1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_da_format.h" 17 #include "xfs_da_btree.h" 18 #include "xfs_inode.h" 19 #include "xfs_trans.h" 20 #include "xfs_log.h" 21 #include "xfs_log_priv.h" 22 #include "xfs_log_recover.h" 23 #include "xfs_inode_item.h" 24 #include "xfs_extfree_item.h" 25 #include "xfs_trans_priv.h" 26 #include "xfs_alloc.h" 27 #include "xfs_ialloc.h" 28 #include "xfs_quota.h" 29 #include "xfs_cksum.h" 30 #include "xfs_trace.h" 31 #include "xfs_icache.h" 32 #include "xfs_bmap_btree.h" 33 #include "xfs_error.h" 34 #include "xfs_dir2.h" 35 #include "xfs_rmap_item.h" 36 #include "xfs_buf_item.h" 37 #include "xfs_refcount_item.h" 38 #include "xfs_bmap_item.h" 39 40 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) 41 42 STATIC int 43 xlog_find_zeroed( 44 struct xlog *, 45 xfs_daddr_t *); 46 STATIC int 47 xlog_clear_stale_blocks( 48 struct xlog *, 49 xfs_lsn_t); 50 #if defined(DEBUG) 51 STATIC void 52 xlog_recover_check_summary( 53 struct xlog *); 54 #else 55 #define xlog_recover_check_summary(log) 56 #endif 57 STATIC int 58 xlog_do_recovery_pass( 59 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *); 60 61 /* 62 * This structure is used during recovery to record the buf log items which 63 * have been canceled and should not be replayed. 64 */ 65 struct xfs_buf_cancel { 66 xfs_daddr_t bc_blkno; 67 uint bc_len; 68 int bc_refcount; 69 struct list_head bc_list; 70 }; 71 72 /* 73 * Sector aligned buffer routines for buffer create/read/write/access 74 */ 75 76 /* 77 * Verify the log-relative block number and length in basic blocks are valid for 78 * an operation involving the given XFS log buffer. Returns true if the fields 79 * are valid, false otherwise. 80 */ 81 static inline bool 82 xlog_verify_bp( 83 struct xlog *log, 84 xfs_daddr_t blk_no, 85 int bbcount) 86 { 87 if (blk_no < 0 || blk_no >= log->l_logBBsize) 88 return false; 89 if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize) 90 return false; 91 return true; 92 } 93 94 /* 95 * Allocate a buffer to hold log data. The buffer needs to be able 96 * to map to a range of nbblks basic blocks at any valid (basic 97 * block) offset within the log. 98 */ 99 STATIC xfs_buf_t * 100 xlog_get_bp( 101 struct xlog *log, 102 int nbblks) 103 { 104 struct xfs_buf *bp; 105 106 /* 107 * Pass log block 0 since we don't have an addr yet, buffer will be 108 * verified on read. 109 */ 110 if (!xlog_verify_bp(log, 0, nbblks)) { 111 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 112 nbblks); 113 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 114 return NULL; 115 } 116 117 /* 118 * We do log I/O in units of log sectors (a power-of-2 119 * multiple of the basic block size), so we round up the 120 * requested size to accommodate the basic blocks required 121 * for complete log sectors. 122 * 123 * In addition, the buffer may be used for a non-sector- 124 * aligned block offset, in which case an I/O of the 125 * requested size could extend beyond the end of the 126 * buffer. If the requested size is only 1 basic block it 127 * will never straddle a sector boundary, so this won't be 128 * an issue. Nor will this be a problem if the log I/O is 129 * done in basic blocks (sector size 1). But otherwise we 130 * extend the buffer by one extra log sector to ensure 131 * there's space to accommodate this possibility. 132 */ 133 if (nbblks > 1 && log->l_sectBBsize > 1) 134 nbblks += log->l_sectBBsize; 135 nbblks = round_up(nbblks, log->l_sectBBsize); 136 137 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0); 138 if (bp) 139 xfs_buf_unlock(bp); 140 return bp; 141 } 142 143 STATIC void 144 xlog_put_bp( 145 xfs_buf_t *bp) 146 { 147 xfs_buf_free(bp); 148 } 149 150 /* 151 * Return the address of the start of the given block number's data 152 * in a log buffer. The buffer covers a log sector-aligned region. 153 */ 154 STATIC char * 155 xlog_align( 156 struct xlog *log, 157 xfs_daddr_t blk_no, 158 int nbblks, 159 struct xfs_buf *bp) 160 { 161 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1); 162 163 ASSERT(offset + nbblks <= bp->b_length); 164 return bp->b_addr + BBTOB(offset); 165 } 166 167 168 /* 169 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 170 */ 171 STATIC int 172 xlog_bread_noalign( 173 struct xlog *log, 174 xfs_daddr_t blk_no, 175 int nbblks, 176 struct xfs_buf *bp) 177 { 178 int error; 179 180 if (!xlog_verify_bp(log, blk_no, nbblks)) { 181 xfs_warn(log->l_mp, 182 "Invalid log block/length (0x%llx, 0x%x) for buffer", 183 blk_no, nbblks); 184 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 185 return -EFSCORRUPTED; 186 } 187 188 blk_no = round_down(blk_no, log->l_sectBBsize); 189 nbblks = round_up(nbblks, log->l_sectBBsize); 190 191 ASSERT(nbblks > 0); 192 ASSERT(nbblks <= bp->b_length); 193 194 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 195 bp->b_flags |= XBF_READ; 196 bp->b_io_length = nbblks; 197 bp->b_error = 0; 198 199 error = xfs_buf_submit(bp); 200 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) 201 xfs_buf_ioerror_alert(bp, __func__); 202 return error; 203 } 204 205 STATIC int 206 xlog_bread( 207 struct xlog *log, 208 xfs_daddr_t blk_no, 209 int nbblks, 210 struct xfs_buf *bp, 211 char **offset) 212 { 213 int error; 214 215 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 216 if (error) 217 return error; 218 219 *offset = xlog_align(log, blk_no, nbblks, bp); 220 return 0; 221 } 222 223 /* 224 * Read at an offset into the buffer. Returns with the buffer in it's original 225 * state regardless of the result of the read. 226 */ 227 STATIC int 228 xlog_bread_offset( 229 struct xlog *log, 230 xfs_daddr_t blk_no, /* block to read from */ 231 int nbblks, /* blocks to read */ 232 struct xfs_buf *bp, 233 char *offset) 234 { 235 char *orig_offset = bp->b_addr; 236 int orig_len = BBTOB(bp->b_length); 237 int error, error2; 238 239 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks)); 240 if (error) 241 return error; 242 243 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 244 245 /* must reset buffer pointer even on error */ 246 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len); 247 if (error) 248 return error; 249 return error2; 250 } 251 252 /* 253 * Write out the buffer at the given block for the given number of blocks. 254 * The buffer is kept locked across the write and is returned locked. 255 * This can only be used for synchronous log writes. 256 */ 257 STATIC int 258 xlog_bwrite( 259 struct xlog *log, 260 xfs_daddr_t blk_no, 261 int nbblks, 262 struct xfs_buf *bp) 263 { 264 int error; 265 266 if (!xlog_verify_bp(log, blk_no, nbblks)) { 267 xfs_warn(log->l_mp, 268 "Invalid log block/length (0x%llx, 0x%x) for buffer", 269 blk_no, nbblks); 270 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 271 return -EFSCORRUPTED; 272 } 273 274 blk_no = round_down(blk_no, log->l_sectBBsize); 275 nbblks = round_up(nbblks, log->l_sectBBsize); 276 277 ASSERT(nbblks > 0); 278 ASSERT(nbblks <= bp->b_length); 279 280 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 281 xfs_buf_hold(bp); 282 xfs_buf_lock(bp); 283 bp->b_io_length = nbblks; 284 bp->b_error = 0; 285 286 error = xfs_bwrite(bp); 287 if (error) 288 xfs_buf_ioerror_alert(bp, __func__); 289 xfs_buf_relse(bp); 290 return error; 291 } 292 293 #ifdef DEBUG 294 /* 295 * dump debug superblock and log record information 296 */ 297 STATIC void 298 xlog_header_check_dump( 299 xfs_mount_t *mp, 300 xlog_rec_header_t *head) 301 { 302 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d", 303 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 304 xfs_debug(mp, " log : uuid = %pU, fmt = %d", 305 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 306 } 307 #else 308 #define xlog_header_check_dump(mp, head) 309 #endif 310 311 /* 312 * check log record header for recovery 313 */ 314 STATIC int 315 xlog_header_check_recover( 316 xfs_mount_t *mp, 317 xlog_rec_header_t *head) 318 { 319 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 320 321 /* 322 * IRIX doesn't write the h_fmt field and leaves it zeroed 323 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 324 * a dirty log created in IRIX. 325 */ 326 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) { 327 xfs_warn(mp, 328 "dirty log written in incompatible format - can't recover"); 329 xlog_header_check_dump(mp, head); 330 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 331 XFS_ERRLEVEL_HIGH, mp); 332 return -EFSCORRUPTED; 333 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 334 xfs_warn(mp, 335 "dirty log entry has mismatched uuid - can't recover"); 336 xlog_header_check_dump(mp, head); 337 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 338 XFS_ERRLEVEL_HIGH, mp); 339 return -EFSCORRUPTED; 340 } 341 return 0; 342 } 343 344 /* 345 * read the head block of the log and check the header 346 */ 347 STATIC int 348 xlog_header_check_mount( 349 xfs_mount_t *mp, 350 xlog_rec_header_t *head) 351 { 352 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 353 354 if (uuid_is_null(&head->h_fs_uuid)) { 355 /* 356 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 357 * h_fs_uuid is null, we assume this log was last mounted 358 * by IRIX and continue. 359 */ 360 xfs_warn(mp, "null uuid in log - IRIX style log"); 361 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 362 xfs_warn(mp, "log has mismatched uuid - can't recover"); 363 xlog_header_check_dump(mp, head); 364 XFS_ERROR_REPORT("xlog_header_check_mount", 365 XFS_ERRLEVEL_HIGH, mp); 366 return -EFSCORRUPTED; 367 } 368 return 0; 369 } 370 371 STATIC void 372 xlog_recover_iodone( 373 struct xfs_buf *bp) 374 { 375 if (bp->b_error) { 376 /* 377 * We're not going to bother about retrying 378 * this during recovery. One strike! 379 */ 380 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 381 xfs_buf_ioerror_alert(bp, __func__); 382 xfs_force_shutdown(bp->b_target->bt_mount, 383 SHUTDOWN_META_IO_ERROR); 384 } 385 } 386 387 /* 388 * On v5 supers, a bli could be attached to update the metadata LSN. 389 * Clean it up. 390 */ 391 if (bp->b_log_item) 392 xfs_buf_item_relse(bp); 393 ASSERT(bp->b_log_item == NULL); 394 395 bp->b_iodone = NULL; 396 xfs_buf_ioend(bp); 397 } 398 399 /* 400 * This routine finds (to an approximation) the first block in the physical 401 * log which contains the given cycle. It uses a binary search algorithm. 402 * Note that the algorithm can not be perfect because the disk will not 403 * necessarily be perfect. 404 */ 405 STATIC int 406 xlog_find_cycle_start( 407 struct xlog *log, 408 struct xfs_buf *bp, 409 xfs_daddr_t first_blk, 410 xfs_daddr_t *last_blk, 411 uint cycle) 412 { 413 char *offset; 414 xfs_daddr_t mid_blk; 415 xfs_daddr_t end_blk; 416 uint mid_cycle; 417 int error; 418 419 end_blk = *last_blk; 420 mid_blk = BLK_AVG(first_blk, end_blk); 421 while (mid_blk != first_blk && mid_blk != end_blk) { 422 error = xlog_bread(log, mid_blk, 1, bp, &offset); 423 if (error) 424 return error; 425 mid_cycle = xlog_get_cycle(offset); 426 if (mid_cycle == cycle) 427 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 428 else 429 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 430 mid_blk = BLK_AVG(first_blk, end_blk); 431 } 432 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 433 (mid_blk == end_blk && mid_blk-1 == first_blk)); 434 435 *last_blk = end_blk; 436 437 return 0; 438 } 439 440 /* 441 * Check that a range of blocks does not contain stop_on_cycle_no. 442 * Fill in *new_blk with the block offset where such a block is 443 * found, or with -1 (an invalid block number) if there is no such 444 * block in the range. The scan needs to occur from front to back 445 * and the pointer into the region must be updated since a later 446 * routine will need to perform another test. 447 */ 448 STATIC int 449 xlog_find_verify_cycle( 450 struct xlog *log, 451 xfs_daddr_t start_blk, 452 int nbblks, 453 uint stop_on_cycle_no, 454 xfs_daddr_t *new_blk) 455 { 456 xfs_daddr_t i, j; 457 uint cycle; 458 xfs_buf_t *bp; 459 xfs_daddr_t bufblks; 460 char *buf = NULL; 461 int error = 0; 462 463 /* 464 * Greedily allocate a buffer big enough to handle the full 465 * range of basic blocks we'll be examining. If that fails, 466 * try a smaller size. We need to be able to read at least 467 * a log sector, or we're out of luck. 468 */ 469 bufblks = 1 << ffs(nbblks); 470 while (bufblks > log->l_logBBsize) 471 bufblks >>= 1; 472 while (!(bp = xlog_get_bp(log, bufblks))) { 473 bufblks >>= 1; 474 if (bufblks < log->l_sectBBsize) 475 return -ENOMEM; 476 } 477 478 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 479 int bcount; 480 481 bcount = min(bufblks, (start_blk + nbblks - i)); 482 483 error = xlog_bread(log, i, bcount, bp, &buf); 484 if (error) 485 goto out; 486 487 for (j = 0; j < bcount; j++) { 488 cycle = xlog_get_cycle(buf); 489 if (cycle == stop_on_cycle_no) { 490 *new_blk = i+j; 491 goto out; 492 } 493 494 buf += BBSIZE; 495 } 496 } 497 498 *new_blk = -1; 499 500 out: 501 xlog_put_bp(bp); 502 return error; 503 } 504 505 /* 506 * Potentially backup over partial log record write. 507 * 508 * In the typical case, last_blk is the number of the block directly after 509 * a good log record. Therefore, we subtract one to get the block number 510 * of the last block in the given buffer. extra_bblks contains the number 511 * of blocks we would have read on a previous read. This happens when the 512 * last log record is split over the end of the physical log. 513 * 514 * extra_bblks is the number of blocks potentially verified on a previous 515 * call to this routine. 516 */ 517 STATIC int 518 xlog_find_verify_log_record( 519 struct xlog *log, 520 xfs_daddr_t start_blk, 521 xfs_daddr_t *last_blk, 522 int extra_bblks) 523 { 524 xfs_daddr_t i; 525 xfs_buf_t *bp; 526 char *offset = NULL; 527 xlog_rec_header_t *head = NULL; 528 int error = 0; 529 int smallmem = 0; 530 int num_blks = *last_blk - start_blk; 531 int xhdrs; 532 533 ASSERT(start_blk != 0 || *last_blk != start_blk); 534 535 if (!(bp = xlog_get_bp(log, num_blks))) { 536 if (!(bp = xlog_get_bp(log, 1))) 537 return -ENOMEM; 538 smallmem = 1; 539 } else { 540 error = xlog_bread(log, start_blk, num_blks, bp, &offset); 541 if (error) 542 goto out; 543 offset += ((num_blks - 1) << BBSHIFT); 544 } 545 546 for (i = (*last_blk) - 1; i >= 0; i--) { 547 if (i < start_blk) { 548 /* valid log record not found */ 549 xfs_warn(log->l_mp, 550 "Log inconsistent (didn't find previous header)"); 551 ASSERT(0); 552 error = -EIO; 553 goto out; 554 } 555 556 if (smallmem) { 557 error = xlog_bread(log, i, 1, bp, &offset); 558 if (error) 559 goto out; 560 } 561 562 head = (xlog_rec_header_t *)offset; 563 564 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 565 break; 566 567 if (!smallmem) 568 offset -= BBSIZE; 569 } 570 571 /* 572 * We hit the beginning of the physical log & still no header. Return 573 * to caller. If caller can handle a return of -1, then this routine 574 * will be called again for the end of the physical log. 575 */ 576 if (i == -1) { 577 error = 1; 578 goto out; 579 } 580 581 /* 582 * We have the final block of the good log (the first block 583 * of the log record _before_ the head. So we check the uuid. 584 */ 585 if ((error = xlog_header_check_mount(log->l_mp, head))) 586 goto out; 587 588 /* 589 * We may have found a log record header before we expected one. 590 * last_blk will be the 1st block # with a given cycle #. We may end 591 * up reading an entire log record. In this case, we don't want to 592 * reset last_blk. Only when last_blk points in the middle of a log 593 * record do we update last_blk. 594 */ 595 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 596 uint h_size = be32_to_cpu(head->h_size); 597 598 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 599 if (h_size % XLOG_HEADER_CYCLE_SIZE) 600 xhdrs++; 601 } else { 602 xhdrs = 1; 603 } 604 605 if (*last_blk - i + extra_bblks != 606 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 607 *last_blk = i; 608 609 out: 610 xlog_put_bp(bp); 611 return error; 612 } 613 614 /* 615 * Head is defined to be the point of the log where the next log write 616 * could go. This means that incomplete LR writes at the end are 617 * eliminated when calculating the head. We aren't guaranteed that previous 618 * LR have complete transactions. We only know that a cycle number of 619 * current cycle number -1 won't be present in the log if we start writing 620 * from our current block number. 621 * 622 * last_blk contains the block number of the first block with a given 623 * cycle number. 624 * 625 * Return: zero if normal, non-zero if error. 626 */ 627 STATIC int 628 xlog_find_head( 629 struct xlog *log, 630 xfs_daddr_t *return_head_blk) 631 { 632 xfs_buf_t *bp; 633 char *offset; 634 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 635 int num_scan_bblks; 636 uint first_half_cycle, last_half_cycle; 637 uint stop_on_cycle; 638 int error, log_bbnum = log->l_logBBsize; 639 640 /* Is the end of the log device zeroed? */ 641 error = xlog_find_zeroed(log, &first_blk); 642 if (error < 0) { 643 xfs_warn(log->l_mp, "empty log check failed"); 644 return error; 645 } 646 if (error == 1) { 647 *return_head_blk = first_blk; 648 649 /* Is the whole lot zeroed? */ 650 if (!first_blk) { 651 /* Linux XFS shouldn't generate totally zeroed logs - 652 * mkfs etc write a dummy unmount record to a fresh 653 * log so we can store the uuid in there 654 */ 655 xfs_warn(log->l_mp, "totally zeroed log"); 656 } 657 658 return 0; 659 } 660 661 first_blk = 0; /* get cycle # of 1st block */ 662 bp = xlog_get_bp(log, 1); 663 if (!bp) 664 return -ENOMEM; 665 666 error = xlog_bread(log, 0, 1, bp, &offset); 667 if (error) 668 goto bp_err; 669 670 first_half_cycle = xlog_get_cycle(offset); 671 672 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 673 error = xlog_bread(log, last_blk, 1, bp, &offset); 674 if (error) 675 goto bp_err; 676 677 last_half_cycle = xlog_get_cycle(offset); 678 ASSERT(last_half_cycle != 0); 679 680 /* 681 * If the 1st half cycle number is equal to the last half cycle number, 682 * then the entire log is stamped with the same cycle number. In this 683 * case, head_blk can't be set to zero (which makes sense). The below 684 * math doesn't work out properly with head_blk equal to zero. Instead, 685 * we set it to log_bbnum which is an invalid block number, but this 686 * value makes the math correct. If head_blk doesn't changed through 687 * all the tests below, *head_blk is set to zero at the very end rather 688 * than log_bbnum. In a sense, log_bbnum and zero are the same block 689 * in a circular file. 690 */ 691 if (first_half_cycle == last_half_cycle) { 692 /* 693 * In this case we believe that the entire log should have 694 * cycle number last_half_cycle. We need to scan backwards 695 * from the end verifying that there are no holes still 696 * containing last_half_cycle - 1. If we find such a hole, 697 * then the start of that hole will be the new head. The 698 * simple case looks like 699 * x | x ... | x - 1 | x 700 * Another case that fits this picture would be 701 * x | x + 1 | x ... | x 702 * In this case the head really is somewhere at the end of the 703 * log, as one of the latest writes at the beginning was 704 * incomplete. 705 * One more case is 706 * x | x + 1 | x ... | x - 1 | x 707 * This is really the combination of the above two cases, and 708 * the head has to end up at the start of the x-1 hole at the 709 * end of the log. 710 * 711 * In the 256k log case, we will read from the beginning to the 712 * end of the log and search for cycle numbers equal to x-1. 713 * We don't worry about the x+1 blocks that we encounter, 714 * because we know that they cannot be the head since the log 715 * started with x. 716 */ 717 head_blk = log_bbnum; 718 stop_on_cycle = last_half_cycle - 1; 719 } else { 720 /* 721 * In this case we want to find the first block with cycle 722 * number matching last_half_cycle. We expect the log to be 723 * some variation on 724 * x + 1 ... | x ... | x 725 * The first block with cycle number x (last_half_cycle) will 726 * be where the new head belongs. First we do a binary search 727 * for the first occurrence of last_half_cycle. The binary 728 * search may not be totally accurate, so then we scan back 729 * from there looking for occurrences of last_half_cycle before 730 * us. If that backwards scan wraps around the beginning of 731 * the log, then we look for occurrences of last_half_cycle - 1 732 * at the end of the log. The cases we're looking for look 733 * like 734 * v binary search stopped here 735 * x + 1 ... | x | x + 1 | x ... | x 736 * ^ but we want to locate this spot 737 * or 738 * <---------> less than scan distance 739 * x + 1 ... | x ... | x - 1 | x 740 * ^ we want to locate this spot 741 */ 742 stop_on_cycle = last_half_cycle; 743 if ((error = xlog_find_cycle_start(log, bp, first_blk, 744 &head_blk, last_half_cycle))) 745 goto bp_err; 746 } 747 748 /* 749 * Now validate the answer. Scan back some number of maximum possible 750 * blocks and make sure each one has the expected cycle number. The 751 * maximum is determined by the total possible amount of buffering 752 * in the in-core log. The following number can be made tighter if 753 * we actually look at the block size of the filesystem. 754 */ 755 num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log)); 756 if (head_blk >= num_scan_bblks) { 757 /* 758 * We are guaranteed that the entire check can be performed 759 * in one buffer. 760 */ 761 start_blk = head_blk - num_scan_bblks; 762 if ((error = xlog_find_verify_cycle(log, 763 start_blk, num_scan_bblks, 764 stop_on_cycle, &new_blk))) 765 goto bp_err; 766 if (new_blk != -1) 767 head_blk = new_blk; 768 } else { /* need to read 2 parts of log */ 769 /* 770 * We are going to scan backwards in the log in two parts. 771 * First we scan the physical end of the log. In this part 772 * of the log, we are looking for blocks with cycle number 773 * last_half_cycle - 1. 774 * If we find one, then we know that the log starts there, as 775 * we've found a hole that didn't get written in going around 776 * the end of the physical log. The simple case for this is 777 * x + 1 ... | x ... | x - 1 | x 778 * <---------> less than scan distance 779 * If all of the blocks at the end of the log have cycle number 780 * last_half_cycle, then we check the blocks at the start of 781 * the log looking for occurrences of last_half_cycle. If we 782 * find one, then our current estimate for the location of the 783 * first occurrence of last_half_cycle is wrong and we move 784 * back to the hole we've found. This case looks like 785 * x + 1 ... | x | x + 1 | x ... 786 * ^ binary search stopped here 787 * Another case we need to handle that only occurs in 256k 788 * logs is 789 * x + 1 ... | x ... | x+1 | x ... 790 * ^ binary search stops here 791 * In a 256k log, the scan at the end of the log will see the 792 * x + 1 blocks. We need to skip past those since that is 793 * certainly not the head of the log. By searching for 794 * last_half_cycle-1 we accomplish that. 795 */ 796 ASSERT(head_blk <= INT_MAX && 797 (xfs_daddr_t) num_scan_bblks >= head_blk); 798 start_blk = log_bbnum - (num_scan_bblks - head_blk); 799 if ((error = xlog_find_verify_cycle(log, start_blk, 800 num_scan_bblks - (int)head_blk, 801 (stop_on_cycle - 1), &new_blk))) 802 goto bp_err; 803 if (new_blk != -1) { 804 head_blk = new_blk; 805 goto validate_head; 806 } 807 808 /* 809 * Scan beginning of log now. The last part of the physical 810 * log is good. This scan needs to verify that it doesn't find 811 * the last_half_cycle. 812 */ 813 start_blk = 0; 814 ASSERT(head_blk <= INT_MAX); 815 if ((error = xlog_find_verify_cycle(log, 816 start_blk, (int)head_blk, 817 stop_on_cycle, &new_blk))) 818 goto bp_err; 819 if (new_blk != -1) 820 head_blk = new_blk; 821 } 822 823 validate_head: 824 /* 825 * Now we need to make sure head_blk is not pointing to a block in 826 * the middle of a log record. 827 */ 828 num_scan_bblks = XLOG_REC_SHIFT(log); 829 if (head_blk >= num_scan_bblks) { 830 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 831 832 /* start ptr at last block ptr before head_blk */ 833 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 834 if (error == 1) 835 error = -EIO; 836 if (error) 837 goto bp_err; 838 } else { 839 start_blk = 0; 840 ASSERT(head_blk <= INT_MAX); 841 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 842 if (error < 0) 843 goto bp_err; 844 if (error == 1) { 845 /* We hit the beginning of the log during our search */ 846 start_blk = log_bbnum - (num_scan_bblks - head_blk); 847 new_blk = log_bbnum; 848 ASSERT(start_blk <= INT_MAX && 849 (xfs_daddr_t) log_bbnum-start_blk >= 0); 850 ASSERT(head_blk <= INT_MAX); 851 error = xlog_find_verify_log_record(log, start_blk, 852 &new_blk, (int)head_blk); 853 if (error == 1) 854 error = -EIO; 855 if (error) 856 goto bp_err; 857 if (new_blk != log_bbnum) 858 head_blk = new_blk; 859 } else if (error) 860 goto bp_err; 861 } 862 863 xlog_put_bp(bp); 864 if (head_blk == log_bbnum) 865 *return_head_blk = 0; 866 else 867 *return_head_blk = head_blk; 868 /* 869 * When returning here, we have a good block number. Bad block 870 * means that during a previous crash, we didn't have a clean break 871 * from cycle number N to cycle number N-1. In this case, we need 872 * to find the first block with cycle number N-1. 873 */ 874 return 0; 875 876 bp_err: 877 xlog_put_bp(bp); 878 879 if (error) 880 xfs_warn(log->l_mp, "failed to find log head"); 881 return error; 882 } 883 884 /* 885 * Seek backwards in the log for log record headers. 886 * 887 * Given a starting log block, walk backwards until we find the provided number 888 * of records or hit the provided tail block. The return value is the number of 889 * records encountered or a negative error code. The log block and buffer 890 * pointer of the last record seen are returned in rblk and rhead respectively. 891 */ 892 STATIC int 893 xlog_rseek_logrec_hdr( 894 struct xlog *log, 895 xfs_daddr_t head_blk, 896 xfs_daddr_t tail_blk, 897 int count, 898 struct xfs_buf *bp, 899 xfs_daddr_t *rblk, 900 struct xlog_rec_header **rhead, 901 bool *wrapped) 902 { 903 int i; 904 int error; 905 int found = 0; 906 char *offset = NULL; 907 xfs_daddr_t end_blk; 908 909 *wrapped = false; 910 911 /* 912 * Walk backwards from the head block until we hit the tail or the first 913 * block in the log. 914 */ 915 end_blk = head_blk > tail_blk ? tail_blk : 0; 916 for (i = (int) head_blk - 1; i >= end_blk; i--) { 917 error = xlog_bread(log, i, 1, bp, &offset); 918 if (error) 919 goto out_error; 920 921 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 922 *rblk = i; 923 *rhead = (struct xlog_rec_header *) offset; 924 if (++found == count) 925 break; 926 } 927 } 928 929 /* 930 * If we haven't hit the tail block or the log record header count, 931 * start looking again from the end of the physical log. Note that 932 * callers can pass head == tail if the tail is not yet known. 933 */ 934 if (tail_blk >= head_blk && found != count) { 935 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) { 936 error = xlog_bread(log, i, 1, bp, &offset); 937 if (error) 938 goto out_error; 939 940 if (*(__be32 *)offset == 941 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 942 *wrapped = true; 943 *rblk = i; 944 *rhead = (struct xlog_rec_header *) offset; 945 if (++found == count) 946 break; 947 } 948 } 949 } 950 951 return found; 952 953 out_error: 954 return error; 955 } 956 957 /* 958 * Seek forward in the log for log record headers. 959 * 960 * Given head and tail blocks, walk forward from the tail block until we find 961 * the provided number of records or hit the head block. The return value is the 962 * number of records encountered or a negative error code. The log block and 963 * buffer pointer of the last record seen are returned in rblk and rhead 964 * respectively. 965 */ 966 STATIC int 967 xlog_seek_logrec_hdr( 968 struct xlog *log, 969 xfs_daddr_t head_blk, 970 xfs_daddr_t tail_blk, 971 int count, 972 struct xfs_buf *bp, 973 xfs_daddr_t *rblk, 974 struct xlog_rec_header **rhead, 975 bool *wrapped) 976 { 977 int i; 978 int error; 979 int found = 0; 980 char *offset = NULL; 981 xfs_daddr_t end_blk; 982 983 *wrapped = false; 984 985 /* 986 * Walk forward from the tail block until we hit the head or the last 987 * block in the log. 988 */ 989 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1; 990 for (i = (int) tail_blk; i <= end_blk; i++) { 991 error = xlog_bread(log, i, 1, bp, &offset); 992 if (error) 993 goto out_error; 994 995 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 996 *rblk = i; 997 *rhead = (struct xlog_rec_header *) offset; 998 if (++found == count) 999 break; 1000 } 1001 } 1002 1003 /* 1004 * If we haven't hit the head block or the log record header count, 1005 * start looking again from the start of the physical log. 1006 */ 1007 if (tail_blk > head_blk && found != count) { 1008 for (i = 0; i < (int) head_blk; i++) { 1009 error = xlog_bread(log, i, 1, bp, &offset); 1010 if (error) 1011 goto out_error; 1012 1013 if (*(__be32 *)offset == 1014 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 1015 *wrapped = true; 1016 *rblk = i; 1017 *rhead = (struct xlog_rec_header *) offset; 1018 if (++found == count) 1019 break; 1020 } 1021 } 1022 } 1023 1024 return found; 1025 1026 out_error: 1027 return error; 1028 } 1029 1030 /* 1031 * Calculate distance from head to tail (i.e., unused space in the log). 1032 */ 1033 static inline int 1034 xlog_tail_distance( 1035 struct xlog *log, 1036 xfs_daddr_t head_blk, 1037 xfs_daddr_t tail_blk) 1038 { 1039 if (head_blk < tail_blk) 1040 return tail_blk - head_blk; 1041 1042 return tail_blk + (log->l_logBBsize - head_blk); 1043 } 1044 1045 /* 1046 * Verify the log tail. This is particularly important when torn or incomplete 1047 * writes have been detected near the front of the log and the head has been 1048 * walked back accordingly. 1049 * 1050 * We also have to handle the case where the tail was pinned and the head 1051 * blocked behind the tail right before a crash. If the tail had been pushed 1052 * immediately prior to the crash and the subsequent checkpoint was only 1053 * partially written, it's possible it overwrote the last referenced tail in the 1054 * log with garbage. This is not a coherency problem because the tail must have 1055 * been pushed before it can be overwritten, but appears as log corruption to 1056 * recovery because we have no way to know the tail was updated if the 1057 * subsequent checkpoint didn't write successfully. 1058 * 1059 * Therefore, CRC check the log from tail to head. If a failure occurs and the 1060 * offending record is within max iclog bufs from the head, walk the tail 1061 * forward and retry until a valid tail is found or corruption is detected out 1062 * of the range of a possible overwrite. 1063 */ 1064 STATIC int 1065 xlog_verify_tail( 1066 struct xlog *log, 1067 xfs_daddr_t head_blk, 1068 xfs_daddr_t *tail_blk, 1069 int hsize) 1070 { 1071 struct xlog_rec_header *thead; 1072 struct xfs_buf *bp; 1073 xfs_daddr_t first_bad; 1074 int error = 0; 1075 bool wrapped; 1076 xfs_daddr_t tmp_tail; 1077 xfs_daddr_t orig_tail = *tail_blk; 1078 1079 bp = xlog_get_bp(log, 1); 1080 if (!bp) 1081 return -ENOMEM; 1082 1083 /* 1084 * Make sure the tail points to a record (returns positive count on 1085 * success). 1086 */ 1087 error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, bp, 1088 &tmp_tail, &thead, &wrapped); 1089 if (error < 0) 1090 goto out; 1091 if (*tail_blk != tmp_tail) 1092 *tail_blk = tmp_tail; 1093 1094 /* 1095 * Run a CRC check from the tail to the head. We can't just check 1096 * MAX_ICLOGS records past the tail because the tail may point to stale 1097 * blocks cleared during the search for the head/tail. These blocks are 1098 * overwritten with zero-length records and thus record count is not a 1099 * reliable indicator of the iclog state before a crash. 1100 */ 1101 first_bad = 0; 1102 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 1103 XLOG_RECOVER_CRCPASS, &first_bad); 1104 while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 1105 int tail_distance; 1106 1107 /* 1108 * Is corruption within range of the head? If so, retry from 1109 * the next record. Otherwise return an error. 1110 */ 1111 tail_distance = xlog_tail_distance(log, head_blk, first_bad); 1112 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize)) 1113 break; 1114 1115 /* skip to the next record; returns positive count on success */ 1116 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, bp, 1117 &tmp_tail, &thead, &wrapped); 1118 if (error < 0) 1119 goto out; 1120 1121 *tail_blk = tmp_tail; 1122 first_bad = 0; 1123 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 1124 XLOG_RECOVER_CRCPASS, &first_bad); 1125 } 1126 1127 if (!error && *tail_blk != orig_tail) 1128 xfs_warn(log->l_mp, 1129 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx", 1130 orig_tail, *tail_blk); 1131 out: 1132 xlog_put_bp(bp); 1133 return error; 1134 } 1135 1136 /* 1137 * Detect and trim torn writes from the head of the log. 1138 * 1139 * Storage without sector atomicity guarantees can result in torn writes in the 1140 * log in the event of a crash. Our only means to detect this scenario is via 1141 * CRC verification. While we can't always be certain that CRC verification 1142 * failure is due to a torn write vs. an unrelated corruption, we do know that 1143 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at 1144 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of 1145 * the log and treat failures in this range as torn writes as a matter of 1146 * policy. In the event of CRC failure, the head is walked back to the last good 1147 * record in the log and the tail is updated from that record and verified. 1148 */ 1149 STATIC int 1150 xlog_verify_head( 1151 struct xlog *log, 1152 xfs_daddr_t *head_blk, /* in/out: unverified head */ 1153 xfs_daddr_t *tail_blk, /* out: tail block */ 1154 struct xfs_buf *bp, 1155 xfs_daddr_t *rhead_blk, /* start blk of last record */ 1156 struct xlog_rec_header **rhead, /* ptr to last record */ 1157 bool *wrapped) /* last rec. wraps phys. log */ 1158 { 1159 struct xlog_rec_header *tmp_rhead; 1160 struct xfs_buf *tmp_bp; 1161 xfs_daddr_t first_bad; 1162 xfs_daddr_t tmp_rhead_blk; 1163 int found; 1164 int error; 1165 bool tmp_wrapped; 1166 1167 /* 1168 * Check the head of the log for torn writes. Search backwards from the 1169 * head until we hit the tail or the maximum number of log record I/Os 1170 * that could have been in flight at one time. Use a temporary buffer so 1171 * we don't trash the rhead/bp pointers from the caller. 1172 */ 1173 tmp_bp = xlog_get_bp(log, 1); 1174 if (!tmp_bp) 1175 return -ENOMEM; 1176 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk, 1177 XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk, 1178 &tmp_rhead, &tmp_wrapped); 1179 xlog_put_bp(tmp_bp); 1180 if (error < 0) 1181 return error; 1182 1183 /* 1184 * Now run a CRC verification pass over the records starting at the 1185 * block found above to the current head. If a CRC failure occurs, the 1186 * log block of the first bad record is saved in first_bad. 1187 */ 1188 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk, 1189 XLOG_RECOVER_CRCPASS, &first_bad); 1190 if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 1191 /* 1192 * We've hit a potential torn write. Reset the error and warn 1193 * about it. 1194 */ 1195 error = 0; 1196 xfs_warn(log->l_mp, 1197 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.", 1198 first_bad, *head_blk); 1199 1200 /* 1201 * Get the header block and buffer pointer for the last good 1202 * record before the bad record. 1203 * 1204 * Note that xlog_find_tail() clears the blocks at the new head 1205 * (i.e., the records with invalid CRC) if the cycle number 1206 * matches the the current cycle. 1207 */ 1208 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp, 1209 rhead_blk, rhead, wrapped); 1210 if (found < 0) 1211 return found; 1212 if (found == 0) /* XXX: right thing to do here? */ 1213 return -EIO; 1214 1215 /* 1216 * Reset the head block to the starting block of the first bad 1217 * log record and set the tail block based on the last good 1218 * record. 1219 * 1220 * Bail out if the updated head/tail match as this indicates 1221 * possible corruption outside of the acceptable 1222 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair... 1223 */ 1224 *head_blk = first_bad; 1225 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn)); 1226 if (*head_blk == *tail_blk) { 1227 ASSERT(0); 1228 return 0; 1229 } 1230 } 1231 if (error) 1232 return error; 1233 1234 return xlog_verify_tail(log, *head_blk, tail_blk, 1235 be32_to_cpu((*rhead)->h_size)); 1236 } 1237 1238 /* 1239 * We need to make sure we handle log wrapping properly, so we can't use the 1240 * calculated logbno directly. Make sure it wraps to the correct bno inside the 1241 * log. 1242 * 1243 * The log is limited to 32 bit sizes, so we use the appropriate modulus 1244 * operation here and cast it back to a 64 bit daddr on return. 1245 */ 1246 static inline xfs_daddr_t 1247 xlog_wrap_logbno( 1248 struct xlog *log, 1249 xfs_daddr_t bno) 1250 { 1251 int mod; 1252 1253 div_s64_rem(bno, log->l_logBBsize, &mod); 1254 return mod; 1255 } 1256 1257 /* 1258 * Check whether the head of the log points to an unmount record. In other 1259 * words, determine whether the log is clean. If so, update the in-core state 1260 * appropriately. 1261 */ 1262 static int 1263 xlog_check_unmount_rec( 1264 struct xlog *log, 1265 xfs_daddr_t *head_blk, 1266 xfs_daddr_t *tail_blk, 1267 struct xlog_rec_header *rhead, 1268 xfs_daddr_t rhead_blk, 1269 struct xfs_buf *bp, 1270 bool *clean) 1271 { 1272 struct xlog_op_header *op_head; 1273 xfs_daddr_t umount_data_blk; 1274 xfs_daddr_t after_umount_blk; 1275 int hblks; 1276 int error; 1277 char *offset; 1278 1279 *clean = false; 1280 1281 /* 1282 * Look for unmount record. If we find it, then we know there was a 1283 * clean unmount. Since 'i' could be the last block in the physical 1284 * log, we convert to a log block before comparing to the head_blk. 1285 * 1286 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks() 1287 * below. We won't want to clear the unmount record if there is one, so 1288 * we pass the lsn of the unmount record rather than the block after it. 1289 */ 1290 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1291 int h_size = be32_to_cpu(rhead->h_size); 1292 int h_version = be32_to_cpu(rhead->h_version); 1293 1294 if ((h_version & XLOG_VERSION_2) && 1295 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 1296 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 1297 if (h_size % XLOG_HEADER_CYCLE_SIZE) 1298 hblks++; 1299 } else { 1300 hblks = 1; 1301 } 1302 } else { 1303 hblks = 1; 1304 } 1305 1306 after_umount_blk = xlog_wrap_logbno(log, 1307 rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len))); 1308 1309 if (*head_blk == after_umount_blk && 1310 be32_to_cpu(rhead->h_num_logops) == 1) { 1311 umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks); 1312 error = xlog_bread(log, umount_data_blk, 1, bp, &offset); 1313 if (error) 1314 return error; 1315 1316 op_head = (struct xlog_op_header *)offset; 1317 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 1318 /* 1319 * Set tail and last sync so that newly written log 1320 * records will point recovery to after the current 1321 * unmount record. 1322 */ 1323 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1324 log->l_curr_cycle, after_umount_blk); 1325 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1326 log->l_curr_cycle, after_umount_blk); 1327 *tail_blk = after_umount_blk; 1328 1329 *clean = true; 1330 } 1331 } 1332 1333 return 0; 1334 } 1335 1336 static void 1337 xlog_set_state( 1338 struct xlog *log, 1339 xfs_daddr_t head_blk, 1340 struct xlog_rec_header *rhead, 1341 xfs_daddr_t rhead_blk, 1342 bool bump_cycle) 1343 { 1344 /* 1345 * Reset log values according to the state of the log when we 1346 * crashed. In the case where head_blk == 0, we bump curr_cycle 1347 * one because the next write starts a new cycle rather than 1348 * continuing the cycle of the last good log record. At this 1349 * point we have guaranteed that all partial log records have been 1350 * accounted for. Therefore, we know that the last good log record 1351 * written was complete and ended exactly on the end boundary 1352 * of the physical log. 1353 */ 1354 log->l_prev_block = rhead_blk; 1355 log->l_curr_block = (int)head_blk; 1356 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 1357 if (bump_cycle) 1358 log->l_curr_cycle++; 1359 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); 1360 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); 1361 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, 1362 BBTOB(log->l_curr_block)); 1363 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, 1364 BBTOB(log->l_curr_block)); 1365 } 1366 1367 /* 1368 * Find the sync block number or the tail of the log. 1369 * 1370 * This will be the block number of the last record to have its 1371 * associated buffers synced to disk. Every log record header has 1372 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 1373 * to get a sync block number. The only concern is to figure out which 1374 * log record header to believe. 1375 * 1376 * The following algorithm uses the log record header with the largest 1377 * lsn. The entire log record does not need to be valid. We only care 1378 * that the header is valid. 1379 * 1380 * We could speed up search by using current head_blk buffer, but it is not 1381 * available. 1382 */ 1383 STATIC int 1384 xlog_find_tail( 1385 struct xlog *log, 1386 xfs_daddr_t *head_blk, 1387 xfs_daddr_t *tail_blk) 1388 { 1389 xlog_rec_header_t *rhead; 1390 char *offset = NULL; 1391 xfs_buf_t *bp; 1392 int error; 1393 xfs_daddr_t rhead_blk; 1394 xfs_lsn_t tail_lsn; 1395 bool wrapped = false; 1396 bool clean = false; 1397 1398 /* 1399 * Find previous log record 1400 */ 1401 if ((error = xlog_find_head(log, head_blk))) 1402 return error; 1403 ASSERT(*head_blk < INT_MAX); 1404 1405 bp = xlog_get_bp(log, 1); 1406 if (!bp) 1407 return -ENOMEM; 1408 if (*head_blk == 0) { /* special case */ 1409 error = xlog_bread(log, 0, 1, bp, &offset); 1410 if (error) 1411 goto done; 1412 1413 if (xlog_get_cycle(offset) == 0) { 1414 *tail_blk = 0; 1415 /* leave all other log inited values alone */ 1416 goto done; 1417 } 1418 } 1419 1420 /* 1421 * Search backwards through the log looking for the log record header 1422 * block. This wraps all the way back around to the head so something is 1423 * seriously wrong if we can't find it. 1424 */ 1425 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp, 1426 &rhead_blk, &rhead, &wrapped); 1427 if (error < 0) 1428 return error; 1429 if (!error) { 1430 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); 1431 return -EIO; 1432 } 1433 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 1434 1435 /* 1436 * Set the log state based on the current head record. 1437 */ 1438 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped); 1439 tail_lsn = atomic64_read(&log->l_tail_lsn); 1440 1441 /* 1442 * Look for an unmount record at the head of the log. This sets the log 1443 * state to determine whether recovery is necessary. 1444 */ 1445 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead, 1446 rhead_blk, bp, &clean); 1447 if (error) 1448 goto done; 1449 1450 /* 1451 * Verify the log head if the log is not clean (e.g., we have anything 1452 * but an unmount record at the head). This uses CRC verification to 1453 * detect and trim torn writes. If discovered, CRC failures are 1454 * considered torn writes and the log head is trimmed accordingly. 1455 * 1456 * Note that we can only run CRC verification when the log is dirty 1457 * because there's no guarantee that the log data behind an unmount 1458 * record is compatible with the current architecture. 1459 */ 1460 if (!clean) { 1461 xfs_daddr_t orig_head = *head_blk; 1462 1463 error = xlog_verify_head(log, head_blk, tail_blk, bp, 1464 &rhead_blk, &rhead, &wrapped); 1465 if (error) 1466 goto done; 1467 1468 /* update in-core state again if the head changed */ 1469 if (*head_blk != orig_head) { 1470 xlog_set_state(log, *head_blk, rhead, rhead_blk, 1471 wrapped); 1472 tail_lsn = atomic64_read(&log->l_tail_lsn); 1473 error = xlog_check_unmount_rec(log, head_blk, tail_blk, 1474 rhead, rhead_blk, bp, 1475 &clean); 1476 if (error) 1477 goto done; 1478 } 1479 } 1480 1481 /* 1482 * Note that the unmount was clean. If the unmount was not clean, we 1483 * need to know this to rebuild the superblock counters from the perag 1484 * headers if we have a filesystem using non-persistent counters. 1485 */ 1486 if (clean) 1487 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 1488 1489 /* 1490 * Make sure that there are no blocks in front of the head 1491 * with the same cycle number as the head. This can happen 1492 * because we allow multiple outstanding log writes concurrently, 1493 * and the later writes might make it out before earlier ones. 1494 * 1495 * We use the lsn from before modifying it so that we'll never 1496 * overwrite the unmount record after a clean unmount. 1497 * 1498 * Do this only if we are going to recover the filesystem 1499 * 1500 * NOTE: This used to say "if (!readonly)" 1501 * However on Linux, we can & do recover a read-only filesystem. 1502 * We only skip recovery if NORECOVERY is specified on mount, 1503 * in which case we would not be here. 1504 * 1505 * But... if the -device- itself is readonly, just skip this. 1506 * We can't recover this device anyway, so it won't matter. 1507 */ 1508 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) 1509 error = xlog_clear_stale_blocks(log, tail_lsn); 1510 1511 done: 1512 xlog_put_bp(bp); 1513 1514 if (error) 1515 xfs_warn(log->l_mp, "failed to locate log tail"); 1516 return error; 1517 } 1518 1519 /* 1520 * Is the log zeroed at all? 1521 * 1522 * The last binary search should be changed to perform an X block read 1523 * once X becomes small enough. You can then search linearly through 1524 * the X blocks. This will cut down on the number of reads we need to do. 1525 * 1526 * If the log is partially zeroed, this routine will pass back the blkno 1527 * of the first block with cycle number 0. It won't have a complete LR 1528 * preceding it. 1529 * 1530 * Return: 1531 * 0 => the log is completely written to 1532 * 1 => use *blk_no as the first block of the log 1533 * <0 => error has occurred 1534 */ 1535 STATIC int 1536 xlog_find_zeroed( 1537 struct xlog *log, 1538 xfs_daddr_t *blk_no) 1539 { 1540 xfs_buf_t *bp; 1541 char *offset; 1542 uint first_cycle, last_cycle; 1543 xfs_daddr_t new_blk, last_blk, start_blk; 1544 xfs_daddr_t num_scan_bblks; 1545 int error, log_bbnum = log->l_logBBsize; 1546 1547 *blk_no = 0; 1548 1549 /* check totally zeroed log */ 1550 bp = xlog_get_bp(log, 1); 1551 if (!bp) 1552 return -ENOMEM; 1553 error = xlog_bread(log, 0, 1, bp, &offset); 1554 if (error) 1555 goto bp_err; 1556 1557 first_cycle = xlog_get_cycle(offset); 1558 if (first_cycle == 0) { /* completely zeroed log */ 1559 *blk_no = 0; 1560 xlog_put_bp(bp); 1561 return 1; 1562 } 1563 1564 /* check partially zeroed log */ 1565 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset); 1566 if (error) 1567 goto bp_err; 1568 1569 last_cycle = xlog_get_cycle(offset); 1570 if (last_cycle != 0) { /* log completely written to */ 1571 xlog_put_bp(bp); 1572 return 0; 1573 } 1574 1575 /* we have a partially zeroed log */ 1576 last_blk = log_bbnum-1; 1577 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1578 goto bp_err; 1579 1580 /* 1581 * Validate the answer. Because there is no way to guarantee that 1582 * the entire log is made up of log records which are the same size, 1583 * we scan over the defined maximum blocks. At this point, the maximum 1584 * is not chosen to mean anything special. XXXmiken 1585 */ 1586 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1587 ASSERT(num_scan_bblks <= INT_MAX); 1588 1589 if (last_blk < num_scan_bblks) 1590 num_scan_bblks = last_blk; 1591 start_blk = last_blk - num_scan_bblks; 1592 1593 /* 1594 * We search for any instances of cycle number 0 that occur before 1595 * our current estimate of the head. What we're trying to detect is 1596 * 1 ... | 0 | 1 | 0... 1597 * ^ binary search ends here 1598 */ 1599 if ((error = xlog_find_verify_cycle(log, start_blk, 1600 (int)num_scan_bblks, 0, &new_blk))) 1601 goto bp_err; 1602 if (new_blk != -1) 1603 last_blk = new_blk; 1604 1605 /* 1606 * Potentially backup over partial log record write. We don't need 1607 * to search the end of the log because we know it is zero. 1608 */ 1609 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0); 1610 if (error == 1) 1611 error = -EIO; 1612 if (error) 1613 goto bp_err; 1614 1615 *blk_no = last_blk; 1616 bp_err: 1617 xlog_put_bp(bp); 1618 if (error) 1619 return error; 1620 return 1; 1621 } 1622 1623 /* 1624 * These are simple subroutines used by xlog_clear_stale_blocks() below 1625 * to initialize a buffer full of empty log record headers and write 1626 * them into the log. 1627 */ 1628 STATIC void 1629 xlog_add_record( 1630 struct xlog *log, 1631 char *buf, 1632 int cycle, 1633 int block, 1634 int tail_cycle, 1635 int tail_block) 1636 { 1637 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1638 1639 memset(buf, 0, BBSIZE); 1640 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1641 recp->h_cycle = cpu_to_be32(cycle); 1642 recp->h_version = cpu_to_be32( 1643 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1644 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1645 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1646 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1647 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1648 } 1649 1650 STATIC int 1651 xlog_write_log_records( 1652 struct xlog *log, 1653 int cycle, 1654 int start_block, 1655 int blocks, 1656 int tail_cycle, 1657 int tail_block) 1658 { 1659 char *offset; 1660 xfs_buf_t *bp; 1661 int balign, ealign; 1662 int sectbb = log->l_sectBBsize; 1663 int end_block = start_block + blocks; 1664 int bufblks; 1665 int error = 0; 1666 int i, j = 0; 1667 1668 /* 1669 * Greedily allocate a buffer big enough to handle the full 1670 * range of basic blocks to be written. If that fails, try 1671 * a smaller size. We need to be able to write at least a 1672 * log sector, or we're out of luck. 1673 */ 1674 bufblks = 1 << ffs(blocks); 1675 while (bufblks > log->l_logBBsize) 1676 bufblks >>= 1; 1677 while (!(bp = xlog_get_bp(log, bufblks))) { 1678 bufblks >>= 1; 1679 if (bufblks < sectbb) 1680 return -ENOMEM; 1681 } 1682 1683 /* We may need to do a read at the start to fill in part of 1684 * the buffer in the starting sector not covered by the first 1685 * write below. 1686 */ 1687 balign = round_down(start_block, sectbb); 1688 if (balign != start_block) { 1689 error = xlog_bread_noalign(log, start_block, 1, bp); 1690 if (error) 1691 goto out_put_bp; 1692 1693 j = start_block - balign; 1694 } 1695 1696 for (i = start_block; i < end_block; i += bufblks) { 1697 int bcount, endcount; 1698 1699 bcount = min(bufblks, end_block - start_block); 1700 endcount = bcount - j; 1701 1702 /* We may need to do a read at the end to fill in part of 1703 * the buffer in the final sector not covered by the write. 1704 * If this is the same sector as the above read, skip it. 1705 */ 1706 ealign = round_down(end_block, sectbb); 1707 if (j == 0 && (start_block + endcount > ealign)) { 1708 offset = bp->b_addr + BBTOB(ealign - start_block); 1709 error = xlog_bread_offset(log, ealign, sectbb, 1710 bp, offset); 1711 if (error) 1712 break; 1713 1714 } 1715 1716 offset = xlog_align(log, start_block, endcount, bp); 1717 for (; j < endcount; j++) { 1718 xlog_add_record(log, offset, cycle, i+j, 1719 tail_cycle, tail_block); 1720 offset += BBSIZE; 1721 } 1722 error = xlog_bwrite(log, start_block, endcount, bp); 1723 if (error) 1724 break; 1725 start_block += endcount; 1726 j = 0; 1727 } 1728 1729 out_put_bp: 1730 xlog_put_bp(bp); 1731 return error; 1732 } 1733 1734 /* 1735 * This routine is called to blow away any incomplete log writes out 1736 * in front of the log head. We do this so that we won't become confused 1737 * if we come up, write only a little bit more, and then crash again. 1738 * If we leave the partial log records out there, this situation could 1739 * cause us to think those partial writes are valid blocks since they 1740 * have the current cycle number. We get rid of them by overwriting them 1741 * with empty log records with the old cycle number rather than the 1742 * current one. 1743 * 1744 * The tail lsn is passed in rather than taken from 1745 * the log so that we will not write over the unmount record after a 1746 * clean unmount in a 512 block log. Doing so would leave the log without 1747 * any valid log records in it until a new one was written. If we crashed 1748 * during that time we would not be able to recover. 1749 */ 1750 STATIC int 1751 xlog_clear_stale_blocks( 1752 struct xlog *log, 1753 xfs_lsn_t tail_lsn) 1754 { 1755 int tail_cycle, head_cycle; 1756 int tail_block, head_block; 1757 int tail_distance, max_distance; 1758 int distance; 1759 int error; 1760 1761 tail_cycle = CYCLE_LSN(tail_lsn); 1762 tail_block = BLOCK_LSN(tail_lsn); 1763 head_cycle = log->l_curr_cycle; 1764 head_block = log->l_curr_block; 1765 1766 /* 1767 * Figure out the distance between the new head of the log 1768 * and the tail. We want to write over any blocks beyond the 1769 * head that we may have written just before the crash, but 1770 * we don't want to overwrite the tail of the log. 1771 */ 1772 if (head_cycle == tail_cycle) { 1773 /* 1774 * The tail is behind the head in the physical log, 1775 * so the distance from the head to the tail is the 1776 * distance from the head to the end of the log plus 1777 * the distance from the beginning of the log to the 1778 * tail. 1779 */ 1780 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1781 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1782 XFS_ERRLEVEL_LOW, log->l_mp); 1783 return -EFSCORRUPTED; 1784 } 1785 tail_distance = tail_block + (log->l_logBBsize - head_block); 1786 } else { 1787 /* 1788 * The head is behind the tail in the physical log, 1789 * so the distance from the head to the tail is just 1790 * the tail block minus the head block. 1791 */ 1792 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1793 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1794 XFS_ERRLEVEL_LOW, log->l_mp); 1795 return -EFSCORRUPTED; 1796 } 1797 tail_distance = tail_block - head_block; 1798 } 1799 1800 /* 1801 * If the head is right up against the tail, we can't clear 1802 * anything. 1803 */ 1804 if (tail_distance <= 0) { 1805 ASSERT(tail_distance == 0); 1806 return 0; 1807 } 1808 1809 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1810 /* 1811 * Take the smaller of the maximum amount of outstanding I/O 1812 * we could have and the distance to the tail to clear out. 1813 * We take the smaller so that we don't overwrite the tail and 1814 * we don't waste all day writing from the head to the tail 1815 * for no reason. 1816 */ 1817 max_distance = min(max_distance, tail_distance); 1818 1819 if ((head_block + max_distance) <= log->l_logBBsize) { 1820 /* 1821 * We can stomp all the blocks we need to without 1822 * wrapping around the end of the log. Just do it 1823 * in a single write. Use the cycle number of the 1824 * current cycle minus one so that the log will look like: 1825 * n ... | n - 1 ... 1826 */ 1827 error = xlog_write_log_records(log, (head_cycle - 1), 1828 head_block, max_distance, tail_cycle, 1829 tail_block); 1830 if (error) 1831 return error; 1832 } else { 1833 /* 1834 * We need to wrap around the end of the physical log in 1835 * order to clear all the blocks. Do it in two separate 1836 * I/Os. The first write should be from the head to the 1837 * end of the physical log, and it should use the current 1838 * cycle number minus one just like above. 1839 */ 1840 distance = log->l_logBBsize - head_block; 1841 error = xlog_write_log_records(log, (head_cycle - 1), 1842 head_block, distance, tail_cycle, 1843 tail_block); 1844 1845 if (error) 1846 return error; 1847 1848 /* 1849 * Now write the blocks at the start of the physical log. 1850 * This writes the remainder of the blocks we want to clear. 1851 * It uses the current cycle number since we're now on the 1852 * same cycle as the head so that we get: 1853 * n ... n ... | n - 1 ... 1854 * ^^^^^ blocks we're writing 1855 */ 1856 distance = max_distance - (log->l_logBBsize - head_block); 1857 error = xlog_write_log_records(log, head_cycle, 0, distance, 1858 tail_cycle, tail_block); 1859 if (error) 1860 return error; 1861 } 1862 1863 return 0; 1864 } 1865 1866 /****************************************************************************** 1867 * 1868 * Log recover routines 1869 * 1870 ****************************************************************************** 1871 */ 1872 1873 /* 1874 * Sort the log items in the transaction. 1875 * 1876 * The ordering constraints are defined by the inode allocation and unlink 1877 * behaviour. The rules are: 1878 * 1879 * 1. Every item is only logged once in a given transaction. Hence it 1880 * represents the last logged state of the item. Hence ordering is 1881 * dependent on the order in which operations need to be performed so 1882 * required initial conditions are always met. 1883 * 1884 * 2. Cancelled buffers are recorded in pass 1 in a separate table and 1885 * there's nothing to replay from them so we can simply cull them 1886 * from the transaction. However, we can't do that until after we've 1887 * replayed all the other items because they may be dependent on the 1888 * cancelled buffer and replaying the cancelled buffer can remove it 1889 * form the cancelled buffer table. Hence they have tobe done last. 1890 * 1891 * 3. Inode allocation buffers must be replayed before inode items that 1892 * read the buffer and replay changes into it. For filesystems using the 1893 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get 1894 * treated the same as inode allocation buffers as they create and 1895 * initialise the buffers directly. 1896 * 1897 * 4. Inode unlink buffers must be replayed after inode items are replayed. 1898 * This ensures that inodes are completely flushed to the inode buffer 1899 * in a "free" state before we remove the unlinked inode list pointer. 1900 * 1901 * Hence the ordering needs to be inode allocation buffers first, inode items 1902 * second, inode unlink buffers third and cancelled buffers last. 1903 * 1904 * But there's a problem with that - we can't tell an inode allocation buffer 1905 * apart from a regular buffer, so we can't separate them. We can, however, 1906 * tell an inode unlink buffer from the others, and so we can separate them out 1907 * from all the other buffers and move them to last. 1908 * 1909 * Hence, 4 lists, in order from head to tail: 1910 * - buffer_list for all buffers except cancelled/inode unlink buffers 1911 * - item_list for all non-buffer items 1912 * - inode_buffer_list for inode unlink buffers 1913 * - cancel_list for the cancelled buffers 1914 * 1915 * Note that we add objects to the tail of the lists so that first-to-last 1916 * ordering is preserved within the lists. Adding objects to the head of the 1917 * list means when we traverse from the head we walk them in last-to-first 1918 * order. For cancelled buffers and inode unlink buffers this doesn't matter, 1919 * but for all other items there may be specific ordering that we need to 1920 * preserve. 1921 */ 1922 STATIC int 1923 xlog_recover_reorder_trans( 1924 struct xlog *log, 1925 struct xlog_recover *trans, 1926 int pass) 1927 { 1928 xlog_recover_item_t *item, *n; 1929 int error = 0; 1930 LIST_HEAD(sort_list); 1931 LIST_HEAD(cancel_list); 1932 LIST_HEAD(buffer_list); 1933 LIST_HEAD(inode_buffer_list); 1934 LIST_HEAD(inode_list); 1935 1936 list_splice_init(&trans->r_itemq, &sort_list); 1937 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1938 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1939 1940 switch (ITEM_TYPE(item)) { 1941 case XFS_LI_ICREATE: 1942 list_move_tail(&item->ri_list, &buffer_list); 1943 break; 1944 case XFS_LI_BUF: 1945 if (buf_f->blf_flags & XFS_BLF_CANCEL) { 1946 trace_xfs_log_recover_item_reorder_head(log, 1947 trans, item, pass); 1948 list_move(&item->ri_list, &cancel_list); 1949 break; 1950 } 1951 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 1952 list_move(&item->ri_list, &inode_buffer_list); 1953 break; 1954 } 1955 list_move_tail(&item->ri_list, &buffer_list); 1956 break; 1957 case XFS_LI_INODE: 1958 case XFS_LI_DQUOT: 1959 case XFS_LI_QUOTAOFF: 1960 case XFS_LI_EFD: 1961 case XFS_LI_EFI: 1962 case XFS_LI_RUI: 1963 case XFS_LI_RUD: 1964 case XFS_LI_CUI: 1965 case XFS_LI_CUD: 1966 case XFS_LI_BUI: 1967 case XFS_LI_BUD: 1968 trace_xfs_log_recover_item_reorder_tail(log, 1969 trans, item, pass); 1970 list_move_tail(&item->ri_list, &inode_list); 1971 break; 1972 default: 1973 xfs_warn(log->l_mp, 1974 "%s: unrecognized type of log operation", 1975 __func__); 1976 ASSERT(0); 1977 /* 1978 * return the remaining items back to the transaction 1979 * item list so they can be freed in caller. 1980 */ 1981 if (!list_empty(&sort_list)) 1982 list_splice_init(&sort_list, &trans->r_itemq); 1983 error = -EIO; 1984 goto out; 1985 } 1986 } 1987 out: 1988 ASSERT(list_empty(&sort_list)); 1989 if (!list_empty(&buffer_list)) 1990 list_splice(&buffer_list, &trans->r_itemq); 1991 if (!list_empty(&inode_list)) 1992 list_splice_tail(&inode_list, &trans->r_itemq); 1993 if (!list_empty(&inode_buffer_list)) 1994 list_splice_tail(&inode_buffer_list, &trans->r_itemq); 1995 if (!list_empty(&cancel_list)) 1996 list_splice_tail(&cancel_list, &trans->r_itemq); 1997 return error; 1998 } 1999 2000 /* 2001 * Build up the table of buf cancel records so that we don't replay 2002 * cancelled data in the second pass. For buffer records that are 2003 * not cancel records, there is nothing to do here so we just return. 2004 * 2005 * If we get a cancel record which is already in the table, this indicates 2006 * that the buffer was cancelled multiple times. In order to ensure 2007 * that during pass 2 we keep the record in the table until we reach its 2008 * last occurrence in the log, we keep a reference count in the cancel 2009 * record in the table to tell us how many times we expect to see this 2010 * record during the second pass. 2011 */ 2012 STATIC int 2013 xlog_recover_buffer_pass1( 2014 struct xlog *log, 2015 struct xlog_recover_item *item) 2016 { 2017 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2018 struct list_head *bucket; 2019 struct xfs_buf_cancel *bcp; 2020 2021 /* 2022 * If this isn't a cancel buffer item, then just return. 2023 */ 2024 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 2025 trace_xfs_log_recover_buf_not_cancel(log, buf_f); 2026 return 0; 2027 } 2028 2029 /* 2030 * Insert an xfs_buf_cancel record into the hash table of them. 2031 * If there is already an identical record, bump its reference count. 2032 */ 2033 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno); 2034 list_for_each_entry(bcp, bucket, bc_list) { 2035 if (bcp->bc_blkno == buf_f->blf_blkno && 2036 bcp->bc_len == buf_f->blf_len) { 2037 bcp->bc_refcount++; 2038 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f); 2039 return 0; 2040 } 2041 } 2042 2043 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP); 2044 bcp->bc_blkno = buf_f->blf_blkno; 2045 bcp->bc_len = buf_f->blf_len; 2046 bcp->bc_refcount = 1; 2047 list_add_tail(&bcp->bc_list, bucket); 2048 2049 trace_xfs_log_recover_buf_cancel_add(log, buf_f); 2050 return 0; 2051 } 2052 2053 /* 2054 * Check to see whether the buffer being recovered has a corresponding 2055 * entry in the buffer cancel record table. If it is, return the cancel 2056 * buffer structure to the caller. 2057 */ 2058 STATIC struct xfs_buf_cancel * 2059 xlog_peek_buffer_cancelled( 2060 struct xlog *log, 2061 xfs_daddr_t blkno, 2062 uint len, 2063 unsigned short flags) 2064 { 2065 struct list_head *bucket; 2066 struct xfs_buf_cancel *bcp; 2067 2068 if (!log->l_buf_cancel_table) { 2069 /* empty table means no cancelled buffers in the log */ 2070 ASSERT(!(flags & XFS_BLF_CANCEL)); 2071 return NULL; 2072 } 2073 2074 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); 2075 list_for_each_entry(bcp, bucket, bc_list) { 2076 if (bcp->bc_blkno == blkno && bcp->bc_len == len) 2077 return bcp; 2078 } 2079 2080 /* 2081 * We didn't find a corresponding entry in the table, so return 0 so 2082 * that the buffer is NOT cancelled. 2083 */ 2084 ASSERT(!(flags & XFS_BLF_CANCEL)); 2085 return NULL; 2086 } 2087 2088 /* 2089 * If the buffer is being cancelled then return 1 so that it will be cancelled, 2090 * otherwise return 0. If the buffer is actually a buffer cancel item 2091 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the 2092 * table and remove it from the table if this is the last reference. 2093 * 2094 * We remove the cancel record from the table when we encounter its last 2095 * occurrence in the log so that if the same buffer is re-used again after its 2096 * last cancellation we actually replay the changes made at that point. 2097 */ 2098 STATIC int 2099 xlog_check_buffer_cancelled( 2100 struct xlog *log, 2101 xfs_daddr_t blkno, 2102 uint len, 2103 unsigned short flags) 2104 { 2105 struct xfs_buf_cancel *bcp; 2106 2107 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags); 2108 if (!bcp) 2109 return 0; 2110 2111 /* 2112 * We've go a match, so return 1 so that the recovery of this buffer 2113 * is cancelled. If this buffer is actually a buffer cancel log 2114 * item, then decrement the refcount on the one in the table and 2115 * remove it if this is the last reference. 2116 */ 2117 if (flags & XFS_BLF_CANCEL) { 2118 if (--bcp->bc_refcount == 0) { 2119 list_del(&bcp->bc_list); 2120 kmem_free(bcp); 2121 } 2122 } 2123 return 1; 2124 } 2125 2126 /* 2127 * Perform recovery for a buffer full of inodes. In these buffers, the only 2128 * data which should be recovered is that which corresponds to the 2129 * di_next_unlinked pointers in the on disk inode structures. The rest of the 2130 * data for the inodes is always logged through the inodes themselves rather 2131 * than the inode buffer and is recovered in xlog_recover_inode_pass2(). 2132 * 2133 * The only time when buffers full of inodes are fully recovered is when the 2134 * buffer is full of newly allocated inodes. In this case the buffer will 2135 * not be marked as an inode buffer and so will be sent to 2136 * xlog_recover_do_reg_buffer() below during recovery. 2137 */ 2138 STATIC int 2139 xlog_recover_do_inode_buffer( 2140 struct xfs_mount *mp, 2141 xlog_recover_item_t *item, 2142 struct xfs_buf *bp, 2143 xfs_buf_log_format_t *buf_f) 2144 { 2145 int i; 2146 int item_index = 0; 2147 int bit = 0; 2148 int nbits = 0; 2149 int reg_buf_offset = 0; 2150 int reg_buf_bytes = 0; 2151 int next_unlinked_offset; 2152 int inodes_per_buf; 2153 xfs_agino_t *logged_nextp; 2154 xfs_agino_t *buffer_nextp; 2155 2156 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); 2157 2158 /* 2159 * Post recovery validation only works properly on CRC enabled 2160 * filesystems. 2161 */ 2162 if (xfs_sb_version_hascrc(&mp->m_sb)) 2163 bp->b_ops = &xfs_inode_buf_ops; 2164 2165 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog; 2166 for (i = 0; i < inodes_per_buf; i++) { 2167 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 2168 offsetof(xfs_dinode_t, di_next_unlinked); 2169 2170 while (next_unlinked_offset >= 2171 (reg_buf_offset + reg_buf_bytes)) { 2172 /* 2173 * The next di_next_unlinked field is beyond 2174 * the current logged region. Find the next 2175 * logged region that contains or is beyond 2176 * the current di_next_unlinked field. 2177 */ 2178 bit += nbits; 2179 bit = xfs_next_bit(buf_f->blf_data_map, 2180 buf_f->blf_map_size, bit); 2181 2182 /* 2183 * If there are no more logged regions in the 2184 * buffer, then we're done. 2185 */ 2186 if (bit == -1) 2187 return 0; 2188 2189 nbits = xfs_contig_bits(buf_f->blf_data_map, 2190 buf_f->blf_map_size, bit); 2191 ASSERT(nbits > 0); 2192 reg_buf_offset = bit << XFS_BLF_SHIFT; 2193 reg_buf_bytes = nbits << XFS_BLF_SHIFT; 2194 item_index++; 2195 } 2196 2197 /* 2198 * If the current logged region starts after the current 2199 * di_next_unlinked field, then move on to the next 2200 * di_next_unlinked field. 2201 */ 2202 if (next_unlinked_offset < reg_buf_offset) 2203 continue; 2204 2205 ASSERT(item->ri_buf[item_index].i_addr != NULL); 2206 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); 2207 ASSERT((reg_buf_offset + reg_buf_bytes) <= 2208 BBTOB(bp->b_io_length)); 2209 2210 /* 2211 * The current logged region contains a copy of the 2212 * current di_next_unlinked field. Extract its value 2213 * and copy it to the buffer copy. 2214 */ 2215 logged_nextp = item->ri_buf[item_index].i_addr + 2216 next_unlinked_offset - reg_buf_offset; 2217 if (unlikely(*logged_nextp == 0)) { 2218 xfs_alert(mp, 2219 "Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). " 2220 "Trying to replay bad (0) inode di_next_unlinked field.", 2221 item, bp); 2222 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 2223 XFS_ERRLEVEL_LOW, mp); 2224 return -EFSCORRUPTED; 2225 } 2226 2227 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset); 2228 *buffer_nextp = *logged_nextp; 2229 2230 /* 2231 * If necessary, recalculate the CRC in the on-disk inode. We 2232 * have to leave the inode in a consistent state for whoever 2233 * reads it next.... 2234 */ 2235 xfs_dinode_calc_crc(mp, 2236 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); 2237 2238 } 2239 2240 return 0; 2241 } 2242 2243 /* 2244 * V5 filesystems know the age of the buffer on disk being recovered. We can 2245 * have newer objects on disk than we are replaying, and so for these cases we 2246 * don't want to replay the current change as that will make the buffer contents 2247 * temporarily invalid on disk. 2248 * 2249 * The magic number might not match the buffer type we are going to recover 2250 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence 2251 * extract the LSN of the existing object in the buffer based on it's current 2252 * magic number. If we don't recognise the magic number in the buffer, then 2253 * return a LSN of -1 so that the caller knows it was an unrecognised block and 2254 * so can recover the buffer. 2255 * 2256 * Note: we cannot rely solely on magic number matches to determine that the 2257 * buffer has a valid LSN - we also need to verify that it belongs to this 2258 * filesystem, so we need to extract the object's LSN and compare it to that 2259 * which we read from the superblock. If the UUIDs don't match, then we've got a 2260 * stale metadata block from an old filesystem instance that we need to recover 2261 * over the top of. 2262 */ 2263 static xfs_lsn_t 2264 xlog_recover_get_buf_lsn( 2265 struct xfs_mount *mp, 2266 struct xfs_buf *bp) 2267 { 2268 uint32_t magic32; 2269 uint16_t magic16; 2270 uint16_t magicda; 2271 void *blk = bp->b_addr; 2272 uuid_t *uuid; 2273 xfs_lsn_t lsn = -1; 2274 2275 /* v4 filesystems always recover immediately */ 2276 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2277 goto recover_immediately; 2278 2279 magic32 = be32_to_cpu(*(__be32 *)blk); 2280 switch (magic32) { 2281 case XFS_ABTB_CRC_MAGIC: 2282 case XFS_ABTC_CRC_MAGIC: 2283 case XFS_ABTB_MAGIC: 2284 case XFS_ABTC_MAGIC: 2285 case XFS_RMAP_CRC_MAGIC: 2286 case XFS_REFC_CRC_MAGIC: 2287 case XFS_IBT_CRC_MAGIC: 2288 case XFS_IBT_MAGIC: { 2289 struct xfs_btree_block *btb = blk; 2290 2291 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn); 2292 uuid = &btb->bb_u.s.bb_uuid; 2293 break; 2294 } 2295 case XFS_BMAP_CRC_MAGIC: 2296 case XFS_BMAP_MAGIC: { 2297 struct xfs_btree_block *btb = blk; 2298 2299 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn); 2300 uuid = &btb->bb_u.l.bb_uuid; 2301 break; 2302 } 2303 case XFS_AGF_MAGIC: 2304 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn); 2305 uuid = &((struct xfs_agf *)blk)->agf_uuid; 2306 break; 2307 case XFS_AGFL_MAGIC: 2308 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn); 2309 uuid = &((struct xfs_agfl *)blk)->agfl_uuid; 2310 break; 2311 case XFS_AGI_MAGIC: 2312 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn); 2313 uuid = &((struct xfs_agi *)blk)->agi_uuid; 2314 break; 2315 case XFS_SYMLINK_MAGIC: 2316 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn); 2317 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid; 2318 break; 2319 case XFS_DIR3_BLOCK_MAGIC: 2320 case XFS_DIR3_DATA_MAGIC: 2321 case XFS_DIR3_FREE_MAGIC: 2322 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn); 2323 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid; 2324 break; 2325 case XFS_ATTR3_RMT_MAGIC: 2326 /* 2327 * Remote attr blocks are written synchronously, rather than 2328 * being logged. That means they do not contain a valid LSN 2329 * (i.e. transactionally ordered) in them, and hence any time we 2330 * see a buffer to replay over the top of a remote attribute 2331 * block we should simply do so. 2332 */ 2333 goto recover_immediately; 2334 case XFS_SB_MAGIC: 2335 /* 2336 * superblock uuids are magic. We may or may not have a 2337 * sb_meta_uuid on disk, but it will be set in the in-core 2338 * superblock. We set the uuid pointer for verification 2339 * according to the superblock feature mask to ensure we check 2340 * the relevant UUID in the superblock. 2341 */ 2342 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn); 2343 if (xfs_sb_version_hasmetauuid(&mp->m_sb)) 2344 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid; 2345 else 2346 uuid = &((struct xfs_dsb *)blk)->sb_uuid; 2347 break; 2348 default: 2349 break; 2350 } 2351 2352 if (lsn != (xfs_lsn_t)-1) { 2353 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid)) 2354 goto recover_immediately; 2355 return lsn; 2356 } 2357 2358 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic); 2359 switch (magicda) { 2360 case XFS_DIR3_LEAF1_MAGIC: 2361 case XFS_DIR3_LEAFN_MAGIC: 2362 case XFS_DA3_NODE_MAGIC: 2363 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn); 2364 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid; 2365 break; 2366 default: 2367 break; 2368 } 2369 2370 if (lsn != (xfs_lsn_t)-1) { 2371 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid)) 2372 goto recover_immediately; 2373 return lsn; 2374 } 2375 2376 /* 2377 * We do individual object checks on dquot and inode buffers as they 2378 * have their own individual LSN records. Also, we could have a stale 2379 * buffer here, so we have to at least recognise these buffer types. 2380 * 2381 * A notd complexity here is inode unlinked list processing - it logs 2382 * the inode directly in the buffer, but we don't know which inodes have 2383 * been modified, and there is no global buffer LSN. Hence we need to 2384 * recover all inode buffer types immediately. This problem will be 2385 * fixed by logical logging of the unlinked list modifications. 2386 */ 2387 magic16 = be16_to_cpu(*(__be16 *)blk); 2388 switch (magic16) { 2389 case XFS_DQUOT_MAGIC: 2390 case XFS_DINODE_MAGIC: 2391 goto recover_immediately; 2392 default: 2393 break; 2394 } 2395 2396 /* unknown buffer contents, recover immediately */ 2397 2398 recover_immediately: 2399 return (xfs_lsn_t)-1; 2400 2401 } 2402 2403 /* 2404 * Validate the recovered buffer is of the correct type and attach the 2405 * appropriate buffer operations to them for writeback. Magic numbers are in a 2406 * few places: 2407 * the first 16 bits of the buffer (inode buffer, dquot buffer), 2408 * the first 32 bits of the buffer (most blocks), 2409 * inside a struct xfs_da_blkinfo at the start of the buffer. 2410 */ 2411 static void 2412 xlog_recover_validate_buf_type( 2413 struct xfs_mount *mp, 2414 struct xfs_buf *bp, 2415 xfs_buf_log_format_t *buf_f, 2416 xfs_lsn_t current_lsn) 2417 { 2418 struct xfs_da_blkinfo *info = bp->b_addr; 2419 uint32_t magic32; 2420 uint16_t magic16; 2421 uint16_t magicda; 2422 char *warnmsg = NULL; 2423 2424 /* 2425 * We can only do post recovery validation on items on CRC enabled 2426 * fielsystems as we need to know when the buffer was written to be able 2427 * to determine if we should have replayed the item. If we replay old 2428 * metadata over a newer buffer, then it will enter a temporarily 2429 * inconsistent state resulting in verification failures. Hence for now 2430 * just avoid the verification stage for non-crc filesystems 2431 */ 2432 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2433 return; 2434 2435 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr); 2436 magic16 = be16_to_cpu(*(__be16*)bp->b_addr); 2437 magicda = be16_to_cpu(info->magic); 2438 switch (xfs_blft_from_flags(buf_f)) { 2439 case XFS_BLFT_BTREE_BUF: 2440 switch (magic32) { 2441 case XFS_ABTB_CRC_MAGIC: 2442 case XFS_ABTB_MAGIC: 2443 bp->b_ops = &xfs_bnobt_buf_ops; 2444 break; 2445 case XFS_ABTC_CRC_MAGIC: 2446 case XFS_ABTC_MAGIC: 2447 bp->b_ops = &xfs_cntbt_buf_ops; 2448 break; 2449 case XFS_IBT_CRC_MAGIC: 2450 case XFS_IBT_MAGIC: 2451 bp->b_ops = &xfs_inobt_buf_ops; 2452 break; 2453 case XFS_FIBT_CRC_MAGIC: 2454 case XFS_FIBT_MAGIC: 2455 bp->b_ops = &xfs_finobt_buf_ops; 2456 break; 2457 case XFS_BMAP_CRC_MAGIC: 2458 case XFS_BMAP_MAGIC: 2459 bp->b_ops = &xfs_bmbt_buf_ops; 2460 break; 2461 case XFS_RMAP_CRC_MAGIC: 2462 bp->b_ops = &xfs_rmapbt_buf_ops; 2463 break; 2464 case XFS_REFC_CRC_MAGIC: 2465 bp->b_ops = &xfs_refcountbt_buf_ops; 2466 break; 2467 default: 2468 warnmsg = "Bad btree block magic!"; 2469 break; 2470 } 2471 break; 2472 case XFS_BLFT_AGF_BUF: 2473 if (magic32 != XFS_AGF_MAGIC) { 2474 warnmsg = "Bad AGF block magic!"; 2475 break; 2476 } 2477 bp->b_ops = &xfs_agf_buf_ops; 2478 break; 2479 case XFS_BLFT_AGFL_BUF: 2480 if (magic32 != XFS_AGFL_MAGIC) { 2481 warnmsg = "Bad AGFL block magic!"; 2482 break; 2483 } 2484 bp->b_ops = &xfs_agfl_buf_ops; 2485 break; 2486 case XFS_BLFT_AGI_BUF: 2487 if (magic32 != XFS_AGI_MAGIC) { 2488 warnmsg = "Bad AGI block magic!"; 2489 break; 2490 } 2491 bp->b_ops = &xfs_agi_buf_ops; 2492 break; 2493 case XFS_BLFT_UDQUOT_BUF: 2494 case XFS_BLFT_PDQUOT_BUF: 2495 case XFS_BLFT_GDQUOT_BUF: 2496 #ifdef CONFIG_XFS_QUOTA 2497 if (magic16 != XFS_DQUOT_MAGIC) { 2498 warnmsg = "Bad DQUOT block magic!"; 2499 break; 2500 } 2501 bp->b_ops = &xfs_dquot_buf_ops; 2502 #else 2503 xfs_alert(mp, 2504 "Trying to recover dquots without QUOTA support built in!"); 2505 ASSERT(0); 2506 #endif 2507 break; 2508 case XFS_BLFT_DINO_BUF: 2509 if (magic16 != XFS_DINODE_MAGIC) { 2510 warnmsg = "Bad INODE block magic!"; 2511 break; 2512 } 2513 bp->b_ops = &xfs_inode_buf_ops; 2514 break; 2515 case XFS_BLFT_SYMLINK_BUF: 2516 if (magic32 != XFS_SYMLINK_MAGIC) { 2517 warnmsg = "Bad symlink block magic!"; 2518 break; 2519 } 2520 bp->b_ops = &xfs_symlink_buf_ops; 2521 break; 2522 case XFS_BLFT_DIR_BLOCK_BUF: 2523 if (magic32 != XFS_DIR2_BLOCK_MAGIC && 2524 magic32 != XFS_DIR3_BLOCK_MAGIC) { 2525 warnmsg = "Bad dir block magic!"; 2526 break; 2527 } 2528 bp->b_ops = &xfs_dir3_block_buf_ops; 2529 break; 2530 case XFS_BLFT_DIR_DATA_BUF: 2531 if (magic32 != XFS_DIR2_DATA_MAGIC && 2532 magic32 != XFS_DIR3_DATA_MAGIC) { 2533 warnmsg = "Bad dir data magic!"; 2534 break; 2535 } 2536 bp->b_ops = &xfs_dir3_data_buf_ops; 2537 break; 2538 case XFS_BLFT_DIR_FREE_BUF: 2539 if (magic32 != XFS_DIR2_FREE_MAGIC && 2540 magic32 != XFS_DIR3_FREE_MAGIC) { 2541 warnmsg = "Bad dir3 free magic!"; 2542 break; 2543 } 2544 bp->b_ops = &xfs_dir3_free_buf_ops; 2545 break; 2546 case XFS_BLFT_DIR_LEAF1_BUF: 2547 if (magicda != XFS_DIR2_LEAF1_MAGIC && 2548 magicda != XFS_DIR3_LEAF1_MAGIC) { 2549 warnmsg = "Bad dir leaf1 magic!"; 2550 break; 2551 } 2552 bp->b_ops = &xfs_dir3_leaf1_buf_ops; 2553 break; 2554 case XFS_BLFT_DIR_LEAFN_BUF: 2555 if (magicda != XFS_DIR2_LEAFN_MAGIC && 2556 magicda != XFS_DIR3_LEAFN_MAGIC) { 2557 warnmsg = "Bad dir leafn magic!"; 2558 break; 2559 } 2560 bp->b_ops = &xfs_dir3_leafn_buf_ops; 2561 break; 2562 case XFS_BLFT_DA_NODE_BUF: 2563 if (magicda != XFS_DA_NODE_MAGIC && 2564 magicda != XFS_DA3_NODE_MAGIC) { 2565 warnmsg = "Bad da node magic!"; 2566 break; 2567 } 2568 bp->b_ops = &xfs_da3_node_buf_ops; 2569 break; 2570 case XFS_BLFT_ATTR_LEAF_BUF: 2571 if (magicda != XFS_ATTR_LEAF_MAGIC && 2572 magicda != XFS_ATTR3_LEAF_MAGIC) { 2573 warnmsg = "Bad attr leaf magic!"; 2574 break; 2575 } 2576 bp->b_ops = &xfs_attr3_leaf_buf_ops; 2577 break; 2578 case XFS_BLFT_ATTR_RMT_BUF: 2579 if (magic32 != XFS_ATTR3_RMT_MAGIC) { 2580 warnmsg = "Bad attr remote magic!"; 2581 break; 2582 } 2583 bp->b_ops = &xfs_attr3_rmt_buf_ops; 2584 break; 2585 case XFS_BLFT_SB_BUF: 2586 if (magic32 != XFS_SB_MAGIC) { 2587 warnmsg = "Bad SB block magic!"; 2588 break; 2589 } 2590 bp->b_ops = &xfs_sb_buf_ops; 2591 break; 2592 #ifdef CONFIG_XFS_RT 2593 case XFS_BLFT_RTBITMAP_BUF: 2594 case XFS_BLFT_RTSUMMARY_BUF: 2595 /* no magic numbers for verification of RT buffers */ 2596 bp->b_ops = &xfs_rtbuf_ops; 2597 break; 2598 #endif /* CONFIG_XFS_RT */ 2599 default: 2600 xfs_warn(mp, "Unknown buffer type %d!", 2601 xfs_blft_from_flags(buf_f)); 2602 break; 2603 } 2604 2605 /* 2606 * Nothing else to do in the case of a NULL current LSN as this means 2607 * the buffer is more recent than the change in the log and will be 2608 * skipped. 2609 */ 2610 if (current_lsn == NULLCOMMITLSN) 2611 return; 2612 2613 if (warnmsg) { 2614 xfs_warn(mp, warnmsg); 2615 ASSERT(0); 2616 } 2617 2618 /* 2619 * We must update the metadata LSN of the buffer as it is written out to 2620 * ensure that older transactions never replay over this one and corrupt 2621 * the buffer. This can occur if log recovery is interrupted at some 2622 * point after the current transaction completes, at which point a 2623 * subsequent mount starts recovery from the beginning. 2624 * 2625 * Write verifiers update the metadata LSN from log items attached to 2626 * the buffer. Therefore, initialize a bli purely to carry the LSN to 2627 * the verifier. We'll clean it up in our ->iodone() callback. 2628 */ 2629 if (bp->b_ops) { 2630 struct xfs_buf_log_item *bip; 2631 2632 ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone); 2633 bp->b_iodone = xlog_recover_iodone; 2634 xfs_buf_item_init(bp, mp); 2635 bip = bp->b_log_item; 2636 bip->bli_item.li_lsn = current_lsn; 2637 } 2638 } 2639 2640 /* 2641 * Perform a 'normal' buffer recovery. Each logged region of the 2642 * buffer should be copied over the corresponding region in the 2643 * given buffer. The bitmap in the buf log format structure indicates 2644 * where to place the logged data. 2645 */ 2646 STATIC void 2647 xlog_recover_do_reg_buffer( 2648 struct xfs_mount *mp, 2649 xlog_recover_item_t *item, 2650 struct xfs_buf *bp, 2651 xfs_buf_log_format_t *buf_f, 2652 xfs_lsn_t current_lsn) 2653 { 2654 int i; 2655 int bit; 2656 int nbits; 2657 xfs_failaddr_t fa; 2658 2659 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); 2660 2661 bit = 0; 2662 i = 1; /* 0 is the buf format structure */ 2663 while (1) { 2664 bit = xfs_next_bit(buf_f->blf_data_map, 2665 buf_f->blf_map_size, bit); 2666 if (bit == -1) 2667 break; 2668 nbits = xfs_contig_bits(buf_f->blf_data_map, 2669 buf_f->blf_map_size, bit); 2670 ASSERT(nbits > 0); 2671 ASSERT(item->ri_buf[i].i_addr != NULL); 2672 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); 2673 ASSERT(BBTOB(bp->b_io_length) >= 2674 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); 2675 2676 /* 2677 * The dirty regions logged in the buffer, even though 2678 * contiguous, may span multiple chunks. This is because the 2679 * dirty region may span a physical page boundary in a buffer 2680 * and hence be split into two separate vectors for writing into 2681 * the log. Hence we need to trim nbits back to the length of 2682 * the current region being copied out of the log. 2683 */ 2684 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT)) 2685 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT; 2686 2687 /* 2688 * Do a sanity check if this is a dquot buffer. Just checking 2689 * the first dquot in the buffer should do. XXXThis is 2690 * probably a good thing to do for other buf types also. 2691 */ 2692 fa = NULL; 2693 if (buf_f->blf_flags & 2694 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2695 if (item->ri_buf[i].i_addr == NULL) { 2696 xfs_alert(mp, 2697 "XFS: NULL dquot in %s.", __func__); 2698 goto next; 2699 } 2700 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) { 2701 xfs_alert(mp, 2702 "XFS: dquot too small (%d) in %s.", 2703 item->ri_buf[i].i_len, __func__); 2704 goto next; 2705 } 2706 fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr, 2707 -1, 0); 2708 if (fa) { 2709 xfs_alert(mp, 2710 "dquot corrupt at %pS trying to replay into block 0x%llx", 2711 fa, bp->b_bn); 2712 goto next; 2713 } 2714 } 2715 2716 memcpy(xfs_buf_offset(bp, 2717 (uint)bit << XFS_BLF_SHIFT), /* dest */ 2718 item->ri_buf[i].i_addr, /* source */ 2719 nbits<<XFS_BLF_SHIFT); /* length */ 2720 next: 2721 i++; 2722 bit += nbits; 2723 } 2724 2725 /* Shouldn't be any more regions */ 2726 ASSERT(i == item->ri_total); 2727 2728 xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn); 2729 } 2730 2731 /* 2732 * Perform a dquot buffer recovery. 2733 * Simple algorithm: if we have found a QUOTAOFF log item of the same type 2734 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2735 * Else, treat it as a regular buffer and do recovery. 2736 * 2737 * Return false if the buffer was tossed and true if we recovered the buffer to 2738 * indicate to the caller if the buffer needs writing. 2739 */ 2740 STATIC bool 2741 xlog_recover_do_dquot_buffer( 2742 struct xfs_mount *mp, 2743 struct xlog *log, 2744 struct xlog_recover_item *item, 2745 struct xfs_buf *bp, 2746 struct xfs_buf_log_format *buf_f) 2747 { 2748 uint type; 2749 2750 trace_xfs_log_recover_buf_dquot_buf(log, buf_f); 2751 2752 /* 2753 * Filesystems are required to send in quota flags at mount time. 2754 */ 2755 if (!mp->m_qflags) 2756 return false; 2757 2758 type = 0; 2759 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) 2760 type |= XFS_DQ_USER; 2761 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) 2762 type |= XFS_DQ_PROJ; 2763 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) 2764 type |= XFS_DQ_GROUP; 2765 /* 2766 * This type of quotas was turned off, so ignore this buffer 2767 */ 2768 if (log->l_quotaoffs_flag & type) 2769 return false; 2770 2771 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN); 2772 return true; 2773 } 2774 2775 /* 2776 * This routine replays a modification made to a buffer at runtime. 2777 * There are actually two types of buffer, regular and inode, which 2778 * are handled differently. Inode buffers are handled differently 2779 * in that we only recover a specific set of data from them, namely 2780 * the inode di_next_unlinked fields. This is because all other inode 2781 * data is actually logged via inode records and any data we replay 2782 * here which overlaps that may be stale. 2783 * 2784 * When meta-data buffers are freed at run time we log a buffer item 2785 * with the XFS_BLF_CANCEL bit set to indicate that previous copies 2786 * of the buffer in the log should not be replayed at recovery time. 2787 * This is so that if the blocks covered by the buffer are reused for 2788 * file data before we crash we don't end up replaying old, freed 2789 * meta-data into a user's file. 2790 * 2791 * To handle the cancellation of buffer log items, we make two passes 2792 * over the log during recovery. During the first we build a table of 2793 * those buffers which have been cancelled, and during the second we 2794 * only replay those buffers which do not have corresponding cancel 2795 * records in the table. See xlog_recover_buffer_pass[1,2] above 2796 * for more details on the implementation of the table of cancel records. 2797 */ 2798 STATIC int 2799 xlog_recover_buffer_pass2( 2800 struct xlog *log, 2801 struct list_head *buffer_list, 2802 struct xlog_recover_item *item, 2803 xfs_lsn_t current_lsn) 2804 { 2805 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2806 xfs_mount_t *mp = log->l_mp; 2807 xfs_buf_t *bp; 2808 int error; 2809 uint buf_flags; 2810 xfs_lsn_t lsn; 2811 2812 /* 2813 * In this pass we only want to recover all the buffers which have 2814 * not been cancelled and are not cancellation buffers themselves. 2815 */ 2816 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno, 2817 buf_f->blf_len, buf_f->blf_flags)) { 2818 trace_xfs_log_recover_buf_cancel(log, buf_f); 2819 return 0; 2820 } 2821 2822 trace_xfs_log_recover_buf_recover(log, buf_f); 2823 2824 buf_flags = 0; 2825 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) 2826 buf_flags |= XBF_UNMAPPED; 2827 2828 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, 2829 buf_flags, NULL); 2830 if (!bp) 2831 return -ENOMEM; 2832 error = bp->b_error; 2833 if (error) { 2834 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)"); 2835 goto out_release; 2836 } 2837 2838 /* 2839 * Recover the buffer only if we get an LSN from it and it's less than 2840 * the lsn of the transaction we are replaying. 2841 * 2842 * Note that we have to be extremely careful of readahead here. 2843 * Readahead does not attach verfiers to the buffers so if we don't 2844 * actually do any replay after readahead because of the LSN we found 2845 * in the buffer if more recent than that current transaction then we 2846 * need to attach the verifier directly. Failure to do so can lead to 2847 * future recovery actions (e.g. EFI and unlinked list recovery) can 2848 * operate on the buffers and they won't get the verifier attached. This 2849 * can lead to blocks on disk having the correct content but a stale 2850 * CRC. 2851 * 2852 * It is safe to assume these clean buffers are currently up to date. 2853 * If the buffer is dirtied by a later transaction being replayed, then 2854 * the verifier will be reset to match whatever recover turns that 2855 * buffer into. 2856 */ 2857 lsn = xlog_recover_get_buf_lsn(mp, bp); 2858 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 2859 trace_xfs_log_recover_buf_skip(log, buf_f); 2860 xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN); 2861 goto out_release; 2862 } 2863 2864 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 2865 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2866 if (error) 2867 goto out_release; 2868 } else if (buf_f->blf_flags & 2869 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2870 bool dirty; 2871 2872 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2873 if (!dirty) 2874 goto out_release; 2875 } else { 2876 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn); 2877 } 2878 2879 /* 2880 * Perform delayed write on the buffer. Asynchronous writes will be 2881 * slower when taking into account all the buffers to be flushed. 2882 * 2883 * Also make sure that only inode buffers with good sizes stay in 2884 * the buffer cache. The kernel moves inodes in buffers of 1 block 2885 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode 2886 * buffers in the log can be a different size if the log was generated 2887 * by an older kernel using unclustered inode buffers or a newer kernel 2888 * running with a different inode cluster size. Regardless, if the 2889 * the inode buffer size isn't max(blocksize, mp->m_inode_cluster_size) 2890 * for *our* value of mp->m_inode_cluster_size, then we need to keep 2891 * the buffer out of the buffer cache so that the buffer won't 2892 * overlap with future reads of those inodes. 2893 */ 2894 if (XFS_DINODE_MAGIC == 2895 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && 2896 (BBTOB(bp->b_io_length) != max(log->l_mp->m_sb.sb_blocksize, 2897 (uint32_t)log->l_mp->m_inode_cluster_size))) { 2898 xfs_buf_stale(bp); 2899 error = xfs_bwrite(bp); 2900 } else { 2901 ASSERT(bp->b_target->bt_mount == mp); 2902 bp->b_iodone = xlog_recover_iodone; 2903 xfs_buf_delwri_queue(bp, buffer_list); 2904 } 2905 2906 out_release: 2907 xfs_buf_relse(bp); 2908 return error; 2909 } 2910 2911 /* 2912 * Inode fork owner changes 2913 * 2914 * If we have been told that we have to reparent the inode fork, it's because an 2915 * extent swap operation on a CRC enabled filesystem has been done and we are 2916 * replaying it. We need to walk the BMBT of the appropriate fork and change the 2917 * owners of it. 2918 * 2919 * The complexity here is that we don't have an inode context to work with, so 2920 * after we've replayed the inode we need to instantiate one. This is where the 2921 * fun begins. 2922 * 2923 * We are in the middle of log recovery, so we can't run transactions. That 2924 * means we cannot use cache coherent inode instantiation via xfs_iget(), as 2925 * that will result in the corresponding iput() running the inode through 2926 * xfs_inactive(). If we've just replayed an inode core that changes the link 2927 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run 2928 * transactions (bad!). 2929 * 2930 * So, to avoid this, we instantiate an inode directly from the inode core we've 2931 * just recovered. We have the buffer still locked, and all we really need to 2932 * instantiate is the inode core and the forks being modified. We can do this 2933 * manually, then run the inode btree owner change, and then tear down the 2934 * xfs_inode without having to run any transactions at all. 2935 * 2936 * Also, because we don't have a transaction context available here but need to 2937 * gather all the buffers we modify for writeback so we pass the buffer_list 2938 * instead for the operation to use. 2939 */ 2940 2941 STATIC int 2942 xfs_recover_inode_owner_change( 2943 struct xfs_mount *mp, 2944 struct xfs_dinode *dip, 2945 struct xfs_inode_log_format *in_f, 2946 struct list_head *buffer_list) 2947 { 2948 struct xfs_inode *ip; 2949 int error; 2950 2951 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)); 2952 2953 ip = xfs_inode_alloc(mp, in_f->ilf_ino); 2954 if (!ip) 2955 return -ENOMEM; 2956 2957 /* instantiate the inode */ 2958 xfs_inode_from_disk(ip, dip); 2959 ASSERT(ip->i_d.di_version >= 3); 2960 2961 error = xfs_iformat_fork(ip, dip); 2962 if (error) 2963 goto out_free_ip; 2964 2965 if (!xfs_inode_verify_forks(ip)) { 2966 error = -EFSCORRUPTED; 2967 goto out_free_ip; 2968 } 2969 2970 if (in_f->ilf_fields & XFS_ILOG_DOWNER) { 2971 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT); 2972 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK, 2973 ip->i_ino, buffer_list); 2974 if (error) 2975 goto out_free_ip; 2976 } 2977 2978 if (in_f->ilf_fields & XFS_ILOG_AOWNER) { 2979 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT); 2980 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK, 2981 ip->i_ino, buffer_list); 2982 if (error) 2983 goto out_free_ip; 2984 } 2985 2986 out_free_ip: 2987 xfs_inode_free(ip); 2988 return error; 2989 } 2990 2991 STATIC int 2992 xlog_recover_inode_pass2( 2993 struct xlog *log, 2994 struct list_head *buffer_list, 2995 struct xlog_recover_item *item, 2996 xfs_lsn_t current_lsn) 2997 { 2998 struct xfs_inode_log_format *in_f; 2999 xfs_mount_t *mp = log->l_mp; 3000 xfs_buf_t *bp; 3001 xfs_dinode_t *dip; 3002 int len; 3003 char *src; 3004 char *dest; 3005 int error; 3006 int attr_index; 3007 uint fields; 3008 struct xfs_log_dinode *ldip; 3009 uint isize; 3010 int need_free = 0; 3011 3012 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { 3013 in_f = item->ri_buf[0].i_addr; 3014 } else { 3015 in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), KM_SLEEP); 3016 need_free = 1; 3017 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 3018 if (error) 3019 goto error; 3020 } 3021 3022 /* 3023 * Inode buffers can be freed, look out for it, 3024 * and do not replay the inode. 3025 */ 3026 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, 3027 in_f->ilf_len, 0)) { 3028 error = 0; 3029 trace_xfs_log_recover_inode_cancel(log, in_f); 3030 goto error; 3031 } 3032 trace_xfs_log_recover_inode_recover(log, in_f); 3033 3034 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0, 3035 &xfs_inode_buf_ops); 3036 if (!bp) { 3037 error = -ENOMEM; 3038 goto error; 3039 } 3040 error = bp->b_error; 3041 if (error) { 3042 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)"); 3043 goto out_release; 3044 } 3045 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 3046 dip = xfs_buf_offset(bp, in_f->ilf_boffset); 3047 3048 /* 3049 * Make sure the place we're flushing out to really looks 3050 * like an inode! 3051 */ 3052 if (unlikely(!xfs_verify_magic16(bp, dip->di_magic))) { 3053 xfs_alert(mp, 3054 "%s: Bad inode magic number, dip = "PTR_FMT", dino bp = "PTR_FMT", ino = %Ld", 3055 __func__, dip, bp, in_f->ilf_ino); 3056 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)", 3057 XFS_ERRLEVEL_LOW, mp); 3058 error = -EFSCORRUPTED; 3059 goto out_release; 3060 } 3061 ldip = item->ri_buf[1].i_addr; 3062 if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) { 3063 xfs_alert(mp, 3064 "%s: Bad inode log record, rec ptr "PTR_FMT", ino %Ld", 3065 __func__, item, in_f->ilf_ino); 3066 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)", 3067 XFS_ERRLEVEL_LOW, mp); 3068 error = -EFSCORRUPTED; 3069 goto out_release; 3070 } 3071 3072 /* 3073 * If the inode has an LSN in it, recover the inode only if it's less 3074 * than the lsn of the transaction we are replaying. Note: we still 3075 * need to replay an owner change even though the inode is more recent 3076 * than the transaction as there is no guarantee that all the btree 3077 * blocks are more recent than this transaction, too. 3078 */ 3079 if (dip->di_version >= 3) { 3080 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn); 3081 3082 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 3083 trace_xfs_log_recover_inode_skip(log, in_f); 3084 error = 0; 3085 goto out_owner_change; 3086 } 3087 } 3088 3089 /* 3090 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes 3091 * are transactional and if ordering is necessary we can determine that 3092 * more accurately by the LSN field in the V3 inode core. Don't trust 3093 * the inode versions we might be changing them here - use the 3094 * superblock flag to determine whether we need to look at di_flushiter 3095 * to skip replay when the on disk inode is newer than the log one 3096 */ 3097 if (!xfs_sb_version_hascrc(&mp->m_sb) && 3098 ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) { 3099 /* 3100 * Deal with the wrap case, DI_MAX_FLUSH is less 3101 * than smaller numbers 3102 */ 3103 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && 3104 ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) { 3105 /* do nothing */ 3106 } else { 3107 trace_xfs_log_recover_inode_skip(log, in_f); 3108 error = 0; 3109 goto out_release; 3110 } 3111 } 3112 3113 /* Take the opportunity to reset the flush iteration count */ 3114 ldip->di_flushiter = 0; 3115 3116 if (unlikely(S_ISREG(ldip->di_mode))) { 3117 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) && 3118 (ldip->di_format != XFS_DINODE_FMT_BTREE)) { 3119 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)", 3120 XFS_ERRLEVEL_LOW, mp, ldip, 3121 sizeof(*ldip)); 3122 xfs_alert(mp, 3123 "%s: Bad regular inode log record, rec ptr "PTR_FMT", " 3124 "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld", 3125 __func__, item, dip, bp, in_f->ilf_ino); 3126 error = -EFSCORRUPTED; 3127 goto out_release; 3128 } 3129 } else if (unlikely(S_ISDIR(ldip->di_mode))) { 3130 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) && 3131 (ldip->di_format != XFS_DINODE_FMT_BTREE) && 3132 (ldip->di_format != XFS_DINODE_FMT_LOCAL)) { 3133 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)", 3134 XFS_ERRLEVEL_LOW, mp, ldip, 3135 sizeof(*ldip)); 3136 xfs_alert(mp, 3137 "%s: Bad dir inode log record, rec ptr "PTR_FMT", " 3138 "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld", 3139 __func__, item, dip, bp, in_f->ilf_ino); 3140 error = -EFSCORRUPTED; 3141 goto out_release; 3142 } 3143 } 3144 if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){ 3145 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)", 3146 XFS_ERRLEVEL_LOW, mp, ldip, 3147 sizeof(*ldip)); 3148 xfs_alert(mp, 3149 "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", " 3150 "dino bp "PTR_FMT", ino %Ld, total extents = %d, nblocks = %Ld", 3151 __func__, item, dip, bp, in_f->ilf_ino, 3152 ldip->di_nextents + ldip->di_anextents, 3153 ldip->di_nblocks); 3154 error = -EFSCORRUPTED; 3155 goto out_release; 3156 } 3157 if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) { 3158 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)", 3159 XFS_ERRLEVEL_LOW, mp, ldip, 3160 sizeof(*ldip)); 3161 xfs_alert(mp, 3162 "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", " 3163 "dino bp "PTR_FMT", ino %Ld, forkoff 0x%x", __func__, 3164 item, dip, bp, in_f->ilf_ino, ldip->di_forkoff); 3165 error = -EFSCORRUPTED; 3166 goto out_release; 3167 } 3168 isize = xfs_log_dinode_size(ldip->di_version); 3169 if (unlikely(item->ri_buf[1].i_len > isize)) { 3170 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)", 3171 XFS_ERRLEVEL_LOW, mp, ldip, 3172 sizeof(*ldip)); 3173 xfs_alert(mp, 3174 "%s: Bad inode log record length %d, rec ptr "PTR_FMT, 3175 __func__, item->ri_buf[1].i_len, item); 3176 error = -EFSCORRUPTED; 3177 goto out_release; 3178 } 3179 3180 /* recover the log dinode inode into the on disk inode */ 3181 xfs_log_dinode_to_disk(ldip, dip); 3182 3183 fields = in_f->ilf_fields; 3184 if (fields & XFS_ILOG_DEV) 3185 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); 3186 3187 if (in_f->ilf_size == 2) 3188 goto out_owner_change; 3189 len = item->ri_buf[2].i_len; 3190 src = item->ri_buf[2].i_addr; 3191 ASSERT(in_f->ilf_size <= 4); 3192 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 3193 ASSERT(!(fields & XFS_ILOG_DFORK) || 3194 (len == in_f->ilf_dsize)); 3195 3196 switch (fields & XFS_ILOG_DFORK) { 3197 case XFS_ILOG_DDATA: 3198 case XFS_ILOG_DEXT: 3199 memcpy(XFS_DFORK_DPTR(dip), src, len); 3200 break; 3201 3202 case XFS_ILOG_DBROOT: 3203 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, 3204 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), 3205 XFS_DFORK_DSIZE(dip, mp)); 3206 break; 3207 3208 default: 3209 /* 3210 * There are no data fork flags set. 3211 */ 3212 ASSERT((fields & XFS_ILOG_DFORK) == 0); 3213 break; 3214 } 3215 3216 /* 3217 * If we logged any attribute data, recover it. There may or 3218 * may not have been any other non-core data logged in this 3219 * transaction. 3220 */ 3221 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 3222 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 3223 attr_index = 3; 3224 } else { 3225 attr_index = 2; 3226 } 3227 len = item->ri_buf[attr_index].i_len; 3228 src = item->ri_buf[attr_index].i_addr; 3229 ASSERT(len == in_f->ilf_asize); 3230 3231 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 3232 case XFS_ILOG_ADATA: 3233 case XFS_ILOG_AEXT: 3234 dest = XFS_DFORK_APTR(dip); 3235 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 3236 memcpy(dest, src, len); 3237 break; 3238 3239 case XFS_ILOG_ABROOT: 3240 dest = XFS_DFORK_APTR(dip); 3241 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, 3242 len, (xfs_bmdr_block_t*)dest, 3243 XFS_DFORK_ASIZE(dip, mp)); 3244 break; 3245 3246 default: 3247 xfs_warn(log->l_mp, "%s: Invalid flag", __func__); 3248 ASSERT(0); 3249 error = -EIO; 3250 goto out_release; 3251 } 3252 } 3253 3254 out_owner_change: 3255 /* Recover the swapext owner change unless inode has been deleted */ 3256 if ((in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) && 3257 (dip->di_mode != 0)) 3258 error = xfs_recover_inode_owner_change(mp, dip, in_f, 3259 buffer_list); 3260 /* re-generate the checksum. */ 3261 xfs_dinode_calc_crc(log->l_mp, dip); 3262 3263 ASSERT(bp->b_target->bt_mount == mp); 3264 bp->b_iodone = xlog_recover_iodone; 3265 xfs_buf_delwri_queue(bp, buffer_list); 3266 3267 out_release: 3268 xfs_buf_relse(bp); 3269 error: 3270 if (need_free) 3271 kmem_free(in_f); 3272 return error; 3273 } 3274 3275 /* 3276 * Recover QUOTAOFF records. We simply make a note of it in the xlog 3277 * structure, so that we know not to do any dquot item or dquot buffer recovery, 3278 * of that type. 3279 */ 3280 STATIC int 3281 xlog_recover_quotaoff_pass1( 3282 struct xlog *log, 3283 struct xlog_recover_item *item) 3284 { 3285 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr; 3286 ASSERT(qoff_f); 3287 3288 /* 3289 * The logitem format's flag tells us if this was user quotaoff, 3290 * group/project quotaoff or both. 3291 */ 3292 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 3293 log->l_quotaoffs_flag |= XFS_DQ_USER; 3294 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 3295 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 3296 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 3297 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 3298 3299 return 0; 3300 } 3301 3302 /* 3303 * Recover a dquot record 3304 */ 3305 STATIC int 3306 xlog_recover_dquot_pass2( 3307 struct xlog *log, 3308 struct list_head *buffer_list, 3309 struct xlog_recover_item *item, 3310 xfs_lsn_t current_lsn) 3311 { 3312 xfs_mount_t *mp = log->l_mp; 3313 xfs_buf_t *bp; 3314 struct xfs_disk_dquot *ddq, *recddq; 3315 xfs_failaddr_t fa; 3316 int error; 3317 xfs_dq_logformat_t *dq_f; 3318 uint type; 3319 3320 3321 /* 3322 * Filesystems are required to send in quota flags at mount time. 3323 */ 3324 if (mp->m_qflags == 0) 3325 return 0; 3326 3327 recddq = item->ri_buf[1].i_addr; 3328 if (recddq == NULL) { 3329 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__); 3330 return -EIO; 3331 } 3332 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) { 3333 xfs_alert(log->l_mp, "dquot too small (%d) in %s.", 3334 item->ri_buf[1].i_len, __func__); 3335 return -EIO; 3336 } 3337 3338 /* 3339 * This type of quotas was turned off, so ignore this record. 3340 */ 3341 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 3342 ASSERT(type); 3343 if (log->l_quotaoffs_flag & type) 3344 return 0; 3345 3346 /* 3347 * At this point we know that quota was _not_ turned off. 3348 * Since the mount flags are not indicating to us otherwise, this 3349 * must mean that quota is on, and the dquot needs to be replayed. 3350 * Remember that we may not have fully recovered the superblock yet, 3351 * so we can't do the usual trick of looking at the SB quota bits. 3352 * 3353 * The other possibility, of course, is that the quota subsystem was 3354 * removed since the last mount - ENOSYS. 3355 */ 3356 dq_f = item->ri_buf[0].i_addr; 3357 ASSERT(dq_f); 3358 fa = xfs_dquot_verify(mp, recddq, dq_f->qlf_id, 0); 3359 if (fa) { 3360 xfs_alert(mp, "corrupt dquot ID 0x%x in log at %pS", 3361 dq_f->qlf_id, fa); 3362 return -EIO; 3363 } 3364 ASSERT(dq_f->qlf_len == 1); 3365 3366 /* 3367 * At this point we are assuming that the dquots have been allocated 3368 * and hence the buffer has valid dquots stamped in it. It should, 3369 * therefore, pass verifier validation. If the dquot is bad, then the 3370 * we'll return an error here, so we don't need to specifically check 3371 * the dquot in the buffer after the verifier has run. 3372 */ 3373 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno, 3374 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp, 3375 &xfs_dquot_buf_ops); 3376 if (error) 3377 return error; 3378 3379 ASSERT(bp); 3380 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset); 3381 3382 /* 3383 * If the dquot has an LSN in it, recover the dquot only if it's less 3384 * than the lsn of the transaction we are replaying. 3385 */ 3386 if (xfs_sb_version_hascrc(&mp->m_sb)) { 3387 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq; 3388 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn); 3389 3390 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 3391 goto out_release; 3392 } 3393 } 3394 3395 memcpy(ddq, recddq, item->ri_buf[1].i_len); 3396 if (xfs_sb_version_hascrc(&mp->m_sb)) { 3397 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk), 3398 XFS_DQUOT_CRC_OFF); 3399 } 3400 3401 ASSERT(dq_f->qlf_size == 2); 3402 ASSERT(bp->b_target->bt_mount == mp); 3403 bp->b_iodone = xlog_recover_iodone; 3404 xfs_buf_delwri_queue(bp, buffer_list); 3405 3406 out_release: 3407 xfs_buf_relse(bp); 3408 return 0; 3409 } 3410 3411 /* 3412 * This routine is called to create an in-core extent free intent 3413 * item from the efi format structure which was logged on disk. 3414 * It allocates an in-core efi, copies the extents from the format 3415 * structure into it, and adds the efi to the AIL with the given 3416 * LSN. 3417 */ 3418 STATIC int 3419 xlog_recover_efi_pass2( 3420 struct xlog *log, 3421 struct xlog_recover_item *item, 3422 xfs_lsn_t lsn) 3423 { 3424 int error; 3425 struct xfs_mount *mp = log->l_mp; 3426 struct xfs_efi_log_item *efip; 3427 struct xfs_efi_log_format *efi_formatp; 3428 3429 efi_formatp = item->ri_buf[0].i_addr; 3430 3431 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 3432 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); 3433 if (error) { 3434 xfs_efi_item_free(efip); 3435 return error; 3436 } 3437 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 3438 3439 spin_lock(&log->l_ailp->ail_lock); 3440 /* 3441 * The EFI has two references. One for the EFD and one for EFI to ensure 3442 * it makes it into the AIL. Insert the EFI into the AIL directly and 3443 * drop the EFI reference. Note that xfs_trans_ail_update() drops the 3444 * AIL lock. 3445 */ 3446 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn); 3447 xfs_efi_release(efip); 3448 return 0; 3449 } 3450 3451 3452 /* 3453 * This routine is called when an EFD format structure is found in a committed 3454 * transaction in the log. Its purpose is to cancel the corresponding EFI if it 3455 * was still in the log. To do this it searches the AIL for the EFI with an id 3456 * equal to that in the EFD format structure. If we find it we drop the EFD 3457 * reference, which removes the EFI from the AIL and frees it. 3458 */ 3459 STATIC int 3460 xlog_recover_efd_pass2( 3461 struct xlog *log, 3462 struct xlog_recover_item *item) 3463 { 3464 xfs_efd_log_format_t *efd_formatp; 3465 xfs_efi_log_item_t *efip = NULL; 3466 xfs_log_item_t *lip; 3467 uint64_t efi_id; 3468 struct xfs_ail_cursor cur; 3469 struct xfs_ail *ailp = log->l_ailp; 3470 3471 efd_formatp = item->ri_buf[0].i_addr; 3472 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 3473 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 3474 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 3475 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 3476 efi_id = efd_formatp->efd_efi_id; 3477 3478 /* 3479 * Search for the EFI with the id in the EFD format structure in the 3480 * AIL. 3481 */ 3482 spin_lock(&ailp->ail_lock); 3483 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3484 while (lip != NULL) { 3485 if (lip->li_type == XFS_LI_EFI) { 3486 efip = (xfs_efi_log_item_t *)lip; 3487 if (efip->efi_format.efi_id == efi_id) { 3488 /* 3489 * Drop the EFD reference to the EFI. This 3490 * removes the EFI from the AIL and frees it. 3491 */ 3492 spin_unlock(&ailp->ail_lock); 3493 xfs_efi_release(efip); 3494 spin_lock(&ailp->ail_lock); 3495 break; 3496 } 3497 } 3498 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3499 } 3500 3501 xfs_trans_ail_cursor_done(&cur); 3502 spin_unlock(&ailp->ail_lock); 3503 3504 return 0; 3505 } 3506 3507 /* 3508 * This routine is called to create an in-core extent rmap update 3509 * item from the rui format structure which was logged on disk. 3510 * It allocates an in-core rui, copies the extents from the format 3511 * structure into it, and adds the rui to the AIL with the given 3512 * LSN. 3513 */ 3514 STATIC int 3515 xlog_recover_rui_pass2( 3516 struct xlog *log, 3517 struct xlog_recover_item *item, 3518 xfs_lsn_t lsn) 3519 { 3520 int error; 3521 struct xfs_mount *mp = log->l_mp; 3522 struct xfs_rui_log_item *ruip; 3523 struct xfs_rui_log_format *rui_formatp; 3524 3525 rui_formatp = item->ri_buf[0].i_addr; 3526 3527 ruip = xfs_rui_init(mp, rui_formatp->rui_nextents); 3528 error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format); 3529 if (error) { 3530 xfs_rui_item_free(ruip); 3531 return error; 3532 } 3533 atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents); 3534 3535 spin_lock(&log->l_ailp->ail_lock); 3536 /* 3537 * The RUI has two references. One for the RUD and one for RUI to ensure 3538 * it makes it into the AIL. Insert the RUI into the AIL directly and 3539 * drop the RUI reference. Note that xfs_trans_ail_update() drops the 3540 * AIL lock. 3541 */ 3542 xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn); 3543 xfs_rui_release(ruip); 3544 return 0; 3545 } 3546 3547 3548 /* 3549 * This routine is called when an RUD format structure is found in a committed 3550 * transaction in the log. Its purpose is to cancel the corresponding RUI if it 3551 * was still in the log. To do this it searches the AIL for the RUI with an id 3552 * equal to that in the RUD format structure. If we find it we drop the RUD 3553 * reference, which removes the RUI from the AIL and frees it. 3554 */ 3555 STATIC int 3556 xlog_recover_rud_pass2( 3557 struct xlog *log, 3558 struct xlog_recover_item *item) 3559 { 3560 struct xfs_rud_log_format *rud_formatp; 3561 struct xfs_rui_log_item *ruip = NULL; 3562 struct xfs_log_item *lip; 3563 uint64_t rui_id; 3564 struct xfs_ail_cursor cur; 3565 struct xfs_ail *ailp = log->l_ailp; 3566 3567 rud_formatp = item->ri_buf[0].i_addr; 3568 ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format)); 3569 rui_id = rud_formatp->rud_rui_id; 3570 3571 /* 3572 * Search for the RUI with the id in the RUD format structure in the 3573 * AIL. 3574 */ 3575 spin_lock(&ailp->ail_lock); 3576 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3577 while (lip != NULL) { 3578 if (lip->li_type == XFS_LI_RUI) { 3579 ruip = (struct xfs_rui_log_item *)lip; 3580 if (ruip->rui_format.rui_id == rui_id) { 3581 /* 3582 * Drop the RUD reference to the RUI. This 3583 * removes the RUI from the AIL and frees it. 3584 */ 3585 spin_unlock(&ailp->ail_lock); 3586 xfs_rui_release(ruip); 3587 spin_lock(&ailp->ail_lock); 3588 break; 3589 } 3590 } 3591 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3592 } 3593 3594 xfs_trans_ail_cursor_done(&cur); 3595 spin_unlock(&ailp->ail_lock); 3596 3597 return 0; 3598 } 3599 3600 /* 3601 * Copy an CUI format buffer from the given buf, and into the destination 3602 * CUI format structure. The CUI/CUD items were designed not to need any 3603 * special alignment handling. 3604 */ 3605 static int 3606 xfs_cui_copy_format( 3607 struct xfs_log_iovec *buf, 3608 struct xfs_cui_log_format *dst_cui_fmt) 3609 { 3610 struct xfs_cui_log_format *src_cui_fmt; 3611 uint len; 3612 3613 src_cui_fmt = buf->i_addr; 3614 len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents); 3615 3616 if (buf->i_len == len) { 3617 memcpy(dst_cui_fmt, src_cui_fmt, len); 3618 return 0; 3619 } 3620 return -EFSCORRUPTED; 3621 } 3622 3623 /* 3624 * This routine is called to create an in-core extent refcount update 3625 * item from the cui format structure which was logged on disk. 3626 * It allocates an in-core cui, copies the extents from the format 3627 * structure into it, and adds the cui to the AIL with the given 3628 * LSN. 3629 */ 3630 STATIC int 3631 xlog_recover_cui_pass2( 3632 struct xlog *log, 3633 struct xlog_recover_item *item, 3634 xfs_lsn_t lsn) 3635 { 3636 int error; 3637 struct xfs_mount *mp = log->l_mp; 3638 struct xfs_cui_log_item *cuip; 3639 struct xfs_cui_log_format *cui_formatp; 3640 3641 cui_formatp = item->ri_buf[0].i_addr; 3642 3643 cuip = xfs_cui_init(mp, cui_formatp->cui_nextents); 3644 error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format); 3645 if (error) { 3646 xfs_cui_item_free(cuip); 3647 return error; 3648 } 3649 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents); 3650 3651 spin_lock(&log->l_ailp->ail_lock); 3652 /* 3653 * The CUI has two references. One for the CUD and one for CUI to ensure 3654 * it makes it into the AIL. Insert the CUI into the AIL directly and 3655 * drop the CUI reference. Note that xfs_trans_ail_update() drops the 3656 * AIL lock. 3657 */ 3658 xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn); 3659 xfs_cui_release(cuip); 3660 return 0; 3661 } 3662 3663 3664 /* 3665 * This routine is called when an CUD format structure is found in a committed 3666 * transaction in the log. Its purpose is to cancel the corresponding CUI if it 3667 * was still in the log. To do this it searches the AIL for the CUI with an id 3668 * equal to that in the CUD format structure. If we find it we drop the CUD 3669 * reference, which removes the CUI from the AIL and frees it. 3670 */ 3671 STATIC int 3672 xlog_recover_cud_pass2( 3673 struct xlog *log, 3674 struct xlog_recover_item *item) 3675 { 3676 struct xfs_cud_log_format *cud_formatp; 3677 struct xfs_cui_log_item *cuip = NULL; 3678 struct xfs_log_item *lip; 3679 uint64_t cui_id; 3680 struct xfs_ail_cursor cur; 3681 struct xfs_ail *ailp = log->l_ailp; 3682 3683 cud_formatp = item->ri_buf[0].i_addr; 3684 if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) 3685 return -EFSCORRUPTED; 3686 cui_id = cud_formatp->cud_cui_id; 3687 3688 /* 3689 * Search for the CUI with the id in the CUD format structure in the 3690 * AIL. 3691 */ 3692 spin_lock(&ailp->ail_lock); 3693 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3694 while (lip != NULL) { 3695 if (lip->li_type == XFS_LI_CUI) { 3696 cuip = (struct xfs_cui_log_item *)lip; 3697 if (cuip->cui_format.cui_id == cui_id) { 3698 /* 3699 * Drop the CUD reference to the CUI. This 3700 * removes the CUI from the AIL and frees it. 3701 */ 3702 spin_unlock(&ailp->ail_lock); 3703 xfs_cui_release(cuip); 3704 spin_lock(&ailp->ail_lock); 3705 break; 3706 } 3707 } 3708 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3709 } 3710 3711 xfs_trans_ail_cursor_done(&cur); 3712 spin_unlock(&ailp->ail_lock); 3713 3714 return 0; 3715 } 3716 3717 /* 3718 * Copy an BUI format buffer from the given buf, and into the destination 3719 * BUI format structure. The BUI/BUD items were designed not to need any 3720 * special alignment handling. 3721 */ 3722 static int 3723 xfs_bui_copy_format( 3724 struct xfs_log_iovec *buf, 3725 struct xfs_bui_log_format *dst_bui_fmt) 3726 { 3727 struct xfs_bui_log_format *src_bui_fmt; 3728 uint len; 3729 3730 src_bui_fmt = buf->i_addr; 3731 len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents); 3732 3733 if (buf->i_len == len) { 3734 memcpy(dst_bui_fmt, src_bui_fmt, len); 3735 return 0; 3736 } 3737 return -EFSCORRUPTED; 3738 } 3739 3740 /* 3741 * This routine is called to create an in-core extent bmap update 3742 * item from the bui format structure which was logged on disk. 3743 * It allocates an in-core bui, copies the extents from the format 3744 * structure into it, and adds the bui to the AIL with the given 3745 * LSN. 3746 */ 3747 STATIC int 3748 xlog_recover_bui_pass2( 3749 struct xlog *log, 3750 struct xlog_recover_item *item, 3751 xfs_lsn_t lsn) 3752 { 3753 int error; 3754 struct xfs_mount *mp = log->l_mp; 3755 struct xfs_bui_log_item *buip; 3756 struct xfs_bui_log_format *bui_formatp; 3757 3758 bui_formatp = item->ri_buf[0].i_addr; 3759 3760 if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS) 3761 return -EFSCORRUPTED; 3762 buip = xfs_bui_init(mp); 3763 error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format); 3764 if (error) { 3765 xfs_bui_item_free(buip); 3766 return error; 3767 } 3768 atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents); 3769 3770 spin_lock(&log->l_ailp->ail_lock); 3771 /* 3772 * The RUI has two references. One for the RUD and one for RUI to ensure 3773 * it makes it into the AIL. Insert the RUI into the AIL directly and 3774 * drop the RUI reference. Note that xfs_trans_ail_update() drops the 3775 * AIL lock. 3776 */ 3777 xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn); 3778 xfs_bui_release(buip); 3779 return 0; 3780 } 3781 3782 3783 /* 3784 * This routine is called when an BUD format structure is found in a committed 3785 * transaction in the log. Its purpose is to cancel the corresponding BUI if it 3786 * was still in the log. To do this it searches the AIL for the BUI with an id 3787 * equal to that in the BUD format structure. If we find it we drop the BUD 3788 * reference, which removes the BUI from the AIL and frees it. 3789 */ 3790 STATIC int 3791 xlog_recover_bud_pass2( 3792 struct xlog *log, 3793 struct xlog_recover_item *item) 3794 { 3795 struct xfs_bud_log_format *bud_formatp; 3796 struct xfs_bui_log_item *buip = NULL; 3797 struct xfs_log_item *lip; 3798 uint64_t bui_id; 3799 struct xfs_ail_cursor cur; 3800 struct xfs_ail *ailp = log->l_ailp; 3801 3802 bud_formatp = item->ri_buf[0].i_addr; 3803 if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format)) 3804 return -EFSCORRUPTED; 3805 bui_id = bud_formatp->bud_bui_id; 3806 3807 /* 3808 * Search for the BUI with the id in the BUD format structure in the 3809 * AIL. 3810 */ 3811 spin_lock(&ailp->ail_lock); 3812 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3813 while (lip != NULL) { 3814 if (lip->li_type == XFS_LI_BUI) { 3815 buip = (struct xfs_bui_log_item *)lip; 3816 if (buip->bui_format.bui_id == bui_id) { 3817 /* 3818 * Drop the BUD reference to the BUI. This 3819 * removes the BUI from the AIL and frees it. 3820 */ 3821 spin_unlock(&ailp->ail_lock); 3822 xfs_bui_release(buip); 3823 spin_lock(&ailp->ail_lock); 3824 break; 3825 } 3826 } 3827 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3828 } 3829 3830 xfs_trans_ail_cursor_done(&cur); 3831 spin_unlock(&ailp->ail_lock); 3832 3833 return 0; 3834 } 3835 3836 /* 3837 * This routine is called when an inode create format structure is found in a 3838 * committed transaction in the log. It's purpose is to initialise the inodes 3839 * being allocated on disk. This requires us to get inode cluster buffers that 3840 * match the range to be initialised, stamped with inode templates and written 3841 * by delayed write so that subsequent modifications will hit the cached buffer 3842 * and only need writing out at the end of recovery. 3843 */ 3844 STATIC int 3845 xlog_recover_do_icreate_pass2( 3846 struct xlog *log, 3847 struct list_head *buffer_list, 3848 xlog_recover_item_t *item) 3849 { 3850 struct xfs_mount *mp = log->l_mp; 3851 struct xfs_icreate_log *icl; 3852 xfs_agnumber_t agno; 3853 xfs_agblock_t agbno; 3854 unsigned int count; 3855 unsigned int isize; 3856 xfs_agblock_t length; 3857 int bb_per_cluster; 3858 int cancel_count; 3859 int nbufs; 3860 int i; 3861 3862 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr; 3863 if (icl->icl_type != XFS_LI_ICREATE) { 3864 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type"); 3865 return -EINVAL; 3866 } 3867 3868 if (icl->icl_size != 1) { 3869 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size"); 3870 return -EINVAL; 3871 } 3872 3873 agno = be32_to_cpu(icl->icl_ag); 3874 if (agno >= mp->m_sb.sb_agcount) { 3875 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno"); 3876 return -EINVAL; 3877 } 3878 agbno = be32_to_cpu(icl->icl_agbno); 3879 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) { 3880 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno"); 3881 return -EINVAL; 3882 } 3883 isize = be32_to_cpu(icl->icl_isize); 3884 if (isize != mp->m_sb.sb_inodesize) { 3885 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize"); 3886 return -EINVAL; 3887 } 3888 count = be32_to_cpu(icl->icl_count); 3889 if (!count) { 3890 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count"); 3891 return -EINVAL; 3892 } 3893 length = be32_to_cpu(icl->icl_length); 3894 if (!length || length >= mp->m_sb.sb_agblocks) { 3895 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length"); 3896 return -EINVAL; 3897 } 3898 3899 /* 3900 * The inode chunk is either full or sparse and we only support 3901 * m_ialloc_min_blks sized sparse allocations at this time. 3902 */ 3903 if (length != mp->m_ialloc_blks && 3904 length != mp->m_ialloc_min_blks) { 3905 xfs_warn(log->l_mp, 3906 "%s: unsupported chunk length", __FUNCTION__); 3907 return -EINVAL; 3908 } 3909 3910 /* verify inode count is consistent with extent length */ 3911 if ((count >> mp->m_sb.sb_inopblog) != length) { 3912 xfs_warn(log->l_mp, 3913 "%s: inconsistent inode count and chunk length", 3914 __FUNCTION__); 3915 return -EINVAL; 3916 } 3917 3918 /* 3919 * The icreate transaction can cover multiple cluster buffers and these 3920 * buffers could have been freed and reused. Check the individual 3921 * buffers for cancellation so we don't overwrite anything written after 3922 * a cancellation. 3923 */ 3924 bb_per_cluster = XFS_FSB_TO_BB(mp, mp->m_blocks_per_cluster); 3925 nbufs = length / mp->m_blocks_per_cluster; 3926 for (i = 0, cancel_count = 0; i < nbufs; i++) { 3927 xfs_daddr_t daddr; 3928 3929 daddr = XFS_AGB_TO_DADDR(mp, agno, 3930 agbno + i * mp->m_blocks_per_cluster); 3931 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0)) 3932 cancel_count++; 3933 } 3934 3935 /* 3936 * We currently only use icreate for a single allocation at a time. This 3937 * means we should expect either all or none of the buffers to be 3938 * cancelled. Be conservative and skip replay if at least one buffer is 3939 * cancelled, but warn the user that something is awry if the buffers 3940 * are not consistent. 3941 * 3942 * XXX: This must be refined to only skip cancelled clusters once we use 3943 * icreate for multiple chunk allocations. 3944 */ 3945 ASSERT(!cancel_count || cancel_count == nbufs); 3946 if (cancel_count) { 3947 if (cancel_count != nbufs) 3948 xfs_warn(mp, 3949 "WARNING: partial inode chunk cancellation, skipped icreate."); 3950 trace_xfs_log_recover_icreate_cancel(log, icl); 3951 return 0; 3952 } 3953 3954 trace_xfs_log_recover_icreate_recover(log, icl); 3955 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno, 3956 length, be32_to_cpu(icl->icl_gen)); 3957 } 3958 3959 STATIC void 3960 xlog_recover_buffer_ra_pass2( 3961 struct xlog *log, 3962 struct xlog_recover_item *item) 3963 { 3964 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr; 3965 struct xfs_mount *mp = log->l_mp; 3966 3967 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno, 3968 buf_f->blf_len, buf_f->blf_flags)) { 3969 return; 3970 } 3971 3972 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno, 3973 buf_f->blf_len, NULL); 3974 } 3975 3976 STATIC void 3977 xlog_recover_inode_ra_pass2( 3978 struct xlog *log, 3979 struct xlog_recover_item *item) 3980 { 3981 struct xfs_inode_log_format ilf_buf; 3982 struct xfs_inode_log_format *ilfp; 3983 struct xfs_mount *mp = log->l_mp; 3984 int error; 3985 3986 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { 3987 ilfp = item->ri_buf[0].i_addr; 3988 } else { 3989 ilfp = &ilf_buf; 3990 memset(ilfp, 0, sizeof(*ilfp)); 3991 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp); 3992 if (error) 3993 return; 3994 } 3995 3996 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0)) 3997 return; 3998 3999 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno, 4000 ilfp->ilf_len, &xfs_inode_buf_ra_ops); 4001 } 4002 4003 STATIC void 4004 xlog_recover_dquot_ra_pass2( 4005 struct xlog *log, 4006 struct xlog_recover_item *item) 4007 { 4008 struct xfs_mount *mp = log->l_mp; 4009 struct xfs_disk_dquot *recddq; 4010 struct xfs_dq_logformat *dq_f; 4011 uint type; 4012 int len; 4013 4014 4015 if (mp->m_qflags == 0) 4016 return; 4017 4018 recddq = item->ri_buf[1].i_addr; 4019 if (recddq == NULL) 4020 return; 4021 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot)) 4022 return; 4023 4024 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 4025 ASSERT(type); 4026 if (log->l_quotaoffs_flag & type) 4027 return; 4028 4029 dq_f = item->ri_buf[0].i_addr; 4030 ASSERT(dq_f); 4031 ASSERT(dq_f->qlf_len == 1); 4032 4033 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len); 4034 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0)) 4035 return; 4036 4037 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len, 4038 &xfs_dquot_buf_ra_ops); 4039 } 4040 4041 STATIC void 4042 xlog_recover_ra_pass2( 4043 struct xlog *log, 4044 struct xlog_recover_item *item) 4045 { 4046 switch (ITEM_TYPE(item)) { 4047 case XFS_LI_BUF: 4048 xlog_recover_buffer_ra_pass2(log, item); 4049 break; 4050 case XFS_LI_INODE: 4051 xlog_recover_inode_ra_pass2(log, item); 4052 break; 4053 case XFS_LI_DQUOT: 4054 xlog_recover_dquot_ra_pass2(log, item); 4055 break; 4056 case XFS_LI_EFI: 4057 case XFS_LI_EFD: 4058 case XFS_LI_QUOTAOFF: 4059 case XFS_LI_RUI: 4060 case XFS_LI_RUD: 4061 case XFS_LI_CUI: 4062 case XFS_LI_CUD: 4063 case XFS_LI_BUI: 4064 case XFS_LI_BUD: 4065 default: 4066 break; 4067 } 4068 } 4069 4070 STATIC int 4071 xlog_recover_commit_pass1( 4072 struct xlog *log, 4073 struct xlog_recover *trans, 4074 struct xlog_recover_item *item) 4075 { 4076 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1); 4077 4078 switch (ITEM_TYPE(item)) { 4079 case XFS_LI_BUF: 4080 return xlog_recover_buffer_pass1(log, item); 4081 case XFS_LI_QUOTAOFF: 4082 return xlog_recover_quotaoff_pass1(log, item); 4083 case XFS_LI_INODE: 4084 case XFS_LI_EFI: 4085 case XFS_LI_EFD: 4086 case XFS_LI_DQUOT: 4087 case XFS_LI_ICREATE: 4088 case XFS_LI_RUI: 4089 case XFS_LI_RUD: 4090 case XFS_LI_CUI: 4091 case XFS_LI_CUD: 4092 case XFS_LI_BUI: 4093 case XFS_LI_BUD: 4094 /* nothing to do in pass 1 */ 4095 return 0; 4096 default: 4097 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 4098 __func__, ITEM_TYPE(item)); 4099 ASSERT(0); 4100 return -EIO; 4101 } 4102 } 4103 4104 STATIC int 4105 xlog_recover_commit_pass2( 4106 struct xlog *log, 4107 struct xlog_recover *trans, 4108 struct list_head *buffer_list, 4109 struct xlog_recover_item *item) 4110 { 4111 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2); 4112 4113 switch (ITEM_TYPE(item)) { 4114 case XFS_LI_BUF: 4115 return xlog_recover_buffer_pass2(log, buffer_list, item, 4116 trans->r_lsn); 4117 case XFS_LI_INODE: 4118 return xlog_recover_inode_pass2(log, buffer_list, item, 4119 trans->r_lsn); 4120 case XFS_LI_EFI: 4121 return xlog_recover_efi_pass2(log, item, trans->r_lsn); 4122 case XFS_LI_EFD: 4123 return xlog_recover_efd_pass2(log, item); 4124 case XFS_LI_RUI: 4125 return xlog_recover_rui_pass2(log, item, trans->r_lsn); 4126 case XFS_LI_RUD: 4127 return xlog_recover_rud_pass2(log, item); 4128 case XFS_LI_CUI: 4129 return xlog_recover_cui_pass2(log, item, trans->r_lsn); 4130 case XFS_LI_CUD: 4131 return xlog_recover_cud_pass2(log, item); 4132 case XFS_LI_BUI: 4133 return xlog_recover_bui_pass2(log, item, trans->r_lsn); 4134 case XFS_LI_BUD: 4135 return xlog_recover_bud_pass2(log, item); 4136 case XFS_LI_DQUOT: 4137 return xlog_recover_dquot_pass2(log, buffer_list, item, 4138 trans->r_lsn); 4139 case XFS_LI_ICREATE: 4140 return xlog_recover_do_icreate_pass2(log, buffer_list, item); 4141 case XFS_LI_QUOTAOFF: 4142 /* nothing to do in pass2 */ 4143 return 0; 4144 default: 4145 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 4146 __func__, ITEM_TYPE(item)); 4147 ASSERT(0); 4148 return -EIO; 4149 } 4150 } 4151 4152 STATIC int 4153 xlog_recover_items_pass2( 4154 struct xlog *log, 4155 struct xlog_recover *trans, 4156 struct list_head *buffer_list, 4157 struct list_head *item_list) 4158 { 4159 struct xlog_recover_item *item; 4160 int error = 0; 4161 4162 list_for_each_entry(item, item_list, ri_list) { 4163 error = xlog_recover_commit_pass2(log, trans, 4164 buffer_list, item); 4165 if (error) 4166 return error; 4167 } 4168 4169 return error; 4170 } 4171 4172 /* 4173 * Perform the transaction. 4174 * 4175 * If the transaction modifies a buffer or inode, do it now. Otherwise, 4176 * EFIs and EFDs get queued up by adding entries into the AIL for them. 4177 */ 4178 STATIC int 4179 xlog_recover_commit_trans( 4180 struct xlog *log, 4181 struct xlog_recover *trans, 4182 int pass, 4183 struct list_head *buffer_list) 4184 { 4185 int error = 0; 4186 int items_queued = 0; 4187 struct xlog_recover_item *item; 4188 struct xlog_recover_item *next; 4189 LIST_HEAD (ra_list); 4190 LIST_HEAD (done_list); 4191 4192 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100 4193 4194 hlist_del_init(&trans->r_list); 4195 4196 error = xlog_recover_reorder_trans(log, trans, pass); 4197 if (error) 4198 return error; 4199 4200 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) { 4201 switch (pass) { 4202 case XLOG_RECOVER_PASS1: 4203 error = xlog_recover_commit_pass1(log, trans, item); 4204 break; 4205 case XLOG_RECOVER_PASS2: 4206 xlog_recover_ra_pass2(log, item); 4207 list_move_tail(&item->ri_list, &ra_list); 4208 items_queued++; 4209 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) { 4210 error = xlog_recover_items_pass2(log, trans, 4211 buffer_list, &ra_list); 4212 list_splice_tail_init(&ra_list, &done_list); 4213 items_queued = 0; 4214 } 4215 4216 break; 4217 default: 4218 ASSERT(0); 4219 } 4220 4221 if (error) 4222 goto out; 4223 } 4224 4225 out: 4226 if (!list_empty(&ra_list)) { 4227 if (!error) 4228 error = xlog_recover_items_pass2(log, trans, 4229 buffer_list, &ra_list); 4230 list_splice_tail_init(&ra_list, &done_list); 4231 } 4232 4233 if (!list_empty(&done_list)) 4234 list_splice_init(&done_list, &trans->r_itemq); 4235 4236 return error; 4237 } 4238 4239 STATIC void 4240 xlog_recover_add_item( 4241 struct list_head *head) 4242 { 4243 xlog_recover_item_t *item; 4244 4245 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 4246 INIT_LIST_HEAD(&item->ri_list); 4247 list_add_tail(&item->ri_list, head); 4248 } 4249 4250 STATIC int 4251 xlog_recover_add_to_cont_trans( 4252 struct xlog *log, 4253 struct xlog_recover *trans, 4254 char *dp, 4255 int len) 4256 { 4257 xlog_recover_item_t *item; 4258 char *ptr, *old_ptr; 4259 int old_len; 4260 4261 /* 4262 * If the transaction is empty, the header was split across this and the 4263 * previous record. Copy the rest of the header. 4264 */ 4265 if (list_empty(&trans->r_itemq)) { 4266 ASSERT(len <= sizeof(struct xfs_trans_header)); 4267 if (len > sizeof(struct xfs_trans_header)) { 4268 xfs_warn(log->l_mp, "%s: bad header length", __func__); 4269 return -EIO; 4270 } 4271 4272 xlog_recover_add_item(&trans->r_itemq); 4273 ptr = (char *)&trans->r_theader + 4274 sizeof(struct xfs_trans_header) - len; 4275 memcpy(ptr, dp, len); 4276 return 0; 4277 } 4278 4279 /* take the tail entry */ 4280 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 4281 4282 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 4283 old_len = item->ri_buf[item->ri_cnt-1].i_len; 4284 4285 ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP); 4286 memcpy(&ptr[old_len], dp, len); 4287 item->ri_buf[item->ri_cnt-1].i_len += len; 4288 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 4289 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 4290 return 0; 4291 } 4292 4293 /* 4294 * The next region to add is the start of a new region. It could be 4295 * a whole region or it could be the first part of a new region. Because 4296 * of this, the assumption here is that the type and size fields of all 4297 * format structures fit into the first 32 bits of the structure. 4298 * 4299 * This works because all regions must be 32 bit aligned. Therefore, we 4300 * either have both fields or we have neither field. In the case we have 4301 * neither field, the data part of the region is zero length. We only have 4302 * a log_op_header and can throw away the header since a new one will appear 4303 * later. If we have at least 4 bytes, then we can determine how many regions 4304 * will appear in the current log item. 4305 */ 4306 STATIC int 4307 xlog_recover_add_to_trans( 4308 struct xlog *log, 4309 struct xlog_recover *trans, 4310 char *dp, 4311 int len) 4312 { 4313 struct xfs_inode_log_format *in_f; /* any will do */ 4314 xlog_recover_item_t *item; 4315 char *ptr; 4316 4317 if (!len) 4318 return 0; 4319 if (list_empty(&trans->r_itemq)) { 4320 /* we need to catch log corruptions here */ 4321 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 4322 xfs_warn(log->l_mp, "%s: bad header magic number", 4323 __func__); 4324 ASSERT(0); 4325 return -EIO; 4326 } 4327 4328 if (len > sizeof(struct xfs_trans_header)) { 4329 xfs_warn(log->l_mp, "%s: bad header length", __func__); 4330 ASSERT(0); 4331 return -EIO; 4332 } 4333 4334 /* 4335 * The transaction header can be arbitrarily split across op 4336 * records. If we don't have the whole thing here, copy what we 4337 * do have and handle the rest in the next record. 4338 */ 4339 if (len == sizeof(struct xfs_trans_header)) 4340 xlog_recover_add_item(&trans->r_itemq); 4341 memcpy(&trans->r_theader, dp, len); 4342 return 0; 4343 } 4344 4345 ptr = kmem_alloc(len, KM_SLEEP); 4346 memcpy(ptr, dp, len); 4347 in_f = (struct xfs_inode_log_format *)ptr; 4348 4349 /* take the tail entry */ 4350 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 4351 if (item->ri_total != 0 && 4352 item->ri_total == item->ri_cnt) { 4353 /* tail item is in use, get a new one */ 4354 xlog_recover_add_item(&trans->r_itemq); 4355 item = list_entry(trans->r_itemq.prev, 4356 xlog_recover_item_t, ri_list); 4357 } 4358 4359 if (item->ri_total == 0) { /* first region to be added */ 4360 if (in_f->ilf_size == 0 || 4361 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 4362 xfs_warn(log->l_mp, 4363 "bad number of regions (%d) in inode log format", 4364 in_f->ilf_size); 4365 ASSERT(0); 4366 kmem_free(ptr); 4367 return -EIO; 4368 } 4369 4370 item->ri_total = in_f->ilf_size; 4371 item->ri_buf = 4372 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 4373 KM_SLEEP); 4374 } 4375 ASSERT(item->ri_total > item->ri_cnt); 4376 /* Description region is ri_buf[0] */ 4377 item->ri_buf[item->ri_cnt].i_addr = ptr; 4378 item->ri_buf[item->ri_cnt].i_len = len; 4379 item->ri_cnt++; 4380 trace_xfs_log_recover_item_add(log, trans, item, 0); 4381 return 0; 4382 } 4383 4384 /* 4385 * Free up any resources allocated by the transaction 4386 * 4387 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 4388 */ 4389 STATIC void 4390 xlog_recover_free_trans( 4391 struct xlog_recover *trans) 4392 { 4393 xlog_recover_item_t *item, *n; 4394 int i; 4395 4396 hlist_del_init(&trans->r_list); 4397 4398 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 4399 /* Free the regions in the item. */ 4400 list_del(&item->ri_list); 4401 for (i = 0; i < item->ri_cnt; i++) 4402 kmem_free(item->ri_buf[i].i_addr); 4403 /* Free the item itself */ 4404 kmem_free(item->ri_buf); 4405 kmem_free(item); 4406 } 4407 /* Free the transaction recover structure */ 4408 kmem_free(trans); 4409 } 4410 4411 /* 4412 * On error or completion, trans is freed. 4413 */ 4414 STATIC int 4415 xlog_recovery_process_trans( 4416 struct xlog *log, 4417 struct xlog_recover *trans, 4418 char *dp, 4419 unsigned int len, 4420 unsigned int flags, 4421 int pass, 4422 struct list_head *buffer_list) 4423 { 4424 int error = 0; 4425 bool freeit = false; 4426 4427 /* mask off ophdr transaction container flags */ 4428 flags &= ~XLOG_END_TRANS; 4429 if (flags & XLOG_WAS_CONT_TRANS) 4430 flags &= ~XLOG_CONTINUE_TRANS; 4431 4432 /* 4433 * Callees must not free the trans structure. We'll decide if we need to 4434 * free it or not based on the operation being done and it's result. 4435 */ 4436 switch (flags) { 4437 /* expected flag values */ 4438 case 0: 4439 case XLOG_CONTINUE_TRANS: 4440 error = xlog_recover_add_to_trans(log, trans, dp, len); 4441 break; 4442 case XLOG_WAS_CONT_TRANS: 4443 error = xlog_recover_add_to_cont_trans(log, trans, dp, len); 4444 break; 4445 case XLOG_COMMIT_TRANS: 4446 error = xlog_recover_commit_trans(log, trans, pass, 4447 buffer_list); 4448 /* success or fail, we are now done with this transaction. */ 4449 freeit = true; 4450 break; 4451 4452 /* unexpected flag values */ 4453 case XLOG_UNMOUNT_TRANS: 4454 /* just skip trans */ 4455 xfs_warn(log->l_mp, "%s: Unmount LR", __func__); 4456 freeit = true; 4457 break; 4458 case XLOG_START_TRANS: 4459 default: 4460 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags); 4461 ASSERT(0); 4462 error = -EIO; 4463 break; 4464 } 4465 if (error || freeit) 4466 xlog_recover_free_trans(trans); 4467 return error; 4468 } 4469 4470 /* 4471 * Lookup the transaction recovery structure associated with the ID in the 4472 * current ophdr. If the transaction doesn't exist and the start flag is set in 4473 * the ophdr, then allocate a new transaction for future ID matches to find. 4474 * Either way, return what we found during the lookup - an existing transaction 4475 * or nothing. 4476 */ 4477 STATIC struct xlog_recover * 4478 xlog_recover_ophdr_to_trans( 4479 struct hlist_head rhash[], 4480 struct xlog_rec_header *rhead, 4481 struct xlog_op_header *ohead) 4482 { 4483 struct xlog_recover *trans; 4484 xlog_tid_t tid; 4485 struct hlist_head *rhp; 4486 4487 tid = be32_to_cpu(ohead->oh_tid); 4488 rhp = &rhash[XLOG_RHASH(tid)]; 4489 hlist_for_each_entry(trans, rhp, r_list) { 4490 if (trans->r_log_tid == tid) 4491 return trans; 4492 } 4493 4494 /* 4495 * skip over non-start transaction headers - we could be 4496 * processing slack space before the next transaction starts 4497 */ 4498 if (!(ohead->oh_flags & XLOG_START_TRANS)) 4499 return NULL; 4500 4501 ASSERT(be32_to_cpu(ohead->oh_len) == 0); 4502 4503 /* 4504 * This is a new transaction so allocate a new recovery container to 4505 * hold the recovery ops that will follow. 4506 */ 4507 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP); 4508 trans->r_log_tid = tid; 4509 trans->r_lsn = be64_to_cpu(rhead->h_lsn); 4510 INIT_LIST_HEAD(&trans->r_itemq); 4511 INIT_HLIST_NODE(&trans->r_list); 4512 hlist_add_head(&trans->r_list, rhp); 4513 4514 /* 4515 * Nothing more to do for this ophdr. Items to be added to this new 4516 * transaction will be in subsequent ophdr containers. 4517 */ 4518 return NULL; 4519 } 4520 4521 STATIC int 4522 xlog_recover_process_ophdr( 4523 struct xlog *log, 4524 struct hlist_head rhash[], 4525 struct xlog_rec_header *rhead, 4526 struct xlog_op_header *ohead, 4527 char *dp, 4528 char *end, 4529 int pass, 4530 struct list_head *buffer_list) 4531 { 4532 struct xlog_recover *trans; 4533 unsigned int len; 4534 int error; 4535 4536 /* Do we understand who wrote this op? */ 4537 if (ohead->oh_clientid != XFS_TRANSACTION && 4538 ohead->oh_clientid != XFS_LOG) { 4539 xfs_warn(log->l_mp, "%s: bad clientid 0x%x", 4540 __func__, ohead->oh_clientid); 4541 ASSERT(0); 4542 return -EIO; 4543 } 4544 4545 /* 4546 * Check the ophdr contains all the data it is supposed to contain. 4547 */ 4548 len = be32_to_cpu(ohead->oh_len); 4549 if (dp + len > end) { 4550 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len); 4551 WARN_ON(1); 4552 return -EIO; 4553 } 4554 4555 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead); 4556 if (!trans) { 4557 /* nothing to do, so skip over this ophdr */ 4558 return 0; 4559 } 4560 4561 /* 4562 * The recovered buffer queue is drained only once we know that all 4563 * recovery items for the current LSN have been processed. This is 4564 * required because: 4565 * 4566 * - Buffer write submission updates the metadata LSN of the buffer. 4567 * - Log recovery skips items with a metadata LSN >= the current LSN of 4568 * the recovery item. 4569 * - Separate recovery items against the same metadata buffer can share 4570 * a current LSN. I.e., consider that the LSN of a recovery item is 4571 * defined as the starting LSN of the first record in which its 4572 * transaction appears, that a record can hold multiple transactions, 4573 * and/or that a transaction can span multiple records. 4574 * 4575 * In other words, we are allowed to submit a buffer from log recovery 4576 * once per current LSN. Otherwise, we may incorrectly skip recovery 4577 * items and cause corruption. 4578 * 4579 * We don't know up front whether buffers are updated multiple times per 4580 * LSN. Therefore, track the current LSN of each commit log record as it 4581 * is processed and drain the queue when it changes. Use commit records 4582 * because they are ordered correctly by the logging code. 4583 */ 4584 if (log->l_recovery_lsn != trans->r_lsn && 4585 ohead->oh_flags & XLOG_COMMIT_TRANS) { 4586 error = xfs_buf_delwri_submit(buffer_list); 4587 if (error) 4588 return error; 4589 log->l_recovery_lsn = trans->r_lsn; 4590 } 4591 4592 return xlog_recovery_process_trans(log, trans, dp, len, 4593 ohead->oh_flags, pass, buffer_list); 4594 } 4595 4596 /* 4597 * There are two valid states of the r_state field. 0 indicates that the 4598 * transaction structure is in a normal state. We have either seen the 4599 * start of the transaction or the last operation we added was not a partial 4600 * operation. If the last operation we added to the transaction was a 4601 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 4602 * 4603 * NOTE: skip LRs with 0 data length. 4604 */ 4605 STATIC int 4606 xlog_recover_process_data( 4607 struct xlog *log, 4608 struct hlist_head rhash[], 4609 struct xlog_rec_header *rhead, 4610 char *dp, 4611 int pass, 4612 struct list_head *buffer_list) 4613 { 4614 struct xlog_op_header *ohead; 4615 char *end; 4616 int num_logops; 4617 int error; 4618 4619 end = dp + be32_to_cpu(rhead->h_len); 4620 num_logops = be32_to_cpu(rhead->h_num_logops); 4621 4622 /* check the log format matches our own - else we can't recover */ 4623 if (xlog_header_check_recover(log->l_mp, rhead)) 4624 return -EIO; 4625 4626 trace_xfs_log_recover_record(log, rhead, pass); 4627 while ((dp < end) && num_logops) { 4628 4629 ohead = (struct xlog_op_header *)dp; 4630 dp += sizeof(*ohead); 4631 ASSERT(dp <= end); 4632 4633 /* errors will abort recovery */ 4634 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead, 4635 dp, end, pass, buffer_list); 4636 if (error) 4637 return error; 4638 4639 dp += be32_to_cpu(ohead->oh_len); 4640 num_logops--; 4641 } 4642 return 0; 4643 } 4644 4645 /* Recover the EFI if necessary. */ 4646 STATIC int 4647 xlog_recover_process_efi( 4648 struct xfs_mount *mp, 4649 struct xfs_ail *ailp, 4650 struct xfs_log_item *lip) 4651 { 4652 struct xfs_efi_log_item *efip; 4653 int error; 4654 4655 /* 4656 * Skip EFIs that we've already processed. 4657 */ 4658 efip = container_of(lip, struct xfs_efi_log_item, efi_item); 4659 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) 4660 return 0; 4661 4662 spin_unlock(&ailp->ail_lock); 4663 error = xfs_efi_recover(mp, efip); 4664 spin_lock(&ailp->ail_lock); 4665 4666 return error; 4667 } 4668 4669 /* Release the EFI since we're cancelling everything. */ 4670 STATIC void 4671 xlog_recover_cancel_efi( 4672 struct xfs_mount *mp, 4673 struct xfs_ail *ailp, 4674 struct xfs_log_item *lip) 4675 { 4676 struct xfs_efi_log_item *efip; 4677 4678 efip = container_of(lip, struct xfs_efi_log_item, efi_item); 4679 4680 spin_unlock(&ailp->ail_lock); 4681 xfs_efi_release(efip); 4682 spin_lock(&ailp->ail_lock); 4683 } 4684 4685 /* Recover the RUI if necessary. */ 4686 STATIC int 4687 xlog_recover_process_rui( 4688 struct xfs_mount *mp, 4689 struct xfs_ail *ailp, 4690 struct xfs_log_item *lip) 4691 { 4692 struct xfs_rui_log_item *ruip; 4693 int error; 4694 4695 /* 4696 * Skip RUIs that we've already processed. 4697 */ 4698 ruip = container_of(lip, struct xfs_rui_log_item, rui_item); 4699 if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags)) 4700 return 0; 4701 4702 spin_unlock(&ailp->ail_lock); 4703 error = xfs_rui_recover(mp, ruip); 4704 spin_lock(&ailp->ail_lock); 4705 4706 return error; 4707 } 4708 4709 /* Release the RUI since we're cancelling everything. */ 4710 STATIC void 4711 xlog_recover_cancel_rui( 4712 struct xfs_mount *mp, 4713 struct xfs_ail *ailp, 4714 struct xfs_log_item *lip) 4715 { 4716 struct xfs_rui_log_item *ruip; 4717 4718 ruip = container_of(lip, struct xfs_rui_log_item, rui_item); 4719 4720 spin_unlock(&ailp->ail_lock); 4721 xfs_rui_release(ruip); 4722 spin_lock(&ailp->ail_lock); 4723 } 4724 4725 /* Recover the CUI if necessary. */ 4726 STATIC int 4727 xlog_recover_process_cui( 4728 struct xfs_trans *parent_tp, 4729 struct xfs_ail *ailp, 4730 struct xfs_log_item *lip) 4731 { 4732 struct xfs_cui_log_item *cuip; 4733 int error; 4734 4735 /* 4736 * Skip CUIs that we've already processed. 4737 */ 4738 cuip = container_of(lip, struct xfs_cui_log_item, cui_item); 4739 if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags)) 4740 return 0; 4741 4742 spin_unlock(&ailp->ail_lock); 4743 error = xfs_cui_recover(parent_tp, cuip); 4744 spin_lock(&ailp->ail_lock); 4745 4746 return error; 4747 } 4748 4749 /* Release the CUI since we're cancelling everything. */ 4750 STATIC void 4751 xlog_recover_cancel_cui( 4752 struct xfs_mount *mp, 4753 struct xfs_ail *ailp, 4754 struct xfs_log_item *lip) 4755 { 4756 struct xfs_cui_log_item *cuip; 4757 4758 cuip = container_of(lip, struct xfs_cui_log_item, cui_item); 4759 4760 spin_unlock(&ailp->ail_lock); 4761 xfs_cui_release(cuip); 4762 spin_lock(&ailp->ail_lock); 4763 } 4764 4765 /* Recover the BUI if necessary. */ 4766 STATIC int 4767 xlog_recover_process_bui( 4768 struct xfs_trans *parent_tp, 4769 struct xfs_ail *ailp, 4770 struct xfs_log_item *lip) 4771 { 4772 struct xfs_bui_log_item *buip; 4773 int error; 4774 4775 /* 4776 * Skip BUIs that we've already processed. 4777 */ 4778 buip = container_of(lip, struct xfs_bui_log_item, bui_item); 4779 if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags)) 4780 return 0; 4781 4782 spin_unlock(&ailp->ail_lock); 4783 error = xfs_bui_recover(parent_tp, buip); 4784 spin_lock(&ailp->ail_lock); 4785 4786 return error; 4787 } 4788 4789 /* Release the BUI since we're cancelling everything. */ 4790 STATIC void 4791 xlog_recover_cancel_bui( 4792 struct xfs_mount *mp, 4793 struct xfs_ail *ailp, 4794 struct xfs_log_item *lip) 4795 { 4796 struct xfs_bui_log_item *buip; 4797 4798 buip = container_of(lip, struct xfs_bui_log_item, bui_item); 4799 4800 spin_unlock(&ailp->ail_lock); 4801 xfs_bui_release(buip); 4802 spin_lock(&ailp->ail_lock); 4803 } 4804 4805 /* Is this log item a deferred action intent? */ 4806 static inline bool xlog_item_is_intent(struct xfs_log_item *lip) 4807 { 4808 switch (lip->li_type) { 4809 case XFS_LI_EFI: 4810 case XFS_LI_RUI: 4811 case XFS_LI_CUI: 4812 case XFS_LI_BUI: 4813 return true; 4814 default: 4815 return false; 4816 } 4817 } 4818 4819 /* Take all the collected deferred ops and finish them in order. */ 4820 static int 4821 xlog_finish_defer_ops( 4822 struct xfs_trans *parent_tp) 4823 { 4824 struct xfs_mount *mp = parent_tp->t_mountp; 4825 struct xfs_trans *tp; 4826 int64_t freeblks; 4827 uint resblks; 4828 int error; 4829 4830 /* 4831 * We're finishing the defer_ops that accumulated as a result of 4832 * recovering unfinished intent items during log recovery. We 4833 * reserve an itruncate transaction because it is the largest 4834 * permanent transaction type. Since we're the only user of the fs 4835 * right now, take 93% (15/16) of the available free blocks. Use 4836 * weird math to avoid a 64-bit division. 4837 */ 4838 freeblks = percpu_counter_sum(&mp->m_fdblocks); 4839 if (freeblks <= 0) 4840 return -ENOSPC; 4841 resblks = min_t(int64_t, UINT_MAX, freeblks); 4842 resblks = (resblks * 15) >> 4; 4843 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks, 4844 0, XFS_TRANS_RESERVE, &tp); 4845 if (error) 4846 return error; 4847 /* transfer all collected dfops to this transaction */ 4848 xfs_defer_move(tp, parent_tp); 4849 4850 return xfs_trans_commit(tp); 4851 } 4852 4853 /* 4854 * When this is called, all of the log intent items which did not have 4855 * corresponding log done items should be in the AIL. What we do now 4856 * is update the data structures associated with each one. 4857 * 4858 * Since we process the log intent items in normal transactions, they 4859 * will be removed at some point after the commit. This prevents us 4860 * from just walking down the list processing each one. We'll use a 4861 * flag in the intent item to skip those that we've already processed 4862 * and use the AIL iteration mechanism's generation count to try to 4863 * speed this up at least a bit. 4864 * 4865 * When we start, we know that the intents are the only things in the 4866 * AIL. As we process them, however, other items are added to the 4867 * AIL. 4868 */ 4869 STATIC int 4870 xlog_recover_process_intents( 4871 struct xlog *log) 4872 { 4873 struct xfs_trans *parent_tp; 4874 struct xfs_ail_cursor cur; 4875 struct xfs_log_item *lip; 4876 struct xfs_ail *ailp; 4877 int error; 4878 #if defined(DEBUG) || defined(XFS_WARN) 4879 xfs_lsn_t last_lsn; 4880 #endif 4881 4882 /* 4883 * The intent recovery handlers commit transactions to complete recovery 4884 * for individual intents, but any new deferred operations that are 4885 * queued during that process are held off until the very end. The 4886 * purpose of this transaction is to serve as a container for deferred 4887 * operations. Each intent recovery handler must transfer dfops here 4888 * before its local transaction commits, and we'll finish the entire 4889 * list below. 4890 */ 4891 error = xfs_trans_alloc_empty(log->l_mp, &parent_tp); 4892 if (error) 4893 return error; 4894 4895 ailp = log->l_ailp; 4896 spin_lock(&ailp->ail_lock); 4897 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 4898 #if defined(DEBUG) || defined(XFS_WARN) 4899 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block); 4900 #endif 4901 while (lip != NULL) { 4902 /* 4903 * We're done when we see something other than an intent. 4904 * There should be no intents left in the AIL now. 4905 */ 4906 if (!xlog_item_is_intent(lip)) { 4907 #ifdef DEBUG 4908 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 4909 ASSERT(!xlog_item_is_intent(lip)); 4910 #endif 4911 break; 4912 } 4913 4914 /* 4915 * We should never see a redo item with a LSN higher than 4916 * the last transaction we found in the log at the start 4917 * of recovery. 4918 */ 4919 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0); 4920 4921 /* 4922 * NOTE: If your intent processing routine can create more 4923 * deferred ops, you /must/ attach them to the dfops in this 4924 * routine or else those subsequent intents will get 4925 * replayed in the wrong order! 4926 */ 4927 switch (lip->li_type) { 4928 case XFS_LI_EFI: 4929 error = xlog_recover_process_efi(log->l_mp, ailp, lip); 4930 break; 4931 case XFS_LI_RUI: 4932 error = xlog_recover_process_rui(log->l_mp, ailp, lip); 4933 break; 4934 case XFS_LI_CUI: 4935 error = xlog_recover_process_cui(parent_tp, ailp, lip); 4936 break; 4937 case XFS_LI_BUI: 4938 error = xlog_recover_process_bui(parent_tp, ailp, lip); 4939 break; 4940 } 4941 if (error) 4942 goto out; 4943 lip = xfs_trans_ail_cursor_next(ailp, &cur); 4944 } 4945 out: 4946 xfs_trans_ail_cursor_done(&cur); 4947 spin_unlock(&ailp->ail_lock); 4948 if (!error) 4949 error = xlog_finish_defer_ops(parent_tp); 4950 xfs_trans_cancel(parent_tp); 4951 4952 return error; 4953 } 4954 4955 /* 4956 * A cancel occurs when the mount has failed and we're bailing out. 4957 * Release all pending log intent items so they don't pin the AIL. 4958 */ 4959 STATIC int 4960 xlog_recover_cancel_intents( 4961 struct xlog *log) 4962 { 4963 struct xfs_log_item *lip; 4964 int error = 0; 4965 struct xfs_ail_cursor cur; 4966 struct xfs_ail *ailp; 4967 4968 ailp = log->l_ailp; 4969 spin_lock(&ailp->ail_lock); 4970 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 4971 while (lip != NULL) { 4972 /* 4973 * We're done when we see something other than an intent. 4974 * There should be no intents left in the AIL now. 4975 */ 4976 if (!xlog_item_is_intent(lip)) { 4977 #ifdef DEBUG 4978 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 4979 ASSERT(!xlog_item_is_intent(lip)); 4980 #endif 4981 break; 4982 } 4983 4984 switch (lip->li_type) { 4985 case XFS_LI_EFI: 4986 xlog_recover_cancel_efi(log->l_mp, ailp, lip); 4987 break; 4988 case XFS_LI_RUI: 4989 xlog_recover_cancel_rui(log->l_mp, ailp, lip); 4990 break; 4991 case XFS_LI_CUI: 4992 xlog_recover_cancel_cui(log->l_mp, ailp, lip); 4993 break; 4994 case XFS_LI_BUI: 4995 xlog_recover_cancel_bui(log->l_mp, ailp, lip); 4996 break; 4997 } 4998 4999 lip = xfs_trans_ail_cursor_next(ailp, &cur); 5000 } 5001 5002 xfs_trans_ail_cursor_done(&cur); 5003 spin_unlock(&ailp->ail_lock); 5004 return error; 5005 } 5006 5007 /* 5008 * This routine performs a transaction to null out a bad inode pointer 5009 * in an agi unlinked inode hash bucket. 5010 */ 5011 STATIC void 5012 xlog_recover_clear_agi_bucket( 5013 xfs_mount_t *mp, 5014 xfs_agnumber_t agno, 5015 int bucket) 5016 { 5017 xfs_trans_t *tp; 5018 xfs_agi_t *agi; 5019 xfs_buf_t *agibp; 5020 int offset; 5021 int error; 5022 5023 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp); 5024 if (error) 5025 goto out_error; 5026 5027 error = xfs_read_agi(mp, tp, agno, &agibp); 5028 if (error) 5029 goto out_abort; 5030 5031 agi = XFS_BUF_TO_AGI(agibp); 5032 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 5033 offset = offsetof(xfs_agi_t, agi_unlinked) + 5034 (sizeof(xfs_agino_t) * bucket); 5035 xfs_trans_log_buf(tp, agibp, offset, 5036 (offset + sizeof(xfs_agino_t) - 1)); 5037 5038 error = xfs_trans_commit(tp); 5039 if (error) 5040 goto out_error; 5041 return; 5042 5043 out_abort: 5044 xfs_trans_cancel(tp); 5045 out_error: 5046 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); 5047 return; 5048 } 5049 5050 STATIC xfs_agino_t 5051 xlog_recover_process_one_iunlink( 5052 struct xfs_mount *mp, 5053 xfs_agnumber_t agno, 5054 xfs_agino_t agino, 5055 int bucket) 5056 { 5057 struct xfs_buf *ibp; 5058 struct xfs_dinode *dip; 5059 struct xfs_inode *ip; 5060 xfs_ino_t ino; 5061 int error; 5062 5063 ino = XFS_AGINO_TO_INO(mp, agno, agino); 5064 error = xfs_iget(mp, NULL, ino, 0, 0, &ip); 5065 if (error) 5066 goto fail; 5067 5068 /* 5069 * Get the on disk inode to find the next inode in the bucket. 5070 */ 5071 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0); 5072 if (error) 5073 goto fail_iput; 5074 5075 xfs_iflags_clear(ip, XFS_IRECOVERY); 5076 ASSERT(VFS_I(ip)->i_nlink == 0); 5077 ASSERT(VFS_I(ip)->i_mode != 0); 5078 5079 /* setup for the next pass */ 5080 agino = be32_to_cpu(dip->di_next_unlinked); 5081 xfs_buf_relse(ibp); 5082 5083 /* 5084 * Prevent any DMAPI event from being sent when the reference on 5085 * the inode is dropped. 5086 */ 5087 ip->i_d.di_dmevmask = 0; 5088 5089 xfs_irele(ip); 5090 return agino; 5091 5092 fail_iput: 5093 xfs_irele(ip); 5094 fail: 5095 /* 5096 * We can't read in the inode this bucket points to, or this inode 5097 * is messed up. Just ditch this bucket of inodes. We will lose 5098 * some inodes and space, but at least we won't hang. 5099 * 5100 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 5101 * clear the inode pointer in the bucket. 5102 */ 5103 xlog_recover_clear_agi_bucket(mp, agno, bucket); 5104 return NULLAGINO; 5105 } 5106 5107 /* 5108 * xlog_iunlink_recover 5109 * 5110 * This is called during recovery to process any inodes which 5111 * we unlinked but not freed when the system crashed. These 5112 * inodes will be on the lists in the AGI blocks. What we do 5113 * here is scan all the AGIs and fully truncate and free any 5114 * inodes found on the lists. Each inode is removed from the 5115 * lists when it has been fully truncated and is freed. The 5116 * freeing of the inode and its removal from the list must be 5117 * atomic. 5118 */ 5119 STATIC void 5120 xlog_recover_process_iunlinks( 5121 struct xlog *log) 5122 { 5123 xfs_mount_t *mp; 5124 xfs_agnumber_t agno; 5125 xfs_agi_t *agi; 5126 xfs_buf_t *agibp; 5127 xfs_agino_t agino; 5128 int bucket; 5129 int error; 5130 5131 mp = log->l_mp; 5132 5133 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 5134 /* 5135 * Find the agi for this ag. 5136 */ 5137 error = xfs_read_agi(mp, NULL, agno, &agibp); 5138 if (error) { 5139 /* 5140 * AGI is b0rked. Don't process it. 5141 * 5142 * We should probably mark the filesystem as corrupt 5143 * after we've recovered all the ag's we can.... 5144 */ 5145 continue; 5146 } 5147 /* 5148 * Unlock the buffer so that it can be acquired in the normal 5149 * course of the transaction to truncate and free each inode. 5150 * Because we are not racing with anyone else here for the AGI 5151 * buffer, we don't even need to hold it locked to read the 5152 * initial unlinked bucket entries out of the buffer. We keep 5153 * buffer reference though, so that it stays pinned in memory 5154 * while we need the buffer. 5155 */ 5156 agi = XFS_BUF_TO_AGI(agibp); 5157 xfs_buf_unlock(agibp); 5158 5159 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 5160 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 5161 while (agino != NULLAGINO) { 5162 agino = xlog_recover_process_one_iunlink(mp, 5163 agno, agino, bucket); 5164 } 5165 } 5166 xfs_buf_rele(agibp); 5167 } 5168 } 5169 5170 STATIC int 5171 xlog_unpack_data( 5172 struct xlog_rec_header *rhead, 5173 char *dp, 5174 struct xlog *log) 5175 { 5176 int i, j, k; 5177 5178 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 5179 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 5180 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 5181 dp += BBSIZE; 5182 } 5183 5184 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 5185 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 5186 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 5187 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 5188 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 5189 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 5190 dp += BBSIZE; 5191 } 5192 } 5193 5194 return 0; 5195 } 5196 5197 /* 5198 * CRC check, unpack and process a log record. 5199 */ 5200 STATIC int 5201 xlog_recover_process( 5202 struct xlog *log, 5203 struct hlist_head rhash[], 5204 struct xlog_rec_header *rhead, 5205 char *dp, 5206 int pass, 5207 struct list_head *buffer_list) 5208 { 5209 int error; 5210 __le32 old_crc = rhead->h_crc; 5211 __le32 crc; 5212 5213 5214 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); 5215 5216 /* 5217 * Nothing else to do if this is a CRC verification pass. Just return 5218 * if this a record with a non-zero crc. Unfortunately, mkfs always 5219 * sets old_crc to 0 so we must consider this valid even on v5 supers. 5220 * Otherwise, return EFSBADCRC on failure so the callers up the stack 5221 * know precisely what failed. 5222 */ 5223 if (pass == XLOG_RECOVER_CRCPASS) { 5224 if (old_crc && crc != old_crc) 5225 return -EFSBADCRC; 5226 return 0; 5227 } 5228 5229 /* 5230 * We're in the normal recovery path. Issue a warning if and only if the 5231 * CRC in the header is non-zero. This is an advisory warning and the 5232 * zero CRC check prevents warnings from being emitted when upgrading 5233 * the kernel from one that does not add CRCs by default. 5234 */ 5235 if (crc != old_crc) { 5236 if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) { 5237 xfs_alert(log->l_mp, 5238 "log record CRC mismatch: found 0x%x, expected 0x%x.", 5239 le32_to_cpu(old_crc), 5240 le32_to_cpu(crc)); 5241 xfs_hex_dump(dp, 32); 5242 } 5243 5244 /* 5245 * If the filesystem is CRC enabled, this mismatch becomes a 5246 * fatal log corruption failure. 5247 */ 5248 if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) 5249 return -EFSCORRUPTED; 5250 } 5251 5252 error = xlog_unpack_data(rhead, dp, log); 5253 if (error) 5254 return error; 5255 5256 return xlog_recover_process_data(log, rhash, rhead, dp, pass, 5257 buffer_list); 5258 } 5259 5260 STATIC int 5261 xlog_valid_rec_header( 5262 struct xlog *log, 5263 struct xlog_rec_header *rhead, 5264 xfs_daddr_t blkno) 5265 { 5266 int hlen; 5267 5268 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) { 5269 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 5270 XFS_ERRLEVEL_LOW, log->l_mp); 5271 return -EFSCORRUPTED; 5272 } 5273 if (unlikely( 5274 (!rhead->h_version || 5275 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { 5276 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", 5277 __func__, be32_to_cpu(rhead->h_version)); 5278 return -EIO; 5279 } 5280 5281 /* LR body must have data or it wouldn't have been written */ 5282 hlen = be32_to_cpu(rhead->h_len); 5283 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 5284 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 5285 XFS_ERRLEVEL_LOW, log->l_mp); 5286 return -EFSCORRUPTED; 5287 } 5288 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 5289 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 5290 XFS_ERRLEVEL_LOW, log->l_mp); 5291 return -EFSCORRUPTED; 5292 } 5293 return 0; 5294 } 5295 5296 /* 5297 * Read the log from tail to head and process the log records found. 5298 * Handle the two cases where the tail and head are in the same cycle 5299 * and where the active portion of the log wraps around the end of 5300 * the physical log separately. The pass parameter is passed through 5301 * to the routines called to process the data and is not looked at 5302 * here. 5303 */ 5304 STATIC int 5305 xlog_do_recovery_pass( 5306 struct xlog *log, 5307 xfs_daddr_t head_blk, 5308 xfs_daddr_t tail_blk, 5309 int pass, 5310 xfs_daddr_t *first_bad) /* out: first bad log rec */ 5311 { 5312 xlog_rec_header_t *rhead; 5313 xfs_daddr_t blk_no, rblk_no; 5314 xfs_daddr_t rhead_blk; 5315 char *offset; 5316 xfs_buf_t *hbp, *dbp; 5317 int error = 0, h_size, h_len; 5318 int error2 = 0; 5319 int bblks, split_bblks; 5320 int hblks, split_hblks, wrapped_hblks; 5321 int i; 5322 struct hlist_head rhash[XLOG_RHASH_SIZE]; 5323 LIST_HEAD (buffer_list); 5324 5325 ASSERT(head_blk != tail_blk); 5326 blk_no = rhead_blk = tail_blk; 5327 5328 for (i = 0; i < XLOG_RHASH_SIZE; i++) 5329 INIT_HLIST_HEAD(&rhash[i]); 5330 5331 /* 5332 * Read the header of the tail block and get the iclog buffer size from 5333 * h_size. Use this to tell how many sectors make up the log header. 5334 */ 5335 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 5336 /* 5337 * When using variable length iclogs, read first sector of 5338 * iclog header and extract the header size from it. Get a 5339 * new hbp that is the correct size. 5340 */ 5341 hbp = xlog_get_bp(log, 1); 5342 if (!hbp) 5343 return -ENOMEM; 5344 5345 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 5346 if (error) 5347 goto bread_err1; 5348 5349 rhead = (xlog_rec_header_t *)offset; 5350 error = xlog_valid_rec_header(log, rhead, tail_blk); 5351 if (error) 5352 goto bread_err1; 5353 5354 /* 5355 * xfsprogs has a bug where record length is based on lsunit but 5356 * h_size (iclog size) is hardcoded to 32k. Now that we 5357 * unconditionally CRC verify the unmount record, this means the 5358 * log buffer can be too small for the record and cause an 5359 * overrun. 5360 * 5361 * Detect this condition here. Use lsunit for the buffer size as 5362 * long as this looks like the mkfs case. Otherwise, return an 5363 * error to avoid a buffer overrun. 5364 */ 5365 h_size = be32_to_cpu(rhead->h_size); 5366 h_len = be32_to_cpu(rhead->h_len); 5367 if (h_len > h_size) { 5368 if (h_len <= log->l_mp->m_logbsize && 5369 be32_to_cpu(rhead->h_num_logops) == 1) { 5370 xfs_warn(log->l_mp, 5371 "invalid iclog size (%d bytes), using lsunit (%d bytes)", 5372 h_size, log->l_mp->m_logbsize); 5373 h_size = log->l_mp->m_logbsize; 5374 } else 5375 return -EFSCORRUPTED; 5376 } 5377 5378 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 5379 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 5380 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 5381 if (h_size % XLOG_HEADER_CYCLE_SIZE) 5382 hblks++; 5383 xlog_put_bp(hbp); 5384 hbp = xlog_get_bp(log, hblks); 5385 } else { 5386 hblks = 1; 5387 } 5388 } else { 5389 ASSERT(log->l_sectBBsize == 1); 5390 hblks = 1; 5391 hbp = xlog_get_bp(log, 1); 5392 h_size = XLOG_BIG_RECORD_BSIZE; 5393 } 5394 5395 if (!hbp) 5396 return -ENOMEM; 5397 dbp = xlog_get_bp(log, BTOBB(h_size)); 5398 if (!dbp) { 5399 xlog_put_bp(hbp); 5400 return -ENOMEM; 5401 } 5402 5403 memset(rhash, 0, sizeof(rhash)); 5404 if (tail_blk > head_blk) { 5405 /* 5406 * Perform recovery around the end of the physical log. 5407 * When the head is not on the same cycle number as the tail, 5408 * we can't do a sequential recovery. 5409 */ 5410 while (blk_no < log->l_logBBsize) { 5411 /* 5412 * Check for header wrapping around physical end-of-log 5413 */ 5414 offset = hbp->b_addr; 5415 split_hblks = 0; 5416 wrapped_hblks = 0; 5417 if (blk_no + hblks <= log->l_logBBsize) { 5418 /* Read header in one read */ 5419 error = xlog_bread(log, blk_no, hblks, hbp, 5420 &offset); 5421 if (error) 5422 goto bread_err2; 5423 } else { 5424 /* This LR is split across physical log end */ 5425 if (blk_no != log->l_logBBsize) { 5426 /* some data before physical log end */ 5427 ASSERT(blk_no <= INT_MAX); 5428 split_hblks = log->l_logBBsize - (int)blk_no; 5429 ASSERT(split_hblks > 0); 5430 error = xlog_bread(log, blk_no, 5431 split_hblks, hbp, 5432 &offset); 5433 if (error) 5434 goto bread_err2; 5435 } 5436 5437 /* 5438 * Note: this black magic still works with 5439 * large sector sizes (non-512) only because: 5440 * - we increased the buffer size originally 5441 * by 1 sector giving us enough extra space 5442 * for the second read; 5443 * - the log start is guaranteed to be sector 5444 * aligned; 5445 * - we read the log end (LR header start) 5446 * _first_, then the log start (LR header end) 5447 * - order is important. 5448 */ 5449 wrapped_hblks = hblks - split_hblks; 5450 error = xlog_bread_offset(log, 0, 5451 wrapped_hblks, hbp, 5452 offset + BBTOB(split_hblks)); 5453 if (error) 5454 goto bread_err2; 5455 } 5456 rhead = (xlog_rec_header_t *)offset; 5457 error = xlog_valid_rec_header(log, rhead, 5458 split_hblks ? blk_no : 0); 5459 if (error) 5460 goto bread_err2; 5461 5462 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 5463 blk_no += hblks; 5464 5465 /* 5466 * Read the log record data in multiple reads if it 5467 * wraps around the end of the log. Note that if the 5468 * header already wrapped, blk_no could point past the 5469 * end of the log. The record data is contiguous in 5470 * that case. 5471 */ 5472 if (blk_no + bblks <= log->l_logBBsize || 5473 blk_no >= log->l_logBBsize) { 5474 rblk_no = xlog_wrap_logbno(log, blk_no); 5475 error = xlog_bread(log, rblk_no, bblks, dbp, 5476 &offset); 5477 if (error) 5478 goto bread_err2; 5479 } else { 5480 /* This log record is split across the 5481 * physical end of log */ 5482 offset = dbp->b_addr; 5483 split_bblks = 0; 5484 if (blk_no != log->l_logBBsize) { 5485 /* some data is before the physical 5486 * end of log */ 5487 ASSERT(!wrapped_hblks); 5488 ASSERT(blk_no <= INT_MAX); 5489 split_bblks = 5490 log->l_logBBsize - (int)blk_no; 5491 ASSERT(split_bblks > 0); 5492 error = xlog_bread(log, blk_no, 5493 split_bblks, dbp, 5494 &offset); 5495 if (error) 5496 goto bread_err2; 5497 } 5498 5499 /* 5500 * Note: this black magic still works with 5501 * large sector sizes (non-512) only because: 5502 * - we increased the buffer size originally 5503 * by 1 sector giving us enough extra space 5504 * for the second read; 5505 * - the log start is guaranteed to be sector 5506 * aligned; 5507 * - we read the log end (LR header start) 5508 * _first_, then the log start (LR header end) 5509 * - order is important. 5510 */ 5511 error = xlog_bread_offset(log, 0, 5512 bblks - split_bblks, dbp, 5513 offset + BBTOB(split_bblks)); 5514 if (error) 5515 goto bread_err2; 5516 } 5517 5518 error = xlog_recover_process(log, rhash, rhead, offset, 5519 pass, &buffer_list); 5520 if (error) 5521 goto bread_err2; 5522 5523 blk_no += bblks; 5524 rhead_blk = blk_no; 5525 } 5526 5527 ASSERT(blk_no >= log->l_logBBsize); 5528 blk_no -= log->l_logBBsize; 5529 rhead_blk = blk_no; 5530 } 5531 5532 /* read first part of physical log */ 5533 while (blk_no < head_blk) { 5534 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 5535 if (error) 5536 goto bread_err2; 5537 5538 rhead = (xlog_rec_header_t *)offset; 5539 error = xlog_valid_rec_header(log, rhead, blk_no); 5540 if (error) 5541 goto bread_err2; 5542 5543 /* blocks in data section */ 5544 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 5545 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 5546 &offset); 5547 if (error) 5548 goto bread_err2; 5549 5550 error = xlog_recover_process(log, rhash, rhead, offset, pass, 5551 &buffer_list); 5552 if (error) 5553 goto bread_err2; 5554 5555 blk_no += bblks + hblks; 5556 rhead_blk = blk_no; 5557 } 5558 5559 bread_err2: 5560 xlog_put_bp(dbp); 5561 bread_err1: 5562 xlog_put_bp(hbp); 5563 5564 /* 5565 * Submit buffers that have been added from the last record processed, 5566 * regardless of error status. 5567 */ 5568 if (!list_empty(&buffer_list)) 5569 error2 = xfs_buf_delwri_submit(&buffer_list); 5570 5571 if (error && first_bad) 5572 *first_bad = rhead_blk; 5573 5574 /* 5575 * Transactions are freed at commit time but transactions without commit 5576 * records on disk are never committed. Free any that may be left in the 5577 * hash table. 5578 */ 5579 for (i = 0; i < XLOG_RHASH_SIZE; i++) { 5580 struct hlist_node *tmp; 5581 struct xlog_recover *trans; 5582 5583 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list) 5584 xlog_recover_free_trans(trans); 5585 } 5586 5587 return error ? error : error2; 5588 } 5589 5590 /* 5591 * Do the recovery of the log. We actually do this in two phases. 5592 * The two passes are necessary in order to implement the function 5593 * of cancelling a record written into the log. The first pass 5594 * determines those things which have been cancelled, and the 5595 * second pass replays log items normally except for those which 5596 * have been cancelled. The handling of the replay and cancellations 5597 * takes place in the log item type specific routines. 5598 * 5599 * The table of items which have cancel records in the log is allocated 5600 * and freed at this level, since only here do we know when all of 5601 * the log recovery has been completed. 5602 */ 5603 STATIC int 5604 xlog_do_log_recovery( 5605 struct xlog *log, 5606 xfs_daddr_t head_blk, 5607 xfs_daddr_t tail_blk) 5608 { 5609 int error, i; 5610 5611 ASSERT(head_blk != tail_blk); 5612 5613 /* 5614 * First do a pass to find all of the cancelled buf log items. 5615 * Store them in the buf_cancel_table for use in the second pass. 5616 */ 5617 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * 5618 sizeof(struct list_head), 5619 KM_SLEEP); 5620 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 5621 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); 5622 5623 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 5624 XLOG_RECOVER_PASS1, NULL); 5625 if (error != 0) { 5626 kmem_free(log->l_buf_cancel_table); 5627 log->l_buf_cancel_table = NULL; 5628 return error; 5629 } 5630 /* 5631 * Then do a second pass to actually recover the items in the log. 5632 * When it is complete free the table of buf cancel items. 5633 */ 5634 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 5635 XLOG_RECOVER_PASS2, NULL); 5636 #ifdef DEBUG 5637 if (!error) { 5638 int i; 5639 5640 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 5641 ASSERT(list_empty(&log->l_buf_cancel_table[i])); 5642 } 5643 #endif /* DEBUG */ 5644 5645 kmem_free(log->l_buf_cancel_table); 5646 log->l_buf_cancel_table = NULL; 5647 5648 return error; 5649 } 5650 5651 /* 5652 * Do the actual recovery 5653 */ 5654 STATIC int 5655 xlog_do_recover( 5656 struct xlog *log, 5657 xfs_daddr_t head_blk, 5658 xfs_daddr_t tail_blk) 5659 { 5660 struct xfs_mount *mp = log->l_mp; 5661 int error; 5662 xfs_buf_t *bp; 5663 xfs_sb_t *sbp; 5664 5665 trace_xfs_log_recover(log, head_blk, tail_blk); 5666 5667 /* 5668 * First replay the images in the log. 5669 */ 5670 error = xlog_do_log_recovery(log, head_blk, tail_blk); 5671 if (error) 5672 return error; 5673 5674 /* 5675 * If IO errors happened during recovery, bail out. 5676 */ 5677 if (XFS_FORCED_SHUTDOWN(mp)) { 5678 return -EIO; 5679 } 5680 5681 /* 5682 * We now update the tail_lsn since much of the recovery has completed 5683 * and there may be space available to use. If there were no extent 5684 * or iunlinks, we can free up the entire log and set the tail_lsn to 5685 * be the last_sync_lsn. This was set in xlog_find_tail to be the 5686 * lsn of the last known good LR on disk. If there are extent frees 5687 * or iunlinks they will have some entries in the AIL; so we look at 5688 * the AIL to determine how to set the tail_lsn. 5689 */ 5690 xlog_assign_tail_lsn(mp); 5691 5692 /* 5693 * Now that we've finished replaying all buffer and inode 5694 * updates, re-read in the superblock and reverify it. 5695 */ 5696 bp = xfs_getsb(mp, 0); 5697 bp->b_flags &= ~(XBF_DONE | XBF_ASYNC); 5698 ASSERT(!(bp->b_flags & XBF_WRITE)); 5699 bp->b_flags |= XBF_READ; 5700 bp->b_ops = &xfs_sb_buf_ops; 5701 5702 error = xfs_buf_submit(bp); 5703 if (error) { 5704 if (!XFS_FORCED_SHUTDOWN(mp)) { 5705 xfs_buf_ioerror_alert(bp, __func__); 5706 ASSERT(0); 5707 } 5708 xfs_buf_relse(bp); 5709 return error; 5710 } 5711 5712 /* Convert superblock from on-disk format */ 5713 sbp = &mp->m_sb; 5714 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 5715 xfs_buf_relse(bp); 5716 5717 /* re-initialise in-core superblock and geometry structures */ 5718 xfs_reinit_percpu_counters(mp); 5719 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 5720 if (error) { 5721 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error); 5722 return error; 5723 } 5724 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp); 5725 5726 xlog_recover_check_summary(log); 5727 5728 /* Normal transactions can now occur */ 5729 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 5730 return 0; 5731 } 5732 5733 /* 5734 * Perform recovery and re-initialize some log variables in xlog_find_tail. 5735 * 5736 * Return error or zero. 5737 */ 5738 int 5739 xlog_recover( 5740 struct xlog *log) 5741 { 5742 xfs_daddr_t head_blk, tail_blk; 5743 int error; 5744 5745 /* find the tail of the log */ 5746 error = xlog_find_tail(log, &head_blk, &tail_blk); 5747 if (error) 5748 return error; 5749 5750 /* 5751 * The superblock was read before the log was available and thus the LSN 5752 * could not be verified. Check the superblock LSN against the current 5753 * LSN now that it's known. 5754 */ 5755 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) && 5756 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn)) 5757 return -EINVAL; 5758 5759 if (tail_blk != head_blk) { 5760 /* There used to be a comment here: 5761 * 5762 * disallow recovery on read-only mounts. note -- mount 5763 * checks for ENOSPC and turns it into an intelligent 5764 * error message. 5765 * ...but this is no longer true. Now, unless you specify 5766 * NORECOVERY (in which case this function would never be 5767 * called), we just go ahead and recover. We do this all 5768 * under the vfs layer, so we can get away with it unless 5769 * the device itself is read-only, in which case we fail. 5770 */ 5771 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 5772 return error; 5773 } 5774 5775 /* 5776 * Version 5 superblock log feature mask validation. We know the 5777 * log is dirty so check if there are any unknown log features 5778 * in what we need to recover. If there are unknown features 5779 * (e.g. unsupported transactions, then simply reject the 5780 * attempt at recovery before touching anything. 5781 */ 5782 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 && 5783 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, 5784 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { 5785 xfs_warn(log->l_mp, 5786 "Superblock has unknown incompatible log features (0x%x) enabled.", 5787 (log->l_mp->m_sb.sb_features_log_incompat & 5788 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 5789 xfs_warn(log->l_mp, 5790 "The log can not be fully and/or safely recovered by this kernel."); 5791 xfs_warn(log->l_mp, 5792 "Please recover the log on a kernel that supports the unknown features."); 5793 return -EINVAL; 5794 } 5795 5796 /* 5797 * Delay log recovery if the debug hook is set. This is debug 5798 * instrumention to coordinate simulation of I/O failures with 5799 * log recovery. 5800 */ 5801 if (xfs_globals.log_recovery_delay) { 5802 xfs_notice(log->l_mp, 5803 "Delaying log recovery for %d seconds.", 5804 xfs_globals.log_recovery_delay); 5805 msleep(xfs_globals.log_recovery_delay * 1000); 5806 } 5807 5808 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", 5809 log->l_mp->m_logname ? log->l_mp->m_logname 5810 : "internal"); 5811 5812 error = xlog_do_recover(log, head_blk, tail_blk); 5813 log->l_flags |= XLOG_RECOVERY_NEEDED; 5814 } 5815 return error; 5816 } 5817 5818 /* 5819 * In the first part of recovery we replay inodes and buffers and build 5820 * up the list of extent free items which need to be processed. Here 5821 * we process the extent free items and clean up the on disk unlinked 5822 * inode lists. This is separated from the first part of recovery so 5823 * that the root and real-time bitmap inodes can be read in from disk in 5824 * between the two stages. This is necessary so that we can free space 5825 * in the real-time portion of the file system. 5826 */ 5827 int 5828 xlog_recover_finish( 5829 struct xlog *log) 5830 { 5831 /* 5832 * Now we're ready to do the transactions needed for the 5833 * rest of recovery. Start with completing all the extent 5834 * free intent records and then process the unlinked inode 5835 * lists. At this point, we essentially run in normal mode 5836 * except that we're still performing recovery actions 5837 * rather than accepting new requests. 5838 */ 5839 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 5840 int error; 5841 error = xlog_recover_process_intents(log); 5842 if (error) { 5843 xfs_alert(log->l_mp, "Failed to recover intents"); 5844 return error; 5845 } 5846 5847 /* 5848 * Sync the log to get all the intents out of the AIL. 5849 * This isn't absolutely necessary, but it helps in 5850 * case the unlink transactions would have problems 5851 * pushing the intents out of the way. 5852 */ 5853 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 5854 5855 xlog_recover_process_iunlinks(log); 5856 5857 xlog_recover_check_summary(log); 5858 5859 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", 5860 log->l_mp->m_logname ? log->l_mp->m_logname 5861 : "internal"); 5862 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 5863 } else { 5864 xfs_info(log->l_mp, "Ending clean mount"); 5865 } 5866 return 0; 5867 } 5868 5869 int 5870 xlog_recover_cancel( 5871 struct xlog *log) 5872 { 5873 int error = 0; 5874 5875 if (log->l_flags & XLOG_RECOVERY_NEEDED) 5876 error = xlog_recover_cancel_intents(log); 5877 5878 return error; 5879 } 5880 5881 #if defined(DEBUG) 5882 /* 5883 * Read all of the agf and agi counters and check that they 5884 * are consistent with the superblock counters. 5885 */ 5886 STATIC void 5887 xlog_recover_check_summary( 5888 struct xlog *log) 5889 { 5890 xfs_mount_t *mp; 5891 xfs_agf_t *agfp; 5892 xfs_buf_t *agfbp; 5893 xfs_buf_t *agibp; 5894 xfs_agnumber_t agno; 5895 uint64_t freeblks; 5896 uint64_t itotal; 5897 uint64_t ifree; 5898 int error; 5899 5900 mp = log->l_mp; 5901 5902 freeblks = 0LL; 5903 itotal = 0LL; 5904 ifree = 0LL; 5905 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 5906 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 5907 if (error) { 5908 xfs_alert(mp, "%s agf read failed agno %d error %d", 5909 __func__, agno, error); 5910 } else { 5911 agfp = XFS_BUF_TO_AGF(agfbp); 5912 freeblks += be32_to_cpu(agfp->agf_freeblks) + 5913 be32_to_cpu(agfp->agf_flcount); 5914 xfs_buf_relse(agfbp); 5915 } 5916 5917 error = xfs_read_agi(mp, NULL, agno, &agibp); 5918 if (error) { 5919 xfs_alert(mp, "%s agi read failed agno %d error %d", 5920 __func__, agno, error); 5921 } else { 5922 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 5923 5924 itotal += be32_to_cpu(agi->agi_count); 5925 ifree += be32_to_cpu(agi->agi_freecount); 5926 xfs_buf_relse(agibp); 5927 } 5928 } 5929 } 5930 #endif /* DEBUG */ 5931