EIO); 1633 } 1634 } 1635 ASSERT(list_empty(&sort_list)); 1636 return 0; 1637 } 1638 1639 /* 1640 * Build up the table of buf cancel records so that we don't replay 1641 * cancelled data in the second pass. For buffer records that are 1642 * not cancel records, there is nothing to do here so we just return. 1643 * 1644 * If we get a cancel record which is already in the table, this indicates 1645 * that the buffer was cancelled multiple times. In order to ensure 1646 * that during pass 2 we keep the record in the table until we reach its 1647 * last occurrence in the log, we keep a reference count in the cancel 1648 * record in the table to tell us how many times we expect to see this 1649 * record during the second pass. 1650 */ 1651 STATIC int 1652 xlog_recover_buffer_pass1( 1653 struct xlog *log, 1654 struct xlog_recover_item *item) 1655 { 1656 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1657 struct list_head *bucket; 1658 struct xfs_buf_cancel *bcp; 1659 1660 /* 1661 * If this isn't a cancel buffer item, then just return. 1662 */ 1663 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 1664 trace_xfs_log_recover_buf_not_cancel(log, buf_f); 1665 return 0; 1666 } 1667 1668 /* 1669 * Insert an xfs_buf_cancel record into the hash table of them. 1670 * If there is already an identical record, bump its reference count. 1671 */ 1672 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno); 1673 list_for_each_entry(bcp, bucket, bc_list) { 1674 if (bcp->bc_blkno == buf_f->blf_blkno && 1675 bcp->bc_len == buf_f->blf_len) { 1676 bcp->bc_refcount++; 1677 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f); 1678 return 0; 1679 } 1680 } 1681 1682 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP); 1683 bcp->bc_blkno = buf_f->blf_blkno; 1684 bcp->bc_len = buf_f->blf_len; 1685 bcp->bc_refcount = 1; 1686 list_add_tail(&bcp->bc_list, bucket); 1687 1688 trace_xfs_log_recover_buf_cancel_add(log, buf_f); 1689 return 0; 1690 } 1691 1692 /* 1693 * Check to see whether the buffer being recovered has a corresponding 1694 * entry in the buffer cancel record table. If it does then return 1 1695 * so that it will be cancelled, otherwise return 0. If the buffer is 1696 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement 1697 * the refcount on the entry in the table and remove it from the table 1698 * if this is the last reference. 1699 * 1700 * We remove the cancel record from the table when we encounter its 1701 * last occurrence in the log so that if the same buffer is re-used 1702 * again after its last cancellation we actually replay the changes 1703 * made at that point. 1704 */ 1705 STATIC int 1706 xlog_check_buffer_cancelled( 1707 struct xlog *log, 1708 xfs_daddr_t blkno, 1709 uint len, 1710 ushort flags) 1711 { 1712 struct list_head *bucket; 1713 struct xfs_buf_cancel *bcp; 1714 1715 if (log->l_buf_cancel_table == NULL) { 1716 /* 1717 * There is nothing in the table built in pass one, 1718 * so this buffer must not be cancelled. 1719 */ 1720 ASSERT(!(flags & XFS_BLF_CANCEL)); 1721 return 0; 1722 } 1723 1724 /* 1725 * Search for an entry in the cancel table that matches our buffer. 1726 */ 1727 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); 1728 list_for_each_entry(bcp, bucket, bc_list) { 1729 if (bcp->bc_blkno == blkno && bcp->bc_len == len) 1730 goto found; 1731 } 1732 1733 /* 1734 * We didn't find a corresponding entry in the table, so return 0 so 1735 * that the buffer is NOT cancelled. 1736 */ 1737 ASSERT(!(flags & XFS_BLF_CANCEL)); 1738 return 0; 1739 1740 found: 1741 /* 1742 * We've go a match, so return 1 so that the recovery of this buffer 1743 * is cancelled. If this buffer is actually a buffer cancel log 1744 * item, then decrement the refcount on the one in the table and 1745 * remove it if this is the last reference. 1746 */ 1747 if (flags & XFS_BLF_CANCEL) { 1748 if (--bcp->bc_refcount == 0) { 1749 list_del(&bcp->bc_list); 1750 kmem_free(bcp); 1751 } 1752 } 1753 return 1; 1754 } 1755 1756 /* 1757 * Perform recovery for a buffer full of inodes. In these buffers, the only 1758 * data which should be recovered is that which corresponds to the 1759 * di_next_unlinked pointers in the on disk inode structures. The rest of the 1760 * data for the inodes is always logged through the inodes themselves rather 1761 * than the inode buffer and is recovered in xlog_recover_inode_pass2(). 1762 * 1763 * The only time when buffers full of inodes are fully recovered is when the 1764 * buffer is full of newly allocated inodes. In this case the buffer will 1765 * not be marked as an inode buffer and so will be sent to 1766 * xlog_recover_do_reg_buffer() below during recovery. 1767 */ 1768 STATIC int 1769 xlog_recover_do_inode_buffer( 1770 struct xfs_mount *mp, 1771 xlog_recover_item_t *item, 1772 struct xfs_buf *bp, 1773 xfs_buf_log_format_t *buf_f) 1774 { 1775 int i; 1776 int item_index = 0; 1777 int bit = 0; 1778 int nbits = 0; 1779 int reg_buf_offset = 0; 1780 int reg_buf_bytes = 0; 1781 int next_unlinked_offset; 1782 int inodes_per_buf; 1783 xfs_agino_t *logged_nextp; 1784 xfs_agino_t *buffer_nextp; 1785 1786 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); 1787 1788 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog; 1789 for (i = 0; i < inodes_per_buf; i++) { 1790 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 1791 offsetof(xfs_dinode_t, di_next_unlinked); 1792 1793 while (next_unlinked_offset >= 1794 (reg_buf_offset + reg_buf_bytes)) { 1795 /* 1796 * The next di_next_unlinked field is beyond 1797 * the current logged region. Find the next 1798 * logged region that contains or is beyond 1799 * the current di_next_unlinked field. 1800 */ 1801 bit += nbits; 1802 bit = xfs_next_bit(buf_f->blf_data_map, 1803 buf_f->blf_map_size, bit); 1804 1805 /* 1806 * If there are no more logged regions in the 1807 * buffer, then we're done. 1808 */ 1809 if (bit == -1) 1810 return 0; 1811 1812 nbits = xfs_contig_bits(buf_f->blf_data_map, 1813 buf_f->blf_map_size, bit); 1814 ASSERT(nbits > 0); 1815 reg_buf_offset = bit << XFS_BLF_SHIFT; 1816 reg_buf_bytes = nbits << XFS_BLF_SHIFT; 1817 item_index++; 1818 } 1819 1820 /* 1821 * If the current logged region starts after the current 1822 * di_next_unlinked field, then move on to the next 1823 * di_next_unlinked field. 1824 */ 1825 if (next_unlinked_offset < reg_buf_offset) 1826 continue; 1827 1828 ASSERT(item->ri_buf[item_index].i_addr != NULL); 1829 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); 1830 ASSERT((reg_buf_offset + reg_buf_bytes) <= 1831 BBTOB(bp->b_io_length)); 1832 1833 /* 1834 * The current logged region contains a copy of the 1835 * current di_next_unlinked field. Extract its value 1836 * and copy it to the buffer copy. 1837 */ 1838 logged_nextp = item->ri_buf[item_index].i_addr + 1839 next_unlinked_offset - reg_buf_offset; 1840 if (unlikely(*logged_nextp == 0)) { 1841 xfs_alert(mp, 1842 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). " 1843 "Trying to replay bad (0) inode di_next_unlinked field.", 1844 item, bp); 1845 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 1846 XFS_ERRLEVEL_LOW, mp); 1847 return XFS_ERROR(EFSCORRUPTED); 1848 } 1849 1850 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp, 1851 next_unlinked_offset); 1852 *buffer_nextp = *logged_nextp; 1853 } 1854 1855 return 0; 1856 } 1857 1858 /* 1859 * Perform a 'normal' buffer recovery. Each logged region of the 1860 * buffer should be copied over the corresponding region in the 1861 * given buffer. The bitmap in the buf log format structure indicates 1862 * where to place the logged data. 1863 */ 1864 STATIC void 1865 xlog_recover_do_reg_buffer( 1866 struct xfs_mount *mp, 1867 xlog_recover_item_t *item, 1868 struct xfs_buf *bp, 1869 xfs_buf_log_format_t *buf_f) 1870 { 1871 int i; 1872 int bit; 1873 int nbits; 1874 int error; 1875 1876 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); 1877 1878 bit = 0; 1879 i = 1; /* 0 is the buf format structure */ 1880 while (1) { 1881 bit = xfs_next_bit(buf_f->blf_data_map, 1882 buf_f->blf_map_size, bit); 1883 if (bit == -1) 1884 break; 1885 nbits = xfs_contig_bits(buf_f->blf_data_map, 1886 buf_f->blf_map_size, bit); 1887 ASSERT(nbits > 0); 1888 ASSERT(item->ri_buf[i].i_addr != NULL); 1889 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); 1890 ASSERT(BBTOB(bp->b_io_length) >= 1891 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); 1892 1893 /* 1894 * Do a sanity check if this is a dquot buffer. Just checking 1895 * the first dquot in the buffer should do. XXXThis is 1896 * probably a good thing to do for other buf types also. 1897 */ 1898 error = 0; 1899 if (buf_f->blf_flags & 1900 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 1901 if (item->ri_buf[i].i_addr == NULL) { 1902 xfs_alert(mp, 1903 "XFS: NULL dquot in %s.", __func__); 1904 goto next; 1905 } 1906 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) { 1907 xfs_alert(mp, 1908 "XFS: dquot too small (%d) in %s.", 1909 item->ri_buf[i].i_len, __func__); 1910 goto next; 1911 } 1912 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr, 1913 -1, 0, XFS_QMOPT_DOWARN, 1914 "dquot_buf_recover"); 1915 if (error) 1916 goto next; 1917 } 1918 1919 memcpy(xfs_buf_offset(bp, 1920 (uint)bit << XFS_BLF_SHIFT), /* dest */ 1921 item->ri_buf[i].i_addr, /* source */ 1922 nbits<<XFS_BLF_SHIFT); /* length */ 1923 next: 1924 i++; 1925 bit += nbits; 1926 } 1927 1928 /* Shouldn't be any more regions */ 1929 ASSERT(i == item->ri_total); 1930 } 1931 1932 /* 1933 * Do some primitive error checking on ondisk dquot data structures. 1934 */ 1935 int 1936 xfs_qm_dqcheck( 1937 struct xfs_mount *mp, 1938 xfs_disk_dquot_t *ddq, 1939 xfs_dqid_t id, 1940 uint type, /* used only when IO_dorepair is true */ 1941 uint flags, 1942 char *str) 1943 { 1944 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq; 1945 int errs = 0; 1946 1947 /* 1948 * We can encounter an uninitialized dquot buffer for 2 reasons: 1949 * 1. If we crash while deleting the quotainode(s), and those blks got 1950 * used for user data. This is because we take the path of regular 1951 * file deletion; however, the size field of quotainodes is never 1952 * updated, so all the tricks that we play in itruncate_finish 1953 * don't quite matter. 1954 * 1955 * 2. We don't play the quota buffers when there's a quotaoff logitem. 1956 * But the allocation will be replayed so we'll end up with an 1957 * uninitialized quota block. 1958 * 1959 * This is all fine; things are still consistent, and we haven't lost 1960 * any quota information. Just don't complain about bad dquot blks. 1961 */ 1962 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) { 1963 if (flags & XFS_QMOPT_DOWARN) 1964 xfs_alert(mp, 1965 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x", 1966 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC); 1967 errs++; 1968 } 1969 if (ddq->d_version != XFS_DQUOT_VERSION) { 1970 if (flags & XFS_QMOPT_DOWARN) 1971 xfs_alert(mp, 1972 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x", 1973 str, id, ddq->d_version, XFS_DQUOT_VERSION); 1974 errs++; 1975 } 1976 1977 if (ddq->d_flags != XFS_DQ_USER && 1978 ddq->d_flags != XFS_DQ_PROJ && 1979 ddq->d_flags != XFS_DQ_GROUP) { 1980 if (flags & XFS_QMOPT_DOWARN) 1981 xfs_alert(mp, 1982 "%s : XFS dquot ID 0x%x, unknown flags 0x%x", 1983 str, id, ddq->d_flags); 1984 errs++; 1985 } 1986 1987 if (id != -1 && id != be32_to_cpu(ddq->d_id)) { 1988 if (flags & XFS_QMOPT_DOWARN) 1989 xfs_alert(mp, 1990 "%s : ondisk-dquot 0x%p, ID mismatch: " 1991 "0x%x expected, found id 0x%x", 1992 str, ddq, id, be32_to_cpu(ddq->d_id)); 1993 errs++; 1994 } 1995 1996 if (!errs && ddq->d_id) { 1997 if (ddq->d_blk_softlimit && 1998 be64_to_cpu(ddq->d_bcount) > 1999 be64_to_cpu(ddq->d_blk_softlimit)) { 2000 if (!ddq->d_btimer) { 2001 if (flags & XFS_QMOPT_DOWARN) 2002 xfs_alert(mp, 2003 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED", 2004 str, (int)be32_to_cpu(ddq->d_id), ddq); 2005 errs++; 2006 } 2007 } 2008 if (ddq->d_ino_softlimit && 2009 be64_to_cpu(ddq->d_icount) > 2010 be64_to_cpu(ddq->d_ino_softlimit)) { 2011 if (!ddq->d_itimer) { 2012 if (flags & XFS_QMOPT_DOWARN) 2013 xfs_alert(mp, 2014 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED", 2015 str, (int)be32_to_cpu(ddq->d_id), ddq); 2016 errs++; 2017 } 2018 } 2019 if (ddq->d_rtb_softlimit && 2020 be64_to_cpu(ddq->d_rtbcount) > 2021 be64_to_cpu(ddq->d_rtb_softlimit)) { 2022 if (!ddq->d_rtbtimer) { 2023 if (flags & XFS_QMOPT_DOWARN) 2024 xfs_alert(mp, 2025 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED", 2026 str, (int)be32_to_cpu(ddq->d_id), ddq); 2027 errs++; 2028 } 2029 } 2030 } 2031 2032 if (!errs || !(flags & XFS_QMOPT_DQREPAIR)) 2033 return errs; 2034 2035 if (flags & XFS_QMOPT_DOWARN) 2036 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id); 2037 2038 /* 2039 * Typically, a repair is only requested by quotacheck. 2040 */ 2041 ASSERT(id != -1); 2042 ASSERT(flags & XFS_QMOPT_DQREPAIR); 2043 memset(d, 0, sizeof(xfs_dqblk_t)); 2044 2045 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC); 2046 d->dd_diskdq.d_version = XFS_DQUOT_VERSION; 2047 d->dd_diskdq.d_flags = type; 2048 d->dd_diskdq.d_id = cpu_to_be32(id); 2049 2050 return errs; 2051 } 2052 2053 /* 2054 * Perform a dquot buffer recovery. 2055 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type 2056 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2057 * Else, treat it as a regular buffer and do recovery. 2058 */ 2059 STATIC void 2060 xlog_recover_do_dquot_buffer( 2061 struct xfs_mount *mp, 2062 struct xlog *log, 2063 struct xlog_recover_item *item, 2064 struct xfs_buf *bp, 2065 struct xfs_buf_log_format *buf_f) 2066 { 2067 uint type; 2068 2069 trace_xfs_log_recover_buf_dquot_buf(log, buf_f); 2070 2071 /* 2072 * Filesystems are required to send in quota flags at mount time. 2073 */ 2074 if (mp->m_qflags == 0) { 2075 return; 2076 } 2077 2078 type = 0; 2079 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) 2080 type |= XFS_DQ_USER; 2081 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) 2082 type |= XFS_DQ_PROJ; 2083 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) 2084 type |= XFS_DQ_GROUP; 2085 /* 2086 * This type of quotas was turned off, so ignore this buffer 2087 */ 2088 if (log->l_quotaoffs_flag & type) 2089 return; 2090 2091 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2092 } 2093 2094 /* 2095 * This routine replays a modification made to a buffer at runtime. 2096 * There are actually two types of buffer, regular and inode, which 2097 * are handled differently. Inode buffers are handled differently 2098 * in that we only recover a specific set of data from them, namely 2099 * the inode di_next_unlinked fields. This is because all other inode 2100 * data is actually logged via inode records and any data we replay 2101 * here which overlaps that may be stale. 2102 * 2103 * When meta-data buffers are freed at run time we log a buffer item 2104 * with the XFS_BLF_CANCEL bit set to indicate that previous copies 2105 * of the buffer in the log should not be replayed at recovery time. 2106 * This is so that if the blocks covered by the buffer are reused for 2107 * file data before we crash we don't end up replaying old, freed 2108 * meta-data into a user's file. 2109 * 2110 * To handle the cancellation of buffer log items, we make two passes 2111 * over the log during recovery. During the first we build a table of 2112 * those buffers which have been cancelled, and during the second we 2113 * only replay those buffers which do not have corresponding cancel 2114 * records in the table. See xlog_recover_do_buffer_pass[1,2] above 2115 * for more details on the implementation of the table of cancel records. 2116 */ 2117 STATIC int 2118 xlog_recover_buffer_pass2( 2119 struct xlog *log, 2120 struct list_head *buffer_list, 2121 struct xlog_recover_item *item) 2122 { 2123 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2124 xfs_mount_t *mp = log->l_mp; 2125 xfs_buf_t *bp; 2126 int error; 2127 uint buf_flags; 2128 2129 /* 2130 * In this pass we only want to recover all the buffers which have 2131 * not been cancelled and are not cancellation buffers themselves. 2132 */ 2133 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno, 2134 buf_f->blf_len, buf_f->blf_flags)) { 2135 trace_xfs_log_recover_buf_cancel(log, buf_f); 2136 return 0; 2137 } 2138 2139 trace_xfs_log_recover_buf_recover(log, buf_f); 2140 2141 buf_flags = 0; 2142 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) 2143 buf_flags |= XBF_UNMAPPED; 2144 2145 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, 2146 buf_flags); 2147 if (!bp) 2148 return XFS_ERROR(ENOMEM); 2149 error = bp->b_error; 2150 if (error) { 2151 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)"); 2152 xfs_buf_relse(bp); 2153 return error; 2154 } 2155 2156 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 2157 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2158 } else if (buf_f->blf_flags & 2159 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2160 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2161 } else { 2162 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2163 } 2164 if (error) 2165 return XFS_ERROR(error); 2166 2167 /* 2168 * Perform delayed write on the buffer. Asynchronous writes will be 2169 * slower when taking into account all the buffers to be flushed. 2170 * 2171 * Also make sure that only inode buffers with good sizes stay in 2172 * the buffer cache. The kernel moves inodes in buffers of 1 block 2173 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode 2174 * buffers in the log can be a different size if the log was generated 2175 * by an older kernel using unclustered inode buffers or a newer kernel 2176 * running with a different inode cluster size. Regardless, if the 2177 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE) 2178 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep 2179 * the buffer out of the buffer cache so that the buffer won't 2180 * overlap with future reads of those inodes. 2181 */ 2182 if (XFS_DINODE_MAGIC == 2183 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && 2184 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize, 2185 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) { 2186 xfs_buf_stale(bp); 2187 error = xfs_bwrite(bp); 2188 } else { 2189 ASSERT(bp->b_target->bt_mount == mp); 2190 bp->b_iodone = xlog_recover_iodone; 2191 xfs_buf_delwri_queue(bp, buffer_list); 2192 } 2193 2194 xfs_buf_relse(bp); 2195 return error; 2196 } 2197 2198 STATIC int 2199 xlog_recover_inode_pass2( 2200 struct xlog *log, 2201 struct list_head *buffer_list, 2202 struct xlog_recover_item *item) 2203 { 2204 xfs_inode_log_format_t *in_f; 2205 xfs_mount_t *mp = log->l_mp; 2206 xfs_buf_t *bp; 2207 xfs_dinode_t *dip; 2208 int len; 2209 xfs_caddr_t src; 2210 xfs_caddr_t dest; 2211 int error; 2212 int attr_index; 2213 uint fields; 2214 xfs_icdinode_t *dicp; 2215 int need_free = 0; 2216 2217 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) { 2218 in_f = item->ri_buf[0].i_addr; 2219 } else { 2220 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP); 2221 need_free = 1; 2222 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 2223 if (error) 2224 goto error; 2225 } 2226 2227 /* 2228 * Inode buffers can be freed, look out for it, 2229 * and do not replay the inode. 2230 */ 2231 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, 2232 in_f->ilf_len, 0)) { 2233 error = 0; 2234 trace_xfs_log_recover_inode_cancel(log, in_f); 2235 goto error; 2236 } 2237 trace_xfs_log_recover_inode_recover(log, in_f); 2238 2239 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0); 2240 if (!bp) { 2241 error = ENOMEM; 2242 goto error; 2243 } 2244 error = bp->b_error; 2245 if (error) { 2246 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)"); 2247 xfs_buf_relse(bp); 2248 goto error; 2249 } 2250 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 2251 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset); 2252 2253 /* 2254 * Make sure the place we're flushing out to really looks 2255 * like an inode! 2256 */ 2257 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) { 2258 xfs_buf_relse(bp); 2259 xfs_alert(mp, 2260 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld", 2261 __func__, dip, bp, in_f->ilf_ino); 2262 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)", 2263 XFS_ERRLEVEL_LOW, mp); 2264 error = EFSCORRUPTED; 2265 goto error; 2266 } 2267 dicp = item->ri_buf[1].i_addr; 2268 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { 2269 xfs_buf_relse(bp); 2270 xfs_alert(mp, 2271 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld", 2272 __func__, item, in_f->ilf_ino); 2273 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)", 2274 XFS_ERRLEVEL_LOW, mp); 2275 error = EFSCORRUPTED; 2276 goto error; 2277 } 2278 2279 /* Skip replay when the on disk inode is newer than the log one */ 2280 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) { 2281 /* 2282 * Deal with the wrap case, DI_MAX_FLUSH is less 2283 * than smaller numbers 2284 */ 2285 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && 2286 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) { 2287 /* do nothing */ 2288 } else { 2289 xfs_buf_relse(bp); 2290 trace_xfs_log_recover_inode_skip(log, in_f); 2291 error = 0; 2292 goto error; 2293 } 2294 } 2295 /* Take the opportunity to reset the flush iteration count */ 2296 dicp->di_flushiter = 0; 2297 2298 if (unlikely(S_ISREG(dicp->di_mode))) { 2299 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2300 (dicp->di_format != XFS_DINODE_FMT_BTREE)) { 2301 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)", 2302 XFS_ERRLEVEL_LOW, mp, dicp); 2303 xfs_buf_relse(bp); 2304 xfs_alert(mp, 2305 "%s: Bad regular inode log record, rec ptr 0x%p, " 2306 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2307 __func__, item, dip, bp, in_f->ilf_ino); 2308 error = EFSCORRUPTED; 2309 goto error; 2310 } 2311 } else if (unlikely(S_ISDIR(dicp->di_mode))) { 2312 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2313 (dicp->di_format != XFS_DINODE_FMT_BTREE) && 2314 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { 2315 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)", 2316 XFS_ERRLEVEL_LOW, mp, dicp); 2317 xfs_buf_relse(bp); 2318 xfs_alert(mp, 2319 "%s: Bad dir inode log record, rec ptr 0x%p, " 2320 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2321 __func__, item, dip, bp, in_f->ilf_ino); 2322 error = EFSCORRUPTED; 2323 goto error; 2324 } 2325 } 2326 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ 2327 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)", 2328 XFS_ERRLEVEL_LOW, mp, dicp); 2329 xfs_buf_relse(bp); 2330 xfs_alert(mp, 2331 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 2332 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", 2333 __func__, item, dip, bp, in_f->ilf_ino, 2334 dicp->di_nextents + dicp->di_anextents, 2335 dicp->di_nblocks); 2336 error = EFSCORRUPTED; 2337 goto error; 2338 } 2339 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { 2340 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)", 2341 XFS_ERRLEVEL_LOW, mp, dicp); 2342 xfs_buf_relse(bp); 2343 xfs_alert(mp, 2344 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 2345 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__, 2346 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff); 2347 error = EFSCORRUPTED; 2348 goto error; 2349 } 2350 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) { 2351 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)", 2352 XFS_ERRLEVEL_LOW, mp, dicp); 2353 xfs_buf_relse(bp); 2354 xfs_alert(mp, 2355 "%s: Bad inode log record length %d, rec ptr 0x%p", 2356 __func__, item->ri_buf[1].i_len, item); 2357 error = EFSCORRUPTED; 2358 goto error; 2359 } 2360 2361 /* The core is in in-core format */ 2362 xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr); 2363 2364 /* the rest is in on-disk format */ 2365 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) { 2366 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode), 2367 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode), 2368 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode)); 2369 } 2370 2371 fields = in_f->ilf_fields; 2372 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { 2373 case XFS_ILOG_DEV: 2374 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); 2375 break; 2376 case XFS_ILOG_UUID: 2377 memcpy(XFS_DFORK_DPTR(dip), 2378 &in_f->ilf_u.ilfu_uuid, 2379 sizeof(uuid_t)); 2380 break; 2381 } 2382 2383 if (in_f->ilf_size == 2) 2384 goto write_inode_buffer; 2385 len = item->ri_buf[2].i_len; 2386 src = item->ri_buf[2].i_addr; 2387 ASSERT(in_f->ilf_size <= 4); 2388 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 2389 ASSERT(!(fields & XFS_ILOG_DFORK) || 2390 (len == in_f->ilf_dsize)); 2391 2392 switch (fields & XFS_ILOG_DFORK) { 2393 case XFS_ILOG_DDATA: 2394 case XFS_ILOG_DEXT: 2395 memcpy(XFS_DFORK_DPTR(dip), src, len); 2396 break; 2397 2398 case XFS_ILOG_DBROOT: 2399 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, 2400 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), 2401 XFS_DFORK_DSIZE(dip, mp)); 2402 break; 2403 2404 default: 2405 /* 2406 * There are no data fork flags set. 2407 */ 2408 ASSERT((fields & XFS_ILOG_DFORK) == 0); 2409 break; 2410 } 2411 2412 /* 2413 * If we logged any attribute data, recover it. There may or 2414 * may not have been any other non-core data logged in this 2415 * transaction. 2416 */ 2417 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 2418 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 2419 attr_index = 3; 2420 } else { 2421 attr_index = 2; 2422 } 2423 len = item->ri_buf[attr_index].i_len; 2424 src = item->ri_buf[attr_index].i_addr; 2425 ASSERT(len == in_f->ilf_asize); 2426 2427 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 2428 case XFS_ILOG_ADATA: 2429 case XFS_ILOG_AEXT: 2430 dest = XFS_DFORK_APTR(dip); 2431 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 2432 memcpy(dest, src, len); 2433 break; 2434 2435 case XFS_ILOG_ABROOT: 2436 dest = XFS_DFORK_APTR(dip); 2437 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, 2438 len, (xfs_bmdr_block_t*)dest, 2439 XFS_DFORK_ASIZE(dip, mp)); 2440 break; 2441 2442 default: 2443 xfs_warn(log->l_mp, "%s: Invalid flag", __func__); 2444 ASSERT(0); 2445 xfs_buf_relse(bp); 2446 error = EIO; 2447 goto error; 2448 } 2449 } 2450 2451 write_inode_buffer: 2452 ASSERT(bp->b_target->bt_mount == mp); 2453 bp->b_iodone = xlog_recover_iodone; 2454 xfs_buf_delwri_queue(bp, buffer_list); 2455 xfs_buf_relse(bp); 2456 error: 2457 if (need_free) 2458 kmem_free(in_f); 2459 return XFS_ERROR(error); 2460 } 2461 2462 /* 2463 * Recover QUOTAOFF records. We simply make a note of it in the xlog 2464 * structure, so that we know not to do any dquot item or dquot buffer recovery, 2465 * of that type. 2466 */ 2467 STATIC int 2468 xlog_recover_quotaoff_pass1( 2469 struct xlog *log, 2470 struct xlog_recover_item *item) 2471 { 2472 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr; 2473 ASSERT(qoff_f); 2474 2475 /* 2476 * The logitem format's flag tells us if this was user quotaoff, 2477 * group/project quotaoff or both. 2478 */ 2479 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 2480 log->l_quotaoffs_flag |= XFS_DQ_USER; 2481 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 2482 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 2483 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 2484 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 2485 2486 return (0); 2487 } 2488 2489 /* 2490 * Recover a dquot record 2491 */ 2492 STATIC int 2493 xlog_recover_dquot_pass2( 2494 struct xlog *log, 2495 struct list_head *buffer_list, 2496 struct xlog_recover_item *item) 2497 { 2498 xfs_mount_t *mp = log->l_mp; 2499 xfs_buf_t *bp; 2500 struct xfs_disk_dquot *ddq, *recddq; 2501 int error; 2502 xfs_dq_logformat_t *dq_f; 2503 uint type; 2504 2505 2506 /* 2507 * Filesystems are required to send in quota flags at mount time. 2508 */ 2509 if (mp->m_qflags == 0) 2510 return (0); 2511 2512 recddq = item->ri_buf[1].i_addr; 2513 if (recddq == NULL) { 2514 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__); 2515 return XFS_ERROR(EIO); 2516 } 2517 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) { 2518 xfs_alert(log->l_mp, "dquot too small (%d) in %s.", 2519 item->ri_buf[1].i_len, __func__); 2520 return XFS_ERROR(EIO); 2521 } 2522 2523 /* 2524 * This type of quotas was turned off, so ignore this record. 2525 */ 2526 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 2527 ASSERT(type); 2528 if (log->l_quotaoffs_flag & type) 2529 return (0); 2530 2531 /* 2532 * At this point we know that quota was _not_ turned off. 2533 * Since the mount flags are not indicating to us otherwise, this 2534 * must mean that quota is on, and the dquot needs to be replayed. 2535 * Remember that we may not have fully recovered the superblock yet, 2536 * so we can't do the usual trick of looking at the SB quota bits. 2537 * 2538 * The other possibility, of course, is that the quota subsystem was 2539 * removed since the last mount - ENOSYS. 2540 */ 2541 dq_f = item->ri_buf[0].i_addr; 2542 ASSERT(dq_f); 2543 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2544 "xlog_recover_dquot_pass2 (log copy)"); 2545 if (error) 2546 return XFS_ERROR(EIO); 2547 ASSERT(dq_f->qlf_len == 1); 2548 2549 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno, 2550 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp); 2551 if (error) 2552 return error; 2553 2554 ASSERT(bp); 2555 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset); 2556 2557 /* 2558 * At least the magic num portion should be on disk because this 2559 * was among a chunk of dquots created earlier, and we did some 2560 * minimal initialization then. 2561 */ 2562 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2563 "xlog_recover_dquot_pass2"); 2564 if (error) { 2565 xfs_buf_relse(bp); 2566 return XFS_ERROR(EIO); 2567 } 2568 2569 memcpy(ddq, recddq, item->ri_buf[1].i_len); 2570 2571 ASSERT(dq_f->qlf_size == 2); 2572 ASSERT(bp->b_target->bt_mount == mp); 2573 bp->b_iodone = xlog_recover_iodone; 2574 xfs_buf_delwri_queue(bp, buffer_list); 2575 xfs_buf_relse(bp); 2576 2577 return (0); 2578 } 2579 2580 /* 2581 * This routine is called to create an in-core extent free intent 2582 * item from the efi format structure which was logged on disk. 2583 * It allocates an in-core efi, copies the extents from the format 2584 * structure into it, and adds the efi to the AIL with the given 2585 * LSN. 2586 */ 2587 STATIC int 2588 xlog_recover_efi_pass2( 2589 struct xlog *log, 2590 struct xlog_recover_item *item, 2591 xfs_lsn_t lsn) 2592 { 2593 int error; 2594 xfs_mount_t *mp = log->l_mp; 2595 xfs_efi_log_item_t *efip; 2596 xfs_efi_log_format_t *efi_formatp; 2597 2598 efi_formatp = item->ri_buf[0].i_addr; 2599 2600 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 2601 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]), 2602 &(efip->efi_format)))) { 2603 xfs_efi_item_free(efip); 2604 return error; 2605 } 2606 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 2607 2608 spin_lock(&log->l_ailp->xa_lock); 2609 /* 2610 * xfs_trans_ail_update() drops the AIL lock. 2611 */ 2612 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn); 2613 return 0; 2614 } 2615 2616 2617 /* 2618 * This routine is called when an efd format structure is found in 2619 * a committed transaction in the log. It's purpose is to cancel 2620 * the corresponding efi if it was still in the log. To do this 2621 * it searches the AIL for the efi with an id equal to that in the 2622 * efd format structure. If we find it, we remove the efi from the 2623 * AIL and free it. 2624 */ 2625 STATIC int 2626 xlog_recover_efd_pass2( 2627 struct xlog *log, 2628 struct xlog_recover_item *item) 2629 { 2630 xfs_efd_log_format_t *efd_formatp; 2631 xfs_efi_log_item_t *efip = NULL; 2632 xfs_log_item_t *lip; 2633 __uint64_t efi_id; 2634 struct xfs_ail_cursor cur; 2635 struct xfs_ail *ailp = log->l_ailp; 2636 2637 efd_formatp = item->ri_buf[0].i_addr; 2638 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 2639 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 2640 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 2641 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 2642 efi_id = efd_formatp->efd_efi_id; 2643 2644 /* 2645 * Search for the efi with the id in the efd format structure 2646 * in the AIL. 2647 */ 2648 spin_lock(&ailp->xa_lock); 2649 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 2650 while (lip != NULL) { 2651 if (lip->li_type == XFS_LI_EFI) { 2652 efip = (xfs_efi_log_item_t *)lip; 2653 if (efip->efi_format.efi_id == efi_id) { 2654 /* 2655 * xfs_trans_ail_delete() drops the 2656 * AIL lock. 2657 */ 2658 xfs_trans_ail_delete(ailp, lip, 2659 SHUTDOWN_CORRUPT_INCORE); 2660 xfs_efi_item_free(efip); 2661 spin_lock(&ailp->xa_lock); 2662 break; 2663 } 2664 } 2665 lip = xfs_trans_ail_cursor_next(ailp, &cur); 2666 } 2667 xfs_trans_ail_cursor_done(ailp, &cur); 2668 spin_unlock(&ailp->xa_lock); 2669 2670 return 0; 2671 } 2672 2673 /* 2674 * Free up any resources allocated by the transaction 2675 * 2676 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 2677 */ 2678 STATIC void 2679 xlog_recover_free_trans( 2680 struct xlog_recover *trans) 2681 { 2682 xlog_recover_item_t *item, *n; 2683 int i; 2684 2685 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 2686 /* Free the regions in the item. */ 2687 list_del(&item->ri_list); 2688 for (i = 0; i < item->ri_cnt; i++) 2689 kmem_free(item->ri_buf[i].i_addr); 2690 /* Free the item itself */ 2691 kmem_free(item->ri_buf); 2692 kmem_free(item); 2693 } 2694 /* Free the transaction recover structure */ 2695 kmem_free(trans); 2696 } 2697 2698 STATIC int 2699 xlog_recover_commit_pass1( 2700 struct xlog *log, 2701 struct xlog_recover *trans, 2702 struct xlog_recover_item *item) 2703 { 2704 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1); 2705 2706 switch (ITEM_TYPE(item)) { 2707 case XFS_LI_BUF: 2708 return xlog_recover_buffer_pass1(log, item); 2709 case XFS_LI_QUOTAOFF: 2710 return xlog_recover_quotaoff_pass1(log, item); 2711 case XFS_LI_INODE: 2712 case XFS_LI_EFI: 2713 case XFS_LI_EFD: 2714 case XFS_LI_DQUOT: 2715 /* nothing to do in pass 1 */ 2716 return 0; 2717 default: 2718 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 2719 __func__, ITEM_TYPE(item)); 2720 ASSERT(0); 2721 return XFS_ERROR(EIO); 2722 } 2723 } 2724 2725 STATIC int 2726 xlog_recover_commit_pass2( 2727 struct xlog *log, 2728 struct xlog_recover *trans, 2729 struct list_head *buffer_list, 2730 struct xlog_recover_item *item) 2731 { 2732 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2); 2733 2734 switch (ITEM_TYPE(item)) { 2735 case XFS_LI_BUF: 2736 return xlog_recover_buffer_pass2(log, buffer_list, item); 2737 case XFS_LI_INODE: 2738 return xlog_recover_inode_pass2(log, buffer_list, item); 2739 case XFS_LI_EFI: 2740 return xlog_recover_efi_pass2(log, item, trans->r_lsn); 2741 case XFS_LI_EFD: 2742 return xlog_recover_efd_pass2(log, item); 2743 case XFS_LI_DQUOT: 2744 return xlog_recover_dquot_pass2(log, buffer_list, item); 2745 case XFS_LI_QUOTAOFF: 2746 /* nothing to do in pass2 */ 2747 return 0; 2748 default: 2749 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 2750 __func__, ITEM_TYPE(item)); 2751 ASSERT(0); 2752 return XFS_ERROR(EIO); 2753 } 2754 } 2755 2756 /* 2757 * Perform the transaction. 2758 * 2759 * If the transaction modifies a buffer or inode, do it now. Otherwise, 2760 * EFIs and EFDs get queued up by adding entries into the AIL for them. 2761 */ 2762 STATIC int 2763 xlog_recover_commit_trans( 2764 struct xlog *log, 2765 struct xlog_recover *trans, 2766 int pass) 2767 { 2768 int error = 0, error2; 2769 xlog_recover_item_t *item; 2770 LIST_HEAD (buffer_list); 2771 2772 hlist_del(&trans->r_list); 2773 2774 error = xlog_recover_reorder_trans(log, trans, pass); 2775 if (error) 2776 return error; 2777 2778 list_for_each_entry(item, &trans->r_itemq, ri_list) { 2779 switch (pass) { 2780 case XLOG_RECOVER_PASS1: 2781 error = xlog_recover_commit_pass1(log, trans, item); 2782 break; 2783 case XLOG_RECOVER_PASS2: 2784 error = xlog_recover_commit_pass2(log, trans, 2785 &buffer_list, item); 2786 break; 2787 default: 2788 ASSERT(0); 2789 } 2790 2791 if (error) 2792 goto out; 2793 } 2794 2795 xlog_recover_free_trans(trans); 2796 2797 out: 2798 error2 = xfs_buf_delwri_submit(&buffer_list); 2799 return error ? error : error2; 2800 } 2801 2802 STATIC int 2803 xlog_recover_unmount_trans( 2804 struct xlog *log, 2805 struct xlog_recover *trans) 2806 { 2807 /* Do nothing now */ 2808 xfs_warn(log->l_mp, "%s: Unmount LR", __func__); 2809 return 0; 2810 } 2811 2812 /* 2813 * There are two valid states of the r_state field. 0 indicates that the 2814 * transaction structure is in a normal state. We have either seen the 2815 * start of the transaction or the last operation we added was not a partial 2816 * operation. If the last operation we added to the transaction was a 2817 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 2818 * 2819 * NOTE: skip LRs with 0 data length. 2820 */ 2821 STATIC int 2822 xlog_recover_process_data( 2823 struct xlog *log, 2824 struct hlist_head rhash[], 2825 struct xlog_rec_header *rhead, 2826 xfs_caddr_t dp, 2827 int pass) 2828 { 2829 xfs_caddr_t lp; 2830 int num_logops; 2831 xlog_op_header_t *ohead; 2832 xlog_recover_t *trans; 2833 xlog_tid_t tid; 2834 int error; 2835 unsigned long hash; 2836 uint flags; 2837 2838 lp = dp + be32_to_cpu(rhead->h_len); 2839 num_logops = be32_to_cpu(rhead->h_num_logops); 2840 2841 /* check the log format matches our own - else we can't recover */ 2842 if (xlog_header_check_recover(log->l_mp, rhead)) 2843 return (XFS_ERROR(EIO)); 2844 2845 while ((dp < lp) && num_logops) { 2846 ASSERT(dp + sizeof(xlog_op_header_t) <= lp); 2847 ohead = (xlog_op_header_t *)dp; 2848 dp += sizeof(xlog_op_header_t); 2849 if (ohead->oh_clientid != XFS_TRANSACTION && 2850 ohead->oh_clientid != XFS_LOG) { 2851 xfs_warn(log->l_mp, "%s: bad clientid 0x%x", 2852 __func__, ohead->oh_clientid); 2853 ASSERT(0); 2854 return (XFS_ERROR(EIO)); 2855 } 2856 tid = be32_to_cpu(ohead->oh_tid); 2857 hash = XLOG_RHASH(tid); 2858 trans = xlog_recover_find_tid(&rhash[hash], tid); 2859 if (trans == NULL) { /* not found; add new tid */ 2860 if (ohead->oh_flags & XLOG_START_TRANS) 2861 xlog_recover_new_tid(&rhash[hash], tid, 2862 be64_to_cpu(rhead->h_lsn)); 2863 } else { 2864 if (dp + be32_to_cpu(ohead->oh_len) > lp) { 2865 xfs_warn(log->l_mp, "%s: bad length 0x%x", 2866 __func__, be32_to_cpu(ohead->oh_len)); 2867 WARN_ON(1); 2868 return (XFS_ERROR(EIO)); 2869 } 2870 flags = ohead->oh_flags & ~XLOG_END_TRANS; 2871 if (flags & XLOG_WAS_CONT_TRANS) 2872 flags &= ~XLOG_CONTINUE_TRANS; 2873 switch (flags) { 2874 case XLOG_COMMIT_TRANS: 2875 error = xlog_recover_commit_trans(log, 2876 trans, pass); 2877 break; 2878 case XLOG_UNMOUNT_TRANS: 2879 error = xlog_recover_unmount_trans(log, trans); 2880 break; 2881 case XLOG_WAS_CONT_TRANS: 2882 error = xlog_recover_add_to_cont_trans(log, 2883 trans, dp, 2884 be32_to_cpu(ohead->oh_len)); 2885 break; 2886 case XLOG_START_TRANS: 2887 xfs_warn(log->l_mp, "%s: bad transaction", 2888 __func__); 2889 ASSERT(0); 2890 error = XFS_ERROR(EIO); 2891 break; 2892 case 0: 2893 case XLOG_CONTINUE_TRANS: 2894 error = xlog_recover_add_to_trans(log, trans, 2895 dp, be32_to_cpu(ohead->oh_len)); 2896 break; 2897 default: 2898 xfs_warn(log->l_mp, "%s: bad flag 0x%x", 2899 __func__, flags); 2900 ASSERT(0); 2901 error = XFS_ERROR(EIO); 2902 break; 2903 } 2904 if (error) 2905 return error; 2906 } 2907 dp += be32_to_cpu(ohead->oh_len); 2908 num_logops--; 2909 } 2910 return 0; 2911 } 2912 2913 /* 2914 * Process an extent free intent item that was recovered from 2915 * the log. We need to free the extents that it describes. 2916 */ 2917 STATIC int 2918 xlog_recover_process_efi( 2919 xfs_mount_t *mp, 2920 xfs_efi_log_item_t *efip) 2921 { 2922 xfs_efd_log_item_t *efdp; 2923 xfs_trans_t *tp; 2924 int i; 2925 int error = 0; 2926 xfs_extent_t *extp; 2927 xfs_fsblock_t startblock_fsb; 2928 2929 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)); 2930 2931 /* 2932 * First check the validity of the extents described by the 2933 * EFI. If any are bad, then assume that all are bad and 2934 * just toss the EFI. 2935 */ 2936 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 2937 extp = &(efip->efi_format.efi_extents[i]); 2938 startblock_fsb = XFS_BB_TO_FSB(mp, 2939 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 2940 if ((startblock_fsb == 0) || 2941 (extp->ext_len == 0) || 2942 (startblock_fsb >= mp->m_sb.sb_dblocks) || 2943 (extp->ext_len >= mp->m_sb.sb_agblocks)) { 2944 /* 2945 * This will pull the EFI from the AIL and 2946 * free the memory associated with it. 2947 */ 2948 xfs_efi_release(efip, efip->efi_format.efi_nextents); 2949 return XFS_ERROR(EIO); 2950 } 2951 } 2952 2953 tp = xfs_trans_alloc(mp, 0); 2954 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0); 2955 if (error) 2956 goto abort_error; 2957 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 2958 2959 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 2960 extp = &(efip->efi_format.efi_extents[i]); 2961 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len); 2962 if (error) 2963 goto abort_error; 2964 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start, 2965 extp->ext_len); 2966 } 2967 2968 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); 2969 error = xfs_trans_commit(tp, 0); 2970 return error; 2971 2972 abort_error: 2973 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 2974 return error; 2975 } 2976 2977 /* 2978 * When this is called, all of the EFIs which did not have 2979 * corresponding EFDs should be in the AIL. What we do now 2980 * is free the extents associated with each one. 2981 * 2982 * Since we process the EFIs in normal transactions, they 2983 * will be removed at some point after the commit. This prevents 2984 * us from just walking down the list processing each one. 2985 * We'll use a flag in the EFI to skip those that we've already 2986 * processed and use the AIL iteration mechanism's generation 2987 * count to try to speed this up at least a bit. 2988 * 2989 * When we start, we know that the EFIs are the only things in 2990 * the AIL. As we process them, however, other items are added 2991 * to the AIL. Since everything added to the AIL must come after 2992 * everything already in the AIL, we stop processing as soon as 2993 * we see something other than an EFI in the AIL. 2994 */ 2995 STATIC int 2996 xlog_recover_process_efis( 2997 struct xlog *log) 2998 { 2999 xfs_log_item_t *lip; 3000 xfs_efi_log_item_t *efip; 3001 int error = 0; 3002 struct xfs_ail_cursor cur; 3003 struct xfs_ail *ailp; 3004 3005 ailp = log->l_ailp; 3006 spin_lock(&ailp->xa_lock); 3007 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3008 while (lip != NULL) { 3009 /* 3010 * We're done when we see something other than an EFI. 3011 * There should be no EFIs left in the AIL now. 3012 */ 3013 if (lip->li_type != XFS_LI_EFI) { 3014 #ifdef DEBUG 3015 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 3016 ASSERT(lip->li_type != XFS_LI_EFI); 3017 #endif 3018 break; 3019 } 3020 3021 /* 3022 * Skip EFIs that we've already processed. 3023 */ 3024 efip = (xfs_efi_log_item_t *)lip; 3025 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) { 3026 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3027 continue; 3028 } 3029 3030 spin_unlock(&ailp->xa_lock); 3031 error = xlog_recover_process_efi(log->l_mp, efip); 3032 spin_lock(&ailp->xa_lock); 3033 if (error) 3034 goto out; 3035 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3036 } 3037 out: 3038 xfs_trans_ail_cursor_done(ailp, &cur); 3039 spin_unlock(&ailp->xa_lock); 3040 return error; 3041 } 3042 3043 /* 3044 * This routine performs a transaction to null out a bad inode pointer 3045 * in an agi unlinked inode hash bucket. 3046 */ 3047 STATIC void 3048 xlog_recover_clear_agi_bucket( 3049 xfs_mount_t *mp, 3050 xfs_agnumber_t agno, 3051 int bucket) 3052 { 3053 xfs_trans_t *tp; 3054 xfs_agi_t *agi; 3055 xfs_buf_t *agibp; 3056 int offset; 3057 int error; 3058 3059 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); 3060 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 3061 0, 0, 0); 3062 if (error) 3063 goto out_abort; 3064 3065 error = xfs_read_agi(mp, tp, agno, &agibp); 3066 if (error) 3067 goto out_abort; 3068 3069 agi = XFS_BUF_TO_AGI(agibp); 3070 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 3071 offset = offsetof(xfs_agi_t, agi_unlinked) + 3072 (sizeof(xfs_agino_t) * bucket); 3073 xfs_trans_log_buf(tp, agibp, offset, 3074 (offset + sizeof(xfs_agino_t) - 1)); 3075 3076 error = xfs_trans_commit(tp, 0); 3077 if (error) 3078 goto out_error; 3079 return; 3080 3081 out_abort: 3082 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3083 out_error: 3084 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); 3085 return; 3086 } 3087 3088 STATIC xfs_agino_t 3089 xlog_recover_process_one_iunlink( 3090 struct xfs_mount *mp, 3091 xfs_agnumber_t agno, 3092 xfs_agino_t agino, 3093 int bucket) 3094 { 3095 struct xfs_buf *ibp; 3096 struct xfs_dinode *dip; 3097 struct xfs_inode *ip; 3098 xfs_ino_t ino; 3099 int error; 3100 3101 ino = XFS_AGINO_TO_INO(mp, agno, agino); 3102 error = xfs_iget(mp, NULL, ino, 0, 0, &ip); 3103 if (error) 3104 goto fail; 3105 3106 /* 3107 * Get the on disk inode to find the next inode in the bucket. 3108 */ 3109 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0); 3110 if (error) 3111 goto fail_iput; 3112 3113 ASSERT(ip->i_d.di_nlink == 0); 3114 ASSERT(ip->i_d.di_mode != 0); 3115 3116 /* setup for the next pass */ 3117 agino = be32_to_cpu(dip->di_next_unlinked); 3118 xfs_buf_relse(ibp); 3119 3120 /* 3121 * Prevent any DMAPI event from being sent when the reference on 3122 * the inode is dropped. 3123 */ 3124 ip->i_d.di_dmevmask = 0; 3125 3126 IRELE(ip); 3127 return agino; 3128 3129 fail_iput: 3130 IRELE(ip); 3131 fail: 3132 /* 3133 * We can't read in the inode this bucket points to, or this inode 3134 * is messed up. Just ditch this bucket of inodes. We will lose 3135 * some inodes and space, but at least we won't hang. 3136 * 3137 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 3138 * clear the inode pointer in the bucket. 3139 */ 3140 xlog_recover_clear_agi_bucket(mp, agno, bucket); 3141 return NULLAGINO; 3142 } 3143 3144 /* 3145 * xlog_iunlink_recover 3146 * 3147 * This is called during recovery to process any inodes which 3148 * we unlinked but not freed when the system crashed. These 3149 * inodes will be on the lists in the AGI blocks. What we do 3150 * here is scan all the AGIs and fully truncate and free any 3151 * inodes found on the lists. Each inode is removed from the 3152 * lists when it has been fully truncated and is freed. The 3153 * freeing of the inode and its removal from the list must be 3154 * atomic. 3155 */ 3156 STATIC void 3157 xlog_recover_process_iunlinks( 3158 struct xlog *log) 3159 { 3160 xfs_mount_t *mp; 3161 xfs_agnumber_t agno; 3162 xfs_agi_t *agi; 3163 xfs_buf_t *agibp; 3164 xfs_agino_t agino; 3165 int bucket; 3166 int error; 3167 uint mp_dmevmask; 3168 3169 mp = log->l_mp; 3170 3171 /* 3172 * Prevent any DMAPI event from being sent while in this function. 3173 */ 3174 mp_dmevmask = mp->m_dmevmask; 3175 mp->m_dmevmask = 0; 3176 3177 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3178 /* 3179 * Find the agi for this ag. 3180 */ 3181 error = xfs_read_agi(mp, NULL, agno, &agibp); 3182 if (error) { 3183 /* 3184 * AGI is b0rked. Don't process it. 3185 * 3186 * We should probably mark the filesystem as corrupt 3187 * after we've recovered all the ag's we can.... 3188 */ 3189 continue; 3190 } 3191 /* 3192 * Unlock the buffer so that it can be acquired in the normal 3193 * course of the transaction to truncate and free each inode. 3194 * Because we are not racing with anyone else here for the AGI 3195 * buffer, we don't even need to hold it locked to read the 3196 * initial unlinked bucket entries out of the buffer. We keep 3197 * buffer reference though, so that it stays pinned in memory 3198 * while we need the buffer. 3199 */ 3200 agi = XFS_BUF_TO_AGI(agibp); 3201 xfs_buf_unlock(agibp); 3202 3203 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 3204 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 3205 while (agino != NULLAGINO) { 3206 agino = xlog_recover_process_one_iunlink(mp, 3207 agno, agino, bucket); 3208 } 3209 } 3210 xfs_buf_rele(agibp); 3211 } 3212 3213 mp->m_dmevmask = mp_dmevmask; 3214 } 3215 3216 3217 #ifdef DEBUG 3218 STATIC void 3219 xlog_pack_data_checksum( 3220 struct xlog *log, 3221 struct xlog_in_core *iclog, 3222 int size) 3223 { 3224 int i; 3225 __be32 *up; 3226 uint chksum = 0; 3227 3228 up = (__be32 *)iclog->ic_datap; 3229 /* divide length by 4 to get # words */ 3230 for (i = 0; i < (size >> 2); i++) { 3231 chksum ^= be32_to_cpu(*up); 3232 up++; 3233 } 3234 iclog->ic_header.h_chksum = cpu_to_be32(chksum); 3235 } 3236 #else 3237 #define xlog_pack_data_checksum(log, iclog, size) 3238 #endif 3239 3240 /* 3241 * Stamp cycle number in every block 3242 */ 3243 void 3244 xlog_pack_data( 3245 struct xlog *log, 3246 struct xlog_in_core *iclog, 3247 int roundoff) 3248 { 3249 int i, j, k; 3250 int size = iclog->ic_offset + roundoff; 3251 __be32 cycle_lsn; 3252 xfs_caddr_t dp; 3253 3254 xlog_pack_data_checksum(log, iclog, size); 3255 3256 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 3257 3258 dp = iclog->ic_datap; 3259 for (i = 0; i < BTOBB(size) && 3260 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3261 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 3262 *(__be32 *)dp = cycle_lsn; 3263 dp += BBSIZE; 3264 } 3265 3266 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3267 xlog_in_core_2_t *xhdr = iclog->ic_data; 3268 3269 for ( ; i < BTOBB(size); i++) { 3270 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3271 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3272 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 3273 *(__be32 *)dp = cycle_lsn; 3274 dp += BBSIZE; 3275 } 3276 3277 for (i = 1; i < log->l_iclog_heads; i++) { 3278 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 3279 } 3280 } 3281 } 3282 3283 STATIC void 3284 xlog_unpack_data( 3285 struct xlog_rec_header *rhead, 3286 xfs_caddr_t dp, 3287 struct xlog *log) 3288 { 3289 int i, j, k; 3290 3291 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 3292 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3293 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 3294 dp += BBSIZE; 3295 } 3296 3297 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3298 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 3299 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 3300 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3301 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3302 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 3303 dp += BBSIZE; 3304 } 3305 } 3306 } 3307 3308 STATIC int 3309 xlog_valid_rec_header( 3310 struct xlog *log, 3311 struct xlog_rec_header *rhead, 3312 xfs_daddr_t blkno) 3313 { 3314 int hlen; 3315 3316 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) { 3317 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 3318 XFS_ERRLEVEL_LOW, log->l_mp); 3319 return XFS_ERROR(EFSCORRUPTED); 3320 } 3321 if (unlikely( 3322 (!rhead->h_version || 3323 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { 3324 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", 3325 __func__, be32_to_cpu(rhead->h_version)); 3326 return XFS_ERROR(EIO); 3327 } 3328 3329 /* LR body must have data or it wouldn't have been written */ 3330 hlen = be32_to_cpu(rhead->h_len); 3331 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 3332 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 3333 XFS_ERRLEVEL_LOW, log->l_mp); 3334 return XFS_ERROR(EFSCORRUPTED); 3335 } 3336 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 3337 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 3338 XFS_ERRLEVEL_LOW, log->l_mp); 3339 return XFS_ERROR(EFSCORRUPTED); 3340 } 3341 return 0; 3342 } 3343 3344 /* 3345 * Read the log from tail to head and process the log records found. 3346 * Handle the two cases where the tail and head are in the same cycle 3347 * and where the active portion of the log wraps around the end of 3348 * the physical log separately. The pass parameter is passed through 3349 * to the routines called to process the data and is not looked at 3350 * here. 3351 */ 3352 STATIC int 3353 xlog_do_recovery_pass( 3354 struct xlog *log, 3355 xfs_daddr_t head_blk, 3356 xfs_daddr_t tail_blk, 3357 int pass) 3358 { 3359 xlog_rec_header_t *rhead; 3360 xfs_daddr_t blk_no; 3361 xfs_caddr_t offset; 3362 xfs_buf_t *hbp, *dbp; 3363 int error = 0, h_size; 3364 int bblks, split_bblks; 3365 int hblks, split_hblks, wrapped_hblks; 3366 struct hlist_head rhash[XLOG_RHASH_SIZE]; 3367 3368 ASSERT(head_blk != tail_blk); 3369 3370 /* 3371 * Read the header of the tail block and get the iclog buffer size from 3372 * h_size. Use this to tell how many sectors make up the log header. 3373 */ 3374 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3375 /* 3376 * When using variable length iclogs, read first sector of 3377 * iclog header and extract the header size from it. Get a 3378 * new hbp that is the correct size. 3379 */ 3380 hbp = xlog_get_bp(log, 1); 3381 if (!hbp) 3382 return ENOMEM; 3383 3384 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 3385 if (error) 3386 goto bread_err1; 3387 3388 rhead = (xlog_rec_header_t *)offset; 3389 error = xlog_valid_rec_header(log, rhead, tail_blk); 3390 if (error) 3391 goto bread_err1; 3392 h_size = be32_to_cpu(rhead->h_size); 3393 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 3394 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 3395 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 3396 if (h_size % XLOG_HEADER_CYCLE_SIZE) 3397 hblks++; 3398 xlog_put_bp(hbp); 3399 hbp = xlog_get_bp(log, hblks); 3400 } else { 3401 hblks = 1; 3402 } 3403 } else { 3404 ASSERT(log->l_sectBBsize == 1); 3405 hblks = 1; 3406 hbp = xlog_get_bp(log, 1); 3407 h_size = XLOG_BIG_RECORD_BSIZE; 3408 } 3409 3410 if (!hbp) 3411 return ENOMEM; 3412 dbp = xlog_get_bp(log, BTOBB(h_size)); 3413 if (!dbp) { 3414 xlog_put_bp(hbp); 3415 return ENOMEM; 3416 } 3417 3418 memset(rhash, 0, sizeof(rhash)); 3419 if (tail_blk <= head_blk) { 3420 for (blk_no = tail_blk; blk_no < head_blk; ) { 3421 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 3422 if (error) 3423 goto bread_err2; 3424 3425 rhead = (xlog_rec_header_t *)offset; 3426 error = xlog_valid_rec_header(log, rhead, blk_no); 3427 if (error) 3428 goto bread_err2; 3429 3430 /* blocks in data section */ 3431 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3432 error = xlog_bread(log, blk_no + hblks, bblks, dbp, 3433 &offset); 3434 if (error) 3435 goto bread_err2; 3436 3437 xlog_unpack_data(rhead, offset, log); 3438 if ((error = xlog_recover_process_data(log, 3439 rhash, rhead, offset, pass))) 3440 goto bread_err2; 3441 blk_no += bblks + hblks; 3442 } 3443 } else { 3444 /* 3445 * Perform recovery around the end of the physical log. 3446 * When the head is not on the same cycle number as the tail, 3447 * we can't do a sequential recovery as above. 3448 */ 3449 blk_no = tail_blk; 3450 while (blk_no < log->l_logBBsize) { 3451 /* 3452 * Check for header wrapping around physical end-of-log 3453 */ 3454 offset = hbp->b_addr; 3455 split_hblks = 0; 3456 wrapped_hblks = 0; 3457 if (blk_no + hblks <= log->l_logBBsize) { 3458 /* Read header in one read */ 3459 error = xlog_bread(log, blk_no, hblks, hbp, 3460 &offset); 3461 if (error) 3462 goto bread_err2; 3463 } else { 3464 /* This LR is split across physical log end */ 3465 if (blk_no != log->l_logBBsize) { 3466 /* some data before physical log end */ 3467 ASSERT(blk_no <= INT_MAX); 3468 split_hblks = log->l_logBBsize - (int)blk_no; 3469 ASSERT(split_hblks > 0); 3470 error = xlog_bread(log, blk_no, 3471 split_hblks, hbp, 3472 &offset); 3473 if (error) 3474 goto bread_err2; 3475 } 3476 3477 /* 3478 * Note: this black magic still works with 3479 * large sector sizes (non-512) only because: 3480 * - we increased the buffer size originally 3481 * by 1 sector giving us enough extra space 3482 * for the second read; 3483 * - the log start is guaranteed to be sector 3484 * aligned; 3485 * - we read the log end (LR header start) 3486 * _first_, then the log start (LR header end) 3487 * - order is important. 3488 */ 3489 wrapped_hblks = hblks - split_hblks; 3490 error = xlog_bread_offset(log, 0, 3491 wrapped_hblks, hbp, 3492 offset + BBTOB(split_hblks)); 3493 if (error) 3494 goto bread_err2; 3495 } 3496 rhead = (xlog_rec_header_t *)offset; 3497 error = xlog_valid_rec_header(log, rhead, 3498 split_hblks ? blk_no : 0); 3499 if (error) 3500 goto bread_err2; 3501 3502 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3503 blk_no += hblks; 3504 3505 /* Read in data for log record */ 3506 if (blk_no + bblks <= log->l_logBBsize) { 3507 error = xlog_bread(log, blk_no, bblks, dbp, 3508 &offset); 3509 if (error) 3510 goto bread_err2; 3511 } else { 3512 /* This log record is split across the 3513 * physical end of log */ 3514 offset = dbp->b_addr; 3515 split_bblks = 0; 3516 if (blk_no != log->l_logBBsize) { 3517 /* some data is before the physical 3518 * end of log */ 3519 ASSERT(!wrapped_hblks); 3520 ASSERT(blk_no <= INT_MAX); 3521 split_bblks = 3522 log->l_logBBsize - (int)blk_no; 3523 ASSERT(split_bblks > 0); 3524 error = xlog_bread(log, blk_no, 3525 split_bblks, dbp, 3526 &offset); 3527 if (error) 3528 goto bread_err2; 3529 } 3530 3531 /* 3532 * Note: this black magic still works with 3533 * large sector sizes (non-512) only because: 3534 * - we increased the buffer size originally 3535 * by 1 sector giving us enough extra space 3536 * for the second read; 3537 * - the log start is guaranteed to be sector 3538 * aligned; 3539 * - we read the log end (LR header start) 3540 * _first_, then the log start (LR header end) 3541 * - order is important. 3542 */ 3543 error = xlog_bread_offset(log, 0, 3544 bblks - split_bblks, hbp, 3545 offset + BBTOB(split_bblks)); 3546 if (error) 3547 goto bread_err2; 3548 } 3549 xlog_unpack_data(rhead, offset, log); 3550 if ((error = xlog_recover_process_data(log, rhash, 3551 rhead, offset, pass))) 3552 goto bread_err2; 3553 blk_no += bblks; 3554 } 3555 3556 ASSERT(blk_no >= log->l_logBBsize); 3557 blk_no -= log->l_logBBsize; 3558 3559 /* read first part of physical log */ 3560 while (blk_no < head_blk) { 3561 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 3562 if (error) 3563 goto bread_err2; 3564 3565 rhead = (xlog_rec_header_t *)offset; 3566 error = xlog_valid_rec_header(log, rhead, blk_no); 3567 if (error) 3568 goto bread_err2; 3569 3570 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3571 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 3572 &offset); 3573 if (error) 3574 goto bread_err2; 3575 3576 xlog_unpack_data(rhead, offset, log); 3577 if ((error = xlog_recover_process_data(log, rhash, 3578 rhead, offset, pass))) 3579 goto bread_err2; 3580 blk_no += bblks + hblks; 3581 } 3582 } 3583 3584 bread_err2: 3585 xlog_put_bp(dbp); 3586 bread_err1: 3587 xlog_put_bp(hbp); 3588 return error; 3589 } 3590 3591 /* 3592 * Do the recovery of the log. We actually do this in two phases. 3593 * The two passes are necessary in order to implement the function 3594 * of cancelling a record written into the log. The first pass 3595 * determines those things which have been cancelled, and the 3596 * second pass replays log items normally except for those which 3597 * have been cancelled. The handling of the replay and cancellations 3598 * takes place in the log item type specific routines. 3599 * 3600 * The table of items which have cancel records in the log is allocated 3601 * and freed at this level, since only here do we know when all of 3602 * the log recovery has been completed. 3603 */ 3604 STATIC int 3605 xlog_do_log_recovery( 3606 struct xlog *log, 3607 xfs_daddr_t head_blk, 3608 xfs_daddr_t tail_blk) 3609 { 3610 int error, i; 3611 3612 ASSERT(head_blk != tail_blk); 3613 3614 /* 3615 * First do a pass to find all of the cancelled buf log items. 3616 * Store them in the buf_cancel_table for use in the second pass. 3617 */ 3618 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * 3619 sizeof(struct list_head), 3620 KM_SLEEP); 3621 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3622 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); 3623 3624 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3625 XLOG_RECOVER_PASS1); 3626 if (error != 0) { 3627 kmem_free(log->l_buf_cancel_table); 3628 log->l_buf_cancel_table = NULL; 3629 return error; 3630 } 3631 /* 3632 * Then do a second pass to actually recover the items in the log. 3633 * When it is complete free the table of buf cancel items. 3634 */ 3635 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3636 XLOG_RECOVER_PASS2); 3637 #ifdef DEBUG 3638 if (!error) { 3639 int i; 3640 3641 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3642 ASSERT(list_empty(&log->l_buf_cancel_table[i])); 3643 } 3644 #endif /* DEBUG */ 3645 3646 kmem_free(log->l_buf_cancel_table); 3647 log->l_buf_cancel_table = NULL; 3648 3649 return error; 3650 } 3651 3652 /* 3653 * Do the actual recovery 3654 */ 3655 STATIC int 3656 xlog_do_recover( 3657 struct xlog *log, 3658 xfs_daddr_t head_blk, 3659 xfs_daddr_t tail_blk) 3660 { 3661 int error; 3662 xfs_buf_t *bp; 3663 xfs_sb_t *sbp; 3664 3665 /* 3666 * First replay the images in the log. 3667 */ 3668 error = xlog_do_log_recovery(log, head_blk, tail_blk); 3669 if (error) 3670 return error; 3671 3672 /* 3673 * If IO errors happened during recovery, bail out. 3674 */ 3675 if (XFS_FORCED_SHUTDOWN(log->l_mp)) { 3676 return (EIO); 3677 } 3678 3679 /* 3680 * We now update the tail_lsn since much of the recovery has completed 3681 * and there may be space available to use. If there were no extent 3682 * or iunlinks, we can free up the entire log and set the tail_lsn to 3683 * be the last_sync_lsn. This was set in xlog_find_tail to be the 3684 * lsn of the last known good LR on disk. If there are extent frees 3685 * or iunlinks they will have some entries in the AIL; so we look at 3686 * the AIL to determine how to set the tail_lsn. 3687 */ 3688 xlog_assign_tail_lsn(log->l_mp); 3689 3690 /* 3691 * Now that we've finished replaying all buffer and inode 3692 * updates, re-read in the superblock. 3693 */ 3694 bp = xfs_getsb(log->l_mp, 0); 3695 XFS_BUF_UNDONE(bp); 3696 ASSERT(!(XFS_BUF_ISWRITE(bp))); 3697 XFS_BUF_READ(bp); 3698 XFS_BUF_UNASYNC(bp); 3699 xfsbdstrat(log->l_mp, bp); 3700 error = xfs_buf_iowait(bp); 3701 if (error) { 3702 xfs_buf_ioerror_alert(bp, __func__); 3703 ASSERT(0); 3704 xfs_buf_relse(bp); 3705 return error; 3706 } 3707 3708 /* Convert superblock from on-disk format */ 3709 sbp = &log->l_mp->m_sb; 3710 xfs_sb_from_disk(log->l_mp, XFS_BUF_TO_SBP(bp)); 3711 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); 3712 ASSERT(xfs_sb_good_version(sbp)); 3713 xfs_buf_relse(bp); 3714 3715 /* We've re-read the superblock so re-initialize per-cpu counters */ 3716 xfs_icsb_reinit_counters(log->l_mp); 3717 3718 xlog_recover_check_summary(log); 3719 3720 /* Normal transactions can now occur */ 3721 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 3722 return 0; 3723 } 3724 3725 /* 3726 * Perform recovery and re-initialize some log variables in xlog_find_tail. 3727 * 3728 * Return error or zero. 3729 */ 3730 int 3731 xlog_recover( 3732 struct xlog *log) 3733 { 3734 xfs_daddr_t head_blk, tail_blk; 3735 int error; 3736 3737 /* find the tail of the log */ 3738 if ((error = xlog_find_tail(log, &head_blk, &tail_blk))) 3739 return error; 3740 3741 if (tail_blk != head_blk) { 3742 /* There used to be a comment here: 3743 * 3744 * disallow recovery on read-only mounts. note -- mount 3745 * checks for ENOSPC and turns it into an intelligent 3746 * error message. 3747 * ...but this is no longer true. Now, unless you specify 3748 * NORECOVERY (in which case this function would never be 3749 * called), we just go ahead and recover. We do this all 3750 * under the vfs layer, so we can get away with it unless 3751 * the device itself is read-only, in which case we fail. 3752 */ 3753 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 3754 return error; 3755 } 3756 3757 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", 3758 log->l_mp->m_logname ? log->l_mp->m_logname 3759 : "internal"); 3760 3761 error = xlog_do_recover(log, head_blk, tail_blk); 3762 log->l_flags |= XLOG_RECOVERY_NEEDED; 3763 } 3764 return error; 3765 } 3766 3767 /* 3768 * In the first part of recovery we replay inodes and buffers and build 3769 * up the list of extent free items which need to be processed. Here 3770 * we process the extent free items and clean up the on disk unlinked 3771 * inode lists. This is separated from the first part of recovery so 3772 * that the root and real-time bitmap inodes can be read in from disk in 3773 * between the two stages. This is necessary so that we can free space 3774 * in the real-time portion of the file system. 3775 */ 3776 int 3777 xlog_recover_finish( 3778 struct xlog *log) 3779 { 3780 /* 3781 * Now we're ready to do the transactions needed for the 3782 * rest of recovery. Start with completing all the extent 3783 * free intent records and then process the unlinked inode 3784 * lists. At this point, we essentially run in normal mode 3785 * except that we're still performing recovery actions 3786 * rather than accepting new requests. 3787 */ 3788 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 3789 int error; 3790 error = xlog_recover_process_efis(log); 3791 if (error) { 3792 xfs_alert(log->l_mp, "Failed to recover EFIs"); 3793 return error; 3794 } 3795 /* 3796 * Sync the log to get all the EFIs out of the AIL. 3797 * This isn't absolutely necessary, but it helps in 3798 * case the unlink transactions would have problems 3799 * pushing the EFIs out of the way. 3800 */ 3801 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 3802 3803 xlog_recover_process_iunlinks(log); 3804 3805 xlog_recover_check_summary(log); 3806 3807 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", 3808 log->l_mp->m_logname ? log->l_mp->m_logname 3809 : "internal"); 3810 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 3811 } else { 3812 xfs_info(log->l_mp, "Ending clean mount"); 3813 } 3814 return 0; 3815 } 3816 3817 3818 #if defined(DEBUG) 3819 /* 3820 * Read all of the agf and agi counters and check that they 3821 * are consistent with the superblock counters. 3822 */ 3823 void 3824 xlog_recover_check_summary( 3825 struct xlog *log) 3826 { 3827 xfs_mount_t *mp; 3828 xfs_agf_t *agfp; 3829 xfs_buf_t *agfbp; 3830 xfs_buf_t *agibp; 3831 xfs_agnumber_t agno; 3832 __uint64_t freeblks; 3833 __uint64_t itotal; 3834 __uint64_t ifree; 3835 int error; 3836 3837 mp = log->l_mp; 3838 3839 freeblks = 0LL; 3840 itotal = 0LL; 3841 ifree = 0LL; 3842 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3843 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 3844 if (error) { 3845 xfs_alert(mp, "%s agf read failed agno %d error %d", 3846 __func__, agno, error); 3847 } else { 3848 agfp = XFS_BUF_TO_AGF(agfbp); 3849 freeblks += be32_to_cpu(agfp->agf_freeblks) + 3850 be32_to_cpu(agfp->agf_flcount); 3851 xfs_buf_relse(agfbp); 3852 } 3853 3854 error = xfs_read_agi(mp, NULL, agno, &agibp); 3855 if (error) { 3856 xfs_alert(mp, "%s agi read failed agno %d error %d", 3857 __func__, agno, error); 3858 } else { 3859 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 3860 3861 itotal += be32_to_cpu(agi->agi_count); 3862 ifree += be32_to_cpu(agi->agi_freecount); 3863 xfs_buf_relse(agibp); 3864 } 3865 } 3866 } 3867 #endif /* DEBUG */ 3868