1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_sb.h" 26 #include "xfs_mount.h" 27 #include "xfs_da_format.h" 28 #include "xfs_da_btree.h" 29 #include "xfs_inode.h" 30 #include "xfs_trans.h" 31 #include "xfs_log.h" 32 #include "xfs_log_priv.h" 33 #include "xfs_log_recover.h" 34 #include "xfs_inode_item.h" 35 #include "xfs_extfree_item.h" 36 #include "xfs_trans_priv.h" 37 #include "xfs_alloc.h" 38 #include "xfs_ialloc.h" 39 #include "xfs_quota.h" 40 #include "xfs_cksum.h" 41 #include "xfs_trace.h" 42 #include "xfs_icache.h" 43 #include "xfs_bmap_btree.h" 44 #include "xfs_error.h" 45 #include "xfs_dir2.h" 46 47 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) 48 49 STATIC int 50 xlog_find_zeroed( 51 struct xlog *, 52 xfs_daddr_t *); 53 STATIC int 54 xlog_clear_stale_blocks( 55 struct xlog *, 56 xfs_lsn_t); 57 #if defined(DEBUG) 58 STATIC void 59 xlog_recover_check_summary( 60 struct xlog *); 61 #else 62 #define xlog_recover_check_summary(log) 63 #endif 64 STATIC int 65 xlog_do_recovery_pass( 66 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *); 67 68 /* 69 * This structure is used during recovery to record the buf log items which 70 * have been canceled and should not be replayed. 71 */ 72 struct xfs_buf_cancel { 73 xfs_daddr_t bc_blkno; 74 uint bc_len; 75 int bc_refcount; 76 struct list_head bc_list; 77 }; 78 79 /* 80 * Sector aligned buffer routines for buffer create/read/write/access 81 */ 82 83 /* 84 * Verify the given count of basic blocks is valid number of blocks 85 * to specify for an operation involving the given XFS log buffer. 86 * Returns nonzero if the count is valid, 0 otherwise. 87 */ 88 89 static inline int 90 xlog_buf_bbcount_valid( 91 struct xlog *log, 92 int bbcount) 93 { 94 return bbcount > 0 && bbcount <= log->l_logBBsize; 95 } 96 97 /* 98 * Allocate a buffer to hold log data. The buffer needs to be able 99 * to map to a range of nbblks basic blocks at any valid (basic 100 * block) offset within the log. 101 */ 102 STATIC xfs_buf_t * 103 xlog_get_bp( 104 struct xlog *log, 105 int nbblks) 106 { 107 struct xfs_buf *bp; 108 109 if (!xlog_buf_bbcount_valid(log, nbblks)) { 110 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 111 nbblks); 112 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 113 return NULL; 114 } 115 116 /* 117 * We do log I/O in units of log sectors (a power-of-2 118 * multiple of the basic block size), so we round up the 119 * requested size to accommodate the basic blocks required 120 * for complete log sectors. 121 * 122 * In addition, the buffer may be used for a non-sector- 123 * aligned block offset, in which case an I/O of the 124 * requested size could extend beyond the end of the 125 * buffer. If the requested size is only 1 basic block it 126 * will never straddle a sector boundary, so this won't be 127 * an issue. Nor will this be a problem if the log I/O is 128 * done in basic blocks (sector size 1). But otherwise we 129 * extend the buffer by one extra log sector to ensure 130 * there's space to accommodate this possibility. 131 */ 132 if (nbblks > 1 && log->l_sectBBsize > 1) 133 nbblks += log->l_sectBBsize; 134 nbblks = round_up(nbblks, log->l_sectBBsize); 135 136 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0); 137 if (bp) 138 xfs_buf_unlock(bp); 139 return bp; 140 } 141 142 STATIC void 143 xlog_put_bp( 144 xfs_buf_t *bp) 145 { 146 xfs_buf_free(bp); 147 } 148 149 /* 150 * Return the address of the start of the given block number's data 151 * in a log buffer. The buffer covers a log sector-aligned region. 152 */ 153 STATIC char * 154 xlog_align( 155 struct xlog *log, 156 xfs_daddr_t blk_no, 157 int nbblks, 158 struct xfs_buf *bp) 159 { 160 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1); 161 162 ASSERT(offset + nbblks <= bp->b_length); 163 return bp->b_addr + BBTOB(offset); 164 } 165 166 167 /* 168 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 169 */ 170 STATIC int 171 xlog_bread_noalign( 172 struct xlog *log, 173 xfs_daddr_t blk_no, 174 int nbblks, 175 struct xfs_buf *bp) 176 { 177 int error; 178 179 if (!xlog_buf_bbcount_valid(log, nbblks)) { 180 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 181 nbblks); 182 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 183 return -EFSCORRUPTED; 184 } 185 186 blk_no = round_down(blk_no, log->l_sectBBsize); 187 nbblks = round_up(nbblks, log->l_sectBBsize); 188 189 ASSERT(nbblks > 0); 190 ASSERT(nbblks <= bp->b_length); 191 192 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 193 XFS_BUF_READ(bp); 194 bp->b_io_length = nbblks; 195 bp->b_error = 0; 196 197 error = xfs_buf_submit_wait(bp); 198 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) 199 xfs_buf_ioerror_alert(bp, __func__); 200 return error; 201 } 202 203 STATIC int 204 xlog_bread( 205 struct xlog *log, 206 xfs_daddr_t blk_no, 207 int nbblks, 208 struct xfs_buf *bp, 209 char **offset) 210 { 211 int error; 212 213 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 214 if (error) 215 return error; 216 217 *offset = xlog_align(log, blk_no, nbblks, bp); 218 return 0; 219 } 220 221 /* 222 * Read at an offset into the buffer. Returns with the buffer in it's original 223 * state regardless of the result of the read. 224 */ 225 STATIC int 226 xlog_bread_offset( 227 struct xlog *log, 228 xfs_daddr_t blk_no, /* block to read from */ 229 int nbblks, /* blocks to read */ 230 struct xfs_buf *bp, 231 char *offset) 232 { 233 char *orig_offset = bp->b_addr; 234 int orig_len = BBTOB(bp->b_length); 235 int error, error2; 236 237 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks)); 238 if (error) 239 return error; 240 241 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 242 243 /* must reset buffer pointer even on error */ 244 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len); 245 if (error) 246 return error; 247 return error2; 248 } 249 250 /* 251 * Write out the buffer at the given block for the given number of blocks. 252 * The buffer is kept locked across the write and is returned locked. 253 * This can only be used for synchronous log writes. 254 */ 255 STATIC int 256 xlog_bwrite( 257 struct xlog *log, 258 xfs_daddr_t blk_no, 259 int nbblks, 260 struct xfs_buf *bp) 261 { 262 int error; 263 264 if (!xlog_buf_bbcount_valid(log, nbblks)) { 265 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 266 nbblks); 267 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 268 return -EFSCORRUPTED; 269 } 270 271 blk_no = round_down(blk_no, log->l_sectBBsize); 272 nbblks = round_up(nbblks, log->l_sectBBsize); 273 274 ASSERT(nbblks > 0); 275 ASSERT(nbblks <= bp->b_length); 276 277 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 278 XFS_BUF_ZEROFLAGS(bp); 279 xfs_buf_hold(bp); 280 xfs_buf_lock(bp); 281 bp->b_io_length = nbblks; 282 bp->b_error = 0; 283 284 error = xfs_bwrite(bp); 285 if (error) 286 xfs_buf_ioerror_alert(bp, __func__); 287 xfs_buf_relse(bp); 288 return error; 289 } 290 291 #ifdef DEBUG 292 /* 293 * dump debug superblock and log record information 294 */ 295 STATIC void 296 xlog_header_check_dump( 297 xfs_mount_t *mp, 298 xlog_rec_header_t *head) 299 { 300 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d", 301 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 302 xfs_debug(mp, " log : uuid = %pU, fmt = %d", 303 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 304 } 305 #else 306 #define xlog_header_check_dump(mp, head) 307 #endif 308 309 /* 310 * check log record header for recovery 311 */ 312 STATIC int 313 xlog_header_check_recover( 314 xfs_mount_t *mp, 315 xlog_rec_header_t *head) 316 { 317 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 318 319 /* 320 * IRIX doesn't write the h_fmt field and leaves it zeroed 321 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 322 * a dirty log created in IRIX. 323 */ 324 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) { 325 xfs_warn(mp, 326 "dirty log written in incompatible format - can't recover"); 327 xlog_header_check_dump(mp, head); 328 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 329 XFS_ERRLEVEL_HIGH, mp); 330 return -EFSCORRUPTED; 331 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 332 xfs_warn(mp, 333 "dirty log entry has mismatched uuid - can't recover"); 334 xlog_header_check_dump(mp, head); 335 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 336 XFS_ERRLEVEL_HIGH, mp); 337 return -EFSCORRUPTED; 338 } 339 return 0; 340 } 341 342 /* 343 * read the head block of the log and check the header 344 */ 345 STATIC int 346 xlog_header_check_mount( 347 xfs_mount_t *mp, 348 xlog_rec_header_t *head) 349 { 350 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 351 352 if (uuid_is_nil(&head->h_fs_uuid)) { 353 /* 354 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 355 * h_fs_uuid is nil, we assume this log was last mounted 356 * by IRIX and continue. 357 */ 358 xfs_warn(mp, "nil uuid in log - IRIX style log"); 359 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 360 xfs_warn(mp, "log has mismatched uuid - can't recover"); 361 xlog_header_check_dump(mp, head); 362 XFS_ERROR_REPORT("xlog_header_check_mount", 363 XFS_ERRLEVEL_HIGH, mp); 364 return -EFSCORRUPTED; 365 } 366 return 0; 367 } 368 369 STATIC void 370 xlog_recover_iodone( 371 struct xfs_buf *bp) 372 { 373 if (bp->b_error) { 374 /* 375 * We're not going to bother about retrying 376 * this during recovery. One strike! 377 */ 378 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 379 xfs_buf_ioerror_alert(bp, __func__); 380 xfs_force_shutdown(bp->b_target->bt_mount, 381 SHUTDOWN_META_IO_ERROR); 382 } 383 } 384 bp->b_iodone = NULL; 385 xfs_buf_ioend(bp); 386 } 387 388 /* 389 * This routine finds (to an approximation) the first block in the physical 390 * log which contains the given cycle. It uses a binary search algorithm. 391 * Note that the algorithm can not be perfect because the disk will not 392 * necessarily be perfect. 393 */ 394 STATIC int 395 xlog_find_cycle_start( 396 struct xlog *log, 397 struct xfs_buf *bp, 398 xfs_daddr_t first_blk, 399 xfs_daddr_t *last_blk, 400 uint cycle) 401 { 402 char *offset; 403 xfs_daddr_t mid_blk; 404 xfs_daddr_t end_blk; 405 uint mid_cycle; 406 int error; 407 408 end_blk = *last_blk; 409 mid_blk = BLK_AVG(first_blk, end_blk); 410 while (mid_blk != first_blk && mid_blk != end_blk) { 411 error = xlog_bread(log, mid_blk, 1, bp, &offset); 412 if (error) 413 return error; 414 mid_cycle = xlog_get_cycle(offset); 415 if (mid_cycle == cycle) 416 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 417 else 418 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 419 mid_blk = BLK_AVG(first_blk, end_blk); 420 } 421 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 422 (mid_blk == end_blk && mid_blk-1 == first_blk)); 423 424 *last_blk = end_blk; 425 426 return 0; 427 } 428 429 /* 430 * Check that a range of blocks does not contain stop_on_cycle_no. 431 * Fill in *new_blk with the block offset where such a block is 432 * found, or with -1 (an invalid block number) if there is no such 433 * block in the range. The scan needs to occur from front to back 434 * and the pointer into the region must be updated since a later 435 * routine will need to perform another test. 436 */ 437 STATIC int 438 xlog_find_verify_cycle( 439 struct xlog *log, 440 xfs_daddr_t start_blk, 441 int nbblks, 442 uint stop_on_cycle_no, 443 xfs_daddr_t *new_blk) 444 { 445 xfs_daddr_t i, j; 446 uint cycle; 447 xfs_buf_t *bp; 448 xfs_daddr_t bufblks; 449 char *buf = NULL; 450 int error = 0; 451 452 /* 453 * Greedily allocate a buffer big enough to handle the full 454 * range of basic blocks we'll be examining. If that fails, 455 * try a smaller size. We need to be able to read at least 456 * a log sector, or we're out of luck. 457 */ 458 bufblks = 1 << ffs(nbblks); 459 while (bufblks > log->l_logBBsize) 460 bufblks >>= 1; 461 while (!(bp = xlog_get_bp(log, bufblks))) { 462 bufblks >>= 1; 463 if (bufblks < log->l_sectBBsize) 464 return -ENOMEM; 465 } 466 467 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 468 int bcount; 469 470 bcount = min(bufblks, (start_blk + nbblks - i)); 471 472 error = xlog_bread(log, i, bcount, bp, &buf); 473 if (error) 474 goto out; 475 476 for (j = 0; j < bcount; j++) { 477 cycle = xlog_get_cycle(buf); 478 if (cycle == stop_on_cycle_no) { 479 *new_blk = i+j; 480 goto out; 481 } 482 483 buf += BBSIZE; 484 } 485 } 486 487 *new_blk = -1; 488 489 out: 490 xlog_put_bp(bp); 491 return error; 492 } 493 494 /* 495 * Potentially backup over partial log record write. 496 * 497 * In the typical case, last_blk is the number of the block directly after 498 * a good log record. Therefore, we subtract one to get the block number 499 * of the last block in the given buffer. extra_bblks contains the number 500 * of blocks we would have read on a previous read. This happens when the 501 * last log record is split over the end of the physical log. 502 * 503 * extra_bblks is the number of blocks potentially verified on a previous 504 * call to this routine. 505 */ 506 STATIC int 507 xlog_find_verify_log_record( 508 struct xlog *log, 509 xfs_daddr_t start_blk, 510 xfs_daddr_t *last_blk, 511 int extra_bblks) 512 { 513 xfs_daddr_t i; 514 xfs_buf_t *bp; 515 char *offset = NULL; 516 xlog_rec_header_t *head = NULL; 517 int error = 0; 518 int smallmem = 0; 519 int num_blks = *last_blk - start_blk; 520 int xhdrs; 521 522 ASSERT(start_blk != 0 || *last_blk != start_blk); 523 524 if (!(bp = xlog_get_bp(log, num_blks))) { 525 if (!(bp = xlog_get_bp(log, 1))) 526 return -ENOMEM; 527 smallmem = 1; 528 } else { 529 error = xlog_bread(log, start_blk, num_blks, bp, &offset); 530 if (error) 531 goto out; 532 offset += ((num_blks - 1) << BBSHIFT); 533 } 534 535 for (i = (*last_blk) - 1; i >= 0; i--) { 536 if (i < start_blk) { 537 /* valid log record not found */ 538 xfs_warn(log->l_mp, 539 "Log inconsistent (didn't find previous header)"); 540 ASSERT(0); 541 error = -EIO; 542 goto out; 543 } 544 545 if (smallmem) { 546 error = xlog_bread(log, i, 1, bp, &offset); 547 if (error) 548 goto out; 549 } 550 551 head = (xlog_rec_header_t *)offset; 552 553 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 554 break; 555 556 if (!smallmem) 557 offset -= BBSIZE; 558 } 559 560 /* 561 * We hit the beginning of the physical log & still no header. Return 562 * to caller. If caller can handle a return of -1, then this routine 563 * will be called again for the end of the physical log. 564 */ 565 if (i == -1) { 566 error = 1; 567 goto out; 568 } 569 570 /* 571 * We have the final block of the good log (the first block 572 * of the log record _before_ the head. So we check the uuid. 573 */ 574 if ((error = xlog_header_check_mount(log->l_mp, head))) 575 goto out; 576 577 /* 578 * We may have found a log record header before we expected one. 579 * last_blk will be the 1st block # with a given cycle #. We may end 580 * up reading an entire log record. In this case, we don't want to 581 * reset last_blk. Only when last_blk points in the middle of a log 582 * record do we update last_blk. 583 */ 584 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 585 uint h_size = be32_to_cpu(head->h_size); 586 587 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 588 if (h_size % XLOG_HEADER_CYCLE_SIZE) 589 xhdrs++; 590 } else { 591 xhdrs = 1; 592 } 593 594 if (*last_blk - i + extra_bblks != 595 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 596 *last_blk = i; 597 598 out: 599 xlog_put_bp(bp); 600 return error; 601 } 602 603 /* 604 * Head is defined to be the point of the log where the next log write 605 * could go. This means that incomplete LR writes at the end are 606 * eliminated when calculating the head. We aren't guaranteed that previous 607 * LR have complete transactions. We only know that a cycle number of 608 * current cycle number -1 won't be present in the log if we start writing 609 * from our current block number. 610 * 611 * last_blk contains the block number of the first block with a given 612 * cycle number. 613 * 614 * Return: zero if normal, non-zero if error. 615 */ 616 STATIC int 617 xlog_find_head( 618 struct xlog *log, 619 xfs_daddr_t *return_head_blk) 620 { 621 xfs_buf_t *bp; 622 char *offset; 623 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 624 int num_scan_bblks; 625 uint first_half_cycle, last_half_cycle; 626 uint stop_on_cycle; 627 int error, log_bbnum = log->l_logBBsize; 628 629 /* Is the end of the log device zeroed? */ 630 error = xlog_find_zeroed(log, &first_blk); 631 if (error < 0) { 632 xfs_warn(log->l_mp, "empty log check failed"); 633 return error; 634 } 635 if (error == 1) { 636 *return_head_blk = first_blk; 637 638 /* Is the whole lot zeroed? */ 639 if (!first_blk) { 640 /* Linux XFS shouldn't generate totally zeroed logs - 641 * mkfs etc write a dummy unmount record to a fresh 642 * log so we can store the uuid in there 643 */ 644 xfs_warn(log->l_mp, "totally zeroed log"); 645 } 646 647 return 0; 648 } 649 650 first_blk = 0; /* get cycle # of 1st block */ 651 bp = xlog_get_bp(log, 1); 652 if (!bp) 653 return -ENOMEM; 654 655 error = xlog_bread(log, 0, 1, bp, &offset); 656 if (error) 657 goto bp_err; 658 659 first_half_cycle = xlog_get_cycle(offset); 660 661 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 662 error = xlog_bread(log, last_blk, 1, bp, &offset); 663 if (error) 664 goto bp_err; 665 666 last_half_cycle = xlog_get_cycle(offset); 667 ASSERT(last_half_cycle != 0); 668 669 /* 670 * If the 1st half cycle number is equal to the last half cycle number, 671 * then the entire log is stamped with the same cycle number. In this 672 * case, head_blk can't be set to zero (which makes sense). The below 673 * math doesn't work out properly with head_blk equal to zero. Instead, 674 * we set it to log_bbnum which is an invalid block number, but this 675 * value makes the math correct. If head_blk doesn't changed through 676 * all the tests below, *head_blk is set to zero at the very end rather 677 * than log_bbnum. In a sense, log_bbnum and zero are the same block 678 * in a circular file. 679 */ 680 if (first_half_cycle == last_half_cycle) { 681 /* 682 * In this case we believe that the entire log should have 683 * cycle number last_half_cycle. We need to scan backwards 684 * from the end verifying that there are no holes still 685 * containing last_half_cycle - 1. If we find such a hole, 686 * then the start of that hole will be the new head. The 687 * simple case looks like 688 * x | x ... | x - 1 | x 689 * Another case that fits this picture would be 690 * x | x + 1 | x ... | x 691 * In this case the head really is somewhere at the end of the 692 * log, as one of the latest writes at the beginning was 693 * incomplete. 694 * One more case is 695 * x | x + 1 | x ... | x - 1 | x 696 * This is really the combination of the above two cases, and 697 * the head has to end up at the start of the x-1 hole at the 698 * end of the log. 699 * 700 * In the 256k log case, we will read from the beginning to the 701 * end of the log and search for cycle numbers equal to x-1. 702 * We don't worry about the x+1 blocks that we encounter, 703 * because we know that they cannot be the head since the log 704 * started with x. 705 */ 706 head_blk = log_bbnum; 707 stop_on_cycle = last_half_cycle - 1; 708 } else { 709 /* 710 * In this case we want to find the first block with cycle 711 * number matching last_half_cycle. We expect the log to be 712 * some variation on 713 * x + 1 ... | x ... | x 714 * The first block with cycle number x (last_half_cycle) will 715 * be where the new head belongs. First we do a binary search 716 * for the first occurrence of last_half_cycle. The binary 717 * search may not be totally accurate, so then we scan back 718 * from there looking for occurrences of last_half_cycle before 719 * us. If that backwards scan wraps around the beginning of 720 * the log, then we look for occurrences of last_half_cycle - 1 721 * at the end of the log. The cases we're looking for look 722 * like 723 * v binary search stopped here 724 * x + 1 ... | x | x + 1 | x ... | x 725 * ^ but we want to locate this spot 726 * or 727 * <---------> less than scan distance 728 * x + 1 ... | x ... | x - 1 | x 729 * ^ we want to locate this spot 730 */ 731 stop_on_cycle = last_half_cycle; 732 if ((error = xlog_find_cycle_start(log, bp, first_blk, 733 &head_blk, last_half_cycle))) 734 goto bp_err; 735 } 736 737 /* 738 * Now validate the answer. Scan back some number of maximum possible 739 * blocks and make sure each one has the expected cycle number. The 740 * maximum is determined by the total possible amount of buffering 741 * in the in-core log. The following number can be made tighter if 742 * we actually look at the block size of the filesystem. 743 */ 744 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 745 if (head_blk >= num_scan_bblks) { 746 /* 747 * We are guaranteed that the entire check can be performed 748 * in one buffer. 749 */ 750 start_blk = head_blk - num_scan_bblks; 751 if ((error = xlog_find_verify_cycle(log, 752 start_blk, num_scan_bblks, 753 stop_on_cycle, &new_blk))) 754 goto bp_err; 755 if (new_blk != -1) 756 head_blk = new_blk; 757 } else { /* need to read 2 parts of log */ 758 /* 759 * We are going to scan backwards in the log in two parts. 760 * First we scan the physical end of the log. In this part 761 * of the log, we are looking for blocks with cycle number 762 * last_half_cycle - 1. 763 * If we find one, then we know that the log starts there, as 764 * we've found a hole that didn't get written in going around 765 * the end of the physical log. The simple case for this is 766 * x + 1 ... | x ... | x - 1 | x 767 * <---------> less than scan distance 768 * If all of the blocks at the end of the log have cycle number 769 * last_half_cycle, then we check the blocks at the start of 770 * the log looking for occurrences of last_half_cycle. If we 771 * find one, then our current estimate for the location of the 772 * first occurrence of last_half_cycle is wrong and we move 773 * back to the hole we've found. This case looks like 774 * x + 1 ... | x | x + 1 | x ... 775 * ^ binary search stopped here 776 * Another case we need to handle that only occurs in 256k 777 * logs is 778 * x + 1 ... | x ... | x+1 | x ... 779 * ^ binary search stops here 780 * In a 256k log, the scan at the end of the log will see the 781 * x + 1 blocks. We need to skip past those since that is 782 * certainly not the head of the log. By searching for 783 * last_half_cycle-1 we accomplish that. 784 */ 785 ASSERT(head_blk <= INT_MAX && 786 (xfs_daddr_t) num_scan_bblks >= head_blk); 787 start_blk = log_bbnum - (num_scan_bblks - head_blk); 788 if ((error = xlog_find_verify_cycle(log, start_blk, 789 num_scan_bblks - (int)head_blk, 790 (stop_on_cycle - 1), &new_blk))) 791 goto bp_err; 792 if (new_blk != -1) { 793 head_blk = new_blk; 794 goto validate_head; 795 } 796 797 /* 798 * Scan beginning of log now. The last part of the physical 799 * log is good. This scan needs to verify that it doesn't find 800 * the last_half_cycle. 801 */ 802 start_blk = 0; 803 ASSERT(head_blk <= INT_MAX); 804 if ((error = xlog_find_verify_cycle(log, 805 start_blk, (int)head_blk, 806 stop_on_cycle, &new_blk))) 807 goto bp_err; 808 if (new_blk != -1) 809 head_blk = new_blk; 810 } 811 812 validate_head: 813 /* 814 * Now we need to make sure head_blk is not pointing to a block in 815 * the middle of a log record. 816 */ 817 num_scan_bblks = XLOG_REC_SHIFT(log); 818 if (head_blk >= num_scan_bblks) { 819 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 820 821 /* start ptr at last block ptr before head_blk */ 822 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 823 if (error == 1) 824 error = -EIO; 825 if (error) 826 goto bp_err; 827 } else { 828 start_blk = 0; 829 ASSERT(head_blk <= INT_MAX); 830 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 831 if (error < 0) 832 goto bp_err; 833 if (error == 1) { 834 /* We hit the beginning of the log during our search */ 835 start_blk = log_bbnum - (num_scan_bblks - head_blk); 836 new_blk = log_bbnum; 837 ASSERT(start_blk <= INT_MAX && 838 (xfs_daddr_t) log_bbnum-start_blk >= 0); 839 ASSERT(head_blk <= INT_MAX); 840 error = xlog_find_verify_log_record(log, start_blk, 841 &new_blk, (int)head_blk); 842 if (error == 1) 843 error = -EIO; 844 if (error) 845 goto bp_err; 846 if (new_blk != log_bbnum) 847 head_blk = new_blk; 848 } else if (error) 849 goto bp_err; 850 } 851 852 xlog_put_bp(bp); 853 if (head_blk == log_bbnum) 854 *return_head_blk = 0; 855 else 856 *return_head_blk = head_blk; 857 /* 858 * When returning here, we have a good block number. Bad block 859 * means that during a previous crash, we didn't have a clean break 860 * from cycle number N to cycle number N-1. In this case, we need 861 * to find the first block with cycle number N-1. 862 */ 863 return 0; 864 865 bp_err: 866 xlog_put_bp(bp); 867 868 if (error) 869 xfs_warn(log->l_mp, "failed to find log head"); 870 return error; 871 } 872 873 /* 874 * Seek backwards in the log for log record headers. 875 * 876 * Given a starting log block, walk backwards until we find the provided number 877 * of records or hit the provided tail block. The return value is the number of 878 * records encountered or a negative error code. The log block and buffer 879 * pointer of the last record seen are returned in rblk and rhead respectively. 880 */ 881 STATIC int 882 xlog_rseek_logrec_hdr( 883 struct xlog *log, 884 xfs_daddr_t head_blk, 885 xfs_daddr_t tail_blk, 886 int count, 887 struct xfs_buf *bp, 888 xfs_daddr_t *rblk, 889 struct xlog_rec_header **rhead, 890 bool *wrapped) 891 { 892 int i; 893 int error; 894 int found = 0; 895 char *offset = NULL; 896 xfs_daddr_t end_blk; 897 898 *wrapped = false; 899 900 /* 901 * Walk backwards from the head block until we hit the tail or the first 902 * block in the log. 903 */ 904 end_blk = head_blk > tail_blk ? tail_blk : 0; 905 for (i = (int) head_blk - 1; i >= end_blk; i--) { 906 error = xlog_bread(log, i, 1, bp, &offset); 907 if (error) 908 goto out_error; 909 910 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 911 *rblk = i; 912 *rhead = (struct xlog_rec_header *) offset; 913 if (++found == count) 914 break; 915 } 916 } 917 918 /* 919 * If we haven't hit the tail block or the log record header count, 920 * start looking again from the end of the physical log. Note that 921 * callers can pass head == tail if the tail is not yet known. 922 */ 923 if (tail_blk >= head_blk && found != count) { 924 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) { 925 error = xlog_bread(log, i, 1, bp, &offset); 926 if (error) 927 goto out_error; 928 929 if (*(__be32 *)offset == 930 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 931 *wrapped = true; 932 *rblk = i; 933 *rhead = (struct xlog_rec_header *) offset; 934 if (++found == count) 935 break; 936 } 937 } 938 } 939 940 return found; 941 942 out_error: 943 return error; 944 } 945 946 /* 947 * Seek forward in the log for log record headers. 948 * 949 * Given head and tail blocks, walk forward from the tail block until we find 950 * the provided number of records or hit the head block. The return value is the 951 * number of records encountered or a negative error code. The log block and 952 * buffer pointer of the last record seen are returned in rblk and rhead 953 * respectively. 954 */ 955 STATIC int 956 xlog_seek_logrec_hdr( 957 struct xlog *log, 958 xfs_daddr_t head_blk, 959 xfs_daddr_t tail_blk, 960 int count, 961 struct xfs_buf *bp, 962 xfs_daddr_t *rblk, 963 struct xlog_rec_header **rhead, 964 bool *wrapped) 965 { 966 int i; 967 int error; 968 int found = 0; 969 char *offset = NULL; 970 xfs_daddr_t end_blk; 971 972 *wrapped = false; 973 974 /* 975 * Walk forward from the tail block until we hit the head or the last 976 * block in the log. 977 */ 978 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1; 979 for (i = (int) tail_blk; i <= end_blk; i++) { 980 error = xlog_bread(log, i, 1, bp, &offset); 981 if (error) 982 goto out_error; 983 984 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 985 *rblk = i; 986 *rhead = (struct xlog_rec_header *) offset; 987 if (++found == count) 988 break; 989 } 990 } 991 992 /* 993 * If we haven't hit the head block or the log record header count, 994 * start looking again from the start of the physical log. 995 */ 996 if (tail_blk > head_blk && found != count) { 997 for (i = 0; i < (int) head_blk; i++) { 998 error = xlog_bread(log, i, 1, bp, &offset); 999 if (error) 1000 goto out_error; 1001 1002 if (*(__be32 *)offset == 1003 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 1004 *wrapped = true; 1005 *rblk = i; 1006 *rhead = (struct xlog_rec_header *) offset; 1007 if (++found == count) 1008 break; 1009 } 1010 } 1011 } 1012 1013 return found; 1014 1015 out_error: 1016 return error; 1017 } 1018 1019 /* 1020 * Check the log tail for torn writes. This is required when torn writes are 1021 * detected at the head and the head had to be walked back to a previous record. 1022 * The tail of the previous record must now be verified to ensure the torn 1023 * writes didn't corrupt the previous tail. 1024 * 1025 * Return an error if CRC verification fails as recovery cannot proceed. 1026 */ 1027 STATIC int 1028 xlog_verify_tail( 1029 struct xlog *log, 1030 xfs_daddr_t head_blk, 1031 xfs_daddr_t tail_blk) 1032 { 1033 struct xlog_rec_header *thead; 1034 struct xfs_buf *bp; 1035 xfs_daddr_t first_bad; 1036 int count; 1037 int error = 0; 1038 bool wrapped; 1039 xfs_daddr_t tmp_head; 1040 1041 bp = xlog_get_bp(log, 1); 1042 if (!bp) 1043 return -ENOMEM; 1044 1045 /* 1046 * Seek XLOG_MAX_ICLOGS + 1 records past the current tail record to get 1047 * a temporary head block that points after the last possible 1048 * concurrently written record of the tail. 1049 */ 1050 count = xlog_seek_logrec_hdr(log, head_blk, tail_blk, 1051 XLOG_MAX_ICLOGS + 1, bp, &tmp_head, &thead, 1052 &wrapped); 1053 if (count < 0) { 1054 error = count; 1055 goto out; 1056 } 1057 1058 /* 1059 * If the call above didn't find XLOG_MAX_ICLOGS + 1 records, we ran 1060 * into the actual log head. tmp_head points to the start of the record 1061 * so update it to the actual head block. 1062 */ 1063 if (count < XLOG_MAX_ICLOGS + 1) 1064 tmp_head = head_blk; 1065 1066 /* 1067 * We now have a tail and temporary head block that covers at least 1068 * XLOG_MAX_ICLOGS records from the tail. We need to verify that these 1069 * records were completely written. Run a CRC verification pass from 1070 * tail to head and return the result. 1071 */ 1072 error = xlog_do_recovery_pass(log, tmp_head, tail_blk, 1073 XLOG_RECOVER_CRCPASS, &first_bad); 1074 1075 out: 1076 xlog_put_bp(bp); 1077 return error; 1078 } 1079 1080 /* 1081 * Detect and trim torn writes from the head of the log. 1082 * 1083 * Storage without sector atomicity guarantees can result in torn writes in the 1084 * log in the event of a crash. Our only means to detect this scenario is via 1085 * CRC verification. While we can't always be certain that CRC verification 1086 * failure is due to a torn write vs. an unrelated corruption, we do know that 1087 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at 1088 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of 1089 * the log and treat failures in this range as torn writes as a matter of 1090 * policy. In the event of CRC failure, the head is walked back to the last good 1091 * record in the log and the tail is updated from that record and verified. 1092 */ 1093 STATIC int 1094 xlog_verify_head( 1095 struct xlog *log, 1096 xfs_daddr_t *head_blk, /* in/out: unverified head */ 1097 xfs_daddr_t *tail_blk, /* out: tail block */ 1098 struct xfs_buf *bp, 1099 xfs_daddr_t *rhead_blk, /* start blk of last record */ 1100 struct xlog_rec_header **rhead, /* ptr to last record */ 1101 bool *wrapped) /* last rec. wraps phys. log */ 1102 { 1103 struct xlog_rec_header *tmp_rhead; 1104 struct xfs_buf *tmp_bp; 1105 xfs_daddr_t first_bad; 1106 xfs_daddr_t tmp_rhead_blk; 1107 int found; 1108 int error; 1109 bool tmp_wrapped; 1110 1111 /* 1112 * Search backwards through the log looking for the log record header 1113 * block. This wraps all the way back around to the head so something is 1114 * seriously wrong if we can't find it. 1115 */ 1116 found = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp, rhead_blk, 1117 rhead, wrapped); 1118 if (found < 0) 1119 return found; 1120 if (!found) { 1121 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); 1122 return -EIO; 1123 } 1124 1125 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn)); 1126 1127 /* 1128 * Now that we have a tail block, check the head of the log for torn 1129 * writes. Search again until we hit the tail or the maximum number of 1130 * log record I/Os that could have been in flight at one time. Use a 1131 * temporary buffer so we don't trash the rhead/bp pointer from the 1132 * call above. 1133 */ 1134 tmp_bp = xlog_get_bp(log, 1); 1135 if (!tmp_bp) 1136 return -ENOMEM; 1137 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk, 1138 XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk, 1139 &tmp_rhead, &tmp_wrapped); 1140 xlog_put_bp(tmp_bp); 1141 if (error < 0) 1142 return error; 1143 1144 /* 1145 * Now run a CRC verification pass over the records starting at the 1146 * block found above to the current head. If a CRC failure occurs, the 1147 * log block of the first bad record is saved in first_bad. 1148 */ 1149 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk, 1150 XLOG_RECOVER_CRCPASS, &first_bad); 1151 if (error == -EFSBADCRC) { 1152 /* 1153 * We've hit a potential torn write. Reset the error and warn 1154 * about it. 1155 */ 1156 error = 0; 1157 xfs_warn(log->l_mp, 1158 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.", 1159 first_bad, *head_blk); 1160 1161 /* 1162 * Get the header block and buffer pointer for the last good 1163 * record before the bad record. 1164 * 1165 * Note that xlog_find_tail() clears the blocks at the new head 1166 * (i.e., the records with invalid CRC) if the cycle number 1167 * matches the the current cycle. 1168 */ 1169 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp, 1170 rhead_blk, rhead, wrapped); 1171 if (found < 0) 1172 return found; 1173 if (found == 0) /* XXX: right thing to do here? */ 1174 return -EIO; 1175 1176 /* 1177 * Reset the head block to the starting block of the first bad 1178 * log record and set the tail block based on the last good 1179 * record. 1180 * 1181 * Bail out if the updated head/tail match as this indicates 1182 * possible corruption outside of the acceptable 1183 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair... 1184 */ 1185 *head_blk = first_bad; 1186 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn)); 1187 if (*head_blk == *tail_blk) { 1188 ASSERT(0); 1189 return 0; 1190 } 1191 1192 /* 1193 * Now verify the tail based on the updated head. This is 1194 * required because the torn writes trimmed from the head could 1195 * have been written over the tail of a previous record. Return 1196 * any errors since recovery cannot proceed if the tail is 1197 * corrupt. 1198 * 1199 * XXX: This leaves a gap in truly robust protection from torn 1200 * writes in the log. If the head is behind the tail, the tail 1201 * pushes forward to create some space and then a crash occurs 1202 * causing the writes into the previous record's tail region to 1203 * tear, log recovery isn't able to recover. 1204 * 1205 * How likely is this to occur? If possible, can we do something 1206 * more intelligent here? Is it safe to push the tail forward if 1207 * we can determine that the tail is within the range of the 1208 * torn write (e.g., the kernel can only overwrite the tail if 1209 * it has actually been pushed forward)? Alternatively, could we 1210 * somehow prevent this condition at runtime? 1211 */ 1212 error = xlog_verify_tail(log, *head_blk, *tail_blk); 1213 } 1214 1215 return error; 1216 } 1217 1218 /* 1219 * Find the sync block number or the tail of the log. 1220 * 1221 * This will be the block number of the last record to have its 1222 * associated buffers synced to disk. Every log record header has 1223 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 1224 * to get a sync block number. The only concern is to figure out which 1225 * log record header to believe. 1226 * 1227 * The following algorithm uses the log record header with the largest 1228 * lsn. The entire log record does not need to be valid. We only care 1229 * that the header is valid. 1230 * 1231 * We could speed up search by using current head_blk buffer, but it is not 1232 * available. 1233 */ 1234 STATIC int 1235 xlog_find_tail( 1236 struct xlog *log, 1237 xfs_daddr_t *head_blk, 1238 xfs_daddr_t *tail_blk) 1239 { 1240 xlog_rec_header_t *rhead; 1241 xlog_op_header_t *op_head; 1242 char *offset = NULL; 1243 xfs_buf_t *bp; 1244 int error; 1245 xfs_daddr_t umount_data_blk; 1246 xfs_daddr_t after_umount_blk; 1247 xfs_daddr_t rhead_blk; 1248 xfs_lsn_t tail_lsn; 1249 int hblks; 1250 bool wrapped = false; 1251 1252 /* 1253 * Find previous log record 1254 */ 1255 if ((error = xlog_find_head(log, head_blk))) 1256 return error; 1257 1258 bp = xlog_get_bp(log, 1); 1259 if (!bp) 1260 return -ENOMEM; 1261 if (*head_blk == 0) { /* special case */ 1262 error = xlog_bread(log, 0, 1, bp, &offset); 1263 if (error) 1264 goto done; 1265 1266 if (xlog_get_cycle(offset) == 0) { 1267 *tail_blk = 0; 1268 /* leave all other log inited values alone */ 1269 goto done; 1270 } 1271 } 1272 1273 /* 1274 * Trim the head block back to skip over torn records. We can have 1275 * multiple log I/Os in flight at any time, so we assume CRC failures 1276 * back through the previous several records are torn writes and skip 1277 * them. 1278 */ 1279 ASSERT(*head_blk < INT_MAX); 1280 error = xlog_verify_head(log, head_blk, tail_blk, bp, &rhead_blk, 1281 &rhead, &wrapped); 1282 if (error) 1283 goto done; 1284 1285 /* 1286 * Reset log values according to the state of the log when we 1287 * crashed. In the case where head_blk == 0, we bump curr_cycle 1288 * one because the next write starts a new cycle rather than 1289 * continuing the cycle of the last good log record. At this 1290 * point we have guaranteed that all partial log records have been 1291 * accounted for. Therefore, we know that the last good log record 1292 * written was complete and ended exactly on the end boundary 1293 * of the physical log. 1294 */ 1295 log->l_prev_block = rhead_blk; 1296 log->l_curr_block = (int)*head_blk; 1297 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 1298 if (wrapped) 1299 log->l_curr_cycle++; 1300 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); 1301 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); 1302 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, 1303 BBTOB(log->l_curr_block)); 1304 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, 1305 BBTOB(log->l_curr_block)); 1306 1307 /* 1308 * Look for unmount record. If we find it, then we know there 1309 * was a clean unmount. Since 'i' could be the last block in 1310 * the physical log, we convert to a log block before comparing 1311 * to the head_blk. 1312 * 1313 * Save the current tail lsn to use to pass to 1314 * xlog_clear_stale_blocks() below. We won't want to clear the 1315 * unmount record if there is one, so we pass the lsn of the 1316 * unmount record rather than the block after it. 1317 */ 1318 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1319 int h_size = be32_to_cpu(rhead->h_size); 1320 int h_version = be32_to_cpu(rhead->h_version); 1321 1322 if ((h_version & XLOG_VERSION_2) && 1323 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 1324 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 1325 if (h_size % XLOG_HEADER_CYCLE_SIZE) 1326 hblks++; 1327 } else { 1328 hblks = 1; 1329 } 1330 } else { 1331 hblks = 1; 1332 } 1333 after_umount_blk = rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)); 1334 after_umount_blk = do_mod(after_umount_blk, log->l_logBBsize); 1335 tail_lsn = atomic64_read(&log->l_tail_lsn); 1336 if (*head_blk == after_umount_blk && 1337 be32_to_cpu(rhead->h_num_logops) == 1) { 1338 umount_data_blk = rhead_blk + hblks; 1339 umount_data_blk = do_mod(umount_data_blk, log->l_logBBsize); 1340 error = xlog_bread(log, umount_data_blk, 1, bp, &offset); 1341 if (error) 1342 goto done; 1343 1344 op_head = (xlog_op_header_t *)offset; 1345 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 1346 /* 1347 * Set tail and last sync so that newly written 1348 * log records will point recovery to after the 1349 * current unmount record. 1350 */ 1351 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1352 log->l_curr_cycle, after_umount_blk); 1353 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1354 log->l_curr_cycle, after_umount_blk); 1355 *tail_blk = after_umount_blk; 1356 1357 /* 1358 * Note that the unmount was clean. If the unmount 1359 * was not clean, we need to know this to rebuild the 1360 * superblock counters from the perag headers if we 1361 * have a filesystem using non-persistent counters. 1362 */ 1363 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 1364 } 1365 } 1366 1367 /* 1368 * Make sure that there are no blocks in front of the head 1369 * with the same cycle number as the head. This can happen 1370 * because we allow multiple outstanding log writes concurrently, 1371 * and the later writes might make it out before earlier ones. 1372 * 1373 * We use the lsn from before modifying it so that we'll never 1374 * overwrite the unmount record after a clean unmount. 1375 * 1376 * Do this only if we are going to recover the filesystem 1377 * 1378 * NOTE: This used to say "if (!readonly)" 1379 * However on Linux, we can & do recover a read-only filesystem. 1380 * We only skip recovery if NORECOVERY is specified on mount, 1381 * in which case we would not be here. 1382 * 1383 * But... if the -device- itself is readonly, just skip this. 1384 * We can't recover this device anyway, so it won't matter. 1385 */ 1386 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) 1387 error = xlog_clear_stale_blocks(log, tail_lsn); 1388 1389 done: 1390 xlog_put_bp(bp); 1391 1392 if (error) 1393 xfs_warn(log->l_mp, "failed to locate log tail"); 1394 return error; 1395 } 1396 1397 /* 1398 * Is the log zeroed at all? 1399 * 1400 * The last binary search should be changed to perform an X block read 1401 * once X becomes small enough. You can then search linearly through 1402 * the X blocks. This will cut down on the number of reads we need to do. 1403 * 1404 * If the log is partially zeroed, this routine will pass back the blkno 1405 * of the first block with cycle number 0. It won't have a complete LR 1406 * preceding it. 1407 * 1408 * Return: 1409 * 0 => the log is completely written to 1410 * 1 => use *blk_no as the first block of the log 1411 * <0 => error has occurred 1412 */ 1413 STATIC int 1414 xlog_find_zeroed( 1415 struct xlog *log, 1416 xfs_daddr_t *blk_no) 1417 { 1418 xfs_buf_t *bp; 1419 char *offset; 1420 uint first_cycle, last_cycle; 1421 xfs_daddr_t new_blk, last_blk, start_blk; 1422 xfs_daddr_t num_scan_bblks; 1423 int error, log_bbnum = log->l_logBBsize; 1424 1425 *blk_no = 0; 1426 1427 /* check totally zeroed log */ 1428 bp = xlog_get_bp(log, 1); 1429 if (!bp) 1430 return -ENOMEM; 1431 error = xlog_bread(log, 0, 1, bp, &offset); 1432 if (error) 1433 goto bp_err; 1434 1435 first_cycle = xlog_get_cycle(offset); 1436 if (first_cycle == 0) { /* completely zeroed log */ 1437 *blk_no = 0; 1438 xlog_put_bp(bp); 1439 return 1; 1440 } 1441 1442 /* check partially zeroed log */ 1443 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset); 1444 if (error) 1445 goto bp_err; 1446 1447 last_cycle = xlog_get_cycle(offset); 1448 if (last_cycle != 0) { /* log completely written to */ 1449 xlog_put_bp(bp); 1450 return 0; 1451 } else if (first_cycle != 1) { 1452 /* 1453 * If the cycle of the last block is zero, the cycle of 1454 * the first block must be 1. If it's not, maybe we're 1455 * not looking at a log... Bail out. 1456 */ 1457 xfs_warn(log->l_mp, 1458 "Log inconsistent or not a log (last==0, first!=1)"); 1459 error = -EINVAL; 1460 goto bp_err; 1461 } 1462 1463 /* we have a partially zeroed log */ 1464 last_blk = log_bbnum-1; 1465 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1466 goto bp_err; 1467 1468 /* 1469 * Validate the answer. Because there is no way to guarantee that 1470 * the entire log is made up of log records which are the same size, 1471 * we scan over the defined maximum blocks. At this point, the maximum 1472 * is not chosen to mean anything special. XXXmiken 1473 */ 1474 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1475 ASSERT(num_scan_bblks <= INT_MAX); 1476 1477 if (last_blk < num_scan_bblks) 1478 num_scan_bblks = last_blk; 1479 start_blk = last_blk - num_scan_bblks; 1480 1481 /* 1482 * We search for any instances of cycle number 0 that occur before 1483 * our current estimate of the head. What we're trying to detect is 1484 * 1 ... | 0 | 1 | 0... 1485 * ^ binary search ends here 1486 */ 1487 if ((error = xlog_find_verify_cycle(log, start_blk, 1488 (int)num_scan_bblks, 0, &new_blk))) 1489 goto bp_err; 1490 if (new_blk != -1) 1491 last_blk = new_blk; 1492 1493 /* 1494 * Potentially backup over partial log record write. We don't need 1495 * to search the end of the log because we know it is zero. 1496 */ 1497 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0); 1498 if (error == 1) 1499 error = -EIO; 1500 if (error) 1501 goto bp_err; 1502 1503 *blk_no = last_blk; 1504 bp_err: 1505 xlog_put_bp(bp); 1506 if (error) 1507 return error; 1508 return 1; 1509 } 1510 1511 /* 1512 * These are simple subroutines used by xlog_clear_stale_blocks() below 1513 * to initialize a buffer full of empty log record headers and write 1514 * them into the log. 1515 */ 1516 STATIC void 1517 xlog_add_record( 1518 struct xlog *log, 1519 char *buf, 1520 int cycle, 1521 int block, 1522 int tail_cycle, 1523 int tail_block) 1524 { 1525 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1526 1527 memset(buf, 0, BBSIZE); 1528 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1529 recp->h_cycle = cpu_to_be32(cycle); 1530 recp->h_version = cpu_to_be32( 1531 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1532 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1533 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1534 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1535 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1536 } 1537 1538 STATIC int 1539 xlog_write_log_records( 1540 struct xlog *log, 1541 int cycle, 1542 int start_block, 1543 int blocks, 1544 int tail_cycle, 1545 int tail_block) 1546 { 1547 char *offset; 1548 xfs_buf_t *bp; 1549 int balign, ealign; 1550 int sectbb = log->l_sectBBsize; 1551 int end_block = start_block + blocks; 1552 int bufblks; 1553 int error = 0; 1554 int i, j = 0; 1555 1556 /* 1557 * Greedily allocate a buffer big enough to handle the full 1558 * range of basic blocks to be written. If that fails, try 1559 * a smaller size. We need to be able to write at least a 1560 * log sector, or we're out of luck. 1561 */ 1562 bufblks = 1 << ffs(blocks); 1563 while (bufblks > log->l_logBBsize) 1564 bufblks >>= 1; 1565 while (!(bp = xlog_get_bp(log, bufblks))) { 1566 bufblks >>= 1; 1567 if (bufblks < sectbb) 1568 return -ENOMEM; 1569 } 1570 1571 /* We may need to do a read at the start to fill in part of 1572 * the buffer in the starting sector not covered by the first 1573 * write below. 1574 */ 1575 balign = round_down(start_block, sectbb); 1576 if (balign != start_block) { 1577 error = xlog_bread_noalign(log, start_block, 1, bp); 1578 if (error) 1579 goto out_put_bp; 1580 1581 j = start_block - balign; 1582 } 1583 1584 for (i = start_block; i < end_block; i += bufblks) { 1585 int bcount, endcount; 1586 1587 bcount = min(bufblks, end_block - start_block); 1588 endcount = bcount - j; 1589 1590 /* We may need to do a read at the end to fill in part of 1591 * the buffer in the final sector not covered by the write. 1592 * If this is the same sector as the above read, skip it. 1593 */ 1594 ealign = round_down(end_block, sectbb); 1595 if (j == 0 && (start_block + endcount > ealign)) { 1596 offset = bp->b_addr + BBTOB(ealign - start_block); 1597 error = xlog_bread_offset(log, ealign, sectbb, 1598 bp, offset); 1599 if (error) 1600 break; 1601 1602 } 1603 1604 offset = xlog_align(log, start_block, endcount, bp); 1605 for (; j < endcount; j++) { 1606 xlog_add_record(log, offset, cycle, i+j, 1607 tail_cycle, tail_block); 1608 offset += BBSIZE; 1609 } 1610 error = xlog_bwrite(log, start_block, endcount, bp); 1611 if (error) 1612 break; 1613 start_block += endcount; 1614 j = 0; 1615 } 1616 1617 out_put_bp: 1618 xlog_put_bp(bp); 1619 return error; 1620 } 1621 1622 /* 1623 * This routine is called to blow away any incomplete log writes out 1624 * in front of the log head. We do this so that we won't become confused 1625 * if we come up, write only a little bit more, and then crash again. 1626 * If we leave the partial log records out there, this situation could 1627 * cause us to think those partial writes are valid blocks since they 1628 * have the current cycle number. We get rid of them by overwriting them 1629 * with empty log records with the old cycle number rather than the 1630 * current one. 1631 * 1632 * The tail lsn is passed in rather than taken from 1633 * the log so that we will not write over the unmount record after a 1634 * clean unmount in a 512 block log. Doing so would leave the log without 1635 * any valid log records in it until a new one was written. If we crashed 1636 * during that time we would not be able to recover. 1637 */ 1638 STATIC int 1639 xlog_clear_stale_blocks( 1640 struct xlog *log, 1641 xfs_lsn_t tail_lsn) 1642 { 1643 int tail_cycle, head_cycle; 1644 int tail_block, head_block; 1645 int tail_distance, max_distance; 1646 int distance; 1647 int error; 1648 1649 tail_cycle = CYCLE_LSN(tail_lsn); 1650 tail_block = BLOCK_LSN(tail_lsn); 1651 head_cycle = log->l_curr_cycle; 1652 head_block = log->l_curr_block; 1653 1654 /* 1655 * Figure out the distance between the new head of the log 1656 * and the tail. We want to write over any blocks beyond the 1657 * head that we may have written just before the crash, but 1658 * we don't want to overwrite the tail of the log. 1659 */ 1660 if (head_cycle == tail_cycle) { 1661 /* 1662 * The tail is behind the head in the physical log, 1663 * so the distance from the head to the tail is the 1664 * distance from the head to the end of the log plus 1665 * the distance from the beginning of the log to the 1666 * tail. 1667 */ 1668 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1669 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1670 XFS_ERRLEVEL_LOW, log->l_mp); 1671 return -EFSCORRUPTED; 1672 } 1673 tail_distance = tail_block + (log->l_logBBsize - head_block); 1674 } else { 1675 /* 1676 * The head is behind the tail in the physical log, 1677 * so the distance from the head to the tail is just 1678 * the tail block minus the head block. 1679 */ 1680 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1681 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1682 XFS_ERRLEVEL_LOW, log->l_mp); 1683 return -EFSCORRUPTED; 1684 } 1685 tail_distance = tail_block - head_block; 1686 } 1687 1688 /* 1689 * If the head is right up against the tail, we can't clear 1690 * anything. 1691 */ 1692 if (tail_distance <= 0) { 1693 ASSERT(tail_distance == 0); 1694 return 0; 1695 } 1696 1697 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1698 /* 1699 * Take the smaller of the maximum amount of outstanding I/O 1700 * we could have and the distance to the tail to clear out. 1701 * We take the smaller so that we don't overwrite the tail and 1702 * we don't waste all day writing from the head to the tail 1703 * for no reason. 1704 */ 1705 max_distance = MIN(max_distance, tail_distance); 1706 1707 if ((head_block + max_distance) <= log->l_logBBsize) { 1708 /* 1709 * We can stomp all the blocks we need to without 1710 * wrapping around the end of the log. Just do it 1711 * in a single write. Use the cycle number of the 1712 * current cycle minus one so that the log will look like: 1713 * n ... | n - 1 ... 1714 */ 1715 error = xlog_write_log_records(log, (head_cycle - 1), 1716 head_block, max_distance, tail_cycle, 1717 tail_block); 1718 if (error) 1719 return error; 1720 } else { 1721 /* 1722 * We need to wrap around the end of the physical log in 1723 * order to clear all the blocks. Do it in two separate 1724 * I/Os. The first write should be from the head to the 1725 * end of the physical log, and it should use the current 1726 * cycle number minus one just like above. 1727 */ 1728 distance = log->l_logBBsize - head_block; 1729 error = xlog_write_log_records(log, (head_cycle - 1), 1730 head_block, distance, tail_cycle, 1731 tail_block); 1732 1733 if (error) 1734 return error; 1735 1736 /* 1737 * Now write the blocks at the start of the physical log. 1738 * This writes the remainder of the blocks we want to clear. 1739 * It uses the current cycle number since we're now on the 1740 * same cycle as the head so that we get: 1741 * n ... n ... | n - 1 ... 1742 * ^^^^^ blocks we're writing 1743 */ 1744 distance = max_distance - (log->l_logBBsize - head_block); 1745 error = xlog_write_log_records(log, head_cycle, 0, distance, 1746 tail_cycle, tail_block); 1747 if (error) 1748 return error; 1749 } 1750 1751 return 0; 1752 } 1753 1754 /****************************************************************************** 1755 * 1756 * Log recover routines 1757 * 1758 ****************************************************************************** 1759 */ 1760 1761 /* 1762 * Sort the log items in the transaction. 1763 * 1764 * The ordering constraints are defined by the inode allocation and unlink 1765 * behaviour. The rules are: 1766 * 1767 * 1. Every item is only logged once in a given transaction. Hence it 1768 * represents the last logged state of the item. Hence ordering is 1769 * dependent on the order in which operations need to be performed so 1770 * required initial conditions are always met. 1771 * 1772 * 2. Cancelled buffers are recorded in pass 1 in a separate table and 1773 * there's nothing to replay from them so we can simply cull them 1774 * from the transaction. However, we can't do that until after we've 1775 * replayed all the other items because they may be dependent on the 1776 * cancelled buffer and replaying the cancelled buffer can remove it 1777 * form the cancelled buffer table. Hence they have tobe done last. 1778 * 1779 * 3. Inode allocation buffers must be replayed before inode items that 1780 * read the buffer and replay changes into it. For filesystems using the 1781 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get 1782 * treated the same as inode allocation buffers as they create and 1783 * initialise the buffers directly. 1784 * 1785 * 4. Inode unlink buffers must be replayed after inode items are replayed. 1786 * This ensures that inodes are completely flushed to the inode buffer 1787 * in a "free" state before we remove the unlinked inode list pointer. 1788 * 1789 * Hence the ordering needs to be inode allocation buffers first, inode items 1790 * second, inode unlink buffers third and cancelled buffers last. 1791 * 1792 * But there's a problem with that - we can't tell an inode allocation buffer 1793 * apart from a regular buffer, so we can't separate them. We can, however, 1794 * tell an inode unlink buffer from the others, and so we can separate them out 1795 * from all the other buffers and move them to last. 1796 * 1797 * Hence, 4 lists, in order from head to tail: 1798 * - buffer_list for all buffers except cancelled/inode unlink buffers 1799 * - item_list for all non-buffer items 1800 * - inode_buffer_list for inode unlink buffers 1801 * - cancel_list for the cancelled buffers 1802 * 1803 * Note that we add objects to the tail of the lists so that first-to-last 1804 * ordering is preserved within the lists. Adding objects to the head of the 1805 * list means when we traverse from the head we walk them in last-to-first 1806 * order. For cancelled buffers and inode unlink buffers this doesn't matter, 1807 * but for all other items there may be specific ordering that we need to 1808 * preserve. 1809 */ 1810 STATIC int 1811 xlog_recover_reorder_trans( 1812 struct xlog *log, 1813 struct xlog_recover *trans, 1814 int pass) 1815 { 1816 xlog_recover_item_t *item, *n; 1817 int error = 0; 1818 LIST_HEAD(sort_list); 1819 LIST_HEAD(cancel_list); 1820 LIST_HEAD(buffer_list); 1821 LIST_HEAD(inode_buffer_list); 1822 LIST_HEAD(inode_list); 1823 1824 list_splice_init(&trans->r_itemq, &sort_list); 1825 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1826 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1827 1828 switch (ITEM_TYPE(item)) { 1829 case XFS_LI_ICREATE: 1830 list_move_tail(&item->ri_list, &buffer_list); 1831 break; 1832 case XFS_LI_BUF: 1833 if (buf_f->blf_flags & XFS_BLF_CANCEL) { 1834 trace_xfs_log_recover_item_reorder_head(log, 1835 trans, item, pass); 1836 list_move(&item->ri_list, &cancel_list); 1837 break; 1838 } 1839 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 1840 list_move(&item->ri_list, &inode_buffer_list); 1841 break; 1842 } 1843 list_move_tail(&item->ri_list, &buffer_list); 1844 break; 1845 case XFS_LI_INODE: 1846 case XFS_LI_DQUOT: 1847 case XFS_LI_QUOTAOFF: 1848 case XFS_LI_EFD: 1849 case XFS_LI_EFI: 1850 trace_xfs_log_recover_item_reorder_tail(log, 1851 trans, item, pass); 1852 list_move_tail(&item->ri_list, &inode_list); 1853 break; 1854 default: 1855 xfs_warn(log->l_mp, 1856 "%s: unrecognized type of log operation", 1857 __func__); 1858 ASSERT(0); 1859 /* 1860 * return the remaining items back to the transaction 1861 * item list so they can be freed in caller. 1862 */ 1863 if (!list_empty(&sort_list)) 1864 list_splice_init(&sort_list, &trans->r_itemq); 1865 error = -EIO; 1866 goto out; 1867 } 1868 } 1869 out: 1870 ASSERT(list_empty(&sort_list)); 1871 if (!list_empty(&buffer_list)) 1872 list_splice(&buffer_list, &trans->r_itemq); 1873 if (!list_empty(&inode_list)) 1874 list_splice_tail(&inode_list, &trans->r_itemq); 1875 if (!list_empty(&inode_buffer_list)) 1876 list_splice_tail(&inode_buffer_list, &trans->r_itemq); 1877 if (!list_empty(&cancel_list)) 1878 list_splice_tail(&cancel_list, &trans->r_itemq); 1879 return error; 1880 } 1881 1882 /* 1883 * Build up the table of buf cancel records so that we don't replay 1884 * cancelled data in the second pass. For buffer records that are 1885 * not cancel records, there is nothing to do here so we just return. 1886 * 1887 * If we get a cancel record which is already in the table, this indicates 1888 * that the buffer was cancelled multiple times. In order to ensure 1889 * that during pass 2 we keep the record in the table until we reach its 1890 * last occurrence in the log, we keep a reference count in the cancel 1891 * record in the table to tell us how many times we expect to see this 1892 * record during the second pass. 1893 */ 1894 STATIC int 1895 xlog_recover_buffer_pass1( 1896 struct xlog *log, 1897 struct xlog_recover_item *item) 1898 { 1899 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1900 struct list_head *bucket; 1901 struct xfs_buf_cancel *bcp; 1902 1903 /* 1904 * If this isn't a cancel buffer item, then just return. 1905 */ 1906 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 1907 trace_xfs_log_recover_buf_not_cancel(log, buf_f); 1908 return 0; 1909 } 1910 1911 /* 1912 * Insert an xfs_buf_cancel record into the hash table of them. 1913 * If there is already an identical record, bump its reference count. 1914 */ 1915 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno); 1916 list_for_each_entry(bcp, bucket, bc_list) { 1917 if (bcp->bc_blkno == buf_f->blf_blkno && 1918 bcp->bc_len == buf_f->blf_len) { 1919 bcp->bc_refcount++; 1920 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f); 1921 return 0; 1922 } 1923 } 1924 1925 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP); 1926 bcp->bc_blkno = buf_f->blf_blkno; 1927 bcp->bc_len = buf_f->blf_len; 1928 bcp->bc_refcount = 1; 1929 list_add_tail(&bcp->bc_list, bucket); 1930 1931 trace_xfs_log_recover_buf_cancel_add(log, buf_f); 1932 return 0; 1933 } 1934 1935 /* 1936 * Check to see whether the buffer being recovered has a corresponding 1937 * entry in the buffer cancel record table. If it is, return the cancel 1938 * buffer structure to the caller. 1939 */ 1940 STATIC struct xfs_buf_cancel * 1941 xlog_peek_buffer_cancelled( 1942 struct xlog *log, 1943 xfs_daddr_t blkno, 1944 uint len, 1945 ushort flags) 1946 { 1947 struct list_head *bucket; 1948 struct xfs_buf_cancel *bcp; 1949 1950 if (!log->l_buf_cancel_table) { 1951 /* empty table means no cancelled buffers in the log */ 1952 ASSERT(!(flags & XFS_BLF_CANCEL)); 1953 return NULL; 1954 } 1955 1956 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); 1957 list_for_each_entry(bcp, bucket, bc_list) { 1958 if (bcp->bc_blkno == blkno && bcp->bc_len == len) 1959 return bcp; 1960 } 1961 1962 /* 1963 * We didn't find a corresponding entry in the table, so return 0 so 1964 * that the buffer is NOT cancelled. 1965 */ 1966 ASSERT(!(flags & XFS_BLF_CANCEL)); 1967 return NULL; 1968 } 1969 1970 /* 1971 * If the buffer is being cancelled then return 1 so that it will be cancelled, 1972 * otherwise return 0. If the buffer is actually a buffer cancel item 1973 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the 1974 * table and remove it from the table if this is the last reference. 1975 * 1976 * We remove the cancel record from the table when we encounter its last 1977 * occurrence in the log so that if the same buffer is re-used again after its 1978 * last cancellation we actually replay the changes made at that point. 1979 */ 1980 STATIC int 1981 xlog_check_buffer_cancelled( 1982 struct xlog *log, 1983 xfs_daddr_t blkno, 1984 uint len, 1985 ushort flags) 1986 { 1987 struct xfs_buf_cancel *bcp; 1988 1989 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags); 1990 if (!bcp) 1991 return 0; 1992 1993 /* 1994 * We've go a match, so return 1 so that the recovery of this buffer 1995 * is cancelled. If this buffer is actually a buffer cancel log 1996 * item, then decrement the refcount on the one in the table and 1997 * remove it if this is the last reference. 1998 */ 1999 if (flags & XFS_BLF_CANCEL) { 2000 if (--bcp->bc_refcount == 0) { 2001 list_del(&bcp->bc_list); 2002 kmem_free(bcp); 2003 } 2004 } 2005 return 1; 2006 } 2007 2008 /* 2009 * Perform recovery for a buffer full of inodes. In these buffers, the only 2010 * data which should be recovered is that which corresponds to the 2011 * di_next_unlinked pointers in the on disk inode structures. The rest of the 2012 * data for the inodes is always logged through the inodes themselves rather 2013 * than the inode buffer and is recovered in xlog_recover_inode_pass2(). 2014 * 2015 * The only time when buffers full of inodes are fully recovered is when the 2016 * buffer is full of newly allocated inodes. In this case the buffer will 2017 * not be marked as an inode buffer and so will be sent to 2018 * xlog_recover_do_reg_buffer() below during recovery. 2019 */ 2020 STATIC int 2021 xlog_recover_do_inode_buffer( 2022 struct xfs_mount *mp, 2023 xlog_recover_item_t *item, 2024 struct xfs_buf *bp, 2025 xfs_buf_log_format_t *buf_f) 2026 { 2027 int i; 2028 int item_index = 0; 2029 int bit = 0; 2030 int nbits = 0; 2031 int reg_buf_offset = 0; 2032 int reg_buf_bytes = 0; 2033 int next_unlinked_offset; 2034 int inodes_per_buf; 2035 xfs_agino_t *logged_nextp; 2036 xfs_agino_t *buffer_nextp; 2037 2038 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); 2039 2040 /* 2041 * Post recovery validation only works properly on CRC enabled 2042 * filesystems. 2043 */ 2044 if (xfs_sb_version_hascrc(&mp->m_sb)) 2045 bp->b_ops = &xfs_inode_buf_ops; 2046 2047 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog; 2048 for (i = 0; i < inodes_per_buf; i++) { 2049 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 2050 offsetof(xfs_dinode_t, di_next_unlinked); 2051 2052 while (next_unlinked_offset >= 2053 (reg_buf_offset + reg_buf_bytes)) { 2054 /* 2055 * The next di_next_unlinked field is beyond 2056 * the current logged region. Find the next 2057 * logged region that contains or is beyond 2058 * the current di_next_unlinked field. 2059 */ 2060 bit += nbits; 2061 bit = xfs_next_bit(buf_f->blf_data_map, 2062 buf_f->blf_map_size, bit); 2063 2064 /* 2065 * If there are no more logged regions in the 2066 * buffer, then we're done. 2067 */ 2068 if (bit == -1) 2069 return 0; 2070 2071 nbits = xfs_contig_bits(buf_f->blf_data_map, 2072 buf_f->blf_map_size, bit); 2073 ASSERT(nbits > 0); 2074 reg_buf_offset = bit << XFS_BLF_SHIFT; 2075 reg_buf_bytes = nbits << XFS_BLF_SHIFT; 2076 item_index++; 2077 } 2078 2079 /* 2080 * If the current logged region starts after the current 2081 * di_next_unlinked field, then move on to the next 2082 * di_next_unlinked field. 2083 */ 2084 if (next_unlinked_offset < reg_buf_offset) 2085 continue; 2086 2087 ASSERT(item->ri_buf[item_index].i_addr != NULL); 2088 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); 2089 ASSERT((reg_buf_offset + reg_buf_bytes) <= 2090 BBTOB(bp->b_io_length)); 2091 2092 /* 2093 * The current logged region contains a copy of the 2094 * current di_next_unlinked field. Extract its value 2095 * and copy it to the buffer copy. 2096 */ 2097 logged_nextp = item->ri_buf[item_index].i_addr + 2098 next_unlinked_offset - reg_buf_offset; 2099 if (unlikely(*logged_nextp == 0)) { 2100 xfs_alert(mp, 2101 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). " 2102 "Trying to replay bad (0) inode di_next_unlinked field.", 2103 item, bp); 2104 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 2105 XFS_ERRLEVEL_LOW, mp); 2106 return -EFSCORRUPTED; 2107 } 2108 2109 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset); 2110 *buffer_nextp = *logged_nextp; 2111 2112 /* 2113 * If necessary, recalculate the CRC in the on-disk inode. We 2114 * have to leave the inode in a consistent state for whoever 2115 * reads it next.... 2116 */ 2117 xfs_dinode_calc_crc(mp, 2118 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); 2119 2120 } 2121 2122 return 0; 2123 } 2124 2125 /* 2126 * V5 filesystems know the age of the buffer on disk being recovered. We can 2127 * have newer objects on disk than we are replaying, and so for these cases we 2128 * don't want to replay the current change as that will make the buffer contents 2129 * temporarily invalid on disk. 2130 * 2131 * The magic number might not match the buffer type we are going to recover 2132 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence 2133 * extract the LSN of the existing object in the buffer based on it's current 2134 * magic number. If we don't recognise the magic number in the buffer, then 2135 * return a LSN of -1 so that the caller knows it was an unrecognised block and 2136 * so can recover the buffer. 2137 * 2138 * Note: we cannot rely solely on magic number matches to determine that the 2139 * buffer has a valid LSN - we also need to verify that it belongs to this 2140 * filesystem, so we need to extract the object's LSN and compare it to that 2141 * which we read from the superblock. If the UUIDs don't match, then we've got a 2142 * stale metadata block from an old filesystem instance that we need to recover 2143 * over the top of. 2144 */ 2145 static xfs_lsn_t 2146 xlog_recover_get_buf_lsn( 2147 struct xfs_mount *mp, 2148 struct xfs_buf *bp) 2149 { 2150 __uint32_t magic32; 2151 __uint16_t magic16; 2152 __uint16_t magicda; 2153 void *blk = bp->b_addr; 2154 uuid_t *uuid; 2155 xfs_lsn_t lsn = -1; 2156 2157 /* v4 filesystems always recover immediately */ 2158 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2159 goto recover_immediately; 2160 2161 magic32 = be32_to_cpu(*(__be32 *)blk); 2162 switch (magic32) { 2163 case XFS_ABTB_CRC_MAGIC: 2164 case XFS_ABTC_CRC_MAGIC: 2165 case XFS_ABTB_MAGIC: 2166 case XFS_ABTC_MAGIC: 2167 case XFS_IBT_CRC_MAGIC: 2168 case XFS_IBT_MAGIC: { 2169 struct xfs_btree_block *btb = blk; 2170 2171 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn); 2172 uuid = &btb->bb_u.s.bb_uuid; 2173 break; 2174 } 2175 case XFS_BMAP_CRC_MAGIC: 2176 case XFS_BMAP_MAGIC: { 2177 struct xfs_btree_block *btb = blk; 2178 2179 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn); 2180 uuid = &btb->bb_u.l.bb_uuid; 2181 break; 2182 } 2183 case XFS_AGF_MAGIC: 2184 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn); 2185 uuid = &((struct xfs_agf *)blk)->agf_uuid; 2186 break; 2187 case XFS_AGFL_MAGIC: 2188 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn); 2189 uuid = &((struct xfs_agfl *)blk)->agfl_uuid; 2190 break; 2191 case XFS_AGI_MAGIC: 2192 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn); 2193 uuid = &((struct xfs_agi *)blk)->agi_uuid; 2194 break; 2195 case XFS_SYMLINK_MAGIC: 2196 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn); 2197 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid; 2198 break; 2199 case XFS_DIR3_BLOCK_MAGIC: 2200 case XFS_DIR3_DATA_MAGIC: 2201 case XFS_DIR3_FREE_MAGIC: 2202 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn); 2203 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid; 2204 break; 2205 case XFS_ATTR3_RMT_MAGIC: 2206 /* 2207 * Remote attr blocks are written synchronously, rather than 2208 * being logged. That means they do not contain a valid LSN 2209 * (i.e. transactionally ordered) in them, and hence any time we 2210 * see a buffer to replay over the top of a remote attribute 2211 * block we should simply do so. 2212 */ 2213 goto recover_immediately; 2214 case XFS_SB_MAGIC: 2215 /* 2216 * superblock uuids are magic. We may or may not have a 2217 * sb_meta_uuid on disk, but it will be set in the in-core 2218 * superblock. We set the uuid pointer for verification 2219 * according to the superblock feature mask to ensure we check 2220 * the relevant UUID in the superblock. 2221 */ 2222 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn); 2223 if (xfs_sb_version_hasmetauuid(&mp->m_sb)) 2224 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid; 2225 else 2226 uuid = &((struct xfs_dsb *)blk)->sb_uuid; 2227 break; 2228 default: 2229 break; 2230 } 2231 2232 if (lsn != (xfs_lsn_t)-1) { 2233 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid)) 2234 goto recover_immediately; 2235 return lsn; 2236 } 2237 2238 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic); 2239 switch (magicda) { 2240 case XFS_DIR3_LEAF1_MAGIC: 2241 case XFS_DIR3_LEAFN_MAGIC: 2242 case XFS_DA3_NODE_MAGIC: 2243 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn); 2244 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid; 2245 break; 2246 default: 2247 break; 2248 } 2249 2250 if (lsn != (xfs_lsn_t)-1) { 2251 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid)) 2252 goto recover_immediately; 2253 return lsn; 2254 } 2255 2256 /* 2257 * We do individual object checks on dquot and inode buffers as they 2258 * have their own individual LSN records. Also, we could have a stale 2259 * buffer here, so we have to at least recognise these buffer types. 2260 * 2261 * A notd complexity here is inode unlinked list processing - it logs 2262 * the inode directly in the buffer, but we don't know which inodes have 2263 * been modified, and there is no global buffer LSN. Hence we need to 2264 * recover all inode buffer types immediately. This problem will be 2265 * fixed by logical logging of the unlinked list modifications. 2266 */ 2267 magic16 = be16_to_cpu(*(__be16 *)blk); 2268 switch (magic16) { 2269 case XFS_DQUOT_MAGIC: 2270 case XFS_DINODE_MAGIC: 2271 goto recover_immediately; 2272 default: 2273 break; 2274 } 2275 2276 /* unknown buffer contents, recover immediately */ 2277 2278 recover_immediately: 2279 return (xfs_lsn_t)-1; 2280 2281 } 2282 2283 /* 2284 * Validate the recovered buffer is of the correct type and attach the 2285 * appropriate buffer operations to them for writeback. Magic numbers are in a 2286 * few places: 2287 * the first 16 bits of the buffer (inode buffer, dquot buffer), 2288 * the first 32 bits of the buffer (most blocks), 2289 * inside a struct xfs_da_blkinfo at the start of the buffer. 2290 */ 2291 static void 2292 xlog_recover_validate_buf_type( 2293 struct xfs_mount *mp, 2294 struct xfs_buf *bp, 2295 xfs_buf_log_format_t *buf_f) 2296 { 2297 struct xfs_da_blkinfo *info = bp->b_addr; 2298 __uint32_t magic32; 2299 __uint16_t magic16; 2300 __uint16_t magicda; 2301 2302 /* 2303 * We can only do post recovery validation on items on CRC enabled 2304 * fielsystems as we need to know when the buffer was written to be able 2305 * to determine if we should have replayed the item. If we replay old 2306 * metadata over a newer buffer, then it will enter a temporarily 2307 * inconsistent state resulting in verification failures. Hence for now 2308 * just avoid the verification stage for non-crc filesystems 2309 */ 2310 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2311 return; 2312 2313 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr); 2314 magic16 = be16_to_cpu(*(__be16*)bp->b_addr); 2315 magicda = be16_to_cpu(info->magic); 2316 switch (xfs_blft_from_flags(buf_f)) { 2317 case XFS_BLFT_BTREE_BUF: 2318 switch (magic32) { 2319 case XFS_ABTB_CRC_MAGIC: 2320 case XFS_ABTC_CRC_MAGIC: 2321 case XFS_ABTB_MAGIC: 2322 case XFS_ABTC_MAGIC: 2323 bp->b_ops = &xfs_allocbt_buf_ops; 2324 break; 2325 case XFS_IBT_CRC_MAGIC: 2326 case XFS_FIBT_CRC_MAGIC: 2327 case XFS_IBT_MAGIC: 2328 case XFS_FIBT_MAGIC: 2329 bp->b_ops = &xfs_inobt_buf_ops; 2330 break; 2331 case XFS_BMAP_CRC_MAGIC: 2332 case XFS_BMAP_MAGIC: 2333 bp->b_ops = &xfs_bmbt_buf_ops; 2334 break; 2335 default: 2336 xfs_warn(mp, "Bad btree block magic!"); 2337 ASSERT(0); 2338 break; 2339 } 2340 break; 2341 case XFS_BLFT_AGF_BUF: 2342 if (magic32 != XFS_AGF_MAGIC) { 2343 xfs_warn(mp, "Bad AGF block magic!"); 2344 ASSERT(0); 2345 break; 2346 } 2347 bp->b_ops = &xfs_agf_buf_ops; 2348 break; 2349 case XFS_BLFT_AGFL_BUF: 2350 if (magic32 != XFS_AGFL_MAGIC) { 2351 xfs_warn(mp, "Bad AGFL block magic!"); 2352 ASSERT(0); 2353 break; 2354 } 2355 bp->b_ops = &xfs_agfl_buf_ops; 2356 break; 2357 case XFS_BLFT_AGI_BUF: 2358 if (magic32 != XFS_AGI_MAGIC) { 2359 xfs_warn(mp, "Bad AGI block magic!"); 2360 ASSERT(0); 2361 break; 2362 } 2363 bp->b_ops = &xfs_agi_buf_ops; 2364 break; 2365 case XFS_BLFT_UDQUOT_BUF: 2366 case XFS_BLFT_PDQUOT_BUF: 2367 case XFS_BLFT_GDQUOT_BUF: 2368 #ifdef CONFIG_XFS_QUOTA 2369 if (magic16 != XFS_DQUOT_MAGIC) { 2370 xfs_warn(mp, "Bad DQUOT block magic!"); 2371 ASSERT(0); 2372 break; 2373 } 2374 bp->b_ops = &xfs_dquot_buf_ops; 2375 #else 2376 xfs_alert(mp, 2377 "Trying to recover dquots without QUOTA support built in!"); 2378 ASSERT(0); 2379 #endif 2380 break; 2381 case XFS_BLFT_DINO_BUF: 2382 if (magic16 != XFS_DINODE_MAGIC) { 2383 xfs_warn(mp, "Bad INODE block magic!"); 2384 ASSERT(0); 2385 break; 2386 } 2387 bp->b_ops = &xfs_inode_buf_ops; 2388 break; 2389 case XFS_BLFT_SYMLINK_BUF: 2390 if (magic32 != XFS_SYMLINK_MAGIC) { 2391 xfs_warn(mp, "Bad symlink block magic!"); 2392 ASSERT(0); 2393 break; 2394 } 2395 bp->b_ops = &xfs_symlink_buf_ops; 2396 break; 2397 case XFS_BLFT_DIR_BLOCK_BUF: 2398 if (magic32 != XFS_DIR2_BLOCK_MAGIC && 2399 magic32 != XFS_DIR3_BLOCK_MAGIC) { 2400 xfs_warn(mp, "Bad dir block magic!"); 2401 ASSERT(0); 2402 break; 2403 } 2404 bp->b_ops = &xfs_dir3_block_buf_ops; 2405 break; 2406 case XFS_BLFT_DIR_DATA_BUF: 2407 if (magic32 != XFS_DIR2_DATA_MAGIC && 2408 magic32 != XFS_DIR3_DATA_MAGIC) { 2409 xfs_warn(mp, "Bad dir data magic!"); 2410 ASSERT(0); 2411 break; 2412 } 2413 bp->b_ops = &xfs_dir3_data_buf_ops; 2414 break; 2415 case XFS_BLFT_DIR_FREE_BUF: 2416 if (magic32 != XFS_DIR2_FREE_MAGIC && 2417 magic32 != XFS_DIR3_FREE_MAGIC) { 2418 xfs_warn(mp, "Bad dir3 free magic!"); 2419 ASSERT(0); 2420 break; 2421 } 2422 bp->b_ops = &xfs_dir3_free_buf_ops; 2423 break; 2424 case XFS_BLFT_DIR_LEAF1_BUF: 2425 if (magicda != XFS_DIR2_LEAF1_MAGIC && 2426 magicda != XFS_DIR3_LEAF1_MAGIC) { 2427 xfs_warn(mp, "Bad dir leaf1 magic!"); 2428 ASSERT(0); 2429 break; 2430 } 2431 bp->b_ops = &xfs_dir3_leaf1_buf_ops; 2432 break; 2433 case XFS_BLFT_DIR_LEAFN_BUF: 2434 if (magicda != XFS_DIR2_LEAFN_MAGIC && 2435 magicda != XFS_DIR3_LEAFN_MAGIC) { 2436 xfs_warn(mp, "Bad dir leafn magic!"); 2437 ASSERT(0); 2438 break; 2439 } 2440 bp->b_ops = &xfs_dir3_leafn_buf_ops; 2441 break; 2442 case XFS_BLFT_DA_NODE_BUF: 2443 if (magicda != XFS_DA_NODE_MAGIC && 2444 magicda != XFS_DA3_NODE_MAGIC) { 2445 xfs_warn(mp, "Bad da node magic!"); 2446 ASSERT(0); 2447 break; 2448 } 2449 bp->b_ops = &xfs_da3_node_buf_ops; 2450 break; 2451 case XFS_BLFT_ATTR_LEAF_BUF: 2452 if (magicda != XFS_ATTR_LEAF_MAGIC && 2453 magicda != XFS_ATTR3_LEAF_MAGIC) { 2454 xfs_warn(mp, "Bad attr leaf magic!"); 2455 ASSERT(0); 2456 break; 2457 } 2458 bp->b_ops = &xfs_attr3_leaf_buf_ops; 2459 break; 2460 case XFS_BLFT_ATTR_RMT_BUF: 2461 if (magic32 != XFS_ATTR3_RMT_MAGIC) { 2462 xfs_warn(mp, "Bad attr remote magic!"); 2463 ASSERT(0); 2464 break; 2465 } 2466 bp->b_ops = &xfs_attr3_rmt_buf_ops; 2467 break; 2468 case XFS_BLFT_SB_BUF: 2469 if (magic32 != XFS_SB_MAGIC) { 2470 xfs_warn(mp, "Bad SB block magic!"); 2471 ASSERT(0); 2472 break; 2473 } 2474 bp->b_ops = &xfs_sb_buf_ops; 2475 break; 2476 default: 2477 xfs_warn(mp, "Unknown buffer type %d!", 2478 xfs_blft_from_flags(buf_f)); 2479 break; 2480 } 2481 } 2482 2483 /* 2484 * Perform a 'normal' buffer recovery. Each logged region of the 2485 * buffer should be copied over the corresponding region in the 2486 * given buffer. The bitmap in the buf log format structure indicates 2487 * where to place the logged data. 2488 */ 2489 STATIC void 2490 xlog_recover_do_reg_buffer( 2491 struct xfs_mount *mp, 2492 xlog_recover_item_t *item, 2493 struct xfs_buf *bp, 2494 xfs_buf_log_format_t *buf_f) 2495 { 2496 int i; 2497 int bit; 2498 int nbits; 2499 int error; 2500 2501 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); 2502 2503 bit = 0; 2504 i = 1; /* 0 is the buf format structure */ 2505 while (1) { 2506 bit = xfs_next_bit(buf_f->blf_data_map, 2507 buf_f->blf_map_size, bit); 2508 if (bit == -1) 2509 break; 2510 nbits = xfs_contig_bits(buf_f->blf_data_map, 2511 buf_f->blf_map_size, bit); 2512 ASSERT(nbits > 0); 2513 ASSERT(item->ri_buf[i].i_addr != NULL); 2514 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); 2515 ASSERT(BBTOB(bp->b_io_length) >= 2516 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); 2517 2518 /* 2519 * The dirty regions logged in the buffer, even though 2520 * contiguous, may span multiple chunks. This is because the 2521 * dirty region may span a physical page boundary in a buffer 2522 * and hence be split into two separate vectors for writing into 2523 * the log. Hence we need to trim nbits back to the length of 2524 * the current region being copied out of the log. 2525 */ 2526 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT)) 2527 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT; 2528 2529 /* 2530 * Do a sanity check if this is a dquot buffer. Just checking 2531 * the first dquot in the buffer should do. XXXThis is 2532 * probably a good thing to do for other buf types also. 2533 */ 2534 error = 0; 2535 if (buf_f->blf_flags & 2536 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2537 if (item->ri_buf[i].i_addr == NULL) { 2538 xfs_alert(mp, 2539 "XFS: NULL dquot in %s.", __func__); 2540 goto next; 2541 } 2542 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) { 2543 xfs_alert(mp, 2544 "XFS: dquot too small (%d) in %s.", 2545 item->ri_buf[i].i_len, __func__); 2546 goto next; 2547 } 2548 error = xfs_dqcheck(mp, item->ri_buf[i].i_addr, 2549 -1, 0, XFS_QMOPT_DOWARN, 2550 "dquot_buf_recover"); 2551 if (error) 2552 goto next; 2553 } 2554 2555 memcpy(xfs_buf_offset(bp, 2556 (uint)bit << XFS_BLF_SHIFT), /* dest */ 2557 item->ri_buf[i].i_addr, /* source */ 2558 nbits<<XFS_BLF_SHIFT); /* length */ 2559 next: 2560 i++; 2561 bit += nbits; 2562 } 2563 2564 /* Shouldn't be any more regions */ 2565 ASSERT(i == item->ri_total); 2566 2567 xlog_recover_validate_buf_type(mp, bp, buf_f); 2568 } 2569 2570 /* 2571 * Perform a dquot buffer recovery. 2572 * Simple algorithm: if we have found a QUOTAOFF log item of the same type 2573 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2574 * Else, treat it as a regular buffer and do recovery. 2575 * 2576 * Return false if the buffer was tossed and true if we recovered the buffer to 2577 * indicate to the caller if the buffer needs writing. 2578 */ 2579 STATIC bool 2580 xlog_recover_do_dquot_buffer( 2581 struct xfs_mount *mp, 2582 struct xlog *log, 2583 struct xlog_recover_item *item, 2584 struct xfs_buf *bp, 2585 struct xfs_buf_log_format *buf_f) 2586 { 2587 uint type; 2588 2589 trace_xfs_log_recover_buf_dquot_buf(log, buf_f); 2590 2591 /* 2592 * Filesystems are required to send in quota flags at mount time. 2593 */ 2594 if (!mp->m_qflags) 2595 return false; 2596 2597 type = 0; 2598 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) 2599 type |= XFS_DQ_USER; 2600 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) 2601 type |= XFS_DQ_PROJ; 2602 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) 2603 type |= XFS_DQ_GROUP; 2604 /* 2605 * This type of quotas was turned off, so ignore this buffer 2606 */ 2607 if (log->l_quotaoffs_flag & type) 2608 return false; 2609 2610 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2611 return true; 2612 } 2613 2614 /* 2615 * This routine replays a modification made to a buffer at runtime. 2616 * There are actually two types of buffer, regular and inode, which 2617 * are handled differently. Inode buffers are handled differently 2618 * in that we only recover a specific set of data from them, namely 2619 * the inode di_next_unlinked fields. This is because all other inode 2620 * data is actually logged via inode records and any data we replay 2621 * here which overlaps that may be stale. 2622 * 2623 * When meta-data buffers are freed at run time we log a buffer item 2624 * with the XFS_BLF_CANCEL bit set to indicate that previous copies 2625 * of the buffer in the log should not be replayed at recovery time. 2626 * This is so that if the blocks covered by the buffer are reused for 2627 * file data before we crash we don't end up replaying old, freed 2628 * meta-data into a user's file. 2629 * 2630 * To handle the cancellation of buffer log items, we make two passes 2631 * over the log during recovery. During the first we build a table of 2632 * those buffers which have been cancelled, and during the second we 2633 * only replay those buffers which do not have corresponding cancel 2634 * records in the table. See xlog_recover_buffer_pass[1,2] above 2635 * for more details on the implementation of the table of cancel records. 2636 */ 2637 STATIC int 2638 xlog_recover_buffer_pass2( 2639 struct xlog *log, 2640 struct list_head *buffer_list, 2641 struct xlog_recover_item *item, 2642 xfs_lsn_t current_lsn) 2643 { 2644 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2645 xfs_mount_t *mp = log->l_mp; 2646 xfs_buf_t *bp; 2647 int error; 2648 uint buf_flags; 2649 xfs_lsn_t lsn; 2650 2651 /* 2652 * In this pass we only want to recover all the buffers which have 2653 * not been cancelled and are not cancellation buffers themselves. 2654 */ 2655 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno, 2656 buf_f->blf_len, buf_f->blf_flags)) { 2657 trace_xfs_log_recover_buf_cancel(log, buf_f); 2658 return 0; 2659 } 2660 2661 trace_xfs_log_recover_buf_recover(log, buf_f); 2662 2663 buf_flags = 0; 2664 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) 2665 buf_flags |= XBF_UNMAPPED; 2666 2667 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, 2668 buf_flags, NULL); 2669 if (!bp) 2670 return -ENOMEM; 2671 error = bp->b_error; 2672 if (error) { 2673 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)"); 2674 goto out_release; 2675 } 2676 2677 /* 2678 * Recover the buffer only if we get an LSN from it and it's less than 2679 * the lsn of the transaction we are replaying. 2680 * 2681 * Note that we have to be extremely careful of readahead here. 2682 * Readahead does not attach verfiers to the buffers so if we don't 2683 * actually do any replay after readahead because of the LSN we found 2684 * in the buffer if more recent than that current transaction then we 2685 * need to attach the verifier directly. Failure to do so can lead to 2686 * future recovery actions (e.g. EFI and unlinked list recovery) can 2687 * operate on the buffers and they won't get the verifier attached. This 2688 * can lead to blocks on disk having the correct content but a stale 2689 * CRC. 2690 * 2691 * It is safe to assume these clean buffers are currently up to date. 2692 * If the buffer is dirtied by a later transaction being replayed, then 2693 * the verifier will be reset to match whatever recover turns that 2694 * buffer into. 2695 */ 2696 lsn = xlog_recover_get_buf_lsn(mp, bp); 2697 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 2698 xlog_recover_validate_buf_type(mp, bp, buf_f); 2699 goto out_release; 2700 } 2701 2702 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 2703 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2704 if (error) 2705 goto out_release; 2706 } else if (buf_f->blf_flags & 2707 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2708 bool dirty; 2709 2710 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2711 if (!dirty) 2712 goto out_release; 2713 } else { 2714 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2715 } 2716 2717 /* 2718 * Perform delayed write on the buffer. Asynchronous writes will be 2719 * slower when taking into account all the buffers to be flushed. 2720 * 2721 * Also make sure that only inode buffers with good sizes stay in 2722 * the buffer cache. The kernel moves inodes in buffers of 1 block 2723 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode 2724 * buffers in the log can be a different size if the log was generated 2725 * by an older kernel using unclustered inode buffers or a newer kernel 2726 * running with a different inode cluster size. Regardless, if the 2727 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size) 2728 * for *our* value of mp->m_inode_cluster_size, then we need to keep 2729 * the buffer out of the buffer cache so that the buffer won't 2730 * overlap with future reads of those inodes. 2731 */ 2732 if (XFS_DINODE_MAGIC == 2733 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && 2734 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize, 2735 (__uint32_t)log->l_mp->m_inode_cluster_size))) { 2736 xfs_buf_stale(bp); 2737 error = xfs_bwrite(bp); 2738 } else { 2739 ASSERT(bp->b_target->bt_mount == mp); 2740 bp->b_iodone = xlog_recover_iodone; 2741 xfs_buf_delwri_queue(bp, buffer_list); 2742 } 2743 2744 out_release: 2745 xfs_buf_relse(bp); 2746 return error; 2747 } 2748 2749 /* 2750 * Inode fork owner changes 2751 * 2752 * If we have been told that we have to reparent the inode fork, it's because an 2753 * extent swap operation on a CRC enabled filesystem has been done and we are 2754 * replaying it. We need to walk the BMBT of the appropriate fork and change the 2755 * owners of it. 2756 * 2757 * The complexity here is that we don't have an inode context to work with, so 2758 * after we've replayed the inode we need to instantiate one. This is where the 2759 * fun begins. 2760 * 2761 * We are in the middle of log recovery, so we can't run transactions. That 2762 * means we cannot use cache coherent inode instantiation via xfs_iget(), as 2763 * that will result in the corresponding iput() running the inode through 2764 * xfs_inactive(). If we've just replayed an inode core that changes the link 2765 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run 2766 * transactions (bad!). 2767 * 2768 * So, to avoid this, we instantiate an inode directly from the inode core we've 2769 * just recovered. We have the buffer still locked, and all we really need to 2770 * instantiate is the inode core and the forks being modified. We can do this 2771 * manually, then run the inode btree owner change, and then tear down the 2772 * xfs_inode without having to run any transactions at all. 2773 * 2774 * Also, because we don't have a transaction context available here but need to 2775 * gather all the buffers we modify for writeback so we pass the buffer_list 2776 * instead for the operation to use. 2777 */ 2778 2779 STATIC int 2780 xfs_recover_inode_owner_change( 2781 struct xfs_mount *mp, 2782 struct xfs_dinode *dip, 2783 struct xfs_inode_log_format *in_f, 2784 struct list_head *buffer_list) 2785 { 2786 struct xfs_inode *ip; 2787 int error; 2788 2789 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)); 2790 2791 ip = xfs_inode_alloc(mp, in_f->ilf_ino); 2792 if (!ip) 2793 return -ENOMEM; 2794 2795 /* instantiate the inode */ 2796 xfs_dinode_from_disk(&ip->i_d, dip); 2797 ASSERT(ip->i_d.di_version >= 3); 2798 2799 error = xfs_iformat_fork(ip, dip); 2800 if (error) 2801 goto out_free_ip; 2802 2803 2804 if (in_f->ilf_fields & XFS_ILOG_DOWNER) { 2805 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT); 2806 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK, 2807 ip->i_ino, buffer_list); 2808 if (error) 2809 goto out_free_ip; 2810 } 2811 2812 if (in_f->ilf_fields & XFS_ILOG_AOWNER) { 2813 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT); 2814 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK, 2815 ip->i_ino, buffer_list); 2816 if (error) 2817 goto out_free_ip; 2818 } 2819 2820 out_free_ip: 2821 xfs_inode_free(ip); 2822 return error; 2823 } 2824 2825 STATIC int 2826 xlog_recover_inode_pass2( 2827 struct xlog *log, 2828 struct list_head *buffer_list, 2829 struct xlog_recover_item *item, 2830 xfs_lsn_t current_lsn) 2831 { 2832 xfs_inode_log_format_t *in_f; 2833 xfs_mount_t *mp = log->l_mp; 2834 xfs_buf_t *bp; 2835 xfs_dinode_t *dip; 2836 int len; 2837 char *src; 2838 char *dest; 2839 int error; 2840 int attr_index; 2841 uint fields; 2842 xfs_icdinode_t *dicp; 2843 uint isize; 2844 int need_free = 0; 2845 2846 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) { 2847 in_f = item->ri_buf[0].i_addr; 2848 } else { 2849 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP); 2850 need_free = 1; 2851 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 2852 if (error) 2853 goto error; 2854 } 2855 2856 /* 2857 * Inode buffers can be freed, look out for it, 2858 * and do not replay the inode. 2859 */ 2860 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, 2861 in_f->ilf_len, 0)) { 2862 error = 0; 2863 trace_xfs_log_recover_inode_cancel(log, in_f); 2864 goto error; 2865 } 2866 trace_xfs_log_recover_inode_recover(log, in_f); 2867 2868 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0, 2869 &xfs_inode_buf_ops); 2870 if (!bp) { 2871 error = -ENOMEM; 2872 goto error; 2873 } 2874 error = bp->b_error; 2875 if (error) { 2876 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)"); 2877 goto out_release; 2878 } 2879 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 2880 dip = xfs_buf_offset(bp, in_f->ilf_boffset); 2881 2882 /* 2883 * Make sure the place we're flushing out to really looks 2884 * like an inode! 2885 */ 2886 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) { 2887 xfs_alert(mp, 2888 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld", 2889 __func__, dip, bp, in_f->ilf_ino); 2890 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)", 2891 XFS_ERRLEVEL_LOW, mp); 2892 error = -EFSCORRUPTED; 2893 goto out_release; 2894 } 2895 dicp = item->ri_buf[1].i_addr; 2896 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { 2897 xfs_alert(mp, 2898 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld", 2899 __func__, item, in_f->ilf_ino); 2900 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)", 2901 XFS_ERRLEVEL_LOW, mp); 2902 error = -EFSCORRUPTED; 2903 goto out_release; 2904 } 2905 2906 /* 2907 * If the inode has an LSN in it, recover the inode only if it's less 2908 * than the lsn of the transaction we are replaying. Note: we still 2909 * need to replay an owner change even though the inode is more recent 2910 * than the transaction as there is no guarantee that all the btree 2911 * blocks are more recent than this transaction, too. 2912 */ 2913 if (dip->di_version >= 3) { 2914 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn); 2915 2916 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 2917 trace_xfs_log_recover_inode_skip(log, in_f); 2918 error = 0; 2919 goto out_owner_change; 2920 } 2921 } 2922 2923 /* 2924 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes 2925 * are transactional and if ordering is necessary we can determine that 2926 * more accurately by the LSN field in the V3 inode core. Don't trust 2927 * the inode versions we might be changing them here - use the 2928 * superblock flag to determine whether we need to look at di_flushiter 2929 * to skip replay when the on disk inode is newer than the log one 2930 */ 2931 if (!xfs_sb_version_hascrc(&mp->m_sb) && 2932 dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) { 2933 /* 2934 * Deal with the wrap case, DI_MAX_FLUSH is less 2935 * than smaller numbers 2936 */ 2937 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && 2938 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) { 2939 /* do nothing */ 2940 } else { 2941 trace_xfs_log_recover_inode_skip(log, in_f); 2942 error = 0; 2943 goto out_release; 2944 } 2945 } 2946 2947 /* Take the opportunity to reset the flush iteration count */ 2948 dicp->di_flushiter = 0; 2949 2950 if (unlikely(S_ISREG(dicp->di_mode))) { 2951 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2952 (dicp->di_format != XFS_DINODE_FMT_BTREE)) { 2953 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)", 2954 XFS_ERRLEVEL_LOW, mp, dicp); 2955 xfs_alert(mp, 2956 "%s: Bad regular inode log record, rec ptr 0x%p, " 2957 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2958 __func__, item, dip, bp, in_f->ilf_ino); 2959 error = -EFSCORRUPTED; 2960 goto out_release; 2961 } 2962 } else if (unlikely(S_ISDIR(dicp->di_mode))) { 2963 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2964 (dicp->di_format != XFS_DINODE_FMT_BTREE) && 2965 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { 2966 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)", 2967 XFS_ERRLEVEL_LOW, mp, dicp); 2968 xfs_alert(mp, 2969 "%s: Bad dir inode log record, rec ptr 0x%p, " 2970 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2971 __func__, item, dip, bp, in_f->ilf_ino); 2972 error = -EFSCORRUPTED; 2973 goto out_release; 2974 } 2975 } 2976 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ 2977 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)", 2978 XFS_ERRLEVEL_LOW, mp, dicp); 2979 xfs_alert(mp, 2980 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 2981 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", 2982 __func__, item, dip, bp, in_f->ilf_ino, 2983 dicp->di_nextents + dicp->di_anextents, 2984 dicp->di_nblocks); 2985 error = -EFSCORRUPTED; 2986 goto out_release; 2987 } 2988 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { 2989 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)", 2990 XFS_ERRLEVEL_LOW, mp, dicp); 2991 xfs_alert(mp, 2992 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 2993 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__, 2994 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff); 2995 error = -EFSCORRUPTED; 2996 goto out_release; 2997 } 2998 isize = xfs_icdinode_size(dicp->di_version); 2999 if (unlikely(item->ri_buf[1].i_len > isize)) { 3000 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)", 3001 XFS_ERRLEVEL_LOW, mp, dicp); 3002 xfs_alert(mp, 3003 "%s: Bad inode log record length %d, rec ptr 0x%p", 3004 __func__, item->ri_buf[1].i_len, item); 3005 error = -EFSCORRUPTED; 3006 goto out_release; 3007 } 3008 3009 /* The core is in in-core format */ 3010 xfs_dinode_to_disk(dip, dicp); 3011 3012 /* the rest is in on-disk format */ 3013 if (item->ri_buf[1].i_len > isize) { 3014 memcpy((char *)dip + isize, 3015 item->ri_buf[1].i_addr + isize, 3016 item->ri_buf[1].i_len - isize); 3017 } 3018 3019 fields = in_f->ilf_fields; 3020 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { 3021 case XFS_ILOG_DEV: 3022 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); 3023 break; 3024 case XFS_ILOG_UUID: 3025 memcpy(XFS_DFORK_DPTR(dip), 3026 &in_f->ilf_u.ilfu_uuid, 3027 sizeof(uuid_t)); 3028 break; 3029 } 3030 3031 if (in_f->ilf_size == 2) 3032 goto out_owner_change; 3033 len = item->ri_buf[2].i_len; 3034 src = item->ri_buf[2].i_addr; 3035 ASSERT(in_f->ilf_size <= 4); 3036 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 3037 ASSERT(!(fields & XFS_ILOG_DFORK) || 3038 (len == in_f->ilf_dsize)); 3039 3040 switch (fields & XFS_ILOG_DFORK) { 3041 case XFS_ILOG_DDATA: 3042 case XFS_ILOG_DEXT: 3043 memcpy(XFS_DFORK_DPTR(dip), src, len); 3044 break; 3045 3046 case XFS_ILOG_DBROOT: 3047 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, 3048 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), 3049 XFS_DFORK_DSIZE(dip, mp)); 3050 break; 3051 3052 default: 3053 /* 3054 * There are no data fork flags set. 3055 */ 3056 ASSERT((fields & XFS_ILOG_DFORK) == 0); 3057 break; 3058 } 3059 3060 /* 3061 * If we logged any attribute data, recover it. There may or 3062 * may not have been any other non-core data logged in this 3063 * transaction. 3064 */ 3065 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 3066 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 3067 attr_index = 3; 3068 } else { 3069 attr_index = 2; 3070 } 3071 len = item->ri_buf[attr_index].i_len; 3072 src = item->ri_buf[attr_index].i_addr; 3073 ASSERT(len == in_f->ilf_asize); 3074 3075 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 3076 case XFS_ILOG_ADATA: 3077 case XFS_ILOG_AEXT: 3078 dest = XFS_DFORK_APTR(dip); 3079 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 3080 memcpy(dest, src, len); 3081 break; 3082 3083 case XFS_ILOG_ABROOT: 3084 dest = XFS_DFORK_APTR(dip); 3085 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, 3086 len, (xfs_bmdr_block_t*)dest, 3087 XFS_DFORK_ASIZE(dip, mp)); 3088 break; 3089 3090 default: 3091 xfs_warn(log->l_mp, "%s: Invalid flag", __func__); 3092 ASSERT(0); 3093 error = -EIO; 3094 goto out_release; 3095 } 3096 } 3097 3098 out_owner_change: 3099 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) 3100 error = xfs_recover_inode_owner_change(mp, dip, in_f, 3101 buffer_list); 3102 /* re-generate the checksum. */ 3103 xfs_dinode_calc_crc(log->l_mp, dip); 3104 3105 ASSERT(bp->b_target->bt_mount == mp); 3106 bp->b_iodone = xlog_recover_iodone; 3107 xfs_buf_delwri_queue(bp, buffer_list); 3108 3109 out_release: 3110 xfs_buf_relse(bp); 3111 error: 3112 if (need_free) 3113 kmem_free(in_f); 3114 return error; 3115 } 3116 3117 /* 3118 * Recover QUOTAOFF records. We simply make a note of it in the xlog 3119 * structure, so that we know not to do any dquot item or dquot buffer recovery, 3120 * of that type. 3121 */ 3122 STATIC int 3123 xlog_recover_quotaoff_pass1( 3124 struct xlog *log, 3125 struct xlog_recover_item *item) 3126 { 3127 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr; 3128 ASSERT(qoff_f); 3129 3130 /* 3131 * The logitem format's flag tells us if this was user quotaoff, 3132 * group/project quotaoff or both. 3133 */ 3134 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 3135 log->l_quotaoffs_flag |= XFS_DQ_USER; 3136 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 3137 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 3138 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 3139 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 3140 3141 return 0; 3142 } 3143 3144 /* 3145 * Recover a dquot record 3146 */ 3147 STATIC int 3148 xlog_recover_dquot_pass2( 3149 struct xlog *log, 3150 struct list_head *buffer_list, 3151 struct xlog_recover_item *item, 3152 xfs_lsn_t current_lsn) 3153 { 3154 xfs_mount_t *mp = log->l_mp; 3155 xfs_buf_t *bp; 3156 struct xfs_disk_dquot *ddq, *recddq; 3157 int error; 3158 xfs_dq_logformat_t *dq_f; 3159 uint type; 3160 3161 3162 /* 3163 * Filesystems are required to send in quota flags at mount time. 3164 */ 3165 if (mp->m_qflags == 0) 3166 return 0; 3167 3168 recddq = item->ri_buf[1].i_addr; 3169 if (recddq == NULL) { 3170 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__); 3171 return -EIO; 3172 } 3173 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) { 3174 xfs_alert(log->l_mp, "dquot too small (%d) in %s.", 3175 item->ri_buf[1].i_len, __func__); 3176 return -EIO; 3177 } 3178 3179 /* 3180 * This type of quotas was turned off, so ignore this record. 3181 */ 3182 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 3183 ASSERT(type); 3184 if (log->l_quotaoffs_flag & type) 3185 return 0; 3186 3187 /* 3188 * At this point we know that quota was _not_ turned off. 3189 * Since the mount flags are not indicating to us otherwise, this 3190 * must mean that quota is on, and the dquot needs to be replayed. 3191 * Remember that we may not have fully recovered the superblock yet, 3192 * so we can't do the usual trick of looking at the SB quota bits. 3193 * 3194 * The other possibility, of course, is that the quota subsystem was 3195 * removed since the last mount - ENOSYS. 3196 */ 3197 dq_f = item->ri_buf[0].i_addr; 3198 ASSERT(dq_f); 3199 error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 3200 "xlog_recover_dquot_pass2 (log copy)"); 3201 if (error) 3202 return -EIO; 3203 ASSERT(dq_f->qlf_len == 1); 3204 3205 /* 3206 * At this point we are assuming that the dquots have been allocated 3207 * and hence the buffer has valid dquots stamped in it. It should, 3208 * therefore, pass verifier validation. If the dquot is bad, then the 3209 * we'll return an error here, so we don't need to specifically check 3210 * the dquot in the buffer after the verifier has run. 3211 */ 3212 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno, 3213 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp, 3214 &xfs_dquot_buf_ops); 3215 if (error) 3216 return error; 3217 3218 ASSERT(bp); 3219 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset); 3220 3221 /* 3222 * If the dquot has an LSN in it, recover the dquot only if it's less 3223 * than the lsn of the transaction we are replaying. 3224 */ 3225 if (xfs_sb_version_hascrc(&mp->m_sb)) { 3226 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq; 3227 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn); 3228 3229 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 3230 goto out_release; 3231 } 3232 } 3233 3234 memcpy(ddq, recddq, item->ri_buf[1].i_len); 3235 if (xfs_sb_version_hascrc(&mp->m_sb)) { 3236 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk), 3237 XFS_DQUOT_CRC_OFF); 3238 } 3239 3240 ASSERT(dq_f->qlf_size == 2); 3241 ASSERT(bp->b_target->bt_mount == mp); 3242 bp->b_iodone = xlog_recover_iodone; 3243 xfs_buf_delwri_queue(bp, buffer_list); 3244 3245 out_release: 3246 xfs_buf_relse(bp); 3247 return 0; 3248 } 3249 3250 /* 3251 * This routine is called to create an in-core extent free intent 3252 * item from the efi format structure which was logged on disk. 3253 * It allocates an in-core efi, copies the extents from the format 3254 * structure into it, and adds the efi to the AIL with the given 3255 * LSN. 3256 */ 3257 STATIC int 3258 xlog_recover_efi_pass2( 3259 struct xlog *log, 3260 struct xlog_recover_item *item, 3261 xfs_lsn_t lsn) 3262 { 3263 int error; 3264 struct xfs_mount *mp = log->l_mp; 3265 struct xfs_efi_log_item *efip; 3266 struct xfs_efi_log_format *efi_formatp; 3267 3268 efi_formatp = item->ri_buf[0].i_addr; 3269 3270 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 3271 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); 3272 if (error) { 3273 xfs_efi_item_free(efip); 3274 return error; 3275 } 3276 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 3277 3278 spin_lock(&log->l_ailp->xa_lock); 3279 /* 3280 * The EFI has two references. One for the EFD and one for EFI to ensure 3281 * it makes it into the AIL. Insert the EFI into the AIL directly and 3282 * drop the EFI reference. Note that xfs_trans_ail_update() drops the 3283 * AIL lock. 3284 */ 3285 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn); 3286 xfs_efi_release(efip); 3287 return 0; 3288 } 3289 3290 3291 /* 3292 * This routine is called when an EFD format structure is found in a committed 3293 * transaction in the log. Its purpose is to cancel the corresponding EFI if it 3294 * was still in the log. To do this it searches the AIL for the EFI with an id 3295 * equal to that in the EFD format structure. If we find it we drop the EFD 3296 * reference, which removes the EFI from the AIL and frees it. 3297 */ 3298 STATIC int 3299 xlog_recover_efd_pass2( 3300 struct xlog *log, 3301 struct xlog_recover_item *item) 3302 { 3303 xfs_efd_log_format_t *efd_formatp; 3304 xfs_efi_log_item_t *efip = NULL; 3305 xfs_log_item_t *lip; 3306 __uint64_t efi_id; 3307 struct xfs_ail_cursor cur; 3308 struct xfs_ail *ailp = log->l_ailp; 3309 3310 efd_formatp = item->ri_buf[0].i_addr; 3311 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 3312 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 3313 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 3314 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 3315 efi_id = efd_formatp->efd_efi_id; 3316 3317 /* 3318 * Search for the EFI with the id in the EFD format structure in the 3319 * AIL. 3320 */ 3321 spin_lock(&ailp->xa_lock); 3322 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3323 while (lip != NULL) { 3324 if (lip->li_type == XFS_LI_EFI) { 3325 efip = (xfs_efi_log_item_t *)lip; 3326 if (efip->efi_format.efi_id == efi_id) { 3327 /* 3328 * Drop the EFD reference to the EFI. This 3329 * removes the EFI from the AIL and frees it. 3330 */ 3331 spin_unlock(&ailp->xa_lock); 3332 xfs_efi_release(efip); 3333 spin_lock(&ailp->xa_lock); 3334 break; 3335 } 3336 } 3337 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3338 } 3339 3340 xfs_trans_ail_cursor_done(&cur); 3341 spin_unlock(&ailp->xa_lock); 3342 3343 return 0; 3344 } 3345 3346 /* 3347 * This routine is called when an inode create format structure is found in a 3348 * committed transaction in the log. It's purpose is to initialise the inodes 3349 * being allocated on disk. This requires us to get inode cluster buffers that 3350 * match the range to be intialised, stamped with inode templates and written 3351 * by delayed write so that subsequent modifications will hit the cached buffer 3352 * and only need writing out at the end of recovery. 3353 */ 3354 STATIC int 3355 xlog_recover_do_icreate_pass2( 3356 struct xlog *log, 3357 struct list_head *buffer_list, 3358 xlog_recover_item_t *item) 3359 { 3360 struct xfs_mount *mp = log->l_mp; 3361 struct xfs_icreate_log *icl; 3362 xfs_agnumber_t agno; 3363 xfs_agblock_t agbno; 3364 unsigned int count; 3365 unsigned int isize; 3366 xfs_agblock_t length; 3367 int blks_per_cluster; 3368 int bb_per_cluster; 3369 int cancel_count; 3370 int nbufs; 3371 int i; 3372 3373 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr; 3374 if (icl->icl_type != XFS_LI_ICREATE) { 3375 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type"); 3376 return -EINVAL; 3377 } 3378 3379 if (icl->icl_size != 1) { 3380 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size"); 3381 return -EINVAL; 3382 } 3383 3384 agno = be32_to_cpu(icl->icl_ag); 3385 if (agno >= mp->m_sb.sb_agcount) { 3386 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno"); 3387 return -EINVAL; 3388 } 3389 agbno = be32_to_cpu(icl->icl_agbno); 3390 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) { 3391 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno"); 3392 return -EINVAL; 3393 } 3394 isize = be32_to_cpu(icl->icl_isize); 3395 if (isize != mp->m_sb.sb_inodesize) { 3396 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize"); 3397 return -EINVAL; 3398 } 3399 count = be32_to_cpu(icl->icl_count); 3400 if (!count) { 3401 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count"); 3402 return -EINVAL; 3403 } 3404 length = be32_to_cpu(icl->icl_length); 3405 if (!length || length >= mp->m_sb.sb_agblocks) { 3406 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length"); 3407 return -EINVAL; 3408 } 3409 3410 /* 3411 * The inode chunk is either full or sparse and we only support 3412 * m_ialloc_min_blks sized sparse allocations at this time. 3413 */ 3414 if (length != mp->m_ialloc_blks && 3415 length != mp->m_ialloc_min_blks) { 3416 xfs_warn(log->l_mp, 3417 "%s: unsupported chunk length", __FUNCTION__); 3418 return -EINVAL; 3419 } 3420 3421 /* verify inode count is consistent with extent length */ 3422 if ((count >> mp->m_sb.sb_inopblog) != length) { 3423 xfs_warn(log->l_mp, 3424 "%s: inconsistent inode count and chunk length", 3425 __FUNCTION__); 3426 return -EINVAL; 3427 } 3428 3429 /* 3430 * The icreate transaction can cover multiple cluster buffers and these 3431 * buffers could have been freed and reused. Check the individual 3432 * buffers for cancellation so we don't overwrite anything written after 3433 * a cancellation. 3434 */ 3435 blks_per_cluster = xfs_icluster_size_fsb(mp); 3436 bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster); 3437 nbufs = length / blks_per_cluster; 3438 for (i = 0, cancel_count = 0; i < nbufs; i++) { 3439 xfs_daddr_t daddr; 3440 3441 daddr = XFS_AGB_TO_DADDR(mp, agno, 3442 agbno + i * blks_per_cluster); 3443 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0)) 3444 cancel_count++; 3445 } 3446 3447 /* 3448 * We currently only use icreate for a single allocation at a time. This 3449 * means we should expect either all or none of the buffers to be 3450 * cancelled. Be conservative and skip replay if at least one buffer is 3451 * cancelled, but warn the user that something is awry if the buffers 3452 * are not consistent. 3453 * 3454 * XXX: This must be refined to only skip cancelled clusters once we use 3455 * icreate for multiple chunk allocations. 3456 */ 3457 ASSERT(!cancel_count || cancel_count == nbufs); 3458 if (cancel_count) { 3459 if (cancel_count != nbufs) 3460 xfs_warn(mp, 3461 "WARNING: partial inode chunk cancellation, skipped icreate."); 3462 trace_xfs_log_recover_icreate_cancel(log, icl); 3463 return 0; 3464 } 3465 3466 trace_xfs_log_recover_icreate_recover(log, icl); 3467 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno, 3468 length, be32_to_cpu(icl->icl_gen)); 3469 } 3470 3471 STATIC void 3472 xlog_recover_buffer_ra_pass2( 3473 struct xlog *log, 3474 struct xlog_recover_item *item) 3475 { 3476 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr; 3477 struct xfs_mount *mp = log->l_mp; 3478 3479 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno, 3480 buf_f->blf_len, buf_f->blf_flags)) { 3481 return; 3482 } 3483 3484 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno, 3485 buf_f->blf_len, NULL); 3486 } 3487 3488 STATIC void 3489 xlog_recover_inode_ra_pass2( 3490 struct xlog *log, 3491 struct xlog_recover_item *item) 3492 { 3493 struct xfs_inode_log_format ilf_buf; 3494 struct xfs_inode_log_format *ilfp; 3495 struct xfs_mount *mp = log->l_mp; 3496 int error; 3497 3498 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { 3499 ilfp = item->ri_buf[0].i_addr; 3500 } else { 3501 ilfp = &ilf_buf; 3502 memset(ilfp, 0, sizeof(*ilfp)); 3503 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp); 3504 if (error) 3505 return; 3506 } 3507 3508 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0)) 3509 return; 3510 3511 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno, 3512 ilfp->ilf_len, &xfs_inode_buf_ra_ops); 3513 } 3514 3515 STATIC void 3516 xlog_recover_dquot_ra_pass2( 3517 struct xlog *log, 3518 struct xlog_recover_item *item) 3519 { 3520 struct xfs_mount *mp = log->l_mp; 3521 struct xfs_disk_dquot *recddq; 3522 struct xfs_dq_logformat *dq_f; 3523 uint type; 3524 int len; 3525 3526 3527 if (mp->m_qflags == 0) 3528 return; 3529 3530 recddq = item->ri_buf[1].i_addr; 3531 if (recddq == NULL) 3532 return; 3533 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot)) 3534 return; 3535 3536 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 3537 ASSERT(type); 3538 if (log->l_quotaoffs_flag & type) 3539 return; 3540 3541 dq_f = item->ri_buf[0].i_addr; 3542 ASSERT(dq_f); 3543 ASSERT(dq_f->qlf_len == 1); 3544 3545 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len); 3546 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0)) 3547 return; 3548 3549 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len, 3550 &xfs_dquot_buf_ra_ops); 3551 } 3552 3553 STATIC void 3554 xlog_recover_ra_pass2( 3555 struct xlog *log, 3556 struct xlog_recover_item *item) 3557 { 3558 switch (ITEM_TYPE(item)) { 3559 case XFS_LI_BUF: 3560 xlog_recover_buffer_ra_pass2(log, item); 3561 break; 3562 case XFS_LI_INODE: 3563 xlog_recover_inode_ra_pass2(log, item); 3564 break; 3565 case XFS_LI_DQUOT: 3566 xlog_recover_dquot_ra_pass2(log, item); 3567 break; 3568 case XFS_LI_EFI: 3569 case XFS_LI_EFD: 3570 case XFS_LI_QUOTAOFF: 3571 default: 3572 break; 3573 } 3574 } 3575 3576 STATIC int 3577 xlog_recover_commit_pass1( 3578 struct xlog *log, 3579 struct xlog_recover *trans, 3580 struct xlog_recover_item *item) 3581 { 3582 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1); 3583 3584 switch (ITEM_TYPE(item)) { 3585 case XFS_LI_BUF: 3586 return xlog_recover_buffer_pass1(log, item); 3587 case XFS_LI_QUOTAOFF: 3588 return xlog_recover_quotaoff_pass1(log, item); 3589 case XFS_LI_INODE: 3590 case XFS_LI_EFI: 3591 case XFS_LI_EFD: 3592 case XFS_LI_DQUOT: 3593 case XFS_LI_ICREATE: 3594 /* nothing to do in pass 1 */ 3595 return 0; 3596 default: 3597 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 3598 __func__, ITEM_TYPE(item)); 3599 ASSERT(0); 3600 return -EIO; 3601 } 3602 } 3603 3604 STATIC int 3605 xlog_recover_commit_pass2( 3606 struct xlog *log, 3607 struct xlog_recover *trans, 3608 struct list_head *buffer_list, 3609 struct xlog_recover_item *item) 3610 { 3611 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2); 3612 3613 switch (ITEM_TYPE(item)) { 3614 case XFS_LI_BUF: 3615 return xlog_recover_buffer_pass2(log, buffer_list, item, 3616 trans->r_lsn); 3617 case XFS_LI_INODE: 3618 return xlog_recover_inode_pass2(log, buffer_list, item, 3619 trans->r_lsn); 3620 case XFS_LI_EFI: 3621 return xlog_recover_efi_pass2(log, item, trans->r_lsn); 3622 case XFS_LI_EFD: 3623 return xlog_recover_efd_pass2(log, item); 3624 case XFS_LI_DQUOT: 3625 return xlog_recover_dquot_pass2(log, buffer_list, item, 3626 trans->r_lsn); 3627 case XFS_LI_ICREATE: 3628 return xlog_recover_do_icreate_pass2(log, buffer_list, item); 3629 case XFS_LI_QUOTAOFF: 3630 /* nothing to do in pass2 */ 3631 return 0; 3632 default: 3633 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 3634 __func__, ITEM_TYPE(item)); 3635 ASSERT(0); 3636 return -EIO; 3637 } 3638 } 3639 3640 STATIC int 3641 xlog_recover_items_pass2( 3642 struct xlog *log, 3643 struct xlog_recover *trans, 3644 struct list_head *buffer_list, 3645 struct list_head *item_list) 3646 { 3647 struct xlog_recover_item *item; 3648 int error = 0; 3649 3650 list_for_each_entry(item, item_list, ri_list) { 3651 error = xlog_recover_commit_pass2(log, trans, 3652 buffer_list, item); 3653 if (error) 3654 return error; 3655 } 3656 3657 return error; 3658 } 3659 3660 /* 3661 * Perform the transaction. 3662 * 3663 * If the transaction modifies a buffer or inode, do it now. Otherwise, 3664 * EFIs and EFDs get queued up by adding entries into the AIL for them. 3665 */ 3666 STATIC int 3667 xlog_recover_commit_trans( 3668 struct xlog *log, 3669 struct xlog_recover *trans, 3670 int pass) 3671 { 3672 int error = 0; 3673 int error2; 3674 int items_queued = 0; 3675 struct xlog_recover_item *item; 3676 struct xlog_recover_item *next; 3677 LIST_HEAD (buffer_list); 3678 LIST_HEAD (ra_list); 3679 LIST_HEAD (done_list); 3680 3681 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100 3682 3683 hlist_del(&trans->r_list); 3684 3685 error = xlog_recover_reorder_trans(log, trans, pass); 3686 if (error) 3687 return error; 3688 3689 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) { 3690 switch (pass) { 3691 case XLOG_RECOVER_PASS1: 3692 error = xlog_recover_commit_pass1(log, trans, item); 3693 break; 3694 case XLOG_RECOVER_PASS2: 3695 xlog_recover_ra_pass2(log, item); 3696 list_move_tail(&item->ri_list, &ra_list); 3697 items_queued++; 3698 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) { 3699 error = xlog_recover_items_pass2(log, trans, 3700 &buffer_list, &ra_list); 3701 list_splice_tail_init(&ra_list, &done_list); 3702 items_queued = 0; 3703 } 3704 3705 break; 3706 default: 3707 ASSERT(0); 3708 } 3709 3710 if (error) 3711 goto out; 3712 } 3713 3714 out: 3715 if (!list_empty(&ra_list)) { 3716 if (!error) 3717 error = xlog_recover_items_pass2(log, trans, 3718 &buffer_list, &ra_list); 3719 list_splice_tail_init(&ra_list, &done_list); 3720 } 3721 3722 if (!list_empty(&done_list)) 3723 list_splice_init(&done_list, &trans->r_itemq); 3724 3725 error2 = xfs_buf_delwri_submit(&buffer_list); 3726 return error ? error : error2; 3727 } 3728 3729 STATIC void 3730 xlog_recover_add_item( 3731 struct list_head *head) 3732 { 3733 xlog_recover_item_t *item; 3734 3735 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 3736 INIT_LIST_HEAD(&item->ri_list); 3737 list_add_tail(&item->ri_list, head); 3738 } 3739 3740 STATIC int 3741 xlog_recover_add_to_cont_trans( 3742 struct xlog *log, 3743 struct xlog_recover *trans, 3744 char *dp, 3745 int len) 3746 { 3747 xlog_recover_item_t *item; 3748 char *ptr, *old_ptr; 3749 int old_len; 3750 3751 /* 3752 * If the transaction is empty, the header was split across this and the 3753 * previous record. Copy the rest of the header. 3754 */ 3755 if (list_empty(&trans->r_itemq)) { 3756 ASSERT(len <= sizeof(struct xfs_trans_header)); 3757 if (len > sizeof(struct xfs_trans_header)) { 3758 xfs_warn(log->l_mp, "%s: bad header length", __func__); 3759 return -EIO; 3760 } 3761 3762 xlog_recover_add_item(&trans->r_itemq); 3763 ptr = (char *)&trans->r_theader + 3764 sizeof(struct xfs_trans_header) - len; 3765 memcpy(ptr, dp, len); 3766 return 0; 3767 } 3768 3769 /* take the tail entry */ 3770 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 3771 3772 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 3773 old_len = item->ri_buf[item->ri_cnt-1].i_len; 3774 3775 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP); 3776 memcpy(&ptr[old_len], dp, len); 3777 item->ri_buf[item->ri_cnt-1].i_len += len; 3778 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 3779 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 3780 return 0; 3781 } 3782 3783 /* 3784 * The next region to add is the start of a new region. It could be 3785 * a whole region or it could be the first part of a new region. Because 3786 * of this, the assumption here is that the type and size fields of all 3787 * format structures fit into the first 32 bits of the structure. 3788 * 3789 * This works because all regions must be 32 bit aligned. Therefore, we 3790 * either have both fields or we have neither field. In the case we have 3791 * neither field, the data part of the region is zero length. We only have 3792 * a log_op_header and can throw away the header since a new one will appear 3793 * later. If we have at least 4 bytes, then we can determine how many regions 3794 * will appear in the current log item. 3795 */ 3796 STATIC int 3797 xlog_recover_add_to_trans( 3798 struct xlog *log, 3799 struct xlog_recover *trans, 3800 char *dp, 3801 int len) 3802 { 3803 xfs_inode_log_format_t *in_f; /* any will do */ 3804 xlog_recover_item_t *item; 3805 char *ptr; 3806 3807 if (!len) 3808 return 0; 3809 if (list_empty(&trans->r_itemq)) { 3810 /* we need to catch log corruptions here */ 3811 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 3812 xfs_warn(log->l_mp, "%s: bad header magic number", 3813 __func__); 3814 ASSERT(0); 3815 return -EIO; 3816 } 3817 3818 if (len > sizeof(struct xfs_trans_header)) { 3819 xfs_warn(log->l_mp, "%s: bad header length", __func__); 3820 ASSERT(0); 3821 return -EIO; 3822 } 3823 3824 /* 3825 * The transaction header can be arbitrarily split across op 3826 * records. If we don't have the whole thing here, copy what we 3827 * do have and handle the rest in the next record. 3828 */ 3829 if (len == sizeof(struct xfs_trans_header)) 3830 xlog_recover_add_item(&trans->r_itemq); 3831 memcpy(&trans->r_theader, dp, len); 3832 return 0; 3833 } 3834 3835 ptr = kmem_alloc(len, KM_SLEEP); 3836 memcpy(ptr, dp, len); 3837 in_f = (xfs_inode_log_format_t *)ptr; 3838 3839 /* take the tail entry */ 3840 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 3841 if (item->ri_total != 0 && 3842 item->ri_total == item->ri_cnt) { 3843 /* tail item is in use, get a new one */ 3844 xlog_recover_add_item(&trans->r_itemq); 3845 item = list_entry(trans->r_itemq.prev, 3846 xlog_recover_item_t, ri_list); 3847 } 3848 3849 if (item->ri_total == 0) { /* first region to be added */ 3850 if (in_f->ilf_size == 0 || 3851 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 3852 xfs_warn(log->l_mp, 3853 "bad number of regions (%d) in inode log format", 3854 in_f->ilf_size); 3855 ASSERT(0); 3856 kmem_free(ptr); 3857 return -EIO; 3858 } 3859 3860 item->ri_total = in_f->ilf_size; 3861 item->ri_buf = 3862 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 3863 KM_SLEEP); 3864 } 3865 ASSERT(item->ri_total > item->ri_cnt); 3866 /* Description region is ri_buf[0] */ 3867 item->ri_buf[item->ri_cnt].i_addr = ptr; 3868 item->ri_buf[item->ri_cnt].i_len = len; 3869 item->ri_cnt++; 3870 trace_xfs_log_recover_item_add(log, trans, item, 0); 3871 return 0; 3872 } 3873 3874 /* 3875 * Free up any resources allocated by the transaction 3876 * 3877 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 3878 */ 3879 STATIC void 3880 xlog_recover_free_trans( 3881 struct xlog_recover *trans) 3882 { 3883 xlog_recover_item_t *item, *n; 3884 int i; 3885 3886 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 3887 /* Free the regions in the item. */ 3888 list_del(&item->ri_list); 3889 for (i = 0; i < item->ri_cnt; i++) 3890 kmem_free(item->ri_buf[i].i_addr); 3891 /* Free the item itself */ 3892 kmem_free(item->ri_buf); 3893 kmem_free(item); 3894 } 3895 /* Free the transaction recover structure */ 3896 kmem_free(trans); 3897 } 3898 3899 /* 3900 * On error or completion, trans is freed. 3901 */ 3902 STATIC int 3903 xlog_recovery_process_trans( 3904 struct xlog *log, 3905 struct xlog_recover *trans, 3906 char *dp, 3907 unsigned int len, 3908 unsigned int flags, 3909 int pass) 3910 { 3911 int error = 0; 3912 bool freeit = false; 3913 3914 /* mask off ophdr transaction container flags */ 3915 flags &= ~XLOG_END_TRANS; 3916 if (flags & XLOG_WAS_CONT_TRANS) 3917 flags &= ~XLOG_CONTINUE_TRANS; 3918 3919 /* 3920 * Callees must not free the trans structure. We'll decide if we need to 3921 * free it or not based on the operation being done and it's result. 3922 */ 3923 switch (flags) { 3924 /* expected flag values */ 3925 case 0: 3926 case XLOG_CONTINUE_TRANS: 3927 error = xlog_recover_add_to_trans(log, trans, dp, len); 3928 break; 3929 case XLOG_WAS_CONT_TRANS: 3930 error = xlog_recover_add_to_cont_trans(log, trans, dp, len); 3931 break; 3932 case XLOG_COMMIT_TRANS: 3933 error = xlog_recover_commit_trans(log, trans, pass); 3934 /* success or fail, we are now done with this transaction. */ 3935 freeit = true; 3936 break; 3937 3938 /* unexpected flag values */ 3939 case XLOG_UNMOUNT_TRANS: 3940 /* just skip trans */ 3941 xfs_warn(log->l_mp, "%s: Unmount LR", __func__); 3942 freeit = true; 3943 break; 3944 case XLOG_START_TRANS: 3945 default: 3946 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags); 3947 ASSERT(0); 3948 error = -EIO; 3949 break; 3950 } 3951 if (error || freeit) 3952 xlog_recover_free_trans(trans); 3953 return error; 3954 } 3955 3956 /* 3957 * Lookup the transaction recovery structure associated with the ID in the 3958 * current ophdr. If the transaction doesn't exist and the start flag is set in 3959 * the ophdr, then allocate a new transaction for future ID matches to find. 3960 * Either way, return what we found during the lookup - an existing transaction 3961 * or nothing. 3962 */ 3963 STATIC struct xlog_recover * 3964 xlog_recover_ophdr_to_trans( 3965 struct hlist_head rhash[], 3966 struct xlog_rec_header *rhead, 3967 struct xlog_op_header *ohead) 3968 { 3969 struct xlog_recover *trans; 3970 xlog_tid_t tid; 3971 struct hlist_head *rhp; 3972 3973 tid = be32_to_cpu(ohead->oh_tid); 3974 rhp = &rhash[XLOG_RHASH(tid)]; 3975 hlist_for_each_entry(trans, rhp, r_list) { 3976 if (trans->r_log_tid == tid) 3977 return trans; 3978 } 3979 3980 /* 3981 * skip over non-start transaction headers - we could be 3982 * processing slack space before the next transaction starts 3983 */ 3984 if (!(ohead->oh_flags & XLOG_START_TRANS)) 3985 return NULL; 3986 3987 ASSERT(be32_to_cpu(ohead->oh_len) == 0); 3988 3989 /* 3990 * This is a new transaction so allocate a new recovery container to 3991 * hold the recovery ops that will follow. 3992 */ 3993 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP); 3994 trans->r_log_tid = tid; 3995 trans->r_lsn = be64_to_cpu(rhead->h_lsn); 3996 INIT_LIST_HEAD(&trans->r_itemq); 3997 INIT_HLIST_NODE(&trans->r_list); 3998 hlist_add_head(&trans->r_list, rhp); 3999 4000 /* 4001 * Nothing more to do for this ophdr. Items to be added to this new 4002 * transaction will be in subsequent ophdr containers. 4003 */ 4004 return NULL; 4005 } 4006 4007 STATIC int 4008 xlog_recover_process_ophdr( 4009 struct xlog *log, 4010 struct hlist_head rhash[], 4011 struct xlog_rec_header *rhead, 4012 struct xlog_op_header *ohead, 4013 char *dp, 4014 char *end, 4015 int pass) 4016 { 4017 struct xlog_recover *trans; 4018 unsigned int len; 4019 4020 /* Do we understand who wrote this op? */ 4021 if (ohead->oh_clientid != XFS_TRANSACTION && 4022 ohead->oh_clientid != XFS_LOG) { 4023 xfs_warn(log->l_mp, "%s: bad clientid 0x%x", 4024 __func__, ohead->oh_clientid); 4025 ASSERT(0); 4026 return -EIO; 4027 } 4028 4029 /* 4030 * Check the ophdr contains all the data it is supposed to contain. 4031 */ 4032 len = be32_to_cpu(ohead->oh_len); 4033 if (dp + len > end) { 4034 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len); 4035 WARN_ON(1); 4036 return -EIO; 4037 } 4038 4039 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead); 4040 if (!trans) { 4041 /* nothing to do, so skip over this ophdr */ 4042 return 0; 4043 } 4044 4045 return xlog_recovery_process_trans(log, trans, dp, len, 4046 ohead->oh_flags, pass); 4047 } 4048 4049 /* 4050 * There are two valid states of the r_state field. 0 indicates that the 4051 * transaction structure is in a normal state. We have either seen the 4052 * start of the transaction or the last operation we added was not a partial 4053 * operation. If the last operation we added to the transaction was a 4054 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 4055 * 4056 * NOTE: skip LRs with 0 data length. 4057 */ 4058 STATIC int 4059 xlog_recover_process_data( 4060 struct xlog *log, 4061 struct hlist_head rhash[], 4062 struct xlog_rec_header *rhead, 4063 char *dp, 4064 int pass) 4065 { 4066 struct xlog_op_header *ohead; 4067 char *end; 4068 int num_logops; 4069 int error; 4070 4071 end = dp + be32_to_cpu(rhead->h_len); 4072 num_logops = be32_to_cpu(rhead->h_num_logops); 4073 4074 /* check the log format matches our own - else we can't recover */ 4075 if (xlog_header_check_recover(log->l_mp, rhead)) 4076 return -EIO; 4077 4078 while ((dp < end) && num_logops) { 4079 4080 ohead = (struct xlog_op_header *)dp; 4081 dp += sizeof(*ohead); 4082 ASSERT(dp <= end); 4083 4084 /* errors will abort recovery */ 4085 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead, 4086 dp, end, pass); 4087 if (error) 4088 return error; 4089 4090 dp += be32_to_cpu(ohead->oh_len); 4091 num_logops--; 4092 } 4093 return 0; 4094 } 4095 4096 /* 4097 * Process an extent free intent item that was recovered from 4098 * the log. We need to free the extents that it describes. 4099 */ 4100 STATIC int 4101 xlog_recover_process_efi( 4102 xfs_mount_t *mp, 4103 xfs_efi_log_item_t *efip) 4104 { 4105 xfs_efd_log_item_t *efdp; 4106 xfs_trans_t *tp; 4107 int i; 4108 int error = 0; 4109 xfs_extent_t *extp; 4110 xfs_fsblock_t startblock_fsb; 4111 4112 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)); 4113 4114 /* 4115 * First check the validity of the extents described by the 4116 * EFI. If any are bad, then assume that all are bad and 4117 * just toss the EFI. 4118 */ 4119 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 4120 extp = &(efip->efi_format.efi_extents[i]); 4121 startblock_fsb = XFS_BB_TO_FSB(mp, 4122 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 4123 if ((startblock_fsb == 0) || 4124 (extp->ext_len == 0) || 4125 (startblock_fsb >= mp->m_sb.sb_dblocks) || 4126 (extp->ext_len >= mp->m_sb.sb_agblocks)) { 4127 /* 4128 * This will pull the EFI from the AIL and 4129 * free the memory associated with it. 4130 */ 4131 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); 4132 xfs_efi_release(efip); 4133 return -EIO; 4134 } 4135 } 4136 4137 tp = xfs_trans_alloc(mp, 0); 4138 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0); 4139 if (error) 4140 goto abort_error; 4141 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 4142 4143 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 4144 extp = &(efip->efi_format.efi_extents[i]); 4145 error = xfs_trans_free_extent(tp, efdp, extp->ext_start, 4146 extp->ext_len); 4147 if (error) 4148 goto abort_error; 4149 4150 } 4151 4152 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); 4153 error = xfs_trans_commit(tp); 4154 return error; 4155 4156 abort_error: 4157 xfs_trans_cancel(tp); 4158 return error; 4159 } 4160 4161 /* 4162 * When this is called, all of the EFIs which did not have 4163 * corresponding EFDs should be in the AIL. What we do now 4164 * is free the extents associated with each one. 4165 * 4166 * Since we process the EFIs in normal transactions, they 4167 * will be removed at some point after the commit. This prevents 4168 * us from just walking down the list processing each one. 4169 * We'll use a flag in the EFI to skip those that we've already 4170 * processed and use the AIL iteration mechanism's generation 4171 * count to try to speed this up at least a bit. 4172 * 4173 * When we start, we know that the EFIs are the only things in 4174 * the AIL. As we process them, however, other items are added 4175 * to the AIL. Since everything added to the AIL must come after 4176 * everything already in the AIL, we stop processing as soon as 4177 * we see something other than an EFI in the AIL. 4178 */ 4179 STATIC int 4180 xlog_recover_process_efis( 4181 struct xlog *log) 4182 { 4183 struct xfs_log_item *lip; 4184 struct xfs_efi_log_item *efip; 4185 int error = 0; 4186 struct xfs_ail_cursor cur; 4187 struct xfs_ail *ailp; 4188 4189 ailp = log->l_ailp; 4190 spin_lock(&ailp->xa_lock); 4191 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 4192 while (lip != NULL) { 4193 /* 4194 * We're done when we see something other than an EFI. 4195 * There should be no EFIs left in the AIL now. 4196 */ 4197 if (lip->li_type != XFS_LI_EFI) { 4198 #ifdef DEBUG 4199 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 4200 ASSERT(lip->li_type != XFS_LI_EFI); 4201 #endif 4202 break; 4203 } 4204 4205 /* 4206 * Skip EFIs that we've already processed. 4207 */ 4208 efip = container_of(lip, struct xfs_efi_log_item, efi_item); 4209 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) { 4210 lip = xfs_trans_ail_cursor_next(ailp, &cur); 4211 continue; 4212 } 4213 4214 spin_unlock(&ailp->xa_lock); 4215 error = xlog_recover_process_efi(log->l_mp, efip); 4216 spin_lock(&ailp->xa_lock); 4217 if (error) 4218 goto out; 4219 lip = xfs_trans_ail_cursor_next(ailp, &cur); 4220 } 4221 out: 4222 xfs_trans_ail_cursor_done(&cur); 4223 spin_unlock(&ailp->xa_lock); 4224 return error; 4225 } 4226 4227 /* 4228 * A cancel occurs when the mount has failed and we're bailing out. Release all 4229 * pending EFIs so they don't pin the AIL. 4230 */ 4231 STATIC int 4232 xlog_recover_cancel_efis( 4233 struct xlog *log) 4234 { 4235 struct xfs_log_item *lip; 4236 struct xfs_efi_log_item *efip; 4237 int error = 0; 4238 struct xfs_ail_cursor cur; 4239 struct xfs_ail *ailp; 4240 4241 ailp = log->l_ailp; 4242 spin_lock(&ailp->xa_lock); 4243 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 4244 while (lip != NULL) { 4245 /* 4246 * We're done when we see something other than an EFI. 4247 * There should be no EFIs left in the AIL now. 4248 */ 4249 if (lip->li_type != XFS_LI_EFI) { 4250 #ifdef DEBUG 4251 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 4252 ASSERT(lip->li_type != XFS_LI_EFI); 4253 #endif 4254 break; 4255 } 4256 4257 efip = container_of(lip, struct xfs_efi_log_item, efi_item); 4258 4259 spin_unlock(&ailp->xa_lock); 4260 xfs_efi_release(efip); 4261 spin_lock(&ailp->xa_lock); 4262 4263 lip = xfs_trans_ail_cursor_next(ailp, &cur); 4264 } 4265 4266 xfs_trans_ail_cursor_done(&cur); 4267 spin_unlock(&ailp->xa_lock); 4268 return error; 4269 } 4270 4271 /* 4272 * This routine performs a transaction to null out a bad inode pointer 4273 * in an agi unlinked inode hash bucket. 4274 */ 4275 STATIC void 4276 xlog_recover_clear_agi_bucket( 4277 xfs_mount_t *mp, 4278 xfs_agnumber_t agno, 4279 int bucket) 4280 { 4281 xfs_trans_t *tp; 4282 xfs_agi_t *agi; 4283 xfs_buf_t *agibp; 4284 int offset; 4285 int error; 4286 4287 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); 4288 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0); 4289 if (error) 4290 goto out_abort; 4291 4292 error = xfs_read_agi(mp, tp, agno, &agibp); 4293 if (error) 4294 goto out_abort; 4295 4296 agi = XFS_BUF_TO_AGI(agibp); 4297 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 4298 offset = offsetof(xfs_agi_t, agi_unlinked) + 4299 (sizeof(xfs_agino_t) * bucket); 4300 xfs_trans_log_buf(tp, agibp, offset, 4301 (offset + sizeof(xfs_agino_t) - 1)); 4302 4303 error = xfs_trans_commit(tp); 4304 if (error) 4305 goto out_error; 4306 return; 4307 4308 out_abort: 4309 xfs_trans_cancel(tp); 4310 out_error: 4311 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); 4312 return; 4313 } 4314 4315 STATIC xfs_agino_t 4316 xlog_recover_process_one_iunlink( 4317 struct xfs_mount *mp, 4318 xfs_agnumber_t agno, 4319 xfs_agino_t agino, 4320 int bucket) 4321 { 4322 struct xfs_buf *ibp; 4323 struct xfs_dinode *dip; 4324 struct xfs_inode *ip; 4325 xfs_ino_t ino; 4326 int error; 4327 4328 ino = XFS_AGINO_TO_INO(mp, agno, agino); 4329 error = xfs_iget(mp, NULL, ino, 0, 0, &ip); 4330 if (error) 4331 goto fail; 4332 4333 /* 4334 * Get the on disk inode to find the next inode in the bucket. 4335 */ 4336 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0); 4337 if (error) 4338 goto fail_iput; 4339 4340 ASSERT(ip->i_d.di_nlink == 0); 4341 ASSERT(ip->i_d.di_mode != 0); 4342 4343 /* setup for the next pass */ 4344 agino = be32_to_cpu(dip->di_next_unlinked); 4345 xfs_buf_relse(ibp); 4346 4347 /* 4348 * Prevent any DMAPI event from being sent when the reference on 4349 * the inode is dropped. 4350 */ 4351 ip->i_d.di_dmevmask = 0; 4352 4353 IRELE(ip); 4354 return agino; 4355 4356 fail_iput: 4357 IRELE(ip); 4358 fail: 4359 /* 4360 * We can't read in the inode this bucket points to, or this inode 4361 * is messed up. Just ditch this bucket of inodes. We will lose 4362 * some inodes and space, but at least we won't hang. 4363 * 4364 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 4365 * clear the inode pointer in the bucket. 4366 */ 4367 xlog_recover_clear_agi_bucket(mp, agno, bucket); 4368 return NULLAGINO; 4369 } 4370 4371 /* 4372 * xlog_iunlink_recover 4373 * 4374 * This is called during recovery to process any inodes which 4375 * we unlinked but not freed when the system crashed. These 4376 * inodes will be on the lists in the AGI blocks. What we do 4377 * here is scan all the AGIs and fully truncate and free any 4378 * inodes found on the lists. Each inode is removed from the 4379 * lists when it has been fully truncated and is freed. The 4380 * freeing of the inode and its removal from the list must be 4381 * atomic. 4382 */ 4383 STATIC void 4384 xlog_recover_process_iunlinks( 4385 struct xlog *log) 4386 { 4387 xfs_mount_t *mp; 4388 xfs_agnumber_t agno; 4389 xfs_agi_t *agi; 4390 xfs_buf_t *agibp; 4391 xfs_agino_t agino; 4392 int bucket; 4393 int error; 4394 uint mp_dmevmask; 4395 4396 mp = log->l_mp; 4397 4398 /* 4399 * Prevent any DMAPI event from being sent while in this function. 4400 */ 4401 mp_dmevmask = mp->m_dmevmask; 4402 mp->m_dmevmask = 0; 4403 4404 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 4405 /* 4406 * Find the agi for this ag. 4407 */ 4408 error = xfs_read_agi(mp, NULL, agno, &agibp); 4409 if (error) { 4410 /* 4411 * AGI is b0rked. Don't process it. 4412 * 4413 * We should probably mark the filesystem as corrupt 4414 * after we've recovered all the ag's we can.... 4415 */ 4416 continue; 4417 } 4418 /* 4419 * Unlock the buffer so that it can be acquired in the normal 4420 * course of the transaction to truncate and free each inode. 4421 * Because we are not racing with anyone else here for the AGI 4422 * buffer, we don't even need to hold it locked to read the 4423 * initial unlinked bucket entries out of the buffer. We keep 4424 * buffer reference though, so that it stays pinned in memory 4425 * while we need the buffer. 4426 */ 4427 agi = XFS_BUF_TO_AGI(agibp); 4428 xfs_buf_unlock(agibp); 4429 4430 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 4431 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 4432 while (agino != NULLAGINO) { 4433 agino = xlog_recover_process_one_iunlink(mp, 4434 agno, agino, bucket); 4435 } 4436 } 4437 xfs_buf_rele(agibp); 4438 } 4439 4440 mp->m_dmevmask = mp_dmevmask; 4441 } 4442 4443 STATIC int 4444 xlog_unpack_data( 4445 struct xlog_rec_header *rhead, 4446 char *dp, 4447 struct xlog *log) 4448 { 4449 int i, j, k; 4450 4451 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 4452 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 4453 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 4454 dp += BBSIZE; 4455 } 4456 4457 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 4458 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 4459 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 4460 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 4461 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 4462 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 4463 dp += BBSIZE; 4464 } 4465 } 4466 4467 return 0; 4468 } 4469 4470 /* 4471 * CRC check, unpack and process a log record. 4472 */ 4473 STATIC int 4474 xlog_recover_process( 4475 struct xlog *log, 4476 struct hlist_head rhash[], 4477 struct xlog_rec_header *rhead, 4478 char *dp, 4479 int pass) 4480 { 4481 int error; 4482 __le32 crc; 4483 4484 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); 4485 4486 /* 4487 * Nothing else to do if this is a CRC verification pass. Just return 4488 * if this a record with a non-zero crc. Unfortunately, mkfs always 4489 * sets h_crc to 0 so we must consider this valid even on v5 supers. 4490 * Otherwise, return EFSBADCRC on failure so the callers up the stack 4491 * know precisely what failed. 4492 */ 4493 if (pass == XLOG_RECOVER_CRCPASS) { 4494 if (rhead->h_crc && crc != le32_to_cpu(rhead->h_crc)) 4495 return -EFSBADCRC; 4496 return 0; 4497 } 4498 4499 /* 4500 * We're in the normal recovery path. Issue a warning if and only if the 4501 * CRC in the header is non-zero. This is an advisory warning and the 4502 * zero CRC check prevents warnings from being emitted when upgrading 4503 * the kernel from one that does not add CRCs by default. 4504 */ 4505 if (crc != le32_to_cpu(rhead->h_crc)) { 4506 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) { 4507 xfs_alert(log->l_mp, 4508 "log record CRC mismatch: found 0x%x, expected 0x%x.", 4509 le32_to_cpu(rhead->h_crc), 4510 le32_to_cpu(crc)); 4511 xfs_hex_dump(dp, 32); 4512 } 4513 4514 /* 4515 * If the filesystem is CRC enabled, this mismatch becomes a 4516 * fatal log corruption failure. 4517 */ 4518 if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) 4519 return -EFSCORRUPTED; 4520 } 4521 4522 error = xlog_unpack_data(rhead, dp, log); 4523 if (error) 4524 return error; 4525 4526 return xlog_recover_process_data(log, rhash, rhead, dp, pass); 4527 } 4528 4529 STATIC int 4530 xlog_valid_rec_header( 4531 struct xlog *log, 4532 struct xlog_rec_header *rhead, 4533 xfs_daddr_t blkno) 4534 { 4535 int hlen; 4536 4537 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) { 4538 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 4539 XFS_ERRLEVEL_LOW, log->l_mp); 4540 return -EFSCORRUPTED; 4541 } 4542 if (unlikely( 4543 (!rhead->h_version || 4544 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { 4545 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", 4546 __func__, be32_to_cpu(rhead->h_version)); 4547 return -EIO; 4548 } 4549 4550 /* LR body must have data or it wouldn't have been written */ 4551 hlen = be32_to_cpu(rhead->h_len); 4552 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 4553 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 4554 XFS_ERRLEVEL_LOW, log->l_mp); 4555 return -EFSCORRUPTED; 4556 } 4557 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 4558 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 4559 XFS_ERRLEVEL_LOW, log->l_mp); 4560 return -EFSCORRUPTED; 4561 } 4562 return 0; 4563 } 4564 4565 /* 4566 * Read the log from tail to head and process the log records found. 4567 * Handle the two cases where the tail and head are in the same cycle 4568 * and where the active portion of the log wraps around the end of 4569 * the physical log separately. The pass parameter is passed through 4570 * to the routines called to process the data and is not looked at 4571 * here. 4572 */ 4573 STATIC int 4574 xlog_do_recovery_pass( 4575 struct xlog *log, 4576 xfs_daddr_t head_blk, 4577 xfs_daddr_t tail_blk, 4578 int pass, 4579 xfs_daddr_t *first_bad) /* out: first bad log rec */ 4580 { 4581 xlog_rec_header_t *rhead; 4582 xfs_daddr_t blk_no; 4583 xfs_daddr_t rhead_blk; 4584 char *offset; 4585 xfs_buf_t *hbp, *dbp; 4586 int error = 0, h_size, h_len; 4587 int bblks, split_bblks; 4588 int hblks, split_hblks, wrapped_hblks; 4589 struct hlist_head rhash[XLOG_RHASH_SIZE]; 4590 4591 ASSERT(head_blk != tail_blk); 4592 rhead_blk = 0; 4593 4594 /* 4595 * Read the header of the tail block and get the iclog buffer size from 4596 * h_size. Use this to tell how many sectors make up the log header. 4597 */ 4598 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 4599 /* 4600 * When using variable length iclogs, read first sector of 4601 * iclog header and extract the header size from it. Get a 4602 * new hbp that is the correct size. 4603 */ 4604 hbp = xlog_get_bp(log, 1); 4605 if (!hbp) 4606 return -ENOMEM; 4607 4608 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 4609 if (error) 4610 goto bread_err1; 4611 4612 rhead = (xlog_rec_header_t *)offset; 4613 error = xlog_valid_rec_header(log, rhead, tail_blk); 4614 if (error) 4615 goto bread_err1; 4616 4617 /* 4618 * xfsprogs has a bug where record length is based on lsunit but 4619 * h_size (iclog size) is hardcoded to 32k. Now that we 4620 * unconditionally CRC verify the unmount record, this means the 4621 * log buffer can be too small for the record and cause an 4622 * overrun. 4623 * 4624 * Detect this condition here. Use lsunit for the buffer size as 4625 * long as this looks like the mkfs case. Otherwise, return an 4626 * error to avoid a buffer overrun. 4627 */ 4628 h_size = be32_to_cpu(rhead->h_size); 4629 h_len = be32_to_cpu(rhead->h_len); 4630 if (h_len > h_size) { 4631 if (h_len <= log->l_mp->m_logbsize && 4632 be32_to_cpu(rhead->h_num_logops) == 1) { 4633 xfs_warn(log->l_mp, 4634 "invalid iclog size (%d bytes), using lsunit (%d bytes)", 4635 h_size, log->l_mp->m_logbsize); 4636 h_size = log->l_mp->m_logbsize; 4637 } else 4638 return -EFSCORRUPTED; 4639 } 4640 4641 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 4642 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 4643 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 4644 if (h_size % XLOG_HEADER_CYCLE_SIZE) 4645 hblks++; 4646 xlog_put_bp(hbp); 4647 hbp = xlog_get_bp(log, hblks); 4648 } else { 4649 hblks = 1; 4650 } 4651 } else { 4652 ASSERT(log->l_sectBBsize == 1); 4653 hblks = 1; 4654 hbp = xlog_get_bp(log, 1); 4655 h_size = XLOG_BIG_RECORD_BSIZE; 4656 } 4657 4658 if (!hbp) 4659 return -ENOMEM; 4660 dbp = xlog_get_bp(log, BTOBB(h_size)); 4661 if (!dbp) { 4662 xlog_put_bp(hbp); 4663 return -ENOMEM; 4664 } 4665 4666 memset(rhash, 0, sizeof(rhash)); 4667 blk_no = rhead_blk = tail_blk; 4668 if (tail_blk > head_blk) { 4669 /* 4670 * Perform recovery around the end of the physical log. 4671 * When the head is not on the same cycle number as the tail, 4672 * we can't do a sequential recovery. 4673 */ 4674 while (blk_no < log->l_logBBsize) { 4675 /* 4676 * Check for header wrapping around physical end-of-log 4677 */ 4678 offset = hbp->b_addr; 4679 split_hblks = 0; 4680 wrapped_hblks = 0; 4681 if (blk_no + hblks <= log->l_logBBsize) { 4682 /* Read header in one read */ 4683 error = xlog_bread(log, blk_no, hblks, hbp, 4684 &offset); 4685 if (error) 4686 goto bread_err2; 4687 } else { 4688 /* This LR is split across physical log end */ 4689 if (blk_no != log->l_logBBsize) { 4690 /* some data before physical log end */ 4691 ASSERT(blk_no <= INT_MAX); 4692 split_hblks = log->l_logBBsize - (int)blk_no; 4693 ASSERT(split_hblks > 0); 4694 error = xlog_bread(log, blk_no, 4695 split_hblks, hbp, 4696 &offset); 4697 if (error) 4698 goto bread_err2; 4699 } 4700 4701 /* 4702 * Note: this black magic still works with 4703 * large sector sizes (non-512) only because: 4704 * - we increased the buffer size originally 4705 * by 1 sector giving us enough extra space 4706 * for the second read; 4707 * - the log start is guaranteed to be sector 4708 * aligned; 4709 * - we read the log end (LR header start) 4710 * _first_, then the log start (LR header end) 4711 * - order is important. 4712 */ 4713 wrapped_hblks = hblks - split_hblks; 4714 error = xlog_bread_offset(log, 0, 4715 wrapped_hblks, hbp, 4716 offset + BBTOB(split_hblks)); 4717 if (error) 4718 goto bread_err2; 4719 } 4720 rhead = (xlog_rec_header_t *)offset; 4721 error = xlog_valid_rec_header(log, rhead, 4722 split_hblks ? blk_no : 0); 4723 if (error) 4724 goto bread_err2; 4725 4726 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 4727 blk_no += hblks; 4728 4729 /* Read in data for log record */ 4730 if (blk_no + bblks <= log->l_logBBsize) { 4731 error = xlog_bread(log, blk_no, bblks, dbp, 4732 &offset); 4733 if (error) 4734 goto bread_err2; 4735 } else { 4736 /* This log record is split across the 4737 * physical end of log */ 4738 offset = dbp->b_addr; 4739 split_bblks = 0; 4740 if (blk_no != log->l_logBBsize) { 4741 /* some data is before the physical 4742 * end of log */ 4743 ASSERT(!wrapped_hblks); 4744 ASSERT(blk_no <= INT_MAX); 4745 split_bblks = 4746 log->l_logBBsize - (int)blk_no; 4747 ASSERT(split_bblks > 0); 4748 error = xlog_bread(log, blk_no, 4749 split_bblks, dbp, 4750 &offset); 4751 if (error) 4752 goto bread_err2; 4753 } 4754 4755 /* 4756 * Note: this black magic still works with 4757 * large sector sizes (non-512) only because: 4758 * - we increased the buffer size originally 4759 * by 1 sector giving us enough extra space 4760 * for the second read; 4761 * - the log start is guaranteed to be sector 4762 * aligned; 4763 * - we read the log end (LR header start) 4764 * _first_, then the log start (LR header end) 4765 * - order is important. 4766 */ 4767 error = xlog_bread_offset(log, 0, 4768 bblks - split_bblks, dbp, 4769 offset + BBTOB(split_bblks)); 4770 if (error) 4771 goto bread_err2; 4772 } 4773 4774 error = xlog_recover_process(log, rhash, rhead, offset, 4775 pass); 4776 if (error) 4777 goto bread_err2; 4778 4779 blk_no += bblks; 4780 rhead_blk = blk_no; 4781 } 4782 4783 ASSERT(blk_no >= log->l_logBBsize); 4784 blk_no -= log->l_logBBsize; 4785 rhead_blk = blk_no; 4786 } 4787 4788 /* read first part of physical log */ 4789 while (blk_no < head_blk) { 4790 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 4791 if (error) 4792 goto bread_err2; 4793 4794 rhead = (xlog_rec_header_t *)offset; 4795 error = xlog_valid_rec_header(log, rhead, blk_no); 4796 if (error) 4797 goto bread_err2; 4798 4799 /* blocks in data section */ 4800 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 4801 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 4802 &offset); 4803 if (error) 4804 goto bread_err2; 4805 4806 error = xlog_recover_process(log, rhash, rhead, offset, pass); 4807 if (error) 4808 goto bread_err2; 4809 4810 blk_no += bblks + hblks; 4811 rhead_blk = blk_no; 4812 } 4813 4814 bread_err2: 4815 xlog_put_bp(dbp); 4816 bread_err1: 4817 xlog_put_bp(hbp); 4818 4819 if (error && first_bad) 4820 *first_bad = rhead_blk; 4821 4822 return error; 4823 } 4824 4825 /* 4826 * Do the recovery of the log. We actually do this in two phases. 4827 * The two passes are necessary in order to implement the function 4828 * of cancelling a record written into the log. The first pass 4829 * determines those things which have been cancelled, and the 4830 * second pass replays log items normally except for those which 4831 * have been cancelled. The handling of the replay and cancellations 4832 * takes place in the log item type specific routines. 4833 * 4834 * The table of items which have cancel records in the log is allocated 4835 * and freed at this level, since only here do we know when all of 4836 * the log recovery has been completed. 4837 */ 4838 STATIC int 4839 xlog_do_log_recovery( 4840 struct xlog *log, 4841 xfs_daddr_t head_blk, 4842 xfs_daddr_t tail_blk) 4843 { 4844 int error, i; 4845 4846 ASSERT(head_blk != tail_blk); 4847 4848 /* 4849 * First do a pass to find all of the cancelled buf log items. 4850 * Store them in the buf_cancel_table for use in the second pass. 4851 */ 4852 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * 4853 sizeof(struct list_head), 4854 KM_SLEEP); 4855 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 4856 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); 4857 4858 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 4859 XLOG_RECOVER_PASS1, NULL); 4860 if (error != 0) { 4861 kmem_free(log->l_buf_cancel_table); 4862 log->l_buf_cancel_table = NULL; 4863 return error; 4864 } 4865 /* 4866 * Then do a second pass to actually recover the items in the log. 4867 * When it is complete free the table of buf cancel items. 4868 */ 4869 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 4870 XLOG_RECOVER_PASS2, NULL); 4871 #ifdef DEBUG 4872 if (!error) { 4873 int i; 4874 4875 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 4876 ASSERT(list_empty(&log->l_buf_cancel_table[i])); 4877 } 4878 #endif /* DEBUG */ 4879 4880 kmem_free(log->l_buf_cancel_table); 4881 log->l_buf_cancel_table = NULL; 4882 4883 return error; 4884 } 4885 4886 /* 4887 * Do the actual recovery 4888 */ 4889 STATIC int 4890 xlog_do_recover( 4891 struct xlog *log, 4892 xfs_daddr_t head_blk, 4893 xfs_daddr_t tail_blk) 4894 { 4895 int error; 4896 xfs_buf_t *bp; 4897 xfs_sb_t *sbp; 4898 4899 /* 4900 * First replay the images in the log. 4901 */ 4902 error = xlog_do_log_recovery(log, head_blk, tail_blk); 4903 if (error) 4904 return error; 4905 4906 /* 4907 * If IO errors happened during recovery, bail out. 4908 */ 4909 if (XFS_FORCED_SHUTDOWN(log->l_mp)) { 4910 return -EIO; 4911 } 4912 4913 /* 4914 * We now update the tail_lsn since much of the recovery has completed 4915 * and there may be space available to use. If there were no extent 4916 * or iunlinks, we can free up the entire log and set the tail_lsn to 4917 * be the last_sync_lsn. This was set in xlog_find_tail to be the 4918 * lsn of the last known good LR on disk. If there are extent frees 4919 * or iunlinks they will have some entries in the AIL; so we look at 4920 * the AIL to determine how to set the tail_lsn. 4921 */ 4922 xlog_assign_tail_lsn(log->l_mp); 4923 4924 /* 4925 * Now that we've finished replaying all buffer and inode 4926 * updates, re-read in the superblock and reverify it. 4927 */ 4928 bp = xfs_getsb(log->l_mp, 0); 4929 XFS_BUF_UNDONE(bp); 4930 ASSERT(!(XFS_BUF_ISWRITE(bp))); 4931 XFS_BUF_READ(bp); 4932 XFS_BUF_UNASYNC(bp); 4933 bp->b_ops = &xfs_sb_buf_ops; 4934 4935 error = xfs_buf_submit_wait(bp); 4936 if (error) { 4937 if (!XFS_FORCED_SHUTDOWN(log->l_mp)) { 4938 xfs_buf_ioerror_alert(bp, __func__); 4939 ASSERT(0); 4940 } 4941 xfs_buf_relse(bp); 4942 return error; 4943 } 4944 4945 /* Convert superblock from on-disk format */ 4946 sbp = &log->l_mp->m_sb; 4947 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 4948 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); 4949 ASSERT(xfs_sb_good_version(sbp)); 4950 xfs_reinit_percpu_counters(log->l_mp); 4951 4952 xfs_buf_relse(bp); 4953 4954 4955 xlog_recover_check_summary(log); 4956 4957 /* Normal transactions can now occur */ 4958 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 4959 return 0; 4960 } 4961 4962 /* 4963 * Perform recovery and re-initialize some log variables in xlog_find_tail. 4964 * 4965 * Return error or zero. 4966 */ 4967 int 4968 xlog_recover( 4969 struct xlog *log) 4970 { 4971 xfs_daddr_t head_blk, tail_blk; 4972 int error; 4973 4974 /* find the tail of the log */ 4975 error = xlog_find_tail(log, &head_blk, &tail_blk); 4976 if (error) 4977 return error; 4978 4979 /* 4980 * The superblock was read before the log was available and thus the LSN 4981 * could not be verified. Check the superblock LSN against the current 4982 * LSN now that it's known. 4983 */ 4984 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) && 4985 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn)) 4986 return -EINVAL; 4987 4988 if (tail_blk != head_blk) { 4989 /* There used to be a comment here: 4990 * 4991 * disallow recovery on read-only mounts. note -- mount 4992 * checks for ENOSPC and turns it into an intelligent 4993 * error message. 4994 * ...but this is no longer true. Now, unless you specify 4995 * NORECOVERY (in which case this function would never be 4996 * called), we just go ahead and recover. We do this all 4997 * under the vfs layer, so we can get away with it unless 4998 * the device itself is read-only, in which case we fail. 4999 */ 5000 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 5001 return error; 5002 } 5003 5004 /* 5005 * Version 5 superblock log feature mask validation. We know the 5006 * log is dirty so check if there are any unknown log features 5007 * in what we need to recover. If there are unknown features 5008 * (e.g. unsupported transactions, then simply reject the 5009 * attempt at recovery before touching anything. 5010 */ 5011 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 && 5012 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, 5013 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { 5014 xfs_warn(log->l_mp, 5015 "Superblock has unknown incompatible log features (0x%x) enabled.", 5016 (log->l_mp->m_sb.sb_features_log_incompat & 5017 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 5018 xfs_warn(log->l_mp, 5019 "The log can not be fully and/or safely recovered by this kernel."); 5020 xfs_warn(log->l_mp, 5021 "Please recover the log on a kernel that supports the unknown features."); 5022 return -EINVAL; 5023 } 5024 5025 /* 5026 * Delay log recovery if the debug hook is set. This is debug 5027 * instrumention to coordinate simulation of I/O failures with 5028 * log recovery. 5029 */ 5030 if (xfs_globals.log_recovery_delay) { 5031 xfs_notice(log->l_mp, 5032 "Delaying log recovery for %d seconds.", 5033 xfs_globals.log_recovery_delay); 5034 msleep(xfs_globals.log_recovery_delay * 1000); 5035 } 5036 5037 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", 5038 log->l_mp->m_logname ? log->l_mp->m_logname 5039 : "internal"); 5040 5041 error = xlog_do_recover(log, head_blk, tail_blk); 5042 log->l_flags |= XLOG_RECOVERY_NEEDED; 5043 } 5044 return error; 5045 } 5046 5047 /* 5048 * In the first part of recovery we replay inodes and buffers and build 5049 * up the list of extent free items which need to be processed. Here 5050 * we process the extent free items and clean up the on disk unlinked 5051 * inode lists. This is separated from the first part of recovery so 5052 * that the root and real-time bitmap inodes can be read in from disk in 5053 * between the two stages. This is necessary so that we can free space 5054 * in the real-time portion of the file system. 5055 */ 5056 int 5057 xlog_recover_finish( 5058 struct xlog *log) 5059 { 5060 /* 5061 * Now we're ready to do the transactions needed for the 5062 * rest of recovery. Start with completing all the extent 5063 * free intent records and then process the unlinked inode 5064 * lists. At this point, we essentially run in normal mode 5065 * except that we're still performing recovery actions 5066 * rather than accepting new requests. 5067 */ 5068 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 5069 int error; 5070 error = xlog_recover_process_efis(log); 5071 if (error) { 5072 xfs_alert(log->l_mp, "Failed to recover EFIs"); 5073 return error; 5074 } 5075 /* 5076 * Sync the log to get all the EFIs out of the AIL. 5077 * This isn't absolutely necessary, but it helps in 5078 * case the unlink transactions would have problems 5079 * pushing the EFIs out of the way. 5080 */ 5081 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 5082 5083 xlog_recover_process_iunlinks(log); 5084 5085 xlog_recover_check_summary(log); 5086 5087 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", 5088 log->l_mp->m_logname ? log->l_mp->m_logname 5089 : "internal"); 5090 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 5091 } else { 5092 xfs_info(log->l_mp, "Ending clean mount"); 5093 } 5094 return 0; 5095 } 5096 5097 int 5098 xlog_recover_cancel( 5099 struct xlog *log) 5100 { 5101 int error = 0; 5102 5103 if (log->l_flags & XLOG_RECOVERY_NEEDED) 5104 error = xlog_recover_cancel_efis(log); 5105 5106 return error; 5107 } 5108 5109 #if defined(DEBUG) 5110 /* 5111 * Read all of the agf and agi counters and check that they 5112 * are consistent with the superblock counters. 5113 */ 5114 void 5115 xlog_recover_check_summary( 5116 struct xlog *log) 5117 { 5118 xfs_mount_t *mp; 5119 xfs_agf_t *agfp; 5120 xfs_buf_t *agfbp; 5121 xfs_buf_t *agibp; 5122 xfs_agnumber_t agno; 5123 __uint64_t freeblks; 5124 __uint64_t itotal; 5125 __uint64_t ifree; 5126 int error; 5127 5128 mp = log->l_mp; 5129 5130 freeblks = 0LL; 5131 itotal = 0LL; 5132 ifree = 0LL; 5133 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 5134 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 5135 if (error) { 5136 xfs_alert(mp, "%s agf read failed agno %d error %d", 5137 __func__, agno, error); 5138 } else { 5139 agfp = XFS_BUF_TO_AGF(agfbp); 5140 freeblks += be32_to_cpu(agfp->agf_freeblks) + 5141 be32_to_cpu(agfp->agf_flcount); 5142 xfs_buf_relse(agfbp); 5143 } 5144 5145 error = xfs_read_agi(mp, NULL, agno, &agibp); 5146 if (error) { 5147 xfs_alert(mp, "%s agi read failed agno %d error %d", 5148 __func__, agno, error); 5149 } else { 5150 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 5151 5152 itotal += be32_to_cpu(agi->agi_count); 5153 ifree += be32_to_cpu(agi->agi_freecount); 5154 xfs_buf_relse(agibp); 5155 } 5156 } 5157 } 5158 #endif /* DEBUG */ 5159