xref: /openbmc/linux/fs/xfs/xfs_log_recover.c (revision 8c749ce9)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_trans.h"
31 #include "xfs_log.h"
32 #include "xfs_log_priv.h"
33 #include "xfs_log_recover.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_extfree_item.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_alloc.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_quota.h"
40 #include "xfs_cksum.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_bmap_btree.h"
44 #include "xfs_error.h"
45 #include "xfs_dir2.h"
46 
47 #define BLK_AVG(blk1, blk2)	((blk1+blk2) >> 1)
48 
49 STATIC int
50 xlog_find_zeroed(
51 	struct xlog	*,
52 	xfs_daddr_t	*);
53 STATIC int
54 xlog_clear_stale_blocks(
55 	struct xlog	*,
56 	xfs_lsn_t);
57 #if defined(DEBUG)
58 STATIC void
59 xlog_recover_check_summary(
60 	struct xlog *);
61 #else
62 #define	xlog_recover_check_summary(log)
63 #endif
64 STATIC int
65 xlog_do_recovery_pass(
66         struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
67 
68 /*
69  * This structure is used during recovery to record the buf log items which
70  * have been canceled and should not be replayed.
71  */
72 struct xfs_buf_cancel {
73 	xfs_daddr_t		bc_blkno;
74 	uint			bc_len;
75 	int			bc_refcount;
76 	struct list_head	bc_list;
77 };
78 
79 /*
80  * Sector aligned buffer routines for buffer create/read/write/access
81  */
82 
83 /*
84  * Verify the given count of basic blocks is valid number of blocks
85  * to specify for an operation involving the given XFS log buffer.
86  * Returns nonzero if the count is valid, 0 otherwise.
87  */
88 
89 static inline int
90 xlog_buf_bbcount_valid(
91 	struct xlog	*log,
92 	int		bbcount)
93 {
94 	return bbcount > 0 && bbcount <= log->l_logBBsize;
95 }
96 
97 /*
98  * Allocate a buffer to hold log data.  The buffer needs to be able
99  * to map to a range of nbblks basic blocks at any valid (basic
100  * block) offset within the log.
101  */
102 STATIC xfs_buf_t *
103 xlog_get_bp(
104 	struct xlog	*log,
105 	int		nbblks)
106 {
107 	struct xfs_buf	*bp;
108 
109 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
110 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
111 			nbblks);
112 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
113 		return NULL;
114 	}
115 
116 	/*
117 	 * We do log I/O in units of log sectors (a power-of-2
118 	 * multiple of the basic block size), so we round up the
119 	 * requested size to accommodate the basic blocks required
120 	 * for complete log sectors.
121 	 *
122 	 * In addition, the buffer may be used for a non-sector-
123 	 * aligned block offset, in which case an I/O of the
124 	 * requested size could extend beyond the end of the
125 	 * buffer.  If the requested size is only 1 basic block it
126 	 * will never straddle a sector boundary, so this won't be
127 	 * an issue.  Nor will this be a problem if the log I/O is
128 	 * done in basic blocks (sector size 1).  But otherwise we
129 	 * extend the buffer by one extra log sector to ensure
130 	 * there's space to accommodate this possibility.
131 	 */
132 	if (nbblks > 1 && log->l_sectBBsize > 1)
133 		nbblks += log->l_sectBBsize;
134 	nbblks = round_up(nbblks, log->l_sectBBsize);
135 
136 	bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
137 	if (bp)
138 		xfs_buf_unlock(bp);
139 	return bp;
140 }
141 
142 STATIC void
143 xlog_put_bp(
144 	xfs_buf_t	*bp)
145 {
146 	xfs_buf_free(bp);
147 }
148 
149 /*
150  * Return the address of the start of the given block number's data
151  * in a log buffer.  The buffer covers a log sector-aligned region.
152  */
153 STATIC char *
154 xlog_align(
155 	struct xlog	*log,
156 	xfs_daddr_t	blk_no,
157 	int		nbblks,
158 	struct xfs_buf	*bp)
159 {
160 	xfs_daddr_t	offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
161 
162 	ASSERT(offset + nbblks <= bp->b_length);
163 	return bp->b_addr + BBTOB(offset);
164 }
165 
166 
167 /*
168  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
169  */
170 STATIC int
171 xlog_bread_noalign(
172 	struct xlog	*log,
173 	xfs_daddr_t	blk_no,
174 	int		nbblks,
175 	struct xfs_buf	*bp)
176 {
177 	int		error;
178 
179 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
180 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
181 			nbblks);
182 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
183 		return -EFSCORRUPTED;
184 	}
185 
186 	blk_no = round_down(blk_no, log->l_sectBBsize);
187 	nbblks = round_up(nbblks, log->l_sectBBsize);
188 
189 	ASSERT(nbblks > 0);
190 	ASSERT(nbblks <= bp->b_length);
191 
192 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
193 	XFS_BUF_READ(bp);
194 	bp->b_io_length = nbblks;
195 	bp->b_error = 0;
196 
197 	error = xfs_buf_submit_wait(bp);
198 	if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
199 		xfs_buf_ioerror_alert(bp, __func__);
200 	return error;
201 }
202 
203 STATIC int
204 xlog_bread(
205 	struct xlog	*log,
206 	xfs_daddr_t	blk_no,
207 	int		nbblks,
208 	struct xfs_buf	*bp,
209 	char		**offset)
210 {
211 	int		error;
212 
213 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
214 	if (error)
215 		return error;
216 
217 	*offset = xlog_align(log, blk_no, nbblks, bp);
218 	return 0;
219 }
220 
221 /*
222  * Read at an offset into the buffer. Returns with the buffer in it's original
223  * state regardless of the result of the read.
224  */
225 STATIC int
226 xlog_bread_offset(
227 	struct xlog	*log,
228 	xfs_daddr_t	blk_no,		/* block to read from */
229 	int		nbblks,		/* blocks to read */
230 	struct xfs_buf	*bp,
231 	char		*offset)
232 {
233 	char		*orig_offset = bp->b_addr;
234 	int		orig_len = BBTOB(bp->b_length);
235 	int		error, error2;
236 
237 	error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
238 	if (error)
239 		return error;
240 
241 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
242 
243 	/* must reset buffer pointer even on error */
244 	error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
245 	if (error)
246 		return error;
247 	return error2;
248 }
249 
250 /*
251  * Write out the buffer at the given block for the given number of blocks.
252  * The buffer is kept locked across the write and is returned locked.
253  * This can only be used for synchronous log writes.
254  */
255 STATIC int
256 xlog_bwrite(
257 	struct xlog	*log,
258 	xfs_daddr_t	blk_no,
259 	int		nbblks,
260 	struct xfs_buf	*bp)
261 {
262 	int		error;
263 
264 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
265 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
266 			nbblks);
267 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
268 		return -EFSCORRUPTED;
269 	}
270 
271 	blk_no = round_down(blk_no, log->l_sectBBsize);
272 	nbblks = round_up(nbblks, log->l_sectBBsize);
273 
274 	ASSERT(nbblks > 0);
275 	ASSERT(nbblks <= bp->b_length);
276 
277 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
278 	XFS_BUF_ZEROFLAGS(bp);
279 	xfs_buf_hold(bp);
280 	xfs_buf_lock(bp);
281 	bp->b_io_length = nbblks;
282 	bp->b_error = 0;
283 
284 	error = xfs_bwrite(bp);
285 	if (error)
286 		xfs_buf_ioerror_alert(bp, __func__);
287 	xfs_buf_relse(bp);
288 	return error;
289 }
290 
291 #ifdef DEBUG
292 /*
293  * dump debug superblock and log record information
294  */
295 STATIC void
296 xlog_header_check_dump(
297 	xfs_mount_t		*mp,
298 	xlog_rec_header_t	*head)
299 {
300 	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
301 		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
302 	xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
303 		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
304 }
305 #else
306 #define xlog_header_check_dump(mp, head)
307 #endif
308 
309 /*
310  * check log record header for recovery
311  */
312 STATIC int
313 xlog_header_check_recover(
314 	xfs_mount_t		*mp,
315 	xlog_rec_header_t	*head)
316 {
317 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
318 
319 	/*
320 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
321 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
322 	 * a dirty log created in IRIX.
323 	 */
324 	if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
325 		xfs_warn(mp,
326 	"dirty log written in incompatible format - can't recover");
327 		xlog_header_check_dump(mp, head);
328 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
329 				 XFS_ERRLEVEL_HIGH, mp);
330 		return -EFSCORRUPTED;
331 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
332 		xfs_warn(mp,
333 	"dirty log entry has mismatched uuid - can't recover");
334 		xlog_header_check_dump(mp, head);
335 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
336 				 XFS_ERRLEVEL_HIGH, mp);
337 		return -EFSCORRUPTED;
338 	}
339 	return 0;
340 }
341 
342 /*
343  * read the head block of the log and check the header
344  */
345 STATIC int
346 xlog_header_check_mount(
347 	xfs_mount_t		*mp,
348 	xlog_rec_header_t	*head)
349 {
350 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
351 
352 	if (uuid_is_nil(&head->h_fs_uuid)) {
353 		/*
354 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
355 		 * h_fs_uuid is nil, we assume this log was last mounted
356 		 * by IRIX and continue.
357 		 */
358 		xfs_warn(mp, "nil uuid in log - IRIX style log");
359 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
360 		xfs_warn(mp, "log has mismatched uuid - can't recover");
361 		xlog_header_check_dump(mp, head);
362 		XFS_ERROR_REPORT("xlog_header_check_mount",
363 				 XFS_ERRLEVEL_HIGH, mp);
364 		return -EFSCORRUPTED;
365 	}
366 	return 0;
367 }
368 
369 STATIC void
370 xlog_recover_iodone(
371 	struct xfs_buf	*bp)
372 {
373 	if (bp->b_error) {
374 		/*
375 		 * We're not going to bother about retrying
376 		 * this during recovery. One strike!
377 		 */
378 		if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
379 			xfs_buf_ioerror_alert(bp, __func__);
380 			xfs_force_shutdown(bp->b_target->bt_mount,
381 						SHUTDOWN_META_IO_ERROR);
382 		}
383 	}
384 	bp->b_iodone = NULL;
385 	xfs_buf_ioend(bp);
386 }
387 
388 /*
389  * This routine finds (to an approximation) the first block in the physical
390  * log which contains the given cycle.  It uses a binary search algorithm.
391  * Note that the algorithm can not be perfect because the disk will not
392  * necessarily be perfect.
393  */
394 STATIC int
395 xlog_find_cycle_start(
396 	struct xlog	*log,
397 	struct xfs_buf	*bp,
398 	xfs_daddr_t	first_blk,
399 	xfs_daddr_t	*last_blk,
400 	uint		cycle)
401 {
402 	char		*offset;
403 	xfs_daddr_t	mid_blk;
404 	xfs_daddr_t	end_blk;
405 	uint		mid_cycle;
406 	int		error;
407 
408 	end_blk = *last_blk;
409 	mid_blk = BLK_AVG(first_blk, end_blk);
410 	while (mid_blk != first_blk && mid_blk != end_blk) {
411 		error = xlog_bread(log, mid_blk, 1, bp, &offset);
412 		if (error)
413 			return error;
414 		mid_cycle = xlog_get_cycle(offset);
415 		if (mid_cycle == cycle)
416 			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
417 		else
418 			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
419 		mid_blk = BLK_AVG(first_blk, end_blk);
420 	}
421 	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
422 	       (mid_blk == end_blk && mid_blk-1 == first_blk));
423 
424 	*last_blk = end_blk;
425 
426 	return 0;
427 }
428 
429 /*
430  * Check that a range of blocks does not contain stop_on_cycle_no.
431  * Fill in *new_blk with the block offset where such a block is
432  * found, or with -1 (an invalid block number) if there is no such
433  * block in the range.  The scan needs to occur from front to back
434  * and the pointer into the region must be updated since a later
435  * routine will need to perform another test.
436  */
437 STATIC int
438 xlog_find_verify_cycle(
439 	struct xlog	*log,
440 	xfs_daddr_t	start_blk,
441 	int		nbblks,
442 	uint		stop_on_cycle_no,
443 	xfs_daddr_t	*new_blk)
444 {
445 	xfs_daddr_t	i, j;
446 	uint		cycle;
447 	xfs_buf_t	*bp;
448 	xfs_daddr_t	bufblks;
449 	char		*buf = NULL;
450 	int		error = 0;
451 
452 	/*
453 	 * Greedily allocate a buffer big enough to handle the full
454 	 * range of basic blocks we'll be examining.  If that fails,
455 	 * try a smaller size.  We need to be able to read at least
456 	 * a log sector, or we're out of luck.
457 	 */
458 	bufblks = 1 << ffs(nbblks);
459 	while (bufblks > log->l_logBBsize)
460 		bufblks >>= 1;
461 	while (!(bp = xlog_get_bp(log, bufblks))) {
462 		bufblks >>= 1;
463 		if (bufblks < log->l_sectBBsize)
464 			return -ENOMEM;
465 	}
466 
467 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
468 		int	bcount;
469 
470 		bcount = min(bufblks, (start_blk + nbblks - i));
471 
472 		error = xlog_bread(log, i, bcount, bp, &buf);
473 		if (error)
474 			goto out;
475 
476 		for (j = 0; j < bcount; j++) {
477 			cycle = xlog_get_cycle(buf);
478 			if (cycle == stop_on_cycle_no) {
479 				*new_blk = i+j;
480 				goto out;
481 			}
482 
483 			buf += BBSIZE;
484 		}
485 	}
486 
487 	*new_blk = -1;
488 
489 out:
490 	xlog_put_bp(bp);
491 	return error;
492 }
493 
494 /*
495  * Potentially backup over partial log record write.
496  *
497  * In the typical case, last_blk is the number of the block directly after
498  * a good log record.  Therefore, we subtract one to get the block number
499  * of the last block in the given buffer.  extra_bblks contains the number
500  * of blocks we would have read on a previous read.  This happens when the
501  * last log record is split over the end of the physical log.
502  *
503  * extra_bblks is the number of blocks potentially verified on a previous
504  * call to this routine.
505  */
506 STATIC int
507 xlog_find_verify_log_record(
508 	struct xlog		*log,
509 	xfs_daddr_t		start_blk,
510 	xfs_daddr_t		*last_blk,
511 	int			extra_bblks)
512 {
513 	xfs_daddr_t		i;
514 	xfs_buf_t		*bp;
515 	char			*offset = NULL;
516 	xlog_rec_header_t	*head = NULL;
517 	int			error = 0;
518 	int			smallmem = 0;
519 	int			num_blks = *last_blk - start_blk;
520 	int			xhdrs;
521 
522 	ASSERT(start_blk != 0 || *last_blk != start_blk);
523 
524 	if (!(bp = xlog_get_bp(log, num_blks))) {
525 		if (!(bp = xlog_get_bp(log, 1)))
526 			return -ENOMEM;
527 		smallmem = 1;
528 	} else {
529 		error = xlog_bread(log, start_blk, num_blks, bp, &offset);
530 		if (error)
531 			goto out;
532 		offset += ((num_blks - 1) << BBSHIFT);
533 	}
534 
535 	for (i = (*last_blk) - 1; i >= 0; i--) {
536 		if (i < start_blk) {
537 			/* valid log record not found */
538 			xfs_warn(log->l_mp,
539 		"Log inconsistent (didn't find previous header)");
540 			ASSERT(0);
541 			error = -EIO;
542 			goto out;
543 		}
544 
545 		if (smallmem) {
546 			error = xlog_bread(log, i, 1, bp, &offset);
547 			if (error)
548 				goto out;
549 		}
550 
551 		head = (xlog_rec_header_t *)offset;
552 
553 		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
554 			break;
555 
556 		if (!smallmem)
557 			offset -= BBSIZE;
558 	}
559 
560 	/*
561 	 * We hit the beginning of the physical log & still no header.  Return
562 	 * to caller.  If caller can handle a return of -1, then this routine
563 	 * will be called again for the end of the physical log.
564 	 */
565 	if (i == -1) {
566 		error = 1;
567 		goto out;
568 	}
569 
570 	/*
571 	 * We have the final block of the good log (the first block
572 	 * of the log record _before_ the head. So we check the uuid.
573 	 */
574 	if ((error = xlog_header_check_mount(log->l_mp, head)))
575 		goto out;
576 
577 	/*
578 	 * We may have found a log record header before we expected one.
579 	 * last_blk will be the 1st block # with a given cycle #.  We may end
580 	 * up reading an entire log record.  In this case, we don't want to
581 	 * reset last_blk.  Only when last_blk points in the middle of a log
582 	 * record do we update last_blk.
583 	 */
584 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
585 		uint	h_size = be32_to_cpu(head->h_size);
586 
587 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
588 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
589 			xhdrs++;
590 	} else {
591 		xhdrs = 1;
592 	}
593 
594 	if (*last_blk - i + extra_bblks !=
595 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
596 		*last_blk = i;
597 
598 out:
599 	xlog_put_bp(bp);
600 	return error;
601 }
602 
603 /*
604  * Head is defined to be the point of the log where the next log write
605  * could go.  This means that incomplete LR writes at the end are
606  * eliminated when calculating the head.  We aren't guaranteed that previous
607  * LR have complete transactions.  We only know that a cycle number of
608  * current cycle number -1 won't be present in the log if we start writing
609  * from our current block number.
610  *
611  * last_blk contains the block number of the first block with a given
612  * cycle number.
613  *
614  * Return: zero if normal, non-zero if error.
615  */
616 STATIC int
617 xlog_find_head(
618 	struct xlog	*log,
619 	xfs_daddr_t	*return_head_blk)
620 {
621 	xfs_buf_t	*bp;
622 	char		*offset;
623 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
624 	int		num_scan_bblks;
625 	uint		first_half_cycle, last_half_cycle;
626 	uint		stop_on_cycle;
627 	int		error, log_bbnum = log->l_logBBsize;
628 
629 	/* Is the end of the log device zeroed? */
630 	error = xlog_find_zeroed(log, &first_blk);
631 	if (error < 0) {
632 		xfs_warn(log->l_mp, "empty log check failed");
633 		return error;
634 	}
635 	if (error == 1) {
636 		*return_head_blk = first_blk;
637 
638 		/* Is the whole lot zeroed? */
639 		if (!first_blk) {
640 			/* Linux XFS shouldn't generate totally zeroed logs -
641 			 * mkfs etc write a dummy unmount record to a fresh
642 			 * log so we can store the uuid in there
643 			 */
644 			xfs_warn(log->l_mp, "totally zeroed log");
645 		}
646 
647 		return 0;
648 	}
649 
650 	first_blk = 0;			/* get cycle # of 1st block */
651 	bp = xlog_get_bp(log, 1);
652 	if (!bp)
653 		return -ENOMEM;
654 
655 	error = xlog_bread(log, 0, 1, bp, &offset);
656 	if (error)
657 		goto bp_err;
658 
659 	first_half_cycle = xlog_get_cycle(offset);
660 
661 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
662 	error = xlog_bread(log, last_blk, 1, bp, &offset);
663 	if (error)
664 		goto bp_err;
665 
666 	last_half_cycle = xlog_get_cycle(offset);
667 	ASSERT(last_half_cycle != 0);
668 
669 	/*
670 	 * If the 1st half cycle number is equal to the last half cycle number,
671 	 * then the entire log is stamped with the same cycle number.  In this
672 	 * case, head_blk can't be set to zero (which makes sense).  The below
673 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
674 	 * we set it to log_bbnum which is an invalid block number, but this
675 	 * value makes the math correct.  If head_blk doesn't changed through
676 	 * all the tests below, *head_blk is set to zero at the very end rather
677 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
678 	 * in a circular file.
679 	 */
680 	if (first_half_cycle == last_half_cycle) {
681 		/*
682 		 * In this case we believe that the entire log should have
683 		 * cycle number last_half_cycle.  We need to scan backwards
684 		 * from the end verifying that there are no holes still
685 		 * containing last_half_cycle - 1.  If we find such a hole,
686 		 * then the start of that hole will be the new head.  The
687 		 * simple case looks like
688 		 *        x | x ... | x - 1 | x
689 		 * Another case that fits this picture would be
690 		 *        x | x + 1 | x ... | x
691 		 * In this case the head really is somewhere at the end of the
692 		 * log, as one of the latest writes at the beginning was
693 		 * incomplete.
694 		 * One more case is
695 		 *        x | x + 1 | x ... | x - 1 | x
696 		 * This is really the combination of the above two cases, and
697 		 * the head has to end up at the start of the x-1 hole at the
698 		 * end of the log.
699 		 *
700 		 * In the 256k log case, we will read from the beginning to the
701 		 * end of the log and search for cycle numbers equal to x-1.
702 		 * We don't worry about the x+1 blocks that we encounter,
703 		 * because we know that they cannot be the head since the log
704 		 * started with x.
705 		 */
706 		head_blk = log_bbnum;
707 		stop_on_cycle = last_half_cycle - 1;
708 	} else {
709 		/*
710 		 * In this case we want to find the first block with cycle
711 		 * number matching last_half_cycle.  We expect the log to be
712 		 * some variation on
713 		 *        x + 1 ... | x ... | x
714 		 * The first block with cycle number x (last_half_cycle) will
715 		 * be where the new head belongs.  First we do a binary search
716 		 * for the first occurrence of last_half_cycle.  The binary
717 		 * search may not be totally accurate, so then we scan back
718 		 * from there looking for occurrences of last_half_cycle before
719 		 * us.  If that backwards scan wraps around the beginning of
720 		 * the log, then we look for occurrences of last_half_cycle - 1
721 		 * at the end of the log.  The cases we're looking for look
722 		 * like
723 		 *                               v binary search stopped here
724 		 *        x + 1 ... | x | x + 1 | x ... | x
725 		 *                   ^ but we want to locate this spot
726 		 * or
727 		 *        <---------> less than scan distance
728 		 *        x + 1 ... | x ... | x - 1 | x
729 		 *                           ^ we want to locate this spot
730 		 */
731 		stop_on_cycle = last_half_cycle;
732 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
733 						&head_blk, last_half_cycle)))
734 			goto bp_err;
735 	}
736 
737 	/*
738 	 * Now validate the answer.  Scan back some number of maximum possible
739 	 * blocks and make sure each one has the expected cycle number.  The
740 	 * maximum is determined by the total possible amount of buffering
741 	 * in the in-core log.  The following number can be made tighter if
742 	 * we actually look at the block size of the filesystem.
743 	 */
744 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
745 	if (head_blk >= num_scan_bblks) {
746 		/*
747 		 * We are guaranteed that the entire check can be performed
748 		 * in one buffer.
749 		 */
750 		start_blk = head_blk - num_scan_bblks;
751 		if ((error = xlog_find_verify_cycle(log,
752 						start_blk, num_scan_bblks,
753 						stop_on_cycle, &new_blk)))
754 			goto bp_err;
755 		if (new_blk != -1)
756 			head_blk = new_blk;
757 	} else {		/* need to read 2 parts of log */
758 		/*
759 		 * We are going to scan backwards in the log in two parts.
760 		 * First we scan the physical end of the log.  In this part
761 		 * of the log, we are looking for blocks with cycle number
762 		 * last_half_cycle - 1.
763 		 * If we find one, then we know that the log starts there, as
764 		 * we've found a hole that didn't get written in going around
765 		 * the end of the physical log.  The simple case for this is
766 		 *        x + 1 ... | x ... | x - 1 | x
767 		 *        <---------> less than scan distance
768 		 * If all of the blocks at the end of the log have cycle number
769 		 * last_half_cycle, then we check the blocks at the start of
770 		 * the log looking for occurrences of last_half_cycle.  If we
771 		 * find one, then our current estimate for the location of the
772 		 * first occurrence of last_half_cycle is wrong and we move
773 		 * back to the hole we've found.  This case looks like
774 		 *        x + 1 ... | x | x + 1 | x ...
775 		 *                               ^ binary search stopped here
776 		 * Another case we need to handle that only occurs in 256k
777 		 * logs is
778 		 *        x + 1 ... | x ... | x+1 | x ...
779 		 *                   ^ binary search stops here
780 		 * In a 256k log, the scan at the end of the log will see the
781 		 * x + 1 blocks.  We need to skip past those since that is
782 		 * certainly not the head of the log.  By searching for
783 		 * last_half_cycle-1 we accomplish that.
784 		 */
785 		ASSERT(head_blk <= INT_MAX &&
786 			(xfs_daddr_t) num_scan_bblks >= head_blk);
787 		start_blk = log_bbnum - (num_scan_bblks - head_blk);
788 		if ((error = xlog_find_verify_cycle(log, start_blk,
789 					num_scan_bblks - (int)head_blk,
790 					(stop_on_cycle - 1), &new_blk)))
791 			goto bp_err;
792 		if (new_blk != -1) {
793 			head_blk = new_blk;
794 			goto validate_head;
795 		}
796 
797 		/*
798 		 * Scan beginning of log now.  The last part of the physical
799 		 * log is good.  This scan needs to verify that it doesn't find
800 		 * the last_half_cycle.
801 		 */
802 		start_blk = 0;
803 		ASSERT(head_blk <= INT_MAX);
804 		if ((error = xlog_find_verify_cycle(log,
805 					start_blk, (int)head_blk,
806 					stop_on_cycle, &new_blk)))
807 			goto bp_err;
808 		if (new_blk != -1)
809 			head_blk = new_blk;
810 	}
811 
812 validate_head:
813 	/*
814 	 * Now we need to make sure head_blk is not pointing to a block in
815 	 * the middle of a log record.
816 	 */
817 	num_scan_bblks = XLOG_REC_SHIFT(log);
818 	if (head_blk >= num_scan_bblks) {
819 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
820 
821 		/* start ptr at last block ptr before head_blk */
822 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
823 		if (error == 1)
824 			error = -EIO;
825 		if (error)
826 			goto bp_err;
827 	} else {
828 		start_blk = 0;
829 		ASSERT(head_blk <= INT_MAX);
830 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
831 		if (error < 0)
832 			goto bp_err;
833 		if (error == 1) {
834 			/* We hit the beginning of the log during our search */
835 			start_blk = log_bbnum - (num_scan_bblks - head_blk);
836 			new_blk = log_bbnum;
837 			ASSERT(start_blk <= INT_MAX &&
838 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
839 			ASSERT(head_blk <= INT_MAX);
840 			error = xlog_find_verify_log_record(log, start_blk,
841 							&new_blk, (int)head_blk);
842 			if (error == 1)
843 				error = -EIO;
844 			if (error)
845 				goto bp_err;
846 			if (new_blk != log_bbnum)
847 				head_blk = new_blk;
848 		} else if (error)
849 			goto bp_err;
850 	}
851 
852 	xlog_put_bp(bp);
853 	if (head_blk == log_bbnum)
854 		*return_head_blk = 0;
855 	else
856 		*return_head_blk = head_blk;
857 	/*
858 	 * When returning here, we have a good block number.  Bad block
859 	 * means that during a previous crash, we didn't have a clean break
860 	 * from cycle number N to cycle number N-1.  In this case, we need
861 	 * to find the first block with cycle number N-1.
862 	 */
863 	return 0;
864 
865  bp_err:
866 	xlog_put_bp(bp);
867 
868 	if (error)
869 		xfs_warn(log->l_mp, "failed to find log head");
870 	return error;
871 }
872 
873 /*
874  * Seek backwards in the log for log record headers.
875  *
876  * Given a starting log block, walk backwards until we find the provided number
877  * of records or hit the provided tail block. The return value is the number of
878  * records encountered or a negative error code. The log block and buffer
879  * pointer of the last record seen are returned in rblk and rhead respectively.
880  */
881 STATIC int
882 xlog_rseek_logrec_hdr(
883 	struct xlog		*log,
884 	xfs_daddr_t		head_blk,
885 	xfs_daddr_t		tail_blk,
886 	int			count,
887 	struct xfs_buf		*bp,
888 	xfs_daddr_t		*rblk,
889 	struct xlog_rec_header	**rhead,
890 	bool			*wrapped)
891 {
892 	int			i;
893 	int			error;
894 	int			found = 0;
895 	char			*offset = NULL;
896 	xfs_daddr_t		end_blk;
897 
898 	*wrapped = false;
899 
900 	/*
901 	 * Walk backwards from the head block until we hit the tail or the first
902 	 * block in the log.
903 	 */
904 	end_blk = head_blk > tail_blk ? tail_blk : 0;
905 	for (i = (int) head_blk - 1; i >= end_blk; i--) {
906 		error = xlog_bread(log, i, 1, bp, &offset);
907 		if (error)
908 			goto out_error;
909 
910 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
911 			*rblk = i;
912 			*rhead = (struct xlog_rec_header *) offset;
913 			if (++found == count)
914 				break;
915 		}
916 	}
917 
918 	/*
919 	 * If we haven't hit the tail block or the log record header count,
920 	 * start looking again from the end of the physical log. Note that
921 	 * callers can pass head == tail if the tail is not yet known.
922 	 */
923 	if (tail_blk >= head_blk && found != count) {
924 		for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
925 			error = xlog_bread(log, i, 1, bp, &offset);
926 			if (error)
927 				goto out_error;
928 
929 			if (*(__be32 *)offset ==
930 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
931 				*wrapped = true;
932 				*rblk = i;
933 				*rhead = (struct xlog_rec_header *) offset;
934 				if (++found == count)
935 					break;
936 			}
937 		}
938 	}
939 
940 	return found;
941 
942 out_error:
943 	return error;
944 }
945 
946 /*
947  * Seek forward in the log for log record headers.
948  *
949  * Given head and tail blocks, walk forward from the tail block until we find
950  * the provided number of records or hit the head block. The return value is the
951  * number of records encountered or a negative error code. The log block and
952  * buffer pointer of the last record seen are returned in rblk and rhead
953  * respectively.
954  */
955 STATIC int
956 xlog_seek_logrec_hdr(
957 	struct xlog		*log,
958 	xfs_daddr_t		head_blk,
959 	xfs_daddr_t		tail_blk,
960 	int			count,
961 	struct xfs_buf		*bp,
962 	xfs_daddr_t		*rblk,
963 	struct xlog_rec_header	**rhead,
964 	bool			*wrapped)
965 {
966 	int			i;
967 	int			error;
968 	int			found = 0;
969 	char			*offset = NULL;
970 	xfs_daddr_t		end_blk;
971 
972 	*wrapped = false;
973 
974 	/*
975 	 * Walk forward from the tail block until we hit the head or the last
976 	 * block in the log.
977 	 */
978 	end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
979 	for (i = (int) tail_blk; i <= end_blk; i++) {
980 		error = xlog_bread(log, i, 1, bp, &offset);
981 		if (error)
982 			goto out_error;
983 
984 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
985 			*rblk = i;
986 			*rhead = (struct xlog_rec_header *) offset;
987 			if (++found == count)
988 				break;
989 		}
990 	}
991 
992 	/*
993 	 * If we haven't hit the head block or the log record header count,
994 	 * start looking again from the start of the physical log.
995 	 */
996 	if (tail_blk > head_blk && found != count) {
997 		for (i = 0; i < (int) head_blk; i++) {
998 			error = xlog_bread(log, i, 1, bp, &offset);
999 			if (error)
1000 				goto out_error;
1001 
1002 			if (*(__be32 *)offset ==
1003 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1004 				*wrapped = true;
1005 				*rblk = i;
1006 				*rhead = (struct xlog_rec_header *) offset;
1007 				if (++found == count)
1008 					break;
1009 			}
1010 		}
1011 	}
1012 
1013 	return found;
1014 
1015 out_error:
1016 	return error;
1017 }
1018 
1019 /*
1020  * Check the log tail for torn writes. This is required when torn writes are
1021  * detected at the head and the head had to be walked back to a previous record.
1022  * The tail of the previous record must now be verified to ensure the torn
1023  * writes didn't corrupt the previous tail.
1024  *
1025  * Return an error if CRC verification fails as recovery cannot proceed.
1026  */
1027 STATIC int
1028 xlog_verify_tail(
1029 	struct xlog		*log,
1030 	xfs_daddr_t		head_blk,
1031 	xfs_daddr_t		tail_blk)
1032 {
1033 	struct xlog_rec_header	*thead;
1034 	struct xfs_buf		*bp;
1035 	xfs_daddr_t		first_bad;
1036 	int			count;
1037 	int			error = 0;
1038 	bool			wrapped;
1039 	xfs_daddr_t		tmp_head;
1040 
1041 	bp = xlog_get_bp(log, 1);
1042 	if (!bp)
1043 		return -ENOMEM;
1044 
1045 	/*
1046 	 * Seek XLOG_MAX_ICLOGS + 1 records past the current tail record to get
1047 	 * a temporary head block that points after the last possible
1048 	 * concurrently written record of the tail.
1049 	 */
1050 	count = xlog_seek_logrec_hdr(log, head_blk, tail_blk,
1051 				     XLOG_MAX_ICLOGS + 1, bp, &tmp_head, &thead,
1052 				     &wrapped);
1053 	if (count < 0) {
1054 		error = count;
1055 		goto out;
1056 	}
1057 
1058 	/*
1059 	 * If the call above didn't find XLOG_MAX_ICLOGS + 1 records, we ran
1060 	 * into the actual log head. tmp_head points to the start of the record
1061 	 * so update it to the actual head block.
1062 	 */
1063 	if (count < XLOG_MAX_ICLOGS + 1)
1064 		tmp_head = head_blk;
1065 
1066 	/*
1067 	 * We now have a tail and temporary head block that covers at least
1068 	 * XLOG_MAX_ICLOGS records from the tail. We need to verify that these
1069 	 * records were completely written. Run a CRC verification pass from
1070 	 * tail to head and return the result.
1071 	 */
1072 	error = xlog_do_recovery_pass(log, tmp_head, tail_blk,
1073 				      XLOG_RECOVER_CRCPASS, &first_bad);
1074 
1075 out:
1076 	xlog_put_bp(bp);
1077 	return error;
1078 }
1079 
1080 /*
1081  * Detect and trim torn writes from the head of the log.
1082  *
1083  * Storage without sector atomicity guarantees can result in torn writes in the
1084  * log in the event of a crash. Our only means to detect this scenario is via
1085  * CRC verification. While we can't always be certain that CRC verification
1086  * failure is due to a torn write vs. an unrelated corruption, we do know that
1087  * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1088  * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1089  * the log and treat failures in this range as torn writes as a matter of
1090  * policy. In the event of CRC failure, the head is walked back to the last good
1091  * record in the log and the tail is updated from that record and verified.
1092  */
1093 STATIC int
1094 xlog_verify_head(
1095 	struct xlog		*log,
1096 	xfs_daddr_t		*head_blk,	/* in/out: unverified head */
1097 	xfs_daddr_t		*tail_blk,	/* out: tail block */
1098 	struct xfs_buf		*bp,
1099 	xfs_daddr_t		*rhead_blk,	/* start blk of last record */
1100 	struct xlog_rec_header	**rhead,	/* ptr to last record */
1101 	bool			*wrapped)	/* last rec. wraps phys. log */
1102 {
1103 	struct xlog_rec_header	*tmp_rhead;
1104 	struct xfs_buf		*tmp_bp;
1105 	xfs_daddr_t		first_bad;
1106 	xfs_daddr_t		tmp_rhead_blk;
1107 	int			found;
1108 	int			error;
1109 	bool			tmp_wrapped;
1110 
1111 	/*
1112 	 * Search backwards through the log looking for the log record header
1113 	 * block. This wraps all the way back around to the head so something is
1114 	 * seriously wrong if we can't find it.
1115 	 */
1116 	found = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp, rhead_blk,
1117 				      rhead, wrapped);
1118 	if (found < 0)
1119 		return found;
1120 	if (!found) {
1121 		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1122 		return -EIO;
1123 	}
1124 
1125 	*tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1126 
1127 	/*
1128 	 * Now that we have a tail block, check the head of the log for torn
1129 	 * writes. Search again until we hit the tail or the maximum number of
1130 	 * log record I/Os that could have been in flight at one time. Use a
1131 	 * temporary buffer so we don't trash the rhead/bp pointer from the
1132 	 * call above.
1133 	 */
1134 	tmp_bp = xlog_get_bp(log, 1);
1135 	if (!tmp_bp)
1136 		return -ENOMEM;
1137 	error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1138 				      XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk,
1139 				      &tmp_rhead, &tmp_wrapped);
1140 	xlog_put_bp(tmp_bp);
1141 	if (error < 0)
1142 		return error;
1143 
1144 	/*
1145 	 * Now run a CRC verification pass over the records starting at the
1146 	 * block found above to the current head. If a CRC failure occurs, the
1147 	 * log block of the first bad record is saved in first_bad.
1148 	 */
1149 	error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1150 				      XLOG_RECOVER_CRCPASS, &first_bad);
1151 	if (error == -EFSBADCRC) {
1152 		/*
1153 		 * We've hit a potential torn write. Reset the error and warn
1154 		 * about it.
1155 		 */
1156 		error = 0;
1157 		xfs_warn(log->l_mp,
1158 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1159 			 first_bad, *head_blk);
1160 
1161 		/*
1162 		 * Get the header block and buffer pointer for the last good
1163 		 * record before the bad record.
1164 		 *
1165 		 * Note that xlog_find_tail() clears the blocks at the new head
1166 		 * (i.e., the records with invalid CRC) if the cycle number
1167 		 * matches the the current cycle.
1168 		 */
1169 		found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp,
1170 					      rhead_blk, rhead, wrapped);
1171 		if (found < 0)
1172 			return found;
1173 		if (found == 0)		/* XXX: right thing to do here? */
1174 			return -EIO;
1175 
1176 		/*
1177 		 * Reset the head block to the starting block of the first bad
1178 		 * log record and set the tail block based on the last good
1179 		 * record.
1180 		 *
1181 		 * Bail out if the updated head/tail match as this indicates
1182 		 * possible corruption outside of the acceptable
1183 		 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1184 		 */
1185 		*head_blk = first_bad;
1186 		*tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1187 		if (*head_blk == *tail_blk) {
1188 			ASSERT(0);
1189 			return 0;
1190 		}
1191 
1192 		/*
1193 		 * Now verify the tail based on the updated head. This is
1194 		 * required because the torn writes trimmed from the head could
1195 		 * have been written over the tail of a previous record. Return
1196 		 * any errors since recovery cannot proceed if the tail is
1197 		 * corrupt.
1198 		 *
1199 		 * XXX: This leaves a gap in truly robust protection from torn
1200 		 * writes in the log. If the head is behind the tail, the tail
1201 		 * pushes forward to create some space and then a crash occurs
1202 		 * causing the writes into the previous record's tail region to
1203 		 * tear, log recovery isn't able to recover.
1204 		 *
1205 		 * How likely is this to occur? If possible, can we do something
1206 		 * more intelligent here? Is it safe to push the tail forward if
1207 		 * we can determine that the tail is within the range of the
1208 		 * torn write (e.g., the kernel can only overwrite the tail if
1209 		 * it has actually been pushed forward)? Alternatively, could we
1210 		 * somehow prevent this condition at runtime?
1211 		 */
1212 		error = xlog_verify_tail(log, *head_blk, *tail_blk);
1213 	}
1214 
1215 	return error;
1216 }
1217 
1218 /*
1219  * Find the sync block number or the tail of the log.
1220  *
1221  * This will be the block number of the last record to have its
1222  * associated buffers synced to disk.  Every log record header has
1223  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
1224  * to get a sync block number.  The only concern is to figure out which
1225  * log record header to believe.
1226  *
1227  * The following algorithm uses the log record header with the largest
1228  * lsn.  The entire log record does not need to be valid.  We only care
1229  * that the header is valid.
1230  *
1231  * We could speed up search by using current head_blk buffer, but it is not
1232  * available.
1233  */
1234 STATIC int
1235 xlog_find_tail(
1236 	struct xlog		*log,
1237 	xfs_daddr_t		*head_blk,
1238 	xfs_daddr_t		*tail_blk)
1239 {
1240 	xlog_rec_header_t	*rhead;
1241 	xlog_op_header_t	*op_head;
1242 	char			*offset = NULL;
1243 	xfs_buf_t		*bp;
1244 	int			error;
1245 	xfs_daddr_t		umount_data_blk;
1246 	xfs_daddr_t		after_umount_blk;
1247 	xfs_daddr_t		rhead_blk;
1248 	xfs_lsn_t		tail_lsn;
1249 	int			hblks;
1250 	bool			wrapped = false;
1251 
1252 	/*
1253 	 * Find previous log record
1254 	 */
1255 	if ((error = xlog_find_head(log, head_blk)))
1256 		return error;
1257 
1258 	bp = xlog_get_bp(log, 1);
1259 	if (!bp)
1260 		return -ENOMEM;
1261 	if (*head_blk == 0) {				/* special case */
1262 		error = xlog_bread(log, 0, 1, bp, &offset);
1263 		if (error)
1264 			goto done;
1265 
1266 		if (xlog_get_cycle(offset) == 0) {
1267 			*tail_blk = 0;
1268 			/* leave all other log inited values alone */
1269 			goto done;
1270 		}
1271 	}
1272 
1273 	/*
1274 	 * Trim the head block back to skip over torn records. We can have
1275 	 * multiple log I/Os in flight at any time, so we assume CRC failures
1276 	 * back through the previous several records are torn writes and skip
1277 	 * them.
1278 	 */
1279 	ASSERT(*head_blk < INT_MAX);
1280 	error = xlog_verify_head(log, head_blk, tail_blk, bp, &rhead_blk,
1281 				 &rhead, &wrapped);
1282 	if (error)
1283 		goto done;
1284 
1285 	/*
1286 	 * Reset log values according to the state of the log when we
1287 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
1288 	 * one because the next write starts a new cycle rather than
1289 	 * continuing the cycle of the last good log record.  At this
1290 	 * point we have guaranteed that all partial log records have been
1291 	 * accounted for.  Therefore, we know that the last good log record
1292 	 * written was complete and ended exactly on the end boundary
1293 	 * of the physical log.
1294 	 */
1295 	log->l_prev_block = rhead_blk;
1296 	log->l_curr_block = (int)*head_blk;
1297 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1298 	if (wrapped)
1299 		log->l_curr_cycle++;
1300 	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1301 	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1302 	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1303 					BBTOB(log->l_curr_block));
1304 	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1305 					BBTOB(log->l_curr_block));
1306 
1307 	/*
1308 	 * Look for unmount record.  If we find it, then we know there
1309 	 * was a clean unmount.  Since 'i' could be the last block in
1310 	 * the physical log, we convert to a log block before comparing
1311 	 * to the head_blk.
1312 	 *
1313 	 * Save the current tail lsn to use to pass to
1314 	 * xlog_clear_stale_blocks() below.  We won't want to clear the
1315 	 * unmount record if there is one, so we pass the lsn of the
1316 	 * unmount record rather than the block after it.
1317 	 */
1318 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1319 		int	h_size = be32_to_cpu(rhead->h_size);
1320 		int	h_version = be32_to_cpu(rhead->h_version);
1321 
1322 		if ((h_version & XLOG_VERSION_2) &&
1323 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1324 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1325 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
1326 				hblks++;
1327 		} else {
1328 			hblks = 1;
1329 		}
1330 	} else {
1331 		hblks = 1;
1332 	}
1333 	after_umount_blk = rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len));
1334 	after_umount_blk = do_mod(after_umount_blk, log->l_logBBsize);
1335 	tail_lsn = atomic64_read(&log->l_tail_lsn);
1336 	if (*head_blk == after_umount_blk &&
1337 	    be32_to_cpu(rhead->h_num_logops) == 1) {
1338 		umount_data_blk = rhead_blk + hblks;
1339 		umount_data_blk = do_mod(umount_data_blk, log->l_logBBsize);
1340 		error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1341 		if (error)
1342 			goto done;
1343 
1344 		op_head = (xlog_op_header_t *)offset;
1345 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1346 			/*
1347 			 * Set tail and last sync so that newly written
1348 			 * log records will point recovery to after the
1349 			 * current unmount record.
1350 			 */
1351 			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1352 					log->l_curr_cycle, after_umount_blk);
1353 			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1354 					log->l_curr_cycle, after_umount_blk);
1355 			*tail_blk = after_umount_blk;
1356 
1357 			/*
1358 			 * Note that the unmount was clean. If the unmount
1359 			 * was not clean, we need to know this to rebuild the
1360 			 * superblock counters from the perag headers if we
1361 			 * have a filesystem using non-persistent counters.
1362 			 */
1363 			log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1364 		}
1365 	}
1366 
1367 	/*
1368 	 * Make sure that there are no blocks in front of the head
1369 	 * with the same cycle number as the head.  This can happen
1370 	 * because we allow multiple outstanding log writes concurrently,
1371 	 * and the later writes might make it out before earlier ones.
1372 	 *
1373 	 * We use the lsn from before modifying it so that we'll never
1374 	 * overwrite the unmount record after a clean unmount.
1375 	 *
1376 	 * Do this only if we are going to recover the filesystem
1377 	 *
1378 	 * NOTE: This used to say "if (!readonly)"
1379 	 * However on Linux, we can & do recover a read-only filesystem.
1380 	 * We only skip recovery if NORECOVERY is specified on mount,
1381 	 * in which case we would not be here.
1382 	 *
1383 	 * But... if the -device- itself is readonly, just skip this.
1384 	 * We can't recover this device anyway, so it won't matter.
1385 	 */
1386 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1387 		error = xlog_clear_stale_blocks(log, tail_lsn);
1388 
1389 done:
1390 	xlog_put_bp(bp);
1391 
1392 	if (error)
1393 		xfs_warn(log->l_mp, "failed to locate log tail");
1394 	return error;
1395 }
1396 
1397 /*
1398  * Is the log zeroed at all?
1399  *
1400  * The last binary search should be changed to perform an X block read
1401  * once X becomes small enough.  You can then search linearly through
1402  * the X blocks.  This will cut down on the number of reads we need to do.
1403  *
1404  * If the log is partially zeroed, this routine will pass back the blkno
1405  * of the first block with cycle number 0.  It won't have a complete LR
1406  * preceding it.
1407  *
1408  * Return:
1409  *	0  => the log is completely written to
1410  *	1 => use *blk_no as the first block of the log
1411  *	<0 => error has occurred
1412  */
1413 STATIC int
1414 xlog_find_zeroed(
1415 	struct xlog	*log,
1416 	xfs_daddr_t	*blk_no)
1417 {
1418 	xfs_buf_t	*bp;
1419 	char		*offset;
1420 	uint	        first_cycle, last_cycle;
1421 	xfs_daddr_t	new_blk, last_blk, start_blk;
1422 	xfs_daddr_t     num_scan_bblks;
1423 	int	        error, log_bbnum = log->l_logBBsize;
1424 
1425 	*blk_no = 0;
1426 
1427 	/* check totally zeroed log */
1428 	bp = xlog_get_bp(log, 1);
1429 	if (!bp)
1430 		return -ENOMEM;
1431 	error = xlog_bread(log, 0, 1, bp, &offset);
1432 	if (error)
1433 		goto bp_err;
1434 
1435 	first_cycle = xlog_get_cycle(offset);
1436 	if (first_cycle == 0) {		/* completely zeroed log */
1437 		*blk_no = 0;
1438 		xlog_put_bp(bp);
1439 		return 1;
1440 	}
1441 
1442 	/* check partially zeroed log */
1443 	error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1444 	if (error)
1445 		goto bp_err;
1446 
1447 	last_cycle = xlog_get_cycle(offset);
1448 	if (last_cycle != 0) {		/* log completely written to */
1449 		xlog_put_bp(bp);
1450 		return 0;
1451 	} else if (first_cycle != 1) {
1452 		/*
1453 		 * If the cycle of the last block is zero, the cycle of
1454 		 * the first block must be 1. If it's not, maybe we're
1455 		 * not looking at a log... Bail out.
1456 		 */
1457 		xfs_warn(log->l_mp,
1458 			"Log inconsistent or not a log (last==0, first!=1)");
1459 		error = -EINVAL;
1460 		goto bp_err;
1461 	}
1462 
1463 	/* we have a partially zeroed log */
1464 	last_blk = log_bbnum-1;
1465 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1466 		goto bp_err;
1467 
1468 	/*
1469 	 * Validate the answer.  Because there is no way to guarantee that
1470 	 * the entire log is made up of log records which are the same size,
1471 	 * we scan over the defined maximum blocks.  At this point, the maximum
1472 	 * is not chosen to mean anything special.   XXXmiken
1473 	 */
1474 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1475 	ASSERT(num_scan_bblks <= INT_MAX);
1476 
1477 	if (last_blk < num_scan_bblks)
1478 		num_scan_bblks = last_blk;
1479 	start_blk = last_blk - num_scan_bblks;
1480 
1481 	/*
1482 	 * We search for any instances of cycle number 0 that occur before
1483 	 * our current estimate of the head.  What we're trying to detect is
1484 	 *        1 ... | 0 | 1 | 0...
1485 	 *                       ^ binary search ends here
1486 	 */
1487 	if ((error = xlog_find_verify_cycle(log, start_blk,
1488 					 (int)num_scan_bblks, 0, &new_blk)))
1489 		goto bp_err;
1490 	if (new_blk != -1)
1491 		last_blk = new_blk;
1492 
1493 	/*
1494 	 * Potentially backup over partial log record write.  We don't need
1495 	 * to search the end of the log because we know it is zero.
1496 	 */
1497 	error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1498 	if (error == 1)
1499 		error = -EIO;
1500 	if (error)
1501 		goto bp_err;
1502 
1503 	*blk_no = last_blk;
1504 bp_err:
1505 	xlog_put_bp(bp);
1506 	if (error)
1507 		return error;
1508 	return 1;
1509 }
1510 
1511 /*
1512  * These are simple subroutines used by xlog_clear_stale_blocks() below
1513  * to initialize a buffer full of empty log record headers and write
1514  * them into the log.
1515  */
1516 STATIC void
1517 xlog_add_record(
1518 	struct xlog		*log,
1519 	char			*buf,
1520 	int			cycle,
1521 	int			block,
1522 	int			tail_cycle,
1523 	int			tail_block)
1524 {
1525 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1526 
1527 	memset(buf, 0, BBSIZE);
1528 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1529 	recp->h_cycle = cpu_to_be32(cycle);
1530 	recp->h_version = cpu_to_be32(
1531 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1532 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1533 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1534 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1535 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1536 }
1537 
1538 STATIC int
1539 xlog_write_log_records(
1540 	struct xlog	*log,
1541 	int		cycle,
1542 	int		start_block,
1543 	int		blocks,
1544 	int		tail_cycle,
1545 	int		tail_block)
1546 {
1547 	char		*offset;
1548 	xfs_buf_t	*bp;
1549 	int		balign, ealign;
1550 	int		sectbb = log->l_sectBBsize;
1551 	int		end_block = start_block + blocks;
1552 	int		bufblks;
1553 	int		error = 0;
1554 	int		i, j = 0;
1555 
1556 	/*
1557 	 * Greedily allocate a buffer big enough to handle the full
1558 	 * range of basic blocks to be written.  If that fails, try
1559 	 * a smaller size.  We need to be able to write at least a
1560 	 * log sector, or we're out of luck.
1561 	 */
1562 	bufblks = 1 << ffs(blocks);
1563 	while (bufblks > log->l_logBBsize)
1564 		bufblks >>= 1;
1565 	while (!(bp = xlog_get_bp(log, bufblks))) {
1566 		bufblks >>= 1;
1567 		if (bufblks < sectbb)
1568 			return -ENOMEM;
1569 	}
1570 
1571 	/* We may need to do a read at the start to fill in part of
1572 	 * the buffer in the starting sector not covered by the first
1573 	 * write below.
1574 	 */
1575 	balign = round_down(start_block, sectbb);
1576 	if (balign != start_block) {
1577 		error = xlog_bread_noalign(log, start_block, 1, bp);
1578 		if (error)
1579 			goto out_put_bp;
1580 
1581 		j = start_block - balign;
1582 	}
1583 
1584 	for (i = start_block; i < end_block; i += bufblks) {
1585 		int		bcount, endcount;
1586 
1587 		bcount = min(bufblks, end_block - start_block);
1588 		endcount = bcount - j;
1589 
1590 		/* We may need to do a read at the end to fill in part of
1591 		 * the buffer in the final sector not covered by the write.
1592 		 * If this is the same sector as the above read, skip it.
1593 		 */
1594 		ealign = round_down(end_block, sectbb);
1595 		if (j == 0 && (start_block + endcount > ealign)) {
1596 			offset = bp->b_addr + BBTOB(ealign - start_block);
1597 			error = xlog_bread_offset(log, ealign, sectbb,
1598 							bp, offset);
1599 			if (error)
1600 				break;
1601 
1602 		}
1603 
1604 		offset = xlog_align(log, start_block, endcount, bp);
1605 		for (; j < endcount; j++) {
1606 			xlog_add_record(log, offset, cycle, i+j,
1607 					tail_cycle, tail_block);
1608 			offset += BBSIZE;
1609 		}
1610 		error = xlog_bwrite(log, start_block, endcount, bp);
1611 		if (error)
1612 			break;
1613 		start_block += endcount;
1614 		j = 0;
1615 	}
1616 
1617  out_put_bp:
1618 	xlog_put_bp(bp);
1619 	return error;
1620 }
1621 
1622 /*
1623  * This routine is called to blow away any incomplete log writes out
1624  * in front of the log head.  We do this so that we won't become confused
1625  * if we come up, write only a little bit more, and then crash again.
1626  * If we leave the partial log records out there, this situation could
1627  * cause us to think those partial writes are valid blocks since they
1628  * have the current cycle number.  We get rid of them by overwriting them
1629  * with empty log records with the old cycle number rather than the
1630  * current one.
1631  *
1632  * The tail lsn is passed in rather than taken from
1633  * the log so that we will not write over the unmount record after a
1634  * clean unmount in a 512 block log.  Doing so would leave the log without
1635  * any valid log records in it until a new one was written.  If we crashed
1636  * during that time we would not be able to recover.
1637  */
1638 STATIC int
1639 xlog_clear_stale_blocks(
1640 	struct xlog	*log,
1641 	xfs_lsn_t	tail_lsn)
1642 {
1643 	int		tail_cycle, head_cycle;
1644 	int		tail_block, head_block;
1645 	int		tail_distance, max_distance;
1646 	int		distance;
1647 	int		error;
1648 
1649 	tail_cycle = CYCLE_LSN(tail_lsn);
1650 	tail_block = BLOCK_LSN(tail_lsn);
1651 	head_cycle = log->l_curr_cycle;
1652 	head_block = log->l_curr_block;
1653 
1654 	/*
1655 	 * Figure out the distance between the new head of the log
1656 	 * and the tail.  We want to write over any blocks beyond the
1657 	 * head that we may have written just before the crash, but
1658 	 * we don't want to overwrite the tail of the log.
1659 	 */
1660 	if (head_cycle == tail_cycle) {
1661 		/*
1662 		 * The tail is behind the head in the physical log,
1663 		 * so the distance from the head to the tail is the
1664 		 * distance from the head to the end of the log plus
1665 		 * the distance from the beginning of the log to the
1666 		 * tail.
1667 		 */
1668 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1669 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1670 					 XFS_ERRLEVEL_LOW, log->l_mp);
1671 			return -EFSCORRUPTED;
1672 		}
1673 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1674 	} else {
1675 		/*
1676 		 * The head is behind the tail in the physical log,
1677 		 * so the distance from the head to the tail is just
1678 		 * the tail block minus the head block.
1679 		 */
1680 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1681 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1682 					 XFS_ERRLEVEL_LOW, log->l_mp);
1683 			return -EFSCORRUPTED;
1684 		}
1685 		tail_distance = tail_block - head_block;
1686 	}
1687 
1688 	/*
1689 	 * If the head is right up against the tail, we can't clear
1690 	 * anything.
1691 	 */
1692 	if (tail_distance <= 0) {
1693 		ASSERT(tail_distance == 0);
1694 		return 0;
1695 	}
1696 
1697 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1698 	/*
1699 	 * Take the smaller of the maximum amount of outstanding I/O
1700 	 * we could have and the distance to the tail to clear out.
1701 	 * We take the smaller so that we don't overwrite the tail and
1702 	 * we don't waste all day writing from the head to the tail
1703 	 * for no reason.
1704 	 */
1705 	max_distance = MIN(max_distance, tail_distance);
1706 
1707 	if ((head_block + max_distance) <= log->l_logBBsize) {
1708 		/*
1709 		 * We can stomp all the blocks we need to without
1710 		 * wrapping around the end of the log.  Just do it
1711 		 * in a single write.  Use the cycle number of the
1712 		 * current cycle minus one so that the log will look like:
1713 		 *     n ... | n - 1 ...
1714 		 */
1715 		error = xlog_write_log_records(log, (head_cycle - 1),
1716 				head_block, max_distance, tail_cycle,
1717 				tail_block);
1718 		if (error)
1719 			return error;
1720 	} else {
1721 		/*
1722 		 * We need to wrap around the end of the physical log in
1723 		 * order to clear all the blocks.  Do it in two separate
1724 		 * I/Os.  The first write should be from the head to the
1725 		 * end of the physical log, and it should use the current
1726 		 * cycle number minus one just like above.
1727 		 */
1728 		distance = log->l_logBBsize - head_block;
1729 		error = xlog_write_log_records(log, (head_cycle - 1),
1730 				head_block, distance, tail_cycle,
1731 				tail_block);
1732 
1733 		if (error)
1734 			return error;
1735 
1736 		/*
1737 		 * Now write the blocks at the start of the physical log.
1738 		 * This writes the remainder of the blocks we want to clear.
1739 		 * It uses the current cycle number since we're now on the
1740 		 * same cycle as the head so that we get:
1741 		 *    n ... n ... | n - 1 ...
1742 		 *    ^^^^^ blocks we're writing
1743 		 */
1744 		distance = max_distance - (log->l_logBBsize - head_block);
1745 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1746 				tail_cycle, tail_block);
1747 		if (error)
1748 			return error;
1749 	}
1750 
1751 	return 0;
1752 }
1753 
1754 /******************************************************************************
1755  *
1756  *		Log recover routines
1757  *
1758  ******************************************************************************
1759  */
1760 
1761 /*
1762  * Sort the log items in the transaction.
1763  *
1764  * The ordering constraints are defined by the inode allocation and unlink
1765  * behaviour. The rules are:
1766  *
1767  *	1. Every item is only logged once in a given transaction. Hence it
1768  *	   represents the last logged state of the item. Hence ordering is
1769  *	   dependent on the order in which operations need to be performed so
1770  *	   required initial conditions are always met.
1771  *
1772  *	2. Cancelled buffers are recorded in pass 1 in a separate table and
1773  *	   there's nothing to replay from them so we can simply cull them
1774  *	   from the transaction. However, we can't do that until after we've
1775  *	   replayed all the other items because they may be dependent on the
1776  *	   cancelled buffer and replaying the cancelled buffer can remove it
1777  *	   form the cancelled buffer table. Hence they have tobe done last.
1778  *
1779  *	3. Inode allocation buffers must be replayed before inode items that
1780  *	   read the buffer and replay changes into it. For filesystems using the
1781  *	   ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1782  *	   treated the same as inode allocation buffers as they create and
1783  *	   initialise the buffers directly.
1784  *
1785  *	4. Inode unlink buffers must be replayed after inode items are replayed.
1786  *	   This ensures that inodes are completely flushed to the inode buffer
1787  *	   in a "free" state before we remove the unlinked inode list pointer.
1788  *
1789  * Hence the ordering needs to be inode allocation buffers first, inode items
1790  * second, inode unlink buffers third and cancelled buffers last.
1791  *
1792  * But there's a problem with that - we can't tell an inode allocation buffer
1793  * apart from a regular buffer, so we can't separate them. We can, however,
1794  * tell an inode unlink buffer from the others, and so we can separate them out
1795  * from all the other buffers and move them to last.
1796  *
1797  * Hence, 4 lists, in order from head to tail:
1798  *	- buffer_list for all buffers except cancelled/inode unlink buffers
1799  *	- item_list for all non-buffer items
1800  *	- inode_buffer_list for inode unlink buffers
1801  *	- cancel_list for the cancelled buffers
1802  *
1803  * Note that we add objects to the tail of the lists so that first-to-last
1804  * ordering is preserved within the lists. Adding objects to the head of the
1805  * list means when we traverse from the head we walk them in last-to-first
1806  * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1807  * but for all other items there may be specific ordering that we need to
1808  * preserve.
1809  */
1810 STATIC int
1811 xlog_recover_reorder_trans(
1812 	struct xlog		*log,
1813 	struct xlog_recover	*trans,
1814 	int			pass)
1815 {
1816 	xlog_recover_item_t	*item, *n;
1817 	int			error = 0;
1818 	LIST_HEAD(sort_list);
1819 	LIST_HEAD(cancel_list);
1820 	LIST_HEAD(buffer_list);
1821 	LIST_HEAD(inode_buffer_list);
1822 	LIST_HEAD(inode_list);
1823 
1824 	list_splice_init(&trans->r_itemq, &sort_list);
1825 	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1826 		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1827 
1828 		switch (ITEM_TYPE(item)) {
1829 		case XFS_LI_ICREATE:
1830 			list_move_tail(&item->ri_list, &buffer_list);
1831 			break;
1832 		case XFS_LI_BUF:
1833 			if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1834 				trace_xfs_log_recover_item_reorder_head(log,
1835 							trans, item, pass);
1836 				list_move(&item->ri_list, &cancel_list);
1837 				break;
1838 			}
1839 			if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1840 				list_move(&item->ri_list, &inode_buffer_list);
1841 				break;
1842 			}
1843 			list_move_tail(&item->ri_list, &buffer_list);
1844 			break;
1845 		case XFS_LI_INODE:
1846 		case XFS_LI_DQUOT:
1847 		case XFS_LI_QUOTAOFF:
1848 		case XFS_LI_EFD:
1849 		case XFS_LI_EFI:
1850 			trace_xfs_log_recover_item_reorder_tail(log,
1851 							trans, item, pass);
1852 			list_move_tail(&item->ri_list, &inode_list);
1853 			break;
1854 		default:
1855 			xfs_warn(log->l_mp,
1856 				"%s: unrecognized type of log operation",
1857 				__func__);
1858 			ASSERT(0);
1859 			/*
1860 			 * return the remaining items back to the transaction
1861 			 * item list so they can be freed in caller.
1862 			 */
1863 			if (!list_empty(&sort_list))
1864 				list_splice_init(&sort_list, &trans->r_itemq);
1865 			error = -EIO;
1866 			goto out;
1867 		}
1868 	}
1869 out:
1870 	ASSERT(list_empty(&sort_list));
1871 	if (!list_empty(&buffer_list))
1872 		list_splice(&buffer_list, &trans->r_itemq);
1873 	if (!list_empty(&inode_list))
1874 		list_splice_tail(&inode_list, &trans->r_itemq);
1875 	if (!list_empty(&inode_buffer_list))
1876 		list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1877 	if (!list_empty(&cancel_list))
1878 		list_splice_tail(&cancel_list, &trans->r_itemq);
1879 	return error;
1880 }
1881 
1882 /*
1883  * Build up the table of buf cancel records so that we don't replay
1884  * cancelled data in the second pass.  For buffer records that are
1885  * not cancel records, there is nothing to do here so we just return.
1886  *
1887  * If we get a cancel record which is already in the table, this indicates
1888  * that the buffer was cancelled multiple times.  In order to ensure
1889  * that during pass 2 we keep the record in the table until we reach its
1890  * last occurrence in the log, we keep a reference count in the cancel
1891  * record in the table to tell us how many times we expect to see this
1892  * record during the second pass.
1893  */
1894 STATIC int
1895 xlog_recover_buffer_pass1(
1896 	struct xlog			*log,
1897 	struct xlog_recover_item	*item)
1898 {
1899 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1900 	struct list_head	*bucket;
1901 	struct xfs_buf_cancel	*bcp;
1902 
1903 	/*
1904 	 * If this isn't a cancel buffer item, then just return.
1905 	 */
1906 	if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1907 		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1908 		return 0;
1909 	}
1910 
1911 	/*
1912 	 * Insert an xfs_buf_cancel record into the hash table of them.
1913 	 * If there is already an identical record, bump its reference count.
1914 	 */
1915 	bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1916 	list_for_each_entry(bcp, bucket, bc_list) {
1917 		if (bcp->bc_blkno == buf_f->blf_blkno &&
1918 		    bcp->bc_len == buf_f->blf_len) {
1919 			bcp->bc_refcount++;
1920 			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1921 			return 0;
1922 		}
1923 	}
1924 
1925 	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1926 	bcp->bc_blkno = buf_f->blf_blkno;
1927 	bcp->bc_len = buf_f->blf_len;
1928 	bcp->bc_refcount = 1;
1929 	list_add_tail(&bcp->bc_list, bucket);
1930 
1931 	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1932 	return 0;
1933 }
1934 
1935 /*
1936  * Check to see whether the buffer being recovered has a corresponding
1937  * entry in the buffer cancel record table. If it is, return the cancel
1938  * buffer structure to the caller.
1939  */
1940 STATIC struct xfs_buf_cancel *
1941 xlog_peek_buffer_cancelled(
1942 	struct xlog		*log,
1943 	xfs_daddr_t		blkno,
1944 	uint			len,
1945 	ushort			flags)
1946 {
1947 	struct list_head	*bucket;
1948 	struct xfs_buf_cancel	*bcp;
1949 
1950 	if (!log->l_buf_cancel_table) {
1951 		/* empty table means no cancelled buffers in the log */
1952 		ASSERT(!(flags & XFS_BLF_CANCEL));
1953 		return NULL;
1954 	}
1955 
1956 	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1957 	list_for_each_entry(bcp, bucket, bc_list) {
1958 		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1959 			return bcp;
1960 	}
1961 
1962 	/*
1963 	 * We didn't find a corresponding entry in the table, so return 0 so
1964 	 * that the buffer is NOT cancelled.
1965 	 */
1966 	ASSERT(!(flags & XFS_BLF_CANCEL));
1967 	return NULL;
1968 }
1969 
1970 /*
1971  * If the buffer is being cancelled then return 1 so that it will be cancelled,
1972  * otherwise return 0.  If the buffer is actually a buffer cancel item
1973  * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
1974  * table and remove it from the table if this is the last reference.
1975  *
1976  * We remove the cancel record from the table when we encounter its last
1977  * occurrence in the log so that if the same buffer is re-used again after its
1978  * last cancellation we actually replay the changes made at that point.
1979  */
1980 STATIC int
1981 xlog_check_buffer_cancelled(
1982 	struct xlog		*log,
1983 	xfs_daddr_t		blkno,
1984 	uint			len,
1985 	ushort			flags)
1986 {
1987 	struct xfs_buf_cancel	*bcp;
1988 
1989 	bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
1990 	if (!bcp)
1991 		return 0;
1992 
1993 	/*
1994 	 * We've go a match, so return 1 so that the recovery of this buffer
1995 	 * is cancelled.  If this buffer is actually a buffer cancel log
1996 	 * item, then decrement the refcount on the one in the table and
1997 	 * remove it if this is the last reference.
1998 	 */
1999 	if (flags & XFS_BLF_CANCEL) {
2000 		if (--bcp->bc_refcount == 0) {
2001 			list_del(&bcp->bc_list);
2002 			kmem_free(bcp);
2003 		}
2004 	}
2005 	return 1;
2006 }
2007 
2008 /*
2009  * Perform recovery for a buffer full of inodes.  In these buffers, the only
2010  * data which should be recovered is that which corresponds to the
2011  * di_next_unlinked pointers in the on disk inode structures.  The rest of the
2012  * data for the inodes is always logged through the inodes themselves rather
2013  * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2014  *
2015  * The only time when buffers full of inodes are fully recovered is when the
2016  * buffer is full of newly allocated inodes.  In this case the buffer will
2017  * not be marked as an inode buffer and so will be sent to
2018  * xlog_recover_do_reg_buffer() below during recovery.
2019  */
2020 STATIC int
2021 xlog_recover_do_inode_buffer(
2022 	struct xfs_mount	*mp,
2023 	xlog_recover_item_t	*item,
2024 	struct xfs_buf		*bp,
2025 	xfs_buf_log_format_t	*buf_f)
2026 {
2027 	int			i;
2028 	int			item_index = 0;
2029 	int			bit = 0;
2030 	int			nbits = 0;
2031 	int			reg_buf_offset = 0;
2032 	int			reg_buf_bytes = 0;
2033 	int			next_unlinked_offset;
2034 	int			inodes_per_buf;
2035 	xfs_agino_t		*logged_nextp;
2036 	xfs_agino_t		*buffer_nextp;
2037 
2038 	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2039 
2040 	/*
2041 	 * Post recovery validation only works properly on CRC enabled
2042 	 * filesystems.
2043 	 */
2044 	if (xfs_sb_version_hascrc(&mp->m_sb))
2045 		bp->b_ops = &xfs_inode_buf_ops;
2046 
2047 	inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
2048 	for (i = 0; i < inodes_per_buf; i++) {
2049 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2050 			offsetof(xfs_dinode_t, di_next_unlinked);
2051 
2052 		while (next_unlinked_offset >=
2053 		       (reg_buf_offset + reg_buf_bytes)) {
2054 			/*
2055 			 * The next di_next_unlinked field is beyond
2056 			 * the current logged region.  Find the next
2057 			 * logged region that contains or is beyond
2058 			 * the current di_next_unlinked field.
2059 			 */
2060 			bit += nbits;
2061 			bit = xfs_next_bit(buf_f->blf_data_map,
2062 					   buf_f->blf_map_size, bit);
2063 
2064 			/*
2065 			 * If there are no more logged regions in the
2066 			 * buffer, then we're done.
2067 			 */
2068 			if (bit == -1)
2069 				return 0;
2070 
2071 			nbits = xfs_contig_bits(buf_f->blf_data_map,
2072 						buf_f->blf_map_size, bit);
2073 			ASSERT(nbits > 0);
2074 			reg_buf_offset = bit << XFS_BLF_SHIFT;
2075 			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2076 			item_index++;
2077 		}
2078 
2079 		/*
2080 		 * If the current logged region starts after the current
2081 		 * di_next_unlinked field, then move on to the next
2082 		 * di_next_unlinked field.
2083 		 */
2084 		if (next_unlinked_offset < reg_buf_offset)
2085 			continue;
2086 
2087 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
2088 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2089 		ASSERT((reg_buf_offset + reg_buf_bytes) <=
2090 							BBTOB(bp->b_io_length));
2091 
2092 		/*
2093 		 * The current logged region contains a copy of the
2094 		 * current di_next_unlinked field.  Extract its value
2095 		 * and copy it to the buffer copy.
2096 		 */
2097 		logged_nextp = item->ri_buf[item_index].i_addr +
2098 				next_unlinked_offset - reg_buf_offset;
2099 		if (unlikely(*logged_nextp == 0)) {
2100 			xfs_alert(mp,
2101 		"Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
2102 		"Trying to replay bad (0) inode di_next_unlinked field.",
2103 				item, bp);
2104 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2105 					 XFS_ERRLEVEL_LOW, mp);
2106 			return -EFSCORRUPTED;
2107 		}
2108 
2109 		buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
2110 		*buffer_nextp = *logged_nextp;
2111 
2112 		/*
2113 		 * If necessary, recalculate the CRC in the on-disk inode. We
2114 		 * have to leave the inode in a consistent state for whoever
2115 		 * reads it next....
2116 		 */
2117 		xfs_dinode_calc_crc(mp,
2118 				xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2119 
2120 	}
2121 
2122 	return 0;
2123 }
2124 
2125 /*
2126  * V5 filesystems know the age of the buffer on disk being recovered. We can
2127  * have newer objects on disk than we are replaying, and so for these cases we
2128  * don't want to replay the current change as that will make the buffer contents
2129  * temporarily invalid on disk.
2130  *
2131  * The magic number might not match the buffer type we are going to recover
2132  * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
2133  * extract the LSN of the existing object in the buffer based on it's current
2134  * magic number.  If we don't recognise the magic number in the buffer, then
2135  * return a LSN of -1 so that the caller knows it was an unrecognised block and
2136  * so can recover the buffer.
2137  *
2138  * Note: we cannot rely solely on magic number matches to determine that the
2139  * buffer has a valid LSN - we also need to verify that it belongs to this
2140  * filesystem, so we need to extract the object's LSN and compare it to that
2141  * which we read from the superblock. If the UUIDs don't match, then we've got a
2142  * stale metadata block from an old filesystem instance that we need to recover
2143  * over the top of.
2144  */
2145 static xfs_lsn_t
2146 xlog_recover_get_buf_lsn(
2147 	struct xfs_mount	*mp,
2148 	struct xfs_buf		*bp)
2149 {
2150 	__uint32_t		magic32;
2151 	__uint16_t		magic16;
2152 	__uint16_t		magicda;
2153 	void			*blk = bp->b_addr;
2154 	uuid_t			*uuid;
2155 	xfs_lsn_t		lsn = -1;
2156 
2157 	/* v4 filesystems always recover immediately */
2158 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2159 		goto recover_immediately;
2160 
2161 	magic32 = be32_to_cpu(*(__be32 *)blk);
2162 	switch (magic32) {
2163 	case XFS_ABTB_CRC_MAGIC:
2164 	case XFS_ABTC_CRC_MAGIC:
2165 	case XFS_ABTB_MAGIC:
2166 	case XFS_ABTC_MAGIC:
2167 	case XFS_IBT_CRC_MAGIC:
2168 	case XFS_IBT_MAGIC: {
2169 		struct xfs_btree_block *btb = blk;
2170 
2171 		lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2172 		uuid = &btb->bb_u.s.bb_uuid;
2173 		break;
2174 	}
2175 	case XFS_BMAP_CRC_MAGIC:
2176 	case XFS_BMAP_MAGIC: {
2177 		struct xfs_btree_block *btb = blk;
2178 
2179 		lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2180 		uuid = &btb->bb_u.l.bb_uuid;
2181 		break;
2182 	}
2183 	case XFS_AGF_MAGIC:
2184 		lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2185 		uuid = &((struct xfs_agf *)blk)->agf_uuid;
2186 		break;
2187 	case XFS_AGFL_MAGIC:
2188 		lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2189 		uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2190 		break;
2191 	case XFS_AGI_MAGIC:
2192 		lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2193 		uuid = &((struct xfs_agi *)blk)->agi_uuid;
2194 		break;
2195 	case XFS_SYMLINK_MAGIC:
2196 		lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2197 		uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2198 		break;
2199 	case XFS_DIR3_BLOCK_MAGIC:
2200 	case XFS_DIR3_DATA_MAGIC:
2201 	case XFS_DIR3_FREE_MAGIC:
2202 		lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2203 		uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2204 		break;
2205 	case XFS_ATTR3_RMT_MAGIC:
2206 		/*
2207 		 * Remote attr blocks are written synchronously, rather than
2208 		 * being logged. That means they do not contain a valid LSN
2209 		 * (i.e. transactionally ordered) in them, and hence any time we
2210 		 * see a buffer to replay over the top of a remote attribute
2211 		 * block we should simply do so.
2212 		 */
2213 		goto recover_immediately;
2214 	case XFS_SB_MAGIC:
2215 		/*
2216 		 * superblock uuids are magic. We may or may not have a
2217 		 * sb_meta_uuid on disk, but it will be set in the in-core
2218 		 * superblock. We set the uuid pointer for verification
2219 		 * according to the superblock feature mask to ensure we check
2220 		 * the relevant UUID in the superblock.
2221 		 */
2222 		lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2223 		if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2224 			uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2225 		else
2226 			uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2227 		break;
2228 	default:
2229 		break;
2230 	}
2231 
2232 	if (lsn != (xfs_lsn_t)-1) {
2233 		if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2234 			goto recover_immediately;
2235 		return lsn;
2236 	}
2237 
2238 	magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2239 	switch (magicda) {
2240 	case XFS_DIR3_LEAF1_MAGIC:
2241 	case XFS_DIR3_LEAFN_MAGIC:
2242 	case XFS_DA3_NODE_MAGIC:
2243 		lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2244 		uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2245 		break;
2246 	default:
2247 		break;
2248 	}
2249 
2250 	if (lsn != (xfs_lsn_t)-1) {
2251 		if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2252 			goto recover_immediately;
2253 		return lsn;
2254 	}
2255 
2256 	/*
2257 	 * We do individual object checks on dquot and inode buffers as they
2258 	 * have their own individual LSN records. Also, we could have a stale
2259 	 * buffer here, so we have to at least recognise these buffer types.
2260 	 *
2261 	 * A notd complexity here is inode unlinked list processing - it logs
2262 	 * the inode directly in the buffer, but we don't know which inodes have
2263 	 * been modified, and there is no global buffer LSN. Hence we need to
2264 	 * recover all inode buffer types immediately. This problem will be
2265 	 * fixed by logical logging of the unlinked list modifications.
2266 	 */
2267 	magic16 = be16_to_cpu(*(__be16 *)blk);
2268 	switch (magic16) {
2269 	case XFS_DQUOT_MAGIC:
2270 	case XFS_DINODE_MAGIC:
2271 		goto recover_immediately;
2272 	default:
2273 		break;
2274 	}
2275 
2276 	/* unknown buffer contents, recover immediately */
2277 
2278 recover_immediately:
2279 	return (xfs_lsn_t)-1;
2280 
2281 }
2282 
2283 /*
2284  * Validate the recovered buffer is of the correct type and attach the
2285  * appropriate buffer operations to them for writeback. Magic numbers are in a
2286  * few places:
2287  *	the first 16 bits of the buffer (inode buffer, dquot buffer),
2288  *	the first 32 bits of the buffer (most blocks),
2289  *	inside a struct xfs_da_blkinfo at the start of the buffer.
2290  */
2291 static void
2292 xlog_recover_validate_buf_type(
2293 	struct xfs_mount	*mp,
2294 	struct xfs_buf		*bp,
2295 	xfs_buf_log_format_t	*buf_f)
2296 {
2297 	struct xfs_da_blkinfo	*info = bp->b_addr;
2298 	__uint32_t		magic32;
2299 	__uint16_t		magic16;
2300 	__uint16_t		magicda;
2301 
2302 	/*
2303 	 * We can only do post recovery validation on items on CRC enabled
2304 	 * fielsystems as we need to know when the buffer was written to be able
2305 	 * to determine if we should have replayed the item. If we replay old
2306 	 * metadata over a newer buffer, then it will enter a temporarily
2307 	 * inconsistent state resulting in verification failures. Hence for now
2308 	 * just avoid the verification stage for non-crc filesystems
2309 	 */
2310 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2311 		return;
2312 
2313 	magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2314 	magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2315 	magicda = be16_to_cpu(info->magic);
2316 	switch (xfs_blft_from_flags(buf_f)) {
2317 	case XFS_BLFT_BTREE_BUF:
2318 		switch (magic32) {
2319 		case XFS_ABTB_CRC_MAGIC:
2320 		case XFS_ABTC_CRC_MAGIC:
2321 		case XFS_ABTB_MAGIC:
2322 		case XFS_ABTC_MAGIC:
2323 			bp->b_ops = &xfs_allocbt_buf_ops;
2324 			break;
2325 		case XFS_IBT_CRC_MAGIC:
2326 		case XFS_FIBT_CRC_MAGIC:
2327 		case XFS_IBT_MAGIC:
2328 		case XFS_FIBT_MAGIC:
2329 			bp->b_ops = &xfs_inobt_buf_ops;
2330 			break;
2331 		case XFS_BMAP_CRC_MAGIC:
2332 		case XFS_BMAP_MAGIC:
2333 			bp->b_ops = &xfs_bmbt_buf_ops;
2334 			break;
2335 		default:
2336 			xfs_warn(mp, "Bad btree block magic!");
2337 			ASSERT(0);
2338 			break;
2339 		}
2340 		break;
2341 	case XFS_BLFT_AGF_BUF:
2342 		if (magic32 != XFS_AGF_MAGIC) {
2343 			xfs_warn(mp, "Bad AGF block magic!");
2344 			ASSERT(0);
2345 			break;
2346 		}
2347 		bp->b_ops = &xfs_agf_buf_ops;
2348 		break;
2349 	case XFS_BLFT_AGFL_BUF:
2350 		if (magic32 != XFS_AGFL_MAGIC) {
2351 			xfs_warn(mp, "Bad AGFL block magic!");
2352 			ASSERT(0);
2353 			break;
2354 		}
2355 		bp->b_ops = &xfs_agfl_buf_ops;
2356 		break;
2357 	case XFS_BLFT_AGI_BUF:
2358 		if (magic32 != XFS_AGI_MAGIC) {
2359 			xfs_warn(mp, "Bad AGI block magic!");
2360 			ASSERT(0);
2361 			break;
2362 		}
2363 		bp->b_ops = &xfs_agi_buf_ops;
2364 		break;
2365 	case XFS_BLFT_UDQUOT_BUF:
2366 	case XFS_BLFT_PDQUOT_BUF:
2367 	case XFS_BLFT_GDQUOT_BUF:
2368 #ifdef CONFIG_XFS_QUOTA
2369 		if (magic16 != XFS_DQUOT_MAGIC) {
2370 			xfs_warn(mp, "Bad DQUOT block magic!");
2371 			ASSERT(0);
2372 			break;
2373 		}
2374 		bp->b_ops = &xfs_dquot_buf_ops;
2375 #else
2376 		xfs_alert(mp,
2377 	"Trying to recover dquots without QUOTA support built in!");
2378 		ASSERT(0);
2379 #endif
2380 		break;
2381 	case XFS_BLFT_DINO_BUF:
2382 		if (magic16 != XFS_DINODE_MAGIC) {
2383 			xfs_warn(mp, "Bad INODE block magic!");
2384 			ASSERT(0);
2385 			break;
2386 		}
2387 		bp->b_ops = &xfs_inode_buf_ops;
2388 		break;
2389 	case XFS_BLFT_SYMLINK_BUF:
2390 		if (magic32 != XFS_SYMLINK_MAGIC) {
2391 			xfs_warn(mp, "Bad symlink block magic!");
2392 			ASSERT(0);
2393 			break;
2394 		}
2395 		bp->b_ops = &xfs_symlink_buf_ops;
2396 		break;
2397 	case XFS_BLFT_DIR_BLOCK_BUF:
2398 		if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2399 		    magic32 != XFS_DIR3_BLOCK_MAGIC) {
2400 			xfs_warn(mp, "Bad dir block magic!");
2401 			ASSERT(0);
2402 			break;
2403 		}
2404 		bp->b_ops = &xfs_dir3_block_buf_ops;
2405 		break;
2406 	case XFS_BLFT_DIR_DATA_BUF:
2407 		if (magic32 != XFS_DIR2_DATA_MAGIC &&
2408 		    magic32 != XFS_DIR3_DATA_MAGIC) {
2409 			xfs_warn(mp, "Bad dir data magic!");
2410 			ASSERT(0);
2411 			break;
2412 		}
2413 		bp->b_ops = &xfs_dir3_data_buf_ops;
2414 		break;
2415 	case XFS_BLFT_DIR_FREE_BUF:
2416 		if (magic32 != XFS_DIR2_FREE_MAGIC &&
2417 		    magic32 != XFS_DIR3_FREE_MAGIC) {
2418 			xfs_warn(mp, "Bad dir3 free magic!");
2419 			ASSERT(0);
2420 			break;
2421 		}
2422 		bp->b_ops = &xfs_dir3_free_buf_ops;
2423 		break;
2424 	case XFS_BLFT_DIR_LEAF1_BUF:
2425 		if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2426 		    magicda != XFS_DIR3_LEAF1_MAGIC) {
2427 			xfs_warn(mp, "Bad dir leaf1 magic!");
2428 			ASSERT(0);
2429 			break;
2430 		}
2431 		bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2432 		break;
2433 	case XFS_BLFT_DIR_LEAFN_BUF:
2434 		if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2435 		    magicda != XFS_DIR3_LEAFN_MAGIC) {
2436 			xfs_warn(mp, "Bad dir leafn magic!");
2437 			ASSERT(0);
2438 			break;
2439 		}
2440 		bp->b_ops = &xfs_dir3_leafn_buf_ops;
2441 		break;
2442 	case XFS_BLFT_DA_NODE_BUF:
2443 		if (magicda != XFS_DA_NODE_MAGIC &&
2444 		    magicda != XFS_DA3_NODE_MAGIC) {
2445 			xfs_warn(mp, "Bad da node magic!");
2446 			ASSERT(0);
2447 			break;
2448 		}
2449 		bp->b_ops = &xfs_da3_node_buf_ops;
2450 		break;
2451 	case XFS_BLFT_ATTR_LEAF_BUF:
2452 		if (magicda != XFS_ATTR_LEAF_MAGIC &&
2453 		    magicda != XFS_ATTR3_LEAF_MAGIC) {
2454 			xfs_warn(mp, "Bad attr leaf magic!");
2455 			ASSERT(0);
2456 			break;
2457 		}
2458 		bp->b_ops = &xfs_attr3_leaf_buf_ops;
2459 		break;
2460 	case XFS_BLFT_ATTR_RMT_BUF:
2461 		if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2462 			xfs_warn(mp, "Bad attr remote magic!");
2463 			ASSERT(0);
2464 			break;
2465 		}
2466 		bp->b_ops = &xfs_attr3_rmt_buf_ops;
2467 		break;
2468 	case XFS_BLFT_SB_BUF:
2469 		if (magic32 != XFS_SB_MAGIC) {
2470 			xfs_warn(mp, "Bad SB block magic!");
2471 			ASSERT(0);
2472 			break;
2473 		}
2474 		bp->b_ops = &xfs_sb_buf_ops;
2475 		break;
2476 	default:
2477 		xfs_warn(mp, "Unknown buffer type %d!",
2478 			 xfs_blft_from_flags(buf_f));
2479 		break;
2480 	}
2481 }
2482 
2483 /*
2484  * Perform a 'normal' buffer recovery.  Each logged region of the
2485  * buffer should be copied over the corresponding region in the
2486  * given buffer.  The bitmap in the buf log format structure indicates
2487  * where to place the logged data.
2488  */
2489 STATIC void
2490 xlog_recover_do_reg_buffer(
2491 	struct xfs_mount	*mp,
2492 	xlog_recover_item_t	*item,
2493 	struct xfs_buf		*bp,
2494 	xfs_buf_log_format_t	*buf_f)
2495 {
2496 	int			i;
2497 	int			bit;
2498 	int			nbits;
2499 	int                     error;
2500 
2501 	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2502 
2503 	bit = 0;
2504 	i = 1;  /* 0 is the buf format structure */
2505 	while (1) {
2506 		bit = xfs_next_bit(buf_f->blf_data_map,
2507 				   buf_f->blf_map_size, bit);
2508 		if (bit == -1)
2509 			break;
2510 		nbits = xfs_contig_bits(buf_f->blf_data_map,
2511 					buf_f->blf_map_size, bit);
2512 		ASSERT(nbits > 0);
2513 		ASSERT(item->ri_buf[i].i_addr != NULL);
2514 		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2515 		ASSERT(BBTOB(bp->b_io_length) >=
2516 		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2517 
2518 		/*
2519 		 * The dirty regions logged in the buffer, even though
2520 		 * contiguous, may span multiple chunks. This is because the
2521 		 * dirty region may span a physical page boundary in a buffer
2522 		 * and hence be split into two separate vectors for writing into
2523 		 * the log. Hence we need to trim nbits back to the length of
2524 		 * the current region being copied out of the log.
2525 		 */
2526 		if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2527 			nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2528 
2529 		/*
2530 		 * Do a sanity check if this is a dquot buffer. Just checking
2531 		 * the first dquot in the buffer should do. XXXThis is
2532 		 * probably a good thing to do for other buf types also.
2533 		 */
2534 		error = 0;
2535 		if (buf_f->blf_flags &
2536 		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2537 			if (item->ri_buf[i].i_addr == NULL) {
2538 				xfs_alert(mp,
2539 					"XFS: NULL dquot in %s.", __func__);
2540 				goto next;
2541 			}
2542 			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2543 				xfs_alert(mp,
2544 					"XFS: dquot too small (%d) in %s.",
2545 					item->ri_buf[i].i_len, __func__);
2546 				goto next;
2547 			}
2548 			error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
2549 					       -1, 0, XFS_QMOPT_DOWARN,
2550 					       "dquot_buf_recover");
2551 			if (error)
2552 				goto next;
2553 		}
2554 
2555 		memcpy(xfs_buf_offset(bp,
2556 			(uint)bit << XFS_BLF_SHIFT),	/* dest */
2557 			item->ri_buf[i].i_addr,		/* source */
2558 			nbits<<XFS_BLF_SHIFT);		/* length */
2559  next:
2560 		i++;
2561 		bit += nbits;
2562 	}
2563 
2564 	/* Shouldn't be any more regions */
2565 	ASSERT(i == item->ri_total);
2566 
2567 	xlog_recover_validate_buf_type(mp, bp, buf_f);
2568 }
2569 
2570 /*
2571  * Perform a dquot buffer recovery.
2572  * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2573  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2574  * Else, treat it as a regular buffer and do recovery.
2575  *
2576  * Return false if the buffer was tossed and true if we recovered the buffer to
2577  * indicate to the caller if the buffer needs writing.
2578  */
2579 STATIC bool
2580 xlog_recover_do_dquot_buffer(
2581 	struct xfs_mount		*mp,
2582 	struct xlog			*log,
2583 	struct xlog_recover_item	*item,
2584 	struct xfs_buf			*bp,
2585 	struct xfs_buf_log_format	*buf_f)
2586 {
2587 	uint			type;
2588 
2589 	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2590 
2591 	/*
2592 	 * Filesystems are required to send in quota flags at mount time.
2593 	 */
2594 	if (!mp->m_qflags)
2595 		return false;
2596 
2597 	type = 0;
2598 	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2599 		type |= XFS_DQ_USER;
2600 	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2601 		type |= XFS_DQ_PROJ;
2602 	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2603 		type |= XFS_DQ_GROUP;
2604 	/*
2605 	 * This type of quotas was turned off, so ignore this buffer
2606 	 */
2607 	if (log->l_quotaoffs_flag & type)
2608 		return false;
2609 
2610 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2611 	return true;
2612 }
2613 
2614 /*
2615  * This routine replays a modification made to a buffer at runtime.
2616  * There are actually two types of buffer, regular and inode, which
2617  * are handled differently.  Inode buffers are handled differently
2618  * in that we only recover a specific set of data from them, namely
2619  * the inode di_next_unlinked fields.  This is because all other inode
2620  * data is actually logged via inode records and any data we replay
2621  * here which overlaps that may be stale.
2622  *
2623  * When meta-data buffers are freed at run time we log a buffer item
2624  * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2625  * of the buffer in the log should not be replayed at recovery time.
2626  * This is so that if the blocks covered by the buffer are reused for
2627  * file data before we crash we don't end up replaying old, freed
2628  * meta-data into a user's file.
2629  *
2630  * To handle the cancellation of buffer log items, we make two passes
2631  * over the log during recovery.  During the first we build a table of
2632  * those buffers which have been cancelled, and during the second we
2633  * only replay those buffers which do not have corresponding cancel
2634  * records in the table.  See xlog_recover_buffer_pass[1,2] above
2635  * for more details on the implementation of the table of cancel records.
2636  */
2637 STATIC int
2638 xlog_recover_buffer_pass2(
2639 	struct xlog			*log,
2640 	struct list_head		*buffer_list,
2641 	struct xlog_recover_item	*item,
2642 	xfs_lsn_t			current_lsn)
2643 {
2644 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2645 	xfs_mount_t		*mp = log->l_mp;
2646 	xfs_buf_t		*bp;
2647 	int			error;
2648 	uint			buf_flags;
2649 	xfs_lsn_t		lsn;
2650 
2651 	/*
2652 	 * In this pass we only want to recover all the buffers which have
2653 	 * not been cancelled and are not cancellation buffers themselves.
2654 	 */
2655 	if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2656 			buf_f->blf_len, buf_f->blf_flags)) {
2657 		trace_xfs_log_recover_buf_cancel(log, buf_f);
2658 		return 0;
2659 	}
2660 
2661 	trace_xfs_log_recover_buf_recover(log, buf_f);
2662 
2663 	buf_flags = 0;
2664 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2665 		buf_flags |= XBF_UNMAPPED;
2666 
2667 	bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2668 			  buf_flags, NULL);
2669 	if (!bp)
2670 		return -ENOMEM;
2671 	error = bp->b_error;
2672 	if (error) {
2673 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2674 		goto out_release;
2675 	}
2676 
2677 	/*
2678 	 * Recover the buffer only if we get an LSN from it and it's less than
2679 	 * the lsn of the transaction we are replaying.
2680 	 *
2681 	 * Note that we have to be extremely careful of readahead here.
2682 	 * Readahead does not attach verfiers to the buffers so if we don't
2683 	 * actually do any replay after readahead because of the LSN we found
2684 	 * in the buffer if more recent than that current transaction then we
2685 	 * need to attach the verifier directly. Failure to do so can lead to
2686 	 * future recovery actions (e.g. EFI and unlinked list recovery) can
2687 	 * operate on the buffers and they won't get the verifier attached. This
2688 	 * can lead to blocks on disk having the correct content but a stale
2689 	 * CRC.
2690 	 *
2691 	 * It is safe to assume these clean buffers are currently up to date.
2692 	 * If the buffer is dirtied by a later transaction being replayed, then
2693 	 * the verifier will be reset to match whatever recover turns that
2694 	 * buffer into.
2695 	 */
2696 	lsn = xlog_recover_get_buf_lsn(mp, bp);
2697 	if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2698 		xlog_recover_validate_buf_type(mp, bp, buf_f);
2699 		goto out_release;
2700 	}
2701 
2702 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2703 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2704 		if (error)
2705 			goto out_release;
2706 	} else if (buf_f->blf_flags &
2707 		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2708 		bool	dirty;
2709 
2710 		dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2711 		if (!dirty)
2712 			goto out_release;
2713 	} else {
2714 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2715 	}
2716 
2717 	/*
2718 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2719 	 * slower when taking into account all the buffers to be flushed.
2720 	 *
2721 	 * Also make sure that only inode buffers with good sizes stay in
2722 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2723 	 * or mp->m_inode_cluster_size bytes, whichever is bigger.  The inode
2724 	 * buffers in the log can be a different size if the log was generated
2725 	 * by an older kernel using unclustered inode buffers or a newer kernel
2726 	 * running with a different inode cluster size.  Regardless, if the
2727 	 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2728 	 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2729 	 * the buffer out of the buffer cache so that the buffer won't
2730 	 * overlap with future reads of those inodes.
2731 	 */
2732 	if (XFS_DINODE_MAGIC ==
2733 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2734 	    (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2735 			(__uint32_t)log->l_mp->m_inode_cluster_size))) {
2736 		xfs_buf_stale(bp);
2737 		error = xfs_bwrite(bp);
2738 	} else {
2739 		ASSERT(bp->b_target->bt_mount == mp);
2740 		bp->b_iodone = xlog_recover_iodone;
2741 		xfs_buf_delwri_queue(bp, buffer_list);
2742 	}
2743 
2744 out_release:
2745 	xfs_buf_relse(bp);
2746 	return error;
2747 }
2748 
2749 /*
2750  * Inode fork owner changes
2751  *
2752  * If we have been told that we have to reparent the inode fork, it's because an
2753  * extent swap operation on a CRC enabled filesystem has been done and we are
2754  * replaying it. We need to walk the BMBT of the appropriate fork and change the
2755  * owners of it.
2756  *
2757  * The complexity here is that we don't have an inode context to work with, so
2758  * after we've replayed the inode we need to instantiate one.  This is where the
2759  * fun begins.
2760  *
2761  * We are in the middle of log recovery, so we can't run transactions. That
2762  * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2763  * that will result in the corresponding iput() running the inode through
2764  * xfs_inactive(). If we've just replayed an inode core that changes the link
2765  * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2766  * transactions (bad!).
2767  *
2768  * So, to avoid this, we instantiate an inode directly from the inode core we've
2769  * just recovered. We have the buffer still locked, and all we really need to
2770  * instantiate is the inode core and the forks being modified. We can do this
2771  * manually, then run the inode btree owner change, and then tear down the
2772  * xfs_inode without having to run any transactions at all.
2773  *
2774  * Also, because we don't have a transaction context available here but need to
2775  * gather all the buffers we modify for writeback so we pass the buffer_list
2776  * instead for the operation to use.
2777  */
2778 
2779 STATIC int
2780 xfs_recover_inode_owner_change(
2781 	struct xfs_mount	*mp,
2782 	struct xfs_dinode	*dip,
2783 	struct xfs_inode_log_format *in_f,
2784 	struct list_head	*buffer_list)
2785 {
2786 	struct xfs_inode	*ip;
2787 	int			error;
2788 
2789 	ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2790 
2791 	ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2792 	if (!ip)
2793 		return -ENOMEM;
2794 
2795 	/* instantiate the inode */
2796 	xfs_dinode_from_disk(&ip->i_d, dip);
2797 	ASSERT(ip->i_d.di_version >= 3);
2798 
2799 	error = xfs_iformat_fork(ip, dip);
2800 	if (error)
2801 		goto out_free_ip;
2802 
2803 
2804 	if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2805 		ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2806 		error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2807 					      ip->i_ino, buffer_list);
2808 		if (error)
2809 			goto out_free_ip;
2810 	}
2811 
2812 	if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2813 		ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2814 		error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2815 					      ip->i_ino, buffer_list);
2816 		if (error)
2817 			goto out_free_ip;
2818 	}
2819 
2820 out_free_ip:
2821 	xfs_inode_free(ip);
2822 	return error;
2823 }
2824 
2825 STATIC int
2826 xlog_recover_inode_pass2(
2827 	struct xlog			*log,
2828 	struct list_head		*buffer_list,
2829 	struct xlog_recover_item	*item,
2830 	xfs_lsn_t			current_lsn)
2831 {
2832 	xfs_inode_log_format_t	*in_f;
2833 	xfs_mount_t		*mp = log->l_mp;
2834 	xfs_buf_t		*bp;
2835 	xfs_dinode_t		*dip;
2836 	int			len;
2837 	char			*src;
2838 	char			*dest;
2839 	int			error;
2840 	int			attr_index;
2841 	uint			fields;
2842 	xfs_icdinode_t		*dicp;
2843 	uint			isize;
2844 	int			need_free = 0;
2845 
2846 	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2847 		in_f = item->ri_buf[0].i_addr;
2848 	} else {
2849 		in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2850 		need_free = 1;
2851 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2852 		if (error)
2853 			goto error;
2854 	}
2855 
2856 	/*
2857 	 * Inode buffers can be freed, look out for it,
2858 	 * and do not replay the inode.
2859 	 */
2860 	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2861 					in_f->ilf_len, 0)) {
2862 		error = 0;
2863 		trace_xfs_log_recover_inode_cancel(log, in_f);
2864 		goto error;
2865 	}
2866 	trace_xfs_log_recover_inode_recover(log, in_f);
2867 
2868 	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2869 			  &xfs_inode_buf_ops);
2870 	if (!bp) {
2871 		error = -ENOMEM;
2872 		goto error;
2873 	}
2874 	error = bp->b_error;
2875 	if (error) {
2876 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2877 		goto out_release;
2878 	}
2879 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2880 	dip = xfs_buf_offset(bp, in_f->ilf_boffset);
2881 
2882 	/*
2883 	 * Make sure the place we're flushing out to really looks
2884 	 * like an inode!
2885 	 */
2886 	if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2887 		xfs_alert(mp,
2888 	"%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2889 			__func__, dip, bp, in_f->ilf_ino);
2890 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2891 				 XFS_ERRLEVEL_LOW, mp);
2892 		error = -EFSCORRUPTED;
2893 		goto out_release;
2894 	}
2895 	dicp = item->ri_buf[1].i_addr;
2896 	if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2897 		xfs_alert(mp,
2898 			"%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2899 			__func__, item, in_f->ilf_ino);
2900 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2901 				 XFS_ERRLEVEL_LOW, mp);
2902 		error = -EFSCORRUPTED;
2903 		goto out_release;
2904 	}
2905 
2906 	/*
2907 	 * If the inode has an LSN in it, recover the inode only if it's less
2908 	 * than the lsn of the transaction we are replaying. Note: we still
2909 	 * need to replay an owner change even though the inode is more recent
2910 	 * than the transaction as there is no guarantee that all the btree
2911 	 * blocks are more recent than this transaction, too.
2912 	 */
2913 	if (dip->di_version >= 3) {
2914 		xfs_lsn_t	lsn = be64_to_cpu(dip->di_lsn);
2915 
2916 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2917 			trace_xfs_log_recover_inode_skip(log, in_f);
2918 			error = 0;
2919 			goto out_owner_change;
2920 		}
2921 	}
2922 
2923 	/*
2924 	 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2925 	 * are transactional and if ordering is necessary we can determine that
2926 	 * more accurately by the LSN field in the V3 inode core. Don't trust
2927 	 * the inode versions we might be changing them here - use the
2928 	 * superblock flag to determine whether we need to look at di_flushiter
2929 	 * to skip replay when the on disk inode is newer than the log one
2930 	 */
2931 	if (!xfs_sb_version_hascrc(&mp->m_sb) &&
2932 	    dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2933 		/*
2934 		 * Deal with the wrap case, DI_MAX_FLUSH is less
2935 		 * than smaller numbers
2936 		 */
2937 		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2938 		    dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2939 			/* do nothing */
2940 		} else {
2941 			trace_xfs_log_recover_inode_skip(log, in_f);
2942 			error = 0;
2943 			goto out_release;
2944 		}
2945 	}
2946 
2947 	/* Take the opportunity to reset the flush iteration count */
2948 	dicp->di_flushiter = 0;
2949 
2950 	if (unlikely(S_ISREG(dicp->di_mode))) {
2951 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2952 		    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2953 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2954 					 XFS_ERRLEVEL_LOW, mp, dicp);
2955 			xfs_alert(mp,
2956 		"%s: Bad regular inode log record, rec ptr 0x%p, "
2957 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2958 				__func__, item, dip, bp, in_f->ilf_ino);
2959 			error = -EFSCORRUPTED;
2960 			goto out_release;
2961 		}
2962 	} else if (unlikely(S_ISDIR(dicp->di_mode))) {
2963 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2964 		    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2965 		    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2966 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2967 					     XFS_ERRLEVEL_LOW, mp, dicp);
2968 			xfs_alert(mp,
2969 		"%s: Bad dir inode log record, rec ptr 0x%p, "
2970 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2971 				__func__, item, dip, bp, in_f->ilf_ino);
2972 			error = -EFSCORRUPTED;
2973 			goto out_release;
2974 		}
2975 	}
2976 	if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2977 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2978 				     XFS_ERRLEVEL_LOW, mp, dicp);
2979 		xfs_alert(mp,
2980 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2981 	"dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2982 			__func__, item, dip, bp, in_f->ilf_ino,
2983 			dicp->di_nextents + dicp->di_anextents,
2984 			dicp->di_nblocks);
2985 		error = -EFSCORRUPTED;
2986 		goto out_release;
2987 	}
2988 	if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2989 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2990 				     XFS_ERRLEVEL_LOW, mp, dicp);
2991 		xfs_alert(mp,
2992 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2993 	"dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2994 			item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2995 		error = -EFSCORRUPTED;
2996 		goto out_release;
2997 	}
2998 	isize = xfs_icdinode_size(dicp->di_version);
2999 	if (unlikely(item->ri_buf[1].i_len > isize)) {
3000 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3001 				     XFS_ERRLEVEL_LOW, mp, dicp);
3002 		xfs_alert(mp,
3003 			"%s: Bad inode log record length %d, rec ptr 0x%p",
3004 			__func__, item->ri_buf[1].i_len, item);
3005 		error = -EFSCORRUPTED;
3006 		goto out_release;
3007 	}
3008 
3009 	/* The core is in in-core format */
3010 	xfs_dinode_to_disk(dip, dicp);
3011 
3012 	/* the rest is in on-disk format */
3013 	if (item->ri_buf[1].i_len > isize) {
3014 		memcpy((char *)dip + isize,
3015 			item->ri_buf[1].i_addr + isize,
3016 			item->ri_buf[1].i_len - isize);
3017 	}
3018 
3019 	fields = in_f->ilf_fields;
3020 	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
3021 	case XFS_ILOG_DEV:
3022 		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3023 		break;
3024 	case XFS_ILOG_UUID:
3025 		memcpy(XFS_DFORK_DPTR(dip),
3026 		       &in_f->ilf_u.ilfu_uuid,
3027 		       sizeof(uuid_t));
3028 		break;
3029 	}
3030 
3031 	if (in_f->ilf_size == 2)
3032 		goto out_owner_change;
3033 	len = item->ri_buf[2].i_len;
3034 	src = item->ri_buf[2].i_addr;
3035 	ASSERT(in_f->ilf_size <= 4);
3036 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3037 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
3038 	       (len == in_f->ilf_dsize));
3039 
3040 	switch (fields & XFS_ILOG_DFORK) {
3041 	case XFS_ILOG_DDATA:
3042 	case XFS_ILOG_DEXT:
3043 		memcpy(XFS_DFORK_DPTR(dip), src, len);
3044 		break;
3045 
3046 	case XFS_ILOG_DBROOT:
3047 		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3048 				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3049 				 XFS_DFORK_DSIZE(dip, mp));
3050 		break;
3051 
3052 	default:
3053 		/*
3054 		 * There are no data fork flags set.
3055 		 */
3056 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
3057 		break;
3058 	}
3059 
3060 	/*
3061 	 * If we logged any attribute data, recover it.  There may or
3062 	 * may not have been any other non-core data logged in this
3063 	 * transaction.
3064 	 */
3065 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3066 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3067 			attr_index = 3;
3068 		} else {
3069 			attr_index = 2;
3070 		}
3071 		len = item->ri_buf[attr_index].i_len;
3072 		src = item->ri_buf[attr_index].i_addr;
3073 		ASSERT(len == in_f->ilf_asize);
3074 
3075 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3076 		case XFS_ILOG_ADATA:
3077 		case XFS_ILOG_AEXT:
3078 			dest = XFS_DFORK_APTR(dip);
3079 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3080 			memcpy(dest, src, len);
3081 			break;
3082 
3083 		case XFS_ILOG_ABROOT:
3084 			dest = XFS_DFORK_APTR(dip);
3085 			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3086 					 len, (xfs_bmdr_block_t*)dest,
3087 					 XFS_DFORK_ASIZE(dip, mp));
3088 			break;
3089 
3090 		default:
3091 			xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3092 			ASSERT(0);
3093 			error = -EIO;
3094 			goto out_release;
3095 		}
3096 	}
3097 
3098 out_owner_change:
3099 	if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
3100 		error = xfs_recover_inode_owner_change(mp, dip, in_f,
3101 						       buffer_list);
3102 	/* re-generate the checksum. */
3103 	xfs_dinode_calc_crc(log->l_mp, dip);
3104 
3105 	ASSERT(bp->b_target->bt_mount == mp);
3106 	bp->b_iodone = xlog_recover_iodone;
3107 	xfs_buf_delwri_queue(bp, buffer_list);
3108 
3109 out_release:
3110 	xfs_buf_relse(bp);
3111 error:
3112 	if (need_free)
3113 		kmem_free(in_f);
3114 	return error;
3115 }
3116 
3117 /*
3118  * Recover QUOTAOFF records. We simply make a note of it in the xlog
3119  * structure, so that we know not to do any dquot item or dquot buffer recovery,
3120  * of that type.
3121  */
3122 STATIC int
3123 xlog_recover_quotaoff_pass1(
3124 	struct xlog			*log,
3125 	struct xlog_recover_item	*item)
3126 {
3127 	xfs_qoff_logformat_t	*qoff_f = item->ri_buf[0].i_addr;
3128 	ASSERT(qoff_f);
3129 
3130 	/*
3131 	 * The logitem format's flag tells us if this was user quotaoff,
3132 	 * group/project quotaoff or both.
3133 	 */
3134 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3135 		log->l_quotaoffs_flag |= XFS_DQ_USER;
3136 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3137 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3138 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3139 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3140 
3141 	return 0;
3142 }
3143 
3144 /*
3145  * Recover a dquot record
3146  */
3147 STATIC int
3148 xlog_recover_dquot_pass2(
3149 	struct xlog			*log,
3150 	struct list_head		*buffer_list,
3151 	struct xlog_recover_item	*item,
3152 	xfs_lsn_t			current_lsn)
3153 {
3154 	xfs_mount_t		*mp = log->l_mp;
3155 	xfs_buf_t		*bp;
3156 	struct xfs_disk_dquot	*ddq, *recddq;
3157 	int			error;
3158 	xfs_dq_logformat_t	*dq_f;
3159 	uint			type;
3160 
3161 
3162 	/*
3163 	 * Filesystems are required to send in quota flags at mount time.
3164 	 */
3165 	if (mp->m_qflags == 0)
3166 		return 0;
3167 
3168 	recddq = item->ri_buf[1].i_addr;
3169 	if (recddq == NULL) {
3170 		xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3171 		return -EIO;
3172 	}
3173 	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
3174 		xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3175 			item->ri_buf[1].i_len, __func__);
3176 		return -EIO;
3177 	}
3178 
3179 	/*
3180 	 * This type of quotas was turned off, so ignore this record.
3181 	 */
3182 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3183 	ASSERT(type);
3184 	if (log->l_quotaoffs_flag & type)
3185 		return 0;
3186 
3187 	/*
3188 	 * At this point we know that quota was _not_ turned off.
3189 	 * Since the mount flags are not indicating to us otherwise, this
3190 	 * must mean that quota is on, and the dquot needs to be replayed.
3191 	 * Remember that we may not have fully recovered the superblock yet,
3192 	 * so we can't do the usual trick of looking at the SB quota bits.
3193 	 *
3194 	 * The other possibility, of course, is that the quota subsystem was
3195 	 * removed since the last mount - ENOSYS.
3196 	 */
3197 	dq_f = item->ri_buf[0].i_addr;
3198 	ASSERT(dq_f);
3199 	error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3200 			   "xlog_recover_dquot_pass2 (log copy)");
3201 	if (error)
3202 		return -EIO;
3203 	ASSERT(dq_f->qlf_len == 1);
3204 
3205 	/*
3206 	 * At this point we are assuming that the dquots have been allocated
3207 	 * and hence the buffer has valid dquots stamped in it. It should,
3208 	 * therefore, pass verifier validation. If the dquot is bad, then the
3209 	 * we'll return an error here, so we don't need to specifically check
3210 	 * the dquot in the buffer after the verifier has run.
3211 	 */
3212 	error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3213 				   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3214 				   &xfs_dquot_buf_ops);
3215 	if (error)
3216 		return error;
3217 
3218 	ASSERT(bp);
3219 	ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3220 
3221 	/*
3222 	 * If the dquot has an LSN in it, recover the dquot only if it's less
3223 	 * than the lsn of the transaction we are replaying.
3224 	 */
3225 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3226 		struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3227 		xfs_lsn_t	lsn = be64_to_cpu(dqb->dd_lsn);
3228 
3229 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3230 			goto out_release;
3231 		}
3232 	}
3233 
3234 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
3235 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3236 		xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3237 				 XFS_DQUOT_CRC_OFF);
3238 	}
3239 
3240 	ASSERT(dq_f->qlf_size == 2);
3241 	ASSERT(bp->b_target->bt_mount == mp);
3242 	bp->b_iodone = xlog_recover_iodone;
3243 	xfs_buf_delwri_queue(bp, buffer_list);
3244 
3245 out_release:
3246 	xfs_buf_relse(bp);
3247 	return 0;
3248 }
3249 
3250 /*
3251  * This routine is called to create an in-core extent free intent
3252  * item from the efi format structure which was logged on disk.
3253  * It allocates an in-core efi, copies the extents from the format
3254  * structure into it, and adds the efi to the AIL with the given
3255  * LSN.
3256  */
3257 STATIC int
3258 xlog_recover_efi_pass2(
3259 	struct xlog			*log,
3260 	struct xlog_recover_item	*item,
3261 	xfs_lsn_t			lsn)
3262 {
3263 	int				error;
3264 	struct xfs_mount		*mp = log->l_mp;
3265 	struct xfs_efi_log_item		*efip;
3266 	struct xfs_efi_log_format	*efi_formatp;
3267 
3268 	efi_formatp = item->ri_buf[0].i_addr;
3269 
3270 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3271 	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3272 	if (error) {
3273 		xfs_efi_item_free(efip);
3274 		return error;
3275 	}
3276 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3277 
3278 	spin_lock(&log->l_ailp->xa_lock);
3279 	/*
3280 	 * The EFI has two references. One for the EFD and one for EFI to ensure
3281 	 * it makes it into the AIL. Insert the EFI into the AIL directly and
3282 	 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3283 	 * AIL lock.
3284 	 */
3285 	xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3286 	xfs_efi_release(efip);
3287 	return 0;
3288 }
3289 
3290 
3291 /*
3292  * This routine is called when an EFD format structure is found in a committed
3293  * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3294  * was still in the log. To do this it searches the AIL for the EFI with an id
3295  * equal to that in the EFD format structure. If we find it we drop the EFD
3296  * reference, which removes the EFI from the AIL and frees it.
3297  */
3298 STATIC int
3299 xlog_recover_efd_pass2(
3300 	struct xlog			*log,
3301 	struct xlog_recover_item	*item)
3302 {
3303 	xfs_efd_log_format_t	*efd_formatp;
3304 	xfs_efi_log_item_t	*efip = NULL;
3305 	xfs_log_item_t		*lip;
3306 	__uint64_t		efi_id;
3307 	struct xfs_ail_cursor	cur;
3308 	struct xfs_ail		*ailp = log->l_ailp;
3309 
3310 	efd_formatp = item->ri_buf[0].i_addr;
3311 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3312 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3313 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3314 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3315 	efi_id = efd_formatp->efd_efi_id;
3316 
3317 	/*
3318 	 * Search for the EFI with the id in the EFD format structure in the
3319 	 * AIL.
3320 	 */
3321 	spin_lock(&ailp->xa_lock);
3322 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3323 	while (lip != NULL) {
3324 		if (lip->li_type == XFS_LI_EFI) {
3325 			efip = (xfs_efi_log_item_t *)lip;
3326 			if (efip->efi_format.efi_id == efi_id) {
3327 				/*
3328 				 * Drop the EFD reference to the EFI. This
3329 				 * removes the EFI from the AIL and frees it.
3330 				 */
3331 				spin_unlock(&ailp->xa_lock);
3332 				xfs_efi_release(efip);
3333 				spin_lock(&ailp->xa_lock);
3334 				break;
3335 			}
3336 		}
3337 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3338 	}
3339 
3340 	xfs_trans_ail_cursor_done(&cur);
3341 	spin_unlock(&ailp->xa_lock);
3342 
3343 	return 0;
3344 }
3345 
3346 /*
3347  * This routine is called when an inode create format structure is found in a
3348  * committed transaction in the log.  It's purpose is to initialise the inodes
3349  * being allocated on disk. This requires us to get inode cluster buffers that
3350  * match the range to be intialised, stamped with inode templates and written
3351  * by delayed write so that subsequent modifications will hit the cached buffer
3352  * and only need writing out at the end of recovery.
3353  */
3354 STATIC int
3355 xlog_recover_do_icreate_pass2(
3356 	struct xlog		*log,
3357 	struct list_head	*buffer_list,
3358 	xlog_recover_item_t	*item)
3359 {
3360 	struct xfs_mount	*mp = log->l_mp;
3361 	struct xfs_icreate_log	*icl;
3362 	xfs_agnumber_t		agno;
3363 	xfs_agblock_t		agbno;
3364 	unsigned int		count;
3365 	unsigned int		isize;
3366 	xfs_agblock_t		length;
3367 	int			blks_per_cluster;
3368 	int			bb_per_cluster;
3369 	int			cancel_count;
3370 	int			nbufs;
3371 	int			i;
3372 
3373 	icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3374 	if (icl->icl_type != XFS_LI_ICREATE) {
3375 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3376 		return -EINVAL;
3377 	}
3378 
3379 	if (icl->icl_size != 1) {
3380 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3381 		return -EINVAL;
3382 	}
3383 
3384 	agno = be32_to_cpu(icl->icl_ag);
3385 	if (agno >= mp->m_sb.sb_agcount) {
3386 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3387 		return -EINVAL;
3388 	}
3389 	agbno = be32_to_cpu(icl->icl_agbno);
3390 	if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3391 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3392 		return -EINVAL;
3393 	}
3394 	isize = be32_to_cpu(icl->icl_isize);
3395 	if (isize != mp->m_sb.sb_inodesize) {
3396 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3397 		return -EINVAL;
3398 	}
3399 	count = be32_to_cpu(icl->icl_count);
3400 	if (!count) {
3401 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3402 		return -EINVAL;
3403 	}
3404 	length = be32_to_cpu(icl->icl_length);
3405 	if (!length || length >= mp->m_sb.sb_agblocks) {
3406 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3407 		return -EINVAL;
3408 	}
3409 
3410 	/*
3411 	 * The inode chunk is either full or sparse and we only support
3412 	 * m_ialloc_min_blks sized sparse allocations at this time.
3413 	 */
3414 	if (length != mp->m_ialloc_blks &&
3415 	    length != mp->m_ialloc_min_blks) {
3416 		xfs_warn(log->l_mp,
3417 			 "%s: unsupported chunk length", __FUNCTION__);
3418 		return -EINVAL;
3419 	}
3420 
3421 	/* verify inode count is consistent with extent length */
3422 	if ((count >> mp->m_sb.sb_inopblog) != length) {
3423 		xfs_warn(log->l_mp,
3424 			 "%s: inconsistent inode count and chunk length",
3425 			 __FUNCTION__);
3426 		return -EINVAL;
3427 	}
3428 
3429 	/*
3430 	 * The icreate transaction can cover multiple cluster buffers and these
3431 	 * buffers could have been freed and reused. Check the individual
3432 	 * buffers for cancellation so we don't overwrite anything written after
3433 	 * a cancellation.
3434 	 */
3435 	blks_per_cluster = xfs_icluster_size_fsb(mp);
3436 	bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster);
3437 	nbufs = length / blks_per_cluster;
3438 	for (i = 0, cancel_count = 0; i < nbufs; i++) {
3439 		xfs_daddr_t	daddr;
3440 
3441 		daddr = XFS_AGB_TO_DADDR(mp, agno,
3442 					 agbno + i * blks_per_cluster);
3443 		if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3444 			cancel_count++;
3445 	}
3446 
3447 	/*
3448 	 * We currently only use icreate for a single allocation at a time. This
3449 	 * means we should expect either all or none of the buffers to be
3450 	 * cancelled. Be conservative and skip replay if at least one buffer is
3451 	 * cancelled, but warn the user that something is awry if the buffers
3452 	 * are not consistent.
3453 	 *
3454 	 * XXX: This must be refined to only skip cancelled clusters once we use
3455 	 * icreate for multiple chunk allocations.
3456 	 */
3457 	ASSERT(!cancel_count || cancel_count == nbufs);
3458 	if (cancel_count) {
3459 		if (cancel_count != nbufs)
3460 			xfs_warn(mp,
3461 	"WARNING: partial inode chunk cancellation, skipped icreate.");
3462 		trace_xfs_log_recover_icreate_cancel(log, icl);
3463 		return 0;
3464 	}
3465 
3466 	trace_xfs_log_recover_icreate_recover(log, icl);
3467 	return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3468 				     length, be32_to_cpu(icl->icl_gen));
3469 }
3470 
3471 STATIC void
3472 xlog_recover_buffer_ra_pass2(
3473 	struct xlog                     *log,
3474 	struct xlog_recover_item        *item)
3475 {
3476 	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
3477 	struct xfs_mount		*mp = log->l_mp;
3478 
3479 	if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3480 			buf_f->blf_len, buf_f->blf_flags)) {
3481 		return;
3482 	}
3483 
3484 	xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3485 				buf_f->blf_len, NULL);
3486 }
3487 
3488 STATIC void
3489 xlog_recover_inode_ra_pass2(
3490 	struct xlog                     *log,
3491 	struct xlog_recover_item        *item)
3492 {
3493 	struct xfs_inode_log_format	ilf_buf;
3494 	struct xfs_inode_log_format	*ilfp;
3495 	struct xfs_mount		*mp = log->l_mp;
3496 	int			error;
3497 
3498 	if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3499 		ilfp = item->ri_buf[0].i_addr;
3500 	} else {
3501 		ilfp = &ilf_buf;
3502 		memset(ilfp, 0, sizeof(*ilfp));
3503 		error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3504 		if (error)
3505 			return;
3506 	}
3507 
3508 	if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3509 		return;
3510 
3511 	xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3512 				ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3513 }
3514 
3515 STATIC void
3516 xlog_recover_dquot_ra_pass2(
3517 	struct xlog			*log,
3518 	struct xlog_recover_item	*item)
3519 {
3520 	struct xfs_mount	*mp = log->l_mp;
3521 	struct xfs_disk_dquot	*recddq;
3522 	struct xfs_dq_logformat	*dq_f;
3523 	uint			type;
3524 	int			len;
3525 
3526 
3527 	if (mp->m_qflags == 0)
3528 		return;
3529 
3530 	recddq = item->ri_buf[1].i_addr;
3531 	if (recddq == NULL)
3532 		return;
3533 	if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3534 		return;
3535 
3536 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3537 	ASSERT(type);
3538 	if (log->l_quotaoffs_flag & type)
3539 		return;
3540 
3541 	dq_f = item->ri_buf[0].i_addr;
3542 	ASSERT(dq_f);
3543 	ASSERT(dq_f->qlf_len == 1);
3544 
3545 	len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
3546 	if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
3547 		return;
3548 
3549 	xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
3550 			  &xfs_dquot_buf_ra_ops);
3551 }
3552 
3553 STATIC void
3554 xlog_recover_ra_pass2(
3555 	struct xlog			*log,
3556 	struct xlog_recover_item	*item)
3557 {
3558 	switch (ITEM_TYPE(item)) {
3559 	case XFS_LI_BUF:
3560 		xlog_recover_buffer_ra_pass2(log, item);
3561 		break;
3562 	case XFS_LI_INODE:
3563 		xlog_recover_inode_ra_pass2(log, item);
3564 		break;
3565 	case XFS_LI_DQUOT:
3566 		xlog_recover_dquot_ra_pass2(log, item);
3567 		break;
3568 	case XFS_LI_EFI:
3569 	case XFS_LI_EFD:
3570 	case XFS_LI_QUOTAOFF:
3571 	default:
3572 		break;
3573 	}
3574 }
3575 
3576 STATIC int
3577 xlog_recover_commit_pass1(
3578 	struct xlog			*log,
3579 	struct xlog_recover		*trans,
3580 	struct xlog_recover_item	*item)
3581 {
3582 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3583 
3584 	switch (ITEM_TYPE(item)) {
3585 	case XFS_LI_BUF:
3586 		return xlog_recover_buffer_pass1(log, item);
3587 	case XFS_LI_QUOTAOFF:
3588 		return xlog_recover_quotaoff_pass1(log, item);
3589 	case XFS_LI_INODE:
3590 	case XFS_LI_EFI:
3591 	case XFS_LI_EFD:
3592 	case XFS_LI_DQUOT:
3593 	case XFS_LI_ICREATE:
3594 		/* nothing to do in pass 1 */
3595 		return 0;
3596 	default:
3597 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3598 			__func__, ITEM_TYPE(item));
3599 		ASSERT(0);
3600 		return -EIO;
3601 	}
3602 }
3603 
3604 STATIC int
3605 xlog_recover_commit_pass2(
3606 	struct xlog			*log,
3607 	struct xlog_recover		*trans,
3608 	struct list_head		*buffer_list,
3609 	struct xlog_recover_item	*item)
3610 {
3611 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3612 
3613 	switch (ITEM_TYPE(item)) {
3614 	case XFS_LI_BUF:
3615 		return xlog_recover_buffer_pass2(log, buffer_list, item,
3616 						 trans->r_lsn);
3617 	case XFS_LI_INODE:
3618 		return xlog_recover_inode_pass2(log, buffer_list, item,
3619 						 trans->r_lsn);
3620 	case XFS_LI_EFI:
3621 		return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3622 	case XFS_LI_EFD:
3623 		return xlog_recover_efd_pass2(log, item);
3624 	case XFS_LI_DQUOT:
3625 		return xlog_recover_dquot_pass2(log, buffer_list, item,
3626 						trans->r_lsn);
3627 	case XFS_LI_ICREATE:
3628 		return xlog_recover_do_icreate_pass2(log, buffer_list, item);
3629 	case XFS_LI_QUOTAOFF:
3630 		/* nothing to do in pass2 */
3631 		return 0;
3632 	default:
3633 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3634 			__func__, ITEM_TYPE(item));
3635 		ASSERT(0);
3636 		return -EIO;
3637 	}
3638 }
3639 
3640 STATIC int
3641 xlog_recover_items_pass2(
3642 	struct xlog                     *log,
3643 	struct xlog_recover             *trans,
3644 	struct list_head                *buffer_list,
3645 	struct list_head                *item_list)
3646 {
3647 	struct xlog_recover_item	*item;
3648 	int				error = 0;
3649 
3650 	list_for_each_entry(item, item_list, ri_list) {
3651 		error = xlog_recover_commit_pass2(log, trans,
3652 					  buffer_list, item);
3653 		if (error)
3654 			return error;
3655 	}
3656 
3657 	return error;
3658 }
3659 
3660 /*
3661  * Perform the transaction.
3662  *
3663  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
3664  * EFIs and EFDs get queued up by adding entries into the AIL for them.
3665  */
3666 STATIC int
3667 xlog_recover_commit_trans(
3668 	struct xlog		*log,
3669 	struct xlog_recover	*trans,
3670 	int			pass)
3671 {
3672 	int				error = 0;
3673 	int				error2;
3674 	int				items_queued = 0;
3675 	struct xlog_recover_item	*item;
3676 	struct xlog_recover_item	*next;
3677 	LIST_HEAD			(buffer_list);
3678 	LIST_HEAD			(ra_list);
3679 	LIST_HEAD			(done_list);
3680 
3681 	#define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
3682 
3683 	hlist_del(&trans->r_list);
3684 
3685 	error = xlog_recover_reorder_trans(log, trans, pass);
3686 	if (error)
3687 		return error;
3688 
3689 	list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
3690 		switch (pass) {
3691 		case XLOG_RECOVER_PASS1:
3692 			error = xlog_recover_commit_pass1(log, trans, item);
3693 			break;
3694 		case XLOG_RECOVER_PASS2:
3695 			xlog_recover_ra_pass2(log, item);
3696 			list_move_tail(&item->ri_list, &ra_list);
3697 			items_queued++;
3698 			if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3699 				error = xlog_recover_items_pass2(log, trans,
3700 						&buffer_list, &ra_list);
3701 				list_splice_tail_init(&ra_list, &done_list);
3702 				items_queued = 0;
3703 			}
3704 
3705 			break;
3706 		default:
3707 			ASSERT(0);
3708 		}
3709 
3710 		if (error)
3711 			goto out;
3712 	}
3713 
3714 out:
3715 	if (!list_empty(&ra_list)) {
3716 		if (!error)
3717 			error = xlog_recover_items_pass2(log, trans,
3718 					&buffer_list, &ra_list);
3719 		list_splice_tail_init(&ra_list, &done_list);
3720 	}
3721 
3722 	if (!list_empty(&done_list))
3723 		list_splice_init(&done_list, &trans->r_itemq);
3724 
3725 	error2 = xfs_buf_delwri_submit(&buffer_list);
3726 	return error ? error : error2;
3727 }
3728 
3729 STATIC void
3730 xlog_recover_add_item(
3731 	struct list_head	*head)
3732 {
3733 	xlog_recover_item_t	*item;
3734 
3735 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
3736 	INIT_LIST_HEAD(&item->ri_list);
3737 	list_add_tail(&item->ri_list, head);
3738 }
3739 
3740 STATIC int
3741 xlog_recover_add_to_cont_trans(
3742 	struct xlog		*log,
3743 	struct xlog_recover	*trans,
3744 	char			*dp,
3745 	int			len)
3746 {
3747 	xlog_recover_item_t	*item;
3748 	char			*ptr, *old_ptr;
3749 	int			old_len;
3750 
3751 	/*
3752 	 * If the transaction is empty, the header was split across this and the
3753 	 * previous record. Copy the rest of the header.
3754 	 */
3755 	if (list_empty(&trans->r_itemq)) {
3756 		ASSERT(len <= sizeof(struct xfs_trans_header));
3757 		if (len > sizeof(struct xfs_trans_header)) {
3758 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
3759 			return -EIO;
3760 		}
3761 
3762 		xlog_recover_add_item(&trans->r_itemq);
3763 		ptr = (char *)&trans->r_theader +
3764 				sizeof(struct xfs_trans_header) - len;
3765 		memcpy(ptr, dp, len);
3766 		return 0;
3767 	}
3768 
3769 	/* take the tail entry */
3770 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3771 
3772 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
3773 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
3774 
3775 	ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
3776 	memcpy(&ptr[old_len], dp, len);
3777 	item->ri_buf[item->ri_cnt-1].i_len += len;
3778 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
3779 	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
3780 	return 0;
3781 }
3782 
3783 /*
3784  * The next region to add is the start of a new region.  It could be
3785  * a whole region or it could be the first part of a new region.  Because
3786  * of this, the assumption here is that the type and size fields of all
3787  * format structures fit into the first 32 bits of the structure.
3788  *
3789  * This works because all regions must be 32 bit aligned.  Therefore, we
3790  * either have both fields or we have neither field.  In the case we have
3791  * neither field, the data part of the region is zero length.  We only have
3792  * a log_op_header and can throw away the header since a new one will appear
3793  * later.  If we have at least 4 bytes, then we can determine how many regions
3794  * will appear in the current log item.
3795  */
3796 STATIC int
3797 xlog_recover_add_to_trans(
3798 	struct xlog		*log,
3799 	struct xlog_recover	*trans,
3800 	char			*dp,
3801 	int			len)
3802 {
3803 	xfs_inode_log_format_t	*in_f;			/* any will do */
3804 	xlog_recover_item_t	*item;
3805 	char			*ptr;
3806 
3807 	if (!len)
3808 		return 0;
3809 	if (list_empty(&trans->r_itemq)) {
3810 		/* we need to catch log corruptions here */
3811 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
3812 			xfs_warn(log->l_mp, "%s: bad header magic number",
3813 				__func__);
3814 			ASSERT(0);
3815 			return -EIO;
3816 		}
3817 
3818 		if (len > sizeof(struct xfs_trans_header)) {
3819 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
3820 			ASSERT(0);
3821 			return -EIO;
3822 		}
3823 
3824 		/*
3825 		 * The transaction header can be arbitrarily split across op
3826 		 * records. If we don't have the whole thing here, copy what we
3827 		 * do have and handle the rest in the next record.
3828 		 */
3829 		if (len == sizeof(struct xfs_trans_header))
3830 			xlog_recover_add_item(&trans->r_itemq);
3831 		memcpy(&trans->r_theader, dp, len);
3832 		return 0;
3833 	}
3834 
3835 	ptr = kmem_alloc(len, KM_SLEEP);
3836 	memcpy(ptr, dp, len);
3837 	in_f = (xfs_inode_log_format_t *)ptr;
3838 
3839 	/* take the tail entry */
3840 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3841 	if (item->ri_total != 0 &&
3842 	     item->ri_total == item->ri_cnt) {
3843 		/* tail item is in use, get a new one */
3844 		xlog_recover_add_item(&trans->r_itemq);
3845 		item = list_entry(trans->r_itemq.prev,
3846 					xlog_recover_item_t, ri_list);
3847 	}
3848 
3849 	if (item->ri_total == 0) {		/* first region to be added */
3850 		if (in_f->ilf_size == 0 ||
3851 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
3852 			xfs_warn(log->l_mp,
3853 		"bad number of regions (%d) in inode log format",
3854 				  in_f->ilf_size);
3855 			ASSERT(0);
3856 			kmem_free(ptr);
3857 			return -EIO;
3858 		}
3859 
3860 		item->ri_total = in_f->ilf_size;
3861 		item->ri_buf =
3862 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
3863 				    KM_SLEEP);
3864 	}
3865 	ASSERT(item->ri_total > item->ri_cnt);
3866 	/* Description region is ri_buf[0] */
3867 	item->ri_buf[item->ri_cnt].i_addr = ptr;
3868 	item->ri_buf[item->ri_cnt].i_len  = len;
3869 	item->ri_cnt++;
3870 	trace_xfs_log_recover_item_add(log, trans, item, 0);
3871 	return 0;
3872 }
3873 
3874 /*
3875  * Free up any resources allocated by the transaction
3876  *
3877  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3878  */
3879 STATIC void
3880 xlog_recover_free_trans(
3881 	struct xlog_recover	*trans)
3882 {
3883 	xlog_recover_item_t	*item, *n;
3884 	int			i;
3885 
3886 	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3887 		/* Free the regions in the item. */
3888 		list_del(&item->ri_list);
3889 		for (i = 0; i < item->ri_cnt; i++)
3890 			kmem_free(item->ri_buf[i].i_addr);
3891 		/* Free the item itself */
3892 		kmem_free(item->ri_buf);
3893 		kmem_free(item);
3894 	}
3895 	/* Free the transaction recover structure */
3896 	kmem_free(trans);
3897 }
3898 
3899 /*
3900  * On error or completion, trans is freed.
3901  */
3902 STATIC int
3903 xlog_recovery_process_trans(
3904 	struct xlog		*log,
3905 	struct xlog_recover	*trans,
3906 	char			*dp,
3907 	unsigned int		len,
3908 	unsigned int		flags,
3909 	int			pass)
3910 {
3911 	int			error = 0;
3912 	bool			freeit = false;
3913 
3914 	/* mask off ophdr transaction container flags */
3915 	flags &= ~XLOG_END_TRANS;
3916 	if (flags & XLOG_WAS_CONT_TRANS)
3917 		flags &= ~XLOG_CONTINUE_TRANS;
3918 
3919 	/*
3920 	 * Callees must not free the trans structure. We'll decide if we need to
3921 	 * free it or not based on the operation being done and it's result.
3922 	 */
3923 	switch (flags) {
3924 	/* expected flag values */
3925 	case 0:
3926 	case XLOG_CONTINUE_TRANS:
3927 		error = xlog_recover_add_to_trans(log, trans, dp, len);
3928 		break;
3929 	case XLOG_WAS_CONT_TRANS:
3930 		error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
3931 		break;
3932 	case XLOG_COMMIT_TRANS:
3933 		error = xlog_recover_commit_trans(log, trans, pass);
3934 		/* success or fail, we are now done with this transaction. */
3935 		freeit = true;
3936 		break;
3937 
3938 	/* unexpected flag values */
3939 	case XLOG_UNMOUNT_TRANS:
3940 		/* just skip trans */
3941 		xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
3942 		freeit = true;
3943 		break;
3944 	case XLOG_START_TRANS:
3945 	default:
3946 		xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
3947 		ASSERT(0);
3948 		error = -EIO;
3949 		break;
3950 	}
3951 	if (error || freeit)
3952 		xlog_recover_free_trans(trans);
3953 	return error;
3954 }
3955 
3956 /*
3957  * Lookup the transaction recovery structure associated with the ID in the
3958  * current ophdr. If the transaction doesn't exist and the start flag is set in
3959  * the ophdr, then allocate a new transaction for future ID matches to find.
3960  * Either way, return what we found during the lookup - an existing transaction
3961  * or nothing.
3962  */
3963 STATIC struct xlog_recover *
3964 xlog_recover_ophdr_to_trans(
3965 	struct hlist_head	rhash[],
3966 	struct xlog_rec_header	*rhead,
3967 	struct xlog_op_header	*ohead)
3968 {
3969 	struct xlog_recover	*trans;
3970 	xlog_tid_t		tid;
3971 	struct hlist_head	*rhp;
3972 
3973 	tid = be32_to_cpu(ohead->oh_tid);
3974 	rhp = &rhash[XLOG_RHASH(tid)];
3975 	hlist_for_each_entry(trans, rhp, r_list) {
3976 		if (trans->r_log_tid == tid)
3977 			return trans;
3978 	}
3979 
3980 	/*
3981 	 * skip over non-start transaction headers - we could be
3982 	 * processing slack space before the next transaction starts
3983 	 */
3984 	if (!(ohead->oh_flags & XLOG_START_TRANS))
3985 		return NULL;
3986 
3987 	ASSERT(be32_to_cpu(ohead->oh_len) == 0);
3988 
3989 	/*
3990 	 * This is a new transaction so allocate a new recovery container to
3991 	 * hold the recovery ops that will follow.
3992 	 */
3993 	trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
3994 	trans->r_log_tid = tid;
3995 	trans->r_lsn = be64_to_cpu(rhead->h_lsn);
3996 	INIT_LIST_HEAD(&trans->r_itemq);
3997 	INIT_HLIST_NODE(&trans->r_list);
3998 	hlist_add_head(&trans->r_list, rhp);
3999 
4000 	/*
4001 	 * Nothing more to do for this ophdr. Items to be added to this new
4002 	 * transaction will be in subsequent ophdr containers.
4003 	 */
4004 	return NULL;
4005 }
4006 
4007 STATIC int
4008 xlog_recover_process_ophdr(
4009 	struct xlog		*log,
4010 	struct hlist_head	rhash[],
4011 	struct xlog_rec_header	*rhead,
4012 	struct xlog_op_header	*ohead,
4013 	char			*dp,
4014 	char			*end,
4015 	int			pass)
4016 {
4017 	struct xlog_recover	*trans;
4018 	unsigned int		len;
4019 
4020 	/* Do we understand who wrote this op? */
4021 	if (ohead->oh_clientid != XFS_TRANSACTION &&
4022 	    ohead->oh_clientid != XFS_LOG) {
4023 		xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4024 			__func__, ohead->oh_clientid);
4025 		ASSERT(0);
4026 		return -EIO;
4027 	}
4028 
4029 	/*
4030 	 * Check the ophdr contains all the data it is supposed to contain.
4031 	 */
4032 	len = be32_to_cpu(ohead->oh_len);
4033 	if (dp + len > end) {
4034 		xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4035 		WARN_ON(1);
4036 		return -EIO;
4037 	}
4038 
4039 	trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4040 	if (!trans) {
4041 		/* nothing to do, so skip over this ophdr */
4042 		return 0;
4043 	}
4044 
4045 	return xlog_recovery_process_trans(log, trans, dp, len,
4046 					   ohead->oh_flags, pass);
4047 }
4048 
4049 /*
4050  * There are two valid states of the r_state field.  0 indicates that the
4051  * transaction structure is in a normal state.  We have either seen the
4052  * start of the transaction or the last operation we added was not a partial
4053  * operation.  If the last operation we added to the transaction was a
4054  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4055  *
4056  * NOTE: skip LRs with 0 data length.
4057  */
4058 STATIC int
4059 xlog_recover_process_data(
4060 	struct xlog		*log,
4061 	struct hlist_head	rhash[],
4062 	struct xlog_rec_header	*rhead,
4063 	char			*dp,
4064 	int			pass)
4065 {
4066 	struct xlog_op_header	*ohead;
4067 	char			*end;
4068 	int			num_logops;
4069 	int			error;
4070 
4071 	end = dp + be32_to_cpu(rhead->h_len);
4072 	num_logops = be32_to_cpu(rhead->h_num_logops);
4073 
4074 	/* check the log format matches our own - else we can't recover */
4075 	if (xlog_header_check_recover(log->l_mp, rhead))
4076 		return -EIO;
4077 
4078 	while ((dp < end) && num_logops) {
4079 
4080 		ohead = (struct xlog_op_header *)dp;
4081 		dp += sizeof(*ohead);
4082 		ASSERT(dp <= end);
4083 
4084 		/* errors will abort recovery */
4085 		error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4086 						    dp, end, pass);
4087 		if (error)
4088 			return error;
4089 
4090 		dp += be32_to_cpu(ohead->oh_len);
4091 		num_logops--;
4092 	}
4093 	return 0;
4094 }
4095 
4096 /*
4097  * Process an extent free intent item that was recovered from
4098  * the log.  We need to free the extents that it describes.
4099  */
4100 STATIC int
4101 xlog_recover_process_efi(
4102 	xfs_mount_t		*mp,
4103 	xfs_efi_log_item_t	*efip)
4104 {
4105 	xfs_efd_log_item_t	*efdp;
4106 	xfs_trans_t		*tp;
4107 	int			i;
4108 	int			error = 0;
4109 	xfs_extent_t		*extp;
4110 	xfs_fsblock_t		startblock_fsb;
4111 
4112 	ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
4113 
4114 	/*
4115 	 * First check the validity of the extents described by the
4116 	 * EFI.  If any are bad, then assume that all are bad and
4117 	 * just toss the EFI.
4118 	 */
4119 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
4120 		extp = &(efip->efi_format.efi_extents[i]);
4121 		startblock_fsb = XFS_BB_TO_FSB(mp,
4122 				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
4123 		if ((startblock_fsb == 0) ||
4124 		    (extp->ext_len == 0) ||
4125 		    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
4126 		    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
4127 			/*
4128 			 * This will pull the EFI from the AIL and
4129 			 * free the memory associated with it.
4130 			 */
4131 			set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
4132 			xfs_efi_release(efip);
4133 			return -EIO;
4134 		}
4135 	}
4136 
4137 	tp = xfs_trans_alloc(mp, 0);
4138 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
4139 	if (error)
4140 		goto abort_error;
4141 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
4142 
4143 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
4144 		extp = &(efip->efi_format.efi_extents[i]);
4145 		error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
4146 					      extp->ext_len);
4147 		if (error)
4148 			goto abort_error;
4149 
4150 	}
4151 
4152 	set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
4153 	error = xfs_trans_commit(tp);
4154 	return error;
4155 
4156 abort_error:
4157 	xfs_trans_cancel(tp);
4158 	return error;
4159 }
4160 
4161 /*
4162  * When this is called, all of the EFIs which did not have
4163  * corresponding EFDs should be in the AIL.  What we do now
4164  * is free the extents associated with each one.
4165  *
4166  * Since we process the EFIs in normal transactions, they
4167  * will be removed at some point after the commit.  This prevents
4168  * us from just walking down the list processing each one.
4169  * We'll use a flag in the EFI to skip those that we've already
4170  * processed and use the AIL iteration mechanism's generation
4171  * count to try to speed this up at least a bit.
4172  *
4173  * When we start, we know that the EFIs are the only things in
4174  * the AIL.  As we process them, however, other items are added
4175  * to the AIL.  Since everything added to the AIL must come after
4176  * everything already in the AIL, we stop processing as soon as
4177  * we see something other than an EFI in the AIL.
4178  */
4179 STATIC int
4180 xlog_recover_process_efis(
4181 	struct xlog		*log)
4182 {
4183 	struct xfs_log_item	*lip;
4184 	struct xfs_efi_log_item	*efip;
4185 	int			error = 0;
4186 	struct xfs_ail_cursor	cur;
4187 	struct xfs_ail		*ailp;
4188 
4189 	ailp = log->l_ailp;
4190 	spin_lock(&ailp->xa_lock);
4191 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4192 	while (lip != NULL) {
4193 		/*
4194 		 * We're done when we see something other than an EFI.
4195 		 * There should be no EFIs left in the AIL now.
4196 		 */
4197 		if (lip->li_type != XFS_LI_EFI) {
4198 #ifdef DEBUG
4199 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4200 				ASSERT(lip->li_type != XFS_LI_EFI);
4201 #endif
4202 			break;
4203 		}
4204 
4205 		/*
4206 		 * Skip EFIs that we've already processed.
4207 		 */
4208 		efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4209 		if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
4210 			lip = xfs_trans_ail_cursor_next(ailp, &cur);
4211 			continue;
4212 		}
4213 
4214 		spin_unlock(&ailp->xa_lock);
4215 		error = xlog_recover_process_efi(log->l_mp, efip);
4216 		spin_lock(&ailp->xa_lock);
4217 		if (error)
4218 			goto out;
4219 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
4220 	}
4221 out:
4222 	xfs_trans_ail_cursor_done(&cur);
4223 	spin_unlock(&ailp->xa_lock);
4224 	return error;
4225 }
4226 
4227 /*
4228  * A cancel occurs when the mount has failed and we're bailing out. Release all
4229  * pending EFIs so they don't pin the AIL.
4230  */
4231 STATIC int
4232 xlog_recover_cancel_efis(
4233 	struct xlog		*log)
4234 {
4235 	struct xfs_log_item	*lip;
4236 	struct xfs_efi_log_item	*efip;
4237 	int			error = 0;
4238 	struct xfs_ail_cursor	cur;
4239 	struct xfs_ail		*ailp;
4240 
4241 	ailp = log->l_ailp;
4242 	spin_lock(&ailp->xa_lock);
4243 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4244 	while (lip != NULL) {
4245 		/*
4246 		 * We're done when we see something other than an EFI.
4247 		 * There should be no EFIs left in the AIL now.
4248 		 */
4249 		if (lip->li_type != XFS_LI_EFI) {
4250 #ifdef DEBUG
4251 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4252 				ASSERT(lip->li_type != XFS_LI_EFI);
4253 #endif
4254 			break;
4255 		}
4256 
4257 		efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4258 
4259 		spin_unlock(&ailp->xa_lock);
4260 		xfs_efi_release(efip);
4261 		spin_lock(&ailp->xa_lock);
4262 
4263 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
4264 	}
4265 
4266 	xfs_trans_ail_cursor_done(&cur);
4267 	spin_unlock(&ailp->xa_lock);
4268 	return error;
4269 }
4270 
4271 /*
4272  * This routine performs a transaction to null out a bad inode pointer
4273  * in an agi unlinked inode hash bucket.
4274  */
4275 STATIC void
4276 xlog_recover_clear_agi_bucket(
4277 	xfs_mount_t	*mp,
4278 	xfs_agnumber_t	agno,
4279 	int		bucket)
4280 {
4281 	xfs_trans_t	*tp;
4282 	xfs_agi_t	*agi;
4283 	xfs_buf_t	*agibp;
4284 	int		offset;
4285 	int		error;
4286 
4287 	tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
4288 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
4289 	if (error)
4290 		goto out_abort;
4291 
4292 	error = xfs_read_agi(mp, tp, agno, &agibp);
4293 	if (error)
4294 		goto out_abort;
4295 
4296 	agi = XFS_BUF_TO_AGI(agibp);
4297 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
4298 	offset = offsetof(xfs_agi_t, agi_unlinked) +
4299 		 (sizeof(xfs_agino_t) * bucket);
4300 	xfs_trans_log_buf(tp, agibp, offset,
4301 			  (offset + sizeof(xfs_agino_t) - 1));
4302 
4303 	error = xfs_trans_commit(tp);
4304 	if (error)
4305 		goto out_error;
4306 	return;
4307 
4308 out_abort:
4309 	xfs_trans_cancel(tp);
4310 out_error:
4311 	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
4312 	return;
4313 }
4314 
4315 STATIC xfs_agino_t
4316 xlog_recover_process_one_iunlink(
4317 	struct xfs_mount		*mp,
4318 	xfs_agnumber_t			agno,
4319 	xfs_agino_t			agino,
4320 	int				bucket)
4321 {
4322 	struct xfs_buf			*ibp;
4323 	struct xfs_dinode		*dip;
4324 	struct xfs_inode		*ip;
4325 	xfs_ino_t			ino;
4326 	int				error;
4327 
4328 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
4329 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
4330 	if (error)
4331 		goto fail;
4332 
4333 	/*
4334 	 * Get the on disk inode to find the next inode in the bucket.
4335 	 */
4336 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
4337 	if (error)
4338 		goto fail_iput;
4339 
4340 	ASSERT(ip->i_d.di_nlink == 0);
4341 	ASSERT(ip->i_d.di_mode != 0);
4342 
4343 	/* setup for the next pass */
4344 	agino = be32_to_cpu(dip->di_next_unlinked);
4345 	xfs_buf_relse(ibp);
4346 
4347 	/*
4348 	 * Prevent any DMAPI event from being sent when the reference on
4349 	 * the inode is dropped.
4350 	 */
4351 	ip->i_d.di_dmevmask = 0;
4352 
4353 	IRELE(ip);
4354 	return agino;
4355 
4356  fail_iput:
4357 	IRELE(ip);
4358  fail:
4359 	/*
4360 	 * We can't read in the inode this bucket points to, or this inode
4361 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
4362 	 * some inodes and space, but at least we won't hang.
4363 	 *
4364 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
4365 	 * clear the inode pointer in the bucket.
4366 	 */
4367 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
4368 	return NULLAGINO;
4369 }
4370 
4371 /*
4372  * xlog_iunlink_recover
4373  *
4374  * This is called during recovery to process any inodes which
4375  * we unlinked but not freed when the system crashed.  These
4376  * inodes will be on the lists in the AGI blocks.  What we do
4377  * here is scan all the AGIs and fully truncate and free any
4378  * inodes found on the lists.  Each inode is removed from the
4379  * lists when it has been fully truncated and is freed.  The
4380  * freeing of the inode and its removal from the list must be
4381  * atomic.
4382  */
4383 STATIC void
4384 xlog_recover_process_iunlinks(
4385 	struct xlog	*log)
4386 {
4387 	xfs_mount_t	*mp;
4388 	xfs_agnumber_t	agno;
4389 	xfs_agi_t	*agi;
4390 	xfs_buf_t	*agibp;
4391 	xfs_agino_t	agino;
4392 	int		bucket;
4393 	int		error;
4394 	uint		mp_dmevmask;
4395 
4396 	mp = log->l_mp;
4397 
4398 	/*
4399 	 * Prevent any DMAPI event from being sent while in this function.
4400 	 */
4401 	mp_dmevmask = mp->m_dmevmask;
4402 	mp->m_dmevmask = 0;
4403 
4404 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4405 		/*
4406 		 * Find the agi for this ag.
4407 		 */
4408 		error = xfs_read_agi(mp, NULL, agno, &agibp);
4409 		if (error) {
4410 			/*
4411 			 * AGI is b0rked. Don't process it.
4412 			 *
4413 			 * We should probably mark the filesystem as corrupt
4414 			 * after we've recovered all the ag's we can....
4415 			 */
4416 			continue;
4417 		}
4418 		/*
4419 		 * Unlock the buffer so that it can be acquired in the normal
4420 		 * course of the transaction to truncate and free each inode.
4421 		 * Because we are not racing with anyone else here for the AGI
4422 		 * buffer, we don't even need to hold it locked to read the
4423 		 * initial unlinked bucket entries out of the buffer. We keep
4424 		 * buffer reference though, so that it stays pinned in memory
4425 		 * while we need the buffer.
4426 		 */
4427 		agi = XFS_BUF_TO_AGI(agibp);
4428 		xfs_buf_unlock(agibp);
4429 
4430 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
4431 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
4432 			while (agino != NULLAGINO) {
4433 				agino = xlog_recover_process_one_iunlink(mp,
4434 							agno, agino, bucket);
4435 			}
4436 		}
4437 		xfs_buf_rele(agibp);
4438 	}
4439 
4440 	mp->m_dmevmask = mp_dmevmask;
4441 }
4442 
4443 STATIC int
4444 xlog_unpack_data(
4445 	struct xlog_rec_header	*rhead,
4446 	char			*dp,
4447 	struct xlog		*log)
4448 {
4449 	int			i, j, k;
4450 
4451 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
4452 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
4453 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
4454 		dp += BBSIZE;
4455 	}
4456 
4457 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4458 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
4459 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
4460 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4461 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4462 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
4463 			dp += BBSIZE;
4464 		}
4465 	}
4466 
4467 	return 0;
4468 }
4469 
4470 /*
4471  * CRC check, unpack and process a log record.
4472  */
4473 STATIC int
4474 xlog_recover_process(
4475 	struct xlog		*log,
4476 	struct hlist_head	rhash[],
4477 	struct xlog_rec_header	*rhead,
4478 	char			*dp,
4479 	int			pass)
4480 {
4481 	int			error;
4482 	__le32			crc;
4483 
4484 	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
4485 
4486 	/*
4487 	 * Nothing else to do if this is a CRC verification pass. Just return
4488 	 * if this a record with a non-zero crc. Unfortunately, mkfs always
4489 	 * sets h_crc to 0 so we must consider this valid even on v5 supers.
4490 	 * Otherwise, return EFSBADCRC on failure so the callers up the stack
4491 	 * know precisely what failed.
4492 	 */
4493 	if (pass == XLOG_RECOVER_CRCPASS) {
4494 		if (rhead->h_crc && crc != le32_to_cpu(rhead->h_crc))
4495 			return -EFSBADCRC;
4496 		return 0;
4497 	}
4498 
4499 	/*
4500 	 * We're in the normal recovery path. Issue a warning if and only if the
4501 	 * CRC in the header is non-zero. This is an advisory warning and the
4502 	 * zero CRC check prevents warnings from being emitted when upgrading
4503 	 * the kernel from one that does not add CRCs by default.
4504 	 */
4505 	if (crc != le32_to_cpu(rhead->h_crc)) {
4506 		if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
4507 			xfs_alert(log->l_mp,
4508 		"log record CRC mismatch: found 0x%x, expected 0x%x.",
4509 					le32_to_cpu(rhead->h_crc),
4510 					le32_to_cpu(crc));
4511 			xfs_hex_dump(dp, 32);
4512 		}
4513 
4514 		/*
4515 		 * If the filesystem is CRC enabled, this mismatch becomes a
4516 		 * fatal log corruption failure.
4517 		 */
4518 		if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
4519 			return -EFSCORRUPTED;
4520 	}
4521 
4522 	error = xlog_unpack_data(rhead, dp, log);
4523 	if (error)
4524 		return error;
4525 
4526 	return xlog_recover_process_data(log, rhash, rhead, dp, pass);
4527 }
4528 
4529 STATIC int
4530 xlog_valid_rec_header(
4531 	struct xlog		*log,
4532 	struct xlog_rec_header	*rhead,
4533 	xfs_daddr_t		blkno)
4534 {
4535 	int			hlen;
4536 
4537 	if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
4538 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4539 				XFS_ERRLEVEL_LOW, log->l_mp);
4540 		return -EFSCORRUPTED;
4541 	}
4542 	if (unlikely(
4543 	    (!rhead->h_version ||
4544 	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
4545 		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
4546 			__func__, be32_to_cpu(rhead->h_version));
4547 		return -EIO;
4548 	}
4549 
4550 	/* LR body must have data or it wouldn't have been written */
4551 	hlen = be32_to_cpu(rhead->h_len);
4552 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4553 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4554 				XFS_ERRLEVEL_LOW, log->l_mp);
4555 		return -EFSCORRUPTED;
4556 	}
4557 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4558 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4559 				XFS_ERRLEVEL_LOW, log->l_mp);
4560 		return -EFSCORRUPTED;
4561 	}
4562 	return 0;
4563 }
4564 
4565 /*
4566  * Read the log from tail to head and process the log records found.
4567  * Handle the two cases where the tail and head are in the same cycle
4568  * and where the active portion of the log wraps around the end of
4569  * the physical log separately.  The pass parameter is passed through
4570  * to the routines called to process the data and is not looked at
4571  * here.
4572  */
4573 STATIC int
4574 xlog_do_recovery_pass(
4575 	struct xlog		*log,
4576 	xfs_daddr_t		head_blk,
4577 	xfs_daddr_t		tail_blk,
4578 	int			pass,
4579 	xfs_daddr_t		*first_bad)	/* out: first bad log rec */
4580 {
4581 	xlog_rec_header_t	*rhead;
4582 	xfs_daddr_t		blk_no;
4583 	xfs_daddr_t		rhead_blk;
4584 	char			*offset;
4585 	xfs_buf_t		*hbp, *dbp;
4586 	int			error = 0, h_size, h_len;
4587 	int			bblks, split_bblks;
4588 	int			hblks, split_hblks, wrapped_hblks;
4589 	struct hlist_head	rhash[XLOG_RHASH_SIZE];
4590 
4591 	ASSERT(head_blk != tail_blk);
4592 	rhead_blk = 0;
4593 
4594 	/*
4595 	 * Read the header of the tail block and get the iclog buffer size from
4596 	 * h_size.  Use this to tell how many sectors make up the log header.
4597 	 */
4598 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4599 		/*
4600 		 * When using variable length iclogs, read first sector of
4601 		 * iclog header and extract the header size from it.  Get a
4602 		 * new hbp that is the correct size.
4603 		 */
4604 		hbp = xlog_get_bp(log, 1);
4605 		if (!hbp)
4606 			return -ENOMEM;
4607 
4608 		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4609 		if (error)
4610 			goto bread_err1;
4611 
4612 		rhead = (xlog_rec_header_t *)offset;
4613 		error = xlog_valid_rec_header(log, rhead, tail_blk);
4614 		if (error)
4615 			goto bread_err1;
4616 
4617 		/*
4618 		 * xfsprogs has a bug where record length is based on lsunit but
4619 		 * h_size (iclog size) is hardcoded to 32k. Now that we
4620 		 * unconditionally CRC verify the unmount record, this means the
4621 		 * log buffer can be too small for the record and cause an
4622 		 * overrun.
4623 		 *
4624 		 * Detect this condition here. Use lsunit for the buffer size as
4625 		 * long as this looks like the mkfs case. Otherwise, return an
4626 		 * error to avoid a buffer overrun.
4627 		 */
4628 		h_size = be32_to_cpu(rhead->h_size);
4629 		h_len = be32_to_cpu(rhead->h_len);
4630 		if (h_len > h_size) {
4631 			if (h_len <= log->l_mp->m_logbsize &&
4632 			    be32_to_cpu(rhead->h_num_logops) == 1) {
4633 				xfs_warn(log->l_mp,
4634 		"invalid iclog size (%d bytes), using lsunit (%d bytes)",
4635 					 h_size, log->l_mp->m_logbsize);
4636 				h_size = log->l_mp->m_logbsize;
4637 			} else
4638 				return -EFSCORRUPTED;
4639 		}
4640 
4641 		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
4642 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4643 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4644 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
4645 				hblks++;
4646 			xlog_put_bp(hbp);
4647 			hbp = xlog_get_bp(log, hblks);
4648 		} else {
4649 			hblks = 1;
4650 		}
4651 	} else {
4652 		ASSERT(log->l_sectBBsize == 1);
4653 		hblks = 1;
4654 		hbp = xlog_get_bp(log, 1);
4655 		h_size = XLOG_BIG_RECORD_BSIZE;
4656 	}
4657 
4658 	if (!hbp)
4659 		return -ENOMEM;
4660 	dbp = xlog_get_bp(log, BTOBB(h_size));
4661 	if (!dbp) {
4662 		xlog_put_bp(hbp);
4663 		return -ENOMEM;
4664 	}
4665 
4666 	memset(rhash, 0, sizeof(rhash));
4667 	blk_no = rhead_blk = tail_blk;
4668 	if (tail_blk > head_blk) {
4669 		/*
4670 		 * Perform recovery around the end of the physical log.
4671 		 * When the head is not on the same cycle number as the tail,
4672 		 * we can't do a sequential recovery.
4673 		 */
4674 		while (blk_no < log->l_logBBsize) {
4675 			/*
4676 			 * Check for header wrapping around physical end-of-log
4677 			 */
4678 			offset = hbp->b_addr;
4679 			split_hblks = 0;
4680 			wrapped_hblks = 0;
4681 			if (blk_no + hblks <= log->l_logBBsize) {
4682 				/* Read header in one read */
4683 				error = xlog_bread(log, blk_no, hblks, hbp,
4684 						   &offset);
4685 				if (error)
4686 					goto bread_err2;
4687 			} else {
4688 				/* This LR is split across physical log end */
4689 				if (blk_no != log->l_logBBsize) {
4690 					/* some data before physical log end */
4691 					ASSERT(blk_no <= INT_MAX);
4692 					split_hblks = log->l_logBBsize - (int)blk_no;
4693 					ASSERT(split_hblks > 0);
4694 					error = xlog_bread(log, blk_no,
4695 							   split_hblks, hbp,
4696 							   &offset);
4697 					if (error)
4698 						goto bread_err2;
4699 				}
4700 
4701 				/*
4702 				 * Note: this black magic still works with
4703 				 * large sector sizes (non-512) only because:
4704 				 * - we increased the buffer size originally
4705 				 *   by 1 sector giving us enough extra space
4706 				 *   for the second read;
4707 				 * - the log start is guaranteed to be sector
4708 				 *   aligned;
4709 				 * - we read the log end (LR header start)
4710 				 *   _first_, then the log start (LR header end)
4711 				 *   - order is important.
4712 				 */
4713 				wrapped_hblks = hblks - split_hblks;
4714 				error = xlog_bread_offset(log, 0,
4715 						wrapped_hblks, hbp,
4716 						offset + BBTOB(split_hblks));
4717 				if (error)
4718 					goto bread_err2;
4719 			}
4720 			rhead = (xlog_rec_header_t *)offset;
4721 			error = xlog_valid_rec_header(log, rhead,
4722 						split_hblks ? blk_no : 0);
4723 			if (error)
4724 				goto bread_err2;
4725 
4726 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4727 			blk_no += hblks;
4728 
4729 			/* Read in data for log record */
4730 			if (blk_no + bblks <= log->l_logBBsize) {
4731 				error = xlog_bread(log, blk_no, bblks, dbp,
4732 						   &offset);
4733 				if (error)
4734 					goto bread_err2;
4735 			} else {
4736 				/* This log record is split across the
4737 				 * physical end of log */
4738 				offset = dbp->b_addr;
4739 				split_bblks = 0;
4740 				if (blk_no != log->l_logBBsize) {
4741 					/* some data is before the physical
4742 					 * end of log */
4743 					ASSERT(!wrapped_hblks);
4744 					ASSERT(blk_no <= INT_MAX);
4745 					split_bblks =
4746 						log->l_logBBsize - (int)blk_no;
4747 					ASSERT(split_bblks > 0);
4748 					error = xlog_bread(log, blk_no,
4749 							split_bblks, dbp,
4750 							&offset);
4751 					if (error)
4752 						goto bread_err2;
4753 				}
4754 
4755 				/*
4756 				 * Note: this black magic still works with
4757 				 * large sector sizes (non-512) only because:
4758 				 * - we increased the buffer size originally
4759 				 *   by 1 sector giving us enough extra space
4760 				 *   for the second read;
4761 				 * - the log start is guaranteed to be sector
4762 				 *   aligned;
4763 				 * - we read the log end (LR header start)
4764 				 *   _first_, then the log start (LR header end)
4765 				 *   - order is important.
4766 				 */
4767 				error = xlog_bread_offset(log, 0,
4768 						bblks - split_bblks, dbp,
4769 						offset + BBTOB(split_bblks));
4770 				if (error)
4771 					goto bread_err2;
4772 			}
4773 
4774 			error = xlog_recover_process(log, rhash, rhead, offset,
4775 						     pass);
4776 			if (error)
4777 				goto bread_err2;
4778 
4779 			blk_no += bblks;
4780 			rhead_blk = blk_no;
4781 		}
4782 
4783 		ASSERT(blk_no >= log->l_logBBsize);
4784 		blk_no -= log->l_logBBsize;
4785 		rhead_blk = blk_no;
4786 	}
4787 
4788 	/* read first part of physical log */
4789 	while (blk_no < head_blk) {
4790 		error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4791 		if (error)
4792 			goto bread_err2;
4793 
4794 		rhead = (xlog_rec_header_t *)offset;
4795 		error = xlog_valid_rec_header(log, rhead, blk_no);
4796 		if (error)
4797 			goto bread_err2;
4798 
4799 		/* blocks in data section */
4800 		bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4801 		error = xlog_bread(log, blk_no+hblks, bblks, dbp,
4802 				   &offset);
4803 		if (error)
4804 			goto bread_err2;
4805 
4806 		error = xlog_recover_process(log, rhash, rhead, offset, pass);
4807 		if (error)
4808 			goto bread_err2;
4809 
4810 		blk_no += bblks + hblks;
4811 		rhead_blk = blk_no;
4812 	}
4813 
4814  bread_err2:
4815 	xlog_put_bp(dbp);
4816  bread_err1:
4817 	xlog_put_bp(hbp);
4818 
4819 	if (error && first_bad)
4820 		*first_bad = rhead_blk;
4821 
4822 	return error;
4823 }
4824 
4825 /*
4826  * Do the recovery of the log.  We actually do this in two phases.
4827  * The two passes are necessary in order to implement the function
4828  * of cancelling a record written into the log.  The first pass
4829  * determines those things which have been cancelled, and the
4830  * second pass replays log items normally except for those which
4831  * have been cancelled.  The handling of the replay and cancellations
4832  * takes place in the log item type specific routines.
4833  *
4834  * The table of items which have cancel records in the log is allocated
4835  * and freed at this level, since only here do we know when all of
4836  * the log recovery has been completed.
4837  */
4838 STATIC int
4839 xlog_do_log_recovery(
4840 	struct xlog	*log,
4841 	xfs_daddr_t	head_blk,
4842 	xfs_daddr_t	tail_blk)
4843 {
4844 	int		error, i;
4845 
4846 	ASSERT(head_blk != tail_blk);
4847 
4848 	/*
4849 	 * First do a pass to find all of the cancelled buf log items.
4850 	 * Store them in the buf_cancel_table for use in the second pass.
4851 	 */
4852 	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4853 						 sizeof(struct list_head),
4854 						 KM_SLEEP);
4855 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4856 		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4857 
4858 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4859 				      XLOG_RECOVER_PASS1, NULL);
4860 	if (error != 0) {
4861 		kmem_free(log->l_buf_cancel_table);
4862 		log->l_buf_cancel_table = NULL;
4863 		return error;
4864 	}
4865 	/*
4866 	 * Then do a second pass to actually recover the items in the log.
4867 	 * When it is complete free the table of buf cancel items.
4868 	 */
4869 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4870 				      XLOG_RECOVER_PASS2, NULL);
4871 #ifdef DEBUG
4872 	if (!error) {
4873 		int	i;
4874 
4875 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4876 			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
4877 	}
4878 #endif	/* DEBUG */
4879 
4880 	kmem_free(log->l_buf_cancel_table);
4881 	log->l_buf_cancel_table = NULL;
4882 
4883 	return error;
4884 }
4885 
4886 /*
4887  * Do the actual recovery
4888  */
4889 STATIC int
4890 xlog_do_recover(
4891 	struct xlog	*log,
4892 	xfs_daddr_t	head_blk,
4893 	xfs_daddr_t	tail_blk)
4894 {
4895 	int		error;
4896 	xfs_buf_t	*bp;
4897 	xfs_sb_t	*sbp;
4898 
4899 	/*
4900 	 * First replay the images in the log.
4901 	 */
4902 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
4903 	if (error)
4904 		return error;
4905 
4906 	/*
4907 	 * If IO errors happened during recovery, bail out.
4908 	 */
4909 	if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4910 		return -EIO;
4911 	}
4912 
4913 	/*
4914 	 * We now update the tail_lsn since much of the recovery has completed
4915 	 * and there may be space available to use.  If there were no extent
4916 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
4917 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
4918 	 * lsn of the last known good LR on disk.  If there are extent frees
4919 	 * or iunlinks they will have some entries in the AIL; so we look at
4920 	 * the AIL to determine how to set the tail_lsn.
4921 	 */
4922 	xlog_assign_tail_lsn(log->l_mp);
4923 
4924 	/*
4925 	 * Now that we've finished replaying all buffer and inode
4926 	 * updates, re-read in the superblock and reverify it.
4927 	 */
4928 	bp = xfs_getsb(log->l_mp, 0);
4929 	XFS_BUF_UNDONE(bp);
4930 	ASSERT(!(XFS_BUF_ISWRITE(bp)));
4931 	XFS_BUF_READ(bp);
4932 	XFS_BUF_UNASYNC(bp);
4933 	bp->b_ops = &xfs_sb_buf_ops;
4934 
4935 	error = xfs_buf_submit_wait(bp);
4936 	if (error) {
4937 		if (!XFS_FORCED_SHUTDOWN(log->l_mp)) {
4938 			xfs_buf_ioerror_alert(bp, __func__);
4939 			ASSERT(0);
4940 		}
4941 		xfs_buf_relse(bp);
4942 		return error;
4943 	}
4944 
4945 	/* Convert superblock from on-disk format */
4946 	sbp = &log->l_mp->m_sb;
4947 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
4948 	ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
4949 	ASSERT(xfs_sb_good_version(sbp));
4950 	xfs_reinit_percpu_counters(log->l_mp);
4951 
4952 	xfs_buf_relse(bp);
4953 
4954 
4955 	xlog_recover_check_summary(log);
4956 
4957 	/* Normal transactions can now occur */
4958 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4959 	return 0;
4960 }
4961 
4962 /*
4963  * Perform recovery and re-initialize some log variables in xlog_find_tail.
4964  *
4965  * Return error or zero.
4966  */
4967 int
4968 xlog_recover(
4969 	struct xlog	*log)
4970 {
4971 	xfs_daddr_t	head_blk, tail_blk;
4972 	int		error;
4973 
4974 	/* find the tail of the log */
4975 	error = xlog_find_tail(log, &head_blk, &tail_blk);
4976 	if (error)
4977 		return error;
4978 
4979 	/*
4980 	 * The superblock was read before the log was available and thus the LSN
4981 	 * could not be verified. Check the superblock LSN against the current
4982 	 * LSN now that it's known.
4983 	 */
4984 	if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
4985 	    !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
4986 		return -EINVAL;
4987 
4988 	if (tail_blk != head_blk) {
4989 		/* There used to be a comment here:
4990 		 *
4991 		 * disallow recovery on read-only mounts.  note -- mount
4992 		 * checks for ENOSPC and turns it into an intelligent
4993 		 * error message.
4994 		 * ...but this is no longer true.  Now, unless you specify
4995 		 * NORECOVERY (in which case this function would never be
4996 		 * called), we just go ahead and recover.  We do this all
4997 		 * under the vfs layer, so we can get away with it unless
4998 		 * the device itself is read-only, in which case we fail.
4999 		 */
5000 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5001 			return error;
5002 		}
5003 
5004 		/*
5005 		 * Version 5 superblock log feature mask validation. We know the
5006 		 * log is dirty so check if there are any unknown log features
5007 		 * in what we need to recover. If there are unknown features
5008 		 * (e.g. unsupported transactions, then simply reject the
5009 		 * attempt at recovery before touching anything.
5010 		 */
5011 		if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5012 		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5013 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5014 			xfs_warn(log->l_mp,
5015 "Superblock has unknown incompatible log features (0x%x) enabled.",
5016 				(log->l_mp->m_sb.sb_features_log_incompat &
5017 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5018 			xfs_warn(log->l_mp,
5019 "The log can not be fully and/or safely recovered by this kernel.");
5020 			xfs_warn(log->l_mp,
5021 "Please recover the log on a kernel that supports the unknown features.");
5022 			return -EINVAL;
5023 		}
5024 
5025 		/*
5026 		 * Delay log recovery if the debug hook is set. This is debug
5027 		 * instrumention to coordinate simulation of I/O failures with
5028 		 * log recovery.
5029 		 */
5030 		if (xfs_globals.log_recovery_delay) {
5031 			xfs_notice(log->l_mp,
5032 				"Delaying log recovery for %d seconds.",
5033 				xfs_globals.log_recovery_delay);
5034 			msleep(xfs_globals.log_recovery_delay * 1000);
5035 		}
5036 
5037 		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5038 				log->l_mp->m_logname ? log->l_mp->m_logname
5039 						     : "internal");
5040 
5041 		error = xlog_do_recover(log, head_blk, tail_blk);
5042 		log->l_flags |= XLOG_RECOVERY_NEEDED;
5043 	}
5044 	return error;
5045 }
5046 
5047 /*
5048  * In the first part of recovery we replay inodes and buffers and build
5049  * up the list of extent free items which need to be processed.  Here
5050  * we process the extent free items and clean up the on disk unlinked
5051  * inode lists.  This is separated from the first part of recovery so
5052  * that the root and real-time bitmap inodes can be read in from disk in
5053  * between the two stages.  This is necessary so that we can free space
5054  * in the real-time portion of the file system.
5055  */
5056 int
5057 xlog_recover_finish(
5058 	struct xlog	*log)
5059 {
5060 	/*
5061 	 * Now we're ready to do the transactions needed for the
5062 	 * rest of recovery.  Start with completing all the extent
5063 	 * free intent records and then process the unlinked inode
5064 	 * lists.  At this point, we essentially run in normal mode
5065 	 * except that we're still performing recovery actions
5066 	 * rather than accepting new requests.
5067 	 */
5068 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5069 		int	error;
5070 		error = xlog_recover_process_efis(log);
5071 		if (error) {
5072 			xfs_alert(log->l_mp, "Failed to recover EFIs");
5073 			return error;
5074 		}
5075 		/*
5076 		 * Sync the log to get all the EFIs out of the AIL.
5077 		 * This isn't absolutely necessary, but it helps in
5078 		 * case the unlink transactions would have problems
5079 		 * pushing the EFIs out of the way.
5080 		 */
5081 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
5082 
5083 		xlog_recover_process_iunlinks(log);
5084 
5085 		xlog_recover_check_summary(log);
5086 
5087 		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5088 				log->l_mp->m_logname ? log->l_mp->m_logname
5089 						     : "internal");
5090 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5091 	} else {
5092 		xfs_info(log->l_mp, "Ending clean mount");
5093 	}
5094 	return 0;
5095 }
5096 
5097 int
5098 xlog_recover_cancel(
5099 	struct xlog	*log)
5100 {
5101 	int		error = 0;
5102 
5103 	if (log->l_flags & XLOG_RECOVERY_NEEDED)
5104 		error = xlog_recover_cancel_efis(log);
5105 
5106 	return error;
5107 }
5108 
5109 #if defined(DEBUG)
5110 /*
5111  * Read all of the agf and agi counters and check that they
5112  * are consistent with the superblock counters.
5113  */
5114 void
5115 xlog_recover_check_summary(
5116 	struct xlog	*log)
5117 {
5118 	xfs_mount_t	*mp;
5119 	xfs_agf_t	*agfp;
5120 	xfs_buf_t	*agfbp;
5121 	xfs_buf_t	*agibp;
5122 	xfs_agnumber_t	agno;
5123 	__uint64_t	freeblks;
5124 	__uint64_t	itotal;
5125 	__uint64_t	ifree;
5126 	int		error;
5127 
5128 	mp = log->l_mp;
5129 
5130 	freeblks = 0LL;
5131 	itotal = 0LL;
5132 	ifree = 0LL;
5133 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5134 		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5135 		if (error) {
5136 			xfs_alert(mp, "%s agf read failed agno %d error %d",
5137 						__func__, agno, error);
5138 		} else {
5139 			agfp = XFS_BUF_TO_AGF(agfbp);
5140 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
5141 				    be32_to_cpu(agfp->agf_flcount);
5142 			xfs_buf_relse(agfbp);
5143 		}
5144 
5145 		error = xfs_read_agi(mp, NULL, agno, &agibp);
5146 		if (error) {
5147 			xfs_alert(mp, "%s agi read failed agno %d error %d",
5148 						__func__, agno, error);
5149 		} else {
5150 			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
5151 
5152 			itotal += be32_to_cpu(agi->agi_count);
5153 			ifree += be32_to_cpu(agi->agi_freecount);
5154 			xfs_buf_relse(agibp);
5155 		}
5156 	}
5157 }
5158 #endif /* DEBUG */
5159