1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_trans.h" 18 #include "xfs_log.h" 19 #include "xfs_log_priv.h" 20 #include "xfs_log_recover.h" 21 #include "xfs_trans_priv.h" 22 #include "xfs_alloc.h" 23 #include "xfs_ialloc.h" 24 #include "xfs_trace.h" 25 #include "xfs_icache.h" 26 #include "xfs_error.h" 27 #include "xfs_buf_item.h" 28 29 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) 30 31 STATIC int 32 xlog_find_zeroed( 33 struct xlog *, 34 xfs_daddr_t *); 35 STATIC int 36 xlog_clear_stale_blocks( 37 struct xlog *, 38 xfs_lsn_t); 39 #if defined(DEBUG) 40 STATIC void 41 xlog_recover_check_summary( 42 struct xlog *); 43 #else 44 #define xlog_recover_check_summary(log) 45 #endif 46 STATIC int 47 xlog_do_recovery_pass( 48 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *); 49 50 /* 51 * Sector aligned buffer routines for buffer create/read/write/access 52 */ 53 54 /* 55 * Verify the log-relative block number and length in basic blocks are valid for 56 * an operation involving the given XFS log buffer. Returns true if the fields 57 * are valid, false otherwise. 58 */ 59 static inline bool 60 xlog_verify_bno( 61 struct xlog *log, 62 xfs_daddr_t blk_no, 63 int bbcount) 64 { 65 if (blk_no < 0 || blk_no >= log->l_logBBsize) 66 return false; 67 if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize) 68 return false; 69 return true; 70 } 71 72 /* 73 * Allocate a buffer to hold log data. The buffer needs to be able to map to 74 * a range of nbblks basic blocks at any valid offset within the log. 75 */ 76 static char * 77 xlog_alloc_buffer( 78 struct xlog *log, 79 int nbblks) 80 { 81 int align_mask = xfs_buftarg_dma_alignment(log->l_targ); 82 83 /* 84 * Pass log block 0 since we don't have an addr yet, buffer will be 85 * verified on read. 86 */ 87 if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) { 88 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 89 nbblks); 90 return NULL; 91 } 92 93 /* 94 * We do log I/O in units of log sectors (a power-of-2 multiple of the 95 * basic block size), so we round up the requested size to accommodate 96 * the basic blocks required for complete log sectors. 97 * 98 * In addition, the buffer may be used for a non-sector-aligned block 99 * offset, in which case an I/O of the requested size could extend 100 * beyond the end of the buffer. If the requested size is only 1 basic 101 * block it will never straddle a sector boundary, so this won't be an 102 * issue. Nor will this be a problem if the log I/O is done in basic 103 * blocks (sector size 1). But otherwise we extend the buffer by one 104 * extra log sector to ensure there's space to accommodate this 105 * possibility. 106 */ 107 if (nbblks > 1 && log->l_sectBBsize > 1) 108 nbblks += log->l_sectBBsize; 109 nbblks = round_up(nbblks, log->l_sectBBsize); 110 return kmem_alloc_io(BBTOB(nbblks), align_mask, KM_MAYFAIL | KM_ZERO); 111 } 112 113 /* 114 * Return the address of the start of the given block number's data 115 * in a log buffer. The buffer covers a log sector-aligned region. 116 */ 117 static inline unsigned int 118 xlog_align( 119 struct xlog *log, 120 xfs_daddr_t blk_no) 121 { 122 return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1)); 123 } 124 125 static int 126 xlog_do_io( 127 struct xlog *log, 128 xfs_daddr_t blk_no, 129 unsigned int nbblks, 130 char *data, 131 unsigned int op) 132 { 133 int error; 134 135 if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) { 136 xfs_warn(log->l_mp, 137 "Invalid log block/length (0x%llx, 0x%x) for buffer", 138 blk_no, nbblks); 139 return -EFSCORRUPTED; 140 } 141 142 blk_no = round_down(blk_no, log->l_sectBBsize); 143 nbblks = round_up(nbblks, log->l_sectBBsize); 144 ASSERT(nbblks > 0); 145 146 error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no, 147 BBTOB(nbblks), data, op); 148 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) { 149 xfs_alert(log->l_mp, 150 "log recovery %s I/O error at daddr 0x%llx len %d error %d", 151 op == REQ_OP_WRITE ? "write" : "read", 152 blk_no, nbblks, error); 153 } 154 return error; 155 } 156 157 STATIC int 158 xlog_bread_noalign( 159 struct xlog *log, 160 xfs_daddr_t blk_no, 161 int nbblks, 162 char *data) 163 { 164 return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ); 165 } 166 167 STATIC int 168 xlog_bread( 169 struct xlog *log, 170 xfs_daddr_t blk_no, 171 int nbblks, 172 char *data, 173 char **offset) 174 { 175 int error; 176 177 error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ); 178 if (!error) 179 *offset = data + xlog_align(log, blk_no); 180 return error; 181 } 182 183 STATIC int 184 xlog_bwrite( 185 struct xlog *log, 186 xfs_daddr_t blk_no, 187 int nbblks, 188 char *data) 189 { 190 return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE); 191 } 192 193 #ifdef DEBUG 194 /* 195 * dump debug superblock and log record information 196 */ 197 STATIC void 198 xlog_header_check_dump( 199 xfs_mount_t *mp, 200 xlog_rec_header_t *head) 201 { 202 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d", 203 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 204 xfs_debug(mp, " log : uuid = %pU, fmt = %d", 205 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 206 } 207 #else 208 #define xlog_header_check_dump(mp, head) 209 #endif 210 211 /* 212 * check log record header for recovery 213 */ 214 STATIC int 215 xlog_header_check_recover( 216 xfs_mount_t *mp, 217 xlog_rec_header_t *head) 218 { 219 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 220 221 /* 222 * IRIX doesn't write the h_fmt field and leaves it zeroed 223 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 224 * a dirty log created in IRIX. 225 */ 226 if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) { 227 xfs_warn(mp, 228 "dirty log written in incompatible format - can't recover"); 229 xlog_header_check_dump(mp, head); 230 return -EFSCORRUPTED; 231 } 232 if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid, 233 &head->h_fs_uuid))) { 234 xfs_warn(mp, 235 "dirty log entry has mismatched uuid - can't recover"); 236 xlog_header_check_dump(mp, head); 237 return -EFSCORRUPTED; 238 } 239 return 0; 240 } 241 242 /* 243 * read the head block of the log and check the header 244 */ 245 STATIC int 246 xlog_header_check_mount( 247 xfs_mount_t *mp, 248 xlog_rec_header_t *head) 249 { 250 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 251 252 if (uuid_is_null(&head->h_fs_uuid)) { 253 /* 254 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 255 * h_fs_uuid is null, we assume this log was last mounted 256 * by IRIX and continue. 257 */ 258 xfs_warn(mp, "null uuid in log - IRIX style log"); 259 } else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid, 260 &head->h_fs_uuid))) { 261 xfs_warn(mp, "log has mismatched uuid - can't recover"); 262 xlog_header_check_dump(mp, head); 263 return -EFSCORRUPTED; 264 } 265 return 0; 266 } 267 268 void 269 xlog_recover_iodone( 270 struct xfs_buf *bp) 271 { 272 if (bp->b_error) { 273 /* 274 * We're not going to bother about retrying 275 * this during recovery. One strike! 276 */ 277 if (!XFS_FORCED_SHUTDOWN(bp->b_mount)) { 278 xfs_buf_ioerror_alert(bp, __this_address); 279 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR); 280 } 281 } 282 283 /* 284 * On v5 supers, a bli could be attached to update the metadata LSN. 285 * Clean it up. 286 */ 287 if (bp->b_log_item) 288 xfs_buf_item_relse(bp); 289 ASSERT(bp->b_log_item == NULL); 290 291 bp->b_iodone = NULL; 292 xfs_buf_ioend(bp); 293 } 294 295 /* 296 * This routine finds (to an approximation) the first block in the physical 297 * log which contains the given cycle. It uses a binary search algorithm. 298 * Note that the algorithm can not be perfect because the disk will not 299 * necessarily be perfect. 300 */ 301 STATIC int 302 xlog_find_cycle_start( 303 struct xlog *log, 304 char *buffer, 305 xfs_daddr_t first_blk, 306 xfs_daddr_t *last_blk, 307 uint cycle) 308 { 309 char *offset; 310 xfs_daddr_t mid_blk; 311 xfs_daddr_t end_blk; 312 uint mid_cycle; 313 int error; 314 315 end_blk = *last_blk; 316 mid_blk = BLK_AVG(first_blk, end_blk); 317 while (mid_blk != first_blk && mid_blk != end_blk) { 318 error = xlog_bread(log, mid_blk, 1, buffer, &offset); 319 if (error) 320 return error; 321 mid_cycle = xlog_get_cycle(offset); 322 if (mid_cycle == cycle) 323 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 324 else 325 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 326 mid_blk = BLK_AVG(first_blk, end_blk); 327 } 328 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 329 (mid_blk == end_blk && mid_blk-1 == first_blk)); 330 331 *last_blk = end_blk; 332 333 return 0; 334 } 335 336 /* 337 * Check that a range of blocks does not contain stop_on_cycle_no. 338 * Fill in *new_blk with the block offset where such a block is 339 * found, or with -1 (an invalid block number) if there is no such 340 * block in the range. The scan needs to occur from front to back 341 * and the pointer into the region must be updated since a later 342 * routine will need to perform another test. 343 */ 344 STATIC int 345 xlog_find_verify_cycle( 346 struct xlog *log, 347 xfs_daddr_t start_blk, 348 int nbblks, 349 uint stop_on_cycle_no, 350 xfs_daddr_t *new_blk) 351 { 352 xfs_daddr_t i, j; 353 uint cycle; 354 char *buffer; 355 xfs_daddr_t bufblks; 356 char *buf = NULL; 357 int error = 0; 358 359 /* 360 * Greedily allocate a buffer big enough to handle the full 361 * range of basic blocks we'll be examining. If that fails, 362 * try a smaller size. We need to be able to read at least 363 * a log sector, or we're out of luck. 364 */ 365 bufblks = 1 << ffs(nbblks); 366 while (bufblks > log->l_logBBsize) 367 bufblks >>= 1; 368 while (!(buffer = xlog_alloc_buffer(log, bufblks))) { 369 bufblks >>= 1; 370 if (bufblks < log->l_sectBBsize) 371 return -ENOMEM; 372 } 373 374 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 375 int bcount; 376 377 bcount = min(bufblks, (start_blk + nbblks - i)); 378 379 error = xlog_bread(log, i, bcount, buffer, &buf); 380 if (error) 381 goto out; 382 383 for (j = 0; j < bcount; j++) { 384 cycle = xlog_get_cycle(buf); 385 if (cycle == stop_on_cycle_no) { 386 *new_blk = i+j; 387 goto out; 388 } 389 390 buf += BBSIZE; 391 } 392 } 393 394 *new_blk = -1; 395 396 out: 397 kmem_free(buffer); 398 return error; 399 } 400 401 /* 402 * Potentially backup over partial log record write. 403 * 404 * In the typical case, last_blk is the number of the block directly after 405 * a good log record. Therefore, we subtract one to get the block number 406 * of the last block in the given buffer. extra_bblks contains the number 407 * of blocks we would have read on a previous read. This happens when the 408 * last log record is split over the end of the physical log. 409 * 410 * extra_bblks is the number of blocks potentially verified on a previous 411 * call to this routine. 412 */ 413 STATIC int 414 xlog_find_verify_log_record( 415 struct xlog *log, 416 xfs_daddr_t start_blk, 417 xfs_daddr_t *last_blk, 418 int extra_bblks) 419 { 420 xfs_daddr_t i; 421 char *buffer; 422 char *offset = NULL; 423 xlog_rec_header_t *head = NULL; 424 int error = 0; 425 int smallmem = 0; 426 int num_blks = *last_blk - start_blk; 427 int xhdrs; 428 429 ASSERT(start_blk != 0 || *last_blk != start_blk); 430 431 buffer = xlog_alloc_buffer(log, num_blks); 432 if (!buffer) { 433 buffer = xlog_alloc_buffer(log, 1); 434 if (!buffer) 435 return -ENOMEM; 436 smallmem = 1; 437 } else { 438 error = xlog_bread(log, start_blk, num_blks, buffer, &offset); 439 if (error) 440 goto out; 441 offset += ((num_blks - 1) << BBSHIFT); 442 } 443 444 for (i = (*last_blk) - 1; i >= 0; i--) { 445 if (i < start_blk) { 446 /* valid log record not found */ 447 xfs_warn(log->l_mp, 448 "Log inconsistent (didn't find previous header)"); 449 ASSERT(0); 450 error = -EFSCORRUPTED; 451 goto out; 452 } 453 454 if (smallmem) { 455 error = xlog_bread(log, i, 1, buffer, &offset); 456 if (error) 457 goto out; 458 } 459 460 head = (xlog_rec_header_t *)offset; 461 462 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 463 break; 464 465 if (!smallmem) 466 offset -= BBSIZE; 467 } 468 469 /* 470 * We hit the beginning of the physical log & still no header. Return 471 * to caller. If caller can handle a return of -1, then this routine 472 * will be called again for the end of the physical log. 473 */ 474 if (i == -1) { 475 error = 1; 476 goto out; 477 } 478 479 /* 480 * We have the final block of the good log (the first block 481 * of the log record _before_ the head. So we check the uuid. 482 */ 483 if ((error = xlog_header_check_mount(log->l_mp, head))) 484 goto out; 485 486 /* 487 * We may have found a log record header before we expected one. 488 * last_blk will be the 1st block # with a given cycle #. We may end 489 * up reading an entire log record. In this case, we don't want to 490 * reset last_blk. Only when last_blk points in the middle of a log 491 * record do we update last_blk. 492 */ 493 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 494 uint h_size = be32_to_cpu(head->h_size); 495 496 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 497 if (h_size % XLOG_HEADER_CYCLE_SIZE) 498 xhdrs++; 499 } else { 500 xhdrs = 1; 501 } 502 503 if (*last_blk - i + extra_bblks != 504 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 505 *last_blk = i; 506 507 out: 508 kmem_free(buffer); 509 return error; 510 } 511 512 /* 513 * Head is defined to be the point of the log where the next log write 514 * could go. This means that incomplete LR writes at the end are 515 * eliminated when calculating the head. We aren't guaranteed that previous 516 * LR have complete transactions. We only know that a cycle number of 517 * current cycle number -1 won't be present in the log if we start writing 518 * from our current block number. 519 * 520 * last_blk contains the block number of the first block with a given 521 * cycle number. 522 * 523 * Return: zero if normal, non-zero if error. 524 */ 525 STATIC int 526 xlog_find_head( 527 struct xlog *log, 528 xfs_daddr_t *return_head_blk) 529 { 530 char *buffer; 531 char *offset; 532 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 533 int num_scan_bblks; 534 uint first_half_cycle, last_half_cycle; 535 uint stop_on_cycle; 536 int error, log_bbnum = log->l_logBBsize; 537 538 /* Is the end of the log device zeroed? */ 539 error = xlog_find_zeroed(log, &first_blk); 540 if (error < 0) { 541 xfs_warn(log->l_mp, "empty log check failed"); 542 return error; 543 } 544 if (error == 1) { 545 *return_head_blk = first_blk; 546 547 /* Is the whole lot zeroed? */ 548 if (!first_blk) { 549 /* Linux XFS shouldn't generate totally zeroed logs - 550 * mkfs etc write a dummy unmount record to a fresh 551 * log so we can store the uuid in there 552 */ 553 xfs_warn(log->l_mp, "totally zeroed log"); 554 } 555 556 return 0; 557 } 558 559 first_blk = 0; /* get cycle # of 1st block */ 560 buffer = xlog_alloc_buffer(log, 1); 561 if (!buffer) 562 return -ENOMEM; 563 564 error = xlog_bread(log, 0, 1, buffer, &offset); 565 if (error) 566 goto out_free_buffer; 567 568 first_half_cycle = xlog_get_cycle(offset); 569 570 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 571 error = xlog_bread(log, last_blk, 1, buffer, &offset); 572 if (error) 573 goto out_free_buffer; 574 575 last_half_cycle = xlog_get_cycle(offset); 576 ASSERT(last_half_cycle != 0); 577 578 /* 579 * If the 1st half cycle number is equal to the last half cycle number, 580 * then the entire log is stamped with the same cycle number. In this 581 * case, head_blk can't be set to zero (which makes sense). The below 582 * math doesn't work out properly with head_blk equal to zero. Instead, 583 * we set it to log_bbnum which is an invalid block number, but this 584 * value makes the math correct. If head_blk doesn't changed through 585 * all the tests below, *head_blk is set to zero at the very end rather 586 * than log_bbnum. In a sense, log_bbnum and zero are the same block 587 * in a circular file. 588 */ 589 if (first_half_cycle == last_half_cycle) { 590 /* 591 * In this case we believe that the entire log should have 592 * cycle number last_half_cycle. We need to scan backwards 593 * from the end verifying that there are no holes still 594 * containing last_half_cycle - 1. If we find such a hole, 595 * then the start of that hole will be the new head. The 596 * simple case looks like 597 * x | x ... | x - 1 | x 598 * Another case that fits this picture would be 599 * x | x + 1 | x ... | x 600 * In this case the head really is somewhere at the end of the 601 * log, as one of the latest writes at the beginning was 602 * incomplete. 603 * One more case is 604 * x | x + 1 | x ... | x - 1 | x 605 * This is really the combination of the above two cases, and 606 * the head has to end up at the start of the x-1 hole at the 607 * end of the log. 608 * 609 * In the 256k log case, we will read from the beginning to the 610 * end of the log and search for cycle numbers equal to x-1. 611 * We don't worry about the x+1 blocks that we encounter, 612 * because we know that they cannot be the head since the log 613 * started with x. 614 */ 615 head_blk = log_bbnum; 616 stop_on_cycle = last_half_cycle - 1; 617 } else { 618 /* 619 * In this case we want to find the first block with cycle 620 * number matching last_half_cycle. We expect the log to be 621 * some variation on 622 * x + 1 ... | x ... | x 623 * The first block with cycle number x (last_half_cycle) will 624 * be where the new head belongs. First we do a binary search 625 * for the first occurrence of last_half_cycle. The binary 626 * search may not be totally accurate, so then we scan back 627 * from there looking for occurrences of last_half_cycle before 628 * us. If that backwards scan wraps around the beginning of 629 * the log, then we look for occurrences of last_half_cycle - 1 630 * at the end of the log. The cases we're looking for look 631 * like 632 * v binary search stopped here 633 * x + 1 ... | x | x + 1 | x ... | x 634 * ^ but we want to locate this spot 635 * or 636 * <---------> less than scan distance 637 * x + 1 ... | x ... | x - 1 | x 638 * ^ we want to locate this spot 639 */ 640 stop_on_cycle = last_half_cycle; 641 error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk, 642 last_half_cycle); 643 if (error) 644 goto out_free_buffer; 645 } 646 647 /* 648 * Now validate the answer. Scan back some number of maximum possible 649 * blocks and make sure each one has the expected cycle number. The 650 * maximum is determined by the total possible amount of buffering 651 * in the in-core log. The following number can be made tighter if 652 * we actually look at the block size of the filesystem. 653 */ 654 num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log)); 655 if (head_blk >= num_scan_bblks) { 656 /* 657 * We are guaranteed that the entire check can be performed 658 * in one buffer. 659 */ 660 start_blk = head_blk - num_scan_bblks; 661 if ((error = xlog_find_verify_cycle(log, 662 start_blk, num_scan_bblks, 663 stop_on_cycle, &new_blk))) 664 goto out_free_buffer; 665 if (new_blk != -1) 666 head_blk = new_blk; 667 } else { /* need to read 2 parts of log */ 668 /* 669 * We are going to scan backwards in the log in two parts. 670 * First we scan the physical end of the log. In this part 671 * of the log, we are looking for blocks with cycle number 672 * last_half_cycle - 1. 673 * If we find one, then we know that the log starts there, as 674 * we've found a hole that didn't get written in going around 675 * the end of the physical log. The simple case for this is 676 * x + 1 ... | x ... | x - 1 | x 677 * <---------> less than scan distance 678 * If all of the blocks at the end of the log have cycle number 679 * last_half_cycle, then we check the blocks at the start of 680 * the log looking for occurrences of last_half_cycle. If we 681 * find one, then our current estimate for the location of the 682 * first occurrence of last_half_cycle is wrong and we move 683 * back to the hole we've found. This case looks like 684 * x + 1 ... | x | x + 1 | x ... 685 * ^ binary search stopped here 686 * Another case we need to handle that only occurs in 256k 687 * logs is 688 * x + 1 ... | x ... | x+1 | x ... 689 * ^ binary search stops here 690 * In a 256k log, the scan at the end of the log will see the 691 * x + 1 blocks. We need to skip past those since that is 692 * certainly not the head of the log. By searching for 693 * last_half_cycle-1 we accomplish that. 694 */ 695 ASSERT(head_blk <= INT_MAX && 696 (xfs_daddr_t) num_scan_bblks >= head_blk); 697 start_blk = log_bbnum - (num_scan_bblks - head_blk); 698 if ((error = xlog_find_verify_cycle(log, start_blk, 699 num_scan_bblks - (int)head_blk, 700 (stop_on_cycle - 1), &new_blk))) 701 goto out_free_buffer; 702 if (new_blk != -1) { 703 head_blk = new_blk; 704 goto validate_head; 705 } 706 707 /* 708 * Scan beginning of log now. The last part of the physical 709 * log is good. This scan needs to verify that it doesn't find 710 * the last_half_cycle. 711 */ 712 start_blk = 0; 713 ASSERT(head_blk <= INT_MAX); 714 if ((error = xlog_find_verify_cycle(log, 715 start_blk, (int)head_blk, 716 stop_on_cycle, &new_blk))) 717 goto out_free_buffer; 718 if (new_blk != -1) 719 head_blk = new_blk; 720 } 721 722 validate_head: 723 /* 724 * Now we need to make sure head_blk is not pointing to a block in 725 * the middle of a log record. 726 */ 727 num_scan_bblks = XLOG_REC_SHIFT(log); 728 if (head_blk >= num_scan_bblks) { 729 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 730 731 /* start ptr at last block ptr before head_blk */ 732 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 733 if (error == 1) 734 error = -EIO; 735 if (error) 736 goto out_free_buffer; 737 } else { 738 start_blk = 0; 739 ASSERT(head_blk <= INT_MAX); 740 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 741 if (error < 0) 742 goto out_free_buffer; 743 if (error == 1) { 744 /* We hit the beginning of the log during our search */ 745 start_blk = log_bbnum - (num_scan_bblks - head_blk); 746 new_blk = log_bbnum; 747 ASSERT(start_blk <= INT_MAX && 748 (xfs_daddr_t) log_bbnum-start_blk >= 0); 749 ASSERT(head_blk <= INT_MAX); 750 error = xlog_find_verify_log_record(log, start_blk, 751 &new_blk, (int)head_blk); 752 if (error == 1) 753 error = -EIO; 754 if (error) 755 goto out_free_buffer; 756 if (new_blk != log_bbnum) 757 head_blk = new_blk; 758 } else if (error) 759 goto out_free_buffer; 760 } 761 762 kmem_free(buffer); 763 if (head_blk == log_bbnum) 764 *return_head_blk = 0; 765 else 766 *return_head_blk = head_blk; 767 /* 768 * When returning here, we have a good block number. Bad block 769 * means that during a previous crash, we didn't have a clean break 770 * from cycle number N to cycle number N-1. In this case, we need 771 * to find the first block with cycle number N-1. 772 */ 773 return 0; 774 775 out_free_buffer: 776 kmem_free(buffer); 777 if (error) 778 xfs_warn(log->l_mp, "failed to find log head"); 779 return error; 780 } 781 782 /* 783 * Seek backwards in the log for log record headers. 784 * 785 * Given a starting log block, walk backwards until we find the provided number 786 * of records or hit the provided tail block. The return value is the number of 787 * records encountered or a negative error code. The log block and buffer 788 * pointer of the last record seen are returned in rblk and rhead respectively. 789 */ 790 STATIC int 791 xlog_rseek_logrec_hdr( 792 struct xlog *log, 793 xfs_daddr_t head_blk, 794 xfs_daddr_t tail_blk, 795 int count, 796 char *buffer, 797 xfs_daddr_t *rblk, 798 struct xlog_rec_header **rhead, 799 bool *wrapped) 800 { 801 int i; 802 int error; 803 int found = 0; 804 char *offset = NULL; 805 xfs_daddr_t end_blk; 806 807 *wrapped = false; 808 809 /* 810 * Walk backwards from the head block until we hit the tail or the first 811 * block in the log. 812 */ 813 end_blk = head_blk > tail_blk ? tail_blk : 0; 814 for (i = (int) head_blk - 1; i >= end_blk; i--) { 815 error = xlog_bread(log, i, 1, buffer, &offset); 816 if (error) 817 goto out_error; 818 819 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 820 *rblk = i; 821 *rhead = (struct xlog_rec_header *) offset; 822 if (++found == count) 823 break; 824 } 825 } 826 827 /* 828 * If we haven't hit the tail block or the log record header count, 829 * start looking again from the end of the physical log. Note that 830 * callers can pass head == tail if the tail is not yet known. 831 */ 832 if (tail_blk >= head_blk && found != count) { 833 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) { 834 error = xlog_bread(log, i, 1, buffer, &offset); 835 if (error) 836 goto out_error; 837 838 if (*(__be32 *)offset == 839 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 840 *wrapped = true; 841 *rblk = i; 842 *rhead = (struct xlog_rec_header *) offset; 843 if (++found == count) 844 break; 845 } 846 } 847 } 848 849 return found; 850 851 out_error: 852 return error; 853 } 854 855 /* 856 * Seek forward in the log for log record headers. 857 * 858 * Given head and tail blocks, walk forward from the tail block until we find 859 * the provided number of records or hit the head block. The return value is the 860 * number of records encountered or a negative error code. The log block and 861 * buffer pointer of the last record seen are returned in rblk and rhead 862 * respectively. 863 */ 864 STATIC int 865 xlog_seek_logrec_hdr( 866 struct xlog *log, 867 xfs_daddr_t head_blk, 868 xfs_daddr_t tail_blk, 869 int count, 870 char *buffer, 871 xfs_daddr_t *rblk, 872 struct xlog_rec_header **rhead, 873 bool *wrapped) 874 { 875 int i; 876 int error; 877 int found = 0; 878 char *offset = NULL; 879 xfs_daddr_t end_blk; 880 881 *wrapped = false; 882 883 /* 884 * Walk forward from the tail block until we hit the head or the last 885 * block in the log. 886 */ 887 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1; 888 for (i = (int) tail_blk; i <= end_blk; i++) { 889 error = xlog_bread(log, i, 1, buffer, &offset); 890 if (error) 891 goto out_error; 892 893 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 894 *rblk = i; 895 *rhead = (struct xlog_rec_header *) offset; 896 if (++found == count) 897 break; 898 } 899 } 900 901 /* 902 * If we haven't hit the head block or the log record header count, 903 * start looking again from the start of the physical log. 904 */ 905 if (tail_blk > head_blk && found != count) { 906 for (i = 0; i < (int) head_blk; i++) { 907 error = xlog_bread(log, i, 1, buffer, &offset); 908 if (error) 909 goto out_error; 910 911 if (*(__be32 *)offset == 912 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 913 *wrapped = true; 914 *rblk = i; 915 *rhead = (struct xlog_rec_header *) offset; 916 if (++found == count) 917 break; 918 } 919 } 920 } 921 922 return found; 923 924 out_error: 925 return error; 926 } 927 928 /* 929 * Calculate distance from head to tail (i.e., unused space in the log). 930 */ 931 static inline int 932 xlog_tail_distance( 933 struct xlog *log, 934 xfs_daddr_t head_blk, 935 xfs_daddr_t tail_blk) 936 { 937 if (head_blk < tail_blk) 938 return tail_blk - head_blk; 939 940 return tail_blk + (log->l_logBBsize - head_blk); 941 } 942 943 /* 944 * Verify the log tail. This is particularly important when torn or incomplete 945 * writes have been detected near the front of the log and the head has been 946 * walked back accordingly. 947 * 948 * We also have to handle the case where the tail was pinned and the head 949 * blocked behind the tail right before a crash. If the tail had been pushed 950 * immediately prior to the crash and the subsequent checkpoint was only 951 * partially written, it's possible it overwrote the last referenced tail in the 952 * log with garbage. This is not a coherency problem because the tail must have 953 * been pushed before it can be overwritten, but appears as log corruption to 954 * recovery because we have no way to know the tail was updated if the 955 * subsequent checkpoint didn't write successfully. 956 * 957 * Therefore, CRC check the log from tail to head. If a failure occurs and the 958 * offending record is within max iclog bufs from the head, walk the tail 959 * forward and retry until a valid tail is found or corruption is detected out 960 * of the range of a possible overwrite. 961 */ 962 STATIC int 963 xlog_verify_tail( 964 struct xlog *log, 965 xfs_daddr_t head_blk, 966 xfs_daddr_t *tail_blk, 967 int hsize) 968 { 969 struct xlog_rec_header *thead; 970 char *buffer; 971 xfs_daddr_t first_bad; 972 int error = 0; 973 bool wrapped; 974 xfs_daddr_t tmp_tail; 975 xfs_daddr_t orig_tail = *tail_blk; 976 977 buffer = xlog_alloc_buffer(log, 1); 978 if (!buffer) 979 return -ENOMEM; 980 981 /* 982 * Make sure the tail points to a record (returns positive count on 983 * success). 984 */ 985 error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer, 986 &tmp_tail, &thead, &wrapped); 987 if (error < 0) 988 goto out; 989 if (*tail_blk != tmp_tail) 990 *tail_blk = tmp_tail; 991 992 /* 993 * Run a CRC check from the tail to the head. We can't just check 994 * MAX_ICLOGS records past the tail because the tail may point to stale 995 * blocks cleared during the search for the head/tail. These blocks are 996 * overwritten with zero-length records and thus record count is not a 997 * reliable indicator of the iclog state before a crash. 998 */ 999 first_bad = 0; 1000 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 1001 XLOG_RECOVER_CRCPASS, &first_bad); 1002 while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 1003 int tail_distance; 1004 1005 /* 1006 * Is corruption within range of the head? If so, retry from 1007 * the next record. Otherwise return an error. 1008 */ 1009 tail_distance = xlog_tail_distance(log, head_blk, first_bad); 1010 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize)) 1011 break; 1012 1013 /* skip to the next record; returns positive count on success */ 1014 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, 1015 buffer, &tmp_tail, &thead, &wrapped); 1016 if (error < 0) 1017 goto out; 1018 1019 *tail_blk = tmp_tail; 1020 first_bad = 0; 1021 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 1022 XLOG_RECOVER_CRCPASS, &first_bad); 1023 } 1024 1025 if (!error && *tail_blk != orig_tail) 1026 xfs_warn(log->l_mp, 1027 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx", 1028 orig_tail, *tail_blk); 1029 out: 1030 kmem_free(buffer); 1031 return error; 1032 } 1033 1034 /* 1035 * Detect and trim torn writes from the head of the log. 1036 * 1037 * Storage without sector atomicity guarantees can result in torn writes in the 1038 * log in the event of a crash. Our only means to detect this scenario is via 1039 * CRC verification. While we can't always be certain that CRC verification 1040 * failure is due to a torn write vs. an unrelated corruption, we do know that 1041 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at 1042 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of 1043 * the log and treat failures in this range as torn writes as a matter of 1044 * policy. In the event of CRC failure, the head is walked back to the last good 1045 * record in the log and the tail is updated from that record and verified. 1046 */ 1047 STATIC int 1048 xlog_verify_head( 1049 struct xlog *log, 1050 xfs_daddr_t *head_blk, /* in/out: unverified head */ 1051 xfs_daddr_t *tail_blk, /* out: tail block */ 1052 char *buffer, 1053 xfs_daddr_t *rhead_blk, /* start blk of last record */ 1054 struct xlog_rec_header **rhead, /* ptr to last record */ 1055 bool *wrapped) /* last rec. wraps phys. log */ 1056 { 1057 struct xlog_rec_header *tmp_rhead; 1058 char *tmp_buffer; 1059 xfs_daddr_t first_bad; 1060 xfs_daddr_t tmp_rhead_blk; 1061 int found; 1062 int error; 1063 bool tmp_wrapped; 1064 1065 /* 1066 * Check the head of the log for torn writes. Search backwards from the 1067 * head until we hit the tail or the maximum number of log record I/Os 1068 * that could have been in flight at one time. Use a temporary buffer so 1069 * we don't trash the rhead/buffer pointers from the caller. 1070 */ 1071 tmp_buffer = xlog_alloc_buffer(log, 1); 1072 if (!tmp_buffer) 1073 return -ENOMEM; 1074 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk, 1075 XLOG_MAX_ICLOGS, tmp_buffer, 1076 &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped); 1077 kmem_free(tmp_buffer); 1078 if (error < 0) 1079 return error; 1080 1081 /* 1082 * Now run a CRC verification pass over the records starting at the 1083 * block found above to the current head. If a CRC failure occurs, the 1084 * log block of the first bad record is saved in first_bad. 1085 */ 1086 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk, 1087 XLOG_RECOVER_CRCPASS, &first_bad); 1088 if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 1089 /* 1090 * We've hit a potential torn write. Reset the error and warn 1091 * about it. 1092 */ 1093 error = 0; 1094 xfs_warn(log->l_mp, 1095 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.", 1096 first_bad, *head_blk); 1097 1098 /* 1099 * Get the header block and buffer pointer for the last good 1100 * record before the bad record. 1101 * 1102 * Note that xlog_find_tail() clears the blocks at the new head 1103 * (i.e., the records with invalid CRC) if the cycle number 1104 * matches the the current cycle. 1105 */ 1106 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, 1107 buffer, rhead_blk, rhead, wrapped); 1108 if (found < 0) 1109 return found; 1110 if (found == 0) /* XXX: right thing to do here? */ 1111 return -EIO; 1112 1113 /* 1114 * Reset the head block to the starting block of the first bad 1115 * log record and set the tail block based on the last good 1116 * record. 1117 * 1118 * Bail out if the updated head/tail match as this indicates 1119 * possible corruption outside of the acceptable 1120 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair... 1121 */ 1122 *head_blk = first_bad; 1123 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn)); 1124 if (*head_blk == *tail_blk) { 1125 ASSERT(0); 1126 return 0; 1127 } 1128 } 1129 if (error) 1130 return error; 1131 1132 return xlog_verify_tail(log, *head_blk, tail_blk, 1133 be32_to_cpu((*rhead)->h_size)); 1134 } 1135 1136 /* 1137 * We need to make sure we handle log wrapping properly, so we can't use the 1138 * calculated logbno directly. Make sure it wraps to the correct bno inside the 1139 * log. 1140 * 1141 * The log is limited to 32 bit sizes, so we use the appropriate modulus 1142 * operation here and cast it back to a 64 bit daddr on return. 1143 */ 1144 static inline xfs_daddr_t 1145 xlog_wrap_logbno( 1146 struct xlog *log, 1147 xfs_daddr_t bno) 1148 { 1149 int mod; 1150 1151 div_s64_rem(bno, log->l_logBBsize, &mod); 1152 return mod; 1153 } 1154 1155 /* 1156 * Check whether the head of the log points to an unmount record. In other 1157 * words, determine whether the log is clean. If so, update the in-core state 1158 * appropriately. 1159 */ 1160 static int 1161 xlog_check_unmount_rec( 1162 struct xlog *log, 1163 xfs_daddr_t *head_blk, 1164 xfs_daddr_t *tail_blk, 1165 struct xlog_rec_header *rhead, 1166 xfs_daddr_t rhead_blk, 1167 char *buffer, 1168 bool *clean) 1169 { 1170 struct xlog_op_header *op_head; 1171 xfs_daddr_t umount_data_blk; 1172 xfs_daddr_t after_umount_blk; 1173 int hblks; 1174 int error; 1175 char *offset; 1176 1177 *clean = false; 1178 1179 /* 1180 * Look for unmount record. If we find it, then we know there was a 1181 * clean unmount. Since 'i' could be the last block in the physical 1182 * log, we convert to a log block before comparing to the head_blk. 1183 * 1184 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks() 1185 * below. We won't want to clear the unmount record if there is one, so 1186 * we pass the lsn of the unmount record rather than the block after it. 1187 */ 1188 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1189 int h_size = be32_to_cpu(rhead->h_size); 1190 int h_version = be32_to_cpu(rhead->h_version); 1191 1192 if ((h_version & XLOG_VERSION_2) && 1193 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 1194 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 1195 if (h_size % XLOG_HEADER_CYCLE_SIZE) 1196 hblks++; 1197 } else { 1198 hblks = 1; 1199 } 1200 } else { 1201 hblks = 1; 1202 } 1203 1204 after_umount_blk = xlog_wrap_logbno(log, 1205 rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len))); 1206 1207 if (*head_blk == after_umount_blk && 1208 be32_to_cpu(rhead->h_num_logops) == 1) { 1209 umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks); 1210 error = xlog_bread(log, umount_data_blk, 1, buffer, &offset); 1211 if (error) 1212 return error; 1213 1214 op_head = (struct xlog_op_header *)offset; 1215 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 1216 /* 1217 * Set tail and last sync so that newly written log 1218 * records will point recovery to after the current 1219 * unmount record. 1220 */ 1221 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1222 log->l_curr_cycle, after_umount_blk); 1223 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1224 log->l_curr_cycle, after_umount_blk); 1225 *tail_blk = after_umount_blk; 1226 1227 *clean = true; 1228 } 1229 } 1230 1231 return 0; 1232 } 1233 1234 static void 1235 xlog_set_state( 1236 struct xlog *log, 1237 xfs_daddr_t head_blk, 1238 struct xlog_rec_header *rhead, 1239 xfs_daddr_t rhead_blk, 1240 bool bump_cycle) 1241 { 1242 /* 1243 * Reset log values according to the state of the log when we 1244 * crashed. In the case where head_blk == 0, we bump curr_cycle 1245 * one because the next write starts a new cycle rather than 1246 * continuing the cycle of the last good log record. At this 1247 * point we have guaranteed that all partial log records have been 1248 * accounted for. Therefore, we know that the last good log record 1249 * written was complete and ended exactly on the end boundary 1250 * of the physical log. 1251 */ 1252 log->l_prev_block = rhead_blk; 1253 log->l_curr_block = (int)head_blk; 1254 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 1255 if (bump_cycle) 1256 log->l_curr_cycle++; 1257 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); 1258 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); 1259 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, 1260 BBTOB(log->l_curr_block)); 1261 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, 1262 BBTOB(log->l_curr_block)); 1263 } 1264 1265 /* 1266 * Find the sync block number or the tail of the log. 1267 * 1268 * This will be the block number of the last record to have its 1269 * associated buffers synced to disk. Every log record header has 1270 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 1271 * to get a sync block number. The only concern is to figure out which 1272 * log record header to believe. 1273 * 1274 * The following algorithm uses the log record header with the largest 1275 * lsn. The entire log record does not need to be valid. We only care 1276 * that the header is valid. 1277 * 1278 * We could speed up search by using current head_blk buffer, but it is not 1279 * available. 1280 */ 1281 STATIC int 1282 xlog_find_tail( 1283 struct xlog *log, 1284 xfs_daddr_t *head_blk, 1285 xfs_daddr_t *tail_blk) 1286 { 1287 xlog_rec_header_t *rhead; 1288 char *offset = NULL; 1289 char *buffer; 1290 int error; 1291 xfs_daddr_t rhead_blk; 1292 xfs_lsn_t tail_lsn; 1293 bool wrapped = false; 1294 bool clean = false; 1295 1296 /* 1297 * Find previous log record 1298 */ 1299 if ((error = xlog_find_head(log, head_blk))) 1300 return error; 1301 ASSERT(*head_blk < INT_MAX); 1302 1303 buffer = xlog_alloc_buffer(log, 1); 1304 if (!buffer) 1305 return -ENOMEM; 1306 if (*head_blk == 0) { /* special case */ 1307 error = xlog_bread(log, 0, 1, buffer, &offset); 1308 if (error) 1309 goto done; 1310 1311 if (xlog_get_cycle(offset) == 0) { 1312 *tail_blk = 0; 1313 /* leave all other log inited values alone */ 1314 goto done; 1315 } 1316 } 1317 1318 /* 1319 * Search backwards through the log looking for the log record header 1320 * block. This wraps all the way back around to the head so something is 1321 * seriously wrong if we can't find it. 1322 */ 1323 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer, 1324 &rhead_blk, &rhead, &wrapped); 1325 if (error < 0) 1326 goto done; 1327 if (!error) { 1328 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); 1329 error = -EFSCORRUPTED; 1330 goto done; 1331 } 1332 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 1333 1334 /* 1335 * Set the log state based on the current head record. 1336 */ 1337 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped); 1338 tail_lsn = atomic64_read(&log->l_tail_lsn); 1339 1340 /* 1341 * Look for an unmount record at the head of the log. This sets the log 1342 * state to determine whether recovery is necessary. 1343 */ 1344 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead, 1345 rhead_blk, buffer, &clean); 1346 if (error) 1347 goto done; 1348 1349 /* 1350 * Verify the log head if the log is not clean (e.g., we have anything 1351 * but an unmount record at the head). This uses CRC verification to 1352 * detect and trim torn writes. If discovered, CRC failures are 1353 * considered torn writes and the log head is trimmed accordingly. 1354 * 1355 * Note that we can only run CRC verification when the log is dirty 1356 * because there's no guarantee that the log data behind an unmount 1357 * record is compatible with the current architecture. 1358 */ 1359 if (!clean) { 1360 xfs_daddr_t orig_head = *head_blk; 1361 1362 error = xlog_verify_head(log, head_blk, tail_blk, buffer, 1363 &rhead_blk, &rhead, &wrapped); 1364 if (error) 1365 goto done; 1366 1367 /* update in-core state again if the head changed */ 1368 if (*head_blk != orig_head) { 1369 xlog_set_state(log, *head_blk, rhead, rhead_blk, 1370 wrapped); 1371 tail_lsn = atomic64_read(&log->l_tail_lsn); 1372 error = xlog_check_unmount_rec(log, head_blk, tail_blk, 1373 rhead, rhead_blk, buffer, 1374 &clean); 1375 if (error) 1376 goto done; 1377 } 1378 } 1379 1380 /* 1381 * Note that the unmount was clean. If the unmount was not clean, we 1382 * need to know this to rebuild the superblock counters from the perag 1383 * headers if we have a filesystem using non-persistent counters. 1384 */ 1385 if (clean) 1386 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 1387 1388 /* 1389 * Make sure that there are no blocks in front of the head 1390 * with the same cycle number as the head. This can happen 1391 * because we allow multiple outstanding log writes concurrently, 1392 * and the later writes might make it out before earlier ones. 1393 * 1394 * We use the lsn from before modifying it so that we'll never 1395 * overwrite the unmount record after a clean unmount. 1396 * 1397 * Do this only if we are going to recover the filesystem 1398 * 1399 * NOTE: This used to say "if (!readonly)" 1400 * However on Linux, we can & do recover a read-only filesystem. 1401 * We only skip recovery if NORECOVERY is specified on mount, 1402 * in which case we would not be here. 1403 * 1404 * But... if the -device- itself is readonly, just skip this. 1405 * We can't recover this device anyway, so it won't matter. 1406 */ 1407 if (!xfs_readonly_buftarg(log->l_targ)) 1408 error = xlog_clear_stale_blocks(log, tail_lsn); 1409 1410 done: 1411 kmem_free(buffer); 1412 1413 if (error) 1414 xfs_warn(log->l_mp, "failed to locate log tail"); 1415 return error; 1416 } 1417 1418 /* 1419 * Is the log zeroed at all? 1420 * 1421 * The last binary search should be changed to perform an X block read 1422 * once X becomes small enough. You can then search linearly through 1423 * the X blocks. This will cut down on the number of reads we need to do. 1424 * 1425 * If the log is partially zeroed, this routine will pass back the blkno 1426 * of the first block with cycle number 0. It won't have a complete LR 1427 * preceding it. 1428 * 1429 * Return: 1430 * 0 => the log is completely written to 1431 * 1 => use *blk_no as the first block of the log 1432 * <0 => error has occurred 1433 */ 1434 STATIC int 1435 xlog_find_zeroed( 1436 struct xlog *log, 1437 xfs_daddr_t *blk_no) 1438 { 1439 char *buffer; 1440 char *offset; 1441 uint first_cycle, last_cycle; 1442 xfs_daddr_t new_blk, last_blk, start_blk; 1443 xfs_daddr_t num_scan_bblks; 1444 int error, log_bbnum = log->l_logBBsize; 1445 1446 *blk_no = 0; 1447 1448 /* check totally zeroed log */ 1449 buffer = xlog_alloc_buffer(log, 1); 1450 if (!buffer) 1451 return -ENOMEM; 1452 error = xlog_bread(log, 0, 1, buffer, &offset); 1453 if (error) 1454 goto out_free_buffer; 1455 1456 first_cycle = xlog_get_cycle(offset); 1457 if (first_cycle == 0) { /* completely zeroed log */ 1458 *blk_no = 0; 1459 kmem_free(buffer); 1460 return 1; 1461 } 1462 1463 /* check partially zeroed log */ 1464 error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset); 1465 if (error) 1466 goto out_free_buffer; 1467 1468 last_cycle = xlog_get_cycle(offset); 1469 if (last_cycle != 0) { /* log completely written to */ 1470 kmem_free(buffer); 1471 return 0; 1472 } 1473 1474 /* we have a partially zeroed log */ 1475 last_blk = log_bbnum-1; 1476 error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0); 1477 if (error) 1478 goto out_free_buffer; 1479 1480 /* 1481 * Validate the answer. Because there is no way to guarantee that 1482 * the entire log is made up of log records which are the same size, 1483 * we scan over the defined maximum blocks. At this point, the maximum 1484 * is not chosen to mean anything special. XXXmiken 1485 */ 1486 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1487 ASSERT(num_scan_bblks <= INT_MAX); 1488 1489 if (last_blk < num_scan_bblks) 1490 num_scan_bblks = last_blk; 1491 start_blk = last_blk - num_scan_bblks; 1492 1493 /* 1494 * We search for any instances of cycle number 0 that occur before 1495 * our current estimate of the head. What we're trying to detect is 1496 * 1 ... | 0 | 1 | 0... 1497 * ^ binary search ends here 1498 */ 1499 if ((error = xlog_find_verify_cycle(log, start_blk, 1500 (int)num_scan_bblks, 0, &new_blk))) 1501 goto out_free_buffer; 1502 if (new_blk != -1) 1503 last_blk = new_blk; 1504 1505 /* 1506 * Potentially backup over partial log record write. We don't need 1507 * to search the end of the log because we know it is zero. 1508 */ 1509 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0); 1510 if (error == 1) 1511 error = -EIO; 1512 if (error) 1513 goto out_free_buffer; 1514 1515 *blk_no = last_blk; 1516 out_free_buffer: 1517 kmem_free(buffer); 1518 if (error) 1519 return error; 1520 return 1; 1521 } 1522 1523 /* 1524 * These are simple subroutines used by xlog_clear_stale_blocks() below 1525 * to initialize a buffer full of empty log record headers and write 1526 * them into the log. 1527 */ 1528 STATIC void 1529 xlog_add_record( 1530 struct xlog *log, 1531 char *buf, 1532 int cycle, 1533 int block, 1534 int tail_cycle, 1535 int tail_block) 1536 { 1537 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1538 1539 memset(buf, 0, BBSIZE); 1540 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1541 recp->h_cycle = cpu_to_be32(cycle); 1542 recp->h_version = cpu_to_be32( 1543 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1544 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1545 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1546 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1547 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1548 } 1549 1550 STATIC int 1551 xlog_write_log_records( 1552 struct xlog *log, 1553 int cycle, 1554 int start_block, 1555 int blocks, 1556 int tail_cycle, 1557 int tail_block) 1558 { 1559 char *offset; 1560 char *buffer; 1561 int balign, ealign; 1562 int sectbb = log->l_sectBBsize; 1563 int end_block = start_block + blocks; 1564 int bufblks; 1565 int error = 0; 1566 int i, j = 0; 1567 1568 /* 1569 * Greedily allocate a buffer big enough to handle the full 1570 * range of basic blocks to be written. If that fails, try 1571 * a smaller size. We need to be able to write at least a 1572 * log sector, or we're out of luck. 1573 */ 1574 bufblks = 1 << ffs(blocks); 1575 while (bufblks > log->l_logBBsize) 1576 bufblks >>= 1; 1577 while (!(buffer = xlog_alloc_buffer(log, bufblks))) { 1578 bufblks >>= 1; 1579 if (bufblks < sectbb) 1580 return -ENOMEM; 1581 } 1582 1583 /* We may need to do a read at the start to fill in part of 1584 * the buffer in the starting sector not covered by the first 1585 * write below. 1586 */ 1587 balign = round_down(start_block, sectbb); 1588 if (balign != start_block) { 1589 error = xlog_bread_noalign(log, start_block, 1, buffer); 1590 if (error) 1591 goto out_free_buffer; 1592 1593 j = start_block - balign; 1594 } 1595 1596 for (i = start_block; i < end_block; i += bufblks) { 1597 int bcount, endcount; 1598 1599 bcount = min(bufblks, end_block - start_block); 1600 endcount = bcount - j; 1601 1602 /* We may need to do a read at the end to fill in part of 1603 * the buffer in the final sector not covered by the write. 1604 * If this is the same sector as the above read, skip it. 1605 */ 1606 ealign = round_down(end_block, sectbb); 1607 if (j == 0 && (start_block + endcount > ealign)) { 1608 error = xlog_bread_noalign(log, ealign, sectbb, 1609 buffer + BBTOB(ealign - start_block)); 1610 if (error) 1611 break; 1612 1613 } 1614 1615 offset = buffer + xlog_align(log, start_block); 1616 for (; j < endcount; j++) { 1617 xlog_add_record(log, offset, cycle, i+j, 1618 tail_cycle, tail_block); 1619 offset += BBSIZE; 1620 } 1621 error = xlog_bwrite(log, start_block, endcount, buffer); 1622 if (error) 1623 break; 1624 start_block += endcount; 1625 j = 0; 1626 } 1627 1628 out_free_buffer: 1629 kmem_free(buffer); 1630 return error; 1631 } 1632 1633 /* 1634 * This routine is called to blow away any incomplete log writes out 1635 * in front of the log head. We do this so that we won't become confused 1636 * if we come up, write only a little bit more, and then crash again. 1637 * If we leave the partial log records out there, this situation could 1638 * cause us to think those partial writes are valid blocks since they 1639 * have the current cycle number. We get rid of them by overwriting them 1640 * with empty log records with the old cycle number rather than the 1641 * current one. 1642 * 1643 * The tail lsn is passed in rather than taken from 1644 * the log so that we will not write over the unmount record after a 1645 * clean unmount in a 512 block log. Doing so would leave the log without 1646 * any valid log records in it until a new one was written. If we crashed 1647 * during that time we would not be able to recover. 1648 */ 1649 STATIC int 1650 xlog_clear_stale_blocks( 1651 struct xlog *log, 1652 xfs_lsn_t tail_lsn) 1653 { 1654 int tail_cycle, head_cycle; 1655 int tail_block, head_block; 1656 int tail_distance, max_distance; 1657 int distance; 1658 int error; 1659 1660 tail_cycle = CYCLE_LSN(tail_lsn); 1661 tail_block = BLOCK_LSN(tail_lsn); 1662 head_cycle = log->l_curr_cycle; 1663 head_block = log->l_curr_block; 1664 1665 /* 1666 * Figure out the distance between the new head of the log 1667 * and the tail. We want to write over any blocks beyond the 1668 * head that we may have written just before the crash, but 1669 * we don't want to overwrite the tail of the log. 1670 */ 1671 if (head_cycle == tail_cycle) { 1672 /* 1673 * The tail is behind the head in the physical log, 1674 * so the distance from the head to the tail is the 1675 * distance from the head to the end of the log plus 1676 * the distance from the beginning of the log to the 1677 * tail. 1678 */ 1679 if (XFS_IS_CORRUPT(log->l_mp, 1680 head_block < tail_block || 1681 head_block >= log->l_logBBsize)) 1682 return -EFSCORRUPTED; 1683 tail_distance = tail_block + (log->l_logBBsize - head_block); 1684 } else { 1685 /* 1686 * The head is behind the tail in the physical log, 1687 * so the distance from the head to the tail is just 1688 * the tail block minus the head block. 1689 */ 1690 if (XFS_IS_CORRUPT(log->l_mp, 1691 head_block >= tail_block || 1692 head_cycle != tail_cycle + 1)) 1693 return -EFSCORRUPTED; 1694 tail_distance = tail_block - head_block; 1695 } 1696 1697 /* 1698 * If the head is right up against the tail, we can't clear 1699 * anything. 1700 */ 1701 if (tail_distance <= 0) { 1702 ASSERT(tail_distance == 0); 1703 return 0; 1704 } 1705 1706 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1707 /* 1708 * Take the smaller of the maximum amount of outstanding I/O 1709 * we could have and the distance to the tail to clear out. 1710 * We take the smaller so that we don't overwrite the tail and 1711 * we don't waste all day writing from the head to the tail 1712 * for no reason. 1713 */ 1714 max_distance = min(max_distance, tail_distance); 1715 1716 if ((head_block + max_distance) <= log->l_logBBsize) { 1717 /* 1718 * We can stomp all the blocks we need to without 1719 * wrapping around the end of the log. Just do it 1720 * in a single write. Use the cycle number of the 1721 * current cycle minus one so that the log will look like: 1722 * n ... | n - 1 ... 1723 */ 1724 error = xlog_write_log_records(log, (head_cycle - 1), 1725 head_block, max_distance, tail_cycle, 1726 tail_block); 1727 if (error) 1728 return error; 1729 } else { 1730 /* 1731 * We need to wrap around the end of the physical log in 1732 * order to clear all the blocks. Do it in two separate 1733 * I/Os. The first write should be from the head to the 1734 * end of the physical log, and it should use the current 1735 * cycle number minus one just like above. 1736 */ 1737 distance = log->l_logBBsize - head_block; 1738 error = xlog_write_log_records(log, (head_cycle - 1), 1739 head_block, distance, tail_cycle, 1740 tail_block); 1741 1742 if (error) 1743 return error; 1744 1745 /* 1746 * Now write the blocks at the start of the physical log. 1747 * This writes the remainder of the blocks we want to clear. 1748 * It uses the current cycle number since we're now on the 1749 * same cycle as the head so that we get: 1750 * n ... n ... | n - 1 ... 1751 * ^^^^^ blocks we're writing 1752 */ 1753 distance = max_distance - (log->l_logBBsize - head_block); 1754 error = xlog_write_log_records(log, head_cycle, 0, distance, 1755 tail_cycle, tail_block); 1756 if (error) 1757 return error; 1758 } 1759 1760 return 0; 1761 } 1762 1763 /* 1764 * Release the recovered intent item in the AIL that matches the given intent 1765 * type and intent id. 1766 */ 1767 void 1768 xlog_recover_release_intent( 1769 struct xlog *log, 1770 unsigned short intent_type, 1771 uint64_t intent_id) 1772 { 1773 struct xfs_ail_cursor cur; 1774 struct xfs_log_item *lip; 1775 struct xfs_ail *ailp = log->l_ailp; 1776 1777 spin_lock(&ailp->ail_lock); 1778 for (lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); lip != NULL; 1779 lip = xfs_trans_ail_cursor_next(ailp, &cur)) { 1780 if (lip->li_type != intent_type) 1781 continue; 1782 if (!lip->li_ops->iop_match(lip, intent_id)) 1783 continue; 1784 1785 spin_unlock(&ailp->ail_lock); 1786 lip->li_ops->iop_release(lip); 1787 spin_lock(&ailp->ail_lock); 1788 break; 1789 } 1790 1791 xfs_trans_ail_cursor_done(&cur); 1792 spin_unlock(&ailp->ail_lock); 1793 } 1794 1795 /****************************************************************************** 1796 * 1797 * Log recover routines 1798 * 1799 ****************************************************************************** 1800 */ 1801 static const struct xlog_recover_item_ops *xlog_recover_item_ops[] = { 1802 &xlog_buf_item_ops, 1803 &xlog_inode_item_ops, 1804 &xlog_dquot_item_ops, 1805 &xlog_quotaoff_item_ops, 1806 &xlog_icreate_item_ops, 1807 &xlog_efi_item_ops, 1808 &xlog_efd_item_ops, 1809 &xlog_rui_item_ops, 1810 &xlog_rud_item_ops, 1811 &xlog_cui_item_ops, 1812 &xlog_cud_item_ops, 1813 &xlog_bui_item_ops, 1814 &xlog_bud_item_ops, 1815 }; 1816 1817 static const struct xlog_recover_item_ops * 1818 xlog_find_item_ops( 1819 struct xlog_recover_item *item) 1820 { 1821 unsigned int i; 1822 1823 for (i = 0; i < ARRAY_SIZE(xlog_recover_item_ops); i++) 1824 if (ITEM_TYPE(item) == xlog_recover_item_ops[i]->item_type) 1825 return xlog_recover_item_ops[i]; 1826 1827 return NULL; 1828 } 1829 1830 /* 1831 * Sort the log items in the transaction. 1832 * 1833 * The ordering constraints are defined by the inode allocation and unlink 1834 * behaviour. The rules are: 1835 * 1836 * 1. Every item is only logged once in a given transaction. Hence it 1837 * represents the last logged state of the item. Hence ordering is 1838 * dependent on the order in which operations need to be performed so 1839 * required initial conditions are always met. 1840 * 1841 * 2. Cancelled buffers are recorded in pass 1 in a separate table and 1842 * there's nothing to replay from them so we can simply cull them 1843 * from the transaction. However, we can't do that until after we've 1844 * replayed all the other items because they may be dependent on the 1845 * cancelled buffer and replaying the cancelled buffer can remove it 1846 * form the cancelled buffer table. Hence they have tobe done last. 1847 * 1848 * 3. Inode allocation buffers must be replayed before inode items that 1849 * read the buffer and replay changes into it. For filesystems using the 1850 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get 1851 * treated the same as inode allocation buffers as they create and 1852 * initialise the buffers directly. 1853 * 1854 * 4. Inode unlink buffers must be replayed after inode items are replayed. 1855 * This ensures that inodes are completely flushed to the inode buffer 1856 * in a "free" state before we remove the unlinked inode list pointer. 1857 * 1858 * Hence the ordering needs to be inode allocation buffers first, inode items 1859 * second, inode unlink buffers third and cancelled buffers last. 1860 * 1861 * But there's a problem with that - we can't tell an inode allocation buffer 1862 * apart from a regular buffer, so we can't separate them. We can, however, 1863 * tell an inode unlink buffer from the others, and so we can separate them out 1864 * from all the other buffers and move them to last. 1865 * 1866 * Hence, 4 lists, in order from head to tail: 1867 * - buffer_list for all buffers except cancelled/inode unlink buffers 1868 * - item_list for all non-buffer items 1869 * - inode_buffer_list for inode unlink buffers 1870 * - cancel_list for the cancelled buffers 1871 * 1872 * Note that we add objects to the tail of the lists so that first-to-last 1873 * ordering is preserved within the lists. Adding objects to the head of the 1874 * list means when we traverse from the head we walk them in last-to-first 1875 * order. For cancelled buffers and inode unlink buffers this doesn't matter, 1876 * but for all other items there may be specific ordering that we need to 1877 * preserve. 1878 */ 1879 STATIC int 1880 xlog_recover_reorder_trans( 1881 struct xlog *log, 1882 struct xlog_recover *trans, 1883 int pass) 1884 { 1885 struct xlog_recover_item *item, *n; 1886 int error = 0; 1887 LIST_HEAD(sort_list); 1888 LIST_HEAD(cancel_list); 1889 LIST_HEAD(buffer_list); 1890 LIST_HEAD(inode_buffer_list); 1891 LIST_HEAD(item_list); 1892 1893 list_splice_init(&trans->r_itemq, &sort_list); 1894 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1895 enum xlog_recover_reorder fate = XLOG_REORDER_ITEM_LIST; 1896 1897 item->ri_ops = xlog_find_item_ops(item); 1898 if (!item->ri_ops) { 1899 xfs_warn(log->l_mp, 1900 "%s: unrecognized type of log operation (%d)", 1901 __func__, ITEM_TYPE(item)); 1902 ASSERT(0); 1903 /* 1904 * return the remaining items back to the transaction 1905 * item list so they can be freed in caller. 1906 */ 1907 if (!list_empty(&sort_list)) 1908 list_splice_init(&sort_list, &trans->r_itemq); 1909 error = -EFSCORRUPTED; 1910 break; 1911 } 1912 1913 if (item->ri_ops->reorder) 1914 fate = item->ri_ops->reorder(item); 1915 1916 switch (fate) { 1917 case XLOG_REORDER_BUFFER_LIST: 1918 list_move_tail(&item->ri_list, &buffer_list); 1919 break; 1920 case XLOG_REORDER_CANCEL_LIST: 1921 trace_xfs_log_recover_item_reorder_head(log, 1922 trans, item, pass); 1923 list_move(&item->ri_list, &cancel_list); 1924 break; 1925 case XLOG_REORDER_INODE_BUFFER_LIST: 1926 list_move(&item->ri_list, &inode_buffer_list); 1927 break; 1928 case XLOG_REORDER_ITEM_LIST: 1929 trace_xfs_log_recover_item_reorder_tail(log, 1930 trans, item, pass); 1931 list_move_tail(&item->ri_list, &item_list); 1932 break; 1933 } 1934 } 1935 1936 ASSERT(list_empty(&sort_list)); 1937 if (!list_empty(&buffer_list)) 1938 list_splice(&buffer_list, &trans->r_itemq); 1939 if (!list_empty(&item_list)) 1940 list_splice_tail(&item_list, &trans->r_itemq); 1941 if (!list_empty(&inode_buffer_list)) 1942 list_splice_tail(&inode_buffer_list, &trans->r_itemq); 1943 if (!list_empty(&cancel_list)) 1944 list_splice_tail(&cancel_list, &trans->r_itemq); 1945 return error; 1946 } 1947 1948 void 1949 xlog_buf_readahead( 1950 struct xlog *log, 1951 xfs_daddr_t blkno, 1952 uint len, 1953 const struct xfs_buf_ops *ops) 1954 { 1955 if (!xlog_is_buffer_cancelled(log, blkno, len)) 1956 xfs_buf_readahead(log->l_mp->m_ddev_targp, blkno, len, ops); 1957 } 1958 1959 STATIC int 1960 xlog_recover_items_pass2( 1961 struct xlog *log, 1962 struct xlog_recover *trans, 1963 struct list_head *buffer_list, 1964 struct list_head *item_list) 1965 { 1966 struct xlog_recover_item *item; 1967 int error = 0; 1968 1969 list_for_each_entry(item, item_list, ri_list) { 1970 trace_xfs_log_recover_item_recover(log, trans, item, 1971 XLOG_RECOVER_PASS2); 1972 1973 if (item->ri_ops->commit_pass2) 1974 error = item->ri_ops->commit_pass2(log, buffer_list, 1975 item, trans->r_lsn); 1976 if (error) 1977 return error; 1978 } 1979 1980 return error; 1981 } 1982 1983 /* 1984 * Perform the transaction. 1985 * 1986 * If the transaction modifies a buffer or inode, do it now. Otherwise, 1987 * EFIs and EFDs get queued up by adding entries into the AIL for them. 1988 */ 1989 STATIC int 1990 xlog_recover_commit_trans( 1991 struct xlog *log, 1992 struct xlog_recover *trans, 1993 int pass, 1994 struct list_head *buffer_list) 1995 { 1996 int error = 0; 1997 int items_queued = 0; 1998 struct xlog_recover_item *item; 1999 struct xlog_recover_item *next; 2000 LIST_HEAD (ra_list); 2001 LIST_HEAD (done_list); 2002 2003 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100 2004 2005 hlist_del_init(&trans->r_list); 2006 2007 error = xlog_recover_reorder_trans(log, trans, pass); 2008 if (error) 2009 return error; 2010 2011 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) { 2012 trace_xfs_log_recover_item_recover(log, trans, item, pass); 2013 2014 switch (pass) { 2015 case XLOG_RECOVER_PASS1: 2016 if (item->ri_ops->commit_pass1) 2017 error = item->ri_ops->commit_pass1(log, item); 2018 break; 2019 case XLOG_RECOVER_PASS2: 2020 if (item->ri_ops->ra_pass2) 2021 item->ri_ops->ra_pass2(log, item); 2022 list_move_tail(&item->ri_list, &ra_list); 2023 items_queued++; 2024 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) { 2025 error = xlog_recover_items_pass2(log, trans, 2026 buffer_list, &ra_list); 2027 list_splice_tail_init(&ra_list, &done_list); 2028 items_queued = 0; 2029 } 2030 2031 break; 2032 default: 2033 ASSERT(0); 2034 } 2035 2036 if (error) 2037 goto out; 2038 } 2039 2040 out: 2041 if (!list_empty(&ra_list)) { 2042 if (!error) 2043 error = xlog_recover_items_pass2(log, trans, 2044 buffer_list, &ra_list); 2045 list_splice_tail_init(&ra_list, &done_list); 2046 } 2047 2048 if (!list_empty(&done_list)) 2049 list_splice_init(&done_list, &trans->r_itemq); 2050 2051 return error; 2052 } 2053 2054 STATIC void 2055 xlog_recover_add_item( 2056 struct list_head *head) 2057 { 2058 struct xlog_recover_item *item; 2059 2060 item = kmem_zalloc(sizeof(struct xlog_recover_item), 0); 2061 INIT_LIST_HEAD(&item->ri_list); 2062 list_add_tail(&item->ri_list, head); 2063 } 2064 2065 STATIC int 2066 xlog_recover_add_to_cont_trans( 2067 struct xlog *log, 2068 struct xlog_recover *trans, 2069 char *dp, 2070 int len) 2071 { 2072 struct xlog_recover_item *item; 2073 char *ptr, *old_ptr; 2074 int old_len; 2075 2076 /* 2077 * If the transaction is empty, the header was split across this and the 2078 * previous record. Copy the rest of the header. 2079 */ 2080 if (list_empty(&trans->r_itemq)) { 2081 ASSERT(len <= sizeof(struct xfs_trans_header)); 2082 if (len > sizeof(struct xfs_trans_header)) { 2083 xfs_warn(log->l_mp, "%s: bad header length", __func__); 2084 return -EFSCORRUPTED; 2085 } 2086 2087 xlog_recover_add_item(&trans->r_itemq); 2088 ptr = (char *)&trans->r_theader + 2089 sizeof(struct xfs_trans_header) - len; 2090 memcpy(ptr, dp, len); 2091 return 0; 2092 } 2093 2094 /* take the tail entry */ 2095 item = list_entry(trans->r_itemq.prev, struct xlog_recover_item, 2096 ri_list); 2097 2098 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 2099 old_len = item->ri_buf[item->ri_cnt-1].i_len; 2100 2101 ptr = kmem_realloc(old_ptr, len + old_len, 0); 2102 memcpy(&ptr[old_len], dp, len); 2103 item->ri_buf[item->ri_cnt-1].i_len += len; 2104 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 2105 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 2106 return 0; 2107 } 2108 2109 /* 2110 * The next region to add is the start of a new region. It could be 2111 * a whole region or it could be the first part of a new region. Because 2112 * of this, the assumption here is that the type and size fields of all 2113 * format structures fit into the first 32 bits of the structure. 2114 * 2115 * This works because all regions must be 32 bit aligned. Therefore, we 2116 * either have both fields or we have neither field. In the case we have 2117 * neither field, the data part of the region is zero length. We only have 2118 * a log_op_header and can throw away the header since a new one will appear 2119 * later. If we have at least 4 bytes, then we can determine how many regions 2120 * will appear in the current log item. 2121 */ 2122 STATIC int 2123 xlog_recover_add_to_trans( 2124 struct xlog *log, 2125 struct xlog_recover *trans, 2126 char *dp, 2127 int len) 2128 { 2129 struct xfs_inode_log_format *in_f; /* any will do */ 2130 struct xlog_recover_item *item; 2131 char *ptr; 2132 2133 if (!len) 2134 return 0; 2135 if (list_empty(&trans->r_itemq)) { 2136 /* we need to catch log corruptions here */ 2137 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 2138 xfs_warn(log->l_mp, "%s: bad header magic number", 2139 __func__); 2140 ASSERT(0); 2141 return -EFSCORRUPTED; 2142 } 2143 2144 if (len > sizeof(struct xfs_trans_header)) { 2145 xfs_warn(log->l_mp, "%s: bad header length", __func__); 2146 ASSERT(0); 2147 return -EFSCORRUPTED; 2148 } 2149 2150 /* 2151 * The transaction header can be arbitrarily split across op 2152 * records. If we don't have the whole thing here, copy what we 2153 * do have and handle the rest in the next record. 2154 */ 2155 if (len == sizeof(struct xfs_trans_header)) 2156 xlog_recover_add_item(&trans->r_itemq); 2157 memcpy(&trans->r_theader, dp, len); 2158 return 0; 2159 } 2160 2161 ptr = kmem_alloc(len, 0); 2162 memcpy(ptr, dp, len); 2163 in_f = (struct xfs_inode_log_format *)ptr; 2164 2165 /* take the tail entry */ 2166 item = list_entry(trans->r_itemq.prev, struct xlog_recover_item, 2167 ri_list); 2168 if (item->ri_total != 0 && 2169 item->ri_total == item->ri_cnt) { 2170 /* tail item is in use, get a new one */ 2171 xlog_recover_add_item(&trans->r_itemq); 2172 item = list_entry(trans->r_itemq.prev, 2173 struct xlog_recover_item, ri_list); 2174 } 2175 2176 if (item->ri_total == 0) { /* first region to be added */ 2177 if (in_f->ilf_size == 0 || 2178 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 2179 xfs_warn(log->l_mp, 2180 "bad number of regions (%d) in inode log format", 2181 in_f->ilf_size); 2182 ASSERT(0); 2183 kmem_free(ptr); 2184 return -EFSCORRUPTED; 2185 } 2186 2187 item->ri_total = in_f->ilf_size; 2188 item->ri_buf = 2189 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 2190 0); 2191 } 2192 2193 if (item->ri_total <= item->ri_cnt) { 2194 xfs_warn(log->l_mp, 2195 "log item region count (%d) overflowed size (%d)", 2196 item->ri_cnt, item->ri_total); 2197 ASSERT(0); 2198 kmem_free(ptr); 2199 return -EFSCORRUPTED; 2200 } 2201 2202 /* Description region is ri_buf[0] */ 2203 item->ri_buf[item->ri_cnt].i_addr = ptr; 2204 item->ri_buf[item->ri_cnt].i_len = len; 2205 item->ri_cnt++; 2206 trace_xfs_log_recover_item_add(log, trans, item, 0); 2207 return 0; 2208 } 2209 2210 /* 2211 * Free up any resources allocated by the transaction 2212 * 2213 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 2214 */ 2215 STATIC void 2216 xlog_recover_free_trans( 2217 struct xlog_recover *trans) 2218 { 2219 struct xlog_recover_item *item, *n; 2220 int i; 2221 2222 hlist_del_init(&trans->r_list); 2223 2224 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 2225 /* Free the regions in the item. */ 2226 list_del(&item->ri_list); 2227 for (i = 0; i < item->ri_cnt; i++) 2228 kmem_free(item->ri_buf[i].i_addr); 2229 /* Free the item itself */ 2230 kmem_free(item->ri_buf); 2231 kmem_free(item); 2232 } 2233 /* Free the transaction recover structure */ 2234 kmem_free(trans); 2235 } 2236 2237 /* 2238 * On error or completion, trans is freed. 2239 */ 2240 STATIC int 2241 xlog_recovery_process_trans( 2242 struct xlog *log, 2243 struct xlog_recover *trans, 2244 char *dp, 2245 unsigned int len, 2246 unsigned int flags, 2247 int pass, 2248 struct list_head *buffer_list) 2249 { 2250 int error = 0; 2251 bool freeit = false; 2252 2253 /* mask off ophdr transaction container flags */ 2254 flags &= ~XLOG_END_TRANS; 2255 if (flags & XLOG_WAS_CONT_TRANS) 2256 flags &= ~XLOG_CONTINUE_TRANS; 2257 2258 /* 2259 * Callees must not free the trans structure. We'll decide if we need to 2260 * free it or not based on the operation being done and it's result. 2261 */ 2262 switch (flags) { 2263 /* expected flag values */ 2264 case 0: 2265 case XLOG_CONTINUE_TRANS: 2266 error = xlog_recover_add_to_trans(log, trans, dp, len); 2267 break; 2268 case XLOG_WAS_CONT_TRANS: 2269 error = xlog_recover_add_to_cont_trans(log, trans, dp, len); 2270 break; 2271 case XLOG_COMMIT_TRANS: 2272 error = xlog_recover_commit_trans(log, trans, pass, 2273 buffer_list); 2274 /* success or fail, we are now done with this transaction. */ 2275 freeit = true; 2276 break; 2277 2278 /* unexpected flag values */ 2279 case XLOG_UNMOUNT_TRANS: 2280 /* just skip trans */ 2281 xfs_warn(log->l_mp, "%s: Unmount LR", __func__); 2282 freeit = true; 2283 break; 2284 case XLOG_START_TRANS: 2285 default: 2286 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags); 2287 ASSERT(0); 2288 error = -EFSCORRUPTED; 2289 break; 2290 } 2291 if (error || freeit) 2292 xlog_recover_free_trans(trans); 2293 return error; 2294 } 2295 2296 /* 2297 * Lookup the transaction recovery structure associated with the ID in the 2298 * current ophdr. If the transaction doesn't exist and the start flag is set in 2299 * the ophdr, then allocate a new transaction for future ID matches to find. 2300 * Either way, return what we found during the lookup - an existing transaction 2301 * or nothing. 2302 */ 2303 STATIC struct xlog_recover * 2304 xlog_recover_ophdr_to_trans( 2305 struct hlist_head rhash[], 2306 struct xlog_rec_header *rhead, 2307 struct xlog_op_header *ohead) 2308 { 2309 struct xlog_recover *trans; 2310 xlog_tid_t tid; 2311 struct hlist_head *rhp; 2312 2313 tid = be32_to_cpu(ohead->oh_tid); 2314 rhp = &rhash[XLOG_RHASH(tid)]; 2315 hlist_for_each_entry(trans, rhp, r_list) { 2316 if (trans->r_log_tid == tid) 2317 return trans; 2318 } 2319 2320 /* 2321 * skip over non-start transaction headers - we could be 2322 * processing slack space before the next transaction starts 2323 */ 2324 if (!(ohead->oh_flags & XLOG_START_TRANS)) 2325 return NULL; 2326 2327 ASSERT(be32_to_cpu(ohead->oh_len) == 0); 2328 2329 /* 2330 * This is a new transaction so allocate a new recovery container to 2331 * hold the recovery ops that will follow. 2332 */ 2333 trans = kmem_zalloc(sizeof(struct xlog_recover), 0); 2334 trans->r_log_tid = tid; 2335 trans->r_lsn = be64_to_cpu(rhead->h_lsn); 2336 INIT_LIST_HEAD(&trans->r_itemq); 2337 INIT_HLIST_NODE(&trans->r_list); 2338 hlist_add_head(&trans->r_list, rhp); 2339 2340 /* 2341 * Nothing more to do for this ophdr. Items to be added to this new 2342 * transaction will be in subsequent ophdr containers. 2343 */ 2344 return NULL; 2345 } 2346 2347 STATIC int 2348 xlog_recover_process_ophdr( 2349 struct xlog *log, 2350 struct hlist_head rhash[], 2351 struct xlog_rec_header *rhead, 2352 struct xlog_op_header *ohead, 2353 char *dp, 2354 char *end, 2355 int pass, 2356 struct list_head *buffer_list) 2357 { 2358 struct xlog_recover *trans; 2359 unsigned int len; 2360 int error; 2361 2362 /* Do we understand who wrote this op? */ 2363 if (ohead->oh_clientid != XFS_TRANSACTION && 2364 ohead->oh_clientid != XFS_LOG) { 2365 xfs_warn(log->l_mp, "%s: bad clientid 0x%x", 2366 __func__, ohead->oh_clientid); 2367 ASSERT(0); 2368 return -EFSCORRUPTED; 2369 } 2370 2371 /* 2372 * Check the ophdr contains all the data it is supposed to contain. 2373 */ 2374 len = be32_to_cpu(ohead->oh_len); 2375 if (dp + len > end) { 2376 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len); 2377 WARN_ON(1); 2378 return -EFSCORRUPTED; 2379 } 2380 2381 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead); 2382 if (!trans) { 2383 /* nothing to do, so skip over this ophdr */ 2384 return 0; 2385 } 2386 2387 /* 2388 * The recovered buffer queue is drained only once we know that all 2389 * recovery items for the current LSN have been processed. This is 2390 * required because: 2391 * 2392 * - Buffer write submission updates the metadata LSN of the buffer. 2393 * - Log recovery skips items with a metadata LSN >= the current LSN of 2394 * the recovery item. 2395 * - Separate recovery items against the same metadata buffer can share 2396 * a current LSN. I.e., consider that the LSN of a recovery item is 2397 * defined as the starting LSN of the first record in which its 2398 * transaction appears, that a record can hold multiple transactions, 2399 * and/or that a transaction can span multiple records. 2400 * 2401 * In other words, we are allowed to submit a buffer from log recovery 2402 * once per current LSN. Otherwise, we may incorrectly skip recovery 2403 * items and cause corruption. 2404 * 2405 * We don't know up front whether buffers are updated multiple times per 2406 * LSN. Therefore, track the current LSN of each commit log record as it 2407 * is processed and drain the queue when it changes. Use commit records 2408 * because they are ordered correctly by the logging code. 2409 */ 2410 if (log->l_recovery_lsn != trans->r_lsn && 2411 ohead->oh_flags & XLOG_COMMIT_TRANS) { 2412 error = xfs_buf_delwri_submit(buffer_list); 2413 if (error) 2414 return error; 2415 log->l_recovery_lsn = trans->r_lsn; 2416 } 2417 2418 return xlog_recovery_process_trans(log, trans, dp, len, 2419 ohead->oh_flags, pass, buffer_list); 2420 } 2421 2422 /* 2423 * There are two valid states of the r_state field. 0 indicates that the 2424 * transaction structure is in a normal state. We have either seen the 2425 * start of the transaction or the last operation we added was not a partial 2426 * operation. If the last operation we added to the transaction was a 2427 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 2428 * 2429 * NOTE: skip LRs with 0 data length. 2430 */ 2431 STATIC int 2432 xlog_recover_process_data( 2433 struct xlog *log, 2434 struct hlist_head rhash[], 2435 struct xlog_rec_header *rhead, 2436 char *dp, 2437 int pass, 2438 struct list_head *buffer_list) 2439 { 2440 struct xlog_op_header *ohead; 2441 char *end; 2442 int num_logops; 2443 int error; 2444 2445 end = dp + be32_to_cpu(rhead->h_len); 2446 num_logops = be32_to_cpu(rhead->h_num_logops); 2447 2448 /* check the log format matches our own - else we can't recover */ 2449 if (xlog_header_check_recover(log->l_mp, rhead)) 2450 return -EIO; 2451 2452 trace_xfs_log_recover_record(log, rhead, pass); 2453 while ((dp < end) && num_logops) { 2454 2455 ohead = (struct xlog_op_header *)dp; 2456 dp += sizeof(*ohead); 2457 ASSERT(dp <= end); 2458 2459 /* errors will abort recovery */ 2460 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead, 2461 dp, end, pass, buffer_list); 2462 if (error) 2463 return error; 2464 2465 dp += be32_to_cpu(ohead->oh_len); 2466 num_logops--; 2467 } 2468 return 0; 2469 } 2470 2471 /* Take all the collected deferred ops and finish them in order. */ 2472 static int 2473 xlog_finish_defer_ops( 2474 struct xfs_trans *parent_tp) 2475 { 2476 struct xfs_mount *mp = parent_tp->t_mountp; 2477 struct xfs_trans *tp; 2478 int64_t freeblks; 2479 uint resblks; 2480 int error; 2481 2482 /* 2483 * We're finishing the defer_ops that accumulated as a result of 2484 * recovering unfinished intent items during log recovery. We 2485 * reserve an itruncate transaction because it is the largest 2486 * permanent transaction type. Since we're the only user of the fs 2487 * right now, take 93% (15/16) of the available free blocks. Use 2488 * weird math to avoid a 64-bit division. 2489 */ 2490 freeblks = percpu_counter_sum(&mp->m_fdblocks); 2491 if (freeblks <= 0) 2492 return -ENOSPC; 2493 resblks = min_t(int64_t, UINT_MAX, freeblks); 2494 resblks = (resblks * 15) >> 4; 2495 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks, 2496 0, XFS_TRANS_RESERVE, &tp); 2497 if (error) 2498 return error; 2499 /* transfer all collected dfops to this transaction */ 2500 xfs_defer_move(tp, parent_tp); 2501 2502 return xfs_trans_commit(tp); 2503 } 2504 2505 /* Is this log item a deferred action intent? */ 2506 static inline bool xlog_item_is_intent(struct xfs_log_item *lip) 2507 { 2508 return lip->li_ops->iop_recover != NULL && 2509 lip->li_ops->iop_match != NULL; 2510 } 2511 2512 /* 2513 * When this is called, all of the log intent items which did not have 2514 * corresponding log done items should be in the AIL. What we do now 2515 * is update the data structures associated with each one. 2516 * 2517 * Since we process the log intent items in normal transactions, they 2518 * will be removed at some point after the commit. This prevents us 2519 * from just walking down the list processing each one. We'll use a 2520 * flag in the intent item to skip those that we've already processed 2521 * and use the AIL iteration mechanism's generation count to try to 2522 * speed this up at least a bit. 2523 * 2524 * When we start, we know that the intents are the only things in the 2525 * AIL. As we process them, however, other items are added to the 2526 * AIL. 2527 */ 2528 STATIC int 2529 xlog_recover_process_intents( 2530 struct xlog *log) 2531 { 2532 struct xfs_trans *parent_tp; 2533 struct xfs_ail_cursor cur; 2534 struct xfs_log_item *lip; 2535 struct xfs_ail *ailp; 2536 int error; 2537 #if defined(DEBUG) || defined(XFS_WARN) 2538 xfs_lsn_t last_lsn; 2539 #endif 2540 2541 /* 2542 * The intent recovery handlers commit transactions to complete recovery 2543 * for individual intents, but any new deferred operations that are 2544 * queued during that process are held off until the very end. The 2545 * purpose of this transaction is to serve as a container for deferred 2546 * operations. Each intent recovery handler must transfer dfops here 2547 * before its local transaction commits, and we'll finish the entire 2548 * list below. 2549 */ 2550 error = xfs_trans_alloc_empty(log->l_mp, &parent_tp); 2551 if (error) 2552 return error; 2553 2554 ailp = log->l_ailp; 2555 spin_lock(&ailp->ail_lock); 2556 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 2557 #if defined(DEBUG) || defined(XFS_WARN) 2558 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block); 2559 #endif 2560 while (lip != NULL) { 2561 /* 2562 * We're done when we see something other than an intent. 2563 * There should be no intents left in the AIL now. 2564 */ 2565 if (!xlog_item_is_intent(lip)) { 2566 #ifdef DEBUG 2567 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 2568 ASSERT(!xlog_item_is_intent(lip)); 2569 #endif 2570 break; 2571 } 2572 2573 /* 2574 * We should never see a redo item with a LSN higher than 2575 * the last transaction we found in the log at the start 2576 * of recovery. 2577 */ 2578 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0); 2579 2580 /* 2581 * NOTE: If your intent processing routine can create more 2582 * deferred ops, you /must/ attach them to the transaction in 2583 * this routine or else those subsequent intents will get 2584 * replayed in the wrong order! 2585 */ 2586 if (!test_and_set_bit(XFS_LI_RECOVERED, &lip->li_flags)) { 2587 spin_unlock(&ailp->ail_lock); 2588 error = lip->li_ops->iop_recover(lip, parent_tp); 2589 spin_lock(&ailp->ail_lock); 2590 } 2591 if (error) 2592 goto out; 2593 lip = xfs_trans_ail_cursor_next(ailp, &cur); 2594 } 2595 out: 2596 xfs_trans_ail_cursor_done(&cur); 2597 spin_unlock(&ailp->ail_lock); 2598 if (!error) 2599 error = xlog_finish_defer_ops(parent_tp); 2600 xfs_trans_cancel(parent_tp); 2601 2602 return error; 2603 } 2604 2605 /* 2606 * A cancel occurs when the mount has failed and we're bailing out. 2607 * Release all pending log intent items so they don't pin the AIL. 2608 */ 2609 STATIC void 2610 xlog_recover_cancel_intents( 2611 struct xlog *log) 2612 { 2613 struct xfs_log_item *lip; 2614 struct xfs_ail_cursor cur; 2615 struct xfs_ail *ailp; 2616 2617 ailp = log->l_ailp; 2618 spin_lock(&ailp->ail_lock); 2619 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 2620 while (lip != NULL) { 2621 /* 2622 * We're done when we see something other than an intent. 2623 * There should be no intents left in the AIL now. 2624 */ 2625 if (!xlog_item_is_intent(lip)) { 2626 #ifdef DEBUG 2627 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 2628 ASSERT(!xlog_item_is_intent(lip)); 2629 #endif 2630 break; 2631 } 2632 2633 spin_unlock(&ailp->ail_lock); 2634 lip->li_ops->iop_release(lip); 2635 spin_lock(&ailp->ail_lock); 2636 lip = xfs_trans_ail_cursor_next(ailp, &cur); 2637 } 2638 2639 xfs_trans_ail_cursor_done(&cur); 2640 spin_unlock(&ailp->ail_lock); 2641 } 2642 2643 /* 2644 * This routine performs a transaction to null out a bad inode pointer 2645 * in an agi unlinked inode hash bucket. 2646 */ 2647 STATIC void 2648 xlog_recover_clear_agi_bucket( 2649 xfs_mount_t *mp, 2650 xfs_agnumber_t agno, 2651 int bucket) 2652 { 2653 xfs_trans_t *tp; 2654 xfs_agi_t *agi; 2655 xfs_buf_t *agibp; 2656 int offset; 2657 int error; 2658 2659 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp); 2660 if (error) 2661 goto out_error; 2662 2663 error = xfs_read_agi(mp, tp, agno, &agibp); 2664 if (error) 2665 goto out_abort; 2666 2667 agi = agibp->b_addr; 2668 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 2669 offset = offsetof(xfs_agi_t, agi_unlinked) + 2670 (sizeof(xfs_agino_t) * bucket); 2671 xfs_trans_log_buf(tp, agibp, offset, 2672 (offset + sizeof(xfs_agino_t) - 1)); 2673 2674 error = xfs_trans_commit(tp); 2675 if (error) 2676 goto out_error; 2677 return; 2678 2679 out_abort: 2680 xfs_trans_cancel(tp); 2681 out_error: 2682 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); 2683 return; 2684 } 2685 2686 STATIC xfs_agino_t 2687 xlog_recover_process_one_iunlink( 2688 struct xfs_mount *mp, 2689 xfs_agnumber_t agno, 2690 xfs_agino_t agino, 2691 int bucket) 2692 { 2693 struct xfs_buf *ibp; 2694 struct xfs_dinode *dip; 2695 struct xfs_inode *ip; 2696 xfs_ino_t ino; 2697 int error; 2698 2699 ino = XFS_AGINO_TO_INO(mp, agno, agino); 2700 error = xfs_iget(mp, NULL, ino, 0, 0, &ip); 2701 if (error) 2702 goto fail; 2703 2704 /* 2705 * Get the on disk inode to find the next inode in the bucket. 2706 */ 2707 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0); 2708 if (error) 2709 goto fail_iput; 2710 2711 xfs_iflags_clear(ip, XFS_IRECOVERY); 2712 ASSERT(VFS_I(ip)->i_nlink == 0); 2713 ASSERT(VFS_I(ip)->i_mode != 0); 2714 2715 /* setup for the next pass */ 2716 agino = be32_to_cpu(dip->di_next_unlinked); 2717 xfs_buf_relse(ibp); 2718 2719 /* 2720 * Prevent any DMAPI event from being sent when the reference on 2721 * the inode is dropped. 2722 */ 2723 ip->i_d.di_dmevmask = 0; 2724 2725 xfs_irele(ip); 2726 return agino; 2727 2728 fail_iput: 2729 xfs_irele(ip); 2730 fail: 2731 /* 2732 * We can't read in the inode this bucket points to, or this inode 2733 * is messed up. Just ditch this bucket of inodes. We will lose 2734 * some inodes and space, but at least we won't hang. 2735 * 2736 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 2737 * clear the inode pointer in the bucket. 2738 */ 2739 xlog_recover_clear_agi_bucket(mp, agno, bucket); 2740 return NULLAGINO; 2741 } 2742 2743 /* 2744 * Recover AGI unlinked lists 2745 * 2746 * This is called during recovery to process any inodes which we unlinked but 2747 * not freed when the system crashed. These inodes will be on the lists in the 2748 * AGI blocks. What we do here is scan all the AGIs and fully truncate and free 2749 * any inodes found on the lists. Each inode is removed from the lists when it 2750 * has been fully truncated and is freed. The freeing of the inode and its 2751 * removal from the list must be atomic. 2752 * 2753 * If everything we touch in the agi processing loop is already in memory, this 2754 * loop can hold the cpu for a long time. It runs without lock contention, 2755 * memory allocation contention, the need wait for IO, etc, and so will run 2756 * until we either run out of inodes to process, run low on memory or we run out 2757 * of log space. 2758 * 2759 * This behaviour is bad for latency on single CPU and non-preemptible kernels, 2760 * and can prevent other filesytem work (such as CIL pushes) from running. This 2761 * can lead to deadlocks if the recovery process runs out of log reservation 2762 * space. Hence we need to yield the CPU when there is other kernel work 2763 * scheduled on this CPU to ensure other scheduled work can run without undue 2764 * latency. 2765 */ 2766 STATIC void 2767 xlog_recover_process_iunlinks( 2768 struct xlog *log) 2769 { 2770 xfs_mount_t *mp; 2771 xfs_agnumber_t agno; 2772 xfs_agi_t *agi; 2773 xfs_buf_t *agibp; 2774 xfs_agino_t agino; 2775 int bucket; 2776 int error; 2777 2778 mp = log->l_mp; 2779 2780 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 2781 /* 2782 * Find the agi for this ag. 2783 */ 2784 error = xfs_read_agi(mp, NULL, agno, &agibp); 2785 if (error) { 2786 /* 2787 * AGI is b0rked. Don't process it. 2788 * 2789 * We should probably mark the filesystem as corrupt 2790 * after we've recovered all the ag's we can.... 2791 */ 2792 continue; 2793 } 2794 /* 2795 * Unlock the buffer so that it can be acquired in the normal 2796 * course of the transaction to truncate and free each inode. 2797 * Because we are not racing with anyone else here for the AGI 2798 * buffer, we don't even need to hold it locked to read the 2799 * initial unlinked bucket entries out of the buffer. We keep 2800 * buffer reference though, so that it stays pinned in memory 2801 * while we need the buffer. 2802 */ 2803 agi = agibp->b_addr; 2804 xfs_buf_unlock(agibp); 2805 2806 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 2807 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 2808 while (agino != NULLAGINO) { 2809 agino = xlog_recover_process_one_iunlink(mp, 2810 agno, agino, bucket); 2811 cond_resched(); 2812 } 2813 } 2814 xfs_buf_rele(agibp); 2815 } 2816 } 2817 2818 STATIC void 2819 xlog_unpack_data( 2820 struct xlog_rec_header *rhead, 2821 char *dp, 2822 struct xlog *log) 2823 { 2824 int i, j, k; 2825 2826 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 2827 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 2828 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 2829 dp += BBSIZE; 2830 } 2831 2832 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 2833 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 2834 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 2835 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 2836 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 2837 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 2838 dp += BBSIZE; 2839 } 2840 } 2841 } 2842 2843 /* 2844 * CRC check, unpack and process a log record. 2845 */ 2846 STATIC int 2847 xlog_recover_process( 2848 struct xlog *log, 2849 struct hlist_head rhash[], 2850 struct xlog_rec_header *rhead, 2851 char *dp, 2852 int pass, 2853 struct list_head *buffer_list) 2854 { 2855 __le32 old_crc = rhead->h_crc; 2856 __le32 crc; 2857 2858 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); 2859 2860 /* 2861 * Nothing else to do if this is a CRC verification pass. Just return 2862 * if this a record with a non-zero crc. Unfortunately, mkfs always 2863 * sets old_crc to 0 so we must consider this valid even on v5 supers. 2864 * Otherwise, return EFSBADCRC on failure so the callers up the stack 2865 * know precisely what failed. 2866 */ 2867 if (pass == XLOG_RECOVER_CRCPASS) { 2868 if (old_crc && crc != old_crc) 2869 return -EFSBADCRC; 2870 return 0; 2871 } 2872 2873 /* 2874 * We're in the normal recovery path. Issue a warning if and only if the 2875 * CRC in the header is non-zero. This is an advisory warning and the 2876 * zero CRC check prevents warnings from being emitted when upgrading 2877 * the kernel from one that does not add CRCs by default. 2878 */ 2879 if (crc != old_crc) { 2880 if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) { 2881 xfs_alert(log->l_mp, 2882 "log record CRC mismatch: found 0x%x, expected 0x%x.", 2883 le32_to_cpu(old_crc), 2884 le32_to_cpu(crc)); 2885 xfs_hex_dump(dp, 32); 2886 } 2887 2888 /* 2889 * If the filesystem is CRC enabled, this mismatch becomes a 2890 * fatal log corruption failure. 2891 */ 2892 if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) { 2893 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp); 2894 return -EFSCORRUPTED; 2895 } 2896 } 2897 2898 xlog_unpack_data(rhead, dp, log); 2899 2900 return xlog_recover_process_data(log, rhash, rhead, dp, pass, 2901 buffer_list); 2902 } 2903 2904 STATIC int 2905 xlog_valid_rec_header( 2906 struct xlog *log, 2907 struct xlog_rec_header *rhead, 2908 xfs_daddr_t blkno) 2909 { 2910 int hlen; 2911 2912 if (XFS_IS_CORRUPT(log->l_mp, 2913 rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) 2914 return -EFSCORRUPTED; 2915 if (XFS_IS_CORRUPT(log->l_mp, 2916 (!rhead->h_version || 2917 (be32_to_cpu(rhead->h_version) & 2918 (~XLOG_VERSION_OKBITS))))) { 2919 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", 2920 __func__, be32_to_cpu(rhead->h_version)); 2921 return -EFSCORRUPTED; 2922 } 2923 2924 /* LR body must have data or it wouldn't have been written */ 2925 hlen = be32_to_cpu(rhead->h_len); 2926 if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > INT_MAX)) 2927 return -EFSCORRUPTED; 2928 if (XFS_IS_CORRUPT(log->l_mp, 2929 blkno > log->l_logBBsize || blkno > INT_MAX)) 2930 return -EFSCORRUPTED; 2931 return 0; 2932 } 2933 2934 /* 2935 * Read the log from tail to head and process the log records found. 2936 * Handle the two cases where the tail and head are in the same cycle 2937 * and where the active portion of the log wraps around the end of 2938 * the physical log separately. The pass parameter is passed through 2939 * to the routines called to process the data and is not looked at 2940 * here. 2941 */ 2942 STATIC int 2943 xlog_do_recovery_pass( 2944 struct xlog *log, 2945 xfs_daddr_t head_blk, 2946 xfs_daddr_t tail_blk, 2947 int pass, 2948 xfs_daddr_t *first_bad) /* out: first bad log rec */ 2949 { 2950 xlog_rec_header_t *rhead; 2951 xfs_daddr_t blk_no, rblk_no; 2952 xfs_daddr_t rhead_blk; 2953 char *offset; 2954 char *hbp, *dbp; 2955 int error = 0, h_size, h_len; 2956 int error2 = 0; 2957 int bblks, split_bblks; 2958 int hblks, split_hblks, wrapped_hblks; 2959 int i; 2960 struct hlist_head rhash[XLOG_RHASH_SIZE]; 2961 LIST_HEAD (buffer_list); 2962 2963 ASSERT(head_blk != tail_blk); 2964 blk_no = rhead_blk = tail_blk; 2965 2966 for (i = 0; i < XLOG_RHASH_SIZE; i++) 2967 INIT_HLIST_HEAD(&rhash[i]); 2968 2969 /* 2970 * Read the header of the tail block and get the iclog buffer size from 2971 * h_size. Use this to tell how many sectors make up the log header. 2972 */ 2973 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 2974 /* 2975 * When using variable length iclogs, read first sector of 2976 * iclog header and extract the header size from it. Get a 2977 * new hbp that is the correct size. 2978 */ 2979 hbp = xlog_alloc_buffer(log, 1); 2980 if (!hbp) 2981 return -ENOMEM; 2982 2983 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 2984 if (error) 2985 goto bread_err1; 2986 2987 rhead = (xlog_rec_header_t *)offset; 2988 error = xlog_valid_rec_header(log, rhead, tail_blk); 2989 if (error) 2990 goto bread_err1; 2991 2992 /* 2993 * xfsprogs has a bug where record length is based on lsunit but 2994 * h_size (iclog size) is hardcoded to 32k. Now that we 2995 * unconditionally CRC verify the unmount record, this means the 2996 * log buffer can be too small for the record and cause an 2997 * overrun. 2998 * 2999 * Detect this condition here. Use lsunit for the buffer size as 3000 * long as this looks like the mkfs case. Otherwise, return an 3001 * error to avoid a buffer overrun. 3002 */ 3003 h_size = be32_to_cpu(rhead->h_size); 3004 h_len = be32_to_cpu(rhead->h_len); 3005 if (h_len > h_size) { 3006 if (h_len <= log->l_mp->m_logbsize && 3007 be32_to_cpu(rhead->h_num_logops) == 1) { 3008 xfs_warn(log->l_mp, 3009 "invalid iclog size (%d bytes), using lsunit (%d bytes)", 3010 h_size, log->l_mp->m_logbsize); 3011 h_size = log->l_mp->m_logbsize; 3012 } else { 3013 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, 3014 log->l_mp); 3015 error = -EFSCORRUPTED; 3016 goto bread_err1; 3017 } 3018 } 3019 3020 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 3021 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 3022 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 3023 if (h_size % XLOG_HEADER_CYCLE_SIZE) 3024 hblks++; 3025 kmem_free(hbp); 3026 hbp = xlog_alloc_buffer(log, hblks); 3027 } else { 3028 hblks = 1; 3029 } 3030 } else { 3031 ASSERT(log->l_sectBBsize == 1); 3032 hblks = 1; 3033 hbp = xlog_alloc_buffer(log, 1); 3034 h_size = XLOG_BIG_RECORD_BSIZE; 3035 } 3036 3037 if (!hbp) 3038 return -ENOMEM; 3039 dbp = xlog_alloc_buffer(log, BTOBB(h_size)); 3040 if (!dbp) { 3041 kmem_free(hbp); 3042 return -ENOMEM; 3043 } 3044 3045 memset(rhash, 0, sizeof(rhash)); 3046 if (tail_blk > head_blk) { 3047 /* 3048 * Perform recovery around the end of the physical log. 3049 * When the head is not on the same cycle number as the tail, 3050 * we can't do a sequential recovery. 3051 */ 3052 while (blk_no < log->l_logBBsize) { 3053 /* 3054 * Check for header wrapping around physical end-of-log 3055 */ 3056 offset = hbp; 3057 split_hblks = 0; 3058 wrapped_hblks = 0; 3059 if (blk_no + hblks <= log->l_logBBsize) { 3060 /* Read header in one read */ 3061 error = xlog_bread(log, blk_no, hblks, hbp, 3062 &offset); 3063 if (error) 3064 goto bread_err2; 3065 } else { 3066 /* This LR is split across physical log end */ 3067 if (blk_no != log->l_logBBsize) { 3068 /* some data before physical log end */ 3069 ASSERT(blk_no <= INT_MAX); 3070 split_hblks = log->l_logBBsize - (int)blk_no; 3071 ASSERT(split_hblks > 0); 3072 error = xlog_bread(log, blk_no, 3073 split_hblks, hbp, 3074 &offset); 3075 if (error) 3076 goto bread_err2; 3077 } 3078 3079 /* 3080 * Note: this black magic still works with 3081 * large sector sizes (non-512) only because: 3082 * - we increased the buffer size originally 3083 * by 1 sector giving us enough extra space 3084 * for the second read; 3085 * - the log start is guaranteed to be sector 3086 * aligned; 3087 * - we read the log end (LR header start) 3088 * _first_, then the log start (LR header end) 3089 * - order is important. 3090 */ 3091 wrapped_hblks = hblks - split_hblks; 3092 error = xlog_bread_noalign(log, 0, 3093 wrapped_hblks, 3094 offset + BBTOB(split_hblks)); 3095 if (error) 3096 goto bread_err2; 3097 } 3098 rhead = (xlog_rec_header_t *)offset; 3099 error = xlog_valid_rec_header(log, rhead, 3100 split_hblks ? blk_no : 0); 3101 if (error) 3102 goto bread_err2; 3103 3104 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3105 blk_no += hblks; 3106 3107 /* 3108 * Read the log record data in multiple reads if it 3109 * wraps around the end of the log. Note that if the 3110 * header already wrapped, blk_no could point past the 3111 * end of the log. The record data is contiguous in 3112 * that case. 3113 */ 3114 if (blk_no + bblks <= log->l_logBBsize || 3115 blk_no >= log->l_logBBsize) { 3116 rblk_no = xlog_wrap_logbno(log, blk_no); 3117 error = xlog_bread(log, rblk_no, bblks, dbp, 3118 &offset); 3119 if (error) 3120 goto bread_err2; 3121 } else { 3122 /* This log record is split across the 3123 * physical end of log */ 3124 offset = dbp; 3125 split_bblks = 0; 3126 if (blk_no != log->l_logBBsize) { 3127 /* some data is before the physical 3128 * end of log */ 3129 ASSERT(!wrapped_hblks); 3130 ASSERT(blk_no <= INT_MAX); 3131 split_bblks = 3132 log->l_logBBsize - (int)blk_no; 3133 ASSERT(split_bblks > 0); 3134 error = xlog_bread(log, blk_no, 3135 split_bblks, dbp, 3136 &offset); 3137 if (error) 3138 goto bread_err2; 3139 } 3140 3141 /* 3142 * Note: this black magic still works with 3143 * large sector sizes (non-512) only because: 3144 * - we increased the buffer size originally 3145 * by 1 sector giving us enough extra space 3146 * for the second read; 3147 * - the log start is guaranteed to be sector 3148 * aligned; 3149 * - we read the log end (LR header start) 3150 * _first_, then the log start (LR header end) 3151 * - order is important. 3152 */ 3153 error = xlog_bread_noalign(log, 0, 3154 bblks - split_bblks, 3155 offset + BBTOB(split_bblks)); 3156 if (error) 3157 goto bread_err2; 3158 } 3159 3160 error = xlog_recover_process(log, rhash, rhead, offset, 3161 pass, &buffer_list); 3162 if (error) 3163 goto bread_err2; 3164 3165 blk_no += bblks; 3166 rhead_blk = blk_no; 3167 } 3168 3169 ASSERT(blk_no >= log->l_logBBsize); 3170 blk_no -= log->l_logBBsize; 3171 rhead_blk = blk_no; 3172 } 3173 3174 /* read first part of physical log */ 3175 while (blk_no < head_blk) { 3176 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 3177 if (error) 3178 goto bread_err2; 3179 3180 rhead = (xlog_rec_header_t *)offset; 3181 error = xlog_valid_rec_header(log, rhead, blk_no); 3182 if (error) 3183 goto bread_err2; 3184 3185 /* blocks in data section */ 3186 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3187 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 3188 &offset); 3189 if (error) 3190 goto bread_err2; 3191 3192 error = xlog_recover_process(log, rhash, rhead, offset, pass, 3193 &buffer_list); 3194 if (error) 3195 goto bread_err2; 3196 3197 blk_no += bblks + hblks; 3198 rhead_blk = blk_no; 3199 } 3200 3201 bread_err2: 3202 kmem_free(dbp); 3203 bread_err1: 3204 kmem_free(hbp); 3205 3206 /* 3207 * Submit buffers that have been added from the last record processed, 3208 * regardless of error status. 3209 */ 3210 if (!list_empty(&buffer_list)) 3211 error2 = xfs_buf_delwri_submit(&buffer_list); 3212 3213 if (error && first_bad) 3214 *first_bad = rhead_blk; 3215 3216 /* 3217 * Transactions are freed at commit time but transactions without commit 3218 * records on disk are never committed. Free any that may be left in the 3219 * hash table. 3220 */ 3221 for (i = 0; i < XLOG_RHASH_SIZE; i++) { 3222 struct hlist_node *tmp; 3223 struct xlog_recover *trans; 3224 3225 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list) 3226 xlog_recover_free_trans(trans); 3227 } 3228 3229 return error ? error : error2; 3230 } 3231 3232 /* 3233 * Do the recovery of the log. We actually do this in two phases. 3234 * The two passes are necessary in order to implement the function 3235 * of cancelling a record written into the log. The first pass 3236 * determines those things which have been cancelled, and the 3237 * second pass replays log items normally except for those which 3238 * have been cancelled. The handling of the replay and cancellations 3239 * takes place in the log item type specific routines. 3240 * 3241 * The table of items which have cancel records in the log is allocated 3242 * and freed at this level, since only here do we know when all of 3243 * the log recovery has been completed. 3244 */ 3245 STATIC int 3246 xlog_do_log_recovery( 3247 struct xlog *log, 3248 xfs_daddr_t head_blk, 3249 xfs_daddr_t tail_blk) 3250 { 3251 int error, i; 3252 3253 ASSERT(head_blk != tail_blk); 3254 3255 /* 3256 * First do a pass to find all of the cancelled buf log items. 3257 * Store them in the buf_cancel_table for use in the second pass. 3258 */ 3259 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * 3260 sizeof(struct list_head), 3261 0); 3262 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3263 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); 3264 3265 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3266 XLOG_RECOVER_PASS1, NULL); 3267 if (error != 0) { 3268 kmem_free(log->l_buf_cancel_table); 3269 log->l_buf_cancel_table = NULL; 3270 return error; 3271 } 3272 /* 3273 * Then do a second pass to actually recover the items in the log. 3274 * When it is complete free the table of buf cancel items. 3275 */ 3276 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3277 XLOG_RECOVER_PASS2, NULL); 3278 #ifdef DEBUG 3279 if (!error) { 3280 int i; 3281 3282 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3283 ASSERT(list_empty(&log->l_buf_cancel_table[i])); 3284 } 3285 #endif /* DEBUG */ 3286 3287 kmem_free(log->l_buf_cancel_table); 3288 log->l_buf_cancel_table = NULL; 3289 3290 return error; 3291 } 3292 3293 /* 3294 * Do the actual recovery 3295 */ 3296 STATIC int 3297 xlog_do_recover( 3298 struct xlog *log, 3299 xfs_daddr_t head_blk, 3300 xfs_daddr_t tail_blk) 3301 { 3302 struct xfs_mount *mp = log->l_mp; 3303 int error; 3304 xfs_buf_t *bp; 3305 xfs_sb_t *sbp; 3306 3307 trace_xfs_log_recover(log, head_blk, tail_blk); 3308 3309 /* 3310 * First replay the images in the log. 3311 */ 3312 error = xlog_do_log_recovery(log, head_blk, tail_blk); 3313 if (error) 3314 return error; 3315 3316 /* 3317 * If IO errors happened during recovery, bail out. 3318 */ 3319 if (XFS_FORCED_SHUTDOWN(mp)) { 3320 return -EIO; 3321 } 3322 3323 /* 3324 * We now update the tail_lsn since much of the recovery has completed 3325 * and there may be space available to use. If there were no extent 3326 * or iunlinks, we can free up the entire log and set the tail_lsn to 3327 * be the last_sync_lsn. This was set in xlog_find_tail to be the 3328 * lsn of the last known good LR on disk. If there are extent frees 3329 * or iunlinks they will have some entries in the AIL; so we look at 3330 * the AIL to determine how to set the tail_lsn. 3331 */ 3332 xlog_assign_tail_lsn(mp); 3333 3334 /* 3335 * Now that we've finished replaying all buffer and inode 3336 * updates, re-read in the superblock and reverify it. 3337 */ 3338 bp = xfs_getsb(mp); 3339 bp->b_flags &= ~(XBF_DONE | XBF_ASYNC); 3340 ASSERT(!(bp->b_flags & XBF_WRITE)); 3341 bp->b_flags |= XBF_READ; 3342 bp->b_ops = &xfs_sb_buf_ops; 3343 3344 error = xfs_buf_submit(bp); 3345 if (error) { 3346 if (!XFS_FORCED_SHUTDOWN(mp)) { 3347 xfs_buf_ioerror_alert(bp, __this_address); 3348 ASSERT(0); 3349 } 3350 xfs_buf_relse(bp); 3351 return error; 3352 } 3353 3354 /* Convert superblock from on-disk format */ 3355 sbp = &mp->m_sb; 3356 xfs_sb_from_disk(sbp, bp->b_addr); 3357 xfs_buf_relse(bp); 3358 3359 /* re-initialise in-core superblock and geometry structures */ 3360 xfs_reinit_percpu_counters(mp); 3361 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 3362 if (error) { 3363 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error); 3364 return error; 3365 } 3366 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp); 3367 3368 xlog_recover_check_summary(log); 3369 3370 /* Normal transactions can now occur */ 3371 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 3372 return 0; 3373 } 3374 3375 /* 3376 * Perform recovery and re-initialize some log variables in xlog_find_tail. 3377 * 3378 * Return error or zero. 3379 */ 3380 int 3381 xlog_recover( 3382 struct xlog *log) 3383 { 3384 xfs_daddr_t head_blk, tail_blk; 3385 int error; 3386 3387 /* find the tail of the log */ 3388 error = xlog_find_tail(log, &head_blk, &tail_blk); 3389 if (error) 3390 return error; 3391 3392 /* 3393 * The superblock was read before the log was available and thus the LSN 3394 * could not be verified. Check the superblock LSN against the current 3395 * LSN now that it's known. 3396 */ 3397 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) && 3398 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn)) 3399 return -EINVAL; 3400 3401 if (tail_blk != head_blk) { 3402 /* There used to be a comment here: 3403 * 3404 * disallow recovery on read-only mounts. note -- mount 3405 * checks for ENOSPC and turns it into an intelligent 3406 * error message. 3407 * ...but this is no longer true. Now, unless you specify 3408 * NORECOVERY (in which case this function would never be 3409 * called), we just go ahead and recover. We do this all 3410 * under the vfs layer, so we can get away with it unless 3411 * the device itself is read-only, in which case we fail. 3412 */ 3413 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 3414 return error; 3415 } 3416 3417 /* 3418 * Version 5 superblock log feature mask validation. We know the 3419 * log is dirty so check if there are any unknown log features 3420 * in what we need to recover. If there are unknown features 3421 * (e.g. unsupported transactions, then simply reject the 3422 * attempt at recovery before touching anything. 3423 */ 3424 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 && 3425 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, 3426 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { 3427 xfs_warn(log->l_mp, 3428 "Superblock has unknown incompatible log features (0x%x) enabled.", 3429 (log->l_mp->m_sb.sb_features_log_incompat & 3430 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 3431 xfs_warn(log->l_mp, 3432 "The log can not be fully and/or safely recovered by this kernel."); 3433 xfs_warn(log->l_mp, 3434 "Please recover the log on a kernel that supports the unknown features."); 3435 return -EINVAL; 3436 } 3437 3438 /* 3439 * Delay log recovery if the debug hook is set. This is debug 3440 * instrumention to coordinate simulation of I/O failures with 3441 * log recovery. 3442 */ 3443 if (xfs_globals.log_recovery_delay) { 3444 xfs_notice(log->l_mp, 3445 "Delaying log recovery for %d seconds.", 3446 xfs_globals.log_recovery_delay); 3447 msleep(xfs_globals.log_recovery_delay * 1000); 3448 } 3449 3450 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", 3451 log->l_mp->m_logname ? log->l_mp->m_logname 3452 : "internal"); 3453 3454 error = xlog_do_recover(log, head_blk, tail_blk); 3455 log->l_flags |= XLOG_RECOVERY_NEEDED; 3456 } 3457 return error; 3458 } 3459 3460 /* 3461 * In the first part of recovery we replay inodes and buffers and build 3462 * up the list of extent free items which need to be processed. Here 3463 * we process the extent free items and clean up the on disk unlinked 3464 * inode lists. This is separated from the first part of recovery so 3465 * that the root and real-time bitmap inodes can be read in from disk in 3466 * between the two stages. This is necessary so that we can free space 3467 * in the real-time portion of the file system. 3468 */ 3469 int 3470 xlog_recover_finish( 3471 struct xlog *log) 3472 { 3473 /* 3474 * Now we're ready to do the transactions needed for the 3475 * rest of recovery. Start with completing all the extent 3476 * free intent records and then process the unlinked inode 3477 * lists. At this point, we essentially run in normal mode 3478 * except that we're still performing recovery actions 3479 * rather than accepting new requests. 3480 */ 3481 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 3482 int error; 3483 error = xlog_recover_process_intents(log); 3484 if (error) { 3485 xfs_alert(log->l_mp, "Failed to recover intents"); 3486 return error; 3487 } 3488 3489 /* 3490 * Sync the log to get all the intents out of the AIL. 3491 * This isn't absolutely necessary, but it helps in 3492 * case the unlink transactions would have problems 3493 * pushing the intents out of the way. 3494 */ 3495 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 3496 3497 xlog_recover_process_iunlinks(log); 3498 3499 xlog_recover_check_summary(log); 3500 3501 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", 3502 log->l_mp->m_logname ? log->l_mp->m_logname 3503 : "internal"); 3504 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 3505 } else { 3506 xfs_info(log->l_mp, "Ending clean mount"); 3507 } 3508 return 0; 3509 } 3510 3511 void 3512 xlog_recover_cancel( 3513 struct xlog *log) 3514 { 3515 if (log->l_flags & XLOG_RECOVERY_NEEDED) 3516 xlog_recover_cancel_intents(log); 3517 } 3518 3519 #if defined(DEBUG) 3520 /* 3521 * Read all of the agf and agi counters and check that they 3522 * are consistent with the superblock counters. 3523 */ 3524 STATIC void 3525 xlog_recover_check_summary( 3526 struct xlog *log) 3527 { 3528 xfs_mount_t *mp; 3529 xfs_buf_t *agfbp; 3530 xfs_buf_t *agibp; 3531 xfs_agnumber_t agno; 3532 uint64_t freeblks; 3533 uint64_t itotal; 3534 uint64_t ifree; 3535 int error; 3536 3537 mp = log->l_mp; 3538 3539 freeblks = 0LL; 3540 itotal = 0LL; 3541 ifree = 0LL; 3542 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3543 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 3544 if (error) { 3545 xfs_alert(mp, "%s agf read failed agno %d error %d", 3546 __func__, agno, error); 3547 } else { 3548 struct xfs_agf *agfp = agfbp->b_addr; 3549 3550 freeblks += be32_to_cpu(agfp->agf_freeblks) + 3551 be32_to_cpu(agfp->agf_flcount); 3552 xfs_buf_relse(agfbp); 3553 } 3554 3555 error = xfs_read_agi(mp, NULL, agno, &agibp); 3556 if (error) { 3557 xfs_alert(mp, "%s agi read failed agno %d error %d", 3558 __func__, agno, error); 3559 } else { 3560 struct xfs_agi *agi = agibp->b_addr; 3561 3562 itotal += be32_to_cpu(agi->agi_count); 3563 ifree += be32_to_cpu(agi->agi_freecount); 3564 xfs_buf_relse(agibp); 3565 } 3566 } 3567 } 3568 #endif /* DEBUG */ 3569