1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_inum.h" 26 #include "xfs_sb.h" 27 #include "xfs_ag.h" 28 #include "xfs_mount.h" 29 #include "xfs_da_format.h" 30 #include "xfs_inode.h" 31 #include "xfs_trans.h" 32 #include "xfs_log.h" 33 #include "xfs_log_priv.h" 34 #include "xfs_log_recover.h" 35 #include "xfs_inode_item.h" 36 #include "xfs_extfree_item.h" 37 #include "xfs_trans_priv.h" 38 #include "xfs_alloc.h" 39 #include "xfs_ialloc.h" 40 #include "xfs_quota.h" 41 #include "xfs_cksum.h" 42 #include "xfs_trace.h" 43 #include "xfs_icache.h" 44 #include "xfs_bmap_btree.h" 45 #include "xfs_dinode.h" 46 #include "xfs_error.h" 47 #include "xfs_dir2.h" 48 49 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) 50 51 STATIC int 52 xlog_find_zeroed( 53 struct xlog *, 54 xfs_daddr_t *); 55 STATIC int 56 xlog_clear_stale_blocks( 57 struct xlog *, 58 xfs_lsn_t); 59 #if defined(DEBUG) 60 STATIC void 61 xlog_recover_check_summary( 62 struct xlog *); 63 #else 64 #define xlog_recover_check_summary(log) 65 #endif 66 67 /* 68 * This structure is used during recovery to record the buf log items which 69 * have been canceled and should not be replayed. 70 */ 71 struct xfs_buf_cancel { 72 xfs_daddr_t bc_blkno; 73 uint bc_len; 74 int bc_refcount; 75 struct list_head bc_list; 76 }; 77 78 /* 79 * Sector aligned buffer routines for buffer create/read/write/access 80 */ 81 82 /* 83 * Verify the given count of basic blocks is valid number of blocks 84 * to specify for an operation involving the given XFS log buffer. 85 * Returns nonzero if the count is valid, 0 otherwise. 86 */ 87 88 static inline int 89 xlog_buf_bbcount_valid( 90 struct xlog *log, 91 int bbcount) 92 { 93 return bbcount > 0 && bbcount <= log->l_logBBsize; 94 } 95 96 /* 97 * Allocate a buffer to hold log data. The buffer needs to be able 98 * to map to a range of nbblks basic blocks at any valid (basic 99 * block) offset within the log. 100 */ 101 STATIC xfs_buf_t * 102 xlog_get_bp( 103 struct xlog *log, 104 int nbblks) 105 { 106 struct xfs_buf *bp; 107 108 if (!xlog_buf_bbcount_valid(log, nbblks)) { 109 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 110 nbblks); 111 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 112 return NULL; 113 } 114 115 /* 116 * We do log I/O in units of log sectors (a power-of-2 117 * multiple of the basic block size), so we round up the 118 * requested size to accommodate the basic blocks required 119 * for complete log sectors. 120 * 121 * In addition, the buffer may be used for a non-sector- 122 * aligned block offset, in which case an I/O of the 123 * requested size could extend beyond the end of the 124 * buffer. If the requested size is only 1 basic block it 125 * will never straddle a sector boundary, so this won't be 126 * an issue. Nor will this be a problem if the log I/O is 127 * done in basic blocks (sector size 1). But otherwise we 128 * extend the buffer by one extra log sector to ensure 129 * there's space to accommodate this possibility. 130 */ 131 if (nbblks > 1 && log->l_sectBBsize > 1) 132 nbblks += log->l_sectBBsize; 133 nbblks = round_up(nbblks, log->l_sectBBsize); 134 135 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0); 136 if (bp) 137 xfs_buf_unlock(bp); 138 return bp; 139 } 140 141 STATIC void 142 xlog_put_bp( 143 xfs_buf_t *bp) 144 { 145 xfs_buf_free(bp); 146 } 147 148 /* 149 * Return the address of the start of the given block number's data 150 * in a log buffer. The buffer covers a log sector-aligned region. 151 */ 152 STATIC xfs_caddr_t 153 xlog_align( 154 struct xlog *log, 155 xfs_daddr_t blk_no, 156 int nbblks, 157 struct xfs_buf *bp) 158 { 159 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1); 160 161 ASSERT(offset + nbblks <= bp->b_length); 162 return bp->b_addr + BBTOB(offset); 163 } 164 165 166 /* 167 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 168 */ 169 STATIC int 170 xlog_bread_noalign( 171 struct xlog *log, 172 xfs_daddr_t blk_no, 173 int nbblks, 174 struct xfs_buf *bp) 175 { 176 int error; 177 178 if (!xlog_buf_bbcount_valid(log, nbblks)) { 179 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 180 nbblks); 181 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 182 return EFSCORRUPTED; 183 } 184 185 blk_no = round_down(blk_no, log->l_sectBBsize); 186 nbblks = round_up(nbblks, log->l_sectBBsize); 187 188 ASSERT(nbblks > 0); 189 ASSERT(nbblks <= bp->b_length); 190 191 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 192 XFS_BUF_READ(bp); 193 bp->b_io_length = nbblks; 194 bp->b_error = 0; 195 196 xfsbdstrat(log->l_mp, bp); 197 error = xfs_buf_iowait(bp); 198 if (error) 199 xfs_buf_ioerror_alert(bp, __func__); 200 return error; 201 } 202 203 STATIC int 204 xlog_bread( 205 struct xlog *log, 206 xfs_daddr_t blk_no, 207 int nbblks, 208 struct xfs_buf *bp, 209 xfs_caddr_t *offset) 210 { 211 int error; 212 213 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 214 if (error) 215 return error; 216 217 *offset = xlog_align(log, blk_no, nbblks, bp); 218 return 0; 219 } 220 221 /* 222 * Read at an offset into the buffer. Returns with the buffer in it's original 223 * state regardless of the result of the read. 224 */ 225 STATIC int 226 xlog_bread_offset( 227 struct xlog *log, 228 xfs_daddr_t blk_no, /* block to read from */ 229 int nbblks, /* blocks to read */ 230 struct xfs_buf *bp, 231 xfs_caddr_t offset) 232 { 233 xfs_caddr_t orig_offset = bp->b_addr; 234 int orig_len = BBTOB(bp->b_length); 235 int error, error2; 236 237 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks)); 238 if (error) 239 return error; 240 241 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 242 243 /* must reset buffer pointer even on error */ 244 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len); 245 if (error) 246 return error; 247 return error2; 248 } 249 250 /* 251 * Write out the buffer at the given block for the given number of blocks. 252 * The buffer is kept locked across the write and is returned locked. 253 * This can only be used for synchronous log writes. 254 */ 255 STATIC int 256 xlog_bwrite( 257 struct xlog *log, 258 xfs_daddr_t blk_no, 259 int nbblks, 260 struct xfs_buf *bp) 261 { 262 int error; 263 264 if (!xlog_buf_bbcount_valid(log, nbblks)) { 265 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 266 nbblks); 267 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 268 return EFSCORRUPTED; 269 } 270 271 blk_no = round_down(blk_no, log->l_sectBBsize); 272 nbblks = round_up(nbblks, log->l_sectBBsize); 273 274 ASSERT(nbblks > 0); 275 ASSERT(nbblks <= bp->b_length); 276 277 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 278 XFS_BUF_ZEROFLAGS(bp); 279 xfs_buf_hold(bp); 280 xfs_buf_lock(bp); 281 bp->b_io_length = nbblks; 282 bp->b_error = 0; 283 284 error = xfs_bwrite(bp); 285 if (error) 286 xfs_buf_ioerror_alert(bp, __func__); 287 xfs_buf_relse(bp); 288 return error; 289 } 290 291 #ifdef DEBUG 292 /* 293 * dump debug superblock and log record information 294 */ 295 STATIC void 296 xlog_header_check_dump( 297 xfs_mount_t *mp, 298 xlog_rec_header_t *head) 299 { 300 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d", 301 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 302 xfs_debug(mp, " log : uuid = %pU, fmt = %d", 303 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 304 } 305 #else 306 #define xlog_header_check_dump(mp, head) 307 #endif 308 309 /* 310 * check log record header for recovery 311 */ 312 STATIC int 313 xlog_header_check_recover( 314 xfs_mount_t *mp, 315 xlog_rec_header_t *head) 316 { 317 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 318 319 /* 320 * IRIX doesn't write the h_fmt field and leaves it zeroed 321 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 322 * a dirty log created in IRIX. 323 */ 324 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) { 325 xfs_warn(mp, 326 "dirty log written in incompatible format - can't recover"); 327 xlog_header_check_dump(mp, head); 328 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 329 XFS_ERRLEVEL_HIGH, mp); 330 return XFS_ERROR(EFSCORRUPTED); 331 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 332 xfs_warn(mp, 333 "dirty log entry has mismatched uuid - can't recover"); 334 xlog_header_check_dump(mp, head); 335 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 336 XFS_ERRLEVEL_HIGH, mp); 337 return XFS_ERROR(EFSCORRUPTED); 338 } 339 return 0; 340 } 341 342 /* 343 * read the head block of the log and check the header 344 */ 345 STATIC int 346 xlog_header_check_mount( 347 xfs_mount_t *mp, 348 xlog_rec_header_t *head) 349 { 350 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 351 352 if (uuid_is_nil(&head->h_fs_uuid)) { 353 /* 354 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 355 * h_fs_uuid is nil, we assume this log was last mounted 356 * by IRIX and continue. 357 */ 358 xfs_warn(mp, "nil uuid in log - IRIX style log"); 359 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 360 xfs_warn(mp, "log has mismatched uuid - can't recover"); 361 xlog_header_check_dump(mp, head); 362 XFS_ERROR_REPORT("xlog_header_check_mount", 363 XFS_ERRLEVEL_HIGH, mp); 364 return XFS_ERROR(EFSCORRUPTED); 365 } 366 return 0; 367 } 368 369 STATIC void 370 xlog_recover_iodone( 371 struct xfs_buf *bp) 372 { 373 if (bp->b_error) { 374 /* 375 * We're not going to bother about retrying 376 * this during recovery. One strike! 377 */ 378 xfs_buf_ioerror_alert(bp, __func__); 379 xfs_force_shutdown(bp->b_target->bt_mount, 380 SHUTDOWN_META_IO_ERROR); 381 } 382 bp->b_iodone = NULL; 383 xfs_buf_ioend(bp, 0); 384 } 385 386 /* 387 * This routine finds (to an approximation) the first block in the physical 388 * log which contains the given cycle. It uses a binary search algorithm. 389 * Note that the algorithm can not be perfect because the disk will not 390 * necessarily be perfect. 391 */ 392 STATIC int 393 xlog_find_cycle_start( 394 struct xlog *log, 395 struct xfs_buf *bp, 396 xfs_daddr_t first_blk, 397 xfs_daddr_t *last_blk, 398 uint cycle) 399 { 400 xfs_caddr_t offset; 401 xfs_daddr_t mid_blk; 402 xfs_daddr_t end_blk; 403 uint mid_cycle; 404 int error; 405 406 end_blk = *last_blk; 407 mid_blk = BLK_AVG(first_blk, end_blk); 408 while (mid_blk != first_blk && mid_blk != end_blk) { 409 error = xlog_bread(log, mid_blk, 1, bp, &offset); 410 if (error) 411 return error; 412 mid_cycle = xlog_get_cycle(offset); 413 if (mid_cycle == cycle) 414 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 415 else 416 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 417 mid_blk = BLK_AVG(first_blk, end_blk); 418 } 419 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 420 (mid_blk == end_blk && mid_blk-1 == first_blk)); 421 422 *last_blk = end_blk; 423 424 return 0; 425 } 426 427 /* 428 * Check that a range of blocks does not contain stop_on_cycle_no. 429 * Fill in *new_blk with the block offset where such a block is 430 * found, or with -1 (an invalid block number) if there is no such 431 * block in the range. The scan needs to occur from front to back 432 * and the pointer into the region must be updated since a later 433 * routine will need to perform another test. 434 */ 435 STATIC int 436 xlog_find_verify_cycle( 437 struct xlog *log, 438 xfs_daddr_t start_blk, 439 int nbblks, 440 uint stop_on_cycle_no, 441 xfs_daddr_t *new_blk) 442 { 443 xfs_daddr_t i, j; 444 uint cycle; 445 xfs_buf_t *bp; 446 xfs_daddr_t bufblks; 447 xfs_caddr_t buf = NULL; 448 int error = 0; 449 450 /* 451 * Greedily allocate a buffer big enough to handle the full 452 * range of basic blocks we'll be examining. If that fails, 453 * try a smaller size. We need to be able to read at least 454 * a log sector, or we're out of luck. 455 */ 456 bufblks = 1 << ffs(nbblks); 457 while (bufblks > log->l_logBBsize) 458 bufblks >>= 1; 459 while (!(bp = xlog_get_bp(log, bufblks))) { 460 bufblks >>= 1; 461 if (bufblks < log->l_sectBBsize) 462 return ENOMEM; 463 } 464 465 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 466 int bcount; 467 468 bcount = min(bufblks, (start_blk + nbblks - i)); 469 470 error = xlog_bread(log, i, bcount, bp, &buf); 471 if (error) 472 goto out; 473 474 for (j = 0; j < bcount; j++) { 475 cycle = xlog_get_cycle(buf); 476 if (cycle == stop_on_cycle_no) { 477 *new_blk = i+j; 478 goto out; 479 } 480 481 buf += BBSIZE; 482 } 483 } 484 485 *new_blk = -1; 486 487 out: 488 xlog_put_bp(bp); 489 return error; 490 } 491 492 /* 493 * Potentially backup over partial log record write. 494 * 495 * In the typical case, last_blk is the number of the block directly after 496 * a good log record. Therefore, we subtract one to get the block number 497 * of the last block in the given buffer. extra_bblks contains the number 498 * of blocks we would have read on a previous read. This happens when the 499 * last log record is split over the end of the physical log. 500 * 501 * extra_bblks is the number of blocks potentially verified on a previous 502 * call to this routine. 503 */ 504 STATIC int 505 xlog_find_verify_log_record( 506 struct xlog *log, 507 xfs_daddr_t start_blk, 508 xfs_daddr_t *last_blk, 509 int extra_bblks) 510 { 511 xfs_daddr_t i; 512 xfs_buf_t *bp; 513 xfs_caddr_t offset = NULL; 514 xlog_rec_header_t *head = NULL; 515 int error = 0; 516 int smallmem = 0; 517 int num_blks = *last_blk - start_blk; 518 int xhdrs; 519 520 ASSERT(start_blk != 0 || *last_blk != start_blk); 521 522 if (!(bp = xlog_get_bp(log, num_blks))) { 523 if (!(bp = xlog_get_bp(log, 1))) 524 return ENOMEM; 525 smallmem = 1; 526 } else { 527 error = xlog_bread(log, start_blk, num_blks, bp, &offset); 528 if (error) 529 goto out; 530 offset += ((num_blks - 1) << BBSHIFT); 531 } 532 533 for (i = (*last_blk) - 1; i >= 0; i--) { 534 if (i < start_blk) { 535 /* valid log record not found */ 536 xfs_warn(log->l_mp, 537 "Log inconsistent (didn't find previous header)"); 538 ASSERT(0); 539 error = XFS_ERROR(EIO); 540 goto out; 541 } 542 543 if (smallmem) { 544 error = xlog_bread(log, i, 1, bp, &offset); 545 if (error) 546 goto out; 547 } 548 549 head = (xlog_rec_header_t *)offset; 550 551 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 552 break; 553 554 if (!smallmem) 555 offset -= BBSIZE; 556 } 557 558 /* 559 * We hit the beginning of the physical log & still no header. Return 560 * to caller. If caller can handle a return of -1, then this routine 561 * will be called again for the end of the physical log. 562 */ 563 if (i == -1) { 564 error = -1; 565 goto out; 566 } 567 568 /* 569 * We have the final block of the good log (the first block 570 * of the log record _before_ the head. So we check the uuid. 571 */ 572 if ((error = xlog_header_check_mount(log->l_mp, head))) 573 goto out; 574 575 /* 576 * We may have found a log record header before we expected one. 577 * last_blk will be the 1st block # with a given cycle #. We may end 578 * up reading an entire log record. In this case, we don't want to 579 * reset last_blk. Only when last_blk points in the middle of a log 580 * record do we update last_blk. 581 */ 582 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 583 uint h_size = be32_to_cpu(head->h_size); 584 585 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 586 if (h_size % XLOG_HEADER_CYCLE_SIZE) 587 xhdrs++; 588 } else { 589 xhdrs = 1; 590 } 591 592 if (*last_blk - i + extra_bblks != 593 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 594 *last_blk = i; 595 596 out: 597 xlog_put_bp(bp); 598 return error; 599 } 600 601 /* 602 * Head is defined to be the point of the log where the next log write 603 * could go. This means that incomplete LR writes at the end are 604 * eliminated when calculating the head. We aren't guaranteed that previous 605 * LR have complete transactions. We only know that a cycle number of 606 * current cycle number -1 won't be present in the log if we start writing 607 * from our current block number. 608 * 609 * last_blk contains the block number of the first block with a given 610 * cycle number. 611 * 612 * Return: zero if normal, non-zero if error. 613 */ 614 STATIC int 615 xlog_find_head( 616 struct xlog *log, 617 xfs_daddr_t *return_head_blk) 618 { 619 xfs_buf_t *bp; 620 xfs_caddr_t offset; 621 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 622 int num_scan_bblks; 623 uint first_half_cycle, last_half_cycle; 624 uint stop_on_cycle; 625 int error, log_bbnum = log->l_logBBsize; 626 627 /* Is the end of the log device zeroed? */ 628 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) { 629 *return_head_blk = first_blk; 630 631 /* Is the whole lot zeroed? */ 632 if (!first_blk) { 633 /* Linux XFS shouldn't generate totally zeroed logs - 634 * mkfs etc write a dummy unmount record to a fresh 635 * log so we can store the uuid in there 636 */ 637 xfs_warn(log->l_mp, "totally zeroed log"); 638 } 639 640 return 0; 641 } else if (error) { 642 xfs_warn(log->l_mp, "empty log check failed"); 643 return error; 644 } 645 646 first_blk = 0; /* get cycle # of 1st block */ 647 bp = xlog_get_bp(log, 1); 648 if (!bp) 649 return ENOMEM; 650 651 error = xlog_bread(log, 0, 1, bp, &offset); 652 if (error) 653 goto bp_err; 654 655 first_half_cycle = xlog_get_cycle(offset); 656 657 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 658 error = xlog_bread(log, last_blk, 1, bp, &offset); 659 if (error) 660 goto bp_err; 661 662 last_half_cycle = xlog_get_cycle(offset); 663 ASSERT(last_half_cycle != 0); 664 665 /* 666 * If the 1st half cycle number is equal to the last half cycle number, 667 * then the entire log is stamped with the same cycle number. In this 668 * case, head_blk can't be set to zero (which makes sense). The below 669 * math doesn't work out properly with head_blk equal to zero. Instead, 670 * we set it to log_bbnum which is an invalid block number, but this 671 * value makes the math correct. If head_blk doesn't changed through 672 * all the tests below, *head_blk is set to zero at the very end rather 673 * than log_bbnum. In a sense, log_bbnum and zero are the same block 674 * in a circular file. 675 */ 676 if (first_half_cycle == last_half_cycle) { 677 /* 678 * In this case we believe that the entire log should have 679 * cycle number last_half_cycle. We need to scan backwards 680 * from the end verifying that there are no holes still 681 * containing last_half_cycle - 1. If we find such a hole, 682 * then the start of that hole will be the new head. The 683 * simple case looks like 684 * x | x ... | x - 1 | x 685 * Another case that fits this picture would be 686 * x | x + 1 | x ... | x 687 * In this case the head really is somewhere at the end of the 688 * log, as one of the latest writes at the beginning was 689 * incomplete. 690 * One more case is 691 * x | x + 1 | x ... | x - 1 | x 692 * This is really the combination of the above two cases, and 693 * the head has to end up at the start of the x-1 hole at the 694 * end of the log. 695 * 696 * In the 256k log case, we will read from the beginning to the 697 * end of the log and search for cycle numbers equal to x-1. 698 * We don't worry about the x+1 blocks that we encounter, 699 * because we know that they cannot be the head since the log 700 * started with x. 701 */ 702 head_blk = log_bbnum; 703 stop_on_cycle = last_half_cycle - 1; 704 } else { 705 /* 706 * In this case we want to find the first block with cycle 707 * number matching last_half_cycle. We expect the log to be 708 * some variation on 709 * x + 1 ... | x ... | x 710 * The first block with cycle number x (last_half_cycle) will 711 * be where the new head belongs. First we do a binary search 712 * for the first occurrence of last_half_cycle. The binary 713 * search may not be totally accurate, so then we scan back 714 * from there looking for occurrences of last_half_cycle before 715 * us. If that backwards scan wraps around the beginning of 716 * the log, then we look for occurrences of last_half_cycle - 1 717 * at the end of the log. The cases we're looking for look 718 * like 719 * v binary search stopped here 720 * x + 1 ... | x | x + 1 | x ... | x 721 * ^ but we want to locate this spot 722 * or 723 * <---------> less than scan distance 724 * x + 1 ... | x ... | x - 1 | x 725 * ^ we want to locate this spot 726 */ 727 stop_on_cycle = last_half_cycle; 728 if ((error = xlog_find_cycle_start(log, bp, first_blk, 729 &head_blk, last_half_cycle))) 730 goto bp_err; 731 } 732 733 /* 734 * Now validate the answer. Scan back some number of maximum possible 735 * blocks and make sure each one has the expected cycle number. The 736 * maximum is determined by the total possible amount of buffering 737 * in the in-core log. The following number can be made tighter if 738 * we actually look at the block size of the filesystem. 739 */ 740 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 741 if (head_blk >= num_scan_bblks) { 742 /* 743 * We are guaranteed that the entire check can be performed 744 * in one buffer. 745 */ 746 start_blk = head_blk - num_scan_bblks; 747 if ((error = xlog_find_verify_cycle(log, 748 start_blk, num_scan_bblks, 749 stop_on_cycle, &new_blk))) 750 goto bp_err; 751 if (new_blk != -1) 752 head_blk = new_blk; 753 } else { /* need to read 2 parts of log */ 754 /* 755 * We are going to scan backwards in the log in two parts. 756 * First we scan the physical end of the log. In this part 757 * of the log, we are looking for blocks with cycle number 758 * last_half_cycle - 1. 759 * If we find one, then we know that the log starts there, as 760 * we've found a hole that didn't get written in going around 761 * the end of the physical log. The simple case for this is 762 * x + 1 ... | x ... | x - 1 | x 763 * <---------> less than scan distance 764 * If all of the blocks at the end of the log have cycle number 765 * last_half_cycle, then we check the blocks at the start of 766 * the log looking for occurrences of last_half_cycle. If we 767 * find one, then our current estimate for the location of the 768 * first occurrence of last_half_cycle is wrong and we move 769 * back to the hole we've found. This case looks like 770 * x + 1 ... | x | x + 1 | x ... 771 * ^ binary search stopped here 772 * Another case we need to handle that only occurs in 256k 773 * logs is 774 * x + 1 ... | x ... | x+1 | x ... 775 * ^ binary search stops here 776 * In a 256k log, the scan at the end of the log will see the 777 * x + 1 blocks. We need to skip past those since that is 778 * certainly not the head of the log. By searching for 779 * last_half_cycle-1 we accomplish that. 780 */ 781 ASSERT(head_blk <= INT_MAX && 782 (xfs_daddr_t) num_scan_bblks >= head_blk); 783 start_blk = log_bbnum - (num_scan_bblks - head_blk); 784 if ((error = xlog_find_verify_cycle(log, start_blk, 785 num_scan_bblks - (int)head_blk, 786 (stop_on_cycle - 1), &new_blk))) 787 goto bp_err; 788 if (new_blk != -1) { 789 head_blk = new_blk; 790 goto validate_head; 791 } 792 793 /* 794 * Scan beginning of log now. The last part of the physical 795 * log is good. This scan needs to verify that it doesn't find 796 * the last_half_cycle. 797 */ 798 start_blk = 0; 799 ASSERT(head_blk <= INT_MAX); 800 if ((error = xlog_find_verify_cycle(log, 801 start_blk, (int)head_blk, 802 stop_on_cycle, &new_blk))) 803 goto bp_err; 804 if (new_blk != -1) 805 head_blk = new_blk; 806 } 807 808 validate_head: 809 /* 810 * Now we need to make sure head_blk is not pointing to a block in 811 * the middle of a log record. 812 */ 813 num_scan_bblks = XLOG_REC_SHIFT(log); 814 if (head_blk >= num_scan_bblks) { 815 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 816 817 /* start ptr at last block ptr before head_blk */ 818 if ((error = xlog_find_verify_log_record(log, start_blk, 819 &head_blk, 0)) == -1) { 820 error = XFS_ERROR(EIO); 821 goto bp_err; 822 } else if (error) 823 goto bp_err; 824 } else { 825 start_blk = 0; 826 ASSERT(head_blk <= INT_MAX); 827 if ((error = xlog_find_verify_log_record(log, start_blk, 828 &head_blk, 0)) == -1) { 829 /* We hit the beginning of the log during our search */ 830 start_blk = log_bbnum - (num_scan_bblks - head_blk); 831 new_blk = log_bbnum; 832 ASSERT(start_blk <= INT_MAX && 833 (xfs_daddr_t) log_bbnum-start_blk >= 0); 834 ASSERT(head_blk <= INT_MAX); 835 if ((error = xlog_find_verify_log_record(log, 836 start_blk, &new_blk, 837 (int)head_blk)) == -1) { 838 error = XFS_ERROR(EIO); 839 goto bp_err; 840 } else if (error) 841 goto bp_err; 842 if (new_blk != log_bbnum) 843 head_blk = new_blk; 844 } else if (error) 845 goto bp_err; 846 } 847 848 xlog_put_bp(bp); 849 if (head_blk == log_bbnum) 850 *return_head_blk = 0; 851 else 852 *return_head_blk = head_blk; 853 /* 854 * When returning here, we have a good block number. Bad block 855 * means that during a previous crash, we didn't have a clean break 856 * from cycle number N to cycle number N-1. In this case, we need 857 * to find the first block with cycle number N-1. 858 */ 859 return 0; 860 861 bp_err: 862 xlog_put_bp(bp); 863 864 if (error) 865 xfs_warn(log->l_mp, "failed to find log head"); 866 return error; 867 } 868 869 /* 870 * Find the sync block number or the tail of the log. 871 * 872 * This will be the block number of the last record to have its 873 * associated buffers synced to disk. Every log record header has 874 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 875 * to get a sync block number. The only concern is to figure out which 876 * log record header to believe. 877 * 878 * The following algorithm uses the log record header with the largest 879 * lsn. The entire log record does not need to be valid. We only care 880 * that the header is valid. 881 * 882 * We could speed up search by using current head_blk buffer, but it is not 883 * available. 884 */ 885 STATIC int 886 xlog_find_tail( 887 struct xlog *log, 888 xfs_daddr_t *head_blk, 889 xfs_daddr_t *tail_blk) 890 { 891 xlog_rec_header_t *rhead; 892 xlog_op_header_t *op_head; 893 xfs_caddr_t offset = NULL; 894 xfs_buf_t *bp; 895 int error, i, found; 896 xfs_daddr_t umount_data_blk; 897 xfs_daddr_t after_umount_blk; 898 xfs_lsn_t tail_lsn; 899 int hblks; 900 901 found = 0; 902 903 /* 904 * Find previous log record 905 */ 906 if ((error = xlog_find_head(log, head_blk))) 907 return error; 908 909 bp = xlog_get_bp(log, 1); 910 if (!bp) 911 return ENOMEM; 912 if (*head_blk == 0) { /* special case */ 913 error = xlog_bread(log, 0, 1, bp, &offset); 914 if (error) 915 goto done; 916 917 if (xlog_get_cycle(offset) == 0) { 918 *tail_blk = 0; 919 /* leave all other log inited values alone */ 920 goto done; 921 } 922 } 923 924 /* 925 * Search backwards looking for log record header block 926 */ 927 ASSERT(*head_blk < INT_MAX); 928 for (i = (int)(*head_blk) - 1; i >= 0; i--) { 929 error = xlog_bread(log, i, 1, bp, &offset); 930 if (error) 931 goto done; 932 933 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 934 found = 1; 935 break; 936 } 937 } 938 /* 939 * If we haven't found the log record header block, start looking 940 * again from the end of the physical log. XXXmiken: There should be 941 * a check here to make sure we didn't search more than N blocks in 942 * the previous code. 943 */ 944 if (!found) { 945 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) { 946 error = xlog_bread(log, i, 1, bp, &offset); 947 if (error) 948 goto done; 949 950 if (*(__be32 *)offset == 951 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 952 found = 2; 953 break; 954 } 955 } 956 } 957 if (!found) { 958 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); 959 xlog_put_bp(bp); 960 ASSERT(0); 961 return XFS_ERROR(EIO); 962 } 963 964 /* find blk_no of tail of log */ 965 rhead = (xlog_rec_header_t *)offset; 966 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 967 968 /* 969 * Reset log values according to the state of the log when we 970 * crashed. In the case where head_blk == 0, we bump curr_cycle 971 * one because the next write starts a new cycle rather than 972 * continuing the cycle of the last good log record. At this 973 * point we have guaranteed that all partial log records have been 974 * accounted for. Therefore, we know that the last good log record 975 * written was complete and ended exactly on the end boundary 976 * of the physical log. 977 */ 978 log->l_prev_block = i; 979 log->l_curr_block = (int)*head_blk; 980 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 981 if (found == 2) 982 log->l_curr_cycle++; 983 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); 984 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); 985 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, 986 BBTOB(log->l_curr_block)); 987 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, 988 BBTOB(log->l_curr_block)); 989 990 /* 991 * Look for unmount record. If we find it, then we know there 992 * was a clean unmount. Since 'i' could be the last block in 993 * the physical log, we convert to a log block before comparing 994 * to the head_blk. 995 * 996 * Save the current tail lsn to use to pass to 997 * xlog_clear_stale_blocks() below. We won't want to clear the 998 * unmount record if there is one, so we pass the lsn of the 999 * unmount record rather than the block after it. 1000 */ 1001 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1002 int h_size = be32_to_cpu(rhead->h_size); 1003 int h_version = be32_to_cpu(rhead->h_version); 1004 1005 if ((h_version & XLOG_VERSION_2) && 1006 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 1007 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 1008 if (h_size % XLOG_HEADER_CYCLE_SIZE) 1009 hblks++; 1010 } else { 1011 hblks = 1; 1012 } 1013 } else { 1014 hblks = 1; 1015 } 1016 after_umount_blk = (i + hblks + (int) 1017 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize; 1018 tail_lsn = atomic64_read(&log->l_tail_lsn); 1019 if (*head_blk == after_umount_blk && 1020 be32_to_cpu(rhead->h_num_logops) == 1) { 1021 umount_data_blk = (i + hblks) % log->l_logBBsize; 1022 error = xlog_bread(log, umount_data_blk, 1, bp, &offset); 1023 if (error) 1024 goto done; 1025 1026 op_head = (xlog_op_header_t *)offset; 1027 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 1028 /* 1029 * Set tail and last sync so that newly written 1030 * log records will point recovery to after the 1031 * current unmount record. 1032 */ 1033 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1034 log->l_curr_cycle, after_umount_blk); 1035 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1036 log->l_curr_cycle, after_umount_blk); 1037 *tail_blk = after_umount_blk; 1038 1039 /* 1040 * Note that the unmount was clean. If the unmount 1041 * was not clean, we need to know this to rebuild the 1042 * superblock counters from the perag headers if we 1043 * have a filesystem using non-persistent counters. 1044 */ 1045 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 1046 } 1047 } 1048 1049 /* 1050 * Make sure that there are no blocks in front of the head 1051 * with the same cycle number as the head. This can happen 1052 * because we allow multiple outstanding log writes concurrently, 1053 * and the later writes might make it out before earlier ones. 1054 * 1055 * We use the lsn from before modifying it so that we'll never 1056 * overwrite the unmount record after a clean unmount. 1057 * 1058 * Do this only if we are going to recover the filesystem 1059 * 1060 * NOTE: This used to say "if (!readonly)" 1061 * However on Linux, we can & do recover a read-only filesystem. 1062 * We only skip recovery if NORECOVERY is specified on mount, 1063 * in which case we would not be here. 1064 * 1065 * But... if the -device- itself is readonly, just skip this. 1066 * We can't recover this device anyway, so it won't matter. 1067 */ 1068 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) 1069 error = xlog_clear_stale_blocks(log, tail_lsn); 1070 1071 done: 1072 xlog_put_bp(bp); 1073 1074 if (error) 1075 xfs_warn(log->l_mp, "failed to locate log tail"); 1076 return error; 1077 } 1078 1079 /* 1080 * Is the log zeroed at all? 1081 * 1082 * The last binary search should be changed to perform an X block read 1083 * once X becomes small enough. You can then search linearly through 1084 * the X blocks. This will cut down on the number of reads we need to do. 1085 * 1086 * If the log is partially zeroed, this routine will pass back the blkno 1087 * of the first block with cycle number 0. It won't have a complete LR 1088 * preceding it. 1089 * 1090 * Return: 1091 * 0 => the log is completely written to 1092 * -1 => use *blk_no as the first block of the log 1093 * >0 => error has occurred 1094 */ 1095 STATIC int 1096 xlog_find_zeroed( 1097 struct xlog *log, 1098 xfs_daddr_t *blk_no) 1099 { 1100 xfs_buf_t *bp; 1101 xfs_caddr_t offset; 1102 uint first_cycle, last_cycle; 1103 xfs_daddr_t new_blk, last_blk, start_blk; 1104 xfs_daddr_t num_scan_bblks; 1105 int error, log_bbnum = log->l_logBBsize; 1106 1107 *blk_no = 0; 1108 1109 /* check totally zeroed log */ 1110 bp = xlog_get_bp(log, 1); 1111 if (!bp) 1112 return ENOMEM; 1113 error = xlog_bread(log, 0, 1, bp, &offset); 1114 if (error) 1115 goto bp_err; 1116 1117 first_cycle = xlog_get_cycle(offset); 1118 if (first_cycle == 0) { /* completely zeroed log */ 1119 *blk_no = 0; 1120 xlog_put_bp(bp); 1121 return -1; 1122 } 1123 1124 /* check partially zeroed log */ 1125 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset); 1126 if (error) 1127 goto bp_err; 1128 1129 last_cycle = xlog_get_cycle(offset); 1130 if (last_cycle != 0) { /* log completely written to */ 1131 xlog_put_bp(bp); 1132 return 0; 1133 } else if (first_cycle != 1) { 1134 /* 1135 * If the cycle of the last block is zero, the cycle of 1136 * the first block must be 1. If it's not, maybe we're 1137 * not looking at a log... Bail out. 1138 */ 1139 xfs_warn(log->l_mp, 1140 "Log inconsistent or not a log (last==0, first!=1)"); 1141 error = XFS_ERROR(EINVAL); 1142 goto bp_err; 1143 } 1144 1145 /* we have a partially zeroed log */ 1146 last_blk = log_bbnum-1; 1147 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1148 goto bp_err; 1149 1150 /* 1151 * Validate the answer. Because there is no way to guarantee that 1152 * the entire log is made up of log records which are the same size, 1153 * we scan over the defined maximum blocks. At this point, the maximum 1154 * is not chosen to mean anything special. XXXmiken 1155 */ 1156 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1157 ASSERT(num_scan_bblks <= INT_MAX); 1158 1159 if (last_blk < num_scan_bblks) 1160 num_scan_bblks = last_blk; 1161 start_blk = last_blk - num_scan_bblks; 1162 1163 /* 1164 * We search for any instances of cycle number 0 that occur before 1165 * our current estimate of the head. What we're trying to detect is 1166 * 1 ... | 0 | 1 | 0... 1167 * ^ binary search ends here 1168 */ 1169 if ((error = xlog_find_verify_cycle(log, start_blk, 1170 (int)num_scan_bblks, 0, &new_blk))) 1171 goto bp_err; 1172 if (new_blk != -1) 1173 last_blk = new_blk; 1174 1175 /* 1176 * Potentially backup over partial log record write. We don't need 1177 * to search the end of the log because we know it is zero. 1178 */ 1179 if ((error = xlog_find_verify_log_record(log, start_blk, 1180 &last_blk, 0)) == -1) { 1181 error = XFS_ERROR(EIO); 1182 goto bp_err; 1183 } else if (error) 1184 goto bp_err; 1185 1186 *blk_no = last_blk; 1187 bp_err: 1188 xlog_put_bp(bp); 1189 if (error) 1190 return error; 1191 return -1; 1192 } 1193 1194 /* 1195 * These are simple subroutines used by xlog_clear_stale_blocks() below 1196 * to initialize a buffer full of empty log record headers and write 1197 * them into the log. 1198 */ 1199 STATIC void 1200 xlog_add_record( 1201 struct xlog *log, 1202 xfs_caddr_t buf, 1203 int cycle, 1204 int block, 1205 int tail_cycle, 1206 int tail_block) 1207 { 1208 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1209 1210 memset(buf, 0, BBSIZE); 1211 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1212 recp->h_cycle = cpu_to_be32(cycle); 1213 recp->h_version = cpu_to_be32( 1214 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1215 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1216 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1217 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1218 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1219 } 1220 1221 STATIC int 1222 xlog_write_log_records( 1223 struct xlog *log, 1224 int cycle, 1225 int start_block, 1226 int blocks, 1227 int tail_cycle, 1228 int tail_block) 1229 { 1230 xfs_caddr_t offset; 1231 xfs_buf_t *bp; 1232 int balign, ealign; 1233 int sectbb = log->l_sectBBsize; 1234 int end_block = start_block + blocks; 1235 int bufblks; 1236 int error = 0; 1237 int i, j = 0; 1238 1239 /* 1240 * Greedily allocate a buffer big enough to handle the full 1241 * range of basic blocks to be written. If that fails, try 1242 * a smaller size. We need to be able to write at least a 1243 * log sector, or we're out of luck. 1244 */ 1245 bufblks = 1 << ffs(blocks); 1246 while (bufblks > log->l_logBBsize) 1247 bufblks >>= 1; 1248 while (!(bp = xlog_get_bp(log, bufblks))) { 1249 bufblks >>= 1; 1250 if (bufblks < sectbb) 1251 return ENOMEM; 1252 } 1253 1254 /* We may need to do a read at the start to fill in part of 1255 * the buffer in the starting sector not covered by the first 1256 * write below. 1257 */ 1258 balign = round_down(start_block, sectbb); 1259 if (balign != start_block) { 1260 error = xlog_bread_noalign(log, start_block, 1, bp); 1261 if (error) 1262 goto out_put_bp; 1263 1264 j = start_block - balign; 1265 } 1266 1267 for (i = start_block; i < end_block; i += bufblks) { 1268 int bcount, endcount; 1269 1270 bcount = min(bufblks, end_block - start_block); 1271 endcount = bcount - j; 1272 1273 /* We may need to do a read at the end to fill in part of 1274 * the buffer in the final sector not covered by the write. 1275 * If this is the same sector as the above read, skip it. 1276 */ 1277 ealign = round_down(end_block, sectbb); 1278 if (j == 0 && (start_block + endcount > ealign)) { 1279 offset = bp->b_addr + BBTOB(ealign - start_block); 1280 error = xlog_bread_offset(log, ealign, sectbb, 1281 bp, offset); 1282 if (error) 1283 break; 1284 1285 } 1286 1287 offset = xlog_align(log, start_block, endcount, bp); 1288 for (; j < endcount; j++) { 1289 xlog_add_record(log, offset, cycle, i+j, 1290 tail_cycle, tail_block); 1291 offset += BBSIZE; 1292 } 1293 error = xlog_bwrite(log, start_block, endcount, bp); 1294 if (error) 1295 break; 1296 start_block += endcount; 1297 j = 0; 1298 } 1299 1300 out_put_bp: 1301 xlog_put_bp(bp); 1302 return error; 1303 } 1304 1305 /* 1306 * This routine is called to blow away any incomplete log writes out 1307 * in front of the log head. We do this so that we won't become confused 1308 * if we come up, write only a little bit more, and then crash again. 1309 * If we leave the partial log records out there, this situation could 1310 * cause us to think those partial writes are valid blocks since they 1311 * have the current cycle number. We get rid of them by overwriting them 1312 * with empty log records with the old cycle number rather than the 1313 * current one. 1314 * 1315 * The tail lsn is passed in rather than taken from 1316 * the log so that we will not write over the unmount record after a 1317 * clean unmount in a 512 block log. Doing so would leave the log without 1318 * any valid log records in it until a new one was written. If we crashed 1319 * during that time we would not be able to recover. 1320 */ 1321 STATIC int 1322 xlog_clear_stale_blocks( 1323 struct xlog *log, 1324 xfs_lsn_t tail_lsn) 1325 { 1326 int tail_cycle, head_cycle; 1327 int tail_block, head_block; 1328 int tail_distance, max_distance; 1329 int distance; 1330 int error; 1331 1332 tail_cycle = CYCLE_LSN(tail_lsn); 1333 tail_block = BLOCK_LSN(tail_lsn); 1334 head_cycle = log->l_curr_cycle; 1335 head_block = log->l_curr_block; 1336 1337 /* 1338 * Figure out the distance between the new head of the log 1339 * and the tail. We want to write over any blocks beyond the 1340 * head that we may have written just before the crash, but 1341 * we don't want to overwrite the tail of the log. 1342 */ 1343 if (head_cycle == tail_cycle) { 1344 /* 1345 * The tail is behind the head in the physical log, 1346 * so the distance from the head to the tail is the 1347 * distance from the head to the end of the log plus 1348 * the distance from the beginning of the log to the 1349 * tail. 1350 */ 1351 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1352 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1353 XFS_ERRLEVEL_LOW, log->l_mp); 1354 return XFS_ERROR(EFSCORRUPTED); 1355 } 1356 tail_distance = tail_block + (log->l_logBBsize - head_block); 1357 } else { 1358 /* 1359 * The head is behind the tail in the physical log, 1360 * so the distance from the head to the tail is just 1361 * the tail block minus the head block. 1362 */ 1363 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1364 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1365 XFS_ERRLEVEL_LOW, log->l_mp); 1366 return XFS_ERROR(EFSCORRUPTED); 1367 } 1368 tail_distance = tail_block - head_block; 1369 } 1370 1371 /* 1372 * If the head is right up against the tail, we can't clear 1373 * anything. 1374 */ 1375 if (tail_distance <= 0) { 1376 ASSERT(tail_distance == 0); 1377 return 0; 1378 } 1379 1380 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1381 /* 1382 * Take the smaller of the maximum amount of outstanding I/O 1383 * we could have and the distance to the tail to clear out. 1384 * We take the smaller so that we don't overwrite the tail and 1385 * we don't waste all day writing from the head to the tail 1386 * for no reason. 1387 */ 1388 max_distance = MIN(max_distance, tail_distance); 1389 1390 if ((head_block + max_distance) <= log->l_logBBsize) { 1391 /* 1392 * We can stomp all the blocks we need to without 1393 * wrapping around the end of the log. Just do it 1394 * in a single write. Use the cycle number of the 1395 * current cycle minus one so that the log will look like: 1396 * n ... | n - 1 ... 1397 */ 1398 error = xlog_write_log_records(log, (head_cycle - 1), 1399 head_block, max_distance, tail_cycle, 1400 tail_block); 1401 if (error) 1402 return error; 1403 } else { 1404 /* 1405 * We need to wrap around the end of the physical log in 1406 * order to clear all the blocks. Do it in two separate 1407 * I/Os. The first write should be from the head to the 1408 * end of the physical log, and it should use the current 1409 * cycle number minus one just like above. 1410 */ 1411 distance = log->l_logBBsize - head_block; 1412 error = xlog_write_log_records(log, (head_cycle - 1), 1413 head_block, distance, tail_cycle, 1414 tail_block); 1415 1416 if (error) 1417 return error; 1418 1419 /* 1420 * Now write the blocks at the start of the physical log. 1421 * This writes the remainder of the blocks we want to clear. 1422 * It uses the current cycle number since we're now on the 1423 * same cycle as the head so that we get: 1424 * n ... n ... | n - 1 ... 1425 * ^^^^^ blocks we're writing 1426 */ 1427 distance = max_distance - (log->l_logBBsize - head_block); 1428 error = xlog_write_log_records(log, head_cycle, 0, distance, 1429 tail_cycle, tail_block); 1430 if (error) 1431 return error; 1432 } 1433 1434 return 0; 1435 } 1436 1437 /****************************************************************************** 1438 * 1439 * Log recover routines 1440 * 1441 ****************************************************************************** 1442 */ 1443 1444 STATIC xlog_recover_t * 1445 xlog_recover_find_tid( 1446 struct hlist_head *head, 1447 xlog_tid_t tid) 1448 { 1449 xlog_recover_t *trans; 1450 1451 hlist_for_each_entry(trans, head, r_list) { 1452 if (trans->r_log_tid == tid) 1453 return trans; 1454 } 1455 return NULL; 1456 } 1457 1458 STATIC void 1459 xlog_recover_new_tid( 1460 struct hlist_head *head, 1461 xlog_tid_t tid, 1462 xfs_lsn_t lsn) 1463 { 1464 xlog_recover_t *trans; 1465 1466 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP); 1467 trans->r_log_tid = tid; 1468 trans->r_lsn = lsn; 1469 INIT_LIST_HEAD(&trans->r_itemq); 1470 1471 INIT_HLIST_NODE(&trans->r_list); 1472 hlist_add_head(&trans->r_list, head); 1473 } 1474 1475 STATIC void 1476 xlog_recover_add_item( 1477 struct list_head *head) 1478 { 1479 xlog_recover_item_t *item; 1480 1481 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 1482 INIT_LIST_HEAD(&item->ri_list); 1483 list_add_tail(&item->ri_list, head); 1484 } 1485 1486 STATIC int 1487 xlog_recover_add_to_cont_trans( 1488 struct xlog *log, 1489 struct xlog_recover *trans, 1490 xfs_caddr_t dp, 1491 int len) 1492 { 1493 xlog_recover_item_t *item; 1494 xfs_caddr_t ptr, old_ptr; 1495 int old_len; 1496 1497 if (list_empty(&trans->r_itemq)) { 1498 /* finish copying rest of trans header */ 1499 xlog_recover_add_item(&trans->r_itemq); 1500 ptr = (xfs_caddr_t) &trans->r_theader + 1501 sizeof(xfs_trans_header_t) - len; 1502 memcpy(ptr, dp, len); /* d, s, l */ 1503 return 0; 1504 } 1505 /* take the tail entry */ 1506 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 1507 1508 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 1509 old_len = item->ri_buf[item->ri_cnt-1].i_len; 1510 1511 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP); 1512 memcpy(&ptr[old_len], dp, len); /* d, s, l */ 1513 item->ri_buf[item->ri_cnt-1].i_len += len; 1514 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 1515 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 1516 return 0; 1517 } 1518 1519 /* 1520 * The next region to add is the start of a new region. It could be 1521 * a whole region or it could be the first part of a new region. Because 1522 * of this, the assumption here is that the type and size fields of all 1523 * format structures fit into the first 32 bits of the structure. 1524 * 1525 * This works because all regions must be 32 bit aligned. Therefore, we 1526 * either have both fields or we have neither field. In the case we have 1527 * neither field, the data part of the region is zero length. We only have 1528 * a log_op_header and can throw away the header since a new one will appear 1529 * later. If we have at least 4 bytes, then we can determine how many regions 1530 * will appear in the current log item. 1531 */ 1532 STATIC int 1533 xlog_recover_add_to_trans( 1534 struct xlog *log, 1535 struct xlog_recover *trans, 1536 xfs_caddr_t dp, 1537 int len) 1538 { 1539 xfs_inode_log_format_t *in_f; /* any will do */ 1540 xlog_recover_item_t *item; 1541 xfs_caddr_t ptr; 1542 1543 if (!len) 1544 return 0; 1545 if (list_empty(&trans->r_itemq)) { 1546 /* we need to catch log corruptions here */ 1547 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 1548 xfs_warn(log->l_mp, "%s: bad header magic number", 1549 __func__); 1550 ASSERT(0); 1551 return XFS_ERROR(EIO); 1552 } 1553 if (len == sizeof(xfs_trans_header_t)) 1554 xlog_recover_add_item(&trans->r_itemq); 1555 memcpy(&trans->r_theader, dp, len); /* d, s, l */ 1556 return 0; 1557 } 1558 1559 ptr = kmem_alloc(len, KM_SLEEP); 1560 memcpy(ptr, dp, len); 1561 in_f = (xfs_inode_log_format_t *)ptr; 1562 1563 /* take the tail entry */ 1564 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 1565 if (item->ri_total != 0 && 1566 item->ri_total == item->ri_cnt) { 1567 /* tail item is in use, get a new one */ 1568 xlog_recover_add_item(&trans->r_itemq); 1569 item = list_entry(trans->r_itemq.prev, 1570 xlog_recover_item_t, ri_list); 1571 } 1572 1573 if (item->ri_total == 0) { /* first region to be added */ 1574 if (in_f->ilf_size == 0 || 1575 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 1576 xfs_warn(log->l_mp, 1577 "bad number of regions (%d) in inode log format", 1578 in_f->ilf_size); 1579 ASSERT(0); 1580 kmem_free(ptr); 1581 return XFS_ERROR(EIO); 1582 } 1583 1584 item->ri_total = in_f->ilf_size; 1585 item->ri_buf = 1586 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 1587 KM_SLEEP); 1588 } 1589 ASSERT(item->ri_total > item->ri_cnt); 1590 /* Description region is ri_buf[0] */ 1591 item->ri_buf[item->ri_cnt].i_addr = ptr; 1592 item->ri_buf[item->ri_cnt].i_len = len; 1593 item->ri_cnt++; 1594 trace_xfs_log_recover_item_add(log, trans, item, 0); 1595 return 0; 1596 } 1597 1598 /* 1599 * Sort the log items in the transaction. 1600 * 1601 * The ordering constraints are defined by the inode allocation and unlink 1602 * behaviour. The rules are: 1603 * 1604 * 1. Every item is only logged once in a given transaction. Hence it 1605 * represents the last logged state of the item. Hence ordering is 1606 * dependent on the order in which operations need to be performed so 1607 * required initial conditions are always met. 1608 * 1609 * 2. Cancelled buffers are recorded in pass 1 in a separate table and 1610 * there's nothing to replay from them so we can simply cull them 1611 * from the transaction. However, we can't do that until after we've 1612 * replayed all the other items because they may be dependent on the 1613 * cancelled buffer and replaying the cancelled buffer can remove it 1614 * form the cancelled buffer table. Hence they have tobe done last. 1615 * 1616 * 3. Inode allocation buffers must be replayed before inode items that 1617 * read the buffer and replay changes into it. For filesystems using the 1618 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get 1619 * treated the same as inode allocation buffers as they create and 1620 * initialise the buffers directly. 1621 * 1622 * 4. Inode unlink buffers must be replayed after inode items are replayed. 1623 * This ensures that inodes are completely flushed to the inode buffer 1624 * in a "free" state before we remove the unlinked inode list pointer. 1625 * 1626 * Hence the ordering needs to be inode allocation buffers first, inode items 1627 * second, inode unlink buffers third and cancelled buffers last. 1628 * 1629 * But there's a problem with that - we can't tell an inode allocation buffer 1630 * apart from a regular buffer, so we can't separate them. We can, however, 1631 * tell an inode unlink buffer from the others, and so we can separate them out 1632 * from all the other buffers and move them to last. 1633 * 1634 * Hence, 4 lists, in order from head to tail: 1635 * - buffer_list for all buffers except cancelled/inode unlink buffers 1636 * - item_list for all non-buffer items 1637 * - inode_buffer_list for inode unlink buffers 1638 * - cancel_list for the cancelled buffers 1639 * 1640 * Note that we add objects to the tail of the lists so that first-to-last 1641 * ordering is preserved within the lists. Adding objects to the head of the 1642 * list means when we traverse from the head we walk them in last-to-first 1643 * order. For cancelled buffers and inode unlink buffers this doesn't matter, 1644 * but for all other items there may be specific ordering that we need to 1645 * preserve. 1646 */ 1647 STATIC int 1648 xlog_recover_reorder_trans( 1649 struct xlog *log, 1650 struct xlog_recover *trans, 1651 int pass) 1652 { 1653 xlog_recover_item_t *item, *n; 1654 LIST_HEAD(sort_list); 1655 LIST_HEAD(cancel_list); 1656 LIST_HEAD(buffer_list); 1657 LIST_HEAD(inode_buffer_list); 1658 LIST_HEAD(inode_list); 1659 1660 list_splice_init(&trans->r_itemq, &sort_list); 1661 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1662 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1663 1664 switch (ITEM_TYPE(item)) { 1665 case XFS_LI_ICREATE: 1666 list_move_tail(&item->ri_list, &buffer_list); 1667 break; 1668 case XFS_LI_BUF: 1669 if (buf_f->blf_flags & XFS_BLF_CANCEL) { 1670 trace_xfs_log_recover_item_reorder_head(log, 1671 trans, item, pass); 1672 list_move(&item->ri_list, &cancel_list); 1673 break; 1674 } 1675 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 1676 list_move(&item->ri_list, &inode_buffer_list); 1677 break; 1678 } 1679 list_move_tail(&item->ri_list, &buffer_list); 1680 break; 1681 case XFS_LI_INODE: 1682 case XFS_LI_DQUOT: 1683 case XFS_LI_QUOTAOFF: 1684 case XFS_LI_EFD: 1685 case XFS_LI_EFI: 1686 trace_xfs_log_recover_item_reorder_tail(log, 1687 trans, item, pass); 1688 list_move_tail(&item->ri_list, &inode_list); 1689 break; 1690 default: 1691 xfs_warn(log->l_mp, 1692 "%s: unrecognized type of log operation", 1693 __func__); 1694 ASSERT(0); 1695 return XFS_ERROR(EIO); 1696 } 1697 } 1698 ASSERT(list_empty(&sort_list)); 1699 if (!list_empty(&buffer_list)) 1700 list_splice(&buffer_list, &trans->r_itemq); 1701 if (!list_empty(&inode_list)) 1702 list_splice_tail(&inode_list, &trans->r_itemq); 1703 if (!list_empty(&inode_buffer_list)) 1704 list_splice_tail(&inode_buffer_list, &trans->r_itemq); 1705 if (!list_empty(&cancel_list)) 1706 list_splice_tail(&cancel_list, &trans->r_itemq); 1707 return 0; 1708 } 1709 1710 /* 1711 * Build up the table of buf cancel records so that we don't replay 1712 * cancelled data in the second pass. For buffer records that are 1713 * not cancel records, there is nothing to do here so we just return. 1714 * 1715 * If we get a cancel record which is already in the table, this indicates 1716 * that the buffer was cancelled multiple times. In order to ensure 1717 * that during pass 2 we keep the record in the table until we reach its 1718 * last occurrence in the log, we keep a reference count in the cancel 1719 * record in the table to tell us how many times we expect to see this 1720 * record during the second pass. 1721 */ 1722 STATIC int 1723 xlog_recover_buffer_pass1( 1724 struct xlog *log, 1725 struct xlog_recover_item *item) 1726 { 1727 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1728 struct list_head *bucket; 1729 struct xfs_buf_cancel *bcp; 1730 1731 /* 1732 * If this isn't a cancel buffer item, then just return. 1733 */ 1734 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 1735 trace_xfs_log_recover_buf_not_cancel(log, buf_f); 1736 return 0; 1737 } 1738 1739 /* 1740 * Insert an xfs_buf_cancel record into the hash table of them. 1741 * If there is already an identical record, bump its reference count. 1742 */ 1743 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno); 1744 list_for_each_entry(bcp, bucket, bc_list) { 1745 if (bcp->bc_blkno == buf_f->blf_blkno && 1746 bcp->bc_len == buf_f->blf_len) { 1747 bcp->bc_refcount++; 1748 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f); 1749 return 0; 1750 } 1751 } 1752 1753 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP); 1754 bcp->bc_blkno = buf_f->blf_blkno; 1755 bcp->bc_len = buf_f->blf_len; 1756 bcp->bc_refcount = 1; 1757 list_add_tail(&bcp->bc_list, bucket); 1758 1759 trace_xfs_log_recover_buf_cancel_add(log, buf_f); 1760 return 0; 1761 } 1762 1763 /* 1764 * Check to see whether the buffer being recovered has a corresponding 1765 * entry in the buffer cancel record table. If it is, return the cancel 1766 * buffer structure to the caller. 1767 */ 1768 STATIC struct xfs_buf_cancel * 1769 xlog_peek_buffer_cancelled( 1770 struct xlog *log, 1771 xfs_daddr_t blkno, 1772 uint len, 1773 ushort flags) 1774 { 1775 struct list_head *bucket; 1776 struct xfs_buf_cancel *bcp; 1777 1778 if (!log->l_buf_cancel_table) { 1779 /* empty table means no cancelled buffers in the log */ 1780 ASSERT(!(flags & XFS_BLF_CANCEL)); 1781 return NULL; 1782 } 1783 1784 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); 1785 list_for_each_entry(bcp, bucket, bc_list) { 1786 if (bcp->bc_blkno == blkno && bcp->bc_len == len) 1787 return bcp; 1788 } 1789 1790 /* 1791 * We didn't find a corresponding entry in the table, so return 0 so 1792 * that the buffer is NOT cancelled. 1793 */ 1794 ASSERT(!(flags & XFS_BLF_CANCEL)); 1795 return NULL; 1796 } 1797 1798 /* 1799 * If the buffer is being cancelled then return 1 so that it will be cancelled, 1800 * otherwise return 0. If the buffer is actually a buffer cancel item 1801 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the 1802 * table and remove it from the table if this is the last reference. 1803 * 1804 * We remove the cancel record from the table when we encounter its last 1805 * occurrence in the log so that if the same buffer is re-used again after its 1806 * last cancellation we actually replay the changes made at that point. 1807 */ 1808 STATIC int 1809 xlog_check_buffer_cancelled( 1810 struct xlog *log, 1811 xfs_daddr_t blkno, 1812 uint len, 1813 ushort flags) 1814 { 1815 struct xfs_buf_cancel *bcp; 1816 1817 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags); 1818 if (!bcp) 1819 return 0; 1820 1821 /* 1822 * We've go a match, so return 1 so that the recovery of this buffer 1823 * is cancelled. If this buffer is actually a buffer cancel log 1824 * item, then decrement the refcount on the one in the table and 1825 * remove it if this is the last reference. 1826 */ 1827 if (flags & XFS_BLF_CANCEL) { 1828 if (--bcp->bc_refcount == 0) { 1829 list_del(&bcp->bc_list); 1830 kmem_free(bcp); 1831 } 1832 } 1833 return 1; 1834 } 1835 1836 /* 1837 * Perform recovery for a buffer full of inodes. In these buffers, the only 1838 * data which should be recovered is that which corresponds to the 1839 * di_next_unlinked pointers in the on disk inode structures. The rest of the 1840 * data for the inodes is always logged through the inodes themselves rather 1841 * than the inode buffer and is recovered in xlog_recover_inode_pass2(). 1842 * 1843 * The only time when buffers full of inodes are fully recovered is when the 1844 * buffer is full of newly allocated inodes. In this case the buffer will 1845 * not be marked as an inode buffer and so will be sent to 1846 * xlog_recover_do_reg_buffer() below during recovery. 1847 */ 1848 STATIC int 1849 xlog_recover_do_inode_buffer( 1850 struct xfs_mount *mp, 1851 xlog_recover_item_t *item, 1852 struct xfs_buf *bp, 1853 xfs_buf_log_format_t *buf_f) 1854 { 1855 int i; 1856 int item_index = 0; 1857 int bit = 0; 1858 int nbits = 0; 1859 int reg_buf_offset = 0; 1860 int reg_buf_bytes = 0; 1861 int next_unlinked_offset; 1862 int inodes_per_buf; 1863 xfs_agino_t *logged_nextp; 1864 xfs_agino_t *buffer_nextp; 1865 1866 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); 1867 1868 /* 1869 * Post recovery validation only works properly on CRC enabled 1870 * filesystems. 1871 */ 1872 if (xfs_sb_version_hascrc(&mp->m_sb)) 1873 bp->b_ops = &xfs_inode_buf_ops; 1874 1875 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog; 1876 for (i = 0; i < inodes_per_buf; i++) { 1877 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 1878 offsetof(xfs_dinode_t, di_next_unlinked); 1879 1880 while (next_unlinked_offset >= 1881 (reg_buf_offset + reg_buf_bytes)) { 1882 /* 1883 * The next di_next_unlinked field is beyond 1884 * the current logged region. Find the next 1885 * logged region that contains or is beyond 1886 * the current di_next_unlinked field. 1887 */ 1888 bit += nbits; 1889 bit = xfs_next_bit(buf_f->blf_data_map, 1890 buf_f->blf_map_size, bit); 1891 1892 /* 1893 * If there are no more logged regions in the 1894 * buffer, then we're done. 1895 */ 1896 if (bit == -1) 1897 return 0; 1898 1899 nbits = xfs_contig_bits(buf_f->blf_data_map, 1900 buf_f->blf_map_size, bit); 1901 ASSERT(nbits > 0); 1902 reg_buf_offset = bit << XFS_BLF_SHIFT; 1903 reg_buf_bytes = nbits << XFS_BLF_SHIFT; 1904 item_index++; 1905 } 1906 1907 /* 1908 * If the current logged region starts after the current 1909 * di_next_unlinked field, then move on to the next 1910 * di_next_unlinked field. 1911 */ 1912 if (next_unlinked_offset < reg_buf_offset) 1913 continue; 1914 1915 ASSERT(item->ri_buf[item_index].i_addr != NULL); 1916 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); 1917 ASSERT((reg_buf_offset + reg_buf_bytes) <= 1918 BBTOB(bp->b_io_length)); 1919 1920 /* 1921 * The current logged region contains a copy of the 1922 * current di_next_unlinked field. Extract its value 1923 * and copy it to the buffer copy. 1924 */ 1925 logged_nextp = item->ri_buf[item_index].i_addr + 1926 next_unlinked_offset - reg_buf_offset; 1927 if (unlikely(*logged_nextp == 0)) { 1928 xfs_alert(mp, 1929 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). " 1930 "Trying to replay bad (0) inode di_next_unlinked field.", 1931 item, bp); 1932 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 1933 XFS_ERRLEVEL_LOW, mp); 1934 return XFS_ERROR(EFSCORRUPTED); 1935 } 1936 1937 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp, 1938 next_unlinked_offset); 1939 *buffer_nextp = *logged_nextp; 1940 1941 /* 1942 * If necessary, recalculate the CRC in the on-disk inode. We 1943 * have to leave the inode in a consistent state for whoever 1944 * reads it next.... 1945 */ 1946 xfs_dinode_calc_crc(mp, (struct xfs_dinode *) 1947 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); 1948 1949 } 1950 1951 return 0; 1952 } 1953 1954 /* 1955 * V5 filesystems know the age of the buffer on disk being recovered. We can 1956 * have newer objects on disk than we are replaying, and so for these cases we 1957 * don't want to replay the current change as that will make the buffer contents 1958 * temporarily invalid on disk. 1959 * 1960 * The magic number might not match the buffer type we are going to recover 1961 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence 1962 * extract the LSN of the existing object in the buffer based on it's current 1963 * magic number. If we don't recognise the magic number in the buffer, then 1964 * return a LSN of -1 so that the caller knows it was an unrecognised block and 1965 * so can recover the buffer. 1966 * 1967 * Note: we cannot rely solely on magic number matches to determine that the 1968 * buffer has a valid LSN - we also need to verify that it belongs to this 1969 * filesystem, so we need to extract the object's LSN and compare it to that 1970 * which we read from the superblock. If the UUIDs don't match, then we've got a 1971 * stale metadata block from an old filesystem instance that we need to recover 1972 * over the top of. 1973 */ 1974 static xfs_lsn_t 1975 xlog_recover_get_buf_lsn( 1976 struct xfs_mount *mp, 1977 struct xfs_buf *bp) 1978 { 1979 __uint32_t magic32; 1980 __uint16_t magic16; 1981 __uint16_t magicda; 1982 void *blk = bp->b_addr; 1983 uuid_t *uuid; 1984 xfs_lsn_t lsn = -1; 1985 1986 /* v4 filesystems always recover immediately */ 1987 if (!xfs_sb_version_hascrc(&mp->m_sb)) 1988 goto recover_immediately; 1989 1990 magic32 = be32_to_cpu(*(__be32 *)blk); 1991 switch (magic32) { 1992 case XFS_ABTB_CRC_MAGIC: 1993 case XFS_ABTC_CRC_MAGIC: 1994 case XFS_ABTB_MAGIC: 1995 case XFS_ABTC_MAGIC: 1996 case XFS_IBT_CRC_MAGIC: 1997 case XFS_IBT_MAGIC: { 1998 struct xfs_btree_block *btb = blk; 1999 2000 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn); 2001 uuid = &btb->bb_u.s.bb_uuid; 2002 break; 2003 } 2004 case XFS_BMAP_CRC_MAGIC: 2005 case XFS_BMAP_MAGIC: { 2006 struct xfs_btree_block *btb = blk; 2007 2008 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn); 2009 uuid = &btb->bb_u.l.bb_uuid; 2010 break; 2011 } 2012 case XFS_AGF_MAGIC: 2013 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn); 2014 uuid = &((struct xfs_agf *)blk)->agf_uuid; 2015 break; 2016 case XFS_AGFL_MAGIC: 2017 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn); 2018 uuid = &((struct xfs_agfl *)blk)->agfl_uuid; 2019 break; 2020 case XFS_AGI_MAGIC: 2021 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn); 2022 uuid = &((struct xfs_agi *)blk)->agi_uuid; 2023 break; 2024 case XFS_SYMLINK_MAGIC: 2025 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn); 2026 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid; 2027 break; 2028 case XFS_DIR3_BLOCK_MAGIC: 2029 case XFS_DIR3_DATA_MAGIC: 2030 case XFS_DIR3_FREE_MAGIC: 2031 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn); 2032 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid; 2033 break; 2034 case XFS_ATTR3_RMT_MAGIC: 2035 lsn = be64_to_cpu(((struct xfs_attr3_rmt_hdr *)blk)->rm_lsn); 2036 uuid = &((struct xfs_attr3_rmt_hdr *)blk)->rm_uuid; 2037 break; 2038 case XFS_SB_MAGIC: 2039 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn); 2040 uuid = &((struct xfs_dsb *)blk)->sb_uuid; 2041 break; 2042 default: 2043 break; 2044 } 2045 2046 if (lsn != (xfs_lsn_t)-1) { 2047 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid)) 2048 goto recover_immediately; 2049 return lsn; 2050 } 2051 2052 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic); 2053 switch (magicda) { 2054 case XFS_DIR3_LEAF1_MAGIC: 2055 case XFS_DIR3_LEAFN_MAGIC: 2056 case XFS_DA3_NODE_MAGIC: 2057 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn); 2058 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid; 2059 break; 2060 default: 2061 break; 2062 } 2063 2064 if (lsn != (xfs_lsn_t)-1) { 2065 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid)) 2066 goto recover_immediately; 2067 return lsn; 2068 } 2069 2070 /* 2071 * We do individual object checks on dquot and inode buffers as they 2072 * have their own individual LSN records. Also, we could have a stale 2073 * buffer here, so we have to at least recognise these buffer types. 2074 * 2075 * A notd complexity here is inode unlinked list processing - it logs 2076 * the inode directly in the buffer, but we don't know which inodes have 2077 * been modified, and there is no global buffer LSN. Hence we need to 2078 * recover all inode buffer types immediately. This problem will be 2079 * fixed by logical logging of the unlinked list modifications. 2080 */ 2081 magic16 = be16_to_cpu(*(__be16 *)blk); 2082 switch (magic16) { 2083 case XFS_DQUOT_MAGIC: 2084 case XFS_DINODE_MAGIC: 2085 goto recover_immediately; 2086 default: 2087 break; 2088 } 2089 2090 /* unknown buffer contents, recover immediately */ 2091 2092 recover_immediately: 2093 return (xfs_lsn_t)-1; 2094 2095 } 2096 2097 /* 2098 * Validate the recovered buffer is of the correct type and attach the 2099 * appropriate buffer operations to them for writeback. Magic numbers are in a 2100 * few places: 2101 * the first 16 bits of the buffer (inode buffer, dquot buffer), 2102 * the first 32 bits of the buffer (most blocks), 2103 * inside a struct xfs_da_blkinfo at the start of the buffer. 2104 */ 2105 static void 2106 xlog_recover_validate_buf_type( 2107 struct xfs_mount *mp, 2108 struct xfs_buf *bp, 2109 xfs_buf_log_format_t *buf_f) 2110 { 2111 struct xfs_da_blkinfo *info = bp->b_addr; 2112 __uint32_t magic32; 2113 __uint16_t magic16; 2114 __uint16_t magicda; 2115 2116 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr); 2117 magic16 = be16_to_cpu(*(__be16*)bp->b_addr); 2118 magicda = be16_to_cpu(info->magic); 2119 switch (xfs_blft_from_flags(buf_f)) { 2120 case XFS_BLFT_BTREE_BUF: 2121 switch (magic32) { 2122 case XFS_ABTB_CRC_MAGIC: 2123 case XFS_ABTC_CRC_MAGIC: 2124 case XFS_ABTB_MAGIC: 2125 case XFS_ABTC_MAGIC: 2126 bp->b_ops = &xfs_allocbt_buf_ops; 2127 break; 2128 case XFS_IBT_CRC_MAGIC: 2129 case XFS_IBT_MAGIC: 2130 bp->b_ops = &xfs_inobt_buf_ops; 2131 break; 2132 case XFS_BMAP_CRC_MAGIC: 2133 case XFS_BMAP_MAGIC: 2134 bp->b_ops = &xfs_bmbt_buf_ops; 2135 break; 2136 default: 2137 xfs_warn(mp, "Bad btree block magic!"); 2138 ASSERT(0); 2139 break; 2140 } 2141 break; 2142 case XFS_BLFT_AGF_BUF: 2143 if (magic32 != XFS_AGF_MAGIC) { 2144 xfs_warn(mp, "Bad AGF block magic!"); 2145 ASSERT(0); 2146 break; 2147 } 2148 bp->b_ops = &xfs_agf_buf_ops; 2149 break; 2150 case XFS_BLFT_AGFL_BUF: 2151 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2152 break; 2153 if (magic32 != XFS_AGFL_MAGIC) { 2154 xfs_warn(mp, "Bad AGFL block magic!"); 2155 ASSERT(0); 2156 break; 2157 } 2158 bp->b_ops = &xfs_agfl_buf_ops; 2159 break; 2160 case XFS_BLFT_AGI_BUF: 2161 if (magic32 != XFS_AGI_MAGIC) { 2162 xfs_warn(mp, "Bad AGI block magic!"); 2163 ASSERT(0); 2164 break; 2165 } 2166 bp->b_ops = &xfs_agi_buf_ops; 2167 break; 2168 case XFS_BLFT_UDQUOT_BUF: 2169 case XFS_BLFT_PDQUOT_BUF: 2170 case XFS_BLFT_GDQUOT_BUF: 2171 #ifdef CONFIG_XFS_QUOTA 2172 if (magic16 != XFS_DQUOT_MAGIC) { 2173 xfs_warn(mp, "Bad DQUOT block magic!"); 2174 ASSERT(0); 2175 break; 2176 } 2177 bp->b_ops = &xfs_dquot_buf_ops; 2178 #else 2179 xfs_alert(mp, 2180 "Trying to recover dquots without QUOTA support built in!"); 2181 ASSERT(0); 2182 #endif 2183 break; 2184 case XFS_BLFT_DINO_BUF: 2185 /* 2186 * we get here with inode allocation buffers, not buffers that 2187 * track unlinked list changes. 2188 */ 2189 if (magic16 != XFS_DINODE_MAGIC) { 2190 xfs_warn(mp, "Bad INODE block magic!"); 2191 ASSERT(0); 2192 break; 2193 } 2194 bp->b_ops = &xfs_inode_buf_ops; 2195 break; 2196 case XFS_BLFT_SYMLINK_BUF: 2197 if (magic32 != XFS_SYMLINK_MAGIC) { 2198 xfs_warn(mp, "Bad symlink block magic!"); 2199 ASSERT(0); 2200 break; 2201 } 2202 bp->b_ops = &xfs_symlink_buf_ops; 2203 break; 2204 case XFS_BLFT_DIR_BLOCK_BUF: 2205 if (magic32 != XFS_DIR2_BLOCK_MAGIC && 2206 magic32 != XFS_DIR3_BLOCK_MAGIC) { 2207 xfs_warn(mp, "Bad dir block magic!"); 2208 ASSERT(0); 2209 break; 2210 } 2211 bp->b_ops = &xfs_dir3_block_buf_ops; 2212 break; 2213 case XFS_BLFT_DIR_DATA_BUF: 2214 if (magic32 != XFS_DIR2_DATA_MAGIC && 2215 magic32 != XFS_DIR3_DATA_MAGIC) { 2216 xfs_warn(mp, "Bad dir data magic!"); 2217 ASSERT(0); 2218 break; 2219 } 2220 bp->b_ops = &xfs_dir3_data_buf_ops; 2221 break; 2222 case XFS_BLFT_DIR_FREE_BUF: 2223 if (magic32 != XFS_DIR2_FREE_MAGIC && 2224 magic32 != XFS_DIR3_FREE_MAGIC) { 2225 xfs_warn(mp, "Bad dir3 free magic!"); 2226 ASSERT(0); 2227 break; 2228 } 2229 bp->b_ops = &xfs_dir3_free_buf_ops; 2230 break; 2231 case XFS_BLFT_DIR_LEAF1_BUF: 2232 if (magicda != XFS_DIR2_LEAF1_MAGIC && 2233 magicda != XFS_DIR3_LEAF1_MAGIC) { 2234 xfs_warn(mp, "Bad dir leaf1 magic!"); 2235 ASSERT(0); 2236 break; 2237 } 2238 bp->b_ops = &xfs_dir3_leaf1_buf_ops; 2239 break; 2240 case XFS_BLFT_DIR_LEAFN_BUF: 2241 if (magicda != XFS_DIR2_LEAFN_MAGIC && 2242 magicda != XFS_DIR3_LEAFN_MAGIC) { 2243 xfs_warn(mp, "Bad dir leafn magic!"); 2244 ASSERT(0); 2245 break; 2246 } 2247 bp->b_ops = &xfs_dir3_leafn_buf_ops; 2248 break; 2249 case XFS_BLFT_DA_NODE_BUF: 2250 if (magicda != XFS_DA_NODE_MAGIC && 2251 magicda != XFS_DA3_NODE_MAGIC) { 2252 xfs_warn(mp, "Bad da node magic!"); 2253 ASSERT(0); 2254 break; 2255 } 2256 bp->b_ops = &xfs_da3_node_buf_ops; 2257 break; 2258 case XFS_BLFT_ATTR_LEAF_BUF: 2259 if (magicda != XFS_ATTR_LEAF_MAGIC && 2260 magicda != XFS_ATTR3_LEAF_MAGIC) { 2261 xfs_warn(mp, "Bad attr leaf magic!"); 2262 ASSERT(0); 2263 break; 2264 } 2265 bp->b_ops = &xfs_attr3_leaf_buf_ops; 2266 break; 2267 case XFS_BLFT_ATTR_RMT_BUF: 2268 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2269 break; 2270 if (magic32 != XFS_ATTR3_RMT_MAGIC) { 2271 xfs_warn(mp, "Bad attr remote magic!"); 2272 ASSERT(0); 2273 break; 2274 } 2275 bp->b_ops = &xfs_attr3_rmt_buf_ops; 2276 break; 2277 case XFS_BLFT_SB_BUF: 2278 if (magic32 != XFS_SB_MAGIC) { 2279 xfs_warn(mp, "Bad SB block magic!"); 2280 ASSERT(0); 2281 break; 2282 } 2283 bp->b_ops = &xfs_sb_buf_ops; 2284 break; 2285 default: 2286 xfs_warn(mp, "Unknown buffer type %d!", 2287 xfs_blft_from_flags(buf_f)); 2288 break; 2289 } 2290 } 2291 2292 /* 2293 * Perform a 'normal' buffer recovery. Each logged region of the 2294 * buffer should be copied over the corresponding region in the 2295 * given buffer. The bitmap in the buf log format structure indicates 2296 * where to place the logged data. 2297 */ 2298 STATIC void 2299 xlog_recover_do_reg_buffer( 2300 struct xfs_mount *mp, 2301 xlog_recover_item_t *item, 2302 struct xfs_buf *bp, 2303 xfs_buf_log_format_t *buf_f) 2304 { 2305 int i; 2306 int bit; 2307 int nbits; 2308 int error; 2309 2310 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); 2311 2312 bit = 0; 2313 i = 1; /* 0 is the buf format structure */ 2314 while (1) { 2315 bit = xfs_next_bit(buf_f->blf_data_map, 2316 buf_f->blf_map_size, bit); 2317 if (bit == -1) 2318 break; 2319 nbits = xfs_contig_bits(buf_f->blf_data_map, 2320 buf_f->blf_map_size, bit); 2321 ASSERT(nbits > 0); 2322 ASSERT(item->ri_buf[i].i_addr != NULL); 2323 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); 2324 ASSERT(BBTOB(bp->b_io_length) >= 2325 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); 2326 2327 /* 2328 * The dirty regions logged in the buffer, even though 2329 * contiguous, may span multiple chunks. This is because the 2330 * dirty region may span a physical page boundary in a buffer 2331 * and hence be split into two separate vectors for writing into 2332 * the log. Hence we need to trim nbits back to the length of 2333 * the current region being copied out of the log. 2334 */ 2335 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT)) 2336 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT; 2337 2338 /* 2339 * Do a sanity check if this is a dquot buffer. Just checking 2340 * the first dquot in the buffer should do. XXXThis is 2341 * probably a good thing to do for other buf types also. 2342 */ 2343 error = 0; 2344 if (buf_f->blf_flags & 2345 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2346 if (item->ri_buf[i].i_addr == NULL) { 2347 xfs_alert(mp, 2348 "XFS: NULL dquot in %s.", __func__); 2349 goto next; 2350 } 2351 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) { 2352 xfs_alert(mp, 2353 "XFS: dquot too small (%d) in %s.", 2354 item->ri_buf[i].i_len, __func__); 2355 goto next; 2356 } 2357 error = xfs_dqcheck(mp, item->ri_buf[i].i_addr, 2358 -1, 0, XFS_QMOPT_DOWARN, 2359 "dquot_buf_recover"); 2360 if (error) 2361 goto next; 2362 } 2363 2364 memcpy(xfs_buf_offset(bp, 2365 (uint)bit << XFS_BLF_SHIFT), /* dest */ 2366 item->ri_buf[i].i_addr, /* source */ 2367 nbits<<XFS_BLF_SHIFT); /* length */ 2368 next: 2369 i++; 2370 bit += nbits; 2371 } 2372 2373 /* Shouldn't be any more regions */ 2374 ASSERT(i == item->ri_total); 2375 2376 /* 2377 * We can only do post recovery validation on items on CRC enabled 2378 * fielsystems as we need to know when the buffer was written to be able 2379 * to determine if we should have replayed the item. If we replay old 2380 * metadata over a newer buffer, then it will enter a temporarily 2381 * inconsistent state resulting in verification failures. Hence for now 2382 * just avoid the verification stage for non-crc filesystems 2383 */ 2384 if (xfs_sb_version_hascrc(&mp->m_sb)) 2385 xlog_recover_validate_buf_type(mp, bp, buf_f); 2386 } 2387 2388 /* 2389 * Perform a dquot buffer recovery. 2390 * Simple algorithm: if we have found a QUOTAOFF log item of the same type 2391 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2392 * Else, treat it as a regular buffer and do recovery. 2393 */ 2394 STATIC void 2395 xlog_recover_do_dquot_buffer( 2396 struct xfs_mount *mp, 2397 struct xlog *log, 2398 struct xlog_recover_item *item, 2399 struct xfs_buf *bp, 2400 struct xfs_buf_log_format *buf_f) 2401 { 2402 uint type; 2403 2404 trace_xfs_log_recover_buf_dquot_buf(log, buf_f); 2405 2406 /* 2407 * Filesystems are required to send in quota flags at mount time. 2408 */ 2409 if (mp->m_qflags == 0) { 2410 return; 2411 } 2412 2413 type = 0; 2414 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) 2415 type |= XFS_DQ_USER; 2416 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) 2417 type |= XFS_DQ_PROJ; 2418 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) 2419 type |= XFS_DQ_GROUP; 2420 /* 2421 * This type of quotas was turned off, so ignore this buffer 2422 */ 2423 if (log->l_quotaoffs_flag & type) 2424 return; 2425 2426 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2427 } 2428 2429 /* 2430 * This routine replays a modification made to a buffer at runtime. 2431 * There are actually two types of buffer, regular and inode, which 2432 * are handled differently. Inode buffers are handled differently 2433 * in that we only recover a specific set of data from them, namely 2434 * the inode di_next_unlinked fields. This is because all other inode 2435 * data is actually logged via inode records and any data we replay 2436 * here which overlaps that may be stale. 2437 * 2438 * When meta-data buffers are freed at run time we log a buffer item 2439 * with the XFS_BLF_CANCEL bit set to indicate that previous copies 2440 * of the buffer in the log should not be replayed at recovery time. 2441 * This is so that if the blocks covered by the buffer are reused for 2442 * file data before we crash we don't end up replaying old, freed 2443 * meta-data into a user's file. 2444 * 2445 * To handle the cancellation of buffer log items, we make two passes 2446 * over the log during recovery. During the first we build a table of 2447 * those buffers which have been cancelled, and during the second we 2448 * only replay those buffers which do not have corresponding cancel 2449 * records in the table. See xlog_recover_buffer_pass[1,2] above 2450 * for more details on the implementation of the table of cancel records. 2451 */ 2452 STATIC int 2453 xlog_recover_buffer_pass2( 2454 struct xlog *log, 2455 struct list_head *buffer_list, 2456 struct xlog_recover_item *item, 2457 xfs_lsn_t current_lsn) 2458 { 2459 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2460 xfs_mount_t *mp = log->l_mp; 2461 xfs_buf_t *bp; 2462 int error; 2463 uint buf_flags; 2464 xfs_lsn_t lsn; 2465 2466 /* 2467 * In this pass we only want to recover all the buffers which have 2468 * not been cancelled and are not cancellation buffers themselves. 2469 */ 2470 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno, 2471 buf_f->blf_len, buf_f->blf_flags)) { 2472 trace_xfs_log_recover_buf_cancel(log, buf_f); 2473 return 0; 2474 } 2475 2476 trace_xfs_log_recover_buf_recover(log, buf_f); 2477 2478 buf_flags = 0; 2479 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) 2480 buf_flags |= XBF_UNMAPPED; 2481 2482 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, 2483 buf_flags, NULL); 2484 if (!bp) 2485 return XFS_ERROR(ENOMEM); 2486 error = bp->b_error; 2487 if (error) { 2488 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)"); 2489 goto out_release; 2490 } 2491 2492 /* 2493 * recover the buffer only if we get an LSN from it and it's less than 2494 * the lsn of the transaction we are replaying. 2495 */ 2496 lsn = xlog_recover_get_buf_lsn(mp, bp); 2497 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) 2498 goto out_release; 2499 2500 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 2501 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2502 } else if (buf_f->blf_flags & 2503 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2504 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2505 } else { 2506 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2507 } 2508 if (error) 2509 goto out_release; 2510 2511 /* 2512 * Perform delayed write on the buffer. Asynchronous writes will be 2513 * slower when taking into account all the buffers to be flushed. 2514 * 2515 * Also make sure that only inode buffers with good sizes stay in 2516 * the buffer cache. The kernel moves inodes in buffers of 1 block 2517 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode 2518 * buffers in the log can be a different size if the log was generated 2519 * by an older kernel using unclustered inode buffers or a newer kernel 2520 * running with a different inode cluster size. Regardless, if the 2521 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE) 2522 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep 2523 * the buffer out of the buffer cache so that the buffer won't 2524 * overlap with future reads of those inodes. 2525 */ 2526 if (XFS_DINODE_MAGIC == 2527 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && 2528 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize, 2529 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) { 2530 xfs_buf_stale(bp); 2531 error = xfs_bwrite(bp); 2532 } else { 2533 ASSERT(bp->b_target->bt_mount == mp); 2534 bp->b_iodone = xlog_recover_iodone; 2535 xfs_buf_delwri_queue(bp, buffer_list); 2536 } 2537 2538 out_release: 2539 xfs_buf_relse(bp); 2540 return error; 2541 } 2542 2543 /* 2544 * Inode fork owner changes 2545 * 2546 * If we have been told that we have to reparent the inode fork, it's because an 2547 * extent swap operation on a CRC enabled filesystem has been done and we are 2548 * replaying it. We need to walk the BMBT of the appropriate fork and change the 2549 * owners of it. 2550 * 2551 * The complexity here is that we don't have an inode context to work with, so 2552 * after we've replayed the inode we need to instantiate one. This is where the 2553 * fun begins. 2554 * 2555 * We are in the middle of log recovery, so we can't run transactions. That 2556 * means we cannot use cache coherent inode instantiation via xfs_iget(), as 2557 * that will result in the corresponding iput() running the inode through 2558 * xfs_inactive(). If we've just replayed an inode core that changes the link 2559 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run 2560 * transactions (bad!). 2561 * 2562 * So, to avoid this, we instantiate an inode directly from the inode core we've 2563 * just recovered. We have the buffer still locked, and all we really need to 2564 * instantiate is the inode core and the forks being modified. We can do this 2565 * manually, then run the inode btree owner change, and then tear down the 2566 * xfs_inode without having to run any transactions at all. 2567 * 2568 * Also, because we don't have a transaction context available here but need to 2569 * gather all the buffers we modify for writeback so we pass the buffer_list 2570 * instead for the operation to use. 2571 */ 2572 2573 STATIC int 2574 xfs_recover_inode_owner_change( 2575 struct xfs_mount *mp, 2576 struct xfs_dinode *dip, 2577 struct xfs_inode_log_format *in_f, 2578 struct list_head *buffer_list) 2579 { 2580 struct xfs_inode *ip; 2581 int error; 2582 2583 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)); 2584 2585 ip = xfs_inode_alloc(mp, in_f->ilf_ino); 2586 if (!ip) 2587 return ENOMEM; 2588 2589 /* instantiate the inode */ 2590 xfs_dinode_from_disk(&ip->i_d, dip); 2591 ASSERT(ip->i_d.di_version >= 3); 2592 2593 error = xfs_iformat_fork(ip, dip); 2594 if (error) 2595 goto out_free_ip; 2596 2597 2598 if (in_f->ilf_fields & XFS_ILOG_DOWNER) { 2599 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT); 2600 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK, 2601 ip->i_ino, buffer_list); 2602 if (error) 2603 goto out_free_ip; 2604 } 2605 2606 if (in_f->ilf_fields & XFS_ILOG_AOWNER) { 2607 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT); 2608 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK, 2609 ip->i_ino, buffer_list); 2610 if (error) 2611 goto out_free_ip; 2612 } 2613 2614 out_free_ip: 2615 xfs_inode_free(ip); 2616 return error; 2617 } 2618 2619 STATIC int 2620 xlog_recover_inode_pass2( 2621 struct xlog *log, 2622 struct list_head *buffer_list, 2623 struct xlog_recover_item *item, 2624 xfs_lsn_t current_lsn) 2625 { 2626 xfs_inode_log_format_t *in_f; 2627 xfs_mount_t *mp = log->l_mp; 2628 xfs_buf_t *bp; 2629 xfs_dinode_t *dip; 2630 int len; 2631 xfs_caddr_t src; 2632 xfs_caddr_t dest; 2633 int error; 2634 int attr_index; 2635 uint fields; 2636 xfs_icdinode_t *dicp; 2637 uint isize; 2638 int need_free = 0; 2639 2640 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) { 2641 in_f = item->ri_buf[0].i_addr; 2642 } else { 2643 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP); 2644 need_free = 1; 2645 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 2646 if (error) 2647 goto error; 2648 } 2649 2650 /* 2651 * Inode buffers can be freed, look out for it, 2652 * and do not replay the inode. 2653 */ 2654 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, 2655 in_f->ilf_len, 0)) { 2656 error = 0; 2657 trace_xfs_log_recover_inode_cancel(log, in_f); 2658 goto error; 2659 } 2660 trace_xfs_log_recover_inode_recover(log, in_f); 2661 2662 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0, 2663 &xfs_inode_buf_ops); 2664 if (!bp) { 2665 error = ENOMEM; 2666 goto error; 2667 } 2668 error = bp->b_error; 2669 if (error) { 2670 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)"); 2671 goto out_release; 2672 } 2673 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 2674 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset); 2675 2676 /* 2677 * Make sure the place we're flushing out to really looks 2678 * like an inode! 2679 */ 2680 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) { 2681 xfs_alert(mp, 2682 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld", 2683 __func__, dip, bp, in_f->ilf_ino); 2684 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)", 2685 XFS_ERRLEVEL_LOW, mp); 2686 error = EFSCORRUPTED; 2687 goto out_release; 2688 } 2689 dicp = item->ri_buf[1].i_addr; 2690 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { 2691 xfs_alert(mp, 2692 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld", 2693 __func__, item, in_f->ilf_ino); 2694 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)", 2695 XFS_ERRLEVEL_LOW, mp); 2696 error = EFSCORRUPTED; 2697 goto out_release; 2698 } 2699 2700 /* 2701 * If the inode has an LSN in it, recover the inode only if it's less 2702 * than the lsn of the transaction we are replaying. Note: we still 2703 * need to replay an owner change even though the inode is more recent 2704 * than the transaction as there is no guarantee that all the btree 2705 * blocks are more recent than this transaction, too. 2706 */ 2707 if (dip->di_version >= 3) { 2708 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn); 2709 2710 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 2711 trace_xfs_log_recover_inode_skip(log, in_f); 2712 error = 0; 2713 goto out_owner_change; 2714 } 2715 } 2716 2717 /* 2718 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes 2719 * are transactional and if ordering is necessary we can determine that 2720 * more accurately by the LSN field in the V3 inode core. Don't trust 2721 * the inode versions we might be changing them here - use the 2722 * superblock flag to determine whether we need to look at di_flushiter 2723 * to skip replay when the on disk inode is newer than the log one 2724 */ 2725 if (!xfs_sb_version_hascrc(&mp->m_sb) && 2726 dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) { 2727 /* 2728 * Deal with the wrap case, DI_MAX_FLUSH is less 2729 * than smaller numbers 2730 */ 2731 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && 2732 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) { 2733 /* do nothing */ 2734 } else { 2735 trace_xfs_log_recover_inode_skip(log, in_f); 2736 error = 0; 2737 goto out_release; 2738 } 2739 } 2740 2741 /* Take the opportunity to reset the flush iteration count */ 2742 dicp->di_flushiter = 0; 2743 2744 if (unlikely(S_ISREG(dicp->di_mode))) { 2745 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2746 (dicp->di_format != XFS_DINODE_FMT_BTREE)) { 2747 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)", 2748 XFS_ERRLEVEL_LOW, mp, dicp); 2749 xfs_alert(mp, 2750 "%s: Bad regular inode log record, rec ptr 0x%p, " 2751 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2752 __func__, item, dip, bp, in_f->ilf_ino); 2753 error = EFSCORRUPTED; 2754 goto out_release; 2755 } 2756 } else if (unlikely(S_ISDIR(dicp->di_mode))) { 2757 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2758 (dicp->di_format != XFS_DINODE_FMT_BTREE) && 2759 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { 2760 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)", 2761 XFS_ERRLEVEL_LOW, mp, dicp); 2762 xfs_alert(mp, 2763 "%s: Bad dir inode log record, rec ptr 0x%p, " 2764 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2765 __func__, item, dip, bp, in_f->ilf_ino); 2766 error = EFSCORRUPTED; 2767 goto out_release; 2768 } 2769 } 2770 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ 2771 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)", 2772 XFS_ERRLEVEL_LOW, mp, dicp); 2773 xfs_alert(mp, 2774 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 2775 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", 2776 __func__, item, dip, bp, in_f->ilf_ino, 2777 dicp->di_nextents + dicp->di_anextents, 2778 dicp->di_nblocks); 2779 error = EFSCORRUPTED; 2780 goto out_release; 2781 } 2782 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { 2783 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)", 2784 XFS_ERRLEVEL_LOW, mp, dicp); 2785 xfs_alert(mp, 2786 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 2787 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__, 2788 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff); 2789 error = EFSCORRUPTED; 2790 goto out_release; 2791 } 2792 isize = xfs_icdinode_size(dicp->di_version); 2793 if (unlikely(item->ri_buf[1].i_len > isize)) { 2794 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)", 2795 XFS_ERRLEVEL_LOW, mp, dicp); 2796 xfs_alert(mp, 2797 "%s: Bad inode log record length %d, rec ptr 0x%p", 2798 __func__, item->ri_buf[1].i_len, item); 2799 error = EFSCORRUPTED; 2800 goto out_release; 2801 } 2802 2803 /* The core is in in-core format */ 2804 xfs_dinode_to_disk(dip, dicp); 2805 2806 /* the rest is in on-disk format */ 2807 if (item->ri_buf[1].i_len > isize) { 2808 memcpy((char *)dip + isize, 2809 item->ri_buf[1].i_addr + isize, 2810 item->ri_buf[1].i_len - isize); 2811 } 2812 2813 fields = in_f->ilf_fields; 2814 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { 2815 case XFS_ILOG_DEV: 2816 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); 2817 break; 2818 case XFS_ILOG_UUID: 2819 memcpy(XFS_DFORK_DPTR(dip), 2820 &in_f->ilf_u.ilfu_uuid, 2821 sizeof(uuid_t)); 2822 break; 2823 } 2824 2825 if (in_f->ilf_size == 2) 2826 goto out_owner_change; 2827 len = item->ri_buf[2].i_len; 2828 src = item->ri_buf[2].i_addr; 2829 ASSERT(in_f->ilf_size <= 4); 2830 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 2831 ASSERT(!(fields & XFS_ILOG_DFORK) || 2832 (len == in_f->ilf_dsize)); 2833 2834 switch (fields & XFS_ILOG_DFORK) { 2835 case XFS_ILOG_DDATA: 2836 case XFS_ILOG_DEXT: 2837 memcpy(XFS_DFORK_DPTR(dip), src, len); 2838 break; 2839 2840 case XFS_ILOG_DBROOT: 2841 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, 2842 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), 2843 XFS_DFORK_DSIZE(dip, mp)); 2844 break; 2845 2846 default: 2847 /* 2848 * There are no data fork flags set. 2849 */ 2850 ASSERT((fields & XFS_ILOG_DFORK) == 0); 2851 break; 2852 } 2853 2854 /* 2855 * If we logged any attribute data, recover it. There may or 2856 * may not have been any other non-core data logged in this 2857 * transaction. 2858 */ 2859 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 2860 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 2861 attr_index = 3; 2862 } else { 2863 attr_index = 2; 2864 } 2865 len = item->ri_buf[attr_index].i_len; 2866 src = item->ri_buf[attr_index].i_addr; 2867 ASSERT(len == in_f->ilf_asize); 2868 2869 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 2870 case XFS_ILOG_ADATA: 2871 case XFS_ILOG_AEXT: 2872 dest = XFS_DFORK_APTR(dip); 2873 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 2874 memcpy(dest, src, len); 2875 break; 2876 2877 case XFS_ILOG_ABROOT: 2878 dest = XFS_DFORK_APTR(dip); 2879 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, 2880 len, (xfs_bmdr_block_t*)dest, 2881 XFS_DFORK_ASIZE(dip, mp)); 2882 break; 2883 2884 default: 2885 xfs_warn(log->l_mp, "%s: Invalid flag", __func__); 2886 ASSERT(0); 2887 error = EIO; 2888 goto out_release; 2889 } 2890 } 2891 2892 out_owner_change: 2893 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) 2894 error = xfs_recover_inode_owner_change(mp, dip, in_f, 2895 buffer_list); 2896 /* re-generate the checksum. */ 2897 xfs_dinode_calc_crc(log->l_mp, dip); 2898 2899 ASSERT(bp->b_target->bt_mount == mp); 2900 bp->b_iodone = xlog_recover_iodone; 2901 xfs_buf_delwri_queue(bp, buffer_list); 2902 2903 out_release: 2904 xfs_buf_relse(bp); 2905 error: 2906 if (need_free) 2907 kmem_free(in_f); 2908 return XFS_ERROR(error); 2909 } 2910 2911 /* 2912 * Recover QUOTAOFF records. We simply make a note of it in the xlog 2913 * structure, so that we know not to do any dquot item or dquot buffer recovery, 2914 * of that type. 2915 */ 2916 STATIC int 2917 xlog_recover_quotaoff_pass1( 2918 struct xlog *log, 2919 struct xlog_recover_item *item) 2920 { 2921 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr; 2922 ASSERT(qoff_f); 2923 2924 /* 2925 * The logitem format's flag tells us if this was user quotaoff, 2926 * group/project quotaoff or both. 2927 */ 2928 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 2929 log->l_quotaoffs_flag |= XFS_DQ_USER; 2930 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 2931 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 2932 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 2933 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 2934 2935 return (0); 2936 } 2937 2938 /* 2939 * Recover a dquot record 2940 */ 2941 STATIC int 2942 xlog_recover_dquot_pass2( 2943 struct xlog *log, 2944 struct list_head *buffer_list, 2945 struct xlog_recover_item *item, 2946 xfs_lsn_t current_lsn) 2947 { 2948 xfs_mount_t *mp = log->l_mp; 2949 xfs_buf_t *bp; 2950 struct xfs_disk_dquot *ddq, *recddq; 2951 int error; 2952 xfs_dq_logformat_t *dq_f; 2953 uint type; 2954 2955 2956 /* 2957 * Filesystems are required to send in quota flags at mount time. 2958 */ 2959 if (mp->m_qflags == 0) 2960 return (0); 2961 2962 recddq = item->ri_buf[1].i_addr; 2963 if (recddq == NULL) { 2964 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__); 2965 return XFS_ERROR(EIO); 2966 } 2967 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) { 2968 xfs_alert(log->l_mp, "dquot too small (%d) in %s.", 2969 item->ri_buf[1].i_len, __func__); 2970 return XFS_ERROR(EIO); 2971 } 2972 2973 /* 2974 * This type of quotas was turned off, so ignore this record. 2975 */ 2976 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 2977 ASSERT(type); 2978 if (log->l_quotaoffs_flag & type) 2979 return (0); 2980 2981 /* 2982 * At this point we know that quota was _not_ turned off. 2983 * Since the mount flags are not indicating to us otherwise, this 2984 * must mean that quota is on, and the dquot needs to be replayed. 2985 * Remember that we may not have fully recovered the superblock yet, 2986 * so we can't do the usual trick of looking at the SB quota bits. 2987 * 2988 * The other possibility, of course, is that the quota subsystem was 2989 * removed since the last mount - ENOSYS. 2990 */ 2991 dq_f = item->ri_buf[0].i_addr; 2992 ASSERT(dq_f); 2993 error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2994 "xlog_recover_dquot_pass2 (log copy)"); 2995 if (error) 2996 return XFS_ERROR(EIO); 2997 ASSERT(dq_f->qlf_len == 1); 2998 2999 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno, 3000 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp, 3001 NULL); 3002 if (error) 3003 return error; 3004 3005 ASSERT(bp); 3006 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset); 3007 3008 /* 3009 * At least the magic num portion should be on disk because this 3010 * was among a chunk of dquots created earlier, and we did some 3011 * minimal initialization then. 3012 */ 3013 error = xfs_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 3014 "xlog_recover_dquot_pass2"); 3015 if (error) { 3016 xfs_buf_relse(bp); 3017 return XFS_ERROR(EIO); 3018 } 3019 3020 /* 3021 * If the dquot has an LSN in it, recover the dquot only if it's less 3022 * than the lsn of the transaction we are replaying. 3023 */ 3024 if (xfs_sb_version_hascrc(&mp->m_sb)) { 3025 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq; 3026 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn); 3027 3028 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 3029 goto out_release; 3030 } 3031 } 3032 3033 memcpy(ddq, recddq, item->ri_buf[1].i_len); 3034 if (xfs_sb_version_hascrc(&mp->m_sb)) { 3035 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk), 3036 XFS_DQUOT_CRC_OFF); 3037 } 3038 3039 ASSERT(dq_f->qlf_size == 2); 3040 ASSERT(bp->b_target->bt_mount == mp); 3041 bp->b_iodone = xlog_recover_iodone; 3042 xfs_buf_delwri_queue(bp, buffer_list); 3043 3044 out_release: 3045 xfs_buf_relse(bp); 3046 return 0; 3047 } 3048 3049 /* 3050 * This routine is called to create an in-core extent free intent 3051 * item from the efi format structure which was logged on disk. 3052 * It allocates an in-core efi, copies the extents from the format 3053 * structure into it, and adds the efi to the AIL with the given 3054 * LSN. 3055 */ 3056 STATIC int 3057 xlog_recover_efi_pass2( 3058 struct xlog *log, 3059 struct xlog_recover_item *item, 3060 xfs_lsn_t lsn) 3061 { 3062 int error; 3063 xfs_mount_t *mp = log->l_mp; 3064 xfs_efi_log_item_t *efip; 3065 xfs_efi_log_format_t *efi_formatp; 3066 3067 efi_formatp = item->ri_buf[0].i_addr; 3068 3069 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 3070 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]), 3071 &(efip->efi_format)))) { 3072 xfs_efi_item_free(efip); 3073 return error; 3074 } 3075 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 3076 3077 spin_lock(&log->l_ailp->xa_lock); 3078 /* 3079 * xfs_trans_ail_update() drops the AIL lock. 3080 */ 3081 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn); 3082 return 0; 3083 } 3084 3085 3086 /* 3087 * This routine is called when an efd format structure is found in 3088 * a committed transaction in the log. It's purpose is to cancel 3089 * the corresponding efi if it was still in the log. To do this 3090 * it searches the AIL for the efi with an id equal to that in the 3091 * efd format structure. If we find it, we remove the efi from the 3092 * AIL and free it. 3093 */ 3094 STATIC int 3095 xlog_recover_efd_pass2( 3096 struct xlog *log, 3097 struct xlog_recover_item *item) 3098 { 3099 xfs_efd_log_format_t *efd_formatp; 3100 xfs_efi_log_item_t *efip = NULL; 3101 xfs_log_item_t *lip; 3102 __uint64_t efi_id; 3103 struct xfs_ail_cursor cur; 3104 struct xfs_ail *ailp = log->l_ailp; 3105 3106 efd_formatp = item->ri_buf[0].i_addr; 3107 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 3108 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 3109 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 3110 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 3111 efi_id = efd_formatp->efd_efi_id; 3112 3113 /* 3114 * Search for the efi with the id in the efd format structure 3115 * in the AIL. 3116 */ 3117 spin_lock(&ailp->xa_lock); 3118 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3119 while (lip != NULL) { 3120 if (lip->li_type == XFS_LI_EFI) { 3121 efip = (xfs_efi_log_item_t *)lip; 3122 if (efip->efi_format.efi_id == efi_id) { 3123 /* 3124 * xfs_trans_ail_delete() drops the 3125 * AIL lock. 3126 */ 3127 xfs_trans_ail_delete(ailp, lip, 3128 SHUTDOWN_CORRUPT_INCORE); 3129 xfs_efi_item_free(efip); 3130 spin_lock(&ailp->xa_lock); 3131 break; 3132 } 3133 } 3134 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3135 } 3136 xfs_trans_ail_cursor_done(ailp, &cur); 3137 spin_unlock(&ailp->xa_lock); 3138 3139 return 0; 3140 } 3141 3142 /* 3143 * This routine is called when an inode create format structure is found in a 3144 * committed transaction in the log. It's purpose is to initialise the inodes 3145 * being allocated on disk. This requires us to get inode cluster buffers that 3146 * match the range to be intialised, stamped with inode templates and written 3147 * by delayed write so that subsequent modifications will hit the cached buffer 3148 * and only need writing out at the end of recovery. 3149 */ 3150 STATIC int 3151 xlog_recover_do_icreate_pass2( 3152 struct xlog *log, 3153 struct list_head *buffer_list, 3154 xlog_recover_item_t *item) 3155 { 3156 struct xfs_mount *mp = log->l_mp; 3157 struct xfs_icreate_log *icl; 3158 xfs_agnumber_t agno; 3159 xfs_agblock_t agbno; 3160 unsigned int count; 3161 unsigned int isize; 3162 xfs_agblock_t length; 3163 3164 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr; 3165 if (icl->icl_type != XFS_LI_ICREATE) { 3166 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type"); 3167 return EINVAL; 3168 } 3169 3170 if (icl->icl_size != 1) { 3171 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size"); 3172 return EINVAL; 3173 } 3174 3175 agno = be32_to_cpu(icl->icl_ag); 3176 if (agno >= mp->m_sb.sb_agcount) { 3177 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno"); 3178 return EINVAL; 3179 } 3180 agbno = be32_to_cpu(icl->icl_agbno); 3181 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) { 3182 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno"); 3183 return EINVAL; 3184 } 3185 isize = be32_to_cpu(icl->icl_isize); 3186 if (isize != mp->m_sb.sb_inodesize) { 3187 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize"); 3188 return EINVAL; 3189 } 3190 count = be32_to_cpu(icl->icl_count); 3191 if (!count) { 3192 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count"); 3193 return EINVAL; 3194 } 3195 length = be32_to_cpu(icl->icl_length); 3196 if (!length || length >= mp->m_sb.sb_agblocks) { 3197 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length"); 3198 return EINVAL; 3199 } 3200 3201 /* existing allocation is fixed value */ 3202 ASSERT(count == XFS_IALLOC_INODES(mp)); 3203 ASSERT(length == XFS_IALLOC_BLOCKS(mp)); 3204 if (count != XFS_IALLOC_INODES(mp) || 3205 length != XFS_IALLOC_BLOCKS(mp)) { 3206 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2"); 3207 return EINVAL; 3208 } 3209 3210 /* 3211 * Inode buffers can be freed. Do not replay the inode initialisation as 3212 * we could be overwriting something written after this inode buffer was 3213 * cancelled. 3214 * 3215 * XXX: we need to iterate all buffers and only init those that are not 3216 * cancelled. I think that a more fine grained factoring of 3217 * xfs_ialloc_inode_init may be appropriate here to enable this to be 3218 * done easily. 3219 */ 3220 if (xlog_check_buffer_cancelled(log, 3221 XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0)) 3222 return 0; 3223 3224 xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length, 3225 be32_to_cpu(icl->icl_gen)); 3226 return 0; 3227 } 3228 3229 /* 3230 * Free up any resources allocated by the transaction 3231 * 3232 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 3233 */ 3234 STATIC void 3235 xlog_recover_free_trans( 3236 struct xlog_recover *trans) 3237 { 3238 xlog_recover_item_t *item, *n; 3239 int i; 3240 3241 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 3242 /* Free the regions in the item. */ 3243 list_del(&item->ri_list); 3244 for (i = 0; i < item->ri_cnt; i++) 3245 kmem_free(item->ri_buf[i].i_addr); 3246 /* Free the item itself */ 3247 kmem_free(item->ri_buf); 3248 kmem_free(item); 3249 } 3250 /* Free the transaction recover structure */ 3251 kmem_free(trans); 3252 } 3253 3254 STATIC void 3255 xlog_recover_buffer_ra_pass2( 3256 struct xlog *log, 3257 struct xlog_recover_item *item) 3258 { 3259 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr; 3260 struct xfs_mount *mp = log->l_mp; 3261 3262 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno, 3263 buf_f->blf_len, buf_f->blf_flags)) { 3264 return; 3265 } 3266 3267 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno, 3268 buf_f->blf_len, NULL); 3269 } 3270 3271 STATIC void 3272 xlog_recover_inode_ra_pass2( 3273 struct xlog *log, 3274 struct xlog_recover_item *item) 3275 { 3276 struct xfs_inode_log_format ilf_buf; 3277 struct xfs_inode_log_format *ilfp; 3278 struct xfs_mount *mp = log->l_mp; 3279 int error; 3280 3281 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { 3282 ilfp = item->ri_buf[0].i_addr; 3283 } else { 3284 ilfp = &ilf_buf; 3285 memset(ilfp, 0, sizeof(*ilfp)); 3286 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp); 3287 if (error) 3288 return; 3289 } 3290 3291 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0)) 3292 return; 3293 3294 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno, 3295 ilfp->ilf_len, &xfs_inode_buf_ra_ops); 3296 } 3297 3298 STATIC void 3299 xlog_recover_dquot_ra_pass2( 3300 struct xlog *log, 3301 struct xlog_recover_item *item) 3302 { 3303 struct xfs_mount *mp = log->l_mp; 3304 struct xfs_disk_dquot *recddq; 3305 struct xfs_dq_logformat *dq_f; 3306 uint type; 3307 3308 3309 if (mp->m_qflags == 0) 3310 return; 3311 3312 recddq = item->ri_buf[1].i_addr; 3313 if (recddq == NULL) 3314 return; 3315 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot)) 3316 return; 3317 3318 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 3319 ASSERT(type); 3320 if (log->l_quotaoffs_flag & type) 3321 return; 3322 3323 dq_f = item->ri_buf[0].i_addr; 3324 ASSERT(dq_f); 3325 ASSERT(dq_f->qlf_len == 1); 3326 3327 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, 3328 XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL); 3329 } 3330 3331 STATIC void 3332 xlog_recover_ra_pass2( 3333 struct xlog *log, 3334 struct xlog_recover_item *item) 3335 { 3336 switch (ITEM_TYPE(item)) { 3337 case XFS_LI_BUF: 3338 xlog_recover_buffer_ra_pass2(log, item); 3339 break; 3340 case XFS_LI_INODE: 3341 xlog_recover_inode_ra_pass2(log, item); 3342 break; 3343 case XFS_LI_DQUOT: 3344 xlog_recover_dquot_ra_pass2(log, item); 3345 break; 3346 case XFS_LI_EFI: 3347 case XFS_LI_EFD: 3348 case XFS_LI_QUOTAOFF: 3349 default: 3350 break; 3351 } 3352 } 3353 3354 STATIC int 3355 xlog_recover_commit_pass1( 3356 struct xlog *log, 3357 struct xlog_recover *trans, 3358 struct xlog_recover_item *item) 3359 { 3360 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1); 3361 3362 switch (ITEM_TYPE(item)) { 3363 case XFS_LI_BUF: 3364 return xlog_recover_buffer_pass1(log, item); 3365 case XFS_LI_QUOTAOFF: 3366 return xlog_recover_quotaoff_pass1(log, item); 3367 case XFS_LI_INODE: 3368 case XFS_LI_EFI: 3369 case XFS_LI_EFD: 3370 case XFS_LI_DQUOT: 3371 case XFS_LI_ICREATE: 3372 /* nothing to do in pass 1 */ 3373 return 0; 3374 default: 3375 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 3376 __func__, ITEM_TYPE(item)); 3377 ASSERT(0); 3378 return XFS_ERROR(EIO); 3379 } 3380 } 3381 3382 STATIC int 3383 xlog_recover_commit_pass2( 3384 struct xlog *log, 3385 struct xlog_recover *trans, 3386 struct list_head *buffer_list, 3387 struct xlog_recover_item *item) 3388 { 3389 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2); 3390 3391 switch (ITEM_TYPE(item)) { 3392 case XFS_LI_BUF: 3393 return xlog_recover_buffer_pass2(log, buffer_list, item, 3394 trans->r_lsn); 3395 case XFS_LI_INODE: 3396 return xlog_recover_inode_pass2(log, buffer_list, item, 3397 trans->r_lsn); 3398 case XFS_LI_EFI: 3399 return xlog_recover_efi_pass2(log, item, trans->r_lsn); 3400 case XFS_LI_EFD: 3401 return xlog_recover_efd_pass2(log, item); 3402 case XFS_LI_DQUOT: 3403 return xlog_recover_dquot_pass2(log, buffer_list, item, 3404 trans->r_lsn); 3405 case XFS_LI_ICREATE: 3406 return xlog_recover_do_icreate_pass2(log, buffer_list, item); 3407 case XFS_LI_QUOTAOFF: 3408 /* nothing to do in pass2 */ 3409 return 0; 3410 default: 3411 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 3412 __func__, ITEM_TYPE(item)); 3413 ASSERT(0); 3414 return XFS_ERROR(EIO); 3415 } 3416 } 3417 3418 STATIC int 3419 xlog_recover_items_pass2( 3420 struct xlog *log, 3421 struct xlog_recover *trans, 3422 struct list_head *buffer_list, 3423 struct list_head *item_list) 3424 { 3425 struct xlog_recover_item *item; 3426 int error = 0; 3427 3428 list_for_each_entry(item, item_list, ri_list) { 3429 error = xlog_recover_commit_pass2(log, trans, 3430 buffer_list, item); 3431 if (error) 3432 return error; 3433 } 3434 3435 return error; 3436 } 3437 3438 /* 3439 * Perform the transaction. 3440 * 3441 * If the transaction modifies a buffer or inode, do it now. Otherwise, 3442 * EFIs and EFDs get queued up by adding entries into the AIL for them. 3443 */ 3444 STATIC int 3445 xlog_recover_commit_trans( 3446 struct xlog *log, 3447 struct xlog_recover *trans, 3448 int pass) 3449 { 3450 int error = 0; 3451 int error2; 3452 int items_queued = 0; 3453 struct xlog_recover_item *item; 3454 struct xlog_recover_item *next; 3455 LIST_HEAD (buffer_list); 3456 LIST_HEAD (ra_list); 3457 LIST_HEAD (done_list); 3458 3459 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100 3460 3461 hlist_del(&trans->r_list); 3462 3463 error = xlog_recover_reorder_trans(log, trans, pass); 3464 if (error) 3465 return error; 3466 3467 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) { 3468 switch (pass) { 3469 case XLOG_RECOVER_PASS1: 3470 error = xlog_recover_commit_pass1(log, trans, item); 3471 break; 3472 case XLOG_RECOVER_PASS2: 3473 xlog_recover_ra_pass2(log, item); 3474 list_move_tail(&item->ri_list, &ra_list); 3475 items_queued++; 3476 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) { 3477 error = xlog_recover_items_pass2(log, trans, 3478 &buffer_list, &ra_list); 3479 list_splice_tail_init(&ra_list, &done_list); 3480 items_queued = 0; 3481 } 3482 3483 break; 3484 default: 3485 ASSERT(0); 3486 } 3487 3488 if (error) 3489 goto out; 3490 } 3491 3492 out: 3493 if (!list_empty(&ra_list)) { 3494 if (!error) 3495 error = xlog_recover_items_pass2(log, trans, 3496 &buffer_list, &ra_list); 3497 list_splice_tail_init(&ra_list, &done_list); 3498 } 3499 3500 if (!list_empty(&done_list)) 3501 list_splice_init(&done_list, &trans->r_itemq); 3502 3503 xlog_recover_free_trans(trans); 3504 3505 error2 = xfs_buf_delwri_submit(&buffer_list); 3506 return error ? error : error2; 3507 } 3508 3509 STATIC int 3510 xlog_recover_unmount_trans( 3511 struct xlog *log, 3512 struct xlog_recover *trans) 3513 { 3514 /* Do nothing now */ 3515 xfs_warn(log->l_mp, "%s: Unmount LR", __func__); 3516 return 0; 3517 } 3518 3519 /* 3520 * There are two valid states of the r_state field. 0 indicates that the 3521 * transaction structure is in a normal state. We have either seen the 3522 * start of the transaction or the last operation we added was not a partial 3523 * operation. If the last operation we added to the transaction was a 3524 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 3525 * 3526 * NOTE: skip LRs with 0 data length. 3527 */ 3528 STATIC int 3529 xlog_recover_process_data( 3530 struct xlog *log, 3531 struct hlist_head rhash[], 3532 struct xlog_rec_header *rhead, 3533 xfs_caddr_t dp, 3534 int pass) 3535 { 3536 xfs_caddr_t lp; 3537 int num_logops; 3538 xlog_op_header_t *ohead; 3539 xlog_recover_t *trans; 3540 xlog_tid_t tid; 3541 int error; 3542 unsigned long hash; 3543 uint flags; 3544 3545 lp = dp + be32_to_cpu(rhead->h_len); 3546 num_logops = be32_to_cpu(rhead->h_num_logops); 3547 3548 /* check the log format matches our own - else we can't recover */ 3549 if (xlog_header_check_recover(log->l_mp, rhead)) 3550 return (XFS_ERROR(EIO)); 3551 3552 while ((dp < lp) && num_logops) { 3553 ASSERT(dp + sizeof(xlog_op_header_t) <= lp); 3554 ohead = (xlog_op_header_t *)dp; 3555 dp += sizeof(xlog_op_header_t); 3556 if (ohead->oh_clientid != XFS_TRANSACTION && 3557 ohead->oh_clientid != XFS_LOG) { 3558 xfs_warn(log->l_mp, "%s: bad clientid 0x%x", 3559 __func__, ohead->oh_clientid); 3560 ASSERT(0); 3561 return (XFS_ERROR(EIO)); 3562 } 3563 tid = be32_to_cpu(ohead->oh_tid); 3564 hash = XLOG_RHASH(tid); 3565 trans = xlog_recover_find_tid(&rhash[hash], tid); 3566 if (trans == NULL) { /* not found; add new tid */ 3567 if (ohead->oh_flags & XLOG_START_TRANS) 3568 xlog_recover_new_tid(&rhash[hash], tid, 3569 be64_to_cpu(rhead->h_lsn)); 3570 } else { 3571 if (dp + be32_to_cpu(ohead->oh_len) > lp) { 3572 xfs_warn(log->l_mp, "%s: bad length 0x%x", 3573 __func__, be32_to_cpu(ohead->oh_len)); 3574 WARN_ON(1); 3575 return (XFS_ERROR(EIO)); 3576 } 3577 flags = ohead->oh_flags & ~XLOG_END_TRANS; 3578 if (flags & XLOG_WAS_CONT_TRANS) 3579 flags &= ~XLOG_CONTINUE_TRANS; 3580 switch (flags) { 3581 case XLOG_COMMIT_TRANS: 3582 error = xlog_recover_commit_trans(log, 3583 trans, pass); 3584 break; 3585 case XLOG_UNMOUNT_TRANS: 3586 error = xlog_recover_unmount_trans(log, trans); 3587 break; 3588 case XLOG_WAS_CONT_TRANS: 3589 error = xlog_recover_add_to_cont_trans(log, 3590 trans, dp, 3591 be32_to_cpu(ohead->oh_len)); 3592 break; 3593 case XLOG_START_TRANS: 3594 xfs_warn(log->l_mp, "%s: bad transaction", 3595 __func__); 3596 ASSERT(0); 3597 error = XFS_ERROR(EIO); 3598 break; 3599 case 0: 3600 case XLOG_CONTINUE_TRANS: 3601 error = xlog_recover_add_to_trans(log, trans, 3602 dp, be32_to_cpu(ohead->oh_len)); 3603 break; 3604 default: 3605 xfs_warn(log->l_mp, "%s: bad flag 0x%x", 3606 __func__, flags); 3607 ASSERT(0); 3608 error = XFS_ERROR(EIO); 3609 break; 3610 } 3611 if (error) 3612 return error; 3613 } 3614 dp += be32_to_cpu(ohead->oh_len); 3615 num_logops--; 3616 } 3617 return 0; 3618 } 3619 3620 /* 3621 * Process an extent free intent item that was recovered from 3622 * the log. We need to free the extents that it describes. 3623 */ 3624 STATIC int 3625 xlog_recover_process_efi( 3626 xfs_mount_t *mp, 3627 xfs_efi_log_item_t *efip) 3628 { 3629 xfs_efd_log_item_t *efdp; 3630 xfs_trans_t *tp; 3631 int i; 3632 int error = 0; 3633 xfs_extent_t *extp; 3634 xfs_fsblock_t startblock_fsb; 3635 3636 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)); 3637 3638 /* 3639 * First check the validity of the extents described by the 3640 * EFI. If any are bad, then assume that all are bad and 3641 * just toss the EFI. 3642 */ 3643 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3644 extp = &(efip->efi_format.efi_extents[i]); 3645 startblock_fsb = XFS_BB_TO_FSB(mp, 3646 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 3647 if ((startblock_fsb == 0) || 3648 (extp->ext_len == 0) || 3649 (startblock_fsb >= mp->m_sb.sb_dblocks) || 3650 (extp->ext_len >= mp->m_sb.sb_agblocks)) { 3651 /* 3652 * This will pull the EFI from the AIL and 3653 * free the memory associated with it. 3654 */ 3655 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); 3656 xfs_efi_release(efip, efip->efi_format.efi_nextents); 3657 return XFS_ERROR(EIO); 3658 } 3659 } 3660 3661 tp = xfs_trans_alloc(mp, 0); 3662 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0); 3663 if (error) 3664 goto abort_error; 3665 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 3666 3667 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3668 extp = &(efip->efi_format.efi_extents[i]); 3669 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len); 3670 if (error) 3671 goto abort_error; 3672 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start, 3673 extp->ext_len); 3674 } 3675 3676 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); 3677 error = xfs_trans_commit(tp, 0); 3678 return error; 3679 3680 abort_error: 3681 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3682 return error; 3683 } 3684 3685 /* 3686 * When this is called, all of the EFIs which did not have 3687 * corresponding EFDs should be in the AIL. What we do now 3688 * is free the extents associated with each one. 3689 * 3690 * Since we process the EFIs in normal transactions, they 3691 * will be removed at some point after the commit. This prevents 3692 * us from just walking down the list processing each one. 3693 * We'll use a flag in the EFI to skip those that we've already 3694 * processed and use the AIL iteration mechanism's generation 3695 * count to try to speed this up at least a bit. 3696 * 3697 * When we start, we know that the EFIs are the only things in 3698 * the AIL. As we process them, however, other items are added 3699 * to the AIL. Since everything added to the AIL must come after 3700 * everything already in the AIL, we stop processing as soon as 3701 * we see something other than an EFI in the AIL. 3702 */ 3703 STATIC int 3704 xlog_recover_process_efis( 3705 struct xlog *log) 3706 { 3707 xfs_log_item_t *lip; 3708 xfs_efi_log_item_t *efip; 3709 int error = 0; 3710 struct xfs_ail_cursor cur; 3711 struct xfs_ail *ailp; 3712 3713 ailp = log->l_ailp; 3714 spin_lock(&ailp->xa_lock); 3715 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3716 while (lip != NULL) { 3717 /* 3718 * We're done when we see something other than an EFI. 3719 * There should be no EFIs left in the AIL now. 3720 */ 3721 if (lip->li_type != XFS_LI_EFI) { 3722 #ifdef DEBUG 3723 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 3724 ASSERT(lip->li_type != XFS_LI_EFI); 3725 #endif 3726 break; 3727 } 3728 3729 /* 3730 * Skip EFIs that we've already processed. 3731 */ 3732 efip = (xfs_efi_log_item_t *)lip; 3733 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) { 3734 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3735 continue; 3736 } 3737 3738 spin_unlock(&ailp->xa_lock); 3739 error = xlog_recover_process_efi(log->l_mp, efip); 3740 spin_lock(&ailp->xa_lock); 3741 if (error) 3742 goto out; 3743 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3744 } 3745 out: 3746 xfs_trans_ail_cursor_done(ailp, &cur); 3747 spin_unlock(&ailp->xa_lock); 3748 return error; 3749 } 3750 3751 /* 3752 * This routine performs a transaction to null out a bad inode pointer 3753 * in an agi unlinked inode hash bucket. 3754 */ 3755 STATIC void 3756 xlog_recover_clear_agi_bucket( 3757 xfs_mount_t *mp, 3758 xfs_agnumber_t agno, 3759 int bucket) 3760 { 3761 xfs_trans_t *tp; 3762 xfs_agi_t *agi; 3763 xfs_buf_t *agibp; 3764 int offset; 3765 int error; 3766 3767 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); 3768 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0); 3769 if (error) 3770 goto out_abort; 3771 3772 error = xfs_read_agi(mp, tp, agno, &agibp); 3773 if (error) 3774 goto out_abort; 3775 3776 agi = XFS_BUF_TO_AGI(agibp); 3777 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 3778 offset = offsetof(xfs_agi_t, agi_unlinked) + 3779 (sizeof(xfs_agino_t) * bucket); 3780 xfs_trans_log_buf(tp, agibp, offset, 3781 (offset + sizeof(xfs_agino_t) - 1)); 3782 3783 error = xfs_trans_commit(tp, 0); 3784 if (error) 3785 goto out_error; 3786 return; 3787 3788 out_abort: 3789 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3790 out_error: 3791 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); 3792 return; 3793 } 3794 3795 STATIC xfs_agino_t 3796 xlog_recover_process_one_iunlink( 3797 struct xfs_mount *mp, 3798 xfs_agnumber_t agno, 3799 xfs_agino_t agino, 3800 int bucket) 3801 { 3802 struct xfs_buf *ibp; 3803 struct xfs_dinode *dip; 3804 struct xfs_inode *ip; 3805 xfs_ino_t ino; 3806 int error; 3807 3808 ino = XFS_AGINO_TO_INO(mp, agno, agino); 3809 error = xfs_iget(mp, NULL, ino, 0, 0, &ip); 3810 if (error) 3811 goto fail; 3812 3813 /* 3814 * Get the on disk inode to find the next inode in the bucket. 3815 */ 3816 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0); 3817 if (error) 3818 goto fail_iput; 3819 3820 ASSERT(ip->i_d.di_nlink == 0); 3821 ASSERT(ip->i_d.di_mode != 0); 3822 3823 /* setup for the next pass */ 3824 agino = be32_to_cpu(dip->di_next_unlinked); 3825 xfs_buf_relse(ibp); 3826 3827 /* 3828 * Prevent any DMAPI event from being sent when the reference on 3829 * the inode is dropped. 3830 */ 3831 ip->i_d.di_dmevmask = 0; 3832 3833 IRELE(ip); 3834 return agino; 3835 3836 fail_iput: 3837 IRELE(ip); 3838 fail: 3839 /* 3840 * We can't read in the inode this bucket points to, or this inode 3841 * is messed up. Just ditch this bucket of inodes. We will lose 3842 * some inodes and space, but at least we won't hang. 3843 * 3844 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 3845 * clear the inode pointer in the bucket. 3846 */ 3847 xlog_recover_clear_agi_bucket(mp, agno, bucket); 3848 return NULLAGINO; 3849 } 3850 3851 /* 3852 * xlog_iunlink_recover 3853 * 3854 * This is called during recovery to process any inodes which 3855 * we unlinked but not freed when the system crashed. These 3856 * inodes will be on the lists in the AGI blocks. What we do 3857 * here is scan all the AGIs and fully truncate and free any 3858 * inodes found on the lists. Each inode is removed from the 3859 * lists when it has been fully truncated and is freed. The 3860 * freeing of the inode and its removal from the list must be 3861 * atomic. 3862 */ 3863 STATIC void 3864 xlog_recover_process_iunlinks( 3865 struct xlog *log) 3866 { 3867 xfs_mount_t *mp; 3868 xfs_agnumber_t agno; 3869 xfs_agi_t *agi; 3870 xfs_buf_t *agibp; 3871 xfs_agino_t agino; 3872 int bucket; 3873 int error; 3874 uint mp_dmevmask; 3875 3876 mp = log->l_mp; 3877 3878 /* 3879 * Prevent any DMAPI event from being sent while in this function. 3880 */ 3881 mp_dmevmask = mp->m_dmevmask; 3882 mp->m_dmevmask = 0; 3883 3884 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3885 /* 3886 * Find the agi for this ag. 3887 */ 3888 error = xfs_read_agi(mp, NULL, agno, &agibp); 3889 if (error) { 3890 /* 3891 * AGI is b0rked. Don't process it. 3892 * 3893 * We should probably mark the filesystem as corrupt 3894 * after we've recovered all the ag's we can.... 3895 */ 3896 continue; 3897 } 3898 /* 3899 * Unlock the buffer so that it can be acquired in the normal 3900 * course of the transaction to truncate and free each inode. 3901 * Because we are not racing with anyone else here for the AGI 3902 * buffer, we don't even need to hold it locked to read the 3903 * initial unlinked bucket entries out of the buffer. We keep 3904 * buffer reference though, so that it stays pinned in memory 3905 * while we need the buffer. 3906 */ 3907 agi = XFS_BUF_TO_AGI(agibp); 3908 xfs_buf_unlock(agibp); 3909 3910 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 3911 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 3912 while (agino != NULLAGINO) { 3913 agino = xlog_recover_process_one_iunlink(mp, 3914 agno, agino, bucket); 3915 } 3916 } 3917 xfs_buf_rele(agibp); 3918 } 3919 3920 mp->m_dmevmask = mp_dmevmask; 3921 } 3922 3923 /* 3924 * Upack the log buffer data and crc check it. If the check fails, issue a 3925 * warning if and only if the CRC in the header is non-zero. This makes the 3926 * check an advisory warning, and the zero CRC check will prevent failure 3927 * warnings from being emitted when upgrading the kernel from one that does not 3928 * add CRCs by default. 3929 * 3930 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log 3931 * corruption failure 3932 */ 3933 STATIC int 3934 xlog_unpack_data_crc( 3935 struct xlog_rec_header *rhead, 3936 xfs_caddr_t dp, 3937 struct xlog *log) 3938 { 3939 __le32 crc; 3940 3941 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); 3942 if (crc != rhead->h_crc) { 3943 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) { 3944 xfs_alert(log->l_mp, 3945 "log record CRC mismatch: found 0x%x, expected 0x%x.", 3946 le32_to_cpu(rhead->h_crc), 3947 le32_to_cpu(crc)); 3948 xfs_hex_dump(dp, 32); 3949 } 3950 3951 /* 3952 * If we've detected a log record corruption, then we can't 3953 * recover past this point. Abort recovery if we are enforcing 3954 * CRC protection by punting an error back up the stack. 3955 */ 3956 if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) 3957 return EFSCORRUPTED; 3958 } 3959 3960 return 0; 3961 } 3962 3963 STATIC int 3964 xlog_unpack_data( 3965 struct xlog_rec_header *rhead, 3966 xfs_caddr_t dp, 3967 struct xlog *log) 3968 { 3969 int i, j, k; 3970 int error; 3971 3972 error = xlog_unpack_data_crc(rhead, dp, log); 3973 if (error) 3974 return error; 3975 3976 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 3977 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3978 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 3979 dp += BBSIZE; 3980 } 3981 3982 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3983 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 3984 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 3985 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3986 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3987 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 3988 dp += BBSIZE; 3989 } 3990 } 3991 3992 return 0; 3993 } 3994 3995 STATIC int 3996 xlog_valid_rec_header( 3997 struct xlog *log, 3998 struct xlog_rec_header *rhead, 3999 xfs_daddr_t blkno) 4000 { 4001 int hlen; 4002 4003 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) { 4004 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 4005 XFS_ERRLEVEL_LOW, log->l_mp); 4006 return XFS_ERROR(EFSCORRUPTED); 4007 } 4008 if (unlikely( 4009 (!rhead->h_version || 4010 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { 4011 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", 4012 __func__, be32_to_cpu(rhead->h_version)); 4013 return XFS_ERROR(EIO); 4014 } 4015 4016 /* LR body must have data or it wouldn't have been written */ 4017 hlen = be32_to_cpu(rhead->h_len); 4018 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 4019 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 4020 XFS_ERRLEVEL_LOW, log->l_mp); 4021 return XFS_ERROR(EFSCORRUPTED); 4022 } 4023 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 4024 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 4025 XFS_ERRLEVEL_LOW, log->l_mp); 4026 return XFS_ERROR(EFSCORRUPTED); 4027 } 4028 return 0; 4029 } 4030 4031 /* 4032 * Read the log from tail to head and process the log records found. 4033 * Handle the two cases where the tail and head are in the same cycle 4034 * and where the active portion of the log wraps around the end of 4035 * the physical log separately. The pass parameter is passed through 4036 * to the routines called to process the data and is not looked at 4037 * here. 4038 */ 4039 STATIC int 4040 xlog_do_recovery_pass( 4041 struct xlog *log, 4042 xfs_daddr_t head_blk, 4043 xfs_daddr_t tail_blk, 4044 int pass) 4045 { 4046 xlog_rec_header_t *rhead; 4047 xfs_daddr_t blk_no; 4048 xfs_caddr_t offset; 4049 xfs_buf_t *hbp, *dbp; 4050 int error = 0, h_size; 4051 int bblks, split_bblks; 4052 int hblks, split_hblks, wrapped_hblks; 4053 struct hlist_head rhash[XLOG_RHASH_SIZE]; 4054 4055 ASSERT(head_blk != tail_blk); 4056 4057 /* 4058 * Read the header of the tail block and get the iclog buffer size from 4059 * h_size. Use this to tell how many sectors make up the log header. 4060 */ 4061 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 4062 /* 4063 * When using variable length iclogs, read first sector of 4064 * iclog header and extract the header size from it. Get a 4065 * new hbp that is the correct size. 4066 */ 4067 hbp = xlog_get_bp(log, 1); 4068 if (!hbp) 4069 return ENOMEM; 4070 4071 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 4072 if (error) 4073 goto bread_err1; 4074 4075 rhead = (xlog_rec_header_t *)offset; 4076 error = xlog_valid_rec_header(log, rhead, tail_blk); 4077 if (error) 4078 goto bread_err1; 4079 h_size = be32_to_cpu(rhead->h_size); 4080 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 4081 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 4082 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 4083 if (h_size % XLOG_HEADER_CYCLE_SIZE) 4084 hblks++; 4085 xlog_put_bp(hbp); 4086 hbp = xlog_get_bp(log, hblks); 4087 } else { 4088 hblks = 1; 4089 } 4090 } else { 4091 ASSERT(log->l_sectBBsize == 1); 4092 hblks = 1; 4093 hbp = xlog_get_bp(log, 1); 4094 h_size = XLOG_BIG_RECORD_BSIZE; 4095 } 4096 4097 if (!hbp) 4098 return ENOMEM; 4099 dbp = xlog_get_bp(log, BTOBB(h_size)); 4100 if (!dbp) { 4101 xlog_put_bp(hbp); 4102 return ENOMEM; 4103 } 4104 4105 memset(rhash, 0, sizeof(rhash)); 4106 if (tail_blk <= head_blk) { 4107 for (blk_no = tail_blk; blk_no < head_blk; ) { 4108 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 4109 if (error) 4110 goto bread_err2; 4111 4112 rhead = (xlog_rec_header_t *)offset; 4113 error = xlog_valid_rec_header(log, rhead, blk_no); 4114 if (error) 4115 goto bread_err2; 4116 4117 /* blocks in data section */ 4118 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 4119 error = xlog_bread(log, blk_no + hblks, bblks, dbp, 4120 &offset); 4121 if (error) 4122 goto bread_err2; 4123 4124 error = xlog_unpack_data(rhead, offset, log); 4125 if (error) 4126 goto bread_err2; 4127 4128 error = xlog_recover_process_data(log, 4129 rhash, rhead, offset, pass); 4130 if (error) 4131 goto bread_err2; 4132 blk_no += bblks + hblks; 4133 } 4134 } else { 4135 /* 4136 * Perform recovery around the end of the physical log. 4137 * When the head is not on the same cycle number as the tail, 4138 * we can't do a sequential recovery as above. 4139 */ 4140 blk_no = tail_blk; 4141 while (blk_no < log->l_logBBsize) { 4142 /* 4143 * Check for header wrapping around physical end-of-log 4144 */ 4145 offset = hbp->b_addr; 4146 split_hblks = 0; 4147 wrapped_hblks = 0; 4148 if (blk_no + hblks <= log->l_logBBsize) { 4149 /* Read header in one read */ 4150 error = xlog_bread(log, blk_no, hblks, hbp, 4151 &offset); 4152 if (error) 4153 goto bread_err2; 4154 } else { 4155 /* This LR is split across physical log end */ 4156 if (blk_no != log->l_logBBsize) { 4157 /* some data before physical log end */ 4158 ASSERT(blk_no <= INT_MAX); 4159 split_hblks = log->l_logBBsize - (int)blk_no; 4160 ASSERT(split_hblks > 0); 4161 error = xlog_bread(log, blk_no, 4162 split_hblks, hbp, 4163 &offset); 4164 if (error) 4165 goto bread_err2; 4166 } 4167 4168 /* 4169 * Note: this black magic still works with 4170 * large sector sizes (non-512) only because: 4171 * - we increased the buffer size originally 4172 * by 1 sector giving us enough extra space 4173 * for the second read; 4174 * - the log start is guaranteed to be sector 4175 * aligned; 4176 * - we read the log end (LR header start) 4177 * _first_, then the log start (LR header end) 4178 * - order is important. 4179 */ 4180 wrapped_hblks = hblks - split_hblks; 4181 error = xlog_bread_offset(log, 0, 4182 wrapped_hblks, hbp, 4183 offset + BBTOB(split_hblks)); 4184 if (error) 4185 goto bread_err2; 4186 } 4187 rhead = (xlog_rec_header_t *)offset; 4188 error = xlog_valid_rec_header(log, rhead, 4189 split_hblks ? blk_no : 0); 4190 if (error) 4191 goto bread_err2; 4192 4193 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 4194 blk_no += hblks; 4195 4196 /* Read in data for log record */ 4197 if (blk_no + bblks <= log->l_logBBsize) { 4198 error = xlog_bread(log, blk_no, bblks, dbp, 4199 &offset); 4200 if (error) 4201 goto bread_err2; 4202 } else { 4203 /* This log record is split across the 4204 * physical end of log */ 4205 offset = dbp->b_addr; 4206 split_bblks = 0; 4207 if (blk_no != log->l_logBBsize) { 4208 /* some data is before the physical 4209 * end of log */ 4210 ASSERT(!wrapped_hblks); 4211 ASSERT(blk_no <= INT_MAX); 4212 split_bblks = 4213 log->l_logBBsize - (int)blk_no; 4214 ASSERT(split_bblks > 0); 4215 error = xlog_bread(log, blk_no, 4216 split_bblks, dbp, 4217 &offset); 4218 if (error) 4219 goto bread_err2; 4220 } 4221 4222 /* 4223 * Note: this black magic still works with 4224 * large sector sizes (non-512) only because: 4225 * - we increased the buffer size originally 4226 * by 1 sector giving us enough extra space 4227 * for the second read; 4228 * - the log start is guaranteed to be sector 4229 * aligned; 4230 * - we read the log end (LR header start) 4231 * _first_, then the log start (LR header end) 4232 * - order is important. 4233 */ 4234 error = xlog_bread_offset(log, 0, 4235 bblks - split_bblks, dbp, 4236 offset + BBTOB(split_bblks)); 4237 if (error) 4238 goto bread_err2; 4239 } 4240 4241 error = xlog_unpack_data(rhead, offset, log); 4242 if (error) 4243 goto bread_err2; 4244 4245 error = xlog_recover_process_data(log, rhash, 4246 rhead, offset, pass); 4247 if (error) 4248 goto bread_err2; 4249 blk_no += bblks; 4250 } 4251 4252 ASSERT(blk_no >= log->l_logBBsize); 4253 blk_no -= log->l_logBBsize; 4254 4255 /* read first part of physical log */ 4256 while (blk_no < head_blk) { 4257 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 4258 if (error) 4259 goto bread_err2; 4260 4261 rhead = (xlog_rec_header_t *)offset; 4262 error = xlog_valid_rec_header(log, rhead, blk_no); 4263 if (error) 4264 goto bread_err2; 4265 4266 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 4267 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 4268 &offset); 4269 if (error) 4270 goto bread_err2; 4271 4272 error = xlog_unpack_data(rhead, offset, log); 4273 if (error) 4274 goto bread_err2; 4275 4276 error = xlog_recover_process_data(log, rhash, 4277 rhead, offset, pass); 4278 if (error) 4279 goto bread_err2; 4280 blk_no += bblks + hblks; 4281 } 4282 } 4283 4284 bread_err2: 4285 xlog_put_bp(dbp); 4286 bread_err1: 4287 xlog_put_bp(hbp); 4288 return error; 4289 } 4290 4291 /* 4292 * Do the recovery of the log. We actually do this in two phases. 4293 * The two passes are necessary in order to implement the function 4294 * of cancelling a record written into the log. The first pass 4295 * determines those things which have been cancelled, and the 4296 * second pass replays log items normally except for those which 4297 * have been cancelled. The handling of the replay and cancellations 4298 * takes place in the log item type specific routines. 4299 * 4300 * The table of items which have cancel records in the log is allocated 4301 * and freed at this level, since only here do we know when all of 4302 * the log recovery has been completed. 4303 */ 4304 STATIC int 4305 xlog_do_log_recovery( 4306 struct xlog *log, 4307 xfs_daddr_t head_blk, 4308 xfs_daddr_t tail_blk) 4309 { 4310 int error, i; 4311 4312 ASSERT(head_blk != tail_blk); 4313 4314 /* 4315 * First do a pass to find all of the cancelled buf log items. 4316 * Store them in the buf_cancel_table for use in the second pass. 4317 */ 4318 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * 4319 sizeof(struct list_head), 4320 KM_SLEEP); 4321 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 4322 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); 4323 4324 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 4325 XLOG_RECOVER_PASS1); 4326 if (error != 0) { 4327 kmem_free(log->l_buf_cancel_table); 4328 log->l_buf_cancel_table = NULL; 4329 return error; 4330 } 4331 /* 4332 * Then do a second pass to actually recover the items in the log. 4333 * When it is complete free the table of buf cancel items. 4334 */ 4335 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 4336 XLOG_RECOVER_PASS2); 4337 #ifdef DEBUG 4338 if (!error) { 4339 int i; 4340 4341 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 4342 ASSERT(list_empty(&log->l_buf_cancel_table[i])); 4343 } 4344 #endif /* DEBUG */ 4345 4346 kmem_free(log->l_buf_cancel_table); 4347 log->l_buf_cancel_table = NULL; 4348 4349 return error; 4350 } 4351 4352 /* 4353 * Do the actual recovery 4354 */ 4355 STATIC int 4356 xlog_do_recover( 4357 struct xlog *log, 4358 xfs_daddr_t head_blk, 4359 xfs_daddr_t tail_blk) 4360 { 4361 int error; 4362 xfs_buf_t *bp; 4363 xfs_sb_t *sbp; 4364 4365 /* 4366 * First replay the images in the log. 4367 */ 4368 error = xlog_do_log_recovery(log, head_blk, tail_blk); 4369 if (error) 4370 return error; 4371 4372 /* 4373 * If IO errors happened during recovery, bail out. 4374 */ 4375 if (XFS_FORCED_SHUTDOWN(log->l_mp)) { 4376 return (EIO); 4377 } 4378 4379 /* 4380 * We now update the tail_lsn since much of the recovery has completed 4381 * and there may be space available to use. If there were no extent 4382 * or iunlinks, we can free up the entire log and set the tail_lsn to 4383 * be the last_sync_lsn. This was set in xlog_find_tail to be the 4384 * lsn of the last known good LR on disk. If there are extent frees 4385 * or iunlinks they will have some entries in the AIL; so we look at 4386 * the AIL to determine how to set the tail_lsn. 4387 */ 4388 xlog_assign_tail_lsn(log->l_mp); 4389 4390 /* 4391 * Now that we've finished replaying all buffer and inode 4392 * updates, re-read in the superblock and reverify it. 4393 */ 4394 bp = xfs_getsb(log->l_mp, 0); 4395 XFS_BUF_UNDONE(bp); 4396 ASSERT(!(XFS_BUF_ISWRITE(bp))); 4397 XFS_BUF_READ(bp); 4398 XFS_BUF_UNASYNC(bp); 4399 bp->b_ops = &xfs_sb_buf_ops; 4400 xfsbdstrat(log->l_mp, bp); 4401 error = xfs_buf_iowait(bp); 4402 if (error) { 4403 xfs_buf_ioerror_alert(bp, __func__); 4404 ASSERT(0); 4405 xfs_buf_relse(bp); 4406 return error; 4407 } 4408 4409 /* Convert superblock from on-disk format */ 4410 sbp = &log->l_mp->m_sb; 4411 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 4412 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); 4413 ASSERT(xfs_sb_good_version(sbp)); 4414 xfs_buf_relse(bp); 4415 4416 /* We've re-read the superblock so re-initialize per-cpu counters */ 4417 xfs_icsb_reinit_counters(log->l_mp); 4418 4419 xlog_recover_check_summary(log); 4420 4421 /* Normal transactions can now occur */ 4422 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 4423 return 0; 4424 } 4425 4426 /* 4427 * Perform recovery and re-initialize some log variables in xlog_find_tail. 4428 * 4429 * Return error or zero. 4430 */ 4431 int 4432 xlog_recover( 4433 struct xlog *log) 4434 { 4435 xfs_daddr_t head_blk, tail_blk; 4436 int error; 4437 4438 /* find the tail of the log */ 4439 if ((error = xlog_find_tail(log, &head_blk, &tail_blk))) 4440 return error; 4441 4442 if (tail_blk != head_blk) { 4443 /* There used to be a comment here: 4444 * 4445 * disallow recovery on read-only mounts. note -- mount 4446 * checks for ENOSPC and turns it into an intelligent 4447 * error message. 4448 * ...but this is no longer true. Now, unless you specify 4449 * NORECOVERY (in which case this function would never be 4450 * called), we just go ahead and recover. We do this all 4451 * under the vfs layer, so we can get away with it unless 4452 * the device itself is read-only, in which case we fail. 4453 */ 4454 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 4455 return error; 4456 } 4457 4458 /* 4459 * Version 5 superblock log feature mask validation. We know the 4460 * log is dirty so check if there are any unknown log features 4461 * in what we need to recover. If there are unknown features 4462 * (e.g. unsupported transactions, then simply reject the 4463 * attempt at recovery before touching anything. 4464 */ 4465 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 && 4466 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, 4467 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { 4468 xfs_warn(log->l_mp, 4469 "Superblock has unknown incompatible log features (0x%x) enabled.\n" 4470 "The log can not be fully and/or safely recovered by this kernel.\n" 4471 "Please recover the log on a kernel that supports the unknown features.", 4472 (log->l_mp->m_sb.sb_features_log_incompat & 4473 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 4474 return EINVAL; 4475 } 4476 4477 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", 4478 log->l_mp->m_logname ? log->l_mp->m_logname 4479 : "internal"); 4480 4481 error = xlog_do_recover(log, head_blk, tail_blk); 4482 log->l_flags |= XLOG_RECOVERY_NEEDED; 4483 } 4484 return error; 4485 } 4486 4487 /* 4488 * In the first part of recovery we replay inodes and buffers and build 4489 * up the list of extent free items which need to be processed. Here 4490 * we process the extent free items and clean up the on disk unlinked 4491 * inode lists. This is separated from the first part of recovery so 4492 * that the root and real-time bitmap inodes can be read in from disk in 4493 * between the two stages. This is necessary so that we can free space 4494 * in the real-time portion of the file system. 4495 */ 4496 int 4497 xlog_recover_finish( 4498 struct xlog *log) 4499 { 4500 /* 4501 * Now we're ready to do the transactions needed for the 4502 * rest of recovery. Start with completing all the extent 4503 * free intent records and then process the unlinked inode 4504 * lists. At this point, we essentially run in normal mode 4505 * except that we're still performing recovery actions 4506 * rather than accepting new requests. 4507 */ 4508 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 4509 int error; 4510 error = xlog_recover_process_efis(log); 4511 if (error) { 4512 xfs_alert(log->l_mp, "Failed to recover EFIs"); 4513 return error; 4514 } 4515 /* 4516 * Sync the log to get all the EFIs out of the AIL. 4517 * This isn't absolutely necessary, but it helps in 4518 * case the unlink transactions would have problems 4519 * pushing the EFIs out of the way. 4520 */ 4521 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 4522 4523 xlog_recover_process_iunlinks(log); 4524 4525 xlog_recover_check_summary(log); 4526 4527 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", 4528 log->l_mp->m_logname ? log->l_mp->m_logname 4529 : "internal"); 4530 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 4531 } else { 4532 xfs_info(log->l_mp, "Ending clean mount"); 4533 } 4534 return 0; 4535 } 4536 4537 4538 #if defined(DEBUG) 4539 /* 4540 * Read all of the agf and agi counters and check that they 4541 * are consistent with the superblock counters. 4542 */ 4543 void 4544 xlog_recover_check_summary( 4545 struct xlog *log) 4546 { 4547 xfs_mount_t *mp; 4548 xfs_agf_t *agfp; 4549 xfs_buf_t *agfbp; 4550 xfs_buf_t *agibp; 4551 xfs_agnumber_t agno; 4552 __uint64_t freeblks; 4553 __uint64_t itotal; 4554 __uint64_t ifree; 4555 int error; 4556 4557 mp = log->l_mp; 4558 4559 freeblks = 0LL; 4560 itotal = 0LL; 4561 ifree = 0LL; 4562 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 4563 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 4564 if (error) { 4565 xfs_alert(mp, "%s agf read failed agno %d error %d", 4566 __func__, agno, error); 4567 } else { 4568 agfp = XFS_BUF_TO_AGF(agfbp); 4569 freeblks += be32_to_cpu(agfp->agf_freeblks) + 4570 be32_to_cpu(agfp->agf_flcount); 4571 xfs_buf_relse(agfbp); 4572 } 4573 4574 error = xfs_read_agi(mp, NULL, agno, &agibp); 4575 if (error) { 4576 xfs_alert(mp, "%s agi read failed agno %d error %d", 4577 __func__, agno, error); 4578 } else { 4579 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 4580 4581 itotal += be32_to_cpu(agi->agi_count); 4582 ifree += be32_to_cpu(agi->agi_freecount); 4583 xfs_buf_relse(agibp); 4584 } 4585 } 4586 } 4587 #endif /* DEBUG */ 4588