1 /* 2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_dir.h" 28 #include "xfs_dir2.h" 29 #include "xfs_dmapi.h" 30 #include "xfs_mount.h" 31 #include "xfs_error.h" 32 #include "xfs_bmap_btree.h" 33 #include "xfs_alloc_btree.h" 34 #include "xfs_ialloc_btree.h" 35 #include "xfs_dir_sf.h" 36 #include "xfs_dir2_sf.h" 37 #include "xfs_attr_sf.h" 38 #include "xfs_dinode.h" 39 #include "xfs_inode.h" 40 #include "xfs_inode_item.h" 41 #include "xfs_imap.h" 42 #include "xfs_alloc.h" 43 #include "xfs_ialloc.h" 44 #include "xfs_log_priv.h" 45 #include "xfs_buf_item.h" 46 #include "xfs_log_recover.h" 47 #include "xfs_extfree_item.h" 48 #include "xfs_trans_priv.h" 49 #include "xfs_quota.h" 50 #include "xfs_rw.h" 51 52 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *); 53 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t); 54 STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q, 55 xlog_recover_item_t *item); 56 #if defined(DEBUG) 57 STATIC void xlog_recover_check_summary(xlog_t *); 58 STATIC void xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int); 59 #else 60 #define xlog_recover_check_summary(log) 61 #define xlog_recover_check_ail(mp, lip, gen) 62 #endif 63 64 65 /* 66 * Sector aligned buffer routines for buffer create/read/write/access 67 */ 68 69 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \ 70 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \ 71 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) ) 72 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask) 73 74 xfs_buf_t * 75 xlog_get_bp( 76 xlog_t *log, 77 int num_bblks) 78 { 79 ASSERT(num_bblks > 0); 80 81 if (log->l_sectbb_log) { 82 if (num_bblks > 1) 83 num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1); 84 num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks); 85 } 86 return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp); 87 } 88 89 void 90 xlog_put_bp( 91 xfs_buf_t *bp) 92 { 93 xfs_buf_free(bp); 94 } 95 96 97 /* 98 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 99 */ 100 int 101 xlog_bread( 102 xlog_t *log, 103 xfs_daddr_t blk_no, 104 int nbblks, 105 xfs_buf_t *bp) 106 { 107 int error; 108 109 if (log->l_sectbb_log) { 110 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no); 111 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); 112 } 113 114 ASSERT(nbblks > 0); 115 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); 116 ASSERT(bp); 117 118 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 119 XFS_BUF_READ(bp); 120 XFS_BUF_BUSY(bp); 121 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); 122 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); 123 124 xfsbdstrat(log->l_mp, bp); 125 if ((error = xfs_iowait(bp))) 126 xfs_ioerror_alert("xlog_bread", log->l_mp, 127 bp, XFS_BUF_ADDR(bp)); 128 return error; 129 } 130 131 /* 132 * Write out the buffer at the given block for the given number of blocks. 133 * The buffer is kept locked across the write and is returned locked. 134 * This can only be used for synchronous log writes. 135 */ 136 STATIC int 137 xlog_bwrite( 138 xlog_t *log, 139 xfs_daddr_t blk_no, 140 int nbblks, 141 xfs_buf_t *bp) 142 { 143 int error; 144 145 if (log->l_sectbb_log) { 146 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no); 147 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); 148 } 149 150 ASSERT(nbblks > 0); 151 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); 152 153 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 154 XFS_BUF_ZEROFLAGS(bp); 155 XFS_BUF_BUSY(bp); 156 XFS_BUF_HOLD(bp); 157 XFS_BUF_PSEMA(bp, PRIBIO); 158 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); 159 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); 160 161 if ((error = xfs_bwrite(log->l_mp, bp))) 162 xfs_ioerror_alert("xlog_bwrite", log->l_mp, 163 bp, XFS_BUF_ADDR(bp)); 164 return error; 165 } 166 167 STATIC xfs_caddr_t 168 xlog_align( 169 xlog_t *log, 170 xfs_daddr_t blk_no, 171 int nbblks, 172 xfs_buf_t *bp) 173 { 174 xfs_caddr_t ptr; 175 176 if (!log->l_sectbb_log) 177 return XFS_BUF_PTR(bp); 178 179 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask); 180 ASSERT(XFS_BUF_SIZE(bp) >= 181 BBTOB(nbblks + (blk_no & log->l_sectbb_mask))); 182 return ptr; 183 } 184 185 #ifdef DEBUG 186 /* 187 * dump debug superblock and log record information 188 */ 189 STATIC void 190 xlog_header_check_dump( 191 xfs_mount_t *mp, 192 xlog_rec_header_t *head) 193 { 194 int b; 195 196 printk("%s: SB : uuid = ", __FUNCTION__); 197 for (b = 0; b < 16; b++) 198 printk("%02x",((unsigned char *)&mp->m_sb.sb_uuid)[b]); 199 printk(", fmt = %d\n", XLOG_FMT); 200 printk(" log : uuid = "); 201 for (b = 0; b < 16; b++) 202 printk("%02x",((unsigned char *)&head->h_fs_uuid)[b]); 203 printk(", fmt = %d\n", INT_GET(head->h_fmt, ARCH_CONVERT)); 204 } 205 #else 206 #define xlog_header_check_dump(mp, head) 207 #endif 208 209 /* 210 * check log record header for recovery 211 */ 212 STATIC int 213 xlog_header_check_recover( 214 xfs_mount_t *mp, 215 xlog_rec_header_t *head) 216 { 217 ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM); 218 219 /* 220 * IRIX doesn't write the h_fmt field and leaves it zeroed 221 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 222 * a dirty log created in IRIX. 223 */ 224 if (unlikely(INT_GET(head->h_fmt, ARCH_CONVERT) != XLOG_FMT)) { 225 xlog_warn( 226 "XFS: dirty log written in incompatible format - can't recover"); 227 xlog_header_check_dump(mp, head); 228 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 229 XFS_ERRLEVEL_HIGH, mp); 230 return XFS_ERROR(EFSCORRUPTED); 231 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 232 xlog_warn( 233 "XFS: dirty log entry has mismatched uuid - can't recover"); 234 xlog_header_check_dump(mp, head); 235 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 236 XFS_ERRLEVEL_HIGH, mp); 237 return XFS_ERROR(EFSCORRUPTED); 238 } 239 return 0; 240 } 241 242 /* 243 * read the head block of the log and check the header 244 */ 245 STATIC int 246 xlog_header_check_mount( 247 xfs_mount_t *mp, 248 xlog_rec_header_t *head) 249 { 250 ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM); 251 252 if (uuid_is_nil(&head->h_fs_uuid)) { 253 /* 254 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 255 * h_fs_uuid is nil, we assume this log was last mounted 256 * by IRIX and continue. 257 */ 258 xlog_warn("XFS: nil uuid in log - IRIX style log"); 259 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 260 xlog_warn("XFS: log has mismatched uuid - can't recover"); 261 xlog_header_check_dump(mp, head); 262 XFS_ERROR_REPORT("xlog_header_check_mount", 263 XFS_ERRLEVEL_HIGH, mp); 264 return XFS_ERROR(EFSCORRUPTED); 265 } 266 return 0; 267 } 268 269 STATIC void 270 xlog_recover_iodone( 271 struct xfs_buf *bp) 272 { 273 xfs_mount_t *mp; 274 275 ASSERT(XFS_BUF_FSPRIVATE(bp, void *)); 276 277 if (XFS_BUF_GETERROR(bp)) { 278 /* 279 * We're not going to bother about retrying 280 * this during recovery. One strike! 281 */ 282 mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *); 283 xfs_ioerror_alert("xlog_recover_iodone", 284 mp, bp, XFS_BUF_ADDR(bp)); 285 xfs_force_shutdown(mp, XFS_METADATA_IO_ERROR); 286 } 287 XFS_BUF_SET_FSPRIVATE(bp, NULL); 288 XFS_BUF_CLR_IODONE_FUNC(bp); 289 xfs_biodone(bp); 290 } 291 292 /* 293 * This routine finds (to an approximation) the first block in the physical 294 * log which contains the given cycle. It uses a binary search algorithm. 295 * Note that the algorithm can not be perfect because the disk will not 296 * necessarily be perfect. 297 */ 298 int 299 xlog_find_cycle_start( 300 xlog_t *log, 301 xfs_buf_t *bp, 302 xfs_daddr_t first_blk, 303 xfs_daddr_t *last_blk, 304 uint cycle) 305 { 306 xfs_caddr_t offset; 307 xfs_daddr_t mid_blk; 308 uint mid_cycle; 309 int error; 310 311 mid_blk = BLK_AVG(first_blk, *last_blk); 312 while (mid_blk != first_blk && mid_blk != *last_blk) { 313 if ((error = xlog_bread(log, mid_blk, 1, bp))) 314 return error; 315 offset = xlog_align(log, mid_blk, 1, bp); 316 mid_cycle = GET_CYCLE(offset, ARCH_CONVERT); 317 if (mid_cycle == cycle) { 318 *last_blk = mid_blk; 319 /* last_half_cycle == mid_cycle */ 320 } else { 321 first_blk = mid_blk; 322 /* first_half_cycle == mid_cycle */ 323 } 324 mid_blk = BLK_AVG(first_blk, *last_blk); 325 } 326 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) || 327 (mid_blk == *last_blk && mid_blk-1 == first_blk)); 328 329 return 0; 330 } 331 332 /* 333 * Check that the range of blocks does not contain the cycle number 334 * given. The scan needs to occur from front to back and the ptr into the 335 * region must be updated since a later routine will need to perform another 336 * test. If the region is completely good, we end up returning the same 337 * last block number. 338 * 339 * Set blkno to -1 if we encounter no errors. This is an invalid block number 340 * since we don't ever expect logs to get this large. 341 */ 342 STATIC int 343 xlog_find_verify_cycle( 344 xlog_t *log, 345 xfs_daddr_t start_blk, 346 int nbblks, 347 uint stop_on_cycle_no, 348 xfs_daddr_t *new_blk) 349 { 350 xfs_daddr_t i, j; 351 uint cycle; 352 xfs_buf_t *bp; 353 xfs_daddr_t bufblks; 354 xfs_caddr_t buf = NULL; 355 int error = 0; 356 357 bufblks = 1 << ffs(nbblks); 358 359 while (!(bp = xlog_get_bp(log, bufblks))) { 360 /* can't get enough memory to do everything in one big buffer */ 361 bufblks >>= 1; 362 if (bufblks <= log->l_sectbb_log) 363 return ENOMEM; 364 } 365 366 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 367 int bcount; 368 369 bcount = min(bufblks, (start_blk + nbblks - i)); 370 371 if ((error = xlog_bread(log, i, bcount, bp))) 372 goto out; 373 374 buf = xlog_align(log, i, bcount, bp); 375 for (j = 0; j < bcount; j++) { 376 cycle = GET_CYCLE(buf, ARCH_CONVERT); 377 if (cycle == stop_on_cycle_no) { 378 *new_blk = i+j; 379 goto out; 380 } 381 382 buf += BBSIZE; 383 } 384 } 385 386 *new_blk = -1; 387 388 out: 389 xlog_put_bp(bp); 390 return error; 391 } 392 393 /* 394 * Potentially backup over partial log record write. 395 * 396 * In the typical case, last_blk is the number of the block directly after 397 * a good log record. Therefore, we subtract one to get the block number 398 * of the last block in the given buffer. extra_bblks contains the number 399 * of blocks we would have read on a previous read. This happens when the 400 * last log record is split over the end of the physical log. 401 * 402 * extra_bblks is the number of blocks potentially verified on a previous 403 * call to this routine. 404 */ 405 STATIC int 406 xlog_find_verify_log_record( 407 xlog_t *log, 408 xfs_daddr_t start_blk, 409 xfs_daddr_t *last_blk, 410 int extra_bblks) 411 { 412 xfs_daddr_t i; 413 xfs_buf_t *bp; 414 xfs_caddr_t offset = NULL; 415 xlog_rec_header_t *head = NULL; 416 int error = 0; 417 int smallmem = 0; 418 int num_blks = *last_blk - start_blk; 419 int xhdrs; 420 421 ASSERT(start_blk != 0 || *last_blk != start_blk); 422 423 if (!(bp = xlog_get_bp(log, num_blks))) { 424 if (!(bp = xlog_get_bp(log, 1))) 425 return ENOMEM; 426 smallmem = 1; 427 } else { 428 if ((error = xlog_bread(log, start_blk, num_blks, bp))) 429 goto out; 430 offset = xlog_align(log, start_blk, num_blks, bp); 431 offset += ((num_blks - 1) << BBSHIFT); 432 } 433 434 for (i = (*last_blk) - 1; i >= 0; i--) { 435 if (i < start_blk) { 436 /* valid log record not found */ 437 xlog_warn( 438 "XFS: Log inconsistent (didn't find previous header)"); 439 ASSERT(0); 440 error = XFS_ERROR(EIO); 441 goto out; 442 } 443 444 if (smallmem) { 445 if ((error = xlog_bread(log, i, 1, bp))) 446 goto out; 447 offset = xlog_align(log, i, 1, bp); 448 } 449 450 head = (xlog_rec_header_t *)offset; 451 452 if (XLOG_HEADER_MAGIC_NUM == 453 INT_GET(head->h_magicno, ARCH_CONVERT)) 454 break; 455 456 if (!smallmem) 457 offset -= BBSIZE; 458 } 459 460 /* 461 * We hit the beginning of the physical log & still no header. Return 462 * to caller. If caller can handle a return of -1, then this routine 463 * will be called again for the end of the physical log. 464 */ 465 if (i == -1) { 466 error = -1; 467 goto out; 468 } 469 470 /* 471 * We have the final block of the good log (the first block 472 * of the log record _before_ the head. So we check the uuid. 473 */ 474 if ((error = xlog_header_check_mount(log->l_mp, head))) 475 goto out; 476 477 /* 478 * We may have found a log record header before we expected one. 479 * last_blk will be the 1st block # with a given cycle #. We may end 480 * up reading an entire log record. In this case, we don't want to 481 * reset last_blk. Only when last_blk points in the middle of a log 482 * record do we update last_blk. 483 */ 484 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 485 uint h_size = INT_GET(head->h_size, ARCH_CONVERT); 486 487 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 488 if (h_size % XLOG_HEADER_CYCLE_SIZE) 489 xhdrs++; 490 } else { 491 xhdrs = 1; 492 } 493 494 if (*last_blk - i + extra_bblks 495 != BTOBB(INT_GET(head->h_len, ARCH_CONVERT)) + xhdrs) 496 *last_blk = i; 497 498 out: 499 xlog_put_bp(bp); 500 return error; 501 } 502 503 /* 504 * Head is defined to be the point of the log where the next log write 505 * write could go. This means that incomplete LR writes at the end are 506 * eliminated when calculating the head. We aren't guaranteed that previous 507 * LR have complete transactions. We only know that a cycle number of 508 * current cycle number -1 won't be present in the log if we start writing 509 * from our current block number. 510 * 511 * last_blk contains the block number of the first block with a given 512 * cycle number. 513 * 514 * Return: zero if normal, non-zero if error. 515 */ 516 STATIC int 517 xlog_find_head( 518 xlog_t *log, 519 xfs_daddr_t *return_head_blk) 520 { 521 xfs_buf_t *bp; 522 xfs_caddr_t offset; 523 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 524 int num_scan_bblks; 525 uint first_half_cycle, last_half_cycle; 526 uint stop_on_cycle; 527 int error, log_bbnum = log->l_logBBsize; 528 529 /* Is the end of the log device zeroed? */ 530 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) { 531 *return_head_blk = first_blk; 532 533 /* Is the whole lot zeroed? */ 534 if (!first_blk) { 535 /* Linux XFS shouldn't generate totally zeroed logs - 536 * mkfs etc write a dummy unmount record to a fresh 537 * log so we can store the uuid in there 538 */ 539 xlog_warn("XFS: totally zeroed log"); 540 } 541 542 return 0; 543 } else if (error) { 544 xlog_warn("XFS: empty log check failed"); 545 return error; 546 } 547 548 first_blk = 0; /* get cycle # of 1st block */ 549 bp = xlog_get_bp(log, 1); 550 if (!bp) 551 return ENOMEM; 552 if ((error = xlog_bread(log, 0, 1, bp))) 553 goto bp_err; 554 offset = xlog_align(log, 0, 1, bp); 555 first_half_cycle = GET_CYCLE(offset, ARCH_CONVERT); 556 557 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 558 if ((error = xlog_bread(log, last_blk, 1, bp))) 559 goto bp_err; 560 offset = xlog_align(log, last_blk, 1, bp); 561 last_half_cycle = GET_CYCLE(offset, ARCH_CONVERT); 562 ASSERT(last_half_cycle != 0); 563 564 /* 565 * If the 1st half cycle number is equal to the last half cycle number, 566 * then the entire log is stamped with the same cycle number. In this 567 * case, head_blk can't be set to zero (which makes sense). The below 568 * math doesn't work out properly with head_blk equal to zero. Instead, 569 * we set it to log_bbnum which is an invalid block number, but this 570 * value makes the math correct. If head_blk doesn't changed through 571 * all the tests below, *head_blk is set to zero at the very end rather 572 * than log_bbnum. In a sense, log_bbnum and zero are the same block 573 * in a circular file. 574 */ 575 if (first_half_cycle == last_half_cycle) { 576 /* 577 * In this case we believe that the entire log should have 578 * cycle number last_half_cycle. We need to scan backwards 579 * from the end verifying that there are no holes still 580 * containing last_half_cycle - 1. If we find such a hole, 581 * then the start of that hole will be the new head. The 582 * simple case looks like 583 * x | x ... | x - 1 | x 584 * Another case that fits this picture would be 585 * x | x + 1 | x ... | x 586 * In this case the head really is somwhere at the end of the 587 * log, as one of the latest writes at the beginning was 588 * incomplete. 589 * One more case is 590 * x | x + 1 | x ... | x - 1 | x 591 * This is really the combination of the above two cases, and 592 * the head has to end up at the start of the x-1 hole at the 593 * end of the log. 594 * 595 * In the 256k log case, we will read from the beginning to the 596 * end of the log and search for cycle numbers equal to x-1. 597 * We don't worry about the x+1 blocks that we encounter, 598 * because we know that they cannot be the head since the log 599 * started with x. 600 */ 601 head_blk = log_bbnum; 602 stop_on_cycle = last_half_cycle - 1; 603 } else { 604 /* 605 * In this case we want to find the first block with cycle 606 * number matching last_half_cycle. We expect the log to be 607 * some variation on 608 * x + 1 ... | x ... 609 * The first block with cycle number x (last_half_cycle) will 610 * be where the new head belongs. First we do a binary search 611 * for the first occurrence of last_half_cycle. The binary 612 * search may not be totally accurate, so then we scan back 613 * from there looking for occurrences of last_half_cycle before 614 * us. If that backwards scan wraps around the beginning of 615 * the log, then we look for occurrences of last_half_cycle - 1 616 * at the end of the log. The cases we're looking for look 617 * like 618 * x + 1 ... | x | x + 1 | x ... 619 * ^ binary search stopped here 620 * or 621 * x + 1 ... | x ... | x - 1 | x 622 * <---------> less than scan distance 623 */ 624 stop_on_cycle = last_half_cycle; 625 if ((error = xlog_find_cycle_start(log, bp, first_blk, 626 &head_blk, last_half_cycle))) 627 goto bp_err; 628 } 629 630 /* 631 * Now validate the answer. Scan back some number of maximum possible 632 * blocks and make sure each one has the expected cycle number. The 633 * maximum is determined by the total possible amount of buffering 634 * in the in-core log. The following number can be made tighter if 635 * we actually look at the block size of the filesystem. 636 */ 637 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 638 if (head_blk >= num_scan_bblks) { 639 /* 640 * We are guaranteed that the entire check can be performed 641 * in one buffer. 642 */ 643 start_blk = head_blk - num_scan_bblks; 644 if ((error = xlog_find_verify_cycle(log, 645 start_blk, num_scan_bblks, 646 stop_on_cycle, &new_blk))) 647 goto bp_err; 648 if (new_blk != -1) 649 head_blk = new_blk; 650 } else { /* need to read 2 parts of log */ 651 /* 652 * We are going to scan backwards in the log in two parts. 653 * First we scan the physical end of the log. In this part 654 * of the log, we are looking for blocks with cycle number 655 * last_half_cycle - 1. 656 * If we find one, then we know that the log starts there, as 657 * we've found a hole that didn't get written in going around 658 * the end of the physical log. The simple case for this is 659 * x + 1 ... | x ... | x - 1 | x 660 * <---------> less than scan distance 661 * If all of the blocks at the end of the log have cycle number 662 * last_half_cycle, then we check the blocks at the start of 663 * the log looking for occurrences of last_half_cycle. If we 664 * find one, then our current estimate for the location of the 665 * first occurrence of last_half_cycle is wrong and we move 666 * back to the hole we've found. This case looks like 667 * x + 1 ... | x | x + 1 | x ... 668 * ^ binary search stopped here 669 * Another case we need to handle that only occurs in 256k 670 * logs is 671 * x + 1 ... | x ... | x+1 | x ... 672 * ^ binary search stops here 673 * In a 256k log, the scan at the end of the log will see the 674 * x + 1 blocks. We need to skip past those since that is 675 * certainly not the head of the log. By searching for 676 * last_half_cycle-1 we accomplish that. 677 */ 678 start_blk = log_bbnum - num_scan_bblks + head_blk; 679 ASSERT(head_blk <= INT_MAX && 680 (xfs_daddr_t) num_scan_bblks - head_blk >= 0); 681 if ((error = xlog_find_verify_cycle(log, start_blk, 682 num_scan_bblks - (int)head_blk, 683 (stop_on_cycle - 1), &new_blk))) 684 goto bp_err; 685 if (new_blk != -1) { 686 head_blk = new_blk; 687 goto bad_blk; 688 } 689 690 /* 691 * Scan beginning of log now. The last part of the physical 692 * log is good. This scan needs to verify that it doesn't find 693 * the last_half_cycle. 694 */ 695 start_blk = 0; 696 ASSERT(head_blk <= INT_MAX); 697 if ((error = xlog_find_verify_cycle(log, 698 start_blk, (int)head_blk, 699 stop_on_cycle, &new_blk))) 700 goto bp_err; 701 if (new_blk != -1) 702 head_blk = new_blk; 703 } 704 705 bad_blk: 706 /* 707 * Now we need to make sure head_blk is not pointing to a block in 708 * the middle of a log record. 709 */ 710 num_scan_bblks = XLOG_REC_SHIFT(log); 711 if (head_blk >= num_scan_bblks) { 712 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 713 714 /* start ptr at last block ptr before head_blk */ 715 if ((error = xlog_find_verify_log_record(log, start_blk, 716 &head_blk, 0)) == -1) { 717 error = XFS_ERROR(EIO); 718 goto bp_err; 719 } else if (error) 720 goto bp_err; 721 } else { 722 start_blk = 0; 723 ASSERT(head_blk <= INT_MAX); 724 if ((error = xlog_find_verify_log_record(log, start_blk, 725 &head_blk, 0)) == -1) { 726 /* We hit the beginning of the log during our search */ 727 start_blk = log_bbnum - num_scan_bblks + head_blk; 728 new_blk = log_bbnum; 729 ASSERT(start_blk <= INT_MAX && 730 (xfs_daddr_t) log_bbnum-start_blk >= 0); 731 ASSERT(head_blk <= INT_MAX); 732 if ((error = xlog_find_verify_log_record(log, 733 start_blk, &new_blk, 734 (int)head_blk)) == -1) { 735 error = XFS_ERROR(EIO); 736 goto bp_err; 737 } else if (error) 738 goto bp_err; 739 if (new_blk != log_bbnum) 740 head_blk = new_blk; 741 } else if (error) 742 goto bp_err; 743 } 744 745 xlog_put_bp(bp); 746 if (head_blk == log_bbnum) 747 *return_head_blk = 0; 748 else 749 *return_head_blk = head_blk; 750 /* 751 * When returning here, we have a good block number. Bad block 752 * means that during a previous crash, we didn't have a clean break 753 * from cycle number N to cycle number N-1. In this case, we need 754 * to find the first block with cycle number N-1. 755 */ 756 return 0; 757 758 bp_err: 759 xlog_put_bp(bp); 760 761 if (error) 762 xlog_warn("XFS: failed to find log head"); 763 return error; 764 } 765 766 /* 767 * Find the sync block number or the tail of the log. 768 * 769 * This will be the block number of the last record to have its 770 * associated buffers synced to disk. Every log record header has 771 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 772 * to get a sync block number. The only concern is to figure out which 773 * log record header to believe. 774 * 775 * The following algorithm uses the log record header with the largest 776 * lsn. The entire log record does not need to be valid. We only care 777 * that the header is valid. 778 * 779 * We could speed up search by using current head_blk buffer, but it is not 780 * available. 781 */ 782 int 783 xlog_find_tail( 784 xlog_t *log, 785 xfs_daddr_t *head_blk, 786 xfs_daddr_t *tail_blk, 787 int readonly) 788 { 789 xlog_rec_header_t *rhead; 790 xlog_op_header_t *op_head; 791 xfs_caddr_t offset = NULL; 792 xfs_buf_t *bp; 793 int error, i, found; 794 xfs_daddr_t umount_data_blk; 795 xfs_daddr_t after_umount_blk; 796 xfs_lsn_t tail_lsn; 797 int hblks; 798 799 found = 0; 800 801 /* 802 * Find previous log record 803 */ 804 if ((error = xlog_find_head(log, head_blk))) 805 return error; 806 807 bp = xlog_get_bp(log, 1); 808 if (!bp) 809 return ENOMEM; 810 if (*head_blk == 0) { /* special case */ 811 if ((error = xlog_bread(log, 0, 1, bp))) 812 goto bread_err; 813 offset = xlog_align(log, 0, 1, bp); 814 if (GET_CYCLE(offset, ARCH_CONVERT) == 0) { 815 *tail_blk = 0; 816 /* leave all other log inited values alone */ 817 goto exit; 818 } 819 } 820 821 /* 822 * Search backwards looking for log record header block 823 */ 824 ASSERT(*head_blk < INT_MAX); 825 for (i = (int)(*head_blk) - 1; i >= 0; i--) { 826 if ((error = xlog_bread(log, i, 1, bp))) 827 goto bread_err; 828 offset = xlog_align(log, i, 1, bp); 829 if (XLOG_HEADER_MAGIC_NUM == 830 INT_GET(*(uint *)offset, ARCH_CONVERT)) { 831 found = 1; 832 break; 833 } 834 } 835 /* 836 * If we haven't found the log record header block, start looking 837 * again from the end of the physical log. XXXmiken: There should be 838 * a check here to make sure we didn't search more than N blocks in 839 * the previous code. 840 */ 841 if (!found) { 842 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) { 843 if ((error = xlog_bread(log, i, 1, bp))) 844 goto bread_err; 845 offset = xlog_align(log, i, 1, bp); 846 if (XLOG_HEADER_MAGIC_NUM == 847 INT_GET(*(uint*)offset, ARCH_CONVERT)) { 848 found = 2; 849 break; 850 } 851 } 852 } 853 if (!found) { 854 xlog_warn("XFS: xlog_find_tail: couldn't find sync record"); 855 ASSERT(0); 856 return XFS_ERROR(EIO); 857 } 858 859 /* find blk_no of tail of log */ 860 rhead = (xlog_rec_header_t *)offset; 861 *tail_blk = BLOCK_LSN(INT_GET(rhead->h_tail_lsn, ARCH_CONVERT)); 862 863 /* 864 * Reset log values according to the state of the log when we 865 * crashed. In the case where head_blk == 0, we bump curr_cycle 866 * one because the next write starts a new cycle rather than 867 * continuing the cycle of the last good log record. At this 868 * point we have guaranteed that all partial log records have been 869 * accounted for. Therefore, we know that the last good log record 870 * written was complete and ended exactly on the end boundary 871 * of the physical log. 872 */ 873 log->l_prev_block = i; 874 log->l_curr_block = (int)*head_blk; 875 log->l_curr_cycle = INT_GET(rhead->h_cycle, ARCH_CONVERT); 876 if (found == 2) 877 log->l_curr_cycle++; 878 log->l_tail_lsn = INT_GET(rhead->h_tail_lsn, ARCH_CONVERT); 879 log->l_last_sync_lsn = INT_GET(rhead->h_lsn, ARCH_CONVERT); 880 log->l_grant_reserve_cycle = log->l_curr_cycle; 881 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block); 882 log->l_grant_write_cycle = log->l_curr_cycle; 883 log->l_grant_write_bytes = BBTOB(log->l_curr_block); 884 885 /* 886 * Look for unmount record. If we find it, then we know there 887 * was a clean unmount. Since 'i' could be the last block in 888 * the physical log, we convert to a log block before comparing 889 * to the head_blk. 890 * 891 * Save the current tail lsn to use to pass to 892 * xlog_clear_stale_blocks() below. We won't want to clear the 893 * unmount record if there is one, so we pass the lsn of the 894 * unmount record rather than the block after it. 895 */ 896 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 897 int h_size = INT_GET(rhead->h_size, ARCH_CONVERT); 898 int h_version = INT_GET(rhead->h_version, ARCH_CONVERT); 899 900 if ((h_version & XLOG_VERSION_2) && 901 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 902 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 903 if (h_size % XLOG_HEADER_CYCLE_SIZE) 904 hblks++; 905 } else { 906 hblks = 1; 907 } 908 } else { 909 hblks = 1; 910 } 911 after_umount_blk = (i + hblks + (int) 912 BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT))) % log->l_logBBsize; 913 tail_lsn = log->l_tail_lsn; 914 if (*head_blk == after_umount_blk && 915 INT_GET(rhead->h_num_logops, ARCH_CONVERT) == 1) { 916 umount_data_blk = (i + hblks) % log->l_logBBsize; 917 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) { 918 goto bread_err; 919 } 920 offset = xlog_align(log, umount_data_blk, 1, bp); 921 op_head = (xlog_op_header_t *)offset; 922 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 923 /* 924 * Set tail and last sync so that newly written 925 * log records will point recovery to after the 926 * current unmount record. 927 */ 928 ASSIGN_ANY_LSN_HOST(log->l_tail_lsn, log->l_curr_cycle, 929 after_umount_blk); 930 ASSIGN_ANY_LSN_HOST(log->l_last_sync_lsn, log->l_curr_cycle, 931 after_umount_blk); 932 *tail_blk = after_umount_blk; 933 } 934 } 935 936 /* 937 * Make sure that there are no blocks in front of the head 938 * with the same cycle number as the head. This can happen 939 * because we allow multiple outstanding log writes concurrently, 940 * and the later writes might make it out before earlier ones. 941 * 942 * We use the lsn from before modifying it so that we'll never 943 * overwrite the unmount record after a clean unmount. 944 * 945 * Do this only if we are going to recover the filesystem 946 * 947 * NOTE: This used to say "if (!readonly)" 948 * However on Linux, we can & do recover a read-only filesystem. 949 * We only skip recovery if NORECOVERY is specified on mount, 950 * in which case we would not be here. 951 * 952 * But... if the -device- itself is readonly, just skip this. 953 * We can't recover this device anyway, so it won't matter. 954 */ 955 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) { 956 error = xlog_clear_stale_blocks(log, tail_lsn); 957 } 958 959 bread_err: 960 exit: 961 xlog_put_bp(bp); 962 963 if (error) 964 xlog_warn("XFS: failed to locate log tail"); 965 return error; 966 } 967 968 /* 969 * Is the log zeroed at all? 970 * 971 * The last binary search should be changed to perform an X block read 972 * once X becomes small enough. You can then search linearly through 973 * the X blocks. This will cut down on the number of reads we need to do. 974 * 975 * If the log is partially zeroed, this routine will pass back the blkno 976 * of the first block with cycle number 0. It won't have a complete LR 977 * preceding it. 978 * 979 * Return: 980 * 0 => the log is completely written to 981 * -1 => use *blk_no as the first block of the log 982 * >0 => error has occurred 983 */ 984 int 985 xlog_find_zeroed( 986 xlog_t *log, 987 xfs_daddr_t *blk_no) 988 { 989 xfs_buf_t *bp; 990 xfs_caddr_t offset; 991 uint first_cycle, last_cycle; 992 xfs_daddr_t new_blk, last_blk, start_blk; 993 xfs_daddr_t num_scan_bblks; 994 int error, log_bbnum = log->l_logBBsize; 995 996 /* check totally zeroed log */ 997 bp = xlog_get_bp(log, 1); 998 if (!bp) 999 return ENOMEM; 1000 if ((error = xlog_bread(log, 0, 1, bp))) 1001 goto bp_err; 1002 offset = xlog_align(log, 0, 1, bp); 1003 first_cycle = GET_CYCLE(offset, ARCH_CONVERT); 1004 if (first_cycle == 0) { /* completely zeroed log */ 1005 *blk_no = 0; 1006 xlog_put_bp(bp); 1007 return -1; 1008 } 1009 1010 /* check partially zeroed log */ 1011 if ((error = xlog_bread(log, log_bbnum-1, 1, bp))) 1012 goto bp_err; 1013 offset = xlog_align(log, log_bbnum-1, 1, bp); 1014 last_cycle = GET_CYCLE(offset, ARCH_CONVERT); 1015 if (last_cycle != 0) { /* log completely written to */ 1016 xlog_put_bp(bp); 1017 return 0; 1018 } else if (first_cycle != 1) { 1019 /* 1020 * If the cycle of the last block is zero, the cycle of 1021 * the first block must be 1. If it's not, maybe we're 1022 * not looking at a log... Bail out. 1023 */ 1024 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)"); 1025 return XFS_ERROR(EINVAL); 1026 } 1027 1028 /* we have a partially zeroed log */ 1029 last_blk = log_bbnum-1; 1030 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1031 goto bp_err; 1032 1033 /* 1034 * Validate the answer. Because there is no way to guarantee that 1035 * the entire log is made up of log records which are the same size, 1036 * we scan over the defined maximum blocks. At this point, the maximum 1037 * is not chosen to mean anything special. XXXmiken 1038 */ 1039 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1040 ASSERT(num_scan_bblks <= INT_MAX); 1041 1042 if (last_blk < num_scan_bblks) 1043 num_scan_bblks = last_blk; 1044 start_blk = last_blk - num_scan_bblks; 1045 1046 /* 1047 * We search for any instances of cycle number 0 that occur before 1048 * our current estimate of the head. What we're trying to detect is 1049 * 1 ... | 0 | 1 | 0... 1050 * ^ binary search ends here 1051 */ 1052 if ((error = xlog_find_verify_cycle(log, start_blk, 1053 (int)num_scan_bblks, 0, &new_blk))) 1054 goto bp_err; 1055 if (new_blk != -1) 1056 last_blk = new_blk; 1057 1058 /* 1059 * Potentially backup over partial log record write. We don't need 1060 * to search the end of the log because we know it is zero. 1061 */ 1062 if ((error = xlog_find_verify_log_record(log, start_blk, 1063 &last_blk, 0)) == -1) { 1064 error = XFS_ERROR(EIO); 1065 goto bp_err; 1066 } else if (error) 1067 goto bp_err; 1068 1069 *blk_no = last_blk; 1070 bp_err: 1071 xlog_put_bp(bp); 1072 if (error) 1073 return error; 1074 return -1; 1075 } 1076 1077 /* 1078 * These are simple subroutines used by xlog_clear_stale_blocks() below 1079 * to initialize a buffer full of empty log record headers and write 1080 * them into the log. 1081 */ 1082 STATIC void 1083 xlog_add_record( 1084 xlog_t *log, 1085 xfs_caddr_t buf, 1086 int cycle, 1087 int block, 1088 int tail_cycle, 1089 int tail_block) 1090 { 1091 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1092 1093 memset(buf, 0, BBSIZE); 1094 INT_SET(recp->h_magicno, ARCH_CONVERT, XLOG_HEADER_MAGIC_NUM); 1095 INT_SET(recp->h_cycle, ARCH_CONVERT, cycle); 1096 INT_SET(recp->h_version, ARCH_CONVERT, 1097 XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1); 1098 ASSIGN_ANY_LSN_DISK(recp->h_lsn, cycle, block); 1099 ASSIGN_ANY_LSN_DISK(recp->h_tail_lsn, tail_cycle, tail_block); 1100 INT_SET(recp->h_fmt, ARCH_CONVERT, XLOG_FMT); 1101 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1102 } 1103 1104 STATIC int 1105 xlog_write_log_records( 1106 xlog_t *log, 1107 int cycle, 1108 int start_block, 1109 int blocks, 1110 int tail_cycle, 1111 int tail_block) 1112 { 1113 xfs_caddr_t offset; 1114 xfs_buf_t *bp; 1115 int balign, ealign; 1116 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1); 1117 int end_block = start_block + blocks; 1118 int bufblks; 1119 int error = 0; 1120 int i, j = 0; 1121 1122 bufblks = 1 << ffs(blocks); 1123 while (!(bp = xlog_get_bp(log, bufblks))) { 1124 bufblks >>= 1; 1125 if (bufblks <= log->l_sectbb_log) 1126 return ENOMEM; 1127 } 1128 1129 /* We may need to do a read at the start to fill in part of 1130 * the buffer in the starting sector not covered by the first 1131 * write below. 1132 */ 1133 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block); 1134 if (balign != start_block) { 1135 if ((error = xlog_bread(log, start_block, 1, bp))) { 1136 xlog_put_bp(bp); 1137 return error; 1138 } 1139 j = start_block - balign; 1140 } 1141 1142 for (i = start_block; i < end_block; i += bufblks) { 1143 int bcount, endcount; 1144 1145 bcount = min(bufblks, end_block - start_block); 1146 endcount = bcount - j; 1147 1148 /* We may need to do a read at the end to fill in part of 1149 * the buffer in the final sector not covered by the write. 1150 * If this is the same sector as the above read, skip it. 1151 */ 1152 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block); 1153 if (j == 0 && (start_block + endcount > ealign)) { 1154 offset = XFS_BUF_PTR(bp); 1155 balign = BBTOB(ealign - start_block); 1156 XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb)); 1157 if ((error = xlog_bread(log, ealign, sectbb, bp))) 1158 break; 1159 XFS_BUF_SET_PTR(bp, offset, bufblks); 1160 } 1161 1162 offset = xlog_align(log, start_block, endcount, bp); 1163 for (; j < endcount; j++) { 1164 xlog_add_record(log, offset, cycle, i+j, 1165 tail_cycle, tail_block); 1166 offset += BBSIZE; 1167 } 1168 error = xlog_bwrite(log, start_block, endcount, bp); 1169 if (error) 1170 break; 1171 start_block += endcount; 1172 j = 0; 1173 } 1174 xlog_put_bp(bp); 1175 return error; 1176 } 1177 1178 /* 1179 * This routine is called to blow away any incomplete log writes out 1180 * in front of the log head. We do this so that we won't become confused 1181 * if we come up, write only a little bit more, and then crash again. 1182 * If we leave the partial log records out there, this situation could 1183 * cause us to think those partial writes are valid blocks since they 1184 * have the current cycle number. We get rid of them by overwriting them 1185 * with empty log records with the old cycle number rather than the 1186 * current one. 1187 * 1188 * The tail lsn is passed in rather than taken from 1189 * the log so that we will not write over the unmount record after a 1190 * clean unmount in a 512 block log. Doing so would leave the log without 1191 * any valid log records in it until a new one was written. If we crashed 1192 * during that time we would not be able to recover. 1193 */ 1194 STATIC int 1195 xlog_clear_stale_blocks( 1196 xlog_t *log, 1197 xfs_lsn_t tail_lsn) 1198 { 1199 int tail_cycle, head_cycle; 1200 int tail_block, head_block; 1201 int tail_distance, max_distance; 1202 int distance; 1203 int error; 1204 1205 tail_cycle = CYCLE_LSN(tail_lsn); 1206 tail_block = BLOCK_LSN(tail_lsn); 1207 head_cycle = log->l_curr_cycle; 1208 head_block = log->l_curr_block; 1209 1210 /* 1211 * Figure out the distance between the new head of the log 1212 * and the tail. We want to write over any blocks beyond the 1213 * head that we may have written just before the crash, but 1214 * we don't want to overwrite the tail of the log. 1215 */ 1216 if (head_cycle == tail_cycle) { 1217 /* 1218 * The tail is behind the head in the physical log, 1219 * so the distance from the head to the tail is the 1220 * distance from the head to the end of the log plus 1221 * the distance from the beginning of the log to the 1222 * tail. 1223 */ 1224 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1225 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1226 XFS_ERRLEVEL_LOW, log->l_mp); 1227 return XFS_ERROR(EFSCORRUPTED); 1228 } 1229 tail_distance = tail_block + (log->l_logBBsize - head_block); 1230 } else { 1231 /* 1232 * The head is behind the tail in the physical log, 1233 * so the distance from the head to the tail is just 1234 * the tail block minus the head block. 1235 */ 1236 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1237 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1238 XFS_ERRLEVEL_LOW, log->l_mp); 1239 return XFS_ERROR(EFSCORRUPTED); 1240 } 1241 tail_distance = tail_block - head_block; 1242 } 1243 1244 /* 1245 * If the head is right up against the tail, we can't clear 1246 * anything. 1247 */ 1248 if (tail_distance <= 0) { 1249 ASSERT(tail_distance == 0); 1250 return 0; 1251 } 1252 1253 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1254 /* 1255 * Take the smaller of the maximum amount of outstanding I/O 1256 * we could have and the distance to the tail to clear out. 1257 * We take the smaller so that we don't overwrite the tail and 1258 * we don't waste all day writing from the head to the tail 1259 * for no reason. 1260 */ 1261 max_distance = MIN(max_distance, tail_distance); 1262 1263 if ((head_block + max_distance) <= log->l_logBBsize) { 1264 /* 1265 * We can stomp all the blocks we need to without 1266 * wrapping around the end of the log. Just do it 1267 * in a single write. Use the cycle number of the 1268 * current cycle minus one so that the log will look like: 1269 * n ... | n - 1 ... 1270 */ 1271 error = xlog_write_log_records(log, (head_cycle - 1), 1272 head_block, max_distance, tail_cycle, 1273 tail_block); 1274 if (error) 1275 return error; 1276 } else { 1277 /* 1278 * We need to wrap around the end of the physical log in 1279 * order to clear all the blocks. Do it in two separate 1280 * I/Os. The first write should be from the head to the 1281 * end of the physical log, and it should use the current 1282 * cycle number minus one just like above. 1283 */ 1284 distance = log->l_logBBsize - head_block; 1285 error = xlog_write_log_records(log, (head_cycle - 1), 1286 head_block, distance, tail_cycle, 1287 tail_block); 1288 1289 if (error) 1290 return error; 1291 1292 /* 1293 * Now write the blocks at the start of the physical log. 1294 * This writes the remainder of the blocks we want to clear. 1295 * It uses the current cycle number since we're now on the 1296 * same cycle as the head so that we get: 1297 * n ... n ... | n - 1 ... 1298 * ^^^^^ blocks we're writing 1299 */ 1300 distance = max_distance - (log->l_logBBsize - head_block); 1301 error = xlog_write_log_records(log, head_cycle, 0, distance, 1302 tail_cycle, tail_block); 1303 if (error) 1304 return error; 1305 } 1306 1307 return 0; 1308 } 1309 1310 /****************************************************************************** 1311 * 1312 * Log recover routines 1313 * 1314 ****************************************************************************** 1315 */ 1316 1317 STATIC xlog_recover_t * 1318 xlog_recover_find_tid( 1319 xlog_recover_t *q, 1320 xlog_tid_t tid) 1321 { 1322 xlog_recover_t *p = q; 1323 1324 while (p != NULL) { 1325 if (p->r_log_tid == tid) 1326 break; 1327 p = p->r_next; 1328 } 1329 return p; 1330 } 1331 1332 STATIC void 1333 xlog_recover_put_hashq( 1334 xlog_recover_t **q, 1335 xlog_recover_t *trans) 1336 { 1337 trans->r_next = *q; 1338 *q = trans; 1339 } 1340 1341 STATIC void 1342 xlog_recover_add_item( 1343 xlog_recover_item_t **itemq) 1344 { 1345 xlog_recover_item_t *item; 1346 1347 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 1348 xlog_recover_insert_item_backq(itemq, item); 1349 } 1350 1351 STATIC int 1352 xlog_recover_add_to_cont_trans( 1353 xlog_recover_t *trans, 1354 xfs_caddr_t dp, 1355 int len) 1356 { 1357 xlog_recover_item_t *item; 1358 xfs_caddr_t ptr, old_ptr; 1359 int old_len; 1360 1361 item = trans->r_itemq; 1362 if (item == 0) { 1363 /* finish copying rest of trans header */ 1364 xlog_recover_add_item(&trans->r_itemq); 1365 ptr = (xfs_caddr_t) &trans->r_theader + 1366 sizeof(xfs_trans_header_t) - len; 1367 memcpy(ptr, dp, len); /* d, s, l */ 1368 return 0; 1369 } 1370 item = item->ri_prev; 1371 1372 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 1373 old_len = item->ri_buf[item->ri_cnt-1].i_len; 1374 1375 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u); 1376 memcpy(&ptr[old_len], dp, len); /* d, s, l */ 1377 item->ri_buf[item->ri_cnt-1].i_len += len; 1378 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 1379 return 0; 1380 } 1381 1382 /* 1383 * The next region to add is the start of a new region. It could be 1384 * a whole region or it could be the first part of a new region. Because 1385 * of this, the assumption here is that the type and size fields of all 1386 * format structures fit into the first 32 bits of the structure. 1387 * 1388 * This works because all regions must be 32 bit aligned. Therefore, we 1389 * either have both fields or we have neither field. In the case we have 1390 * neither field, the data part of the region is zero length. We only have 1391 * a log_op_header and can throw away the header since a new one will appear 1392 * later. If we have at least 4 bytes, then we can determine how many regions 1393 * will appear in the current log item. 1394 */ 1395 STATIC int 1396 xlog_recover_add_to_trans( 1397 xlog_recover_t *trans, 1398 xfs_caddr_t dp, 1399 int len) 1400 { 1401 xfs_inode_log_format_t *in_f; /* any will do */ 1402 xlog_recover_item_t *item; 1403 xfs_caddr_t ptr; 1404 1405 if (!len) 1406 return 0; 1407 item = trans->r_itemq; 1408 if (item == 0) { 1409 ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC); 1410 if (len == sizeof(xfs_trans_header_t)) 1411 xlog_recover_add_item(&trans->r_itemq); 1412 memcpy(&trans->r_theader, dp, len); /* d, s, l */ 1413 return 0; 1414 } 1415 1416 ptr = kmem_alloc(len, KM_SLEEP); 1417 memcpy(ptr, dp, len); 1418 in_f = (xfs_inode_log_format_t *)ptr; 1419 1420 if (item->ri_prev->ri_total != 0 && 1421 item->ri_prev->ri_total == item->ri_prev->ri_cnt) { 1422 xlog_recover_add_item(&trans->r_itemq); 1423 } 1424 item = trans->r_itemq; 1425 item = item->ri_prev; 1426 1427 if (item->ri_total == 0) { /* first region to be added */ 1428 item->ri_total = in_f->ilf_size; 1429 ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM); 1430 item->ri_buf = kmem_zalloc((item->ri_total * 1431 sizeof(xfs_log_iovec_t)), KM_SLEEP); 1432 } 1433 ASSERT(item->ri_total > item->ri_cnt); 1434 /* Description region is ri_buf[0] */ 1435 item->ri_buf[item->ri_cnt].i_addr = ptr; 1436 item->ri_buf[item->ri_cnt].i_len = len; 1437 item->ri_cnt++; 1438 return 0; 1439 } 1440 1441 STATIC void 1442 xlog_recover_new_tid( 1443 xlog_recover_t **q, 1444 xlog_tid_t tid, 1445 xfs_lsn_t lsn) 1446 { 1447 xlog_recover_t *trans; 1448 1449 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP); 1450 trans->r_log_tid = tid; 1451 trans->r_lsn = lsn; 1452 xlog_recover_put_hashq(q, trans); 1453 } 1454 1455 STATIC int 1456 xlog_recover_unlink_tid( 1457 xlog_recover_t **q, 1458 xlog_recover_t *trans) 1459 { 1460 xlog_recover_t *tp; 1461 int found = 0; 1462 1463 ASSERT(trans != 0); 1464 if (trans == *q) { 1465 *q = (*q)->r_next; 1466 } else { 1467 tp = *q; 1468 while (tp != 0) { 1469 if (tp->r_next == trans) { 1470 found = 1; 1471 break; 1472 } 1473 tp = tp->r_next; 1474 } 1475 if (!found) { 1476 xlog_warn( 1477 "XFS: xlog_recover_unlink_tid: trans not found"); 1478 ASSERT(0); 1479 return XFS_ERROR(EIO); 1480 } 1481 tp->r_next = tp->r_next->r_next; 1482 } 1483 return 0; 1484 } 1485 1486 STATIC void 1487 xlog_recover_insert_item_backq( 1488 xlog_recover_item_t **q, 1489 xlog_recover_item_t *item) 1490 { 1491 if (*q == 0) { 1492 item->ri_prev = item->ri_next = item; 1493 *q = item; 1494 } else { 1495 item->ri_next = *q; 1496 item->ri_prev = (*q)->ri_prev; 1497 (*q)->ri_prev = item; 1498 item->ri_prev->ri_next = item; 1499 } 1500 } 1501 1502 STATIC void 1503 xlog_recover_insert_item_frontq( 1504 xlog_recover_item_t **q, 1505 xlog_recover_item_t *item) 1506 { 1507 xlog_recover_insert_item_backq(q, item); 1508 *q = item; 1509 } 1510 1511 STATIC int 1512 xlog_recover_reorder_trans( 1513 xlog_t *log, 1514 xlog_recover_t *trans) 1515 { 1516 xlog_recover_item_t *first_item, *itemq, *itemq_next; 1517 xfs_buf_log_format_t *buf_f; 1518 xfs_buf_log_format_v1_t *obuf_f; 1519 ushort flags = 0; 1520 1521 first_item = itemq = trans->r_itemq; 1522 trans->r_itemq = NULL; 1523 do { 1524 itemq_next = itemq->ri_next; 1525 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr; 1526 switch (ITEM_TYPE(itemq)) { 1527 case XFS_LI_BUF: 1528 flags = buf_f->blf_flags; 1529 break; 1530 case XFS_LI_6_1_BUF: 1531 case XFS_LI_5_3_BUF: 1532 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 1533 flags = obuf_f->blf_flags; 1534 break; 1535 } 1536 1537 switch (ITEM_TYPE(itemq)) { 1538 case XFS_LI_BUF: 1539 case XFS_LI_6_1_BUF: 1540 case XFS_LI_5_3_BUF: 1541 if (!(flags & XFS_BLI_CANCEL)) { 1542 xlog_recover_insert_item_frontq(&trans->r_itemq, 1543 itemq); 1544 break; 1545 } 1546 case XFS_LI_INODE: 1547 case XFS_LI_6_1_INODE: 1548 case XFS_LI_5_3_INODE: 1549 case XFS_LI_DQUOT: 1550 case XFS_LI_QUOTAOFF: 1551 case XFS_LI_EFD: 1552 case XFS_LI_EFI: 1553 xlog_recover_insert_item_backq(&trans->r_itemq, itemq); 1554 break; 1555 default: 1556 xlog_warn( 1557 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation"); 1558 ASSERT(0); 1559 return XFS_ERROR(EIO); 1560 } 1561 itemq = itemq_next; 1562 } while (first_item != itemq); 1563 return 0; 1564 } 1565 1566 /* 1567 * Build up the table of buf cancel records so that we don't replay 1568 * cancelled data in the second pass. For buffer records that are 1569 * not cancel records, there is nothing to do here so we just return. 1570 * 1571 * If we get a cancel record which is already in the table, this indicates 1572 * that the buffer was cancelled multiple times. In order to ensure 1573 * that during pass 2 we keep the record in the table until we reach its 1574 * last occurrence in the log, we keep a reference count in the cancel 1575 * record in the table to tell us how many times we expect to see this 1576 * record during the second pass. 1577 */ 1578 STATIC void 1579 xlog_recover_do_buffer_pass1( 1580 xlog_t *log, 1581 xfs_buf_log_format_t *buf_f) 1582 { 1583 xfs_buf_cancel_t *bcp; 1584 xfs_buf_cancel_t *nextp; 1585 xfs_buf_cancel_t *prevp; 1586 xfs_buf_cancel_t **bucket; 1587 xfs_buf_log_format_v1_t *obuf_f; 1588 xfs_daddr_t blkno = 0; 1589 uint len = 0; 1590 ushort flags = 0; 1591 1592 switch (buf_f->blf_type) { 1593 case XFS_LI_BUF: 1594 blkno = buf_f->blf_blkno; 1595 len = buf_f->blf_len; 1596 flags = buf_f->blf_flags; 1597 break; 1598 case XFS_LI_6_1_BUF: 1599 case XFS_LI_5_3_BUF: 1600 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 1601 blkno = (xfs_daddr_t) obuf_f->blf_blkno; 1602 len = obuf_f->blf_len; 1603 flags = obuf_f->blf_flags; 1604 break; 1605 } 1606 1607 /* 1608 * If this isn't a cancel buffer item, then just return. 1609 */ 1610 if (!(flags & XFS_BLI_CANCEL)) 1611 return; 1612 1613 /* 1614 * Insert an xfs_buf_cancel record into the hash table of 1615 * them. If there is already an identical record, bump 1616 * its reference count. 1617 */ 1618 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % 1619 XLOG_BC_TABLE_SIZE]; 1620 /* 1621 * If the hash bucket is empty then just insert a new record into 1622 * the bucket. 1623 */ 1624 if (*bucket == NULL) { 1625 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), 1626 KM_SLEEP); 1627 bcp->bc_blkno = blkno; 1628 bcp->bc_len = len; 1629 bcp->bc_refcount = 1; 1630 bcp->bc_next = NULL; 1631 *bucket = bcp; 1632 return; 1633 } 1634 1635 /* 1636 * The hash bucket is not empty, so search for duplicates of our 1637 * record. If we find one them just bump its refcount. If not 1638 * then add us at the end of the list. 1639 */ 1640 prevp = NULL; 1641 nextp = *bucket; 1642 while (nextp != NULL) { 1643 if (nextp->bc_blkno == blkno && nextp->bc_len == len) { 1644 nextp->bc_refcount++; 1645 return; 1646 } 1647 prevp = nextp; 1648 nextp = nextp->bc_next; 1649 } 1650 ASSERT(prevp != NULL); 1651 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), 1652 KM_SLEEP); 1653 bcp->bc_blkno = blkno; 1654 bcp->bc_len = len; 1655 bcp->bc_refcount = 1; 1656 bcp->bc_next = NULL; 1657 prevp->bc_next = bcp; 1658 } 1659 1660 /* 1661 * Check to see whether the buffer being recovered has a corresponding 1662 * entry in the buffer cancel record table. If it does then return 1 1663 * so that it will be cancelled, otherwise return 0. If the buffer is 1664 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement 1665 * the refcount on the entry in the table and remove it from the table 1666 * if this is the last reference. 1667 * 1668 * We remove the cancel record from the table when we encounter its 1669 * last occurrence in the log so that if the same buffer is re-used 1670 * again after its last cancellation we actually replay the changes 1671 * made at that point. 1672 */ 1673 STATIC int 1674 xlog_check_buffer_cancelled( 1675 xlog_t *log, 1676 xfs_daddr_t blkno, 1677 uint len, 1678 ushort flags) 1679 { 1680 xfs_buf_cancel_t *bcp; 1681 xfs_buf_cancel_t *prevp; 1682 xfs_buf_cancel_t **bucket; 1683 1684 if (log->l_buf_cancel_table == NULL) { 1685 /* 1686 * There is nothing in the table built in pass one, 1687 * so this buffer must not be cancelled. 1688 */ 1689 ASSERT(!(flags & XFS_BLI_CANCEL)); 1690 return 0; 1691 } 1692 1693 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % 1694 XLOG_BC_TABLE_SIZE]; 1695 bcp = *bucket; 1696 if (bcp == NULL) { 1697 /* 1698 * There is no corresponding entry in the table built 1699 * in pass one, so this buffer has not been cancelled. 1700 */ 1701 ASSERT(!(flags & XFS_BLI_CANCEL)); 1702 return 0; 1703 } 1704 1705 /* 1706 * Search for an entry in the buffer cancel table that 1707 * matches our buffer. 1708 */ 1709 prevp = NULL; 1710 while (bcp != NULL) { 1711 if (bcp->bc_blkno == blkno && bcp->bc_len == len) { 1712 /* 1713 * We've go a match, so return 1 so that the 1714 * recovery of this buffer is cancelled. 1715 * If this buffer is actually a buffer cancel 1716 * log item, then decrement the refcount on the 1717 * one in the table and remove it if this is the 1718 * last reference. 1719 */ 1720 if (flags & XFS_BLI_CANCEL) { 1721 bcp->bc_refcount--; 1722 if (bcp->bc_refcount == 0) { 1723 if (prevp == NULL) { 1724 *bucket = bcp->bc_next; 1725 } else { 1726 prevp->bc_next = bcp->bc_next; 1727 } 1728 kmem_free(bcp, 1729 sizeof(xfs_buf_cancel_t)); 1730 } 1731 } 1732 return 1; 1733 } 1734 prevp = bcp; 1735 bcp = bcp->bc_next; 1736 } 1737 /* 1738 * We didn't find a corresponding entry in the table, so 1739 * return 0 so that the buffer is NOT cancelled. 1740 */ 1741 ASSERT(!(flags & XFS_BLI_CANCEL)); 1742 return 0; 1743 } 1744 1745 STATIC int 1746 xlog_recover_do_buffer_pass2( 1747 xlog_t *log, 1748 xfs_buf_log_format_t *buf_f) 1749 { 1750 xfs_buf_log_format_v1_t *obuf_f; 1751 xfs_daddr_t blkno = 0; 1752 ushort flags = 0; 1753 uint len = 0; 1754 1755 switch (buf_f->blf_type) { 1756 case XFS_LI_BUF: 1757 blkno = buf_f->blf_blkno; 1758 flags = buf_f->blf_flags; 1759 len = buf_f->blf_len; 1760 break; 1761 case XFS_LI_6_1_BUF: 1762 case XFS_LI_5_3_BUF: 1763 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 1764 blkno = (xfs_daddr_t) obuf_f->blf_blkno; 1765 flags = obuf_f->blf_flags; 1766 len = (xfs_daddr_t) obuf_f->blf_len; 1767 break; 1768 } 1769 1770 return xlog_check_buffer_cancelled(log, blkno, len, flags); 1771 } 1772 1773 /* 1774 * Perform recovery for a buffer full of inodes. In these buffers, 1775 * the only data which should be recovered is that which corresponds 1776 * to the di_next_unlinked pointers in the on disk inode structures. 1777 * The rest of the data for the inodes is always logged through the 1778 * inodes themselves rather than the inode buffer and is recovered 1779 * in xlog_recover_do_inode_trans(). 1780 * 1781 * The only time when buffers full of inodes are fully recovered is 1782 * when the buffer is full of newly allocated inodes. In this case 1783 * the buffer will not be marked as an inode buffer and so will be 1784 * sent to xlog_recover_do_reg_buffer() below during recovery. 1785 */ 1786 STATIC int 1787 xlog_recover_do_inode_buffer( 1788 xfs_mount_t *mp, 1789 xlog_recover_item_t *item, 1790 xfs_buf_t *bp, 1791 xfs_buf_log_format_t *buf_f) 1792 { 1793 int i; 1794 int item_index; 1795 int bit; 1796 int nbits; 1797 int reg_buf_offset; 1798 int reg_buf_bytes; 1799 int next_unlinked_offset; 1800 int inodes_per_buf; 1801 xfs_agino_t *logged_nextp; 1802 xfs_agino_t *buffer_nextp; 1803 xfs_buf_log_format_v1_t *obuf_f; 1804 unsigned int *data_map = NULL; 1805 unsigned int map_size = 0; 1806 1807 switch (buf_f->blf_type) { 1808 case XFS_LI_BUF: 1809 data_map = buf_f->blf_data_map; 1810 map_size = buf_f->blf_map_size; 1811 break; 1812 case XFS_LI_6_1_BUF: 1813 case XFS_LI_5_3_BUF: 1814 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 1815 data_map = obuf_f->blf_data_map; 1816 map_size = obuf_f->blf_map_size; 1817 break; 1818 } 1819 /* 1820 * Set the variables corresponding to the current region to 1821 * 0 so that we'll initialize them on the first pass through 1822 * the loop. 1823 */ 1824 reg_buf_offset = 0; 1825 reg_buf_bytes = 0; 1826 bit = 0; 1827 nbits = 0; 1828 item_index = 0; 1829 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog; 1830 for (i = 0; i < inodes_per_buf; i++) { 1831 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 1832 offsetof(xfs_dinode_t, di_next_unlinked); 1833 1834 while (next_unlinked_offset >= 1835 (reg_buf_offset + reg_buf_bytes)) { 1836 /* 1837 * The next di_next_unlinked field is beyond 1838 * the current logged region. Find the next 1839 * logged region that contains or is beyond 1840 * the current di_next_unlinked field. 1841 */ 1842 bit += nbits; 1843 bit = xfs_next_bit(data_map, map_size, bit); 1844 1845 /* 1846 * If there are no more logged regions in the 1847 * buffer, then we're done. 1848 */ 1849 if (bit == -1) { 1850 return 0; 1851 } 1852 1853 nbits = xfs_contig_bits(data_map, map_size, 1854 bit); 1855 ASSERT(nbits > 0); 1856 reg_buf_offset = bit << XFS_BLI_SHIFT; 1857 reg_buf_bytes = nbits << XFS_BLI_SHIFT; 1858 item_index++; 1859 } 1860 1861 /* 1862 * If the current logged region starts after the current 1863 * di_next_unlinked field, then move on to the next 1864 * di_next_unlinked field. 1865 */ 1866 if (next_unlinked_offset < reg_buf_offset) { 1867 continue; 1868 } 1869 1870 ASSERT(item->ri_buf[item_index].i_addr != NULL); 1871 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0); 1872 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp)); 1873 1874 /* 1875 * The current logged region contains a copy of the 1876 * current di_next_unlinked field. Extract its value 1877 * and copy it to the buffer copy. 1878 */ 1879 logged_nextp = (xfs_agino_t *) 1880 ((char *)(item->ri_buf[item_index].i_addr) + 1881 (next_unlinked_offset - reg_buf_offset)); 1882 if (unlikely(*logged_nextp == 0)) { 1883 xfs_fs_cmn_err(CE_ALERT, mp, 1884 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field", 1885 item, bp); 1886 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 1887 XFS_ERRLEVEL_LOW, mp); 1888 return XFS_ERROR(EFSCORRUPTED); 1889 } 1890 1891 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp, 1892 next_unlinked_offset); 1893 INT_SET(*buffer_nextp, ARCH_CONVERT, *logged_nextp); 1894 } 1895 1896 return 0; 1897 } 1898 1899 /* 1900 * Perform a 'normal' buffer recovery. Each logged region of the 1901 * buffer should be copied over the corresponding region in the 1902 * given buffer. The bitmap in the buf log format structure indicates 1903 * where to place the logged data. 1904 */ 1905 /*ARGSUSED*/ 1906 STATIC void 1907 xlog_recover_do_reg_buffer( 1908 xfs_mount_t *mp, 1909 xlog_recover_item_t *item, 1910 xfs_buf_t *bp, 1911 xfs_buf_log_format_t *buf_f) 1912 { 1913 int i; 1914 int bit; 1915 int nbits; 1916 xfs_buf_log_format_v1_t *obuf_f; 1917 unsigned int *data_map = NULL; 1918 unsigned int map_size = 0; 1919 int error; 1920 1921 switch (buf_f->blf_type) { 1922 case XFS_LI_BUF: 1923 data_map = buf_f->blf_data_map; 1924 map_size = buf_f->blf_map_size; 1925 break; 1926 case XFS_LI_6_1_BUF: 1927 case XFS_LI_5_3_BUF: 1928 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 1929 data_map = obuf_f->blf_data_map; 1930 map_size = obuf_f->blf_map_size; 1931 break; 1932 } 1933 bit = 0; 1934 i = 1; /* 0 is the buf format structure */ 1935 while (1) { 1936 bit = xfs_next_bit(data_map, map_size, bit); 1937 if (bit == -1) 1938 break; 1939 nbits = xfs_contig_bits(data_map, map_size, bit); 1940 ASSERT(nbits > 0); 1941 ASSERT(item->ri_buf[i].i_addr != 0); 1942 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0); 1943 ASSERT(XFS_BUF_COUNT(bp) >= 1944 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT)); 1945 1946 /* 1947 * Do a sanity check if this is a dquot buffer. Just checking 1948 * the first dquot in the buffer should do. XXXThis is 1949 * probably a good thing to do for other buf types also. 1950 */ 1951 error = 0; 1952 if (buf_f->blf_flags & 1953 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) { 1954 error = xfs_qm_dqcheck((xfs_disk_dquot_t *) 1955 item->ri_buf[i].i_addr, 1956 -1, 0, XFS_QMOPT_DOWARN, 1957 "dquot_buf_recover"); 1958 } 1959 if (!error) 1960 memcpy(xfs_buf_offset(bp, 1961 (uint)bit << XFS_BLI_SHIFT), /* dest */ 1962 item->ri_buf[i].i_addr, /* source */ 1963 nbits<<XFS_BLI_SHIFT); /* length */ 1964 i++; 1965 bit += nbits; 1966 } 1967 1968 /* Shouldn't be any more regions */ 1969 ASSERT(i == item->ri_total); 1970 } 1971 1972 /* 1973 * Do some primitive error checking on ondisk dquot data structures. 1974 */ 1975 int 1976 xfs_qm_dqcheck( 1977 xfs_disk_dquot_t *ddq, 1978 xfs_dqid_t id, 1979 uint type, /* used only when IO_dorepair is true */ 1980 uint flags, 1981 char *str) 1982 { 1983 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq; 1984 int errs = 0; 1985 1986 /* 1987 * We can encounter an uninitialized dquot buffer for 2 reasons: 1988 * 1. If we crash while deleting the quotainode(s), and those blks got 1989 * used for user data. This is because we take the path of regular 1990 * file deletion; however, the size field of quotainodes is never 1991 * updated, so all the tricks that we play in itruncate_finish 1992 * don't quite matter. 1993 * 1994 * 2. We don't play the quota buffers when there's a quotaoff logitem. 1995 * But the allocation will be replayed so we'll end up with an 1996 * uninitialized quota block. 1997 * 1998 * This is all fine; things are still consistent, and we haven't lost 1999 * any quota information. Just don't complain about bad dquot blks. 2000 */ 2001 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) { 2002 if (flags & XFS_QMOPT_DOWARN) 2003 cmn_err(CE_ALERT, 2004 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x", 2005 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC); 2006 errs++; 2007 } 2008 if (ddq->d_version != XFS_DQUOT_VERSION) { 2009 if (flags & XFS_QMOPT_DOWARN) 2010 cmn_err(CE_ALERT, 2011 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x", 2012 str, id, ddq->d_version, XFS_DQUOT_VERSION); 2013 errs++; 2014 } 2015 2016 if (ddq->d_flags != XFS_DQ_USER && 2017 ddq->d_flags != XFS_DQ_PROJ && 2018 ddq->d_flags != XFS_DQ_GROUP) { 2019 if (flags & XFS_QMOPT_DOWARN) 2020 cmn_err(CE_ALERT, 2021 "%s : XFS dquot ID 0x%x, unknown flags 0x%x", 2022 str, id, ddq->d_flags); 2023 errs++; 2024 } 2025 2026 if (id != -1 && id != be32_to_cpu(ddq->d_id)) { 2027 if (flags & XFS_QMOPT_DOWARN) 2028 cmn_err(CE_ALERT, 2029 "%s : ondisk-dquot 0x%p, ID mismatch: " 2030 "0x%x expected, found id 0x%x", 2031 str, ddq, id, be32_to_cpu(ddq->d_id)); 2032 errs++; 2033 } 2034 2035 if (!errs && ddq->d_id) { 2036 if (ddq->d_blk_softlimit && 2037 be64_to_cpu(ddq->d_bcount) >= 2038 be64_to_cpu(ddq->d_blk_softlimit)) { 2039 if (!ddq->d_btimer) { 2040 if (flags & XFS_QMOPT_DOWARN) 2041 cmn_err(CE_ALERT, 2042 "%s : Dquot ID 0x%x (0x%p) " 2043 "BLK TIMER NOT STARTED", 2044 str, (int)be32_to_cpu(ddq->d_id), ddq); 2045 errs++; 2046 } 2047 } 2048 if (ddq->d_ino_softlimit && 2049 be64_to_cpu(ddq->d_icount) >= 2050 be64_to_cpu(ddq->d_ino_softlimit)) { 2051 if (!ddq->d_itimer) { 2052 if (flags & XFS_QMOPT_DOWARN) 2053 cmn_err(CE_ALERT, 2054 "%s : Dquot ID 0x%x (0x%p) " 2055 "INODE TIMER NOT STARTED", 2056 str, (int)be32_to_cpu(ddq->d_id), ddq); 2057 errs++; 2058 } 2059 } 2060 if (ddq->d_rtb_softlimit && 2061 be64_to_cpu(ddq->d_rtbcount) >= 2062 be64_to_cpu(ddq->d_rtb_softlimit)) { 2063 if (!ddq->d_rtbtimer) { 2064 if (flags & XFS_QMOPT_DOWARN) 2065 cmn_err(CE_ALERT, 2066 "%s : Dquot ID 0x%x (0x%p) " 2067 "RTBLK TIMER NOT STARTED", 2068 str, (int)be32_to_cpu(ddq->d_id), ddq); 2069 errs++; 2070 } 2071 } 2072 } 2073 2074 if (!errs || !(flags & XFS_QMOPT_DQREPAIR)) 2075 return errs; 2076 2077 if (flags & XFS_QMOPT_DOWARN) 2078 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id); 2079 2080 /* 2081 * Typically, a repair is only requested by quotacheck. 2082 */ 2083 ASSERT(id != -1); 2084 ASSERT(flags & XFS_QMOPT_DQREPAIR); 2085 memset(d, 0, sizeof(xfs_dqblk_t)); 2086 2087 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC); 2088 d->dd_diskdq.d_version = XFS_DQUOT_VERSION; 2089 d->dd_diskdq.d_flags = type; 2090 d->dd_diskdq.d_id = cpu_to_be32(id); 2091 2092 return errs; 2093 } 2094 2095 /* 2096 * Perform a dquot buffer recovery. 2097 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type 2098 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2099 * Else, treat it as a regular buffer and do recovery. 2100 */ 2101 STATIC void 2102 xlog_recover_do_dquot_buffer( 2103 xfs_mount_t *mp, 2104 xlog_t *log, 2105 xlog_recover_item_t *item, 2106 xfs_buf_t *bp, 2107 xfs_buf_log_format_t *buf_f) 2108 { 2109 uint type; 2110 2111 /* 2112 * Filesystems are required to send in quota flags at mount time. 2113 */ 2114 if (mp->m_qflags == 0) { 2115 return; 2116 } 2117 2118 type = 0; 2119 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF) 2120 type |= XFS_DQ_USER; 2121 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF) 2122 type |= XFS_DQ_PROJ; 2123 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF) 2124 type |= XFS_DQ_GROUP; 2125 /* 2126 * This type of quotas was turned off, so ignore this buffer 2127 */ 2128 if (log->l_quotaoffs_flag & type) 2129 return; 2130 2131 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2132 } 2133 2134 /* 2135 * This routine replays a modification made to a buffer at runtime. 2136 * There are actually two types of buffer, regular and inode, which 2137 * are handled differently. Inode buffers are handled differently 2138 * in that we only recover a specific set of data from them, namely 2139 * the inode di_next_unlinked fields. This is because all other inode 2140 * data is actually logged via inode records and any data we replay 2141 * here which overlaps that may be stale. 2142 * 2143 * When meta-data buffers are freed at run time we log a buffer item 2144 * with the XFS_BLI_CANCEL bit set to indicate that previous copies 2145 * of the buffer in the log should not be replayed at recovery time. 2146 * This is so that if the blocks covered by the buffer are reused for 2147 * file data before we crash we don't end up replaying old, freed 2148 * meta-data into a user's file. 2149 * 2150 * To handle the cancellation of buffer log items, we make two passes 2151 * over the log during recovery. During the first we build a table of 2152 * those buffers which have been cancelled, and during the second we 2153 * only replay those buffers which do not have corresponding cancel 2154 * records in the table. See xlog_recover_do_buffer_pass[1,2] above 2155 * for more details on the implementation of the table of cancel records. 2156 */ 2157 STATIC int 2158 xlog_recover_do_buffer_trans( 2159 xlog_t *log, 2160 xlog_recover_item_t *item, 2161 int pass) 2162 { 2163 xfs_buf_log_format_t *buf_f; 2164 xfs_buf_log_format_v1_t *obuf_f; 2165 xfs_mount_t *mp; 2166 xfs_buf_t *bp; 2167 int error; 2168 int cancel; 2169 xfs_daddr_t blkno; 2170 int len; 2171 ushort flags; 2172 2173 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr; 2174 2175 if (pass == XLOG_RECOVER_PASS1) { 2176 /* 2177 * In this pass we're only looking for buf items 2178 * with the XFS_BLI_CANCEL bit set. 2179 */ 2180 xlog_recover_do_buffer_pass1(log, buf_f); 2181 return 0; 2182 } else { 2183 /* 2184 * In this pass we want to recover all the buffers 2185 * which have not been cancelled and are not 2186 * cancellation buffers themselves. The routine 2187 * we call here will tell us whether or not to 2188 * continue with the replay of this buffer. 2189 */ 2190 cancel = xlog_recover_do_buffer_pass2(log, buf_f); 2191 if (cancel) { 2192 return 0; 2193 } 2194 } 2195 switch (buf_f->blf_type) { 2196 case XFS_LI_BUF: 2197 blkno = buf_f->blf_blkno; 2198 len = buf_f->blf_len; 2199 flags = buf_f->blf_flags; 2200 break; 2201 case XFS_LI_6_1_BUF: 2202 case XFS_LI_5_3_BUF: 2203 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 2204 blkno = obuf_f->blf_blkno; 2205 len = obuf_f->blf_len; 2206 flags = obuf_f->blf_flags; 2207 break; 2208 default: 2209 xfs_fs_cmn_err(CE_ALERT, log->l_mp, 2210 "xfs_log_recover: unknown buffer type 0x%x, logdev %s", 2211 buf_f->blf_type, log->l_mp->m_logname ? 2212 log->l_mp->m_logname : "internal"); 2213 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans", 2214 XFS_ERRLEVEL_LOW, log->l_mp); 2215 return XFS_ERROR(EFSCORRUPTED); 2216 } 2217 2218 mp = log->l_mp; 2219 if (flags & XFS_BLI_INODE_BUF) { 2220 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len, 2221 XFS_BUF_LOCK); 2222 } else { 2223 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0); 2224 } 2225 if (XFS_BUF_ISERROR(bp)) { 2226 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp, 2227 bp, blkno); 2228 error = XFS_BUF_GETERROR(bp); 2229 xfs_buf_relse(bp); 2230 return error; 2231 } 2232 2233 error = 0; 2234 if (flags & XFS_BLI_INODE_BUF) { 2235 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2236 } else if (flags & 2237 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) { 2238 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2239 } else { 2240 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2241 } 2242 if (error) 2243 return XFS_ERROR(error); 2244 2245 /* 2246 * Perform delayed write on the buffer. Asynchronous writes will be 2247 * slower when taking into account all the buffers to be flushed. 2248 * 2249 * Also make sure that only inode buffers with good sizes stay in 2250 * the buffer cache. The kernel moves inodes in buffers of 1 block 2251 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode 2252 * buffers in the log can be a different size if the log was generated 2253 * by an older kernel using unclustered inode buffers or a newer kernel 2254 * running with a different inode cluster size. Regardless, if the 2255 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE) 2256 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep 2257 * the buffer out of the buffer cache so that the buffer won't 2258 * overlap with future reads of those inodes. 2259 */ 2260 if (XFS_DINODE_MAGIC == 2261 INT_GET(*((__uint16_t *)(xfs_buf_offset(bp, 0))), ARCH_CONVERT) && 2262 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize, 2263 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) { 2264 XFS_BUF_STALE(bp); 2265 error = xfs_bwrite(mp, bp); 2266 } else { 2267 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || 2268 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); 2269 XFS_BUF_SET_FSPRIVATE(bp, mp); 2270 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2271 xfs_bdwrite(mp, bp); 2272 } 2273 2274 return (error); 2275 } 2276 2277 STATIC int 2278 xlog_recover_do_inode_trans( 2279 xlog_t *log, 2280 xlog_recover_item_t *item, 2281 int pass) 2282 { 2283 xfs_inode_log_format_t *in_f; 2284 xfs_mount_t *mp; 2285 xfs_buf_t *bp; 2286 xfs_imap_t imap; 2287 xfs_dinode_t *dip; 2288 xfs_ino_t ino; 2289 int len; 2290 xfs_caddr_t src; 2291 xfs_caddr_t dest; 2292 int error; 2293 int attr_index; 2294 uint fields; 2295 xfs_dinode_core_t *dicp; 2296 2297 if (pass == XLOG_RECOVER_PASS1) { 2298 return 0; 2299 } 2300 2301 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr; 2302 ino = in_f->ilf_ino; 2303 mp = log->l_mp; 2304 if (ITEM_TYPE(item) == XFS_LI_INODE) { 2305 imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno; 2306 imap.im_len = in_f->ilf_len; 2307 imap.im_boffset = in_f->ilf_boffset; 2308 } else { 2309 /* 2310 * It's an old inode format record. We don't know where 2311 * its cluster is located on disk, and we can't allow 2312 * xfs_imap() to figure it out because the inode btrees 2313 * are not ready to be used. Therefore do not pass the 2314 * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give 2315 * us only the single block in which the inode lives 2316 * rather than its cluster, so we must make sure to 2317 * invalidate the buffer when we write it out below. 2318 */ 2319 imap.im_blkno = 0; 2320 xfs_imap(log->l_mp, NULL, ino, &imap, 0); 2321 } 2322 2323 /* 2324 * Inode buffers can be freed, look out for it, 2325 * and do not replay the inode. 2326 */ 2327 if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) 2328 return 0; 2329 2330 bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len, 2331 XFS_BUF_LOCK); 2332 if (XFS_BUF_ISERROR(bp)) { 2333 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp, 2334 bp, imap.im_blkno); 2335 error = XFS_BUF_GETERROR(bp); 2336 xfs_buf_relse(bp); 2337 return error; 2338 } 2339 error = 0; 2340 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 2341 dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 2342 2343 /* 2344 * Make sure the place we're flushing out to really looks 2345 * like an inode! 2346 */ 2347 if (unlikely(INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC)) { 2348 xfs_buf_relse(bp); 2349 xfs_fs_cmn_err(CE_ALERT, mp, 2350 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld", 2351 dip, bp, ino); 2352 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)", 2353 XFS_ERRLEVEL_LOW, mp); 2354 return XFS_ERROR(EFSCORRUPTED); 2355 } 2356 dicp = (xfs_dinode_core_t*)(item->ri_buf[1].i_addr); 2357 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { 2358 xfs_buf_relse(bp); 2359 xfs_fs_cmn_err(CE_ALERT, mp, 2360 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld", 2361 item, ino); 2362 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)", 2363 XFS_ERRLEVEL_LOW, mp); 2364 return XFS_ERROR(EFSCORRUPTED); 2365 } 2366 2367 /* Skip replay when the on disk inode is newer than the log one */ 2368 if (dicp->di_flushiter < 2369 INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)) { 2370 /* 2371 * Deal with the wrap case, DI_MAX_FLUSH is less 2372 * than smaller numbers 2373 */ 2374 if ((INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT) 2375 == DI_MAX_FLUSH) && 2376 (dicp->di_flushiter < (DI_MAX_FLUSH>>1))) { 2377 /* do nothing */ 2378 } else { 2379 xfs_buf_relse(bp); 2380 return 0; 2381 } 2382 } 2383 /* Take the opportunity to reset the flush iteration count */ 2384 dicp->di_flushiter = 0; 2385 2386 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) { 2387 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2388 (dicp->di_format != XFS_DINODE_FMT_BTREE)) { 2389 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)", 2390 XFS_ERRLEVEL_LOW, mp, dicp); 2391 xfs_buf_relse(bp); 2392 xfs_fs_cmn_err(CE_ALERT, mp, 2393 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2394 item, dip, bp, ino); 2395 return XFS_ERROR(EFSCORRUPTED); 2396 } 2397 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) { 2398 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2399 (dicp->di_format != XFS_DINODE_FMT_BTREE) && 2400 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { 2401 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)", 2402 XFS_ERRLEVEL_LOW, mp, dicp); 2403 xfs_buf_relse(bp); 2404 xfs_fs_cmn_err(CE_ALERT, mp, 2405 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2406 item, dip, bp, ino); 2407 return XFS_ERROR(EFSCORRUPTED); 2408 } 2409 } 2410 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ 2411 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)", 2412 XFS_ERRLEVEL_LOW, mp, dicp); 2413 xfs_buf_relse(bp); 2414 xfs_fs_cmn_err(CE_ALERT, mp, 2415 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", 2416 item, dip, bp, ino, 2417 dicp->di_nextents + dicp->di_anextents, 2418 dicp->di_nblocks); 2419 return XFS_ERROR(EFSCORRUPTED); 2420 } 2421 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { 2422 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)", 2423 XFS_ERRLEVEL_LOW, mp, dicp); 2424 xfs_buf_relse(bp); 2425 xfs_fs_cmn_err(CE_ALERT, mp, 2426 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x", 2427 item, dip, bp, ino, dicp->di_forkoff); 2428 return XFS_ERROR(EFSCORRUPTED); 2429 } 2430 if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) { 2431 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)", 2432 XFS_ERRLEVEL_LOW, mp, dicp); 2433 xfs_buf_relse(bp); 2434 xfs_fs_cmn_err(CE_ALERT, mp, 2435 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p", 2436 item->ri_buf[1].i_len, item); 2437 return XFS_ERROR(EFSCORRUPTED); 2438 } 2439 2440 /* The core is in in-core format */ 2441 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core, 2442 (xfs_dinode_core_t*)item->ri_buf[1].i_addr, -1); 2443 2444 /* the rest is in on-disk format */ 2445 if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) { 2446 memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t), 2447 item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t), 2448 item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t)); 2449 } 2450 2451 fields = in_f->ilf_fields; 2452 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { 2453 case XFS_ILOG_DEV: 2454 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, in_f->ilf_u.ilfu_rdev); 2455 2456 break; 2457 case XFS_ILOG_UUID: 2458 dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid; 2459 break; 2460 } 2461 2462 if (in_f->ilf_size == 2) 2463 goto write_inode_buffer; 2464 len = item->ri_buf[2].i_len; 2465 src = item->ri_buf[2].i_addr; 2466 ASSERT(in_f->ilf_size <= 4); 2467 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 2468 ASSERT(!(fields & XFS_ILOG_DFORK) || 2469 (len == in_f->ilf_dsize)); 2470 2471 switch (fields & XFS_ILOG_DFORK) { 2472 case XFS_ILOG_DDATA: 2473 case XFS_ILOG_DEXT: 2474 memcpy(&dip->di_u, src, len); 2475 break; 2476 2477 case XFS_ILOG_DBROOT: 2478 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len, 2479 &(dip->di_u.di_bmbt), 2480 XFS_DFORK_DSIZE(dip, mp)); 2481 break; 2482 2483 default: 2484 /* 2485 * There are no data fork flags set. 2486 */ 2487 ASSERT((fields & XFS_ILOG_DFORK) == 0); 2488 break; 2489 } 2490 2491 /* 2492 * If we logged any attribute data, recover it. There may or 2493 * may not have been any other non-core data logged in this 2494 * transaction. 2495 */ 2496 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 2497 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 2498 attr_index = 3; 2499 } else { 2500 attr_index = 2; 2501 } 2502 len = item->ri_buf[attr_index].i_len; 2503 src = item->ri_buf[attr_index].i_addr; 2504 ASSERT(len == in_f->ilf_asize); 2505 2506 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 2507 case XFS_ILOG_ADATA: 2508 case XFS_ILOG_AEXT: 2509 dest = XFS_DFORK_APTR(dip); 2510 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 2511 memcpy(dest, src, len); 2512 break; 2513 2514 case XFS_ILOG_ABROOT: 2515 dest = XFS_DFORK_APTR(dip); 2516 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len, 2517 (xfs_bmdr_block_t*)dest, 2518 XFS_DFORK_ASIZE(dip, mp)); 2519 break; 2520 2521 default: 2522 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag"); 2523 ASSERT(0); 2524 xfs_buf_relse(bp); 2525 return XFS_ERROR(EIO); 2526 } 2527 } 2528 2529 write_inode_buffer: 2530 if (ITEM_TYPE(item) == XFS_LI_INODE) { 2531 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || 2532 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); 2533 XFS_BUF_SET_FSPRIVATE(bp, mp); 2534 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2535 xfs_bdwrite(mp, bp); 2536 } else { 2537 XFS_BUF_STALE(bp); 2538 error = xfs_bwrite(mp, bp); 2539 } 2540 2541 return (error); 2542 } 2543 2544 /* 2545 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t 2546 * structure, so that we know not to do any dquot item or dquot buffer recovery, 2547 * of that type. 2548 */ 2549 STATIC int 2550 xlog_recover_do_quotaoff_trans( 2551 xlog_t *log, 2552 xlog_recover_item_t *item, 2553 int pass) 2554 { 2555 xfs_qoff_logformat_t *qoff_f; 2556 2557 if (pass == XLOG_RECOVER_PASS2) { 2558 return (0); 2559 } 2560 2561 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr; 2562 ASSERT(qoff_f); 2563 2564 /* 2565 * The logitem format's flag tells us if this was user quotaoff, 2566 * group quotaoff or both. 2567 */ 2568 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 2569 log->l_quotaoffs_flag |= XFS_DQ_USER; 2570 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 2571 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 2572 2573 return (0); 2574 } 2575 2576 /* 2577 * Recover a dquot record 2578 */ 2579 STATIC int 2580 xlog_recover_do_dquot_trans( 2581 xlog_t *log, 2582 xlog_recover_item_t *item, 2583 int pass) 2584 { 2585 xfs_mount_t *mp; 2586 xfs_buf_t *bp; 2587 struct xfs_disk_dquot *ddq, *recddq; 2588 int error; 2589 xfs_dq_logformat_t *dq_f; 2590 uint type; 2591 2592 if (pass == XLOG_RECOVER_PASS1) { 2593 return 0; 2594 } 2595 mp = log->l_mp; 2596 2597 /* 2598 * Filesystems are required to send in quota flags at mount time. 2599 */ 2600 if (mp->m_qflags == 0) 2601 return (0); 2602 2603 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr; 2604 ASSERT(recddq); 2605 /* 2606 * This type of quotas was turned off, so ignore this record. 2607 */ 2608 type = INT_GET(recddq->d_flags, ARCH_CONVERT) & 2609 (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 2610 ASSERT(type); 2611 if (log->l_quotaoffs_flag & type) 2612 return (0); 2613 2614 /* 2615 * At this point we know that quota was _not_ turned off. 2616 * Since the mount flags are not indicating to us otherwise, this 2617 * must mean that quota is on, and the dquot needs to be replayed. 2618 * Remember that we may not have fully recovered the superblock yet, 2619 * so we can't do the usual trick of looking at the SB quota bits. 2620 * 2621 * The other possibility, of course, is that the quota subsystem was 2622 * removed since the last mount - ENOSYS. 2623 */ 2624 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr; 2625 ASSERT(dq_f); 2626 if ((error = xfs_qm_dqcheck(recddq, 2627 dq_f->qlf_id, 2628 0, XFS_QMOPT_DOWARN, 2629 "xlog_recover_do_dquot_trans (log copy)"))) { 2630 return XFS_ERROR(EIO); 2631 } 2632 ASSERT(dq_f->qlf_len == 1); 2633 2634 error = xfs_read_buf(mp, mp->m_ddev_targp, 2635 dq_f->qlf_blkno, 2636 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 2637 0, &bp); 2638 if (error) { 2639 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp, 2640 bp, dq_f->qlf_blkno); 2641 return error; 2642 } 2643 ASSERT(bp); 2644 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset); 2645 2646 /* 2647 * At least the magic num portion should be on disk because this 2648 * was among a chunk of dquots created earlier, and we did some 2649 * minimal initialization then. 2650 */ 2651 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2652 "xlog_recover_do_dquot_trans")) { 2653 xfs_buf_relse(bp); 2654 return XFS_ERROR(EIO); 2655 } 2656 2657 memcpy(ddq, recddq, item->ri_buf[1].i_len); 2658 2659 ASSERT(dq_f->qlf_size == 2); 2660 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || 2661 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); 2662 XFS_BUF_SET_FSPRIVATE(bp, mp); 2663 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2664 xfs_bdwrite(mp, bp); 2665 2666 return (0); 2667 } 2668 2669 /* 2670 * This routine is called to create an in-core extent free intent 2671 * item from the efi format structure which was logged on disk. 2672 * It allocates an in-core efi, copies the extents from the format 2673 * structure into it, and adds the efi to the AIL with the given 2674 * LSN. 2675 */ 2676 STATIC void 2677 xlog_recover_do_efi_trans( 2678 xlog_t *log, 2679 xlog_recover_item_t *item, 2680 xfs_lsn_t lsn, 2681 int pass) 2682 { 2683 xfs_mount_t *mp; 2684 xfs_efi_log_item_t *efip; 2685 xfs_efi_log_format_t *efi_formatp; 2686 SPLDECL(s); 2687 2688 if (pass == XLOG_RECOVER_PASS1) { 2689 return; 2690 } 2691 2692 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr; 2693 ASSERT(item->ri_buf[0].i_len == 2694 (sizeof(xfs_efi_log_format_t) + 2695 ((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t)))); 2696 2697 mp = log->l_mp; 2698 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 2699 memcpy((char *)&(efip->efi_format), (char *)efi_formatp, 2700 sizeof(xfs_efi_log_format_t) + 2701 ((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t))); 2702 efip->efi_next_extent = efi_formatp->efi_nextents; 2703 efip->efi_flags |= XFS_EFI_COMMITTED; 2704 2705 AIL_LOCK(mp,s); 2706 /* 2707 * xfs_trans_update_ail() drops the AIL lock. 2708 */ 2709 xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn, s); 2710 } 2711 2712 2713 /* 2714 * This routine is called when an efd format structure is found in 2715 * a committed transaction in the log. It's purpose is to cancel 2716 * the corresponding efi if it was still in the log. To do this 2717 * it searches the AIL for the efi with an id equal to that in the 2718 * efd format structure. If we find it, we remove the efi from the 2719 * AIL and free it. 2720 */ 2721 STATIC void 2722 xlog_recover_do_efd_trans( 2723 xlog_t *log, 2724 xlog_recover_item_t *item, 2725 int pass) 2726 { 2727 xfs_mount_t *mp; 2728 xfs_efd_log_format_t *efd_formatp; 2729 xfs_efi_log_item_t *efip = NULL; 2730 xfs_log_item_t *lip; 2731 int gen; 2732 __uint64_t efi_id; 2733 SPLDECL(s); 2734 2735 if (pass == XLOG_RECOVER_PASS1) { 2736 return; 2737 } 2738 2739 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr; 2740 ASSERT(item->ri_buf[0].i_len == 2741 (sizeof(xfs_efd_log_format_t) + 2742 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_t)))); 2743 efi_id = efd_formatp->efd_efi_id; 2744 2745 /* 2746 * Search for the efi with the id in the efd format structure 2747 * in the AIL. 2748 */ 2749 mp = log->l_mp; 2750 AIL_LOCK(mp,s); 2751 lip = xfs_trans_first_ail(mp, &gen); 2752 while (lip != NULL) { 2753 if (lip->li_type == XFS_LI_EFI) { 2754 efip = (xfs_efi_log_item_t *)lip; 2755 if (efip->efi_format.efi_id == efi_id) { 2756 /* 2757 * xfs_trans_delete_ail() drops the 2758 * AIL lock. 2759 */ 2760 xfs_trans_delete_ail(mp, lip, s); 2761 break; 2762 } 2763 } 2764 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 2765 } 2766 2767 /* 2768 * If we found it, then free it up. If it wasn't there, it 2769 * must have been overwritten in the log. Oh well. 2770 */ 2771 if (lip != NULL) { 2772 xfs_efi_item_free(efip); 2773 } else { 2774 AIL_UNLOCK(mp, s); 2775 } 2776 } 2777 2778 /* 2779 * Perform the transaction 2780 * 2781 * If the transaction modifies a buffer or inode, do it now. Otherwise, 2782 * EFIs and EFDs get queued up by adding entries into the AIL for them. 2783 */ 2784 STATIC int 2785 xlog_recover_do_trans( 2786 xlog_t *log, 2787 xlog_recover_t *trans, 2788 int pass) 2789 { 2790 int error = 0; 2791 xlog_recover_item_t *item, *first_item; 2792 2793 if ((error = xlog_recover_reorder_trans(log, trans))) 2794 return error; 2795 first_item = item = trans->r_itemq; 2796 do { 2797 /* 2798 * we don't need to worry about the block number being 2799 * truncated in > 1 TB buffers because in user-land, 2800 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so 2801 * the blkno's will get through the user-mode buffer 2802 * cache properly. The only bad case is o32 kernels 2803 * where xfs_daddr_t is 32-bits but mount will warn us 2804 * off a > 1 TB filesystem before we get here. 2805 */ 2806 if ((ITEM_TYPE(item) == XFS_LI_BUF) || 2807 (ITEM_TYPE(item) == XFS_LI_6_1_BUF) || 2808 (ITEM_TYPE(item) == XFS_LI_5_3_BUF)) { 2809 if ((error = xlog_recover_do_buffer_trans(log, item, 2810 pass))) 2811 break; 2812 } else if ((ITEM_TYPE(item) == XFS_LI_INODE) || 2813 (ITEM_TYPE(item) == XFS_LI_6_1_INODE) || 2814 (ITEM_TYPE(item) == XFS_LI_5_3_INODE)) { 2815 if ((error = xlog_recover_do_inode_trans(log, item, 2816 pass))) 2817 break; 2818 } else if (ITEM_TYPE(item) == XFS_LI_EFI) { 2819 xlog_recover_do_efi_trans(log, item, trans->r_lsn, 2820 pass); 2821 } else if (ITEM_TYPE(item) == XFS_LI_EFD) { 2822 xlog_recover_do_efd_trans(log, item, pass); 2823 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) { 2824 if ((error = xlog_recover_do_dquot_trans(log, item, 2825 pass))) 2826 break; 2827 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) { 2828 if ((error = xlog_recover_do_quotaoff_trans(log, item, 2829 pass))) 2830 break; 2831 } else { 2832 xlog_warn("XFS: xlog_recover_do_trans"); 2833 ASSERT(0); 2834 error = XFS_ERROR(EIO); 2835 break; 2836 } 2837 item = item->ri_next; 2838 } while (first_item != item); 2839 2840 return error; 2841 } 2842 2843 /* 2844 * Free up any resources allocated by the transaction 2845 * 2846 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 2847 */ 2848 STATIC void 2849 xlog_recover_free_trans( 2850 xlog_recover_t *trans) 2851 { 2852 xlog_recover_item_t *first_item, *item, *free_item; 2853 int i; 2854 2855 item = first_item = trans->r_itemq; 2856 do { 2857 free_item = item; 2858 item = item->ri_next; 2859 /* Free the regions in the item. */ 2860 for (i = 0; i < free_item->ri_cnt; i++) { 2861 kmem_free(free_item->ri_buf[i].i_addr, 2862 free_item->ri_buf[i].i_len); 2863 } 2864 /* Free the item itself */ 2865 kmem_free(free_item->ri_buf, 2866 (free_item->ri_total * sizeof(xfs_log_iovec_t))); 2867 kmem_free(free_item, sizeof(xlog_recover_item_t)); 2868 } while (first_item != item); 2869 /* Free the transaction recover structure */ 2870 kmem_free(trans, sizeof(xlog_recover_t)); 2871 } 2872 2873 STATIC int 2874 xlog_recover_commit_trans( 2875 xlog_t *log, 2876 xlog_recover_t **q, 2877 xlog_recover_t *trans, 2878 int pass) 2879 { 2880 int error; 2881 2882 if ((error = xlog_recover_unlink_tid(q, trans))) 2883 return error; 2884 if ((error = xlog_recover_do_trans(log, trans, pass))) 2885 return error; 2886 xlog_recover_free_trans(trans); /* no error */ 2887 return 0; 2888 } 2889 2890 STATIC int 2891 xlog_recover_unmount_trans( 2892 xlog_recover_t *trans) 2893 { 2894 /* Do nothing now */ 2895 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR"); 2896 return 0; 2897 } 2898 2899 /* 2900 * There are two valid states of the r_state field. 0 indicates that the 2901 * transaction structure is in a normal state. We have either seen the 2902 * start of the transaction or the last operation we added was not a partial 2903 * operation. If the last operation we added to the transaction was a 2904 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 2905 * 2906 * NOTE: skip LRs with 0 data length. 2907 */ 2908 STATIC int 2909 xlog_recover_process_data( 2910 xlog_t *log, 2911 xlog_recover_t *rhash[], 2912 xlog_rec_header_t *rhead, 2913 xfs_caddr_t dp, 2914 int pass) 2915 { 2916 xfs_caddr_t lp; 2917 int num_logops; 2918 xlog_op_header_t *ohead; 2919 xlog_recover_t *trans; 2920 xlog_tid_t tid; 2921 int error; 2922 unsigned long hash; 2923 uint flags; 2924 2925 lp = dp + INT_GET(rhead->h_len, ARCH_CONVERT); 2926 num_logops = INT_GET(rhead->h_num_logops, ARCH_CONVERT); 2927 2928 /* check the log format matches our own - else we can't recover */ 2929 if (xlog_header_check_recover(log->l_mp, rhead)) 2930 return (XFS_ERROR(EIO)); 2931 2932 while ((dp < lp) && num_logops) { 2933 ASSERT(dp + sizeof(xlog_op_header_t) <= lp); 2934 ohead = (xlog_op_header_t *)dp; 2935 dp += sizeof(xlog_op_header_t); 2936 if (ohead->oh_clientid != XFS_TRANSACTION && 2937 ohead->oh_clientid != XFS_LOG) { 2938 xlog_warn( 2939 "XFS: xlog_recover_process_data: bad clientid"); 2940 ASSERT(0); 2941 return (XFS_ERROR(EIO)); 2942 } 2943 tid = INT_GET(ohead->oh_tid, ARCH_CONVERT); 2944 hash = XLOG_RHASH(tid); 2945 trans = xlog_recover_find_tid(rhash[hash], tid); 2946 if (trans == NULL) { /* not found; add new tid */ 2947 if (ohead->oh_flags & XLOG_START_TRANS) 2948 xlog_recover_new_tid(&rhash[hash], tid, 2949 INT_GET(rhead->h_lsn, ARCH_CONVERT)); 2950 } else { 2951 ASSERT(dp+INT_GET(ohead->oh_len, ARCH_CONVERT) <= lp); 2952 flags = ohead->oh_flags & ~XLOG_END_TRANS; 2953 if (flags & XLOG_WAS_CONT_TRANS) 2954 flags &= ~XLOG_CONTINUE_TRANS; 2955 switch (flags) { 2956 case XLOG_COMMIT_TRANS: 2957 error = xlog_recover_commit_trans(log, 2958 &rhash[hash], trans, pass); 2959 break; 2960 case XLOG_UNMOUNT_TRANS: 2961 error = xlog_recover_unmount_trans(trans); 2962 break; 2963 case XLOG_WAS_CONT_TRANS: 2964 error = xlog_recover_add_to_cont_trans(trans, 2965 dp, INT_GET(ohead->oh_len, 2966 ARCH_CONVERT)); 2967 break; 2968 case XLOG_START_TRANS: 2969 xlog_warn( 2970 "XFS: xlog_recover_process_data: bad transaction"); 2971 ASSERT(0); 2972 error = XFS_ERROR(EIO); 2973 break; 2974 case 0: 2975 case XLOG_CONTINUE_TRANS: 2976 error = xlog_recover_add_to_trans(trans, 2977 dp, INT_GET(ohead->oh_len, 2978 ARCH_CONVERT)); 2979 break; 2980 default: 2981 xlog_warn( 2982 "XFS: xlog_recover_process_data: bad flag"); 2983 ASSERT(0); 2984 error = XFS_ERROR(EIO); 2985 break; 2986 } 2987 if (error) 2988 return error; 2989 } 2990 dp += INT_GET(ohead->oh_len, ARCH_CONVERT); 2991 num_logops--; 2992 } 2993 return 0; 2994 } 2995 2996 /* 2997 * Process an extent free intent item that was recovered from 2998 * the log. We need to free the extents that it describes. 2999 */ 3000 STATIC void 3001 xlog_recover_process_efi( 3002 xfs_mount_t *mp, 3003 xfs_efi_log_item_t *efip) 3004 { 3005 xfs_efd_log_item_t *efdp; 3006 xfs_trans_t *tp; 3007 int i; 3008 xfs_extent_t *extp; 3009 xfs_fsblock_t startblock_fsb; 3010 3011 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED)); 3012 3013 /* 3014 * First check the validity of the extents described by the 3015 * EFI. If any are bad, then assume that all are bad and 3016 * just toss the EFI. 3017 */ 3018 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3019 extp = &(efip->efi_format.efi_extents[i]); 3020 startblock_fsb = XFS_BB_TO_FSB(mp, 3021 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 3022 if ((startblock_fsb == 0) || 3023 (extp->ext_len == 0) || 3024 (startblock_fsb >= mp->m_sb.sb_dblocks) || 3025 (extp->ext_len >= mp->m_sb.sb_agblocks)) { 3026 /* 3027 * This will pull the EFI from the AIL and 3028 * free the memory associated with it. 3029 */ 3030 xfs_efi_release(efip, efip->efi_format.efi_nextents); 3031 return; 3032 } 3033 } 3034 3035 tp = xfs_trans_alloc(mp, 0); 3036 xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0); 3037 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 3038 3039 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3040 extp = &(efip->efi_format.efi_extents[i]); 3041 xfs_free_extent(tp, extp->ext_start, extp->ext_len); 3042 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start, 3043 extp->ext_len); 3044 } 3045 3046 efip->efi_flags |= XFS_EFI_RECOVERED; 3047 xfs_trans_commit(tp, 0, NULL); 3048 } 3049 3050 /* 3051 * Verify that once we've encountered something other than an EFI 3052 * in the AIL that there are no more EFIs in the AIL. 3053 */ 3054 #if defined(DEBUG) 3055 STATIC void 3056 xlog_recover_check_ail( 3057 xfs_mount_t *mp, 3058 xfs_log_item_t *lip, 3059 int gen) 3060 { 3061 int orig_gen = gen; 3062 3063 do { 3064 ASSERT(lip->li_type != XFS_LI_EFI); 3065 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 3066 /* 3067 * The check will be bogus if we restart from the 3068 * beginning of the AIL, so ASSERT that we don't. 3069 * We never should since we're holding the AIL lock 3070 * the entire time. 3071 */ 3072 ASSERT(gen == orig_gen); 3073 } while (lip != NULL); 3074 } 3075 #endif /* DEBUG */ 3076 3077 /* 3078 * When this is called, all of the EFIs which did not have 3079 * corresponding EFDs should be in the AIL. What we do now 3080 * is free the extents associated with each one. 3081 * 3082 * Since we process the EFIs in normal transactions, they 3083 * will be removed at some point after the commit. This prevents 3084 * us from just walking down the list processing each one. 3085 * We'll use a flag in the EFI to skip those that we've already 3086 * processed and use the AIL iteration mechanism's generation 3087 * count to try to speed this up at least a bit. 3088 * 3089 * When we start, we know that the EFIs are the only things in 3090 * the AIL. As we process them, however, other items are added 3091 * to the AIL. Since everything added to the AIL must come after 3092 * everything already in the AIL, we stop processing as soon as 3093 * we see something other than an EFI in the AIL. 3094 */ 3095 STATIC void 3096 xlog_recover_process_efis( 3097 xlog_t *log) 3098 { 3099 xfs_log_item_t *lip; 3100 xfs_efi_log_item_t *efip; 3101 int gen; 3102 xfs_mount_t *mp; 3103 SPLDECL(s); 3104 3105 mp = log->l_mp; 3106 AIL_LOCK(mp,s); 3107 3108 lip = xfs_trans_first_ail(mp, &gen); 3109 while (lip != NULL) { 3110 /* 3111 * We're done when we see something other than an EFI. 3112 */ 3113 if (lip->li_type != XFS_LI_EFI) { 3114 xlog_recover_check_ail(mp, lip, gen); 3115 break; 3116 } 3117 3118 /* 3119 * Skip EFIs that we've already processed. 3120 */ 3121 efip = (xfs_efi_log_item_t *)lip; 3122 if (efip->efi_flags & XFS_EFI_RECOVERED) { 3123 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 3124 continue; 3125 } 3126 3127 AIL_UNLOCK(mp, s); 3128 xlog_recover_process_efi(mp, efip); 3129 AIL_LOCK(mp,s); 3130 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 3131 } 3132 AIL_UNLOCK(mp, s); 3133 } 3134 3135 /* 3136 * This routine performs a transaction to null out a bad inode pointer 3137 * in an agi unlinked inode hash bucket. 3138 */ 3139 STATIC void 3140 xlog_recover_clear_agi_bucket( 3141 xfs_mount_t *mp, 3142 xfs_agnumber_t agno, 3143 int bucket) 3144 { 3145 xfs_trans_t *tp; 3146 xfs_agi_t *agi; 3147 xfs_buf_t *agibp; 3148 int offset; 3149 int error; 3150 3151 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); 3152 xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0); 3153 3154 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 3155 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 3156 XFS_FSS_TO_BB(mp, 1), 0, &agibp); 3157 if (error) { 3158 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3159 return; 3160 } 3161 3162 agi = XFS_BUF_TO_AGI(agibp); 3163 if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC) { 3164 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3165 return; 3166 } 3167 3168 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 3169 offset = offsetof(xfs_agi_t, agi_unlinked) + 3170 (sizeof(xfs_agino_t) * bucket); 3171 xfs_trans_log_buf(tp, agibp, offset, 3172 (offset + sizeof(xfs_agino_t) - 1)); 3173 3174 (void) xfs_trans_commit(tp, 0, NULL); 3175 } 3176 3177 /* 3178 * xlog_iunlink_recover 3179 * 3180 * This is called during recovery to process any inodes which 3181 * we unlinked but not freed when the system crashed. These 3182 * inodes will be on the lists in the AGI blocks. What we do 3183 * here is scan all the AGIs and fully truncate and free any 3184 * inodes found on the lists. Each inode is removed from the 3185 * lists when it has been fully truncated and is freed. The 3186 * freeing of the inode and its removal from the list must be 3187 * atomic. 3188 */ 3189 void 3190 xlog_recover_process_iunlinks( 3191 xlog_t *log) 3192 { 3193 xfs_mount_t *mp; 3194 xfs_agnumber_t agno; 3195 xfs_agi_t *agi; 3196 xfs_buf_t *agibp; 3197 xfs_buf_t *ibp; 3198 xfs_dinode_t *dip; 3199 xfs_inode_t *ip; 3200 xfs_agino_t agino; 3201 xfs_ino_t ino; 3202 int bucket; 3203 int error; 3204 uint mp_dmevmask; 3205 3206 mp = log->l_mp; 3207 3208 /* 3209 * Prevent any DMAPI event from being sent while in this function. 3210 */ 3211 mp_dmevmask = mp->m_dmevmask; 3212 mp->m_dmevmask = 0; 3213 3214 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3215 /* 3216 * Find the agi for this ag. 3217 */ 3218 agibp = xfs_buf_read(mp->m_ddev_targp, 3219 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 3220 XFS_FSS_TO_BB(mp, 1), 0); 3221 if (XFS_BUF_ISERROR(agibp)) { 3222 xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)", 3223 log->l_mp, agibp, 3224 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp))); 3225 } 3226 agi = XFS_BUF_TO_AGI(agibp); 3227 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum)); 3228 3229 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 3230 3231 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 3232 while (agino != NULLAGINO) { 3233 3234 /* 3235 * Release the agi buffer so that it can 3236 * be acquired in the normal course of the 3237 * transaction to truncate and free the inode. 3238 */ 3239 xfs_buf_relse(agibp); 3240 3241 ino = XFS_AGINO_TO_INO(mp, agno, agino); 3242 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0); 3243 ASSERT(error || (ip != NULL)); 3244 3245 if (!error) { 3246 /* 3247 * Get the on disk inode to find the 3248 * next inode in the bucket. 3249 */ 3250 error = xfs_itobp(mp, NULL, ip, &dip, 3251 &ibp, 0); 3252 ASSERT(error || (dip != NULL)); 3253 } 3254 3255 if (!error) { 3256 ASSERT(ip->i_d.di_nlink == 0); 3257 3258 /* setup for the next pass */ 3259 agino = INT_GET(dip->di_next_unlinked, 3260 ARCH_CONVERT); 3261 xfs_buf_relse(ibp); 3262 /* 3263 * Prevent any DMAPI event from 3264 * being sent when the 3265 * reference on the inode is 3266 * dropped. 3267 */ 3268 ip->i_d.di_dmevmask = 0; 3269 3270 /* 3271 * If this is a new inode, handle 3272 * it specially. Otherwise, 3273 * just drop our reference to the 3274 * inode. If there are no 3275 * other references, this will 3276 * send the inode to 3277 * xfs_inactive() which will 3278 * truncate the file and free 3279 * the inode. 3280 */ 3281 if (ip->i_d.di_mode == 0) 3282 xfs_iput_new(ip, 0); 3283 else 3284 VN_RELE(XFS_ITOV(ip)); 3285 } else { 3286 /* 3287 * We can't read in the inode 3288 * this bucket points to, or 3289 * this inode is messed up. Just 3290 * ditch this bucket of inodes. We 3291 * will lose some inodes and space, 3292 * but at least we won't hang. Call 3293 * xlog_recover_clear_agi_bucket() 3294 * to perform a transaction to clear 3295 * the inode pointer in the bucket. 3296 */ 3297 xlog_recover_clear_agi_bucket(mp, agno, 3298 bucket); 3299 3300 agino = NULLAGINO; 3301 } 3302 3303 /* 3304 * Reacquire the agibuffer and continue around 3305 * the loop. 3306 */ 3307 agibp = xfs_buf_read(mp->m_ddev_targp, 3308 XFS_AG_DADDR(mp, agno, 3309 XFS_AGI_DADDR(mp)), 3310 XFS_FSS_TO_BB(mp, 1), 0); 3311 if (XFS_BUF_ISERROR(agibp)) { 3312 xfs_ioerror_alert( 3313 "xlog_recover_process_iunlinks(#2)", 3314 log->l_mp, agibp, 3315 XFS_AG_DADDR(mp, agno, 3316 XFS_AGI_DADDR(mp))); 3317 } 3318 agi = XFS_BUF_TO_AGI(agibp); 3319 ASSERT(XFS_AGI_MAGIC == be32_to_cpu( 3320 agi->agi_magicnum)); 3321 } 3322 } 3323 3324 /* 3325 * Release the buffer for the current agi so we can 3326 * go on to the next one. 3327 */ 3328 xfs_buf_relse(agibp); 3329 } 3330 3331 mp->m_dmevmask = mp_dmevmask; 3332 } 3333 3334 3335 #ifdef DEBUG 3336 STATIC void 3337 xlog_pack_data_checksum( 3338 xlog_t *log, 3339 xlog_in_core_t *iclog, 3340 int size) 3341 { 3342 int i; 3343 uint *up; 3344 uint chksum = 0; 3345 3346 up = (uint *)iclog->ic_datap; 3347 /* divide length by 4 to get # words */ 3348 for (i = 0; i < (size >> 2); i++) { 3349 chksum ^= INT_GET(*up, ARCH_CONVERT); 3350 up++; 3351 } 3352 INT_SET(iclog->ic_header.h_chksum, ARCH_CONVERT, chksum); 3353 } 3354 #else 3355 #define xlog_pack_data_checksum(log, iclog, size) 3356 #endif 3357 3358 /* 3359 * Stamp cycle number in every block 3360 */ 3361 void 3362 xlog_pack_data( 3363 xlog_t *log, 3364 xlog_in_core_t *iclog, 3365 int roundoff) 3366 { 3367 int i, j, k; 3368 int size = iclog->ic_offset + roundoff; 3369 uint cycle_lsn; 3370 xfs_caddr_t dp; 3371 xlog_in_core_2_t *xhdr; 3372 3373 xlog_pack_data_checksum(log, iclog, size); 3374 3375 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 3376 3377 dp = iclog->ic_datap; 3378 for (i = 0; i < BTOBB(size) && 3379 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3380 iclog->ic_header.h_cycle_data[i] = *(uint *)dp; 3381 *(uint *)dp = cycle_lsn; 3382 dp += BBSIZE; 3383 } 3384 3385 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 3386 xhdr = (xlog_in_core_2_t *)&iclog->ic_header; 3387 for ( ; i < BTOBB(size); i++) { 3388 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3389 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3390 xhdr[j].hic_xheader.xh_cycle_data[k] = *(uint *)dp; 3391 *(uint *)dp = cycle_lsn; 3392 dp += BBSIZE; 3393 } 3394 3395 for (i = 1; i < log->l_iclog_heads; i++) { 3396 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 3397 } 3398 } 3399 } 3400 3401 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY) 3402 STATIC void 3403 xlog_unpack_data_checksum( 3404 xlog_rec_header_t *rhead, 3405 xfs_caddr_t dp, 3406 xlog_t *log) 3407 { 3408 uint *up = (uint *)dp; 3409 uint chksum = 0; 3410 int i; 3411 3412 /* divide length by 4 to get # words */ 3413 for (i=0; i < INT_GET(rhead->h_len, ARCH_CONVERT) >> 2; i++) { 3414 chksum ^= INT_GET(*up, ARCH_CONVERT); 3415 up++; 3416 } 3417 if (chksum != INT_GET(rhead->h_chksum, ARCH_CONVERT)) { 3418 if (rhead->h_chksum || 3419 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) { 3420 cmn_err(CE_DEBUG, 3421 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)", 3422 INT_GET(rhead->h_chksum, ARCH_CONVERT), chksum); 3423 cmn_err(CE_DEBUG, 3424 "XFS: Disregard message if filesystem was created with non-DEBUG kernel"); 3425 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 3426 cmn_err(CE_DEBUG, 3427 "XFS: LogR this is a LogV2 filesystem"); 3428 } 3429 log->l_flags |= XLOG_CHKSUM_MISMATCH; 3430 } 3431 } 3432 } 3433 #else 3434 #define xlog_unpack_data_checksum(rhead, dp, log) 3435 #endif 3436 3437 STATIC void 3438 xlog_unpack_data( 3439 xlog_rec_header_t *rhead, 3440 xfs_caddr_t dp, 3441 xlog_t *log) 3442 { 3443 int i, j, k; 3444 xlog_in_core_2_t *xhdr; 3445 3446 for (i = 0; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)) && 3447 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3448 *(uint *)dp = *(uint *)&rhead->h_cycle_data[i]; 3449 dp += BBSIZE; 3450 } 3451 3452 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 3453 xhdr = (xlog_in_core_2_t *)rhead; 3454 for ( ; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); i++) { 3455 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3456 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3457 *(uint *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 3458 dp += BBSIZE; 3459 } 3460 } 3461 3462 xlog_unpack_data_checksum(rhead, dp, log); 3463 } 3464 3465 STATIC int 3466 xlog_valid_rec_header( 3467 xlog_t *log, 3468 xlog_rec_header_t *rhead, 3469 xfs_daddr_t blkno) 3470 { 3471 int hlen; 3472 3473 if (unlikely( 3474 (INT_GET(rhead->h_magicno, ARCH_CONVERT) != 3475 XLOG_HEADER_MAGIC_NUM))) { 3476 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 3477 XFS_ERRLEVEL_LOW, log->l_mp); 3478 return XFS_ERROR(EFSCORRUPTED); 3479 } 3480 if (unlikely( 3481 (!rhead->h_version || 3482 (INT_GET(rhead->h_version, ARCH_CONVERT) & 3483 (~XLOG_VERSION_OKBITS)) != 0))) { 3484 xlog_warn("XFS: %s: unrecognised log version (%d).", 3485 __FUNCTION__, INT_GET(rhead->h_version, ARCH_CONVERT)); 3486 return XFS_ERROR(EIO); 3487 } 3488 3489 /* LR body must have data or it wouldn't have been written */ 3490 hlen = INT_GET(rhead->h_len, ARCH_CONVERT); 3491 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 3492 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 3493 XFS_ERRLEVEL_LOW, log->l_mp); 3494 return XFS_ERROR(EFSCORRUPTED); 3495 } 3496 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 3497 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 3498 XFS_ERRLEVEL_LOW, log->l_mp); 3499 return XFS_ERROR(EFSCORRUPTED); 3500 } 3501 return 0; 3502 } 3503 3504 /* 3505 * Read the log from tail to head and process the log records found. 3506 * Handle the two cases where the tail and head are in the same cycle 3507 * and where the active portion of the log wraps around the end of 3508 * the physical log separately. The pass parameter is passed through 3509 * to the routines called to process the data and is not looked at 3510 * here. 3511 */ 3512 STATIC int 3513 xlog_do_recovery_pass( 3514 xlog_t *log, 3515 xfs_daddr_t head_blk, 3516 xfs_daddr_t tail_blk, 3517 int pass) 3518 { 3519 xlog_rec_header_t *rhead; 3520 xfs_daddr_t blk_no; 3521 xfs_caddr_t bufaddr, offset; 3522 xfs_buf_t *hbp, *dbp; 3523 int error = 0, h_size; 3524 int bblks, split_bblks; 3525 int hblks, split_hblks, wrapped_hblks; 3526 xlog_recover_t *rhash[XLOG_RHASH_SIZE]; 3527 3528 ASSERT(head_blk != tail_blk); 3529 3530 /* 3531 * Read the header of the tail block and get the iclog buffer size from 3532 * h_size. Use this to tell how many sectors make up the log header. 3533 */ 3534 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 3535 /* 3536 * When using variable length iclogs, read first sector of 3537 * iclog header and extract the header size from it. Get a 3538 * new hbp that is the correct size. 3539 */ 3540 hbp = xlog_get_bp(log, 1); 3541 if (!hbp) 3542 return ENOMEM; 3543 if ((error = xlog_bread(log, tail_blk, 1, hbp))) 3544 goto bread_err1; 3545 offset = xlog_align(log, tail_blk, 1, hbp); 3546 rhead = (xlog_rec_header_t *)offset; 3547 error = xlog_valid_rec_header(log, rhead, tail_blk); 3548 if (error) 3549 goto bread_err1; 3550 h_size = INT_GET(rhead->h_size, ARCH_CONVERT); 3551 if ((INT_GET(rhead->h_version, ARCH_CONVERT) 3552 & XLOG_VERSION_2) && 3553 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 3554 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 3555 if (h_size % XLOG_HEADER_CYCLE_SIZE) 3556 hblks++; 3557 xlog_put_bp(hbp); 3558 hbp = xlog_get_bp(log, hblks); 3559 } else { 3560 hblks = 1; 3561 } 3562 } else { 3563 ASSERT(log->l_sectbb_log == 0); 3564 hblks = 1; 3565 hbp = xlog_get_bp(log, 1); 3566 h_size = XLOG_BIG_RECORD_BSIZE; 3567 } 3568 3569 if (!hbp) 3570 return ENOMEM; 3571 dbp = xlog_get_bp(log, BTOBB(h_size)); 3572 if (!dbp) { 3573 xlog_put_bp(hbp); 3574 return ENOMEM; 3575 } 3576 3577 memset(rhash, 0, sizeof(rhash)); 3578 if (tail_blk <= head_blk) { 3579 for (blk_no = tail_blk; blk_no < head_blk; ) { 3580 if ((error = xlog_bread(log, blk_no, hblks, hbp))) 3581 goto bread_err2; 3582 offset = xlog_align(log, blk_no, hblks, hbp); 3583 rhead = (xlog_rec_header_t *)offset; 3584 error = xlog_valid_rec_header(log, rhead, blk_no); 3585 if (error) 3586 goto bread_err2; 3587 3588 /* blocks in data section */ 3589 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); 3590 error = xlog_bread(log, blk_no + hblks, bblks, dbp); 3591 if (error) 3592 goto bread_err2; 3593 offset = xlog_align(log, blk_no + hblks, bblks, dbp); 3594 xlog_unpack_data(rhead, offset, log); 3595 if ((error = xlog_recover_process_data(log, 3596 rhash, rhead, offset, pass))) 3597 goto bread_err2; 3598 blk_no += bblks + hblks; 3599 } 3600 } else { 3601 /* 3602 * Perform recovery around the end of the physical log. 3603 * When the head is not on the same cycle number as the tail, 3604 * we can't do a sequential recovery as above. 3605 */ 3606 blk_no = tail_blk; 3607 while (blk_no < log->l_logBBsize) { 3608 /* 3609 * Check for header wrapping around physical end-of-log 3610 */ 3611 offset = NULL; 3612 split_hblks = 0; 3613 wrapped_hblks = 0; 3614 if (blk_no + hblks <= log->l_logBBsize) { 3615 /* Read header in one read */ 3616 error = xlog_bread(log, blk_no, hblks, hbp); 3617 if (error) 3618 goto bread_err2; 3619 offset = xlog_align(log, blk_no, hblks, hbp); 3620 } else { 3621 /* This LR is split across physical log end */ 3622 if (blk_no != log->l_logBBsize) { 3623 /* some data before physical log end */ 3624 ASSERT(blk_no <= INT_MAX); 3625 split_hblks = log->l_logBBsize - (int)blk_no; 3626 ASSERT(split_hblks > 0); 3627 if ((error = xlog_bread(log, blk_no, 3628 split_hblks, hbp))) 3629 goto bread_err2; 3630 offset = xlog_align(log, blk_no, 3631 split_hblks, hbp); 3632 } 3633 /* 3634 * Note: this black magic still works with 3635 * large sector sizes (non-512) only because: 3636 * - we increased the buffer size originally 3637 * by 1 sector giving us enough extra space 3638 * for the second read; 3639 * - the log start is guaranteed to be sector 3640 * aligned; 3641 * - we read the log end (LR header start) 3642 * _first_, then the log start (LR header end) 3643 * - order is important. 3644 */ 3645 bufaddr = XFS_BUF_PTR(hbp); 3646 XFS_BUF_SET_PTR(hbp, 3647 bufaddr + BBTOB(split_hblks), 3648 BBTOB(hblks - split_hblks)); 3649 wrapped_hblks = hblks - split_hblks; 3650 error = xlog_bread(log, 0, wrapped_hblks, hbp); 3651 if (error) 3652 goto bread_err2; 3653 XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks)); 3654 if (!offset) 3655 offset = xlog_align(log, 0, 3656 wrapped_hblks, hbp); 3657 } 3658 rhead = (xlog_rec_header_t *)offset; 3659 error = xlog_valid_rec_header(log, rhead, 3660 split_hblks ? blk_no : 0); 3661 if (error) 3662 goto bread_err2; 3663 3664 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); 3665 blk_no += hblks; 3666 3667 /* Read in data for log record */ 3668 if (blk_no + bblks <= log->l_logBBsize) { 3669 error = xlog_bread(log, blk_no, bblks, dbp); 3670 if (error) 3671 goto bread_err2; 3672 offset = xlog_align(log, blk_no, bblks, dbp); 3673 } else { 3674 /* This log record is split across the 3675 * physical end of log */ 3676 offset = NULL; 3677 split_bblks = 0; 3678 if (blk_no != log->l_logBBsize) { 3679 /* some data is before the physical 3680 * end of log */ 3681 ASSERT(!wrapped_hblks); 3682 ASSERT(blk_no <= INT_MAX); 3683 split_bblks = 3684 log->l_logBBsize - (int)blk_no; 3685 ASSERT(split_bblks > 0); 3686 if ((error = xlog_bread(log, blk_no, 3687 split_bblks, dbp))) 3688 goto bread_err2; 3689 offset = xlog_align(log, blk_no, 3690 split_bblks, dbp); 3691 } 3692 /* 3693 * Note: this black magic still works with 3694 * large sector sizes (non-512) only because: 3695 * - we increased the buffer size originally 3696 * by 1 sector giving us enough extra space 3697 * for the second read; 3698 * - the log start is guaranteed to be sector 3699 * aligned; 3700 * - we read the log end (LR header start) 3701 * _first_, then the log start (LR header end) 3702 * - order is important. 3703 */ 3704 bufaddr = XFS_BUF_PTR(dbp); 3705 XFS_BUF_SET_PTR(dbp, 3706 bufaddr + BBTOB(split_bblks), 3707 BBTOB(bblks - split_bblks)); 3708 if ((error = xlog_bread(log, wrapped_hblks, 3709 bblks - split_bblks, dbp))) 3710 goto bread_err2; 3711 XFS_BUF_SET_PTR(dbp, bufaddr, h_size); 3712 if (!offset) 3713 offset = xlog_align(log, wrapped_hblks, 3714 bblks - split_bblks, dbp); 3715 } 3716 xlog_unpack_data(rhead, offset, log); 3717 if ((error = xlog_recover_process_data(log, rhash, 3718 rhead, offset, pass))) 3719 goto bread_err2; 3720 blk_no += bblks; 3721 } 3722 3723 ASSERT(blk_no >= log->l_logBBsize); 3724 blk_no -= log->l_logBBsize; 3725 3726 /* read first part of physical log */ 3727 while (blk_no < head_blk) { 3728 if ((error = xlog_bread(log, blk_no, hblks, hbp))) 3729 goto bread_err2; 3730 offset = xlog_align(log, blk_no, hblks, hbp); 3731 rhead = (xlog_rec_header_t *)offset; 3732 error = xlog_valid_rec_header(log, rhead, blk_no); 3733 if (error) 3734 goto bread_err2; 3735 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); 3736 if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp))) 3737 goto bread_err2; 3738 offset = xlog_align(log, blk_no+hblks, bblks, dbp); 3739 xlog_unpack_data(rhead, offset, log); 3740 if ((error = xlog_recover_process_data(log, rhash, 3741 rhead, offset, pass))) 3742 goto bread_err2; 3743 blk_no += bblks + hblks; 3744 } 3745 } 3746 3747 bread_err2: 3748 xlog_put_bp(dbp); 3749 bread_err1: 3750 xlog_put_bp(hbp); 3751 return error; 3752 } 3753 3754 /* 3755 * Do the recovery of the log. We actually do this in two phases. 3756 * The two passes are necessary in order to implement the function 3757 * of cancelling a record written into the log. The first pass 3758 * determines those things which have been cancelled, and the 3759 * second pass replays log items normally except for those which 3760 * have been cancelled. The handling of the replay and cancellations 3761 * takes place in the log item type specific routines. 3762 * 3763 * The table of items which have cancel records in the log is allocated 3764 * and freed at this level, since only here do we know when all of 3765 * the log recovery has been completed. 3766 */ 3767 STATIC int 3768 xlog_do_log_recovery( 3769 xlog_t *log, 3770 xfs_daddr_t head_blk, 3771 xfs_daddr_t tail_blk) 3772 { 3773 int error; 3774 3775 ASSERT(head_blk != tail_blk); 3776 3777 /* 3778 * First do a pass to find all of the cancelled buf log items. 3779 * Store them in the buf_cancel_table for use in the second pass. 3780 */ 3781 log->l_buf_cancel_table = 3782 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE * 3783 sizeof(xfs_buf_cancel_t*), 3784 KM_SLEEP); 3785 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3786 XLOG_RECOVER_PASS1); 3787 if (error != 0) { 3788 kmem_free(log->l_buf_cancel_table, 3789 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*)); 3790 log->l_buf_cancel_table = NULL; 3791 return error; 3792 } 3793 /* 3794 * Then do a second pass to actually recover the items in the log. 3795 * When it is complete free the table of buf cancel items. 3796 */ 3797 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3798 XLOG_RECOVER_PASS2); 3799 #ifdef DEBUG 3800 { 3801 int i; 3802 3803 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3804 ASSERT(log->l_buf_cancel_table[i] == NULL); 3805 } 3806 #endif /* DEBUG */ 3807 3808 kmem_free(log->l_buf_cancel_table, 3809 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*)); 3810 log->l_buf_cancel_table = NULL; 3811 3812 return error; 3813 } 3814 3815 /* 3816 * Do the actual recovery 3817 */ 3818 STATIC int 3819 xlog_do_recover( 3820 xlog_t *log, 3821 xfs_daddr_t head_blk, 3822 xfs_daddr_t tail_blk) 3823 { 3824 int error; 3825 xfs_buf_t *bp; 3826 xfs_sb_t *sbp; 3827 3828 /* 3829 * First replay the images in the log. 3830 */ 3831 error = xlog_do_log_recovery(log, head_blk, tail_blk); 3832 if (error) { 3833 return error; 3834 } 3835 3836 XFS_bflush(log->l_mp->m_ddev_targp); 3837 3838 /* 3839 * If IO errors happened during recovery, bail out. 3840 */ 3841 if (XFS_FORCED_SHUTDOWN(log->l_mp)) { 3842 return (EIO); 3843 } 3844 3845 /* 3846 * We now update the tail_lsn since much of the recovery has completed 3847 * and there may be space available to use. If there were no extent 3848 * or iunlinks, we can free up the entire log and set the tail_lsn to 3849 * be the last_sync_lsn. This was set in xlog_find_tail to be the 3850 * lsn of the last known good LR on disk. If there are extent frees 3851 * or iunlinks they will have some entries in the AIL; so we look at 3852 * the AIL to determine how to set the tail_lsn. 3853 */ 3854 xlog_assign_tail_lsn(log->l_mp); 3855 3856 /* 3857 * Now that we've finished replaying all buffer and inode 3858 * updates, re-read in the superblock. 3859 */ 3860 bp = xfs_getsb(log->l_mp, 0); 3861 XFS_BUF_UNDONE(bp); 3862 XFS_BUF_READ(bp); 3863 xfsbdstrat(log->l_mp, bp); 3864 if ((error = xfs_iowait(bp))) { 3865 xfs_ioerror_alert("xlog_do_recover", 3866 log->l_mp, bp, XFS_BUF_ADDR(bp)); 3867 ASSERT(0); 3868 xfs_buf_relse(bp); 3869 return error; 3870 } 3871 3872 /* Convert superblock from on-disk format */ 3873 sbp = &log->l_mp->m_sb; 3874 xfs_xlatesb(XFS_BUF_TO_SBP(bp), sbp, 1, XFS_SB_ALL_BITS); 3875 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); 3876 ASSERT(XFS_SB_GOOD_VERSION(sbp)); 3877 xfs_buf_relse(bp); 3878 3879 xlog_recover_check_summary(log); 3880 3881 /* Normal transactions can now occur */ 3882 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 3883 return 0; 3884 } 3885 3886 /* 3887 * Perform recovery and re-initialize some log variables in xlog_find_tail. 3888 * 3889 * Return error or zero. 3890 */ 3891 int 3892 xlog_recover( 3893 xlog_t *log, 3894 int readonly) 3895 { 3896 xfs_daddr_t head_blk, tail_blk; 3897 int error; 3898 3899 /* find the tail of the log */ 3900 if ((error = xlog_find_tail(log, &head_blk, &tail_blk, readonly))) 3901 return error; 3902 3903 if (tail_blk != head_blk) { 3904 /* There used to be a comment here: 3905 * 3906 * disallow recovery on read-only mounts. note -- mount 3907 * checks for ENOSPC and turns it into an intelligent 3908 * error message. 3909 * ...but this is no longer true. Now, unless you specify 3910 * NORECOVERY (in which case this function would never be 3911 * called), we just go ahead and recover. We do this all 3912 * under the vfs layer, so we can get away with it unless 3913 * the device itself is read-only, in which case we fail. 3914 */ 3915 if ((error = xfs_dev_is_read_only(log->l_mp, 3916 "recovery required"))) { 3917 return error; 3918 } 3919 3920 cmn_err(CE_NOTE, 3921 "Starting XFS recovery on filesystem: %s (logdev: %s)", 3922 log->l_mp->m_fsname, log->l_mp->m_logname ? 3923 log->l_mp->m_logname : "internal"); 3924 3925 error = xlog_do_recover(log, head_blk, tail_blk); 3926 log->l_flags |= XLOG_RECOVERY_NEEDED; 3927 } 3928 return error; 3929 } 3930 3931 /* 3932 * In the first part of recovery we replay inodes and buffers and build 3933 * up the list of extent free items which need to be processed. Here 3934 * we process the extent free items and clean up the on disk unlinked 3935 * inode lists. This is separated from the first part of recovery so 3936 * that the root and real-time bitmap inodes can be read in from disk in 3937 * between the two stages. This is necessary so that we can free space 3938 * in the real-time portion of the file system. 3939 */ 3940 int 3941 xlog_recover_finish( 3942 xlog_t *log, 3943 int mfsi_flags) 3944 { 3945 /* 3946 * Now we're ready to do the transactions needed for the 3947 * rest of recovery. Start with completing all the extent 3948 * free intent records and then process the unlinked inode 3949 * lists. At this point, we essentially run in normal mode 3950 * except that we're still performing recovery actions 3951 * rather than accepting new requests. 3952 */ 3953 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 3954 xlog_recover_process_efis(log); 3955 /* 3956 * Sync the log to get all the EFIs out of the AIL. 3957 * This isn't absolutely necessary, but it helps in 3958 * case the unlink transactions would have problems 3959 * pushing the EFIs out of the way. 3960 */ 3961 xfs_log_force(log->l_mp, (xfs_lsn_t)0, 3962 (XFS_LOG_FORCE | XFS_LOG_SYNC)); 3963 3964 if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) { 3965 xlog_recover_process_iunlinks(log); 3966 } 3967 3968 xlog_recover_check_summary(log); 3969 3970 cmn_err(CE_NOTE, 3971 "Ending XFS recovery on filesystem: %s (logdev: %s)", 3972 log->l_mp->m_fsname, log->l_mp->m_logname ? 3973 log->l_mp->m_logname : "internal"); 3974 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 3975 } else { 3976 cmn_err(CE_DEBUG, 3977 "!Ending clean XFS mount for filesystem: %s", 3978 log->l_mp->m_fsname); 3979 } 3980 return 0; 3981 } 3982 3983 3984 #if defined(DEBUG) 3985 /* 3986 * Read all of the agf and agi counters and check that they 3987 * are consistent with the superblock counters. 3988 */ 3989 void 3990 xlog_recover_check_summary( 3991 xlog_t *log) 3992 { 3993 xfs_mount_t *mp; 3994 xfs_agf_t *agfp; 3995 xfs_agi_t *agip; 3996 xfs_buf_t *agfbp; 3997 xfs_buf_t *agibp; 3998 xfs_daddr_t agfdaddr; 3999 xfs_daddr_t agidaddr; 4000 xfs_buf_t *sbbp; 4001 #ifdef XFS_LOUD_RECOVERY 4002 xfs_sb_t *sbp; 4003 #endif 4004 xfs_agnumber_t agno; 4005 __uint64_t freeblks; 4006 __uint64_t itotal; 4007 __uint64_t ifree; 4008 4009 mp = log->l_mp; 4010 4011 freeblks = 0LL; 4012 itotal = 0LL; 4013 ifree = 0LL; 4014 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 4015 agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp)); 4016 agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr, 4017 XFS_FSS_TO_BB(mp, 1), 0); 4018 if (XFS_BUF_ISERROR(agfbp)) { 4019 xfs_ioerror_alert("xlog_recover_check_summary(agf)", 4020 mp, agfbp, agfdaddr); 4021 } 4022 agfp = XFS_BUF_TO_AGF(agfbp); 4023 ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum)); 4024 ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum))); 4025 ASSERT(be32_to_cpu(agfp->agf_seqno) == agno); 4026 4027 freeblks += be32_to_cpu(agfp->agf_freeblks) + 4028 be32_to_cpu(agfp->agf_flcount); 4029 xfs_buf_relse(agfbp); 4030 4031 agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); 4032 agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr, 4033 XFS_FSS_TO_BB(mp, 1), 0); 4034 if (XFS_BUF_ISERROR(agibp)) { 4035 xfs_ioerror_alert("xlog_recover_check_summary(agi)", 4036 mp, agibp, agidaddr); 4037 } 4038 agip = XFS_BUF_TO_AGI(agibp); 4039 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum)); 4040 ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum))); 4041 ASSERT(be32_to_cpu(agip->agi_seqno) == agno); 4042 4043 itotal += be32_to_cpu(agip->agi_count); 4044 ifree += be32_to_cpu(agip->agi_freecount); 4045 xfs_buf_relse(agibp); 4046 } 4047 4048 sbbp = xfs_getsb(mp, 0); 4049 #ifdef XFS_LOUD_RECOVERY 4050 sbp = &mp->m_sb; 4051 xfs_xlatesb(XFS_BUF_TO_SBP(sbbp), sbp, 1, XFS_SB_ALL_BITS); 4052 cmn_err(CE_NOTE, 4053 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu", 4054 sbp->sb_icount, itotal); 4055 cmn_err(CE_NOTE, 4056 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu", 4057 sbp->sb_ifree, ifree); 4058 cmn_err(CE_NOTE, 4059 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu", 4060 sbp->sb_fdblocks, freeblks); 4061 #if 0 4062 /* 4063 * This is turned off until I account for the allocation 4064 * btree blocks which live in free space. 4065 */ 4066 ASSERT(sbp->sb_icount == itotal); 4067 ASSERT(sbp->sb_ifree == ifree); 4068 ASSERT(sbp->sb_fdblocks == freeblks); 4069 #endif 4070 #endif 4071 xfs_buf_relse(sbbp); 4072 } 4073 #endif /* DEBUG */ 4074