xref: /openbmc/linux/fs/xfs/xfs_log_recover.c (revision 95e9fd10)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_alloc.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_log_priv.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_log_recover.h"
40 #include "xfs_extfree_item.h"
41 #include "xfs_trans_priv.h"
42 #include "xfs_quota.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
45 
46 STATIC int
47 xlog_find_zeroed(
48 	struct xlog	*,
49 	xfs_daddr_t	*);
50 STATIC int
51 xlog_clear_stale_blocks(
52 	struct xlog	*,
53 	xfs_lsn_t);
54 #if defined(DEBUG)
55 STATIC void
56 xlog_recover_check_summary(
57 	struct xlog *);
58 #else
59 #define	xlog_recover_check_summary(log)
60 #endif
61 
62 /*
63  * This structure is used during recovery to record the buf log items which
64  * have been canceled and should not be replayed.
65  */
66 struct xfs_buf_cancel {
67 	xfs_daddr_t		bc_blkno;
68 	uint			bc_len;
69 	int			bc_refcount;
70 	struct list_head	bc_list;
71 };
72 
73 /*
74  * Sector aligned buffer routines for buffer create/read/write/access
75  */
76 
77 /*
78  * Verify the given count of basic blocks is valid number of blocks
79  * to specify for an operation involving the given XFS log buffer.
80  * Returns nonzero if the count is valid, 0 otherwise.
81  */
82 
83 static inline int
84 xlog_buf_bbcount_valid(
85 	struct xlog	*log,
86 	int		bbcount)
87 {
88 	return bbcount > 0 && bbcount <= log->l_logBBsize;
89 }
90 
91 /*
92  * Allocate a buffer to hold log data.  The buffer needs to be able
93  * to map to a range of nbblks basic blocks at any valid (basic
94  * block) offset within the log.
95  */
96 STATIC xfs_buf_t *
97 xlog_get_bp(
98 	struct xlog	*log,
99 	int		nbblks)
100 {
101 	struct xfs_buf	*bp;
102 
103 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
104 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
105 			nbblks);
106 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
107 		return NULL;
108 	}
109 
110 	/*
111 	 * We do log I/O in units of log sectors (a power-of-2
112 	 * multiple of the basic block size), so we round up the
113 	 * requested size to accommodate the basic blocks required
114 	 * for complete log sectors.
115 	 *
116 	 * In addition, the buffer may be used for a non-sector-
117 	 * aligned block offset, in which case an I/O of the
118 	 * requested size could extend beyond the end of the
119 	 * buffer.  If the requested size is only 1 basic block it
120 	 * will never straddle a sector boundary, so this won't be
121 	 * an issue.  Nor will this be a problem if the log I/O is
122 	 * done in basic blocks (sector size 1).  But otherwise we
123 	 * extend the buffer by one extra log sector to ensure
124 	 * there's space to accommodate this possibility.
125 	 */
126 	if (nbblks > 1 && log->l_sectBBsize > 1)
127 		nbblks += log->l_sectBBsize;
128 	nbblks = round_up(nbblks, log->l_sectBBsize);
129 
130 	bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
131 	if (bp)
132 		xfs_buf_unlock(bp);
133 	return bp;
134 }
135 
136 STATIC void
137 xlog_put_bp(
138 	xfs_buf_t	*bp)
139 {
140 	xfs_buf_free(bp);
141 }
142 
143 /*
144  * Return the address of the start of the given block number's data
145  * in a log buffer.  The buffer covers a log sector-aligned region.
146  */
147 STATIC xfs_caddr_t
148 xlog_align(
149 	struct xlog	*log,
150 	xfs_daddr_t	blk_no,
151 	int		nbblks,
152 	struct xfs_buf	*bp)
153 {
154 	xfs_daddr_t	offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
155 
156 	ASSERT(offset + nbblks <= bp->b_length);
157 	return bp->b_addr + BBTOB(offset);
158 }
159 
160 
161 /*
162  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
163  */
164 STATIC int
165 xlog_bread_noalign(
166 	struct xlog	*log,
167 	xfs_daddr_t	blk_no,
168 	int		nbblks,
169 	struct xfs_buf	*bp)
170 {
171 	int		error;
172 
173 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
174 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
175 			nbblks);
176 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
177 		return EFSCORRUPTED;
178 	}
179 
180 	blk_no = round_down(blk_no, log->l_sectBBsize);
181 	nbblks = round_up(nbblks, log->l_sectBBsize);
182 
183 	ASSERT(nbblks > 0);
184 	ASSERT(nbblks <= bp->b_length);
185 
186 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
187 	XFS_BUF_READ(bp);
188 	bp->b_io_length = nbblks;
189 	bp->b_error = 0;
190 
191 	xfsbdstrat(log->l_mp, bp);
192 	error = xfs_buf_iowait(bp);
193 	if (error)
194 		xfs_buf_ioerror_alert(bp, __func__);
195 	return error;
196 }
197 
198 STATIC int
199 xlog_bread(
200 	struct xlog	*log,
201 	xfs_daddr_t	blk_no,
202 	int		nbblks,
203 	struct xfs_buf	*bp,
204 	xfs_caddr_t	*offset)
205 {
206 	int		error;
207 
208 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
209 	if (error)
210 		return error;
211 
212 	*offset = xlog_align(log, blk_no, nbblks, bp);
213 	return 0;
214 }
215 
216 /*
217  * Read at an offset into the buffer. Returns with the buffer in it's original
218  * state regardless of the result of the read.
219  */
220 STATIC int
221 xlog_bread_offset(
222 	struct xlog	*log,
223 	xfs_daddr_t	blk_no,		/* block to read from */
224 	int		nbblks,		/* blocks to read */
225 	struct xfs_buf	*bp,
226 	xfs_caddr_t	offset)
227 {
228 	xfs_caddr_t	orig_offset = bp->b_addr;
229 	int		orig_len = BBTOB(bp->b_length);
230 	int		error, error2;
231 
232 	error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
233 	if (error)
234 		return error;
235 
236 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
237 
238 	/* must reset buffer pointer even on error */
239 	error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
240 	if (error)
241 		return error;
242 	return error2;
243 }
244 
245 /*
246  * Write out the buffer at the given block for the given number of blocks.
247  * The buffer is kept locked across the write and is returned locked.
248  * This can only be used for synchronous log writes.
249  */
250 STATIC int
251 xlog_bwrite(
252 	struct xlog	*log,
253 	xfs_daddr_t	blk_no,
254 	int		nbblks,
255 	struct xfs_buf	*bp)
256 {
257 	int		error;
258 
259 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
260 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
261 			nbblks);
262 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
263 		return EFSCORRUPTED;
264 	}
265 
266 	blk_no = round_down(blk_no, log->l_sectBBsize);
267 	nbblks = round_up(nbblks, log->l_sectBBsize);
268 
269 	ASSERT(nbblks > 0);
270 	ASSERT(nbblks <= bp->b_length);
271 
272 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
273 	XFS_BUF_ZEROFLAGS(bp);
274 	xfs_buf_hold(bp);
275 	xfs_buf_lock(bp);
276 	bp->b_io_length = nbblks;
277 	bp->b_error = 0;
278 
279 	error = xfs_bwrite(bp);
280 	if (error)
281 		xfs_buf_ioerror_alert(bp, __func__);
282 	xfs_buf_relse(bp);
283 	return error;
284 }
285 
286 #ifdef DEBUG
287 /*
288  * dump debug superblock and log record information
289  */
290 STATIC void
291 xlog_header_check_dump(
292 	xfs_mount_t		*mp,
293 	xlog_rec_header_t	*head)
294 {
295 	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d\n",
296 		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
297 	xfs_debug(mp, "    log : uuid = %pU, fmt = %d\n",
298 		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
299 }
300 #else
301 #define xlog_header_check_dump(mp, head)
302 #endif
303 
304 /*
305  * check log record header for recovery
306  */
307 STATIC int
308 xlog_header_check_recover(
309 	xfs_mount_t		*mp,
310 	xlog_rec_header_t	*head)
311 {
312 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
313 
314 	/*
315 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
316 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
317 	 * a dirty log created in IRIX.
318 	 */
319 	if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
320 		xfs_warn(mp,
321 	"dirty log written in incompatible format - can't recover");
322 		xlog_header_check_dump(mp, head);
323 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
324 				 XFS_ERRLEVEL_HIGH, mp);
325 		return XFS_ERROR(EFSCORRUPTED);
326 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
327 		xfs_warn(mp,
328 	"dirty log entry has mismatched uuid - can't recover");
329 		xlog_header_check_dump(mp, head);
330 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
331 				 XFS_ERRLEVEL_HIGH, mp);
332 		return XFS_ERROR(EFSCORRUPTED);
333 	}
334 	return 0;
335 }
336 
337 /*
338  * read the head block of the log and check the header
339  */
340 STATIC int
341 xlog_header_check_mount(
342 	xfs_mount_t		*mp,
343 	xlog_rec_header_t	*head)
344 {
345 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
346 
347 	if (uuid_is_nil(&head->h_fs_uuid)) {
348 		/*
349 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
350 		 * h_fs_uuid is nil, we assume this log was last mounted
351 		 * by IRIX and continue.
352 		 */
353 		xfs_warn(mp, "nil uuid in log - IRIX style log");
354 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
355 		xfs_warn(mp, "log has mismatched uuid - can't recover");
356 		xlog_header_check_dump(mp, head);
357 		XFS_ERROR_REPORT("xlog_header_check_mount",
358 				 XFS_ERRLEVEL_HIGH, mp);
359 		return XFS_ERROR(EFSCORRUPTED);
360 	}
361 	return 0;
362 }
363 
364 STATIC void
365 xlog_recover_iodone(
366 	struct xfs_buf	*bp)
367 {
368 	if (bp->b_error) {
369 		/*
370 		 * We're not going to bother about retrying
371 		 * this during recovery. One strike!
372 		 */
373 		xfs_buf_ioerror_alert(bp, __func__);
374 		xfs_force_shutdown(bp->b_target->bt_mount,
375 					SHUTDOWN_META_IO_ERROR);
376 	}
377 	bp->b_iodone = NULL;
378 	xfs_buf_ioend(bp, 0);
379 }
380 
381 /*
382  * This routine finds (to an approximation) the first block in the physical
383  * log which contains the given cycle.  It uses a binary search algorithm.
384  * Note that the algorithm can not be perfect because the disk will not
385  * necessarily be perfect.
386  */
387 STATIC int
388 xlog_find_cycle_start(
389 	struct xlog	*log,
390 	struct xfs_buf	*bp,
391 	xfs_daddr_t	first_blk,
392 	xfs_daddr_t	*last_blk,
393 	uint		cycle)
394 {
395 	xfs_caddr_t	offset;
396 	xfs_daddr_t	mid_blk;
397 	xfs_daddr_t	end_blk;
398 	uint		mid_cycle;
399 	int		error;
400 
401 	end_blk = *last_blk;
402 	mid_blk = BLK_AVG(first_blk, end_blk);
403 	while (mid_blk != first_blk && mid_blk != end_blk) {
404 		error = xlog_bread(log, mid_blk, 1, bp, &offset);
405 		if (error)
406 			return error;
407 		mid_cycle = xlog_get_cycle(offset);
408 		if (mid_cycle == cycle)
409 			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
410 		else
411 			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
412 		mid_blk = BLK_AVG(first_blk, end_blk);
413 	}
414 	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
415 	       (mid_blk == end_blk && mid_blk-1 == first_blk));
416 
417 	*last_blk = end_blk;
418 
419 	return 0;
420 }
421 
422 /*
423  * Check that a range of blocks does not contain stop_on_cycle_no.
424  * Fill in *new_blk with the block offset where such a block is
425  * found, or with -1 (an invalid block number) if there is no such
426  * block in the range.  The scan needs to occur from front to back
427  * and the pointer into the region must be updated since a later
428  * routine will need to perform another test.
429  */
430 STATIC int
431 xlog_find_verify_cycle(
432 	struct xlog	*log,
433 	xfs_daddr_t	start_blk,
434 	int		nbblks,
435 	uint		stop_on_cycle_no,
436 	xfs_daddr_t	*new_blk)
437 {
438 	xfs_daddr_t	i, j;
439 	uint		cycle;
440 	xfs_buf_t	*bp;
441 	xfs_daddr_t	bufblks;
442 	xfs_caddr_t	buf = NULL;
443 	int		error = 0;
444 
445 	/*
446 	 * Greedily allocate a buffer big enough to handle the full
447 	 * range of basic blocks we'll be examining.  If that fails,
448 	 * try a smaller size.  We need to be able to read at least
449 	 * a log sector, or we're out of luck.
450 	 */
451 	bufblks = 1 << ffs(nbblks);
452 	while (bufblks > log->l_logBBsize)
453 		bufblks >>= 1;
454 	while (!(bp = xlog_get_bp(log, bufblks))) {
455 		bufblks >>= 1;
456 		if (bufblks < log->l_sectBBsize)
457 			return ENOMEM;
458 	}
459 
460 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
461 		int	bcount;
462 
463 		bcount = min(bufblks, (start_blk + nbblks - i));
464 
465 		error = xlog_bread(log, i, bcount, bp, &buf);
466 		if (error)
467 			goto out;
468 
469 		for (j = 0; j < bcount; j++) {
470 			cycle = xlog_get_cycle(buf);
471 			if (cycle == stop_on_cycle_no) {
472 				*new_blk = i+j;
473 				goto out;
474 			}
475 
476 			buf += BBSIZE;
477 		}
478 	}
479 
480 	*new_blk = -1;
481 
482 out:
483 	xlog_put_bp(bp);
484 	return error;
485 }
486 
487 /*
488  * Potentially backup over partial log record write.
489  *
490  * In the typical case, last_blk is the number of the block directly after
491  * a good log record.  Therefore, we subtract one to get the block number
492  * of the last block in the given buffer.  extra_bblks contains the number
493  * of blocks we would have read on a previous read.  This happens when the
494  * last log record is split over the end of the physical log.
495  *
496  * extra_bblks is the number of blocks potentially verified on a previous
497  * call to this routine.
498  */
499 STATIC int
500 xlog_find_verify_log_record(
501 	struct xlog		*log,
502 	xfs_daddr_t		start_blk,
503 	xfs_daddr_t		*last_blk,
504 	int			extra_bblks)
505 {
506 	xfs_daddr_t		i;
507 	xfs_buf_t		*bp;
508 	xfs_caddr_t		offset = NULL;
509 	xlog_rec_header_t	*head = NULL;
510 	int			error = 0;
511 	int			smallmem = 0;
512 	int			num_blks = *last_blk - start_blk;
513 	int			xhdrs;
514 
515 	ASSERT(start_blk != 0 || *last_blk != start_blk);
516 
517 	if (!(bp = xlog_get_bp(log, num_blks))) {
518 		if (!(bp = xlog_get_bp(log, 1)))
519 			return ENOMEM;
520 		smallmem = 1;
521 	} else {
522 		error = xlog_bread(log, start_blk, num_blks, bp, &offset);
523 		if (error)
524 			goto out;
525 		offset += ((num_blks - 1) << BBSHIFT);
526 	}
527 
528 	for (i = (*last_blk) - 1; i >= 0; i--) {
529 		if (i < start_blk) {
530 			/* valid log record not found */
531 			xfs_warn(log->l_mp,
532 		"Log inconsistent (didn't find previous header)");
533 			ASSERT(0);
534 			error = XFS_ERROR(EIO);
535 			goto out;
536 		}
537 
538 		if (smallmem) {
539 			error = xlog_bread(log, i, 1, bp, &offset);
540 			if (error)
541 				goto out;
542 		}
543 
544 		head = (xlog_rec_header_t *)offset;
545 
546 		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
547 			break;
548 
549 		if (!smallmem)
550 			offset -= BBSIZE;
551 	}
552 
553 	/*
554 	 * We hit the beginning of the physical log & still no header.  Return
555 	 * to caller.  If caller can handle a return of -1, then this routine
556 	 * will be called again for the end of the physical log.
557 	 */
558 	if (i == -1) {
559 		error = -1;
560 		goto out;
561 	}
562 
563 	/*
564 	 * We have the final block of the good log (the first block
565 	 * of the log record _before_ the head. So we check the uuid.
566 	 */
567 	if ((error = xlog_header_check_mount(log->l_mp, head)))
568 		goto out;
569 
570 	/*
571 	 * We may have found a log record header before we expected one.
572 	 * last_blk will be the 1st block # with a given cycle #.  We may end
573 	 * up reading an entire log record.  In this case, we don't want to
574 	 * reset last_blk.  Only when last_blk points in the middle of a log
575 	 * record do we update last_blk.
576 	 */
577 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
578 		uint	h_size = be32_to_cpu(head->h_size);
579 
580 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
581 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
582 			xhdrs++;
583 	} else {
584 		xhdrs = 1;
585 	}
586 
587 	if (*last_blk - i + extra_bblks !=
588 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
589 		*last_blk = i;
590 
591 out:
592 	xlog_put_bp(bp);
593 	return error;
594 }
595 
596 /*
597  * Head is defined to be the point of the log where the next log write
598  * write could go.  This means that incomplete LR writes at the end are
599  * eliminated when calculating the head.  We aren't guaranteed that previous
600  * LR have complete transactions.  We only know that a cycle number of
601  * current cycle number -1 won't be present in the log if we start writing
602  * from our current block number.
603  *
604  * last_blk contains the block number of the first block with a given
605  * cycle number.
606  *
607  * Return: zero if normal, non-zero if error.
608  */
609 STATIC int
610 xlog_find_head(
611 	struct xlog	*log,
612 	xfs_daddr_t	*return_head_blk)
613 {
614 	xfs_buf_t	*bp;
615 	xfs_caddr_t	offset;
616 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
617 	int		num_scan_bblks;
618 	uint		first_half_cycle, last_half_cycle;
619 	uint		stop_on_cycle;
620 	int		error, log_bbnum = log->l_logBBsize;
621 
622 	/* Is the end of the log device zeroed? */
623 	if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
624 		*return_head_blk = first_blk;
625 
626 		/* Is the whole lot zeroed? */
627 		if (!first_blk) {
628 			/* Linux XFS shouldn't generate totally zeroed logs -
629 			 * mkfs etc write a dummy unmount record to a fresh
630 			 * log so we can store the uuid in there
631 			 */
632 			xfs_warn(log->l_mp, "totally zeroed log");
633 		}
634 
635 		return 0;
636 	} else if (error) {
637 		xfs_warn(log->l_mp, "empty log check failed");
638 		return error;
639 	}
640 
641 	first_blk = 0;			/* get cycle # of 1st block */
642 	bp = xlog_get_bp(log, 1);
643 	if (!bp)
644 		return ENOMEM;
645 
646 	error = xlog_bread(log, 0, 1, bp, &offset);
647 	if (error)
648 		goto bp_err;
649 
650 	first_half_cycle = xlog_get_cycle(offset);
651 
652 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
653 	error = xlog_bread(log, last_blk, 1, bp, &offset);
654 	if (error)
655 		goto bp_err;
656 
657 	last_half_cycle = xlog_get_cycle(offset);
658 	ASSERT(last_half_cycle != 0);
659 
660 	/*
661 	 * If the 1st half cycle number is equal to the last half cycle number,
662 	 * then the entire log is stamped with the same cycle number.  In this
663 	 * case, head_blk can't be set to zero (which makes sense).  The below
664 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
665 	 * we set it to log_bbnum which is an invalid block number, but this
666 	 * value makes the math correct.  If head_blk doesn't changed through
667 	 * all the tests below, *head_blk is set to zero at the very end rather
668 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
669 	 * in a circular file.
670 	 */
671 	if (first_half_cycle == last_half_cycle) {
672 		/*
673 		 * In this case we believe that the entire log should have
674 		 * cycle number last_half_cycle.  We need to scan backwards
675 		 * from the end verifying that there are no holes still
676 		 * containing last_half_cycle - 1.  If we find such a hole,
677 		 * then the start of that hole will be the new head.  The
678 		 * simple case looks like
679 		 *        x | x ... | x - 1 | x
680 		 * Another case that fits this picture would be
681 		 *        x | x + 1 | x ... | x
682 		 * In this case the head really is somewhere at the end of the
683 		 * log, as one of the latest writes at the beginning was
684 		 * incomplete.
685 		 * One more case is
686 		 *        x | x + 1 | x ... | x - 1 | x
687 		 * This is really the combination of the above two cases, and
688 		 * the head has to end up at the start of the x-1 hole at the
689 		 * end of the log.
690 		 *
691 		 * In the 256k log case, we will read from the beginning to the
692 		 * end of the log and search for cycle numbers equal to x-1.
693 		 * We don't worry about the x+1 blocks that we encounter,
694 		 * because we know that they cannot be the head since the log
695 		 * started with x.
696 		 */
697 		head_blk = log_bbnum;
698 		stop_on_cycle = last_half_cycle - 1;
699 	} else {
700 		/*
701 		 * In this case we want to find the first block with cycle
702 		 * number matching last_half_cycle.  We expect the log to be
703 		 * some variation on
704 		 *        x + 1 ... | x ... | x
705 		 * The first block with cycle number x (last_half_cycle) will
706 		 * be where the new head belongs.  First we do a binary search
707 		 * for the first occurrence of last_half_cycle.  The binary
708 		 * search may not be totally accurate, so then we scan back
709 		 * from there looking for occurrences of last_half_cycle before
710 		 * us.  If that backwards scan wraps around the beginning of
711 		 * the log, then we look for occurrences of last_half_cycle - 1
712 		 * at the end of the log.  The cases we're looking for look
713 		 * like
714 		 *                               v binary search stopped here
715 		 *        x + 1 ... | x | x + 1 | x ... | x
716 		 *                   ^ but we want to locate this spot
717 		 * or
718 		 *        <---------> less than scan distance
719 		 *        x + 1 ... | x ... | x - 1 | x
720 		 *                           ^ we want to locate this spot
721 		 */
722 		stop_on_cycle = last_half_cycle;
723 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
724 						&head_blk, last_half_cycle)))
725 			goto bp_err;
726 	}
727 
728 	/*
729 	 * Now validate the answer.  Scan back some number of maximum possible
730 	 * blocks and make sure each one has the expected cycle number.  The
731 	 * maximum is determined by the total possible amount of buffering
732 	 * in the in-core log.  The following number can be made tighter if
733 	 * we actually look at the block size of the filesystem.
734 	 */
735 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
736 	if (head_blk >= num_scan_bblks) {
737 		/*
738 		 * We are guaranteed that the entire check can be performed
739 		 * in one buffer.
740 		 */
741 		start_blk = head_blk - num_scan_bblks;
742 		if ((error = xlog_find_verify_cycle(log,
743 						start_blk, num_scan_bblks,
744 						stop_on_cycle, &new_blk)))
745 			goto bp_err;
746 		if (new_blk != -1)
747 			head_blk = new_blk;
748 	} else {		/* need to read 2 parts of log */
749 		/*
750 		 * We are going to scan backwards in the log in two parts.
751 		 * First we scan the physical end of the log.  In this part
752 		 * of the log, we are looking for blocks with cycle number
753 		 * last_half_cycle - 1.
754 		 * If we find one, then we know that the log starts there, as
755 		 * we've found a hole that didn't get written in going around
756 		 * the end of the physical log.  The simple case for this is
757 		 *        x + 1 ... | x ... | x - 1 | x
758 		 *        <---------> less than scan distance
759 		 * If all of the blocks at the end of the log have cycle number
760 		 * last_half_cycle, then we check the blocks at the start of
761 		 * the log looking for occurrences of last_half_cycle.  If we
762 		 * find one, then our current estimate for the location of the
763 		 * first occurrence of last_half_cycle is wrong and we move
764 		 * back to the hole we've found.  This case looks like
765 		 *        x + 1 ... | x | x + 1 | x ...
766 		 *                               ^ binary search stopped here
767 		 * Another case we need to handle that only occurs in 256k
768 		 * logs is
769 		 *        x + 1 ... | x ... | x+1 | x ...
770 		 *                   ^ binary search stops here
771 		 * In a 256k log, the scan at the end of the log will see the
772 		 * x + 1 blocks.  We need to skip past those since that is
773 		 * certainly not the head of the log.  By searching for
774 		 * last_half_cycle-1 we accomplish that.
775 		 */
776 		ASSERT(head_blk <= INT_MAX &&
777 			(xfs_daddr_t) num_scan_bblks >= head_blk);
778 		start_blk = log_bbnum - (num_scan_bblks - head_blk);
779 		if ((error = xlog_find_verify_cycle(log, start_blk,
780 					num_scan_bblks - (int)head_blk,
781 					(stop_on_cycle - 1), &new_blk)))
782 			goto bp_err;
783 		if (new_blk != -1) {
784 			head_blk = new_blk;
785 			goto validate_head;
786 		}
787 
788 		/*
789 		 * Scan beginning of log now.  The last part of the physical
790 		 * log is good.  This scan needs to verify that it doesn't find
791 		 * the last_half_cycle.
792 		 */
793 		start_blk = 0;
794 		ASSERT(head_blk <= INT_MAX);
795 		if ((error = xlog_find_verify_cycle(log,
796 					start_blk, (int)head_blk,
797 					stop_on_cycle, &new_blk)))
798 			goto bp_err;
799 		if (new_blk != -1)
800 			head_blk = new_blk;
801 	}
802 
803 validate_head:
804 	/*
805 	 * Now we need to make sure head_blk is not pointing to a block in
806 	 * the middle of a log record.
807 	 */
808 	num_scan_bblks = XLOG_REC_SHIFT(log);
809 	if (head_blk >= num_scan_bblks) {
810 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
811 
812 		/* start ptr at last block ptr before head_blk */
813 		if ((error = xlog_find_verify_log_record(log, start_blk,
814 							&head_blk, 0)) == -1) {
815 			error = XFS_ERROR(EIO);
816 			goto bp_err;
817 		} else if (error)
818 			goto bp_err;
819 	} else {
820 		start_blk = 0;
821 		ASSERT(head_blk <= INT_MAX);
822 		if ((error = xlog_find_verify_log_record(log, start_blk,
823 							&head_blk, 0)) == -1) {
824 			/* We hit the beginning of the log during our search */
825 			start_blk = log_bbnum - (num_scan_bblks - head_blk);
826 			new_blk = log_bbnum;
827 			ASSERT(start_blk <= INT_MAX &&
828 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
829 			ASSERT(head_blk <= INT_MAX);
830 			if ((error = xlog_find_verify_log_record(log,
831 							start_blk, &new_blk,
832 							(int)head_blk)) == -1) {
833 				error = XFS_ERROR(EIO);
834 				goto bp_err;
835 			} else if (error)
836 				goto bp_err;
837 			if (new_blk != log_bbnum)
838 				head_blk = new_blk;
839 		} else if (error)
840 			goto bp_err;
841 	}
842 
843 	xlog_put_bp(bp);
844 	if (head_blk == log_bbnum)
845 		*return_head_blk = 0;
846 	else
847 		*return_head_blk = head_blk;
848 	/*
849 	 * When returning here, we have a good block number.  Bad block
850 	 * means that during a previous crash, we didn't have a clean break
851 	 * from cycle number N to cycle number N-1.  In this case, we need
852 	 * to find the first block with cycle number N-1.
853 	 */
854 	return 0;
855 
856  bp_err:
857 	xlog_put_bp(bp);
858 
859 	if (error)
860 		xfs_warn(log->l_mp, "failed to find log head");
861 	return error;
862 }
863 
864 /*
865  * Find the sync block number or the tail of the log.
866  *
867  * This will be the block number of the last record to have its
868  * associated buffers synced to disk.  Every log record header has
869  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
870  * to get a sync block number.  The only concern is to figure out which
871  * log record header to believe.
872  *
873  * The following algorithm uses the log record header with the largest
874  * lsn.  The entire log record does not need to be valid.  We only care
875  * that the header is valid.
876  *
877  * We could speed up search by using current head_blk buffer, but it is not
878  * available.
879  */
880 STATIC int
881 xlog_find_tail(
882 	struct xlog		*log,
883 	xfs_daddr_t		*head_blk,
884 	xfs_daddr_t		*tail_blk)
885 {
886 	xlog_rec_header_t	*rhead;
887 	xlog_op_header_t	*op_head;
888 	xfs_caddr_t		offset = NULL;
889 	xfs_buf_t		*bp;
890 	int			error, i, found;
891 	xfs_daddr_t		umount_data_blk;
892 	xfs_daddr_t		after_umount_blk;
893 	xfs_lsn_t		tail_lsn;
894 	int			hblks;
895 
896 	found = 0;
897 
898 	/*
899 	 * Find previous log record
900 	 */
901 	if ((error = xlog_find_head(log, head_blk)))
902 		return error;
903 
904 	bp = xlog_get_bp(log, 1);
905 	if (!bp)
906 		return ENOMEM;
907 	if (*head_blk == 0) {				/* special case */
908 		error = xlog_bread(log, 0, 1, bp, &offset);
909 		if (error)
910 			goto done;
911 
912 		if (xlog_get_cycle(offset) == 0) {
913 			*tail_blk = 0;
914 			/* leave all other log inited values alone */
915 			goto done;
916 		}
917 	}
918 
919 	/*
920 	 * Search backwards looking for log record header block
921 	 */
922 	ASSERT(*head_blk < INT_MAX);
923 	for (i = (int)(*head_blk) - 1; i >= 0; i--) {
924 		error = xlog_bread(log, i, 1, bp, &offset);
925 		if (error)
926 			goto done;
927 
928 		if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
929 			found = 1;
930 			break;
931 		}
932 	}
933 	/*
934 	 * If we haven't found the log record header block, start looking
935 	 * again from the end of the physical log.  XXXmiken: There should be
936 	 * a check here to make sure we didn't search more than N blocks in
937 	 * the previous code.
938 	 */
939 	if (!found) {
940 		for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
941 			error = xlog_bread(log, i, 1, bp, &offset);
942 			if (error)
943 				goto done;
944 
945 			if (*(__be32 *)offset ==
946 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
947 				found = 2;
948 				break;
949 			}
950 		}
951 	}
952 	if (!found) {
953 		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
954 		ASSERT(0);
955 		return XFS_ERROR(EIO);
956 	}
957 
958 	/* find blk_no of tail of log */
959 	rhead = (xlog_rec_header_t *)offset;
960 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
961 
962 	/*
963 	 * Reset log values according to the state of the log when we
964 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
965 	 * one because the next write starts a new cycle rather than
966 	 * continuing the cycle of the last good log record.  At this
967 	 * point we have guaranteed that all partial log records have been
968 	 * accounted for.  Therefore, we know that the last good log record
969 	 * written was complete and ended exactly on the end boundary
970 	 * of the physical log.
971 	 */
972 	log->l_prev_block = i;
973 	log->l_curr_block = (int)*head_blk;
974 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
975 	if (found == 2)
976 		log->l_curr_cycle++;
977 	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
978 	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
979 	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
980 					BBTOB(log->l_curr_block));
981 	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
982 					BBTOB(log->l_curr_block));
983 
984 	/*
985 	 * Look for unmount record.  If we find it, then we know there
986 	 * was a clean unmount.  Since 'i' could be the last block in
987 	 * the physical log, we convert to a log block before comparing
988 	 * to the head_blk.
989 	 *
990 	 * Save the current tail lsn to use to pass to
991 	 * xlog_clear_stale_blocks() below.  We won't want to clear the
992 	 * unmount record if there is one, so we pass the lsn of the
993 	 * unmount record rather than the block after it.
994 	 */
995 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
996 		int	h_size = be32_to_cpu(rhead->h_size);
997 		int	h_version = be32_to_cpu(rhead->h_version);
998 
999 		if ((h_version & XLOG_VERSION_2) &&
1000 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1001 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1002 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
1003 				hblks++;
1004 		} else {
1005 			hblks = 1;
1006 		}
1007 	} else {
1008 		hblks = 1;
1009 	}
1010 	after_umount_blk = (i + hblks + (int)
1011 		BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1012 	tail_lsn = atomic64_read(&log->l_tail_lsn);
1013 	if (*head_blk == after_umount_blk &&
1014 	    be32_to_cpu(rhead->h_num_logops) == 1) {
1015 		umount_data_blk = (i + hblks) % log->l_logBBsize;
1016 		error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1017 		if (error)
1018 			goto done;
1019 
1020 		op_head = (xlog_op_header_t *)offset;
1021 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1022 			/*
1023 			 * Set tail and last sync so that newly written
1024 			 * log records will point recovery to after the
1025 			 * current unmount record.
1026 			 */
1027 			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1028 					log->l_curr_cycle, after_umount_blk);
1029 			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1030 					log->l_curr_cycle, after_umount_blk);
1031 			*tail_blk = after_umount_blk;
1032 
1033 			/*
1034 			 * Note that the unmount was clean. If the unmount
1035 			 * was not clean, we need to know this to rebuild the
1036 			 * superblock counters from the perag headers if we
1037 			 * have a filesystem using non-persistent counters.
1038 			 */
1039 			log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1040 		}
1041 	}
1042 
1043 	/*
1044 	 * Make sure that there are no blocks in front of the head
1045 	 * with the same cycle number as the head.  This can happen
1046 	 * because we allow multiple outstanding log writes concurrently,
1047 	 * and the later writes might make it out before earlier ones.
1048 	 *
1049 	 * We use the lsn from before modifying it so that we'll never
1050 	 * overwrite the unmount record after a clean unmount.
1051 	 *
1052 	 * Do this only if we are going to recover the filesystem
1053 	 *
1054 	 * NOTE: This used to say "if (!readonly)"
1055 	 * However on Linux, we can & do recover a read-only filesystem.
1056 	 * We only skip recovery if NORECOVERY is specified on mount,
1057 	 * in which case we would not be here.
1058 	 *
1059 	 * But... if the -device- itself is readonly, just skip this.
1060 	 * We can't recover this device anyway, so it won't matter.
1061 	 */
1062 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1063 		error = xlog_clear_stale_blocks(log, tail_lsn);
1064 
1065 done:
1066 	xlog_put_bp(bp);
1067 
1068 	if (error)
1069 		xfs_warn(log->l_mp, "failed to locate log tail");
1070 	return error;
1071 }
1072 
1073 /*
1074  * Is the log zeroed at all?
1075  *
1076  * The last binary search should be changed to perform an X block read
1077  * once X becomes small enough.  You can then search linearly through
1078  * the X blocks.  This will cut down on the number of reads we need to do.
1079  *
1080  * If the log is partially zeroed, this routine will pass back the blkno
1081  * of the first block with cycle number 0.  It won't have a complete LR
1082  * preceding it.
1083  *
1084  * Return:
1085  *	0  => the log is completely written to
1086  *	-1 => use *blk_no as the first block of the log
1087  *	>0 => error has occurred
1088  */
1089 STATIC int
1090 xlog_find_zeroed(
1091 	struct xlog	*log,
1092 	xfs_daddr_t	*blk_no)
1093 {
1094 	xfs_buf_t	*bp;
1095 	xfs_caddr_t	offset;
1096 	uint	        first_cycle, last_cycle;
1097 	xfs_daddr_t	new_blk, last_blk, start_blk;
1098 	xfs_daddr_t     num_scan_bblks;
1099 	int	        error, log_bbnum = log->l_logBBsize;
1100 
1101 	*blk_no = 0;
1102 
1103 	/* check totally zeroed log */
1104 	bp = xlog_get_bp(log, 1);
1105 	if (!bp)
1106 		return ENOMEM;
1107 	error = xlog_bread(log, 0, 1, bp, &offset);
1108 	if (error)
1109 		goto bp_err;
1110 
1111 	first_cycle = xlog_get_cycle(offset);
1112 	if (first_cycle == 0) {		/* completely zeroed log */
1113 		*blk_no = 0;
1114 		xlog_put_bp(bp);
1115 		return -1;
1116 	}
1117 
1118 	/* check partially zeroed log */
1119 	error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1120 	if (error)
1121 		goto bp_err;
1122 
1123 	last_cycle = xlog_get_cycle(offset);
1124 	if (last_cycle != 0) {		/* log completely written to */
1125 		xlog_put_bp(bp);
1126 		return 0;
1127 	} else if (first_cycle != 1) {
1128 		/*
1129 		 * If the cycle of the last block is zero, the cycle of
1130 		 * the first block must be 1. If it's not, maybe we're
1131 		 * not looking at a log... Bail out.
1132 		 */
1133 		xfs_warn(log->l_mp,
1134 			"Log inconsistent or not a log (last==0, first!=1)");
1135 		return XFS_ERROR(EINVAL);
1136 	}
1137 
1138 	/* we have a partially zeroed log */
1139 	last_blk = log_bbnum-1;
1140 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1141 		goto bp_err;
1142 
1143 	/*
1144 	 * Validate the answer.  Because there is no way to guarantee that
1145 	 * the entire log is made up of log records which are the same size,
1146 	 * we scan over the defined maximum blocks.  At this point, the maximum
1147 	 * is not chosen to mean anything special.   XXXmiken
1148 	 */
1149 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1150 	ASSERT(num_scan_bblks <= INT_MAX);
1151 
1152 	if (last_blk < num_scan_bblks)
1153 		num_scan_bblks = last_blk;
1154 	start_blk = last_blk - num_scan_bblks;
1155 
1156 	/*
1157 	 * We search for any instances of cycle number 0 that occur before
1158 	 * our current estimate of the head.  What we're trying to detect is
1159 	 *        1 ... | 0 | 1 | 0...
1160 	 *                       ^ binary search ends here
1161 	 */
1162 	if ((error = xlog_find_verify_cycle(log, start_blk,
1163 					 (int)num_scan_bblks, 0, &new_blk)))
1164 		goto bp_err;
1165 	if (new_blk != -1)
1166 		last_blk = new_blk;
1167 
1168 	/*
1169 	 * Potentially backup over partial log record write.  We don't need
1170 	 * to search the end of the log because we know it is zero.
1171 	 */
1172 	if ((error = xlog_find_verify_log_record(log, start_blk,
1173 				&last_blk, 0)) == -1) {
1174 	    error = XFS_ERROR(EIO);
1175 	    goto bp_err;
1176 	} else if (error)
1177 	    goto bp_err;
1178 
1179 	*blk_no = last_blk;
1180 bp_err:
1181 	xlog_put_bp(bp);
1182 	if (error)
1183 		return error;
1184 	return -1;
1185 }
1186 
1187 /*
1188  * These are simple subroutines used by xlog_clear_stale_blocks() below
1189  * to initialize a buffer full of empty log record headers and write
1190  * them into the log.
1191  */
1192 STATIC void
1193 xlog_add_record(
1194 	struct xlog		*log,
1195 	xfs_caddr_t		buf,
1196 	int			cycle,
1197 	int			block,
1198 	int			tail_cycle,
1199 	int			tail_block)
1200 {
1201 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1202 
1203 	memset(buf, 0, BBSIZE);
1204 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1205 	recp->h_cycle = cpu_to_be32(cycle);
1206 	recp->h_version = cpu_to_be32(
1207 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1208 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1209 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1210 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1211 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1212 }
1213 
1214 STATIC int
1215 xlog_write_log_records(
1216 	struct xlog	*log,
1217 	int		cycle,
1218 	int		start_block,
1219 	int		blocks,
1220 	int		tail_cycle,
1221 	int		tail_block)
1222 {
1223 	xfs_caddr_t	offset;
1224 	xfs_buf_t	*bp;
1225 	int		balign, ealign;
1226 	int		sectbb = log->l_sectBBsize;
1227 	int		end_block = start_block + blocks;
1228 	int		bufblks;
1229 	int		error = 0;
1230 	int		i, j = 0;
1231 
1232 	/*
1233 	 * Greedily allocate a buffer big enough to handle the full
1234 	 * range of basic blocks to be written.  If that fails, try
1235 	 * a smaller size.  We need to be able to write at least a
1236 	 * log sector, or we're out of luck.
1237 	 */
1238 	bufblks = 1 << ffs(blocks);
1239 	while (bufblks > log->l_logBBsize)
1240 		bufblks >>= 1;
1241 	while (!(bp = xlog_get_bp(log, bufblks))) {
1242 		bufblks >>= 1;
1243 		if (bufblks < sectbb)
1244 			return ENOMEM;
1245 	}
1246 
1247 	/* We may need to do a read at the start to fill in part of
1248 	 * the buffer in the starting sector not covered by the first
1249 	 * write below.
1250 	 */
1251 	balign = round_down(start_block, sectbb);
1252 	if (balign != start_block) {
1253 		error = xlog_bread_noalign(log, start_block, 1, bp);
1254 		if (error)
1255 			goto out_put_bp;
1256 
1257 		j = start_block - balign;
1258 	}
1259 
1260 	for (i = start_block; i < end_block; i += bufblks) {
1261 		int		bcount, endcount;
1262 
1263 		bcount = min(bufblks, end_block - start_block);
1264 		endcount = bcount - j;
1265 
1266 		/* We may need to do a read at the end to fill in part of
1267 		 * the buffer in the final sector not covered by the write.
1268 		 * If this is the same sector as the above read, skip it.
1269 		 */
1270 		ealign = round_down(end_block, sectbb);
1271 		if (j == 0 && (start_block + endcount > ealign)) {
1272 			offset = bp->b_addr + BBTOB(ealign - start_block);
1273 			error = xlog_bread_offset(log, ealign, sectbb,
1274 							bp, offset);
1275 			if (error)
1276 				break;
1277 
1278 		}
1279 
1280 		offset = xlog_align(log, start_block, endcount, bp);
1281 		for (; j < endcount; j++) {
1282 			xlog_add_record(log, offset, cycle, i+j,
1283 					tail_cycle, tail_block);
1284 			offset += BBSIZE;
1285 		}
1286 		error = xlog_bwrite(log, start_block, endcount, bp);
1287 		if (error)
1288 			break;
1289 		start_block += endcount;
1290 		j = 0;
1291 	}
1292 
1293  out_put_bp:
1294 	xlog_put_bp(bp);
1295 	return error;
1296 }
1297 
1298 /*
1299  * This routine is called to blow away any incomplete log writes out
1300  * in front of the log head.  We do this so that we won't become confused
1301  * if we come up, write only a little bit more, and then crash again.
1302  * If we leave the partial log records out there, this situation could
1303  * cause us to think those partial writes are valid blocks since they
1304  * have the current cycle number.  We get rid of them by overwriting them
1305  * with empty log records with the old cycle number rather than the
1306  * current one.
1307  *
1308  * The tail lsn is passed in rather than taken from
1309  * the log so that we will not write over the unmount record after a
1310  * clean unmount in a 512 block log.  Doing so would leave the log without
1311  * any valid log records in it until a new one was written.  If we crashed
1312  * during that time we would not be able to recover.
1313  */
1314 STATIC int
1315 xlog_clear_stale_blocks(
1316 	struct xlog	*log,
1317 	xfs_lsn_t	tail_lsn)
1318 {
1319 	int		tail_cycle, head_cycle;
1320 	int		tail_block, head_block;
1321 	int		tail_distance, max_distance;
1322 	int		distance;
1323 	int		error;
1324 
1325 	tail_cycle = CYCLE_LSN(tail_lsn);
1326 	tail_block = BLOCK_LSN(tail_lsn);
1327 	head_cycle = log->l_curr_cycle;
1328 	head_block = log->l_curr_block;
1329 
1330 	/*
1331 	 * Figure out the distance between the new head of the log
1332 	 * and the tail.  We want to write over any blocks beyond the
1333 	 * head that we may have written just before the crash, but
1334 	 * we don't want to overwrite the tail of the log.
1335 	 */
1336 	if (head_cycle == tail_cycle) {
1337 		/*
1338 		 * The tail is behind the head in the physical log,
1339 		 * so the distance from the head to the tail is the
1340 		 * distance from the head to the end of the log plus
1341 		 * the distance from the beginning of the log to the
1342 		 * tail.
1343 		 */
1344 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1345 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1346 					 XFS_ERRLEVEL_LOW, log->l_mp);
1347 			return XFS_ERROR(EFSCORRUPTED);
1348 		}
1349 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1350 	} else {
1351 		/*
1352 		 * The head is behind the tail in the physical log,
1353 		 * so the distance from the head to the tail is just
1354 		 * the tail block minus the head block.
1355 		 */
1356 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1357 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1358 					 XFS_ERRLEVEL_LOW, log->l_mp);
1359 			return XFS_ERROR(EFSCORRUPTED);
1360 		}
1361 		tail_distance = tail_block - head_block;
1362 	}
1363 
1364 	/*
1365 	 * If the head is right up against the tail, we can't clear
1366 	 * anything.
1367 	 */
1368 	if (tail_distance <= 0) {
1369 		ASSERT(tail_distance == 0);
1370 		return 0;
1371 	}
1372 
1373 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1374 	/*
1375 	 * Take the smaller of the maximum amount of outstanding I/O
1376 	 * we could have and the distance to the tail to clear out.
1377 	 * We take the smaller so that we don't overwrite the tail and
1378 	 * we don't waste all day writing from the head to the tail
1379 	 * for no reason.
1380 	 */
1381 	max_distance = MIN(max_distance, tail_distance);
1382 
1383 	if ((head_block + max_distance) <= log->l_logBBsize) {
1384 		/*
1385 		 * We can stomp all the blocks we need to without
1386 		 * wrapping around the end of the log.  Just do it
1387 		 * in a single write.  Use the cycle number of the
1388 		 * current cycle minus one so that the log will look like:
1389 		 *     n ... | n - 1 ...
1390 		 */
1391 		error = xlog_write_log_records(log, (head_cycle - 1),
1392 				head_block, max_distance, tail_cycle,
1393 				tail_block);
1394 		if (error)
1395 			return error;
1396 	} else {
1397 		/*
1398 		 * We need to wrap around the end of the physical log in
1399 		 * order to clear all the blocks.  Do it in two separate
1400 		 * I/Os.  The first write should be from the head to the
1401 		 * end of the physical log, and it should use the current
1402 		 * cycle number minus one just like above.
1403 		 */
1404 		distance = log->l_logBBsize - head_block;
1405 		error = xlog_write_log_records(log, (head_cycle - 1),
1406 				head_block, distance, tail_cycle,
1407 				tail_block);
1408 
1409 		if (error)
1410 			return error;
1411 
1412 		/*
1413 		 * Now write the blocks at the start of the physical log.
1414 		 * This writes the remainder of the blocks we want to clear.
1415 		 * It uses the current cycle number since we're now on the
1416 		 * same cycle as the head so that we get:
1417 		 *    n ... n ... | n - 1 ...
1418 		 *    ^^^^^ blocks we're writing
1419 		 */
1420 		distance = max_distance - (log->l_logBBsize - head_block);
1421 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1422 				tail_cycle, tail_block);
1423 		if (error)
1424 			return error;
1425 	}
1426 
1427 	return 0;
1428 }
1429 
1430 /******************************************************************************
1431  *
1432  *		Log recover routines
1433  *
1434  ******************************************************************************
1435  */
1436 
1437 STATIC xlog_recover_t *
1438 xlog_recover_find_tid(
1439 	struct hlist_head	*head,
1440 	xlog_tid_t		tid)
1441 {
1442 	xlog_recover_t		*trans;
1443 	struct hlist_node	*n;
1444 
1445 	hlist_for_each_entry(trans, n, head, r_list) {
1446 		if (trans->r_log_tid == tid)
1447 			return trans;
1448 	}
1449 	return NULL;
1450 }
1451 
1452 STATIC void
1453 xlog_recover_new_tid(
1454 	struct hlist_head	*head,
1455 	xlog_tid_t		tid,
1456 	xfs_lsn_t		lsn)
1457 {
1458 	xlog_recover_t		*trans;
1459 
1460 	trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1461 	trans->r_log_tid   = tid;
1462 	trans->r_lsn	   = lsn;
1463 	INIT_LIST_HEAD(&trans->r_itemq);
1464 
1465 	INIT_HLIST_NODE(&trans->r_list);
1466 	hlist_add_head(&trans->r_list, head);
1467 }
1468 
1469 STATIC void
1470 xlog_recover_add_item(
1471 	struct list_head	*head)
1472 {
1473 	xlog_recover_item_t	*item;
1474 
1475 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1476 	INIT_LIST_HEAD(&item->ri_list);
1477 	list_add_tail(&item->ri_list, head);
1478 }
1479 
1480 STATIC int
1481 xlog_recover_add_to_cont_trans(
1482 	struct xlog		*log,
1483 	struct xlog_recover	*trans,
1484 	xfs_caddr_t		dp,
1485 	int			len)
1486 {
1487 	xlog_recover_item_t	*item;
1488 	xfs_caddr_t		ptr, old_ptr;
1489 	int			old_len;
1490 
1491 	if (list_empty(&trans->r_itemq)) {
1492 		/* finish copying rest of trans header */
1493 		xlog_recover_add_item(&trans->r_itemq);
1494 		ptr = (xfs_caddr_t) &trans->r_theader +
1495 				sizeof(xfs_trans_header_t) - len;
1496 		memcpy(ptr, dp, len); /* d, s, l */
1497 		return 0;
1498 	}
1499 	/* take the tail entry */
1500 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1501 
1502 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1503 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
1504 
1505 	ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1506 	memcpy(&ptr[old_len], dp, len); /* d, s, l */
1507 	item->ri_buf[item->ri_cnt-1].i_len += len;
1508 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1509 	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1510 	return 0;
1511 }
1512 
1513 /*
1514  * The next region to add is the start of a new region.  It could be
1515  * a whole region or it could be the first part of a new region.  Because
1516  * of this, the assumption here is that the type and size fields of all
1517  * format structures fit into the first 32 bits of the structure.
1518  *
1519  * This works because all regions must be 32 bit aligned.  Therefore, we
1520  * either have both fields or we have neither field.  In the case we have
1521  * neither field, the data part of the region is zero length.  We only have
1522  * a log_op_header and can throw away the header since a new one will appear
1523  * later.  If we have at least 4 bytes, then we can determine how many regions
1524  * will appear in the current log item.
1525  */
1526 STATIC int
1527 xlog_recover_add_to_trans(
1528 	struct xlog		*log,
1529 	struct xlog_recover	*trans,
1530 	xfs_caddr_t		dp,
1531 	int			len)
1532 {
1533 	xfs_inode_log_format_t	*in_f;			/* any will do */
1534 	xlog_recover_item_t	*item;
1535 	xfs_caddr_t		ptr;
1536 
1537 	if (!len)
1538 		return 0;
1539 	if (list_empty(&trans->r_itemq)) {
1540 		/* we need to catch log corruptions here */
1541 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1542 			xfs_warn(log->l_mp, "%s: bad header magic number",
1543 				__func__);
1544 			ASSERT(0);
1545 			return XFS_ERROR(EIO);
1546 		}
1547 		if (len == sizeof(xfs_trans_header_t))
1548 			xlog_recover_add_item(&trans->r_itemq);
1549 		memcpy(&trans->r_theader, dp, len); /* d, s, l */
1550 		return 0;
1551 	}
1552 
1553 	ptr = kmem_alloc(len, KM_SLEEP);
1554 	memcpy(ptr, dp, len);
1555 	in_f = (xfs_inode_log_format_t *)ptr;
1556 
1557 	/* take the tail entry */
1558 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1559 	if (item->ri_total != 0 &&
1560 	     item->ri_total == item->ri_cnt) {
1561 		/* tail item is in use, get a new one */
1562 		xlog_recover_add_item(&trans->r_itemq);
1563 		item = list_entry(trans->r_itemq.prev,
1564 					xlog_recover_item_t, ri_list);
1565 	}
1566 
1567 	if (item->ri_total == 0) {		/* first region to be added */
1568 		if (in_f->ilf_size == 0 ||
1569 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1570 			xfs_warn(log->l_mp,
1571 		"bad number of regions (%d) in inode log format",
1572 				  in_f->ilf_size);
1573 			ASSERT(0);
1574 			return XFS_ERROR(EIO);
1575 		}
1576 
1577 		item->ri_total = in_f->ilf_size;
1578 		item->ri_buf =
1579 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1580 				    KM_SLEEP);
1581 	}
1582 	ASSERT(item->ri_total > item->ri_cnt);
1583 	/* Description region is ri_buf[0] */
1584 	item->ri_buf[item->ri_cnt].i_addr = ptr;
1585 	item->ri_buf[item->ri_cnt].i_len  = len;
1586 	item->ri_cnt++;
1587 	trace_xfs_log_recover_item_add(log, trans, item, 0);
1588 	return 0;
1589 }
1590 
1591 /*
1592  * Sort the log items in the transaction. Cancelled buffers need
1593  * to be put first so they are processed before any items that might
1594  * modify the buffers. If they are cancelled, then the modifications
1595  * don't need to be replayed.
1596  */
1597 STATIC int
1598 xlog_recover_reorder_trans(
1599 	struct xlog		*log,
1600 	struct xlog_recover	*trans,
1601 	int			pass)
1602 {
1603 	xlog_recover_item_t	*item, *n;
1604 	LIST_HEAD(sort_list);
1605 
1606 	list_splice_init(&trans->r_itemq, &sort_list);
1607 	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1608 		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1609 
1610 		switch (ITEM_TYPE(item)) {
1611 		case XFS_LI_BUF:
1612 			if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1613 				trace_xfs_log_recover_item_reorder_head(log,
1614 							trans, item, pass);
1615 				list_move(&item->ri_list, &trans->r_itemq);
1616 				break;
1617 			}
1618 		case XFS_LI_INODE:
1619 		case XFS_LI_DQUOT:
1620 		case XFS_LI_QUOTAOFF:
1621 		case XFS_LI_EFD:
1622 		case XFS_LI_EFI:
1623 			trace_xfs_log_recover_item_reorder_tail(log,
1624 							trans, item, pass);
1625 			list_move_tail(&item->ri_list, &trans->r_itemq);
1626 			break;
1627 		default:
1628 			xfs_warn(log->l_mp,
1629 				"%s: unrecognized type of log operation",
1630 				__func__);
1631 			ASSERT(0);
1632 			return XFS_ERROR(EIO);
1633 		}
1634 	}
1635 	ASSERT(list_empty(&sort_list));
1636 	return 0;
1637 }
1638 
1639 /*
1640  * Build up the table of buf cancel records so that we don't replay
1641  * cancelled data in the second pass.  For buffer records that are
1642  * not cancel records, there is nothing to do here so we just return.
1643  *
1644  * If we get a cancel record which is already in the table, this indicates
1645  * that the buffer was cancelled multiple times.  In order to ensure
1646  * that during pass 2 we keep the record in the table until we reach its
1647  * last occurrence in the log, we keep a reference count in the cancel
1648  * record in the table to tell us how many times we expect to see this
1649  * record during the second pass.
1650  */
1651 STATIC int
1652 xlog_recover_buffer_pass1(
1653 	struct xlog			*log,
1654 	struct xlog_recover_item	*item)
1655 {
1656 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1657 	struct list_head	*bucket;
1658 	struct xfs_buf_cancel	*bcp;
1659 
1660 	/*
1661 	 * If this isn't a cancel buffer item, then just return.
1662 	 */
1663 	if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1664 		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1665 		return 0;
1666 	}
1667 
1668 	/*
1669 	 * Insert an xfs_buf_cancel record into the hash table of them.
1670 	 * If there is already an identical record, bump its reference count.
1671 	 */
1672 	bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1673 	list_for_each_entry(bcp, bucket, bc_list) {
1674 		if (bcp->bc_blkno == buf_f->blf_blkno &&
1675 		    bcp->bc_len == buf_f->blf_len) {
1676 			bcp->bc_refcount++;
1677 			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1678 			return 0;
1679 		}
1680 	}
1681 
1682 	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1683 	bcp->bc_blkno = buf_f->blf_blkno;
1684 	bcp->bc_len = buf_f->blf_len;
1685 	bcp->bc_refcount = 1;
1686 	list_add_tail(&bcp->bc_list, bucket);
1687 
1688 	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1689 	return 0;
1690 }
1691 
1692 /*
1693  * Check to see whether the buffer being recovered has a corresponding
1694  * entry in the buffer cancel record table.  If it does then return 1
1695  * so that it will be cancelled, otherwise return 0.  If the buffer is
1696  * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1697  * the refcount on the entry in the table and remove it from the table
1698  * if this is the last reference.
1699  *
1700  * We remove the cancel record from the table when we encounter its
1701  * last occurrence in the log so that if the same buffer is re-used
1702  * again after its last cancellation we actually replay the changes
1703  * made at that point.
1704  */
1705 STATIC int
1706 xlog_check_buffer_cancelled(
1707 	struct xlog		*log,
1708 	xfs_daddr_t		blkno,
1709 	uint			len,
1710 	ushort			flags)
1711 {
1712 	struct list_head	*bucket;
1713 	struct xfs_buf_cancel	*bcp;
1714 
1715 	if (log->l_buf_cancel_table == NULL) {
1716 		/*
1717 		 * There is nothing in the table built in pass one,
1718 		 * so this buffer must not be cancelled.
1719 		 */
1720 		ASSERT(!(flags & XFS_BLF_CANCEL));
1721 		return 0;
1722 	}
1723 
1724 	/*
1725 	 * Search for an entry in the  cancel table that matches our buffer.
1726 	 */
1727 	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1728 	list_for_each_entry(bcp, bucket, bc_list) {
1729 		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1730 			goto found;
1731 	}
1732 
1733 	/*
1734 	 * We didn't find a corresponding entry in the table, so return 0 so
1735 	 * that the buffer is NOT cancelled.
1736 	 */
1737 	ASSERT(!(flags & XFS_BLF_CANCEL));
1738 	return 0;
1739 
1740 found:
1741 	/*
1742 	 * We've go a match, so return 1 so that the recovery of this buffer
1743 	 * is cancelled.  If this buffer is actually a buffer cancel log
1744 	 * item, then decrement the refcount on the one in the table and
1745 	 * remove it if this is the last reference.
1746 	 */
1747 	if (flags & XFS_BLF_CANCEL) {
1748 		if (--bcp->bc_refcount == 0) {
1749 			list_del(&bcp->bc_list);
1750 			kmem_free(bcp);
1751 		}
1752 	}
1753 	return 1;
1754 }
1755 
1756 /*
1757  * Perform recovery for a buffer full of inodes.  In these buffers, the only
1758  * data which should be recovered is that which corresponds to the
1759  * di_next_unlinked pointers in the on disk inode structures.  The rest of the
1760  * data for the inodes is always logged through the inodes themselves rather
1761  * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1762  *
1763  * The only time when buffers full of inodes are fully recovered is when the
1764  * buffer is full of newly allocated inodes.  In this case the buffer will
1765  * not be marked as an inode buffer and so will be sent to
1766  * xlog_recover_do_reg_buffer() below during recovery.
1767  */
1768 STATIC int
1769 xlog_recover_do_inode_buffer(
1770 	struct xfs_mount	*mp,
1771 	xlog_recover_item_t	*item,
1772 	struct xfs_buf		*bp,
1773 	xfs_buf_log_format_t	*buf_f)
1774 {
1775 	int			i;
1776 	int			item_index = 0;
1777 	int			bit = 0;
1778 	int			nbits = 0;
1779 	int			reg_buf_offset = 0;
1780 	int			reg_buf_bytes = 0;
1781 	int			next_unlinked_offset;
1782 	int			inodes_per_buf;
1783 	xfs_agino_t		*logged_nextp;
1784 	xfs_agino_t		*buffer_nextp;
1785 
1786 	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1787 
1788 	inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1789 	for (i = 0; i < inodes_per_buf; i++) {
1790 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1791 			offsetof(xfs_dinode_t, di_next_unlinked);
1792 
1793 		while (next_unlinked_offset >=
1794 		       (reg_buf_offset + reg_buf_bytes)) {
1795 			/*
1796 			 * The next di_next_unlinked field is beyond
1797 			 * the current logged region.  Find the next
1798 			 * logged region that contains or is beyond
1799 			 * the current di_next_unlinked field.
1800 			 */
1801 			bit += nbits;
1802 			bit = xfs_next_bit(buf_f->blf_data_map,
1803 					   buf_f->blf_map_size, bit);
1804 
1805 			/*
1806 			 * If there are no more logged regions in the
1807 			 * buffer, then we're done.
1808 			 */
1809 			if (bit == -1)
1810 				return 0;
1811 
1812 			nbits = xfs_contig_bits(buf_f->blf_data_map,
1813 						buf_f->blf_map_size, bit);
1814 			ASSERT(nbits > 0);
1815 			reg_buf_offset = bit << XFS_BLF_SHIFT;
1816 			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1817 			item_index++;
1818 		}
1819 
1820 		/*
1821 		 * If the current logged region starts after the current
1822 		 * di_next_unlinked field, then move on to the next
1823 		 * di_next_unlinked field.
1824 		 */
1825 		if (next_unlinked_offset < reg_buf_offset)
1826 			continue;
1827 
1828 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
1829 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1830 		ASSERT((reg_buf_offset + reg_buf_bytes) <=
1831 							BBTOB(bp->b_io_length));
1832 
1833 		/*
1834 		 * The current logged region contains a copy of the
1835 		 * current di_next_unlinked field.  Extract its value
1836 		 * and copy it to the buffer copy.
1837 		 */
1838 		logged_nextp = item->ri_buf[item_index].i_addr +
1839 				next_unlinked_offset - reg_buf_offset;
1840 		if (unlikely(*logged_nextp == 0)) {
1841 			xfs_alert(mp,
1842 		"Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1843 		"Trying to replay bad (0) inode di_next_unlinked field.",
1844 				item, bp);
1845 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1846 					 XFS_ERRLEVEL_LOW, mp);
1847 			return XFS_ERROR(EFSCORRUPTED);
1848 		}
1849 
1850 		buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1851 					      next_unlinked_offset);
1852 		*buffer_nextp = *logged_nextp;
1853 	}
1854 
1855 	return 0;
1856 }
1857 
1858 /*
1859  * Perform a 'normal' buffer recovery.  Each logged region of the
1860  * buffer should be copied over the corresponding region in the
1861  * given buffer.  The bitmap in the buf log format structure indicates
1862  * where to place the logged data.
1863  */
1864 STATIC void
1865 xlog_recover_do_reg_buffer(
1866 	struct xfs_mount	*mp,
1867 	xlog_recover_item_t	*item,
1868 	struct xfs_buf		*bp,
1869 	xfs_buf_log_format_t	*buf_f)
1870 {
1871 	int			i;
1872 	int			bit;
1873 	int			nbits;
1874 	int                     error;
1875 
1876 	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1877 
1878 	bit = 0;
1879 	i = 1;  /* 0 is the buf format structure */
1880 	while (1) {
1881 		bit = xfs_next_bit(buf_f->blf_data_map,
1882 				   buf_f->blf_map_size, bit);
1883 		if (bit == -1)
1884 			break;
1885 		nbits = xfs_contig_bits(buf_f->blf_data_map,
1886 					buf_f->blf_map_size, bit);
1887 		ASSERT(nbits > 0);
1888 		ASSERT(item->ri_buf[i].i_addr != NULL);
1889 		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
1890 		ASSERT(BBTOB(bp->b_io_length) >=
1891 		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
1892 
1893 		/*
1894 		 * Do a sanity check if this is a dquot buffer. Just checking
1895 		 * the first dquot in the buffer should do. XXXThis is
1896 		 * probably a good thing to do for other buf types also.
1897 		 */
1898 		error = 0;
1899 		if (buf_f->blf_flags &
1900 		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1901 			if (item->ri_buf[i].i_addr == NULL) {
1902 				xfs_alert(mp,
1903 					"XFS: NULL dquot in %s.", __func__);
1904 				goto next;
1905 			}
1906 			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1907 				xfs_alert(mp,
1908 					"XFS: dquot too small (%d) in %s.",
1909 					item->ri_buf[i].i_len, __func__);
1910 				goto next;
1911 			}
1912 			error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
1913 					       -1, 0, XFS_QMOPT_DOWARN,
1914 					       "dquot_buf_recover");
1915 			if (error)
1916 				goto next;
1917 		}
1918 
1919 		memcpy(xfs_buf_offset(bp,
1920 			(uint)bit << XFS_BLF_SHIFT),	/* dest */
1921 			item->ri_buf[i].i_addr,		/* source */
1922 			nbits<<XFS_BLF_SHIFT);		/* length */
1923  next:
1924 		i++;
1925 		bit += nbits;
1926 	}
1927 
1928 	/* Shouldn't be any more regions */
1929 	ASSERT(i == item->ri_total);
1930 }
1931 
1932 /*
1933  * Do some primitive error checking on ondisk dquot data structures.
1934  */
1935 int
1936 xfs_qm_dqcheck(
1937 	struct xfs_mount *mp,
1938 	xfs_disk_dquot_t *ddq,
1939 	xfs_dqid_t	 id,
1940 	uint		 type,	  /* used only when IO_dorepair is true */
1941 	uint		 flags,
1942 	char		 *str)
1943 {
1944 	xfs_dqblk_t	 *d = (xfs_dqblk_t *)ddq;
1945 	int		errs = 0;
1946 
1947 	/*
1948 	 * We can encounter an uninitialized dquot buffer for 2 reasons:
1949 	 * 1. If we crash while deleting the quotainode(s), and those blks got
1950 	 *    used for user data. This is because we take the path of regular
1951 	 *    file deletion; however, the size field of quotainodes is never
1952 	 *    updated, so all the tricks that we play in itruncate_finish
1953 	 *    don't quite matter.
1954 	 *
1955 	 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1956 	 *    But the allocation will be replayed so we'll end up with an
1957 	 *    uninitialized quota block.
1958 	 *
1959 	 * This is all fine; things are still consistent, and we haven't lost
1960 	 * any quota information. Just don't complain about bad dquot blks.
1961 	 */
1962 	if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
1963 		if (flags & XFS_QMOPT_DOWARN)
1964 			xfs_alert(mp,
1965 			"%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1966 			str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1967 		errs++;
1968 	}
1969 	if (ddq->d_version != XFS_DQUOT_VERSION) {
1970 		if (flags & XFS_QMOPT_DOWARN)
1971 			xfs_alert(mp,
1972 			"%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1973 			str, id, ddq->d_version, XFS_DQUOT_VERSION);
1974 		errs++;
1975 	}
1976 
1977 	if (ddq->d_flags != XFS_DQ_USER &&
1978 	    ddq->d_flags != XFS_DQ_PROJ &&
1979 	    ddq->d_flags != XFS_DQ_GROUP) {
1980 		if (flags & XFS_QMOPT_DOWARN)
1981 			xfs_alert(mp,
1982 			"%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1983 			str, id, ddq->d_flags);
1984 		errs++;
1985 	}
1986 
1987 	if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1988 		if (flags & XFS_QMOPT_DOWARN)
1989 			xfs_alert(mp,
1990 			"%s : ondisk-dquot 0x%p, ID mismatch: "
1991 			"0x%x expected, found id 0x%x",
1992 			str, ddq, id, be32_to_cpu(ddq->d_id));
1993 		errs++;
1994 	}
1995 
1996 	if (!errs && ddq->d_id) {
1997 		if (ddq->d_blk_softlimit &&
1998 		    be64_to_cpu(ddq->d_bcount) >
1999 				be64_to_cpu(ddq->d_blk_softlimit)) {
2000 			if (!ddq->d_btimer) {
2001 				if (flags & XFS_QMOPT_DOWARN)
2002 					xfs_alert(mp,
2003 			"%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
2004 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2005 				errs++;
2006 			}
2007 		}
2008 		if (ddq->d_ino_softlimit &&
2009 		    be64_to_cpu(ddq->d_icount) >
2010 				be64_to_cpu(ddq->d_ino_softlimit)) {
2011 			if (!ddq->d_itimer) {
2012 				if (flags & XFS_QMOPT_DOWARN)
2013 					xfs_alert(mp,
2014 			"%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
2015 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2016 				errs++;
2017 			}
2018 		}
2019 		if (ddq->d_rtb_softlimit &&
2020 		    be64_to_cpu(ddq->d_rtbcount) >
2021 				be64_to_cpu(ddq->d_rtb_softlimit)) {
2022 			if (!ddq->d_rtbtimer) {
2023 				if (flags & XFS_QMOPT_DOWARN)
2024 					xfs_alert(mp,
2025 			"%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
2026 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2027 				errs++;
2028 			}
2029 		}
2030 	}
2031 
2032 	if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2033 		return errs;
2034 
2035 	if (flags & XFS_QMOPT_DOWARN)
2036 		xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
2037 
2038 	/*
2039 	 * Typically, a repair is only requested by quotacheck.
2040 	 */
2041 	ASSERT(id != -1);
2042 	ASSERT(flags & XFS_QMOPT_DQREPAIR);
2043 	memset(d, 0, sizeof(xfs_dqblk_t));
2044 
2045 	d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2046 	d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2047 	d->dd_diskdq.d_flags = type;
2048 	d->dd_diskdq.d_id = cpu_to_be32(id);
2049 
2050 	return errs;
2051 }
2052 
2053 /*
2054  * Perform a dquot buffer recovery.
2055  * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2056  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2057  * Else, treat it as a regular buffer and do recovery.
2058  */
2059 STATIC void
2060 xlog_recover_do_dquot_buffer(
2061 	struct xfs_mount		*mp,
2062 	struct xlog			*log,
2063 	struct xlog_recover_item	*item,
2064 	struct xfs_buf			*bp,
2065 	struct xfs_buf_log_format	*buf_f)
2066 {
2067 	uint			type;
2068 
2069 	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2070 
2071 	/*
2072 	 * Filesystems are required to send in quota flags at mount time.
2073 	 */
2074 	if (mp->m_qflags == 0) {
2075 		return;
2076 	}
2077 
2078 	type = 0;
2079 	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2080 		type |= XFS_DQ_USER;
2081 	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2082 		type |= XFS_DQ_PROJ;
2083 	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2084 		type |= XFS_DQ_GROUP;
2085 	/*
2086 	 * This type of quotas was turned off, so ignore this buffer
2087 	 */
2088 	if (log->l_quotaoffs_flag & type)
2089 		return;
2090 
2091 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2092 }
2093 
2094 /*
2095  * This routine replays a modification made to a buffer at runtime.
2096  * There are actually two types of buffer, regular and inode, which
2097  * are handled differently.  Inode buffers are handled differently
2098  * in that we only recover a specific set of data from them, namely
2099  * the inode di_next_unlinked fields.  This is because all other inode
2100  * data is actually logged via inode records and any data we replay
2101  * here which overlaps that may be stale.
2102  *
2103  * When meta-data buffers are freed at run time we log a buffer item
2104  * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2105  * of the buffer in the log should not be replayed at recovery time.
2106  * This is so that if the blocks covered by the buffer are reused for
2107  * file data before we crash we don't end up replaying old, freed
2108  * meta-data into a user's file.
2109  *
2110  * To handle the cancellation of buffer log items, we make two passes
2111  * over the log during recovery.  During the first we build a table of
2112  * those buffers which have been cancelled, and during the second we
2113  * only replay those buffers which do not have corresponding cancel
2114  * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2115  * for more details on the implementation of the table of cancel records.
2116  */
2117 STATIC int
2118 xlog_recover_buffer_pass2(
2119 	struct xlog			*log,
2120 	struct list_head		*buffer_list,
2121 	struct xlog_recover_item	*item)
2122 {
2123 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2124 	xfs_mount_t		*mp = log->l_mp;
2125 	xfs_buf_t		*bp;
2126 	int			error;
2127 	uint			buf_flags;
2128 
2129 	/*
2130 	 * In this pass we only want to recover all the buffers which have
2131 	 * not been cancelled and are not cancellation buffers themselves.
2132 	 */
2133 	if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2134 			buf_f->blf_len, buf_f->blf_flags)) {
2135 		trace_xfs_log_recover_buf_cancel(log, buf_f);
2136 		return 0;
2137 	}
2138 
2139 	trace_xfs_log_recover_buf_recover(log, buf_f);
2140 
2141 	buf_flags = 0;
2142 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2143 		buf_flags |= XBF_UNMAPPED;
2144 
2145 	bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2146 			  buf_flags);
2147 	if (!bp)
2148 		return XFS_ERROR(ENOMEM);
2149 	error = bp->b_error;
2150 	if (error) {
2151 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2152 		xfs_buf_relse(bp);
2153 		return error;
2154 	}
2155 
2156 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2157 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2158 	} else if (buf_f->blf_flags &
2159 		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2160 		xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2161 	} else {
2162 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2163 	}
2164 	if (error)
2165 		return XFS_ERROR(error);
2166 
2167 	/*
2168 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2169 	 * slower when taking into account all the buffers to be flushed.
2170 	 *
2171 	 * Also make sure that only inode buffers with good sizes stay in
2172 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2173 	 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2174 	 * buffers in the log can be a different size if the log was generated
2175 	 * by an older kernel using unclustered inode buffers or a newer kernel
2176 	 * running with a different inode cluster size.  Regardless, if the
2177 	 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2178 	 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2179 	 * the buffer out of the buffer cache so that the buffer won't
2180 	 * overlap with future reads of those inodes.
2181 	 */
2182 	if (XFS_DINODE_MAGIC ==
2183 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2184 	    (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2185 			(__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2186 		xfs_buf_stale(bp);
2187 		error = xfs_bwrite(bp);
2188 	} else {
2189 		ASSERT(bp->b_target->bt_mount == mp);
2190 		bp->b_iodone = xlog_recover_iodone;
2191 		xfs_buf_delwri_queue(bp, buffer_list);
2192 	}
2193 
2194 	xfs_buf_relse(bp);
2195 	return error;
2196 }
2197 
2198 STATIC int
2199 xlog_recover_inode_pass2(
2200 	struct xlog			*log,
2201 	struct list_head		*buffer_list,
2202 	struct xlog_recover_item	*item)
2203 {
2204 	xfs_inode_log_format_t	*in_f;
2205 	xfs_mount_t		*mp = log->l_mp;
2206 	xfs_buf_t		*bp;
2207 	xfs_dinode_t		*dip;
2208 	int			len;
2209 	xfs_caddr_t		src;
2210 	xfs_caddr_t		dest;
2211 	int			error;
2212 	int			attr_index;
2213 	uint			fields;
2214 	xfs_icdinode_t		*dicp;
2215 	int			need_free = 0;
2216 
2217 	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2218 		in_f = item->ri_buf[0].i_addr;
2219 	} else {
2220 		in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2221 		need_free = 1;
2222 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2223 		if (error)
2224 			goto error;
2225 	}
2226 
2227 	/*
2228 	 * Inode buffers can be freed, look out for it,
2229 	 * and do not replay the inode.
2230 	 */
2231 	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2232 					in_f->ilf_len, 0)) {
2233 		error = 0;
2234 		trace_xfs_log_recover_inode_cancel(log, in_f);
2235 		goto error;
2236 	}
2237 	trace_xfs_log_recover_inode_recover(log, in_f);
2238 
2239 	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0);
2240 	if (!bp) {
2241 		error = ENOMEM;
2242 		goto error;
2243 	}
2244 	error = bp->b_error;
2245 	if (error) {
2246 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2247 		xfs_buf_relse(bp);
2248 		goto error;
2249 	}
2250 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2251 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2252 
2253 	/*
2254 	 * Make sure the place we're flushing out to really looks
2255 	 * like an inode!
2256 	 */
2257 	if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2258 		xfs_buf_relse(bp);
2259 		xfs_alert(mp,
2260 	"%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2261 			__func__, dip, bp, in_f->ilf_ino);
2262 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2263 				 XFS_ERRLEVEL_LOW, mp);
2264 		error = EFSCORRUPTED;
2265 		goto error;
2266 	}
2267 	dicp = item->ri_buf[1].i_addr;
2268 	if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2269 		xfs_buf_relse(bp);
2270 		xfs_alert(mp,
2271 			"%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2272 			__func__, item, in_f->ilf_ino);
2273 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2274 				 XFS_ERRLEVEL_LOW, mp);
2275 		error = EFSCORRUPTED;
2276 		goto error;
2277 	}
2278 
2279 	/* Skip replay when the on disk inode is newer than the log one */
2280 	if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2281 		/*
2282 		 * Deal with the wrap case, DI_MAX_FLUSH is less
2283 		 * than smaller numbers
2284 		 */
2285 		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2286 		    dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2287 			/* do nothing */
2288 		} else {
2289 			xfs_buf_relse(bp);
2290 			trace_xfs_log_recover_inode_skip(log, in_f);
2291 			error = 0;
2292 			goto error;
2293 		}
2294 	}
2295 	/* Take the opportunity to reset the flush iteration count */
2296 	dicp->di_flushiter = 0;
2297 
2298 	if (unlikely(S_ISREG(dicp->di_mode))) {
2299 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2300 		    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2301 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2302 					 XFS_ERRLEVEL_LOW, mp, dicp);
2303 			xfs_buf_relse(bp);
2304 			xfs_alert(mp,
2305 		"%s: Bad regular inode log record, rec ptr 0x%p, "
2306 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2307 				__func__, item, dip, bp, in_f->ilf_ino);
2308 			error = EFSCORRUPTED;
2309 			goto error;
2310 		}
2311 	} else if (unlikely(S_ISDIR(dicp->di_mode))) {
2312 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2313 		    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2314 		    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2315 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2316 					     XFS_ERRLEVEL_LOW, mp, dicp);
2317 			xfs_buf_relse(bp);
2318 			xfs_alert(mp,
2319 		"%s: Bad dir inode log record, rec ptr 0x%p, "
2320 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2321 				__func__, item, dip, bp, in_f->ilf_ino);
2322 			error = EFSCORRUPTED;
2323 			goto error;
2324 		}
2325 	}
2326 	if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2327 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2328 				     XFS_ERRLEVEL_LOW, mp, dicp);
2329 		xfs_buf_relse(bp);
2330 		xfs_alert(mp,
2331 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2332 	"dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2333 			__func__, item, dip, bp, in_f->ilf_ino,
2334 			dicp->di_nextents + dicp->di_anextents,
2335 			dicp->di_nblocks);
2336 		error = EFSCORRUPTED;
2337 		goto error;
2338 	}
2339 	if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2340 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2341 				     XFS_ERRLEVEL_LOW, mp, dicp);
2342 		xfs_buf_relse(bp);
2343 		xfs_alert(mp,
2344 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2345 	"dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2346 			item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2347 		error = EFSCORRUPTED;
2348 		goto error;
2349 	}
2350 	if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2351 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2352 				     XFS_ERRLEVEL_LOW, mp, dicp);
2353 		xfs_buf_relse(bp);
2354 		xfs_alert(mp,
2355 			"%s: Bad inode log record length %d, rec ptr 0x%p",
2356 			__func__, item->ri_buf[1].i_len, item);
2357 		error = EFSCORRUPTED;
2358 		goto error;
2359 	}
2360 
2361 	/* The core is in in-core format */
2362 	xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
2363 
2364 	/* the rest is in on-disk format */
2365 	if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2366 		memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2367 			item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2368 			item->ri_buf[1].i_len  - sizeof(struct xfs_icdinode));
2369 	}
2370 
2371 	fields = in_f->ilf_fields;
2372 	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2373 	case XFS_ILOG_DEV:
2374 		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2375 		break;
2376 	case XFS_ILOG_UUID:
2377 		memcpy(XFS_DFORK_DPTR(dip),
2378 		       &in_f->ilf_u.ilfu_uuid,
2379 		       sizeof(uuid_t));
2380 		break;
2381 	}
2382 
2383 	if (in_f->ilf_size == 2)
2384 		goto write_inode_buffer;
2385 	len = item->ri_buf[2].i_len;
2386 	src = item->ri_buf[2].i_addr;
2387 	ASSERT(in_f->ilf_size <= 4);
2388 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2389 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
2390 	       (len == in_f->ilf_dsize));
2391 
2392 	switch (fields & XFS_ILOG_DFORK) {
2393 	case XFS_ILOG_DDATA:
2394 	case XFS_ILOG_DEXT:
2395 		memcpy(XFS_DFORK_DPTR(dip), src, len);
2396 		break;
2397 
2398 	case XFS_ILOG_DBROOT:
2399 		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2400 				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2401 				 XFS_DFORK_DSIZE(dip, mp));
2402 		break;
2403 
2404 	default:
2405 		/*
2406 		 * There are no data fork flags set.
2407 		 */
2408 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
2409 		break;
2410 	}
2411 
2412 	/*
2413 	 * If we logged any attribute data, recover it.  There may or
2414 	 * may not have been any other non-core data logged in this
2415 	 * transaction.
2416 	 */
2417 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2418 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2419 			attr_index = 3;
2420 		} else {
2421 			attr_index = 2;
2422 		}
2423 		len = item->ri_buf[attr_index].i_len;
2424 		src = item->ri_buf[attr_index].i_addr;
2425 		ASSERT(len == in_f->ilf_asize);
2426 
2427 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2428 		case XFS_ILOG_ADATA:
2429 		case XFS_ILOG_AEXT:
2430 			dest = XFS_DFORK_APTR(dip);
2431 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2432 			memcpy(dest, src, len);
2433 			break;
2434 
2435 		case XFS_ILOG_ABROOT:
2436 			dest = XFS_DFORK_APTR(dip);
2437 			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2438 					 len, (xfs_bmdr_block_t*)dest,
2439 					 XFS_DFORK_ASIZE(dip, mp));
2440 			break;
2441 
2442 		default:
2443 			xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2444 			ASSERT(0);
2445 			xfs_buf_relse(bp);
2446 			error = EIO;
2447 			goto error;
2448 		}
2449 	}
2450 
2451 write_inode_buffer:
2452 	ASSERT(bp->b_target->bt_mount == mp);
2453 	bp->b_iodone = xlog_recover_iodone;
2454 	xfs_buf_delwri_queue(bp, buffer_list);
2455 	xfs_buf_relse(bp);
2456 error:
2457 	if (need_free)
2458 		kmem_free(in_f);
2459 	return XFS_ERROR(error);
2460 }
2461 
2462 /*
2463  * Recover QUOTAOFF records. We simply make a note of it in the xlog
2464  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2465  * of that type.
2466  */
2467 STATIC int
2468 xlog_recover_quotaoff_pass1(
2469 	struct xlog			*log,
2470 	struct xlog_recover_item	*item)
2471 {
2472 	xfs_qoff_logformat_t	*qoff_f = item->ri_buf[0].i_addr;
2473 	ASSERT(qoff_f);
2474 
2475 	/*
2476 	 * The logitem format's flag tells us if this was user quotaoff,
2477 	 * group/project quotaoff or both.
2478 	 */
2479 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2480 		log->l_quotaoffs_flag |= XFS_DQ_USER;
2481 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2482 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2483 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2484 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2485 
2486 	return (0);
2487 }
2488 
2489 /*
2490  * Recover a dquot record
2491  */
2492 STATIC int
2493 xlog_recover_dquot_pass2(
2494 	struct xlog			*log,
2495 	struct list_head		*buffer_list,
2496 	struct xlog_recover_item	*item)
2497 {
2498 	xfs_mount_t		*mp = log->l_mp;
2499 	xfs_buf_t		*bp;
2500 	struct xfs_disk_dquot	*ddq, *recddq;
2501 	int			error;
2502 	xfs_dq_logformat_t	*dq_f;
2503 	uint			type;
2504 
2505 
2506 	/*
2507 	 * Filesystems are required to send in quota flags at mount time.
2508 	 */
2509 	if (mp->m_qflags == 0)
2510 		return (0);
2511 
2512 	recddq = item->ri_buf[1].i_addr;
2513 	if (recddq == NULL) {
2514 		xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2515 		return XFS_ERROR(EIO);
2516 	}
2517 	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2518 		xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2519 			item->ri_buf[1].i_len, __func__);
2520 		return XFS_ERROR(EIO);
2521 	}
2522 
2523 	/*
2524 	 * This type of quotas was turned off, so ignore this record.
2525 	 */
2526 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2527 	ASSERT(type);
2528 	if (log->l_quotaoffs_flag & type)
2529 		return (0);
2530 
2531 	/*
2532 	 * At this point we know that quota was _not_ turned off.
2533 	 * Since the mount flags are not indicating to us otherwise, this
2534 	 * must mean that quota is on, and the dquot needs to be replayed.
2535 	 * Remember that we may not have fully recovered the superblock yet,
2536 	 * so we can't do the usual trick of looking at the SB quota bits.
2537 	 *
2538 	 * The other possibility, of course, is that the quota subsystem was
2539 	 * removed since the last mount - ENOSYS.
2540 	 */
2541 	dq_f = item->ri_buf[0].i_addr;
2542 	ASSERT(dq_f);
2543 	error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2544 			   "xlog_recover_dquot_pass2 (log copy)");
2545 	if (error)
2546 		return XFS_ERROR(EIO);
2547 	ASSERT(dq_f->qlf_len == 1);
2548 
2549 	error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
2550 				   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp);
2551 	if (error)
2552 		return error;
2553 
2554 	ASSERT(bp);
2555 	ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2556 
2557 	/*
2558 	 * At least the magic num portion should be on disk because this
2559 	 * was among a chunk of dquots created earlier, and we did some
2560 	 * minimal initialization then.
2561 	 */
2562 	error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2563 			   "xlog_recover_dquot_pass2");
2564 	if (error) {
2565 		xfs_buf_relse(bp);
2566 		return XFS_ERROR(EIO);
2567 	}
2568 
2569 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
2570 
2571 	ASSERT(dq_f->qlf_size == 2);
2572 	ASSERT(bp->b_target->bt_mount == mp);
2573 	bp->b_iodone = xlog_recover_iodone;
2574 	xfs_buf_delwri_queue(bp, buffer_list);
2575 	xfs_buf_relse(bp);
2576 
2577 	return (0);
2578 }
2579 
2580 /*
2581  * This routine is called to create an in-core extent free intent
2582  * item from the efi format structure which was logged on disk.
2583  * It allocates an in-core efi, copies the extents from the format
2584  * structure into it, and adds the efi to the AIL with the given
2585  * LSN.
2586  */
2587 STATIC int
2588 xlog_recover_efi_pass2(
2589 	struct xlog			*log,
2590 	struct xlog_recover_item	*item,
2591 	xfs_lsn_t			lsn)
2592 {
2593 	int			error;
2594 	xfs_mount_t		*mp = log->l_mp;
2595 	xfs_efi_log_item_t	*efip;
2596 	xfs_efi_log_format_t	*efi_formatp;
2597 
2598 	efi_formatp = item->ri_buf[0].i_addr;
2599 
2600 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2601 	if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2602 					 &(efip->efi_format)))) {
2603 		xfs_efi_item_free(efip);
2604 		return error;
2605 	}
2606 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2607 
2608 	spin_lock(&log->l_ailp->xa_lock);
2609 	/*
2610 	 * xfs_trans_ail_update() drops the AIL lock.
2611 	 */
2612 	xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
2613 	return 0;
2614 }
2615 
2616 
2617 /*
2618  * This routine is called when an efd format structure is found in
2619  * a committed transaction in the log.  It's purpose is to cancel
2620  * the corresponding efi if it was still in the log.  To do this
2621  * it searches the AIL for the efi with an id equal to that in the
2622  * efd format structure.  If we find it, we remove the efi from the
2623  * AIL and free it.
2624  */
2625 STATIC int
2626 xlog_recover_efd_pass2(
2627 	struct xlog			*log,
2628 	struct xlog_recover_item	*item)
2629 {
2630 	xfs_efd_log_format_t	*efd_formatp;
2631 	xfs_efi_log_item_t	*efip = NULL;
2632 	xfs_log_item_t		*lip;
2633 	__uint64_t		efi_id;
2634 	struct xfs_ail_cursor	cur;
2635 	struct xfs_ail		*ailp = log->l_ailp;
2636 
2637 	efd_formatp = item->ri_buf[0].i_addr;
2638 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2639 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2640 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2641 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2642 	efi_id = efd_formatp->efd_efi_id;
2643 
2644 	/*
2645 	 * Search for the efi with the id in the efd format structure
2646 	 * in the AIL.
2647 	 */
2648 	spin_lock(&ailp->xa_lock);
2649 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2650 	while (lip != NULL) {
2651 		if (lip->li_type == XFS_LI_EFI) {
2652 			efip = (xfs_efi_log_item_t *)lip;
2653 			if (efip->efi_format.efi_id == efi_id) {
2654 				/*
2655 				 * xfs_trans_ail_delete() drops the
2656 				 * AIL lock.
2657 				 */
2658 				xfs_trans_ail_delete(ailp, lip,
2659 						     SHUTDOWN_CORRUPT_INCORE);
2660 				xfs_efi_item_free(efip);
2661 				spin_lock(&ailp->xa_lock);
2662 				break;
2663 			}
2664 		}
2665 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
2666 	}
2667 	xfs_trans_ail_cursor_done(ailp, &cur);
2668 	spin_unlock(&ailp->xa_lock);
2669 
2670 	return 0;
2671 }
2672 
2673 /*
2674  * Free up any resources allocated by the transaction
2675  *
2676  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2677  */
2678 STATIC void
2679 xlog_recover_free_trans(
2680 	struct xlog_recover	*trans)
2681 {
2682 	xlog_recover_item_t	*item, *n;
2683 	int			i;
2684 
2685 	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2686 		/* Free the regions in the item. */
2687 		list_del(&item->ri_list);
2688 		for (i = 0; i < item->ri_cnt; i++)
2689 			kmem_free(item->ri_buf[i].i_addr);
2690 		/* Free the item itself */
2691 		kmem_free(item->ri_buf);
2692 		kmem_free(item);
2693 	}
2694 	/* Free the transaction recover structure */
2695 	kmem_free(trans);
2696 }
2697 
2698 STATIC int
2699 xlog_recover_commit_pass1(
2700 	struct xlog			*log,
2701 	struct xlog_recover		*trans,
2702 	struct xlog_recover_item	*item)
2703 {
2704 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
2705 
2706 	switch (ITEM_TYPE(item)) {
2707 	case XFS_LI_BUF:
2708 		return xlog_recover_buffer_pass1(log, item);
2709 	case XFS_LI_QUOTAOFF:
2710 		return xlog_recover_quotaoff_pass1(log, item);
2711 	case XFS_LI_INODE:
2712 	case XFS_LI_EFI:
2713 	case XFS_LI_EFD:
2714 	case XFS_LI_DQUOT:
2715 		/* nothing to do in pass 1 */
2716 		return 0;
2717 	default:
2718 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2719 			__func__, ITEM_TYPE(item));
2720 		ASSERT(0);
2721 		return XFS_ERROR(EIO);
2722 	}
2723 }
2724 
2725 STATIC int
2726 xlog_recover_commit_pass2(
2727 	struct xlog			*log,
2728 	struct xlog_recover		*trans,
2729 	struct list_head		*buffer_list,
2730 	struct xlog_recover_item	*item)
2731 {
2732 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
2733 
2734 	switch (ITEM_TYPE(item)) {
2735 	case XFS_LI_BUF:
2736 		return xlog_recover_buffer_pass2(log, buffer_list, item);
2737 	case XFS_LI_INODE:
2738 		return xlog_recover_inode_pass2(log, buffer_list, item);
2739 	case XFS_LI_EFI:
2740 		return xlog_recover_efi_pass2(log, item, trans->r_lsn);
2741 	case XFS_LI_EFD:
2742 		return xlog_recover_efd_pass2(log, item);
2743 	case XFS_LI_DQUOT:
2744 		return xlog_recover_dquot_pass2(log, buffer_list, item);
2745 	case XFS_LI_QUOTAOFF:
2746 		/* nothing to do in pass2 */
2747 		return 0;
2748 	default:
2749 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2750 			__func__, ITEM_TYPE(item));
2751 		ASSERT(0);
2752 		return XFS_ERROR(EIO);
2753 	}
2754 }
2755 
2756 /*
2757  * Perform the transaction.
2758  *
2759  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2760  * EFIs and EFDs get queued up by adding entries into the AIL for them.
2761  */
2762 STATIC int
2763 xlog_recover_commit_trans(
2764 	struct xlog		*log,
2765 	struct xlog_recover	*trans,
2766 	int			pass)
2767 {
2768 	int			error = 0, error2;
2769 	xlog_recover_item_t	*item;
2770 	LIST_HEAD		(buffer_list);
2771 
2772 	hlist_del(&trans->r_list);
2773 
2774 	error = xlog_recover_reorder_trans(log, trans, pass);
2775 	if (error)
2776 		return error;
2777 
2778 	list_for_each_entry(item, &trans->r_itemq, ri_list) {
2779 		switch (pass) {
2780 		case XLOG_RECOVER_PASS1:
2781 			error = xlog_recover_commit_pass1(log, trans, item);
2782 			break;
2783 		case XLOG_RECOVER_PASS2:
2784 			error = xlog_recover_commit_pass2(log, trans,
2785 							  &buffer_list, item);
2786 			break;
2787 		default:
2788 			ASSERT(0);
2789 		}
2790 
2791 		if (error)
2792 			goto out;
2793 	}
2794 
2795 	xlog_recover_free_trans(trans);
2796 
2797 out:
2798 	error2 = xfs_buf_delwri_submit(&buffer_list);
2799 	return error ? error : error2;
2800 }
2801 
2802 STATIC int
2803 xlog_recover_unmount_trans(
2804 	struct xlog		*log,
2805 	struct xlog_recover	*trans)
2806 {
2807 	/* Do nothing now */
2808 	xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2809 	return 0;
2810 }
2811 
2812 /*
2813  * There are two valid states of the r_state field.  0 indicates that the
2814  * transaction structure is in a normal state.  We have either seen the
2815  * start of the transaction or the last operation we added was not a partial
2816  * operation.  If the last operation we added to the transaction was a
2817  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2818  *
2819  * NOTE: skip LRs with 0 data length.
2820  */
2821 STATIC int
2822 xlog_recover_process_data(
2823 	struct xlog		*log,
2824 	struct hlist_head	rhash[],
2825 	struct xlog_rec_header	*rhead,
2826 	xfs_caddr_t		dp,
2827 	int			pass)
2828 {
2829 	xfs_caddr_t		lp;
2830 	int			num_logops;
2831 	xlog_op_header_t	*ohead;
2832 	xlog_recover_t		*trans;
2833 	xlog_tid_t		tid;
2834 	int			error;
2835 	unsigned long		hash;
2836 	uint			flags;
2837 
2838 	lp = dp + be32_to_cpu(rhead->h_len);
2839 	num_logops = be32_to_cpu(rhead->h_num_logops);
2840 
2841 	/* check the log format matches our own - else we can't recover */
2842 	if (xlog_header_check_recover(log->l_mp, rhead))
2843 		return (XFS_ERROR(EIO));
2844 
2845 	while ((dp < lp) && num_logops) {
2846 		ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2847 		ohead = (xlog_op_header_t *)dp;
2848 		dp += sizeof(xlog_op_header_t);
2849 		if (ohead->oh_clientid != XFS_TRANSACTION &&
2850 		    ohead->oh_clientid != XFS_LOG) {
2851 			xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2852 					__func__, ohead->oh_clientid);
2853 			ASSERT(0);
2854 			return (XFS_ERROR(EIO));
2855 		}
2856 		tid = be32_to_cpu(ohead->oh_tid);
2857 		hash = XLOG_RHASH(tid);
2858 		trans = xlog_recover_find_tid(&rhash[hash], tid);
2859 		if (trans == NULL) {		   /* not found; add new tid */
2860 			if (ohead->oh_flags & XLOG_START_TRANS)
2861 				xlog_recover_new_tid(&rhash[hash], tid,
2862 					be64_to_cpu(rhead->h_lsn));
2863 		} else {
2864 			if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2865 				xfs_warn(log->l_mp, "%s: bad length 0x%x",
2866 					__func__, be32_to_cpu(ohead->oh_len));
2867 				WARN_ON(1);
2868 				return (XFS_ERROR(EIO));
2869 			}
2870 			flags = ohead->oh_flags & ~XLOG_END_TRANS;
2871 			if (flags & XLOG_WAS_CONT_TRANS)
2872 				flags &= ~XLOG_CONTINUE_TRANS;
2873 			switch (flags) {
2874 			case XLOG_COMMIT_TRANS:
2875 				error = xlog_recover_commit_trans(log,
2876 								trans, pass);
2877 				break;
2878 			case XLOG_UNMOUNT_TRANS:
2879 				error = xlog_recover_unmount_trans(log, trans);
2880 				break;
2881 			case XLOG_WAS_CONT_TRANS:
2882 				error = xlog_recover_add_to_cont_trans(log,
2883 						trans, dp,
2884 						be32_to_cpu(ohead->oh_len));
2885 				break;
2886 			case XLOG_START_TRANS:
2887 				xfs_warn(log->l_mp, "%s: bad transaction",
2888 					__func__);
2889 				ASSERT(0);
2890 				error = XFS_ERROR(EIO);
2891 				break;
2892 			case 0:
2893 			case XLOG_CONTINUE_TRANS:
2894 				error = xlog_recover_add_to_trans(log, trans,
2895 						dp, be32_to_cpu(ohead->oh_len));
2896 				break;
2897 			default:
2898 				xfs_warn(log->l_mp, "%s: bad flag 0x%x",
2899 					__func__, flags);
2900 				ASSERT(0);
2901 				error = XFS_ERROR(EIO);
2902 				break;
2903 			}
2904 			if (error)
2905 				return error;
2906 		}
2907 		dp += be32_to_cpu(ohead->oh_len);
2908 		num_logops--;
2909 	}
2910 	return 0;
2911 }
2912 
2913 /*
2914  * Process an extent free intent item that was recovered from
2915  * the log.  We need to free the extents that it describes.
2916  */
2917 STATIC int
2918 xlog_recover_process_efi(
2919 	xfs_mount_t		*mp,
2920 	xfs_efi_log_item_t	*efip)
2921 {
2922 	xfs_efd_log_item_t	*efdp;
2923 	xfs_trans_t		*tp;
2924 	int			i;
2925 	int			error = 0;
2926 	xfs_extent_t		*extp;
2927 	xfs_fsblock_t		startblock_fsb;
2928 
2929 	ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
2930 
2931 	/*
2932 	 * First check the validity of the extents described by the
2933 	 * EFI.  If any are bad, then assume that all are bad and
2934 	 * just toss the EFI.
2935 	 */
2936 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2937 		extp = &(efip->efi_format.efi_extents[i]);
2938 		startblock_fsb = XFS_BB_TO_FSB(mp,
2939 				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
2940 		if ((startblock_fsb == 0) ||
2941 		    (extp->ext_len == 0) ||
2942 		    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2943 		    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2944 			/*
2945 			 * This will pull the EFI from the AIL and
2946 			 * free the memory associated with it.
2947 			 */
2948 			xfs_efi_release(efip, efip->efi_format.efi_nextents);
2949 			return XFS_ERROR(EIO);
2950 		}
2951 	}
2952 
2953 	tp = xfs_trans_alloc(mp, 0);
2954 	error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
2955 	if (error)
2956 		goto abort_error;
2957 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
2958 
2959 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2960 		extp = &(efip->efi_format.efi_extents[i]);
2961 		error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
2962 		if (error)
2963 			goto abort_error;
2964 		xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
2965 					 extp->ext_len);
2966 	}
2967 
2968 	set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
2969 	error = xfs_trans_commit(tp, 0);
2970 	return error;
2971 
2972 abort_error:
2973 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
2974 	return error;
2975 }
2976 
2977 /*
2978  * When this is called, all of the EFIs which did not have
2979  * corresponding EFDs should be in the AIL.  What we do now
2980  * is free the extents associated with each one.
2981  *
2982  * Since we process the EFIs in normal transactions, they
2983  * will be removed at some point after the commit.  This prevents
2984  * us from just walking down the list processing each one.
2985  * We'll use a flag in the EFI to skip those that we've already
2986  * processed and use the AIL iteration mechanism's generation
2987  * count to try to speed this up at least a bit.
2988  *
2989  * When we start, we know that the EFIs are the only things in
2990  * the AIL.  As we process them, however, other items are added
2991  * to the AIL.  Since everything added to the AIL must come after
2992  * everything already in the AIL, we stop processing as soon as
2993  * we see something other than an EFI in the AIL.
2994  */
2995 STATIC int
2996 xlog_recover_process_efis(
2997 	struct xlog	*log)
2998 {
2999 	xfs_log_item_t		*lip;
3000 	xfs_efi_log_item_t	*efip;
3001 	int			error = 0;
3002 	struct xfs_ail_cursor	cur;
3003 	struct xfs_ail		*ailp;
3004 
3005 	ailp = log->l_ailp;
3006 	spin_lock(&ailp->xa_lock);
3007 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3008 	while (lip != NULL) {
3009 		/*
3010 		 * We're done when we see something other than an EFI.
3011 		 * There should be no EFIs left in the AIL now.
3012 		 */
3013 		if (lip->li_type != XFS_LI_EFI) {
3014 #ifdef DEBUG
3015 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3016 				ASSERT(lip->li_type != XFS_LI_EFI);
3017 #endif
3018 			break;
3019 		}
3020 
3021 		/*
3022 		 * Skip EFIs that we've already processed.
3023 		 */
3024 		efip = (xfs_efi_log_item_t *)lip;
3025 		if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3026 			lip = xfs_trans_ail_cursor_next(ailp, &cur);
3027 			continue;
3028 		}
3029 
3030 		spin_unlock(&ailp->xa_lock);
3031 		error = xlog_recover_process_efi(log->l_mp, efip);
3032 		spin_lock(&ailp->xa_lock);
3033 		if (error)
3034 			goto out;
3035 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3036 	}
3037 out:
3038 	xfs_trans_ail_cursor_done(ailp, &cur);
3039 	spin_unlock(&ailp->xa_lock);
3040 	return error;
3041 }
3042 
3043 /*
3044  * This routine performs a transaction to null out a bad inode pointer
3045  * in an agi unlinked inode hash bucket.
3046  */
3047 STATIC void
3048 xlog_recover_clear_agi_bucket(
3049 	xfs_mount_t	*mp,
3050 	xfs_agnumber_t	agno,
3051 	int		bucket)
3052 {
3053 	xfs_trans_t	*tp;
3054 	xfs_agi_t	*agi;
3055 	xfs_buf_t	*agibp;
3056 	int		offset;
3057 	int		error;
3058 
3059 	tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3060 	error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3061 				  0, 0, 0);
3062 	if (error)
3063 		goto out_abort;
3064 
3065 	error = xfs_read_agi(mp, tp, agno, &agibp);
3066 	if (error)
3067 		goto out_abort;
3068 
3069 	agi = XFS_BUF_TO_AGI(agibp);
3070 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3071 	offset = offsetof(xfs_agi_t, agi_unlinked) +
3072 		 (sizeof(xfs_agino_t) * bucket);
3073 	xfs_trans_log_buf(tp, agibp, offset,
3074 			  (offset + sizeof(xfs_agino_t) - 1));
3075 
3076 	error = xfs_trans_commit(tp, 0);
3077 	if (error)
3078 		goto out_error;
3079 	return;
3080 
3081 out_abort:
3082 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3083 out_error:
3084 	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3085 	return;
3086 }
3087 
3088 STATIC xfs_agino_t
3089 xlog_recover_process_one_iunlink(
3090 	struct xfs_mount		*mp,
3091 	xfs_agnumber_t			agno,
3092 	xfs_agino_t			agino,
3093 	int				bucket)
3094 {
3095 	struct xfs_buf			*ibp;
3096 	struct xfs_dinode		*dip;
3097 	struct xfs_inode		*ip;
3098 	xfs_ino_t			ino;
3099 	int				error;
3100 
3101 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
3102 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3103 	if (error)
3104 		goto fail;
3105 
3106 	/*
3107 	 * Get the on disk inode to find the next inode in the bucket.
3108 	 */
3109 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
3110 	if (error)
3111 		goto fail_iput;
3112 
3113 	ASSERT(ip->i_d.di_nlink == 0);
3114 	ASSERT(ip->i_d.di_mode != 0);
3115 
3116 	/* setup for the next pass */
3117 	agino = be32_to_cpu(dip->di_next_unlinked);
3118 	xfs_buf_relse(ibp);
3119 
3120 	/*
3121 	 * Prevent any DMAPI event from being sent when the reference on
3122 	 * the inode is dropped.
3123 	 */
3124 	ip->i_d.di_dmevmask = 0;
3125 
3126 	IRELE(ip);
3127 	return agino;
3128 
3129  fail_iput:
3130 	IRELE(ip);
3131  fail:
3132 	/*
3133 	 * We can't read in the inode this bucket points to, or this inode
3134 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
3135 	 * some inodes and space, but at least we won't hang.
3136 	 *
3137 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3138 	 * clear the inode pointer in the bucket.
3139 	 */
3140 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
3141 	return NULLAGINO;
3142 }
3143 
3144 /*
3145  * xlog_iunlink_recover
3146  *
3147  * This is called during recovery to process any inodes which
3148  * we unlinked but not freed when the system crashed.  These
3149  * inodes will be on the lists in the AGI blocks.  What we do
3150  * here is scan all the AGIs and fully truncate and free any
3151  * inodes found on the lists.  Each inode is removed from the
3152  * lists when it has been fully truncated and is freed.  The
3153  * freeing of the inode and its removal from the list must be
3154  * atomic.
3155  */
3156 STATIC void
3157 xlog_recover_process_iunlinks(
3158 	struct xlog	*log)
3159 {
3160 	xfs_mount_t	*mp;
3161 	xfs_agnumber_t	agno;
3162 	xfs_agi_t	*agi;
3163 	xfs_buf_t	*agibp;
3164 	xfs_agino_t	agino;
3165 	int		bucket;
3166 	int		error;
3167 	uint		mp_dmevmask;
3168 
3169 	mp = log->l_mp;
3170 
3171 	/*
3172 	 * Prevent any DMAPI event from being sent while in this function.
3173 	 */
3174 	mp_dmevmask = mp->m_dmevmask;
3175 	mp->m_dmevmask = 0;
3176 
3177 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3178 		/*
3179 		 * Find the agi for this ag.
3180 		 */
3181 		error = xfs_read_agi(mp, NULL, agno, &agibp);
3182 		if (error) {
3183 			/*
3184 			 * AGI is b0rked. Don't process it.
3185 			 *
3186 			 * We should probably mark the filesystem as corrupt
3187 			 * after we've recovered all the ag's we can....
3188 			 */
3189 			continue;
3190 		}
3191 		/*
3192 		 * Unlock the buffer so that it can be acquired in the normal
3193 		 * course of the transaction to truncate and free each inode.
3194 		 * Because we are not racing with anyone else here for the AGI
3195 		 * buffer, we don't even need to hold it locked to read the
3196 		 * initial unlinked bucket entries out of the buffer. We keep
3197 		 * buffer reference though, so that it stays pinned in memory
3198 		 * while we need the buffer.
3199 		 */
3200 		agi = XFS_BUF_TO_AGI(agibp);
3201 		xfs_buf_unlock(agibp);
3202 
3203 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3204 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3205 			while (agino != NULLAGINO) {
3206 				agino = xlog_recover_process_one_iunlink(mp,
3207 							agno, agino, bucket);
3208 			}
3209 		}
3210 		xfs_buf_rele(agibp);
3211 	}
3212 
3213 	mp->m_dmevmask = mp_dmevmask;
3214 }
3215 
3216 
3217 #ifdef DEBUG
3218 STATIC void
3219 xlog_pack_data_checksum(
3220 	struct xlog		*log,
3221 	struct xlog_in_core	*iclog,
3222 	int			size)
3223 {
3224 	int		i;
3225 	__be32		*up;
3226 	uint		chksum = 0;
3227 
3228 	up = (__be32 *)iclog->ic_datap;
3229 	/* divide length by 4 to get # words */
3230 	for (i = 0; i < (size >> 2); i++) {
3231 		chksum ^= be32_to_cpu(*up);
3232 		up++;
3233 	}
3234 	iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3235 }
3236 #else
3237 #define xlog_pack_data_checksum(log, iclog, size)
3238 #endif
3239 
3240 /*
3241  * Stamp cycle number in every block
3242  */
3243 void
3244 xlog_pack_data(
3245 	struct xlog		*log,
3246 	struct xlog_in_core	*iclog,
3247 	int			roundoff)
3248 {
3249 	int			i, j, k;
3250 	int			size = iclog->ic_offset + roundoff;
3251 	__be32			cycle_lsn;
3252 	xfs_caddr_t		dp;
3253 
3254 	xlog_pack_data_checksum(log, iclog, size);
3255 
3256 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3257 
3258 	dp = iclog->ic_datap;
3259 	for (i = 0; i < BTOBB(size) &&
3260 		i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3261 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3262 		*(__be32 *)dp = cycle_lsn;
3263 		dp += BBSIZE;
3264 	}
3265 
3266 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3267 		xlog_in_core_2_t *xhdr = iclog->ic_data;
3268 
3269 		for ( ; i < BTOBB(size); i++) {
3270 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3271 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3272 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3273 			*(__be32 *)dp = cycle_lsn;
3274 			dp += BBSIZE;
3275 		}
3276 
3277 		for (i = 1; i < log->l_iclog_heads; i++) {
3278 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3279 		}
3280 	}
3281 }
3282 
3283 STATIC void
3284 xlog_unpack_data(
3285 	struct xlog_rec_header	*rhead,
3286 	xfs_caddr_t		dp,
3287 	struct xlog		*log)
3288 {
3289 	int			i, j, k;
3290 
3291 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3292 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3293 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3294 		dp += BBSIZE;
3295 	}
3296 
3297 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3298 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3299 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3300 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3301 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3302 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3303 			dp += BBSIZE;
3304 		}
3305 	}
3306 }
3307 
3308 STATIC int
3309 xlog_valid_rec_header(
3310 	struct xlog		*log,
3311 	struct xlog_rec_header	*rhead,
3312 	xfs_daddr_t		blkno)
3313 {
3314 	int			hlen;
3315 
3316 	if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
3317 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3318 				XFS_ERRLEVEL_LOW, log->l_mp);
3319 		return XFS_ERROR(EFSCORRUPTED);
3320 	}
3321 	if (unlikely(
3322 	    (!rhead->h_version ||
3323 	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3324 		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
3325 			__func__, be32_to_cpu(rhead->h_version));
3326 		return XFS_ERROR(EIO);
3327 	}
3328 
3329 	/* LR body must have data or it wouldn't have been written */
3330 	hlen = be32_to_cpu(rhead->h_len);
3331 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3332 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3333 				XFS_ERRLEVEL_LOW, log->l_mp);
3334 		return XFS_ERROR(EFSCORRUPTED);
3335 	}
3336 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3337 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3338 				XFS_ERRLEVEL_LOW, log->l_mp);
3339 		return XFS_ERROR(EFSCORRUPTED);
3340 	}
3341 	return 0;
3342 }
3343 
3344 /*
3345  * Read the log from tail to head and process the log records found.
3346  * Handle the two cases where the tail and head are in the same cycle
3347  * and where the active portion of the log wraps around the end of
3348  * the physical log separately.  The pass parameter is passed through
3349  * to the routines called to process the data and is not looked at
3350  * here.
3351  */
3352 STATIC int
3353 xlog_do_recovery_pass(
3354 	struct xlog		*log,
3355 	xfs_daddr_t		head_blk,
3356 	xfs_daddr_t		tail_blk,
3357 	int			pass)
3358 {
3359 	xlog_rec_header_t	*rhead;
3360 	xfs_daddr_t		blk_no;
3361 	xfs_caddr_t		offset;
3362 	xfs_buf_t		*hbp, *dbp;
3363 	int			error = 0, h_size;
3364 	int			bblks, split_bblks;
3365 	int			hblks, split_hblks, wrapped_hblks;
3366 	struct hlist_head	rhash[XLOG_RHASH_SIZE];
3367 
3368 	ASSERT(head_blk != tail_blk);
3369 
3370 	/*
3371 	 * Read the header of the tail block and get the iclog buffer size from
3372 	 * h_size.  Use this to tell how many sectors make up the log header.
3373 	 */
3374 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3375 		/*
3376 		 * When using variable length iclogs, read first sector of
3377 		 * iclog header and extract the header size from it.  Get a
3378 		 * new hbp that is the correct size.
3379 		 */
3380 		hbp = xlog_get_bp(log, 1);
3381 		if (!hbp)
3382 			return ENOMEM;
3383 
3384 		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3385 		if (error)
3386 			goto bread_err1;
3387 
3388 		rhead = (xlog_rec_header_t *)offset;
3389 		error = xlog_valid_rec_header(log, rhead, tail_blk);
3390 		if (error)
3391 			goto bread_err1;
3392 		h_size = be32_to_cpu(rhead->h_size);
3393 		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3394 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3395 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3396 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
3397 				hblks++;
3398 			xlog_put_bp(hbp);
3399 			hbp = xlog_get_bp(log, hblks);
3400 		} else {
3401 			hblks = 1;
3402 		}
3403 	} else {
3404 		ASSERT(log->l_sectBBsize == 1);
3405 		hblks = 1;
3406 		hbp = xlog_get_bp(log, 1);
3407 		h_size = XLOG_BIG_RECORD_BSIZE;
3408 	}
3409 
3410 	if (!hbp)
3411 		return ENOMEM;
3412 	dbp = xlog_get_bp(log, BTOBB(h_size));
3413 	if (!dbp) {
3414 		xlog_put_bp(hbp);
3415 		return ENOMEM;
3416 	}
3417 
3418 	memset(rhash, 0, sizeof(rhash));
3419 	if (tail_blk <= head_blk) {
3420 		for (blk_no = tail_blk; blk_no < head_blk; ) {
3421 			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3422 			if (error)
3423 				goto bread_err2;
3424 
3425 			rhead = (xlog_rec_header_t *)offset;
3426 			error = xlog_valid_rec_header(log, rhead, blk_no);
3427 			if (error)
3428 				goto bread_err2;
3429 
3430 			/* blocks in data section */
3431 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3432 			error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3433 					   &offset);
3434 			if (error)
3435 				goto bread_err2;
3436 
3437 			xlog_unpack_data(rhead, offset, log);
3438 			if ((error = xlog_recover_process_data(log,
3439 						rhash, rhead, offset, pass)))
3440 				goto bread_err2;
3441 			blk_no += bblks + hblks;
3442 		}
3443 	} else {
3444 		/*
3445 		 * Perform recovery around the end of the physical log.
3446 		 * When the head is not on the same cycle number as the tail,
3447 		 * we can't do a sequential recovery as above.
3448 		 */
3449 		blk_no = tail_blk;
3450 		while (blk_no < log->l_logBBsize) {
3451 			/*
3452 			 * Check for header wrapping around physical end-of-log
3453 			 */
3454 			offset = hbp->b_addr;
3455 			split_hblks = 0;
3456 			wrapped_hblks = 0;
3457 			if (blk_no + hblks <= log->l_logBBsize) {
3458 				/* Read header in one read */
3459 				error = xlog_bread(log, blk_no, hblks, hbp,
3460 						   &offset);
3461 				if (error)
3462 					goto bread_err2;
3463 			} else {
3464 				/* This LR is split across physical log end */
3465 				if (blk_no != log->l_logBBsize) {
3466 					/* some data before physical log end */
3467 					ASSERT(blk_no <= INT_MAX);
3468 					split_hblks = log->l_logBBsize - (int)blk_no;
3469 					ASSERT(split_hblks > 0);
3470 					error = xlog_bread(log, blk_no,
3471 							   split_hblks, hbp,
3472 							   &offset);
3473 					if (error)
3474 						goto bread_err2;
3475 				}
3476 
3477 				/*
3478 				 * Note: this black magic still works with
3479 				 * large sector sizes (non-512) only because:
3480 				 * - we increased the buffer size originally
3481 				 *   by 1 sector giving us enough extra space
3482 				 *   for the second read;
3483 				 * - the log start is guaranteed to be sector
3484 				 *   aligned;
3485 				 * - we read the log end (LR header start)
3486 				 *   _first_, then the log start (LR header end)
3487 				 *   - order is important.
3488 				 */
3489 				wrapped_hblks = hblks - split_hblks;
3490 				error = xlog_bread_offset(log, 0,
3491 						wrapped_hblks, hbp,
3492 						offset + BBTOB(split_hblks));
3493 				if (error)
3494 					goto bread_err2;
3495 			}
3496 			rhead = (xlog_rec_header_t *)offset;
3497 			error = xlog_valid_rec_header(log, rhead,
3498 						split_hblks ? blk_no : 0);
3499 			if (error)
3500 				goto bread_err2;
3501 
3502 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3503 			blk_no += hblks;
3504 
3505 			/* Read in data for log record */
3506 			if (blk_no + bblks <= log->l_logBBsize) {
3507 				error = xlog_bread(log, blk_no, bblks, dbp,
3508 						   &offset);
3509 				if (error)
3510 					goto bread_err2;
3511 			} else {
3512 				/* This log record is split across the
3513 				 * physical end of log */
3514 				offset = dbp->b_addr;
3515 				split_bblks = 0;
3516 				if (blk_no != log->l_logBBsize) {
3517 					/* some data is before the physical
3518 					 * end of log */
3519 					ASSERT(!wrapped_hblks);
3520 					ASSERT(blk_no <= INT_MAX);
3521 					split_bblks =
3522 						log->l_logBBsize - (int)blk_no;
3523 					ASSERT(split_bblks > 0);
3524 					error = xlog_bread(log, blk_no,
3525 							split_bblks, dbp,
3526 							&offset);
3527 					if (error)
3528 						goto bread_err2;
3529 				}
3530 
3531 				/*
3532 				 * Note: this black magic still works with
3533 				 * large sector sizes (non-512) only because:
3534 				 * - we increased the buffer size originally
3535 				 *   by 1 sector giving us enough extra space
3536 				 *   for the second read;
3537 				 * - the log start is guaranteed to be sector
3538 				 *   aligned;
3539 				 * - we read the log end (LR header start)
3540 				 *   _first_, then the log start (LR header end)
3541 				 *   - order is important.
3542 				 */
3543 				error = xlog_bread_offset(log, 0,
3544 						bblks - split_bblks, hbp,
3545 						offset + BBTOB(split_bblks));
3546 				if (error)
3547 					goto bread_err2;
3548 			}
3549 			xlog_unpack_data(rhead, offset, log);
3550 			if ((error = xlog_recover_process_data(log, rhash,
3551 							rhead, offset, pass)))
3552 				goto bread_err2;
3553 			blk_no += bblks;
3554 		}
3555 
3556 		ASSERT(blk_no >= log->l_logBBsize);
3557 		blk_no -= log->l_logBBsize;
3558 
3559 		/* read first part of physical log */
3560 		while (blk_no < head_blk) {
3561 			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3562 			if (error)
3563 				goto bread_err2;
3564 
3565 			rhead = (xlog_rec_header_t *)offset;
3566 			error = xlog_valid_rec_header(log, rhead, blk_no);
3567 			if (error)
3568 				goto bread_err2;
3569 
3570 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3571 			error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3572 					   &offset);
3573 			if (error)
3574 				goto bread_err2;
3575 
3576 			xlog_unpack_data(rhead, offset, log);
3577 			if ((error = xlog_recover_process_data(log, rhash,
3578 							rhead, offset, pass)))
3579 				goto bread_err2;
3580 			blk_no += bblks + hblks;
3581 		}
3582 	}
3583 
3584  bread_err2:
3585 	xlog_put_bp(dbp);
3586  bread_err1:
3587 	xlog_put_bp(hbp);
3588 	return error;
3589 }
3590 
3591 /*
3592  * Do the recovery of the log.  We actually do this in two phases.
3593  * The two passes are necessary in order to implement the function
3594  * of cancelling a record written into the log.  The first pass
3595  * determines those things which have been cancelled, and the
3596  * second pass replays log items normally except for those which
3597  * have been cancelled.  The handling of the replay and cancellations
3598  * takes place in the log item type specific routines.
3599  *
3600  * The table of items which have cancel records in the log is allocated
3601  * and freed at this level, since only here do we know when all of
3602  * the log recovery has been completed.
3603  */
3604 STATIC int
3605 xlog_do_log_recovery(
3606 	struct xlog	*log,
3607 	xfs_daddr_t	head_blk,
3608 	xfs_daddr_t	tail_blk)
3609 {
3610 	int		error, i;
3611 
3612 	ASSERT(head_blk != tail_blk);
3613 
3614 	/*
3615 	 * First do a pass to find all of the cancelled buf log items.
3616 	 * Store them in the buf_cancel_table for use in the second pass.
3617 	 */
3618 	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3619 						 sizeof(struct list_head),
3620 						 KM_SLEEP);
3621 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3622 		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3623 
3624 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3625 				      XLOG_RECOVER_PASS1);
3626 	if (error != 0) {
3627 		kmem_free(log->l_buf_cancel_table);
3628 		log->l_buf_cancel_table = NULL;
3629 		return error;
3630 	}
3631 	/*
3632 	 * Then do a second pass to actually recover the items in the log.
3633 	 * When it is complete free the table of buf cancel items.
3634 	 */
3635 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3636 				      XLOG_RECOVER_PASS2);
3637 #ifdef DEBUG
3638 	if (!error) {
3639 		int	i;
3640 
3641 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3642 			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3643 	}
3644 #endif	/* DEBUG */
3645 
3646 	kmem_free(log->l_buf_cancel_table);
3647 	log->l_buf_cancel_table = NULL;
3648 
3649 	return error;
3650 }
3651 
3652 /*
3653  * Do the actual recovery
3654  */
3655 STATIC int
3656 xlog_do_recover(
3657 	struct xlog	*log,
3658 	xfs_daddr_t	head_blk,
3659 	xfs_daddr_t	tail_blk)
3660 {
3661 	int		error;
3662 	xfs_buf_t	*bp;
3663 	xfs_sb_t	*sbp;
3664 
3665 	/*
3666 	 * First replay the images in the log.
3667 	 */
3668 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
3669 	if (error)
3670 		return error;
3671 
3672 	/*
3673 	 * If IO errors happened during recovery, bail out.
3674 	 */
3675 	if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3676 		return (EIO);
3677 	}
3678 
3679 	/*
3680 	 * We now update the tail_lsn since much of the recovery has completed
3681 	 * and there may be space available to use.  If there were no extent
3682 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
3683 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3684 	 * lsn of the last known good LR on disk.  If there are extent frees
3685 	 * or iunlinks they will have some entries in the AIL; so we look at
3686 	 * the AIL to determine how to set the tail_lsn.
3687 	 */
3688 	xlog_assign_tail_lsn(log->l_mp);
3689 
3690 	/*
3691 	 * Now that we've finished replaying all buffer and inode
3692 	 * updates, re-read in the superblock.
3693 	 */
3694 	bp = xfs_getsb(log->l_mp, 0);
3695 	XFS_BUF_UNDONE(bp);
3696 	ASSERT(!(XFS_BUF_ISWRITE(bp)));
3697 	XFS_BUF_READ(bp);
3698 	XFS_BUF_UNASYNC(bp);
3699 	xfsbdstrat(log->l_mp, bp);
3700 	error = xfs_buf_iowait(bp);
3701 	if (error) {
3702 		xfs_buf_ioerror_alert(bp, __func__);
3703 		ASSERT(0);
3704 		xfs_buf_relse(bp);
3705 		return error;
3706 	}
3707 
3708 	/* Convert superblock from on-disk format */
3709 	sbp = &log->l_mp->m_sb;
3710 	xfs_sb_from_disk(log->l_mp, XFS_BUF_TO_SBP(bp));
3711 	ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3712 	ASSERT(xfs_sb_good_version(sbp));
3713 	xfs_buf_relse(bp);
3714 
3715 	/* We've re-read the superblock so re-initialize per-cpu counters */
3716 	xfs_icsb_reinit_counters(log->l_mp);
3717 
3718 	xlog_recover_check_summary(log);
3719 
3720 	/* Normal transactions can now occur */
3721 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3722 	return 0;
3723 }
3724 
3725 /*
3726  * Perform recovery and re-initialize some log variables in xlog_find_tail.
3727  *
3728  * Return error or zero.
3729  */
3730 int
3731 xlog_recover(
3732 	struct xlog	*log)
3733 {
3734 	xfs_daddr_t	head_blk, tail_blk;
3735 	int		error;
3736 
3737 	/* find the tail of the log */
3738 	if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3739 		return error;
3740 
3741 	if (tail_blk != head_blk) {
3742 		/* There used to be a comment here:
3743 		 *
3744 		 * disallow recovery on read-only mounts.  note -- mount
3745 		 * checks for ENOSPC and turns it into an intelligent
3746 		 * error message.
3747 		 * ...but this is no longer true.  Now, unless you specify
3748 		 * NORECOVERY (in which case this function would never be
3749 		 * called), we just go ahead and recover.  We do this all
3750 		 * under the vfs layer, so we can get away with it unless
3751 		 * the device itself is read-only, in which case we fail.
3752 		 */
3753 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3754 			return error;
3755 		}
3756 
3757 		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3758 				log->l_mp->m_logname ? log->l_mp->m_logname
3759 						     : "internal");
3760 
3761 		error = xlog_do_recover(log, head_blk, tail_blk);
3762 		log->l_flags |= XLOG_RECOVERY_NEEDED;
3763 	}
3764 	return error;
3765 }
3766 
3767 /*
3768  * In the first part of recovery we replay inodes and buffers and build
3769  * up the list of extent free items which need to be processed.  Here
3770  * we process the extent free items and clean up the on disk unlinked
3771  * inode lists.  This is separated from the first part of recovery so
3772  * that the root and real-time bitmap inodes can be read in from disk in
3773  * between the two stages.  This is necessary so that we can free space
3774  * in the real-time portion of the file system.
3775  */
3776 int
3777 xlog_recover_finish(
3778 	struct xlog	*log)
3779 {
3780 	/*
3781 	 * Now we're ready to do the transactions needed for the
3782 	 * rest of recovery.  Start with completing all the extent
3783 	 * free intent records and then process the unlinked inode
3784 	 * lists.  At this point, we essentially run in normal mode
3785 	 * except that we're still performing recovery actions
3786 	 * rather than accepting new requests.
3787 	 */
3788 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3789 		int	error;
3790 		error = xlog_recover_process_efis(log);
3791 		if (error) {
3792 			xfs_alert(log->l_mp, "Failed to recover EFIs");
3793 			return error;
3794 		}
3795 		/*
3796 		 * Sync the log to get all the EFIs out of the AIL.
3797 		 * This isn't absolutely necessary, but it helps in
3798 		 * case the unlink transactions would have problems
3799 		 * pushing the EFIs out of the way.
3800 		 */
3801 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3802 
3803 		xlog_recover_process_iunlinks(log);
3804 
3805 		xlog_recover_check_summary(log);
3806 
3807 		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
3808 				log->l_mp->m_logname ? log->l_mp->m_logname
3809 						     : "internal");
3810 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3811 	} else {
3812 		xfs_info(log->l_mp, "Ending clean mount");
3813 	}
3814 	return 0;
3815 }
3816 
3817 
3818 #if defined(DEBUG)
3819 /*
3820  * Read all of the agf and agi counters and check that they
3821  * are consistent with the superblock counters.
3822  */
3823 void
3824 xlog_recover_check_summary(
3825 	struct xlog	*log)
3826 {
3827 	xfs_mount_t	*mp;
3828 	xfs_agf_t	*agfp;
3829 	xfs_buf_t	*agfbp;
3830 	xfs_buf_t	*agibp;
3831 	xfs_agnumber_t	agno;
3832 	__uint64_t	freeblks;
3833 	__uint64_t	itotal;
3834 	__uint64_t	ifree;
3835 	int		error;
3836 
3837 	mp = log->l_mp;
3838 
3839 	freeblks = 0LL;
3840 	itotal = 0LL;
3841 	ifree = 0LL;
3842 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3843 		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3844 		if (error) {
3845 			xfs_alert(mp, "%s agf read failed agno %d error %d",
3846 						__func__, agno, error);
3847 		} else {
3848 			agfp = XFS_BUF_TO_AGF(agfbp);
3849 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
3850 				    be32_to_cpu(agfp->agf_flcount);
3851 			xfs_buf_relse(agfbp);
3852 		}
3853 
3854 		error = xfs_read_agi(mp, NULL, agno, &agibp);
3855 		if (error) {
3856 			xfs_alert(mp, "%s agi read failed agno %d error %d",
3857 						__func__, agno, error);
3858 		} else {
3859 			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
3860 
3861 			itotal += be32_to_cpu(agi->agi_count);
3862 			ifree += be32_to_cpu(agi->agi_freecount);
3863 			xfs_buf_relse(agibp);
3864 		}
3865 	}
3866 }
3867 #endif /* DEBUG */
3868