xref: /openbmc/linux/fs/xfs/xfs_log_recover.c (revision 7dd65feb)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_alloc.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_log_priv.h"
42 #include "xfs_buf_item.h"
43 #include "xfs_log_recover.h"
44 #include "xfs_extfree_item.h"
45 #include "xfs_trans_priv.h"
46 #include "xfs_quota.h"
47 #include "xfs_rw.h"
48 #include "xfs_utils.h"
49 #include "xfs_trace.h"
50 
51 STATIC int	xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
52 STATIC int	xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
53 STATIC void	xlog_recover_insert_item_backq(xlog_recover_item_t **q,
54 					       xlog_recover_item_t *item);
55 #if defined(DEBUG)
56 STATIC void	xlog_recover_check_summary(xlog_t *);
57 #else
58 #define	xlog_recover_check_summary(log)
59 #endif
60 
61 
62 /*
63  * Sector aligned buffer routines for buffer create/read/write/access
64  */
65 
66 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs)	\
67 	( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
68 	((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
69 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno)	((bno) & ~(log)->l_sectbb_mask)
70 
71 xfs_buf_t *
72 xlog_get_bp(
73 	xlog_t		*log,
74 	int		nbblks)
75 {
76 	if (nbblks <= 0 || nbblks > log->l_logBBsize) {
77 		xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
78 		XFS_ERROR_REPORT("xlog_get_bp(1)",
79 				 XFS_ERRLEVEL_HIGH, log->l_mp);
80 		return NULL;
81 	}
82 
83 	if (log->l_sectbb_log) {
84 		if (nbblks > 1)
85 			nbblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
86 		nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
87 	}
88 	return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp);
89 }
90 
91 void
92 xlog_put_bp(
93 	xfs_buf_t	*bp)
94 {
95 	xfs_buf_free(bp);
96 }
97 
98 STATIC xfs_caddr_t
99 xlog_align(
100 	xlog_t		*log,
101 	xfs_daddr_t	blk_no,
102 	int		nbblks,
103 	xfs_buf_t	*bp)
104 {
105 	xfs_caddr_t	ptr;
106 
107 	if (!log->l_sectbb_log)
108 		return XFS_BUF_PTR(bp);
109 
110 	ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
111 	ASSERT(XFS_BUF_SIZE(bp) >=
112 		BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
113 	return ptr;
114 }
115 
116 
117 /*
118  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
119  */
120 STATIC int
121 xlog_bread_noalign(
122 	xlog_t		*log,
123 	xfs_daddr_t	blk_no,
124 	int		nbblks,
125 	xfs_buf_t	*bp)
126 {
127 	int		error;
128 
129 	if (nbblks <= 0 || nbblks > log->l_logBBsize) {
130 		xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
131 		XFS_ERROR_REPORT("xlog_bread(1)",
132 				 XFS_ERRLEVEL_HIGH, log->l_mp);
133 		return EFSCORRUPTED;
134 	}
135 
136 	if (log->l_sectbb_log) {
137 		blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
138 		nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
139 	}
140 
141 	ASSERT(nbblks > 0);
142 	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
143 	ASSERT(bp);
144 
145 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
146 	XFS_BUF_READ(bp);
147 	XFS_BUF_BUSY(bp);
148 	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
149 	XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
150 
151 	xfsbdstrat(log->l_mp, bp);
152 	error = xfs_iowait(bp);
153 	if (error)
154 		xfs_ioerror_alert("xlog_bread", log->l_mp,
155 				  bp, XFS_BUF_ADDR(bp));
156 	return error;
157 }
158 
159 STATIC int
160 xlog_bread(
161 	xlog_t		*log,
162 	xfs_daddr_t	blk_no,
163 	int		nbblks,
164 	xfs_buf_t	*bp,
165 	xfs_caddr_t	*offset)
166 {
167 	int		error;
168 
169 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
170 	if (error)
171 		return error;
172 
173 	*offset = xlog_align(log, blk_no, nbblks, bp);
174 	return 0;
175 }
176 
177 /*
178  * Write out the buffer at the given block for the given number of blocks.
179  * The buffer is kept locked across the write and is returned locked.
180  * This can only be used for synchronous log writes.
181  */
182 STATIC int
183 xlog_bwrite(
184 	xlog_t		*log,
185 	xfs_daddr_t	blk_no,
186 	int		nbblks,
187 	xfs_buf_t	*bp)
188 {
189 	int		error;
190 
191 	if (nbblks <= 0 || nbblks > log->l_logBBsize) {
192 		xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
193 		XFS_ERROR_REPORT("xlog_bwrite(1)",
194 				 XFS_ERRLEVEL_HIGH, log->l_mp);
195 		return EFSCORRUPTED;
196 	}
197 
198 	if (log->l_sectbb_log) {
199 		blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
200 		nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
201 	}
202 
203 	ASSERT(nbblks > 0);
204 	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
205 
206 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
207 	XFS_BUF_ZEROFLAGS(bp);
208 	XFS_BUF_BUSY(bp);
209 	XFS_BUF_HOLD(bp);
210 	XFS_BUF_PSEMA(bp, PRIBIO);
211 	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
212 	XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
213 
214 	if ((error = xfs_bwrite(log->l_mp, bp)))
215 		xfs_ioerror_alert("xlog_bwrite", log->l_mp,
216 				  bp, XFS_BUF_ADDR(bp));
217 	return error;
218 }
219 
220 #ifdef DEBUG
221 /*
222  * dump debug superblock and log record information
223  */
224 STATIC void
225 xlog_header_check_dump(
226 	xfs_mount_t		*mp,
227 	xlog_rec_header_t	*head)
228 {
229 	cmn_err(CE_DEBUG, "%s:  SB : uuid = %pU, fmt = %d\n",
230 		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
231 	cmn_err(CE_DEBUG, "    log : uuid = %pU, fmt = %d\n",
232 		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
233 }
234 #else
235 #define xlog_header_check_dump(mp, head)
236 #endif
237 
238 /*
239  * check log record header for recovery
240  */
241 STATIC int
242 xlog_header_check_recover(
243 	xfs_mount_t		*mp,
244 	xlog_rec_header_t	*head)
245 {
246 	ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
247 
248 	/*
249 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
250 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
251 	 * a dirty log created in IRIX.
252 	 */
253 	if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
254 		xlog_warn(
255 	"XFS: dirty log written in incompatible format - can't recover");
256 		xlog_header_check_dump(mp, head);
257 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
258 				 XFS_ERRLEVEL_HIGH, mp);
259 		return XFS_ERROR(EFSCORRUPTED);
260 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
261 		xlog_warn(
262 	"XFS: dirty log entry has mismatched uuid - can't recover");
263 		xlog_header_check_dump(mp, head);
264 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
265 				 XFS_ERRLEVEL_HIGH, mp);
266 		return XFS_ERROR(EFSCORRUPTED);
267 	}
268 	return 0;
269 }
270 
271 /*
272  * read the head block of the log and check the header
273  */
274 STATIC int
275 xlog_header_check_mount(
276 	xfs_mount_t		*mp,
277 	xlog_rec_header_t	*head)
278 {
279 	ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
280 
281 	if (uuid_is_nil(&head->h_fs_uuid)) {
282 		/*
283 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
284 		 * h_fs_uuid is nil, we assume this log was last mounted
285 		 * by IRIX and continue.
286 		 */
287 		xlog_warn("XFS: nil uuid in log - IRIX style log");
288 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
289 		xlog_warn("XFS: log has mismatched uuid - can't recover");
290 		xlog_header_check_dump(mp, head);
291 		XFS_ERROR_REPORT("xlog_header_check_mount",
292 				 XFS_ERRLEVEL_HIGH, mp);
293 		return XFS_ERROR(EFSCORRUPTED);
294 	}
295 	return 0;
296 }
297 
298 STATIC void
299 xlog_recover_iodone(
300 	struct xfs_buf	*bp)
301 {
302 	if (XFS_BUF_GETERROR(bp)) {
303 		/*
304 		 * We're not going to bother about retrying
305 		 * this during recovery. One strike!
306 		 */
307 		xfs_ioerror_alert("xlog_recover_iodone",
308 				  bp->b_mount, bp, XFS_BUF_ADDR(bp));
309 		xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
310 	}
311 	bp->b_mount = NULL;
312 	XFS_BUF_CLR_IODONE_FUNC(bp);
313 	xfs_biodone(bp);
314 }
315 
316 /*
317  * This routine finds (to an approximation) the first block in the physical
318  * log which contains the given cycle.  It uses a binary search algorithm.
319  * Note that the algorithm can not be perfect because the disk will not
320  * necessarily be perfect.
321  */
322 STATIC int
323 xlog_find_cycle_start(
324 	xlog_t		*log,
325 	xfs_buf_t	*bp,
326 	xfs_daddr_t	first_blk,
327 	xfs_daddr_t	*last_blk,
328 	uint		cycle)
329 {
330 	xfs_caddr_t	offset;
331 	xfs_daddr_t	mid_blk;
332 	uint		mid_cycle;
333 	int		error;
334 
335 	mid_blk = BLK_AVG(first_blk, *last_blk);
336 	while (mid_blk != first_blk && mid_blk != *last_blk) {
337 		error = xlog_bread(log, mid_blk, 1, bp, &offset);
338 		if (error)
339 			return error;
340 		mid_cycle = xlog_get_cycle(offset);
341 		if (mid_cycle == cycle) {
342 			*last_blk = mid_blk;
343 			/* last_half_cycle == mid_cycle */
344 		} else {
345 			first_blk = mid_blk;
346 			/* first_half_cycle == mid_cycle */
347 		}
348 		mid_blk = BLK_AVG(first_blk, *last_blk);
349 	}
350 	ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
351 	       (mid_blk == *last_blk && mid_blk-1 == first_blk));
352 
353 	return 0;
354 }
355 
356 /*
357  * Check that the range of blocks does not contain the cycle number
358  * given.  The scan needs to occur from front to back and the ptr into the
359  * region must be updated since a later routine will need to perform another
360  * test.  If the region is completely good, we end up returning the same
361  * last block number.
362  *
363  * Set blkno to -1 if we encounter no errors.  This is an invalid block number
364  * since we don't ever expect logs to get this large.
365  */
366 STATIC int
367 xlog_find_verify_cycle(
368 	xlog_t		*log,
369 	xfs_daddr_t	start_blk,
370 	int		nbblks,
371 	uint		stop_on_cycle_no,
372 	xfs_daddr_t	*new_blk)
373 {
374 	xfs_daddr_t	i, j;
375 	uint		cycle;
376 	xfs_buf_t	*bp;
377 	xfs_daddr_t	bufblks;
378 	xfs_caddr_t	buf = NULL;
379 	int		error = 0;
380 
381 	bufblks = 1 << ffs(nbblks);
382 
383 	while (!(bp = xlog_get_bp(log, bufblks))) {
384 		/* can't get enough memory to do everything in one big buffer */
385 		bufblks >>= 1;
386 		if (bufblks <= log->l_sectbb_log)
387 			return ENOMEM;
388 	}
389 
390 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
391 		int	bcount;
392 
393 		bcount = min(bufblks, (start_blk + nbblks - i));
394 
395 		error = xlog_bread(log, i, bcount, bp, &buf);
396 		if (error)
397 			goto out;
398 
399 		for (j = 0; j < bcount; j++) {
400 			cycle = xlog_get_cycle(buf);
401 			if (cycle == stop_on_cycle_no) {
402 				*new_blk = i+j;
403 				goto out;
404 			}
405 
406 			buf += BBSIZE;
407 		}
408 	}
409 
410 	*new_blk = -1;
411 
412 out:
413 	xlog_put_bp(bp);
414 	return error;
415 }
416 
417 /*
418  * Potentially backup over partial log record write.
419  *
420  * In the typical case, last_blk is the number of the block directly after
421  * a good log record.  Therefore, we subtract one to get the block number
422  * of the last block in the given buffer.  extra_bblks contains the number
423  * of blocks we would have read on a previous read.  This happens when the
424  * last log record is split over the end of the physical log.
425  *
426  * extra_bblks is the number of blocks potentially verified on a previous
427  * call to this routine.
428  */
429 STATIC int
430 xlog_find_verify_log_record(
431 	xlog_t			*log,
432 	xfs_daddr_t		start_blk,
433 	xfs_daddr_t		*last_blk,
434 	int			extra_bblks)
435 {
436 	xfs_daddr_t		i;
437 	xfs_buf_t		*bp;
438 	xfs_caddr_t		offset = NULL;
439 	xlog_rec_header_t	*head = NULL;
440 	int			error = 0;
441 	int			smallmem = 0;
442 	int			num_blks = *last_blk - start_blk;
443 	int			xhdrs;
444 
445 	ASSERT(start_blk != 0 || *last_blk != start_blk);
446 
447 	if (!(bp = xlog_get_bp(log, num_blks))) {
448 		if (!(bp = xlog_get_bp(log, 1)))
449 			return ENOMEM;
450 		smallmem = 1;
451 	} else {
452 		error = xlog_bread(log, start_blk, num_blks, bp, &offset);
453 		if (error)
454 			goto out;
455 		offset += ((num_blks - 1) << BBSHIFT);
456 	}
457 
458 	for (i = (*last_blk) - 1; i >= 0; i--) {
459 		if (i < start_blk) {
460 			/* valid log record not found */
461 			xlog_warn(
462 		"XFS: Log inconsistent (didn't find previous header)");
463 			ASSERT(0);
464 			error = XFS_ERROR(EIO);
465 			goto out;
466 		}
467 
468 		if (smallmem) {
469 			error = xlog_bread(log, i, 1, bp, &offset);
470 			if (error)
471 				goto out;
472 		}
473 
474 		head = (xlog_rec_header_t *)offset;
475 
476 		if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
477 			break;
478 
479 		if (!smallmem)
480 			offset -= BBSIZE;
481 	}
482 
483 	/*
484 	 * We hit the beginning of the physical log & still no header.  Return
485 	 * to caller.  If caller can handle a return of -1, then this routine
486 	 * will be called again for the end of the physical log.
487 	 */
488 	if (i == -1) {
489 		error = -1;
490 		goto out;
491 	}
492 
493 	/*
494 	 * We have the final block of the good log (the first block
495 	 * of the log record _before_ the head. So we check the uuid.
496 	 */
497 	if ((error = xlog_header_check_mount(log->l_mp, head)))
498 		goto out;
499 
500 	/*
501 	 * We may have found a log record header before we expected one.
502 	 * last_blk will be the 1st block # with a given cycle #.  We may end
503 	 * up reading an entire log record.  In this case, we don't want to
504 	 * reset last_blk.  Only when last_blk points in the middle of a log
505 	 * record do we update last_blk.
506 	 */
507 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
508 		uint	h_size = be32_to_cpu(head->h_size);
509 
510 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
511 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
512 			xhdrs++;
513 	} else {
514 		xhdrs = 1;
515 	}
516 
517 	if (*last_blk - i + extra_bblks !=
518 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
519 		*last_blk = i;
520 
521 out:
522 	xlog_put_bp(bp);
523 	return error;
524 }
525 
526 /*
527  * Head is defined to be the point of the log where the next log write
528  * write could go.  This means that incomplete LR writes at the end are
529  * eliminated when calculating the head.  We aren't guaranteed that previous
530  * LR have complete transactions.  We only know that a cycle number of
531  * current cycle number -1 won't be present in the log if we start writing
532  * from our current block number.
533  *
534  * last_blk contains the block number of the first block with a given
535  * cycle number.
536  *
537  * Return: zero if normal, non-zero if error.
538  */
539 STATIC int
540 xlog_find_head(
541 	xlog_t 		*log,
542 	xfs_daddr_t	*return_head_blk)
543 {
544 	xfs_buf_t	*bp;
545 	xfs_caddr_t	offset;
546 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
547 	int		num_scan_bblks;
548 	uint		first_half_cycle, last_half_cycle;
549 	uint		stop_on_cycle;
550 	int		error, log_bbnum = log->l_logBBsize;
551 
552 	/* Is the end of the log device zeroed? */
553 	if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
554 		*return_head_blk = first_blk;
555 
556 		/* Is the whole lot zeroed? */
557 		if (!first_blk) {
558 			/* Linux XFS shouldn't generate totally zeroed logs -
559 			 * mkfs etc write a dummy unmount record to a fresh
560 			 * log so we can store the uuid in there
561 			 */
562 			xlog_warn("XFS: totally zeroed log");
563 		}
564 
565 		return 0;
566 	} else if (error) {
567 		xlog_warn("XFS: empty log check failed");
568 		return error;
569 	}
570 
571 	first_blk = 0;			/* get cycle # of 1st block */
572 	bp = xlog_get_bp(log, 1);
573 	if (!bp)
574 		return ENOMEM;
575 
576 	error = xlog_bread(log, 0, 1, bp, &offset);
577 	if (error)
578 		goto bp_err;
579 
580 	first_half_cycle = xlog_get_cycle(offset);
581 
582 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
583 	error = xlog_bread(log, last_blk, 1, bp, &offset);
584 	if (error)
585 		goto bp_err;
586 
587 	last_half_cycle = xlog_get_cycle(offset);
588 	ASSERT(last_half_cycle != 0);
589 
590 	/*
591 	 * If the 1st half cycle number is equal to the last half cycle number,
592 	 * then the entire log is stamped with the same cycle number.  In this
593 	 * case, head_blk can't be set to zero (which makes sense).  The below
594 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
595 	 * we set it to log_bbnum which is an invalid block number, but this
596 	 * value makes the math correct.  If head_blk doesn't changed through
597 	 * all the tests below, *head_blk is set to zero at the very end rather
598 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
599 	 * in a circular file.
600 	 */
601 	if (first_half_cycle == last_half_cycle) {
602 		/*
603 		 * In this case we believe that the entire log should have
604 		 * cycle number last_half_cycle.  We need to scan backwards
605 		 * from the end verifying that there are no holes still
606 		 * containing last_half_cycle - 1.  If we find such a hole,
607 		 * then the start of that hole will be the new head.  The
608 		 * simple case looks like
609 		 *        x | x ... | x - 1 | x
610 		 * Another case that fits this picture would be
611 		 *        x | x + 1 | x ... | x
612 		 * In this case the head really is somewhere at the end of the
613 		 * log, as one of the latest writes at the beginning was
614 		 * incomplete.
615 		 * One more case is
616 		 *        x | x + 1 | x ... | x - 1 | x
617 		 * This is really the combination of the above two cases, and
618 		 * the head has to end up at the start of the x-1 hole at the
619 		 * end of the log.
620 		 *
621 		 * In the 256k log case, we will read from the beginning to the
622 		 * end of the log and search for cycle numbers equal to x-1.
623 		 * We don't worry about the x+1 blocks that we encounter,
624 		 * because we know that they cannot be the head since the log
625 		 * started with x.
626 		 */
627 		head_blk = log_bbnum;
628 		stop_on_cycle = last_half_cycle - 1;
629 	} else {
630 		/*
631 		 * In this case we want to find the first block with cycle
632 		 * number matching last_half_cycle.  We expect the log to be
633 		 * some variation on
634 		 *        x + 1 ... | x ...
635 		 * The first block with cycle number x (last_half_cycle) will
636 		 * be where the new head belongs.  First we do a binary search
637 		 * for the first occurrence of last_half_cycle.  The binary
638 		 * search may not be totally accurate, so then we scan back
639 		 * from there looking for occurrences of last_half_cycle before
640 		 * us.  If that backwards scan wraps around the beginning of
641 		 * the log, then we look for occurrences of last_half_cycle - 1
642 		 * at the end of the log.  The cases we're looking for look
643 		 * like
644 		 *        x + 1 ... | x | x + 1 | x ...
645 		 *                               ^ binary search stopped here
646 		 * or
647 		 *        x + 1 ... | x ... | x - 1 | x
648 		 *        <---------> less than scan distance
649 		 */
650 		stop_on_cycle = last_half_cycle;
651 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
652 						&head_blk, last_half_cycle)))
653 			goto bp_err;
654 	}
655 
656 	/*
657 	 * Now validate the answer.  Scan back some number of maximum possible
658 	 * blocks and make sure each one has the expected cycle number.  The
659 	 * maximum is determined by the total possible amount of buffering
660 	 * in the in-core log.  The following number can be made tighter if
661 	 * we actually look at the block size of the filesystem.
662 	 */
663 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
664 	if (head_blk >= num_scan_bblks) {
665 		/*
666 		 * We are guaranteed that the entire check can be performed
667 		 * in one buffer.
668 		 */
669 		start_blk = head_blk - num_scan_bblks;
670 		if ((error = xlog_find_verify_cycle(log,
671 						start_blk, num_scan_bblks,
672 						stop_on_cycle, &new_blk)))
673 			goto bp_err;
674 		if (new_blk != -1)
675 			head_blk = new_blk;
676 	} else {		/* need to read 2 parts of log */
677 		/*
678 		 * We are going to scan backwards in the log in two parts.
679 		 * First we scan the physical end of the log.  In this part
680 		 * of the log, we are looking for blocks with cycle number
681 		 * last_half_cycle - 1.
682 		 * If we find one, then we know that the log starts there, as
683 		 * we've found a hole that didn't get written in going around
684 		 * the end of the physical log.  The simple case for this is
685 		 *        x + 1 ... | x ... | x - 1 | x
686 		 *        <---------> less than scan distance
687 		 * If all of the blocks at the end of the log have cycle number
688 		 * last_half_cycle, then we check the blocks at the start of
689 		 * the log looking for occurrences of last_half_cycle.  If we
690 		 * find one, then our current estimate for the location of the
691 		 * first occurrence of last_half_cycle is wrong and we move
692 		 * back to the hole we've found.  This case looks like
693 		 *        x + 1 ... | x | x + 1 | x ...
694 		 *                               ^ binary search stopped here
695 		 * Another case we need to handle that only occurs in 256k
696 		 * logs is
697 		 *        x + 1 ... | x ... | x+1 | x ...
698 		 *                   ^ binary search stops here
699 		 * In a 256k log, the scan at the end of the log will see the
700 		 * x + 1 blocks.  We need to skip past those since that is
701 		 * certainly not the head of the log.  By searching for
702 		 * last_half_cycle-1 we accomplish that.
703 		 */
704 		start_blk = log_bbnum - num_scan_bblks + head_blk;
705 		ASSERT(head_blk <= INT_MAX &&
706 			(xfs_daddr_t) num_scan_bblks - head_blk >= 0);
707 		if ((error = xlog_find_verify_cycle(log, start_blk,
708 					num_scan_bblks - (int)head_blk,
709 					(stop_on_cycle - 1), &new_blk)))
710 			goto bp_err;
711 		if (new_blk != -1) {
712 			head_blk = new_blk;
713 			goto bad_blk;
714 		}
715 
716 		/*
717 		 * Scan beginning of log now.  The last part of the physical
718 		 * log is good.  This scan needs to verify that it doesn't find
719 		 * the last_half_cycle.
720 		 */
721 		start_blk = 0;
722 		ASSERT(head_blk <= INT_MAX);
723 		if ((error = xlog_find_verify_cycle(log,
724 					start_blk, (int)head_blk,
725 					stop_on_cycle, &new_blk)))
726 			goto bp_err;
727 		if (new_blk != -1)
728 			head_blk = new_blk;
729 	}
730 
731  bad_blk:
732 	/*
733 	 * Now we need to make sure head_blk is not pointing to a block in
734 	 * the middle of a log record.
735 	 */
736 	num_scan_bblks = XLOG_REC_SHIFT(log);
737 	if (head_blk >= num_scan_bblks) {
738 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
739 
740 		/* start ptr at last block ptr before head_blk */
741 		if ((error = xlog_find_verify_log_record(log, start_blk,
742 							&head_blk, 0)) == -1) {
743 			error = XFS_ERROR(EIO);
744 			goto bp_err;
745 		} else if (error)
746 			goto bp_err;
747 	} else {
748 		start_blk = 0;
749 		ASSERT(head_blk <= INT_MAX);
750 		if ((error = xlog_find_verify_log_record(log, start_blk,
751 							&head_blk, 0)) == -1) {
752 			/* We hit the beginning of the log during our search */
753 			start_blk = log_bbnum - num_scan_bblks + head_blk;
754 			new_blk = log_bbnum;
755 			ASSERT(start_blk <= INT_MAX &&
756 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
757 			ASSERT(head_blk <= INT_MAX);
758 			if ((error = xlog_find_verify_log_record(log,
759 							start_blk, &new_blk,
760 							(int)head_blk)) == -1) {
761 				error = XFS_ERROR(EIO);
762 				goto bp_err;
763 			} else if (error)
764 				goto bp_err;
765 			if (new_blk != log_bbnum)
766 				head_blk = new_blk;
767 		} else if (error)
768 			goto bp_err;
769 	}
770 
771 	xlog_put_bp(bp);
772 	if (head_blk == log_bbnum)
773 		*return_head_blk = 0;
774 	else
775 		*return_head_blk = head_blk;
776 	/*
777 	 * When returning here, we have a good block number.  Bad block
778 	 * means that during a previous crash, we didn't have a clean break
779 	 * from cycle number N to cycle number N-1.  In this case, we need
780 	 * to find the first block with cycle number N-1.
781 	 */
782 	return 0;
783 
784  bp_err:
785 	xlog_put_bp(bp);
786 
787 	if (error)
788 	    xlog_warn("XFS: failed to find log head");
789 	return error;
790 }
791 
792 /*
793  * Find the sync block number or the tail of the log.
794  *
795  * This will be the block number of the last record to have its
796  * associated buffers synced to disk.  Every log record header has
797  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
798  * to get a sync block number.  The only concern is to figure out which
799  * log record header to believe.
800  *
801  * The following algorithm uses the log record header with the largest
802  * lsn.  The entire log record does not need to be valid.  We only care
803  * that the header is valid.
804  *
805  * We could speed up search by using current head_blk buffer, but it is not
806  * available.
807  */
808 int
809 xlog_find_tail(
810 	xlog_t			*log,
811 	xfs_daddr_t		*head_blk,
812 	xfs_daddr_t		*tail_blk)
813 {
814 	xlog_rec_header_t	*rhead;
815 	xlog_op_header_t	*op_head;
816 	xfs_caddr_t		offset = NULL;
817 	xfs_buf_t		*bp;
818 	int			error, i, found;
819 	xfs_daddr_t		umount_data_blk;
820 	xfs_daddr_t		after_umount_blk;
821 	xfs_lsn_t		tail_lsn;
822 	int			hblks;
823 
824 	found = 0;
825 
826 	/*
827 	 * Find previous log record
828 	 */
829 	if ((error = xlog_find_head(log, head_blk)))
830 		return error;
831 
832 	bp = xlog_get_bp(log, 1);
833 	if (!bp)
834 		return ENOMEM;
835 	if (*head_blk == 0) {				/* special case */
836 		error = xlog_bread(log, 0, 1, bp, &offset);
837 		if (error)
838 			goto bread_err;
839 
840 		if (xlog_get_cycle(offset) == 0) {
841 			*tail_blk = 0;
842 			/* leave all other log inited values alone */
843 			goto exit;
844 		}
845 	}
846 
847 	/*
848 	 * Search backwards looking for log record header block
849 	 */
850 	ASSERT(*head_blk < INT_MAX);
851 	for (i = (int)(*head_blk) - 1; i >= 0; i--) {
852 		error = xlog_bread(log, i, 1, bp, &offset);
853 		if (error)
854 			goto bread_err;
855 
856 		if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
857 			found = 1;
858 			break;
859 		}
860 	}
861 	/*
862 	 * If we haven't found the log record header block, start looking
863 	 * again from the end of the physical log.  XXXmiken: There should be
864 	 * a check here to make sure we didn't search more than N blocks in
865 	 * the previous code.
866 	 */
867 	if (!found) {
868 		for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
869 			error = xlog_bread(log, i, 1, bp, &offset);
870 			if (error)
871 				goto bread_err;
872 
873 			if (XLOG_HEADER_MAGIC_NUM ==
874 			    be32_to_cpu(*(__be32 *)offset)) {
875 				found = 2;
876 				break;
877 			}
878 		}
879 	}
880 	if (!found) {
881 		xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
882 		ASSERT(0);
883 		return XFS_ERROR(EIO);
884 	}
885 
886 	/* find blk_no of tail of log */
887 	rhead = (xlog_rec_header_t *)offset;
888 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
889 
890 	/*
891 	 * Reset log values according to the state of the log when we
892 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
893 	 * one because the next write starts a new cycle rather than
894 	 * continuing the cycle of the last good log record.  At this
895 	 * point we have guaranteed that all partial log records have been
896 	 * accounted for.  Therefore, we know that the last good log record
897 	 * written was complete and ended exactly on the end boundary
898 	 * of the physical log.
899 	 */
900 	log->l_prev_block = i;
901 	log->l_curr_block = (int)*head_blk;
902 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
903 	if (found == 2)
904 		log->l_curr_cycle++;
905 	log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
906 	log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
907 	log->l_grant_reserve_cycle = log->l_curr_cycle;
908 	log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
909 	log->l_grant_write_cycle = log->l_curr_cycle;
910 	log->l_grant_write_bytes = BBTOB(log->l_curr_block);
911 
912 	/*
913 	 * Look for unmount record.  If we find it, then we know there
914 	 * was a clean unmount.  Since 'i' could be the last block in
915 	 * the physical log, we convert to a log block before comparing
916 	 * to the head_blk.
917 	 *
918 	 * Save the current tail lsn to use to pass to
919 	 * xlog_clear_stale_blocks() below.  We won't want to clear the
920 	 * unmount record if there is one, so we pass the lsn of the
921 	 * unmount record rather than the block after it.
922 	 */
923 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
924 		int	h_size = be32_to_cpu(rhead->h_size);
925 		int	h_version = be32_to_cpu(rhead->h_version);
926 
927 		if ((h_version & XLOG_VERSION_2) &&
928 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
929 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
930 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
931 				hblks++;
932 		} else {
933 			hblks = 1;
934 		}
935 	} else {
936 		hblks = 1;
937 	}
938 	after_umount_blk = (i + hblks + (int)
939 		BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
940 	tail_lsn = log->l_tail_lsn;
941 	if (*head_blk == after_umount_blk &&
942 	    be32_to_cpu(rhead->h_num_logops) == 1) {
943 		umount_data_blk = (i + hblks) % log->l_logBBsize;
944 		error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
945 		if (error)
946 			goto bread_err;
947 
948 		op_head = (xlog_op_header_t *)offset;
949 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
950 			/*
951 			 * Set tail and last sync so that newly written
952 			 * log records will point recovery to after the
953 			 * current unmount record.
954 			 */
955 			log->l_tail_lsn =
956 				xlog_assign_lsn(log->l_curr_cycle,
957 						after_umount_blk);
958 			log->l_last_sync_lsn =
959 				xlog_assign_lsn(log->l_curr_cycle,
960 						after_umount_blk);
961 			*tail_blk = after_umount_blk;
962 
963 			/*
964 			 * Note that the unmount was clean. If the unmount
965 			 * was not clean, we need to know this to rebuild the
966 			 * superblock counters from the perag headers if we
967 			 * have a filesystem using non-persistent counters.
968 			 */
969 			log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
970 		}
971 	}
972 
973 	/*
974 	 * Make sure that there are no blocks in front of the head
975 	 * with the same cycle number as the head.  This can happen
976 	 * because we allow multiple outstanding log writes concurrently,
977 	 * and the later writes might make it out before earlier ones.
978 	 *
979 	 * We use the lsn from before modifying it so that we'll never
980 	 * overwrite the unmount record after a clean unmount.
981 	 *
982 	 * Do this only if we are going to recover the filesystem
983 	 *
984 	 * NOTE: This used to say "if (!readonly)"
985 	 * However on Linux, we can & do recover a read-only filesystem.
986 	 * We only skip recovery if NORECOVERY is specified on mount,
987 	 * in which case we would not be here.
988 	 *
989 	 * But... if the -device- itself is readonly, just skip this.
990 	 * We can't recover this device anyway, so it won't matter.
991 	 */
992 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
993 		error = xlog_clear_stale_blocks(log, tail_lsn);
994 	}
995 
996 bread_err:
997 exit:
998 	xlog_put_bp(bp);
999 
1000 	if (error)
1001 		xlog_warn("XFS: failed to locate log tail");
1002 	return error;
1003 }
1004 
1005 /*
1006  * Is the log zeroed at all?
1007  *
1008  * The last binary search should be changed to perform an X block read
1009  * once X becomes small enough.  You can then search linearly through
1010  * the X blocks.  This will cut down on the number of reads we need to do.
1011  *
1012  * If the log is partially zeroed, this routine will pass back the blkno
1013  * of the first block with cycle number 0.  It won't have a complete LR
1014  * preceding it.
1015  *
1016  * Return:
1017  *	0  => the log is completely written to
1018  *	-1 => use *blk_no as the first block of the log
1019  *	>0 => error has occurred
1020  */
1021 STATIC int
1022 xlog_find_zeroed(
1023 	xlog_t		*log,
1024 	xfs_daddr_t	*blk_no)
1025 {
1026 	xfs_buf_t	*bp;
1027 	xfs_caddr_t	offset;
1028 	uint	        first_cycle, last_cycle;
1029 	xfs_daddr_t	new_blk, last_blk, start_blk;
1030 	xfs_daddr_t     num_scan_bblks;
1031 	int	        error, log_bbnum = log->l_logBBsize;
1032 
1033 	*blk_no = 0;
1034 
1035 	/* check totally zeroed log */
1036 	bp = xlog_get_bp(log, 1);
1037 	if (!bp)
1038 		return ENOMEM;
1039 	error = xlog_bread(log, 0, 1, bp, &offset);
1040 	if (error)
1041 		goto bp_err;
1042 
1043 	first_cycle = xlog_get_cycle(offset);
1044 	if (first_cycle == 0) {		/* completely zeroed log */
1045 		*blk_no = 0;
1046 		xlog_put_bp(bp);
1047 		return -1;
1048 	}
1049 
1050 	/* check partially zeroed log */
1051 	error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1052 	if (error)
1053 		goto bp_err;
1054 
1055 	last_cycle = xlog_get_cycle(offset);
1056 	if (last_cycle != 0) {		/* log completely written to */
1057 		xlog_put_bp(bp);
1058 		return 0;
1059 	} else if (first_cycle != 1) {
1060 		/*
1061 		 * If the cycle of the last block is zero, the cycle of
1062 		 * the first block must be 1. If it's not, maybe we're
1063 		 * not looking at a log... Bail out.
1064 		 */
1065 		xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1066 		return XFS_ERROR(EINVAL);
1067 	}
1068 
1069 	/* we have a partially zeroed log */
1070 	last_blk = log_bbnum-1;
1071 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1072 		goto bp_err;
1073 
1074 	/*
1075 	 * Validate the answer.  Because there is no way to guarantee that
1076 	 * the entire log is made up of log records which are the same size,
1077 	 * we scan over the defined maximum blocks.  At this point, the maximum
1078 	 * is not chosen to mean anything special.   XXXmiken
1079 	 */
1080 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1081 	ASSERT(num_scan_bblks <= INT_MAX);
1082 
1083 	if (last_blk < num_scan_bblks)
1084 		num_scan_bblks = last_blk;
1085 	start_blk = last_blk - num_scan_bblks;
1086 
1087 	/*
1088 	 * We search for any instances of cycle number 0 that occur before
1089 	 * our current estimate of the head.  What we're trying to detect is
1090 	 *        1 ... | 0 | 1 | 0...
1091 	 *                       ^ binary search ends here
1092 	 */
1093 	if ((error = xlog_find_verify_cycle(log, start_blk,
1094 					 (int)num_scan_bblks, 0, &new_blk)))
1095 		goto bp_err;
1096 	if (new_blk != -1)
1097 		last_blk = new_blk;
1098 
1099 	/*
1100 	 * Potentially backup over partial log record write.  We don't need
1101 	 * to search the end of the log because we know it is zero.
1102 	 */
1103 	if ((error = xlog_find_verify_log_record(log, start_blk,
1104 				&last_blk, 0)) == -1) {
1105 	    error = XFS_ERROR(EIO);
1106 	    goto bp_err;
1107 	} else if (error)
1108 	    goto bp_err;
1109 
1110 	*blk_no = last_blk;
1111 bp_err:
1112 	xlog_put_bp(bp);
1113 	if (error)
1114 		return error;
1115 	return -1;
1116 }
1117 
1118 /*
1119  * These are simple subroutines used by xlog_clear_stale_blocks() below
1120  * to initialize a buffer full of empty log record headers and write
1121  * them into the log.
1122  */
1123 STATIC void
1124 xlog_add_record(
1125 	xlog_t			*log,
1126 	xfs_caddr_t		buf,
1127 	int			cycle,
1128 	int			block,
1129 	int			tail_cycle,
1130 	int			tail_block)
1131 {
1132 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1133 
1134 	memset(buf, 0, BBSIZE);
1135 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1136 	recp->h_cycle = cpu_to_be32(cycle);
1137 	recp->h_version = cpu_to_be32(
1138 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1139 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1140 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1141 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1142 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1143 }
1144 
1145 STATIC int
1146 xlog_write_log_records(
1147 	xlog_t		*log,
1148 	int		cycle,
1149 	int		start_block,
1150 	int		blocks,
1151 	int		tail_cycle,
1152 	int		tail_block)
1153 {
1154 	xfs_caddr_t	offset;
1155 	xfs_buf_t	*bp;
1156 	int		balign, ealign;
1157 	int		sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1158 	int		end_block = start_block + blocks;
1159 	int		bufblks;
1160 	int		error = 0;
1161 	int		i, j = 0;
1162 
1163 	bufblks = 1 << ffs(blocks);
1164 	while (!(bp = xlog_get_bp(log, bufblks))) {
1165 		bufblks >>= 1;
1166 		if (bufblks <= log->l_sectbb_log)
1167 			return ENOMEM;
1168 	}
1169 
1170 	/* We may need to do a read at the start to fill in part of
1171 	 * the buffer in the starting sector not covered by the first
1172 	 * write below.
1173 	 */
1174 	balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1175 	if (balign != start_block) {
1176 		error = xlog_bread_noalign(log, start_block, 1, bp);
1177 		if (error)
1178 			goto out_put_bp;
1179 
1180 		j = start_block - balign;
1181 	}
1182 
1183 	for (i = start_block; i < end_block; i += bufblks) {
1184 		int		bcount, endcount;
1185 
1186 		bcount = min(bufblks, end_block - start_block);
1187 		endcount = bcount - j;
1188 
1189 		/* We may need to do a read at the end to fill in part of
1190 		 * the buffer in the final sector not covered by the write.
1191 		 * If this is the same sector as the above read, skip it.
1192 		 */
1193 		ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1194 		if (j == 0 && (start_block + endcount > ealign)) {
1195 			offset = XFS_BUF_PTR(bp);
1196 			balign = BBTOB(ealign - start_block);
1197 			error = XFS_BUF_SET_PTR(bp, offset + balign,
1198 						BBTOB(sectbb));
1199 			if (error)
1200 				break;
1201 
1202 			error = xlog_bread_noalign(log, ealign, sectbb, bp);
1203 			if (error)
1204 				break;
1205 
1206 			error = XFS_BUF_SET_PTR(bp, offset, bufblks);
1207 			if (error)
1208 				break;
1209 		}
1210 
1211 		offset = xlog_align(log, start_block, endcount, bp);
1212 		for (; j < endcount; j++) {
1213 			xlog_add_record(log, offset, cycle, i+j,
1214 					tail_cycle, tail_block);
1215 			offset += BBSIZE;
1216 		}
1217 		error = xlog_bwrite(log, start_block, endcount, bp);
1218 		if (error)
1219 			break;
1220 		start_block += endcount;
1221 		j = 0;
1222 	}
1223 
1224  out_put_bp:
1225 	xlog_put_bp(bp);
1226 	return error;
1227 }
1228 
1229 /*
1230  * This routine is called to blow away any incomplete log writes out
1231  * in front of the log head.  We do this so that we won't become confused
1232  * if we come up, write only a little bit more, and then crash again.
1233  * If we leave the partial log records out there, this situation could
1234  * cause us to think those partial writes are valid blocks since they
1235  * have the current cycle number.  We get rid of them by overwriting them
1236  * with empty log records with the old cycle number rather than the
1237  * current one.
1238  *
1239  * The tail lsn is passed in rather than taken from
1240  * the log so that we will not write over the unmount record after a
1241  * clean unmount in a 512 block log.  Doing so would leave the log without
1242  * any valid log records in it until a new one was written.  If we crashed
1243  * during that time we would not be able to recover.
1244  */
1245 STATIC int
1246 xlog_clear_stale_blocks(
1247 	xlog_t		*log,
1248 	xfs_lsn_t	tail_lsn)
1249 {
1250 	int		tail_cycle, head_cycle;
1251 	int		tail_block, head_block;
1252 	int		tail_distance, max_distance;
1253 	int		distance;
1254 	int		error;
1255 
1256 	tail_cycle = CYCLE_LSN(tail_lsn);
1257 	tail_block = BLOCK_LSN(tail_lsn);
1258 	head_cycle = log->l_curr_cycle;
1259 	head_block = log->l_curr_block;
1260 
1261 	/*
1262 	 * Figure out the distance between the new head of the log
1263 	 * and the tail.  We want to write over any blocks beyond the
1264 	 * head that we may have written just before the crash, but
1265 	 * we don't want to overwrite the tail of the log.
1266 	 */
1267 	if (head_cycle == tail_cycle) {
1268 		/*
1269 		 * The tail is behind the head in the physical log,
1270 		 * so the distance from the head to the tail is the
1271 		 * distance from the head to the end of the log plus
1272 		 * the distance from the beginning of the log to the
1273 		 * tail.
1274 		 */
1275 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1276 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1277 					 XFS_ERRLEVEL_LOW, log->l_mp);
1278 			return XFS_ERROR(EFSCORRUPTED);
1279 		}
1280 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1281 	} else {
1282 		/*
1283 		 * The head is behind the tail in the physical log,
1284 		 * so the distance from the head to the tail is just
1285 		 * the tail block minus the head block.
1286 		 */
1287 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1288 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1289 					 XFS_ERRLEVEL_LOW, log->l_mp);
1290 			return XFS_ERROR(EFSCORRUPTED);
1291 		}
1292 		tail_distance = tail_block - head_block;
1293 	}
1294 
1295 	/*
1296 	 * If the head is right up against the tail, we can't clear
1297 	 * anything.
1298 	 */
1299 	if (tail_distance <= 0) {
1300 		ASSERT(tail_distance == 0);
1301 		return 0;
1302 	}
1303 
1304 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1305 	/*
1306 	 * Take the smaller of the maximum amount of outstanding I/O
1307 	 * we could have and the distance to the tail to clear out.
1308 	 * We take the smaller so that we don't overwrite the tail and
1309 	 * we don't waste all day writing from the head to the tail
1310 	 * for no reason.
1311 	 */
1312 	max_distance = MIN(max_distance, tail_distance);
1313 
1314 	if ((head_block + max_distance) <= log->l_logBBsize) {
1315 		/*
1316 		 * We can stomp all the blocks we need to without
1317 		 * wrapping around the end of the log.  Just do it
1318 		 * in a single write.  Use the cycle number of the
1319 		 * current cycle minus one so that the log will look like:
1320 		 *     n ... | n - 1 ...
1321 		 */
1322 		error = xlog_write_log_records(log, (head_cycle - 1),
1323 				head_block, max_distance, tail_cycle,
1324 				tail_block);
1325 		if (error)
1326 			return error;
1327 	} else {
1328 		/*
1329 		 * We need to wrap around the end of the physical log in
1330 		 * order to clear all the blocks.  Do it in two separate
1331 		 * I/Os.  The first write should be from the head to the
1332 		 * end of the physical log, and it should use the current
1333 		 * cycle number minus one just like above.
1334 		 */
1335 		distance = log->l_logBBsize - head_block;
1336 		error = xlog_write_log_records(log, (head_cycle - 1),
1337 				head_block, distance, tail_cycle,
1338 				tail_block);
1339 
1340 		if (error)
1341 			return error;
1342 
1343 		/*
1344 		 * Now write the blocks at the start of the physical log.
1345 		 * This writes the remainder of the blocks we want to clear.
1346 		 * It uses the current cycle number since we're now on the
1347 		 * same cycle as the head so that we get:
1348 		 *    n ... n ... | n - 1 ...
1349 		 *    ^^^^^ blocks we're writing
1350 		 */
1351 		distance = max_distance - (log->l_logBBsize - head_block);
1352 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1353 				tail_cycle, tail_block);
1354 		if (error)
1355 			return error;
1356 	}
1357 
1358 	return 0;
1359 }
1360 
1361 /******************************************************************************
1362  *
1363  *		Log recover routines
1364  *
1365  ******************************************************************************
1366  */
1367 
1368 STATIC xlog_recover_t *
1369 xlog_recover_find_tid(
1370 	xlog_recover_t		*q,
1371 	xlog_tid_t		tid)
1372 {
1373 	xlog_recover_t		*p = q;
1374 
1375 	while (p != NULL) {
1376 		if (p->r_log_tid == tid)
1377 		    break;
1378 		p = p->r_next;
1379 	}
1380 	return p;
1381 }
1382 
1383 STATIC void
1384 xlog_recover_put_hashq(
1385 	xlog_recover_t		**q,
1386 	xlog_recover_t		*trans)
1387 {
1388 	trans->r_next = *q;
1389 	*q = trans;
1390 }
1391 
1392 STATIC void
1393 xlog_recover_add_item(
1394 	xlog_recover_item_t	**itemq)
1395 {
1396 	xlog_recover_item_t	*item;
1397 
1398 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1399 	xlog_recover_insert_item_backq(itemq, item);
1400 }
1401 
1402 STATIC int
1403 xlog_recover_add_to_cont_trans(
1404 	xlog_recover_t		*trans,
1405 	xfs_caddr_t		dp,
1406 	int			len)
1407 {
1408 	xlog_recover_item_t	*item;
1409 	xfs_caddr_t		ptr, old_ptr;
1410 	int			old_len;
1411 
1412 	item = trans->r_itemq;
1413 	if (item == NULL) {
1414 		/* finish copying rest of trans header */
1415 		xlog_recover_add_item(&trans->r_itemq);
1416 		ptr = (xfs_caddr_t) &trans->r_theader +
1417 				sizeof(xfs_trans_header_t) - len;
1418 		memcpy(ptr, dp, len); /* d, s, l */
1419 		return 0;
1420 	}
1421 	item = item->ri_prev;
1422 
1423 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1424 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
1425 
1426 	ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1427 	memcpy(&ptr[old_len], dp, len); /* d, s, l */
1428 	item->ri_buf[item->ri_cnt-1].i_len += len;
1429 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1430 	return 0;
1431 }
1432 
1433 /*
1434  * The next region to add is the start of a new region.  It could be
1435  * a whole region or it could be the first part of a new region.  Because
1436  * of this, the assumption here is that the type and size fields of all
1437  * format structures fit into the first 32 bits of the structure.
1438  *
1439  * This works because all regions must be 32 bit aligned.  Therefore, we
1440  * either have both fields or we have neither field.  In the case we have
1441  * neither field, the data part of the region is zero length.  We only have
1442  * a log_op_header and can throw away the header since a new one will appear
1443  * later.  If we have at least 4 bytes, then we can determine how many regions
1444  * will appear in the current log item.
1445  */
1446 STATIC int
1447 xlog_recover_add_to_trans(
1448 	xlog_recover_t		*trans,
1449 	xfs_caddr_t		dp,
1450 	int			len)
1451 {
1452 	xfs_inode_log_format_t	*in_f;			/* any will do */
1453 	xlog_recover_item_t	*item;
1454 	xfs_caddr_t		ptr;
1455 
1456 	if (!len)
1457 		return 0;
1458 	item = trans->r_itemq;
1459 	if (item == NULL) {
1460 		/* we need to catch log corruptions here */
1461 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1462 			xlog_warn("XFS: xlog_recover_add_to_trans: "
1463 				  "bad header magic number");
1464 			ASSERT(0);
1465 			return XFS_ERROR(EIO);
1466 		}
1467 		if (len == sizeof(xfs_trans_header_t))
1468 			xlog_recover_add_item(&trans->r_itemq);
1469 		memcpy(&trans->r_theader, dp, len); /* d, s, l */
1470 		return 0;
1471 	}
1472 
1473 	ptr = kmem_alloc(len, KM_SLEEP);
1474 	memcpy(ptr, dp, len);
1475 	in_f = (xfs_inode_log_format_t *)ptr;
1476 
1477 	if (item->ri_prev->ri_total != 0 &&
1478 	     item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1479 		xlog_recover_add_item(&trans->r_itemq);
1480 	}
1481 	item = trans->r_itemq;
1482 	item = item->ri_prev;
1483 
1484 	if (item->ri_total == 0) {		/* first region to be added */
1485 		if (in_f->ilf_size == 0 ||
1486 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1487 			xlog_warn(
1488 	"XFS: bad number of regions (%d) in inode log format",
1489 				  in_f->ilf_size);
1490 			ASSERT(0);
1491 			return XFS_ERROR(EIO);
1492 		}
1493 
1494 		item->ri_total = in_f->ilf_size;
1495 		item->ri_buf =
1496 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1497 				    KM_SLEEP);
1498 	}
1499 	ASSERT(item->ri_total > item->ri_cnt);
1500 	/* Description region is ri_buf[0] */
1501 	item->ri_buf[item->ri_cnt].i_addr = ptr;
1502 	item->ri_buf[item->ri_cnt].i_len  = len;
1503 	item->ri_cnt++;
1504 	return 0;
1505 }
1506 
1507 STATIC void
1508 xlog_recover_new_tid(
1509 	xlog_recover_t		**q,
1510 	xlog_tid_t		tid,
1511 	xfs_lsn_t		lsn)
1512 {
1513 	xlog_recover_t		*trans;
1514 
1515 	trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1516 	trans->r_log_tid   = tid;
1517 	trans->r_lsn	   = lsn;
1518 	xlog_recover_put_hashq(q, trans);
1519 }
1520 
1521 STATIC int
1522 xlog_recover_unlink_tid(
1523 	xlog_recover_t		**q,
1524 	xlog_recover_t		*trans)
1525 {
1526 	xlog_recover_t		*tp;
1527 	int			found = 0;
1528 
1529 	ASSERT(trans != NULL);
1530 	if (trans == *q) {
1531 		*q = (*q)->r_next;
1532 	} else {
1533 		tp = *q;
1534 		while (tp) {
1535 			if (tp->r_next == trans) {
1536 				found = 1;
1537 				break;
1538 			}
1539 			tp = tp->r_next;
1540 		}
1541 		if (!found) {
1542 			xlog_warn(
1543 			     "XFS: xlog_recover_unlink_tid: trans not found");
1544 			ASSERT(0);
1545 			return XFS_ERROR(EIO);
1546 		}
1547 		tp->r_next = tp->r_next->r_next;
1548 	}
1549 	return 0;
1550 }
1551 
1552 STATIC void
1553 xlog_recover_insert_item_backq(
1554 	xlog_recover_item_t	**q,
1555 	xlog_recover_item_t	*item)
1556 {
1557 	if (*q == NULL) {
1558 		item->ri_prev = item->ri_next = item;
1559 		*q = item;
1560 	} else {
1561 		item->ri_next		= *q;
1562 		item->ri_prev		= (*q)->ri_prev;
1563 		(*q)->ri_prev		= item;
1564 		item->ri_prev->ri_next	= item;
1565 	}
1566 }
1567 
1568 STATIC void
1569 xlog_recover_insert_item_frontq(
1570 	xlog_recover_item_t	**q,
1571 	xlog_recover_item_t	*item)
1572 {
1573 	xlog_recover_insert_item_backq(q, item);
1574 	*q = item;
1575 }
1576 
1577 STATIC int
1578 xlog_recover_reorder_trans(
1579 	xlog_recover_t		*trans)
1580 {
1581 	xlog_recover_item_t	*first_item, *itemq, *itemq_next;
1582 	xfs_buf_log_format_t	*buf_f;
1583 	ushort			flags = 0;
1584 
1585 	first_item = itemq = trans->r_itemq;
1586 	trans->r_itemq = NULL;
1587 	do {
1588 		itemq_next = itemq->ri_next;
1589 		buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1590 
1591 		switch (ITEM_TYPE(itemq)) {
1592 		case XFS_LI_BUF:
1593 			flags = buf_f->blf_flags;
1594 			if (!(flags & XFS_BLI_CANCEL)) {
1595 				xlog_recover_insert_item_frontq(&trans->r_itemq,
1596 								itemq);
1597 				break;
1598 			}
1599 		case XFS_LI_INODE:
1600 		case XFS_LI_DQUOT:
1601 		case XFS_LI_QUOTAOFF:
1602 		case XFS_LI_EFD:
1603 		case XFS_LI_EFI:
1604 			xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1605 			break;
1606 		default:
1607 			xlog_warn(
1608 	"XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1609 			ASSERT(0);
1610 			return XFS_ERROR(EIO);
1611 		}
1612 		itemq = itemq_next;
1613 	} while (first_item != itemq);
1614 	return 0;
1615 }
1616 
1617 /*
1618  * Build up the table of buf cancel records so that we don't replay
1619  * cancelled data in the second pass.  For buffer records that are
1620  * not cancel records, there is nothing to do here so we just return.
1621  *
1622  * If we get a cancel record which is already in the table, this indicates
1623  * that the buffer was cancelled multiple times.  In order to ensure
1624  * that during pass 2 we keep the record in the table until we reach its
1625  * last occurrence in the log, we keep a reference count in the cancel
1626  * record in the table to tell us how many times we expect to see this
1627  * record during the second pass.
1628  */
1629 STATIC void
1630 xlog_recover_do_buffer_pass1(
1631 	xlog_t			*log,
1632 	xfs_buf_log_format_t	*buf_f)
1633 {
1634 	xfs_buf_cancel_t	*bcp;
1635 	xfs_buf_cancel_t	*nextp;
1636 	xfs_buf_cancel_t	*prevp;
1637 	xfs_buf_cancel_t	**bucket;
1638 	xfs_daddr_t		blkno = 0;
1639 	uint			len = 0;
1640 	ushort			flags = 0;
1641 
1642 	switch (buf_f->blf_type) {
1643 	case XFS_LI_BUF:
1644 		blkno = buf_f->blf_blkno;
1645 		len = buf_f->blf_len;
1646 		flags = buf_f->blf_flags;
1647 		break;
1648 	}
1649 
1650 	/*
1651 	 * If this isn't a cancel buffer item, then just return.
1652 	 */
1653 	if (!(flags & XFS_BLI_CANCEL))
1654 		return;
1655 
1656 	/*
1657 	 * Insert an xfs_buf_cancel record into the hash table of
1658 	 * them.  If there is already an identical record, bump
1659 	 * its reference count.
1660 	 */
1661 	bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1662 					  XLOG_BC_TABLE_SIZE];
1663 	/*
1664 	 * If the hash bucket is empty then just insert a new record into
1665 	 * the bucket.
1666 	 */
1667 	if (*bucket == NULL) {
1668 		bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1669 						     KM_SLEEP);
1670 		bcp->bc_blkno = blkno;
1671 		bcp->bc_len = len;
1672 		bcp->bc_refcount = 1;
1673 		bcp->bc_next = NULL;
1674 		*bucket = bcp;
1675 		return;
1676 	}
1677 
1678 	/*
1679 	 * The hash bucket is not empty, so search for duplicates of our
1680 	 * record.  If we find one them just bump its refcount.  If not
1681 	 * then add us at the end of the list.
1682 	 */
1683 	prevp = NULL;
1684 	nextp = *bucket;
1685 	while (nextp != NULL) {
1686 		if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1687 			nextp->bc_refcount++;
1688 			return;
1689 		}
1690 		prevp = nextp;
1691 		nextp = nextp->bc_next;
1692 	}
1693 	ASSERT(prevp != NULL);
1694 	bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1695 					     KM_SLEEP);
1696 	bcp->bc_blkno = blkno;
1697 	bcp->bc_len = len;
1698 	bcp->bc_refcount = 1;
1699 	bcp->bc_next = NULL;
1700 	prevp->bc_next = bcp;
1701 }
1702 
1703 /*
1704  * Check to see whether the buffer being recovered has a corresponding
1705  * entry in the buffer cancel record table.  If it does then return 1
1706  * so that it will be cancelled, otherwise return 0.  If the buffer is
1707  * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1708  * the refcount on the entry in the table and remove it from the table
1709  * if this is the last reference.
1710  *
1711  * We remove the cancel record from the table when we encounter its
1712  * last occurrence in the log so that if the same buffer is re-used
1713  * again after its last cancellation we actually replay the changes
1714  * made at that point.
1715  */
1716 STATIC int
1717 xlog_check_buffer_cancelled(
1718 	xlog_t			*log,
1719 	xfs_daddr_t		blkno,
1720 	uint			len,
1721 	ushort			flags)
1722 {
1723 	xfs_buf_cancel_t	*bcp;
1724 	xfs_buf_cancel_t	*prevp;
1725 	xfs_buf_cancel_t	**bucket;
1726 
1727 	if (log->l_buf_cancel_table == NULL) {
1728 		/*
1729 		 * There is nothing in the table built in pass one,
1730 		 * so this buffer must not be cancelled.
1731 		 */
1732 		ASSERT(!(flags & XFS_BLI_CANCEL));
1733 		return 0;
1734 	}
1735 
1736 	bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1737 					  XLOG_BC_TABLE_SIZE];
1738 	bcp = *bucket;
1739 	if (bcp == NULL) {
1740 		/*
1741 		 * There is no corresponding entry in the table built
1742 		 * in pass one, so this buffer has not been cancelled.
1743 		 */
1744 		ASSERT(!(flags & XFS_BLI_CANCEL));
1745 		return 0;
1746 	}
1747 
1748 	/*
1749 	 * Search for an entry in the buffer cancel table that
1750 	 * matches our buffer.
1751 	 */
1752 	prevp = NULL;
1753 	while (bcp != NULL) {
1754 		if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1755 			/*
1756 			 * We've go a match, so return 1 so that the
1757 			 * recovery of this buffer is cancelled.
1758 			 * If this buffer is actually a buffer cancel
1759 			 * log item, then decrement the refcount on the
1760 			 * one in the table and remove it if this is the
1761 			 * last reference.
1762 			 */
1763 			if (flags & XFS_BLI_CANCEL) {
1764 				bcp->bc_refcount--;
1765 				if (bcp->bc_refcount == 0) {
1766 					if (prevp == NULL) {
1767 						*bucket = bcp->bc_next;
1768 					} else {
1769 						prevp->bc_next = bcp->bc_next;
1770 					}
1771 					kmem_free(bcp);
1772 				}
1773 			}
1774 			return 1;
1775 		}
1776 		prevp = bcp;
1777 		bcp = bcp->bc_next;
1778 	}
1779 	/*
1780 	 * We didn't find a corresponding entry in the table, so
1781 	 * return 0 so that the buffer is NOT cancelled.
1782 	 */
1783 	ASSERT(!(flags & XFS_BLI_CANCEL));
1784 	return 0;
1785 }
1786 
1787 STATIC int
1788 xlog_recover_do_buffer_pass2(
1789 	xlog_t			*log,
1790 	xfs_buf_log_format_t	*buf_f)
1791 {
1792 	xfs_daddr_t		blkno = 0;
1793 	ushort			flags = 0;
1794 	uint			len = 0;
1795 
1796 	switch (buf_f->blf_type) {
1797 	case XFS_LI_BUF:
1798 		blkno = buf_f->blf_blkno;
1799 		flags = buf_f->blf_flags;
1800 		len = buf_f->blf_len;
1801 		break;
1802 	}
1803 
1804 	return xlog_check_buffer_cancelled(log, blkno, len, flags);
1805 }
1806 
1807 /*
1808  * Perform recovery for a buffer full of inodes.  In these buffers,
1809  * the only data which should be recovered is that which corresponds
1810  * to the di_next_unlinked pointers in the on disk inode structures.
1811  * The rest of the data for the inodes is always logged through the
1812  * inodes themselves rather than the inode buffer and is recovered
1813  * in xlog_recover_do_inode_trans().
1814  *
1815  * The only time when buffers full of inodes are fully recovered is
1816  * when the buffer is full of newly allocated inodes.  In this case
1817  * the buffer will not be marked as an inode buffer and so will be
1818  * sent to xlog_recover_do_reg_buffer() below during recovery.
1819  */
1820 STATIC int
1821 xlog_recover_do_inode_buffer(
1822 	xfs_mount_t		*mp,
1823 	xlog_recover_item_t	*item,
1824 	xfs_buf_t		*bp,
1825 	xfs_buf_log_format_t	*buf_f)
1826 {
1827 	int			i;
1828 	int			item_index;
1829 	int			bit;
1830 	int			nbits;
1831 	int			reg_buf_offset;
1832 	int			reg_buf_bytes;
1833 	int			next_unlinked_offset;
1834 	int			inodes_per_buf;
1835 	xfs_agino_t		*logged_nextp;
1836 	xfs_agino_t		*buffer_nextp;
1837 	unsigned int		*data_map = NULL;
1838 	unsigned int		map_size = 0;
1839 
1840 	switch (buf_f->blf_type) {
1841 	case XFS_LI_BUF:
1842 		data_map = buf_f->blf_data_map;
1843 		map_size = buf_f->blf_map_size;
1844 		break;
1845 	}
1846 	/*
1847 	 * Set the variables corresponding to the current region to
1848 	 * 0 so that we'll initialize them on the first pass through
1849 	 * the loop.
1850 	 */
1851 	reg_buf_offset = 0;
1852 	reg_buf_bytes = 0;
1853 	bit = 0;
1854 	nbits = 0;
1855 	item_index = 0;
1856 	inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1857 	for (i = 0; i < inodes_per_buf; i++) {
1858 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1859 			offsetof(xfs_dinode_t, di_next_unlinked);
1860 
1861 		while (next_unlinked_offset >=
1862 		       (reg_buf_offset + reg_buf_bytes)) {
1863 			/*
1864 			 * The next di_next_unlinked field is beyond
1865 			 * the current logged region.  Find the next
1866 			 * logged region that contains or is beyond
1867 			 * the current di_next_unlinked field.
1868 			 */
1869 			bit += nbits;
1870 			bit = xfs_next_bit(data_map, map_size, bit);
1871 
1872 			/*
1873 			 * If there are no more logged regions in the
1874 			 * buffer, then we're done.
1875 			 */
1876 			if (bit == -1) {
1877 				return 0;
1878 			}
1879 
1880 			nbits = xfs_contig_bits(data_map, map_size,
1881 							 bit);
1882 			ASSERT(nbits > 0);
1883 			reg_buf_offset = bit << XFS_BLI_SHIFT;
1884 			reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1885 			item_index++;
1886 		}
1887 
1888 		/*
1889 		 * If the current logged region starts after the current
1890 		 * di_next_unlinked field, then move on to the next
1891 		 * di_next_unlinked field.
1892 		 */
1893 		if (next_unlinked_offset < reg_buf_offset) {
1894 			continue;
1895 		}
1896 
1897 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
1898 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1899 		ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1900 
1901 		/*
1902 		 * The current logged region contains a copy of the
1903 		 * current di_next_unlinked field.  Extract its value
1904 		 * and copy it to the buffer copy.
1905 		 */
1906 		logged_nextp = (xfs_agino_t *)
1907 			       ((char *)(item->ri_buf[item_index].i_addr) +
1908 				(next_unlinked_offset - reg_buf_offset));
1909 		if (unlikely(*logged_nextp == 0)) {
1910 			xfs_fs_cmn_err(CE_ALERT, mp,
1911 				"bad inode buffer log record (ptr = 0x%p, bp = 0x%p).  XFS trying to replay bad (0) inode di_next_unlinked field",
1912 				item, bp);
1913 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1914 					 XFS_ERRLEVEL_LOW, mp);
1915 			return XFS_ERROR(EFSCORRUPTED);
1916 		}
1917 
1918 		buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1919 					      next_unlinked_offset);
1920 		*buffer_nextp = *logged_nextp;
1921 	}
1922 
1923 	return 0;
1924 }
1925 
1926 /*
1927  * Perform a 'normal' buffer recovery.  Each logged region of the
1928  * buffer should be copied over the corresponding region in the
1929  * given buffer.  The bitmap in the buf log format structure indicates
1930  * where to place the logged data.
1931  */
1932 /*ARGSUSED*/
1933 STATIC void
1934 xlog_recover_do_reg_buffer(
1935 	xlog_recover_item_t	*item,
1936 	xfs_buf_t		*bp,
1937 	xfs_buf_log_format_t	*buf_f)
1938 {
1939 	int			i;
1940 	int			bit;
1941 	int			nbits;
1942 	unsigned int		*data_map = NULL;
1943 	unsigned int		map_size = 0;
1944 	int                     error;
1945 
1946 	switch (buf_f->blf_type) {
1947 	case XFS_LI_BUF:
1948 		data_map = buf_f->blf_data_map;
1949 		map_size = buf_f->blf_map_size;
1950 		break;
1951 	}
1952 	bit = 0;
1953 	i = 1;  /* 0 is the buf format structure */
1954 	while (1) {
1955 		bit = xfs_next_bit(data_map, map_size, bit);
1956 		if (bit == -1)
1957 			break;
1958 		nbits = xfs_contig_bits(data_map, map_size, bit);
1959 		ASSERT(nbits > 0);
1960 		ASSERT(item->ri_buf[i].i_addr != NULL);
1961 		ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1962 		ASSERT(XFS_BUF_COUNT(bp) >=
1963 		       ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1964 
1965 		/*
1966 		 * Do a sanity check if this is a dquot buffer. Just checking
1967 		 * the first dquot in the buffer should do. XXXThis is
1968 		 * probably a good thing to do for other buf types also.
1969 		 */
1970 		error = 0;
1971 		if (buf_f->blf_flags &
1972 		   (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1973 			if (item->ri_buf[i].i_addr == NULL) {
1974 				cmn_err(CE_ALERT,
1975 					"XFS: NULL dquot in %s.", __func__);
1976 				goto next;
1977 			}
1978 			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1979 				cmn_err(CE_ALERT,
1980 					"XFS: dquot too small (%d) in %s.",
1981 					item->ri_buf[i].i_len, __func__);
1982 				goto next;
1983 			}
1984 			error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1985 					       item->ri_buf[i].i_addr,
1986 					       -1, 0, XFS_QMOPT_DOWARN,
1987 					       "dquot_buf_recover");
1988 			if (error)
1989 				goto next;
1990 		}
1991 
1992 		memcpy(xfs_buf_offset(bp,
1993 			(uint)bit << XFS_BLI_SHIFT),	/* dest */
1994 			item->ri_buf[i].i_addr,		/* source */
1995 			nbits<<XFS_BLI_SHIFT);		/* length */
1996  next:
1997 		i++;
1998 		bit += nbits;
1999 	}
2000 
2001 	/* Shouldn't be any more regions */
2002 	ASSERT(i == item->ri_total);
2003 }
2004 
2005 /*
2006  * Do some primitive error checking on ondisk dquot data structures.
2007  */
2008 int
2009 xfs_qm_dqcheck(
2010 	xfs_disk_dquot_t *ddq,
2011 	xfs_dqid_t	 id,
2012 	uint		 type,	  /* used only when IO_dorepair is true */
2013 	uint		 flags,
2014 	char		 *str)
2015 {
2016 	xfs_dqblk_t	 *d = (xfs_dqblk_t *)ddq;
2017 	int		errs = 0;
2018 
2019 	/*
2020 	 * We can encounter an uninitialized dquot buffer for 2 reasons:
2021 	 * 1. If we crash while deleting the quotainode(s), and those blks got
2022 	 *    used for user data. This is because we take the path of regular
2023 	 *    file deletion; however, the size field of quotainodes is never
2024 	 *    updated, so all the tricks that we play in itruncate_finish
2025 	 *    don't quite matter.
2026 	 *
2027 	 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2028 	 *    But the allocation will be replayed so we'll end up with an
2029 	 *    uninitialized quota block.
2030 	 *
2031 	 * This is all fine; things are still consistent, and we haven't lost
2032 	 * any quota information. Just don't complain about bad dquot blks.
2033 	 */
2034 	if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
2035 		if (flags & XFS_QMOPT_DOWARN)
2036 			cmn_err(CE_ALERT,
2037 			"%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2038 			str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
2039 		errs++;
2040 	}
2041 	if (ddq->d_version != XFS_DQUOT_VERSION) {
2042 		if (flags & XFS_QMOPT_DOWARN)
2043 			cmn_err(CE_ALERT,
2044 			"%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2045 			str, id, ddq->d_version, XFS_DQUOT_VERSION);
2046 		errs++;
2047 	}
2048 
2049 	if (ddq->d_flags != XFS_DQ_USER &&
2050 	    ddq->d_flags != XFS_DQ_PROJ &&
2051 	    ddq->d_flags != XFS_DQ_GROUP) {
2052 		if (flags & XFS_QMOPT_DOWARN)
2053 			cmn_err(CE_ALERT,
2054 			"%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2055 			str, id, ddq->d_flags);
2056 		errs++;
2057 	}
2058 
2059 	if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2060 		if (flags & XFS_QMOPT_DOWARN)
2061 			cmn_err(CE_ALERT,
2062 			"%s : ondisk-dquot 0x%p, ID mismatch: "
2063 			"0x%x expected, found id 0x%x",
2064 			str, ddq, id, be32_to_cpu(ddq->d_id));
2065 		errs++;
2066 	}
2067 
2068 	if (!errs && ddq->d_id) {
2069 		if (ddq->d_blk_softlimit &&
2070 		    be64_to_cpu(ddq->d_bcount) >=
2071 				be64_to_cpu(ddq->d_blk_softlimit)) {
2072 			if (!ddq->d_btimer) {
2073 				if (flags & XFS_QMOPT_DOWARN)
2074 					cmn_err(CE_ALERT,
2075 					"%s : Dquot ID 0x%x (0x%p) "
2076 					"BLK TIMER NOT STARTED",
2077 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2078 				errs++;
2079 			}
2080 		}
2081 		if (ddq->d_ino_softlimit &&
2082 		    be64_to_cpu(ddq->d_icount) >=
2083 				be64_to_cpu(ddq->d_ino_softlimit)) {
2084 			if (!ddq->d_itimer) {
2085 				if (flags & XFS_QMOPT_DOWARN)
2086 					cmn_err(CE_ALERT,
2087 					"%s : Dquot ID 0x%x (0x%p) "
2088 					"INODE TIMER NOT STARTED",
2089 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2090 				errs++;
2091 			}
2092 		}
2093 		if (ddq->d_rtb_softlimit &&
2094 		    be64_to_cpu(ddq->d_rtbcount) >=
2095 				be64_to_cpu(ddq->d_rtb_softlimit)) {
2096 			if (!ddq->d_rtbtimer) {
2097 				if (flags & XFS_QMOPT_DOWARN)
2098 					cmn_err(CE_ALERT,
2099 					"%s : Dquot ID 0x%x (0x%p) "
2100 					"RTBLK TIMER NOT STARTED",
2101 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2102 				errs++;
2103 			}
2104 		}
2105 	}
2106 
2107 	if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2108 		return errs;
2109 
2110 	if (flags & XFS_QMOPT_DOWARN)
2111 		cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2112 
2113 	/*
2114 	 * Typically, a repair is only requested by quotacheck.
2115 	 */
2116 	ASSERT(id != -1);
2117 	ASSERT(flags & XFS_QMOPT_DQREPAIR);
2118 	memset(d, 0, sizeof(xfs_dqblk_t));
2119 
2120 	d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2121 	d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2122 	d->dd_diskdq.d_flags = type;
2123 	d->dd_diskdq.d_id = cpu_to_be32(id);
2124 
2125 	return errs;
2126 }
2127 
2128 /*
2129  * Perform a dquot buffer recovery.
2130  * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2131  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2132  * Else, treat it as a regular buffer and do recovery.
2133  */
2134 STATIC void
2135 xlog_recover_do_dquot_buffer(
2136 	xfs_mount_t		*mp,
2137 	xlog_t			*log,
2138 	xlog_recover_item_t	*item,
2139 	xfs_buf_t		*bp,
2140 	xfs_buf_log_format_t	*buf_f)
2141 {
2142 	uint			type;
2143 
2144 	/*
2145 	 * Filesystems are required to send in quota flags at mount time.
2146 	 */
2147 	if (mp->m_qflags == 0) {
2148 		return;
2149 	}
2150 
2151 	type = 0;
2152 	if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2153 		type |= XFS_DQ_USER;
2154 	if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2155 		type |= XFS_DQ_PROJ;
2156 	if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2157 		type |= XFS_DQ_GROUP;
2158 	/*
2159 	 * This type of quotas was turned off, so ignore this buffer
2160 	 */
2161 	if (log->l_quotaoffs_flag & type)
2162 		return;
2163 
2164 	xlog_recover_do_reg_buffer(item, bp, buf_f);
2165 }
2166 
2167 /*
2168  * This routine replays a modification made to a buffer at runtime.
2169  * There are actually two types of buffer, regular and inode, which
2170  * are handled differently.  Inode buffers are handled differently
2171  * in that we only recover a specific set of data from them, namely
2172  * the inode di_next_unlinked fields.  This is because all other inode
2173  * data is actually logged via inode records and any data we replay
2174  * here which overlaps that may be stale.
2175  *
2176  * When meta-data buffers are freed at run time we log a buffer item
2177  * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2178  * of the buffer in the log should not be replayed at recovery time.
2179  * This is so that if the blocks covered by the buffer are reused for
2180  * file data before we crash we don't end up replaying old, freed
2181  * meta-data into a user's file.
2182  *
2183  * To handle the cancellation of buffer log items, we make two passes
2184  * over the log during recovery.  During the first we build a table of
2185  * those buffers which have been cancelled, and during the second we
2186  * only replay those buffers which do not have corresponding cancel
2187  * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2188  * for more details on the implementation of the table of cancel records.
2189  */
2190 STATIC int
2191 xlog_recover_do_buffer_trans(
2192 	xlog_t			*log,
2193 	xlog_recover_item_t	*item,
2194 	int			pass)
2195 {
2196 	xfs_buf_log_format_t	*buf_f;
2197 	xfs_mount_t		*mp;
2198 	xfs_buf_t		*bp;
2199 	int			error;
2200 	int			cancel;
2201 	xfs_daddr_t		blkno;
2202 	int			len;
2203 	ushort			flags;
2204 	uint			buf_flags;
2205 
2206 	buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2207 
2208 	if (pass == XLOG_RECOVER_PASS1) {
2209 		/*
2210 		 * In this pass we're only looking for buf items
2211 		 * with the XFS_BLI_CANCEL bit set.
2212 		 */
2213 		xlog_recover_do_buffer_pass1(log, buf_f);
2214 		return 0;
2215 	} else {
2216 		/*
2217 		 * In this pass we want to recover all the buffers
2218 		 * which have not been cancelled and are not
2219 		 * cancellation buffers themselves.  The routine
2220 		 * we call here will tell us whether or not to
2221 		 * continue with the replay of this buffer.
2222 		 */
2223 		cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2224 		if (cancel) {
2225 			return 0;
2226 		}
2227 	}
2228 	switch (buf_f->blf_type) {
2229 	case XFS_LI_BUF:
2230 		blkno = buf_f->blf_blkno;
2231 		len = buf_f->blf_len;
2232 		flags = buf_f->blf_flags;
2233 		break;
2234 	default:
2235 		xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2236 			"xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2237 			buf_f->blf_type, log->l_mp->m_logname ?
2238 			log->l_mp->m_logname : "internal");
2239 		XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2240 				 XFS_ERRLEVEL_LOW, log->l_mp);
2241 		return XFS_ERROR(EFSCORRUPTED);
2242 	}
2243 
2244 	mp = log->l_mp;
2245 	buf_flags = XFS_BUF_LOCK;
2246 	if (!(flags & XFS_BLI_INODE_BUF))
2247 		buf_flags |= XFS_BUF_MAPPED;
2248 
2249 	bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, buf_flags);
2250 	if (XFS_BUF_ISERROR(bp)) {
2251 		xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2252 				  bp, blkno);
2253 		error = XFS_BUF_GETERROR(bp);
2254 		xfs_buf_relse(bp);
2255 		return error;
2256 	}
2257 
2258 	error = 0;
2259 	if (flags & XFS_BLI_INODE_BUF) {
2260 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2261 	} else if (flags &
2262 		  (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
2263 		xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2264 	} else {
2265 		xlog_recover_do_reg_buffer(item, bp, buf_f);
2266 	}
2267 	if (error)
2268 		return XFS_ERROR(error);
2269 
2270 	/*
2271 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2272 	 * slower when taking into account all the buffers to be flushed.
2273 	 *
2274 	 * Also make sure that only inode buffers with good sizes stay in
2275 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2276 	 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2277 	 * buffers in the log can be a different size if the log was generated
2278 	 * by an older kernel using unclustered inode buffers or a newer kernel
2279 	 * running with a different inode cluster size.  Regardless, if the
2280 	 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2281 	 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2282 	 * the buffer out of the buffer cache so that the buffer won't
2283 	 * overlap with future reads of those inodes.
2284 	 */
2285 	if (XFS_DINODE_MAGIC ==
2286 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2287 	    (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2288 			(__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2289 		XFS_BUF_STALE(bp);
2290 		error = xfs_bwrite(mp, bp);
2291 	} else {
2292 		ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2293 		bp->b_mount = mp;
2294 		XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2295 		xfs_bdwrite(mp, bp);
2296 	}
2297 
2298 	return (error);
2299 }
2300 
2301 STATIC int
2302 xlog_recover_do_inode_trans(
2303 	xlog_t			*log,
2304 	xlog_recover_item_t	*item,
2305 	int			pass)
2306 {
2307 	xfs_inode_log_format_t	*in_f;
2308 	xfs_mount_t		*mp;
2309 	xfs_buf_t		*bp;
2310 	xfs_dinode_t		*dip;
2311 	xfs_ino_t		ino;
2312 	int			len;
2313 	xfs_caddr_t		src;
2314 	xfs_caddr_t		dest;
2315 	int			error;
2316 	int			attr_index;
2317 	uint			fields;
2318 	xfs_icdinode_t		*dicp;
2319 	int			need_free = 0;
2320 
2321 	if (pass == XLOG_RECOVER_PASS1) {
2322 		return 0;
2323 	}
2324 
2325 	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2326 		in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2327 	} else {
2328 		in_f = (xfs_inode_log_format_t *)kmem_alloc(
2329 			sizeof(xfs_inode_log_format_t), KM_SLEEP);
2330 		need_free = 1;
2331 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2332 		if (error)
2333 			goto error;
2334 	}
2335 	ino = in_f->ilf_ino;
2336 	mp = log->l_mp;
2337 
2338 	/*
2339 	 * Inode buffers can be freed, look out for it,
2340 	 * and do not replay the inode.
2341 	 */
2342 	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2343 					in_f->ilf_len, 0)) {
2344 		error = 0;
2345 		goto error;
2346 	}
2347 
2348 	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
2349 			  XFS_BUF_LOCK);
2350 	if (XFS_BUF_ISERROR(bp)) {
2351 		xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2352 				  bp, in_f->ilf_blkno);
2353 		error = XFS_BUF_GETERROR(bp);
2354 		xfs_buf_relse(bp);
2355 		goto error;
2356 	}
2357 	error = 0;
2358 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2359 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2360 
2361 	/*
2362 	 * Make sure the place we're flushing out to really looks
2363 	 * like an inode!
2364 	 */
2365 	if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
2366 		xfs_buf_relse(bp);
2367 		xfs_fs_cmn_err(CE_ALERT, mp,
2368 			"xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2369 			dip, bp, ino);
2370 		XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2371 				 XFS_ERRLEVEL_LOW, mp);
2372 		error = EFSCORRUPTED;
2373 		goto error;
2374 	}
2375 	dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
2376 	if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2377 		xfs_buf_relse(bp);
2378 		xfs_fs_cmn_err(CE_ALERT, mp,
2379 			"xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2380 			item, ino);
2381 		XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2382 				 XFS_ERRLEVEL_LOW, mp);
2383 		error = EFSCORRUPTED;
2384 		goto error;
2385 	}
2386 
2387 	/* Skip replay when the on disk inode is newer than the log one */
2388 	if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2389 		/*
2390 		 * Deal with the wrap case, DI_MAX_FLUSH is less
2391 		 * than smaller numbers
2392 		 */
2393 		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2394 		    dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2395 			/* do nothing */
2396 		} else {
2397 			xfs_buf_relse(bp);
2398 			error = 0;
2399 			goto error;
2400 		}
2401 	}
2402 	/* Take the opportunity to reset the flush iteration count */
2403 	dicp->di_flushiter = 0;
2404 
2405 	if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2406 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2407 		    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2408 			XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2409 					 XFS_ERRLEVEL_LOW, mp, dicp);
2410 			xfs_buf_relse(bp);
2411 			xfs_fs_cmn_err(CE_ALERT, mp,
2412 				"xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2413 				item, dip, bp, ino);
2414 			error = EFSCORRUPTED;
2415 			goto error;
2416 		}
2417 	} else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2418 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2419 		    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2420 		    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2421 			XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2422 					     XFS_ERRLEVEL_LOW, mp, dicp);
2423 			xfs_buf_relse(bp);
2424 			xfs_fs_cmn_err(CE_ALERT, mp,
2425 				"xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2426 				item, dip, bp, ino);
2427 			error = EFSCORRUPTED;
2428 			goto error;
2429 		}
2430 	}
2431 	if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2432 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2433 				     XFS_ERRLEVEL_LOW, mp, dicp);
2434 		xfs_buf_relse(bp);
2435 		xfs_fs_cmn_err(CE_ALERT, mp,
2436 			"xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2437 			item, dip, bp, ino,
2438 			dicp->di_nextents + dicp->di_anextents,
2439 			dicp->di_nblocks);
2440 		error = EFSCORRUPTED;
2441 		goto error;
2442 	}
2443 	if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2444 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2445 				     XFS_ERRLEVEL_LOW, mp, dicp);
2446 		xfs_buf_relse(bp);
2447 		xfs_fs_cmn_err(CE_ALERT, mp,
2448 			"xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2449 			item, dip, bp, ino, dicp->di_forkoff);
2450 		error = EFSCORRUPTED;
2451 		goto error;
2452 	}
2453 	if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2454 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2455 				     XFS_ERRLEVEL_LOW, mp, dicp);
2456 		xfs_buf_relse(bp);
2457 		xfs_fs_cmn_err(CE_ALERT, mp,
2458 			"xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2459 			item->ri_buf[1].i_len, item);
2460 		error = EFSCORRUPTED;
2461 		goto error;
2462 	}
2463 
2464 	/* The core is in in-core format */
2465 	xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr);
2466 
2467 	/* the rest is in on-disk format */
2468 	if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2469 		memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2470 			item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2471 			item->ri_buf[1].i_len  - sizeof(struct xfs_icdinode));
2472 	}
2473 
2474 	fields = in_f->ilf_fields;
2475 	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2476 	case XFS_ILOG_DEV:
2477 		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2478 		break;
2479 	case XFS_ILOG_UUID:
2480 		memcpy(XFS_DFORK_DPTR(dip),
2481 		       &in_f->ilf_u.ilfu_uuid,
2482 		       sizeof(uuid_t));
2483 		break;
2484 	}
2485 
2486 	if (in_f->ilf_size == 2)
2487 		goto write_inode_buffer;
2488 	len = item->ri_buf[2].i_len;
2489 	src = item->ri_buf[2].i_addr;
2490 	ASSERT(in_f->ilf_size <= 4);
2491 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2492 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
2493 	       (len == in_f->ilf_dsize));
2494 
2495 	switch (fields & XFS_ILOG_DFORK) {
2496 	case XFS_ILOG_DDATA:
2497 	case XFS_ILOG_DEXT:
2498 		memcpy(XFS_DFORK_DPTR(dip), src, len);
2499 		break;
2500 
2501 	case XFS_ILOG_DBROOT:
2502 		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2503 				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2504 				 XFS_DFORK_DSIZE(dip, mp));
2505 		break;
2506 
2507 	default:
2508 		/*
2509 		 * There are no data fork flags set.
2510 		 */
2511 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
2512 		break;
2513 	}
2514 
2515 	/*
2516 	 * If we logged any attribute data, recover it.  There may or
2517 	 * may not have been any other non-core data logged in this
2518 	 * transaction.
2519 	 */
2520 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2521 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2522 			attr_index = 3;
2523 		} else {
2524 			attr_index = 2;
2525 		}
2526 		len = item->ri_buf[attr_index].i_len;
2527 		src = item->ri_buf[attr_index].i_addr;
2528 		ASSERT(len == in_f->ilf_asize);
2529 
2530 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2531 		case XFS_ILOG_ADATA:
2532 		case XFS_ILOG_AEXT:
2533 			dest = XFS_DFORK_APTR(dip);
2534 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2535 			memcpy(dest, src, len);
2536 			break;
2537 
2538 		case XFS_ILOG_ABROOT:
2539 			dest = XFS_DFORK_APTR(dip);
2540 			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2541 					 len, (xfs_bmdr_block_t*)dest,
2542 					 XFS_DFORK_ASIZE(dip, mp));
2543 			break;
2544 
2545 		default:
2546 			xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2547 			ASSERT(0);
2548 			xfs_buf_relse(bp);
2549 			error = EIO;
2550 			goto error;
2551 		}
2552 	}
2553 
2554 write_inode_buffer:
2555 	ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2556 	bp->b_mount = mp;
2557 	XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2558 	xfs_bdwrite(mp, bp);
2559 error:
2560 	if (need_free)
2561 		kmem_free(in_f);
2562 	return XFS_ERROR(error);
2563 }
2564 
2565 /*
2566  * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2567  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2568  * of that type.
2569  */
2570 STATIC int
2571 xlog_recover_do_quotaoff_trans(
2572 	xlog_t			*log,
2573 	xlog_recover_item_t	*item,
2574 	int			pass)
2575 {
2576 	xfs_qoff_logformat_t	*qoff_f;
2577 
2578 	if (pass == XLOG_RECOVER_PASS2) {
2579 		return (0);
2580 	}
2581 
2582 	qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2583 	ASSERT(qoff_f);
2584 
2585 	/*
2586 	 * The logitem format's flag tells us if this was user quotaoff,
2587 	 * group/project quotaoff or both.
2588 	 */
2589 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2590 		log->l_quotaoffs_flag |= XFS_DQ_USER;
2591 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2592 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2593 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2594 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2595 
2596 	return (0);
2597 }
2598 
2599 /*
2600  * Recover a dquot record
2601  */
2602 STATIC int
2603 xlog_recover_do_dquot_trans(
2604 	xlog_t			*log,
2605 	xlog_recover_item_t	*item,
2606 	int			pass)
2607 {
2608 	xfs_mount_t		*mp;
2609 	xfs_buf_t		*bp;
2610 	struct xfs_disk_dquot	*ddq, *recddq;
2611 	int			error;
2612 	xfs_dq_logformat_t	*dq_f;
2613 	uint			type;
2614 
2615 	if (pass == XLOG_RECOVER_PASS1) {
2616 		return 0;
2617 	}
2618 	mp = log->l_mp;
2619 
2620 	/*
2621 	 * Filesystems are required to send in quota flags at mount time.
2622 	 */
2623 	if (mp->m_qflags == 0)
2624 		return (0);
2625 
2626 	recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2627 
2628 	if (item->ri_buf[1].i_addr == NULL) {
2629 		cmn_err(CE_ALERT,
2630 			"XFS: NULL dquot in %s.", __func__);
2631 		return XFS_ERROR(EIO);
2632 	}
2633 	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2634 		cmn_err(CE_ALERT,
2635 			"XFS: dquot too small (%d) in %s.",
2636 			item->ri_buf[1].i_len, __func__);
2637 		return XFS_ERROR(EIO);
2638 	}
2639 
2640 	/*
2641 	 * This type of quotas was turned off, so ignore this record.
2642 	 */
2643 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2644 	ASSERT(type);
2645 	if (log->l_quotaoffs_flag & type)
2646 		return (0);
2647 
2648 	/*
2649 	 * At this point we know that quota was _not_ turned off.
2650 	 * Since the mount flags are not indicating to us otherwise, this
2651 	 * must mean that quota is on, and the dquot needs to be replayed.
2652 	 * Remember that we may not have fully recovered the superblock yet,
2653 	 * so we can't do the usual trick of looking at the SB quota bits.
2654 	 *
2655 	 * The other possibility, of course, is that the quota subsystem was
2656 	 * removed since the last mount - ENOSYS.
2657 	 */
2658 	dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2659 	ASSERT(dq_f);
2660 	if ((error = xfs_qm_dqcheck(recddq,
2661 			   dq_f->qlf_id,
2662 			   0, XFS_QMOPT_DOWARN,
2663 			   "xlog_recover_do_dquot_trans (log copy)"))) {
2664 		return XFS_ERROR(EIO);
2665 	}
2666 	ASSERT(dq_f->qlf_len == 1);
2667 
2668 	error = xfs_read_buf(mp, mp->m_ddev_targp,
2669 			     dq_f->qlf_blkno,
2670 			     XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2671 			     0, &bp);
2672 	if (error) {
2673 		xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2674 				  bp, dq_f->qlf_blkno);
2675 		return error;
2676 	}
2677 	ASSERT(bp);
2678 	ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2679 
2680 	/*
2681 	 * At least the magic num portion should be on disk because this
2682 	 * was among a chunk of dquots created earlier, and we did some
2683 	 * minimal initialization then.
2684 	 */
2685 	if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2686 			   "xlog_recover_do_dquot_trans")) {
2687 		xfs_buf_relse(bp);
2688 		return XFS_ERROR(EIO);
2689 	}
2690 
2691 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
2692 
2693 	ASSERT(dq_f->qlf_size == 2);
2694 	ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2695 	bp->b_mount = mp;
2696 	XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2697 	xfs_bdwrite(mp, bp);
2698 
2699 	return (0);
2700 }
2701 
2702 /*
2703  * This routine is called to create an in-core extent free intent
2704  * item from the efi format structure which was logged on disk.
2705  * It allocates an in-core efi, copies the extents from the format
2706  * structure into it, and adds the efi to the AIL with the given
2707  * LSN.
2708  */
2709 STATIC int
2710 xlog_recover_do_efi_trans(
2711 	xlog_t			*log,
2712 	xlog_recover_item_t	*item,
2713 	xfs_lsn_t		lsn,
2714 	int			pass)
2715 {
2716 	int			error;
2717 	xfs_mount_t		*mp;
2718 	xfs_efi_log_item_t	*efip;
2719 	xfs_efi_log_format_t	*efi_formatp;
2720 
2721 	if (pass == XLOG_RECOVER_PASS1) {
2722 		return 0;
2723 	}
2724 
2725 	efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2726 
2727 	mp = log->l_mp;
2728 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2729 	if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2730 					 &(efip->efi_format)))) {
2731 		xfs_efi_item_free(efip);
2732 		return error;
2733 	}
2734 	efip->efi_next_extent = efi_formatp->efi_nextents;
2735 	efip->efi_flags |= XFS_EFI_COMMITTED;
2736 
2737 	spin_lock(&log->l_ailp->xa_lock);
2738 	/*
2739 	 * xfs_trans_ail_update() drops the AIL lock.
2740 	 */
2741 	xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
2742 	return 0;
2743 }
2744 
2745 
2746 /*
2747  * This routine is called when an efd format structure is found in
2748  * a committed transaction in the log.  It's purpose is to cancel
2749  * the corresponding efi if it was still in the log.  To do this
2750  * it searches the AIL for the efi with an id equal to that in the
2751  * efd format structure.  If we find it, we remove the efi from the
2752  * AIL and free it.
2753  */
2754 STATIC void
2755 xlog_recover_do_efd_trans(
2756 	xlog_t			*log,
2757 	xlog_recover_item_t	*item,
2758 	int			pass)
2759 {
2760 	xfs_efd_log_format_t	*efd_formatp;
2761 	xfs_efi_log_item_t	*efip = NULL;
2762 	xfs_log_item_t		*lip;
2763 	__uint64_t		efi_id;
2764 	struct xfs_ail_cursor	cur;
2765 	struct xfs_ail		*ailp = log->l_ailp;
2766 
2767 	if (pass == XLOG_RECOVER_PASS1) {
2768 		return;
2769 	}
2770 
2771 	efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2772 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2773 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2774 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2775 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2776 	efi_id = efd_formatp->efd_efi_id;
2777 
2778 	/*
2779 	 * Search for the efi with the id in the efd format structure
2780 	 * in the AIL.
2781 	 */
2782 	spin_lock(&ailp->xa_lock);
2783 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2784 	while (lip != NULL) {
2785 		if (lip->li_type == XFS_LI_EFI) {
2786 			efip = (xfs_efi_log_item_t *)lip;
2787 			if (efip->efi_format.efi_id == efi_id) {
2788 				/*
2789 				 * xfs_trans_ail_delete() drops the
2790 				 * AIL lock.
2791 				 */
2792 				xfs_trans_ail_delete(ailp, lip);
2793 				xfs_efi_item_free(efip);
2794 				spin_lock(&ailp->xa_lock);
2795 				break;
2796 			}
2797 		}
2798 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
2799 	}
2800 	xfs_trans_ail_cursor_done(ailp, &cur);
2801 	spin_unlock(&ailp->xa_lock);
2802 }
2803 
2804 /*
2805  * Perform the transaction
2806  *
2807  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2808  * EFIs and EFDs get queued up by adding entries into the AIL for them.
2809  */
2810 STATIC int
2811 xlog_recover_do_trans(
2812 	xlog_t			*log,
2813 	xlog_recover_t		*trans,
2814 	int			pass)
2815 {
2816 	int			error = 0;
2817 	xlog_recover_item_t	*item, *first_item;
2818 
2819 	error = xlog_recover_reorder_trans(trans);
2820 	if (error)
2821 		return error;
2822 
2823 	first_item = item = trans->r_itemq;
2824 	do {
2825 		switch (ITEM_TYPE(item)) {
2826 		case XFS_LI_BUF:
2827 			error = xlog_recover_do_buffer_trans(log, item, pass);
2828 			break;
2829 		case XFS_LI_INODE:
2830 			error = xlog_recover_do_inode_trans(log, item, pass);
2831 			break;
2832 		case XFS_LI_EFI:
2833 			error = xlog_recover_do_efi_trans(log, item,
2834 							  trans->r_lsn, pass);
2835 			break;
2836 		case XFS_LI_EFD:
2837 			xlog_recover_do_efd_trans(log, item, pass);
2838 			error = 0;
2839 			break;
2840 		case XFS_LI_DQUOT:
2841 			error = xlog_recover_do_dquot_trans(log, item, pass);
2842 			break;
2843 		case XFS_LI_QUOTAOFF:
2844 			error = xlog_recover_do_quotaoff_trans(log, item,
2845 							       pass);
2846 			break;
2847 		default:
2848 			xlog_warn(
2849 	"XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item));
2850 			ASSERT(0);
2851 			error = XFS_ERROR(EIO);
2852 			break;
2853 		}
2854 
2855 		if (error)
2856 			return error;
2857 		item = item->ri_next;
2858 	} while (first_item != item);
2859 
2860 	return 0;
2861 }
2862 
2863 /*
2864  * Free up any resources allocated by the transaction
2865  *
2866  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2867  */
2868 STATIC void
2869 xlog_recover_free_trans(
2870 	xlog_recover_t		*trans)
2871 {
2872 	xlog_recover_item_t	*first_item, *item, *free_item;
2873 	int			i;
2874 
2875 	item = first_item = trans->r_itemq;
2876 	do {
2877 		free_item = item;
2878 		item = item->ri_next;
2879 		 /* Free the regions in the item. */
2880 		for (i = 0; i < free_item->ri_cnt; i++) {
2881 			kmem_free(free_item->ri_buf[i].i_addr);
2882 		}
2883 		/* Free the item itself */
2884 		kmem_free(free_item->ri_buf);
2885 		kmem_free(free_item);
2886 	} while (first_item != item);
2887 	/* Free the transaction recover structure */
2888 	kmem_free(trans);
2889 }
2890 
2891 STATIC int
2892 xlog_recover_commit_trans(
2893 	xlog_t			*log,
2894 	xlog_recover_t		**q,
2895 	xlog_recover_t		*trans,
2896 	int			pass)
2897 {
2898 	int			error;
2899 
2900 	if ((error = xlog_recover_unlink_tid(q, trans)))
2901 		return error;
2902 	if ((error = xlog_recover_do_trans(log, trans, pass)))
2903 		return error;
2904 	xlog_recover_free_trans(trans);			/* no error */
2905 	return 0;
2906 }
2907 
2908 STATIC int
2909 xlog_recover_unmount_trans(
2910 	xlog_recover_t		*trans)
2911 {
2912 	/* Do nothing now */
2913 	xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2914 	return 0;
2915 }
2916 
2917 /*
2918  * There are two valid states of the r_state field.  0 indicates that the
2919  * transaction structure is in a normal state.  We have either seen the
2920  * start of the transaction or the last operation we added was not a partial
2921  * operation.  If the last operation we added to the transaction was a
2922  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2923  *
2924  * NOTE: skip LRs with 0 data length.
2925  */
2926 STATIC int
2927 xlog_recover_process_data(
2928 	xlog_t			*log,
2929 	xlog_recover_t		*rhash[],
2930 	xlog_rec_header_t	*rhead,
2931 	xfs_caddr_t		dp,
2932 	int			pass)
2933 {
2934 	xfs_caddr_t		lp;
2935 	int			num_logops;
2936 	xlog_op_header_t	*ohead;
2937 	xlog_recover_t		*trans;
2938 	xlog_tid_t		tid;
2939 	int			error;
2940 	unsigned long		hash;
2941 	uint			flags;
2942 
2943 	lp = dp + be32_to_cpu(rhead->h_len);
2944 	num_logops = be32_to_cpu(rhead->h_num_logops);
2945 
2946 	/* check the log format matches our own - else we can't recover */
2947 	if (xlog_header_check_recover(log->l_mp, rhead))
2948 		return (XFS_ERROR(EIO));
2949 
2950 	while ((dp < lp) && num_logops) {
2951 		ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2952 		ohead = (xlog_op_header_t *)dp;
2953 		dp += sizeof(xlog_op_header_t);
2954 		if (ohead->oh_clientid != XFS_TRANSACTION &&
2955 		    ohead->oh_clientid != XFS_LOG) {
2956 			xlog_warn(
2957 		"XFS: xlog_recover_process_data: bad clientid");
2958 			ASSERT(0);
2959 			return (XFS_ERROR(EIO));
2960 		}
2961 		tid = be32_to_cpu(ohead->oh_tid);
2962 		hash = XLOG_RHASH(tid);
2963 		trans = xlog_recover_find_tid(rhash[hash], tid);
2964 		if (trans == NULL) {		   /* not found; add new tid */
2965 			if (ohead->oh_flags & XLOG_START_TRANS)
2966 				xlog_recover_new_tid(&rhash[hash], tid,
2967 					be64_to_cpu(rhead->h_lsn));
2968 		} else {
2969 			if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2970 				xlog_warn(
2971 			"XFS: xlog_recover_process_data: bad length");
2972 				WARN_ON(1);
2973 				return (XFS_ERROR(EIO));
2974 			}
2975 			flags = ohead->oh_flags & ~XLOG_END_TRANS;
2976 			if (flags & XLOG_WAS_CONT_TRANS)
2977 				flags &= ~XLOG_CONTINUE_TRANS;
2978 			switch (flags) {
2979 			case XLOG_COMMIT_TRANS:
2980 				error = xlog_recover_commit_trans(log,
2981 						&rhash[hash], trans, pass);
2982 				break;
2983 			case XLOG_UNMOUNT_TRANS:
2984 				error = xlog_recover_unmount_trans(trans);
2985 				break;
2986 			case XLOG_WAS_CONT_TRANS:
2987 				error = xlog_recover_add_to_cont_trans(trans,
2988 						dp, be32_to_cpu(ohead->oh_len));
2989 				break;
2990 			case XLOG_START_TRANS:
2991 				xlog_warn(
2992 			"XFS: xlog_recover_process_data: bad transaction");
2993 				ASSERT(0);
2994 				error = XFS_ERROR(EIO);
2995 				break;
2996 			case 0:
2997 			case XLOG_CONTINUE_TRANS:
2998 				error = xlog_recover_add_to_trans(trans,
2999 						dp, be32_to_cpu(ohead->oh_len));
3000 				break;
3001 			default:
3002 				xlog_warn(
3003 			"XFS: xlog_recover_process_data: bad flag");
3004 				ASSERT(0);
3005 				error = XFS_ERROR(EIO);
3006 				break;
3007 			}
3008 			if (error)
3009 				return error;
3010 		}
3011 		dp += be32_to_cpu(ohead->oh_len);
3012 		num_logops--;
3013 	}
3014 	return 0;
3015 }
3016 
3017 /*
3018  * Process an extent free intent item that was recovered from
3019  * the log.  We need to free the extents that it describes.
3020  */
3021 STATIC int
3022 xlog_recover_process_efi(
3023 	xfs_mount_t		*mp,
3024 	xfs_efi_log_item_t	*efip)
3025 {
3026 	xfs_efd_log_item_t	*efdp;
3027 	xfs_trans_t		*tp;
3028 	int			i;
3029 	int			error = 0;
3030 	xfs_extent_t		*extp;
3031 	xfs_fsblock_t		startblock_fsb;
3032 
3033 	ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
3034 
3035 	/*
3036 	 * First check the validity of the extents described by the
3037 	 * EFI.  If any are bad, then assume that all are bad and
3038 	 * just toss the EFI.
3039 	 */
3040 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3041 		extp = &(efip->efi_format.efi_extents[i]);
3042 		startblock_fsb = XFS_BB_TO_FSB(mp,
3043 				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
3044 		if ((startblock_fsb == 0) ||
3045 		    (extp->ext_len == 0) ||
3046 		    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3047 		    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3048 			/*
3049 			 * This will pull the EFI from the AIL and
3050 			 * free the memory associated with it.
3051 			 */
3052 			xfs_efi_release(efip, efip->efi_format.efi_nextents);
3053 			return XFS_ERROR(EIO);
3054 		}
3055 	}
3056 
3057 	tp = xfs_trans_alloc(mp, 0);
3058 	error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3059 	if (error)
3060 		goto abort_error;
3061 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3062 
3063 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3064 		extp = &(efip->efi_format.efi_extents[i]);
3065 		error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3066 		if (error)
3067 			goto abort_error;
3068 		xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3069 					 extp->ext_len);
3070 	}
3071 
3072 	efip->efi_flags |= XFS_EFI_RECOVERED;
3073 	error = xfs_trans_commit(tp, 0);
3074 	return error;
3075 
3076 abort_error:
3077 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3078 	return error;
3079 }
3080 
3081 /*
3082  * When this is called, all of the EFIs which did not have
3083  * corresponding EFDs should be in the AIL.  What we do now
3084  * is free the extents associated with each one.
3085  *
3086  * Since we process the EFIs in normal transactions, they
3087  * will be removed at some point after the commit.  This prevents
3088  * us from just walking down the list processing each one.
3089  * We'll use a flag in the EFI to skip those that we've already
3090  * processed and use the AIL iteration mechanism's generation
3091  * count to try to speed this up at least a bit.
3092  *
3093  * When we start, we know that the EFIs are the only things in
3094  * the AIL.  As we process them, however, other items are added
3095  * to the AIL.  Since everything added to the AIL must come after
3096  * everything already in the AIL, we stop processing as soon as
3097  * we see something other than an EFI in the AIL.
3098  */
3099 STATIC int
3100 xlog_recover_process_efis(
3101 	xlog_t			*log)
3102 {
3103 	xfs_log_item_t		*lip;
3104 	xfs_efi_log_item_t	*efip;
3105 	int			error = 0;
3106 	struct xfs_ail_cursor	cur;
3107 	struct xfs_ail		*ailp;
3108 
3109 	ailp = log->l_ailp;
3110 	spin_lock(&ailp->xa_lock);
3111 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3112 	while (lip != NULL) {
3113 		/*
3114 		 * We're done when we see something other than an EFI.
3115 		 * There should be no EFIs left in the AIL now.
3116 		 */
3117 		if (lip->li_type != XFS_LI_EFI) {
3118 #ifdef DEBUG
3119 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3120 				ASSERT(lip->li_type != XFS_LI_EFI);
3121 #endif
3122 			break;
3123 		}
3124 
3125 		/*
3126 		 * Skip EFIs that we've already processed.
3127 		 */
3128 		efip = (xfs_efi_log_item_t *)lip;
3129 		if (efip->efi_flags & XFS_EFI_RECOVERED) {
3130 			lip = xfs_trans_ail_cursor_next(ailp, &cur);
3131 			continue;
3132 		}
3133 
3134 		spin_unlock(&ailp->xa_lock);
3135 		error = xlog_recover_process_efi(log->l_mp, efip);
3136 		spin_lock(&ailp->xa_lock);
3137 		if (error)
3138 			goto out;
3139 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3140 	}
3141 out:
3142 	xfs_trans_ail_cursor_done(ailp, &cur);
3143 	spin_unlock(&ailp->xa_lock);
3144 	return error;
3145 }
3146 
3147 /*
3148  * This routine performs a transaction to null out a bad inode pointer
3149  * in an agi unlinked inode hash bucket.
3150  */
3151 STATIC void
3152 xlog_recover_clear_agi_bucket(
3153 	xfs_mount_t	*mp,
3154 	xfs_agnumber_t	agno,
3155 	int		bucket)
3156 {
3157 	xfs_trans_t	*tp;
3158 	xfs_agi_t	*agi;
3159 	xfs_buf_t	*agibp;
3160 	int		offset;
3161 	int		error;
3162 
3163 	tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3164 	error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3165 				  0, 0, 0);
3166 	if (error)
3167 		goto out_abort;
3168 
3169 	error = xfs_read_agi(mp, tp, agno, &agibp);
3170 	if (error)
3171 		goto out_abort;
3172 
3173 	agi = XFS_BUF_TO_AGI(agibp);
3174 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3175 	offset = offsetof(xfs_agi_t, agi_unlinked) +
3176 		 (sizeof(xfs_agino_t) * bucket);
3177 	xfs_trans_log_buf(tp, agibp, offset,
3178 			  (offset + sizeof(xfs_agino_t) - 1));
3179 
3180 	error = xfs_trans_commit(tp, 0);
3181 	if (error)
3182 		goto out_error;
3183 	return;
3184 
3185 out_abort:
3186 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3187 out_error:
3188 	xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3189 			"failed to clear agi %d. Continuing.", agno);
3190 	return;
3191 }
3192 
3193 STATIC xfs_agino_t
3194 xlog_recover_process_one_iunlink(
3195 	struct xfs_mount		*mp,
3196 	xfs_agnumber_t			agno,
3197 	xfs_agino_t			agino,
3198 	int				bucket)
3199 {
3200 	struct xfs_buf			*ibp;
3201 	struct xfs_dinode		*dip;
3202 	struct xfs_inode		*ip;
3203 	xfs_ino_t			ino;
3204 	int				error;
3205 
3206 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
3207 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3208 	if (error)
3209 		goto fail;
3210 
3211 	/*
3212 	 * Get the on disk inode to find the next inode in the bucket.
3213 	 */
3214 	error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XFS_BUF_LOCK);
3215 	if (error)
3216 		goto fail_iput;
3217 
3218 	ASSERT(ip->i_d.di_nlink == 0);
3219 	ASSERT(ip->i_d.di_mode != 0);
3220 
3221 	/* setup for the next pass */
3222 	agino = be32_to_cpu(dip->di_next_unlinked);
3223 	xfs_buf_relse(ibp);
3224 
3225 	/*
3226 	 * Prevent any DMAPI event from being sent when the reference on
3227 	 * the inode is dropped.
3228 	 */
3229 	ip->i_d.di_dmevmask = 0;
3230 
3231 	IRELE(ip);
3232 	return agino;
3233 
3234  fail_iput:
3235 	IRELE(ip);
3236  fail:
3237 	/*
3238 	 * We can't read in the inode this bucket points to, or this inode
3239 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
3240 	 * some inodes and space, but at least we won't hang.
3241 	 *
3242 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3243 	 * clear the inode pointer in the bucket.
3244 	 */
3245 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
3246 	return NULLAGINO;
3247 }
3248 
3249 /*
3250  * xlog_iunlink_recover
3251  *
3252  * This is called during recovery to process any inodes which
3253  * we unlinked but not freed when the system crashed.  These
3254  * inodes will be on the lists in the AGI blocks.  What we do
3255  * here is scan all the AGIs and fully truncate and free any
3256  * inodes found on the lists.  Each inode is removed from the
3257  * lists when it has been fully truncated and is freed.  The
3258  * freeing of the inode and its removal from the list must be
3259  * atomic.
3260  */
3261 STATIC void
3262 xlog_recover_process_iunlinks(
3263 	xlog_t		*log)
3264 {
3265 	xfs_mount_t	*mp;
3266 	xfs_agnumber_t	agno;
3267 	xfs_agi_t	*agi;
3268 	xfs_buf_t	*agibp;
3269 	xfs_agino_t	agino;
3270 	int		bucket;
3271 	int		error;
3272 	uint		mp_dmevmask;
3273 
3274 	mp = log->l_mp;
3275 
3276 	/*
3277 	 * Prevent any DMAPI event from being sent while in this function.
3278 	 */
3279 	mp_dmevmask = mp->m_dmevmask;
3280 	mp->m_dmevmask = 0;
3281 
3282 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3283 		/*
3284 		 * Find the agi for this ag.
3285 		 */
3286 		error = xfs_read_agi(mp, NULL, agno, &agibp);
3287 		if (error) {
3288 			/*
3289 			 * AGI is b0rked. Don't process it.
3290 			 *
3291 			 * We should probably mark the filesystem as corrupt
3292 			 * after we've recovered all the ag's we can....
3293 			 */
3294 			continue;
3295 		}
3296 		agi = XFS_BUF_TO_AGI(agibp);
3297 
3298 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3299 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3300 			while (agino != NULLAGINO) {
3301 				/*
3302 				 * Release the agi buffer so that it can
3303 				 * be acquired in the normal course of the
3304 				 * transaction to truncate and free the inode.
3305 				 */
3306 				xfs_buf_relse(agibp);
3307 
3308 				agino = xlog_recover_process_one_iunlink(mp,
3309 							agno, agino, bucket);
3310 
3311 				/*
3312 				 * Reacquire the agibuffer and continue around
3313 				 * the loop. This should never fail as we know
3314 				 * the buffer was good earlier on.
3315 				 */
3316 				error = xfs_read_agi(mp, NULL, agno, &agibp);
3317 				ASSERT(error == 0);
3318 				agi = XFS_BUF_TO_AGI(agibp);
3319 			}
3320 		}
3321 
3322 		/*
3323 		 * Release the buffer for the current agi so we can
3324 		 * go on to the next one.
3325 		 */
3326 		xfs_buf_relse(agibp);
3327 	}
3328 
3329 	mp->m_dmevmask = mp_dmevmask;
3330 }
3331 
3332 
3333 #ifdef DEBUG
3334 STATIC void
3335 xlog_pack_data_checksum(
3336 	xlog_t		*log,
3337 	xlog_in_core_t	*iclog,
3338 	int		size)
3339 {
3340 	int		i;
3341 	__be32		*up;
3342 	uint		chksum = 0;
3343 
3344 	up = (__be32 *)iclog->ic_datap;
3345 	/* divide length by 4 to get # words */
3346 	for (i = 0; i < (size >> 2); i++) {
3347 		chksum ^= be32_to_cpu(*up);
3348 		up++;
3349 	}
3350 	iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3351 }
3352 #else
3353 #define xlog_pack_data_checksum(log, iclog, size)
3354 #endif
3355 
3356 /*
3357  * Stamp cycle number in every block
3358  */
3359 void
3360 xlog_pack_data(
3361 	xlog_t			*log,
3362 	xlog_in_core_t		*iclog,
3363 	int			roundoff)
3364 {
3365 	int			i, j, k;
3366 	int			size = iclog->ic_offset + roundoff;
3367 	__be32			cycle_lsn;
3368 	xfs_caddr_t		dp;
3369 
3370 	xlog_pack_data_checksum(log, iclog, size);
3371 
3372 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3373 
3374 	dp = iclog->ic_datap;
3375 	for (i = 0; i < BTOBB(size) &&
3376 		i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3377 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3378 		*(__be32 *)dp = cycle_lsn;
3379 		dp += BBSIZE;
3380 	}
3381 
3382 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3383 		xlog_in_core_2_t *xhdr = iclog->ic_data;
3384 
3385 		for ( ; i < BTOBB(size); i++) {
3386 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3387 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3388 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3389 			*(__be32 *)dp = cycle_lsn;
3390 			dp += BBSIZE;
3391 		}
3392 
3393 		for (i = 1; i < log->l_iclog_heads; i++) {
3394 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3395 		}
3396 	}
3397 }
3398 
3399 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3400 STATIC void
3401 xlog_unpack_data_checksum(
3402 	xlog_rec_header_t	*rhead,
3403 	xfs_caddr_t		dp,
3404 	xlog_t			*log)
3405 {
3406 	__be32			*up = (__be32 *)dp;
3407 	uint			chksum = 0;
3408 	int			i;
3409 
3410 	/* divide length by 4 to get # words */
3411 	for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
3412 		chksum ^= be32_to_cpu(*up);
3413 		up++;
3414 	}
3415 	if (chksum != be32_to_cpu(rhead->h_chksum)) {
3416 	    if (rhead->h_chksum ||
3417 		((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3418 		    cmn_err(CE_DEBUG,
3419 			"XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
3420 			    be32_to_cpu(rhead->h_chksum), chksum);
3421 		    cmn_err(CE_DEBUG,
3422 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3423 		    if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3424 			    cmn_err(CE_DEBUG,
3425 				"XFS: LogR this is a LogV2 filesystem\n");
3426 		    }
3427 		    log->l_flags |= XLOG_CHKSUM_MISMATCH;
3428 	    }
3429 	}
3430 }
3431 #else
3432 #define xlog_unpack_data_checksum(rhead, dp, log)
3433 #endif
3434 
3435 STATIC void
3436 xlog_unpack_data(
3437 	xlog_rec_header_t	*rhead,
3438 	xfs_caddr_t		dp,
3439 	xlog_t			*log)
3440 {
3441 	int			i, j, k;
3442 
3443 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3444 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3445 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3446 		dp += BBSIZE;
3447 	}
3448 
3449 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3450 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3451 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3452 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3453 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3454 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3455 			dp += BBSIZE;
3456 		}
3457 	}
3458 
3459 	xlog_unpack_data_checksum(rhead, dp, log);
3460 }
3461 
3462 STATIC int
3463 xlog_valid_rec_header(
3464 	xlog_t			*log,
3465 	xlog_rec_header_t	*rhead,
3466 	xfs_daddr_t		blkno)
3467 {
3468 	int			hlen;
3469 
3470 	if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
3471 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3472 				XFS_ERRLEVEL_LOW, log->l_mp);
3473 		return XFS_ERROR(EFSCORRUPTED);
3474 	}
3475 	if (unlikely(
3476 	    (!rhead->h_version ||
3477 	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3478 		xlog_warn("XFS: %s: unrecognised log version (%d).",
3479 			__func__, be32_to_cpu(rhead->h_version));
3480 		return XFS_ERROR(EIO);
3481 	}
3482 
3483 	/* LR body must have data or it wouldn't have been written */
3484 	hlen = be32_to_cpu(rhead->h_len);
3485 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3486 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3487 				XFS_ERRLEVEL_LOW, log->l_mp);
3488 		return XFS_ERROR(EFSCORRUPTED);
3489 	}
3490 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3491 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3492 				XFS_ERRLEVEL_LOW, log->l_mp);
3493 		return XFS_ERROR(EFSCORRUPTED);
3494 	}
3495 	return 0;
3496 }
3497 
3498 /*
3499  * Read the log from tail to head and process the log records found.
3500  * Handle the two cases where the tail and head are in the same cycle
3501  * and where the active portion of the log wraps around the end of
3502  * the physical log separately.  The pass parameter is passed through
3503  * to the routines called to process the data and is not looked at
3504  * here.
3505  */
3506 STATIC int
3507 xlog_do_recovery_pass(
3508 	xlog_t			*log,
3509 	xfs_daddr_t		head_blk,
3510 	xfs_daddr_t		tail_blk,
3511 	int			pass)
3512 {
3513 	xlog_rec_header_t	*rhead;
3514 	xfs_daddr_t		blk_no;
3515 	xfs_caddr_t		offset;
3516 	xfs_buf_t		*hbp, *dbp;
3517 	int			error = 0, h_size;
3518 	int			bblks, split_bblks;
3519 	int			hblks, split_hblks, wrapped_hblks;
3520 	xlog_recover_t		*rhash[XLOG_RHASH_SIZE];
3521 
3522 	ASSERT(head_blk != tail_blk);
3523 
3524 	/*
3525 	 * Read the header of the tail block and get the iclog buffer size from
3526 	 * h_size.  Use this to tell how many sectors make up the log header.
3527 	 */
3528 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3529 		/*
3530 		 * When using variable length iclogs, read first sector of
3531 		 * iclog header and extract the header size from it.  Get a
3532 		 * new hbp that is the correct size.
3533 		 */
3534 		hbp = xlog_get_bp(log, 1);
3535 		if (!hbp)
3536 			return ENOMEM;
3537 
3538 		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3539 		if (error)
3540 			goto bread_err1;
3541 
3542 		rhead = (xlog_rec_header_t *)offset;
3543 		error = xlog_valid_rec_header(log, rhead, tail_blk);
3544 		if (error)
3545 			goto bread_err1;
3546 		h_size = be32_to_cpu(rhead->h_size);
3547 		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3548 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3549 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3550 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
3551 				hblks++;
3552 			xlog_put_bp(hbp);
3553 			hbp = xlog_get_bp(log, hblks);
3554 		} else {
3555 			hblks = 1;
3556 		}
3557 	} else {
3558 		ASSERT(log->l_sectbb_log == 0);
3559 		hblks = 1;
3560 		hbp = xlog_get_bp(log, 1);
3561 		h_size = XLOG_BIG_RECORD_BSIZE;
3562 	}
3563 
3564 	if (!hbp)
3565 		return ENOMEM;
3566 	dbp = xlog_get_bp(log, BTOBB(h_size));
3567 	if (!dbp) {
3568 		xlog_put_bp(hbp);
3569 		return ENOMEM;
3570 	}
3571 
3572 	memset(rhash, 0, sizeof(rhash));
3573 	if (tail_blk <= head_blk) {
3574 		for (blk_no = tail_blk; blk_no < head_blk; ) {
3575 			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3576 			if (error)
3577 				goto bread_err2;
3578 
3579 			rhead = (xlog_rec_header_t *)offset;
3580 			error = xlog_valid_rec_header(log, rhead, blk_no);
3581 			if (error)
3582 				goto bread_err2;
3583 
3584 			/* blocks in data section */
3585 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3586 			error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3587 					   &offset);
3588 			if (error)
3589 				goto bread_err2;
3590 
3591 			xlog_unpack_data(rhead, offset, log);
3592 			if ((error = xlog_recover_process_data(log,
3593 						rhash, rhead, offset, pass)))
3594 				goto bread_err2;
3595 			blk_no += bblks + hblks;
3596 		}
3597 	} else {
3598 		/*
3599 		 * Perform recovery around the end of the physical log.
3600 		 * When the head is not on the same cycle number as the tail,
3601 		 * we can't do a sequential recovery as above.
3602 		 */
3603 		blk_no = tail_blk;
3604 		while (blk_no < log->l_logBBsize) {
3605 			/*
3606 			 * Check for header wrapping around physical end-of-log
3607 			 */
3608 			offset = XFS_BUF_PTR(hbp);
3609 			split_hblks = 0;
3610 			wrapped_hblks = 0;
3611 			if (blk_no + hblks <= log->l_logBBsize) {
3612 				/* Read header in one read */
3613 				error = xlog_bread(log, blk_no, hblks, hbp,
3614 						   &offset);
3615 				if (error)
3616 					goto bread_err2;
3617 			} else {
3618 				/* This LR is split across physical log end */
3619 				if (blk_no != log->l_logBBsize) {
3620 					/* some data before physical log end */
3621 					ASSERT(blk_no <= INT_MAX);
3622 					split_hblks = log->l_logBBsize - (int)blk_no;
3623 					ASSERT(split_hblks > 0);
3624 					error = xlog_bread(log, blk_no,
3625 							   split_hblks, hbp,
3626 							   &offset);
3627 					if (error)
3628 						goto bread_err2;
3629 				}
3630 
3631 				/*
3632 				 * Note: this black magic still works with
3633 				 * large sector sizes (non-512) only because:
3634 				 * - we increased the buffer size originally
3635 				 *   by 1 sector giving us enough extra space
3636 				 *   for the second read;
3637 				 * - the log start is guaranteed to be sector
3638 				 *   aligned;
3639 				 * - we read the log end (LR header start)
3640 				 *   _first_, then the log start (LR header end)
3641 				 *   - order is important.
3642 				 */
3643 				wrapped_hblks = hblks - split_hblks;
3644 				error = XFS_BUF_SET_PTR(hbp,
3645 						offset + BBTOB(split_hblks),
3646 						BBTOB(hblks - split_hblks));
3647 				if (error)
3648 					goto bread_err2;
3649 
3650 				error = xlog_bread_noalign(log, 0,
3651 							   wrapped_hblks, hbp);
3652 				if (error)
3653 					goto bread_err2;
3654 
3655 				error = XFS_BUF_SET_PTR(hbp, offset,
3656 							BBTOB(hblks));
3657 				if (error)
3658 					goto bread_err2;
3659 			}
3660 			rhead = (xlog_rec_header_t *)offset;
3661 			error = xlog_valid_rec_header(log, rhead,
3662 						split_hblks ? blk_no : 0);
3663 			if (error)
3664 				goto bread_err2;
3665 
3666 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3667 			blk_no += hblks;
3668 
3669 			/* Read in data for log record */
3670 			if (blk_no + bblks <= log->l_logBBsize) {
3671 				error = xlog_bread(log, blk_no, bblks, dbp,
3672 						   &offset);
3673 				if (error)
3674 					goto bread_err2;
3675 			} else {
3676 				/* This log record is split across the
3677 				 * physical end of log */
3678 				offset = XFS_BUF_PTR(dbp);
3679 				split_bblks = 0;
3680 				if (blk_no != log->l_logBBsize) {
3681 					/* some data is before the physical
3682 					 * end of log */
3683 					ASSERT(!wrapped_hblks);
3684 					ASSERT(blk_no <= INT_MAX);
3685 					split_bblks =
3686 						log->l_logBBsize - (int)blk_no;
3687 					ASSERT(split_bblks > 0);
3688 					error = xlog_bread(log, blk_no,
3689 							split_bblks, dbp,
3690 							&offset);
3691 					if (error)
3692 						goto bread_err2;
3693 				}
3694 
3695 				/*
3696 				 * Note: this black magic still works with
3697 				 * large sector sizes (non-512) only because:
3698 				 * - we increased the buffer size originally
3699 				 *   by 1 sector giving us enough extra space
3700 				 *   for the second read;
3701 				 * - the log start is guaranteed to be sector
3702 				 *   aligned;
3703 				 * - we read the log end (LR header start)
3704 				 *   _first_, then the log start (LR header end)
3705 				 *   - order is important.
3706 				 */
3707 				error = XFS_BUF_SET_PTR(dbp,
3708 						offset + BBTOB(split_bblks),
3709 						BBTOB(bblks - split_bblks));
3710 				if (error)
3711 					goto bread_err2;
3712 
3713 				error = xlog_bread_noalign(log, wrapped_hblks,
3714 						bblks - split_bblks,
3715 						dbp);
3716 				if (error)
3717 					goto bread_err2;
3718 
3719 				error = XFS_BUF_SET_PTR(dbp, offset, h_size);
3720 				if (error)
3721 					goto bread_err2;
3722 			}
3723 			xlog_unpack_data(rhead, offset, log);
3724 			if ((error = xlog_recover_process_data(log, rhash,
3725 							rhead, offset, pass)))
3726 				goto bread_err2;
3727 			blk_no += bblks;
3728 		}
3729 
3730 		ASSERT(blk_no >= log->l_logBBsize);
3731 		blk_no -= log->l_logBBsize;
3732 
3733 		/* read first part of physical log */
3734 		while (blk_no < head_blk) {
3735 			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3736 			if (error)
3737 				goto bread_err2;
3738 
3739 			rhead = (xlog_rec_header_t *)offset;
3740 			error = xlog_valid_rec_header(log, rhead, blk_no);
3741 			if (error)
3742 				goto bread_err2;
3743 
3744 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3745 			error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3746 					   &offset);
3747 			if (error)
3748 				goto bread_err2;
3749 
3750 			xlog_unpack_data(rhead, offset, log);
3751 			if ((error = xlog_recover_process_data(log, rhash,
3752 							rhead, offset, pass)))
3753 				goto bread_err2;
3754 			blk_no += bblks + hblks;
3755 		}
3756 	}
3757 
3758  bread_err2:
3759 	xlog_put_bp(dbp);
3760  bread_err1:
3761 	xlog_put_bp(hbp);
3762 	return error;
3763 }
3764 
3765 /*
3766  * Do the recovery of the log.  We actually do this in two phases.
3767  * The two passes are necessary in order to implement the function
3768  * of cancelling a record written into the log.  The first pass
3769  * determines those things which have been cancelled, and the
3770  * second pass replays log items normally except for those which
3771  * have been cancelled.  The handling of the replay and cancellations
3772  * takes place in the log item type specific routines.
3773  *
3774  * The table of items which have cancel records in the log is allocated
3775  * and freed at this level, since only here do we know when all of
3776  * the log recovery has been completed.
3777  */
3778 STATIC int
3779 xlog_do_log_recovery(
3780 	xlog_t		*log,
3781 	xfs_daddr_t	head_blk,
3782 	xfs_daddr_t	tail_blk)
3783 {
3784 	int		error;
3785 
3786 	ASSERT(head_blk != tail_blk);
3787 
3788 	/*
3789 	 * First do a pass to find all of the cancelled buf log items.
3790 	 * Store them in the buf_cancel_table for use in the second pass.
3791 	 */
3792 	log->l_buf_cancel_table =
3793 		(xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3794 						 sizeof(xfs_buf_cancel_t*),
3795 						 KM_SLEEP);
3796 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3797 				      XLOG_RECOVER_PASS1);
3798 	if (error != 0) {
3799 		kmem_free(log->l_buf_cancel_table);
3800 		log->l_buf_cancel_table = NULL;
3801 		return error;
3802 	}
3803 	/*
3804 	 * Then do a second pass to actually recover the items in the log.
3805 	 * When it is complete free the table of buf cancel items.
3806 	 */
3807 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3808 				      XLOG_RECOVER_PASS2);
3809 #ifdef DEBUG
3810 	if (!error) {
3811 		int	i;
3812 
3813 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3814 			ASSERT(log->l_buf_cancel_table[i] == NULL);
3815 	}
3816 #endif	/* DEBUG */
3817 
3818 	kmem_free(log->l_buf_cancel_table);
3819 	log->l_buf_cancel_table = NULL;
3820 
3821 	return error;
3822 }
3823 
3824 /*
3825  * Do the actual recovery
3826  */
3827 STATIC int
3828 xlog_do_recover(
3829 	xlog_t		*log,
3830 	xfs_daddr_t	head_blk,
3831 	xfs_daddr_t	tail_blk)
3832 {
3833 	int		error;
3834 	xfs_buf_t	*bp;
3835 	xfs_sb_t	*sbp;
3836 
3837 	/*
3838 	 * First replay the images in the log.
3839 	 */
3840 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
3841 	if (error) {
3842 		return error;
3843 	}
3844 
3845 	XFS_bflush(log->l_mp->m_ddev_targp);
3846 
3847 	/*
3848 	 * If IO errors happened during recovery, bail out.
3849 	 */
3850 	if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3851 		return (EIO);
3852 	}
3853 
3854 	/*
3855 	 * We now update the tail_lsn since much of the recovery has completed
3856 	 * and there may be space available to use.  If there were no extent
3857 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
3858 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3859 	 * lsn of the last known good LR on disk.  If there are extent frees
3860 	 * or iunlinks they will have some entries in the AIL; so we look at
3861 	 * the AIL to determine how to set the tail_lsn.
3862 	 */
3863 	xlog_assign_tail_lsn(log->l_mp);
3864 
3865 	/*
3866 	 * Now that we've finished replaying all buffer and inode
3867 	 * updates, re-read in the superblock.
3868 	 */
3869 	bp = xfs_getsb(log->l_mp, 0);
3870 	XFS_BUF_UNDONE(bp);
3871 	ASSERT(!(XFS_BUF_ISWRITE(bp)));
3872 	ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3873 	XFS_BUF_READ(bp);
3874 	XFS_BUF_UNASYNC(bp);
3875 	xfsbdstrat(log->l_mp, bp);
3876 	error = xfs_iowait(bp);
3877 	if (error) {
3878 		xfs_ioerror_alert("xlog_do_recover",
3879 				  log->l_mp, bp, XFS_BUF_ADDR(bp));
3880 		ASSERT(0);
3881 		xfs_buf_relse(bp);
3882 		return error;
3883 	}
3884 
3885 	/* Convert superblock from on-disk format */
3886 	sbp = &log->l_mp->m_sb;
3887 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3888 	ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3889 	ASSERT(xfs_sb_good_version(sbp));
3890 	xfs_buf_relse(bp);
3891 
3892 	/* We've re-read the superblock so re-initialize per-cpu counters */
3893 	xfs_icsb_reinit_counters(log->l_mp);
3894 
3895 	xlog_recover_check_summary(log);
3896 
3897 	/* Normal transactions can now occur */
3898 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3899 	return 0;
3900 }
3901 
3902 /*
3903  * Perform recovery and re-initialize some log variables in xlog_find_tail.
3904  *
3905  * Return error or zero.
3906  */
3907 int
3908 xlog_recover(
3909 	xlog_t		*log)
3910 {
3911 	xfs_daddr_t	head_blk, tail_blk;
3912 	int		error;
3913 
3914 	/* find the tail of the log */
3915 	if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3916 		return error;
3917 
3918 	if (tail_blk != head_blk) {
3919 		/* There used to be a comment here:
3920 		 *
3921 		 * disallow recovery on read-only mounts.  note -- mount
3922 		 * checks for ENOSPC and turns it into an intelligent
3923 		 * error message.
3924 		 * ...but this is no longer true.  Now, unless you specify
3925 		 * NORECOVERY (in which case this function would never be
3926 		 * called), we just go ahead and recover.  We do this all
3927 		 * under the vfs layer, so we can get away with it unless
3928 		 * the device itself is read-only, in which case we fail.
3929 		 */
3930 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3931 			return error;
3932 		}
3933 
3934 		cmn_err(CE_NOTE,
3935 			"Starting XFS recovery on filesystem: %s (logdev: %s)",
3936 			log->l_mp->m_fsname, log->l_mp->m_logname ?
3937 			log->l_mp->m_logname : "internal");
3938 
3939 		error = xlog_do_recover(log, head_blk, tail_blk);
3940 		log->l_flags |= XLOG_RECOVERY_NEEDED;
3941 	}
3942 	return error;
3943 }
3944 
3945 /*
3946  * In the first part of recovery we replay inodes and buffers and build
3947  * up the list of extent free items which need to be processed.  Here
3948  * we process the extent free items and clean up the on disk unlinked
3949  * inode lists.  This is separated from the first part of recovery so
3950  * that the root and real-time bitmap inodes can be read in from disk in
3951  * between the two stages.  This is necessary so that we can free space
3952  * in the real-time portion of the file system.
3953  */
3954 int
3955 xlog_recover_finish(
3956 	xlog_t		*log)
3957 {
3958 	/*
3959 	 * Now we're ready to do the transactions needed for the
3960 	 * rest of recovery.  Start with completing all the extent
3961 	 * free intent records and then process the unlinked inode
3962 	 * lists.  At this point, we essentially run in normal mode
3963 	 * except that we're still performing recovery actions
3964 	 * rather than accepting new requests.
3965 	 */
3966 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3967 		int	error;
3968 		error = xlog_recover_process_efis(log);
3969 		if (error) {
3970 			cmn_err(CE_ALERT,
3971 				"Failed to recover EFIs on filesystem: %s",
3972 				log->l_mp->m_fsname);
3973 			return error;
3974 		}
3975 		/*
3976 		 * Sync the log to get all the EFIs out of the AIL.
3977 		 * This isn't absolutely necessary, but it helps in
3978 		 * case the unlink transactions would have problems
3979 		 * pushing the EFIs out of the way.
3980 		 */
3981 		xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3982 			      (XFS_LOG_FORCE | XFS_LOG_SYNC));
3983 
3984 		xlog_recover_process_iunlinks(log);
3985 
3986 		xlog_recover_check_summary(log);
3987 
3988 		cmn_err(CE_NOTE,
3989 			"Ending XFS recovery on filesystem: %s (logdev: %s)",
3990 			log->l_mp->m_fsname, log->l_mp->m_logname ?
3991 			log->l_mp->m_logname : "internal");
3992 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3993 	} else {
3994 		cmn_err(CE_DEBUG,
3995 			"!Ending clean XFS mount for filesystem: %s\n",
3996 			log->l_mp->m_fsname);
3997 	}
3998 	return 0;
3999 }
4000 
4001 
4002 #if defined(DEBUG)
4003 /*
4004  * Read all of the agf and agi counters and check that they
4005  * are consistent with the superblock counters.
4006  */
4007 void
4008 xlog_recover_check_summary(
4009 	xlog_t		*log)
4010 {
4011 	xfs_mount_t	*mp;
4012 	xfs_agf_t	*agfp;
4013 	xfs_buf_t	*agfbp;
4014 	xfs_buf_t	*agibp;
4015 	xfs_buf_t	*sbbp;
4016 #ifdef XFS_LOUD_RECOVERY
4017 	xfs_sb_t	*sbp;
4018 #endif
4019 	xfs_agnumber_t	agno;
4020 	__uint64_t	freeblks;
4021 	__uint64_t	itotal;
4022 	__uint64_t	ifree;
4023 	int		error;
4024 
4025 	mp = log->l_mp;
4026 
4027 	freeblks = 0LL;
4028 	itotal = 0LL;
4029 	ifree = 0LL;
4030 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4031 		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4032 		if (error) {
4033 			xfs_fs_cmn_err(CE_ALERT, mp,
4034 					"xlog_recover_check_summary(agf)"
4035 					"agf read failed agno %d error %d",
4036 							agno, error);
4037 		} else {
4038 			agfp = XFS_BUF_TO_AGF(agfbp);
4039 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
4040 				    be32_to_cpu(agfp->agf_flcount);
4041 			xfs_buf_relse(agfbp);
4042 		}
4043 
4044 		error = xfs_read_agi(mp, NULL, agno, &agibp);
4045 		if (!error) {
4046 			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
4047 
4048 			itotal += be32_to_cpu(agi->agi_count);
4049 			ifree += be32_to_cpu(agi->agi_freecount);
4050 			xfs_buf_relse(agibp);
4051 		}
4052 	}
4053 
4054 	sbbp = xfs_getsb(mp, 0);
4055 #ifdef XFS_LOUD_RECOVERY
4056 	sbp = &mp->m_sb;
4057 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
4058 	cmn_err(CE_NOTE,
4059 		"xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4060 		sbp->sb_icount, itotal);
4061 	cmn_err(CE_NOTE,
4062 		"xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4063 		sbp->sb_ifree, ifree);
4064 	cmn_err(CE_NOTE,
4065 		"xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4066 		sbp->sb_fdblocks, freeblks);
4067 #if 0
4068 	/*
4069 	 * This is turned off until I account for the allocation
4070 	 * btree blocks which live in free space.
4071 	 */
4072 	ASSERT(sbp->sb_icount == itotal);
4073 	ASSERT(sbp->sb_ifree == ifree);
4074 	ASSERT(sbp->sb_fdblocks == freeblks);
4075 #endif
4076 #endif
4077 	xfs_buf_relse(sbbp);
4078 }
4079 #endif /* DEBUG */
4080