xref: /openbmc/linux/fs/xfs/xfs_log_recover.c (revision 79f08d9e)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_inum.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_da_format.h"
30 #include "xfs_inode.h"
31 #include "xfs_trans.h"
32 #include "xfs_log.h"
33 #include "xfs_log_priv.h"
34 #include "xfs_log_recover.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_extfree_item.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_alloc.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_quota.h"
41 #include "xfs_cksum.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_bmap_btree.h"
45 #include "xfs_dinode.h"
46 #include "xfs_error.h"
47 #include "xfs_dir2.h"
48 
49 #define BLK_AVG(blk1, blk2)	((blk1+blk2) >> 1)
50 
51 STATIC int
52 xlog_find_zeroed(
53 	struct xlog	*,
54 	xfs_daddr_t	*);
55 STATIC int
56 xlog_clear_stale_blocks(
57 	struct xlog	*,
58 	xfs_lsn_t);
59 #if defined(DEBUG)
60 STATIC void
61 xlog_recover_check_summary(
62 	struct xlog *);
63 #else
64 #define	xlog_recover_check_summary(log)
65 #endif
66 
67 /*
68  * This structure is used during recovery to record the buf log items which
69  * have been canceled and should not be replayed.
70  */
71 struct xfs_buf_cancel {
72 	xfs_daddr_t		bc_blkno;
73 	uint			bc_len;
74 	int			bc_refcount;
75 	struct list_head	bc_list;
76 };
77 
78 /*
79  * Sector aligned buffer routines for buffer create/read/write/access
80  */
81 
82 /*
83  * Verify the given count of basic blocks is valid number of blocks
84  * to specify for an operation involving the given XFS log buffer.
85  * Returns nonzero if the count is valid, 0 otherwise.
86  */
87 
88 static inline int
89 xlog_buf_bbcount_valid(
90 	struct xlog	*log,
91 	int		bbcount)
92 {
93 	return bbcount > 0 && bbcount <= log->l_logBBsize;
94 }
95 
96 /*
97  * Allocate a buffer to hold log data.  The buffer needs to be able
98  * to map to a range of nbblks basic blocks at any valid (basic
99  * block) offset within the log.
100  */
101 STATIC xfs_buf_t *
102 xlog_get_bp(
103 	struct xlog	*log,
104 	int		nbblks)
105 {
106 	struct xfs_buf	*bp;
107 
108 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
109 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
110 			nbblks);
111 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
112 		return NULL;
113 	}
114 
115 	/*
116 	 * We do log I/O in units of log sectors (a power-of-2
117 	 * multiple of the basic block size), so we round up the
118 	 * requested size to accommodate the basic blocks required
119 	 * for complete log sectors.
120 	 *
121 	 * In addition, the buffer may be used for a non-sector-
122 	 * aligned block offset, in which case an I/O of the
123 	 * requested size could extend beyond the end of the
124 	 * buffer.  If the requested size is only 1 basic block it
125 	 * will never straddle a sector boundary, so this won't be
126 	 * an issue.  Nor will this be a problem if the log I/O is
127 	 * done in basic blocks (sector size 1).  But otherwise we
128 	 * extend the buffer by one extra log sector to ensure
129 	 * there's space to accommodate this possibility.
130 	 */
131 	if (nbblks > 1 && log->l_sectBBsize > 1)
132 		nbblks += log->l_sectBBsize;
133 	nbblks = round_up(nbblks, log->l_sectBBsize);
134 
135 	bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
136 	if (bp)
137 		xfs_buf_unlock(bp);
138 	return bp;
139 }
140 
141 STATIC void
142 xlog_put_bp(
143 	xfs_buf_t	*bp)
144 {
145 	xfs_buf_free(bp);
146 }
147 
148 /*
149  * Return the address of the start of the given block number's data
150  * in a log buffer.  The buffer covers a log sector-aligned region.
151  */
152 STATIC xfs_caddr_t
153 xlog_align(
154 	struct xlog	*log,
155 	xfs_daddr_t	blk_no,
156 	int		nbblks,
157 	struct xfs_buf	*bp)
158 {
159 	xfs_daddr_t	offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
160 
161 	ASSERT(offset + nbblks <= bp->b_length);
162 	return bp->b_addr + BBTOB(offset);
163 }
164 
165 
166 /*
167  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
168  */
169 STATIC int
170 xlog_bread_noalign(
171 	struct xlog	*log,
172 	xfs_daddr_t	blk_no,
173 	int		nbblks,
174 	struct xfs_buf	*bp)
175 {
176 	int		error;
177 
178 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
179 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
180 			nbblks);
181 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
182 		return EFSCORRUPTED;
183 	}
184 
185 	blk_no = round_down(blk_no, log->l_sectBBsize);
186 	nbblks = round_up(nbblks, log->l_sectBBsize);
187 
188 	ASSERT(nbblks > 0);
189 	ASSERT(nbblks <= bp->b_length);
190 
191 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
192 	XFS_BUF_READ(bp);
193 	bp->b_io_length = nbblks;
194 	bp->b_error = 0;
195 
196 	xfsbdstrat(log->l_mp, bp);
197 	error = xfs_buf_iowait(bp);
198 	if (error)
199 		xfs_buf_ioerror_alert(bp, __func__);
200 	return error;
201 }
202 
203 STATIC int
204 xlog_bread(
205 	struct xlog	*log,
206 	xfs_daddr_t	blk_no,
207 	int		nbblks,
208 	struct xfs_buf	*bp,
209 	xfs_caddr_t	*offset)
210 {
211 	int		error;
212 
213 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
214 	if (error)
215 		return error;
216 
217 	*offset = xlog_align(log, blk_no, nbblks, bp);
218 	return 0;
219 }
220 
221 /*
222  * Read at an offset into the buffer. Returns with the buffer in it's original
223  * state regardless of the result of the read.
224  */
225 STATIC int
226 xlog_bread_offset(
227 	struct xlog	*log,
228 	xfs_daddr_t	blk_no,		/* block to read from */
229 	int		nbblks,		/* blocks to read */
230 	struct xfs_buf	*bp,
231 	xfs_caddr_t	offset)
232 {
233 	xfs_caddr_t	orig_offset = bp->b_addr;
234 	int		orig_len = BBTOB(bp->b_length);
235 	int		error, error2;
236 
237 	error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
238 	if (error)
239 		return error;
240 
241 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
242 
243 	/* must reset buffer pointer even on error */
244 	error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
245 	if (error)
246 		return error;
247 	return error2;
248 }
249 
250 /*
251  * Write out the buffer at the given block for the given number of blocks.
252  * The buffer is kept locked across the write and is returned locked.
253  * This can only be used for synchronous log writes.
254  */
255 STATIC int
256 xlog_bwrite(
257 	struct xlog	*log,
258 	xfs_daddr_t	blk_no,
259 	int		nbblks,
260 	struct xfs_buf	*bp)
261 {
262 	int		error;
263 
264 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
265 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
266 			nbblks);
267 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
268 		return EFSCORRUPTED;
269 	}
270 
271 	blk_no = round_down(blk_no, log->l_sectBBsize);
272 	nbblks = round_up(nbblks, log->l_sectBBsize);
273 
274 	ASSERT(nbblks > 0);
275 	ASSERT(nbblks <= bp->b_length);
276 
277 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
278 	XFS_BUF_ZEROFLAGS(bp);
279 	xfs_buf_hold(bp);
280 	xfs_buf_lock(bp);
281 	bp->b_io_length = nbblks;
282 	bp->b_error = 0;
283 
284 	error = xfs_bwrite(bp);
285 	if (error)
286 		xfs_buf_ioerror_alert(bp, __func__);
287 	xfs_buf_relse(bp);
288 	return error;
289 }
290 
291 #ifdef DEBUG
292 /*
293  * dump debug superblock and log record information
294  */
295 STATIC void
296 xlog_header_check_dump(
297 	xfs_mount_t		*mp,
298 	xlog_rec_header_t	*head)
299 {
300 	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
301 		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
302 	xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
303 		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
304 }
305 #else
306 #define xlog_header_check_dump(mp, head)
307 #endif
308 
309 /*
310  * check log record header for recovery
311  */
312 STATIC int
313 xlog_header_check_recover(
314 	xfs_mount_t		*mp,
315 	xlog_rec_header_t	*head)
316 {
317 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
318 
319 	/*
320 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
321 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
322 	 * a dirty log created in IRIX.
323 	 */
324 	if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
325 		xfs_warn(mp,
326 	"dirty log written in incompatible format - can't recover");
327 		xlog_header_check_dump(mp, head);
328 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
329 				 XFS_ERRLEVEL_HIGH, mp);
330 		return XFS_ERROR(EFSCORRUPTED);
331 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
332 		xfs_warn(mp,
333 	"dirty log entry has mismatched uuid - can't recover");
334 		xlog_header_check_dump(mp, head);
335 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
336 				 XFS_ERRLEVEL_HIGH, mp);
337 		return XFS_ERROR(EFSCORRUPTED);
338 	}
339 	return 0;
340 }
341 
342 /*
343  * read the head block of the log and check the header
344  */
345 STATIC int
346 xlog_header_check_mount(
347 	xfs_mount_t		*mp,
348 	xlog_rec_header_t	*head)
349 {
350 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
351 
352 	if (uuid_is_nil(&head->h_fs_uuid)) {
353 		/*
354 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
355 		 * h_fs_uuid is nil, we assume this log was last mounted
356 		 * by IRIX and continue.
357 		 */
358 		xfs_warn(mp, "nil uuid in log - IRIX style log");
359 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
360 		xfs_warn(mp, "log has mismatched uuid - can't recover");
361 		xlog_header_check_dump(mp, head);
362 		XFS_ERROR_REPORT("xlog_header_check_mount",
363 				 XFS_ERRLEVEL_HIGH, mp);
364 		return XFS_ERROR(EFSCORRUPTED);
365 	}
366 	return 0;
367 }
368 
369 STATIC void
370 xlog_recover_iodone(
371 	struct xfs_buf	*bp)
372 {
373 	if (bp->b_error) {
374 		/*
375 		 * We're not going to bother about retrying
376 		 * this during recovery. One strike!
377 		 */
378 		xfs_buf_ioerror_alert(bp, __func__);
379 		xfs_force_shutdown(bp->b_target->bt_mount,
380 					SHUTDOWN_META_IO_ERROR);
381 	}
382 	bp->b_iodone = NULL;
383 	xfs_buf_ioend(bp, 0);
384 }
385 
386 /*
387  * This routine finds (to an approximation) the first block in the physical
388  * log which contains the given cycle.  It uses a binary search algorithm.
389  * Note that the algorithm can not be perfect because the disk will not
390  * necessarily be perfect.
391  */
392 STATIC int
393 xlog_find_cycle_start(
394 	struct xlog	*log,
395 	struct xfs_buf	*bp,
396 	xfs_daddr_t	first_blk,
397 	xfs_daddr_t	*last_blk,
398 	uint		cycle)
399 {
400 	xfs_caddr_t	offset;
401 	xfs_daddr_t	mid_blk;
402 	xfs_daddr_t	end_blk;
403 	uint		mid_cycle;
404 	int		error;
405 
406 	end_blk = *last_blk;
407 	mid_blk = BLK_AVG(first_blk, end_blk);
408 	while (mid_blk != first_blk && mid_blk != end_blk) {
409 		error = xlog_bread(log, mid_blk, 1, bp, &offset);
410 		if (error)
411 			return error;
412 		mid_cycle = xlog_get_cycle(offset);
413 		if (mid_cycle == cycle)
414 			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
415 		else
416 			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
417 		mid_blk = BLK_AVG(first_blk, end_blk);
418 	}
419 	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
420 	       (mid_blk == end_blk && mid_blk-1 == first_blk));
421 
422 	*last_blk = end_blk;
423 
424 	return 0;
425 }
426 
427 /*
428  * Check that a range of blocks does not contain stop_on_cycle_no.
429  * Fill in *new_blk with the block offset where such a block is
430  * found, or with -1 (an invalid block number) if there is no such
431  * block in the range.  The scan needs to occur from front to back
432  * and the pointer into the region must be updated since a later
433  * routine will need to perform another test.
434  */
435 STATIC int
436 xlog_find_verify_cycle(
437 	struct xlog	*log,
438 	xfs_daddr_t	start_blk,
439 	int		nbblks,
440 	uint		stop_on_cycle_no,
441 	xfs_daddr_t	*new_blk)
442 {
443 	xfs_daddr_t	i, j;
444 	uint		cycle;
445 	xfs_buf_t	*bp;
446 	xfs_daddr_t	bufblks;
447 	xfs_caddr_t	buf = NULL;
448 	int		error = 0;
449 
450 	/*
451 	 * Greedily allocate a buffer big enough to handle the full
452 	 * range of basic blocks we'll be examining.  If that fails,
453 	 * try a smaller size.  We need to be able to read at least
454 	 * a log sector, or we're out of luck.
455 	 */
456 	bufblks = 1 << ffs(nbblks);
457 	while (bufblks > log->l_logBBsize)
458 		bufblks >>= 1;
459 	while (!(bp = xlog_get_bp(log, bufblks))) {
460 		bufblks >>= 1;
461 		if (bufblks < log->l_sectBBsize)
462 			return ENOMEM;
463 	}
464 
465 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
466 		int	bcount;
467 
468 		bcount = min(bufblks, (start_blk + nbblks - i));
469 
470 		error = xlog_bread(log, i, bcount, bp, &buf);
471 		if (error)
472 			goto out;
473 
474 		for (j = 0; j < bcount; j++) {
475 			cycle = xlog_get_cycle(buf);
476 			if (cycle == stop_on_cycle_no) {
477 				*new_blk = i+j;
478 				goto out;
479 			}
480 
481 			buf += BBSIZE;
482 		}
483 	}
484 
485 	*new_blk = -1;
486 
487 out:
488 	xlog_put_bp(bp);
489 	return error;
490 }
491 
492 /*
493  * Potentially backup over partial log record write.
494  *
495  * In the typical case, last_blk is the number of the block directly after
496  * a good log record.  Therefore, we subtract one to get the block number
497  * of the last block in the given buffer.  extra_bblks contains the number
498  * of blocks we would have read on a previous read.  This happens when the
499  * last log record is split over the end of the physical log.
500  *
501  * extra_bblks is the number of blocks potentially verified on a previous
502  * call to this routine.
503  */
504 STATIC int
505 xlog_find_verify_log_record(
506 	struct xlog		*log,
507 	xfs_daddr_t		start_blk,
508 	xfs_daddr_t		*last_blk,
509 	int			extra_bblks)
510 {
511 	xfs_daddr_t		i;
512 	xfs_buf_t		*bp;
513 	xfs_caddr_t		offset = NULL;
514 	xlog_rec_header_t	*head = NULL;
515 	int			error = 0;
516 	int			smallmem = 0;
517 	int			num_blks = *last_blk - start_blk;
518 	int			xhdrs;
519 
520 	ASSERT(start_blk != 0 || *last_blk != start_blk);
521 
522 	if (!(bp = xlog_get_bp(log, num_blks))) {
523 		if (!(bp = xlog_get_bp(log, 1)))
524 			return ENOMEM;
525 		smallmem = 1;
526 	} else {
527 		error = xlog_bread(log, start_blk, num_blks, bp, &offset);
528 		if (error)
529 			goto out;
530 		offset += ((num_blks - 1) << BBSHIFT);
531 	}
532 
533 	for (i = (*last_blk) - 1; i >= 0; i--) {
534 		if (i < start_blk) {
535 			/* valid log record not found */
536 			xfs_warn(log->l_mp,
537 		"Log inconsistent (didn't find previous header)");
538 			ASSERT(0);
539 			error = XFS_ERROR(EIO);
540 			goto out;
541 		}
542 
543 		if (smallmem) {
544 			error = xlog_bread(log, i, 1, bp, &offset);
545 			if (error)
546 				goto out;
547 		}
548 
549 		head = (xlog_rec_header_t *)offset;
550 
551 		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
552 			break;
553 
554 		if (!smallmem)
555 			offset -= BBSIZE;
556 	}
557 
558 	/*
559 	 * We hit the beginning of the physical log & still no header.  Return
560 	 * to caller.  If caller can handle a return of -1, then this routine
561 	 * will be called again for the end of the physical log.
562 	 */
563 	if (i == -1) {
564 		error = -1;
565 		goto out;
566 	}
567 
568 	/*
569 	 * We have the final block of the good log (the first block
570 	 * of the log record _before_ the head. So we check the uuid.
571 	 */
572 	if ((error = xlog_header_check_mount(log->l_mp, head)))
573 		goto out;
574 
575 	/*
576 	 * We may have found a log record header before we expected one.
577 	 * last_blk will be the 1st block # with a given cycle #.  We may end
578 	 * up reading an entire log record.  In this case, we don't want to
579 	 * reset last_blk.  Only when last_blk points in the middle of a log
580 	 * record do we update last_blk.
581 	 */
582 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
583 		uint	h_size = be32_to_cpu(head->h_size);
584 
585 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
586 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
587 			xhdrs++;
588 	} else {
589 		xhdrs = 1;
590 	}
591 
592 	if (*last_blk - i + extra_bblks !=
593 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
594 		*last_blk = i;
595 
596 out:
597 	xlog_put_bp(bp);
598 	return error;
599 }
600 
601 /*
602  * Head is defined to be the point of the log where the next log write
603  * could go.  This means that incomplete LR writes at the end are
604  * eliminated when calculating the head.  We aren't guaranteed that previous
605  * LR have complete transactions.  We only know that a cycle number of
606  * current cycle number -1 won't be present in the log if we start writing
607  * from our current block number.
608  *
609  * last_blk contains the block number of the first block with a given
610  * cycle number.
611  *
612  * Return: zero if normal, non-zero if error.
613  */
614 STATIC int
615 xlog_find_head(
616 	struct xlog	*log,
617 	xfs_daddr_t	*return_head_blk)
618 {
619 	xfs_buf_t	*bp;
620 	xfs_caddr_t	offset;
621 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
622 	int		num_scan_bblks;
623 	uint		first_half_cycle, last_half_cycle;
624 	uint		stop_on_cycle;
625 	int		error, log_bbnum = log->l_logBBsize;
626 
627 	/* Is the end of the log device zeroed? */
628 	if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
629 		*return_head_blk = first_blk;
630 
631 		/* Is the whole lot zeroed? */
632 		if (!first_blk) {
633 			/* Linux XFS shouldn't generate totally zeroed logs -
634 			 * mkfs etc write a dummy unmount record to a fresh
635 			 * log so we can store the uuid in there
636 			 */
637 			xfs_warn(log->l_mp, "totally zeroed log");
638 		}
639 
640 		return 0;
641 	} else if (error) {
642 		xfs_warn(log->l_mp, "empty log check failed");
643 		return error;
644 	}
645 
646 	first_blk = 0;			/* get cycle # of 1st block */
647 	bp = xlog_get_bp(log, 1);
648 	if (!bp)
649 		return ENOMEM;
650 
651 	error = xlog_bread(log, 0, 1, bp, &offset);
652 	if (error)
653 		goto bp_err;
654 
655 	first_half_cycle = xlog_get_cycle(offset);
656 
657 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
658 	error = xlog_bread(log, last_blk, 1, bp, &offset);
659 	if (error)
660 		goto bp_err;
661 
662 	last_half_cycle = xlog_get_cycle(offset);
663 	ASSERT(last_half_cycle != 0);
664 
665 	/*
666 	 * If the 1st half cycle number is equal to the last half cycle number,
667 	 * then the entire log is stamped with the same cycle number.  In this
668 	 * case, head_blk can't be set to zero (which makes sense).  The below
669 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
670 	 * we set it to log_bbnum which is an invalid block number, but this
671 	 * value makes the math correct.  If head_blk doesn't changed through
672 	 * all the tests below, *head_blk is set to zero at the very end rather
673 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
674 	 * in a circular file.
675 	 */
676 	if (first_half_cycle == last_half_cycle) {
677 		/*
678 		 * In this case we believe that the entire log should have
679 		 * cycle number last_half_cycle.  We need to scan backwards
680 		 * from the end verifying that there are no holes still
681 		 * containing last_half_cycle - 1.  If we find such a hole,
682 		 * then the start of that hole will be the new head.  The
683 		 * simple case looks like
684 		 *        x | x ... | x - 1 | x
685 		 * Another case that fits this picture would be
686 		 *        x | x + 1 | x ... | x
687 		 * In this case the head really is somewhere at the end of the
688 		 * log, as one of the latest writes at the beginning was
689 		 * incomplete.
690 		 * One more case is
691 		 *        x | x + 1 | x ... | x - 1 | x
692 		 * This is really the combination of the above two cases, and
693 		 * the head has to end up at the start of the x-1 hole at the
694 		 * end of the log.
695 		 *
696 		 * In the 256k log case, we will read from the beginning to the
697 		 * end of the log and search for cycle numbers equal to x-1.
698 		 * We don't worry about the x+1 blocks that we encounter,
699 		 * because we know that they cannot be the head since the log
700 		 * started with x.
701 		 */
702 		head_blk = log_bbnum;
703 		stop_on_cycle = last_half_cycle - 1;
704 	} else {
705 		/*
706 		 * In this case we want to find the first block with cycle
707 		 * number matching last_half_cycle.  We expect the log to be
708 		 * some variation on
709 		 *        x + 1 ... | x ... | x
710 		 * The first block with cycle number x (last_half_cycle) will
711 		 * be where the new head belongs.  First we do a binary search
712 		 * for the first occurrence of last_half_cycle.  The binary
713 		 * search may not be totally accurate, so then we scan back
714 		 * from there looking for occurrences of last_half_cycle before
715 		 * us.  If that backwards scan wraps around the beginning of
716 		 * the log, then we look for occurrences of last_half_cycle - 1
717 		 * at the end of the log.  The cases we're looking for look
718 		 * like
719 		 *                               v binary search stopped here
720 		 *        x + 1 ... | x | x + 1 | x ... | x
721 		 *                   ^ but we want to locate this spot
722 		 * or
723 		 *        <---------> less than scan distance
724 		 *        x + 1 ... | x ... | x - 1 | x
725 		 *                           ^ we want to locate this spot
726 		 */
727 		stop_on_cycle = last_half_cycle;
728 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
729 						&head_blk, last_half_cycle)))
730 			goto bp_err;
731 	}
732 
733 	/*
734 	 * Now validate the answer.  Scan back some number of maximum possible
735 	 * blocks and make sure each one has the expected cycle number.  The
736 	 * maximum is determined by the total possible amount of buffering
737 	 * in the in-core log.  The following number can be made tighter if
738 	 * we actually look at the block size of the filesystem.
739 	 */
740 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
741 	if (head_blk >= num_scan_bblks) {
742 		/*
743 		 * We are guaranteed that the entire check can be performed
744 		 * in one buffer.
745 		 */
746 		start_blk = head_blk - num_scan_bblks;
747 		if ((error = xlog_find_verify_cycle(log,
748 						start_blk, num_scan_bblks,
749 						stop_on_cycle, &new_blk)))
750 			goto bp_err;
751 		if (new_blk != -1)
752 			head_blk = new_blk;
753 	} else {		/* need to read 2 parts of log */
754 		/*
755 		 * We are going to scan backwards in the log in two parts.
756 		 * First we scan the physical end of the log.  In this part
757 		 * of the log, we are looking for blocks with cycle number
758 		 * last_half_cycle - 1.
759 		 * If we find one, then we know that the log starts there, as
760 		 * we've found a hole that didn't get written in going around
761 		 * the end of the physical log.  The simple case for this is
762 		 *        x + 1 ... | x ... | x - 1 | x
763 		 *        <---------> less than scan distance
764 		 * If all of the blocks at the end of the log have cycle number
765 		 * last_half_cycle, then we check the blocks at the start of
766 		 * the log looking for occurrences of last_half_cycle.  If we
767 		 * find one, then our current estimate for the location of the
768 		 * first occurrence of last_half_cycle is wrong and we move
769 		 * back to the hole we've found.  This case looks like
770 		 *        x + 1 ... | x | x + 1 | x ...
771 		 *                               ^ binary search stopped here
772 		 * Another case we need to handle that only occurs in 256k
773 		 * logs is
774 		 *        x + 1 ... | x ... | x+1 | x ...
775 		 *                   ^ binary search stops here
776 		 * In a 256k log, the scan at the end of the log will see the
777 		 * x + 1 blocks.  We need to skip past those since that is
778 		 * certainly not the head of the log.  By searching for
779 		 * last_half_cycle-1 we accomplish that.
780 		 */
781 		ASSERT(head_blk <= INT_MAX &&
782 			(xfs_daddr_t) num_scan_bblks >= head_blk);
783 		start_blk = log_bbnum - (num_scan_bblks - head_blk);
784 		if ((error = xlog_find_verify_cycle(log, start_blk,
785 					num_scan_bblks - (int)head_blk,
786 					(stop_on_cycle - 1), &new_blk)))
787 			goto bp_err;
788 		if (new_blk != -1) {
789 			head_blk = new_blk;
790 			goto validate_head;
791 		}
792 
793 		/*
794 		 * Scan beginning of log now.  The last part of the physical
795 		 * log is good.  This scan needs to verify that it doesn't find
796 		 * the last_half_cycle.
797 		 */
798 		start_blk = 0;
799 		ASSERT(head_blk <= INT_MAX);
800 		if ((error = xlog_find_verify_cycle(log,
801 					start_blk, (int)head_blk,
802 					stop_on_cycle, &new_blk)))
803 			goto bp_err;
804 		if (new_blk != -1)
805 			head_blk = new_blk;
806 	}
807 
808 validate_head:
809 	/*
810 	 * Now we need to make sure head_blk is not pointing to a block in
811 	 * the middle of a log record.
812 	 */
813 	num_scan_bblks = XLOG_REC_SHIFT(log);
814 	if (head_blk >= num_scan_bblks) {
815 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
816 
817 		/* start ptr at last block ptr before head_blk */
818 		if ((error = xlog_find_verify_log_record(log, start_blk,
819 							&head_blk, 0)) == -1) {
820 			error = XFS_ERROR(EIO);
821 			goto bp_err;
822 		} else if (error)
823 			goto bp_err;
824 	} else {
825 		start_blk = 0;
826 		ASSERT(head_blk <= INT_MAX);
827 		if ((error = xlog_find_verify_log_record(log, start_blk,
828 							&head_blk, 0)) == -1) {
829 			/* We hit the beginning of the log during our search */
830 			start_blk = log_bbnum - (num_scan_bblks - head_blk);
831 			new_blk = log_bbnum;
832 			ASSERT(start_blk <= INT_MAX &&
833 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
834 			ASSERT(head_blk <= INT_MAX);
835 			if ((error = xlog_find_verify_log_record(log,
836 							start_blk, &new_blk,
837 							(int)head_blk)) == -1) {
838 				error = XFS_ERROR(EIO);
839 				goto bp_err;
840 			} else if (error)
841 				goto bp_err;
842 			if (new_blk != log_bbnum)
843 				head_blk = new_blk;
844 		} else if (error)
845 			goto bp_err;
846 	}
847 
848 	xlog_put_bp(bp);
849 	if (head_blk == log_bbnum)
850 		*return_head_blk = 0;
851 	else
852 		*return_head_blk = head_blk;
853 	/*
854 	 * When returning here, we have a good block number.  Bad block
855 	 * means that during a previous crash, we didn't have a clean break
856 	 * from cycle number N to cycle number N-1.  In this case, we need
857 	 * to find the first block with cycle number N-1.
858 	 */
859 	return 0;
860 
861  bp_err:
862 	xlog_put_bp(bp);
863 
864 	if (error)
865 		xfs_warn(log->l_mp, "failed to find log head");
866 	return error;
867 }
868 
869 /*
870  * Find the sync block number or the tail of the log.
871  *
872  * This will be the block number of the last record to have its
873  * associated buffers synced to disk.  Every log record header has
874  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
875  * to get a sync block number.  The only concern is to figure out which
876  * log record header to believe.
877  *
878  * The following algorithm uses the log record header with the largest
879  * lsn.  The entire log record does not need to be valid.  We only care
880  * that the header is valid.
881  *
882  * We could speed up search by using current head_blk buffer, but it is not
883  * available.
884  */
885 STATIC int
886 xlog_find_tail(
887 	struct xlog		*log,
888 	xfs_daddr_t		*head_blk,
889 	xfs_daddr_t		*tail_blk)
890 {
891 	xlog_rec_header_t	*rhead;
892 	xlog_op_header_t	*op_head;
893 	xfs_caddr_t		offset = NULL;
894 	xfs_buf_t		*bp;
895 	int			error, i, found;
896 	xfs_daddr_t		umount_data_blk;
897 	xfs_daddr_t		after_umount_blk;
898 	xfs_lsn_t		tail_lsn;
899 	int			hblks;
900 
901 	found = 0;
902 
903 	/*
904 	 * Find previous log record
905 	 */
906 	if ((error = xlog_find_head(log, head_blk)))
907 		return error;
908 
909 	bp = xlog_get_bp(log, 1);
910 	if (!bp)
911 		return ENOMEM;
912 	if (*head_blk == 0) {				/* special case */
913 		error = xlog_bread(log, 0, 1, bp, &offset);
914 		if (error)
915 			goto done;
916 
917 		if (xlog_get_cycle(offset) == 0) {
918 			*tail_blk = 0;
919 			/* leave all other log inited values alone */
920 			goto done;
921 		}
922 	}
923 
924 	/*
925 	 * Search backwards looking for log record header block
926 	 */
927 	ASSERT(*head_blk < INT_MAX);
928 	for (i = (int)(*head_blk) - 1; i >= 0; i--) {
929 		error = xlog_bread(log, i, 1, bp, &offset);
930 		if (error)
931 			goto done;
932 
933 		if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
934 			found = 1;
935 			break;
936 		}
937 	}
938 	/*
939 	 * If we haven't found the log record header block, start looking
940 	 * again from the end of the physical log.  XXXmiken: There should be
941 	 * a check here to make sure we didn't search more than N blocks in
942 	 * the previous code.
943 	 */
944 	if (!found) {
945 		for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
946 			error = xlog_bread(log, i, 1, bp, &offset);
947 			if (error)
948 				goto done;
949 
950 			if (*(__be32 *)offset ==
951 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
952 				found = 2;
953 				break;
954 			}
955 		}
956 	}
957 	if (!found) {
958 		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
959 		xlog_put_bp(bp);
960 		ASSERT(0);
961 		return XFS_ERROR(EIO);
962 	}
963 
964 	/* find blk_no of tail of log */
965 	rhead = (xlog_rec_header_t *)offset;
966 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
967 
968 	/*
969 	 * Reset log values according to the state of the log when we
970 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
971 	 * one because the next write starts a new cycle rather than
972 	 * continuing the cycle of the last good log record.  At this
973 	 * point we have guaranteed that all partial log records have been
974 	 * accounted for.  Therefore, we know that the last good log record
975 	 * written was complete and ended exactly on the end boundary
976 	 * of the physical log.
977 	 */
978 	log->l_prev_block = i;
979 	log->l_curr_block = (int)*head_blk;
980 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
981 	if (found == 2)
982 		log->l_curr_cycle++;
983 	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
984 	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
985 	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
986 					BBTOB(log->l_curr_block));
987 	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
988 					BBTOB(log->l_curr_block));
989 
990 	/*
991 	 * Look for unmount record.  If we find it, then we know there
992 	 * was a clean unmount.  Since 'i' could be the last block in
993 	 * the physical log, we convert to a log block before comparing
994 	 * to the head_blk.
995 	 *
996 	 * Save the current tail lsn to use to pass to
997 	 * xlog_clear_stale_blocks() below.  We won't want to clear the
998 	 * unmount record if there is one, so we pass the lsn of the
999 	 * unmount record rather than the block after it.
1000 	 */
1001 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1002 		int	h_size = be32_to_cpu(rhead->h_size);
1003 		int	h_version = be32_to_cpu(rhead->h_version);
1004 
1005 		if ((h_version & XLOG_VERSION_2) &&
1006 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1007 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1008 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
1009 				hblks++;
1010 		} else {
1011 			hblks = 1;
1012 		}
1013 	} else {
1014 		hblks = 1;
1015 	}
1016 	after_umount_blk = (i + hblks + (int)
1017 		BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1018 	tail_lsn = atomic64_read(&log->l_tail_lsn);
1019 	if (*head_blk == after_umount_blk &&
1020 	    be32_to_cpu(rhead->h_num_logops) == 1) {
1021 		umount_data_blk = (i + hblks) % log->l_logBBsize;
1022 		error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1023 		if (error)
1024 			goto done;
1025 
1026 		op_head = (xlog_op_header_t *)offset;
1027 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1028 			/*
1029 			 * Set tail and last sync so that newly written
1030 			 * log records will point recovery to after the
1031 			 * current unmount record.
1032 			 */
1033 			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1034 					log->l_curr_cycle, after_umount_blk);
1035 			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1036 					log->l_curr_cycle, after_umount_blk);
1037 			*tail_blk = after_umount_blk;
1038 
1039 			/*
1040 			 * Note that the unmount was clean. If the unmount
1041 			 * was not clean, we need to know this to rebuild the
1042 			 * superblock counters from the perag headers if we
1043 			 * have a filesystem using non-persistent counters.
1044 			 */
1045 			log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1046 		}
1047 	}
1048 
1049 	/*
1050 	 * Make sure that there are no blocks in front of the head
1051 	 * with the same cycle number as the head.  This can happen
1052 	 * because we allow multiple outstanding log writes concurrently,
1053 	 * and the later writes might make it out before earlier ones.
1054 	 *
1055 	 * We use the lsn from before modifying it so that we'll never
1056 	 * overwrite the unmount record after a clean unmount.
1057 	 *
1058 	 * Do this only if we are going to recover the filesystem
1059 	 *
1060 	 * NOTE: This used to say "if (!readonly)"
1061 	 * However on Linux, we can & do recover a read-only filesystem.
1062 	 * We only skip recovery if NORECOVERY is specified on mount,
1063 	 * in which case we would not be here.
1064 	 *
1065 	 * But... if the -device- itself is readonly, just skip this.
1066 	 * We can't recover this device anyway, so it won't matter.
1067 	 */
1068 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1069 		error = xlog_clear_stale_blocks(log, tail_lsn);
1070 
1071 done:
1072 	xlog_put_bp(bp);
1073 
1074 	if (error)
1075 		xfs_warn(log->l_mp, "failed to locate log tail");
1076 	return error;
1077 }
1078 
1079 /*
1080  * Is the log zeroed at all?
1081  *
1082  * The last binary search should be changed to perform an X block read
1083  * once X becomes small enough.  You can then search linearly through
1084  * the X blocks.  This will cut down on the number of reads we need to do.
1085  *
1086  * If the log is partially zeroed, this routine will pass back the blkno
1087  * of the first block with cycle number 0.  It won't have a complete LR
1088  * preceding it.
1089  *
1090  * Return:
1091  *	0  => the log is completely written to
1092  *	-1 => use *blk_no as the first block of the log
1093  *	>0 => error has occurred
1094  */
1095 STATIC int
1096 xlog_find_zeroed(
1097 	struct xlog	*log,
1098 	xfs_daddr_t	*blk_no)
1099 {
1100 	xfs_buf_t	*bp;
1101 	xfs_caddr_t	offset;
1102 	uint	        first_cycle, last_cycle;
1103 	xfs_daddr_t	new_blk, last_blk, start_blk;
1104 	xfs_daddr_t     num_scan_bblks;
1105 	int	        error, log_bbnum = log->l_logBBsize;
1106 
1107 	*blk_no = 0;
1108 
1109 	/* check totally zeroed log */
1110 	bp = xlog_get_bp(log, 1);
1111 	if (!bp)
1112 		return ENOMEM;
1113 	error = xlog_bread(log, 0, 1, bp, &offset);
1114 	if (error)
1115 		goto bp_err;
1116 
1117 	first_cycle = xlog_get_cycle(offset);
1118 	if (first_cycle == 0) {		/* completely zeroed log */
1119 		*blk_no = 0;
1120 		xlog_put_bp(bp);
1121 		return -1;
1122 	}
1123 
1124 	/* check partially zeroed log */
1125 	error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1126 	if (error)
1127 		goto bp_err;
1128 
1129 	last_cycle = xlog_get_cycle(offset);
1130 	if (last_cycle != 0) {		/* log completely written to */
1131 		xlog_put_bp(bp);
1132 		return 0;
1133 	} else if (first_cycle != 1) {
1134 		/*
1135 		 * If the cycle of the last block is zero, the cycle of
1136 		 * the first block must be 1. If it's not, maybe we're
1137 		 * not looking at a log... Bail out.
1138 		 */
1139 		xfs_warn(log->l_mp,
1140 			"Log inconsistent or not a log (last==0, first!=1)");
1141 		error = XFS_ERROR(EINVAL);
1142 		goto bp_err;
1143 	}
1144 
1145 	/* we have a partially zeroed log */
1146 	last_blk = log_bbnum-1;
1147 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1148 		goto bp_err;
1149 
1150 	/*
1151 	 * Validate the answer.  Because there is no way to guarantee that
1152 	 * the entire log is made up of log records which are the same size,
1153 	 * we scan over the defined maximum blocks.  At this point, the maximum
1154 	 * is not chosen to mean anything special.   XXXmiken
1155 	 */
1156 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1157 	ASSERT(num_scan_bblks <= INT_MAX);
1158 
1159 	if (last_blk < num_scan_bblks)
1160 		num_scan_bblks = last_blk;
1161 	start_blk = last_blk - num_scan_bblks;
1162 
1163 	/*
1164 	 * We search for any instances of cycle number 0 that occur before
1165 	 * our current estimate of the head.  What we're trying to detect is
1166 	 *        1 ... | 0 | 1 | 0...
1167 	 *                       ^ binary search ends here
1168 	 */
1169 	if ((error = xlog_find_verify_cycle(log, start_blk,
1170 					 (int)num_scan_bblks, 0, &new_blk)))
1171 		goto bp_err;
1172 	if (new_blk != -1)
1173 		last_blk = new_blk;
1174 
1175 	/*
1176 	 * Potentially backup over partial log record write.  We don't need
1177 	 * to search the end of the log because we know it is zero.
1178 	 */
1179 	if ((error = xlog_find_verify_log_record(log, start_blk,
1180 				&last_blk, 0)) == -1) {
1181 	    error = XFS_ERROR(EIO);
1182 	    goto bp_err;
1183 	} else if (error)
1184 	    goto bp_err;
1185 
1186 	*blk_no = last_blk;
1187 bp_err:
1188 	xlog_put_bp(bp);
1189 	if (error)
1190 		return error;
1191 	return -1;
1192 }
1193 
1194 /*
1195  * These are simple subroutines used by xlog_clear_stale_blocks() below
1196  * to initialize a buffer full of empty log record headers and write
1197  * them into the log.
1198  */
1199 STATIC void
1200 xlog_add_record(
1201 	struct xlog		*log,
1202 	xfs_caddr_t		buf,
1203 	int			cycle,
1204 	int			block,
1205 	int			tail_cycle,
1206 	int			tail_block)
1207 {
1208 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1209 
1210 	memset(buf, 0, BBSIZE);
1211 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1212 	recp->h_cycle = cpu_to_be32(cycle);
1213 	recp->h_version = cpu_to_be32(
1214 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1215 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1216 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1217 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1218 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1219 }
1220 
1221 STATIC int
1222 xlog_write_log_records(
1223 	struct xlog	*log,
1224 	int		cycle,
1225 	int		start_block,
1226 	int		blocks,
1227 	int		tail_cycle,
1228 	int		tail_block)
1229 {
1230 	xfs_caddr_t	offset;
1231 	xfs_buf_t	*bp;
1232 	int		balign, ealign;
1233 	int		sectbb = log->l_sectBBsize;
1234 	int		end_block = start_block + blocks;
1235 	int		bufblks;
1236 	int		error = 0;
1237 	int		i, j = 0;
1238 
1239 	/*
1240 	 * Greedily allocate a buffer big enough to handle the full
1241 	 * range of basic blocks to be written.  If that fails, try
1242 	 * a smaller size.  We need to be able to write at least a
1243 	 * log sector, or we're out of luck.
1244 	 */
1245 	bufblks = 1 << ffs(blocks);
1246 	while (bufblks > log->l_logBBsize)
1247 		bufblks >>= 1;
1248 	while (!(bp = xlog_get_bp(log, bufblks))) {
1249 		bufblks >>= 1;
1250 		if (bufblks < sectbb)
1251 			return ENOMEM;
1252 	}
1253 
1254 	/* We may need to do a read at the start to fill in part of
1255 	 * the buffer in the starting sector not covered by the first
1256 	 * write below.
1257 	 */
1258 	balign = round_down(start_block, sectbb);
1259 	if (balign != start_block) {
1260 		error = xlog_bread_noalign(log, start_block, 1, bp);
1261 		if (error)
1262 			goto out_put_bp;
1263 
1264 		j = start_block - balign;
1265 	}
1266 
1267 	for (i = start_block; i < end_block; i += bufblks) {
1268 		int		bcount, endcount;
1269 
1270 		bcount = min(bufblks, end_block - start_block);
1271 		endcount = bcount - j;
1272 
1273 		/* We may need to do a read at the end to fill in part of
1274 		 * the buffer in the final sector not covered by the write.
1275 		 * If this is the same sector as the above read, skip it.
1276 		 */
1277 		ealign = round_down(end_block, sectbb);
1278 		if (j == 0 && (start_block + endcount > ealign)) {
1279 			offset = bp->b_addr + BBTOB(ealign - start_block);
1280 			error = xlog_bread_offset(log, ealign, sectbb,
1281 							bp, offset);
1282 			if (error)
1283 				break;
1284 
1285 		}
1286 
1287 		offset = xlog_align(log, start_block, endcount, bp);
1288 		for (; j < endcount; j++) {
1289 			xlog_add_record(log, offset, cycle, i+j,
1290 					tail_cycle, tail_block);
1291 			offset += BBSIZE;
1292 		}
1293 		error = xlog_bwrite(log, start_block, endcount, bp);
1294 		if (error)
1295 			break;
1296 		start_block += endcount;
1297 		j = 0;
1298 	}
1299 
1300  out_put_bp:
1301 	xlog_put_bp(bp);
1302 	return error;
1303 }
1304 
1305 /*
1306  * This routine is called to blow away any incomplete log writes out
1307  * in front of the log head.  We do this so that we won't become confused
1308  * if we come up, write only a little bit more, and then crash again.
1309  * If we leave the partial log records out there, this situation could
1310  * cause us to think those partial writes are valid blocks since they
1311  * have the current cycle number.  We get rid of them by overwriting them
1312  * with empty log records with the old cycle number rather than the
1313  * current one.
1314  *
1315  * The tail lsn is passed in rather than taken from
1316  * the log so that we will not write over the unmount record after a
1317  * clean unmount in a 512 block log.  Doing so would leave the log without
1318  * any valid log records in it until a new one was written.  If we crashed
1319  * during that time we would not be able to recover.
1320  */
1321 STATIC int
1322 xlog_clear_stale_blocks(
1323 	struct xlog	*log,
1324 	xfs_lsn_t	tail_lsn)
1325 {
1326 	int		tail_cycle, head_cycle;
1327 	int		tail_block, head_block;
1328 	int		tail_distance, max_distance;
1329 	int		distance;
1330 	int		error;
1331 
1332 	tail_cycle = CYCLE_LSN(tail_lsn);
1333 	tail_block = BLOCK_LSN(tail_lsn);
1334 	head_cycle = log->l_curr_cycle;
1335 	head_block = log->l_curr_block;
1336 
1337 	/*
1338 	 * Figure out the distance between the new head of the log
1339 	 * and the tail.  We want to write over any blocks beyond the
1340 	 * head that we may have written just before the crash, but
1341 	 * we don't want to overwrite the tail of the log.
1342 	 */
1343 	if (head_cycle == tail_cycle) {
1344 		/*
1345 		 * The tail is behind the head in the physical log,
1346 		 * so the distance from the head to the tail is the
1347 		 * distance from the head to the end of the log plus
1348 		 * the distance from the beginning of the log to the
1349 		 * tail.
1350 		 */
1351 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1352 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1353 					 XFS_ERRLEVEL_LOW, log->l_mp);
1354 			return XFS_ERROR(EFSCORRUPTED);
1355 		}
1356 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1357 	} else {
1358 		/*
1359 		 * The head is behind the tail in the physical log,
1360 		 * so the distance from the head to the tail is just
1361 		 * the tail block minus the head block.
1362 		 */
1363 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1364 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1365 					 XFS_ERRLEVEL_LOW, log->l_mp);
1366 			return XFS_ERROR(EFSCORRUPTED);
1367 		}
1368 		tail_distance = tail_block - head_block;
1369 	}
1370 
1371 	/*
1372 	 * If the head is right up against the tail, we can't clear
1373 	 * anything.
1374 	 */
1375 	if (tail_distance <= 0) {
1376 		ASSERT(tail_distance == 0);
1377 		return 0;
1378 	}
1379 
1380 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1381 	/*
1382 	 * Take the smaller of the maximum amount of outstanding I/O
1383 	 * we could have and the distance to the tail to clear out.
1384 	 * We take the smaller so that we don't overwrite the tail and
1385 	 * we don't waste all day writing from the head to the tail
1386 	 * for no reason.
1387 	 */
1388 	max_distance = MIN(max_distance, tail_distance);
1389 
1390 	if ((head_block + max_distance) <= log->l_logBBsize) {
1391 		/*
1392 		 * We can stomp all the blocks we need to without
1393 		 * wrapping around the end of the log.  Just do it
1394 		 * in a single write.  Use the cycle number of the
1395 		 * current cycle minus one so that the log will look like:
1396 		 *     n ... | n - 1 ...
1397 		 */
1398 		error = xlog_write_log_records(log, (head_cycle - 1),
1399 				head_block, max_distance, tail_cycle,
1400 				tail_block);
1401 		if (error)
1402 			return error;
1403 	} else {
1404 		/*
1405 		 * We need to wrap around the end of the physical log in
1406 		 * order to clear all the blocks.  Do it in two separate
1407 		 * I/Os.  The first write should be from the head to the
1408 		 * end of the physical log, and it should use the current
1409 		 * cycle number minus one just like above.
1410 		 */
1411 		distance = log->l_logBBsize - head_block;
1412 		error = xlog_write_log_records(log, (head_cycle - 1),
1413 				head_block, distance, tail_cycle,
1414 				tail_block);
1415 
1416 		if (error)
1417 			return error;
1418 
1419 		/*
1420 		 * Now write the blocks at the start of the physical log.
1421 		 * This writes the remainder of the blocks we want to clear.
1422 		 * It uses the current cycle number since we're now on the
1423 		 * same cycle as the head so that we get:
1424 		 *    n ... n ... | n - 1 ...
1425 		 *    ^^^^^ blocks we're writing
1426 		 */
1427 		distance = max_distance - (log->l_logBBsize - head_block);
1428 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1429 				tail_cycle, tail_block);
1430 		if (error)
1431 			return error;
1432 	}
1433 
1434 	return 0;
1435 }
1436 
1437 /******************************************************************************
1438  *
1439  *		Log recover routines
1440  *
1441  ******************************************************************************
1442  */
1443 
1444 STATIC xlog_recover_t *
1445 xlog_recover_find_tid(
1446 	struct hlist_head	*head,
1447 	xlog_tid_t		tid)
1448 {
1449 	xlog_recover_t		*trans;
1450 
1451 	hlist_for_each_entry(trans, head, r_list) {
1452 		if (trans->r_log_tid == tid)
1453 			return trans;
1454 	}
1455 	return NULL;
1456 }
1457 
1458 STATIC void
1459 xlog_recover_new_tid(
1460 	struct hlist_head	*head,
1461 	xlog_tid_t		tid,
1462 	xfs_lsn_t		lsn)
1463 {
1464 	xlog_recover_t		*trans;
1465 
1466 	trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1467 	trans->r_log_tid   = tid;
1468 	trans->r_lsn	   = lsn;
1469 	INIT_LIST_HEAD(&trans->r_itemq);
1470 
1471 	INIT_HLIST_NODE(&trans->r_list);
1472 	hlist_add_head(&trans->r_list, head);
1473 }
1474 
1475 STATIC void
1476 xlog_recover_add_item(
1477 	struct list_head	*head)
1478 {
1479 	xlog_recover_item_t	*item;
1480 
1481 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1482 	INIT_LIST_HEAD(&item->ri_list);
1483 	list_add_tail(&item->ri_list, head);
1484 }
1485 
1486 STATIC int
1487 xlog_recover_add_to_cont_trans(
1488 	struct xlog		*log,
1489 	struct xlog_recover	*trans,
1490 	xfs_caddr_t		dp,
1491 	int			len)
1492 {
1493 	xlog_recover_item_t	*item;
1494 	xfs_caddr_t		ptr, old_ptr;
1495 	int			old_len;
1496 
1497 	if (list_empty(&trans->r_itemq)) {
1498 		/* finish copying rest of trans header */
1499 		xlog_recover_add_item(&trans->r_itemq);
1500 		ptr = (xfs_caddr_t) &trans->r_theader +
1501 				sizeof(xfs_trans_header_t) - len;
1502 		memcpy(ptr, dp, len); /* d, s, l */
1503 		return 0;
1504 	}
1505 	/* take the tail entry */
1506 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1507 
1508 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1509 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
1510 
1511 	ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1512 	memcpy(&ptr[old_len], dp, len); /* d, s, l */
1513 	item->ri_buf[item->ri_cnt-1].i_len += len;
1514 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1515 	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1516 	return 0;
1517 }
1518 
1519 /*
1520  * The next region to add is the start of a new region.  It could be
1521  * a whole region or it could be the first part of a new region.  Because
1522  * of this, the assumption here is that the type and size fields of all
1523  * format structures fit into the first 32 bits of the structure.
1524  *
1525  * This works because all regions must be 32 bit aligned.  Therefore, we
1526  * either have both fields or we have neither field.  In the case we have
1527  * neither field, the data part of the region is zero length.  We only have
1528  * a log_op_header and can throw away the header since a new one will appear
1529  * later.  If we have at least 4 bytes, then we can determine how many regions
1530  * will appear in the current log item.
1531  */
1532 STATIC int
1533 xlog_recover_add_to_trans(
1534 	struct xlog		*log,
1535 	struct xlog_recover	*trans,
1536 	xfs_caddr_t		dp,
1537 	int			len)
1538 {
1539 	xfs_inode_log_format_t	*in_f;			/* any will do */
1540 	xlog_recover_item_t	*item;
1541 	xfs_caddr_t		ptr;
1542 
1543 	if (!len)
1544 		return 0;
1545 	if (list_empty(&trans->r_itemq)) {
1546 		/* we need to catch log corruptions here */
1547 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1548 			xfs_warn(log->l_mp, "%s: bad header magic number",
1549 				__func__);
1550 			ASSERT(0);
1551 			return XFS_ERROR(EIO);
1552 		}
1553 		if (len == sizeof(xfs_trans_header_t))
1554 			xlog_recover_add_item(&trans->r_itemq);
1555 		memcpy(&trans->r_theader, dp, len); /* d, s, l */
1556 		return 0;
1557 	}
1558 
1559 	ptr = kmem_alloc(len, KM_SLEEP);
1560 	memcpy(ptr, dp, len);
1561 	in_f = (xfs_inode_log_format_t *)ptr;
1562 
1563 	/* take the tail entry */
1564 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1565 	if (item->ri_total != 0 &&
1566 	     item->ri_total == item->ri_cnt) {
1567 		/* tail item is in use, get a new one */
1568 		xlog_recover_add_item(&trans->r_itemq);
1569 		item = list_entry(trans->r_itemq.prev,
1570 					xlog_recover_item_t, ri_list);
1571 	}
1572 
1573 	if (item->ri_total == 0) {		/* first region to be added */
1574 		if (in_f->ilf_size == 0 ||
1575 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1576 			xfs_warn(log->l_mp,
1577 		"bad number of regions (%d) in inode log format",
1578 				  in_f->ilf_size);
1579 			ASSERT(0);
1580 			kmem_free(ptr);
1581 			return XFS_ERROR(EIO);
1582 		}
1583 
1584 		item->ri_total = in_f->ilf_size;
1585 		item->ri_buf =
1586 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1587 				    KM_SLEEP);
1588 	}
1589 	ASSERT(item->ri_total > item->ri_cnt);
1590 	/* Description region is ri_buf[0] */
1591 	item->ri_buf[item->ri_cnt].i_addr = ptr;
1592 	item->ri_buf[item->ri_cnt].i_len  = len;
1593 	item->ri_cnt++;
1594 	trace_xfs_log_recover_item_add(log, trans, item, 0);
1595 	return 0;
1596 }
1597 
1598 /*
1599  * Sort the log items in the transaction.
1600  *
1601  * The ordering constraints are defined by the inode allocation and unlink
1602  * behaviour. The rules are:
1603  *
1604  *	1. Every item is only logged once in a given transaction. Hence it
1605  *	   represents the last logged state of the item. Hence ordering is
1606  *	   dependent on the order in which operations need to be performed so
1607  *	   required initial conditions are always met.
1608  *
1609  *	2. Cancelled buffers are recorded in pass 1 in a separate table and
1610  *	   there's nothing to replay from them so we can simply cull them
1611  *	   from the transaction. However, we can't do that until after we've
1612  *	   replayed all the other items because they may be dependent on the
1613  *	   cancelled buffer and replaying the cancelled buffer can remove it
1614  *	   form the cancelled buffer table. Hence they have tobe done last.
1615  *
1616  *	3. Inode allocation buffers must be replayed before inode items that
1617  *	   read the buffer and replay changes into it. For filesystems using the
1618  *	   ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1619  *	   treated the same as inode allocation buffers as they create and
1620  *	   initialise the buffers directly.
1621  *
1622  *	4. Inode unlink buffers must be replayed after inode items are replayed.
1623  *	   This ensures that inodes are completely flushed to the inode buffer
1624  *	   in a "free" state before we remove the unlinked inode list pointer.
1625  *
1626  * Hence the ordering needs to be inode allocation buffers first, inode items
1627  * second, inode unlink buffers third and cancelled buffers last.
1628  *
1629  * But there's a problem with that - we can't tell an inode allocation buffer
1630  * apart from a regular buffer, so we can't separate them. We can, however,
1631  * tell an inode unlink buffer from the others, and so we can separate them out
1632  * from all the other buffers and move them to last.
1633  *
1634  * Hence, 4 lists, in order from head to tail:
1635  *	- buffer_list for all buffers except cancelled/inode unlink buffers
1636  *	- item_list for all non-buffer items
1637  *	- inode_buffer_list for inode unlink buffers
1638  *	- cancel_list for the cancelled buffers
1639  *
1640  * Note that we add objects to the tail of the lists so that first-to-last
1641  * ordering is preserved within the lists. Adding objects to the head of the
1642  * list means when we traverse from the head we walk them in last-to-first
1643  * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1644  * but for all other items there may be specific ordering that we need to
1645  * preserve.
1646  */
1647 STATIC int
1648 xlog_recover_reorder_trans(
1649 	struct xlog		*log,
1650 	struct xlog_recover	*trans,
1651 	int			pass)
1652 {
1653 	xlog_recover_item_t	*item, *n;
1654 	LIST_HEAD(sort_list);
1655 	LIST_HEAD(cancel_list);
1656 	LIST_HEAD(buffer_list);
1657 	LIST_HEAD(inode_buffer_list);
1658 	LIST_HEAD(inode_list);
1659 
1660 	list_splice_init(&trans->r_itemq, &sort_list);
1661 	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1662 		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1663 
1664 		switch (ITEM_TYPE(item)) {
1665 		case XFS_LI_ICREATE:
1666 			list_move_tail(&item->ri_list, &buffer_list);
1667 			break;
1668 		case XFS_LI_BUF:
1669 			if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1670 				trace_xfs_log_recover_item_reorder_head(log,
1671 							trans, item, pass);
1672 				list_move(&item->ri_list, &cancel_list);
1673 				break;
1674 			}
1675 			if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1676 				list_move(&item->ri_list, &inode_buffer_list);
1677 				break;
1678 			}
1679 			list_move_tail(&item->ri_list, &buffer_list);
1680 			break;
1681 		case XFS_LI_INODE:
1682 		case XFS_LI_DQUOT:
1683 		case XFS_LI_QUOTAOFF:
1684 		case XFS_LI_EFD:
1685 		case XFS_LI_EFI:
1686 			trace_xfs_log_recover_item_reorder_tail(log,
1687 							trans, item, pass);
1688 			list_move_tail(&item->ri_list, &inode_list);
1689 			break;
1690 		default:
1691 			xfs_warn(log->l_mp,
1692 				"%s: unrecognized type of log operation",
1693 				__func__);
1694 			ASSERT(0);
1695 			return XFS_ERROR(EIO);
1696 		}
1697 	}
1698 	ASSERT(list_empty(&sort_list));
1699 	if (!list_empty(&buffer_list))
1700 		list_splice(&buffer_list, &trans->r_itemq);
1701 	if (!list_empty(&inode_list))
1702 		list_splice_tail(&inode_list, &trans->r_itemq);
1703 	if (!list_empty(&inode_buffer_list))
1704 		list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1705 	if (!list_empty(&cancel_list))
1706 		list_splice_tail(&cancel_list, &trans->r_itemq);
1707 	return 0;
1708 }
1709 
1710 /*
1711  * Build up the table of buf cancel records so that we don't replay
1712  * cancelled data in the second pass.  For buffer records that are
1713  * not cancel records, there is nothing to do here so we just return.
1714  *
1715  * If we get a cancel record which is already in the table, this indicates
1716  * that the buffer was cancelled multiple times.  In order to ensure
1717  * that during pass 2 we keep the record in the table until we reach its
1718  * last occurrence in the log, we keep a reference count in the cancel
1719  * record in the table to tell us how many times we expect to see this
1720  * record during the second pass.
1721  */
1722 STATIC int
1723 xlog_recover_buffer_pass1(
1724 	struct xlog			*log,
1725 	struct xlog_recover_item	*item)
1726 {
1727 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1728 	struct list_head	*bucket;
1729 	struct xfs_buf_cancel	*bcp;
1730 
1731 	/*
1732 	 * If this isn't a cancel buffer item, then just return.
1733 	 */
1734 	if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1735 		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1736 		return 0;
1737 	}
1738 
1739 	/*
1740 	 * Insert an xfs_buf_cancel record into the hash table of them.
1741 	 * If there is already an identical record, bump its reference count.
1742 	 */
1743 	bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1744 	list_for_each_entry(bcp, bucket, bc_list) {
1745 		if (bcp->bc_blkno == buf_f->blf_blkno &&
1746 		    bcp->bc_len == buf_f->blf_len) {
1747 			bcp->bc_refcount++;
1748 			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1749 			return 0;
1750 		}
1751 	}
1752 
1753 	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1754 	bcp->bc_blkno = buf_f->blf_blkno;
1755 	bcp->bc_len = buf_f->blf_len;
1756 	bcp->bc_refcount = 1;
1757 	list_add_tail(&bcp->bc_list, bucket);
1758 
1759 	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1760 	return 0;
1761 }
1762 
1763 /*
1764  * Check to see whether the buffer being recovered has a corresponding
1765  * entry in the buffer cancel record table. If it is, return the cancel
1766  * buffer structure to the caller.
1767  */
1768 STATIC struct xfs_buf_cancel *
1769 xlog_peek_buffer_cancelled(
1770 	struct xlog		*log,
1771 	xfs_daddr_t		blkno,
1772 	uint			len,
1773 	ushort			flags)
1774 {
1775 	struct list_head	*bucket;
1776 	struct xfs_buf_cancel	*bcp;
1777 
1778 	if (!log->l_buf_cancel_table) {
1779 		/* empty table means no cancelled buffers in the log */
1780 		ASSERT(!(flags & XFS_BLF_CANCEL));
1781 		return NULL;
1782 	}
1783 
1784 	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1785 	list_for_each_entry(bcp, bucket, bc_list) {
1786 		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1787 			return bcp;
1788 	}
1789 
1790 	/*
1791 	 * We didn't find a corresponding entry in the table, so return 0 so
1792 	 * that the buffer is NOT cancelled.
1793 	 */
1794 	ASSERT(!(flags & XFS_BLF_CANCEL));
1795 	return NULL;
1796 }
1797 
1798 /*
1799  * If the buffer is being cancelled then return 1 so that it will be cancelled,
1800  * otherwise return 0.  If the buffer is actually a buffer cancel item
1801  * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
1802  * table and remove it from the table if this is the last reference.
1803  *
1804  * We remove the cancel record from the table when we encounter its last
1805  * occurrence in the log so that if the same buffer is re-used again after its
1806  * last cancellation we actually replay the changes made at that point.
1807  */
1808 STATIC int
1809 xlog_check_buffer_cancelled(
1810 	struct xlog		*log,
1811 	xfs_daddr_t		blkno,
1812 	uint			len,
1813 	ushort			flags)
1814 {
1815 	struct xfs_buf_cancel	*bcp;
1816 
1817 	bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
1818 	if (!bcp)
1819 		return 0;
1820 
1821 	/*
1822 	 * We've go a match, so return 1 so that the recovery of this buffer
1823 	 * is cancelled.  If this buffer is actually a buffer cancel log
1824 	 * item, then decrement the refcount on the one in the table and
1825 	 * remove it if this is the last reference.
1826 	 */
1827 	if (flags & XFS_BLF_CANCEL) {
1828 		if (--bcp->bc_refcount == 0) {
1829 			list_del(&bcp->bc_list);
1830 			kmem_free(bcp);
1831 		}
1832 	}
1833 	return 1;
1834 }
1835 
1836 /*
1837  * Perform recovery for a buffer full of inodes.  In these buffers, the only
1838  * data which should be recovered is that which corresponds to the
1839  * di_next_unlinked pointers in the on disk inode structures.  The rest of the
1840  * data for the inodes is always logged through the inodes themselves rather
1841  * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1842  *
1843  * The only time when buffers full of inodes are fully recovered is when the
1844  * buffer is full of newly allocated inodes.  In this case the buffer will
1845  * not be marked as an inode buffer and so will be sent to
1846  * xlog_recover_do_reg_buffer() below during recovery.
1847  */
1848 STATIC int
1849 xlog_recover_do_inode_buffer(
1850 	struct xfs_mount	*mp,
1851 	xlog_recover_item_t	*item,
1852 	struct xfs_buf		*bp,
1853 	xfs_buf_log_format_t	*buf_f)
1854 {
1855 	int			i;
1856 	int			item_index = 0;
1857 	int			bit = 0;
1858 	int			nbits = 0;
1859 	int			reg_buf_offset = 0;
1860 	int			reg_buf_bytes = 0;
1861 	int			next_unlinked_offset;
1862 	int			inodes_per_buf;
1863 	xfs_agino_t		*logged_nextp;
1864 	xfs_agino_t		*buffer_nextp;
1865 
1866 	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1867 
1868 	/*
1869 	 * Post recovery validation only works properly on CRC enabled
1870 	 * filesystems.
1871 	 */
1872 	if (xfs_sb_version_hascrc(&mp->m_sb))
1873 		bp->b_ops = &xfs_inode_buf_ops;
1874 
1875 	inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1876 	for (i = 0; i < inodes_per_buf; i++) {
1877 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1878 			offsetof(xfs_dinode_t, di_next_unlinked);
1879 
1880 		while (next_unlinked_offset >=
1881 		       (reg_buf_offset + reg_buf_bytes)) {
1882 			/*
1883 			 * The next di_next_unlinked field is beyond
1884 			 * the current logged region.  Find the next
1885 			 * logged region that contains or is beyond
1886 			 * the current di_next_unlinked field.
1887 			 */
1888 			bit += nbits;
1889 			bit = xfs_next_bit(buf_f->blf_data_map,
1890 					   buf_f->blf_map_size, bit);
1891 
1892 			/*
1893 			 * If there are no more logged regions in the
1894 			 * buffer, then we're done.
1895 			 */
1896 			if (bit == -1)
1897 				return 0;
1898 
1899 			nbits = xfs_contig_bits(buf_f->blf_data_map,
1900 						buf_f->blf_map_size, bit);
1901 			ASSERT(nbits > 0);
1902 			reg_buf_offset = bit << XFS_BLF_SHIFT;
1903 			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1904 			item_index++;
1905 		}
1906 
1907 		/*
1908 		 * If the current logged region starts after the current
1909 		 * di_next_unlinked field, then move on to the next
1910 		 * di_next_unlinked field.
1911 		 */
1912 		if (next_unlinked_offset < reg_buf_offset)
1913 			continue;
1914 
1915 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
1916 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1917 		ASSERT((reg_buf_offset + reg_buf_bytes) <=
1918 							BBTOB(bp->b_io_length));
1919 
1920 		/*
1921 		 * The current logged region contains a copy of the
1922 		 * current di_next_unlinked field.  Extract its value
1923 		 * and copy it to the buffer copy.
1924 		 */
1925 		logged_nextp = item->ri_buf[item_index].i_addr +
1926 				next_unlinked_offset - reg_buf_offset;
1927 		if (unlikely(*logged_nextp == 0)) {
1928 			xfs_alert(mp,
1929 		"Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1930 		"Trying to replay bad (0) inode di_next_unlinked field.",
1931 				item, bp);
1932 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1933 					 XFS_ERRLEVEL_LOW, mp);
1934 			return XFS_ERROR(EFSCORRUPTED);
1935 		}
1936 
1937 		buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1938 					      next_unlinked_offset);
1939 		*buffer_nextp = *logged_nextp;
1940 
1941 		/*
1942 		 * If necessary, recalculate the CRC in the on-disk inode. We
1943 		 * have to leave the inode in a consistent state for whoever
1944 		 * reads it next....
1945 		 */
1946 		xfs_dinode_calc_crc(mp, (struct xfs_dinode *)
1947 				xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
1948 
1949 	}
1950 
1951 	return 0;
1952 }
1953 
1954 /*
1955  * V5 filesystems know the age of the buffer on disk being recovered. We can
1956  * have newer objects on disk than we are replaying, and so for these cases we
1957  * don't want to replay the current change as that will make the buffer contents
1958  * temporarily invalid on disk.
1959  *
1960  * The magic number might not match the buffer type we are going to recover
1961  * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
1962  * extract the LSN of the existing object in the buffer based on it's current
1963  * magic number.  If we don't recognise the magic number in the buffer, then
1964  * return a LSN of -1 so that the caller knows it was an unrecognised block and
1965  * so can recover the buffer.
1966  *
1967  * Note: we cannot rely solely on magic number matches to determine that the
1968  * buffer has a valid LSN - we also need to verify that it belongs to this
1969  * filesystem, so we need to extract the object's LSN and compare it to that
1970  * which we read from the superblock. If the UUIDs don't match, then we've got a
1971  * stale metadata block from an old filesystem instance that we need to recover
1972  * over the top of.
1973  */
1974 static xfs_lsn_t
1975 xlog_recover_get_buf_lsn(
1976 	struct xfs_mount	*mp,
1977 	struct xfs_buf		*bp)
1978 {
1979 	__uint32_t		magic32;
1980 	__uint16_t		magic16;
1981 	__uint16_t		magicda;
1982 	void			*blk = bp->b_addr;
1983 	uuid_t			*uuid;
1984 	xfs_lsn_t		lsn = -1;
1985 
1986 	/* v4 filesystems always recover immediately */
1987 	if (!xfs_sb_version_hascrc(&mp->m_sb))
1988 		goto recover_immediately;
1989 
1990 	magic32 = be32_to_cpu(*(__be32 *)blk);
1991 	switch (magic32) {
1992 	case XFS_ABTB_CRC_MAGIC:
1993 	case XFS_ABTC_CRC_MAGIC:
1994 	case XFS_ABTB_MAGIC:
1995 	case XFS_ABTC_MAGIC:
1996 	case XFS_IBT_CRC_MAGIC:
1997 	case XFS_IBT_MAGIC: {
1998 		struct xfs_btree_block *btb = blk;
1999 
2000 		lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2001 		uuid = &btb->bb_u.s.bb_uuid;
2002 		break;
2003 	}
2004 	case XFS_BMAP_CRC_MAGIC:
2005 	case XFS_BMAP_MAGIC: {
2006 		struct xfs_btree_block *btb = blk;
2007 
2008 		lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2009 		uuid = &btb->bb_u.l.bb_uuid;
2010 		break;
2011 	}
2012 	case XFS_AGF_MAGIC:
2013 		lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2014 		uuid = &((struct xfs_agf *)blk)->agf_uuid;
2015 		break;
2016 	case XFS_AGFL_MAGIC:
2017 		lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2018 		uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2019 		break;
2020 	case XFS_AGI_MAGIC:
2021 		lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2022 		uuid = &((struct xfs_agi *)blk)->agi_uuid;
2023 		break;
2024 	case XFS_SYMLINK_MAGIC:
2025 		lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2026 		uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2027 		break;
2028 	case XFS_DIR3_BLOCK_MAGIC:
2029 	case XFS_DIR3_DATA_MAGIC:
2030 	case XFS_DIR3_FREE_MAGIC:
2031 		lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2032 		uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2033 		break;
2034 	case XFS_ATTR3_RMT_MAGIC:
2035 		lsn = be64_to_cpu(((struct xfs_attr3_rmt_hdr *)blk)->rm_lsn);
2036 		uuid = &((struct xfs_attr3_rmt_hdr *)blk)->rm_uuid;
2037 		break;
2038 	case XFS_SB_MAGIC:
2039 		lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2040 		uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2041 		break;
2042 	default:
2043 		break;
2044 	}
2045 
2046 	if (lsn != (xfs_lsn_t)-1) {
2047 		if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2048 			goto recover_immediately;
2049 		return lsn;
2050 	}
2051 
2052 	magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2053 	switch (magicda) {
2054 	case XFS_DIR3_LEAF1_MAGIC:
2055 	case XFS_DIR3_LEAFN_MAGIC:
2056 	case XFS_DA3_NODE_MAGIC:
2057 		lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2058 		uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2059 		break;
2060 	default:
2061 		break;
2062 	}
2063 
2064 	if (lsn != (xfs_lsn_t)-1) {
2065 		if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2066 			goto recover_immediately;
2067 		return lsn;
2068 	}
2069 
2070 	/*
2071 	 * We do individual object checks on dquot and inode buffers as they
2072 	 * have their own individual LSN records. Also, we could have a stale
2073 	 * buffer here, so we have to at least recognise these buffer types.
2074 	 *
2075 	 * A notd complexity here is inode unlinked list processing - it logs
2076 	 * the inode directly in the buffer, but we don't know which inodes have
2077 	 * been modified, and there is no global buffer LSN. Hence we need to
2078 	 * recover all inode buffer types immediately. This problem will be
2079 	 * fixed by logical logging of the unlinked list modifications.
2080 	 */
2081 	magic16 = be16_to_cpu(*(__be16 *)blk);
2082 	switch (magic16) {
2083 	case XFS_DQUOT_MAGIC:
2084 	case XFS_DINODE_MAGIC:
2085 		goto recover_immediately;
2086 	default:
2087 		break;
2088 	}
2089 
2090 	/* unknown buffer contents, recover immediately */
2091 
2092 recover_immediately:
2093 	return (xfs_lsn_t)-1;
2094 
2095 }
2096 
2097 /*
2098  * Validate the recovered buffer is of the correct type and attach the
2099  * appropriate buffer operations to them for writeback. Magic numbers are in a
2100  * few places:
2101  *	the first 16 bits of the buffer (inode buffer, dquot buffer),
2102  *	the first 32 bits of the buffer (most blocks),
2103  *	inside a struct xfs_da_blkinfo at the start of the buffer.
2104  */
2105 static void
2106 xlog_recover_validate_buf_type(
2107 	struct xfs_mount	*mp,
2108 	struct xfs_buf		*bp,
2109 	xfs_buf_log_format_t	*buf_f)
2110 {
2111 	struct xfs_da_blkinfo	*info = bp->b_addr;
2112 	__uint32_t		magic32;
2113 	__uint16_t		magic16;
2114 	__uint16_t		magicda;
2115 
2116 	magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2117 	magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2118 	magicda = be16_to_cpu(info->magic);
2119 	switch (xfs_blft_from_flags(buf_f)) {
2120 	case XFS_BLFT_BTREE_BUF:
2121 		switch (magic32) {
2122 		case XFS_ABTB_CRC_MAGIC:
2123 		case XFS_ABTC_CRC_MAGIC:
2124 		case XFS_ABTB_MAGIC:
2125 		case XFS_ABTC_MAGIC:
2126 			bp->b_ops = &xfs_allocbt_buf_ops;
2127 			break;
2128 		case XFS_IBT_CRC_MAGIC:
2129 		case XFS_IBT_MAGIC:
2130 			bp->b_ops = &xfs_inobt_buf_ops;
2131 			break;
2132 		case XFS_BMAP_CRC_MAGIC:
2133 		case XFS_BMAP_MAGIC:
2134 			bp->b_ops = &xfs_bmbt_buf_ops;
2135 			break;
2136 		default:
2137 			xfs_warn(mp, "Bad btree block magic!");
2138 			ASSERT(0);
2139 			break;
2140 		}
2141 		break;
2142 	case XFS_BLFT_AGF_BUF:
2143 		if (magic32 != XFS_AGF_MAGIC) {
2144 			xfs_warn(mp, "Bad AGF block magic!");
2145 			ASSERT(0);
2146 			break;
2147 		}
2148 		bp->b_ops = &xfs_agf_buf_ops;
2149 		break;
2150 	case XFS_BLFT_AGFL_BUF:
2151 		if (!xfs_sb_version_hascrc(&mp->m_sb))
2152 			break;
2153 		if (magic32 != XFS_AGFL_MAGIC) {
2154 			xfs_warn(mp, "Bad AGFL block magic!");
2155 			ASSERT(0);
2156 			break;
2157 		}
2158 		bp->b_ops = &xfs_agfl_buf_ops;
2159 		break;
2160 	case XFS_BLFT_AGI_BUF:
2161 		if (magic32 != XFS_AGI_MAGIC) {
2162 			xfs_warn(mp, "Bad AGI block magic!");
2163 			ASSERT(0);
2164 			break;
2165 		}
2166 		bp->b_ops = &xfs_agi_buf_ops;
2167 		break;
2168 	case XFS_BLFT_UDQUOT_BUF:
2169 	case XFS_BLFT_PDQUOT_BUF:
2170 	case XFS_BLFT_GDQUOT_BUF:
2171 #ifdef CONFIG_XFS_QUOTA
2172 		if (magic16 != XFS_DQUOT_MAGIC) {
2173 			xfs_warn(mp, "Bad DQUOT block magic!");
2174 			ASSERT(0);
2175 			break;
2176 		}
2177 		bp->b_ops = &xfs_dquot_buf_ops;
2178 #else
2179 		xfs_alert(mp,
2180 	"Trying to recover dquots without QUOTA support built in!");
2181 		ASSERT(0);
2182 #endif
2183 		break;
2184 	case XFS_BLFT_DINO_BUF:
2185 		/*
2186 		 * we get here with inode allocation buffers, not buffers that
2187 		 * track unlinked list changes.
2188 		 */
2189 		if (magic16 != XFS_DINODE_MAGIC) {
2190 			xfs_warn(mp, "Bad INODE block magic!");
2191 			ASSERT(0);
2192 			break;
2193 		}
2194 		bp->b_ops = &xfs_inode_buf_ops;
2195 		break;
2196 	case XFS_BLFT_SYMLINK_BUF:
2197 		if (magic32 != XFS_SYMLINK_MAGIC) {
2198 			xfs_warn(mp, "Bad symlink block magic!");
2199 			ASSERT(0);
2200 			break;
2201 		}
2202 		bp->b_ops = &xfs_symlink_buf_ops;
2203 		break;
2204 	case XFS_BLFT_DIR_BLOCK_BUF:
2205 		if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2206 		    magic32 != XFS_DIR3_BLOCK_MAGIC) {
2207 			xfs_warn(mp, "Bad dir block magic!");
2208 			ASSERT(0);
2209 			break;
2210 		}
2211 		bp->b_ops = &xfs_dir3_block_buf_ops;
2212 		break;
2213 	case XFS_BLFT_DIR_DATA_BUF:
2214 		if (magic32 != XFS_DIR2_DATA_MAGIC &&
2215 		    magic32 != XFS_DIR3_DATA_MAGIC) {
2216 			xfs_warn(mp, "Bad dir data magic!");
2217 			ASSERT(0);
2218 			break;
2219 		}
2220 		bp->b_ops = &xfs_dir3_data_buf_ops;
2221 		break;
2222 	case XFS_BLFT_DIR_FREE_BUF:
2223 		if (magic32 != XFS_DIR2_FREE_MAGIC &&
2224 		    magic32 != XFS_DIR3_FREE_MAGIC) {
2225 			xfs_warn(mp, "Bad dir3 free magic!");
2226 			ASSERT(0);
2227 			break;
2228 		}
2229 		bp->b_ops = &xfs_dir3_free_buf_ops;
2230 		break;
2231 	case XFS_BLFT_DIR_LEAF1_BUF:
2232 		if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2233 		    magicda != XFS_DIR3_LEAF1_MAGIC) {
2234 			xfs_warn(mp, "Bad dir leaf1 magic!");
2235 			ASSERT(0);
2236 			break;
2237 		}
2238 		bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2239 		break;
2240 	case XFS_BLFT_DIR_LEAFN_BUF:
2241 		if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2242 		    magicda != XFS_DIR3_LEAFN_MAGIC) {
2243 			xfs_warn(mp, "Bad dir leafn magic!");
2244 			ASSERT(0);
2245 			break;
2246 		}
2247 		bp->b_ops = &xfs_dir3_leafn_buf_ops;
2248 		break;
2249 	case XFS_BLFT_DA_NODE_BUF:
2250 		if (magicda != XFS_DA_NODE_MAGIC &&
2251 		    magicda != XFS_DA3_NODE_MAGIC) {
2252 			xfs_warn(mp, "Bad da node magic!");
2253 			ASSERT(0);
2254 			break;
2255 		}
2256 		bp->b_ops = &xfs_da3_node_buf_ops;
2257 		break;
2258 	case XFS_BLFT_ATTR_LEAF_BUF:
2259 		if (magicda != XFS_ATTR_LEAF_MAGIC &&
2260 		    magicda != XFS_ATTR3_LEAF_MAGIC) {
2261 			xfs_warn(mp, "Bad attr leaf magic!");
2262 			ASSERT(0);
2263 			break;
2264 		}
2265 		bp->b_ops = &xfs_attr3_leaf_buf_ops;
2266 		break;
2267 	case XFS_BLFT_ATTR_RMT_BUF:
2268 		if (!xfs_sb_version_hascrc(&mp->m_sb))
2269 			break;
2270 		if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2271 			xfs_warn(mp, "Bad attr remote magic!");
2272 			ASSERT(0);
2273 			break;
2274 		}
2275 		bp->b_ops = &xfs_attr3_rmt_buf_ops;
2276 		break;
2277 	case XFS_BLFT_SB_BUF:
2278 		if (magic32 != XFS_SB_MAGIC) {
2279 			xfs_warn(mp, "Bad SB block magic!");
2280 			ASSERT(0);
2281 			break;
2282 		}
2283 		bp->b_ops = &xfs_sb_buf_ops;
2284 		break;
2285 	default:
2286 		xfs_warn(mp, "Unknown buffer type %d!",
2287 			 xfs_blft_from_flags(buf_f));
2288 		break;
2289 	}
2290 }
2291 
2292 /*
2293  * Perform a 'normal' buffer recovery.  Each logged region of the
2294  * buffer should be copied over the corresponding region in the
2295  * given buffer.  The bitmap in the buf log format structure indicates
2296  * where to place the logged data.
2297  */
2298 STATIC void
2299 xlog_recover_do_reg_buffer(
2300 	struct xfs_mount	*mp,
2301 	xlog_recover_item_t	*item,
2302 	struct xfs_buf		*bp,
2303 	xfs_buf_log_format_t	*buf_f)
2304 {
2305 	int			i;
2306 	int			bit;
2307 	int			nbits;
2308 	int                     error;
2309 
2310 	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2311 
2312 	bit = 0;
2313 	i = 1;  /* 0 is the buf format structure */
2314 	while (1) {
2315 		bit = xfs_next_bit(buf_f->blf_data_map,
2316 				   buf_f->blf_map_size, bit);
2317 		if (bit == -1)
2318 			break;
2319 		nbits = xfs_contig_bits(buf_f->blf_data_map,
2320 					buf_f->blf_map_size, bit);
2321 		ASSERT(nbits > 0);
2322 		ASSERT(item->ri_buf[i].i_addr != NULL);
2323 		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2324 		ASSERT(BBTOB(bp->b_io_length) >=
2325 		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2326 
2327 		/*
2328 		 * The dirty regions logged in the buffer, even though
2329 		 * contiguous, may span multiple chunks. This is because the
2330 		 * dirty region may span a physical page boundary in a buffer
2331 		 * and hence be split into two separate vectors for writing into
2332 		 * the log. Hence we need to trim nbits back to the length of
2333 		 * the current region being copied out of the log.
2334 		 */
2335 		if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2336 			nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2337 
2338 		/*
2339 		 * Do a sanity check if this is a dquot buffer. Just checking
2340 		 * the first dquot in the buffer should do. XXXThis is
2341 		 * probably a good thing to do for other buf types also.
2342 		 */
2343 		error = 0;
2344 		if (buf_f->blf_flags &
2345 		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2346 			if (item->ri_buf[i].i_addr == NULL) {
2347 				xfs_alert(mp,
2348 					"XFS: NULL dquot in %s.", __func__);
2349 				goto next;
2350 			}
2351 			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2352 				xfs_alert(mp,
2353 					"XFS: dquot too small (%d) in %s.",
2354 					item->ri_buf[i].i_len, __func__);
2355 				goto next;
2356 			}
2357 			error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
2358 					       -1, 0, XFS_QMOPT_DOWARN,
2359 					       "dquot_buf_recover");
2360 			if (error)
2361 				goto next;
2362 		}
2363 
2364 		memcpy(xfs_buf_offset(bp,
2365 			(uint)bit << XFS_BLF_SHIFT),	/* dest */
2366 			item->ri_buf[i].i_addr,		/* source */
2367 			nbits<<XFS_BLF_SHIFT);		/* length */
2368  next:
2369 		i++;
2370 		bit += nbits;
2371 	}
2372 
2373 	/* Shouldn't be any more regions */
2374 	ASSERT(i == item->ri_total);
2375 
2376 	/*
2377 	 * We can only do post recovery validation on items on CRC enabled
2378 	 * fielsystems as we need to know when the buffer was written to be able
2379 	 * to determine if we should have replayed the item. If we replay old
2380 	 * metadata over a newer buffer, then it will enter a temporarily
2381 	 * inconsistent state resulting in verification failures. Hence for now
2382 	 * just avoid the verification stage for non-crc filesystems
2383 	 */
2384 	if (xfs_sb_version_hascrc(&mp->m_sb))
2385 		xlog_recover_validate_buf_type(mp, bp, buf_f);
2386 }
2387 
2388 /*
2389  * Perform a dquot buffer recovery.
2390  * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2391  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2392  * Else, treat it as a regular buffer and do recovery.
2393  */
2394 STATIC void
2395 xlog_recover_do_dquot_buffer(
2396 	struct xfs_mount		*mp,
2397 	struct xlog			*log,
2398 	struct xlog_recover_item	*item,
2399 	struct xfs_buf			*bp,
2400 	struct xfs_buf_log_format	*buf_f)
2401 {
2402 	uint			type;
2403 
2404 	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2405 
2406 	/*
2407 	 * Filesystems are required to send in quota flags at mount time.
2408 	 */
2409 	if (mp->m_qflags == 0) {
2410 		return;
2411 	}
2412 
2413 	type = 0;
2414 	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2415 		type |= XFS_DQ_USER;
2416 	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2417 		type |= XFS_DQ_PROJ;
2418 	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2419 		type |= XFS_DQ_GROUP;
2420 	/*
2421 	 * This type of quotas was turned off, so ignore this buffer
2422 	 */
2423 	if (log->l_quotaoffs_flag & type)
2424 		return;
2425 
2426 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2427 }
2428 
2429 /*
2430  * This routine replays a modification made to a buffer at runtime.
2431  * There are actually two types of buffer, regular and inode, which
2432  * are handled differently.  Inode buffers are handled differently
2433  * in that we only recover a specific set of data from them, namely
2434  * the inode di_next_unlinked fields.  This is because all other inode
2435  * data is actually logged via inode records and any data we replay
2436  * here which overlaps that may be stale.
2437  *
2438  * When meta-data buffers are freed at run time we log a buffer item
2439  * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2440  * of the buffer in the log should not be replayed at recovery time.
2441  * This is so that if the blocks covered by the buffer are reused for
2442  * file data before we crash we don't end up replaying old, freed
2443  * meta-data into a user's file.
2444  *
2445  * To handle the cancellation of buffer log items, we make two passes
2446  * over the log during recovery.  During the first we build a table of
2447  * those buffers which have been cancelled, and during the second we
2448  * only replay those buffers which do not have corresponding cancel
2449  * records in the table.  See xlog_recover_buffer_pass[1,2] above
2450  * for more details on the implementation of the table of cancel records.
2451  */
2452 STATIC int
2453 xlog_recover_buffer_pass2(
2454 	struct xlog			*log,
2455 	struct list_head		*buffer_list,
2456 	struct xlog_recover_item	*item,
2457 	xfs_lsn_t			current_lsn)
2458 {
2459 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2460 	xfs_mount_t		*mp = log->l_mp;
2461 	xfs_buf_t		*bp;
2462 	int			error;
2463 	uint			buf_flags;
2464 	xfs_lsn_t		lsn;
2465 
2466 	/*
2467 	 * In this pass we only want to recover all the buffers which have
2468 	 * not been cancelled and are not cancellation buffers themselves.
2469 	 */
2470 	if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2471 			buf_f->blf_len, buf_f->blf_flags)) {
2472 		trace_xfs_log_recover_buf_cancel(log, buf_f);
2473 		return 0;
2474 	}
2475 
2476 	trace_xfs_log_recover_buf_recover(log, buf_f);
2477 
2478 	buf_flags = 0;
2479 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2480 		buf_flags |= XBF_UNMAPPED;
2481 
2482 	bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2483 			  buf_flags, NULL);
2484 	if (!bp)
2485 		return XFS_ERROR(ENOMEM);
2486 	error = bp->b_error;
2487 	if (error) {
2488 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2489 		goto out_release;
2490 	}
2491 
2492 	/*
2493 	 * recover the buffer only if we get an LSN from it and it's less than
2494 	 * the lsn of the transaction we are replaying.
2495 	 */
2496 	lsn = xlog_recover_get_buf_lsn(mp, bp);
2497 	if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0)
2498 		goto out_release;
2499 
2500 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2501 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2502 	} else if (buf_f->blf_flags &
2503 		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2504 		xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2505 	} else {
2506 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2507 	}
2508 	if (error)
2509 		goto out_release;
2510 
2511 	/*
2512 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2513 	 * slower when taking into account all the buffers to be flushed.
2514 	 *
2515 	 * Also make sure that only inode buffers with good sizes stay in
2516 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2517 	 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2518 	 * buffers in the log can be a different size if the log was generated
2519 	 * by an older kernel using unclustered inode buffers or a newer kernel
2520 	 * running with a different inode cluster size.  Regardless, if the
2521 	 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2522 	 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2523 	 * the buffer out of the buffer cache so that the buffer won't
2524 	 * overlap with future reads of those inodes.
2525 	 */
2526 	if (XFS_DINODE_MAGIC ==
2527 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2528 	    (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2529 			(__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2530 		xfs_buf_stale(bp);
2531 		error = xfs_bwrite(bp);
2532 	} else {
2533 		ASSERT(bp->b_target->bt_mount == mp);
2534 		bp->b_iodone = xlog_recover_iodone;
2535 		xfs_buf_delwri_queue(bp, buffer_list);
2536 	}
2537 
2538 out_release:
2539 	xfs_buf_relse(bp);
2540 	return error;
2541 }
2542 
2543 /*
2544  * Inode fork owner changes
2545  *
2546  * If we have been told that we have to reparent the inode fork, it's because an
2547  * extent swap operation on a CRC enabled filesystem has been done and we are
2548  * replaying it. We need to walk the BMBT of the appropriate fork and change the
2549  * owners of it.
2550  *
2551  * The complexity here is that we don't have an inode context to work with, so
2552  * after we've replayed the inode we need to instantiate one.  This is where the
2553  * fun begins.
2554  *
2555  * We are in the middle of log recovery, so we can't run transactions. That
2556  * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2557  * that will result in the corresponding iput() running the inode through
2558  * xfs_inactive(). If we've just replayed an inode core that changes the link
2559  * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2560  * transactions (bad!).
2561  *
2562  * So, to avoid this, we instantiate an inode directly from the inode core we've
2563  * just recovered. We have the buffer still locked, and all we really need to
2564  * instantiate is the inode core and the forks being modified. We can do this
2565  * manually, then run the inode btree owner change, and then tear down the
2566  * xfs_inode without having to run any transactions at all.
2567  *
2568  * Also, because we don't have a transaction context available here but need to
2569  * gather all the buffers we modify for writeback so we pass the buffer_list
2570  * instead for the operation to use.
2571  */
2572 
2573 STATIC int
2574 xfs_recover_inode_owner_change(
2575 	struct xfs_mount	*mp,
2576 	struct xfs_dinode	*dip,
2577 	struct xfs_inode_log_format *in_f,
2578 	struct list_head	*buffer_list)
2579 {
2580 	struct xfs_inode	*ip;
2581 	int			error;
2582 
2583 	ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2584 
2585 	ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2586 	if (!ip)
2587 		return ENOMEM;
2588 
2589 	/* instantiate the inode */
2590 	xfs_dinode_from_disk(&ip->i_d, dip);
2591 	ASSERT(ip->i_d.di_version >= 3);
2592 
2593 	error = xfs_iformat_fork(ip, dip);
2594 	if (error)
2595 		goto out_free_ip;
2596 
2597 
2598 	if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2599 		ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2600 		error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2601 					      ip->i_ino, buffer_list);
2602 		if (error)
2603 			goto out_free_ip;
2604 	}
2605 
2606 	if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2607 		ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2608 		error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2609 					      ip->i_ino, buffer_list);
2610 		if (error)
2611 			goto out_free_ip;
2612 	}
2613 
2614 out_free_ip:
2615 	xfs_inode_free(ip);
2616 	return error;
2617 }
2618 
2619 STATIC int
2620 xlog_recover_inode_pass2(
2621 	struct xlog			*log,
2622 	struct list_head		*buffer_list,
2623 	struct xlog_recover_item	*item,
2624 	xfs_lsn_t			current_lsn)
2625 {
2626 	xfs_inode_log_format_t	*in_f;
2627 	xfs_mount_t		*mp = log->l_mp;
2628 	xfs_buf_t		*bp;
2629 	xfs_dinode_t		*dip;
2630 	int			len;
2631 	xfs_caddr_t		src;
2632 	xfs_caddr_t		dest;
2633 	int			error;
2634 	int			attr_index;
2635 	uint			fields;
2636 	xfs_icdinode_t		*dicp;
2637 	uint			isize;
2638 	int			need_free = 0;
2639 
2640 	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2641 		in_f = item->ri_buf[0].i_addr;
2642 	} else {
2643 		in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2644 		need_free = 1;
2645 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2646 		if (error)
2647 			goto error;
2648 	}
2649 
2650 	/*
2651 	 * Inode buffers can be freed, look out for it,
2652 	 * and do not replay the inode.
2653 	 */
2654 	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2655 					in_f->ilf_len, 0)) {
2656 		error = 0;
2657 		trace_xfs_log_recover_inode_cancel(log, in_f);
2658 		goto error;
2659 	}
2660 	trace_xfs_log_recover_inode_recover(log, in_f);
2661 
2662 	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2663 			  &xfs_inode_buf_ops);
2664 	if (!bp) {
2665 		error = ENOMEM;
2666 		goto error;
2667 	}
2668 	error = bp->b_error;
2669 	if (error) {
2670 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2671 		goto out_release;
2672 	}
2673 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2674 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2675 
2676 	/*
2677 	 * Make sure the place we're flushing out to really looks
2678 	 * like an inode!
2679 	 */
2680 	if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2681 		xfs_alert(mp,
2682 	"%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2683 			__func__, dip, bp, in_f->ilf_ino);
2684 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2685 				 XFS_ERRLEVEL_LOW, mp);
2686 		error = EFSCORRUPTED;
2687 		goto out_release;
2688 	}
2689 	dicp = item->ri_buf[1].i_addr;
2690 	if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2691 		xfs_alert(mp,
2692 			"%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2693 			__func__, item, in_f->ilf_ino);
2694 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2695 				 XFS_ERRLEVEL_LOW, mp);
2696 		error = EFSCORRUPTED;
2697 		goto out_release;
2698 	}
2699 
2700 	/*
2701 	 * If the inode has an LSN in it, recover the inode only if it's less
2702 	 * than the lsn of the transaction we are replaying. Note: we still
2703 	 * need to replay an owner change even though the inode is more recent
2704 	 * than the transaction as there is no guarantee that all the btree
2705 	 * blocks are more recent than this transaction, too.
2706 	 */
2707 	if (dip->di_version >= 3) {
2708 		xfs_lsn_t	lsn = be64_to_cpu(dip->di_lsn);
2709 
2710 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2711 			trace_xfs_log_recover_inode_skip(log, in_f);
2712 			error = 0;
2713 			goto out_owner_change;
2714 		}
2715 	}
2716 
2717 	/*
2718 	 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2719 	 * are transactional and if ordering is necessary we can determine that
2720 	 * more accurately by the LSN field in the V3 inode core. Don't trust
2721 	 * the inode versions we might be changing them here - use the
2722 	 * superblock flag to determine whether we need to look at di_flushiter
2723 	 * to skip replay when the on disk inode is newer than the log one
2724 	 */
2725 	if (!xfs_sb_version_hascrc(&mp->m_sb) &&
2726 	    dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2727 		/*
2728 		 * Deal with the wrap case, DI_MAX_FLUSH is less
2729 		 * than smaller numbers
2730 		 */
2731 		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2732 		    dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2733 			/* do nothing */
2734 		} else {
2735 			trace_xfs_log_recover_inode_skip(log, in_f);
2736 			error = 0;
2737 			goto out_release;
2738 		}
2739 	}
2740 
2741 	/* Take the opportunity to reset the flush iteration count */
2742 	dicp->di_flushiter = 0;
2743 
2744 	if (unlikely(S_ISREG(dicp->di_mode))) {
2745 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2746 		    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2747 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2748 					 XFS_ERRLEVEL_LOW, mp, dicp);
2749 			xfs_alert(mp,
2750 		"%s: Bad regular inode log record, rec ptr 0x%p, "
2751 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2752 				__func__, item, dip, bp, in_f->ilf_ino);
2753 			error = EFSCORRUPTED;
2754 			goto out_release;
2755 		}
2756 	} else if (unlikely(S_ISDIR(dicp->di_mode))) {
2757 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2758 		    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2759 		    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2760 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2761 					     XFS_ERRLEVEL_LOW, mp, dicp);
2762 			xfs_alert(mp,
2763 		"%s: Bad dir inode log record, rec ptr 0x%p, "
2764 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2765 				__func__, item, dip, bp, in_f->ilf_ino);
2766 			error = EFSCORRUPTED;
2767 			goto out_release;
2768 		}
2769 	}
2770 	if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2771 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2772 				     XFS_ERRLEVEL_LOW, mp, dicp);
2773 		xfs_alert(mp,
2774 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2775 	"dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2776 			__func__, item, dip, bp, in_f->ilf_ino,
2777 			dicp->di_nextents + dicp->di_anextents,
2778 			dicp->di_nblocks);
2779 		error = EFSCORRUPTED;
2780 		goto out_release;
2781 	}
2782 	if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2783 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2784 				     XFS_ERRLEVEL_LOW, mp, dicp);
2785 		xfs_alert(mp,
2786 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2787 	"dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2788 			item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2789 		error = EFSCORRUPTED;
2790 		goto out_release;
2791 	}
2792 	isize = xfs_icdinode_size(dicp->di_version);
2793 	if (unlikely(item->ri_buf[1].i_len > isize)) {
2794 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2795 				     XFS_ERRLEVEL_LOW, mp, dicp);
2796 		xfs_alert(mp,
2797 			"%s: Bad inode log record length %d, rec ptr 0x%p",
2798 			__func__, item->ri_buf[1].i_len, item);
2799 		error = EFSCORRUPTED;
2800 		goto out_release;
2801 	}
2802 
2803 	/* The core is in in-core format */
2804 	xfs_dinode_to_disk(dip, dicp);
2805 
2806 	/* the rest is in on-disk format */
2807 	if (item->ri_buf[1].i_len > isize) {
2808 		memcpy((char *)dip + isize,
2809 			item->ri_buf[1].i_addr + isize,
2810 			item->ri_buf[1].i_len - isize);
2811 	}
2812 
2813 	fields = in_f->ilf_fields;
2814 	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2815 	case XFS_ILOG_DEV:
2816 		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2817 		break;
2818 	case XFS_ILOG_UUID:
2819 		memcpy(XFS_DFORK_DPTR(dip),
2820 		       &in_f->ilf_u.ilfu_uuid,
2821 		       sizeof(uuid_t));
2822 		break;
2823 	}
2824 
2825 	if (in_f->ilf_size == 2)
2826 		goto out_owner_change;
2827 	len = item->ri_buf[2].i_len;
2828 	src = item->ri_buf[2].i_addr;
2829 	ASSERT(in_f->ilf_size <= 4);
2830 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2831 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
2832 	       (len == in_f->ilf_dsize));
2833 
2834 	switch (fields & XFS_ILOG_DFORK) {
2835 	case XFS_ILOG_DDATA:
2836 	case XFS_ILOG_DEXT:
2837 		memcpy(XFS_DFORK_DPTR(dip), src, len);
2838 		break;
2839 
2840 	case XFS_ILOG_DBROOT:
2841 		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2842 				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2843 				 XFS_DFORK_DSIZE(dip, mp));
2844 		break;
2845 
2846 	default:
2847 		/*
2848 		 * There are no data fork flags set.
2849 		 */
2850 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
2851 		break;
2852 	}
2853 
2854 	/*
2855 	 * If we logged any attribute data, recover it.  There may or
2856 	 * may not have been any other non-core data logged in this
2857 	 * transaction.
2858 	 */
2859 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2860 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2861 			attr_index = 3;
2862 		} else {
2863 			attr_index = 2;
2864 		}
2865 		len = item->ri_buf[attr_index].i_len;
2866 		src = item->ri_buf[attr_index].i_addr;
2867 		ASSERT(len == in_f->ilf_asize);
2868 
2869 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2870 		case XFS_ILOG_ADATA:
2871 		case XFS_ILOG_AEXT:
2872 			dest = XFS_DFORK_APTR(dip);
2873 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2874 			memcpy(dest, src, len);
2875 			break;
2876 
2877 		case XFS_ILOG_ABROOT:
2878 			dest = XFS_DFORK_APTR(dip);
2879 			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2880 					 len, (xfs_bmdr_block_t*)dest,
2881 					 XFS_DFORK_ASIZE(dip, mp));
2882 			break;
2883 
2884 		default:
2885 			xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2886 			ASSERT(0);
2887 			error = EIO;
2888 			goto out_release;
2889 		}
2890 	}
2891 
2892 out_owner_change:
2893 	if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
2894 		error = xfs_recover_inode_owner_change(mp, dip, in_f,
2895 						       buffer_list);
2896 	/* re-generate the checksum. */
2897 	xfs_dinode_calc_crc(log->l_mp, dip);
2898 
2899 	ASSERT(bp->b_target->bt_mount == mp);
2900 	bp->b_iodone = xlog_recover_iodone;
2901 	xfs_buf_delwri_queue(bp, buffer_list);
2902 
2903 out_release:
2904 	xfs_buf_relse(bp);
2905 error:
2906 	if (need_free)
2907 		kmem_free(in_f);
2908 	return XFS_ERROR(error);
2909 }
2910 
2911 /*
2912  * Recover QUOTAOFF records. We simply make a note of it in the xlog
2913  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2914  * of that type.
2915  */
2916 STATIC int
2917 xlog_recover_quotaoff_pass1(
2918 	struct xlog			*log,
2919 	struct xlog_recover_item	*item)
2920 {
2921 	xfs_qoff_logformat_t	*qoff_f = item->ri_buf[0].i_addr;
2922 	ASSERT(qoff_f);
2923 
2924 	/*
2925 	 * The logitem format's flag tells us if this was user quotaoff,
2926 	 * group/project quotaoff or both.
2927 	 */
2928 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2929 		log->l_quotaoffs_flag |= XFS_DQ_USER;
2930 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2931 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2932 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2933 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2934 
2935 	return (0);
2936 }
2937 
2938 /*
2939  * Recover a dquot record
2940  */
2941 STATIC int
2942 xlog_recover_dquot_pass2(
2943 	struct xlog			*log,
2944 	struct list_head		*buffer_list,
2945 	struct xlog_recover_item	*item,
2946 	xfs_lsn_t			current_lsn)
2947 {
2948 	xfs_mount_t		*mp = log->l_mp;
2949 	xfs_buf_t		*bp;
2950 	struct xfs_disk_dquot	*ddq, *recddq;
2951 	int			error;
2952 	xfs_dq_logformat_t	*dq_f;
2953 	uint			type;
2954 
2955 
2956 	/*
2957 	 * Filesystems are required to send in quota flags at mount time.
2958 	 */
2959 	if (mp->m_qflags == 0)
2960 		return (0);
2961 
2962 	recddq = item->ri_buf[1].i_addr;
2963 	if (recddq == NULL) {
2964 		xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2965 		return XFS_ERROR(EIO);
2966 	}
2967 	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2968 		xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2969 			item->ri_buf[1].i_len, __func__);
2970 		return XFS_ERROR(EIO);
2971 	}
2972 
2973 	/*
2974 	 * This type of quotas was turned off, so ignore this record.
2975 	 */
2976 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2977 	ASSERT(type);
2978 	if (log->l_quotaoffs_flag & type)
2979 		return (0);
2980 
2981 	/*
2982 	 * At this point we know that quota was _not_ turned off.
2983 	 * Since the mount flags are not indicating to us otherwise, this
2984 	 * must mean that quota is on, and the dquot needs to be replayed.
2985 	 * Remember that we may not have fully recovered the superblock yet,
2986 	 * so we can't do the usual trick of looking at the SB quota bits.
2987 	 *
2988 	 * The other possibility, of course, is that the quota subsystem was
2989 	 * removed since the last mount - ENOSYS.
2990 	 */
2991 	dq_f = item->ri_buf[0].i_addr;
2992 	ASSERT(dq_f);
2993 	error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2994 			   "xlog_recover_dquot_pass2 (log copy)");
2995 	if (error)
2996 		return XFS_ERROR(EIO);
2997 	ASSERT(dq_f->qlf_len == 1);
2998 
2999 	error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3000 				   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3001 				   NULL);
3002 	if (error)
3003 		return error;
3004 
3005 	ASSERT(bp);
3006 	ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
3007 
3008 	/*
3009 	 * At least the magic num portion should be on disk because this
3010 	 * was among a chunk of dquots created earlier, and we did some
3011 	 * minimal initialization then.
3012 	 */
3013 	error = xfs_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3014 			   "xlog_recover_dquot_pass2");
3015 	if (error) {
3016 		xfs_buf_relse(bp);
3017 		return XFS_ERROR(EIO);
3018 	}
3019 
3020 	/*
3021 	 * If the dquot has an LSN in it, recover the dquot only if it's less
3022 	 * than the lsn of the transaction we are replaying.
3023 	 */
3024 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3025 		struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3026 		xfs_lsn_t	lsn = be64_to_cpu(dqb->dd_lsn);
3027 
3028 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3029 			goto out_release;
3030 		}
3031 	}
3032 
3033 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
3034 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3035 		xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3036 				 XFS_DQUOT_CRC_OFF);
3037 	}
3038 
3039 	ASSERT(dq_f->qlf_size == 2);
3040 	ASSERT(bp->b_target->bt_mount == mp);
3041 	bp->b_iodone = xlog_recover_iodone;
3042 	xfs_buf_delwri_queue(bp, buffer_list);
3043 
3044 out_release:
3045 	xfs_buf_relse(bp);
3046 	return 0;
3047 }
3048 
3049 /*
3050  * This routine is called to create an in-core extent free intent
3051  * item from the efi format structure which was logged on disk.
3052  * It allocates an in-core efi, copies the extents from the format
3053  * structure into it, and adds the efi to the AIL with the given
3054  * LSN.
3055  */
3056 STATIC int
3057 xlog_recover_efi_pass2(
3058 	struct xlog			*log,
3059 	struct xlog_recover_item	*item,
3060 	xfs_lsn_t			lsn)
3061 {
3062 	int			error;
3063 	xfs_mount_t		*mp = log->l_mp;
3064 	xfs_efi_log_item_t	*efip;
3065 	xfs_efi_log_format_t	*efi_formatp;
3066 
3067 	efi_formatp = item->ri_buf[0].i_addr;
3068 
3069 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3070 	if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
3071 					 &(efip->efi_format)))) {
3072 		xfs_efi_item_free(efip);
3073 		return error;
3074 	}
3075 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3076 
3077 	spin_lock(&log->l_ailp->xa_lock);
3078 	/*
3079 	 * xfs_trans_ail_update() drops the AIL lock.
3080 	 */
3081 	xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3082 	return 0;
3083 }
3084 
3085 
3086 /*
3087  * This routine is called when an efd format structure is found in
3088  * a committed transaction in the log.  It's purpose is to cancel
3089  * the corresponding efi if it was still in the log.  To do this
3090  * it searches the AIL for the efi with an id equal to that in the
3091  * efd format structure.  If we find it, we remove the efi from the
3092  * AIL and free it.
3093  */
3094 STATIC int
3095 xlog_recover_efd_pass2(
3096 	struct xlog			*log,
3097 	struct xlog_recover_item	*item)
3098 {
3099 	xfs_efd_log_format_t	*efd_formatp;
3100 	xfs_efi_log_item_t	*efip = NULL;
3101 	xfs_log_item_t		*lip;
3102 	__uint64_t		efi_id;
3103 	struct xfs_ail_cursor	cur;
3104 	struct xfs_ail		*ailp = log->l_ailp;
3105 
3106 	efd_formatp = item->ri_buf[0].i_addr;
3107 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3108 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3109 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3110 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3111 	efi_id = efd_formatp->efd_efi_id;
3112 
3113 	/*
3114 	 * Search for the efi with the id in the efd format structure
3115 	 * in the AIL.
3116 	 */
3117 	spin_lock(&ailp->xa_lock);
3118 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3119 	while (lip != NULL) {
3120 		if (lip->li_type == XFS_LI_EFI) {
3121 			efip = (xfs_efi_log_item_t *)lip;
3122 			if (efip->efi_format.efi_id == efi_id) {
3123 				/*
3124 				 * xfs_trans_ail_delete() drops the
3125 				 * AIL lock.
3126 				 */
3127 				xfs_trans_ail_delete(ailp, lip,
3128 						     SHUTDOWN_CORRUPT_INCORE);
3129 				xfs_efi_item_free(efip);
3130 				spin_lock(&ailp->xa_lock);
3131 				break;
3132 			}
3133 		}
3134 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3135 	}
3136 	xfs_trans_ail_cursor_done(ailp, &cur);
3137 	spin_unlock(&ailp->xa_lock);
3138 
3139 	return 0;
3140 }
3141 
3142 /*
3143  * This routine is called when an inode create format structure is found in a
3144  * committed transaction in the log.  It's purpose is to initialise the inodes
3145  * being allocated on disk. This requires us to get inode cluster buffers that
3146  * match the range to be intialised, stamped with inode templates and written
3147  * by delayed write so that subsequent modifications will hit the cached buffer
3148  * and only need writing out at the end of recovery.
3149  */
3150 STATIC int
3151 xlog_recover_do_icreate_pass2(
3152 	struct xlog		*log,
3153 	struct list_head	*buffer_list,
3154 	xlog_recover_item_t	*item)
3155 {
3156 	struct xfs_mount	*mp = log->l_mp;
3157 	struct xfs_icreate_log	*icl;
3158 	xfs_agnumber_t		agno;
3159 	xfs_agblock_t		agbno;
3160 	unsigned int		count;
3161 	unsigned int		isize;
3162 	xfs_agblock_t		length;
3163 
3164 	icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3165 	if (icl->icl_type != XFS_LI_ICREATE) {
3166 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3167 		return EINVAL;
3168 	}
3169 
3170 	if (icl->icl_size != 1) {
3171 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3172 		return EINVAL;
3173 	}
3174 
3175 	agno = be32_to_cpu(icl->icl_ag);
3176 	if (agno >= mp->m_sb.sb_agcount) {
3177 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3178 		return EINVAL;
3179 	}
3180 	agbno = be32_to_cpu(icl->icl_agbno);
3181 	if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3182 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3183 		return EINVAL;
3184 	}
3185 	isize = be32_to_cpu(icl->icl_isize);
3186 	if (isize != mp->m_sb.sb_inodesize) {
3187 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3188 		return EINVAL;
3189 	}
3190 	count = be32_to_cpu(icl->icl_count);
3191 	if (!count) {
3192 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3193 		return EINVAL;
3194 	}
3195 	length = be32_to_cpu(icl->icl_length);
3196 	if (!length || length >= mp->m_sb.sb_agblocks) {
3197 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3198 		return EINVAL;
3199 	}
3200 
3201 	/* existing allocation is fixed value */
3202 	ASSERT(count == XFS_IALLOC_INODES(mp));
3203 	ASSERT(length == XFS_IALLOC_BLOCKS(mp));
3204 	if (count != XFS_IALLOC_INODES(mp) ||
3205 	     length != XFS_IALLOC_BLOCKS(mp)) {
3206 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2");
3207 		return EINVAL;
3208 	}
3209 
3210 	/*
3211 	 * Inode buffers can be freed. Do not replay the inode initialisation as
3212 	 * we could be overwriting something written after this inode buffer was
3213 	 * cancelled.
3214 	 *
3215 	 * XXX: we need to iterate all buffers and only init those that are not
3216 	 * cancelled. I think that a more fine grained factoring of
3217 	 * xfs_ialloc_inode_init may be appropriate here to enable this to be
3218 	 * done easily.
3219 	 */
3220 	if (xlog_check_buffer_cancelled(log,
3221 			XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0))
3222 		return 0;
3223 
3224 	xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length,
3225 					be32_to_cpu(icl->icl_gen));
3226 	return 0;
3227 }
3228 
3229 /*
3230  * Free up any resources allocated by the transaction
3231  *
3232  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3233  */
3234 STATIC void
3235 xlog_recover_free_trans(
3236 	struct xlog_recover	*trans)
3237 {
3238 	xlog_recover_item_t	*item, *n;
3239 	int			i;
3240 
3241 	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3242 		/* Free the regions in the item. */
3243 		list_del(&item->ri_list);
3244 		for (i = 0; i < item->ri_cnt; i++)
3245 			kmem_free(item->ri_buf[i].i_addr);
3246 		/* Free the item itself */
3247 		kmem_free(item->ri_buf);
3248 		kmem_free(item);
3249 	}
3250 	/* Free the transaction recover structure */
3251 	kmem_free(trans);
3252 }
3253 
3254 STATIC void
3255 xlog_recover_buffer_ra_pass2(
3256 	struct xlog                     *log,
3257 	struct xlog_recover_item        *item)
3258 {
3259 	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
3260 	struct xfs_mount		*mp = log->l_mp;
3261 
3262 	if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3263 			buf_f->blf_len, buf_f->blf_flags)) {
3264 		return;
3265 	}
3266 
3267 	xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3268 				buf_f->blf_len, NULL);
3269 }
3270 
3271 STATIC void
3272 xlog_recover_inode_ra_pass2(
3273 	struct xlog                     *log,
3274 	struct xlog_recover_item        *item)
3275 {
3276 	struct xfs_inode_log_format	ilf_buf;
3277 	struct xfs_inode_log_format	*ilfp;
3278 	struct xfs_mount		*mp = log->l_mp;
3279 	int			error;
3280 
3281 	if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3282 		ilfp = item->ri_buf[0].i_addr;
3283 	} else {
3284 		ilfp = &ilf_buf;
3285 		memset(ilfp, 0, sizeof(*ilfp));
3286 		error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3287 		if (error)
3288 			return;
3289 	}
3290 
3291 	if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3292 		return;
3293 
3294 	xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3295 				ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3296 }
3297 
3298 STATIC void
3299 xlog_recover_dquot_ra_pass2(
3300 	struct xlog			*log,
3301 	struct xlog_recover_item	*item)
3302 {
3303 	struct xfs_mount	*mp = log->l_mp;
3304 	struct xfs_disk_dquot	*recddq;
3305 	struct xfs_dq_logformat	*dq_f;
3306 	uint			type;
3307 
3308 
3309 	if (mp->m_qflags == 0)
3310 		return;
3311 
3312 	recddq = item->ri_buf[1].i_addr;
3313 	if (recddq == NULL)
3314 		return;
3315 	if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3316 		return;
3317 
3318 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3319 	ASSERT(type);
3320 	if (log->l_quotaoffs_flag & type)
3321 		return;
3322 
3323 	dq_f = item->ri_buf[0].i_addr;
3324 	ASSERT(dq_f);
3325 	ASSERT(dq_f->qlf_len == 1);
3326 
3327 	xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno,
3328 			  XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL);
3329 }
3330 
3331 STATIC void
3332 xlog_recover_ra_pass2(
3333 	struct xlog			*log,
3334 	struct xlog_recover_item	*item)
3335 {
3336 	switch (ITEM_TYPE(item)) {
3337 	case XFS_LI_BUF:
3338 		xlog_recover_buffer_ra_pass2(log, item);
3339 		break;
3340 	case XFS_LI_INODE:
3341 		xlog_recover_inode_ra_pass2(log, item);
3342 		break;
3343 	case XFS_LI_DQUOT:
3344 		xlog_recover_dquot_ra_pass2(log, item);
3345 		break;
3346 	case XFS_LI_EFI:
3347 	case XFS_LI_EFD:
3348 	case XFS_LI_QUOTAOFF:
3349 	default:
3350 		break;
3351 	}
3352 }
3353 
3354 STATIC int
3355 xlog_recover_commit_pass1(
3356 	struct xlog			*log,
3357 	struct xlog_recover		*trans,
3358 	struct xlog_recover_item	*item)
3359 {
3360 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3361 
3362 	switch (ITEM_TYPE(item)) {
3363 	case XFS_LI_BUF:
3364 		return xlog_recover_buffer_pass1(log, item);
3365 	case XFS_LI_QUOTAOFF:
3366 		return xlog_recover_quotaoff_pass1(log, item);
3367 	case XFS_LI_INODE:
3368 	case XFS_LI_EFI:
3369 	case XFS_LI_EFD:
3370 	case XFS_LI_DQUOT:
3371 	case XFS_LI_ICREATE:
3372 		/* nothing to do in pass 1 */
3373 		return 0;
3374 	default:
3375 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3376 			__func__, ITEM_TYPE(item));
3377 		ASSERT(0);
3378 		return XFS_ERROR(EIO);
3379 	}
3380 }
3381 
3382 STATIC int
3383 xlog_recover_commit_pass2(
3384 	struct xlog			*log,
3385 	struct xlog_recover		*trans,
3386 	struct list_head		*buffer_list,
3387 	struct xlog_recover_item	*item)
3388 {
3389 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3390 
3391 	switch (ITEM_TYPE(item)) {
3392 	case XFS_LI_BUF:
3393 		return xlog_recover_buffer_pass2(log, buffer_list, item,
3394 						 trans->r_lsn);
3395 	case XFS_LI_INODE:
3396 		return xlog_recover_inode_pass2(log, buffer_list, item,
3397 						 trans->r_lsn);
3398 	case XFS_LI_EFI:
3399 		return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3400 	case XFS_LI_EFD:
3401 		return xlog_recover_efd_pass2(log, item);
3402 	case XFS_LI_DQUOT:
3403 		return xlog_recover_dquot_pass2(log, buffer_list, item,
3404 						trans->r_lsn);
3405 	case XFS_LI_ICREATE:
3406 		return xlog_recover_do_icreate_pass2(log, buffer_list, item);
3407 	case XFS_LI_QUOTAOFF:
3408 		/* nothing to do in pass2 */
3409 		return 0;
3410 	default:
3411 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3412 			__func__, ITEM_TYPE(item));
3413 		ASSERT(0);
3414 		return XFS_ERROR(EIO);
3415 	}
3416 }
3417 
3418 STATIC int
3419 xlog_recover_items_pass2(
3420 	struct xlog                     *log,
3421 	struct xlog_recover             *trans,
3422 	struct list_head                *buffer_list,
3423 	struct list_head                *item_list)
3424 {
3425 	struct xlog_recover_item	*item;
3426 	int				error = 0;
3427 
3428 	list_for_each_entry(item, item_list, ri_list) {
3429 		error = xlog_recover_commit_pass2(log, trans,
3430 					  buffer_list, item);
3431 		if (error)
3432 			return error;
3433 	}
3434 
3435 	return error;
3436 }
3437 
3438 /*
3439  * Perform the transaction.
3440  *
3441  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
3442  * EFIs and EFDs get queued up by adding entries into the AIL for them.
3443  */
3444 STATIC int
3445 xlog_recover_commit_trans(
3446 	struct xlog		*log,
3447 	struct xlog_recover	*trans,
3448 	int			pass)
3449 {
3450 	int				error = 0;
3451 	int				error2;
3452 	int				items_queued = 0;
3453 	struct xlog_recover_item	*item;
3454 	struct xlog_recover_item	*next;
3455 	LIST_HEAD			(buffer_list);
3456 	LIST_HEAD			(ra_list);
3457 	LIST_HEAD			(done_list);
3458 
3459 	#define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
3460 
3461 	hlist_del(&trans->r_list);
3462 
3463 	error = xlog_recover_reorder_trans(log, trans, pass);
3464 	if (error)
3465 		return error;
3466 
3467 	list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
3468 		switch (pass) {
3469 		case XLOG_RECOVER_PASS1:
3470 			error = xlog_recover_commit_pass1(log, trans, item);
3471 			break;
3472 		case XLOG_RECOVER_PASS2:
3473 			xlog_recover_ra_pass2(log, item);
3474 			list_move_tail(&item->ri_list, &ra_list);
3475 			items_queued++;
3476 			if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3477 				error = xlog_recover_items_pass2(log, trans,
3478 						&buffer_list, &ra_list);
3479 				list_splice_tail_init(&ra_list, &done_list);
3480 				items_queued = 0;
3481 			}
3482 
3483 			break;
3484 		default:
3485 			ASSERT(0);
3486 		}
3487 
3488 		if (error)
3489 			goto out;
3490 	}
3491 
3492 out:
3493 	if (!list_empty(&ra_list)) {
3494 		if (!error)
3495 			error = xlog_recover_items_pass2(log, trans,
3496 					&buffer_list, &ra_list);
3497 		list_splice_tail_init(&ra_list, &done_list);
3498 	}
3499 
3500 	if (!list_empty(&done_list))
3501 		list_splice_init(&done_list, &trans->r_itemq);
3502 
3503 	xlog_recover_free_trans(trans);
3504 
3505 	error2 = xfs_buf_delwri_submit(&buffer_list);
3506 	return error ? error : error2;
3507 }
3508 
3509 STATIC int
3510 xlog_recover_unmount_trans(
3511 	struct xlog		*log,
3512 	struct xlog_recover	*trans)
3513 {
3514 	/* Do nothing now */
3515 	xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
3516 	return 0;
3517 }
3518 
3519 /*
3520  * There are two valid states of the r_state field.  0 indicates that the
3521  * transaction structure is in a normal state.  We have either seen the
3522  * start of the transaction or the last operation we added was not a partial
3523  * operation.  If the last operation we added to the transaction was a
3524  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3525  *
3526  * NOTE: skip LRs with 0 data length.
3527  */
3528 STATIC int
3529 xlog_recover_process_data(
3530 	struct xlog		*log,
3531 	struct hlist_head	rhash[],
3532 	struct xlog_rec_header	*rhead,
3533 	xfs_caddr_t		dp,
3534 	int			pass)
3535 {
3536 	xfs_caddr_t		lp;
3537 	int			num_logops;
3538 	xlog_op_header_t	*ohead;
3539 	xlog_recover_t		*trans;
3540 	xlog_tid_t		tid;
3541 	int			error;
3542 	unsigned long		hash;
3543 	uint			flags;
3544 
3545 	lp = dp + be32_to_cpu(rhead->h_len);
3546 	num_logops = be32_to_cpu(rhead->h_num_logops);
3547 
3548 	/* check the log format matches our own - else we can't recover */
3549 	if (xlog_header_check_recover(log->l_mp, rhead))
3550 		return (XFS_ERROR(EIO));
3551 
3552 	while ((dp < lp) && num_logops) {
3553 		ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
3554 		ohead = (xlog_op_header_t *)dp;
3555 		dp += sizeof(xlog_op_header_t);
3556 		if (ohead->oh_clientid != XFS_TRANSACTION &&
3557 		    ohead->oh_clientid != XFS_LOG) {
3558 			xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3559 					__func__, ohead->oh_clientid);
3560 			ASSERT(0);
3561 			return (XFS_ERROR(EIO));
3562 		}
3563 		tid = be32_to_cpu(ohead->oh_tid);
3564 		hash = XLOG_RHASH(tid);
3565 		trans = xlog_recover_find_tid(&rhash[hash], tid);
3566 		if (trans == NULL) {		   /* not found; add new tid */
3567 			if (ohead->oh_flags & XLOG_START_TRANS)
3568 				xlog_recover_new_tid(&rhash[hash], tid,
3569 					be64_to_cpu(rhead->h_lsn));
3570 		} else {
3571 			if (dp + be32_to_cpu(ohead->oh_len) > lp) {
3572 				xfs_warn(log->l_mp, "%s: bad length 0x%x",
3573 					__func__, be32_to_cpu(ohead->oh_len));
3574 				WARN_ON(1);
3575 				return (XFS_ERROR(EIO));
3576 			}
3577 			flags = ohead->oh_flags & ~XLOG_END_TRANS;
3578 			if (flags & XLOG_WAS_CONT_TRANS)
3579 				flags &= ~XLOG_CONTINUE_TRANS;
3580 			switch (flags) {
3581 			case XLOG_COMMIT_TRANS:
3582 				error = xlog_recover_commit_trans(log,
3583 								trans, pass);
3584 				break;
3585 			case XLOG_UNMOUNT_TRANS:
3586 				error = xlog_recover_unmount_trans(log, trans);
3587 				break;
3588 			case XLOG_WAS_CONT_TRANS:
3589 				error = xlog_recover_add_to_cont_trans(log,
3590 						trans, dp,
3591 						be32_to_cpu(ohead->oh_len));
3592 				break;
3593 			case XLOG_START_TRANS:
3594 				xfs_warn(log->l_mp, "%s: bad transaction",
3595 					__func__);
3596 				ASSERT(0);
3597 				error = XFS_ERROR(EIO);
3598 				break;
3599 			case 0:
3600 			case XLOG_CONTINUE_TRANS:
3601 				error = xlog_recover_add_to_trans(log, trans,
3602 						dp, be32_to_cpu(ohead->oh_len));
3603 				break;
3604 			default:
3605 				xfs_warn(log->l_mp, "%s: bad flag 0x%x",
3606 					__func__, flags);
3607 				ASSERT(0);
3608 				error = XFS_ERROR(EIO);
3609 				break;
3610 			}
3611 			if (error)
3612 				return error;
3613 		}
3614 		dp += be32_to_cpu(ohead->oh_len);
3615 		num_logops--;
3616 	}
3617 	return 0;
3618 }
3619 
3620 /*
3621  * Process an extent free intent item that was recovered from
3622  * the log.  We need to free the extents that it describes.
3623  */
3624 STATIC int
3625 xlog_recover_process_efi(
3626 	xfs_mount_t		*mp,
3627 	xfs_efi_log_item_t	*efip)
3628 {
3629 	xfs_efd_log_item_t	*efdp;
3630 	xfs_trans_t		*tp;
3631 	int			i;
3632 	int			error = 0;
3633 	xfs_extent_t		*extp;
3634 	xfs_fsblock_t		startblock_fsb;
3635 
3636 	ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
3637 
3638 	/*
3639 	 * First check the validity of the extents described by the
3640 	 * EFI.  If any are bad, then assume that all are bad and
3641 	 * just toss the EFI.
3642 	 */
3643 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3644 		extp = &(efip->efi_format.efi_extents[i]);
3645 		startblock_fsb = XFS_BB_TO_FSB(mp,
3646 				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
3647 		if ((startblock_fsb == 0) ||
3648 		    (extp->ext_len == 0) ||
3649 		    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3650 		    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3651 			/*
3652 			 * This will pull the EFI from the AIL and
3653 			 * free the memory associated with it.
3654 			 */
3655 			set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3656 			xfs_efi_release(efip, efip->efi_format.efi_nextents);
3657 			return XFS_ERROR(EIO);
3658 		}
3659 	}
3660 
3661 	tp = xfs_trans_alloc(mp, 0);
3662 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
3663 	if (error)
3664 		goto abort_error;
3665 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3666 
3667 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3668 		extp = &(efip->efi_format.efi_extents[i]);
3669 		error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3670 		if (error)
3671 			goto abort_error;
3672 		xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3673 					 extp->ext_len);
3674 	}
3675 
3676 	set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3677 	error = xfs_trans_commit(tp, 0);
3678 	return error;
3679 
3680 abort_error:
3681 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3682 	return error;
3683 }
3684 
3685 /*
3686  * When this is called, all of the EFIs which did not have
3687  * corresponding EFDs should be in the AIL.  What we do now
3688  * is free the extents associated with each one.
3689  *
3690  * Since we process the EFIs in normal transactions, they
3691  * will be removed at some point after the commit.  This prevents
3692  * us from just walking down the list processing each one.
3693  * We'll use a flag in the EFI to skip those that we've already
3694  * processed and use the AIL iteration mechanism's generation
3695  * count to try to speed this up at least a bit.
3696  *
3697  * When we start, we know that the EFIs are the only things in
3698  * the AIL.  As we process them, however, other items are added
3699  * to the AIL.  Since everything added to the AIL must come after
3700  * everything already in the AIL, we stop processing as soon as
3701  * we see something other than an EFI in the AIL.
3702  */
3703 STATIC int
3704 xlog_recover_process_efis(
3705 	struct xlog	*log)
3706 {
3707 	xfs_log_item_t		*lip;
3708 	xfs_efi_log_item_t	*efip;
3709 	int			error = 0;
3710 	struct xfs_ail_cursor	cur;
3711 	struct xfs_ail		*ailp;
3712 
3713 	ailp = log->l_ailp;
3714 	spin_lock(&ailp->xa_lock);
3715 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3716 	while (lip != NULL) {
3717 		/*
3718 		 * We're done when we see something other than an EFI.
3719 		 * There should be no EFIs left in the AIL now.
3720 		 */
3721 		if (lip->li_type != XFS_LI_EFI) {
3722 #ifdef DEBUG
3723 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3724 				ASSERT(lip->li_type != XFS_LI_EFI);
3725 #endif
3726 			break;
3727 		}
3728 
3729 		/*
3730 		 * Skip EFIs that we've already processed.
3731 		 */
3732 		efip = (xfs_efi_log_item_t *)lip;
3733 		if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3734 			lip = xfs_trans_ail_cursor_next(ailp, &cur);
3735 			continue;
3736 		}
3737 
3738 		spin_unlock(&ailp->xa_lock);
3739 		error = xlog_recover_process_efi(log->l_mp, efip);
3740 		spin_lock(&ailp->xa_lock);
3741 		if (error)
3742 			goto out;
3743 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3744 	}
3745 out:
3746 	xfs_trans_ail_cursor_done(ailp, &cur);
3747 	spin_unlock(&ailp->xa_lock);
3748 	return error;
3749 }
3750 
3751 /*
3752  * This routine performs a transaction to null out a bad inode pointer
3753  * in an agi unlinked inode hash bucket.
3754  */
3755 STATIC void
3756 xlog_recover_clear_agi_bucket(
3757 	xfs_mount_t	*mp,
3758 	xfs_agnumber_t	agno,
3759 	int		bucket)
3760 {
3761 	xfs_trans_t	*tp;
3762 	xfs_agi_t	*agi;
3763 	xfs_buf_t	*agibp;
3764 	int		offset;
3765 	int		error;
3766 
3767 	tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3768 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
3769 	if (error)
3770 		goto out_abort;
3771 
3772 	error = xfs_read_agi(mp, tp, agno, &agibp);
3773 	if (error)
3774 		goto out_abort;
3775 
3776 	agi = XFS_BUF_TO_AGI(agibp);
3777 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3778 	offset = offsetof(xfs_agi_t, agi_unlinked) +
3779 		 (sizeof(xfs_agino_t) * bucket);
3780 	xfs_trans_log_buf(tp, agibp, offset,
3781 			  (offset + sizeof(xfs_agino_t) - 1));
3782 
3783 	error = xfs_trans_commit(tp, 0);
3784 	if (error)
3785 		goto out_error;
3786 	return;
3787 
3788 out_abort:
3789 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3790 out_error:
3791 	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3792 	return;
3793 }
3794 
3795 STATIC xfs_agino_t
3796 xlog_recover_process_one_iunlink(
3797 	struct xfs_mount		*mp,
3798 	xfs_agnumber_t			agno,
3799 	xfs_agino_t			agino,
3800 	int				bucket)
3801 {
3802 	struct xfs_buf			*ibp;
3803 	struct xfs_dinode		*dip;
3804 	struct xfs_inode		*ip;
3805 	xfs_ino_t			ino;
3806 	int				error;
3807 
3808 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
3809 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3810 	if (error)
3811 		goto fail;
3812 
3813 	/*
3814 	 * Get the on disk inode to find the next inode in the bucket.
3815 	 */
3816 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
3817 	if (error)
3818 		goto fail_iput;
3819 
3820 	ASSERT(ip->i_d.di_nlink == 0);
3821 	ASSERT(ip->i_d.di_mode != 0);
3822 
3823 	/* setup for the next pass */
3824 	agino = be32_to_cpu(dip->di_next_unlinked);
3825 	xfs_buf_relse(ibp);
3826 
3827 	/*
3828 	 * Prevent any DMAPI event from being sent when the reference on
3829 	 * the inode is dropped.
3830 	 */
3831 	ip->i_d.di_dmevmask = 0;
3832 
3833 	IRELE(ip);
3834 	return agino;
3835 
3836  fail_iput:
3837 	IRELE(ip);
3838  fail:
3839 	/*
3840 	 * We can't read in the inode this bucket points to, or this inode
3841 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
3842 	 * some inodes and space, but at least we won't hang.
3843 	 *
3844 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3845 	 * clear the inode pointer in the bucket.
3846 	 */
3847 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
3848 	return NULLAGINO;
3849 }
3850 
3851 /*
3852  * xlog_iunlink_recover
3853  *
3854  * This is called during recovery to process any inodes which
3855  * we unlinked but not freed when the system crashed.  These
3856  * inodes will be on the lists in the AGI blocks.  What we do
3857  * here is scan all the AGIs and fully truncate and free any
3858  * inodes found on the lists.  Each inode is removed from the
3859  * lists when it has been fully truncated and is freed.  The
3860  * freeing of the inode and its removal from the list must be
3861  * atomic.
3862  */
3863 STATIC void
3864 xlog_recover_process_iunlinks(
3865 	struct xlog	*log)
3866 {
3867 	xfs_mount_t	*mp;
3868 	xfs_agnumber_t	agno;
3869 	xfs_agi_t	*agi;
3870 	xfs_buf_t	*agibp;
3871 	xfs_agino_t	agino;
3872 	int		bucket;
3873 	int		error;
3874 	uint		mp_dmevmask;
3875 
3876 	mp = log->l_mp;
3877 
3878 	/*
3879 	 * Prevent any DMAPI event from being sent while in this function.
3880 	 */
3881 	mp_dmevmask = mp->m_dmevmask;
3882 	mp->m_dmevmask = 0;
3883 
3884 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3885 		/*
3886 		 * Find the agi for this ag.
3887 		 */
3888 		error = xfs_read_agi(mp, NULL, agno, &agibp);
3889 		if (error) {
3890 			/*
3891 			 * AGI is b0rked. Don't process it.
3892 			 *
3893 			 * We should probably mark the filesystem as corrupt
3894 			 * after we've recovered all the ag's we can....
3895 			 */
3896 			continue;
3897 		}
3898 		/*
3899 		 * Unlock the buffer so that it can be acquired in the normal
3900 		 * course of the transaction to truncate and free each inode.
3901 		 * Because we are not racing with anyone else here for the AGI
3902 		 * buffer, we don't even need to hold it locked to read the
3903 		 * initial unlinked bucket entries out of the buffer. We keep
3904 		 * buffer reference though, so that it stays pinned in memory
3905 		 * while we need the buffer.
3906 		 */
3907 		agi = XFS_BUF_TO_AGI(agibp);
3908 		xfs_buf_unlock(agibp);
3909 
3910 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3911 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3912 			while (agino != NULLAGINO) {
3913 				agino = xlog_recover_process_one_iunlink(mp,
3914 							agno, agino, bucket);
3915 			}
3916 		}
3917 		xfs_buf_rele(agibp);
3918 	}
3919 
3920 	mp->m_dmevmask = mp_dmevmask;
3921 }
3922 
3923 /*
3924  * Upack the log buffer data and crc check it. If the check fails, issue a
3925  * warning if and only if the CRC in the header is non-zero. This makes the
3926  * check an advisory warning, and the zero CRC check will prevent failure
3927  * warnings from being emitted when upgrading the kernel from one that does not
3928  * add CRCs by default.
3929  *
3930  * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
3931  * corruption failure
3932  */
3933 STATIC int
3934 xlog_unpack_data_crc(
3935 	struct xlog_rec_header	*rhead,
3936 	xfs_caddr_t		dp,
3937 	struct xlog		*log)
3938 {
3939 	__le32			crc;
3940 
3941 	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
3942 	if (crc != rhead->h_crc) {
3943 		if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
3944 			xfs_alert(log->l_mp,
3945 		"log record CRC mismatch: found 0x%x, expected 0x%x.",
3946 					le32_to_cpu(rhead->h_crc),
3947 					le32_to_cpu(crc));
3948 			xfs_hex_dump(dp, 32);
3949 		}
3950 
3951 		/*
3952 		 * If we've detected a log record corruption, then we can't
3953 		 * recover past this point. Abort recovery if we are enforcing
3954 		 * CRC protection by punting an error back up the stack.
3955 		 */
3956 		if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
3957 			return EFSCORRUPTED;
3958 	}
3959 
3960 	return 0;
3961 }
3962 
3963 STATIC int
3964 xlog_unpack_data(
3965 	struct xlog_rec_header	*rhead,
3966 	xfs_caddr_t		dp,
3967 	struct xlog		*log)
3968 {
3969 	int			i, j, k;
3970 	int			error;
3971 
3972 	error = xlog_unpack_data_crc(rhead, dp, log);
3973 	if (error)
3974 		return error;
3975 
3976 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3977 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3978 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3979 		dp += BBSIZE;
3980 	}
3981 
3982 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3983 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3984 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3985 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3986 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3987 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3988 			dp += BBSIZE;
3989 		}
3990 	}
3991 
3992 	return 0;
3993 }
3994 
3995 STATIC int
3996 xlog_valid_rec_header(
3997 	struct xlog		*log,
3998 	struct xlog_rec_header	*rhead,
3999 	xfs_daddr_t		blkno)
4000 {
4001 	int			hlen;
4002 
4003 	if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
4004 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4005 				XFS_ERRLEVEL_LOW, log->l_mp);
4006 		return XFS_ERROR(EFSCORRUPTED);
4007 	}
4008 	if (unlikely(
4009 	    (!rhead->h_version ||
4010 	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
4011 		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
4012 			__func__, be32_to_cpu(rhead->h_version));
4013 		return XFS_ERROR(EIO);
4014 	}
4015 
4016 	/* LR body must have data or it wouldn't have been written */
4017 	hlen = be32_to_cpu(rhead->h_len);
4018 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4019 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4020 				XFS_ERRLEVEL_LOW, log->l_mp);
4021 		return XFS_ERROR(EFSCORRUPTED);
4022 	}
4023 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4024 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4025 				XFS_ERRLEVEL_LOW, log->l_mp);
4026 		return XFS_ERROR(EFSCORRUPTED);
4027 	}
4028 	return 0;
4029 }
4030 
4031 /*
4032  * Read the log from tail to head and process the log records found.
4033  * Handle the two cases where the tail and head are in the same cycle
4034  * and where the active portion of the log wraps around the end of
4035  * the physical log separately.  The pass parameter is passed through
4036  * to the routines called to process the data and is not looked at
4037  * here.
4038  */
4039 STATIC int
4040 xlog_do_recovery_pass(
4041 	struct xlog		*log,
4042 	xfs_daddr_t		head_blk,
4043 	xfs_daddr_t		tail_blk,
4044 	int			pass)
4045 {
4046 	xlog_rec_header_t	*rhead;
4047 	xfs_daddr_t		blk_no;
4048 	xfs_caddr_t		offset;
4049 	xfs_buf_t		*hbp, *dbp;
4050 	int			error = 0, h_size;
4051 	int			bblks, split_bblks;
4052 	int			hblks, split_hblks, wrapped_hblks;
4053 	struct hlist_head	rhash[XLOG_RHASH_SIZE];
4054 
4055 	ASSERT(head_blk != tail_blk);
4056 
4057 	/*
4058 	 * Read the header of the tail block and get the iclog buffer size from
4059 	 * h_size.  Use this to tell how many sectors make up the log header.
4060 	 */
4061 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4062 		/*
4063 		 * When using variable length iclogs, read first sector of
4064 		 * iclog header and extract the header size from it.  Get a
4065 		 * new hbp that is the correct size.
4066 		 */
4067 		hbp = xlog_get_bp(log, 1);
4068 		if (!hbp)
4069 			return ENOMEM;
4070 
4071 		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4072 		if (error)
4073 			goto bread_err1;
4074 
4075 		rhead = (xlog_rec_header_t *)offset;
4076 		error = xlog_valid_rec_header(log, rhead, tail_blk);
4077 		if (error)
4078 			goto bread_err1;
4079 		h_size = be32_to_cpu(rhead->h_size);
4080 		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
4081 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4082 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4083 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
4084 				hblks++;
4085 			xlog_put_bp(hbp);
4086 			hbp = xlog_get_bp(log, hblks);
4087 		} else {
4088 			hblks = 1;
4089 		}
4090 	} else {
4091 		ASSERT(log->l_sectBBsize == 1);
4092 		hblks = 1;
4093 		hbp = xlog_get_bp(log, 1);
4094 		h_size = XLOG_BIG_RECORD_BSIZE;
4095 	}
4096 
4097 	if (!hbp)
4098 		return ENOMEM;
4099 	dbp = xlog_get_bp(log, BTOBB(h_size));
4100 	if (!dbp) {
4101 		xlog_put_bp(hbp);
4102 		return ENOMEM;
4103 	}
4104 
4105 	memset(rhash, 0, sizeof(rhash));
4106 	if (tail_blk <= head_blk) {
4107 		for (blk_no = tail_blk; blk_no < head_blk; ) {
4108 			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4109 			if (error)
4110 				goto bread_err2;
4111 
4112 			rhead = (xlog_rec_header_t *)offset;
4113 			error = xlog_valid_rec_header(log, rhead, blk_no);
4114 			if (error)
4115 				goto bread_err2;
4116 
4117 			/* blocks in data section */
4118 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4119 			error = xlog_bread(log, blk_no + hblks, bblks, dbp,
4120 					   &offset);
4121 			if (error)
4122 				goto bread_err2;
4123 
4124 			error = xlog_unpack_data(rhead, offset, log);
4125 			if (error)
4126 				goto bread_err2;
4127 
4128 			error = xlog_recover_process_data(log,
4129 						rhash, rhead, offset, pass);
4130 			if (error)
4131 				goto bread_err2;
4132 			blk_no += bblks + hblks;
4133 		}
4134 	} else {
4135 		/*
4136 		 * Perform recovery around the end of the physical log.
4137 		 * When the head is not on the same cycle number as the tail,
4138 		 * we can't do a sequential recovery as above.
4139 		 */
4140 		blk_no = tail_blk;
4141 		while (blk_no < log->l_logBBsize) {
4142 			/*
4143 			 * Check for header wrapping around physical end-of-log
4144 			 */
4145 			offset = hbp->b_addr;
4146 			split_hblks = 0;
4147 			wrapped_hblks = 0;
4148 			if (blk_no + hblks <= log->l_logBBsize) {
4149 				/* Read header in one read */
4150 				error = xlog_bread(log, blk_no, hblks, hbp,
4151 						   &offset);
4152 				if (error)
4153 					goto bread_err2;
4154 			} else {
4155 				/* This LR is split across physical log end */
4156 				if (blk_no != log->l_logBBsize) {
4157 					/* some data before physical log end */
4158 					ASSERT(blk_no <= INT_MAX);
4159 					split_hblks = log->l_logBBsize - (int)blk_no;
4160 					ASSERT(split_hblks > 0);
4161 					error = xlog_bread(log, blk_no,
4162 							   split_hblks, hbp,
4163 							   &offset);
4164 					if (error)
4165 						goto bread_err2;
4166 				}
4167 
4168 				/*
4169 				 * Note: this black magic still works with
4170 				 * large sector sizes (non-512) only because:
4171 				 * - we increased the buffer size originally
4172 				 *   by 1 sector giving us enough extra space
4173 				 *   for the second read;
4174 				 * - the log start is guaranteed to be sector
4175 				 *   aligned;
4176 				 * - we read the log end (LR header start)
4177 				 *   _first_, then the log start (LR header end)
4178 				 *   - order is important.
4179 				 */
4180 				wrapped_hblks = hblks - split_hblks;
4181 				error = xlog_bread_offset(log, 0,
4182 						wrapped_hblks, hbp,
4183 						offset + BBTOB(split_hblks));
4184 				if (error)
4185 					goto bread_err2;
4186 			}
4187 			rhead = (xlog_rec_header_t *)offset;
4188 			error = xlog_valid_rec_header(log, rhead,
4189 						split_hblks ? blk_no : 0);
4190 			if (error)
4191 				goto bread_err2;
4192 
4193 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4194 			blk_no += hblks;
4195 
4196 			/* Read in data for log record */
4197 			if (blk_no + bblks <= log->l_logBBsize) {
4198 				error = xlog_bread(log, blk_no, bblks, dbp,
4199 						   &offset);
4200 				if (error)
4201 					goto bread_err2;
4202 			} else {
4203 				/* This log record is split across the
4204 				 * physical end of log */
4205 				offset = dbp->b_addr;
4206 				split_bblks = 0;
4207 				if (blk_no != log->l_logBBsize) {
4208 					/* some data is before the physical
4209 					 * end of log */
4210 					ASSERT(!wrapped_hblks);
4211 					ASSERT(blk_no <= INT_MAX);
4212 					split_bblks =
4213 						log->l_logBBsize - (int)blk_no;
4214 					ASSERT(split_bblks > 0);
4215 					error = xlog_bread(log, blk_no,
4216 							split_bblks, dbp,
4217 							&offset);
4218 					if (error)
4219 						goto bread_err2;
4220 				}
4221 
4222 				/*
4223 				 * Note: this black magic still works with
4224 				 * large sector sizes (non-512) only because:
4225 				 * - we increased the buffer size originally
4226 				 *   by 1 sector giving us enough extra space
4227 				 *   for the second read;
4228 				 * - the log start is guaranteed to be sector
4229 				 *   aligned;
4230 				 * - we read the log end (LR header start)
4231 				 *   _first_, then the log start (LR header end)
4232 				 *   - order is important.
4233 				 */
4234 				error = xlog_bread_offset(log, 0,
4235 						bblks - split_bblks, dbp,
4236 						offset + BBTOB(split_bblks));
4237 				if (error)
4238 					goto bread_err2;
4239 			}
4240 
4241 			error = xlog_unpack_data(rhead, offset, log);
4242 			if (error)
4243 				goto bread_err2;
4244 
4245 			error = xlog_recover_process_data(log, rhash,
4246 							rhead, offset, pass);
4247 			if (error)
4248 				goto bread_err2;
4249 			blk_no += bblks;
4250 		}
4251 
4252 		ASSERT(blk_no >= log->l_logBBsize);
4253 		blk_no -= log->l_logBBsize;
4254 
4255 		/* read first part of physical log */
4256 		while (blk_no < head_blk) {
4257 			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4258 			if (error)
4259 				goto bread_err2;
4260 
4261 			rhead = (xlog_rec_header_t *)offset;
4262 			error = xlog_valid_rec_header(log, rhead, blk_no);
4263 			if (error)
4264 				goto bread_err2;
4265 
4266 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4267 			error = xlog_bread(log, blk_no+hblks, bblks, dbp,
4268 					   &offset);
4269 			if (error)
4270 				goto bread_err2;
4271 
4272 			error = xlog_unpack_data(rhead, offset, log);
4273 			if (error)
4274 				goto bread_err2;
4275 
4276 			error = xlog_recover_process_data(log, rhash,
4277 							rhead, offset, pass);
4278 			if (error)
4279 				goto bread_err2;
4280 			blk_no += bblks + hblks;
4281 		}
4282 	}
4283 
4284  bread_err2:
4285 	xlog_put_bp(dbp);
4286  bread_err1:
4287 	xlog_put_bp(hbp);
4288 	return error;
4289 }
4290 
4291 /*
4292  * Do the recovery of the log.  We actually do this in two phases.
4293  * The two passes are necessary in order to implement the function
4294  * of cancelling a record written into the log.  The first pass
4295  * determines those things which have been cancelled, and the
4296  * second pass replays log items normally except for those which
4297  * have been cancelled.  The handling of the replay and cancellations
4298  * takes place in the log item type specific routines.
4299  *
4300  * The table of items which have cancel records in the log is allocated
4301  * and freed at this level, since only here do we know when all of
4302  * the log recovery has been completed.
4303  */
4304 STATIC int
4305 xlog_do_log_recovery(
4306 	struct xlog	*log,
4307 	xfs_daddr_t	head_blk,
4308 	xfs_daddr_t	tail_blk)
4309 {
4310 	int		error, i;
4311 
4312 	ASSERT(head_blk != tail_blk);
4313 
4314 	/*
4315 	 * First do a pass to find all of the cancelled buf log items.
4316 	 * Store them in the buf_cancel_table for use in the second pass.
4317 	 */
4318 	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4319 						 sizeof(struct list_head),
4320 						 KM_SLEEP);
4321 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4322 		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4323 
4324 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4325 				      XLOG_RECOVER_PASS1);
4326 	if (error != 0) {
4327 		kmem_free(log->l_buf_cancel_table);
4328 		log->l_buf_cancel_table = NULL;
4329 		return error;
4330 	}
4331 	/*
4332 	 * Then do a second pass to actually recover the items in the log.
4333 	 * When it is complete free the table of buf cancel items.
4334 	 */
4335 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4336 				      XLOG_RECOVER_PASS2);
4337 #ifdef DEBUG
4338 	if (!error) {
4339 		int	i;
4340 
4341 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4342 			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
4343 	}
4344 #endif	/* DEBUG */
4345 
4346 	kmem_free(log->l_buf_cancel_table);
4347 	log->l_buf_cancel_table = NULL;
4348 
4349 	return error;
4350 }
4351 
4352 /*
4353  * Do the actual recovery
4354  */
4355 STATIC int
4356 xlog_do_recover(
4357 	struct xlog	*log,
4358 	xfs_daddr_t	head_blk,
4359 	xfs_daddr_t	tail_blk)
4360 {
4361 	int		error;
4362 	xfs_buf_t	*bp;
4363 	xfs_sb_t	*sbp;
4364 
4365 	/*
4366 	 * First replay the images in the log.
4367 	 */
4368 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
4369 	if (error)
4370 		return error;
4371 
4372 	/*
4373 	 * If IO errors happened during recovery, bail out.
4374 	 */
4375 	if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4376 		return (EIO);
4377 	}
4378 
4379 	/*
4380 	 * We now update the tail_lsn since much of the recovery has completed
4381 	 * and there may be space available to use.  If there were no extent
4382 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
4383 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
4384 	 * lsn of the last known good LR on disk.  If there are extent frees
4385 	 * or iunlinks they will have some entries in the AIL; so we look at
4386 	 * the AIL to determine how to set the tail_lsn.
4387 	 */
4388 	xlog_assign_tail_lsn(log->l_mp);
4389 
4390 	/*
4391 	 * Now that we've finished replaying all buffer and inode
4392 	 * updates, re-read in the superblock and reverify it.
4393 	 */
4394 	bp = xfs_getsb(log->l_mp, 0);
4395 	XFS_BUF_UNDONE(bp);
4396 	ASSERT(!(XFS_BUF_ISWRITE(bp)));
4397 	XFS_BUF_READ(bp);
4398 	XFS_BUF_UNASYNC(bp);
4399 	bp->b_ops = &xfs_sb_buf_ops;
4400 	xfsbdstrat(log->l_mp, bp);
4401 	error = xfs_buf_iowait(bp);
4402 	if (error) {
4403 		xfs_buf_ioerror_alert(bp, __func__);
4404 		ASSERT(0);
4405 		xfs_buf_relse(bp);
4406 		return error;
4407 	}
4408 
4409 	/* Convert superblock from on-disk format */
4410 	sbp = &log->l_mp->m_sb;
4411 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
4412 	ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
4413 	ASSERT(xfs_sb_good_version(sbp));
4414 	xfs_buf_relse(bp);
4415 
4416 	/* We've re-read the superblock so re-initialize per-cpu counters */
4417 	xfs_icsb_reinit_counters(log->l_mp);
4418 
4419 	xlog_recover_check_summary(log);
4420 
4421 	/* Normal transactions can now occur */
4422 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4423 	return 0;
4424 }
4425 
4426 /*
4427  * Perform recovery and re-initialize some log variables in xlog_find_tail.
4428  *
4429  * Return error or zero.
4430  */
4431 int
4432 xlog_recover(
4433 	struct xlog	*log)
4434 {
4435 	xfs_daddr_t	head_blk, tail_blk;
4436 	int		error;
4437 
4438 	/* find the tail of the log */
4439 	if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
4440 		return error;
4441 
4442 	if (tail_blk != head_blk) {
4443 		/* There used to be a comment here:
4444 		 *
4445 		 * disallow recovery on read-only mounts.  note -- mount
4446 		 * checks for ENOSPC and turns it into an intelligent
4447 		 * error message.
4448 		 * ...but this is no longer true.  Now, unless you specify
4449 		 * NORECOVERY (in which case this function would never be
4450 		 * called), we just go ahead and recover.  We do this all
4451 		 * under the vfs layer, so we can get away with it unless
4452 		 * the device itself is read-only, in which case we fail.
4453 		 */
4454 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
4455 			return error;
4456 		}
4457 
4458 		/*
4459 		 * Version 5 superblock log feature mask validation. We know the
4460 		 * log is dirty so check if there are any unknown log features
4461 		 * in what we need to recover. If there are unknown features
4462 		 * (e.g. unsupported transactions, then simply reject the
4463 		 * attempt at recovery before touching anything.
4464 		 */
4465 		if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
4466 		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
4467 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
4468 			xfs_warn(log->l_mp,
4469 "Superblock has unknown incompatible log features (0x%x) enabled.\n"
4470 "The log can not be fully and/or safely recovered by this kernel.\n"
4471 "Please recover the log on a kernel that supports the unknown features.",
4472 				(log->l_mp->m_sb.sb_features_log_incompat &
4473 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
4474 			return EINVAL;
4475 		}
4476 
4477 		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
4478 				log->l_mp->m_logname ? log->l_mp->m_logname
4479 						     : "internal");
4480 
4481 		error = xlog_do_recover(log, head_blk, tail_blk);
4482 		log->l_flags |= XLOG_RECOVERY_NEEDED;
4483 	}
4484 	return error;
4485 }
4486 
4487 /*
4488  * In the first part of recovery we replay inodes and buffers and build
4489  * up the list of extent free items which need to be processed.  Here
4490  * we process the extent free items and clean up the on disk unlinked
4491  * inode lists.  This is separated from the first part of recovery so
4492  * that the root and real-time bitmap inodes can be read in from disk in
4493  * between the two stages.  This is necessary so that we can free space
4494  * in the real-time portion of the file system.
4495  */
4496 int
4497 xlog_recover_finish(
4498 	struct xlog	*log)
4499 {
4500 	/*
4501 	 * Now we're ready to do the transactions needed for the
4502 	 * rest of recovery.  Start with completing all the extent
4503 	 * free intent records and then process the unlinked inode
4504 	 * lists.  At this point, we essentially run in normal mode
4505 	 * except that we're still performing recovery actions
4506 	 * rather than accepting new requests.
4507 	 */
4508 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
4509 		int	error;
4510 		error = xlog_recover_process_efis(log);
4511 		if (error) {
4512 			xfs_alert(log->l_mp, "Failed to recover EFIs");
4513 			return error;
4514 		}
4515 		/*
4516 		 * Sync the log to get all the EFIs out of the AIL.
4517 		 * This isn't absolutely necessary, but it helps in
4518 		 * case the unlink transactions would have problems
4519 		 * pushing the EFIs out of the way.
4520 		 */
4521 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
4522 
4523 		xlog_recover_process_iunlinks(log);
4524 
4525 		xlog_recover_check_summary(log);
4526 
4527 		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4528 				log->l_mp->m_logname ? log->l_mp->m_logname
4529 						     : "internal");
4530 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4531 	} else {
4532 		xfs_info(log->l_mp, "Ending clean mount");
4533 	}
4534 	return 0;
4535 }
4536 
4537 
4538 #if defined(DEBUG)
4539 /*
4540  * Read all of the agf and agi counters and check that they
4541  * are consistent with the superblock counters.
4542  */
4543 void
4544 xlog_recover_check_summary(
4545 	struct xlog	*log)
4546 {
4547 	xfs_mount_t	*mp;
4548 	xfs_agf_t	*agfp;
4549 	xfs_buf_t	*agfbp;
4550 	xfs_buf_t	*agibp;
4551 	xfs_agnumber_t	agno;
4552 	__uint64_t	freeblks;
4553 	__uint64_t	itotal;
4554 	__uint64_t	ifree;
4555 	int		error;
4556 
4557 	mp = log->l_mp;
4558 
4559 	freeblks = 0LL;
4560 	itotal = 0LL;
4561 	ifree = 0LL;
4562 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4563 		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4564 		if (error) {
4565 			xfs_alert(mp, "%s agf read failed agno %d error %d",
4566 						__func__, agno, error);
4567 		} else {
4568 			agfp = XFS_BUF_TO_AGF(agfbp);
4569 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
4570 				    be32_to_cpu(agfp->agf_flcount);
4571 			xfs_buf_relse(agfbp);
4572 		}
4573 
4574 		error = xfs_read_agi(mp, NULL, agno, &agibp);
4575 		if (error) {
4576 			xfs_alert(mp, "%s agi read failed agno %d error %d",
4577 						__func__, agno, error);
4578 		} else {
4579 			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
4580 
4581 			itotal += be32_to_cpu(agi->agi_count);
4582 			ifree += be32_to_cpu(agi->agi_freecount);
4583 			xfs_buf_relse(agibp);
4584 		}
4585 	}
4586 }
4587 #endif /* DEBUG */
4588