xref: /openbmc/linux/fs/xfs/xfs_log_recover.c (revision 87c2ce3b)
1 /*
2  * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir.h"
28 #include "xfs_dir2.h"
29 #include "xfs_dmapi.h"
30 #include "xfs_mount.h"
31 #include "xfs_error.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir_sf.h"
36 #include "xfs_dir2_sf.h"
37 #include "xfs_attr_sf.h"
38 #include "xfs_dinode.h"
39 #include "xfs_inode.h"
40 #include "xfs_inode_item.h"
41 #include "xfs_imap.h"
42 #include "xfs_alloc.h"
43 #include "xfs_ialloc.h"
44 #include "xfs_log_priv.h"
45 #include "xfs_buf_item.h"
46 #include "xfs_log_recover.h"
47 #include "xfs_extfree_item.h"
48 #include "xfs_trans_priv.h"
49 #include "xfs_quota.h"
50 #include "xfs_rw.h"
51 
52 STATIC int	xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
53 STATIC int	xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
54 STATIC void	xlog_recover_insert_item_backq(xlog_recover_item_t **q,
55 					       xlog_recover_item_t *item);
56 #if defined(DEBUG)
57 STATIC void	xlog_recover_check_summary(xlog_t *);
58 STATIC void	xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
59 #else
60 #define	xlog_recover_check_summary(log)
61 #define	xlog_recover_check_ail(mp, lip, gen)
62 #endif
63 
64 
65 /*
66  * Sector aligned buffer routines for buffer create/read/write/access
67  */
68 
69 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs)	\
70 	( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
71 	((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
72 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno)	((bno) & ~(log)->l_sectbb_mask)
73 
74 xfs_buf_t *
75 xlog_get_bp(
76 	xlog_t		*log,
77 	int		num_bblks)
78 {
79 	ASSERT(num_bblks > 0);
80 
81 	if (log->l_sectbb_log) {
82 		if (num_bblks > 1)
83 			num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
84 		num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
85 	}
86 	return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
87 }
88 
89 void
90 xlog_put_bp(
91 	xfs_buf_t	*bp)
92 {
93 	xfs_buf_free(bp);
94 }
95 
96 
97 /*
98  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
99  */
100 int
101 xlog_bread(
102 	xlog_t		*log,
103 	xfs_daddr_t	blk_no,
104 	int		nbblks,
105 	xfs_buf_t	*bp)
106 {
107 	int		error;
108 
109 	if (log->l_sectbb_log) {
110 		blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
111 		nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
112 	}
113 
114 	ASSERT(nbblks > 0);
115 	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
116 	ASSERT(bp);
117 
118 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
119 	XFS_BUF_READ(bp);
120 	XFS_BUF_BUSY(bp);
121 	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
122 	XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
123 
124 	xfsbdstrat(log->l_mp, bp);
125 	if ((error = xfs_iowait(bp)))
126 		xfs_ioerror_alert("xlog_bread", log->l_mp,
127 				  bp, XFS_BUF_ADDR(bp));
128 	return error;
129 }
130 
131 /*
132  * Write out the buffer at the given block for the given number of blocks.
133  * The buffer is kept locked across the write and is returned locked.
134  * This can only be used for synchronous log writes.
135  */
136 STATIC int
137 xlog_bwrite(
138 	xlog_t		*log,
139 	xfs_daddr_t	blk_no,
140 	int		nbblks,
141 	xfs_buf_t	*bp)
142 {
143 	int		error;
144 
145 	if (log->l_sectbb_log) {
146 		blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
147 		nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
148 	}
149 
150 	ASSERT(nbblks > 0);
151 	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
152 
153 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
154 	XFS_BUF_ZEROFLAGS(bp);
155 	XFS_BUF_BUSY(bp);
156 	XFS_BUF_HOLD(bp);
157 	XFS_BUF_PSEMA(bp, PRIBIO);
158 	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
159 	XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
160 
161 	if ((error = xfs_bwrite(log->l_mp, bp)))
162 		xfs_ioerror_alert("xlog_bwrite", log->l_mp,
163 				  bp, XFS_BUF_ADDR(bp));
164 	return error;
165 }
166 
167 STATIC xfs_caddr_t
168 xlog_align(
169 	xlog_t		*log,
170 	xfs_daddr_t	blk_no,
171 	int		nbblks,
172 	xfs_buf_t	*bp)
173 {
174 	xfs_caddr_t	ptr;
175 
176 	if (!log->l_sectbb_log)
177 		return XFS_BUF_PTR(bp);
178 
179 	ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
180 	ASSERT(XFS_BUF_SIZE(bp) >=
181 		BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
182 	return ptr;
183 }
184 
185 #ifdef DEBUG
186 /*
187  * dump debug superblock and log record information
188  */
189 STATIC void
190 xlog_header_check_dump(
191 	xfs_mount_t		*mp,
192 	xlog_rec_header_t	*head)
193 {
194 	int			b;
195 
196 	printk("%s:  SB : uuid = ", __FUNCTION__);
197 	for (b = 0; b < 16; b++)
198 		printk("%02x",((unsigned char *)&mp->m_sb.sb_uuid)[b]);
199 	printk(", fmt = %d\n", XLOG_FMT);
200 	printk("    log : uuid = ");
201 	for (b = 0; b < 16; b++)
202 		printk("%02x",((unsigned char *)&head->h_fs_uuid)[b]);
203 	printk(", fmt = %d\n", INT_GET(head->h_fmt, ARCH_CONVERT));
204 }
205 #else
206 #define xlog_header_check_dump(mp, head)
207 #endif
208 
209 /*
210  * check log record header for recovery
211  */
212 STATIC int
213 xlog_header_check_recover(
214 	xfs_mount_t		*mp,
215 	xlog_rec_header_t	*head)
216 {
217 	ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
218 
219 	/*
220 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
221 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
222 	 * a dirty log created in IRIX.
223 	 */
224 	if (unlikely(INT_GET(head->h_fmt, ARCH_CONVERT) != XLOG_FMT)) {
225 		xlog_warn(
226 	"XFS: dirty log written in incompatible format - can't recover");
227 		xlog_header_check_dump(mp, head);
228 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
229 				 XFS_ERRLEVEL_HIGH, mp);
230 		return XFS_ERROR(EFSCORRUPTED);
231 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
232 		xlog_warn(
233 	"XFS: dirty log entry has mismatched uuid - can't recover");
234 		xlog_header_check_dump(mp, head);
235 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
236 				 XFS_ERRLEVEL_HIGH, mp);
237 		return XFS_ERROR(EFSCORRUPTED);
238 	}
239 	return 0;
240 }
241 
242 /*
243  * read the head block of the log and check the header
244  */
245 STATIC int
246 xlog_header_check_mount(
247 	xfs_mount_t		*mp,
248 	xlog_rec_header_t	*head)
249 {
250 	ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
251 
252 	if (uuid_is_nil(&head->h_fs_uuid)) {
253 		/*
254 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
255 		 * h_fs_uuid is nil, we assume this log was last mounted
256 		 * by IRIX and continue.
257 		 */
258 		xlog_warn("XFS: nil uuid in log - IRIX style log");
259 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
260 		xlog_warn("XFS: log has mismatched uuid - can't recover");
261 		xlog_header_check_dump(mp, head);
262 		XFS_ERROR_REPORT("xlog_header_check_mount",
263 				 XFS_ERRLEVEL_HIGH, mp);
264 		return XFS_ERROR(EFSCORRUPTED);
265 	}
266 	return 0;
267 }
268 
269 STATIC void
270 xlog_recover_iodone(
271 	struct xfs_buf	*bp)
272 {
273 	xfs_mount_t	*mp;
274 
275 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
276 
277 	if (XFS_BUF_GETERROR(bp)) {
278 		/*
279 		 * We're not going to bother about retrying
280 		 * this during recovery. One strike!
281 		 */
282 		mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
283 		xfs_ioerror_alert("xlog_recover_iodone",
284 				  mp, bp, XFS_BUF_ADDR(bp));
285 		xfs_force_shutdown(mp, XFS_METADATA_IO_ERROR);
286 	}
287 	XFS_BUF_SET_FSPRIVATE(bp, NULL);
288 	XFS_BUF_CLR_IODONE_FUNC(bp);
289 	xfs_biodone(bp);
290 }
291 
292 /*
293  * This routine finds (to an approximation) the first block in the physical
294  * log which contains the given cycle.  It uses a binary search algorithm.
295  * Note that the algorithm can not be perfect because the disk will not
296  * necessarily be perfect.
297  */
298 int
299 xlog_find_cycle_start(
300 	xlog_t		*log,
301 	xfs_buf_t	*bp,
302 	xfs_daddr_t	first_blk,
303 	xfs_daddr_t	*last_blk,
304 	uint		cycle)
305 {
306 	xfs_caddr_t	offset;
307 	xfs_daddr_t	mid_blk;
308 	uint		mid_cycle;
309 	int		error;
310 
311 	mid_blk = BLK_AVG(first_blk, *last_blk);
312 	while (mid_blk != first_blk && mid_blk != *last_blk) {
313 		if ((error = xlog_bread(log, mid_blk, 1, bp)))
314 			return error;
315 		offset = xlog_align(log, mid_blk, 1, bp);
316 		mid_cycle = GET_CYCLE(offset, ARCH_CONVERT);
317 		if (mid_cycle == cycle) {
318 			*last_blk = mid_blk;
319 			/* last_half_cycle == mid_cycle */
320 		} else {
321 			first_blk = mid_blk;
322 			/* first_half_cycle == mid_cycle */
323 		}
324 		mid_blk = BLK_AVG(first_blk, *last_blk);
325 	}
326 	ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
327 	       (mid_blk == *last_blk && mid_blk-1 == first_blk));
328 
329 	return 0;
330 }
331 
332 /*
333  * Check that the range of blocks does not contain the cycle number
334  * given.  The scan needs to occur from front to back and the ptr into the
335  * region must be updated since a later routine will need to perform another
336  * test.  If the region is completely good, we end up returning the same
337  * last block number.
338  *
339  * Set blkno to -1 if we encounter no errors.  This is an invalid block number
340  * since we don't ever expect logs to get this large.
341  */
342 STATIC int
343 xlog_find_verify_cycle(
344 	xlog_t		*log,
345 	xfs_daddr_t	start_blk,
346 	int		nbblks,
347 	uint		stop_on_cycle_no,
348 	xfs_daddr_t	*new_blk)
349 {
350 	xfs_daddr_t	i, j;
351 	uint		cycle;
352 	xfs_buf_t	*bp;
353 	xfs_daddr_t	bufblks;
354 	xfs_caddr_t	buf = NULL;
355 	int		error = 0;
356 
357 	bufblks = 1 << ffs(nbblks);
358 
359 	while (!(bp = xlog_get_bp(log, bufblks))) {
360 		/* can't get enough memory to do everything in one big buffer */
361 		bufblks >>= 1;
362 		if (bufblks <= log->l_sectbb_log)
363 			return ENOMEM;
364 	}
365 
366 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
367 		int	bcount;
368 
369 		bcount = min(bufblks, (start_blk + nbblks - i));
370 
371 		if ((error = xlog_bread(log, i, bcount, bp)))
372 			goto out;
373 
374 		buf = xlog_align(log, i, bcount, bp);
375 		for (j = 0; j < bcount; j++) {
376 			cycle = GET_CYCLE(buf, ARCH_CONVERT);
377 			if (cycle == stop_on_cycle_no) {
378 				*new_blk = i+j;
379 				goto out;
380 			}
381 
382 			buf += BBSIZE;
383 		}
384 	}
385 
386 	*new_blk = -1;
387 
388 out:
389 	xlog_put_bp(bp);
390 	return error;
391 }
392 
393 /*
394  * Potentially backup over partial log record write.
395  *
396  * In the typical case, last_blk is the number of the block directly after
397  * a good log record.  Therefore, we subtract one to get the block number
398  * of the last block in the given buffer.  extra_bblks contains the number
399  * of blocks we would have read on a previous read.  This happens when the
400  * last log record is split over the end of the physical log.
401  *
402  * extra_bblks is the number of blocks potentially verified on a previous
403  * call to this routine.
404  */
405 STATIC int
406 xlog_find_verify_log_record(
407 	xlog_t			*log,
408 	xfs_daddr_t		start_blk,
409 	xfs_daddr_t		*last_blk,
410 	int			extra_bblks)
411 {
412 	xfs_daddr_t		i;
413 	xfs_buf_t		*bp;
414 	xfs_caddr_t		offset = NULL;
415 	xlog_rec_header_t	*head = NULL;
416 	int			error = 0;
417 	int			smallmem = 0;
418 	int			num_blks = *last_blk - start_blk;
419 	int			xhdrs;
420 
421 	ASSERT(start_blk != 0 || *last_blk != start_blk);
422 
423 	if (!(bp = xlog_get_bp(log, num_blks))) {
424 		if (!(bp = xlog_get_bp(log, 1)))
425 			return ENOMEM;
426 		smallmem = 1;
427 	} else {
428 		if ((error = xlog_bread(log, start_blk, num_blks, bp)))
429 			goto out;
430 		offset = xlog_align(log, start_blk, num_blks, bp);
431 		offset += ((num_blks - 1) << BBSHIFT);
432 	}
433 
434 	for (i = (*last_blk) - 1; i >= 0; i--) {
435 		if (i < start_blk) {
436 			/* valid log record not found */
437 			xlog_warn(
438 		"XFS: Log inconsistent (didn't find previous header)");
439 			ASSERT(0);
440 			error = XFS_ERROR(EIO);
441 			goto out;
442 		}
443 
444 		if (smallmem) {
445 			if ((error = xlog_bread(log, i, 1, bp)))
446 				goto out;
447 			offset = xlog_align(log, i, 1, bp);
448 		}
449 
450 		head = (xlog_rec_header_t *)offset;
451 
452 		if (XLOG_HEADER_MAGIC_NUM ==
453 		    INT_GET(head->h_magicno, ARCH_CONVERT))
454 			break;
455 
456 		if (!smallmem)
457 			offset -= BBSIZE;
458 	}
459 
460 	/*
461 	 * We hit the beginning of the physical log & still no header.  Return
462 	 * to caller.  If caller can handle a return of -1, then this routine
463 	 * will be called again for the end of the physical log.
464 	 */
465 	if (i == -1) {
466 		error = -1;
467 		goto out;
468 	}
469 
470 	/*
471 	 * We have the final block of the good log (the first block
472 	 * of the log record _before_ the head. So we check the uuid.
473 	 */
474 	if ((error = xlog_header_check_mount(log->l_mp, head)))
475 		goto out;
476 
477 	/*
478 	 * We may have found a log record header before we expected one.
479 	 * last_blk will be the 1st block # with a given cycle #.  We may end
480 	 * up reading an entire log record.  In this case, we don't want to
481 	 * reset last_blk.  Only when last_blk points in the middle of a log
482 	 * record do we update last_blk.
483 	 */
484 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
485 		uint	h_size = INT_GET(head->h_size, ARCH_CONVERT);
486 
487 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
488 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
489 			xhdrs++;
490 	} else {
491 		xhdrs = 1;
492 	}
493 
494 	if (*last_blk - i + extra_bblks
495 			!= BTOBB(INT_GET(head->h_len, ARCH_CONVERT)) + xhdrs)
496 		*last_blk = i;
497 
498 out:
499 	xlog_put_bp(bp);
500 	return error;
501 }
502 
503 /*
504  * Head is defined to be the point of the log where the next log write
505  * write could go.  This means that incomplete LR writes at the end are
506  * eliminated when calculating the head.  We aren't guaranteed that previous
507  * LR have complete transactions.  We only know that a cycle number of
508  * current cycle number -1 won't be present in the log if we start writing
509  * from our current block number.
510  *
511  * last_blk contains the block number of the first block with a given
512  * cycle number.
513  *
514  * Return: zero if normal, non-zero if error.
515  */
516 STATIC int
517 xlog_find_head(
518 	xlog_t 		*log,
519 	xfs_daddr_t	*return_head_blk)
520 {
521 	xfs_buf_t	*bp;
522 	xfs_caddr_t	offset;
523 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
524 	int		num_scan_bblks;
525 	uint		first_half_cycle, last_half_cycle;
526 	uint		stop_on_cycle;
527 	int		error, log_bbnum = log->l_logBBsize;
528 
529 	/* Is the end of the log device zeroed? */
530 	if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
531 		*return_head_blk = first_blk;
532 
533 		/* Is the whole lot zeroed? */
534 		if (!first_blk) {
535 			/* Linux XFS shouldn't generate totally zeroed logs -
536 			 * mkfs etc write a dummy unmount record to a fresh
537 			 * log so we can store the uuid in there
538 			 */
539 			xlog_warn("XFS: totally zeroed log");
540 		}
541 
542 		return 0;
543 	} else if (error) {
544 		xlog_warn("XFS: empty log check failed");
545 		return error;
546 	}
547 
548 	first_blk = 0;			/* get cycle # of 1st block */
549 	bp = xlog_get_bp(log, 1);
550 	if (!bp)
551 		return ENOMEM;
552 	if ((error = xlog_bread(log, 0, 1, bp)))
553 		goto bp_err;
554 	offset = xlog_align(log, 0, 1, bp);
555 	first_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
556 
557 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
558 	if ((error = xlog_bread(log, last_blk, 1, bp)))
559 		goto bp_err;
560 	offset = xlog_align(log, last_blk, 1, bp);
561 	last_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
562 	ASSERT(last_half_cycle != 0);
563 
564 	/*
565 	 * If the 1st half cycle number is equal to the last half cycle number,
566 	 * then the entire log is stamped with the same cycle number.  In this
567 	 * case, head_blk can't be set to zero (which makes sense).  The below
568 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
569 	 * we set it to log_bbnum which is an invalid block number, but this
570 	 * value makes the math correct.  If head_blk doesn't changed through
571 	 * all the tests below, *head_blk is set to zero at the very end rather
572 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
573 	 * in a circular file.
574 	 */
575 	if (first_half_cycle == last_half_cycle) {
576 		/*
577 		 * In this case we believe that the entire log should have
578 		 * cycle number last_half_cycle.  We need to scan backwards
579 		 * from the end verifying that there are no holes still
580 		 * containing last_half_cycle - 1.  If we find such a hole,
581 		 * then the start of that hole will be the new head.  The
582 		 * simple case looks like
583 		 *        x | x ... | x - 1 | x
584 		 * Another case that fits this picture would be
585 		 *        x | x + 1 | x ... | x
586 		 * In this case the head really is somwhere at the end of the
587 		 * log, as one of the latest writes at the beginning was
588 		 * incomplete.
589 		 * One more case is
590 		 *        x | x + 1 | x ... | x - 1 | x
591 		 * This is really the combination of the above two cases, and
592 		 * the head has to end up at the start of the x-1 hole at the
593 		 * end of the log.
594 		 *
595 		 * In the 256k log case, we will read from the beginning to the
596 		 * end of the log and search for cycle numbers equal to x-1.
597 		 * We don't worry about the x+1 blocks that we encounter,
598 		 * because we know that they cannot be the head since the log
599 		 * started with x.
600 		 */
601 		head_blk = log_bbnum;
602 		stop_on_cycle = last_half_cycle - 1;
603 	} else {
604 		/*
605 		 * In this case we want to find the first block with cycle
606 		 * number matching last_half_cycle.  We expect the log to be
607 		 * some variation on
608 		 *        x + 1 ... | x ...
609 		 * The first block with cycle number x (last_half_cycle) will
610 		 * be where the new head belongs.  First we do a binary search
611 		 * for the first occurrence of last_half_cycle.  The binary
612 		 * search may not be totally accurate, so then we scan back
613 		 * from there looking for occurrences of last_half_cycle before
614 		 * us.  If that backwards scan wraps around the beginning of
615 		 * the log, then we look for occurrences of last_half_cycle - 1
616 		 * at the end of the log.  The cases we're looking for look
617 		 * like
618 		 *        x + 1 ... | x | x + 1 | x ...
619 		 *                               ^ binary search stopped here
620 		 * or
621 		 *        x + 1 ... | x ... | x - 1 | x
622 		 *        <---------> less than scan distance
623 		 */
624 		stop_on_cycle = last_half_cycle;
625 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
626 						&head_blk, last_half_cycle)))
627 			goto bp_err;
628 	}
629 
630 	/*
631 	 * Now validate the answer.  Scan back some number of maximum possible
632 	 * blocks and make sure each one has the expected cycle number.  The
633 	 * maximum is determined by the total possible amount of buffering
634 	 * in the in-core log.  The following number can be made tighter if
635 	 * we actually look at the block size of the filesystem.
636 	 */
637 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
638 	if (head_blk >= num_scan_bblks) {
639 		/*
640 		 * We are guaranteed that the entire check can be performed
641 		 * in one buffer.
642 		 */
643 		start_blk = head_blk - num_scan_bblks;
644 		if ((error = xlog_find_verify_cycle(log,
645 						start_blk, num_scan_bblks,
646 						stop_on_cycle, &new_blk)))
647 			goto bp_err;
648 		if (new_blk != -1)
649 			head_blk = new_blk;
650 	} else {		/* need to read 2 parts of log */
651 		/*
652 		 * We are going to scan backwards in the log in two parts.
653 		 * First we scan the physical end of the log.  In this part
654 		 * of the log, we are looking for blocks with cycle number
655 		 * last_half_cycle - 1.
656 		 * If we find one, then we know that the log starts there, as
657 		 * we've found a hole that didn't get written in going around
658 		 * the end of the physical log.  The simple case for this is
659 		 *        x + 1 ... | x ... | x - 1 | x
660 		 *        <---------> less than scan distance
661 		 * If all of the blocks at the end of the log have cycle number
662 		 * last_half_cycle, then we check the blocks at the start of
663 		 * the log looking for occurrences of last_half_cycle.  If we
664 		 * find one, then our current estimate for the location of the
665 		 * first occurrence of last_half_cycle is wrong and we move
666 		 * back to the hole we've found.  This case looks like
667 		 *        x + 1 ... | x | x + 1 | x ...
668 		 *                               ^ binary search stopped here
669 		 * Another case we need to handle that only occurs in 256k
670 		 * logs is
671 		 *        x + 1 ... | x ... | x+1 | x ...
672 		 *                   ^ binary search stops here
673 		 * In a 256k log, the scan at the end of the log will see the
674 		 * x + 1 blocks.  We need to skip past those since that is
675 		 * certainly not the head of the log.  By searching for
676 		 * last_half_cycle-1 we accomplish that.
677 		 */
678 		start_blk = log_bbnum - num_scan_bblks + head_blk;
679 		ASSERT(head_blk <= INT_MAX &&
680 			(xfs_daddr_t) num_scan_bblks - head_blk >= 0);
681 		if ((error = xlog_find_verify_cycle(log, start_blk,
682 					num_scan_bblks - (int)head_blk,
683 					(stop_on_cycle - 1), &new_blk)))
684 			goto bp_err;
685 		if (new_blk != -1) {
686 			head_blk = new_blk;
687 			goto bad_blk;
688 		}
689 
690 		/*
691 		 * Scan beginning of log now.  The last part of the physical
692 		 * log is good.  This scan needs to verify that it doesn't find
693 		 * the last_half_cycle.
694 		 */
695 		start_blk = 0;
696 		ASSERT(head_blk <= INT_MAX);
697 		if ((error = xlog_find_verify_cycle(log,
698 					start_blk, (int)head_blk,
699 					stop_on_cycle, &new_blk)))
700 			goto bp_err;
701 		if (new_blk != -1)
702 			head_blk = new_blk;
703 	}
704 
705  bad_blk:
706 	/*
707 	 * Now we need to make sure head_blk is not pointing to a block in
708 	 * the middle of a log record.
709 	 */
710 	num_scan_bblks = XLOG_REC_SHIFT(log);
711 	if (head_blk >= num_scan_bblks) {
712 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
713 
714 		/* start ptr at last block ptr before head_blk */
715 		if ((error = xlog_find_verify_log_record(log, start_blk,
716 							&head_blk, 0)) == -1) {
717 			error = XFS_ERROR(EIO);
718 			goto bp_err;
719 		} else if (error)
720 			goto bp_err;
721 	} else {
722 		start_blk = 0;
723 		ASSERT(head_blk <= INT_MAX);
724 		if ((error = xlog_find_verify_log_record(log, start_blk,
725 							&head_blk, 0)) == -1) {
726 			/* We hit the beginning of the log during our search */
727 			start_blk = log_bbnum - num_scan_bblks + head_blk;
728 			new_blk = log_bbnum;
729 			ASSERT(start_blk <= INT_MAX &&
730 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
731 			ASSERT(head_blk <= INT_MAX);
732 			if ((error = xlog_find_verify_log_record(log,
733 							start_blk, &new_blk,
734 							(int)head_blk)) == -1) {
735 				error = XFS_ERROR(EIO);
736 				goto bp_err;
737 			} else if (error)
738 				goto bp_err;
739 			if (new_blk != log_bbnum)
740 				head_blk = new_blk;
741 		} else if (error)
742 			goto bp_err;
743 	}
744 
745 	xlog_put_bp(bp);
746 	if (head_blk == log_bbnum)
747 		*return_head_blk = 0;
748 	else
749 		*return_head_blk = head_blk;
750 	/*
751 	 * When returning here, we have a good block number.  Bad block
752 	 * means that during a previous crash, we didn't have a clean break
753 	 * from cycle number N to cycle number N-1.  In this case, we need
754 	 * to find the first block with cycle number N-1.
755 	 */
756 	return 0;
757 
758  bp_err:
759 	xlog_put_bp(bp);
760 
761 	if (error)
762 	    xlog_warn("XFS: failed to find log head");
763 	return error;
764 }
765 
766 /*
767  * Find the sync block number or the tail of the log.
768  *
769  * This will be the block number of the last record to have its
770  * associated buffers synced to disk.  Every log record header has
771  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
772  * to get a sync block number.  The only concern is to figure out which
773  * log record header to believe.
774  *
775  * The following algorithm uses the log record header with the largest
776  * lsn.  The entire log record does not need to be valid.  We only care
777  * that the header is valid.
778  *
779  * We could speed up search by using current head_blk buffer, but it is not
780  * available.
781  */
782 int
783 xlog_find_tail(
784 	xlog_t			*log,
785 	xfs_daddr_t		*head_blk,
786 	xfs_daddr_t		*tail_blk,
787 	int			readonly)
788 {
789 	xlog_rec_header_t	*rhead;
790 	xlog_op_header_t	*op_head;
791 	xfs_caddr_t		offset = NULL;
792 	xfs_buf_t		*bp;
793 	int			error, i, found;
794 	xfs_daddr_t		umount_data_blk;
795 	xfs_daddr_t		after_umount_blk;
796 	xfs_lsn_t		tail_lsn;
797 	int			hblks;
798 
799 	found = 0;
800 
801 	/*
802 	 * Find previous log record
803 	 */
804 	if ((error = xlog_find_head(log, head_blk)))
805 		return error;
806 
807 	bp = xlog_get_bp(log, 1);
808 	if (!bp)
809 		return ENOMEM;
810 	if (*head_blk == 0) {				/* special case */
811 		if ((error = xlog_bread(log, 0, 1, bp)))
812 			goto bread_err;
813 		offset = xlog_align(log, 0, 1, bp);
814 		if (GET_CYCLE(offset, ARCH_CONVERT) == 0) {
815 			*tail_blk = 0;
816 			/* leave all other log inited values alone */
817 			goto exit;
818 		}
819 	}
820 
821 	/*
822 	 * Search backwards looking for log record header block
823 	 */
824 	ASSERT(*head_blk < INT_MAX);
825 	for (i = (int)(*head_blk) - 1; i >= 0; i--) {
826 		if ((error = xlog_bread(log, i, 1, bp)))
827 			goto bread_err;
828 		offset = xlog_align(log, i, 1, bp);
829 		if (XLOG_HEADER_MAGIC_NUM ==
830 		    INT_GET(*(uint *)offset, ARCH_CONVERT)) {
831 			found = 1;
832 			break;
833 		}
834 	}
835 	/*
836 	 * If we haven't found the log record header block, start looking
837 	 * again from the end of the physical log.  XXXmiken: There should be
838 	 * a check here to make sure we didn't search more than N blocks in
839 	 * the previous code.
840 	 */
841 	if (!found) {
842 		for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
843 			if ((error = xlog_bread(log, i, 1, bp)))
844 				goto bread_err;
845 			offset = xlog_align(log, i, 1, bp);
846 			if (XLOG_HEADER_MAGIC_NUM ==
847 			    INT_GET(*(uint*)offset, ARCH_CONVERT)) {
848 				found = 2;
849 				break;
850 			}
851 		}
852 	}
853 	if (!found) {
854 		xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
855 		ASSERT(0);
856 		return XFS_ERROR(EIO);
857 	}
858 
859 	/* find blk_no of tail of log */
860 	rhead = (xlog_rec_header_t *)offset;
861 	*tail_blk = BLOCK_LSN(INT_GET(rhead->h_tail_lsn, ARCH_CONVERT));
862 
863 	/*
864 	 * Reset log values according to the state of the log when we
865 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
866 	 * one because the next write starts a new cycle rather than
867 	 * continuing the cycle of the last good log record.  At this
868 	 * point we have guaranteed that all partial log records have been
869 	 * accounted for.  Therefore, we know that the last good log record
870 	 * written was complete and ended exactly on the end boundary
871 	 * of the physical log.
872 	 */
873 	log->l_prev_block = i;
874 	log->l_curr_block = (int)*head_blk;
875 	log->l_curr_cycle = INT_GET(rhead->h_cycle, ARCH_CONVERT);
876 	if (found == 2)
877 		log->l_curr_cycle++;
878 	log->l_tail_lsn = INT_GET(rhead->h_tail_lsn, ARCH_CONVERT);
879 	log->l_last_sync_lsn = INT_GET(rhead->h_lsn, ARCH_CONVERT);
880 	log->l_grant_reserve_cycle = log->l_curr_cycle;
881 	log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
882 	log->l_grant_write_cycle = log->l_curr_cycle;
883 	log->l_grant_write_bytes = BBTOB(log->l_curr_block);
884 
885 	/*
886 	 * Look for unmount record.  If we find it, then we know there
887 	 * was a clean unmount.  Since 'i' could be the last block in
888 	 * the physical log, we convert to a log block before comparing
889 	 * to the head_blk.
890 	 *
891 	 * Save the current tail lsn to use to pass to
892 	 * xlog_clear_stale_blocks() below.  We won't want to clear the
893 	 * unmount record if there is one, so we pass the lsn of the
894 	 * unmount record rather than the block after it.
895 	 */
896 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
897 		int	h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
898 		int	h_version = INT_GET(rhead->h_version, ARCH_CONVERT);
899 
900 		if ((h_version & XLOG_VERSION_2) &&
901 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
902 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
903 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
904 				hblks++;
905 		} else {
906 			hblks = 1;
907 		}
908 	} else {
909 		hblks = 1;
910 	}
911 	after_umount_blk = (i + hblks + (int)
912 		BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT))) % log->l_logBBsize;
913 	tail_lsn = log->l_tail_lsn;
914 	if (*head_blk == after_umount_blk &&
915 	    INT_GET(rhead->h_num_logops, ARCH_CONVERT) == 1) {
916 		umount_data_blk = (i + hblks) % log->l_logBBsize;
917 		if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
918 			goto bread_err;
919 		}
920 		offset = xlog_align(log, umount_data_blk, 1, bp);
921 		op_head = (xlog_op_header_t *)offset;
922 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
923 			/*
924 			 * Set tail and last sync so that newly written
925 			 * log records will point recovery to after the
926 			 * current unmount record.
927 			 */
928 			ASSIGN_ANY_LSN_HOST(log->l_tail_lsn, log->l_curr_cycle,
929 					after_umount_blk);
930 			ASSIGN_ANY_LSN_HOST(log->l_last_sync_lsn, log->l_curr_cycle,
931 					after_umount_blk);
932 			*tail_blk = after_umount_blk;
933 		}
934 	}
935 
936 	/*
937 	 * Make sure that there are no blocks in front of the head
938 	 * with the same cycle number as the head.  This can happen
939 	 * because we allow multiple outstanding log writes concurrently,
940 	 * and the later writes might make it out before earlier ones.
941 	 *
942 	 * We use the lsn from before modifying it so that we'll never
943 	 * overwrite the unmount record after a clean unmount.
944 	 *
945 	 * Do this only if we are going to recover the filesystem
946 	 *
947 	 * NOTE: This used to say "if (!readonly)"
948 	 * However on Linux, we can & do recover a read-only filesystem.
949 	 * We only skip recovery if NORECOVERY is specified on mount,
950 	 * in which case we would not be here.
951 	 *
952 	 * But... if the -device- itself is readonly, just skip this.
953 	 * We can't recover this device anyway, so it won't matter.
954 	 */
955 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
956 		error = xlog_clear_stale_blocks(log, tail_lsn);
957 	}
958 
959 bread_err:
960 exit:
961 	xlog_put_bp(bp);
962 
963 	if (error)
964 		xlog_warn("XFS: failed to locate log tail");
965 	return error;
966 }
967 
968 /*
969  * Is the log zeroed at all?
970  *
971  * The last binary search should be changed to perform an X block read
972  * once X becomes small enough.  You can then search linearly through
973  * the X blocks.  This will cut down on the number of reads we need to do.
974  *
975  * If the log is partially zeroed, this routine will pass back the blkno
976  * of the first block with cycle number 0.  It won't have a complete LR
977  * preceding it.
978  *
979  * Return:
980  *	0  => the log is completely written to
981  *	-1 => use *blk_no as the first block of the log
982  *	>0 => error has occurred
983  */
984 int
985 xlog_find_zeroed(
986 	xlog_t		*log,
987 	xfs_daddr_t	*blk_no)
988 {
989 	xfs_buf_t	*bp;
990 	xfs_caddr_t	offset;
991 	uint	        first_cycle, last_cycle;
992 	xfs_daddr_t	new_blk, last_blk, start_blk;
993 	xfs_daddr_t     num_scan_bblks;
994 	int	        error, log_bbnum = log->l_logBBsize;
995 
996 	/* check totally zeroed log */
997 	bp = xlog_get_bp(log, 1);
998 	if (!bp)
999 		return ENOMEM;
1000 	if ((error = xlog_bread(log, 0, 1, bp)))
1001 		goto bp_err;
1002 	offset = xlog_align(log, 0, 1, bp);
1003 	first_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1004 	if (first_cycle == 0) {		/* completely zeroed log */
1005 		*blk_no = 0;
1006 		xlog_put_bp(bp);
1007 		return -1;
1008 	}
1009 
1010 	/* check partially zeroed log */
1011 	if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1012 		goto bp_err;
1013 	offset = xlog_align(log, log_bbnum-1, 1, bp);
1014 	last_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1015 	if (last_cycle != 0) {		/* log completely written to */
1016 		xlog_put_bp(bp);
1017 		return 0;
1018 	} else if (first_cycle != 1) {
1019 		/*
1020 		 * If the cycle of the last block is zero, the cycle of
1021 		 * the first block must be 1. If it's not, maybe we're
1022 		 * not looking at a log... Bail out.
1023 		 */
1024 		xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1025 		return XFS_ERROR(EINVAL);
1026 	}
1027 
1028 	/* we have a partially zeroed log */
1029 	last_blk = log_bbnum-1;
1030 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1031 		goto bp_err;
1032 
1033 	/*
1034 	 * Validate the answer.  Because there is no way to guarantee that
1035 	 * the entire log is made up of log records which are the same size,
1036 	 * we scan over the defined maximum blocks.  At this point, the maximum
1037 	 * is not chosen to mean anything special.   XXXmiken
1038 	 */
1039 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1040 	ASSERT(num_scan_bblks <= INT_MAX);
1041 
1042 	if (last_blk < num_scan_bblks)
1043 		num_scan_bblks = last_blk;
1044 	start_blk = last_blk - num_scan_bblks;
1045 
1046 	/*
1047 	 * We search for any instances of cycle number 0 that occur before
1048 	 * our current estimate of the head.  What we're trying to detect is
1049 	 *        1 ... | 0 | 1 | 0...
1050 	 *                       ^ binary search ends here
1051 	 */
1052 	if ((error = xlog_find_verify_cycle(log, start_blk,
1053 					 (int)num_scan_bblks, 0, &new_blk)))
1054 		goto bp_err;
1055 	if (new_blk != -1)
1056 		last_blk = new_blk;
1057 
1058 	/*
1059 	 * Potentially backup over partial log record write.  We don't need
1060 	 * to search the end of the log because we know it is zero.
1061 	 */
1062 	if ((error = xlog_find_verify_log_record(log, start_blk,
1063 				&last_blk, 0)) == -1) {
1064 	    error = XFS_ERROR(EIO);
1065 	    goto bp_err;
1066 	} else if (error)
1067 	    goto bp_err;
1068 
1069 	*blk_no = last_blk;
1070 bp_err:
1071 	xlog_put_bp(bp);
1072 	if (error)
1073 		return error;
1074 	return -1;
1075 }
1076 
1077 /*
1078  * These are simple subroutines used by xlog_clear_stale_blocks() below
1079  * to initialize a buffer full of empty log record headers and write
1080  * them into the log.
1081  */
1082 STATIC void
1083 xlog_add_record(
1084 	xlog_t			*log,
1085 	xfs_caddr_t		buf,
1086 	int			cycle,
1087 	int			block,
1088 	int			tail_cycle,
1089 	int			tail_block)
1090 {
1091 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1092 
1093 	memset(buf, 0, BBSIZE);
1094 	INT_SET(recp->h_magicno, ARCH_CONVERT, XLOG_HEADER_MAGIC_NUM);
1095 	INT_SET(recp->h_cycle, ARCH_CONVERT, cycle);
1096 	INT_SET(recp->h_version, ARCH_CONVERT,
1097 			XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1);
1098 	ASSIGN_ANY_LSN_DISK(recp->h_lsn, cycle, block);
1099 	ASSIGN_ANY_LSN_DISK(recp->h_tail_lsn, tail_cycle, tail_block);
1100 	INT_SET(recp->h_fmt, ARCH_CONVERT, XLOG_FMT);
1101 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1102 }
1103 
1104 STATIC int
1105 xlog_write_log_records(
1106 	xlog_t		*log,
1107 	int		cycle,
1108 	int		start_block,
1109 	int		blocks,
1110 	int		tail_cycle,
1111 	int		tail_block)
1112 {
1113 	xfs_caddr_t	offset;
1114 	xfs_buf_t	*bp;
1115 	int		balign, ealign;
1116 	int		sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1117 	int		end_block = start_block + blocks;
1118 	int		bufblks;
1119 	int		error = 0;
1120 	int		i, j = 0;
1121 
1122 	bufblks = 1 << ffs(blocks);
1123 	while (!(bp = xlog_get_bp(log, bufblks))) {
1124 		bufblks >>= 1;
1125 		if (bufblks <= log->l_sectbb_log)
1126 			return ENOMEM;
1127 	}
1128 
1129 	/* We may need to do a read at the start to fill in part of
1130 	 * the buffer in the starting sector not covered by the first
1131 	 * write below.
1132 	 */
1133 	balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1134 	if (balign != start_block) {
1135 		if ((error = xlog_bread(log, start_block, 1, bp))) {
1136 			xlog_put_bp(bp);
1137 			return error;
1138 		}
1139 		j = start_block - balign;
1140 	}
1141 
1142 	for (i = start_block; i < end_block; i += bufblks) {
1143 		int		bcount, endcount;
1144 
1145 		bcount = min(bufblks, end_block - start_block);
1146 		endcount = bcount - j;
1147 
1148 		/* We may need to do a read at the end to fill in part of
1149 		 * the buffer in the final sector not covered by the write.
1150 		 * If this is the same sector as the above read, skip it.
1151 		 */
1152 		ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1153 		if (j == 0 && (start_block + endcount > ealign)) {
1154 			offset = XFS_BUF_PTR(bp);
1155 			balign = BBTOB(ealign - start_block);
1156 			XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb));
1157 			if ((error = xlog_bread(log, ealign, sectbb, bp)))
1158 				break;
1159 			XFS_BUF_SET_PTR(bp, offset, bufblks);
1160 		}
1161 
1162 		offset = xlog_align(log, start_block, endcount, bp);
1163 		for (; j < endcount; j++) {
1164 			xlog_add_record(log, offset, cycle, i+j,
1165 					tail_cycle, tail_block);
1166 			offset += BBSIZE;
1167 		}
1168 		error = xlog_bwrite(log, start_block, endcount, bp);
1169 		if (error)
1170 			break;
1171 		start_block += endcount;
1172 		j = 0;
1173 	}
1174 	xlog_put_bp(bp);
1175 	return error;
1176 }
1177 
1178 /*
1179  * This routine is called to blow away any incomplete log writes out
1180  * in front of the log head.  We do this so that we won't become confused
1181  * if we come up, write only a little bit more, and then crash again.
1182  * If we leave the partial log records out there, this situation could
1183  * cause us to think those partial writes are valid blocks since they
1184  * have the current cycle number.  We get rid of them by overwriting them
1185  * with empty log records with the old cycle number rather than the
1186  * current one.
1187  *
1188  * The tail lsn is passed in rather than taken from
1189  * the log so that we will not write over the unmount record after a
1190  * clean unmount in a 512 block log.  Doing so would leave the log without
1191  * any valid log records in it until a new one was written.  If we crashed
1192  * during that time we would not be able to recover.
1193  */
1194 STATIC int
1195 xlog_clear_stale_blocks(
1196 	xlog_t		*log,
1197 	xfs_lsn_t	tail_lsn)
1198 {
1199 	int		tail_cycle, head_cycle;
1200 	int		tail_block, head_block;
1201 	int		tail_distance, max_distance;
1202 	int		distance;
1203 	int		error;
1204 
1205 	tail_cycle = CYCLE_LSN(tail_lsn);
1206 	tail_block = BLOCK_LSN(tail_lsn);
1207 	head_cycle = log->l_curr_cycle;
1208 	head_block = log->l_curr_block;
1209 
1210 	/*
1211 	 * Figure out the distance between the new head of the log
1212 	 * and the tail.  We want to write over any blocks beyond the
1213 	 * head that we may have written just before the crash, but
1214 	 * we don't want to overwrite the tail of the log.
1215 	 */
1216 	if (head_cycle == tail_cycle) {
1217 		/*
1218 		 * The tail is behind the head in the physical log,
1219 		 * so the distance from the head to the tail is the
1220 		 * distance from the head to the end of the log plus
1221 		 * the distance from the beginning of the log to the
1222 		 * tail.
1223 		 */
1224 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1225 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1226 					 XFS_ERRLEVEL_LOW, log->l_mp);
1227 			return XFS_ERROR(EFSCORRUPTED);
1228 		}
1229 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1230 	} else {
1231 		/*
1232 		 * The head is behind the tail in the physical log,
1233 		 * so the distance from the head to the tail is just
1234 		 * the tail block minus the head block.
1235 		 */
1236 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1237 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1238 					 XFS_ERRLEVEL_LOW, log->l_mp);
1239 			return XFS_ERROR(EFSCORRUPTED);
1240 		}
1241 		tail_distance = tail_block - head_block;
1242 	}
1243 
1244 	/*
1245 	 * If the head is right up against the tail, we can't clear
1246 	 * anything.
1247 	 */
1248 	if (tail_distance <= 0) {
1249 		ASSERT(tail_distance == 0);
1250 		return 0;
1251 	}
1252 
1253 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1254 	/*
1255 	 * Take the smaller of the maximum amount of outstanding I/O
1256 	 * we could have and the distance to the tail to clear out.
1257 	 * We take the smaller so that we don't overwrite the tail and
1258 	 * we don't waste all day writing from the head to the tail
1259 	 * for no reason.
1260 	 */
1261 	max_distance = MIN(max_distance, tail_distance);
1262 
1263 	if ((head_block + max_distance) <= log->l_logBBsize) {
1264 		/*
1265 		 * We can stomp all the blocks we need to without
1266 		 * wrapping around the end of the log.  Just do it
1267 		 * in a single write.  Use the cycle number of the
1268 		 * current cycle minus one so that the log will look like:
1269 		 *     n ... | n - 1 ...
1270 		 */
1271 		error = xlog_write_log_records(log, (head_cycle - 1),
1272 				head_block, max_distance, tail_cycle,
1273 				tail_block);
1274 		if (error)
1275 			return error;
1276 	} else {
1277 		/*
1278 		 * We need to wrap around the end of the physical log in
1279 		 * order to clear all the blocks.  Do it in two separate
1280 		 * I/Os.  The first write should be from the head to the
1281 		 * end of the physical log, and it should use the current
1282 		 * cycle number minus one just like above.
1283 		 */
1284 		distance = log->l_logBBsize - head_block;
1285 		error = xlog_write_log_records(log, (head_cycle - 1),
1286 				head_block, distance, tail_cycle,
1287 				tail_block);
1288 
1289 		if (error)
1290 			return error;
1291 
1292 		/*
1293 		 * Now write the blocks at the start of the physical log.
1294 		 * This writes the remainder of the blocks we want to clear.
1295 		 * It uses the current cycle number since we're now on the
1296 		 * same cycle as the head so that we get:
1297 		 *    n ... n ... | n - 1 ...
1298 		 *    ^^^^^ blocks we're writing
1299 		 */
1300 		distance = max_distance - (log->l_logBBsize - head_block);
1301 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1302 				tail_cycle, tail_block);
1303 		if (error)
1304 			return error;
1305 	}
1306 
1307 	return 0;
1308 }
1309 
1310 /******************************************************************************
1311  *
1312  *		Log recover routines
1313  *
1314  ******************************************************************************
1315  */
1316 
1317 STATIC xlog_recover_t *
1318 xlog_recover_find_tid(
1319 	xlog_recover_t		*q,
1320 	xlog_tid_t		tid)
1321 {
1322 	xlog_recover_t		*p = q;
1323 
1324 	while (p != NULL) {
1325 		if (p->r_log_tid == tid)
1326 		    break;
1327 		p = p->r_next;
1328 	}
1329 	return p;
1330 }
1331 
1332 STATIC void
1333 xlog_recover_put_hashq(
1334 	xlog_recover_t		**q,
1335 	xlog_recover_t		*trans)
1336 {
1337 	trans->r_next = *q;
1338 	*q = trans;
1339 }
1340 
1341 STATIC void
1342 xlog_recover_add_item(
1343 	xlog_recover_item_t	**itemq)
1344 {
1345 	xlog_recover_item_t	*item;
1346 
1347 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1348 	xlog_recover_insert_item_backq(itemq, item);
1349 }
1350 
1351 STATIC int
1352 xlog_recover_add_to_cont_trans(
1353 	xlog_recover_t		*trans,
1354 	xfs_caddr_t		dp,
1355 	int			len)
1356 {
1357 	xlog_recover_item_t	*item;
1358 	xfs_caddr_t		ptr, old_ptr;
1359 	int			old_len;
1360 
1361 	item = trans->r_itemq;
1362 	if (item == 0) {
1363 		/* finish copying rest of trans header */
1364 		xlog_recover_add_item(&trans->r_itemq);
1365 		ptr = (xfs_caddr_t) &trans->r_theader +
1366 				sizeof(xfs_trans_header_t) - len;
1367 		memcpy(ptr, dp, len); /* d, s, l */
1368 		return 0;
1369 	}
1370 	item = item->ri_prev;
1371 
1372 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1373 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
1374 
1375 	ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1376 	memcpy(&ptr[old_len], dp, len); /* d, s, l */
1377 	item->ri_buf[item->ri_cnt-1].i_len += len;
1378 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1379 	return 0;
1380 }
1381 
1382 /*
1383  * The next region to add is the start of a new region.  It could be
1384  * a whole region or it could be the first part of a new region.  Because
1385  * of this, the assumption here is that the type and size fields of all
1386  * format structures fit into the first 32 bits of the structure.
1387  *
1388  * This works because all regions must be 32 bit aligned.  Therefore, we
1389  * either have both fields or we have neither field.  In the case we have
1390  * neither field, the data part of the region is zero length.  We only have
1391  * a log_op_header and can throw away the header since a new one will appear
1392  * later.  If we have at least 4 bytes, then we can determine how many regions
1393  * will appear in the current log item.
1394  */
1395 STATIC int
1396 xlog_recover_add_to_trans(
1397 	xlog_recover_t		*trans,
1398 	xfs_caddr_t		dp,
1399 	int			len)
1400 {
1401 	xfs_inode_log_format_t	*in_f;			/* any will do */
1402 	xlog_recover_item_t	*item;
1403 	xfs_caddr_t		ptr;
1404 
1405 	if (!len)
1406 		return 0;
1407 	item = trans->r_itemq;
1408 	if (item == 0) {
1409 		ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
1410 		if (len == sizeof(xfs_trans_header_t))
1411 			xlog_recover_add_item(&trans->r_itemq);
1412 		memcpy(&trans->r_theader, dp, len); /* d, s, l */
1413 		return 0;
1414 	}
1415 
1416 	ptr = kmem_alloc(len, KM_SLEEP);
1417 	memcpy(ptr, dp, len);
1418 	in_f = (xfs_inode_log_format_t *)ptr;
1419 
1420 	if (item->ri_prev->ri_total != 0 &&
1421 	     item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1422 		xlog_recover_add_item(&trans->r_itemq);
1423 	}
1424 	item = trans->r_itemq;
1425 	item = item->ri_prev;
1426 
1427 	if (item->ri_total == 0) {		/* first region to be added */
1428 		item->ri_total	= in_f->ilf_size;
1429 		ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
1430 		item->ri_buf = kmem_zalloc((item->ri_total *
1431 					    sizeof(xfs_log_iovec_t)), KM_SLEEP);
1432 	}
1433 	ASSERT(item->ri_total > item->ri_cnt);
1434 	/* Description region is ri_buf[0] */
1435 	item->ri_buf[item->ri_cnt].i_addr = ptr;
1436 	item->ri_buf[item->ri_cnt].i_len  = len;
1437 	item->ri_cnt++;
1438 	return 0;
1439 }
1440 
1441 STATIC void
1442 xlog_recover_new_tid(
1443 	xlog_recover_t		**q,
1444 	xlog_tid_t		tid,
1445 	xfs_lsn_t		lsn)
1446 {
1447 	xlog_recover_t		*trans;
1448 
1449 	trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1450 	trans->r_log_tid   = tid;
1451 	trans->r_lsn	   = lsn;
1452 	xlog_recover_put_hashq(q, trans);
1453 }
1454 
1455 STATIC int
1456 xlog_recover_unlink_tid(
1457 	xlog_recover_t		**q,
1458 	xlog_recover_t		*trans)
1459 {
1460 	xlog_recover_t		*tp;
1461 	int			found = 0;
1462 
1463 	ASSERT(trans != 0);
1464 	if (trans == *q) {
1465 		*q = (*q)->r_next;
1466 	} else {
1467 		tp = *q;
1468 		while (tp != 0) {
1469 			if (tp->r_next == trans) {
1470 				found = 1;
1471 				break;
1472 			}
1473 			tp = tp->r_next;
1474 		}
1475 		if (!found) {
1476 			xlog_warn(
1477 			     "XFS: xlog_recover_unlink_tid: trans not found");
1478 			ASSERT(0);
1479 			return XFS_ERROR(EIO);
1480 		}
1481 		tp->r_next = tp->r_next->r_next;
1482 	}
1483 	return 0;
1484 }
1485 
1486 STATIC void
1487 xlog_recover_insert_item_backq(
1488 	xlog_recover_item_t	**q,
1489 	xlog_recover_item_t	*item)
1490 {
1491 	if (*q == 0) {
1492 		item->ri_prev = item->ri_next = item;
1493 		*q = item;
1494 	} else {
1495 		item->ri_next		= *q;
1496 		item->ri_prev		= (*q)->ri_prev;
1497 		(*q)->ri_prev		= item;
1498 		item->ri_prev->ri_next	= item;
1499 	}
1500 }
1501 
1502 STATIC void
1503 xlog_recover_insert_item_frontq(
1504 	xlog_recover_item_t	**q,
1505 	xlog_recover_item_t	*item)
1506 {
1507 	xlog_recover_insert_item_backq(q, item);
1508 	*q = item;
1509 }
1510 
1511 STATIC int
1512 xlog_recover_reorder_trans(
1513 	xlog_t			*log,
1514 	xlog_recover_t		*trans)
1515 {
1516 	xlog_recover_item_t	*first_item, *itemq, *itemq_next;
1517 	xfs_buf_log_format_t	*buf_f;
1518 	xfs_buf_log_format_v1_t	*obuf_f;
1519 	ushort			flags = 0;
1520 
1521 	first_item = itemq = trans->r_itemq;
1522 	trans->r_itemq = NULL;
1523 	do {
1524 		itemq_next = itemq->ri_next;
1525 		buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1526 		switch (ITEM_TYPE(itemq)) {
1527 		case XFS_LI_BUF:
1528 			flags = buf_f->blf_flags;
1529 			break;
1530 		case XFS_LI_6_1_BUF:
1531 		case XFS_LI_5_3_BUF:
1532 			obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1533 			flags = obuf_f->blf_flags;
1534 			break;
1535 		}
1536 
1537 		switch (ITEM_TYPE(itemq)) {
1538 		case XFS_LI_BUF:
1539 		case XFS_LI_6_1_BUF:
1540 		case XFS_LI_5_3_BUF:
1541 			if (!(flags & XFS_BLI_CANCEL)) {
1542 				xlog_recover_insert_item_frontq(&trans->r_itemq,
1543 								itemq);
1544 				break;
1545 			}
1546 		case XFS_LI_INODE:
1547 		case XFS_LI_6_1_INODE:
1548 		case XFS_LI_5_3_INODE:
1549 		case XFS_LI_DQUOT:
1550 		case XFS_LI_QUOTAOFF:
1551 		case XFS_LI_EFD:
1552 		case XFS_LI_EFI:
1553 			xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1554 			break;
1555 		default:
1556 			xlog_warn(
1557 	"XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1558 			ASSERT(0);
1559 			return XFS_ERROR(EIO);
1560 		}
1561 		itemq = itemq_next;
1562 	} while (first_item != itemq);
1563 	return 0;
1564 }
1565 
1566 /*
1567  * Build up the table of buf cancel records so that we don't replay
1568  * cancelled data in the second pass.  For buffer records that are
1569  * not cancel records, there is nothing to do here so we just return.
1570  *
1571  * If we get a cancel record which is already in the table, this indicates
1572  * that the buffer was cancelled multiple times.  In order to ensure
1573  * that during pass 2 we keep the record in the table until we reach its
1574  * last occurrence in the log, we keep a reference count in the cancel
1575  * record in the table to tell us how many times we expect to see this
1576  * record during the second pass.
1577  */
1578 STATIC void
1579 xlog_recover_do_buffer_pass1(
1580 	xlog_t			*log,
1581 	xfs_buf_log_format_t	*buf_f)
1582 {
1583 	xfs_buf_cancel_t	*bcp;
1584 	xfs_buf_cancel_t	*nextp;
1585 	xfs_buf_cancel_t	*prevp;
1586 	xfs_buf_cancel_t	**bucket;
1587 	xfs_buf_log_format_v1_t	*obuf_f;
1588 	xfs_daddr_t		blkno = 0;
1589 	uint			len = 0;
1590 	ushort			flags = 0;
1591 
1592 	switch (buf_f->blf_type) {
1593 	case XFS_LI_BUF:
1594 		blkno = buf_f->blf_blkno;
1595 		len = buf_f->blf_len;
1596 		flags = buf_f->blf_flags;
1597 		break;
1598 	case XFS_LI_6_1_BUF:
1599 	case XFS_LI_5_3_BUF:
1600 		obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1601 		blkno = (xfs_daddr_t) obuf_f->blf_blkno;
1602 		len = obuf_f->blf_len;
1603 		flags = obuf_f->blf_flags;
1604 		break;
1605 	}
1606 
1607 	/*
1608 	 * If this isn't a cancel buffer item, then just return.
1609 	 */
1610 	if (!(flags & XFS_BLI_CANCEL))
1611 		return;
1612 
1613 	/*
1614 	 * Insert an xfs_buf_cancel record into the hash table of
1615 	 * them.  If there is already an identical record, bump
1616 	 * its reference count.
1617 	 */
1618 	bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1619 					  XLOG_BC_TABLE_SIZE];
1620 	/*
1621 	 * If the hash bucket is empty then just insert a new record into
1622 	 * the bucket.
1623 	 */
1624 	if (*bucket == NULL) {
1625 		bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1626 						     KM_SLEEP);
1627 		bcp->bc_blkno = blkno;
1628 		bcp->bc_len = len;
1629 		bcp->bc_refcount = 1;
1630 		bcp->bc_next = NULL;
1631 		*bucket = bcp;
1632 		return;
1633 	}
1634 
1635 	/*
1636 	 * The hash bucket is not empty, so search for duplicates of our
1637 	 * record.  If we find one them just bump its refcount.  If not
1638 	 * then add us at the end of the list.
1639 	 */
1640 	prevp = NULL;
1641 	nextp = *bucket;
1642 	while (nextp != NULL) {
1643 		if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1644 			nextp->bc_refcount++;
1645 			return;
1646 		}
1647 		prevp = nextp;
1648 		nextp = nextp->bc_next;
1649 	}
1650 	ASSERT(prevp != NULL);
1651 	bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1652 					     KM_SLEEP);
1653 	bcp->bc_blkno = blkno;
1654 	bcp->bc_len = len;
1655 	bcp->bc_refcount = 1;
1656 	bcp->bc_next = NULL;
1657 	prevp->bc_next = bcp;
1658 }
1659 
1660 /*
1661  * Check to see whether the buffer being recovered has a corresponding
1662  * entry in the buffer cancel record table.  If it does then return 1
1663  * so that it will be cancelled, otherwise return 0.  If the buffer is
1664  * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1665  * the refcount on the entry in the table and remove it from the table
1666  * if this is the last reference.
1667  *
1668  * We remove the cancel record from the table when we encounter its
1669  * last occurrence in the log so that if the same buffer is re-used
1670  * again after its last cancellation we actually replay the changes
1671  * made at that point.
1672  */
1673 STATIC int
1674 xlog_check_buffer_cancelled(
1675 	xlog_t			*log,
1676 	xfs_daddr_t		blkno,
1677 	uint			len,
1678 	ushort			flags)
1679 {
1680 	xfs_buf_cancel_t	*bcp;
1681 	xfs_buf_cancel_t	*prevp;
1682 	xfs_buf_cancel_t	**bucket;
1683 
1684 	if (log->l_buf_cancel_table == NULL) {
1685 		/*
1686 		 * There is nothing in the table built in pass one,
1687 		 * so this buffer must not be cancelled.
1688 		 */
1689 		ASSERT(!(flags & XFS_BLI_CANCEL));
1690 		return 0;
1691 	}
1692 
1693 	bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1694 					  XLOG_BC_TABLE_SIZE];
1695 	bcp = *bucket;
1696 	if (bcp == NULL) {
1697 		/*
1698 		 * There is no corresponding entry in the table built
1699 		 * in pass one, so this buffer has not been cancelled.
1700 		 */
1701 		ASSERT(!(flags & XFS_BLI_CANCEL));
1702 		return 0;
1703 	}
1704 
1705 	/*
1706 	 * Search for an entry in the buffer cancel table that
1707 	 * matches our buffer.
1708 	 */
1709 	prevp = NULL;
1710 	while (bcp != NULL) {
1711 		if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1712 			/*
1713 			 * We've go a match, so return 1 so that the
1714 			 * recovery of this buffer is cancelled.
1715 			 * If this buffer is actually a buffer cancel
1716 			 * log item, then decrement the refcount on the
1717 			 * one in the table and remove it if this is the
1718 			 * last reference.
1719 			 */
1720 			if (flags & XFS_BLI_CANCEL) {
1721 				bcp->bc_refcount--;
1722 				if (bcp->bc_refcount == 0) {
1723 					if (prevp == NULL) {
1724 						*bucket = bcp->bc_next;
1725 					} else {
1726 						prevp->bc_next = bcp->bc_next;
1727 					}
1728 					kmem_free(bcp,
1729 						  sizeof(xfs_buf_cancel_t));
1730 				}
1731 			}
1732 			return 1;
1733 		}
1734 		prevp = bcp;
1735 		bcp = bcp->bc_next;
1736 	}
1737 	/*
1738 	 * We didn't find a corresponding entry in the table, so
1739 	 * return 0 so that the buffer is NOT cancelled.
1740 	 */
1741 	ASSERT(!(flags & XFS_BLI_CANCEL));
1742 	return 0;
1743 }
1744 
1745 STATIC int
1746 xlog_recover_do_buffer_pass2(
1747 	xlog_t			*log,
1748 	xfs_buf_log_format_t	*buf_f)
1749 {
1750 	xfs_buf_log_format_v1_t	*obuf_f;
1751 	xfs_daddr_t		blkno = 0;
1752 	ushort			flags = 0;
1753 	uint			len = 0;
1754 
1755 	switch (buf_f->blf_type) {
1756 	case XFS_LI_BUF:
1757 		blkno = buf_f->blf_blkno;
1758 		flags = buf_f->blf_flags;
1759 		len = buf_f->blf_len;
1760 		break;
1761 	case XFS_LI_6_1_BUF:
1762 	case XFS_LI_5_3_BUF:
1763 		obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1764 		blkno = (xfs_daddr_t) obuf_f->blf_blkno;
1765 		flags = obuf_f->blf_flags;
1766 		len = (xfs_daddr_t) obuf_f->blf_len;
1767 		break;
1768 	}
1769 
1770 	return xlog_check_buffer_cancelled(log, blkno, len, flags);
1771 }
1772 
1773 /*
1774  * Perform recovery for a buffer full of inodes.  In these buffers,
1775  * the only data which should be recovered is that which corresponds
1776  * to the di_next_unlinked pointers in the on disk inode structures.
1777  * The rest of the data for the inodes is always logged through the
1778  * inodes themselves rather than the inode buffer and is recovered
1779  * in xlog_recover_do_inode_trans().
1780  *
1781  * The only time when buffers full of inodes are fully recovered is
1782  * when the buffer is full of newly allocated inodes.  In this case
1783  * the buffer will not be marked as an inode buffer and so will be
1784  * sent to xlog_recover_do_reg_buffer() below during recovery.
1785  */
1786 STATIC int
1787 xlog_recover_do_inode_buffer(
1788 	xfs_mount_t		*mp,
1789 	xlog_recover_item_t	*item,
1790 	xfs_buf_t		*bp,
1791 	xfs_buf_log_format_t	*buf_f)
1792 {
1793 	int			i;
1794 	int			item_index;
1795 	int			bit;
1796 	int			nbits;
1797 	int			reg_buf_offset;
1798 	int			reg_buf_bytes;
1799 	int			next_unlinked_offset;
1800 	int			inodes_per_buf;
1801 	xfs_agino_t		*logged_nextp;
1802 	xfs_agino_t		*buffer_nextp;
1803 	xfs_buf_log_format_v1_t	*obuf_f;
1804 	unsigned int		*data_map = NULL;
1805 	unsigned int		map_size = 0;
1806 
1807 	switch (buf_f->blf_type) {
1808 	case XFS_LI_BUF:
1809 		data_map = buf_f->blf_data_map;
1810 		map_size = buf_f->blf_map_size;
1811 		break;
1812 	case XFS_LI_6_1_BUF:
1813 	case XFS_LI_5_3_BUF:
1814 		obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1815 		data_map = obuf_f->blf_data_map;
1816 		map_size = obuf_f->blf_map_size;
1817 		break;
1818 	}
1819 	/*
1820 	 * Set the variables corresponding to the current region to
1821 	 * 0 so that we'll initialize them on the first pass through
1822 	 * the loop.
1823 	 */
1824 	reg_buf_offset = 0;
1825 	reg_buf_bytes = 0;
1826 	bit = 0;
1827 	nbits = 0;
1828 	item_index = 0;
1829 	inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1830 	for (i = 0; i < inodes_per_buf; i++) {
1831 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1832 			offsetof(xfs_dinode_t, di_next_unlinked);
1833 
1834 		while (next_unlinked_offset >=
1835 		       (reg_buf_offset + reg_buf_bytes)) {
1836 			/*
1837 			 * The next di_next_unlinked field is beyond
1838 			 * the current logged region.  Find the next
1839 			 * logged region that contains or is beyond
1840 			 * the current di_next_unlinked field.
1841 			 */
1842 			bit += nbits;
1843 			bit = xfs_next_bit(data_map, map_size, bit);
1844 
1845 			/*
1846 			 * If there are no more logged regions in the
1847 			 * buffer, then we're done.
1848 			 */
1849 			if (bit == -1) {
1850 				return 0;
1851 			}
1852 
1853 			nbits = xfs_contig_bits(data_map, map_size,
1854 							 bit);
1855 			ASSERT(nbits > 0);
1856 			reg_buf_offset = bit << XFS_BLI_SHIFT;
1857 			reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1858 			item_index++;
1859 		}
1860 
1861 		/*
1862 		 * If the current logged region starts after the current
1863 		 * di_next_unlinked field, then move on to the next
1864 		 * di_next_unlinked field.
1865 		 */
1866 		if (next_unlinked_offset < reg_buf_offset) {
1867 			continue;
1868 		}
1869 
1870 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
1871 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1872 		ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1873 
1874 		/*
1875 		 * The current logged region contains a copy of the
1876 		 * current di_next_unlinked field.  Extract its value
1877 		 * and copy it to the buffer copy.
1878 		 */
1879 		logged_nextp = (xfs_agino_t *)
1880 			       ((char *)(item->ri_buf[item_index].i_addr) +
1881 				(next_unlinked_offset - reg_buf_offset));
1882 		if (unlikely(*logged_nextp == 0)) {
1883 			xfs_fs_cmn_err(CE_ALERT, mp,
1884 				"bad inode buffer log record (ptr = 0x%p, bp = 0x%p).  XFS trying to replay bad (0) inode di_next_unlinked field",
1885 				item, bp);
1886 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1887 					 XFS_ERRLEVEL_LOW, mp);
1888 			return XFS_ERROR(EFSCORRUPTED);
1889 		}
1890 
1891 		buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1892 					      next_unlinked_offset);
1893 		INT_SET(*buffer_nextp, ARCH_CONVERT, *logged_nextp);
1894 	}
1895 
1896 	return 0;
1897 }
1898 
1899 /*
1900  * Perform a 'normal' buffer recovery.  Each logged region of the
1901  * buffer should be copied over the corresponding region in the
1902  * given buffer.  The bitmap in the buf log format structure indicates
1903  * where to place the logged data.
1904  */
1905 /*ARGSUSED*/
1906 STATIC void
1907 xlog_recover_do_reg_buffer(
1908 	xfs_mount_t		*mp,
1909 	xlog_recover_item_t	*item,
1910 	xfs_buf_t		*bp,
1911 	xfs_buf_log_format_t	*buf_f)
1912 {
1913 	int			i;
1914 	int			bit;
1915 	int			nbits;
1916 	xfs_buf_log_format_v1_t	*obuf_f;
1917 	unsigned int		*data_map = NULL;
1918 	unsigned int		map_size = 0;
1919 	int                     error;
1920 
1921 	switch (buf_f->blf_type) {
1922 	case XFS_LI_BUF:
1923 		data_map = buf_f->blf_data_map;
1924 		map_size = buf_f->blf_map_size;
1925 		break;
1926 	case XFS_LI_6_1_BUF:
1927 	case XFS_LI_5_3_BUF:
1928 		obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1929 		data_map = obuf_f->blf_data_map;
1930 		map_size = obuf_f->blf_map_size;
1931 		break;
1932 	}
1933 	bit = 0;
1934 	i = 1;  /* 0 is the buf format structure */
1935 	while (1) {
1936 		bit = xfs_next_bit(data_map, map_size, bit);
1937 		if (bit == -1)
1938 			break;
1939 		nbits = xfs_contig_bits(data_map, map_size, bit);
1940 		ASSERT(nbits > 0);
1941 		ASSERT(item->ri_buf[i].i_addr != 0);
1942 		ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1943 		ASSERT(XFS_BUF_COUNT(bp) >=
1944 		       ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1945 
1946 		/*
1947 		 * Do a sanity check if this is a dquot buffer. Just checking
1948 		 * the first dquot in the buffer should do. XXXThis is
1949 		 * probably a good thing to do for other buf types also.
1950 		 */
1951 		error = 0;
1952 		if (buf_f->blf_flags &
1953 		   (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1954 			error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1955 					       item->ri_buf[i].i_addr,
1956 					       -1, 0, XFS_QMOPT_DOWARN,
1957 					       "dquot_buf_recover");
1958 		}
1959 		if (!error)
1960 			memcpy(xfs_buf_offset(bp,
1961 				(uint)bit << XFS_BLI_SHIFT),	/* dest */
1962 				item->ri_buf[i].i_addr,		/* source */
1963 				nbits<<XFS_BLI_SHIFT);		/* length */
1964 		i++;
1965 		bit += nbits;
1966 	}
1967 
1968 	/* Shouldn't be any more regions */
1969 	ASSERT(i == item->ri_total);
1970 }
1971 
1972 /*
1973  * Do some primitive error checking on ondisk dquot data structures.
1974  */
1975 int
1976 xfs_qm_dqcheck(
1977 	xfs_disk_dquot_t *ddq,
1978 	xfs_dqid_t	 id,
1979 	uint		 type,	  /* used only when IO_dorepair is true */
1980 	uint		 flags,
1981 	char		 *str)
1982 {
1983 	xfs_dqblk_t	 *d = (xfs_dqblk_t *)ddq;
1984 	int		errs = 0;
1985 
1986 	/*
1987 	 * We can encounter an uninitialized dquot buffer for 2 reasons:
1988 	 * 1. If we crash while deleting the quotainode(s), and those blks got
1989 	 *    used for user data. This is because we take the path of regular
1990 	 *    file deletion; however, the size field of quotainodes is never
1991 	 *    updated, so all the tricks that we play in itruncate_finish
1992 	 *    don't quite matter.
1993 	 *
1994 	 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1995 	 *    But the allocation will be replayed so we'll end up with an
1996 	 *    uninitialized quota block.
1997 	 *
1998 	 * This is all fine; things are still consistent, and we haven't lost
1999 	 * any quota information. Just don't complain about bad dquot blks.
2000 	 */
2001 	if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
2002 		if (flags & XFS_QMOPT_DOWARN)
2003 			cmn_err(CE_ALERT,
2004 			"%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2005 			str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
2006 		errs++;
2007 	}
2008 	if (ddq->d_version != XFS_DQUOT_VERSION) {
2009 		if (flags & XFS_QMOPT_DOWARN)
2010 			cmn_err(CE_ALERT,
2011 			"%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2012 			str, id, ddq->d_version, XFS_DQUOT_VERSION);
2013 		errs++;
2014 	}
2015 
2016 	if (ddq->d_flags != XFS_DQ_USER &&
2017 	    ddq->d_flags != XFS_DQ_PROJ &&
2018 	    ddq->d_flags != XFS_DQ_GROUP) {
2019 		if (flags & XFS_QMOPT_DOWARN)
2020 			cmn_err(CE_ALERT,
2021 			"%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2022 			str, id, ddq->d_flags);
2023 		errs++;
2024 	}
2025 
2026 	if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2027 		if (flags & XFS_QMOPT_DOWARN)
2028 			cmn_err(CE_ALERT,
2029 			"%s : ondisk-dquot 0x%p, ID mismatch: "
2030 			"0x%x expected, found id 0x%x",
2031 			str, ddq, id, be32_to_cpu(ddq->d_id));
2032 		errs++;
2033 	}
2034 
2035 	if (!errs && ddq->d_id) {
2036 		if (ddq->d_blk_softlimit &&
2037 		    be64_to_cpu(ddq->d_bcount) >=
2038 				be64_to_cpu(ddq->d_blk_softlimit)) {
2039 			if (!ddq->d_btimer) {
2040 				if (flags & XFS_QMOPT_DOWARN)
2041 					cmn_err(CE_ALERT,
2042 					"%s : Dquot ID 0x%x (0x%p) "
2043 					"BLK TIMER NOT STARTED",
2044 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2045 				errs++;
2046 			}
2047 		}
2048 		if (ddq->d_ino_softlimit &&
2049 		    be64_to_cpu(ddq->d_icount) >=
2050 				be64_to_cpu(ddq->d_ino_softlimit)) {
2051 			if (!ddq->d_itimer) {
2052 				if (flags & XFS_QMOPT_DOWARN)
2053 					cmn_err(CE_ALERT,
2054 					"%s : Dquot ID 0x%x (0x%p) "
2055 					"INODE TIMER NOT STARTED",
2056 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2057 				errs++;
2058 			}
2059 		}
2060 		if (ddq->d_rtb_softlimit &&
2061 		    be64_to_cpu(ddq->d_rtbcount) >=
2062 				be64_to_cpu(ddq->d_rtb_softlimit)) {
2063 			if (!ddq->d_rtbtimer) {
2064 				if (flags & XFS_QMOPT_DOWARN)
2065 					cmn_err(CE_ALERT,
2066 					"%s : Dquot ID 0x%x (0x%p) "
2067 					"RTBLK TIMER NOT STARTED",
2068 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2069 				errs++;
2070 			}
2071 		}
2072 	}
2073 
2074 	if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2075 		return errs;
2076 
2077 	if (flags & XFS_QMOPT_DOWARN)
2078 		cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2079 
2080 	/*
2081 	 * Typically, a repair is only requested by quotacheck.
2082 	 */
2083 	ASSERT(id != -1);
2084 	ASSERT(flags & XFS_QMOPT_DQREPAIR);
2085 	memset(d, 0, sizeof(xfs_dqblk_t));
2086 
2087 	d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2088 	d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2089 	d->dd_diskdq.d_flags = type;
2090 	d->dd_diskdq.d_id = cpu_to_be32(id);
2091 
2092 	return errs;
2093 }
2094 
2095 /*
2096  * Perform a dquot buffer recovery.
2097  * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2098  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2099  * Else, treat it as a regular buffer and do recovery.
2100  */
2101 STATIC void
2102 xlog_recover_do_dquot_buffer(
2103 	xfs_mount_t		*mp,
2104 	xlog_t			*log,
2105 	xlog_recover_item_t	*item,
2106 	xfs_buf_t		*bp,
2107 	xfs_buf_log_format_t	*buf_f)
2108 {
2109 	uint			type;
2110 
2111 	/*
2112 	 * Filesystems are required to send in quota flags at mount time.
2113 	 */
2114 	if (mp->m_qflags == 0) {
2115 		return;
2116 	}
2117 
2118 	type = 0;
2119 	if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2120 		type |= XFS_DQ_USER;
2121 	if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2122 		type |= XFS_DQ_PROJ;
2123 	if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2124 		type |= XFS_DQ_GROUP;
2125 	/*
2126 	 * This type of quotas was turned off, so ignore this buffer
2127 	 */
2128 	if (log->l_quotaoffs_flag & type)
2129 		return;
2130 
2131 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2132 }
2133 
2134 /*
2135  * This routine replays a modification made to a buffer at runtime.
2136  * There are actually two types of buffer, regular and inode, which
2137  * are handled differently.  Inode buffers are handled differently
2138  * in that we only recover a specific set of data from them, namely
2139  * the inode di_next_unlinked fields.  This is because all other inode
2140  * data is actually logged via inode records and any data we replay
2141  * here which overlaps that may be stale.
2142  *
2143  * When meta-data buffers are freed at run time we log a buffer item
2144  * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2145  * of the buffer in the log should not be replayed at recovery time.
2146  * This is so that if the blocks covered by the buffer are reused for
2147  * file data before we crash we don't end up replaying old, freed
2148  * meta-data into a user's file.
2149  *
2150  * To handle the cancellation of buffer log items, we make two passes
2151  * over the log during recovery.  During the first we build a table of
2152  * those buffers which have been cancelled, and during the second we
2153  * only replay those buffers which do not have corresponding cancel
2154  * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2155  * for more details on the implementation of the table of cancel records.
2156  */
2157 STATIC int
2158 xlog_recover_do_buffer_trans(
2159 	xlog_t			*log,
2160 	xlog_recover_item_t	*item,
2161 	int			pass)
2162 {
2163 	xfs_buf_log_format_t	*buf_f;
2164 	xfs_buf_log_format_v1_t	*obuf_f;
2165 	xfs_mount_t		*mp;
2166 	xfs_buf_t		*bp;
2167 	int			error;
2168 	int			cancel;
2169 	xfs_daddr_t		blkno;
2170 	int			len;
2171 	ushort			flags;
2172 
2173 	buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2174 
2175 	if (pass == XLOG_RECOVER_PASS1) {
2176 		/*
2177 		 * In this pass we're only looking for buf items
2178 		 * with the XFS_BLI_CANCEL bit set.
2179 		 */
2180 		xlog_recover_do_buffer_pass1(log, buf_f);
2181 		return 0;
2182 	} else {
2183 		/*
2184 		 * In this pass we want to recover all the buffers
2185 		 * which have not been cancelled and are not
2186 		 * cancellation buffers themselves.  The routine
2187 		 * we call here will tell us whether or not to
2188 		 * continue with the replay of this buffer.
2189 		 */
2190 		cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2191 		if (cancel) {
2192 			return 0;
2193 		}
2194 	}
2195 	switch (buf_f->blf_type) {
2196 	case XFS_LI_BUF:
2197 		blkno = buf_f->blf_blkno;
2198 		len = buf_f->blf_len;
2199 		flags = buf_f->blf_flags;
2200 		break;
2201 	case XFS_LI_6_1_BUF:
2202 	case XFS_LI_5_3_BUF:
2203 		obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
2204 		blkno = obuf_f->blf_blkno;
2205 		len = obuf_f->blf_len;
2206 		flags = obuf_f->blf_flags;
2207 		break;
2208 	default:
2209 		xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2210 			"xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2211 			buf_f->blf_type, log->l_mp->m_logname ?
2212 			log->l_mp->m_logname : "internal");
2213 		XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2214 				 XFS_ERRLEVEL_LOW, log->l_mp);
2215 		return XFS_ERROR(EFSCORRUPTED);
2216 	}
2217 
2218 	mp = log->l_mp;
2219 	if (flags & XFS_BLI_INODE_BUF) {
2220 		bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2221 								XFS_BUF_LOCK);
2222 	} else {
2223 		bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2224 	}
2225 	if (XFS_BUF_ISERROR(bp)) {
2226 		xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2227 				  bp, blkno);
2228 		error = XFS_BUF_GETERROR(bp);
2229 		xfs_buf_relse(bp);
2230 		return error;
2231 	}
2232 
2233 	error = 0;
2234 	if (flags & XFS_BLI_INODE_BUF) {
2235 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2236 	} else if (flags &
2237 		  (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
2238 		xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2239 	} else {
2240 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2241 	}
2242 	if (error)
2243 		return XFS_ERROR(error);
2244 
2245 	/*
2246 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2247 	 * slower when taking into account all the buffers to be flushed.
2248 	 *
2249 	 * Also make sure that only inode buffers with good sizes stay in
2250 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2251 	 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2252 	 * buffers in the log can be a different size if the log was generated
2253 	 * by an older kernel using unclustered inode buffers or a newer kernel
2254 	 * running with a different inode cluster size.  Regardless, if the
2255 	 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2256 	 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2257 	 * the buffer out of the buffer cache so that the buffer won't
2258 	 * overlap with future reads of those inodes.
2259 	 */
2260 	if (XFS_DINODE_MAGIC ==
2261 	    INT_GET(*((__uint16_t *)(xfs_buf_offset(bp, 0))), ARCH_CONVERT) &&
2262 	    (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2263 			(__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2264 		XFS_BUF_STALE(bp);
2265 		error = xfs_bwrite(mp, bp);
2266 	} else {
2267 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2268 		       XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2269 		XFS_BUF_SET_FSPRIVATE(bp, mp);
2270 		XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2271 		xfs_bdwrite(mp, bp);
2272 	}
2273 
2274 	return (error);
2275 }
2276 
2277 STATIC int
2278 xlog_recover_do_inode_trans(
2279 	xlog_t			*log,
2280 	xlog_recover_item_t	*item,
2281 	int			pass)
2282 {
2283 	xfs_inode_log_format_t	*in_f;
2284 	xfs_mount_t		*mp;
2285 	xfs_buf_t		*bp;
2286 	xfs_imap_t		imap;
2287 	xfs_dinode_t		*dip;
2288 	xfs_ino_t		ino;
2289 	int			len;
2290 	xfs_caddr_t		src;
2291 	xfs_caddr_t		dest;
2292 	int			error;
2293 	int			attr_index;
2294 	uint			fields;
2295 	xfs_dinode_core_t	*dicp;
2296 
2297 	if (pass == XLOG_RECOVER_PASS1) {
2298 		return 0;
2299 	}
2300 
2301 	in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2302 	ino = in_f->ilf_ino;
2303 	mp = log->l_mp;
2304 	if (ITEM_TYPE(item) == XFS_LI_INODE) {
2305 		imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
2306 		imap.im_len = in_f->ilf_len;
2307 		imap.im_boffset = in_f->ilf_boffset;
2308 	} else {
2309 		/*
2310 		 * It's an old inode format record.  We don't know where
2311 		 * its cluster is located on disk, and we can't allow
2312 		 * xfs_imap() to figure it out because the inode btrees
2313 		 * are not ready to be used.  Therefore do not pass the
2314 		 * XFS_IMAP_LOOKUP flag to xfs_imap().  This will give
2315 		 * us only the single block in which the inode lives
2316 		 * rather than its cluster, so we must make sure to
2317 		 * invalidate the buffer when we write it out below.
2318 		 */
2319 		imap.im_blkno = 0;
2320 		xfs_imap(log->l_mp, NULL, ino, &imap, 0);
2321 	}
2322 
2323 	/*
2324 	 * Inode buffers can be freed, look out for it,
2325 	 * and do not replay the inode.
2326 	 */
2327 	if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0))
2328 		return 0;
2329 
2330 	bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
2331 								XFS_BUF_LOCK);
2332 	if (XFS_BUF_ISERROR(bp)) {
2333 		xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2334 				  bp, imap.im_blkno);
2335 		error = XFS_BUF_GETERROR(bp);
2336 		xfs_buf_relse(bp);
2337 		return error;
2338 	}
2339 	error = 0;
2340 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2341 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
2342 
2343 	/*
2344 	 * Make sure the place we're flushing out to really looks
2345 	 * like an inode!
2346 	 */
2347 	if (unlikely(INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC)) {
2348 		xfs_buf_relse(bp);
2349 		xfs_fs_cmn_err(CE_ALERT, mp,
2350 			"xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2351 			dip, bp, ino);
2352 		XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2353 				 XFS_ERRLEVEL_LOW, mp);
2354 		return XFS_ERROR(EFSCORRUPTED);
2355 	}
2356 	dicp = (xfs_dinode_core_t*)(item->ri_buf[1].i_addr);
2357 	if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2358 		xfs_buf_relse(bp);
2359 		xfs_fs_cmn_err(CE_ALERT, mp,
2360 			"xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2361 			item, ino);
2362 		XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2363 				 XFS_ERRLEVEL_LOW, mp);
2364 		return XFS_ERROR(EFSCORRUPTED);
2365 	}
2366 
2367 	/* Skip replay when the on disk inode is newer than the log one */
2368 	if (dicp->di_flushiter <
2369 	    INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)) {
2370 		/*
2371 		 * Deal with the wrap case, DI_MAX_FLUSH is less
2372 		 * than smaller numbers
2373 		 */
2374 		if ((INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)
2375 							== DI_MAX_FLUSH) &&
2376 		    (dicp->di_flushiter < (DI_MAX_FLUSH>>1))) {
2377 			/* do nothing */
2378 		} else {
2379 			xfs_buf_relse(bp);
2380 			return 0;
2381 		}
2382 	}
2383 	/* Take the opportunity to reset the flush iteration count */
2384 	dicp->di_flushiter = 0;
2385 
2386 	if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2387 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2388 		    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2389 			XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2390 					 XFS_ERRLEVEL_LOW, mp, dicp);
2391 			xfs_buf_relse(bp);
2392 			xfs_fs_cmn_err(CE_ALERT, mp,
2393 				"xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2394 				item, dip, bp, ino);
2395 			return XFS_ERROR(EFSCORRUPTED);
2396 		}
2397 	} else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2398 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2399 		    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2400 		    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2401 			XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2402 					     XFS_ERRLEVEL_LOW, mp, dicp);
2403 			xfs_buf_relse(bp);
2404 			xfs_fs_cmn_err(CE_ALERT, mp,
2405 				"xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2406 				item, dip, bp, ino);
2407 			return XFS_ERROR(EFSCORRUPTED);
2408 		}
2409 	}
2410 	if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2411 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2412 				     XFS_ERRLEVEL_LOW, mp, dicp);
2413 		xfs_buf_relse(bp);
2414 		xfs_fs_cmn_err(CE_ALERT, mp,
2415 			"xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2416 			item, dip, bp, ino,
2417 			dicp->di_nextents + dicp->di_anextents,
2418 			dicp->di_nblocks);
2419 		return XFS_ERROR(EFSCORRUPTED);
2420 	}
2421 	if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2422 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2423 				     XFS_ERRLEVEL_LOW, mp, dicp);
2424 		xfs_buf_relse(bp);
2425 		xfs_fs_cmn_err(CE_ALERT, mp,
2426 			"xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2427 			item, dip, bp, ino, dicp->di_forkoff);
2428 		return XFS_ERROR(EFSCORRUPTED);
2429 	}
2430 	if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
2431 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2432 				     XFS_ERRLEVEL_LOW, mp, dicp);
2433 		xfs_buf_relse(bp);
2434 		xfs_fs_cmn_err(CE_ALERT, mp,
2435 			"xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2436 			item->ri_buf[1].i_len, item);
2437 		return XFS_ERROR(EFSCORRUPTED);
2438 	}
2439 
2440 	/* The core is in in-core format */
2441 	xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
2442 			      (xfs_dinode_core_t*)item->ri_buf[1].i_addr, -1);
2443 
2444 	/* the rest is in on-disk format */
2445 	if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
2446 		memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
2447 			item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
2448 			item->ri_buf[1].i_len  - sizeof(xfs_dinode_core_t));
2449 	}
2450 
2451 	fields = in_f->ilf_fields;
2452 	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2453 	case XFS_ILOG_DEV:
2454 		INT_SET(dip->di_u.di_dev, ARCH_CONVERT, in_f->ilf_u.ilfu_rdev);
2455 
2456 		break;
2457 	case XFS_ILOG_UUID:
2458 		dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
2459 		break;
2460 	}
2461 
2462 	if (in_f->ilf_size == 2)
2463 		goto write_inode_buffer;
2464 	len = item->ri_buf[2].i_len;
2465 	src = item->ri_buf[2].i_addr;
2466 	ASSERT(in_f->ilf_size <= 4);
2467 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2468 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
2469 	       (len == in_f->ilf_dsize));
2470 
2471 	switch (fields & XFS_ILOG_DFORK) {
2472 	case XFS_ILOG_DDATA:
2473 	case XFS_ILOG_DEXT:
2474 		memcpy(&dip->di_u, src, len);
2475 		break;
2476 
2477 	case XFS_ILOG_DBROOT:
2478 		xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2479 				 &(dip->di_u.di_bmbt),
2480 				 XFS_DFORK_DSIZE(dip, mp));
2481 		break;
2482 
2483 	default:
2484 		/*
2485 		 * There are no data fork flags set.
2486 		 */
2487 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
2488 		break;
2489 	}
2490 
2491 	/*
2492 	 * If we logged any attribute data, recover it.  There may or
2493 	 * may not have been any other non-core data logged in this
2494 	 * transaction.
2495 	 */
2496 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2497 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2498 			attr_index = 3;
2499 		} else {
2500 			attr_index = 2;
2501 		}
2502 		len = item->ri_buf[attr_index].i_len;
2503 		src = item->ri_buf[attr_index].i_addr;
2504 		ASSERT(len == in_f->ilf_asize);
2505 
2506 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2507 		case XFS_ILOG_ADATA:
2508 		case XFS_ILOG_AEXT:
2509 			dest = XFS_DFORK_APTR(dip);
2510 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2511 			memcpy(dest, src, len);
2512 			break;
2513 
2514 		case XFS_ILOG_ABROOT:
2515 			dest = XFS_DFORK_APTR(dip);
2516 			xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2517 					 (xfs_bmdr_block_t*)dest,
2518 					 XFS_DFORK_ASIZE(dip, mp));
2519 			break;
2520 
2521 		default:
2522 			xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2523 			ASSERT(0);
2524 			xfs_buf_relse(bp);
2525 			return XFS_ERROR(EIO);
2526 		}
2527 	}
2528 
2529 write_inode_buffer:
2530 	if (ITEM_TYPE(item) == XFS_LI_INODE) {
2531 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2532 		       XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2533 		XFS_BUF_SET_FSPRIVATE(bp, mp);
2534 		XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2535 		xfs_bdwrite(mp, bp);
2536 	} else {
2537 		XFS_BUF_STALE(bp);
2538 		error = xfs_bwrite(mp, bp);
2539 	}
2540 
2541 	return (error);
2542 }
2543 
2544 /*
2545  * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2546  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2547  * of that type.
2548  */
2549 STATIC int
2550 xlog_recover_do_quotaoff_trans(
2551 	xlog_t			*log,
2552 	xlog_recover_item_t	*item,
2553 	int			pass)
2554 {
2555 	xfs_qoff_logformat_t	*qoff_f;
2556 
2557 	if (pass == XLOG_RECOVER_PASS2) {
2558 		return (0);
2559 	}
2560 
2561 	qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2562 	ASSERT(qoff_f);
2563 
2564 	/*
2565 	 * The logitem format's flag tells us if this was user quotaoff,
2566 	 * group quotaoff or both.
2567 	 */
2568 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2569 		log->l_quotaoffs_flag |= XFS_DQ_USER;
2570 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2571 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2572 
2573 	return (0);
2574 }
2575 
2576 /*
2577  * Recover a dquot record
2578  */
2579 STATIC int
2580 xlog_recover_do_dquot_trans(
2581 	xlog_t			*log,
2582 	xlog_recover_item_t	*item,
2583 	int			pass)
2584 {
2585 	xfs_mount_t		*mp;
2586 	xfs_buf_t		*bp;
2587 	struct xfs_disk_dquot	*ddq, *recddq;
2588 	int			error;
2589 	xfs_dq_logformat_t	*dq_f;
2590 	uint			type;
2591 
2592 	if (pass == XLOG_RECOVER_PASS1) {
2593 		return 0;
2594 	}
2595 	mp = log->l_mp;
2596 
2597 	/*
2598 	 * Filesystems are required to send in quota flags at mount time.
2599 	 */
2600 	if (mp->m_qflags == 0)
2601 		return (0);
2602 
2603 	recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2604 	ASSERT(recddq);
2605 	/*
2606 	 * This type of quotas was turned off, so ignore this record.
2607 	 */
2608 	type = INT_GET(recddq->d_flags, ARCH_CONVERT) &
2609 			(XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2610 	ASSERT(type);
2611 	if (log->l_quotaoffs_flag & type)
2612 		return (0);
2613 
2614 	/*
2615 	 * At this point we know that quota was _not_ turned off.
2616 	 * Since the mount flags are not indicating to us otherwise, this
2617 	 * must mean that quota is on, and the dquot needs to be replayed.
2618 	 * Remember that we may not have fully recovered the superblock yet,
2619 	 * so we can't do the usual trick of looking at the SB quota bits.
2620 	 *
2621 	 * The other possibility, of course, is that the quota subsystem was
2622 	 * removed since the last mount - ENOSYS.
2623 	 */
2624 	dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2625 	ASSERT(dq_f);
2626 	if ((error = xfs_qm_dqcheck(recddq,
2627 			   dq_f->qlf_id,
2628 			   0, XFS_QMOPT_DOWARN,
2629 			   "xlog_recover_do_dquot_trans (log copy)"))) {
2630 		return XFS_ERROR(EIO);
2631 	}
2632 	ASSERT(dq_f->qlf_len == 1);
2633 
2634 	error = xfs_read_buf(mp, mp->m_ddev_targp,
2635 			     dq_f->qlf_blkno,
2636 			     XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2637 			     0, &bp);
2638 	if (error) {
2639 		xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2640 				  bp, dq_f->qlf_blkno);
2641 		return error;
2642 	}
2643 	ASSERT(bp);
2644 	ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2645 
2646 	/*
2647 	 * At least the magic num portion should be on disk because this
2648 	 * was among a chunk of dquots created earlier, and we did some
2649 	 * minimal initialization then.
2650 	 */
2651 	if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2652 			   "xlog_recover_do_dquot_trans")) {
2653 		xfs_buf_relse(bp);
2654 		return XFS_ERROR(EIO);
2655 	}
2656 
2657 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
2658 
2659 	ASSERT(dq_f->qlf_size == 2);
2660 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2661 	       XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2662 	XFS_BUF_SET_FSPRIVATE(bp, mp);
2663 	XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2664 	xfs_bdwrite(mp, bp);
2665 
2666 	return (0);
2667 }
2668 
2669 /*
2670  * This routine is called to create an in-core extent free intent
2671  * item from the efi format structure which was logged on disk.
2672  * It allocates an in-core efi, copies the extents from the format
2673  * structure into it, and adds the efi to the AIL with the given
2674  * LSN.
2675  */
2676 STATIC void
2677 xlog_recover_do_efi_trans(
2678 	xlog_t			*log,
2679 	xlog_recover_item_t	*item,
2680 	xfs_lsn_t		lsn,
2681 	int			pass)
2682 {
2683 	xfs_mount_t		*mp;
2684 	xfs_efi_log_item_t	*efip;
2685 	xfs_efi_log_format_t	*efi_formatp;
2686 	SPLDECL(s);
2687 
2688 	if (pass == XLOG_RECOVER_PASS1) {
2689 		return;
2690 	}
2691 
2692 	efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2693 	ASSERT(item->ri_buf[0].i_len ==
2694 	       (sizeof(xfs_efi_log_format_t) +
2695 		((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t))));
2696 
2697 	mp = log->l_mp;
2698 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2699 	memcpy((char *)&(efip->efi_format), (char *)efi_formatp,
2700 	      sizeof(xfs_efi_log_format_t) +
2701 	      ((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t)));
2702 	efip->efi_next_extent = efi_formatp->efi_nextents;
2703 	efip->efi_flags |= XFS_EFI_COMMITTED;
2704 
2705 	AIL_LOCK(mp,s);
2706 	/*
2707 	 * xfs_trans_update_ail() drops the AIL lock.
2708 	 */
2709 	xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn, s);
2710 }
2711 
2712 
2713 /*
2714  * This routine is called when an efd format structure is found in
2715  * a committed transaction in the log.  It's purpose is to cancel
2716  * the corresponding efi if it was still in the log.  To do this
2717  * it searches the AIL for the efi with an id equal to that in the
2718  * efd format structure.  If we find it, we remove the efi from the
2719  * AIL and free it.
2720  */
2721 STATIC void
2722 xlog_recover_do_efd_trans(
2723 	xlog_t			*log,
2724 	xlog_recover_item_t	*item,
2725 	int			pass)
2726 {
2727 	xfs_mount_t		*mp;
2728 	xfs_efd_log_format_t	*efd_formatp;
2729 	xfs_efi_log_item_t	*efip = NULL;
2730 	xfs_log_item_t		*lip;
2731 	int			gen;
2732 	__uint64_t		efi_id;
2733 	SPLDECL(s);
2734 
2735 	if (pass == XLOG_RECOVER_PASS1) {
2736 		return;
2737 	}
2738 
2739 	efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2740 	ASSERT(item->ri_buf[0].i_len ==
2741 	       (sizeof(xfs_efd_log_format_t) +
2742 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_t))));
2743 	efi_id = efd_formatp->efd_efi_id;
2744 
2745 	/*
2746 	 * Search for the efi with the id in the efd format structure
2747 	 * in the AIL.
2748 	 */
2749 	mp = log->l_mp;
2750 	AIL_LOCK(mp,s);
2751 	lip = xfs_trans_first_ail(mp, &gen);
2752 	while (lip != NULL) {
2753 		if (lip->li_type == XFS_LI_EFI) {
2754 			efip = (xfs_efi_log_item_t *)lip;
2755 			if (efip->efi_format.efi_id == efi_id) {
2756 				/*
2757 				 * xfs_trans_delete_ail() drops the
2758 				 * AIL lock.
2759 				 */
2760 				xfs_trans_delete_ail(mp, lip, s);
2761 				break;
2762 			}
2763 		}
2764 		lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
2765 	}
2766 
2767 	/*
2768 	 * If we found it, then free it up.  If it wasn't there, it
2769 	 * must have been overwritten in the log.  Oh well.
2770 	 */
2771 	if (lip != NULL) {
2772 		xfs_efi_item_free(efip);
2773 	} else {
2774 		AIL_UNLOCK(mp, s);
2775 	}
2776 }
2777 
2778 /*
2779  * Perform the transaction
2780  *
2781  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2782  * EFIs and EFDs get queued up by adding entries into the AIL for them.
2783  */
2784 STATIC int
2785 xlog_recover_do_trans(
2786 	xlog_t			*log,
2787 	xlog_recover_t		*trans,
2788 	int			pass)
2789 {
2790 	int			error = 0;
2791 	xlog_recover_item_t	*item, *first_item;
2792 
2793 	if ((error = xlog_recover_reorder_trans(log, trans)))
2794 		return error;
2795 	first_item = item = trans->r_itemq;
2796 	do {
2797 		/*
2798 		 * we don't need to worry about the block number being
2799 		 * truncated in > 1 TB buffers because in user-land,
2800 		 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
2801 		 * the blkno's will get through the user-mode buffer
2802 		 * cache properly.  The only bad case is o32 kernels
2803 		 * where xfs_daddr_t is 32-bits but mount will warn us
2804 		 * off a > 1 TB filesystem before we get here.
2805 		 */
2806 		if ((ITEM_TYPE(item) == XFS_LI_BUF) ||
2807 		    (ITEM_TYPE(item) == XFS_LI_6_1_BUF) ||
2808 		    (ITEM_TYPE(item) == XFS_LI_5_3_BUF)) {
2809 			if  ((error = xlog_recover_do_buffer_trans(log, item,
2810 								 pass)))
2811 				break;
2812 		} else if ((ITEM_TYPE(item) == XFS_LI_INODE) ||
2813 			   (ITEM_TYPE(item) == XFS_LI_6_1_INODE) ||
2814 			   (ITEM_TYPE(item) == XFS_LI_5_3_INODE)) {
2815 			if ((error = xlog_recover_do_inode_trans(log, item,
2816 								pass)))
2817 				break;
2818 		} else if (ITEM_TYPE(item) == XFS_LI_EFI) {
2819 			xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2820 						  pass);
2821 		} else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2822 			xlog_recover_do_efd_trans(log, item, pass);
2823 		} else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2824 			if ((error = xlog_recover_do_dquot_trans(log, item,
2825 								   pass)))
2826 					break;
2827 		} else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2828 			if ((error = xlog_recover_do_quotaoff_trans(log, item,
2829 								   pass)))
2830 					break;
2831 		} else {
2832 			xlog_warn("XFS: xlog_recover_do_trans");
2833 			ASSERT(0);
2834 			error = XFS_ERROR(EIO);
2835 			break;
2836 		}
2837 		item = item->ri_next;
2838 	} while (first_item != item);
2839 
2840 	return error;
2841 }
2842 
2843 /*
2844  * Free up any resources allocated by the transaction
2845  *
2846  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2847  */
2848 STATIC void
2849 xlog_recover_free_trans(
2850 	xlog_recover_t		*trans)
2851 {
2852 	xlog_recover_item_t	*first_item, *item, *free_item;
2853 	int			i;
2854 
2855 	item = first_item = trans->r_itemq;
2856 	do {
2857 		free_item = item;
2858 		item = item->ri_next;
2859 		 /* Free the regions in the item. */
2860 		for (i = 0; i < free_item->ri_cnt; i++) {
2861 			kmem_free(free_item->ri_buf[i].i_addr,
2862 				  free_item->ri_buf[i].i_len);
2863 		}
2864 		/* Free the item itself */
2865 		kmem_free(free_item->ri_buf,
2866 			  (free_item->ri_total * sizeof(xfs_log_iovec_t)));
2867 		kmem_free(free_item, sizeof(xlog_recover_item_t));
2868 	} while (first_item != item);
2869 	/* Free the transaction recover structure */
2870 	kmem_free(trans, sizeof(xlog_recover_t));
2871 }
2872 
2873 STATIC int
2874 xlog_recover_commit_trans(
2875 	xlog_t			*log,
2876 	xlog_recover_t		**q,
2877 	xlog_recover_t		*trans,
2878 	int			pass)
2879 {
2880 	int			error;
2881 
2882 	if ((error = xlog_recover_unlink_tid(q, trans)))
2883 		return error;
2884 	if ((error = xlog_recover_do_trans(log, trans, pass)))
2885 		return error;
2886 	xlog_recover_free_trans(trans);			/* no error */
2887 	return 0;
2888 }
2889 
2890 STATIC int
2891 xlog_recover_unmount_trans(
2892 	xlog_recover_t		*trans)
2893 {
2894 	/* Do nothing now */
2895 	xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2896 	return 0;
2897 }
2898 
2899 /*
2900  * There are two valid states of the r_state field.  0 indicates that the
2901  * transaction structure is in a normal state.  We have either seen the
2902  * start of the transaction or the last operation we added was not a partial
2903  * operation.  If the last operation we added to the transaction was a
2904  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2905  *
2906  * NOTE: skip LRs with 0 data length.
2907  */
2908 STATIC int
2909 xlog_recover_process_data(
2910 	xlog_t			*log,
2911 	xlog_recover_t		*rhash[],
2912 	xlog_rec_header_t	*rhead,
2913 	xfs_caddr_t		dp,
2914 	int			pass)
2915 {
2916 	xfs_caddr_t		lp;
2917 	int			num_logops;
2918 	xlog_op_header_t	*ohead;
2919 	xlog_recover_t		*trans;
2920 	xlog_tid_t		tid;
2921 	int			error;
2922 	unsigned long		hash;
2923 	uint			flags;
2924 
2925 	lp = dp + INT_GET(rhead->h_len, ARCH_CONVERT);
2926 	num_logops = INT_GET(rhead->h_num_logops, ARCH_CONVERT);
2927 
2928 	/* check the log format matches our own - else we can't recover */
2929 	if (xlog_header_check_recover(log->l_mp, rhead))
2930 		return (XFS_ERROR(EIO));
2931 
2932 	while ((dp < lp) && num_logops) {
2933 		ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2934 		ohead = (xlog_op_header_t *)dp;
2935 		dp += sizeof(xlog_op_header_t);
2936 		if (ohead->oh_clientid != XFS_TRANSACTION &&
2937 		    ohead->oh_clientid != XFS_LOG) {
2938 			xlog_warn(
2939 		"XFS: xlog_recover_process_data: bad clientid");
2940 			ASSERT(0);
2941 			return (XFS_ERROR(EIO));
2942 		}
2943 		tid = INT_GET(ohead->oh_tid, ARCH_CONVERT);
2944 		hash = XLOG_RHASH(tid);
2945 		trans = xlog_recover_find_tid(rhash[hash], tid);
2946 		if (trans == NULL) {		   /* not found; add new tid */
2947 			if (ohead->oh_flags & XLOG_START_TRANS)
2948 				xlog_recover_new_tid(&rhash[hash], tid,
2949 					INT_GET(rhead->h_lsn, ARCH_CONVERT));
2950 		} else {
2951 			ASSERT(dp+INT_GET(ohead->oh_len, ARCH_CONVERT) <= lp);
2952 			flags = ohead->oh_flags & ~XLOG_END_TRANS;
2953 			if (flags & XLOG_WAS_CONT_TRANS)
2954 				flags &= ~XLOG_CONTINUE_TRANS;
2955 			switch (flags) {
2956 			case XLOG_COMMIT_TRANS:
2957 				error = xlog_recover_commit_trans(log,
2958 						&rhash[hash], trans, pass);
2959 				break;
2960 			case XLOG_UNMOUNT_TRANS:
2961 				error = xlog_recover_unmount_trans(trans);
2962 				break;
2963 			case XLOG_WAS_CONT_TRANS:
2964 				error = xlog_recover_add_to_cont_trans(trans,
2965 						dp, INT_GET(ohead->oh_len,
2966 							ARCH_CONVERT));
2967 				break;
2968 			case XLOG_START_TRANS:
2969 				xlog_warn(
2970 			"XFS: xlog_recover_process_data: bad transaction");
2971 				ASSERT(0);
2972 				error = XFS_ERROR(EIO);
2973 				break;
2974 			case 0:
2975 			case XLOG_CONTINUE_TRANS:
2976 				error = xlog_recover_add_to_trans(trans,
2977 						dp, INT_GET(ohead->oh_len,
2978 							ARCH_CONVERT));
2979 				break;
2980 			default:
2981 				xlog_warn(
2982 			"XFS: xlog_recover_process_data: bad flag");
2983 				ASSERT(0);
2984 				error = XFS_ERROR(EIO);
2985 				break;
2986 			}
2987 			if (error)
2988 				return error;
2989 		}
2990 		dp += INT_GET(ohead->oh_len, ARCH_CONVERT);
2991 		num_logops--;
2992 	}
2993 	return 0;
2994 }
2995 
2996 /*
2997  * Process an extent free intent item that was recovered from
2998  * the log.  We need to free the extents that it describes.
2999  */
3000 STATIC void
3001 xlog_recover_process_efi(
3002 	xfs_mount_t		*mp,
3003 	xfs_efi_log_item_t	*efip)
3004 {
3005 	xfs_efd_log_item_t	*efdp;
3006 	xfs_trans_t		*tp;
3007 	int			i;
3008 	xfs_extent_t		*extp;
3009 	xfs_fsblock_t		startblock_fsb;
3010 
3011 	ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
3012 
3013 	/*
3014 	 * First check the validity of the extents described by the
3015 	 * EFI.  If any are bad, then assume that all are bad and
3016 	 * just toss the EFI.
3017 	 */
3018 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3019 		extp = &(efip->efi_format.efi_extents[i]);
3020 		startblock_fsb = XFS_BB_TO_FSB(mp,
3021 				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
3022 		if ((startblock_fsb == 0) ||
3023 		    (extp->ext_len == 0) ||
3024 		    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3025 		    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3026 			/*
3027 			 * This will pull the EFI from the AIL and
3028 			 * free the memory associated with it.
3029 			 */
3030 			xfs_efi_release(efip, efip->efi_format.efi_nextents);
3031 			return;
3032 		}
3033 	}
3034 
3035 	tp = xfs_trans_alloc(mp, 0);
3036 	xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3037 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3038 
3039 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3040 		extp = &(efip->efi_format.efi_extents[i]);
3041 		xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3042 		xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3043 					 extp->ext_len);
3044 	}
3045 
3046 	efip->efi_flags |= XFS_EFI_RECOVERED;
3047 	xfs_trans_commit(tp, 0, NULL);
3048 }
3049 
3050 /*
3051  * Verify that once we've encountered something other than an EFI
3052  * in the AIL that there are no more EFIs in the AIL.
3053  */
3054 #if defined(DEBUG)
3055 STATIC void
3056 xlog_recover_check_ail(
3057 	xfs_mount_t		*mp,
3058 	xfs_log_item_t		*lip,
3059 	int			gen)
3060 {
3061 	int			orig_gen = gen;
3062 
3063 	do {
3064 		ASSERT(lip->li_type != XFS_LI_EFI);
3065 		lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3066 		/*
3067 		 * The check will be bogus if we restart from the
3068 		 * beginning of the AIL, so ASSERT that we don't.
3069 		 * We never should since we're holding the AIL lock
3070 		 * the entire time.
3071 		 */
3072 		ASSERT(gen == orig_gen);
3073 	} while (lip != NULL);
3074 }
3075 #endif	/* DEBUG */
3076 
3077 /*
3078  * When this is called, all of the EFIs which did not have
3079  * corresponding EFDs should be in the AIL.  What we do now
3080  * is free the extents associated with each one.
3081  *
3082  * Since we process the EFIs in normal transactions, they
3083  * will be removed at some point after the commit.  This prevents
3084  * us from just walking down the list processing each one.
3085  * We'll use a flag in the EFI to skip those that we've already
3086  * processed and use the AIL iteration mechanism's generation
3087  * count to try to speed this up at least a bit.
3088  *
3089  * When we start, we know that the EFIs are the only things in
3090  * the AIL.  As we process them, however, other items are added
3091  * to the AIL.  Since everything added to the AIL must come after
3092  * everything already in the AIL, we stop processing as soon as
3093  * we see something other than an EFI in the AIL.
3094  */
3095 STATIC void
3096 xlog_recover_process_efis(
3097 	xlog_t			*log)
3098 {
3099 	xfs_log_item_t		*lip;
3100 	xfs_efi_log_item_t	*efip;
3101 	int			gen;
3102 	xfs_mount_t		*mp;
3103 	SPLDECL(s);
3104 
3105 	mp = log->l_mp;
3106 	AIL_LOCK(mp,s);
3107 
3108 	lip = xfs_trans_first_ail(mp, &gen);
3109 	while (lip != NULL) {
3110 		/*
3111 		 * We're done when we see something other than an EFI.
3112 		 */
3113 		if (lip->li_type != XFS_LI_EFI) {
3114 			xlog_recover_check_ail(mp, lip, gen);
3115 			break;
3116 		}
3117 
3118 		/*
3119 		 * Skip EFIs that we've already processed.
3120 		 */
3121 		efip = (xfs_efi_log_item_t *)lip;
3122 		if (efip->efi_flags & XFS_EFI_RECOVERED) {
3123 			lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3124 			continue;
3125 		}
3126 
3127 		AIL_UNLOCK(mp, s);
3128 		xlog_recover_process_efi(mp, efip);
3129 		AIL_LOCK(mp,s);
3130 		lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3131 	}
3132 	AIL_UNLOCK(mp, s);
3133 }
3134 
3135 /*
3136  * This routine performs a transaction to null out a bad inode pointer
3137  * in an agi unlinked inode hash bucket.
3138  */
3139 STATIC void
3140 xlog_recover_clear_agi_bucket(
3141 	xfs_mount_t	*mp,
3142 	xfs_agnumber_t	agno,
3143 	int		bucket)
3144 {
3145 	xfs_trans_t	*tp;
3146 	xfs_agi_t	*agi;
3147 	xfs_buf_t	*agibp;
3148 	int		offset;
3149 	int		error;
3150 
3151 	tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3152 	xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
3153 
3154 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3155 				   XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3156 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
3157 	if (error) {
3158 		xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3159 		return;
3160 	}
3161 
3162 	agi = XFS_BUF_TO_AGI(agibp);
3163 	if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC) {
3164 		xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3165 		return;
3166 	}
3167 
3168 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3169 	offset = offsetof(xfs_agi_t, agi_unlinked) +
3170 		 (sizeof(xfs_agino_t) * bucket);
3171 	xfs_trans_log_buf(tp, agibp, offset,
3172 			  (offset + sizeof(xfs_agino_t) - 1));
3173 
3174 	(void) xfs_trans_commit(tp, 0, NULL);
3175 }
3176 
3177 /*
3178  * xlog_iunlink_recover
3179  *
3180  * This is called during recovery to process any inodes which
3181  * we unlinked but not freed when the system crashed.  These
3182  * inodes will be on the lists in the AGI blocks.  What we do
3183  * here is scan all the AGIs and fully truncate and free any
3184  * inodes found on the lists.  Each inode is removed from the
3185  * lists when it has been fully truncated and is freed.  The
3186  * freeing of the inode and its removal from the list must be
3187  * atomic.
3188  */
3189 void
3190 xlog_recover_process_iunlinks(
3191 	xlog_t		*log)
3192 {
3193 	xfs_mount_t	*mp;
3194 	xfs_agnumber_t	agno;
3195 	xfs_agi_t	*agi;
3196 	xfs_buf_t	*agibp;
3197 	xfs_buf_t	*ibp;
3198 	xfs_dinode_t	*dip;
3199 	xfs_inode_t	*ip;
3200 	xfs_agino_t	agino;
3201 	xfs_ino_t	ino;
3202 	int		bucket;
3203 	int		error;
3204 	uint		mp_dmevmask;
3205 
3206 	mp = log->l_mp;
3207 
3208 	/*
3209 	 * Prevent any DMAPI event from being sent while in this function.
3210 	 */
3211 	mp_dmevmask = mp->m_dmevmask;
3212 	mp->m_dmevmask = 0;
3213 
3214 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3215 		/*
3216 		 * Find the agi for this ag.
3217 		 */
3218 		agibp = xfs_buf_read(mp->m_ddev_targp,
3219 				XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3220 				XFS_FSS_TO_BB(mp, 1), 0);
3221 		if (XFS_BUF_ISERROR(agibp)) {
3222 			xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
3223 				log->l_mp, agibp,
3224 				XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
3225 		}
3226 		agi = XFS_BUF_TO_AGI(agibp);
3227 		ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum));
3228 
3229 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3230 
3231 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3232 			while (agino != NULLAGINO) {
3233 
3234 				/*
3235 				 * Release the agi buffer so that it can
3236 				 * be acquired in the normal course of the
3237 				 * transaction to truncate and free the inode.
3238 				 */
3239 				xfs_buf_relse(agibp);
3240 
3241 				ino = XFS_AGINO_TO_INO(mp, agno, agino);
3242 				error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3243 				ASSERT(error || (ip != NULL));
3244 
3245 				if (!error) {
3246 					/*
3247 					 * Get the on disk inode to find the
3248 					 * next inode in the bucket.
3249 					 */
3250 					error = xfs_itobp(mp, NULL, ip, &dip,
3251 							&ibp, 0);
3252 					ASSERT(error || (dip != NULL));
3253 				}
3254 
3255 				if (!error) {
3256 					ASSERT(ip->i_d.di_nlink == 0);
3257 
3258 					/* setup for the next pass */
3259 					agino = INT_GET(dip->di_next_unlinked,
3260 							ARCH_CONVERT);
3261 					xfs_buf_relse(ibp);
3262 					/*
3263 					 * Prevent any DMAPI event from
3264 					 * being sent when the
3265 					 * reference on the inode is
3266 					 * dropped.
3267 					 */
3268 					ip->i_d.di_dmevmask = 0;
3269 
3270 					/*
3271 					 * If this is a new inode, handle
3272 					 * it specially.  Otherwise,
3273 					 * just drop our reference to the
3274 					 * inode.  If there are no
3275 					 * other references, this will
3276 					 * send the inode to
3277 					 * xfs_inactive() which will
3278 					 * truncate the file and free
3279 					 * the inode.
3280 					 */
3281 					if (ip->i_d.di_mode == 0)
3282 						xfs_iput_new(ip, 0);
3283 					else
3284 						VN_RELE(XFS_ITOV(ip));
3285 				} else {
3286 					/*
3287 					 * We can't read in the inode
3288 					 * this bucket points to, or
3289 					 * this inode is messed up.  Just
3290 					 * ditch this bucket of inodes.  We
3291 					 * will lose some inodes and space,
3292 					 * but at least we won't hang.  Call
3293 					 * xlog_recover_clear_agi_bucket()
3294 					 * to perform a transaction to clear
3295 					 * the inode pointer in the bucket.
3296 					 */
3297 					xlog_recover_clear_agi_bucket(mp, agno,
3298 							bucket);
3299 
3300 					agino = NULLAGINO;
3301 				}
3302 
3303 				/*
3304 				 * Reacquire the agibuffer and continue around
3305 				 * the loop.
3306 				 */
3307 				agibp = xfs_buf_read(mp->m_ddev_targp,
3308 						XFS_AG_DADDR(mp, agno,
3309 							XFS_AGI_DADDR(mp)),
3310 						XFS_FSS_TO_BB(mp, 1), 0);
3311 				if (XFS_BUF_ISERROR(agibp)) {
3312 					xfs_ioerror_alert(
3313 				"xlog_recover_process_iunlinks(#2)",
3314 						log->l_mp, agibp,
3315 						XFS_AG_DADDR(mp, agno,
3316 							XFS_AGI_DADDR(mp)));
3317 				}
3318 				agi = XFS_BUF_TO_AGI(agibp);
3319 				ASSERT(XFS_AGI_MAGIC == be32_to_cpu(
3320 					agi->agi_magicnum));
3321 			}
3322 		}
3323 
3324 		/*
3325 		 * Release the buffer for the current agi so we can
3326 		 * go on to the next one.
3327 		 */
3328 		xfs_buf_relse(agibp);
3329 	}
3330 
3331 	mp->m_dmevmask = mp_dmevmask;
3332 }
3333 
3334 
3335 #ifdef DEBUG
3336 STATIC void
3337 xlog_pack_data_checksum(
3338 	xlog_t		*log,
3339 	xlog_in_core_t	*iclog,
3340 	int		size)
3341 {
3342 	int		i;
3343 	uint		*up;
3344 	uint		chksum = 0;
3345 
3346 	up = (uint *)iclog->ic_datap;
3347 	/* divide length by 4 to get # words */
3348 	for (i = 0; i < (size >> 2); i++) {
3349 		chksum ^= INT_GET(*up, ARCH_CONVERT);
3350 		up++;
3351 	}
3352 	INT_SET(iclog->ic_header.h_chksum, ARCH_CONVERT, chksum);
3353 }
3354 #else
3355 #define xlog_pack_data_checksum(log, iclog, size)
3356 #endif
3357 
3358 /*
3359  * Stamp cycle number in every block
3360  */
3361 void
3362 xlog_pack_data(
3363 	xlog_t			*log,
3364 	xlog_in_core_t		*iclog,
3365 	int			roundoff)
3366 {
3367 	int			i, j, k;
3368 	int			size = iclog->ic_offset + roundoff;
3369 	uint			cycle_lsn;
3370 	xfs_caddr_t		dp;
3371 	xlog_in_core_2_t	*xhdr;
3372 
3373 	xlog_pack_data_checksum(log, iclog, size);
3374 
3375 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3376 
3377 	dp = iclog->ic_datap;
3378 	for (i = 0; i < BTOBB(size) &&
3379 		i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3380 		iclog->ic_header.h_cycle_data[i] = *(uint *)dp;
3381 		*(uint *)dp = cycle_lsn;
3382 		dp += BBSIZE;
3383 	}
3384 
3385 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3386 		xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
3387 		for ( ; i < BTOBB(size); i++) {
3388 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3389 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3390 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(uint *)dp;
3391 			*(uint *)dp = cycle_lsn;
3392 			dp += BBSIZE;
3393 		}
3394 
3395 		for (i = 1; i < log->l_iclog_heads; i++) {
3396 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3397 		}
3398 	}
3399 }
3400 
3401 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3402 STATIC void
3403 xlog_unpack_data_checksum(
3404 	xlog_rec_header_t	*rhead,
3405 	xfs_caddr_t		dp,
3406 	xlog_t			*log)
3407 {
3408 	uint			*up = (uint *)dp;
3409 	uint			chksum = 0;
3410 	int			i;
3411 
3412 	/* divide length by 4 to get # words */
3413 	for (i=0; i < INT_GET(rhead->h_len, ARCH_CONVERT) >> 2; i++) {
3414 		chksum ^= INT_GET(*up, ARCH_CONVERT);
3415 		up++;
3416 	}
3417 	if (chksum != INT_GET(rhead->h_chksum, ARCH_CONVERT)) {
3418 	    if (rhead->h_chksum ||
3419 		((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3420 		    cmn_err(CE_DEBUG,
3421 			"XFS: LogR chksum mismatch: was (0x%x) is (0x%x)",
3422 			    INT_GET(rhead->h_chksum, ARCH_CONVERT), chksum);
3423 		    cmn_err(CE_DEBUG,
3424 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3425 		    if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3426 			    cmn_err(CE_DEBUG,
3427 				"XFS: LogR this is a LogV2 filesystem");
3428 		    }
3429 		    log->l_flags |= XLOG_CHKSUM_MISMATCH;
3430 	    }
3431 	}
3432 }
3433 #else
3434 #define xlog_unpack_data_checksum(rhead, dp, log)
3435 #endif
3436 
3437 STATIC void
3438 xlog_unpack_data(
3439 	xlog_rec_header_t	*rhead,
3440 	xfs_caddr_t		dp,
3441 	xlog_t			*log)
3442 {
3443 	int			i, j, k;
3444 	xlog_in_core_2_t	*xhdr;
3445 
3446 	for (i = 0; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)) &&
3447 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3448 		*(uint *)dp = *(uint *)&rhead->h_cycle_data[i];
3449 		dp += BBSIZE;
3450 	}
3451 
3452 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3453 		xhdr = (xlog_in_core_2_t *)rhead;
3454 		for ( ; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); i++) {
3455 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3456 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3457 			*(uint *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3458 			dp += BBSIZE;
3459 		}
3460 	}
3461 
3462 	xlog_unpack_data_checksum(rhead, dp, log);
3463 }
3464 
3465 STATIC int
3466 xlog_valid_rec_header(
3467 	xlog_t			*log,
3468 	xlog_rec_header_t	*rhead,
3469 	xfs_daddr_t		blkno)
3470 {
3471 	int			hlen;
3472 
3473 	if (unlikely(
3474 	    (INT_GET(rhead->h_magicno, ARCH_CONVERT) !=
3475 			XLOG_HEADER_MAGIC_NUM))) {
3476 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3477 				XFS_ERRLEVEL_LOW, log->l_mp);
3478 		return XFS_ERROR(EFSCORRUPTED);
3479 	}
3480 	if (unlikely(
3481 	    (!rhead->h_version ||
3482 	    (INT_GET(rhead->h_version, ARCH_CONVERT) &
3483 			(~XLOG_VERSION_OKBITS)) != 0))) {
3484 		xlog_warn("XFS: %s: unrecognised log version (%d).",
3485 			__FUNCTION__, INT_GET(rhead->h_version, ARCH_CONVERT));
3486 		return XFS_ERROR(EIO);
3487 	}
3488 
3489 	/* LR body must have data or it wouldn't have been written */
3490 	hlen = INT_GET(rhead->h_len, ARCH_CONVERT);
3491 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3492 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3493 				XFS_ERRLEVEL_LOW, log->l_mp);
3494 		return XFS_ERROR(EFSCORRUPTED);
3495 	}
3496 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3497 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3498 				XFS_ERRLEVEL_LOW, log->l_mp);
3499 		return XFS_ERROR(EFSCORRUPTED);
3500 	}
3501 	return 0;
3502 }
3503 
3504 /*
3505  * Read the log from tail to head and process the log records found.
3506  * Handle the two cases where the tail and head are in the same cycle
3507  * and where the active portion of the log wraps around the end of
3508  * the physical log separately.  The pass parameter is passed through
3509  * to the routines called to process the data and is not looked at
3510  * here.
3511  */
3512 STATIC int
3513 xlog_do_recovery_pass(
3514 	xlog_t			*log,
3515 	xfs_daddr_t		head_blk,
3516 	xfs_daddr_t		tail_blk,
3517 	int			pass)
3518 {
3519 	xlog_rec_header_t	*rhead;
3520 	xfs_daddr_t		blk_no;
3521 	xfs_caddr_t		bufaddr, offset;
3522 	xfs_buf_t		*hbp, *dbp;
3523 	int			error = 0, h_size;
3524 	int			bblks, split_bblks;
3525 	int			hblks, split_hblks, wrapped_hblks;
3526 	xlog_recover_t		*rhash[XLOG_RHASH_SIZE];
3527 
3528 	ASSERT(head_blk != tail_blk);
3529 
3530 	/*
3531 	 * Read the header of the tail block and get the iclog buffer size from
3532 	 * h_size.  Use this to tell how many sectors make up the log header.
3533 	 */
3534 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3535 		/*
3536 		 * When using variable length iclogs, read first sector of
3537 		 * iclog header and extract the header size from it.  Get a
3538 		 * new hbp that is the correct size.
3539 		 */
3540 		hbp = xlog_get_bp(log, 1);
3541 		if (!hbp)
3542 			return ENOMEM;
3543 		if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3544 			goto bread_err1;
3545 		offset = xlog_align(log, tail_blk, 1, hbp);
3546 		rhead = (xlog_rec_header_t *)offset;
3547 		error = xlog_valid_rec_header(log, rhead, tail_blk);
3548 		if (error)
3549 			goto bread_err1;
3550 		h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
3551 		if ((INT_GET(rhead->h_version, ARCH_CONVERT)
3552 				& XLOG_VERSION_2) &&
3553 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3554 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3555 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
3556 				hblks++;
3557 			xlog_put_bp(hbp);
3558 			hbp = xlog_get_bp(log, hblks);
3559 		} else {
3560 			hblks = 1;
3561 		}
3562 	} else {
3563 		ASSERT(log->l_sectbb_log == 0);
3564 		hblks = 1;
3565 		hbp = xlog_get_bp(log, 1);
3566 		h_size = XLOG_BIG_RECORD_BSIZE;
3567 	}
3568 
3569 	if (!hbp)
3570 		return ENOMEM;
3571 	dbp = xlog_get_bp(log, BTOBB(h_size));
3572 	if (!dbp) {
3573 		xlog_put_bp(hbp);
3574 		return ENOMEM;
3575 	}
3576 
3577 	memset(rhash, 0, sizeof(rhash));
3578 	if (tail_blk <= head_blk) {
3579 		for (blk_no = tail_blk; blk_no < head_blk; ) {
3580 			if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3581 				goto bread_err2;
3582 			offset = xlog_align(log, blk_no, hblks, hbp);
3583 			rhead = (xlog_rec_header_t *)offset;
3584 			error = xlog_valid_rec_header(log, rhead, blk_no);
3585 			if (error)
3586 				goto bread_err2;
3587 
3588 			/* blocks in data section */
3589 			bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3590 			error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3591 			if (error)
3592 				goto bread_err2;
3593 			offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3594 			xlog_unpack_data(rhead, offset, log);
3595 			if ((error = xlog_recover_process_data(log,
3596 						rhash, rhead, offset, pass)))
3597 				goto bread_err2;
3598 			blk_no += bblks + hblks;
3599 		}
3600 	} else {
3601 		/*
3602 		 * Perform recovery around the end of the physical log.
3603 		 * When the head is not on the same cycle number as the tail,
3604 		 * we can't do a sequential recovery as above.
3605 		 */
3606 		blk_no = tail_blk;
3607 		while (blk_no < log->l_logBBsize) {
3608 			/*
3609 			 * Check for header wrapping around physical end-of-log
3610 			 */
3611 			offset = NULL;
3612 			split_hblks = 0;
3613 			wrapped_hblks = 0;
3614 			if (blk_no + hblks <= log->l_logBBsize) {
3615 				/* Read header in one read */
3616 				error = xlog_bread(log, blk_no, hblks, hbp);
3617 				if (error)
3618 					goto bread_err2;
3619 				offset = xlog_align(log, blk_no, hblks, hbp);
3620 			} else {
3621 				/* This LR is split across physical log end */
3622 				if (blk_no != log->l_logBBsize) {
3623 					/* some data before physical log end */
3624 					ASSERT(blk_no <= INT_MAX);
3625 					split_hblks = log->l_logBBsize - (int)blk_no;
3626 					ASSERT(split_hblks > 0);
3627 					if ((error = xlog_bread(log, blk_no,
3628 							split_hblks, hbp)))
3629 						goto bread_err2;
3630 					offset = xlog_align(log, blk_no,
3631 							split_hblks, hbp);
3632 				}
3633 				/*
3634 				 * Note: this black magic still works with
3635 				 * large sector sizes (non-512) only because:
3636 				 * - we increased the buffer size originally
3637 				 *   by 1 sector giving us enough extra space
3638 				 *   for the second read;
3639 				 * - the log start is guaranteed to be sector
3640 				 *   aligned;
3641 				 * - we read the log end (LR header start)
3642 				 *   _first_, then the log start (LR header end)
3643 				 *   - order is important.
3644 				 */
3645 				bufaddr = XFS_BUF_PTR(hbp);
3646 				XFS_BUF_SET_PTR(hbp,
3647 						bufaddr + BBTOB(split_hblks),
3648 						BBTOB(hblks - split_hblks));
3649 				wrapped_hblks = hblks - split_hblks;
3650 				error = xlog_bread(log, 0, wrapped_hblks, hbp);
3651 				if (error)
3652 					goto bread_err2;
3653 				XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks));
3654 				if (!offset)
3655 					offset = xlog_align(log, 0,
3656 							wrapped_hblks, hbp);
3657 			}
3658 			rhead = (xlog_rec_header_t *)offset;
3659 			error = xlog_valid_rec_header(log, rhead,
3660 						split_hblks ? blk_no : 0);
3661 			if (error)
3662 				goto bread_err2;
3663 
3664 			bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3665 			blk_no += hblks;
3666 
3667 			/* Read in data for log record */
3668 			if (blk_no + bblks <= log->l_logBBsize) {
3669 				error = xlog_bread(log, blk_no, bblks, dbp);
3670 				if (error)
3671 					goto bread_err2;
3672 				offset = xlog_align(log, blk_no, bblks, dbp);
3673 			} else {
3674 				/* This log record is split across the
3675 				 * physical end of log */
3676 				offset = NULL;
3677 				split_bblks = 0;
3678 				if (blk_no != log->l_logBBsize) {
3679 					/* some data is before the physical
3680 					 * end of log */
3681 					ASSERT(!wrapped_hblks);
3682 					ASSERT(blk_no <= INT_MAX);
3683 					split_bblks =
3684 						log->l_logBBsize - (int)blk_no;
3685 					ASSERT(split_bblks > 0);
3686 					if ((error = xlog_bread(log, blk_no,
3687 							split_bblks, dbp)))
3688 						goto bread_err2;
3689 					offset = xlog_align(log, blk_no,
3690 							split_bblks, dbp);
3691 				}
3692 				/*
3693 				 * Note: this black magic still works with
3694 				 * large sector sizes (non-512) only because:
3695 				 * - we increased the buffer size originally
3696 				 *   by 1 sector giving us enough extra space
3697 				 *   for the second read;
3698 				 * - the log start is guaranteed to be sector
3699 				 *   aligned;
3700 				 * - we read the log end (LR header start)
3701 				 *   _first_, then the log start (LR header end)
3702 				 *   - order is important.
3703 				 */
3704 				bufaddr = XFS_BUF_PTR(dbp);
3705 				XFS_BUF_SET_PTR(dbp,
3706 						bufaddr + BBTOB(split_bblks),
3707 						BBTOB(bblks - split_bblks));
3708 				if ((error = xlog_bread(log, wrapped_hblks,
3709 						bblks - split_bblks, dbp)))
3710 					goto bread_err2;
3711 				XFS_BUF_SET_PTR(dbp, bufaddr, h_size);
3712 				if (!offset)
3713 					offset = xlog_align(log, wrapped_hblks,
3714 						bblks - split_bblks, dbp);
3715 			}
3716 			xlog_unpack_data(rhead, offset, log);
3717 			if ((error = xlog_recover_process_data(log, rhash,
3718 							rhead, offset, pass)))
3719 				goto bread_err2;
3720 			blk_no += bblks;
3721 		}
3722 
3723 		ASSERT(blk_no >= log->l_logBBsize);
3724 		blk_no -= log->l_logBBsize;
3725 
3726 		/* read first part of physical log */
3727 		while (blk_no < head_blk) {
3728 			if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3729 				goto bread_err2;
3730 			offset = xlog_align(log, blk_no, hblks, hbp);
3731 			rhead = (xlog_rec_header_t *)offset;
3732 			error = xlog_valid_rec_header(log, rhead, blk_no);
3733 			if (error)
3734 				goto bread_err2;
3735 			bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3736 			if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3737 				goto bread_err2;
3738 			offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3739 			xlog_unpack_data(rhead, offset, log);
3740 			if ((error = xlog_recover_process_data(log, rhash,
3741 							rhead, offset, pass)))
3742 				goto bread_err2;
3743 			blk_no += bblks + hblks;
3744 		}
3745 	}
3746 
3747  bread_err2:
3748 	xlog_put_bp(dbp);
3749  bread_err1:
3750 	xlog_put_bp(hbp);
3751 	return error;
3752 }
3753 
3754 /*
3755  * Do the recovery of the log.  We actually do this in two phases.
3756  * The two passes are necessary in order to implement the function
3757  * of cancelling a record written into the log.  The first pass
3758  * determines those things which have been cancelled, and the
3759  * second pass replays log items normally except for those which
3760  * have been cancelled.  The handling of the replay and cancellations
3761  * takes place in the log item type specific routines.
3762  *
3763  * The table of items which have cancel records in the log is allocated
3764  * and freed at this level, since only here do we know when all of
3765  * the log recovery has been completed.
3766  */
3767 STATIC int
3768 xlog_do_log_recovery(
3769 	xlog_t		*log,
3770 	xfs_daddr_t	head_blk,
3771 	xfs_daddr_t	tail_blk)
3772 {
3773 	int		error;
3774 
3775 	ASSERT(head_blk != tail_blk);
3776 
3777 	/*
3778 	 * First do a pass to find all of the cancelled buf log items.
3779 	 * Store them in the buf_cancel_table for use in the second pass.
3780 	 */
3781 	log->l_buf_cancel_table =
3782 		(xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3783 						 sizeof(xfs_buf_cancel_t*),
3784 						 KM_SLEEP);
3785 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3786 				      XLOG_RECOVER_PASS1);
3787 	if (error != 0) {
3788 		kmem_free(log->l_buf_cancel_table,
3789 			  XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3790 		log->l_buf_cancel_table = NULL;
3791 		return error;
3792 	}
3793 	/*
3794 	 * Then do a second pass to actually recover the items in the log.
3795 	 * When it is complete free the table of buf cancel items.
3796 	 */
3797 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3798 				      XLOG_RECOVER_PASS2);
3799 #ifdef DEBUG
3800 	{
3801 		int	i;
3802 
3803 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3804 			ASSERT(log->l_buf_cancel_table[i] == NULL);
3805 	}
3806 #endif	/* DEBUG */
3807 
3808 	kmem_free(log->l_buf_cancel_table,
3809 		  XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3810 	log->l_buf_cancel_table = NULL;
3811 
3812 	return error;
3813 }
3814 
3815 /*
3816  * Do the actual recovery
3817  */
3818 STATIC int
3819 xlog_do_recover(
3820 	xlog_t		*log,
3821 	xfs_daddr_t	head_blk,
3822 	xfs_daddr_t	tail_blk)
3823 {
3824 	int		error;
3825 	xfs_buf_t	*bp;
3826 	xfs_sb_t	*sbp;
3827 
3828 	/*
3829 	 * First replay the images in the log.
3830 	 */
3831 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
3832 	if (error) {
3833 		return error;
3834 	}
3835 
3836 	XFS_bflush(log->l_mp->m_ddev_targp);
3837 
3838 	/*
3839 	 * If IO errors happened during recovery, bail out.
3840 	 */
3841 	if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3842 		return (EIO);
3843 	}
3844 
3845 	/*
3846 	 * We now update the tail_lsn since much of the recovery has completed
3847 	 * and there may be space available to use.  If there were no extent
3848 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
3849 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3850 	 * lsn of the last known good LR on disk.  If there are extent frees
3851 	 * or iunlinks they will have some entries in the AIL; so we look at
3852 	 * the AIL to determine how to set the tail_lsn.
3853 	 */
3854 	xlog_assign_tail_lsn(log->l_mp);
3855 
3856 	/*
3857 	 * Now that we've finished replaying all buffer and inode
3858 	 * updates, re-read in the superblock.
3859 	 */
3860 	bp = xfs_getsb(log->l_mp, 0);
3861 	XFS_BUF_UNDONE(bp);
3862 	XFS_BUF_READ(bp);
3863 	xfsbdstrat(log->l_mp, bp);
3864 	if ((error = xfs_iowait(bp))) {
3865 		xfs_ioerror_alert("xlog_do_recover",
3866 				  log->l_mp, bp, XFS_BUF_ADDR(bp));
3867 		ASSERT(0);
3868 		xfs_buf_relse(bp);
3869 		return error;
3870 	}
3871 
3872 	/* Convert superblock from on-disk format */
3873 	sbp = &log->l_mp->m_sb;
3874 	xfs_xlatesb(XFS_BUF_TO_SBP(bp), sbp, 1, XFS_SB_ALL_BITS);
3875 	ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3876 	ASSERT(XFS_SB_GOOD_VERSION(sbp));
3877 	xfs_buf_relse(bp);
3878 
3879 	xlog_recover_check_summary(log);
3880 
3881 	/* Normal transactions can now occur */
3882 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3883 	return 0;
3884 }
3885 
3886 /*
3887  * Perform recovery and re-initialize some log variables in xlog_find_tail.
3888  *
3889  * Return error or zero.
3890  */
3891 int
3892 xlog_recover(
3893 	xlog_t		*log,
3894 	int		readonly)
3895 {
3896 	xfs_daddr_t	head_blk, tail_blk;
3897 	int		error;
3898 
3899 	/* find the tail of the log */
3900 	if ((error = xlog_find_tail(log, &head_blk, &tail_blk, readonly)))
3901 		return error;
3902 
3903 	if (tail_blk != head_blk) {
3904 		/* There used to be a comment here:
3905 		 *
3906 		 * disallow recovery on read-only mounts.  note -- mount
3907 		 * checks for ENOSPC and turns it into an intelligent
3908 		 * error message.
3909 		 * ...but this is no longer true.  Now, unless you specify
3910 		 * NORECOVERY (in which case this function would never be
3911 		 * called), we just go ahead and recover.  We do this all
3912 		 * under the vfs layer, so we can get away with it unless
3913 		 * the device itself is read-only, in which case we fail.
3914 		 */
3915 		if ((error = xfs_dev_is_read_only(log->l_mp,
3916 						"recovery required"))) {
3917 			return error;
3918 		}
3919 
3920 		cmn_err(CE_NOTE,
3921 			"Starting XFS recovery on filesystem: %s (logdev: %s)",
3922 			log->l_mp->m_fsname, log->l_mp->m_logname ?
3923 			log->l_mp->m_logname : "internal");
3924 
3925 		error = xlog_do_recover(log, head_blk, tail_blk);
3926 		log->l_flags |= XLOG_RECOVERY_NEEDED;
3927 	}
3928 	return error;
3929 }
3930 
3931 /*
3932  * In the first part of recovery we replay inodes and buffers and build
3933  * up the list of extent free items which need to be processed.  Here
3934  * we process the extent free items and clean up the on disk unlinked
3935  * inode lists.  This is separated from the first part of recovery so
3936  * that the root and real-time bitmap inodes can be read in from disk in
3937  * between the two stages.  This is necessary so that we can free space
3938  * in the real-time portion of the file system.
3939  */
3940 int
3941 xlog_recover_finish(
3942 	xlog_t		*log,
3943 	int		mfsi_flags)
3944 {
3945 	/*
3946 	 * Now we're ready to do the transactions needed for the
3947 	 * rest of recovery.  Start with completing all the extent
3948 	 * free intent records and then process the unlinked inode
3949 	 * lists.  At this point, we essentially run in normal mode
3950 	 * except that we're still performing recovery actions
3951 	 * rather than accepting new requests.
3952 	 */
3953 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3954 		xlog_recover_process_efis(log);
3955 		/*
3956 		 * Sync the log to get all the EFIs out of the AIL.
3957 		 * This isn't absolutely necessary, but it helps in
3958 		 * case the unlink transactions would have problems
3959 		 * pushing the EFIs out of the way.
3960 		 */
3961 		xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3962 			      (XFS_LOG_FORCE | XFS_LOG_SYNC));
3963 
3964 		if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) {
3965 			xlog_recover_process_iunlinks(log);
3966 		}
3967 
3968 		xlog_recover_check_summary(log);
3969 
3970 		cmn_err(CE_NOTE,
3971 			"Ending XFS recovery on filesystem: %s (logdev: %s)",
3972 			log->l_mp->m_fsname, log->l_mp->m_logname ?
3973 			log->l_mp->m_logname : "internal");
3974 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3975 	} else {
3976 		cmn_err(CE_DEBUG,
3977 			"!Ending clean XFS mount for filesystem: %s",
3978 			log->l_mp->m_fsname);
3979 	}
3980 	return 0;
3981 }
3982 
3983 
3984 #if defined(DEBUG)
3985 /*
3986  * Read all of the agf and agi counters and check that they
3987  * are consistent with the superblock counters.
3988  */
3989 void
3990 xlog_recover_check_summary(
3991 	xlog_t		*log)
3992 {
3993 	xfs_mount_t	*mp;
3994 	xfs_agf_t	*agfp;
3995 	xfs_agi_t	*agip;
3996 	xfs_buf_t	*agfbp;
3997 	xfs_buf_t	*agibp;
3998 	xfs_daddr_t	agfdaddr;
3999 	xfs_daddr_t	agidaddr;
4000 	xfs_buf_t	*sbbp;
4001 #ifdef XFS_LOUD_RECOVERY
4002 	xfs_sb_t	*sbp;
4003 #endif
4004 	xfs_agnumber_t	agno;
4005 	__uint64_t	freeblks;
4006 	__uint64_t	itotal;
4007 	__uint64_t	ifree;
4008 
4009 	mp = log->l_mp;
4010 
4011 	freeblks = 0LL;
4012 	itotal = 0LL;
4013 	ifree = 0LL;
4014 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4015 		agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
4016 		agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
4017 				XFS_FSS_TO_BB(mp, 1), 0);
4018 		if (XFS_BUF_ISERROR(agfbp)) {
4019 			xfs_ioerror_alert("xlog_recover_check_summary(agf)",
4020 						mp, agfbp, agfdaddr);
4021 		}
4022 		agfp = XFS_BUF_TO_AGF(agfbp);
4023 		ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum));
4024 		ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum)));
4025 		ASSERT(be32_to_cpu(agfp->agf_seqno) == agno);
4026 
4027 		freeblks += be32_to_cpu(agfp->agf_freeblks) +
4028 			    be32_to_cpu(agfp->agf_flcount);
4029 		xfs_buf_relse(agfbp);
4030 
4031 		agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
4032 		agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
4033 				XFS_FSS_TO_BB(mp, 1), 0);
4034 		if (XFS_BUF_ISERROR(agibp)) {
4035 			xfs_ioerror_alert("xlog_recover_check_summary(agi)",
4036 					  mp, agibp, agidaddr);
4037 		}
4038 		agip = XFS_BUF_TO_AGI(agibp);
4039 		ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum));
4040 		ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum)));
4041 		ASSERT(be32_to_cpu(agip->agi_seqno) == agno);
4042 
4043 		itotal += be32_to_cpu(agip->agi_count);
4044 		ifree += be32_to_cpu(agip->agi_freecount);
4045 		xfs_buf_relse(agibp);
4046 	}
4047 
4048 	sbbp = xfs_getsb(mp, 0);
4049 #ifdef XFS_LOUD_RECOVERY
4050 	sbp = &mp->m_sb;
4051 	xfs_xlatesb(XFS_BUF_TO_SBP(sbbp), sbp, 1, XFS_SB_ALL_BITS);
4052 	cmn_err(CE_NOTE,
4053 		"xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4054 		sbp->sb_icount, itotal);
4055 	cmn_err(CE_NOTE,
4056 		"xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4057 		sbp->sb_ifree, ifree);
4058 	cmn_err(CE_NOTE,
4059 		"xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4060 		sbp->sb_fdblocks, freeblks);
4061 #if 0
4062 	/*
4063 	 * This is turned off until I account for the allocation
4064 	 * btree blocks which live in free space.
4065 	 */
4066 	ASSERT(sbp->sb_icount == itotal);
4067 	ASSERT(sbp->sb_ifree == ifree);
4068 	ASSERT(sbp->sb_fdblocks == freeblks);
4069 #endif
4070 #endif
4071 	xfs_buf_relse(sbbp);
4072 }
4073 #endif /* DEBUG */
4074