1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_dir2.h" 28 #include "xfs_dmapi.h" 29 #include "xfs_mount.h" 30 #include "xfs_error.h" 31 #include "xfs_bmap_btree.h" 32 #include "xfs_alloc_btree.h" 33 #include "xfs_ialloc_btree.h" 34 #include "xfs_dir2_sf.h" 35 #include "xfs_attr_sf.h" 36 #include "xfs_dinode.h" 37 #include "xfs_inode.h" 38 #include "xfs_inode_item.h" 39 #include "xfs_alloc.h" 40 #include "xfs_ialloc.h" 41 #include "xfs_log_priv.h" 42 #include "xfs_buf_item.h" 43 #include "xfs_log_recover.h" 44 #include "xfs_extfree_item.h" 45 #include "xfs_trans_priv.h" 46 #include "xfs_quota.h" 47 #include "xfs_rw.h" 48 #include "xfs_utils.h" 49 #include "xfs_trace.h" 50 51 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *); 52 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t); 53 STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q, 54 xlog_recover_item_t *item); 55 #if defined(DEBUG) 56 STATIC void xlog_recover_check_summary(xlog_t *); 57 #else 58 #define xlog_recover_check_summary(log) 59 #endif 60 61 62 /* 63 * Sector aligned buffer routines for buffer create/read/write/access 64 */ 65 66 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \ 67 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \ 68 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) ) 69 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask) 70 71 xfs_buf_t * 72 xlog_get_bp( 73 xlog_t *log, 74 int nbblks) 75 { 76 if (nbblks <= 0 || nbblks > log->l_logBBsize) { 77 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks); 78 XFS_ERROR_REPORT("xlog_get_bp(1)", 79 XFS_ERRLEVEL_HIGH, log->l_mp); 80 return NULL; 81 } 82 83 if (log->l_sectbb_log) { 84 if (nbblks > 1) 85 nbblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1); 86 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); 87 } 88 return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp); 89 } 90 91 void 92 xlog_put_bp( 93 xfs_buf_t *bp) 94 { 95 xfs_buf_free(bp); 96 } 97 98 STATIC xfs_caddr_t 99 xlog_align( 100 xlog_t *log, 101 xfs_daddr_t blk_no, 102 int nbblks, 103 xfs_buf_t *bp) 104 { 105 xfs_caddr_t ptr; 106 107 if (!log->l_sectbb_log) 108 return XFS_BUF_PTR(bp); 109 110 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask); 111 ASSERT(XFS_BUF_SIZE(bp) >= 112 BBTOB(nbblks + (blk_no & log->l_sectbb_mask))); 113 return ptr; 114 } 115 116 117 /* 118 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 119 */ 120 STATIC int 121 xlog_bread_noalign( 122 xlog_t *log, 123 xfs_daddr_t blk_no, 124 int nbblks, 125 xfs_buf_t *bp) 126 { 127 int error; 128 129 if (nbblks <= 0 || nbblks > log->l_logBBsize) { 130 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks); 131 XFS_ERROR_REPORT("xlog_bread(1)", 132 XFS_ERRLEVEL_HIGH, log->l_mp); 133 return EFSCORRUPTED; 134 } 135 136 if (log->l_sectbb_log) { 137 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no); 138 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); 139 } 140 141 ASSERT(nbblks > 0); 142 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); 143 ASSERT(bp); 144 145 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 146 XFS_BUF_READ(bp); 147 XFS_BUF_BUSY(bp); 148 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); 149 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); 150 151 xfsbdstrat(log->l_mp, bp); 152 error = xfs_iowait(bp); 153 if (error) 154 xfs_ioerror_alert("xlog_bread", log->l_mp, 155 bp, XFS_BUF_ADDR(bp)); 156 return error; 157 } 158 159 STATIC int 160 xlog_bread( 161 xlog_t *log, 162 xfs_daddr_t blk_no, 163 int nbblks, 164 xfs_buf_t *bp, 165 xfs_caddr_t *offset) 166 { 167 int error; 168 169 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 170 if (error) 171 return error; 172 173 *offset = xlog_align(log, blk_no, nbblks, bp); 174 return 0; 175 } 176 177 /* 178 * Write out the buffer at the given block for the given number of blocks. 179 * The buffer is kept locked across the write and is returned locked. 180 * This can only be used for synchronous log writes. 181 */ 182 STATIC int 183 xlog_bwrite( 184 xlog_t *log, 185 xfs_daddr_t blk_no, 186 int nbblks, 187 xfs_buf_t *bp) 188 { 189 int error; 190 191 if (nbblks <= 0 || nbblks > log->l_logBBsize) { 192 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks); 193 XFS_ERROR_REPORT("xlog_bwrite(1)", 194 XFS_ERRLEVEL_HIGH, log->l_mp); 195 return EFSCORRUPTED; 196 } 197 198 if (log->l_sectbb_log) { 199 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no); 200 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); 201 } 202 203 ASSERT(nbblks > 0); 204 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); 205 206 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 207 XFS_BUF_ZEROFLAGS(bp); 208 XFS_BUF_BUSY(bp); 209 XFS_BUF_HOLD(bp); 210 XFS_BUF_PSEMA(bp, PRIBIO); 211 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); 212 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); 213 214 if ((error = xfs_bwrite(log->l_mp, bp))) 215 xfs_ioerror_alert("xlog_bwrite", log->l_mp, 216 bp, XFS_BUF_ADDR(bp)); 217 return error; 218 } 219 220 #ifdef DEBUG 221 /* 222 * dump debug superblock and log record information 223 */ 224 STATIC void 225 xlog_header_check_dump( 226 xfs_mount_t *mp, 227 xlog_rec_header_t *head) 228 { 229 cmn_err(CE_DEBUG, "%s: SB : uuid = %pU, fmt = %d\n", 230 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 231 cmn_err(CE_DEBUG, " log : uuid = %pU, fmt = %d\n", 232 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 233 } 234 #else 235 #define xlog_header_check_dump(mp, head) 236 #endif 237 238 /* 239 * check log record header for recovery 240 */ 241 STATIC int 242 xlog_header_check_recover( 243 xfs_mount_t *mp, 244 xlog_rec_header_t *head) 245 { 246 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM); 247 248 /* 249 * IRIX doesn't write the h_fmt field and leaves it zeroed 250 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 251 * a dirty log created in IRIX. 252 */ 253 if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) { 254 xlog_warn( 255 "XFS: dirty log written in incompatible format - can't recover"); 256 xlog_header_check_dump(mp, head); 257 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 258 XFS_ERRLEVEL_HIGH, mp); 259 return XFS_ERROR(EFSCORRUPTED); 260 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 261 xlog_warn( 262 "XFS: dirty log entry has mismatched uuid - can't recover"); 263 xlog_header_check_dump(mp, head); 264 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 265 XFS_ERRLEVEL_HIGH, mp); 266 return XFS_ERROR(EFSCORRUPTED); 267 } 268 return 0; 269 } 270 271 /* 272 * read the head block of the log and check the header 273 */ 274 STATIC int 275 xlog_header_check_mount( 276 xfs_mount_t *mp, 277 xlog_rec_header_t *head) 278 { 279 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM); 280 281 if (uuid_is_nil(&head->h_fs_uuid)) { 282 /* 283 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 284 * h_fs_uuid is nil, we assume this log was last mounted 285 * by IRIX and continue. 286 */ 287 xlog_warn("XFS: nil uuid in log - IRIX style log"); 288 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 289 xlog_warn("XFS: log has mismatched uuid - can't recover"); 290 xlog_header_check_dump(mp, head); 291 XFS_ERROR_REPORT("xlog_header_check_mount", 292 XFS_ERRLEVEL_HIGH, mp); 293 return XFS_ERROR(EFSCORRUPTED); 294 } 295 return 0; 296 } 297 298 STATIC void 299 xlog_recover_iodone( 300 struct xfs_buf *bp) 301 { 302 if (XFS_BUF_GETERROR(bp)) { 303 /* 304 * We're not going to bother about retrying 305 * this during recovery. One strike! 306 */ 307 xfs_ioerror_alert("xlog_recover_iodone", 308 bp->b_mount, bp, XFS_BUF_ADDR(bp)); 309 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR); 310 } 311 bp->b_mount = NULL; 312 XFS_BUF_CLR_IODONE_FUNC(bp); 313 xfs_biodone(bp); 314 } 315 316 /* 317 * This routine finds (to an approximation) the first block in the physical 318 * log which contains the given cycle. It uses a binary search algorithm. 319 * Note that the algorithm can not be perfect because the disk will not 320 * necessarily be perfect. 321 */ 322 STATIC int 323 xlog_find_cycle_start( 324 xlog_t *log, 325 xfs_buf_t *bp, 326 xfs_daddr_t first_blk, 327 xfs_daddr_t *last_blk, 328 uint cycle) 329 { 330 xfs_caddr_t offset; 331 xfs_daddr_t mid_blk; 332 uint mid_cycle; 333 int error; 334 335 mid_blk = BLK_AVG(first_blk, *last_blk); 336 while (mid_blk != first_blk && mid_blk != *last_blk) { 337 error = xlog_bread(log, mid_blk, 1, bp, &offset); 338 if (error) 339 return error; 340 mid_cycle = xlog_get_cycle(offset); 341 if (mid_cycle == cycle) { 342 *last_blk = mid_blk; 343 /* last_half_cycle == mid_cycle */ 344 } else { 345 first_blk = mid_blk; 346 /* first_half_cycle == mid_cycle */ 347 } 348 mid_blk = BLK_AVG(first_blk, *last_blk); 349 } 350 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) || 351 (mid_blk == *last_blk && mid_blk-1 == first_blk)); 352 353 return 0; 354 } 355 356 /* 357 * Check that the range of blocks does not contain the cycle number 358 * given. The scan needs to occur from front to back and the ptr into the 359 * region must be updated since a later routine will need to perform another 360 * test. If the region is completely good, we end up returning the same 361 * last block number. 362 * 363 * Set blkno to -1 if we encounter no errors. This is an invalid block number 364 * since we don't ever expect logs to get this large. 365 */ 366 STATIC int 367 xlog_find_verify_cycle( 368 xlog_t *log, 369 xfs_daddr_t start_blk, 370 int nbblks, 371 uint stop_on_cycle_no, 372 xfs_daddr_t *new_blk) 373 { 374 xfs_daddr_t i, j; 375 uint cycle; 376 xfs_buf_t *bp; 377 xfs_daddr_t bufblks; 378 xfs_caddr_t buf = NULL; 379 int error = 0; 380 381 bufblks = 1 << ffs(nbblks); 382 383 while (!(bp = xlog_get_bp(log, bufblks))) { 384 /* can't get enough memory to do everything in one big buffer */ 385 bufblks >>= 1; 386 if (bufblks <= log->l_sectbb_log) 387 return ENOMEM; 388 } 389 390 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 391 int bcount; 392 393 bcount = min(bufblks, (start_blk + nbblks - i)); 394 395 error = xlog_bread(log, i, bcount, bp, &buf); 396 if (error) 397 goto out; 398 399 for (j = 0; j < bcount; j++) { 400 cycle = xlog_get_cycle(buf); 401 if (cycle == stop_on_cycle_no) { 402 *new_blk = i+j; 403 goto out; 404 } 405 406 buf += BBSIZE; 407 } 408 } 409 410 *new_blk = -1; 411 412 out: 413 xlog_put_bp(bp); 414 return error; 415 } 416 417 /* 418 * Potentially backup over partial log record write. 419 * 420 * In the typical case, last_blk is the number of the block directly after 421 * a good log record. Therefore, we subtract one to get the block number 422 * of the last block in the given buffer. extra_bblks contains the number 423 * of blocks we would have read on a previous read. This happens when the 424 * last log record is split over the end of the physical log. 425 * 426 * extra_bblks is the number of blocks potentially verified on a previous 427 * call to this routine. 428 */ 429 STATIC int 430 xlog_find_verify_log_record( 431 xlog_t *log, 432 xfs_daddr_t start_blk, 433 xfs_daddr_t *last_blk, 434 int extra_bblks) 435 { 436 xfs_daddr_t i; 437 xfs_buf_t *bp; 438 xfs_caddr_t offset = NULL; 439 xlog_rec_header_t *head = NULL; 440 int error = 0; 441 int smallmem = 0; 442 int num_blks = *last_blk - start_blk; 443 int xhdrs; 444 445 ASSERT(start_blk != 0 || *last_blk != start_blk); 446 447 if (!(bp = xlog_get_bp(log, num_blks))) { 448 if (!(bp = xlog_get_bp(log, 1))) 449 return ENOMEM; 450 smallmem = 1; 451 } else { 452 error = xlog_bread(log, start_blk, num_blks, bp, &offset); 453 if (error) 454 goto out; 455 offset += ((num_blks - 1) << BBSHIFT); 456 } 457 458 for (i = (*last_blk) - 1; i >= 0; i--) { 459 if (i < start_blk) { 460 /* valid log record not found */ 461 xlog_warn( 462 "XFS: Log inconsistent (didn't find previous header)"); 463 ASSERT(0); 464 error = XFS_ERROR(EIO); 465 goto out; 466 } 467 468 if (smallmem) { 469 error = xlog_bread(log, i, 1, bp, &offset); 470 if (error) 471 goto out; 472 } 473 474 head = (xlog_rec_header_t *)offset; 475 476 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno)) 477 break; 478 479 if (!smallmem) 480 offset -= BBSIZE; 481 } 482 483 /* 484 * We hit the beginning of the physical log & still no header. Return 485 * to caller. If caller can handle a return of -1, then this routine 486 * will be called again for the end of the physical log. 487 */ 488 if (i == -1) { 489 error = -1; 490 goto out; 491 } 492 493 /* 494 * We have the final block of the good log (the first block 495 * of the log record _before_ the head. So we check the uuid. 496 */ 497 if ((error = xlog_header_check_mount(log->l_mp, head))) 498 goto out; 499 500 /* 501 * We may have found a log record header before we expected one. 502 * last_blk will be the 1st block # with a given cycle #. We may end 503 * up reading an entire log record. In this case, we don't want to 504 * reset last_blk. Only when last_blk points in the middle of a log 505 * record do we update last_blk. 506 */ 507 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 508 uint h_size = be32_to_cpu(head->h_size); 509 510 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 511 if (h_size % XLOG_HEADER_CYCLE_SIZE) 512 xhdrs++; 513 } else { 514 xhdrs = 1; 515 } 516 517 if (*last_blk - i + extra_bblks != 518 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 519 *last_blk = i; 520 521 out: 522 xlog_put_bp(bp); 523 return error; 524 } 525 526 /* 527 * Head is defined to be the point of the log where the next log write 528 * write could go. This means that incomplete LR writes at the end are 529 * eliminated when calculating the head. We aren't guaranteed that previous 530 * LR have complete transactions. We only know that a cycle number of 531 * current cycle number -1 won't be present in the log if we start writing 532 * from our current block number. 533 * 534 * last_blk contains the block number of the first block with a given 535 * cycle number. 536 * 537 * Return: zero if normal, non-zero if error. 538 */ 539 STATIC int 540 xlog_find_head( 541 xlog_t *log, 542 xfs_daddr_t *return_head_blk) 543 { 544 xfs_buf_t *bp; 545 xfs_caddr_t offset; 546 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 547 int num_scan_bblks; 548 uint first_half_cycle, last_half_cycle; 549 uint stop_on_cycle; 550 int error, log_bbnum = log->l_logBBsize; 551 552 /* Is the end of the log device zeroed? */ 553 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) { 554 *return_head_blk = first_blk; 555 556 /* Is the whole lot zeroed? */ 557 if (!first_blk) { 558 /* Linux XFS shouldn't generate totally zeroed logs - 559 * mkfs etc write a dummy unmount record to a fresh 560 * log so we can store the uuid in there 561 */ 562 xlog_warn("XFS: totally zeroed log"); 563 } 564 565 return 0; 566 } else if (error) { 567 xlog_warn("XFS: empty log check failed"); 568 return error; 569 } 570 571 first_blk = 0; /* get cycle # of 1st block */ 572 bp = xlog_get_bp(log, 1); 573 if (!bp) 574 return ENOMEM; 575 576 error = xlog_bread(log, 0, 1, bp, &offset); 577 if (error) 578 goto bp_err; 579 580 first_half_cycle = xlog_get_cycle(offset); 581 582 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 583 error = xlog_bread(log, last_blk, 1, bp, &offset); 584 if (error) 585 goto bp_err; 586 587 last_half_cycle = xlog_get_cycle(offset); 588 ASSERT(last_half_cycle != 0); 589 590 /* 591 * If the 1st half cycle number is equal to the last half cycle number, 592 * then the entire log is stamped with the same cycle number. In this 593 * case, head_blk can't be set to zero (which makes sense). The below 594 * math doesn't work out properly with head_blk equal to zero. Instead, 595 * we set it to log_bbnum which is an invalid block number, but this 596 * value makes the math correct. If head_blk doesn't changed through 597 * all the tests below, *head_blk is set to zero at the very end rather 598 * than log_bbnum. In a sense, log_bbnum and zero are the same block 599 * in a circular file. 600 */ 601 if (first_half_cycle == last_half_cycle) { 602 /* 603 * In this case we believe that the entire log should have 604 * cycle number last_half_cycle. We need to scan backwards 605 * from the end verifying that there are no holes still 606 * containing last_half_cycle - 1. If we find such a hole, 607 * then the start of that hole will be the new head. The 608 * simple case looks like 609 * x | x ... | x - 1 | x 610 * Another case that fits this picture would be 611 * x | x + 1 | x ... | x 612 * In this case the head really is somewhere at the end of the 613 * log, as one of the latest writes at the beginning was 614 * incomplete. 615 * One more case is 616 * x | x + 1 | x ... | x - 1 | x 617 * This is really the combination of the above two cases, and 618 * the head has to end up at the start of the x-1 hole at the 619 * end of the log. 620 * 621 * In the 256k log case, we will read from the beginning to the 622 * end of the log and search for cycle numbers equal to x-1. 623 * We don't worry about the x+1 blocks that we encounter, 624 * because we know that they cannot be the head since the log 625 * started with x. 626 */ 627 head_blk = log_bbnum; 628 stop_on_cycle = last_half_cycle - 1; 629 } else { 630 /* 631 * In this case we want to find the first block with cycle 632 * number matching last_half_cycle. We expect the log to be 633 * some variation on 634 * x + 1 ... | x ... 635 * The first block with cycle number x (last_half_cycle) will 636 * be where the new head belongs. First we do a binary search 637 * for the first occurrence of last_half_cycle. The binary 638 * search may not be totally accurate, so then we scan back 639 * from there looking for occurrences of last_half_cycle before 640 * us. If that backwards scan wraps around the beginning of 641 * the log, then we look for occurrences of last_half_cycle - 1 642 * at the end of the log. The cases we're looking for look 643 * like 644 * x + 1 ... | x | x + 1 | x ... 645 * ^ binary search stopped here 646 * or 647 * x + 1 ... | x ... | x - 1 | x 648 * <---------> less than scan distance 649 */ 650 stop_on_cycle = last_half_cycle; 651 if ((error = xlog_find_cycle_start(log, bp, first_blk, 652 &head_blk, last_half_cycle))) 653 goto bp_err; 654 } 655 656 /* 657 * Now validate the answer. Scan back some number of maximum possible 658 * blocks and make sure each one has the expected cycle number. The 659 * maximum is determined by the total possible amount of buffering 660 * in the in-core log. The following number can be made tighter if 661 * we actually look at the block size of the filesystem. 662 */ 663 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 664 if (head_blk >= num_scan_bblks) { 665 /* 666 * We are guaranteed that the entire check can be performed 667 * in one buffer. 668 */ 669 start_blk = head_blk - num_scan_bblks; 670 if ((error = xlog_find_verify_cycle(log, 671 start_blk, num_scan_bblks, 672 stop_on_cycle, &new_blk))) 673 goto bp_err; 674 if (new_blk != -1) 675 head_blk = new_blk; 676 } else { /* need to read 2 parts of log */ 677 /* 678 * We are going to scan backwards in the log in two parts. 679 * First we scan the physical end of the log. In this part 680 * of the log, we are looking for blocks with cycle number 681 * last_half_cycle - 1. 682 * If we find one, then we know that the log starts there, as 683 * we've found a hole that didn't get written in going around 684 * the end of the physical log. The simple case for this is 685 * x + 1 ... | x ... | x - 1 | x 686 * <---------> less than scan distance 687 * If all of the blocks at the end of the log have cycle number 688 * last_half_cycle, then we check the blocks at the start of 689 * the log looking for occurrences of last_half_cycle. If we 690 * find one, then our current estimate for the location of the 691 * first occurrence of last_half_cycle is wrong and we move 692 * back to the hole we've found. This case looks like 693 * x + 1 ... | x | x + 1 | x ... 694 * ^ binary search stopped here 695 * Another case we need to handle that only occurs in 256k 696 * logs is 697 * x + 1 ... | x ... | x+1 | x ... 698 * ^ binary search stops here 699 * In a 256k log, the scan at the end of the log will see the 700 * x + 1 blocks. We need to skip past those since that is 701 * certainly not the head of the log. By searching for 702 * last_half_cycle-1 we accomplish that. 703 */ 704 start_blk = log_bbnum - num_scan_bblks + head_blk; 705 ASSERT(head_blk <= INT_MAX && 706 (xfs_daddr_t) num_scan_bblks - head_blk >= 0); 707 if ((error = xlog_find_verify_cycle(log, start_blk, 708 num_scan_bblks - (int)head_blk, 709 (stop_on_cycle - 1), &new_blk))) 710 goto bp_err; 711 if (new_blk != -1) { 712 head_blk = new_blk; 713 goto bad_blk; 714 } 715 716 /* 717 * Scan beginning of log now. The last part of the physical 718 * log is good. This scan needs to verify that it doesn't find 719 * the last_half_cycle. 720 */ 721 start_blk = 0; 722 ASSERT(head_blk <= INT_MAX); 723 if ((error = xlog_find_verify_cycle(log, 724 start_blk, (int)head_blk, 725 stop_on_cycle, &new_blk))) 726 goto bp_err; 727 if (new_blk != -1) 728 head_blk = new_blk; 729 } 730 731 bad_blk: 732 /* 733 * Now we need to make sure head_blk is not pointing to a block in 734 * the middle of a log record. 735 */ 736 num_scan_bblks = XLOG_REC_SHIFT(log); 737 if (head_blk >= num_scan_bblks) { 738 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 739 740 /* start ptr at last block ptr before head_blk */ 741 if ((error = xlog_find_verify_log_record(log, start_blk, 742 &head_blk, 0)) == -1) { 743 error = XFS_ERROR(EIO); 744 goto bp_err; 745 } else if (error) 746 goto bp_err; 747 } else { 748 start_blk = 0; 749 ASSERT(head_blk <= INT_MAX); 750 if ((error = xlog_find_verify_log_record(log, start_blk, 751 &head_blk, 0)) == -1) { 752 /* We hit the beginning of the log during our search */ 753 start_blk = log_bbnum - num_scan_bblks + head_blk; 754 new_blk = log_bbnum; 755 ASSERT(start_blk <= INT_MAX && 756 (xfs_daddr_t) log_bbnum-start_blk >= 0); 757 ASSERT(head_blk <= INT_MAX); 758 if ((error = xlog_find_verify_log_record(log, 759 start_blk, &new_blk, 760 (int)head_blk)) == -1) { 761 error = XFS_ERROR(EIO); 762 goto bp_err; 763 } else if (error) 764 goto bp_err; 765 if (new_blk != log_bbnum) 766 head_blk = new_blk; 767 } else if (error) 768 goto bp_err; 769 } 770 771 xlog_put_bp(bp); 772 if (head_blk == log_bbnum) 773 *return_head_blk = 0; 774 else 775 *return_head_blk = head_blk; 776 /* 777 * When returning here, we have a good block number. Bad block 778 * means that during a previous crash, we didn't have a clean break 779 * from cycle number N to cycle number N-1. In this case, we need 780 * to find the first block with cycle number N-1. 781 */ 782 return 0; 783 784 bp_err: 785 xlog_put_bp(bp); 786 787 if (error) 788 xlog_warn("XFS: failed to find log head"); 789 return error; 790 } 791 792 /* 793 * Find the sync block number or the tail of the log. 794 * 795 * This will be the block number of the last record to have its 796 * associated buffers synced to disk. Every log record header has 797 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 798 * to get a sync block number. The only concern is to figure out which 799 * log record header to believe. 800 * 801 * The following algorithm uses the log record header with the largest 802 * lsn. The entire log record does not need to be valid. We only care 803 * that the header is valid. 804 * 805 * We could speed up search by using current head_blk buffer, but it is not 806 * available. 807 */ 808 int 809 xlog_find_tail( 810 xlog_t *log, 811 xfs_daddr_t *head_blk, 812 xfs_daddr_t *tail_blk) 813 { 814 xlog_rec_header_t *rhead; 815 xlog_op_header_t *op_head; 816 xfs_caddr_t offset = NULL; 817 xfs_buf_t *bp; 818 int error, i, found; 819 xfs_daddr_t umount_data_blk; 820 xfs_daddr_t after_umount_blk; 821 xfs_lsn_t tail_lsn; 822 int hblks; 823 824 found = 0; 825 826 /* 827 * Find previous log record 828 */ 829 if ((error = xlog_find_head(log, head_blk))) 830 return error; 831 832 bp = xlog_get_bp(log, 1); 833 if (!bp) 834 return ENOMEM; 835 if (*head_blk == 0) { /* special case */ 836 error = xlog_bread(log, 0, 1, bp, &offset); 837 if (error) 838 goto bread_err; 839 840 if (xlog_get_cycle(offset) == 0) { 841 *tail_blk = 0; 842 /* leave all other log inited values alone */ 843 goto exit; 844 } 845 } 846 847 /* 848 * Search backwards looking for log record header block 849 */ 850 ASSERT(*head_blk < INT_MAX); 851 for (i = (int)(*head_blk) - 1; i >= 0; i--) { 852 error = xlog_bread(log, i, 1, bp, &offset); 853 if (error) 854 goto bread_err; 855 856 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) { 857 found = 1; 858 break; 859 } 860 } 861 /* 862 * If we haven't found the log record header block, start looking 863 * again from the end of the physical log. XXXmiken: There should be 864 * a check here to make sure we didn't search more than N blocks in 865 * the previous code. 866 */ 867 if (!found) { 868 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) { 869 error = xlog_bread(log, i, 1, bp, &offset); 870 if (error) 871 goto bread_err; 872 873 if (XLOG_HEADER_MAGIC_NUM == 874 be32_to_cpu(*(__be32 *)offset)) { 875 found = 2; 876 break; 877 } 878 } 879 } 880 if (!found) { 881 xlog_warn("XFS: xlog_find_tail: couldn't find sync record"); 882 ASSERT(0); 883 return XFS_ERROR(EIO); 884 } 885 886 /* find blk_no of tail of log */ 887 rhead = (xlog_rec_header_t *)offset; 888 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 889 890 /* 891 * Reset log values according to the state of the log when we 892 * crashed. In the case where head_blk == 0, we bump curr_cycle 893 * one because the next write starts a new cycle rather than 894 * continuing the cycle of the last good log record. At this 895 * point we have guaranteed that all partial log records have been 896 * accounted for. Therefore, we know that the last good log record 897 * written was complete and ended exactly on the end boundary 898 * of the physical log. 899 */ 900 log->l_prev_block = i; 901 log->l_curr_block = (int)*head_blk; 902 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 903 if (found == 2) 904 log->l_curr_cycle++; 905 log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn); 906 log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn); 907 log->l_grant_reserve_cycle = log->l_curr_cycle; 908 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block); 909 log->l_grant_write_cycle = log->l_curr_cycle; 910 log->l_grant_write_bytes = BBTOB(log->l_curr_block); 911 912 /* 913 * Look for unmount record. If we find it, then we know there 914 * was a clean unmount. Since 'i' could be the last block in 915 * the physical log, we convert to a log block before comparing 916 * to the head_blk. 917 * 918 * Save the current tail lsn to use to pass to 919 * xlog_clear_stale_blocks() below. We won't want to clear the 920 * unmount record if there is one, so we pass the lsn of the 921 * unmount record rather than the block after it. 922 */ 923 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 924 int h_size = be32_to_cpu(rhead->h_size); 925 int h_version = be32_to_cpu(rhead->h_version); 926 927 if ((h_version & XLOG_VERSION_2) && 928 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 929 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 930 if (h_size % XLOG_HEADER_CYCLE_SIZE) 931 hblks++; 932 } else { 933 hblks = 1; 934 } 935 } else { 936 hblks = 1; 937 } 938 after_umount_blk = (i + hblks + (int) 939 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize; 940 tail_lsn = log->l_tail_lsn; 941 if (*head_blk == after_umount_blk && 942 be32_to_cpu(rhead->h_num_logops) == 1) { 943 umount_data_blk = (i + hblks) % log->l_logBBsize; 944 error = xlog_bread(log, umount_data_blk, 1, bp, &offset); 945 if (error) 946 goto bread_err; 947 948 op_head = (xlog_op_header_t *)offset; 949 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 950 /* 951 * Set tail and last sync so that newly written 952 * log records will point recovery to after the 953 * current unmount record. 954 */ 955 log->l_tail_lsn = 956 xlog_assign_lsn(log->l_curr_cycle, 957 after_umount_blk); 958 log->l_last_sync_lsn = 959 xlog_assign_lsn(log->l_curr_cycle, 960 after_umount_blk); 961 *tail_blk = after_umount_blk; 962 963 /* 964 * Note that the unmount was clean. If the unmount 965 * was not clean, we need to know this to rebuild the 966 * superblock counters from the perag headers if we 967 * have a filesystem using non-persistent counters. 968 */ 969 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 970 } 971 } 972 973 /* 974 * Make sure that there are no blocks in front of the head 975 * with the same cycle number as the head. This can happen 976 * because we allow multiple outstanding log writes concurrently, 977 * and the later writes might make it out before earlier ones. 978 * 979 * We use the lsn from before modifying it so that we'll never 980 * overwrite the unmount record after a clean unmount. 981 * 982 * Do this only if we are going to recover the filesystem 983 * 984 * NOTE: This used to say "if (!readonly)" 985 * However on Linux, we can & do recover a read-only filesystem. 986 * We only skip recovery if NORECOVERY is specified on mount, 987 * in which case we would not be here. 988 * 989 * But... if the -device- itself is readonly, just skip this. 990 * We can't recover this device anyway, so it won't matter. 991 */ 992 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) { 993 error = xlog_clear_stale_blocks(log, tail_lsn); 994 } 995 996 bread_err: 997 exit: 998 xlog_put_bp(bp); 999 1000 if (error) 1001 xlog_warn("XFS: failed to locate log tail"); 1002 return error; 1003 } 1004 1005 /* 1006 * Is the log zeroed at all? 1007 * 1008 * The last binary search should be changed to perform an X block read 1009 * once X becomes small enough. You can then search linearly through 1010 * the X blocks. This will cut down on the number of reads we need to do. 1011 * 1012 * If the log is partially zeroed, this routine will pass back the blkno 1013 * of the first block with cycle number 0. It won't have a complete LR 1014 * preceding it. 1015 * 1016 * Return: 1017 * 0 => the log is completely written to 1018 * -1 => use *blk_no as the first block of the log 1019 * >0 => error has occurred 1020 */ 1021 STATIC int 1022 xlog_find_zeroed( 1023 xlog_t *log, 1024 xfs_daddr_t *blk_no) 1025 { 1026 xfs_buf_t *bp; 1027 xfs_caddr_t offset; 1028 uint first_cycle, last_cycle; 1029 xfs_daddr_t new_blk, last_blk, start_blk; 1030 xfs_daddr_t num_scan_bblks; 1031 int error, log_bbnum = log->l_logBBsize; 1032 1033 *blk_no = 0; 1034 1035 /* check totally zeroed log */ 1036 bp = xlog_get_bp(log, 1); 1037 if (!bp) 1038 return ENOMEM; 1039 error = xlog_bread(log, 0, 1, bp, &offset); 1040 if (error) 1041 goto bp_err; 1042 1043 first_cycle = xlog_get_cycle(offset); 1044 if (first_cycle == 0) { /* completely zeroed log */ 1045 *blk_no = 0; 1046 xlog_put_bp(bp); 1047 return -1; 1048 } 1049 1050 /* check partially zeroed log */ 1051 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset); 1052 if (error) 1053 goto bp_err; 1054 1055 last_cycle = xlog_get_cycle(offset); 1056 if (last_cycle != 0) { /* log completely written to */ 1057 xlog_put_bp(bp); 1058 return 0; 1059 } else if (first_cycle != 1) { 1060 /* 1061 * If the cycle of the last block is zero, the cycle of 1062 * the first block must be 1. If it's not, maybe we're 1063 * not looking at a log... Bail out. 1064 */ 1065 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)"); 1066 return XFS_ERROR(EINVAL); 1067 } 1068 1069 /* we have a partially zeroed log */ 1070 last_blk = log_bbnum-1; 1071 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1072 goto bp_err; 1073 1074 /* 1075 * Validate the answer. Because there is no way to guarantee that 1076 * the entire log is made up of log records which are the same size, 1077 * we scan over the defined maximum blocks. At this point, the maximum 1078 * is not chosen to mean anything special. XXXmiken 1079 */ 1080 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1081 ASSERT(num_scan_bblks <= INT_MAX); 1082 1083 if (last_blk < num_scan_bblks) 1084 num_scan_bblks = last_blk; 1085 start_blk = last_blk - num_scan_bblks; 1086 1087 /* 1088 * We search for any instances of cycle number 0 that occur before 1089 * our current estimate of the head. What we're trying to detect is 1090 * 1 ... | 0 | 1 | 0... 1091 * ^ binary search ends here 1092 */ 1093 if ((error = xlog_find_verify_cycle(log, start_blk, 1094 (int)num_scan_bblks, 0, &new_blk))) 1095 goto bp_err; 1096 if (new_blk != -1) 1097 last_blk = new_blk; 1098 1099 /* 1100 * Potentially backup over partial log record write. We don't need 1101 * to search the end of the log because we know it is zero. 1102 */ 1103 if ((error = xlog_find_verify_log_record(log, start_blk, 1104 &last_blk, 0)) == -1) { 1105 error = XFS_ERROR(EIO); 1106 goto bp_err; 1107 } else if (error) 1108 goto bp_err; 1109 1110 *blk_no = last_blk; 1111 bp_err: 1112 xlog_put_bp(bp); 1113 if (error) 1114 return error; 1115 return -1; 1116 } 1117 1118 /* 1119 * These are simple subroutines used by xlog_clear_stale_blocks() below 1120 * to initialize a buffer full of empty log record headers and write 1121 * them into the log. 1122 */ 1123 STATIC void 1124 xlog_add_record( 1125 xlog_t *log, 1126 xfs_caddr_t buf, 1127 int cycle, 1128 int block, 1129 int tail_cycle, 1130 int tail_block) 1131 { 1132 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1133 1134 memset(buf, 0, BBSIZE); 1135 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1136 recp->h_cycle = cpu_to_be32(cycle); 1137 recp->h_version = cpu_to_be32( 1138 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1139 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1140 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1141 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1142 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1143 } 1144 1145 STATIC int 1146 xlog_write_log_records( 1147 xlog_t *log, 1148 int cycle, 1149 int start_block, 1150 int blocks, 1151 int tail_cycle, 1152 int tail_block) 1153 { 1154 xfs_caddr_t offset; 1155 xfs_buf_t *bp; 1156 int balign, ealign; 1157 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1); 1158 int end_block = start_block + blocks; 1159 int bufblks; 1160 int error = 0; 1161 int i, j = 0; 1162 1163 bufblks = 1 << ffs(blocks); 1164 while (!(bp = xlog_get_bp(log, bufblks))) { 1165 bufblks >>= 1; 1166 if (bufblks <= log->l_sectbb_log) 1167 return ENOMEM; 1168 } 1169 1170 /* We may need to do a read at the start to fill in part of 1171 * the buffer in the starting sector not covered by the first 1172 * write below. 1173 */ 1174 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block); 1175 if (balign != start_block) { 1176 error = xlog_bread_noalign(log, start_block, 1, bp); 1177 if (error) 1178 goto out_put_bp; 1179 1180 j = start_block - balign; 1181 } 1182 1183 for (i = start_block; i < end_block; i += bufblks) { 1184 int bcount, endcount; 1185 1186 bcount = min(bufblks, end_block - start_block); 1187 endcount = bcount - j; 1188 1189 /* We may need to do a read at the end to fill in part of 1190 * the buffer in the final sector not covered by the write. 1191 * If this is the same sector as the above read, skip it. 1192 */ 1193 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block); 1194 if (j == 0 && (start_block + endcount > ealign)) { 1195 offset = XFS_BUF_PTR(bp); 1196 balign = BBTOB(ealign - start_block); 1197 error = XFS_BUF_SET_PTR(bp, offset + balign, 1198 BBTOB(sectbb)); 1199 if (error) 1200 break; 1201 1202 error = xlog_bread_noalign(log, ealign, sectbb, bp); 1203 if (error) 1204 break; 1205 1206 error = XFS_BUF_SET_PTR(bp, offset, bufblks); 1207 if (error) 1208 break; 1209 } 1210 1211 offset = xlog_align(log, start_block, endcount, bp); 1212 for (; j < endcount; j++) { 1213 xlog_add_record(log, offset, cycle, i+j, 1214 tail_cycle, tail_block); 1215 offset += BBSIZE; 1216 } 1217 error = xlog_bwrite(log, start_block, endcount, bp); 1218 if (error) 1219 break; 1220 start_block += endcount; 1221 j = 0; 1222 } 1223 1224 out_put_bp: 1225 xlog_put_bp(bp); 1226 return error; 1227 } 1228 1229 /* 1230 * This routine is called to blow away any incomplete log writes out 1231 * in front of the log head. We do this so that we won't become confused 1232 * if we come up, write only a little bit more, and then crash again. 1233 * If we leave the partial log records out there, this situation could 1234 * cause us to think those partial writes are valid blocks since they 1235 * have the current cycle number. We get rid of them by overwriting them 1236 * with empty log records with the old cycle number rather than the 1237 * current one. 1238 * 1239 * The tail lsn is passed in rather than taken from 1240 * the log so that we will not write over the unmount record after a 1241 * clean unmount in a 512 block log. Doing so would leave the log without 1242 * any valid log records in it until a new one was written. If we crashed 1243 * during that time we would not be able to recover. 1244 */ 1245 STATIC int 1246 xlog_clear_stale_blocks( 1247 xlog_t *log, 1248 xfs_lsn_t tail_lsn) 1249 { 1250 int tail_cycle, head_cycle; 1251 int tail_block, head_block; 1252 int tail_distance, max_distance; 1253 int distance; 1254 int error; 1255 1256 tail_cycle = CYCLE_LSN(tail_lsn); 1257 tail_block = BLOCK_LSN(tail_lsn); 1258 head_cycle = log->l_curr_cycle; 1259 head_block = log->l_curr_block; 1260 1261 /* 1262 * Figure out the distance between the new head of the log 1263 * and the tail. We want to write over any blocks beyond the 1264 * head that we may have written just before the crash, but 1265 * we don't want to overwrite the tail of the log. 1266 */ 1267 if (head_cycle == tail_cycle) { 1268 /* 1269 * The tail is behind the head in the physical log, 1270 * so the distance from the head to the tail is the 1271 * distance from the head to the end of the log plus 1272 * the distance from the beginning of the log to the 1273 * tail. 1274 */ 1275 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1276 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1277 XFS_ERRLEVEL_LOW, log->l_mp); 1278 return XFS_ERROR(EFSCORRUPTED); 1279 } 1280 tail_distance = tail_block + (log->l_logBBsize - head_block); 1281 } else { 1282 /* 1283 * The head is behind the tail in the physical log, 1284 * so the distance from the head to the tail is just 1285 * the tail block minus the head block. 1286 */ 1287 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1288 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1289 XFS_ERRLEVEL_LOW, log->l_mp); 1290 return XFS_ERROR(EFSCORRUPTED); 1291 } 1292 tail_distance = tail_block - head_block; 1293 } 1294 1295 /* 1296 * If the head is right up against the tail, we can't clear 1297 * anything. 1298 */ 1299 if (tail_distance <= 0) { 1300 ASSERT(tail_distance == 0); 1301 return 0; 1302 } 1303 1304 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1305 /* 1306 * Take the smaller of the maximum amount of outstanding I/O 1307 * we could have and the distance to the tail to clear out. 1308 * We take the smaller so that we don't overwrite the tail and 1309 * we don't waste all day writing from the head to the tail 1310 * for no reason. 1311 */ 1312 max_distance = MIN(max_distance, tail_distance); 1313 1314 if ((head_block + max_distance) <= log->l_logBBsize) { 1315 /* 1316 * We can stomp all the blocks we need to without 1317 * wrapping around the end of the log. Just do it 1318 * in a single write. Use the cycle number of the 1319 * current cycle minus one so that the log will look like: 1320 * n ... | n - 1 ... 1321 */ 1322 error = xlog_write_log_records(log, (head_cycle - 1), 1323 head_block, max_distance, tail_cycle, 1324 tail_block); 1325 if (error) 1326 return error; 1327 } else { 1328 /* 1329 * We need to wrap around the end of the physical log in 1330 * order to clear all the blocks. Do it in two separate 1331 * I/Os. The first write should be from the head to the 1332 * end of the physical log, and it should use the current 1333 * cycle number minus one just like above. 1334 */ 1335 distance = log->l_logBBsize - head_block; 1336 error = xlog_write_log_records(log, (head_cycle - 1), 1337 head_block, distance, tail_cycle, 1338 tail_block); 1339 1340 if (error) 1341 return error; 1342 1343 /* 1344 * Now write the blocks at the start of the physical log. 1345 * This writes the remainder of the blocks we want to clear. 1346 * It uses the current cycle number since we're now on the 1347 * same cycle as the head so that we get: 1348 * n ... n ... | n - 1 ... 1349 * ^^^^^ blocks we're writing 1350 */ 1351 distance = max_distance - (log->l_logBBsize - head_block); 1352 error = xlog_write_log_records(log, head_cycle, 0, distance, 1353 tail_cycle, tail_block); 1354 if (error) 1355 return error; 1356 } 1357 1358 return 0; 1359 } 1360 1361 /****************************************************************************** 1362 * 1363 * Log recover routines 1364 * 1365 ****************************************************************************** 1366 */ 1367 1368 STATIC xlog_recover_t * 1369 xlog_recover_find_tid( 1370 xlog_recover_t *q, 1371 xlog_tid_t tid) 1372 { 1373 xlog_recover_t *p = q; 1374 1375 while (p != NULL) { 1376 if (p->r_log_tid == tid) 1377 break; 1378 p = p->r_next; 1379 } 1380 return p; 1381 } 1382 1383 STATIC void 1384 xlog_recover_put_hashq( 1385 xlog_recover_t **q, 1386 xlog_recover_t *trans) 1387 { 1388 trans->r_next = *q; 1389 *q = trans; 1390 } 1391 1392 STATIC void 1393 xlog_recover_add_item( 1394 xlog_recover_item_t **itemq) 1395 { 1396 xlog_recover_item_t *item; 1397 1398 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 1399 xlog_recover_insert_item_backq(itemq, item); 1400 } 1401 1402 STATIC int 1403 xlog_recover_add_to_cont_trans( 1404 xlog_recover_t *trans, 1405 xfs_caddr_t dp, 1406 int len) 1407 { 1408 xlog_recover_item_t *item; 1409 xfs_caddr_t ptr, old_ptr; 1410 int old_len; 1411 1412 item = trans->r_itemq; 1413 if (item == NULL) { 1414 /* finish copying rest of trans header */ 1415 xlog_recover_add_item(&trans->r_itemq); 1416 ptr = (xfs_caddr_t) &trans->r_theader + 1417 sizeof(xfs_trans_header_t) - len; 1418 memcpy(ptr, dp, len); /* d, s, l */ 1419 return 0; 1420 } 1421 item = item->ri_prev; 1422 1423 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 1424 old_len = item->ri_buf[item->ri_cnt-1].i_len; 1425 1426 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u); 1427 memcpy(&ptr[old_len], dp, len); /* d, s, l */ 1428 item->ri_buf[item->ri_cnt-1].i_len += len; 1429 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 1430 return 0; 1431 } 1432 1433 /* 1434 * The next region to add is the start of a new region. It could be 1435 * a whole region or it could be the first part of a new region. Because 1436 * of this, the assumption here is that the type and size fields of all 1437 * format structures fit into the first 32 bits of the structure. 1438 * 1439 * This works because all regions must be 32 bit aligned. Therefore, we 1440 * either have both fields or we have neither field. In the case we have 1441 * neither field, the data part of the region is zero length. We only have 1442 * a log_op_header and can throw away the header since a new one will appear 1443 * later. If we have at least 4 bytes, then we can determine how many regions 1444 * will appear in the current log item. 1445 */ 1446 STATIC int 1447 xlog_recover_add_to_trans( 1448 xlog_recover_t *trans, 1449 xfs_caddr_t dp, 1450 int len) 1451 { 1452 xfs_inode_log_format_t *in_f; /* any will do */ 1453 xlog_recover_item_t *item; 1454 xfs_caddr_t ptr; 1455 1456 if (!len) 1457 return 0; 1458 item = trans->r_itemq; 1459 if (item == NULL) { 1460 /* we need to catch log corruptions here */ 1461 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 1462 xlog_warn("XFS: xlog_recover_add_to_trans: " 1463 "bad header magic number"); 1464 ASSERT(0); 1465 return XFS_ERROR(EIO); 1466 } 1467 if (len == sizeof(xfs_trans_header_t)) 1468 xlog_recover_add_item(&trans->r_itemq); 1469 memcpy(&trans->r_theader, dp, len); /* d, s, l */ 1470 return 0; 1471 } 1472 1473 ptr = kmem_alloc(len, KM_SLEEP); 1474 memcpy(ptr, dp, len); 1475 in_f = (xfs_inode_log_format_t *)ptr; 1476 1477 if (item->ri_prev->ri_total != 0 && 1478 item->ri_prev->ri_total == item->ri_prev->ri_cnt) { 1479 xlog_recover_add_item(&trans->r_itemq); 1480 } 1481 item = trans->r_itemq; 1482 item = item->ri_prev; 1483 1484 if (item->ri_total == 0) { /* first region to be added */ 1485 if (in_f->ilf_size == 0 || 1486 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 1487 xlog_warn( 1488 "XFS: bad number of regions (%d) in inode log format", 1489 in_f->ilf_size); 1490 ASSERT(0); 1491 return XFS_ERROR(EIO); 1492 } 1493 1494 item->ri_total = in_f->ilf_size; 1495 item->ri_buf = 1496 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 1497 KM_SLEEP); 1498 } 1499 ASSERT(item->ri_total > item->ri_cnt); 1500 /* Description region is ri_buf[0] */ 1501 item->ri_buf[item->ri_cnt].i_addr = ptr; 1502 item->ri_buf[item->ri_cnt].i_len = len; 1503 item->ri_cnt++; 1504 return 0; 1505 } 1506 1507 STATIC void 1508 xlog_recover_new_tid( 1509 xlog_recover_t **q, 1510 xlog_tid_t tid, 1511 xfs_lsn_t lsn) 1512 { 1513 xlog_recover_t *trans; 1514 1515 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP); 1516 trans->r_log_tid = tid; 1517 trans->r_lsn = lsn; 1518 xlog_recover_put_hashq(q, trans); 1519 } 1520 1521 STATIC int 1522 xlog_recover_unlink_tid( 1523 xlog_recover_t **q, 1524 xlog_recover_t *trans) 1525 { 1526 xlog_recover_t *tp; 1527 int found = 0; 1528 1529 ASSERT(trans != NULL); 1530 if (trans == *q) { 1531 *q = (*q)->r_next; 1532 } else { 1533 tp = *q; 1534 while (tp) { 1535 if (tp->r_next == trans) { 1536 found = 1; 1537 break; 1538 } 1539 tp = tp->r_next; 1540 } 1541 if (!found) { 1542 xlog_warn( 1543 "XFS: xlog_recover_unlink_tid: trans not found"); 1544 ASSERT(0); 1545 return XFS_ERROR(EIO); 1546 } 1547 tp->r_next = tp->r_next->r_next; 1548 } 1549 return 0; 1550 } 1551 1552 STATIC void 1553 xlog_recover_insert_item_backq( 1554 xlog_recover_item_t **q, 1555 xlog_recover_item_t *item) 1556 { 1557 if (*q == NULL) { 1558 item->ri_prev = item->ri_next = item; 1559 *q = item; 1560 } else { 1561 item->ri_next = *q; 1562 item->ri_prev = (*q)->ri_prev; 1563 (*q)->ri_prev = item; 1564 item->ri_prev->ri_next = item; 1565 } 1566 } 1567 1568 STATIC void 1569 xlog_recover_insert_item_frontq( 1570 xlog_recover_item_t **q, 1571 xlog_recover_item_t *item) 1572 { 1573 xlog_recover_insert_item_backq(q, item); 1574 *q = item; 1575 } 1576 1577 STATIC int 1578 xlog_recover_reorder_trans( 1579 xlog_recover_t *trans) 1580 { 1581 xlog_recover_item_t *first_item, *itemq, *itemq_next; 1582 xfs_buf_log_format_t *buf_f; 1583 ushort flags = 0; 1584 1585 first_item = itemq = trans->r_itemq; 1586 trans->r_itemq = NULL; 1587 do { 1588 itemq_next = itemq->ri_next; 1589 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr; 1590 1591 switch (ITEM_TYPE(itemq)) { 1592 case XFS_LI_BUF: 1593 flags = buf_f->blf_flags; 1594 if (!(flags & XFS_BLI_CANCEL)) { 1595 xlog_recover_insert_item_frontq(&trans->r_itemq, 1596 itemq); 1597 break; 1598 } 1599 case XFS_LI_INODE: 1600 case XFS_LI_DQUOT: 1601 case XFS_LI_QUOTAOFF: 1602 case XFS_LI_EFD: 1603 case XFS_LI_EFI: 1604 xlog_recover_insert_item_backq(&trans->r_itemq, itemq); 1605 break; 1606 default: 1607 xlog_warn( 1608 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation"); 1609 ASSERT(0); 1610 return XFS_ERROR(EIO); 1611 } 1612 itemq = itemq_next; 1613 } while (first_item != itemq); 1614 return 0; 1615 } 1616 1617 /* 1618 * Build up the table of buf cancel records so that we don't replay 1619 * cancelled data in the second pass. For buffer records that are 1620 * not cancel records, there is nothing to do here so we just return. 1621 * 1622 * If we get a cancel record which is already in the table, this indicates 1623 * that the buffer was cancelled multiple times. In order to ensure 1624 * that during pass 2 we keep the record in the table until we reach its 1625 * last occurrence in the log, we keep a reference count in the cancel 1626 * record in the table to tell us how many times we expect to see this 1627 * record during the second pass. 1628 */ 1629 STATIC void 1630 xlog_recover_do_buffer_pass1( 1631 xlog_t *log, 1632 xfs_buf_log_format_t *buf_f) 1633 { 1634 xfs_buf_cancel_t *bcp; 1635 xfs_buf_cancel_t *nextp; 1636 xfs_buf_cancel_t *prevp; 1637 xfs_buf_cancel_t **bucket; 1638 xfs_daddr_t blkno = 0; 1639 uint len = 0; 1640 ushort flags = 0; 1641 1642 switch (buf_f->blf_type) { 1643 case XFS_LI_BUF: 1644 blkno = buf_f->blf_blkno; 1645 len = buf_f->blf_len; 1646 flags = buf_f->blf_flags; 1647 break; 1648 } 1649 1650 /* 1651 * If this isn't a cancel buffer item, then just return. 1652 */ 1653 if (!(flags & XFS_BLI_CANCEL)) 1654 return; 1655 1656 /* 1657 * Insert an xfs_buf_cancel record into the hash table of 1658 * them. If there is already an identical record, bump 1659 * its reference count. 1660 */ 1661 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % 1662 XLOG_BC_TABLE_SIZE]; 1663 /* 1664 * If the hash bucket is empty then just insert a new record into 1665 * the bucket. 1666 */ 1667 if (*bucket == NULL) { 1668 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), 1669 KM_SLEEP); 1670 bcp->bc_blkno = blkno; 1671 bcp->bc_len = len; 1672 bcp->bc_refcount = 1; 1673 bcp->bc_next = NULL; 1674 *bucket = bcp; 1675 return; 1676 } 1677 1678 /* 1679 * The hash bucket is not empty, so search for duplicates of our 1680 * record. If we find one them just bump its refcount. If not 1681 * then add us at the end of the list. 1682 */ 1683 prevp = NULL; 1684 nextp = *bucket; 1685 while (nextp != NULL) { 1686 if (nextp->bc_blkno == blkno && nextp->bc_len == len) { 1687 nextp->bc_refcount++; 1688 return; 1689 } 1690 prevp = nextp; 1691 nextp = nextp->bc_next; 1692 } 1693 ASSERT(prevp != NULL); 1694 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), 1695 KM_SLEEP); 1696 bcp->bc_blkno = blkno; 1697 bcp->bc_len = len; 1698 bcp->bc_refcount = 1; 1699 bcp->bc_next = NULL; 1700 prevp->bc_next = bcp; 1701 } 1702 1703 /* 1704 * Check to see whether the buffer being recovered has a corresponding 1705 * entry in the buffer cancel record table. If it does then return 1 1706 * so that it will be cancelled, otherwise return 0. If the buffer is 1707 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement 1708 * the refcount on the entry in the table and remove it from the table 1709 * if this is the last reference. 1710 * 1711 * We remove the cancel record from the table when we encounter its 1712 * last occurrence in the log so that if the same buffer is re-used 1713 * again after its last cancellation we actually replay the changes 1714 * made at that point. 1715 */ 1716 STATIC int 1717 xlog_check_buffer_cancelled( 1718 xlog_t *log, 1719 xfs_daddr_t blkno, 1720 uint len, 1721 ushort flags) 1722 { 1723 xfs_buf_cancel_t *bcp; 1724 xfs_buf_cancel_t *prevp; 1725 xfs_buf_cancel_t **bucket; 1726 1727 if (log->l_buf_cancel_table == NULL) { 1728 /* 1729 * There is nothing in the table built in pass one, 1730 * so this buffer must not be cancelled. 1731 */ 1732 ASSERT(!(flags & XFS_BLI_CANCEL)); 1733 return 0; 1734 } 1735 1736 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % 1737 XLOG_BC_TABLE_SIZE]; 1738 bcp = *bucket; 1739 if (bcp == NULL) { 1740 /* 1741 * There is no corresponding entry in the table built 1742 * in pass one, so this buffer has not been cancelled. 1743 */ 1744 ASSERT(!(flags & XFS_BLI_CANCEL)); 1745 return 0; 1746 } 1747 1748 /* 1749 * Search for an entry in the buffer cancel table that 1750 * matches our buffer. 1751 */ 1752 prevp = NULL; 1753 while (bcp != NULL) { 1754 if (bcp->bc_blkno == blkno && bcp->bc_len == len) { 1755 /* 1756 * We've go a match, so return 1 so that the 1757 * recovery of this buffer is cancelled. 1758 * If this buffer is actually a buffer cancel 1759 * log item, then decrement the refcount on the 1760 * one in the table and remove it if this is the 1761 * last reference. 1762 */ 1763 if (flags & XFS_BLI_CANCEL) { 1764 bcp->bc_refcount--; 1765 if (bcp->bc_refcount == 0) { 1766 if (prevp == NULL) { 1767 *bucket = bcp->bc_next; 1768 } else { 1769 prevp->bc_next = bcp->bc_next; 1770 } 1771 kmem_free(bcp); 1772 } 1773 } 1774 return 1; 1775 } 1776 prevp = bcp; 1777 bcp = bcp->bc_next; 1778 } 1779 /* 1780 * We didn't find a corresponding entry in the table, so 1781 * return 0 so that the buffer is NOT cancelled. 1782 */ 1783 ASSERT(!(flags & XFS_BLI_CANCEL)); 1784 return 0; 1785 } 1786 1787 STATIC int 1788 xlog_recover_do_buffer_pass2( 1789 xlog_t *log, 1790 xfs_buf_log_format_t *buf_f) 1791 { 1792 xfs_daddr_t blkno = 0; 1793 ushort flags = 0; 1794 uint len = 0; 1795 1796 switch (buf_f->blf_type) { 1797 case XFS_LI_BUF: 1798 blkno = buf_f->blf_blkno; 1799 flags = buf_f->blf_flags; 1800 len = buf_f->blf_len; 1801 break; 1802 } 1803 1804 return xlog_check_buffer_cancelled(log, blkno, len, flags); 1805 } 1806 1807 /* 1808 * Perform recovery for a buffer full of inodes. In these buffers, 1809 * the only data which should be recovered is that which corresponds 1810 * to the di_next_unlinked pointers in the on disk inode structures. 1811 * The rest of the data for the inodes is always logged through the 1812 * inodes themselves rather than the inode buffer and is recovered 1813 * in xlog_recover_do_inode_trans(). 1814 * 1815 * The only time when buffers full of inodes are fully recovered is 1816 * when the buffer is full of newly allocated inodes. In this case 1817 * the buffer will not be marked as an inode buffer and so will be 1818 * sent to xlog_recover_do_reg_buffer() below during recovery. 1819 */ 1820 STATIC int 1821 xlog_recover_do_inode_buffer( 1822 xfs_mount_t *mp, 1823 xlog_recover_item_t *item, 1824 xfs_buf_t *bp, 1825 xfs_buf_log_format_t *buf_f) 1826 { 1827 int i; 1828 int item_index; 1829 int bit; 1830 int nbits; 1831 int reg_buf_offset; 1832 int reg_buf_bytes; 1833 int next_unlinked_offset; 1834 int inodes_per_buf; 1835 xfs_agino_t *logged_nextp; 1836 xfs_agino_t *buffer_nextp; 1837 unsigned int *data_map = NULL; 1838 unsigned int map_size = 0; 1839 1840 switch (buf_f->blf_type) { 1841 case XFS_LI_BUF: 1842 data_map = buf_f->blf_data_map; 1843 map_size = buf_f->blf_map_size; 1844 break; 1845 } 1846 /* 1847 * Set the variables corresponding to the current region to 1848 * 0 so that we'll initialize them on the first pass through 1849 * the loop. 1850 */ 1851 reg_buf_offset = 0; 1852 reg_buf_bytes = 0; 1853 bit = 0; 1854 nbits = 0; 1855 item_index = 0; 1856 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog; 1857 for (i = 0; i < inodes_per_buf; i++) { 1858 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 1859 offsetof(xfs_dinode_t, di_next_unlinked); 1860 1861 while (next_unlinked_offset >= 1862 (reg_buf_offset + reg_buf_bytes)) { 1863 /* 1864 * The next di_next_unlinked field is beyond 1865 * the current logged region. Find the next 1866 * logged region that contains or is beyond 1867 * the current di_next_unlinked field. 1868 */ 1869 bit += nbits; 1870 bit = xfs_next_bit(data_map, map_size, bit); 1871 1872 /* 1873 * If there are no more logged regions in the 1874 * buffer, then we're done. 1875 */ 1876 if (bit == -1) { 1877 return 0; 1878 } 1879 1880 nbits = xfs_contig_bits(data_map, map_size, 1881 bit); 1882 ASSERT(nbits > 0); 1883 reg_buf_offset = bit << XFS_BLI_SHIFT; 1884 reg_buf_bytes = nbits << XFS_BLI_SHIFT; 1885 item_index++; 1886 } 1887 1888 /* 1889 * If the current logged region starts after the current 1890 * di_next_unlinked field, then move on to the next 1891 * di_next_unlinked field. 1892 */ 1893 if (next_unlinked_offset < reg_buf_offset) { 1894 continue; 1895 } 1896 1897 ASSERT(item->ri_buf[item_index].i_addr != NULL); 1898 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0); 1899 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp)); 1900 1901 /* 1902 * The current logged region contains a copy of the 1903 * current di_next_unlinked field. Extract its value 1904 * and copy it to the buffer copy. 1905 */ 1906 logged_nextp = (xfs_agino_t *) 1907 ((char *)(item->ri_buf[item_index].i_addr) + 1908 (next_unlinked_offset - reg_buf_offset)); 1909 if (unlikely(*logged_nextp == 0)) { 1910 xfs_fs_cmn_err(CE_ALERT, mp, 1911 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field", 1912 item, bp); 1913 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 1914 XFS_ERRLEVEL_LOW, mp); 1915 return XFS_ERROR(EFSCORRUPTED); 1916 } 1917 1918 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp, 1919 next_unlinked_offset); 1920 *buffer_nextp = *logged_nextp; 1921 } 1922 1923 return 0; 1924 } 1925 1926 /* 1927 * Perform a 'normal' buffer recovery. Each logged region of the 1928 * buffer should be copied over the corresponding region in the 1929 * given buffer. The bitmap in the buf log format structure indicates 1930 * where to place the logged data. 1931 */ 1932 /*ARGSUSED*/ 1933 STATIC void 1934 xlog_recover_do_reg_buffer( 1935 xlog_recover_item_t *item, 1936 xfs_buf_t *bp, 1937 xfs_buf_log_format_t *buf_f) 1938 { 1939 int i; 1940 int bit; 1941 int nbits; 1942 unsigned int *data_map = NULL; 1943 unsigned int map_size = 0; 1944 int error; 1945 1946 switch (buf_f->blf_type) { 1947 case XFS_LI_BUF: 1948 data_map = buf_f->blf_data_map; 1949 map_size = buf_f->blf_map_size; 1950 break; 1951 } 1952 bit = 0; 1953 i = 1; /* 0 is the buf format structure */ 1954 while (1) { 1955 bit = xfs_next_bit(data_map, map_size, bit); 1956 if (bit == -1) 1957 break; 1958 nbits = xfs_contig_bits(data_map, map_size, bit); 1959 ASSERT(nbits > 0); 1960 ASSERT(item->ri_buf[i].i_addr != NULL); 1961 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0); 1962 ASSERT(XFS_BUF_COUNT(bp) >= 1963 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT)); 1964 1965 /* 1966 * Do a sanity check if this is a dquot buffer. Just checking 1967 * the first dquot in the buffer should do. XXXThis is 1968 * probably a good thing to do for other buf types also. 1969 */ 1970 error = 0; 1971 if (buf_f->blf_flags & 1972 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) { 1973 if (item->ri_buf[i].i_addr == NULL) { 1974 cmn_err(CE_ALERT, 1975 "XFS: NULL dquot in %s.", __func__); 1976 goto next; 1977 } 1978 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) { 1979 cmn_err(CE_ALERT, 1980 "XFS: dquot too small (%d) in %s.", 1981 item->ri_buf[i].i_len, __func__); 1982 goto next; 1983 } 1984 error = xfs_qm_dqcheck((xfs_disk_dquot_t *) 1985 item->ri_buf[i].i_addr, 1986 -1, 0, XFS_QMOPT_DOWARN, 1987 "dquot_buf_recover"); 1988 if (error) 1989 goto next; 1990 } 1991 1992 memcpy(xfs_buf_offset(bp, 1993 (uint)bit << XFS_BLI_SHIFT), /* dest */ 1994 item->ri_buf[i].i_addr, /* source */ 1995 nbits<<XFS_BLI_SHIFT); /* length */ 1996 next: 1997 i++; 1998 bit += nbits; 1999 } 2000 2001 /* Shouldn't be any more regions */ 2002 ASSERT(i == item->ri_total); 2003 } 2004 2005 /* 2006 * Do some primitive error checking on ondisk dquot data structures. 2007 */ 2008 int 2009 xfs_qm_dqcheck( 2010 xfs_disk_dquot_t *ddq, 2011 xfs_dqid_t id, 2012 uint type, /* used only when IO_dorepair is true */ 2013 uint flags, 2014 char *str) 2015 { 2016 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq; 2017 int errs = 0; 2018 2019 /* 2020 * We can encounter an uninitialized dquot buffer for 2 reasons: 2021 * 1. If we crash while deleting the quotainode(s), and those blks got 2022 * used for user data. This is because we take the path of regular 2023 * file deletion; however, the size field of quotainodes is never 2024 * updated, so all the tricks that we play in itruncate_finish 2025 * don't quite matter. 2026 * 2027 * 2. We don't play the quota buffers when there's a quotaoff logitem. 2028 * But the allocation will be replayed so we'll end up with an 2029 * uninitialized quota block. 2030 * 2031 * This is all fine; things are still consistent, and we haven't lost 2032 * any quota information. Just don't complain about bad dquot blks. 2033 */ 2034 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) { 2035 if (flags & XFS_QMOPT_DOWARN) 2036 cmn_err(CE_ALERT, 2037 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x", 2038 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC); 2039 errs++; 2040 } 2041 if (ddq->d_version != XFS_DQUOT_VERSION) { 2042 if (flags & XFS_QMOPT_DOWARN) 2043 cmn_err(CE_ALERT, 2044 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x", 2045 str, id, ddq->d_version, XFS_DQUOT_VERSION); 2046 errs++; 2047 } 2048 2049 if (ddq->d_flags != XFS_DQ_USER && 2050 ddq->d_flags != XFS_DQ_PROJ && 2051 ddq->d_flags != XFS_DQ_GROUP) { 2052 if (flags & XFS_QMOPT_DOWARN) 2053 cmn_err(CE_ALERT, 2054 "%s : XFS dquot ID 0x%x, unknown flags 0x%x", 2055 str, id, ddq->d_flags); 2056 errs++; 2057 } 2058 2059 if (id != -1 && id != be32_to_cpu(ddq->d_id)) { 2060 if (flags & XFS_QMOPT_DOWARN) 2061 cmn_err(CE_ALERT, 2062 "%s : ondisk-dquot 0x%p, ID mismatch: " 2063 "0x%x expected, found id 0x%x", 2064 str, ddq, id, be32_to_cpu(ddq->d_id)); 2065 errs++; 2066 } 2067 2068 if (!errs && ddq->d_id) { 2069 if (ddq->d_blk_softlimit && 2070 be64_to_cpu(ddq->d_bcount) >= 2071 be64_to_cpu(ddq->d_blk_softlimit)) { 2072 if (!ddq->d_btimer) { 2073 if (flags & XFS_QMOPT_DOWARN) 2074 cmn_err(CE_ALERT, 2075 "%s : Dquot ID 0x%x (0x%p) " 2076 "BLK TIMER NOT STARTED", 2077 str, (int)be32_to_cpu(ddq->d_id), ddq); 2078 errs++; 2079 } 2080 } 2081 if (ddq->d_ino_softlimit && 2082 be64_to_cpu(ddq->d_icount) >= 2083 be64_to_cpu(ddq->d_ino_softlimit)) { 2084 if (!ddq->d_itimer) { 2085 if (flags & XFS_QMOPT_DOWARN) 2086 cmn_err(CE_ALERT, 2087 "%s : Dquot ID 0x%x (0x%p) " 2088 "INODE TIMER NOT STARTED", 2089 str, (int)be32_to_cpu(ddq->d_id), ddq); 2090 errs++; 2091 } 2092 } 2093 if (ddq->d_rtb_softlimit && 2094 be64_to_cpu(ddq->d_rtbcount) >= 2095 be64_to_cpu(ddq->d_rtb_softlimit)) { 2096 if (!ddq->d_rtbtimer) { 2097 if (flags & XFS_QMOPT_DOWARN) 2098 cmn_err(CE_ALERT, 2099 "%s : Dquot ID 0x%x (0x%p) " 2100 "RTBLK TIMER NOT STARTED", 2101 str, (int)be32_to_cpu(ddq->d_id), ddq); 2102 errs++; 2103 } 2104 } 2105 } 2106 2107 if (!errs || !(flags & XFS_QMOPT_DQREPAIR)) 2108 return errs; 2109 2110 if (flags & XFS_QMOPT_DOWARN) 2111 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id); 2112 2113 /* 2114 * Typically, a repair is only requested by quotacheck. 2115 */ 2116 ASSERT(id != -1); 2117 ASSERT(flags & XFS_QMOPT_DQREPAIR); 2118 memset(d, 0, sizeof(xfs_dqblk_t)); 2119 2120 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC); 2121 d->dd_diskdq.d_version = XFS_DQUOT_VERSION; 2122 d->dd_diskdq.d_flags = type; 2123 d->dd_diskdq.d_id = cpu_to_be32(id); 2124 2125 return errs; 2126 } 2127 2128 /* 2129 * Perform a dquot buffer recovery. 2130 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type 2131 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2132 * Else, treat it as a regular buffer and do recovery. 2133 */ 2134 STATIC void 2135 xlog_recover_do_dquot_buffer( 2136 xfs_mount_t *mp, 2137 xlog_t *log, 2138 xlog_recover_item_t *item, 2139 xfs_buf_t *bp, 2140 xfs_buf_log_format_t *buf_f) 2141 { 2142 uint type; 2143 2144 /* 2145 * Filesystems are required to send in quota flags at mount time. 2146 */ 2147 if (mp->m_qflags == 0) { 2148 return; 2149 } 2150 2151 type = 0; 2152 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF) 2153 type |= XFS_DQ_USER; 2154 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF) 2155 type |= XFS_DQ_PROJ; 2156 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF) 2157 type |= XFS_DQ_GROUP; 2158 /* 2159 * This type of quotas was turned off, so ignore this buffer 2160 */ 2161 if (log->l_quotaoffs_flag & type) 2162 return; 2163 2164 xlog_recover_do_reg_buffer(item, bp, buf_f); 2165 } 2166 2167 /* 2168 * This routine replays a modification made to a buffer at runtime. 2169 * There are actually two types of buffer, regular and inode, which 2170 * are handled differently. Inode buffers are handled differently 2171 * in that we only recover a specific set of data from them, namely 2172 * the inode di_next_unlinked fields. This is because all other inode 2173 * data is actually logged via inode records and any data we replay 2174 * here which overlaps that may be stale. 2175 * 2176 * When meta-data buffers are freed at run time we log a buffer item 2177 * with the XFS_BLI_CANCEL bit set to indicate that previous copies 2178 * of the buffer in the log should not be replayed at recovery time. 2179 * This is so that if the blocks covered by the buffer are reused for 2180 * file data before we crash we don't end up replaying old, freed 2181 * meta-data into a user's file. 2182 * 2183 * To handle the cancellation of buffer log items, we make two passes 2184 * over the log during recovery. During the first we build a table of 2185 * those buffers which have been cancelled, and during the second we 2186 * only replay those buffers which do not have corresponding cancel 2187 * records in the table. See xlog_recover_do_buffer_pass[1,2] above 2188 * for more details on the implementation of the table of cancel records. 2189 */ 2190 STATIC int 2191 xlog_recover_do_buffer_trans( 2192 xlog_t *log, 2193 xlog_recover_item_t *item, 2194 int pass) 2195 { 2196 xfs_buf_log_format_t *buf_f; 2197 xfs_mount_t *mp; 2198 xfs_buf_t *bp; 2199 int error; 2200 int cancel; 2201 xfs_daddr_t blkno; 2202 int len; 2203 ushort flags; 2204 uint buf_flags; 2205 2206 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr; 2207 2208 if (pass == XLOG_RECOVER_PASS1) { 2209 /* 2210 * In this pass we're only looking for buf items 2211 * with the XFS_BLI_CANCEL bit set. 2212 */ 2213 xlog_recover_do_buffer_pass1(log, buf_f); 2214 return 0; 2215 } else { 2216 /* 2217 * In this pass we want to recover all the buffers 2218 * which have not been cancelled and are not 2219 * cancellation buffers themselves. The routine 2220 * we call here will tell us whether or not to 2221 * continue with the replay of this buffer. 2222 */ 2223 cancel = xlog_recover_do_buffer_pass2(log, buf_f); 2224 if (cancel) { 2225 return 0; 2226 } 2227 } 2228 switch (buf_f->blf_type) { 2229 case XFS_LI_BUF: 2230 blkno = buf_f->blf_blkno; 2231 len = buf_f->blf_len; 2232 flags = buf_f->blf_flags; 2233 break; 2234 default: 2235 xfs_fs_cmn_err(CE_ALERT, log->l_mp, 2236 "xfs_log_recover: unknown buffer type 0x%x, logdev %s", 2237 buf_f->blf_type, log->l_mp->m_logname ? 2238 log->l_mp->m_logname : "internal"); 2239 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans", 2240 XFS_ERRLEVEL_LOW, log->l_mp); 2241 return XFS_ERROR(EFSCORRUPTED); 2242 } 2243 2244 mp = log->l_mp; 2245 buf_flags = XFS_BUF_LOCK; 2246 if (!(flags & XFS_BLI_INODE_BUF)) 2247 buf_flags |= XFS_BUF_MAPPED; 2248 2249 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, buf_flags); 2250 if (XFS_BUF_ISERROR(bp)) { 2251 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp, 2252 bp, blkno); 2253 error = XFS_BUF_GETERROR(bp); 2254 xfs_buf_relse(bp); 2255 return error; 2256 } 2257 2258 error = 0; 2259 if (flags & XFS_BLI_INODE_BUF) { 2260 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2261 } else if (flags & 2262 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) { 2263 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2264 } else { 2265 xlog_recover_do_reg_buffer(item, bp, buf_f); 2266 } 2267 if (error) 2268 return XFS_ERROR(error); 2269 2270 /* 2271 * Perform delayed write on the buffer. Asynchronous writes will be 2272 * slower when taking into account all the buffers to be flushed. 2273 * 2274 * Also make sure that only inode buffers with good sizes stay in 2275 * the buffer cache. The kernel moves inodes in buffers of 1 block 2276 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode 2277 * buffers in the log can be a different size if the log was generated 2278 * by an older kernel using unclustered inode buffers or a newer kernel 2279 * running with a different inode cluster size. Regardless, if the 2280 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE) 2281 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep 2282 * the buffer out of the buffer cache so that the buffer won't 2283 * overlap with future reads of those inodes. 2284 */ 2285 if (XFS_DINODE_MAGIC == 2286 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && 2287 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize, 2288 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) { 2289 XFS_BUF_STALE(bp); 2290 error = xfs_bwrite(mp, bp); 2291 } else { 2292 ASSERT(bp->b_mount == NULL || bp->b_mount == mp); 2293 bp->b_mount = mp; 2294 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2295 xfs_bdwrite(mp, bp); 2296 } 2297 2298 return (error); 2299 } 2300 2301 STATIC int 2302 xlog_recover_do_inode_trans( 2303 xlog_t *log, 2304 xlog_recover_item_t *item, 2305 int pass) 2306 { 2307 xfs_inode_log_format_t *in_f; 2308 xfs_mount_t *mp; 2309 xfs_buf_t *bp; 2310 xfs_dinode_t *dip; 2311 xfs_ino_t ino; 2312 int len; 2313 xfs_caddr_t src; 2314 xfs_caddr_t dest; 2315 int error; 2316 int attr_index; 2317 uint fields; 2318 xfs_icdinode_t *dicp; 2319 int need_free = 0; 2320 2321 if (pass == XLOG_RECOVER_PASS1) { 2322 return 0; 2323 } 2324 2325 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) { 2326 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr; 2327 } else { 2328 in_f = (xfs_inode_log_format_t *)kmem_alloc( 2329 sizeof(xfs_inode_log_format_t), KM_SLEEP); 2330 need_free = 1; 2331 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 2332 if (error) 2333 goto error; 2334 } 2335 ino = in_f->ilf_ino; 2336 mp = log->l_mp; 2337 2338 /* 2339 * Inode buffers can be freed, look out for it, 2340 * and do not replay the inode. 2341 */ 2342 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, 2343 in_f->ilf_len, 0)) { 2344 error = 0; 2345 goto error; 2346 } 2347 2348 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 2349 XFS_BUF_LOCK); 2350 if (XFS_BUF_ISERROR(bp)) { 2351 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp, 2352 bp, in_f->ilf_blkno); 2353 error = XFS_BUF_GETERROR(bp); 2354 xfs_buf_relse(bp); 2355 goto error; 2356 } 2357 error = 0; 2358 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 2359 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset); 2360 2361 /* 2362 * Make sure the place we're flushing out to really looks 2363 * like an inode! 2364 */ 2365 if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) { 2366 xfs_buf_relse(bp); 2367 xfs_fs_cmn_err(CE_ALERT, mp, 2368 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld", 2369 dip, bp, ino); 2370 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)", 2371 XFS_ERRLEVEL_LOW, mp); 2372 error = EFSCORRUPTED; 2373 goto error; 2374 } 2375 dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr); 2376 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { 2377 xfs_buf_relse(bp); 2378 xfs_fs_cmn_err(CE_ALERT, mp, 2379 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld", 2380 item, ino); 2381 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)", 2382 XFS_ERRLEVEL_LOW, mp); 2383 error = EFSCORRUPTED; 2384 goto error; 2385 } 2386 2387 /* Skip replay when the on disk inode is newer than the log one */ 2388 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) { 2389 /* 2390 * Deal with the wrap case, DI_MAX_FLUSH is less 2391 * than smaller numbers 2392 */ 2393 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && 2394 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) { 2395 /* do nothing */ 2396 } else { 2397 xfs_buf_relse(bp); 2398 error = 0; 2399 goto error; 2400 } 2401 } 2402 /* Take the opportunity to reset the flush iteration count */ 2403 dicp->di_flushiter = 0; 2404 2405 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) { 2406 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2407 (dicp->di_format != XFS_DINODE_FMT_BTREE)) { 2408 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)", 2409 XFS_ERRLEVEL_LOW, mp, dicp); 2410 xfs_buf_relse(bp); 2411 xfs_fs_cmn_err(CE_ALERT, mp, 2412 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2413 item, dip, bp, ino); 2414 error = EFSCORRUPTED; 2415 goto error; 2416 } 2417 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) { 2418 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2419 (dicp->di_format != XFS_DINODE_FMT_BTREE) && 2420 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { 2421 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)", 2422 XFS_ERRLEVEL_LOW, mp, dicp); 2423 xfs_buf_relse(bp); 2424 xfs_fs_cmn_err(CE_ALERT, mp, 2425 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2426 item, dip, bp, ino); 2427 error = EFSCORRUPTED; 2428 goto error; 2429 } 2430 } 2431 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ 2432 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)", 2433 XFS_ERRLEVEL_LOW, mp, dicp); 2434 xfs_buf_relse(bp); 2435 xfs_fs_cmn_err(CE_ALERT, mp, 2436 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", 2437 item, dip, bp, ino, 2438 dicp->di_nextents + dicp->di_anextents, 2439 dicp->di_nblocks); 2440 error = EFSCORRUPTED; 2441 goto error; 2442 } 2443 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { 2444 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)", 2445 XFS_ERRLEVEL_LOW, mp, dicp); 2446 xfs_buf_relse(bp); 2447 xfs_fs_cmn_err(CE_ALERT, mp, 2448 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x", 2449 item, dip, bp, ino, dicp->di_forkoff); 2450 error = EFSCORRUPTED; 2451 goto error; 2452 } 2453 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) { 2454 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)", 2455 XFS_ERRLEVEL_LOW, mp, dicp); 2456 xfs_buf_relse(bp); 2457 xfs_fs_cmn_err(CE_ALERT, mp, 2458 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p", 2459 item->ri_buf[1].i_len, item); 2460 error = EFSCORRUPTED; 2461 goto error; 2462 } 2463 2464 /* The core is in in-core format */ 2465 xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr); 2466 2467 /* the rest is in on-disk format */ 2468 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) { 2469 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode), 2470 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode), 2471 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode)); 2472 } 2473 2474 fields = in_f->ilf_fields; 2475 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { 2476 case XFS_ILOG_DEV: 2477 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); 2478 break; 2479 case XFS_ILOG_UUID: 2480 memcpy(XFS_DFORK_DPTR(dip), 2481 &in_f->ilf_u.ilfu_uuid, 2482 sizeof(uuid_t)); 2483 break; 2484 } 2485 2486 if (in_f->ilf_size == 2) 2487 goto write_inode_buffer; 2488 len = item->ri_buf[2].i_len; 2489 src = item->ri_buf[2].i_addr; 2490 ASSERT(in_f->ilf_size <= 4); 2491 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 2492 ASSERT(!(fields & XFS_ILOG_DFORK) || 2493 (len == in_f->ilf_dsize)); 2494 2495 switch (fields & XFS_ILOG_DFORK) { 2496 case XFS_ILOG_DDATA: 2497 case XFS_ILOG_DEXT: 2498 memcpy(XFS_DFORK_DPTR(dip), src, len); 2499 break; 2500 2501 case XFS_ILOG_DBROOT: 2502 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, 2503 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), 2504 XFS_DFORK_DSIZE(dip, mp)); 2505 break; 2506 2507 default: 2508 /* 2509 * There are no data fork flags set. 2510 */ 2511 ASSERT((fields & XFS_ILOG_DFORK) == 0); 2512 break; 2513 } 2514 2515 /* 2516 * If we logged any attribute data, recover it. There may or 2517 * may not have been any other non-core data logged in this 2518 * transaction. 2519 */ 2520 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 2521 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 2522 attr_index = 3; 2523 } else { 2524 attr_index = 2; 2525 } 2526 len = item->ri_buf[attr_index].i_len; 2527 src = item->ri_buf[attr_index].i_addr; 2528 ASSERT(len == in_f->ilf_asize); 2529 2530 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 2531 case XFS_ILOG_ADATA: 2532 case XFS_ILOG_AEXT: 2533 dest = XFS_DFORK_APTR(dip); 2534 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 2535 memcpy(dest, src, len); 2536 break; 2537 2538 case XFS_ILOG_ABROOT: 2539 dest = XFS_DFORK_APTR(dip); 2540 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, 2541 len, (xfs_bmdr_block_t*)dest, 2542 XFS_DFORK_ASIZE(dip, mp)); 2543 break; 2544 2545 default: 2546 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag"); 2547 ASSERT(0); 2548 xfs_buf_relse(bp); 2549 error = EIO; 2550 goto error; 2551 } 2552 } 2553 2554 write_inode_buffer: 2555 ASSERT(bp->b_mount == NULL || bp->b_mount == mp); 2556 bp->b_mount = mp; 2557 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2558 xfs_bdwrite(mp, bp); 2559 error: 2560 if (need_free) 2561 kmem_free(in_f); 2562 return XFS_ERROR(error); 2563 } 2564 2565 /* 2566 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t 2567 * structure, so that we know not to do any dquot item or dquot buffer recovery, 2568 * of that type. 2569 */ 2570 STATIC int 2571 xlog_recover_do_quotaoff_trans( 2572 xlog_t *log, 2573 xlog_recover_item_t *item, 2574 int pass) 2575 { 2576 xfs_qoff_logformat_t *qoff_f; 2577 2578 if (pass == XLOG_RECOVER_PASS2) { 2579 return (0); 2580 } 2581 2582 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr; 2583 ASSERT(qoff_f); 2584 2585 /* 2586 * The logitem format's flag tells us if this was user quotaoff, 2587 * group/project quotaoff or both. 2588 */ 2589 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 2590 log->l_quotaoffs_flag |= XFS_DQ_USER; 2591 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 2592 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 2593 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 2594 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 2595 2596 return (0); 2597 } 2598 2599 /* 2600 * Recover a dquot record 2601 */ 2602 STATIC int 2603 xlog_recover_do_dquot_trans( 2604 xlog_t *log, 2605 xlog_recover_item_t *item, 2606 int pass) 2607 { 2608 xfs_mount_t *mp; 2609 xfs_buf_t *bp; 2610 struct xfs_disk_dquot *ddq, *recddq; 2611 int error; 2612 xfs_dq_logformat_t *dq_f; 2613 uint type; 2614 2615 if (pass == XLOG_RECOVER_PASS1) { 2616 return 0; 2617 } 2618 mp = log->l_mp; 2619 2620 /* 2621 * Filesystems are required to send in quota flags at mount time. 2622 */ 2623 if (mp->m_qflags == 0) 2624 return (0); 2625 2626 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr; 2627 2628 if (item->ri_buf[1].i_addr == NULL) { 2629 cmn_err(CE_ALERT, 2630 "XFS: NULL dquot in %s.", __func__); 2631 return XFS_ERROR(EIO); 2632 } 2633 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) { 2634 cmn_err(CE_ALERT, 2635 "XFS: dquot too small (%d) in %s.", 2636 item->ri_buf[1].i_len, __func__); 2637 return XFS_ERROR(EIO); 2638 } 2639 2640 /* 2641 * This type of quotas was turned off, so ignore this record. 2642 */ 2643 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 2644 ASSERT(type); 2645 if (log->l_quotaoffs_flag & type) 2646 return (0); 2647 2648 /* 2649 * At this point we know that quota was _not_ turned off. 2650 * Since the mount flags are not indicating to us otherwise, this 2651 * must mean that quota is on, and the dquot needs to be replayed. 2652 * Remember that we may not have fully recovered the superblock yet, 2653 * so we can't do the usual trick of looking at the SB quota bits. 2654 * 2655 * The other possibility, of course, is that the quota subsystem was 2656 * removed since the last mount - ENOSYS. 2657 */ 2658 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr; 2659 ASSERT(dq_f); 2660 if ((error = xfs_qm_dqcheck(recddq, 2661 dq_f->qlf_id, 2662 0, XFS_QMOPT_DOWARN, 2663 "xlog_recover_do_dquot_trans (log copy)"))) { 2664 return XFS_ERROR(EIO); 2665 } 2666 ASSERT(dq_f->qlf_len == 1); 2667 2668 error = xfs_read_buf(mp, mp->m_ddev_targp, 2669 dq_f->qlf_blkno, 2670 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 2671 0, &bp); 2672 if (error) { 2673 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp, 2674 bp, dq_f->qlf_blkno); 2675 return error; 2676 } 2677 ASSERT(bp); 2678 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset); 2679 2680 /* 2681 * At least the magic num portion should be on disk because this 2682 * was among a chunk of dquots created earlier, and we did some 2683 * minimal initialization then. 2684 */ 2685 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2686 "xlog_recover_do_dquot_trans")) { 2687 xfs_buf_relse(bp); 2688 return XFS_ERROR(EIO); 2689 } 2690 2691 memcpy(ddq, recddq, item->ri_buf[1].i_len); 2692 2693 ASSERT(dq_f->qlf_size == 2); 2694 ASSERT(bp->b_mount == NULL || bp->b_mount == mp); 2695 bp->b_mount = mp; 2696 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2697 xfs_bdwrite(mp, bp); 2698 2699 return (0); 2700 } 2701 2702 /* 2703 * This routine is called to create an in-core extent free intent 2704 * item from the efi format structure which was logged on disk. 2705 * It allocates an in-core efi, copies the extents from the format 2706 * structure into it, and adds the efi to the AIL with the given 2707 * LSN. 2708 */ 2709 STATIC int 2710 xlog_recover_do_efi_trans( 2711 xlog_t *log, 2712 xlog_recover_item_t *item, 2713 xfs_lsn_t lsn, 2714 int pass) 2715 { 2716 int error; 2717 xfs_mount_t *mp; 2718 xfs_efi_log_item_t *efip; 2719 xfs_efi_log_format_t *efi_formatp; 2720 2721 if (pass == XLOG_RECOVER_PASS1) { 2722 return 0; 2723 } 2724 2725 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr; 2726 2727 mp = log->l_mp; 2728 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 2729 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]), 2730 &(efip->efi_format)))) { 2731 xfs_efi_item_free(efip); 2732 return error; 2733 } 2734 efip->efi_next_extent = efi_formatp->efi_nextents; 2735 efip->efi_flags |= XFS_EFI_COMMITTED; 2736 2737 spin_lock(&log->l_ailp->xa_lock); 2738 /* 2739 * xfs_trans_ail_update() drops the AIL lock. 2740 */ 2741 xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn); 2742 return 0; 2743 } 2744 2745 2746 /* 2747 * This routine is called when an efd format structure is found in 2748 * a committed transaction in the log. It's purpose is to cancel 2749 * the corresponding efi if it was still in the log. To do this 2750 * it searches the AIL for the efi with an id equal to that in the 2751 * efd format structure. If we find it, we remove the efi from the 2752 * AIL and free it. 2753 */ 2754 STATIC void 2755 xlog_recover_do_efd_trans( 2756 xlog_t *log, 2757 xlog_recover_item_t *item, 2758 int pass) 2759 { 2760 xfs_efd_log_format_t *efd_formatp; 2761 xfs_efi_log_item_t *efip = NULL; 2762 xfs_log_item_t *lip; 2763 __uint64_t efi_id; 2764 struct xfs_ail_cursor cur; 2765 struct xfs_ail *ailp = log->l_ailp; 2766 2767 if (pass == XLOG_RECOVER_PASS1) { 2768 return; 2769 } 2770 2771 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr; 2772 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 2773 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 2774 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 2775 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 2776 efi_id = efd_formatp->efd_efi_id; 2777 2778 /* 2779 * Search for the efi with the id in the efd format structure 2780 * in the AIL. 2781 */ 2782 spin_lock(&ailp->xa_lock); 2783 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 2784 while (lip != NULL) { 2785 if (lip->li_type == XFS_LI_EFI) { 2786 efip = (xfs_efi_log_item_t *)lip; 2787 if (efip->efi_format.efi_id == efi_id) { 2788 /* 2789 * xfs_trans_ail_delete() drops the 2790 * AIL lock. 2791 */ 2792 xfs_trans_ail_delete(ailp, lip); 2793 xfs_efi_item_free(efip); 2794 spin_lock(&ailp->xa_lock); 2795 break; 2796 } 2797 } 2798 lip = xfs_trans_ail_cursor_next(ailp, &cur); 2799 } 2800 xfs_trans_ail_cursor_done(ailp, &cur); 2801 spin_unlock(&ailp->xa_lock); 2802 } 2803 2804 /* 2805 * Perform the transaction 2806 * 2807 * If the transaction modifies a buffer or inode, do it now. Otherwise, 2808 * EFIs and EFDs get queued up by adding entries into the AIL for them. 2809 */ 2810 STATIC int 2811 xlog_recover_do_trans( 2812 xlog_t *log, 2813 xlog_recover_t *trans, 2814 int pass) 2815 { 2816 int error = 0; 2817 xlog_recover_item_t *item, *first_item; 2818 2819 error = xlog_recover_reorder_trans(trans); 2820 if (error) 2821 return error; 2822 2823 first_item = item = trans->r_itemq; 2824 do { 2825 switch (ITEM_TYPE(item)) { 2826 case XFS_LI_BUF: 2827 error = xlog_recover_do_buffer_trans(log, item, pass); 2828 break; 2829 case XFS_LI_INODE: 2830 error = xlog_recover_do_inode_trans(log, item, pass); 2831 break; 2832 case XFS_LI_EFI: 2833 error = xlog_recover_do_efi_trans(log, item, 2834 trans->r_lsn, pass); 2835 break; 2836 case XFS_LI_EFD: 2837 xlog_recover_do_efd_trans(log, item, pass); 2838 error = 0; 2839 break; 2840 case XFS_LI_DQUOT: 2841 error = xlog_recover_do_dquot_trans(log, item, pass); 2842 break; 2843 case XFS_LI_QUOTAOFF: 2844 error = xlog_recover_do_quotaoff_trans(log, item, 2845 pass); 2846 break; 2847 default: 2848 xlog_warn( 2849 "XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item)); 2850 ASSERT(0); 2851 error = XFS_ERROR(EIO); 2852 break; 2853 } 2854 2855 if (error) 2856 return error; 2857 item = item->ri_next; 2858 } while (first_item != item); 2859 2860 return 0; 2861 } 2862 2863 /* 2864 * Free up any resources allocated by the transaction 2865 * 2866 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 2867 */ 2868 STATIC void 2869 xlog_recover_free_trans( 2870 xlog_recover_t *trans) 2871 { 2872 xlog_recover_item_t *first_item, *item, *free_item; 2873 int i; 2874 2875 item = first_item = trans->r_itemq; 2876 do { 2877 free_item = item; 2878 item = item->ri_next; 2879 /* Free the regions in the item. */ 2880 for (i = 0; i < free_item->ri_cnt; i++) { 2881 kmem_free(free_item->ri_buf[i].i_addr); 2882 } 2883 /* Free the item itself */ 2884 kmem_free(free_item->ri_buf); 2885 kmem_free(free_item); 2886 } while (first_item != item); 2887 /* Free the transaction recover structure */ 2888 kmem_free(trans); 2889 } 2890 2891 STATIC int 2892 xlog_recover_commit_trans( 2893 xlog_t *log, 2894 xlog_recover_t **q, 2895 xlog_recover_t *trans, 2896 int pass) 2897 { 2898 int error; 2899 2900 if ((error = xlog_recover_unlink_tid(q, trans))) 2901 return error; 2902 if ((error = xlog_recover_do_trans(log, trans, pass))) 2903 return error; 2904 xlog_recover_free_trans(trans); /* no error */ 2905 return 0; 2906 } 2907 2908 STATIC int 2909 xlog_recover_unmount_trans( 2910 xlog_recover_t *trans) 2911 { 2912 /* Do nothing now */ 2913 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR"); 2914 return 0; 2915 } 2916 2917 /* 2918 * There are two valid states of the r_state field. 0 indicates that the 2919 * transaction structure is in a normal state. We have either seen the 2920 * start of the transaction or the last operation we added was not a partial 2921 * operation. If the last operation we added to the transaction was a 2922 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 2923 * 2924 * NOTE: skip LRs with 0 data length. 2925 */ 2926 STATIC int 2927 xlog_recover_process_data( 2928 xlog_t *log, 2929 xlog_recover_t *rhash[], 2930 xlog_rec_header_t *rhead, 2931 xfs_caddr_t dp, 2932 int pass) 2933 { 2934 xfs_caddr_t lp; 2935 int num_logops; 2936 xlog_op_header_t *ohead; 2937 xlog_recover_t *trans; 2938 xlog_tid_t tid; 2939 int error; 2940 unsigned long hash; 2941 uint flags; 2942 2943 lp = dp + be32_to_cpu(rhead->h_len); 2944 num_logops = be32_to_cpu(rhead->h_num_logops); 2945 2946 /* check the log format matches our own - else we can't recover */ 2947 if (xlog_header_check_recover(log->l_mp, rhead)) 2948 return (XFS_ERROR(EIO)); 2949 2950 while ((dp < lp) && num_logops) { 2951 ASSERT(dp + sizeof(xlog_op_header_t) <= lp); 2952 ohead = (xlog_op_header_t *)dp; 2953 dp += sizeof(xlog_op_header_t); 2954 if (ohead->oh_clientid != XFS_TRANSACTION && 2955 ohead->oh_clientid != XFS_LOG) { 2956 xlog_warn( 2957 "XFS: xlog_recover_process_data: bad clientid"); 2958 ASSERT(0); 2959 return (XFS_ERROR(EIO)); 2960 } 2961 tid = be32_to_cpu(ohead->oh_tid); 2962 hash = XLOG_RHASH(tid); 2963 trans = xlog_recover_find_tid(rhash[hash], tid); 2964 if (trans == NULL) { /* not found; add new tid */ 2965 if (ohead->oh_flags & XLOG_START_TRANS) 2966 xlog_recover_new_tid(&rhash[hash], tid, 2967 be64_to_cpu(rhead->h_lsn)); 2968 } else { 2969 if (dp + be32_to_cpu(ohead->oh_len) > lp) { 2970 xlog_warn( 2971 "XFS: xlog_recover_process_data: bad length"); 2972 WARN_ON(1); 2973 return (XFS_ERROR(EIO)); 2974 } 2975 flags = ohead->oh_flags & ~XLOG_END_TRANS; 2976 if (flags & XLOG_WAS_CONT_TRANS) 2977 flags &= ~XLOG_CONTINUE_TRANS; 2978 switch (flags) { 2979 case XLOG_COMMIT_TRANS: 2980 error = xlog_recover_commit_trans(log, 2981 &rhash[hash], trans, pass); 2982 break; 2983 case XLOG_UNMOUNT_TRANS: 2984 error = xlog_recover_unmount_trans(trans); 2985 break; 2986 case XLOG_WAS_CONT_TRANS: 2987 error = xlog_recover_add_to_cont_trans(trans, 2988 dp, be32_to_cpu(ohead->oh_len)); 2989 break; 2990 case XLOG_START_TRANS: 2991 xlog_warn( 2992 "XFS: xlog_recover_process_data: bad transaction"); 2993 ASSERT(0); 2994 error = XFS_ERROR(EIO); 2995 break; 2996 case 0: 2997 case XLOG_CONTINUE_TRANS: 2998 error = xlog_recover_add_to_trans(trans, 2999 dp, be32_to_cpu(ohead->oh_len)); 3000 break; 3001 default: 3002 xlog_warn( 3003 "XFS: xlog_recover_process_data: bad flag"); 3004 ASSERT(0); 3005 error = XFS_ERROR(EIO); 3006 break; 3007 } 3008 if (error) 3009 return error; 3010 } 3011 dp += be32_to_cpu(ohead->oh_len); 3012 num_logops--; 3013 } 3014 return 0; 3015 } 3016 3017 /* 3018 * Process an extent free intent item that was recovered from 3019 * the log. We need to free the extents that it describes. 3020 */ 3021 STATIC int 3022 xlog_recover_process_efi( 3023 xfs_mount_t *mp, 3024 xfs_efi_log_item_t *efip) 3025 { 3026 xfs_efd_log_item_t *efdp; 3027 xfs_trans_t *tp; 3028 int i; 3029 int error = 0; 3030 xfs_extent_t *extp; 3031 xfs_fsblock_t startblock_fsb; 3032 3033 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED)); 3034 3035 /* 3036 * First check the validity of the extents described by the 3037 * EFI. If any are bad, then assume that all are bad and 3038 * just toss the EFI. 3039 */ 3040 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3041 extp = &(efip->efi_format.efi_extents[i]); 3042 startblock_fsb = XFS_BB_TO_FSB(mp, 3043 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 3044 if ((startblock_fsb == 0) || 3045 (extp->ext_len == 0) || 3046 (startblock_fsb >= mp->m_sb.sb_dblocks) || 3047 (extp->ext_len >= mp->m_sb.sb_agblocks)) { 3048 /* 3049 * This will pull the EFI from the AIL and 3050 * free the memory associated with it. 3051 */ 3052 xfs_efi_release(efip, efip->efi_format.efi_nextents); 3053 return XFS_ERROR(EIO); 3054 } 3055 } 3056 3057 tp = xfs_trans_alloc(mp, 0); 3058 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0); 3059 if (error) 3060 goto abort_error; 3061 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 3062 3063 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3064 extp = &(efip->efi_format.efi_extents[i]); 3065 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len); 3066 if (error) 3067 goto abort_error; 3068 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start, 3069 extp->ext_len); 3070 } 3071 3072 efip->efi_flags |= XFS_EFI_RECOVERED; 3073 error = xfs_trans_commit(tp, 0); 3074 return error; 3075 3076 abort_error: 3077 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3078 return error; 3079 } 3080 3081 /* 3082 * When this is called, all of the EFIs which did not have 3083 * corresponding EFDs should be in the AIL. What we do now 3084 * is free the extents associated with each one. 3085 * 3086 * Since we process the EFIs in normal transactions, they 3087 * will be removed at some point after the commit. This prevents 3088 * us from just walking down the list processing each one. 3089 * We'll use a flag in the EFI to skip those that we've already 3090 * processed and use the AIL iteration mechanism's generation 3091 * count to try to speed this up at least a bit. 3092 * 3093 * When we start, we know that the EFIs are the only things in 3094 * the AIL. As we process them, however, other items are added 3095 * to the AIL. Since everything added to the AIL must come after 3096 * everything already in the AIL, we stop processing as soon as 3097 * we see something other than an EFI in the AIL. 3098 */ 3099 STATIC int 3100 xlog_recover_process_efis( 3101 xlog_t *log) 3102 { 3103 xfs_log_item_t *lip; 3104 xfs_efi_log_item_t *efip; 3105 int error = 0; 3106 struct xfs_ail_cursor cur; 3107 struct xfs_ail *ailp; 3108 3109 ailp = log->l_ailp; 3110 spin_lock(&ailp->xa_lock); 3111 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3112 while (lip != NULL) { 3113 /* 3114 * We're done when we see something other than an EFI. 3115 * There should be no EFIs left in the AIL now. 3116 */ 3117 if (lip->li_type != XFS_LI_EFI) { 3118 #ifdef DEBUG 3119 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 3120 ASSERT(lip->li_type != XFS_LI_EFI); 3121 #endif 3122 break; 3123 } 3124 3125 /* 3126 * Skip EFIs that we've already processed. 3127 */ 3128 efip = (xfs_efi_log_item_t *)lip; 3129 if (efip->efi_flags & XFS_EFI_RECOVERED) { 3130 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3131 continue; 3132 } 3133 3134 spin_unlock(&ailp->xa_lock); 3135 error = xlog_recover_process_efi(log->l_mp, efip); 3136 spin_lock(&ailp->xa_lock); 3137 if (error) 3138 goto out; 3139 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3140 } 3141 out: 3142 xfs_trans_ail_cursor_done(ailp, &cur); 3143 spin_unlock(&ailp->xa_lock); 3144 return error; 3145 } 3146 3147 /* 3148 * This routine performs a transaction to null out a bad inode pointer 3149 * in an agi unlinked inode hash bucket. 3150 */ 3151 STATIC void 3152 xlog_recover_clear_agi_bucket( 3153 xfs_mount_t *mp, 3154 xfs_agnumber_t agno, 3155 int bucket) 3156 { 3157 xfs_trans_t *tp; 3158 xfs_agi_t *agi; 3159 xfs_buf_t *agibp; 3160 int offset; 3161 int error; 3162 3163 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); 3164 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 3165 0, 0, 0); 3166 if (error) 3167 goto out_abort; 3168 3169 error = xfs_read_agi(mp, tp, agno, &agibp); 3170 if (error) 3171 goto out_abort; 3172 3173 agi = XFS_BUF_TO_AGI(agibp); 3174 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 3175 offset = offsetof(xfs_agi_t, agi_unlinked) + 3176 (sizeof(xfs_agino_t) * bucket); 3177 xfs_trans_log_buf(tp, agibp, offset, 3178 (offset + sizeof(xfs_agino_t) - 1)); 3179 3180 error = xfs_trans_commit(tp, 0); 3181 if (error) 3182 goto out_error; 3183 return; 3184 3185 out_abort: 3186 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3187 out_error: 3188 xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: " 3189 "failed to clear agi %d. Continuing.", agno); 3190 return; 3191 } 3192 3193 STATIC xfs_agino_t 3194 xlog_recover_process_one_iunlink( 3195 struct xfs_mount *mp, 3196 xfs_agnumber_t agno, 3197 xfs_agino_t agino, 3198 int bucket) 3199 { 3200 struct xfs_buf *ibp; 3201 struct xfs_dinode *dip; 3202 struct xfs_inode *ip; 3203 xfs_ino_t ino; 3204 int error; 3205 3206 ino = XFS_AGINO_TO_INO(mp, agno, agino); 3207 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0); 3208 if (error) 3209 goto fail; 3210 3211 /* 3212 * Get the on disk inode to find the next inode in the bucket. 3213 */ 3214 error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XFS_BUF_LOCK); 3215 if (error) 3216 goto fail_iput; 3217 3218 ASSERT(ip->i_d.di_nlink == 0); 3219 ASSERT(ip->i_d.di_mode != 0); 3220 3221 /* setup for the next pass */ 3222 agino = be32_to_cpu(dip->di_next_unlinked); 3223 xfs_buf_relse(ibp); 3224 3225 /* 3226 * Prevent any DMAPI event from being sent when the reference on 3227 * the inode is dropped. 3228 */ 3229 ip->i_d.di_dmevmask = 0; 3230 3231 IRELE(ip); 3232 return agino; 3233 3234 fail_iput: 3235 IRELE(ip); 3236 fail: 3237 /* 3238 * We can't read in the inode this bucket points to, or this inode 3239 * is messed up. Just ditch this bucket of inodes. We will lose 3240 * some inodes and space, but at least we won't hang. 3241 * 3242 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 3243 * clear the inode pointer in the bucket. 3244 */ 3245 xlog_recover_clear_agi_bucket(mp, agno, bucket); 3246 return NULLAGINO; 3247 } 3248 3249 /* 3250 * xlog_iunlink_recover 3251 * 3252 * This is called during recovery to process any inodes which 3253 * we unlinked but not freed when the system crashed. These 3254 * inodes will be on the lists in the AGI blocks. What we do 3255 * here is scan all the AGIs and fully truncate and free any 3256 * inodes found on the lists. Each inode is removed from the 3257 * lists when it has been fully truncated and is freed. The 3258 * freeing of the inode and its removal from the list must be 3259 * atomic. 3260 */ 3261 STATIC void 3262 xlog_recover_process_iunlinks( 3263 xlog_t *log) 3264 { 3265 xfs_mount_t *mp; 3266 xfs_agnumber_t agno; 3267 xfs_agi_t *agi; 3268 xfs_buf_t *agibp; 3269 xfs_agino_t agino; 3270 int bucket; 3271 int error; 3272 uint mp_dmevmask; 3273 3274 mp = log->l_mp; 3275 3276 /* 3277 * Prevent any DMAPI event from being sent while in this function. 3278 */ 3279 mp_dmevmask = mp->m_dmevmask; 3280 mp->m_dmevmask = 0; 3281 3282 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3283 /* 3284 * Find the agi for this ag. 3285 */ 3286 error = xfs_read_agi(mp, NULL, agno, &agibp); 3287 if (error) { 3288 /* 3289 * AGI is b0rked. Don't process it. 3290 * 3291 * We should probably mark the filesystem as corrupt 3292 * after we've recovered all the ag's we can.... 3293 */ 3294 continue; 3295 } 3296 agi = XFS_BUF_TO_AGI(agibp); 3297 3298 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 3299 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 3300 while (agino != NULLAGINO) { 3301 /* 3302 * Release the agi buffer so that it can 3303 * be acquired in the normal course of the 3304 * transaction to truncate and free the inode. 3305 */ 3306 xfs_buf_relse(agibp); 3307 3308 agino = xlog_recover_process_one_iunlink(mp, 3309 agno, agino, bucket); 3310 3311 /* 3312 * Reacquire the agibuffer and continue around 3313 * the loop. This should never fail as we know 3314 * the buffer was good earlier on. 3315 */ 3316 error = xfs_read_agi(mp, NULL, agno, &agibp); 3317 ASSERT(error == 0); 3318 agi = XFS_BUF_TO_AGI(agibp); 3319 } 3320 } 3321 3322 /* 3323 * Release the buffer for the current agi so we can 3324 * go on to the next one. 3325 */ 3326 xfs_buf_relse(agibp); 3327 } 3328 3329 mp->m_dmevmask = mp_dmevmask; 3330 } 3331 3332 3333 #ifdef DEBUG 3334 STATIC void 3335 xlog_pack_data_checksum( 3336 xlog_t *log, 3337 xlog_in_core_t *iclog, 3338 int size) 3339 { 3340 int i; 3341 __be32 *up; 3342 uint chksum = 0; 3343 3344 up = (__be32 *)iclog->ic_datap; 3345 /* divide length by 4 to get # words */ 3346 for (i = 0; i < (size >> 2); i++) { 3347 chksum ^= be32_to_cpu(*up); 3348 up++; 3349 } 3350 iclog->ic_header.h_chksum = cpu_to_be32(chksum); 3351 } 3352 #else 3353 #define xlog_pack_data_checksum(log, iclog, size) 3354 #endif 3355 3356 /* 3357 * Stamp cycle number in every block 3358 */ 3359 void 3360 xlog_pack_data( 3361 xlog_t *log, 3362 xlog_in_core_t *iclog, 3363 int roundoff) 3364 { 3365 int i, j, k; 3366 int size = iclog->ic_offset + roundoff; 3367 __be32 cycle_lsn; 3368 xfs_caddr_t dp; 3369 3370 xlog_pack_data_checksum(log, iclog, size); 3371 3372 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 3373 3374 dp = iclog->ic_datap; 3375 for (i = 0; i < BTOBB(size) && 3376 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3377 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 3378 *(__be32 *)dp = cycle_lsn; 3379 dp += BBSIZE; 3380 } 3381 3382 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3383 xlog_in_core_2_t *xhdr = iclog->ic_data; 3384 3385 for ( ; i < BTOBB(size); i++) { 3386 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3387 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3388 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 3389 *(__be32 *)dp = cycle_lsn; 3390 dp += BBSIZE; 3391 } 3392 3393 for (i = 1; i < log->l_iclog_heads; i++) { 3394 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 3395 } 3396 } 3397 } 3398 3399 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY) 3400 STATIC void 3401 xlog_unpack_data_checksum( 3402 xlog_rec_header_t *rhead, 3403 xfs_caddr_t dp, 3404 xlog_t *log) 3405 { 3406 __be32 *up = (__be32 *)dp; 3407 uint chksum = 0; 3408 int i; 3409 3410 /* divide length by 4 to get # words */ 3411 for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) { 3412 chksum ^= be32_to_cpu(*up); 3413 up++; 3414 } 3415 if (chksum != be32_to_cpu(rhead->h_chksum)) { 3416 if (rhead->h_chksum || 3417 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) { 3418 cmn_err(CE_DEBUG, 3419 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n", 3420 be32_to_cpu(rhead->h_chksum), chksum); 3421 cmn_err(CE_DEBUG, 3422 "XFS: Disregard message if filesystem was created with non-DEBUG kernel"); 3423 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3424 cmn_err(CE_DEBUG, 3425 "XFS: LogR this is a LogV2 filesystem\n"); 3426 } 3427 log->l_flags |= XLOG_CHKSUM_MISMATCH; 3428 } 3429 } 3430 } 3431 #else 3432 #define xlog_unpack_data_checksum(rhead, dp, log) 3433 #endif 3434 3435 STATIC void 3436 xlog_unpack_data( 3437 xlog_rec_header_t *rhead, 3438 xfs_caddr_t dp, 3439 xlog_t *log) 3440 { 3441 int i, j, k; 3442 3443 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 3444 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3445 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 3446 dp += BBSIZE; 3447 } 3448 3449 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3450 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 3451 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 3452 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3453 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3454 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 3455 dp += BBSIZE; 3456 } 3457 } 3458 3459 xlog_unpack_data_checksum(rhead, dp, log); 3460 } 3461 3462 STATIC int 3463 xlog_valid_rec_header( 3464 xlog_t *log, 3465 xlog_rec_header_t *rhead, 3466 xfs_daddr_t blkno) 3467 { 3468 int hlen; 3469 3470 if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) { 3471 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 3472 XFS_ERRLEVEL_LOW, log->l_mp); 3473 return XFS_ERROR(EFSCORRUPTED); 3474 } 3475 if (unlikely( 3476 (!rhead->h_version || 3477 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { 3478 xlog_warn("XFS: %s: unrecognised log version (%d).", 3479 __func__, be32_to_cpu(rhead->h_version)); 3480 return XFS_ERROR(EIO); 3481 } 3482 3483 /* LR body must have data or it wouldn't have been written */ 3484 hlen = be32_to_cpu(rhead->h_len); 3485 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 3486 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 3487 XFS_ERRLEVEL_LOW, log->l_mp); 3488 return XFS_ERROR(EFSCORRUPTED); 3489 } 3490 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 3491 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 3492 XFS_ERRLEVEL_LOW, log->l_mp); 3493 return XFS_ERROR(EFSCORRUPTED); 3494 } 3495 return 0; 3496 } 3497 3498 /* 3499 * Read the log from tail to head and process the log records found. 3500 * Handle the two cases where the tail and head are in the same cycle 3501 * and where the active portion of the log wraps around the end of 3502 * the physical log separately. The pass parameter is passed through 3503 * to the routines called to process the data and is not looked at 3504 * here. 3505 */ 3506 STATIC int 3507 xlog_do_recovery_pass( 3508 xlog_t *log, 3509 xfs_daddr_t head_blk, 3510 xfs_daddr_t tail_blk, 3511 int pass) 3512 { 3513 xlog_rec_header_t *rhead; 3514 xfs_daddr_t blk_no; 3515 xfs_caddr_t offset; 3516 xfs_buf_t *hbp, *dbp; 3517 int error = 0, h_size; 3518 int bblks, split_bblks; 3519 int hblks, split_hblks, wrapped_hblks; 3520 xlog_recover_t *rhash[XLOG_RHASH_SIZE]; 3521 3522 ASSERT(head_blk != tail_blk); 3523 3524 /* 3525 * Read the header of the tail block and get the iclog buffer size from 3526 * h_size. Use this to tell how many sectors make up the log header. 3527 */ 3528 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3529 /* 3530 * When using variable length iclogs, read first sector of 3531 * iclog header and extract the header size from it. Get a 3532 * new hbp that is the correct size. 3533 */ 3534 hbp = xlog_get_bp(log, 1); 3535 if (!hbp) 3536 return ENOMEM; 3537 3538 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 3539 if (error) 3540 goto bread_err1; 3541 3542 rhead = (xlog_rec_header_t *)offset; 3543 error = xlog_valid_rec_header(log, rhead, tail_blk); 3544 if (error) 3545 goto bread_err1; 3546 h_size = be32_to_cpu(rhead->h_size); 3547 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 3548 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 3549 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 3550 if (h_size % XLOG_HEADER_CYCLE_SIZE) 3551 hblks++; 3552 xlog_put_bp(hbp); 3553 hbp = xlog_get_bp(log, hblks); 3554 } else { 3555 hblks = 1; 3556 } 3557 } else { 3558 ASSERT(log->l_sectbb_log == 0); 3559 hblks = 1; 3560 hbp = xlog_get_bp(log, 1); 3561 h_size = XLOG_BIG_RECORD_BSIZE; 3562 } 3563 3564 if (!hbp) 3565 return ENOMEM; 3566 dbp = xlog_get_bp(log, BTOBB(h_size)); 3567 if (!dbp) { 3568 xlog_put_bp(hbp); 3569 return ENOMEM; 3570 } 3571 3572 memset(rhash, 0, sizeof(rhash)); 3573 if (tail_blk <= head_blk) { 3574 for (blk_no = tail_blk; blk_no < head_blk; ) { 3575 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 3576 if (error) 3577 goto bread_err2; 3578 3579 rhead = (xlog_rec_header_t *)offset; 3580 error = xlog_valid_rec_header(log, rhead, blk_no); 3581 if (error) 3582 goto bread_err2; 3583 3584 /* blocks in data section */ 3585 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3586 error = xlog_bread(log, blk_no + hblks, bblks, dbp, 3587 &offset); 3588 if (error) 3589 goto bread_err2; 3590 3591 xlog_unpack_data(rhead, offset, log); 3592 if ((error = xlog_recover_process_data(log, 3593 rhash, rhead, offset, pass))) 3594 goto bread_err2; 3595 blk_no += bblks + hblks; 3596 } 3597 } else { 3598 /* 3599 * Perform recovery around the end of the physical log. 3600 * When the head is not on the same cycle number as the tail, 3601 * we can't do a sequential recovery as above. 3602 */ 3603 blk_no = tail_blk; 3604 while (blk_no < log->l_logBBsize) { 3605 /* 3606 * Check for header wrapping around physical end-of-log 3607 */ 3608 offset = XFS_BUF_PTR(hbp); 3609 split_hblks = 0; 3610 wrapped_hblks = 0; 3611 if (blk_no + hblks <= log->l_logBBsize) { 3612 /* Read header in one read */ 3613 error = xlog_bread(log, blk_no, hblks, hbp, 3614 &offset); 3615 if (error) 3616 goto bread_err2; 3617 } else { 3618 /* This LR is split across physical log end */ 3619 if (blk_no != log->l_logBBsize) { 3620 /* some data before physical log end */ 3621 ASSERT(blk_no <= INT_MAX); 3622 split_hblks = log->l_logBBsize - (int)blk_no; 3623 ASSERT(split_hblks > 0); 3624 error = xlog_bread(log, blk_no, 3625 split_hblks, hbp, 3626 &offset); 3627 if (error) 3628 goto bread_err2; 3629 } 3630 3631 /* 3632 * Note: this black magic still works with 3633 * large sector sizes (non-512) only because: 3634 * - we increased the buffer size originally 3635 * by 1 sector giving us enough extra space 3636 * for the second read; 3637 * - the log start is guaranteed to be sector 3638 * aligned; 3639 * - we read the log end (LR header start) 3640 * _first_, then the log start (LR header end) 3641 * - order is important. 3642 */ 3643 wrapped_hblks = hblks - split_hblks; 3644 error = XFS_BUF_SET_PTR(hbp, 3645 offset + BBTOB(split_hblks), 3646 BBTOB(hblks - split_hblks)); 3647 if (error) 3648 goto bread_err2; 3649 3650 error = xlog_bread_noalign(log, 0, 3651 wrapped_hblks, hbp); 3652 if (error) 3653 goto bread_err2; 3654 3655 error = XFS_BUF_SET_PTR(hbp, offset, 3656 BBTOB(hblks)); 3657 if (error) 3658 goto bread_err2; 3659 } 3660 rhead = (xlog_rec_header_t *)offset; 3661 error = xlog_valid_rec_header(log, rhead, 3662 split_hblks ? blk_no : 0); 3663 if (error) 3664 goto bread_err2; 3665 3666 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3667 blk_no += hblks; 3668 3669 /* Read in data for log record */ 3670 if (blk_no + bblks <= log->l_logBBsize) { 3671 error = xlog_bread(log, blk_no, bblks, dbp, 3672 &offset); 3673 if (error) 3674 goto bread_err2; 3675 } else { 3676 /* This log record is split across the 3677 * physical end of log */ 3678 offset = XFS_BUF_PTR(dbp); 3679 split_bblks = 0; 3680 if (blk_no != log->l_logBBsize) { 3681 /* some data is before the physical 3682 * end of log */ 3683 ASSERT(!wrapped_hblks); 3684 ASSERT(blk_no <= INT_MAX); 3685 split_bblks = 3686 log->l_logBBsize - (int)blk_no; 3687 ASSERT(split_bblks > 0); 3688 error = xlog_bread(log, blk_no, 3689 split_bblks, dbp, 3690 &offset); 3691 if (error) 3692 goto bread_err2; 3693 } 3694 3695 /* 3696 * Note: this black magic still works with 3697 * large sector sizes (non-512) only because: 3698 * - we increased the buffer size originally 3699 * by 1 sector giving us enough extra space 3700 * for the second read; 3701 * - the log start is guaranteed to be sector 3702 * aligned; 3703 * - we read the log end (LR header start) 3704 * _first_, then the log start (LR header end) 3705 * - order is important. 3706 */ 3707 error = XFS_BUF_SET_PTR(dbp, 3708 offset + BBTOB(split_bblks), 3709 BBTOB(bblks - split_bblks)); 3710 if (error) 3711 goto bread_err2; 3712 3713 error = xlog_bread_noalign(log, wrapped_hblks, 3714 bblks - split_bblks, 3715 dbp); 3716 if (error) 3717 goto bread_err2; 3718 3719 error = XFS_BUF_SET_PTR(dbp, offset, h_size); 3720 if (error) 3721 goto bread_err2; 3722 } 3723 xlog_unpack_data(rhead, offset, log); 3724 if ((error = xlog_recover_process_data(log, rhash, 3725 rhead, offset, pass))) 3726 goto bread_err2; 3727 blk_no += bblks; 3728 } 3729 3730 ASSERT(blk_no >= log->l_logBBsize); 3731 blk_no -= log->l_logBBsize; 3732 3733 /* read first part of physical log */ 3734 while (blk_no < head_blk) { 3735 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 3736 if (error) 3737 goto bread_err2; 3738 3739 rhead = (xlog_rec_header_t *)offset; 3740 error = xlog_valid_rec_header(log, rhead, blk_no); 3741 if (error) 3742 goto bread_err2; 3743 3744 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3745 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 3746 &offset); 3747 if (error) 3748 goto bread_err2; 3749 3750 xlog_unpack_data(rhead, offset, log); 3751 if ((error = xlog_recover_process_data(log, rhash, 3752 rhead, offset, pass))) 3753 goto bread_err2; 3754 blk_no += bblks + hblks; 3755 } 3756 } 3757 3758 bread_err2: 3759 xlog_put_bp(dbp); 3760 bread_err1: 3761 xlog_put_bp(hbp); 3762 return error; 3763 } 3764 3765 /* 3766 * Do the recovery of the log. We actually do this in two phases. 3767 * The two passes are necessary in order to implement the function 3768 * of cancelling a record written into the log. The first pass 3769 * determines those things which have been cancelled, and the 3770 * second pass replays log items normally except for those which 3771 * have been cancelled. The handling of the replay and cancellations 3772 * takes place in the log item type specific routines. 3773 * 3774 * The table of items which have cancel records in the log is allocated 3775 * and freed at this level, since only here do we know when all of 3776 * the log recovery has been completed. 3777 */ 3778 STATIC int 3779 xlog_do_log_recovery( 3780 xlog_t *log, 3781 xfs_daddr_t head_blk, 3782 xfs_daddr_t tail_blk) 3783 { 3784 int error; 3785 3786 ASSERT(head_blk != tail_blk); 3787 3788 /* 3789 * First do a pass to find all of the cancelled buf log items. 3790 * Store them in the buf_cancel_table for use in the second pass. 3791 */ 3792 log->l_buf_cancel_table = 3793 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE * 3794 sizeof(xfs_buf_cancel_t*), 3795 KM_SLEEP); 3796 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3797 XLOG_RECOVER_PASS1); 3798 if (error != 0) { 3799 kmem_free(log->l_buf_cancel_table); 3800 log->l_buf_cancel_table = NULL; 3801 return error; 3802 } 3803 /* 3804 * Then do a second pass to actually recover the items in the log. 3805 * When it is complete free the table of buf cancel items. 3806 */ 3807 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3808 XLOG_RECOVER_PASS2); 3809 #ifdef DEBUG 3810 if (!error) { 3811 int i; 3812 3813 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3814 ASSERT(log->l_buf_cancel_table[i] == NULL); 3815 } 3816 #endif /* DEBUG */ 3817 3818 kmem_free(log->l_buf_cancel_table); 3819 log->l_buf_cancel_table = NULL; 3820 3821 return error; 3822 } 3823 3824 /* 3825 * Do the actual recovery 3826 */ 3827 STATIC int 3828 xlog_do_recover( 3829 xlog_t *log, 3830 xfs_daddr_t head_blk, 3831 xfs_daddr_t tail_blk) 3832 { 3833 int error; 3834 xfs_buf_t *bp; 3835 xfs_sb_t *sbp; 3836 3837 /* 3838 * First replay the images in the log. 3839 */ 3840 error = xlog_do_log_recovery(log, head_blk, tail_blk); 3841 if (error) { 3842 return error; 3843 } 3844 3845 XFS_bflush(log->l_mp->m_ddev_targp); 3846 3847 /* 3848 * If IO errors happened during recovery, bail out. 3849 */ 3850 if (XFS_FORCED_SHUTDOWN(log->l_mp)) { 3851 return (EIO); 3852 } 3853 3854 /* 3855 * We now update the tail_lsn since much of the recovery has completed 3856 * and there may be space available to use. If there were no extent 3857 * or iunlinks, we can free up the entire log and set the tail_lsn to 3858 * be the last_sync_lsn. This was set in xlog_find_tail to be the 3859 * lsn of the last known good LR on disk. If there are extent frees 3860 * or iunlinks they will have some entries in the AIL; so we look at 3861 * the AIL to determine how to set the tail_lsn. 3862 */ 3863 xlog_assign_tail_lsn(log->l_mp); 3864 3865 /* 3866 * Now that we've finished replaying all buffer and inode 3867 * updates, re-read in the superblock. 3868 */ 3869 bp = xfs_getsb(log->l_mp, 0); 3870 XFS_BUF_UNDONE(bp); 3871 ASSERT(!(XFS_BUF_ISWRITE(bp))); 3872 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp))); 3873 XFS_BUF_READ(bp); 3874 XFS_BUF_UNASYNC(bp); 3875 xfsbdstrat(log->l_mp, bp); 3876 error = xfs_iowait(bp); 3877 if (error) { 3878 xfs_ioerror_alert("xlog_do_recover", 3879 log->l_mp, bp, XFS_BUF_ADDR(bp)); 3880 ASSERT(0); 3881 xfs_buf_relse(bp); 3882 return error; 3883 } 3884 3885 /* Convert superblock from on-disk format */ 3886 sbp = &log->l_mp->m_sb; 3887 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 3888 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); 3889 ASSERT(xfs_sb_good_version(sbp)); 3890 xfs_buf_relse(bp); 3891 3892 /* We've re-read the superblock so re-initialize per-cpu counters */ 3893 xfs_icsb_reinit_counters(log->l_mp); 3894 3895 xlog_recover_check_summary(log); 3896 3897 /* Normal transactions can now occur */ 3898 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 3899 return 0; 3900 } 3901 3902 /* 3903 * Perform recovery and re-initialize some log variables in xlog_find_tail. 3904 * 3905 * Return error or zero. 3906 */ 3907 int 3908 xlog_recover( 3909 xlog_t *log) 3910 { 3911 xfs_daddr_t head_blk, tail_blk; 3912 int error; 3913 3914 /* find the tail of the log */ 3915 if ((error = xlog_find_tail(log, &head_blk, &tail_blk))) 3916 return error; 3917 3918 if (tail_blk != head_blk) { 3919 /* There used to be a comment here: 3920 * 3921 * disallow recovery on read-only mounts. note -- mount 3922 * checks for ENOSPC and turns it into an intelligent 3923 * error message. 3924 * ...but this is no longer true. Now, unless you specify 3925 * NORECOVERY (in which case this function would never be 3926 * called), we just go ahead and recover. We do this all 3927 * under the vfs layer, so we can get away with it unless 3928 * the device itself is read-only, in which case we fail. 3929 */ 3930 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 3931 return error; 3932 } 3933 3934 cmn_err(CE_NOTE, 3935 "Starting XFS recovery on filesystem: %s (logdev: %s)", 3936 log->l_mp->m_fsname, log->l_mp->m_logname ? 3937 log->l_mp->m_logname : "internal"); 3938 3939 error = xlog_do_recover(log, head_blk, tail_blk); 3940 log->l_flags |= XLOG_RECOVERY_NEEDED; 3941 } 3942 return error; 3943 } 3944 3945 /* 3946 * In the first part of recovery we replay inodes and buffers and build 3947 * up the list of extent free items which need to be processed. Here 3948 * we process the extent free items and clean up the on disk unlinked 3949 * inode lists. This is separated from the first part of recovery so 3950 * that the root and real-time bitmap inodes can be read in from disk in 3951 * between the two stages. This is necessary so that we can free space 3952 * in the real-time portion of the file system. 3953 */ 3954 int 3955 xlog_recover_finish( 3956 xlog_t *log) 3957 { 3958 /* 3959 * Now we're ready to do the transactions needed for the 3960 * rest of recovery. Start with completing all the extent 3961 * free intent records and then process the unlinked inode 3962 * lists. At this point, we essentially run in normal mode 3963 * except that we're still performing recovery actions 3964 * rather than accepting new requests. 3965 */ 3966 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 3967 int error; 3968 error = xlog_recover_process_efis(log); 3969 if (error) { 3970 cmn_err(CE_ALERT, 3971 "Failed to recover EFIs on filesystem: %s", 3972 log->l_mp->m_fsname); 3973 return error; 3974 } 3975 /* 3976 * Sync the log to get all the EFIs out of the AIL. 3977 * This isn't absolutely necessary, but it helps in 3978 * case the unlink transactions would have problems 3979 * pushing the EFIs out of the way. 3980 */ 3981 xfs_log_force(log->l_mp, (xfs_lsn_t)0, 3982 (XFS_LOG_FORCE | XFS_LOG_SYNC)); 3983 3984 xlog_recover_process_iunlinks(log); 3985 3986 xlog_recover_check_summary(log); 3987 3988 cmn_err(CE_NOTE, 3989 "Ending XFS recovery on filesystem: %s (logdev: %s)", 3990 log->l_mp->m_fsname, log->l_mp->m_logname ? 3991 log->l_mp->m_logname : "internal"); 3992 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 3993 } else { 3994 cmn_err(CE_DEBUG, 3995 "!Ending clean XFS mount for filesystem: %s\n", 3996 log->l_mp->m_fsname); 3997 } 3998 return 0; 3999 } 4000 4001 4002 #if defined(DEBUG) 4003 /* 4004 * Read all of the agf and agi counters and check that they 4005 * are consistent with the superblock counters. 4006 */ 4007 void 4008 xlog_recover_check_summary( 4009 xlog_t *log) 4010 { 4011 xfs_mount_t *mp; 4012 xfs_agf_t *agfp; 4013 xfs_buf_t *agfbp; 4014 xfs_buf_t *agibp; 4015 xfs_buf_t *sbbp; 4016 #ifdef XFS_LOUD_RECOVERY 4017 xfs_sb_t *sbp; 4018 #endif 4019 xfs_agnumber_t agno; 4020 __uint64_t freeblks; 4021 __uint64_t itotal; 4022 __uint64_t ifree; 4023 int error; 4024 4025 mp = log->l_mp; 4026 4027 freeblks = 0LL; 4028 itotal = 0LL; 4029 ifree = 0LL; 4030 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 4031 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 4032 if (error) { 4033 xfs_fs_cmn_err(CE_ALERT, mp, 4034 "xlog_recover_check_summary(agf)" 4035 "agf read failed agno %d error %d", 4036 agno, error); 4037 } else { 4038 agfp = XFS_BUF_TO_AGF(agfbp); 4039 freeblks += be32_to_cpu(agfp->agf_freeblks) + 4040 be32_to_cpu(agfp->agf_flcount); 4041 xfs_buf_relse(agfbp); 4042 } 4043 4044 error = xfs_read_agi(mp, NULL, agno, &agibp); 4045 if (!error) { 4046 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 4047 4048 itotal += be32_to_cpu(agi->agi_count); 4049 ifree += be32_to_cpu(agi->agi_freecount); 4050 xfs_buf_relse(agibp); 4051 } 4052 } 4053 4054 sbbp = xfs_getsb(mp, 0); 4055 #ifdef XFS_LOUD_RECOVERY 4056 sbp = &mp->m_sb; 4057 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp)); 4058 cmn_err(CE_NOTE, 4059 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu", 4060 sbp->sb_icount, itotal); 4061 cmn_err(CE_NOTE, 4062 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu", 4063 sbp->sb_ifree, ifree); 4064 cmn_err(CE_NOTE, 4065 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu", 4066 sbp->sb_fdblocks, freeblks); 4067 #if 0 4068 /* 4069 * This is turned off until I account for the allocation 4070 * btree blocks which live in free space. 4071 */ 4072 ASSERT(sbp->sb_icount == itotal); 4073 ASSERT(sbp->sb_ifree == ifree); 4074 ASSERT(sbp->sb_fdblocks == freeblks); 4075 #endif 4076 #endif 4077 xfs_buf_relse(sbbp); 4078 } 4079 #endif /* DEBUG */ 4080