1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_trans.h" 18 #include "xfs_log.h" 19 #include "xfs_log_priv.h" 20 #include "xfs_log_recover.h" 21 #include "xfs_inode_item.h" 22 #include "xfs_extfree_item.h" 23 #include "xfs_trans_priv.h" 24 #include "xfs_alloc.h" 25 #include "xfs_ialloc.h" 26 #include "xfs_quota.h" 27 #include "xfs_trace.h" 28 #include "xfs_icache.h" 29 #include "xfs_bmap_btree.h" 30 #include "xfs_error.h" 31 #include "xfs_dir2.h" 32 #include "xfs_rmap_item.h" 33 #include "xfs_buf_item.h" 34 #include "xfs_refcount_item.h" 35 #include "xfs_bmap_item.h" 36 37 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) 38 39 STATIC int 40 xlog_find_zeroed( 41 struct xlog *, 42 xfs_daddr_t *); 43 STATIC int 44 xlog_clear_stale_blocks( 45 struct xlog *, 46 xfs_lsn_t); 47 #if defined(DEBUG) 48 STATIC void 49 xlog_recover_check_summary( 50 struct xlog *); 51 #else 52 #define xlog_recover_check_summary(log) 53 #endif 54 STATIC int 55 xlog_do_recovery_pass( 56 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *); 57 58 /* 59 * This structure is used during recovery to record the buf log items which 60 * have been canceled and should not be replayed. 61 */ 62 struct xfs_buf_cancel { 63 xfs_daddr_t bc_blkno; 64 uint bc_len; 65 int bc_refcount; 66 struct list_head bc_list; 67 }; 68 69 /* 70 * Sector aligned buffer routines for buffer create/read/write/access 71 */ 72 73 /* 74 * Verify the log-relative block number and length in basic blocks are valid for 75 * an operation involving the given XFS log buffer. Returns true if the fields 76 * are valid, false otherwise. 77 */ 78 static inline bool 79 xlog_verify_bno( 80 struct xlog *log, 81 xfs_daddr_t blk_no, 82 int bbcount) 83 { 84 if (blk_no < 0 || blk_no >= log->l_logBBsize) 85 return false; 86 if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize) 87 return false; 88 return true; 89 } 90 91 /* 92 * Allocate a buffer to hold log data. The buffer needs to be able to map to 93 * a range of nbblks basic blocks at any valid offset within the log. 94 */ 95 static char * 96 xlog_alloc_buffer( 97 struct xlog *log, 98 int nbblks) 99 { 100 int align_mask = xfs_buftarg_dma_alignment(log->l_targ); 101 102 /* 103 * Pass log block 0 since we don't have an addr yet, buffer will be 104 * verified on read. 105 */ 106 if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) { 107 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 108 nbblks); 109 return NULL; 110 } 111 112 /* 113 * We do log I/O in units of log sectors (a power-of-2 multiple of the 114 * basic block size), so we round up the requested size to accommodate 115 * the basic blocks required for complete log sectors. 116 * 117 * In addition, the buffer may be used for a non-sector-aligned block 118 * offset, in which case an I/O of the requested size could extend 119 * beyond the end of the buffer. If the requested size is only 1 basic 120 * block it will never straddle a sector boundary, so this won't be an 121 * issue. Nor will this be a problem if the log I/O is done in basic 122 * blocks (sector size 1). But otherwise we extend the buffer by one 123 * extra log sector to ensure there's space to accommodate this 124 * possibility. 125 */ 126 if (nbblks > 1 && log->l_sectBBsize > 1) 127 nbblks += log->l_sectBBsize; 128 nbblks = round_up(nbblks, log->l_sectBBsize); 129 return kmem_alloc_io(BBTOB(nbblks), align_mask, KM_MAYFAIL | KM_ZERO); 130 } 131 132 /* 133 * Return the address of the start of the given block number's data 134 * in a log buffer. The buffer covers a log sector-aligned region. 135 */ 136 static inline unsigned int 137 xlog_align( 138 struct xlog *log, 139 xfs_daddr_t blk_no) 140 { 141 return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1)); 142 } 143 144 static int 145 xlog_do_io( 146 struct xlog *log, 147 xfs_daddr_t blk_no, 148 unsigned int nbblks, 149 char *data, 150 unsigned int op) 151 { 152 int error; 153 154 if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) { 155 xfs_warn(log->l_mp, 156 "Invalid log block/length (0x%llx, 0x%x) for buffer", 157 blk_no, nbblks); 158 return -EFSCORRUPTED; 159 } 160 161 blk_no = round_down(blk_no, log->l_sectBBsize); 162 nbblks = round_up(nbblks, log->l_sectBBsize); 163 ASSERT(nbblks > 0); 164 165 error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no, 166 BBTOB(nbblks), data, op); 167 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) { 168 xfs_alert(log->l_mp, 169 "log recovery %s I/O error at daddr 0x%llx len %d error %d", 170 op == REQ_OP_WRITE ? "write" : "read", 171 blk_no, nbblks, error); 172 } 173 return error; 174 } 175 176 STATIC int 177 xlog_bread_noalign( 178 struct xlog *log, 179 xfs_daddr_t blk_no, 180 int nbblks, 181 char *data) 182 { 183 return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ); 184 } 185 186 STATIC int 187 xlog_bread( 188 struct xlog *log, 189 xfs_daddr_t blk_no, 190 int nbblks, 191 char *data, 192 char **offset) 193 { 194 int error; 195 196 error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ); 197 if (!error) 198 *offset = data + xlog_align(log, blk_no); 199 return error; 200 } 201 202 STATIC int 203 xlog_bwrite( 204 struct xlog *log, 205 xfs_daddr_t blk_no, 206 int nbblks, 207 char *data) 208 { 209 return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE); 210 } 211 212 #ifdef DEBUG 213 /* 214 * dump debug superblock and log record information 215 */ 216 STATIC void 217 xlog_header_check_dump( 218 xfs_mount_t *mp, 219 xlog_rec_header_t *head) 220 { 221 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d", 222 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 223 xfs_debug(mp, " log : uuid = %pU, fmt = %d", 224 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 225 } 226 #else 227 #define xlog_header_check_dump(mp, head) 228 #endif 229 230 /* 231 * check log record header for recovery 232 */ 233 STATIC int 234 xlog_header_check_recover( 235 xfs_mount_t *mp, 236 xlog_rec_header_t *head) 237 { 238 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 239 240 /* 241 * IRIX doesn't write the h_fmt field and leaves it zeroed 242 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 243 * a dirty log created in IRIX. 244 */ 245 if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) { 246 xfs_warn(mp, 247 "dirty log written in incompatible format - can't recover"); 248 xlog_header_check_dump(mp, head); 249 return -EFSCORRUPTED; 250 } 251 if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid, 252 &head->h_fs_uuid))) { 253 xfs_warn(mp, 254 "dirty log entry has mismatched uuid - can't recover"); 255 xlog_header_check_dump(mp, head); 256 return -EFSCORRUPTED; 257 } 258 return 0; 259 } 260 261 /* 262 * read the head block of the log and check the header 263 */ 264 STATIC int 265 xlog_header_check_mount( 266 xfs_mount_t *mp, 267 xlog_rec_header_t *head) 268 { 269 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 270 271 if (uuid_is_null(&head->h_fs_uuid)) { 272 /* 273 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 274 * h_fs_uuid is null, we assume this log was last mounted 275 * by IRIX and continue. 276 */ 277 xfs_warn(mp, "null uuid in log - IRIX style log"); 278 } else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid, 279 &head->h_fs_uuid))) { 280 xfs_warn(mp, "log has mismatched uuid - can't recover"); 281 xlog_header_check_dump(mp, head); 282 return -EFSCORRUPTED; 283 } 284 return 0; 285 } 286 287 STATIC void 288 xlog_recover_iodone( 289 struct xfs_buf *bp) 290 { 291 if (bp->b_error) { 292 /* 293 * We're not going to bother about retrying 294 * this during recovery. One strike! 295 */ 296 if (!XFS_FORCED_SHUTDOWN(bp->b_mount)) { 297 xfs_buf_ioerror_alert(bp, __this_address); 298 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR); 299 } 300 } 301 302 /* 303 * On v5 supers, a bli could be attached to update the metadata LSN. 304 * Clean it up. 305 */ 306 if (bp->b_log_item) 307 xfs_buf_item_relse(bp); 308 ASSERT(bp->b_log_item == NULL); 309 310 bp->b_iodone = NULL; 311 xfs_buf_ioend(bp); 312 } 313 314 /* 315 * This routine finds (to an approximation) the first block in the physical 316 * log which contains the given cycle. It uses a binary search algorithm. 317 * Note that the algorithm can not be perfect because the disk will not 318 * necessarily be perfect. 319 */ 320 STATIC int 321 xlog_find_cycle_start( 322 struct xlog *log, 323 char *buffer, 324 xfs_daddr_t first_blk, 325 xfs_daddr_t *last_blk, 326 uint cycle) 327 { 328 char *offset; 329 xfs_daddr_t mid_blk; 330 xfs_daddr_t end_blk; 331 uint mid_cycle; 332 int error; 333 334 end_blk = *last_blk; 335 mid_blk = BLK_AVG(first_blk, end_blk); 336 while (mid_blk != first_blk && mid_blk != end_blk) { 337 error = xlog_bread(log, mid_blk, 1, buffer, &offset); 338 if (error) 339 return error; 340 mid_cycle = xlog_get_cycle(offset); 341 if (mid_cycle == cycle) 342 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 343 else 344 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 345 mid_blk = BLK_AVG(first_blk, end_blk); 346 } 347 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 348 (mid_blk == end_blk && mid_blk-1 == first_blk)); 349 350 *last_blk = end_blk; 351 352 return 0; 353 } 354 355 /* 356 * Check that a range of blocks does not contain stop_on_cycle_no. 357 * Fill in *new_blk with the block offset where such a block is 358 * found, or with -1 (an invalid block number) if there is no such 359 * block in the range. The scan needs to occur from front to back 360 * and the pointer into the region must be updated since a later 361 * routine will need to perform another test. 362 */ 363 STATIC int 364 xlog_find_verify_cycle( 365 struct xlog *log, 366 xfs_daddr_t start_blk, 367 int nbblks, 368 uint stop_on_cycle_no, 369 xfs_daddr_t *new_blk) 370 { 371 xfs_daddr_t i, j; 372 uint cycle; 373 char *buffer; 374 xfs_daddr_t bufblks; 375 char *buf = NULL; 376 int error = 0; 377 378 /* 379 * Greedily allocate a buffer big enough to handle the full 380 * range of basic blocks we'll be examining. If that fails, 381 * try a smaller size. We need to be able to read at least 382 * a log sector, or we're out of luck. 383 */ 384 bufblks = 1 << ffs(nbblks); 385 while (bufblks > log->l_logBBsize) 386 bufblks >>= 1; 387 while (!(buffer = xlog_alloc_buffer(log, bufblks))) { 388 bufblks >>= 1; 389 if (bufblks < log->l_sectBBsize) 390 return -ENOMEM; 391 } 392 393 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 394 int bcount; 395 396 bcount = min(bufblks, (start_blk + nbblks - i)); 397 398 error = xlog_bread(log, i, bcount, buffer, &buf); 399 if (error) 400 goto out; 401 402 for (j = 0; j < bcount; j++) { 403 cycle = xlog_get_cycle(buf); 404 if (cycle == stop_on_cycle_no) { 405 *new_blk = i+j; 406 goto out; 407 } 408 409 buf += BBSIZE; 410 } 411 } 412 413 *new_blk = -1; 414 415 out: 416 kmem_free(buffer); 417 return error; 418 } 419 420 /* 421 * Potentially backup over partial log record write. 422 * 423 * In the typical case, last_blk is the number of the block directly after 424 * a good log record. Therefore, we subtract one to get the block number 425 * of the last block in the given buffer. extra_bblks contains the number 426 * of blocks we would have read on a previous read. This happens when the 427 * last log record is split over the end of the physical log. 428 * 429 * extra_bblks is the number of blocks potentially verified on a previous 430 * call to this routine. 431 */ 432 STATIC int 433 xlog_find_verify_log_record( 434 struct xlog *log, 435 xfs_daddr_t start_blk, 436 xfs_daddr_t *last_blk, 437 int extra_bblks) 438 { 439 xfs_daddr_t i; 440 char *buffer; 441 char *offset = NULL; 442 xlog_rec_header_t *head = NULL; 443 int error = 0; 444 int smallmem = 0; 445 int num_blks = *last_blk - start_blk; 446 int xhdrs; 447 448 ASSERT(start_blk != 0 || *last_blk != start_blk); 449 450 buffer = xlog_alloc_buffer(log, num_blks); 451 if (!buffer) { 452 buffer = xlog_alloc_buffer(log, 1); 453 if (!buffer) 454 return -ENOMEM; 455 smallmem = 1; 456 } else { 457 error = xlog_bread(log, start_blk, num_blks, buffer, &offset); 458 if (error) 459 goto out; 460 offset += ((num_blks - 1) << BBSHIFT); 461 } 462 463 for (i = (*last_blk) - 1; i >= 0; i--) { 464 if (i < start_blk) { 465 /* valid log record not found */ 466 xfs_warn(log->l_mp, 467 "Log inconsistent (didn't find previous header)"); 468 ASSERT(0); 469 error = -EFSCORRUPTED; 470 goto out; 471 } 472 473 if (smallmem) { 474 error = xlog_bread(log, i, 1, buffer, &offset); 475 if (error) 476 goto out; 477 } 478 479 head = (xlog_rec_header_t *)offset; 480 481 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 482 break; 483 484 if (!smallmem) 485 offset -= BBSIZE; 486 } 487 488 /* 489 * We hit the beginning of the physical log & still no header. Return 490 * to caller. If caller can handle a return of -1, then this routine 491 * will be called again for the end of the physical log. 492 */ 493 if (i == -1) { 494 error = 1; 495 goto out; 496 } 497 498 /* 499 * We have the final block of the good log (the first block 500 * of the log record _before_ the head. So we check the uuid. 501 */ 502 if ((error = xlog_header_check_mount(log->l_mp, head))) 503 goto out; 504 505 /* 506 * We may have found a log record header before we expected one. 507 * last_blk will be the 1st block # with a given cycle #. We may end 508 * up reading an entire log record. In this case, we don't want to 509 * reset last_blk. Only when last_blk points in the middle of a log 510 * record do we update last_blk. 511 */ 512 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 513 uint h_size = be32_to_cpu(head->h_size); 514 515 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 516 if (h_size % XLOG_HEADER_CYCLE_SIZE) 517 xhdrs++; 518 } else { 519 xhdrs = 1; 520 } 521 522 if (*last_blk - i + extra_bblks != 523 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 524 *last_blk = i; 525 526 out: 527 kmem_free(buffer); 528 return error; 529 } 530 531 /* 532 * Head is defined to be the point of the log where the next log write 533 * could go. This means that incomplete LR writes at the end are 534 * eliminated when calculating the head. We aren't guaranteed that previous 535 * LR have complete transactions. We only know that a cycle number of 536 * current cycle number -1 won't be present in the log if we start writing 537 * from our current block number. 538 * 539 * last_blk contains the block number of the first block with a given 540 * cycle number. 541 * 542 * Return: zero if normal, non-zero if error. 543 */ 544 STATIC int 545 xlog_find_head( 546 struct xlog *log, 547 xfs_daddr_t *return_head_blk) 548 { 549 char *buffer; 550 char *offset; 551 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 552 int num_scan_bblks; 553 uint first_half_cycle, last_half_cycle; 554 uint stop_on_cycle; 555 int error, log_bbnum = log->l_logBBsize; 556 557 /* Is the end of the log device zeroed? */ 558 error = xlog_find_zeroed(log, &first_blk); 559 if (error < 0) { 560 xfs_warn(log->l_mp, "empty log check failed"); 561 return error; 562 } 563 if (error == 1) { 564 *return_head_blk = first_blk; 565 566 /* Is the whole lot zeroed? */ 567 if (!first_blk) { 568 /* Linux XFS shouldn't generate totally zeroed logs - 569 * mkfs etc write a dummy unmount record to a fresh 570 * log so we can store the uuid in there 571 */ 572 xfs_warn(log->l_mp, "totally zeroed log"); 573 } 574 575 return 0; 576 } 577 578 first_blk = 0; /* get cycle # of 1st block */ 579 buffer = xlog_alloc_buffer(log, 1); 580 if (!buffer) 581 return -ENOMEM; 582 583 error = xlog_bread(log, 0, 1, buffer, &offset); 584 if (error) 585 goto out_free_buffer; 586 587 first_half_cycle = xlog_get_cycle(offset); 588 589 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 590 error = xlog_bread(log, last_blk, 1, buffer, &offset); 591 if (error) 592 goto out_free_buffer; 593 594 last_half_cycle = xlog_get_cycle(offset); 595 ASSERT(last_half_cycle != 0); 596 597 /* 598 * If the 1st half cycle number is equal to the last half cycle number, 599 * then the entire log is stamped with the same cycle number. In this 600 * case, head_blk can't be set to zero (which makes sense). The below 601 * math doesn't work out properly with head_blk equal to zero. Instead, 602 * we set it to log_bbnum which is an invalid block number, but this 603 * value makes the math correct. If head_blk doesn't changed through 604 * all the tests below, *head_blk is set to zero at the very end rather 605 * than log_bbnum. In a sense, log_bbnum and zero are the same block 606 * in a circular file. 607 */ 608 if (first_half_cycle == last_half_cycle) { 609 /* 610 * In this case we believe that the entire log should have 611 * cycle number last_half_cycle. We need to scan backwards 612 * from the end verifying that there are no holes still 613 * containing last_half_cycle - 1. If we find such a hole, 614 * then the start of that hole will be the new head. The 615 * simple case looks like 616 * x | x ... | x - 1 | x 617 * Another case that fits this picture would be 618 * x | x + 1 | x ... | x 619 * In this case the head really is somewhere at the end of the 620 * log, as one of the latest writes at the beginning was 621 * incomplete. 622 * One more case is 623 * x | x + 1 | x ... | x - 1 | x 624 * This is really the combination of the above two cases, and 625 * the head has to end up at the start of the x-1 hole at the 626 * end of the log. 627 * 628 * In the 256k log case, we will read from the beginning to the 629 * end of the log and search for cycle numbers equal to x-1. 630 * We don't worry about the x+1 blocks that we encounter, 631 * because we know that they cannot be the head since the log 632 * started with x. 633 */ 634 head_blk = log_bbnum; 635 stop_on_cycle = last_half_cycle - 1; 636 } else { 637 /* 638 * In this case we want to find the first block with cycle 639 * number matching last_half_cycle. We expect the log to be 640 * some variation on 641 * x + 1 ... | x ... | x 642 * The first block with cycle number x (last_half_cycle) will 643 * be where the new head belongs. First we do a binary search 644 * for the first occurrence of last_half_cycle. The binary 645 * search may not be totally accurate, so then we scan back 646 * from there looking for occurrences of last_half_cycle before 647 * us. If that backwards scan wraps around the beginning of 648 * the log, then we look for occurrences of last_half_cycle - 1 649 * at the end of the log. The cases we're looking for look 650 * like 651 * v binary search stopped here 652 * x + 1 ... | x | x + 1 | x ... | x 653 * ^ but we want to locate this spot 654 * or 655 * <---------> less than scan distance 656 * x + 1 ... | x ... | x - 1 | x 657 * ^ we want to locate this spot 658 */ 659 stop_on_cycle = last_half_cycle; 660 error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk, 661 last_half_cycle); 662 if (error) 663 goto out_free_buffer; 664 } 665 666 /* 667 * Now validate the answer. Scan back some number of maximum possible 668 * blocks and make sure each one has the expected cycle number. The 669 * maximum is determined by the total possible amount of buffering 670 * in the in-core log. The following number can be made tighter if 671 * we actually look at the block size of the filesystem. 672 */ 673 num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log)); 674 if (head_blk >= num_scan_bblks) { 675 /* 676 * We are guaranteed that the entire check can be performed 677 * in one buffer. 678 */ 679 start_blk = head_blk - num_scan_bblks; 680 if ((error = xlog_find_verify_cycle(log, 681 start_blk, num_scan_bblks, 682 stop_on_cycle, &new_blk))) 683 goto out_free_buffer; 684 if (new_blk != -1) 685 head_blk = new_blk; 686 } else { /* need to read 2 parts of log */ 687 /* 688 * We are going to scan backwards in the log in two parts. 689 * First we scan the physical end of the log. In this part 690 * of the log, we are looking for blocks with cycle number 691 * last_half_cycle - 1. 692 * If we find one, then we know that the log starts there, as 693 * we've found a hole that didn't get written in going around 694 * the end of the physical log. The simple case for this is 695 * x + 1 ... | x ... | x - 1 | x 696 * <---------> less than scan distance 697 * If all of the blocks at the end of the log have cycle number 698 * last_half_cycle, then we check the blocks at the start of 699 * the log looking for occurrences of last_half_cycle. If we 700 * find one, then our current estimate for the location of the 701 * first occurrence of last_half_cycle is wrong and we move 702 * back to the hole we've found. This case looks like 703 * x + 1 ... | x | x + 1 | x ... 704 * ^ binary search stopped here 705 * Another case we need to handle that only occurs in 256k 706 * logs is 707 * x + 1 ... | x ... | x+1 | x ... 708 * ^ binary search stops here 709 * In a 256k log, the scan at the end of the log will see the 710 * x + 1 blocks. We need to skip past those since that is 711 * certainly not the head of the log. By searching for 712 * last_half_cycle-1 we accomplish that. 713 */ 714 ASSERT(head_blk <= INT_MAX && 715 (xfs_daddr_t) num_scan_bblks >= head_blk); 716 start_blk = log_bbnum - (num_scan_bblks - head_blk); 717 if ((error = xlog_find_verify_cycle(log, start_blk, 718 num_scan_bblks - (int)head_blk, 719 (stop_on_cycle - 1), &new_blk))) 720 goto out_free_buffer; 721 if (new_blk != -1) { 722 head_blk = new_blk; 723 goto validate_head; 724 } 725 726 /* 727 * Scan beginning of log now. The last part of the physical 728 * log is good. This scan needs to verify that it doesn't find 729 * the last_half_cycle. 730 */ 731 start_blk = 0; 732 ASSERT(head_blk <= INT_MAX); 733 if ((error = xlog_find_verify_cycle(log, 734 start_blk, (int)head_blk, 735 stop_on_cycle, &new_blk))) 736 goto out_free_buffer; 737 if (new_blk != -1) 738 head_blk = new_blk; 739 } 740 741 validate_head: 742 /* 743 * Now we need to make sure head_blk is not pointing to a block in 744 * the middle of a log record. 745 */ 746 num_scan_bblks = XLOG_REC_SHIFT(log); 747 if (head_blk >= num_scan_bblks) { 748 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 749 750 /* start ptr at last block ptr before head_blk */ 751 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 752 if (error == 1) 753 error = -EIO; 754 if (error) 755 goto out_free_buffer; 756 } else { 757 start_blk = 0; 758 ASSERT(head_blk <= INT_MAX); 759 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 760 if (error < 0) 761 goto out_free_buffer; 762 if (error == 1) { 763 /* We hit the beginning of the log during our search */ 764 start_blk = log_bbnum - (num_scan_bblks - head_blk); 765 new_blk = log_bbnum; 766 ASSERT(start_blk <= INT_MAX && 767 (xfs_daddr_t) log_bbnum-start_blk >= 0); 768 ASSERT(head_blk <= INT_MAX); 769 error = xlog_find_verify_log_record(log, start_blk, 770 &new_blk, (int)head_blk); 771 if (error == 1) 772 error = -EIO; 773 if (error) 774 goto out_free_buffer; 775 if (new_blk != log_bbnum) 776 head_blk = new_blk; 777 } else if (error) 778 goto out_free_buffer; 779 } 780 781 kmem_free(buffer); 782 if (head_blk == log_bbnum) 783 *return_head_blk = 0; 784 else 785 *return_head_blk = head_blk; 786 /* 787 * When returning here, we have a good block number. Bad block 788 * means that during a previous crash, we didn't have a clean break 789 * from cycle number N to cycle number N-1. In this case, we need 790 * to find the first block with cycle number N-1. 791 */ 792 return 0; 793 794 out_free_buffer: 795 kmem_free(buffer); 796 if (error) 797 xfs_warn(log->l_mp, "failed to find log head"); 798 return error; 799 } 800 801 /* 802 * Seek backwards in the log for log record headers. 803 * 804 * Given a starting log block, walk backwards until we find the provided number 805 * of records or hit the provided tail block. The return value is the number of 806 * records encountered or a negative error code. The log block and buffer 807 * pointer of the last record seen are returned in rblk and rhead respectively. 808 */ 809 STATIC int 810 xlog_rseek_logrec_hdr( 811 struct xlog *log, 812 xfs_daddr_t head_blk, 813 xfs_daddr_t tail_blk, 814 int count, 815 char *buffer, 816 xfs_daddr_t *rblk, 817 struct xlog_rec_header **rhead, 818 bool *wrapped) 819 { 820 int i; 821 int error; 822 int found = 0; 823 char *offset = NULL; 824 xfs_daddr_t end_blk; 825 826 *wrapped = false; 827 828 /* 829 * Walk backwards from the head block until we hit the tail or the first 830 * block in the log. 831 */ 832 end_blk = head_blk > tail_blk ? tail_blk : 0; 833 for (i = (int) head_blk - 1; i >= end_blk; i--) { 834 error = xlog_bread(log, i, 1, buffer, &offset); 835 if (error) 836 goto out_error; 837 838 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 839 *rblk = i; 840 *rhead = (struct xlog_rec_header *) offset; 841 if (++found == count) 842 break; 843 } 844 } 845 846 /* 847 * If we haven't hit the tail block or the log record header count, 848 * start looking again from the end of the physical log. Note that 849 * callers can pass head == tail if the tail is not yet known. 850 */ 851 if (tail_blk >= head_blk && found != count) { 852 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) { 853 error = xlog_bread(log, i, 1, buffer, &offset); 854 if (error) 855 goto out_error; 856 857 if (*(__be32 *)offset == 858 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 859 *wrapped = true; 860 *rblk = i; 861 *rhead = (struct xlog_rec_header *) offset; 862 if (++found == count) 863 break; 864 } 865 } 866 } 867 868 return found; 869 870 out_error: 871 return error; 872 } 873 874 /* 875 * Seek forward in the log for log record headers. 876 * 877 * Given head and tail blocks, walk forward from the tail block until we find 878 * the provided number of records or hit the head block. The return value is the 879 * number of records encountered or a negative error code. The log block and 880 * buffer pointer of the last record seen are returned in rblk and rhead 881 * respectively. 882 */ 883 STATIC int 884 xlog_seek_logrec_hdr( 885 struct xlog *log, 886 xfs_daddr_t head_blk, 887 xfs_daddr_t tail_blk, 888 int count, 889 char *buffer, 890 xfs_daddr_t *rblk, 891 struct xlog_rec_header **rhead, 892 bool *wrapped) 893 { 894 int i; 895 int error; 896 int found = 0; 897 char *offset = NULL; 898 xfs_daddr_t end_blk; 899 900 *wrapped = false; 901 902 /* 903 * Walk forward from the tail block until we hit the head or the last 904 * block in the log. 905 */ 906 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1; 907 for (i = (int) tail_blk; i <= end_blk; i++) { 908 error = xlog_bread(log, i, 1, buffer, &offset); 909 if (error) 910 goto out_error; 911 912 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 913 *rblk = i; 914 *rhead = (struct xlog_rec_header *) offset; 915 if (++found == count) 916 break; 917 } 918 } 919 920 /* 921 * If we haven't hit the head block or the log record header count, 922 * start looking again from the start of the physical log. 923 */ 924 if (tail_blk > head_blk && found != count) { 925 for (i = 0; i < (int) head_blk; i++) { 926 error = xlog_bread(log, i, 1, buffer, &offset); 927 if (error) 928 goto out_error; 929 930 if (*(__be32 *)offset == 931 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 932 *wrapped = true; 933 *rblk = i; 934 *rhead = (struct xlog_rec_header *) offset; 935 if (++found == count) 936 break; 937 } 938 } 939 } 940 941 return found; 942 943 out_error: 944 return error; 945 } 946 947 /* 948 * Calculate distance from head to tail (i.e., unused space in the log). 949 */ 950 static inline int 951 xlog_tail_distance( 952 struct xlog *log, 953 xfs_daddr_t head_blk, 954 xfs_daddr_t tail_blk) 955 { 956 if (head_blk < tail_blk) 957 return tail_blk - head_blk; 958 959 return tail_blk + (log->l_logBBsize - head_blk); 960 } 961 962 /* 963 * Verify the log tail. This is particularly important when torn or incomplete 964 * writes have been detected near the front of the log and the head has been 965 * walked back accordingly. 966 * 967 * We also have to handle the case where the tail was pinned and the head 968 * blocked behind the tail right before a crash. If the tail had been pushed 969 * immediately prior to the crash and the subsequent checkpoint was only 970 * partially written, it's possible it overwrote the last referenced tail in the 971 * log with garbage. This is not a coherency problem because the tail must have 972 * been pushed before it can be overwritten, but appears as log corruption to 973 * recovery because we have no way to know the tail was updated if the 974 * subsequent checkpoint didn't write successfully. 975 * 976 * Therefore, CRC check the log from tail to head. If a failure occurs and the 977 * offending record is within max iclog bufs from the head, walk the tail 978 * forward and retry until a valid tail is found or corruption is detected out 979 * of the range of a possible overwrite. 980 */ 981 STATIC int 982 xlog_verify_tail( 983 struct xlog *log, 984 xfs_daddr_t head_blk, 985 xfs_daddr_t *tail_blk, 986 int hsize) 987 { 988 struct xlog_rec_header *thead; 989 char *buffer; 990 xfs_daddr_t first_bad; 991 int error = 0; 992 bool wrapped; 993 xfs_daddr_t tmp_tail; 994 xfs_daddr_t orig_tail = *tail_blk; 995 996 buffer = xlog_alloc_buffer(log, 1); 997 if (!buffer) 998 return -ENOMEM; 999 1000 /* 1001 * Make sure the tail points to a record (returns positive count on 1002 * success). 1003 */ 1004 error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer, 1005 &tmp_tail, &thead, &wrapped); 1006 if (error < 0) 1007 goto out; 1008 if (*tail_blk != tmp_tail) 1009 *tail_blk = tmp_tail; 1010 1011 /* 1012 * Run a CRC check from the tail to the head. We can't just check 1013 * MAX_ICLOGS records past the tail because the tail may point to stale 1014 * blocks cleared during the search for the head/tail. These blocks are 1015 * overwritten with zero-length records and thus record count is not a 1016 * reliable indicator of the iclog state before a crash. 1017 */ 1018 first_bad = 0; 1019 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 1020 XLOG_RECOVER_CRCPASS, &first_bad); 1021 while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 1022 int tail_distance; 1023 1024 /* 1025 * Is corruption within range of the head? If so, retry from 1026 * the next record. Otherwise return an error. 1027 */ 1028 tail_distance = xlog_tail_distance(log, head_blk, first_bad); 1029 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize)) 1030 break; 1031 1032 /* skip to the next record; returns positive count on success */ 1033 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, 1034 buffer, &tmp_tail, &thead, &wrapped); 1035 if (error < 0) 1036 goto out; 1037 1038 *tail_blk = tmp_tail; 1039 first_bad = 0; 1040 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 1041 XLOG_RECOVER_CRCPASS, &first_bad); 1042 } 1043 1044 if (!error && *tail_blk != orig_tail) 1045 xfs_warn(log->l_mp, 1046 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx", 1047 orig_tail, *tail_blk); 1048 out: 1049 kmem_free(buffer); 1050 return error; 1051 } 1052 1053 /* 1054 * Detect and trim torn writes from the head of the log. 1055 * 1056 * Storage without sector atomicity guarantees can result in torn writes in the 1057 * log in the event of a crash. Our only means to detect this scenario is via 1058 * CRC verification. While we can't always be certain that CRC verification 1059 * failure is due to a torn write vs. an unrelated corruption, we do know that 1060 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at 1061 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of 1062 * the log and treat failures in this range as torn writes as a matter of 1063 * policy. In the event of CRC failure, the head is walked back to the last good 1064 * record in the log and the tail is updated from that record and verified. 1065 */ 1066 STATIC int 1067 xlog_verify_head( 1068 struct xlog *log, 1069 xfs_daddr_t *head_blk, /* in/out: unverified head */ 1070 xfs_daddr_t *tail_blk, /* out: tail block */ 1071 char *buffer, 1072 xfs_daddr_t *rhead_blk, /* start blk of last record */ 1073 struct xlog_rec_header **rhead, /* ptr to last record */ 1074 bool *wrapped) /* last rec. wraps phys. log */ 1075 { 1076 struct xlog_rec_header *tmp_rhead; 1077 char *tmp_buffer; 1078 xfs_daddr_t first_bad; 1079 xfs_daddr_t tmp_rhead_blk; 1080 int found; 1081 int error; 1082 bool tmp_wrapped; 1083 1084 /* 1085 * Check the head of the log for torn writes. Search backwards from the 1086 * head until we hit the tail or the maximum number of log record I/Os 1087 * that could have been in flight at one time. Use a temporary buffer so 1088 * we don't trash the rhead/buffer pointers from the caller. 1089 */ 1090 tmp_buffer = xlog_alloc_buffer(log, 1); 1091 if (!tmp_buffer) 1092 return -ENOMEM; 1093 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk, 1094 XLOG_MAX_ICLOGS, tmp_buffer, 1095 &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped); 1096 kmem_free(tmp_buffer); 1097 if (error < 0) 1098 return error; 1099 1100 /* 1101 * Now run a CRC verification pass over the records starting at the 1102 * block found above to the current head. If a CRC failure occurs, the 1103 * log block of the first bad record is saved in first_bad. 1104 */ 1105 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk, 1106 XLOG_RECOVER_CRCPASS, &first_bad); 1107 if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 1108 /* 1109 * We've hit a potential torn write. Reset the error and warn 1110 * about it. 1111 */ 1112 error = 0; 1113 xfs_warn(log->l_mp, 1114 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.", 1115 first_bad, *head_blk); 1116 1117 /* 1118 * Get the header block and buffer pointer for the last good 1119 * record before the bad record. 1120 * 1121 * Note that xlog_find_tail() clears the blocks at the new head 1122 * (i.e., the records with invalid CRC) if the cycle number 1123 * matches the the current cycle. 1124 */ 1125 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, 1126 buffer, rhead_blk, rhead, wrapped); 1127 if (found < 0) 1128 return found; 1129 if (found == 0) /* XXX: right thing to do here? */ 1130 return -EIO; 1131 1132 /* 1133 * Reset the head block to the starting block of the first bad 1134 * log record and set the tail block based on the last good 1135 * record. 1136 * 1137 * Bail out if the updated head/tail match as this indicates 1138 * possible corruption outside of the acceptable 1139 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair... 1140 */ 1141 *head_blk = first_bad; 1142 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn)); 1143 if (*head_blk == *tail_blk) { 1144 ASSERT(0); 1145 return 0; 1146 } 1147 } 1148 if (error) 1149 return error; 1150 1151 return xlog_verify_tail(log, *head_blk, tail_blk, 1152 be32_to_cpu((*rhead)->h_size)); 1153 } 1154 1155 /* 1156 * We need to make sure we handle log wrapping properly, so we can't use the 1157 * calculated logbno directly. Make sure it wraps to the correct bno inside the 1158 * log. 1159 * 1160 * The log is limited to 32 bit sizes, so we use the appropriate modulus 1161 * operation here and cast it back to a 64 bit daddr on return. 1162 */ 1163 static inline xfs_daddr_t 1164 xlog_wrap_logbno( 1165 struct xlog *log, 1166 xfs_daddr_t bno) 1167 { 1168 int mod; 1169 1170 div_s64_rem(bno, log->l_logBBsize, &mod); 1171 return mod; 1172 } 1173 1174 /* 1175 * Check whether the head of the log points to an unmount record. In other 1176 * words, determine whether the log is clean. If so, update the in-core state 1177 * appropriately. 1178 */ 1179 static int 1180 xlog_check_unmount_rec( 1181 struct xlog *log, 1182 xfs_daddr_t *head_blk, 1183 xfs_daddr_t *tail_blk, 1184 struct xlog_rec_header *rhead, 1185 xfs_daddr_t rhead_blk, 1186 char *buffer, 1187 bool *clean) 1188 { 1189 struct xlog_op_header *op_head; 1190 xfs_daddr_t umount_data_blk; 1191 xfs_daddr_t after_umount_blk; 1192 int hblks; 1193 int error; 1194 char *offset; 1195 1196 *clean = false; 1197 1198 /* 1199 * Look for unmount record. If we find it, then we know there was a 1200 * clean unmount. Since 'i' could be the last block in the physical 1201 * log, we convert to a log block before comparing to the head_blk. 1202 * 1203 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks() 1204 * below. We won't want to clear the unmount record if there is one, so 1205 * we pass the lsn of the unmount record rather than the block after it. 1206 */ 1207 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1208 int h_size = be32_to_cpu(rhead->h_size); 1209 int h_version = be32_to_cpu(rhead->h_version); 1210 1211 if ((h_version & XLOG_VERSION_2) && 1212 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 1213 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 1214 if (h_size % XLOG_HEADER_CYCLE_SIZE) 1215 hblks++; 1216 } else { 1217 hblks = 1; 1218 } 1219 } else { 1220 hblks = 1; 1221 } 1222 1223 after_umount_blk = xlog_wrap_logbno(log, 1224 rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len))); 1225 1226 if (*head_blk == after_umount_blk && 1227 be32_to_cpu(rhead->h_num_logops) == 1) { 1228 umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks); 1229 error = xlog_bread(log, umount_data_blk, 1, buffer, &offset); 1230 if (error) 1231 return error; 1232 1233 op_head = (struct xlog_op_header *)offset; 1234 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 1235 /* 1236 * Set tail and last sync so that newly written log 1237 * records will point recovery to after the current 1238 * unmount record. 1239 */ 1240 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1241 log->l_curr_cycle, after_umount_blk); 1242 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1243 log->l_curr_cycle, after_umount_blk); 1244 *tail_blk = after_umount_blk; 1245 1246 *clean = true; 1247 } 1248 } 1249 1250 return 0; 1251 } 1252 1253 static void 1254 xlog_set_state( 1255 struct xlog *log, 1256 xfs_daddr_t head_blk, 1257 struct xlog_rec_header *rhead, 1258 xfs_daddr_t rhead_blk, 1259 bool bump_cycle) 1260 { 1261 /* 1262 * Reset log values according to the state of the log when we 1263 * crashed. In the case where head_blk == 0, we bump curr_cycle 1264 * one because the next write starts a new cycle rather than 1265 * continuing the cycle of the last good log record. At this 1266 * point we have guaranteed that all partial log records have been 1267 * accounted for. Therefore, we know that the last good log record 1268 * written was complete and ended exactly on the end boundary 1269 * of the physical log. 1270 */ 1271 log->l_prev_block = rhead_blk; 1272 log->l_curr_block = (int)head_blk; 1273 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 1274 if (bump_cycle) 1275 log->l_curr_cycle++; 1276 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); 1277 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); 1278 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, 1279 BBTOB(log->l_curr_block)); 1280 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, 1281 BBTOB(log->l_curr_block)); 1282 } 1283 1284 /* 1285 * Find the sync block number or the tail of the log. 1286 * 1287 * This will be the block number of the last record to have its 1288 * associated buffers synced to disk. Every log record header has 1289 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 1290 * to get a sync block number. The only concern is to figure out which 1291 * log record header to believe. 1292 * 1293 * The following algorithm uses the log record header with the largest 1294 * lsn. The entire log record does not need to be valid. We only care 1295 * that the header is valid. 1296 * 1297 * We could speed up search by using current head_blk buffer, but it is not 1298 * available. 1299 */ 1300 STATIC int 1301 xlog_find_tail( 1302 struct xlog *log, 1303 xfs_daddr_t *head_blk, 1304 xfs_daddr_t *tail_blk) 1305 { 1306 xlog_rec_header_t *rhead; 1307 char *offset = NULL; 1308 char *buffer; 1309 int error; 1310 xfs_daddr_t rhead_blk; 1311 xfs_lsn_t tail_lsn; 1312 bool wrapped = false; 1313 bool clean = false; 1314 1315 /* 1316 * Find previous log record 1317 */ 1318 if ((error = xlog_find_head(log, head_blk))) 1319 return error; 1320 ASSERT(*head_blk < INT_MAX); 1321 1322 buffer = xlog_alloc_buffer(log, 1); 1323 if (!buffer) 1324 return -ENOMEM; 1325 if (*head_blk == 0) { /* special case */ 1326 error = xlog_bread(log, 0, 1, buffer, &offset); 1327 if (error) 1328 goto done; 1329 1330 if (xlog_get_cycle(offset) == 0) { 1331 *tail_blk = 0; 1332 /* leave all other log inited values alone */ 1333 goto done; 1334 } 1335 } 1336 1337 /* 1338 * Search backwards through the log looking for the log record header 1339 * block. This wraps all the way back around to the head so something is 1340 * seriously wrong if we can't find it. 1341 */ 1342 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer, 1343 &rhead_blk, &rhead, &wrapped); 1344 if (error < 0) 1345 goto done; 1346 if (!error) { 1347 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); 1348 error = -EFSCORRUPTED; 1349 goto done; 1350 } 1351 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 1352 1353 /* 1354 * Set the log state based on the current head record. 1355 */ 1356 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped); 1357 tail_lsn = atomic64_read(&log->l_tail_lsn); 1358 1359 /* 1360 * Look for an unmount record at the head of the log. This sets the log 1361 * state to determine whether recovery is necessary. 1362 */ 1363 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead, 1364 rhead_blk, buffer, &clean); 1365 if (error) 1366 goto done; 1367 1368 /* 1369 * Verify the log head if the log is not clean (e.g., we have anything 1370 * but an unmount record at the head). This uses CRC verification to 1371 * detect and trim torn writes. If discovered, CRC failures are 1372 * considered torn writes and the log head is trimmed accordingly. 1373 * 1374 * Note that we can only run CRC verification when the log is dirty 1375 * because there's no guarantee that the log data behind an unmount 1376 * record is compatible with the current architecture. 1377 */ 1378 if (!clean) { 1379 xfs_daddr_t orig_head = *head_blk; 1380 1381 error = xlog_verify_head(log, head_blk, tail_blk, buffer, 1382 &rhead_blk, &rhead, &wrapped); 1383 if (error) 1384 goto done; 1385 1386 /* update in-core state again if the head changed */ 1387 if (*head_blk != orig_head) { 1388 xlog_set_state(log, *head_blk, rhead, rhead_blk, 1389 wrapped); 1390 tail_lsn = atomic64_read(&log->l_tail_lsn); 1391 error = xlog_check_unmount_rec(log, head_blk, tail_blk, 1392 rhead, rhead_blk, buffer, 1393 &clean); 1394 if (error) 1395 goto done; 1396 } 1397 } 1398 1399 /* 1400 * Note that the unmount was clean. If the unmount was not clean, we 1401 * need to know this to rebuild the superblock counters from the perag 1402 * headers if we have a filesystem using non-persistent counters. 1403 */ 1404 if (clean) 1405 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 1406 1407 /* 1408 * Make sure that there are no blocks in front of the head 1409 * with the same cycle number as the head. This can happen 1410 * because we allow multiple outstanding log writes concurrently, 1411 * and the later writes might make it out before earlier ones. 1412 * 1413 * We use the lsn from before modifying it so that we'll never 1414 * overwrite the unmount record after a clean unmount. 1415 * 1416 * Do this only if we are going to recover the filesystem 1417 * 1418 * NOTE: This used to say "if (!readonly)" 1419 * However on Linux, we can & do recover a read-only filesystem. 1420 * We only skip recovery if NORECOVERY is specified on mount, 1421 * in which case we would not be here. 1422 * 1423 * But... if the -device- itself is readonly, just skip this. 1424 * We can't recover this device anyway, so it won't matter. 1425 */ 1426 if (!xfs_readonly_buftarg(log->l_targ)) 1427 error = xlog_clear_stale_blocks(log, tail_lsn); 1428 1429 done: 1430 kmem_free(buffer); 1431 1432 if (error) 1433 xfs_warn(log->l_mp, "failed to locate log tail"); 1434 return error; 1435 } 1436 1437 /* 1438 * Is the log zeroed at all? 1439 * 1440 * The last binary search should be changed to perform an X block read 1441 * once X becomes small enough. You can then search linearly through 1442 * the X blocks. This will cut down on the number of reads we need to do. 1443 * 1444 * If the log is partially zeroed, this routine will pass back the blkno 1445 * of the first block with cycle number 0. It won't have a complete LR 1446 * preceding it. 1447 * 1448 * Return: 1449 * 0 => the log is completely written to 1450 * 1 => use *blk_no as the first block of the log 1451 * <0 => error has occurred 1452 */ 1453 STATIC int 1454 xlog_find_zeroed( 1455 struct xlog *log, 1456 xfs_daddr_t *blk_no) 1457 { 1458 char *buffer; 1459 char *offset; 1460 uint first_cycle, last_cycle; 1461 xfs_daddr_t new_blk, last_blk, start_blk; 1462 xfs_daddr_t num_scan_bblks; 1463 int error, log_bbnum = log->l_logBBsize; 1464 1465 *blk_no = 0; 1466 1467 /* check totally zeroed log */ 1468 buffer = xlog_alloc_buffer(log, 1); 1469 if (!buffer) 1470 return -ENOMEM; 1471 error = xlog_bread(log, 0, 1, buffer, &offset); 1472 if (error) 1473 goto out_free_buffer; 1474 1475 first_cycle = xlog_get_cycle(offset); 1476 if (first_cycle == 0) { /* completely zeroed log */ 1477 *blk_no = 0; 1478 kmem_free(buffer); 1479 return 1; 1480 } 1481 1482 /* check partially zeroed log */ 1483 error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset); 1484 if (error) 1485 goto out_free_buffer; 1486 1487 last_cycle = xlog_get_cycle(offset); 1488 if (last_cycle != 0) { /* log completely written to */ 1489 kmem_free(buffer); 1490 return 0; 1491 } 1492 1493 /* we have a partially zeroed log */ 1494 last_blk = log_bbnum-1; 1495 error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0); 1496 if (error) 1497 goto out_free_buffer; 1498 1499 /* 1500 * Validate the answer. Because there is no way to guarantee that 1501 * the entire log is made up of log records which are the same size, 1502 * we scan over the defined maximum blocks. At this point, the maximum 1503 * is not chosen to mean anything special. XXXmiken 1504 */ 1505 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1506 ASSERT(num_scan_bblks <= INT_MAX); 1507 1508 if (last_blk < num_scan_bblks) 1509 num_scan_bblks = last_blk; 1510 start_blk = last_blk - num_scan_bblks; 1511 1512 /* 1513 * We search for any instances of cycle number 0 that occur before 1514 * our current estimate of the head. What we're trying to detect is 1515 * 1 ... | 0 | 1 | 0... 1516 * ^ binary search ends here 1517 */ 1518 if ((error = xlog_find_verify_cycle(log, start_blk, 1519 (int)num_scan_bblks, 0, &new_blk))) 1520 goto out_free_buffer; 1521 if (new_blk != -1) 1522 last_blk = new_blk; 1523 1524 /* 1525 * Potentially backup over partial log record write. We don't need 1526 * to search the end of the log because we know it is zero. 1527 */ 1528 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0); 1529 if (error == 1) 1530 error = -EIO; 1531 if (error) 1532 goto out_free_buffer; 1533 1534 *blk_no = last_blk; 1535 out_free_buffer: 1536 kmem_free(buffer); 1537 if (error) 1538 return error; 1539 return 1; 1540 } 1541 1542 /* 1543 * These are simple subroutines used by xlog_clear_stale_blocks() below 1544 * to initialize a buffer full of empty log record headers and write 1545 * them into the log. 1546 */ 1547 STATIC void 1548 xlog_add_record( 1549 struct xlog *log, 1550 char *buf, 1551 int cycle, 1552 int block, 1553 int tail_cycle, 1554 int tail_block) 1555 { 1556 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1557 1558 memset(buf, 0, BBSIZE); 1559 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1560 recp->h_cycle = cpu_to_be32(cycle); 1561 recp->h_version = cpu_to_be32( 1562 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1563 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1564 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1565 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1566 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1567 } 1568 1569 STATIC int 1570 xlog_write_log_records( 1571 struct xlog *log, 1572 int cycle, 1573 int start_block, 1574 int blocks, 1575 int tail_cycle, 1576 int tail_block) 1577 { 1578 char *offset; 1579 char *buffer; 1580 int balign, ealign; 1581 int sectbb = log->l_sectBBsize; 1582 int end_block = start_block + blocks; 1583 int bufblks; 1584 int error = 0; 1585 int i, j = 0; 1586 1587 /* 1588 * Greedily allocate a buffer big enough to handle the full 1589 * range of basic blocks to be written. If that fails, try 1590 * a smaller size. We need to be able to write at least a 1591 * log sector, or we're out of luck. 1592 */ 1593 bufblks = 1 << ffs(blocks); 1594 while (bufblks > log->l_logBBsize) 1595 bufblks >>= 1; 1596 while (!(buffer = xlog_alloc_buffer(log, bufblks))) { 1597 bufblks >>= 1; 1598 if (bufblks < sectbb) 1599 return -ENOMEM; 1600 } 1601 1602 /* We may need to do a read at the start to fill in part of 1603 * the buffer in the starting sector not covered by the first 1604 * write below. 1605 */ 1606 balign = round_down(start_block, sectbb); 1607 if (balign != start_block) { 1608 error = xlog_bread_noalign(log, start_block, 1, buffer); 1609 if (error) 1610 goto out_free_buffer; 1611 1612 j = start_block - balign; 1613 } 1614 1615 for (i = start_block; i < end_block; i += bufblks) { 1616 int bcount, endcount; 1617 1618 bcount = min(bufblks, end_block - start_block); 1619 endcount = bcount - j; 1620 1621 /* We may need to do a read at the end to fill in part of 1622 * the buffer in the final sector not covered by the write. 1623 * If this is the same sector as the above read, skip it. 1624 */ 1625 ealign = round_down(end_block, sectbb); 1626 if (j == 0 && (start_block + endcount > ealign)) { 1627 error = xlog_bread_noalign(log, ealign, sectbb, 1628 buffer + BBTOB(ealign - start_block)); 1629 if (error) 1630 break; 1631 1632 } 1633 1634 offset = buffer + xlog_align(log, start_block); 1635 for (; j < endcount; j++) { 1636 xlog_add_record(log, offset, cycle, i+j, 1637 tail_cycle, tail_block); 1638 offset += BBSIZE; 1639 } 1640 error = xlog_bwrite(log, start_block, endcount, buffer); 1641 if (error) 1642 break; 1643 start_block += endcount; 1644 j = 0; 1645 } 1646 1647 out_free_buffer: 1648 kmem_free(buffer); 1649 return error; 1650 } 1651 1652 /* 1653 * This routine is called to blow away any incomplete log writes out 1654 * in front of the log head. We do this so that we won't become confused 1655 * if we come up, write only a little bit more, and then crash again. 1656 * If we leave the partial log records out there, this situation could 1657 * cause us to think those partial writes are valid blocks since they 1658 * have the current cycle number. We get rid of them by overwriting them 1659 * with empty log records with the old cycle number rather than the 1660 * current one. 1661 * 1662 * The tail lsn is passed in rather than taken from 1663 * the log so that we will not write over the unmount record after a 1664 * clean unmount in a 512 block log. Doing so would leave the log without 1665 * any valid log records in it until a new one was written. If we crashed 1666 * during that time we would not be able to recover. 1667 */ 1668 STATIC int 1669 xlog_clear_stale_blocks( 1670 struct xlog *log, 1671 xfs_lsn_t tail_lsn) 1672 { 1673 int tail_cycle, head_cycle; 1674 int tail_block, head_block; 1675 int tail_distance, max_distance; 1676 int distance; 1677 int error; 1678 1679 tail_cycle = CYCLE_LSN(tail_lsn); 1680 tail_block = BLOCK_LSN(tail_lsn); 1681 head_cycle = log->l_curr_cycle; 1682 head_block = log->l_curr_block; 1683 1684 /* 1685 * Figure out the distance between the new head of the log 1686 * and the tail. We want to write over any blocks beyond the 1687 * head that we may have written just before the crash, but 1688 * we don't want to overwrite the tail of the log. 1689 */ 1690 if (head_cycle == tail_cycle) { 1691 /* 1692 * The tail is behind the head in the physical log, 1693 * so the distance from the head to the tail is the 1694 * distance from the head to the end of the log plus 1695 * the distance from the beginning of the log to the 1696 * tail. 1697 */ 1698 if (XFS_IS_CORRUPT(log->l_mp, 1699 head_block < tail_block || 1700 head_block >= log->l_logBBsize)) 1701 return -EFSCORRUPTED; 1702 tail_distance = tail_block + (log->l_logBBsize - head_block); 1703 } else { 1704 /* 1705 * The head is behind the tail in the physical log, 1706 * so the distance from the head to the tail is just 1707 * the tail block minus the head block. 1708 */ 1709 if (XFS_IS_CORRUPT(log->l_mp, 1710 head_block >= tail_block || 1711 head_cycle != tail_cycle + 1)) 1712 return -EFSCORRUPTED; 1713 tail_distance = tail_block - head_block; 1714 } 1715 1716 /* 1717 * If the head is right up against the tail, we can't clear 1718 * anything. 1719 */ 1720 if (tail_distance <= 0) { 1721 ASSERT(tail_distance == 0); 1722 return 0; 1723 } 1724 1725 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1726 /* 1727 * Take the smaller of the maximum amount of outstanding I/O 1728 * we could have and the distance to the tail to clear out. 1729 * We take the smaller so that we don't overwrite the tail and 1730 * we don't waste all day writing from the head to the tail 1731 * for no reason. 1732 */ 1733 max_distance = min(max_distance, tail_distance); 1734 1735 if ((head_block + max_distance) <= log->l_logBBsize) { 1736 /* 1737 * We can stomp all the blocks we need to without 1738 * wrapping around the end of the log. Just do it 1739 * in a single write. Use the cycle number of the 1740 * current cycle minus one so that the log will look like: 1741 * n ... | n - 1 ... 1742 */ 1743 error = xlog_write_log_records(log, (head_cycle - 1), 1744 head_block, max_distance, tail_cycle, 1745 tail_block); 1746 if (error) 1747 return error; 1748 } else { 1749 /* 1750 * We need to wrap around the end of the physical log in 1751 * order to clear all the blocks. Do it in two separate 1752 * I/Os. The first write should be from the head to the 1753 * end of the physical log, and it should use the current 1754 * cycle number minus one just like above. 1755 */ 1756 distance = log->l_logBBsize - head_block; 1757 error = xlog_write_log_records(log, (head_cycle - 1), 1758 head_block, distance, tail_cycle, 1759 tail_block); 1760 1761 if (error) 1762 return error; 1763 1764 /* 1765 * Now write the blocks at the start of the physical log. 1766 * This writes the remainder of the blocks we want to clear. 1767 * It uses the current cycle number since we're now on the 1768 * same cycle as the head so that we get: 1769 * n ... n ... | n - 1 ... 1770 * ^^^^^ blocks we're writing 1771 */ 1772 distance = max_distance - (log->l_logBBsize - head_block); 1773 error = xlog_write_log_records(log, head_cycle, 0, distance, 1774 tail_cycle, tail_block); 1775 if (error) 1776 return error; 1777 } 1778 1779 return 0; 1780 } 1781 1782 /****************************************************************************** 1783 * 1784 * Log recover routines 1785 * 1786 ****************************************************************************** 1787 */ 1788 1789 /* 1790 * Sort the log items in the transaction. 1791 * 1792 * The ordering constraints are defined by the inode allocation and unlink 1793 * behaviour. The rules are: 1794 * 1795 * 1. Every item is only logged once in a given transaction. Hence it 1796 * represents the last logged state of the item. Hence ordering is 1797 * dependent on the order in which operations need to be performed so 1798 * required initial conditions are always met. 1799 * 1800 * 2. Cancelled buffers are recorded in pass 1 in a separate table and 1801 * there's nothing to replay from them so we can simply cull them 1802 * from the transaction. However, we can't do that until after we've 1803 * replayed all the other items because they may be dependent on the 1804 * cancelled buffer and replaying the cancelled buffer can remove it 1805 * form the cancelled buffer table. Hence they have tobe done last. 1806 * 1807 * 3. Inode allocation buffers must be replayed before inode items that 1808 * read the buffer and replay changes into it. For filesystems using the 1809 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get 1810 * treated the same as inode allocation buffers as they create and 1811 * initialise the buffers directly. 1812 * 1813 * 4. Inode unlink buffers must be replayed after inode items are replayed. 1814 * This ensures that inodes are completely flushed to the inode buffer 1815 * in a "free" state before we remove the unlinked inode list pointer. 1816 * 1817 * Hence the ordering needs to be inode allocation buffers first, inode items 1818 * second, inode unlink buffers third and cancelled buffers last. 1819 * 1820 * But there's a problem with that - we can't tell an inode allocation buffer 1821 * apart from a regular buffer, so we can't separate them. We can, however, 1822 * tell an inode unlink buffer from the others, and so we can separate them out 1823 * from all the other buffers and move them to last. 1824 * 1825 * Hence, 4 lists, in order from head to tail: 1826 * - buffer_list for all buffers except cancelled/inode unlink buffers 1827 * - item_list for all non-buffer items 1828 * - inode_buffer_list for inode unlink buffers 1829 * - cancel_list for the cancelled buffers 1830 * 1831 * Note that we add objects to the tail of the lists so that first-to-last 1832 * ordering is preserved within the lists. Adding objects to the head of the 1833 * list means when we traverse from the head we walk them in last-to-first 1834 * order. For cancelled buffers and inode unlink buffers this doesn't matter, 1835 * but for all other items there may be specific ordering that we need to 1836 * preserve. 1837 */ 1838 STATIC int 1839 xlog_recover_reorder_trans( 1840 struct xlog *log, 1841 struct xlog_recover *trans, 1842 int pass) 1843 { 1844 xlog_recover_item_t *item, *n; 1845 int error = 0; 1846 LIST_HEAD(sort_list); 1847 LIST_HEAD(cancel_list); 1848 LIST_HEAD(buffer_list); 1849 LIST_HEAD(inode_buffer_list); 1850 LIST_HEAD(inode_list); 1851 1852 list_splice_init(&trans->r_itemq, &sort_list); 1853 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1854 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1855 1856 switch (ITEM_TYPE(item)) { 1857 case XFS_LI_ICREATE: 1858 list_move_tail(&item->ri_list, &buffer_list); 1859 break; 1860 case XFS_LI_BUF: 1861 if (buf_f->blf_flags & XFS_BLF_CANCEL) { 1862 trace_xfs_log_recover_item_reorder_head(log, 1863 trans, item, pass); 1864 list_move(&item->ri_list, &cancel_list); 1865 break; 1866 } 1867 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 1868 list_move(&item->ri_list, &inode_buffer_list); 1869 break; 1870 } 1871 list_move_tail(&item->ri_list, &buffer_list); 1872 break; 1873 case XFS_LI_INODE: 1874 case XFS_LI_DQUOT: 1875 case XFS_LI_QUOTAOFF: 1876 case XFS_LI_EFD: 1877 case XFS_LI_EFI: 1878 case XFS_LI_RUI: 1879 case XFS_LI_RUD: 1880 case XFS_LI_CUI: 1881 case XFS_LI_CUD: 1882 case XFS_LI_BUI: 1883 case XFS_LI_BUD: 1884 trace_xfs_log_recover_item_reorder_tail(log, 1885 trans, item, pass); 1886 list_move_tail(&item->ri_list, &inode_list); 1887 break; 1888 default: 1889 xfs_warn(log->l_mp, 1890 "%s: unrecognized type of log operation", 1891 __func__); 1892 ASSERT(0); 1893 /* 1894 * return the remaining items back to the transaction 1895 * item list so they can be freed in caller. 1896 */ 1897 if (!list_empty(&sort_list)) 1898 list_splice_init(&sort_list, &trans->r_itemq); 1899 error = -EIO; 1900 goto out; 1901 } 1902 } 1903 out: 1904 ASSERT(list_empty(&sort_list)); 1905 if (!list_empty(&buffer_list)) 1906 list_splice(&buffer_list, &trans->r_itemq); 1907 if (!list_empty(&inode_list)) 1908 list_splice_tail(&inode_list, &trans->r_itemq); 1909 if (!list_empty(&inode_buffer_list)) 1910 list_splice_tail(&inode_buffer_list, &trans->r_itemq); 1911 if (!list_empty(&cancel_list)) 1912 list_splice_tail(&cancel_list, &trans->r_itemq); 1913 return error; 1914 } 1915 1916 /* 1917 * Build up the table of buf cancel records so that we don't replay 1918 * cancelled data in the second pass. For buffer records that are 1919 * not cancel records, there is nothing to do here so we just return. 1920 * 1921 * If we get a cancel record which is already in the table, this indicates 1922 * that the buffer was cancelled multiple times. In order to ensure 1923 * that during pass 2 we keep the record in the table until we reach its 1924 * last occurrence in the log, we keep a reference count in the cancel 1925 * record in the table to tell us how many times we expect to see this 1926 * record during the second pass. 1927 */ 1928 STATIC int 1929 xlog_recover_buffer_pass1( 1930 struct xlog *log, 1931 struct xlog_recover_item *item) 1932 { 1933 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1934 struct list_head *bucket; 1935 struct xfs_buf_cancel *bcp; 1936 1937 if (!xfs_buf_log_check_iovec(&item->ri_buf[0])) { 1938 xfs_err(log->l_mp, "bad buffer log item size (%d)", 1939 item->ri_buf[0].i_len); 1940 return -EFSCORRUPTED; 1941 } 1942 1943 /* 1944 * If this isn't a cancel buffer item, then just return. 1945 */ 1946 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 1947 trace_xfs_log_recover_buf_not_cancel(log, buf_f); 1948 return 0; 1949 } 1950 1951 /* 1952 * Insert an xfs_buf_cancel record into the hash table of them. 1953 * If there is already an identical record, bump its reference count. 1954 */ 1955 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno); 1956 list_for_each_entry(bcp, bucket, bc_list) { 1957 if (bcp->bc_blkno == buf_f->blf_blkno && 1958 bcp->bc_len == buf_f->blf_len) { 1959 bcp->bc_refcount++; 1960 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f); 1961 return 0; 1962 } 1963 } 1964 1965 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), 0); 1966 bcp->bc_blkno = buf_f->blf_blkno; 1967 bcp->bc_len = buf_f->blf_len; 1968 bcp->bc_refcount = 1; 1969 list_add_tail(&bcp->bc_list, bucket); 1970 1971 trace_xfs_log_recover_buf_cancel_add(log, buf_f); 1972 return 0; 1973 } 1974 1975 /* 1976 * Check to see whether the buffer being recovered has a corresponding 1977 * entry in the buffer cancel record table. If it is, return the cancel 1978 * buffer structure to the caller. 1979 */ 1980 STATIC struct xfs_buf_cancel * 1981 xlog_peek_buffer_cancelled( 1982 struct xlog *log, 1983 xfs_daddr_t blkno, 1984 uint len, 1985 unsigned short flags) 1986 { 1987 struct list_head *bucket; 1988 struct xfs_buf_cancel *bcp; 1989 1990 if (!log->l_buf_cancel_table) { 1991 /* empty table means no cancelled buffers in the log */ 1992 ASSERT(!(flags & XFS_BLF_CANCEL)); 1993 return NULL; 1994 } 1995 1996 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); 1997 list_for_each_entry(bcp, bucket, bc_list) { 1998 if (bcp->bc_blkno == blkno && bcp->bc_len == len) 1999 return bcp; 2000 } 2001 2002 /* 2003 * We didn't find a corresponding entry in the table, so return 0 so 2004 * that the buffer is NOT cancelled. 2005 */ 2006 ASSERT(!(flags & XFS_BLF_CANCEL)); 2007 return NULL; 2008 } 2009 2010 /* 2011 * If the buffer is being cancelled then return 1 so that it will be cancelled, 2012 * otherwise return 0. If the buffer is actually a buffer cancel item 2013 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the 2014 * table and remove it from the table if this is the last reference. 2015 * 2016 * We remove the cancel record from the table when we encounter its last 2017 * occurrence in the log so that if the same buffer is re-used again after its 2018 * last cancellation we actually replay the changes made at that point. 2019 */ 2020 STATIC int 2021 xlog_check_buffer_cancelled( 2022 struct xlog *log, 2023 xfs_daddr_t blkno, 2024 uint len, 2025 unsigned short flags) 2026 { 2027 struct xfs_buf_cancel *bcp; 2028 2029 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags); 2030 if (!bcp) 2031 return 0; 2032 2033 /* 2034 * We've go a match, so return 1 so that the recovery of this buffer 2035 * is cancelled. If this buffer is actually a buffer cancel log 2036 * item, then decrement the refcount on the one in the table and 2037 * remove it if this is the last reference. 2038 */ 2039 if (flags & XFS_BLF_CANCEL) { 2040 if (--bcp->bc_refcount == 0) { 2041 list_del(&bcp->bc_list); 2042 kmem_free(bcp); 2043 } 2044 } 2045 return 1; 2046 } 2047 2048 /* 2049 * Perform recovery for a buffer full of inodes. In these buffers, the only 2050 * data which should be recovered is that which corresponds to the 2051 * di_next_unlinked pointers in the on disk inode structures. The rest of the 2052 * data for the inodes is always logged through the inodes themselves rather 2053 * than the inode buffer and is recovered in xlog_recover_inode_pass2(). 2054 * 2055 * The only time when buffers full of inodes are fully recovered is when the 2056 * buffer is full of newly allocated inodes. In this case the buffer will 2057 * not be marked as an inode buffer and so will be sent to 2058 * xlog_recover_do_reg_buffer() below during recovery. 2059 */ 2060 STATIC int 2061 xlog_recover_do_inode_buffer( 2062 struct xfs_mount *mp, 2063 xlog_recover_item_t *item, 2064 struct xfs_buf *bp, 2065 xfs_buf_log_format_t *buf_f) 2066 { 2067 int i; 2068 int item_index = 0; 2069 int bit = 0; 2070 int nbits = 0; 2071 int reg_buf_offset = 0; 2072 int reg_buf_bytes = 0; 2073 int next_unlinked_offset; 2074 int inodes_per_buf; 2075 xfs_agino_t *logged_nextp; 2076 xfs_agino_t *buffer_nextp; 2077 2078 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); 2079 2080 /* 2081 * Post recovery validation only works properly on CRC enabled 2082 * filesystems. 2083 */ 2084 if (xfs_sb_version_hascrc(&mp->m_sb)) 2085 bp->b_ops = &xfs_inode_buf_ops; 2086 2087 inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog; 2088 for (i = 0; i < inodes_per_buf; i++) { 2089 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 2090 offsetof(xfs_dinode_t, di_next_unlinked); 2091 2092 while (next_unlinked_offset >= 2093 (reg_buf_offset + reg_buf_bytes)) { 2094 /* 2095 * The next di_next_unlinked field is beyond 2096 * the current logged region. Find the next 2097 * logged region that contains or is beyond 2098 * the current di_next_unlinked field. 2099 */ 2100 bit += nbits; 2101 bit = xfs_next_bit(buf_f->blf_data_map, 2102 buf_f->blf_map_size, bit); 2103 2104 /* 2105 * If there are no more logged regions in the 2106 * buffer, then we're done. 2107 */ 2108 if (bit == -1) 2109 return 0; 2110 2111 nbits = xfs_contig_bits(buf_f->blf_data_map, 2112 buf_f->blf_map_size, bit); 2113 ASSERT(nbits > 0); 2114 reg_buf_offset = bit << XFS_BLF_SHIFT; 2115 reg_buf_bytes = nbits << XFS_BLF_SHIFT; 2116 item_index++; 2117 } 2118 2119 /* 2120 * If the current logged region starts after the current 2121 * di_next_unlinked field, then move on to the next 2122 * di_next_unlinked field. 2123 */ 2124 if (next_unlinked_offset < reg_buf_offset) 2125 continue; 2126 2127 ASSERT(item->ri_buf[item_index].i_addr != NULL); 2128 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); 2129 ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length)); 2130 2131 /* 2132 * The current logged region contains a copy of the 2133 * current di_next_unlinked field. Extract its value 2134 * and copy it to the buffer copy. 2135 */ 2136 logged_nextp = item->ri_buf[item_index].i_addr + 2137 next_unlinked_offset - reg_buf_offset; 2138 if (XFS_IS_CORRUPT(mp, *logged_nextp == 0)) { 2139 xfs_alert(mp, 2140 "Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). " 2141 "Trying to replay bad (0) inode di_next_unlinked field.", 2142 item, bp); 2143 return -EFSCORRUPTED; 2144 } 2145 2146 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset); 2147 *buffer_nextp = *logged_nextp; 2148 2149 /* 2150 * If necessary, recalculate the CRC in the on-disk inode. We 2151 * have to leave the inode in a consistent state for whoever 2152 * reads it next.... 2153 */ 2154 xfs_dinode_calc_crc(mp, 2155 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); 2156 2157 } 2158 2159 return 0; 2160 } 2161 2162 /* 2163 * V5 filesystems know the age of the buffer on disk being recovered. We can 2164 * have newer objects on disk than we are replaying, and so for these cases we 2165 * don't want to replay the current change as that will make the buffer contents 2166 * temporarily invalid on disk. 2167 * 2168 * The magic number might not match the buffer type we are going to recover 2169 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence 2170 * extract the LSN of the existing object in the buffer based on it's current 2171 * magic number. If we don't recognise the magic number in the buffer, then 2172 * return a LSN of -1 so that the caller knows it was an unrecognised block and 2173 * so can recover the buffer. 2174 * 2175 * Note: we cannot rely solely on magic number matches to determine that the 2176 * buffer has a valid LSN - we also need to verify that it belongs to this 2177 * filesystem, so we need to extract the object's LSN and compare it to that 2178 * which we read from the superblock. If the UUIDs don't match, then we've got a 2179 * stale metadata block from an old filesystem instance that we need to recover 2180 * over the top of. 2181 */ 2182 static xfs_lsn_t 2183 xlog_recover_get_buf_lsn( 2184 struct xfs_mount *mp, 2185 struct xfs_buf *bp) 2186 { 2187 uint32_t magic32; 2188 uint16_t magic16; 2189 uint16_t magicda; 2190 void *blk = bp->b_addr; 2191 uuid_t *uuid; 2192 xfs_lsn_t lsn = -1; 2193 2194 /* v4 filesystems always recover immediately */ 2195 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2196 goto recover_immediately; 2197 2198 magic32 = be32_to_cpu(*(__be32 *)blk); 2199 switch (magic32) { 2200 case XFS_ABTB_CRC_MAGIC: 2201 case XFS_ABTC_CRC_MAGIC: 2202 case XFS_ABTB_MAGIC: 2203 case XFS_ABTC_MAGIC: 2204 case XFS_RMAP_CRC_MAGIC: 2205 case XFS_REFC_CRC_MAGIC: 2206 case XFS_IBT_CRC_MAGIC: 2207 case XFS_IBT_MAGIC: { 2208 struct xfs_btree_block *btb = blk; 2209 2210 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn); 2211 uuid = &btb->bb_u.s.bb_uuid; 2212 break; 2213 } 2214 case XFS_BMAP_CRC_MAGIC: 2215 case XFS_BMAP_MAGIC: { 2216 struct xfs_btree_block *btb = blk; 2217 2218 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn); 2219 uuid = &btb->bb_u.l.bb_uuid; 2220 break; 2221 } 2222 case XFS_AGF_MAGIC: 2223 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn); 2224 uuid = &((struct xfs_agf *)blk)->agf_uuid; 2225 break; 2226 case XFS_AGFL_MAGIC: 2227 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn); 2228 uuid = &((struct xfs_agfl *)blk)->agfl_uuid; 2229 break; 2230 case XFS_AGI_MAGIC: 2231 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn); 2232 uuid = &((struct xfs_agi *)blk)->agi_uuid; 2233 break; 2234 case XFS_SYMLINK_MAGIC: 2235 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn); 2236 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid; 2237 break; 2238 case XFS_DIR3_BLOCK_MAGIC: 2239 case XFS_DIR3_DATA_MAGIC: 2240 case XFS_DIR3_FREE_MAGIC: 2241 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn); 2242 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid; 2243 break; 2244 case XFS_ATTR3_RMT_MAGIC: 2245 /* 2246 * Remote attr blocks are written synchronously, rather than 2247 * being logged. That means they do not contain a valid LSN 2248 * (i.e. transactionally ordered) in them, and hence any time we 2249 * see a buffer to replay over the top of a remote attribute 2250 * block we should simply do so. 2251 */ 2252 goto recover_immediately; 2253 case XFS_SB_MAGIC: 2254 /* 2255 * superblock uuids are magic. We may or may not have a 2256 * sb_meta_uuid on disk, but it will be set in the in-core 2257 * superblock. We set the uuid pointer for verification 2258 * according to the superblock feature mask to ensure we check 2259 * the relevant UUID in the superblock. 2260 */ 2261 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn); 2262 if (xfs_sb_version_hasmetauuid(&mp->m_sb)) 2263 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid; 2264 else 2265 uuid = &((struct xfs_dsb *)blk)->sb_uuid; 2266 break; 2267 default: 2268 break; 2269 } 2270 2271 if (lsn != (xfs_lsn_t)-1) { 2272 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid)) 2273 goto recover_immediately; 2274 return lsn; 2275 } 2276 2277 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic); 2278 switch (magicda) { 2279 case XFS_DIR3_LEAF1_MAGIC: 2280 case XFS_DIR3_LEAFN_MAGIC: 2281 case XFS_DA3_NODE_MAGIC: 2282 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn); 2283 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid; 2284 break; 2285 default: 2286 break; 2287 } 2288 2289 if (lsn != (xfs_lsn_t)-1) { 2290 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid)) 2291 goto recover_immediately; 2292 return lsn; 2293 } 2294 2295 /* 2296 * We do individual object checks on dquot and inode buffers as they 2297 * have their own individual LSN records. Also, we could have a stale 2298 * buffer here, so we have to at least recognise these buffer types. 2299 * 2300 * A notd complexity here is inode unlinked list processing - it logs 2301 * the inode directly in the buffer, but we don't know which inodes have 2302 * been modified, and there is no global buffer LSN. Hence we need to 2303 * recover all inode buffer types immediately. This problem will be 2304 * fixed by logical logging of the unlinked list modifications. 2305 */ 2306 magic16 = be16_to_cpu(*(__be16 *)blk); 2307 switch (magic16) { 2308 case XFS_DQUOT_MAGIC: 2309 case XFS_DINODE_MAGIC: 2310 goto recover_immediately; 2311 default: 2312 break; 2313 } 2314 2315 /* unknown buffer contents, recover immediately */ 2316 2317 recover_immediately: 2318 return (xfs_lsn_t)-1; 2319 2320 } 2321 2322 /* 2323 * Validate the recovered buffer is of the correct type and attach the 2324 * appropriate buffer operations to them for writeback. Magic numbers are in a 2325 * few places: 2326 * the first 16 bits of the buffer (inode buffer, dquot buffer), 2327 * the first 32 bits of the buffer (most blocks), 2328 * inside a struct xfs_da_blkinfo at the start of the buffer. 2329 */ 2330 static void 2331 xlog_recover_validate_buf_type( 2332 struct xfs_mount *mp, 2333 struct xfs_buf *bp, 2334 xfs_buf_log_format_t *buf_f, 2335 xfs_lsn_t current_lsn) 2336 { 2337 struct xfs_da_blkinfo *info = bp->b_addr; 2338 uint32_t magic32; 2339 uint16_t magic16; 2340 uint16_t magicda; 2341 char *warnmsg = NULL; 2342 2343 /* 2344 * We can only do post recovery validation on items on CRC enabled 2345 * fielsystems as we need to know when the buffer was written to be able 2346 * to determine if we should have replayed the item. If we replay old 2347 * metadata over a newer buffer, then it will enter a temporarily 2348 * inconsistent state resulting in verification failures. Hence for now 2349 * just avoid the verification stage for non-crc filesystems 2350 */ 2351 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2352 return; 2353 2354 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr); 2355 magic16 = be16_to_cpu(*(__be16*)bp->b_addr); 2356 magicda = be16_to_cpu(info->magic); 2357 switch (xfs_blft_from_flags(buf_f)) { 2358 case XFS_BLFT_BTREE_BUF: 2359 switch (magic32) { 2360 case XFS_ABTB_CRC_MAGIC: 2361 case XFS_ABTB_MAGIC: 2362 bp->b_ops = &xfs_bnobt_buf_ops; 2363 break; 2364 case XFS_ABTC_CRC_MAGIC: 2365 case XFS_ABTC_MAGIC: 2366 bp->b_ops = &xfs_cntbt_buf_ops; 2367 break; 2368 case XFS_IBT_CRC_MAGIC: 2369 case XFS_IBT_MAGIC: 2370 bp->b_ops = &xfs_inobt_buf_ops; 2371 break; 2372 case XFS_FIBT_CRC_MAGIC: 2373 case XFS_FIBT_MAGIC: 2374 bp->b_ops = &xfs_finobt_buf_ops; 2375 break; 2376 case XFS_BMAP_CRC_MAGIC: 2377 case XFS_BMAP_MAGIC: 2378 bp->b_ops = &xfs_bmbt_buf_ops; 2379 break; 2380 case XFS_RMAP_CRC_MAGIC: 2381 bp->b_ops = &xfs_rmapbt_buf_ops; 2382 break; 2383 case XFS_REFC_CRC_MAGIC: 2384 bp->b_ops = &xfs_refcountbt_buf_ops; 2385 break; 2386 default: 2387 warnmsg = "Bad btree block magic!"; 2388 break; 2389 } 2390 break; 2391 case XFS_BLFT_AGF_BUF: 2392 if (magic32 != XFS_AGF_MAGIC) { 2393 warnmsg = "Bad AGF block magic!"; 2394 break; 2395 } 2396 bp->b_ops = &xfs_agf_buf_ops; 2397 break; 2398 case XFS_BLFT_AGFL_BUF: 2399 if (magic32 != XFS_AGFL_MAGIC) { 2400 warnmsg = "Bad AGFL block magic!"; 2401 break; 2402 } 2403 bp->b_ops = &xfs_agfl_buf_ops; 2404 break; 2405 case XFS_BLFT_AGI_BUF: 2406 if (magic32 != XFS_AGI_MAGIC) { 2407 warnmsg = "Bad AGI block magic!"; 2408 break; 2409 } 2410 bp->b_ops = &xfs_agi_buf_ops; 2411 break; 2412 case XFS_BLFT_UDQUOT_BUF: 2413 case XFS_BLFT_PDQUOT_BUF: 2414 case XFS_BLFT_GDQUOT_BUF: 2415 #ifdef CONFIG_XFS_QUOTA 2416 if (magic16 != XFS_DQUOT_MAGIC) { 2417 warnmsg = "Bad DQUOT block magic!"; 2418 break; 2419 } 2420 bp->b_ops = &xfs_dquot_buf_ops; 2421 #else 2422 xfs_alert(mp, 2423 "Trying to recover dquots without QUOTA support built in!"); 2424 ASSERT(0); 2425 #endif 2426 break; 2427 case XFS_BLFT_DINO_BUF: 2428 if (magic16 != XFS_DINODE_MAGIC) { 2429 warnmsg = "Bad INODE block magic!"; 2430 break; 2431 } 2432 bp->b_ops = &xfs_inode_buf_ops; 2433 break; 2434 case XFS_BLFT_SYMLINK_BUF: 2435 if (magic32 != XFS_SYMLINK_MAGIC) { 2436 warnmsg = "Bad symlink block magic!"; 2437 break; 2438 } 2439 bp->b_ops = &xfs_symlink_buf_ops; 2440 break; 2441 case XFS_BLFT_DIR_BLOCK_BUF: 2442 if (magic32 != XFS_DIR2_BLOCK_MAGIC && 2443 magic32 != XFS_DIR3_BLOCK_MAGIC) { 2444 warnmsg = "Bad dir block magic!"; 2445 break; 2446 } 2447 bp->b_ops = &xfs_dir3_block_buf_ops; 2448 break; 2449 case XFS_BLFT_DIR_DATA_BUF: 2450 if (magic32 != XFS_DIR2_DATA_MAGIC && 2451 magic32 != XFS_DIR3_DATA_MAGIC) { 2452 warnmsg = "Bad dir data magic!"; 2453 break; 2454 } 2455 bp->b_ops = &xfs_dir3_data_buf_ops; 2456 break; 2457 case XFS_BLFT_DIR_FREE_BUF: 2458 if (magic32 != XFS_DIR2_FREE_MAGIC && 2459 magic32 != XFS_DIR3_FREE_MAGIC) { 2460 warnmsg = "Bad dir3 free magic!"; 2461 break; 2462 } 2463 bp->b_ops = &xfs_dir3_free_buf_ops; 2464 break; 2465 case XFS_BLFT_DIR_LEAF1_BUF: 2466 if (magicda != XFS_DIR2_LEAF1_MAGIC && 2467 magicda != XFS_DIR3_LEAF1_MAGIC) { 2468 warnmsg = "Bad dir leaf1 magic!"; 2469 break; 2470 } 2471 bp->b_ops = &xfs_dir3_leaf1_buf_ops; 2472 break; 2473 case XFS_BLFT_DIR_LEAFN_BUF: 2474 if (magicda != XFS_DIR2_LEAFN_MAGIC && 2475 magicda != XFS_DIR3_LEAFN_MAGIC) { 2476 warnmsg = "Bad dir leafn magic!"; 2477 break; 2478 } 2479 bp->b_ops = &xfs_dir3_leafn_buf_ops; 2480 break; 2481 case XFS_BLFT_DA_NODE_BUF: 2482 if (magicda != XFS_DA_NODE_MAGIC && 2483 magicda != XFS_DA3_NODE_MAGIC) { 2484 warnmsg = "Bad da node magic!"; 2485 break; 2486 } 2487 bp->b_ops = &xfs_da3_node_buf_ops; 2488 break; 2489 case XFS_BLFT_ATTR_LEAF_BUF: 2490 if (magicda != XFS_ATTR_LEAF_MAGIC && 2491 magicda != XFS_ATTR3_LEAF_MAGIC) { 2492 warnmsg = "Bad attr leaf magic!"; 2493 break; 2494 } 2495 bp->b_ops = &xfs_attr3_leaf_buf_ops; 2496 break; 2497 case XFS_BLFT_ATTR_RMT_BUF: 2498 if (magic32 != XFS_ATTR3_RMT_MAGIC) { 2499 warnmsg = "Bad attr remote magic!"; 2500 break; 2501 } 2502 bp->b_ops = &xfs_attr3_rmt_buf_ops; 2503 break; 2504 case XFS_BLFT_SB_BUF: 2505 if (magic32 != XFS_SB_MAGIC) { 2506 warnmsg = "Bad SB block magic!"; 2507 break; 2508 } 2509 bp->b_ops = &xfs_sb_buf_ops; 2510 break; 2511 #ifdef CONFIG_XFS_RT 2512 case XFS_BLFT_RTBITMAP_BUF: 2513 case XFS_BLFT_RTSUMMARY_BUF: 2514 /* no magic numbers for verification of RT buffers */ 2515 bp->b_ops = &xfs_rtbuf_ops; 2516 break; 2517 #endif /* CONFIG_XFS_RT */ 2518 default: 2519 xfs_warn(mp, "Unknown buffer type %d!", 2520 xfs_blft_from_flags(buf_f)); 2521 break; 2522 } 2523 2524 /* 2525 * Nothing else to do in the case of a NULL current LSN as this means 2526 * the buffer is more recent than the change in the log and will be 2527 * skipped. 2528 */ 2529 if (current_lsn == NULLCOMMITLSN) 2530 return; 2531 2532 if (warnmsg) { 2533 xfs_warn(mp, warnmsg); 2534 ASSERT(0); 2535 } 2536 2537 /* 2538 * We must update the metadata LSN of the buffer as it is written out to 2539 * ensure that older transactions never replay over this one and corrupt 2540 * the buffer. This can occur if log recovery is interrupted at some 2541 * point after the current transaction completes, at which point a 2542 * subsequent mount starts recovery from the beginning. 2543 * 2544 * Write verifiers update the metadata LSN from log items attached to 2545 * the buffer. Therefore, initialize a bli purely to carry the LSN to 2546 * the verifier. We'll clean it up in our ->iodone() callback. 2547 */ 2548 if (bp->b_ops) { 2549 struct xfs_buf_log_item *bip; 2550 2551 ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone); 2552 bp->b_iodone = xlog_recover_iodone; 2553 xfs_buf_item_init(bp, mp); 2554 bip = bp->b_log_item; 2555 bip->bli_item.li_lsn = current_lsn; 2556 } 2557 } 2558 2559 /* 2560 * Perform a 'normal' buffer recovery. Each logged region of the 2561 * buffer should be copied over the corresponding region in the 2562 * given buffer. The bitmap in the buf log format structure indicates 2563 * where to place the logged data. 2564 */ 2565 STATIC void 2566 xlog_recover_do_reg_buffer( 2567 struct xfs_mount *mp, 2568 xlog_recover_item_t *item, 2569 struct xfs_buf *bp, 2570 xfs_buf_log_format_t *buf_f, 2571 xfs_lsn_t current_lsn) 2572 { 2573 int i; 2574 int bit; 2575 int nbits; 2576 xfs_failaddr_t fa; 2577 const size_t size_disk_dquot = sizeof(struct xfs_disk_dquot); 2578 2579 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); 2580 2581 bit = 0; 2582 i = 1; /* 0 is the buf format structure */ 2583 while (1) { 2584 bit = xfs_next_bit(buf_f->blf_data_map, 2585 buf_f->blf_map_size, bit); 2586 if (bit == -1) 2587 break; 2588 nbits = xfs_contig_bits(buf_f->blf_data_map, 2589 buf_f->blf_map_size, bit); 2590 ASSERT(nbits > 0); 2591 ASSERT(item->ri_buf[i].i_addr != NULL); 2592 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); 2593 ASSERT(BBTOB(bp->b_length) >= 2594 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); 2595 2596 /* 2597 * The dirty regions logged in the buffer, even though 2598 * contiguous, may span multiple chunks. This is because the 2599 * dirty region may span a physical page boundary in a buffer 2600 * and hence be split into two separate vectors for writing into 2601 * the log. Hence we need to trim nbits back to the length of 2602 * the current region being copied out of the log. 2603 */ 2604 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT)) 2605 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT; 2606 2607 /* 2608 * Do a sanity check if this is a dquot buffer. Just checking 2609 * the first dquot in the buffer should do. XXXThis is 2610 * probably a good thing to do for other buf types also. 2611 */ 2612 fa = NULL; 2613 if (buf_f->blf_flags & 2614 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2615 if (item->ri_buf[i].i_addr == NULL) { 2616 xfs_alert(mp, 2617 "XFS: NULL dquot in %s.", __func__); 2618 goto next; 2619 } 2620 if (item->ri_buf[i].i_len < size_disk_dquot) { 2621 xfs_alert(mp, 2622 "XFS: dquot too small (%d) in %s.", 2623 item->ri_buf[i].i_len, __func__); 2624 goto next; 2625 } 2626 fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr, 2627 -1, 0); 2628 if (fa) { 2629 xfs_alert(mp, 2630 "dquot corrupt at %pS trying to replay into block 0x%llx", 2631 fa, bp->b_bn); 2632 goto next; 2633 } 2634 } 2635 2636 memcpy(xfs_buf_offset(bp, 2637 (uint)bit << XFS_BLF_SHIFT), /* dest */ 2638 item->ri_buf[i].i_addr, /* source */ 2639 nbits<<XFS_BLF_SHIFT); /* length */ 2640 next: 2641 i++; 2642 bit += nbits; 2643 } 2644 2645 /* Shouldn't be any more regions */ 2646 ASSERT(i == item->ri_total); 2647 2648 xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn); 2649 } 2650 2651 /* 2652 * Perform a dquot buffer recovery. 2653 * Simple algorithm: if we have found a QUOTAOFF log item of the same type 2654 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2655 * Else, treat it as a regular buffer and do recovery. 2656 * 2657 * Return false if the buffer was tossed and true if we recovered the buffer to 2658 * indicate to the caller if the buffer needs writing. 2659 */ 2660 STATIC bool 2661 xlog_recover_do_dquot_buffer( 2662 struct xfs_mount *mp, 2663 struct xlog *log, 2664 struct xlog_recover_item *item, 2665 struct xfs_buf *bp, 2666 struct xfs_buf_log_format *buf_f) 2667 { 2668 uint type; 2669 2670 trace_xfs_log_recover_buf_dquot_buf(log, buf_f); 2671 2672 /* 2673 * Filesystems are required to send in quota flags at mount time. 2674 */ 2675 if (!mp->m_qflags) 2676 return false; 2677 2678 type = 0; 2679 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) 2680 type |= XFS_DQ_USER; 2681 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) 2682 type |= XFS_DQ_PROJ; 2683 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) 2684 type |= XFS_DQ_GROUP; 2685 /* 2686 * This type of quotas was turned off, so ignore this buffer 2687 */ 2688 if (log->l_quotaoffs_flag & type) 2689 return false; 2690 2691 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN); 2692 return true; 2693 } 2694 2695 /* 2696 * This routine replays a modification made to a buffer at runtime. 2697 * There are actually two types of buffer, regular and inode, which 2698 * are handled differently. Inode buffers are handled differently 2699 * in that we only recover a specific set of data from them, namely 2700 * the inode di_next_unlinked fields. This is because all other inode 2701 * data is actually logged via inode records and any data we replay 2702 * here which overlaps that may be stale. 2703 * 2704 * When meta-data buffers are freed at run time we log a buffer item 2705 * with the XFS_BLF_CANCEL bit set to indicate that previous copies 2706 * of the buffer in the log should not be replayed at recovery time. 2707 * This is so that if the blocks covered by the buffer are reused for 2708 * file data before we crash we don't end up replaying old, freed 2709 * meta-data into a user's file. 2710 * 2711 * To handle the cancellation of buffer log items, we make two passes 2712 * over the log during recovery. During the first we build a table of 2713 * those buffers which have been cancelled, and during the second we 2714 * only replay those buffers which do not have corresponding cancel 2715 * records in the table. See xlog_recover_buffer_pass[1,2] above 2716 * for more details on the implementation of the table of cancel records. 2717 */ 2718 STATIC int 2719 xlog_recover_buffer_pass2( 2720 struct xlog *log, 2721 struct list_head *buffer_list, 2722 struct xlog_recover_item *item, 2723 xfs_lsn_t current_lsn) 2724 { 2725 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2726 xfs_mount_t *mp = log->l_mp; 2727 xfs_buf_t *bp; 2728 int error; 2729 uint buf_flags; 2730 xfs_lsn_t lsn; 2731 2732 /* 2733 * In this pass we only want to recover all the buffers which have 2734 * not been cancelled and are not cancellation buffers themselves. 2735 */ 2736 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno, 2737 buf_f->blf_len, buf_f->blf_flags)) { 2738 trace_xfs_log_recover_buf_cancel(log, buf_f); 2739 return 0; 2740 } 2741 2742 trace_xfs_log_recover_buf_recover(log, buf_f); 2743 2744 buf_flags = 0; 2745 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) 2746 buf_flags |= XBF_UNMAPPED; 2747 2748 error = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, 2749 buf_flags, &bp, NULL); 2750 if (error) 2751 return error; 2752 2753 /* 2754 * Recover the buffer only if we get an LSN from it and it's less than 2755 * the lsn of the transaction we are replaying. 2756 * 2757 * Note that we have to be extremely careful of readahead here. 2758 * Readahead does not attach verfiers to the buffers so if we don't 2759 * actually do any replay after readahead because of the LSN we found 2760 * in the buffer if more recent than that current transaction then we 2761 * need to attach the verifier directly. Failure to do so can lead to 2762 * future recovery actions (e.g. EFI and unlinked list recovery) can 2763 * operate on the buffers and they won't get the verifier attached. This 2764 * can lead to blocks on disk having the correct content but a stale 2765 * CRC. 2766 * 2767 * It is safe to assume these clean buffers are currently up to date. 2768 * If the buffer is dirtied by a later transaction being replayed, then 2769 * the verifier will be reset to match whatever recover turns that 2770 * buffer into. 2771 */ 2772 lsn = xlog_recover_get_buf_lsn(mp, bp); 2773 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 2774 trace_xfs_log_recover_buf_skip(log, buf_f); 2775 xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN); 2776 goto out_release; 2777 } 2778 2779 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 2780 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2781 if (error) 2782 goto out_release; 2783 } else if (buf_f->blf_flags & 2784 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2785 bool dirty; 2786 2787 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2788 if (!dirty) 2789 goto out_release; 2790 } else { 2791 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn); 2792 } 2793 2794 /* 2795 * Perform delayed write on the buffer. Asynchronous writes will be 2796 * slower when taking into account all the buffers to be flushed. 2797 * 2798 * Also make sure that only inode buffers with good sizes stay in 2799 * the buffer cache. The kernel moves inodes in buffers of 1 block 2800 * or inode_cluster_size bytes, whichever is bigger. The inode 2801 * buffers in the log can be a different size if the log was generated 2802 * by an older kernel using unclustered inode buffers or a newer kernel 2803 * running with a different inode cluster size. Regardless, if the 2804 * the inode buffer size isn't max(blocksize, inode_cluster_size) 2805 * for *our* value of inode_cluster_size, then we need to keep 2806 * the buffer out of the buffer cache so that the buffer won't 2807 * overlap with future reads of those inodes. 2808 */ 2809 if (XFS_DINODE_MAGIC == 2810 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && 2811 (BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) { 2812 xfs_buf_stale(bp); 2813 error = xfs_bwrite(bp); 2814 } else { 2815 ASSERT(bp->b_mount == mp); 2816 bp->b_iodone = xlog_recover_iodone; 2817 xfs_buf_delwri_queue(bp, buffer_list); 2818 } 2819 2820 out_release: 2821 xfs_buf_relse(bp); 2822 return error; 2823 } 2824 2825 /* 2826 * Inode fork owner changes 2827 * 2828 * If we have been told that we have to reparent the inode fork, it's because an 2829 * extent swap operation on a CRC enabled filesystem has been done and we are 2830 * replaying it. We need to walk the BMBT of the appropriate fork and change the 2831 * owners of it. 2832 * 2833 * The complexity here is that we don't have an inode context to work with, so 2834 * after we've replayed the inode we need to instantiate one. This is where the 2835 * fun begins. 2836 * 2837 * We are in the middle of log recovery, so we can't run transactions. That 2838 * means we cannot use cache coherent inode instantiation via xfs_iget(), as 2839 * that will result in the corresponding iput() running the inode through 2840 * xfs_inactive(). If we've just replayed an inode core that changes the link 2841 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run 2842 * transactions (bad!). 2843 * 2844 * So, to avoid this, we instantiate an inode directly from the inode core we've 2845 * just recovered. We have the buffer still locked, and all we really need to 2846 * instantiate is the inode core and the forks being modified. We can do this 2847 * manually, then run the inode btree owner change, and then tear down the 2848 * xfs_inode without having to run any transactions at all. 2849 * 2850 * Also, because we don't have a transaction context available here but need to 2851 * gather all the buffers we modify for writeback so we pass the buffer_list 2852 * instead for the operation to use. 2853 */ 2854 2855 STATIC int 2856 xfs_recover_inode_owner_change( 2857 struct xfs_mount *mp, 2858 struct xfs_dinode *dip, 2859 struct xfs_inode_log_format *in_f, 2860 struct list_head *buffer_list) 2861 { 2862 struct xfs_inode *ip; 2863 int error; 2864 2865 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)); 2866 2867 ip = xfs_inode_alloc(mp, in_f->ilf_ino); 2868 if (!ip) 2869 return -ENOMEM; 2870 2871 /* instantiate the inode */ 2872 xfs_inode_from_disk(ip, dip); 2873 ASSERT(ip->i_d.di_version >= 3); 2874 2875 error = xfs_iformat_fork(ip, dip); 2876 if (error) 2877 goto out_free_ip; 2878 2879 if (!xfs_inode_verify_forks(ip)) { 2880 error = -EFSCORRUPTED; 2881 goto out_free_ip; 2882 } 2883 2884 if (in_f->ilf_fields & XFS_ILOG_DOWNER) { 2885 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT); 2886 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK, 2887 ip->i_ino, buffer_list); 2888 if (error) 2889 goto out_free_ip; 2890 } 2891 2892 if (in_f->ilf_fields & XFS_ILOG_AOWNER) { 2893 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT); 2894 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK, 2895 ip->i_ino, buffer_list); 2896 if (error) 2897 goto out_free_ip; 2898 } 2899 2900 out_free_ip: 2901 xfs_inode_free(ip); 2902 return error; 2903 } 2904 2905 STATIC int 2906 xlog_recover_inode_pass2( 2907 struct xlog *log, 2908 struct list_head *buffer_list, 2909 struct xlog_recover_item *item, 2910 xfs_lsn_t current_lsn) 2911 { 2912 struct xfs_inode_log_format *in_f; 2913 xfs_mount_t *mp = log->l_mp; 2914 xfs_buf_t *bp; 2915 xfs_dinode_t *dip; 2916 int len; 2917 char *src; 2918 char *dest; 2919 int error; 2920 int attr_index; 2921 uint fields; 2922 struct xfs_log_dinode *ldip; 2923 uint isize; 2924 int need_free = 0; 2925 2926 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { 2927 in_f = item->ri_buf[0].i_addr; 2928 } else { 2929 in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), 0); 2930 need_free = 1; 2931 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 2932 if (error) 2933 goto error; 2934 } 2935 2936 /* 2937 * Inode buffers can be freed, look out for it, 2938 * and do not replay the inode. 2939 */ 2940 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, 2941 in_f->ilf_len, 0)) { 2942 error = 0; 2943 trace_xfs_log_recover_inode_cancel(log, in_f); 2944 goto error; 2945 } 2946 trace_xfs_log_recover_inode_recover(log, in_f); 2947 2948 error = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 2949 0, &bp, &xfs_inode_buf_ops); 2950 if (error) 2951 goto error; 2952 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 2953 dip = xfs_buf_offset(bp, in_f->ilf_boffset); 2954 2955 /* 2956 * Make sure the place we're flushing out to really looks 2957 * like an inode! 2958 */ 2959 if (XFS_IS_CORRUPT(mp, !xfs_verify_magic16(bp, dip->di_magic))) { 2960 xfs_alert(mp, 2961 "%s: Bad inode magic number, dip = "PTR_FMT", dino bp = "PTR_FMT", ino = %Ld", 2962 __func__, dip, bp, in_f->ilf_ino); 2963 error = -EFSCORRUPTED; 2964 goto out_release; 2965 } 2966 ldip = item->ri_buf[1].i_addr; 2967 if (XFS_IS_CORRUPT(mp, ldip->di_magic != XFS_DINODE_MAGIC)) { 2968 xfs_alert(mp, 2969 "%s: Bad inode log record, rec ptr "PTR_FMT", ino %Ld", 2970 __func__, item, in_f->ilf_ino); 2971 error = -EFSCORRUPTED; 2972 goto out_release; 2973 } 2974 2975 /* 2976 * If the inode has an LSN in it, recover the inode only if it's less 2977 * than the lsn of the transaction we are replaying. Note: we still 2978 * need to replay an owner change even though the inode is more recent 2979 * than the transaction as there is no guarantee that all the btree 2980 * blocks are more recent than this transaction, too. 2981 */ 2982 if (dip->di_version >= 3) { 2983 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn); 2984 2985 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 2986 trace_xfs_log_recover_inode_skip(log, in_f); 2987 error = 0; 2988 goto out_owner_change; 2989 } 2990 } 2991 2992 /* 2993 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes 2994 * are transactional and if ordering is necessary we can determine that 2995 * more accurately by the LSN field in the V3 inode core. Don't trust 2996 * the inode versions we might be changing them here - use the 2997 * superblock flag to determine whether we need to look at di_flushiter 2998 * to skip replay when the on disk inode is newer than the log one 2999 */ 3000 if (!xfs_sb_version_hascrc(&mp->m_sb) && 3001 ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) { 3002 /* 3003 * Deal with the wrap case, DI_MAX_FLUSH is less 3004 * than smaller numbers 3005 */ 3006 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && 3007 ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) { 3008 /* do nothing */ 3009 } else { 3010 trace_xfs_log_recover_inode_skip(log, in_f); 3011 error = 0; 3012 goto out_release; 3013 } 3014 } 3015 3016 /* Take the opportunity to reset the flush iteration count */ 3017 ldip->di_flushiter = 0; 3018 3019 if (unlikely(S_ISREG(ldip->di_mode))) { 3020 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) && 3021 (ldip->di_format != XFS_DINODE_FMT_BTREE)) { 3022 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)", 3023 XFS_ERRLEVEL_LOW, mp, ldip, 3024 sizeof(*ldip)); 3025 xfs_alert(mp, 3026 "%s: Bad regular inode log record, rec ptr "PTR_FMT", " 3027 "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld", 3028 __func__, item, dip, bp, in_f->ilf_ino); 3029 error = -EFSCORRUPTED; 3030 goto out_release; 3031 } 3032 } else if (unlikely(S_ISDIR(ldip->di_mode))) { 3033 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) && 3034 (ldip->di_format != XFS_DINODE_FMT_BTREE) && 3035 (ldip->di_format != XFS_DINODE_FMT_LOCAL)) { 3036 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)", 3037 XFS_ERRLEVEL_LOW, mp, ldip, 3038 sizeof(*ldip)); 3039 xfs_alert(mp, 3040 "%s: Bad dir inode log record, rec ptr "PTR_FMT", " 3041 "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld", 3042 __func__, item, dip, bp, in_f->ilf_ino); 3043 error = -EFSCORRUPTED; 3044 goto out_release; 3045 } 3046 } 3047 if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){ 3048 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)", 3049 XFS_ERRLEVEL_LOW, mp, ldip, 3050 sizeof(*ldip)); 3051 xfs_alert(mp, 3052 "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", " 3053 "dino bp "PTR_FMT", ino %Ld, total extents = %d, nblocks = %Ld", 3054 __func__, item, dip, bp, in_f->ilf_ino, 3055 ldip->di_nextents + ldip->di_anextents, 3056 ldip->di_nblocks); 3057 error = -EFSCORRUPTED; 3058 goto out_release; 3059 } 3060 if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) { 3061 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)", 3062 XFS_ERRLEVEL_LOW, mp, ldip, 3063 sizeof(*ldip)); 3064 xfs_alert(mp, 3065 "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", " 3066 "dino bp "PTR_FMT", ino %Ld, forkoff 0x%x", __func__, 3067 item, dip, bp, in_f->ilf_ino, ldip->di_forkoff); 3068 error = -EFSCORRUPTED; 3069 goto out_release; 3070 } 3071 isize = xfs_log_dinode_size(ldip->di_version); 3072 if (unlikely(item->ri_buf[1].i_len > isize)) { 3073 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)", 3074 XFS_ERRLEVEL_LOW, mp, ldip, 3075 sizeof(*ldip)); 3076 xfs_alert(mp, 3077 "%s: Bad inode log record length %d, rec ptr "PTR_FMT, 3078 __func__, item->ri_buf[1].i_len, item); 3079 error = -EFSCORRUPTED; 3080 goto out_release; 3081 } 3082 3083 /* recover the log dinode inode into the on disk inode */ 3084 xfs_log_dinode_to_disk(ldip, dip); 3085 3086 fields = in_f->ilf_fields; 3087 if (fields & XFS_ILOG_DEV) 3088 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); 3089 3090 if (in_f->ilf_size == 2) 3091 goto out_owner_change; 3092 len = item->ri_buf[2].i_len; 3093 src = item->ri_buf[2].i_addr; 3094 ASSERT(in_f->ilf_size <= 4); 3095 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 3096 ASSERT(!(fields & XFS_ILOG_DFORK) || 3097 (len == in_f->ilf_dsize)); 3098 3099 switch (fields & XFS_ILOG_DFORK) { 3100 case XFS_ILOG_DDATA: 3101 case XFS_ILOG_DEXT: 3102 memcpy(XFS_DFORK_DPTR(dip), src, len); 3103 break; 3104 3105 case XFS_ILOG_DBROOT: 3106 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, 3107 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), 3108 XFS_DFORK_DSIZE(dip, mp)); 3109 break; 3110 3111 default: 3112 /* 3113 * There are no data fork flags set. 3114 */ 3115 ASSERT((fields & XFS_ILOG_DFORK) == 0); 3116 break; 3117 } 3118 3119 /* 3120 * If we logged any attribute data, recover it. There may or 3121 * may not have been any other non-core data logged in this 3122 * transaction. 3123 */ 3124 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 3125 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 3126 attr_index = 3; 3127 } else { 3128 attr_index = 2; 3129 } 3130 len = item->ri_buf[attr_index].i_len; 3131 src = item->ri_buf[attr_index].i_addr; 3132 ASSERT(len == in_f->ilf_asize); 3133 3134 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 3135 case XFS_ILOG_ADATA: 3136 case XFS_ILOG_AEXT: 3137 dest = XFS_DFORK_APTR(dip); 3138 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 3139 memcpy(dest, src, len); 3140 break; 3141 3142 case XFS_ILOG_ABROOT: 3143 dest = XFS_DFORK_APTR(dip); 3144 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, 3145 len, (xfs_bmdr_block_t*)dest, 3146 XFS_DFORK_ASIZE(dip, mp)); 3147 break; 3148 3149 default: 3150 xfs_warn(log->l_mp, "%s: Invalid flag", __func__); 3151 ASSERT(0); 3152 error = -EFSCORRUPTED; 3153 goto out_release; 3154 } 3155 } 3156 3157 out_owner_change: 3158 /* Recover the swapext owner change unless inode has been deleted */ 3159 if ((in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) && 3160 (dip->di_mode != 0)) 3161 error = xfs_recover_inode_owner_change(mp, dip, in_f, 3162 buffer_list); 3163 /* re-generate the checksum. */ 3164 xfs_dinode_calc_crc(log->l_mp, dip); 3165 3166 ASSERT(bp->b_mount == mp); 3167 bp->b_iodone = xlog_recover_iodone; 3168 xfs_buf_delwri_queue(bp, buffer_list); 3169 3170 out_release: 3171 xfs_buf_relse(bp); 3172 error: 3173 if (need_free) 3174 kmem_free(in_f); 3175 return error; 3176 } 3177 3178 /* 3179 * Recover QUOTAOFF records. We simply make a note of it in the xlog 3180 * structure, so that we know not to do any dquot item or dquot buffer recovery, 3181 * of that type. 3182 */ 3183 STATIC int 3184 xlog_recover_quotaoff_pass1( 3185 struct xlog *log, 3186 struct xlog_recover_item *item) 3187 { 3188 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr; 3189 ASSERT(qoff_f); 3190 3191 /* 3192 * The logitem format's flag tells us if this was user quotaoff, 3193 * group/project quotaoff or both. 3194 */ 3195 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 3196 log->l_quotaoffs_flag |= XFS_DQ_USER; 3197 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 3198 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 3199 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 3200 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 3201 3202 return 0; 3203 } 3204 3205 /* 3206 * Recover a dquot record 3207 */ 3208 STATIC int 3209 xlog_recover_dquot_pass2( 3210 struct xlog *log, 3211 struct list_head *buffer_list, 3212 struct xlog_recover_item *item, 3213 xfs_lsn_t current_lsn) 3214 { 3215 xfs_mount_t *mp = log->l_mp; 3216 xfs_buf_t *bp; 3217 struct xfs_disk_dquot *ddq, *recddq; 3218 xfs_failaddr_t fa; 3219 int error; 3220 xfs_dq_logformat_t *dq_f; 3221 uint type; 3222 3223 3224 /* 3225 * Filesystems are required to send in quota flags at mount time. 3226 */ 3227 if (mp->m_qflags == 0) 3228 return 0; 3229 3230 recddq = item->ri_buf[1].i_addr; 3231 if (recddq == NULL) { 3232 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__); 3233 return -EFSCORRUPTED; 3234 } 3235 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot)) { 3236 xfs_alert(log->l_mp, "dquot too small (%d) in %s.", 3237 item->ri_buf[1].i_len, __func__); 3238 return -EFSCORRUPTED; 3239 } 3240 3241 /* 3242 * This type of quotas was turned off, so ignore this record. 3243 */ 3244 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 3245 ASSERT(type); 3246 if (log->l_quotaoffs_flag & type) 3247 return 0; 3248 3249 /* 3250 * At this point we know that quota was _not_ turned off. 3251 * Since the mount flags are not indicating to us otherwise, this 3252 * must mean that quota is on, and the dquot needs to be replayed. 3253 * Remember that we may not have fully recovered the superblock yet, 3254 * so we can't do the usual trick of looking at the SB quota bits. 3255 * 3256 * The other possibility, of course, is that the quota subsystem was 3257 * removed since the last mount - ENOSYS. 3258 */ 3259 dq_f = item->ri_buf[0].i_addr; 3260 ASSERT(dq_f); 3261 fa = xfs_dquot_verify(mp, recddq, dq_f->qlf_id, 0); 3262 if (fa) { 3263 xfs_alert(mp, "corrupt dquot ID 0x%x in log at %pS", 3264 dq_f->qlf_id, fa); 3265 return -EFSCORRUPTED; 3266 } 3267 ASSERT(dq_f->qlf_len == 1); 3268 3269 /* 3270 * At this point we are assuming that the dquots have been allocated 3271 * and hence the buffer has valid dquots stamped in it. It should, 3272 * therefore, pass verifier validation. If the dquot is bad, then the 3273 * we'll return an error here, so we don't need to specifically check 3274 * the dquot in the buffer after the verifier has run. 3275 */ 3276 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno, 3277 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp, 3278 &xfs_dquot_buf_ops); 3279 if (error) 3280 return error; 3281 3282 ASSERT(bp); 3283 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset); 3284 3285 /* 3286 * If the dquot has an LSN in it, recover the dquot only if it's less 3287 * than the lsn of the transaction we are replaying. 3288 */ 3289 if (xfs_sb_version_hascrc(&mp->m_sb)) { 3290 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq; 3291 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn); 3292 3293 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 3294 goto out_release; 3295 } 3296 } 3297 3298 memcpy(ddq, recddq, item->ri_buf[1].i_len); 3299 if (xfs_sb_version_hascrc(&mp->m_sb)) { 3300 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk), 3301 XFS_DQUOT_CRC_OFF); 3302 } 3303 3304 ASSERT(dq_f->qlf_size == 2); 3305 ASSERT(bp->b_mount == mp); 3306 bp->b_iodone = xlog_recover_iodone; 3307 xfs_buf_delwri_queue(bp, buffer_list); 3308 3309 out_release: 3310 xfs_buf_relse(bp); 3311 return 0; 3312 } 3313 3314 /* 3315 * This routine is called to create an in-core extent free intent 3316 * item from the efi format structure which was logged on disk. 3317 * It allocates an in-core efi, copies the extents from the format 3318 * structure into it, and adds the efi to the AIL with the given 3319 * LSN. 3320 */ 3321 STATIC int 3322 xlog_recover_efi_pass2( 3323 struct xlog *log, 3324 struct xlog_recover_item *item, 3325 xfs_lsn_t lsn) 3326 { 3327 int error; 3328 struct xfs_mount *mp = log->l_mp; 3329 struct xfs_efi_log_item *efip; 3330 struct xfs_efi_log_format *efi_formatp; 3331 3332 efi_formatp = item->ri_buf[0].i_addr; 3333 3334 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 3335 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); 3336 if (error) { 3337 xfs_efi_item_free(efip); 3338 return error; 3339 } 3340 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 3341 3342 spin_lock(&log->l_ailp->ail_lock); 3343 /* 3344 * The EFI has two references. One for the EFD and one for EFI to ensure 3345 * it makes it into the AIL. Insert the EFI into the AIL directly and 3346 * drop the EFI reference. Note that xfs_trans_ail_update() drops the 3347 * AIL lock. 3348 */ 3349 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn); 3350 xfs_efi_release(efip); 3351 return 0; 3352 } 3353 3354 3355 /* 3356 * This routine is called when an EFD format structure is found in a committed 3357 * transaction in the log. Its purpose is to cancel the corresponding EFI if it 3358 * was still in the log. To do this it searches the AIL for the EFI with an id 3359 * equal to that in the EFD format structure. If we find it we drop the EFD 3360 * reference, which removes the EFI from the AIL and frees it. 3361 */ 3362 STATIC int 3363 xlog_recover_efd_pass2( 3364 struct xlog *log, 3365 struct xlog_recover_item *item) 3366 { 3367 xfs_efd_log_format_t *efd_formatp; 3368 xfs_efi_log_item_t *efip = NULL; 3369 struct xfs_log_item *lip; 3370 uint64_t efi_id; 3371 struct xfs_ail_cursor cur; 3372 struct xfs_ail *ailp = log->l_ailp; 3373 3374 efd_formatp = item->ri_buf[0].i_addr; 3375 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 3376 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 3377 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 3378 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 3379 efi_id = efd_formatp->efd_efi_id; 3380 3381 /* 3382 * Search for the EFI with the id in the EFD format structure in the 3383 * AIL. 3384 */ 3385 spin_lock(&ailp->ail_lock); 3386 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3387 while (lip != NULL) { 3388 if (lip->li_type == XFS_LI_EFI) { 3389 efip = (xfs_efi_log_item_t *)lip; 3390 if (efip->efi_format.efi_id == efi_id) { 3391 /* 3392 * Drop the EFD reference to the EFI. This 3393 * removes the EFI from the AIL and frees it. 3394 */ 3395 spin_unlock(&ailp->ail_lock); 3396 xfs_efi_release(efip); 3397 spin_lock(&ailp->ail_lock); 3398 break; 3399 } 3400 } 3401 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3402 } 3403 3404 xfs_trans_ail_cursor_done(&cur); 3405 spin_unlock(&ailp->ail_lock); 3406 3407 return 0; 3408 } 3409 3410 /* 3411 * This routine is called to create an in-core extent rmap update 3412 * item from the rui format structure which was logged on disk. 3413 * It allocates an in-core rui, copies the extents from the format 3414 * structure into it, and adds the rui to the AIL with the given 3415 * LSN. 3416 */ 3417 STATIC int 3418 xlog_recover_rui_pass2( 3419 struct xlog *log, 3420 struct xlog_recover_item *item, 3421 xfs_lsn_t lsn) 3422 { 3423 int error; 3424 struct xfs_mount *mp = log->l_mp; 3425 struct xfs_rui_log_item *ruip; 3426 struct xfs_rui_log_format *rui_formatp; 3427 3428 rui_formatp = item->ri_buf[0].i_addr; 3429 3430 ruip = xfs_rui_init(mp, rui_formatp->rui_nextents); 3431 error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format); 3432 if (error) { 3433 xfs_rui_item_free(ruip); 3434 return error; 3435 } 3436 atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents); 3437 3438 spin_lock(&log->l_ailp->ail_lock); 3439 /* 3440 * The RUI has two references. One for the RUD and one for RUI to ensure 3441 * it makes it into the AIL. Insert the RUI into the AIL directly and 3442 * drop the RUI reference. Note that xfs_trans_ail_update() drops the 3443 * AIL lock. 3444 */ 3445 xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn); 3446 xfs_rui_release(ruip); 3447 return 0; 3448 } 3449 3450 3451 /* 3452 * This routine is called when an RUD format structure is found in a committed 3453 * transaction in the log. Its purpose is to cancel the corresponding RUI if it 3454 * was still in the log. To do this it searches the AIL for the RUI with an id 3455 * equal to that in the RUD format structure. If we find it we drop the RUD 3456 * reference, which removes the RUI from the AIL and frees it. 3457 */ 3458 STATIC int 3459 xlog_recover_rud_pass2( 3460 struct xlog *log, 3461 struct xlog_recover_item *item) 3462 { 3463 struct xfs_rud_log_format *rud_formatp; 3464 struct xfs_rui_log_item *ruip = NULL; 3465 struct xfs_log_item *lip; 3466 uint64_t rui_id; 3467 struct xfs_ail_cursor cur; 3468 struct xfs_ail *ailp = log->l_ailp; 3469 3470 rud_formatp = item->ri_buf[0].i_addr; 3471 ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format)); 3472 rui_id = rud_formatp->rud_rui_id; 3473 3474 /* 3475 * Search for the RUI with the id in the RUD format structure in the 3476 * AIL. 3477 */ 3478 spin_lock(&ailp->ail_lock); 3479 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3480 while (lip != NULL) { 3481 if (lip->li_type == XFS_LI_RUI) { 3482 ruip = (struct xfs_rui_log_item *)lip; 3483 if (ruip->rui_format.rui_id == rui_id) { 3484 /* 3485 * Drop the RUD reference to the RUI. This 3486 * removes the RUI from the AIL and frees it. 3487 */ 3488 spin_unlock(&ailp->ail_lock); 3489 xfs_rui_release(ruip); 3490 spin_lock(&ailp->ail_lock); 3491 break; 3492 } 3493 } 3494 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3495 } 3496 3497 xfs_trans_ail_cursor_done(&cur); 3498 spin_unlock(&ailp->ail_lock); 3499 3500 return 0; 3501 } 3502 3503 /* 3504 * Copy an CUI format buffer from the given buf, and into the destination 3505 * CUI format structure. The CUI/CUD items were designed not to need any 3506 * special alignment handling. 3507 */ 3508 static int 3509 xfs_cui_copy_format( 3510 struct xfs_log_iovec *buf, 3511 struct xfs_cui_log_format *dst_cui_fmt) 3512 { 3513 struct xfs_cui_log_format *src_cui_fmt; 3514 uint len; 3515 3516 src_cui_fmt = buf->i_addr; 3517 len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents); 3518 3519 if (buf->i_len == len) { 3520 memcpy(dst_cui_fmt, src_cui_fmt, len); 3521 return 0; 3522 } 3523 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); 3524 return -EFSCORRUPTED; 3525 } 3526 3527 /* 3528 * This routine is called to create an in-core extent refcount update 3529 * item from the cui format structure which was logged on disk. 3530 * It allocates an in-core cui, copies the extents from the format 3531 * structure into it, and adds the cui to the AIL with the given 3532 * LSN. 3533 */ 3534 STATIC int 3535 xlog_recover_cui_pass2( 3536 struct xlog *log, 3537 struct xlog_recover_item *item, 3538 xfs_lsn_t lsn) 3539 { 3540 int error; 3541 struct xfs_mount *mp = log->l_mp; 3542 struct xfs_cui_log_item *cuip; 3543 struct xfs_cui_log_format *cui_formatp; 3544 3545 cui_formatp = item->ri_buf[0].i_addr; 3546 3547 cuip = xfs_cui_init(mp, cui_formatp->cui_nextents); 3548 error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format); 3549 if (error) { 3550 xfs_cui_item_free(cuip); 3551 return error; 3552 } 3553 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents); 3554 3555 spin_lock(&log->l_ailp->ail_lock); 3556 /* 3557 * The CUI has two references. One for the CUD and one for CUI to ensure 3558 * it makes it into the AIL. Insert the CUI into the AIL directly and 3559 * drop the CUI reference. Note that xfs_trans_ail_update() drops the 3560 * AIL lock. 3561 */ 3562 xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn); 3563 xfs_cui_release(cuip); 3564 return 0; 3565 } 3566 3567 3568 /* 3569 * This routine is called when an CUD format structure is found in a committed 3570 * transaction in the log. Its purpose is to cancel the corresponding CUI if it 3571 * was still in the log. To do this it searches the AIL for the CUI with an id 3572 * equal to that in the CUD format structure. If we find it we drop the CUD 3573 * reference, which removes the CUI from the AIL and frees it. 3574 */ 3575 STATIC int 3576 xlog_recover_cud_pass2( 3577 struct xlog *log, 3578 struct xlog_recover_item *item) 3579 { 3580 struct xfs_cud_log_format *cud_formatp; 3581 struct xfs_cui_log_item *cuip = NULL; 3582 struct xfs_log_item *lip; 3583 uint64_t cui_id; 3584 struct xfs_ail_cursor cur; 3585 struct xfs_ail *ailp = log->l_ailp; 3586 3587 cud_formatp = item->ri_buf[0].i_addr; 3588 if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) { 3589 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp); 3590 return -EFSCORRUPTED; 3591 } 3592 cui_id = cud_formatp->cud_cui_id; 3593 3594 /* 3595 * Search for the CUI with the id in the CUD format structure in the 3596 * AIL. 3597 */ 3598 spin_lock(&ailp->ail_lock); 3599 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3600 while (lip != NULL) { 3601 if (lip->li_type == XFS_LI_CUI) { 3602 cuip = (struct xfs_cui_log_item *)lip; 3603 if (cuip->cui_format.cui_id == cui_id) { 3604 /* 3605 * Drop the CUD reference to the CUI. This 3606 * removes the CUI from the AIL and frees it. 3607 */ 3608 spin_unlock(&ailp->ail_lock); 3609 xfs_cui_release(cuip); 3610 spin_lock(&ailp->ail_lock); 3611 break; 3612 } 3613 } 3614 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3615 } 3616 3617 xfs_trans_ail_cursor_done(&cur); 3618 spin_unlock(&ailp->ail_lock); 3619 3620 return 0; 3621 } 3622 3623 /* 3624 * Copy an BUI format buffer from the given buf, and into the destination 3625 * BUI format structure. The BUI/BUD items were designed not to need any 3626 * special alignment handling. 3627 */ 3628 static int 3629 xfs_bui_copy_format( 3630 struct xfs_log_iovec *buf, 3631 struct xfs_bui_log_format *dst_bui_fmt) 3632 { 3633 struct xfs_bui_log_format *src_bui_fmt; 3634 uint len; 3635 3636 src_bui_fmt = buf->i_addr; 3637 len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents); 3638 3639 if (buf->i_len == len) { 3640 memcpy(dst_bui_fmt, src_bui_fmt, len); 3641 return 0; 3642 } 3643 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); 3644 return -EFSCORRUPTED; 3645 } 3646 3647 /* 3648 * This routine is called to create an in-core extent bmap update 3649 * item from the bui format structure which was logged on disk. 3650 * It allocates an in-core bui, copies the extents from the format 3651 * structure into it, and adds the bui to the AIL with the given 3652 * LSN. 3653 */ 3654 STATIC int 3655 xlog_recover_bui_pass2( 3656 struct xlog *log, 3657 struct xlog_recover_item *item, 3658 xfs_lsn_t lsn) 3659 { 3660 int error; 3661 struct xfs_mount *mp = log->l_mp; 3662 struct xfs_bui_log_item *buip; 3663 struct xfs_bui_log_format *bui_formatp; 3664 3665 bui_formatp = item->ri_buf[0].i_addr; 3666 3667 if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS) { 3668 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp); 3669 return -EFSCORRUPTED; 3670 } 3671 buip = xfs_bui_init(mp); 3672 error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format); 3673 if (error) { 3674 xfs_bui_item_free(buip); 3675 return error; 3676 } 3677 atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents); 3678 3679 spin_lock(&log->l_ailp->ail_lock); 3680 /* 3681 * The RUI has two references. One for the RUD and one for RUI to ensure 3682 * it makes it into the AIL. Insert the RUI into the AIL directly and 3683 * drop the RUI reference. Note that xfs_trans_ail_update() drops the 3684 * AIL lock. 3685 */ 3686 xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn); 3687 xfs_bui_release(buip); 3688 return 0; 3689 } 3690 3691 3692 /* 3693 * This routine is called when an BUD format structure is found in a committed 3694 * transaction in the log. Its purpose is to cancel the corresponding BUI if it 3695 * was still in the log. To do this it searches the AIL for the BUI with an id 3696 * equal to that in the BUD format structure. If we find it we drop the BUD 3697 * reference, which removes the BUI from the AIL and frees it. 3698 */ 3699 STATIC int 3700 xlog_recover_bud_pass2( 3701 struct xlog *log, 3702 struct xlog_recover_item *item) 3703 { 3704 struct xfs_bud_log_format *bud_formatp; 3705 struct xfs_bui_log_item *buip = NULL; 3706 struct xfs_log_item *lip; 3707 uint64_t bui_id; 3708 struct xfs_ail_cursor cur; 3709 struct xfs_ail *ailp = log->l_ailp; 3710 3711 bud_formatp = item->ri_buf[0].i_addr; 3712 if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format)) { 3713 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp); 3714 return -EFSCORRUPTED; 3715 } 3716 bui_id = bud_formatp->bud_bui_id; 3717 3718 /* 3719 * Search for the BUI with the id in the BUD format structure in the 3720 * AIL. 3721 */ 3722 spin_lock(&ailp->ail_lock); 3723 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3724 while (lip != NULL) { 3725 if (lip->li_type == XFS_LI_BUI) { 3726 buip = (struct xfs_bui_log_item *)lip; 3727 if (buip->bui_format.bui_id == bui_id) { 3728 /* 3729 * Drop the BUD reference to the BUI. This 3730 * removes the BUI from the AIL and frees it. 3731 */ 3732 spin_unlock(&ailp->ail_lock); 3733 xfs_bui_release(buip); 3734 spin_lock(&ailp->ail_lock); 3735 break; 3736 } 3737 } 3738 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3739 } 3740 3741 xfs_trans_ail_cursor_done(&cur); 3742 spin_unlock(&ailp->ail_lock); 3743 3744 return 0; 3745 } 3746 3747 /* 3748 * This routine is called when an inode create format structure is found in a 3749 * committed transaction in the log. It's purpose is to initialise the inodes 3750 * being allocated on disk. This requires us to get inode cluster buffers that 3751 * match the range to be initialised, stamped with inode templates and written 3752 * by delayed write so that subsequent modifications will hit the cached buffer 3753 * and only need writing out at the end of recovery. 3754 */ 3755 STATIC int 3756 xlog_recover_do_icreate_pass2( 3757 struct xlog *log, 3758 struct list_head *buffer_list, 3759 xlog_recover_item_t *item) 3760 { 3761 struct xfs_mount *mp = log->l_mp; 3762 struct xfs_icreate_log *icl; 3763 struct xfs_ino_geometry *igeo = M_IGEO(mp); 3764 xfs_agnumber_t agno; 3765 xfs_agblock_t agbno; 3766 unsigned int count; 3767 unsigned int isize; 3768 xfs_agblock_t length; 3769 int bb_per_cluster; 3770 int cancel_count; 3771 int nbufs; 3772 int i; 3773 3774 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr; 3775 if (icl->icl_type != XFS_LI_ICREATE) { 3776 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type"); 3777 return -EINVAL; 3778 } 3779 3780 if (icl->icl_size != 1) { 3781 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size"); 3782 return -EINVAL; 3783 } 3784 3785 agno = be32_to_cpu(icl->icl_ag); 3786 if (agno >= mp->m_sb.sb_agcount) { 3787 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno"); 3788 return -EINVAL; 3789 } 3790 agbno = be32_to_cpu(icl->icl_agbno); 3791 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) { 3792 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno"); 3793 return -EINVAL; 3794 } 3795 isize = be32_to_cpu(icl->icl_isize); 3796 if (isize != mp->m_sb.sb_inodesize) { 3797 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize"); 3798 return -EINVAL; 3799 } 3800 count = be32_to_cpu(icl->icl_count); 3801 if (!count) { 3802 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count"); 3803 return -EINVAL; 3804 } 3805 length = be32_to_cpu(icl->icl_length); 3806 if (!length || length >= mp->m_sb.sb_agblocks) { 3807 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length"); 3808 return -EINVAL; 3809 } 3810 3811 /* 3812 * The inode chunk is either full or sparse and we only support 3813 * m_ino_geo.ialloc_min_blks sized sparse allocations at this time. 3814 */ 3815 if (length != igeo->ialloc_blks && 3816 length != igeo->ialloc_min_blks) { 3817 xfs_warn(log->l_mp, 3818 "%s: unsupported chunk length", __FUNCTION__); 3819 return -EINVAL; 3820 } 3821 3822 /* verify inode count is consistent with extent length */ 3823 if ((count >> mp->m_sb.sb_inopblog) != length) { 3824 xfs_warn(log->l_mp, 3825 "%s: inconsistent inode count and chunk length", 3826 __FUNCTION__); 3827 return -EINVAL; 3828 } 3829 3830 /* 3831 * The icreate transaction can cover multiple cluster buffers and these 3832 * buffers could have been freed and reused. Check the individual 3833 * buffers for cancellation so we don't overwrite anything written after 3834 * a cancellation. 3835 */ 3836 bb_per_cluster = XFS_FSB_TO_BB(mp, igeo->blocks_per_cluster); 3837 nbufs = length / igeo->blocks_per_cluster; 3838 for (i = 0, cancel_count = 0; i < nbufs; i++) { 3839 xfs_daddr_t daddr; 3840 3841 daddr = XFS_AGB_TO_DADDR(mp, agno, 3842 agbno + i * igeo->blocks_per_cluster); 3843 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0)) 3844 cancel_count++; 3845 } 3846 3847 /* 3848 * We currently only use icreate for a single allocation at a time. This 3849 * means we should expect either all or none of the buffers to be 3850 * cancelled. Be conservative and skip replay if at least one buffer is 3851 * cancelled, but warn the user that something is awry if the buffers 3852 * are not consistent. 3853 * 3854 * XXX: This must be refined to only skip cancelled clusters once we use 3855 * icreate for multiple chunk allocations. 3856 */ 3857 ASSERT(!cancel_count || cancel_count == nbufs); 3858 if (cancel_count) { 3859 if (cancel_count != nbufs) 3860 xfs_warn(mp, 3861 "WARNING: partial inode chunk cancellation, skipped icreate."); 3862 trace_xfs_log_recover_icreate_cancel(log, icl); 3863 return 0; 3864 } 3865 3866 trace_xfs_log_recover_icreate_recover(log, icl); 3867 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno, 3868 length, be32_to_cpu(icl->icl_gen)); 3869 } 3870 3871 STATIC void 3872 xlog_recover_buffer_ra_pass2( 3873 struct xlog *log, 3874 struct xlog_recover_item *item) 3875 { 3876 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr; 3877 struct xfs_mount *mp = log->l_mp; 3878 3879 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno, 3880 buf_f->blf_len, buf_f->blf_flags)) { 3881 return; 3882 } 3883 3884 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno, 3885 buf_f->blf_len, NULL); 3886 } 3887 3888 STATIC void 3889 xlog_recover_inode_ra_pass2( 3890 struct xlog *log, 3891 struct xlog_recover_item *item) 3892 { 3893 struct xfs_inode_log_format ilf_buf; 3894 struct xfs_inode_log_format *ilfp; 3895 struct xfs_mount *mp = log->l_mp; 3896 int error; 3897 3898 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { 3899 ilfp = item->ri_buf[0].i_addr; 3900 } else { 3901 ilfp = &ilf_buf; 3902 memset(ilfp, 0, sizeof(*ilfp)); 3903 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp); 3904 if (error) 3905 return; 3906 } 3907 3908 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0)) 3909 return; 3910 3911 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno, 3912 ilfp->ilf_len, &xfs_inode_buf_ra_ops); 3913 } 3914 3915 STATIC void 3916 xlog_recover_dquot_ra_pass2( 3917 struct xlog *log, 3918 struct xlog_recover_item *item) 3919 { 3920 struct xfs_mount *mp = log->l_mp; 3921 struct xfs_disk_dquot *recddq; 3922 struct xfs_dq_logformat *dq_f; 3923 uint type; 3924 int len; 3925 3926 3927 if (mp->m_qflags == 0) 3928 return; 3929 3930 recddq = item->ri_buf[1].i_addr; 3931 if (recddq == NULL) 3932 return; 3933 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot)) 3934 return; 3935 3936 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 3937 ASSERT(type); 3938 if (log->l_quotaoffs_flag & type) 3939 return; 3940 3941 dq_f = item->ri_buf[0].i_addr; 3942 ASSERT(dq_f); 3943 ASSERT(dq_f->qlf_len == 1); 3944 3945 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len); 3946 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0)) 3947 return; 3948 3949 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len, 3950 &xfs_dquot_buf_ra_ops); 3951 } 3952 3953 STATIC void 3954 xlog_recover_ra_pass2( 3955 struct xlog *log, 3956 struct xlog_recover_item *item) 3957 { 3958 switch (ITEM_TYPE(item)) { 3959 case XFS_LI_BUF: 3960 xlog_recover_buffer_ra_pass2(log, item); 3961 break; 3962 case XFS_LI_INODE: 3963 xlog_recover_inode_ra_pass2(log, item); 3964 break; 3965 case XFS_LI_DQUOT: 3966 xlog_recover_dquot_ra_pass2(log, item); 3967 break; 3968 case XFS_LI_EFI: 3969 case XFS_LI_EFD: 3970 case XFS_LI_QUOTAOFF: 3971 case XFS_LI_RUI: 3972 case XFS_LI_RUD: 3973 case XFS_LI_CUI: 3974 case XFS_LI_CUD: 3975 case XFS_LI_BUI: 3976 case XFS_LI_BUD: 3977 default: 3978 break; 3979 } 3980 } 3981 3982 STATIC int 3983 xlog_recover_commit_pass1( 3984 struct xlog *log, 3985 struct xlog_recover *trans, 3986 struct xlog_recover_item *item) 3987 { 3988 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1); 3989 3990 switch (ITEM_TYPE(item)) { 3991 case XFS_LI_BUF: 3992 return xlog_recover_buffer_pass1(log, item); 3993 case XFS_LI_QUOTAOFF: 3994 return xlog_recover_quotaoff_pass1(log, item); 3995 case XFS_LI_INODE: 3996 case XFS_LI_EFI: 3997 case XFS_LI_EFD: 3998 case XFS_LI_DQUOT: 3999 case XFS_LI_ICREATE: 4000 case XFS_LI_RUI: 4001 case XFS_LI_RUD: 4002 case XFS_LI_CUI: 4003 case XFS_LI_CUD: 4004 case XFS_LI_BUI: 4005 case XFS_LI_BUD: 4006 /* nothing to do in pass 1 */ 4007 return 0; 4008 default: 4009 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 4010 __func__, ITEM_TYPE(item)); 4011 ASSERT(0); 4012 return -EFSCORRUPTED; 4013 } 4014 } 4015 4016 STATIC int 4017 xlog_recover_commit_pass2( 4018 struct xlog *log, 4019 struct xlog_recover *trans, 4020 struct list_head *buffer_list, 4021 struct xlog_recover_item *item) 4022 { 4023 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2); 4024 4025 switch (ITEM_TYPE(item)) { 4026 case XFS_LI_BUF: 4027 return xlog_recover_buffer_pass2(log, buffer_list, item, 4028 trans->r_lsn); 4029 case XFS_LI_INODE: 4030 return xlog_recover_inode_pass2(log, buffer_list, item, 4031 trans->r_lsn); 4032 case XFS_LI_EFI: 4033 return xlog_recover_efi_pass2(log, item, trans->r_lsn); 4034 case XFS_LI_EFD: 4035 return xlog_recover_efd_pass2(log, item); 4036 case XFS_LI_RUI: 4037 return xlog_recover_rui_pass2(log, item, trans->r_lsn); 4038 case XFS_LI_RUD: 4039 return xlog_recover_rud_pass2(log, item); 4040 case XFS_LI_CUI: 4041 return xlog_recover_cui_pass2(log, item, trans->r_lsn); 4042 case XFS_LI_CUD: 4043 return xlog_recover_cud_pass2(log, item); 4044 case XFS_LI_BUI: 4045 return xlog_recover_bui_pass2(log, item, trans->r_lsn); 4046 case XFS_LI_BUD: 4047 return xlog_recover_bud_pass2(log, item); 4048 case XFS_LI_DQUOT: 4049 return xlog_recover_dquot_pass2(log, buffer_list, item, 4050 trans->r_lsn); 4051 case XFS_LI_ICREATE: 4052 return xlog_recover_do_icreate_pass2(log, buffer_list, item); 4053 case XFS_LI_QUOTAOFF: 4054 /* nothing to do in pass2 */ 4055 return 0; 4056 default: 4057 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 4058 __func__, ITEM_TYPE(item)); 4059 ASSERT(0); 4060 return -EFSCORRUPTED; 4061 } 4062 } 4063 4064 STATIC int 4065 xlog_recover_items_pass2( 4066 struct xlog *log, 4067 struct xlog_recover *trans, 4068 struct list_head *buffer_list, 4069 struct list_head *item_list) 4070 { 4071 struct xlog_recover_item *item; 4072 int error = 0; 4073 4074 list_for_each_entry(item, item_list, ri_list) { 4075 error = xlog_recover_commit_pass2(log, trans, 4076 buffer_list, item); 4077 if (error) 4078 return error; 4079 } 4080 4081 return error; 4082 } 4083 4084 /* 4085 * Perform the transaction. 4086 * 4087 * If the transaction modifies a buffer or inode, do it now. Otherwise, 4088 * EFIs and EFDs get queued up by adding entries into the AIL for them. 4089 */ 4090 STATIC int 4091 xlog_recover_commit_trans( 4092 struct xlog *log, 4093 struct xlog_recover *trans, 4094 int pass, 4095 struct list_head *buffer_list) 4096 { 4097 int error = 0; 4098 int items_queued = 0; 4099 struct xlog_recover_item *item; 4100 struct xlog_recover_item *next; 4101 LIST_HEAD (ra_list); 4102 LIST_HEAD (done_list); 4103 4104 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100 4105 4106 hlist_del_init(&trans->r_list); 4107 4108 error = xlog_recover_reorder_trans(log, trans, pass); 4109 if (error) 4110 return error; 4111 4112 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) { 4113 switch (pass) { 4114 case XLOG_RECOVER_PASS1: 4115 error = xlog_recover_commit_pass1(log, trans, item); 4116 break; 4117 case XLOG_RECOVER_PASS2: 4118 xlog_recover_ra_pass2(log, item); 4119 list_move_tail(&item->ri_list, &ra_list); 4120 items_queued++; 4121 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) { 4122 error = xlog_recover_items_pass2(log, trans, 4123 buffer_list, &ra_list); 4124 list_splice_tail_init(&ra_list, &done_list); 4125 items_queued = 0; 4126 } 4127 4128 break; 4129 default: 4130 ASSERT(0); 4131 } 4132 4133 if (error) 4134 goto out; 4135 } 4136 4137 out: 4138 if (!list_empty(&ra_list)) { 4139 if (!error) 4140 error = xlog_recover_items_pass2(log, trans, 4141 buffer_list, &ra_list); 4142 list_splice_tail_init(&ra_list, &done_list); 4143 } 4144 4145 if (!list_empty(&done_list)) 4146 list_splice_init(&done_list, &trans->r_itemq); 4147 4148 return error; 4149 } 4150 4151 STATIC void 4152 xlog_recover_add_item( 4153 struct list_head *head) 4154 { 4155 xlog_recover_item_t *item; 4156 4157 item = kmem_zalloc(sizeof(xlog_recover_item_t), 0); 4158 INIT_LIST_HEAD(&item->ri_list); 4159 list_add_tail(&item->ri_list, head); 4160 } 4161 4162 STATIC int 4163 xlog_recover_add_to_cont_trans( 4164 struct xlog *log, 4165 struct xlog_recover *trans, 4166 char *dp, 4167 int len) 4168 { 4169 xlog_recover_item_t *item; 4170 char *ptr, *old_ptr; 4171 int old_len; 4172 4173 /* 4174 * If the transaction is empty, the header was split across this and the 4175 * previous record. Copy the rest of the header. 4176 */ 4177 if (list_empty(&trans->r_itemq)) { 4178 ASSERT(len <= sizeof(struct xfs_trans_header)); 4179 if (len > sizeof(struct xfs_trans_header)) { 4180 xfs_warn(log->l_mp, "%s: bad header length", __func__); 4181 return -EFSCORRUPTED; 4182 } 4183 4184 xlog_recover_add_item(&trans->r_itemq); 4185 ptr = (char *)&trans->r_theader + 4186 sizeof(struct xfs_trans_header) - len; 4187 memcpy(ptr, dp, len); 4188 return 0; 4189 } 4190 4191 /* take the tail entry */ 4192 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 4193 4194 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 4195 old_len = item->ri_buf[item->ri_cnt-1].i_len; 4196 4197 ptr = kmem_realloc(old_ptr, len + old_len, 0); 4198 memcpy(&ptr[old_len], dp, len); 4199 item->ri_buf[item->ri_cnt-1].i_len += len; 4200 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 4201 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 4202 return 0; 4203 } 4204 4205 /* 4206 * The next region to add is the start of a new region. It could be 4207 * a whole region or it could be the first part of a new region. Because 4208 * of this, the assumption here is that the type and size fields of all 4209 * format structures fit into the first 32 bits of the structure. 4210 * 4211 * This works because all regions must be 32 bit aligned. Therefore, we 4212 * either have both fields or we have neither field. In the case we have 4213 * neither field, the data part of the region is zero length. We only have 4214 * a log_op_header and can throw away the header since a new one will appear 4215 * later. If we have at least 4 bytes, then we can determine how many regions 4216 * will appear in the current log item. 4217 */ 4218 STATIC int 4219 xlog_recover_add_to_trans( 4220 struct xlog *log, 4221 struct xlog_recover *trans, 4222 char *dp, 4223 int len) 4224 { 4225 struct xfs_inode_log_format *in_f; /* any will do */ 4226 xlog_recover_item_t *item; 4227 char *ptr; 4228 4229 if (!len) 4230 return 0; 4231 if (list_empty(&trans->r_itemq)) { 4232 /* we need to catch log corruptions here */ 4233 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 4234 xfs_warn(log->l_mp, "%s: bad header magic number", 4235 __func__); 4236 ASSERT(0); 4237 return -EFSCORRUPTED; 4238 } 4239 4240 if (len > sizeof(struct xfs_trans_header)) { 4241 xfs_warn(log->l_mp, "%s: bad header length", __func__); 4242 ASSERT(0); 4243 return -EFSCORRUPTED; 4244 } 4245 4246 /* 4247 * The transaction header can be arbitrarily split across op 4248 * records. If we don't have the whole thing here, copy what we 4249 * do have and handle the rest in the next record. 4250 */ 4251 if (len == sizeof(struct xfs_trans_header)) 4252 xlog_recover_add_item(&trans->r_itemq); 4253 memcpy(&trans->r_theader, dp, len); 4254 return 0; 4255 } 4256 4257 ptr = kmem_alloc(len, 0); 4258 memcpy(ptr, dp, len); 4259 in_f = (struct xfs_inode_log_format *)ptr; 4260 4261 /* take the tail entry */ 4262 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 4263 if (item->ri_total != 0 && 4264 item->ri_total == item->ri_cnt) { 4265 /* tail item is in use, get a new one */ 4266 xlog_recover_add_item(&trans->r_itemq); 4267 item = list_entry(trans->r_itemq.prev, 4268 xlog_recover_item_t, ri_list); 4269 } 4270 4271 if (item->ri_total == 0) { /* first region to be added */ 4272 if (in_f->ilf_size == 0 || 4273 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 4274 xfs_warn(log->l_mp, 4275 "bad number of regions (%d) in inode log format", 4276 in_f->ilf_size); 4277 ASSERT(0); 4278 kmem_free(ptr); 4279 return -EFSCORRUPTED; 4280 } 4281 4282 item->ri_total = in_f->ilf_size; 4283 item->ri_buf = 4284 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 4285 0); 4286 } 4287 4288 if (item->ri_total <= item->ri_cnt) { 4289 xfs_warn(log->l_mp, 4290 "log item region count (%d) overflowed size (%d)", 4291 item->ri_cnt, item->ri_total); 4292 ASSERT(0); 4293 kmem_free(ptr); 4294 return -EFSCORRUPTED; 4295 } 4296 4297 /* Description region is ri_buf[0] */ 4298 item->ri_buf[item->ri_cnt].i_addr = ptr; 4299 item->ri_buf[item->ri_cnt].i_len = len; 4300 item->ri_cnt++; 4301 trace_xfs_log_recover_item_add(log, trans, item, 0); 4302 return 0; 4303 } 4304 4305 /* 4306 * Free up any resources allocated by the transaction 4307 * 4308 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 4309 */ 4310 STATIC void 4311 xlog_recover_free_trans( 4312 struct xlog_recover *trans) 4313 { 4314 xlog_recover_item_t *item, *n; 4315 int i; 4316 4317 hlist_del_init(&trans->r_list); 4318 4319 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 4320 /* Free the regions in the item. */ 4321 list_del(&item->ri_list); 4322 for (i = 0; i < item->ri_cnt; i++) 4323 kmem_free(item->ri_buf[i].i_addr); 4324 /* Free the item itself */ 4325 kmem_free(item->ri_buf); 4326 kmem_free(item); 4327 } 4328 /* Free the transaction recover structure */ 4329 kmem_free(trans); 4330 } 4331 4332 /* 4333 * On error or completion, trans is freed. 4334 */ 4335 STATIC int 4336 xlog_recovery_process_trans( 4337 struct xlog *log, 4338 struct xlog_recover *trans, 4339 char *dp, 4340 unsigned int len, 4341 unsigned int flags, 4342 int pass, 4343 struct list_head *buffer_list) 4344 { 4345 int error = 0; 4346 bool freeit = false; 4347 4348 /* mask off ophdr transaction container flags */ 4349 flags &= ~XLOG_END_TRANS; 4350 if (flags & XLOG_WAS_CONT_TRANS) 4351 flags &= ~XLOG_CONTINUE_TRANS; 4352 4353 /* 4354 * Callees must not free the trans structure. We'll decide if we need to 4355 * free it or not based on the operation being done and it's result. 4356 */ 4357 switch (flags) { 4358 /* expected flag values */ 4359 case 0: 4360 case XLOG_CONTINUE_TRANS: 4361 error = xlog_recover_add_to_trans(log, trans, dp, len); 4362 break; 4363 case XLOG_WAS_CONT_TRANS: 4364 error = xlog_recover_add_to_cont_trans(log, trans, dp, len); 4365 break; 4366 case XLOG_COMMIT_TRANS: 4367 error = xlog_recover_commit_trans(log, trans, pass, 4368 buffer_list); 4369 /* success or fail, we are now done with this transaction. */ 4370 freeit = true; 4371 break; 4372 4373 /* unexpected flag values */ 4374 case XLOG_UNMOUNT_TRANS: 4375 /* just skip trans */ 4376 xfs_warn(log->l_mp, "%s: Unmount LR", __func__); 4377 freeit = true; 4378 break; 4379 case XLOG_START_TRANS: 4380 default: 4381 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags); 4382 ASSERT(0); 4383 error = -EFSCORRUPTED; 4384 break; 4385 } 4386 if (error || freeit) 4387 xlog_recover_free_trans(trans); 4388 return error; 4389 } 4390 4391 /* 4392 * Lookup the transaction recovery structure associated with the ID in the 4393 * current ophdr. If the transaction doesn't exist and the start flag is set in 4394 * the ophdr, then allocate a new transaction for future ID matches to find. 4395 * Either way, return what we found during the lookup - an existing transaction 4396 * or nothing. 4397 */ 4398 STATIC struct xlog_recover * 4399 xlog_recover_ophdr_to_trans( 4400 struct hlist_head rhash[], 4401 struct xlog_rec_header *rhead, 4402 struct xlog_op_header *ohead) 4403 { 4404 struct xlog_recover *trans; 4405 xlog_tid_t tid; 4406 struct hlist_head *rhp; 4407 4408 tid = be32_to_cpu(ohead->oh_tid); 4409 rhp = &rhash[XLOG_RHASH(tid)]; 4410 hlist_for_each_entry(trans, rhp, r_list) { 4411 if (trans->r_log_tid == tid) 4412 return trans; 4413 } 4414 4415 /* 4416 * skip over non-start transaction headers - we could be 4417 * processing slack space before the next transaction starts 4418 */ 4419 if (!(ohead->oh_flags & XLOG_START_TRANS)) 4420 return NULL; 4421 4422 ASSERT(be32_to_cpu(ohead->oh_len) == 0); 4423 4424 /* 4425 * This is a new transaction so allocate a new recovery container to 4426 * hold the recovery ops that will follow. 4427 */ 4428 trans = kmem_zalloc(sizeof(struct xlog_recover), 0); 4429 trans->r_log_tid = tid; 4430 trans->r_lsn = be64_to_cpu(rhead->h_lsn); 4431 INIT_LIST_HEAD(&trans->r_itemq); 4432 INIT_HLIST_NODE(&trans->r_list); 4433 hlist_add_head(&trans->r_list, rhp); 4434 4435 /* 4436 * Nothing more to do for this ophdr. Items to be added to this new 4437 * transaction will be in subsequent ophdr containers. 4438 */ 4439 return NULL; 4440 } 4441 4442 STATIC int 4443 xlog_recover_process_ophdr( 4444 struct xlog *log, 4445 struct hlist_head rhash[], 4446 struct xlog_rec_header *rhead, 4447 struct xlog_op_header *ohead, 4448 char *dp, 4449 char *end, 4450 int pass, 4451 struct list_head *buffer_list) 4452 { 4453 struct xlog_recover *trans; 4454 unsigned int len; 4455 int error; 4456 4457 /* Do we understand who wrote this op? */ 4458 if (ohead->oh_clientid != XFS_TRANSACTION && 4459 ohead->oh_clientid != XFS_LOG) { 4460 xfs_warn(log->l_mp, "%s: bad clientid 0x%x", 4461 __func__, ohead->oh_clientid); 4462 ASSERT(0); 4463 return -EFSCORRUPTED; 4464 } 4465 4466 /* 4467 * Check the ophdr contains all the data it is supposed to contain. 4468 */ 4469 len = be32_to_cpu(ohead->oh_len); 4470 if (dp + len > end) { 4471 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len); 4472 WARN_ON(1); 4473 return -EFSCORRUPTED; 4474 } 4475 4476 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead); 4477 if (!trans) { 4478 /* nothing to do, so skip over this ophdr */ 4479 return 0; 4480 } 4481 4482 /* 4483 * The recovered buffer queue is drained only once we know that all 4484 * recovery items for the current LSN have been processed. This is 4485 * required because: 4486 * 4487 * - Buffer write submission updates the metadata LSN of the buffer. 4488 * - Log recovery skips items with a metadata LSN >= the current LSN of 4489 * the recovery item. 4490 * - Separate recovery items against the same metadata buffer can share 4491 * a current LSN. I.e., consider that the LSN of a recovery item is 4492 * defined as the starting LSN of the first record in which its 4493 * transaction appears, that a record can hold multiple transactions, 4494 * and/or that a transaction can span multiple records. 4495 * 4496 * In other words, we are allowed to submit a buffer from log recovery 4497 * once per current LSN. Otherwise, we may incorrectly skip recovery 4498 * items and cause corruption. 4499 * 4500 * We don't know up front whether buffers are updated multiple times per 4501 * LSN. Therefore, track the current LSN of each commit log record as it 4502 * is processed and drain the queue when it changes. Use commit records 4503 * because they are ordered correctly by the logging code. 4504 */ 4505 if (log->l_recovery_lsn != trans->r_lsn && 4506 ohead->oh_flags & XLOG_COMMIT_TRANS) { 4507 error = xfs_buf_delwri_submit(buffer_list); 4508 if (error) 4509 return error; 4510 log->l_recovery_lsn = trans->r_lsn; 4511 } 4512 4513 return xlog_recovery_process_trans(log, trans, dp, len, 4514 ohead->oh_flags, pass, buffer_list); 4515 } 4516 4517 /* 4518 * There are two valid states of the r_state field. 0 indicates that the 4519 * transaction structure is in a normal state. We have either seen the 4520 * start of the transaction or the last operation we added was not a partial 4521 * operation. If the last operation we added to the transaction was a 4522 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 4523 * 4524 * NOTE: skip LRs with 0 data length. 4525 */ 4526 STATIC int 4527 xlog_recover_process_data( 4528 struct xlog *log, 4529 struct hlist_head rhash[], 4530 struct xlog_rec_header *rhead, 4531 char *dp, 4532 int pass, 4533 struct list_head *buffer_list) 4534 { 4535 struct xlog_op_header *ohead; 4536 char *end; 4537 int num_logops; 4538 int error; 4539 4540 end = dp + be32_to_cpu(rhead->h_len); 4541 num_logops = be32_to_cpu(rhead->h_num_logops); 4542 4543 /* check the log format matches our own - else we can't recover */ 4544 if (xlog_header_check_recover(log->l_mp, rhead)) 4545 return -EIO; 4546 4547 trace_xfs_log_recover_record(log, rhead, pass); 4548 while ((dp < end) && num_logops) { 4549 4550 ohead = (struct xlog_op_header *)dp; 4551 dp += sizeof(*ohead); 4552 ASSERT(dp <= end); 4553 4554 /* errors will abort recovery */ 4555 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead, 4556 dp, end, pass, buffer_list); 4557 if (error) 4558 return error; 4559 4560 dp += be32_to_cpu(ohead->oh_len); 4561 num_logops--; 4562 } 4563 return 0; 4564 } 4565 4566 /* Recover the EFI if necessary. */ 4567 STATIC int 4568 xlog_recover_process_efi( 4569 struct xfs_mount *mp, 4570 struct xfs_ail *ailp, 4571 struct xfs_log_item *lip) 4572 { 4573 struct xfs_efi_log_item *efip; 4574 int error; 4575 4576 /* 4577 * Skip EFIs that we've already processed. 4578 */ 4579 efip = container_of(lip, struct xfs_efi_log_item, efi_item); 4580 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) 4581 return 0; 4582 4583 spin_unlock(&ailp->ail_lock); 4584 error = xfs_efi_recover(mp, efip); 4585 spin_lock(&ailp->ail_lock); 4586 4587 return error; 4588 } 4589 4590 /* Release the EFI since we're cancelling everything. */ 4591 STATIC void 4592 xlog_recover_cancel_efi( 4593 struct xfs_mount *mp, 4594 struct xfs_ail *ailp, 4595 struct xfs_log_item *lip) 4596 { 4597 struct xfs_efi_log_item *efip; 4598 4599 efip = container_of(lip, struct xfs_efi_log_item, efi_item); 4600 4601 spin_unlock(&ailp->ail_lock); 4602 xfs_efi_release(efip); 4603 spin_lock(&ailp->ail_lock); 4604 } 4605 4606 /* Recover the RUI if necessary. */ 4607 STATIC int 4608 xlog_recover_process_rui( 4609 struct xfs_mount *mp, 4610 struct xfs_ail *ailp, 4611 struct xfs_log_item *lip) 4612 { 4613 struct xfs_rui_log_item *ruip; 4614 int error; 4615 4616 /* 4617 * Skip RUIs that we've already processed. 4618 */ 4619 ruip = container_of(lip, struct xfs_rui_log_item, rui_item); 4620 if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags)) 4621 return 0; 4622 4623 spin_unlock(&ailp->ail_lock); 4624 error = xfs_rui_recover(mp, ruip); 4625 spin_lock(&ailp->ail_lock); 4626 4627 return error; 4628 } 4629 4630 /* Release the RUI since we're cancelling everything. */ 4631 STATIC void 4632 xlog_recover_cancel_rui( 4633 struct xfs_mount *mp, 4634 struct xfs_ail *ailp, 4635 struct xfs_log_item *lip) 4636 { 4637 struct xfs_rui_log_item *ruip; 4638 4639 ruip = container_of(lip, struct xfs_rui_log_item, rui_item); 4640 4641 spin_unlock(&ailp->ail_lock); 4642 xfs_rui_release(ruip); 4643 spin_lock(&ailp->ail_lock); 4644 } 4645 4646 /* Recover the CUI if necessary. */ 4647 STATIC int 4648 xlog_recover_process_cui( 4649 struct xfs_trans *parent_tp, 4650 struct xfs_ail *ailp, 4651 struct xfs_log_item *lip) 4652 { 4653 struct xfs_cui_log_item *cuip; 4654 int error; 4655 4656 /* 4657 * Skip CUIs that we've already processed. 4658 */ 4659 cuip = container_of(lip, struct xfs_cui_log_item, cui_item); 4660 if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags)) 4661 return 0; 4662 4663 spin_unlock(&ailp->ail_lock); 4664 error = xfs_cui_recover(parent_tp, cuip); 4665 spin_lock(&ailp->ail_lock); 4666 4667 return error; 4668 } 4669 4670 /* Release the CUI since we're cancelling everything. */ 4671 STATIC void 4672 xlog_recover_cancel_cui( 4673 struct xfs_mount *mp, 4674 struct xfs_ail *ailp, 4675 struct xfs_log_item *lip) 4676 { 4677 struct xfs_cui_log_item *cuip; 4678 4679 cuip = container_of(lip, struct xfs_cui_log_item, cui_item); 4680 4681 spin_unlock(&ailp->ail_lock); 4682 xfs_cui_release(cuip); 4683 spin_lock(&ailp->ail_lock); 4684 } 4685 4686 /* Recover the BUI if necessary. */ 4687 STATIC int 4688 xlog_recover_process_bui( 4689 struct xfs_trans *parent_tp, 4690 struct xfs_ail *ailp, 4691 struct xfs_log_item *lip) 4692 { 4693 struct xfs_bui_log_item *buip; 4694 int error; 4695 4696 /* 4697 * Skip BUIs that we've already processed. 4698 */ 4699 buip = container_of(lip, struct xfs_bui_log_item, bui_item); 4700 if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags)) 4701 return 0; 4702 4703 spin_unlock(&ailp->ail_lock); 4704 error = xfs_bui_recover(parent_tp, buip); 4705 spin_lock(&ailp->ail_lock); 4706 4707 return error; 4708 } 4709 4710 /* Release the BUI since we're cancelling everything. */ 4711 STATIC void 4712 xlog_recover_cancel_bui( 4713 struct xfs_mount *mp, 4714 struct xfs_ail *ailp, 4715 struct xfs_log_item *lip) 4716 { 4717 struct xfs_bui_log_item *buip; 4718 4719 buip = container_of(lip, struct xfs_bui_log_item, bui_item); 4720 4721 spin_unlock(&ailp->ail_lock); 4722 xfs_bui_release(buip); 4723 spin_lock(&ailp->ail_lock); 4724 } 4725 4726 /* Is this log item a deferred action intent? */ 4727 static inline bool xlog_item_is_intent(struct xfs_log_item *lip) 4728 { 4729 switch (lip->li_type) { 4730 case XFS_LI_EFI: 4731 case XFS_LI_RUI: 4732 case XFS_LI_CUI: 4733 case XFS_LI_BUI: 4734 return true; 4735 default: 4736 return false; 4737 } 4738 } 4739 4740 /* Take all the collected deferred ops and finish them in order. */ 4741 static int 4742 xlog_finish_defer_ops( 4743 struct xfs_trans *parent_tp) 4744 { 4745 struct xfs_mount *mp = parent_tp->t_mountp; 4746 struct xfs_trans *tp; 4747 int64_t freeblks; 4748 uint resblks; 4749 int error; 4750 4751 /* 4752 * We're finishing the defer_ops that accumulated as a result of 4753 * recovering unfinished intent items during log recovery. We 4754 * reserve an itruncate transaction because it is the largest 4755 * permanent transaction type. Since we're the only user of the fs 4756 * right now, take 93% (15/16) of the available free blocks. Use 4757 * weird math to avoid a 64-bit division. 4758 */ 4759 freeblks = percpu_counter_sum(&mp->m_fdblocks); 4760 if (freeblks <= 0) 4761 return -ENOSPC; 4762 resblks = min_t(int64_t, UINT_MAX, freeblks); 4763 resblks = (resblks * 15) >> 4; 4764 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks, 4765 0, XFS_TRANS_RESERVE, &tp); 4766 if (error) 4767 return error; 4768 /* transfer all collected dfops to this transaction */ 4769 xfs_defer_move(tp, parent_tp); 4770 4771 return xfs_trans_commit(tp); 4772 } 4773 4774 /* 4775 * When this is called, all of the log intent items which did not have 4776 * corresponding log done items should be in the AIL. What we do now 4777 * is update the data structures associated with each one. 4778 * 4779 * Since we process the log intent items in normal transactions, they 4780 * will be removed at some point after the commit. This prevents us 4781 * from just walking down the list processing each one. We'll use a 4782 * flag in the intent item to skip those that we've already processed 4783 * and use the AIL iteration mechanism's generation count to try to 4784 * speed this up at least a bit. 4785 * 4786 * When we start, we know that the intents are the only things in the 4787 * AIL. As we process them, however, other items are added to the 4788 * AIL. 4789 */ 4790 STATIC int 4791 xlog_recover_process_intents( 4792 struct xlog *log) 4793 { 4794 struct xfs_trans *parent_tp; 4795 struct xfs_ail_cursor cur; 4796 struct xfs_log_item *lip; 4797 struct xfs_ail *ailp; 4798 int error; 4799 #if defined(DEBUG) || defined(XFS_WARN) 4800 xfs_lsn_t last_lsn; 4801 #endif 4802 4803 /* 4804 * The intent recovery handlers commit transactions to complete recovery 4805 * for individual intents, but any new deferred operations that are 4806 * queued during that process are held off until the very end. The 4807 * purpose of this transaction is to serve as a container for deferred 4808 * operations. Each intent recovery handler must transfer dfops here 4809 * before its local transaction commits, and we'll finish the entire 4810 * list below. 4811 */ 4812 error = xfs_trans_alloc_empty(log->l_mp, &parent_tp); 4813 if (error) 4814 return error; 4815 4816 ailp = log->l_ailp; 4817 spin_lock(&ailp->ail_lock); 4818 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 4819 #if defined(DEBUG) || defined(XFS_WARN) 4820 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block); 4821 #endif 4822 while (lip != NULL) { 4823 /* 4824 * We're done when we see something other than an intent. 4825 * There should be no intents left in the AIL now. 4826 */ 4827 if (!xlog_item_is_intent(lip)) { 4828 #ifdef DEBUG 4829 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 4830 ASSERT(!xlog_item_is_intent(lip)); 4831 #endif 4832 break; 4833 } 4834 4835 /* 4836 * We should never see a redo item with a LSN higher than 4837 * the last transaction we found in the log at the start 4838 * of recovery. 4839 */ 4840 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0); 4841 4842 /* 4843 * NOTE: If your intent processing routine can create more 4844 * deferred ops, you /must/ attach them to the dfops in this 4845 * routine or else those subsequent intents will get 4846 * replayed in the wrong order! 4847 */ 4848 switch (lip->li_type) { 4849 case XFS_LI_EFI: 4850 error = xlog_recover_process_efi(log->l_mp, ailp, lip); 4851 break; 4852 case XFS_LI_RUI: 4853 error = xlog_recover_process_rui(log->l_mp, ailp, lip); 4854 break; 4855 case XFS_LI_CUI: 4856 error = xlog_recover_process_cui(parent_tp, ailp, lip); 4857 break; 4858 case XFS_LI_BUI: 4859 error = xlog_recover_process_bui(parent_tp, ailp, lip); 4860 break; 4861 } 4862 if (error) 4863 goto out; 4864 lip = xfs_trans_ail_cursor_next(ailp, &cur); 4865 } 4866 out: 4867 xfs_trans_ail_cursor_done(&cur); 4868 spin_unlock(&ailp->ail_lock); 4869 if (!error) 4870 error = xlog_finish_defer_ops(parent_tp); 4871 xfs_trans_cancel(parent_tp); 4872 4873 return error; 4874 } 4875 4876 /* 4877 * A cancel occurs when the mount has failed and we're bailing out. 4878 * Release all pending log intent items so they don't pin the AIL. 4879 */ 4880 STATIC void 4881 xlog_recover_cancel_intents( 4882 struct xlog *log) 4883 { 4884 struct xfs_log_item *lip; 4885 struct xfs_ail_cursor cur; 4886 struct xfs_ail *ailp; 4887 4888 ailp = log->l_ailp; 4889 spin_lock(&ailp->ail_lock); 4890 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 4891 while (lip != NULL) { 4892 /* 4893 * We're done when we see something other than an intent. 4894 * There should be no intents left in the AIL now. 4895 */ 4896 if (!xlog_item_is_intent(lip)) { 4897 #ifdef DEBUG 4898 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 4899 ASSERT(!xlog_item_is_intent(lip)); 4900 #endif 4901 break; 4902 } 4903 4904 switch (lip->li_type) { 4905 case XFS_LI_EFI: 4906 xlog_recover_cancel_efi(log->l_mp, ailp, lip); 4907 break; 4908 case XFS_LI_RUI: 4909 xlog_recover_cancel_rui(log->l_mp, ailp, lip); 4910 break; 4911 case XFS_LI_CUI: 4912 xlog_recover_cancel_cui(log->l_mp, ailp, lip); 4913 break; 4914 case XFS_LI_BUI: 4915 xlog_recover_cancel_bui(log->l_mp, ailp, lip); 4916 break; 4917 } 4918 4919 lip = xfs_trans_ail_cursor_next(ailp, &cur); 4920 } 4921 4922 xfs_trans_ail_cursor_done(&cur); 4923 spin_unlock(&ailp->ail_lock); 4924 } 4925 4926 /* 4927 * This routine performs a transaction to null out a bad inode pointer 4928 * in an agi unlinked inode hash bucket. 4929 */ 4930 STATIC void 4931 xlog_recover_clear_agi_bucket( 4932 xfs_mount_t *mp, 4933 xfs_agnumber_t agno, 4934 int bucket) 4935 { 4936 xfs_trans_t *tp; 4937 xfs_agi_t *agi; 4938 xfs_buf_t *agibp; 4939 int offset; 4940 int error; 4941 4942 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp); 4943 if (error) 4944 goto out_error; 4945 4946 error = xfs_read_agi(mp, tp, agno, &agibp); 4947 if (error) 4948 goto out_abort; 4949 4950 agi = XFS_BUF_TO_AGI(agibp); 4951 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 4952 offset = offsetof(xfs_agi_t, agi_unlinked) + 4953 (sizeof(xfs_agino_t) * bucket); 4954 xfs_trans_log_buf(tp, agibp, offset, 4955 (offset + sizeof(xfs_agino_t) - 1)); 4956 4957 error = xfs_trans_commit(tp); 4958 if (error) 4959 goto out_error; 4960 return; 4961 4962 out_abort: 4963 xfs_trans_cancel(tp); 4964 out_error: 4965 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); 4966 return; 4967 } 4968 4969 STATIC xfs_agino_t 4970 xlog_recover_process_one_iunlink( 4971 struct xfs_mount *mp, 4972 xfs_agnumber_t agno, 4973 xfs_agino_t agino, 4974 int bucket) 4975 { 4976 struct xfs_buf *ibp; 4977 struct xfs_dinode *dip; 4978 struct xfs_inode *ip; 4979 xfs_ino_t ino; 4980 int error; 4981 4982 ino = XFS_AGINO_TO_INO(mp, agno, agino); 4983 error = xfs_iget(mp, NULL, ino, 0, 0, &ip); 4984 if (error) 4985 goto fail; 4986 4987 /* 4988 * Get the on disk inode to find the next inode in the bucket. 4989 */ 4990 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0); 4991 if (error) 4992 goto fail_iput; 4993 4994 xfs_iflags_clear(ip, XFS_IRECOVERY); 4995 ASSERT(VFS_I(ip)->i_nlink == 0); 4996 ASSERT(VFS_I(ip)->i_mode != 0); 4997 4998 /* setup for the next pass */ 4999 agino = be32_to_cpu(dip->di_next_unlinked); 5000 xfs_buf_relse(ibp); 5001 5002 /* 5003 * Prevent any DMAPI event from being sent when the reference on 5004 * the inode is dropped. 5005 */ 5006 ip->i_d.di_dmevmask = 0; 5007 5008 xfs_irele(ip); 5009 return agino; 5010 5011 fail_iput: 5012 xfs_irele(ip); 5013 fail: 5014 /* 5015 * We can't read in the inode this bucket points to, or this inode 5016 * is messed up. Just ditch this bucket of inodes. We will lose 5017 * some inodes and space, but at least we won't hang. 5018 * 5019 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 5020 * clear the inode pointer in the bucket. 5021 */ 5022 xlog_recover_clear_agi_bucket(mp, agno, bucket); 5023 return NULLAGINO; 5024 } 5025 5026 /* 5027 * Recover AGI unlinked lists 5028 * 5029 * This is called during recovery to process any inodes which we unlinked but 5030 * not freed when the system crashed. These inodes will be on the lists in the 5031 * AGI blocks. What we do here is scan all the AGIs and fully truncate and free 5032 * any inodes found on the lists. Each inode is removed from the lists when it 5033 * has been fully truncated and is freed. The freeing of the inode and its 5034 * removal from the list must be atomic. 5035 * 5036 * If everything we touch in the agi processing loop is already in memory, this 5037 * loop can hold the cpu for a long time. It runs without lock contention, 5038 * memory allocation contention, the need wait for IO, etc, and so will run 5039 * until we either run out of inodes to process, run low on memory or we run out 5040 * of log space. 5041 * 5042 * This behaviour is bad for latency on single CPU and non-preemptible kernels, 5043 * and can prevent other filesytem work (such as CIL pushes) from running. This 5044 * can lead to deadlocks if the recovery process runs out of log reservation 5045 * space. Hence we need to yield the CPU when there is other kernel work 5046 * scheduled on this CPU to ensure other scheduled work can run without undue 5047 * latency. 5048 */ 5049 STATIC void 5050 xlog_recover_process_iunlinks( 5051 struct xlog *log) 5052 { 5053 xfs_mount_t *mp; 5054 xfs_agnumber_t agno; 5055 xfs_agi_t *agi; 5056 xfs_buf_t *agibp; 5057 xfs_agino_t agino; 5058 int bucket; 5059 int error; 5060 5061 mp = log->l_mp; 5062 5063 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 5064 /* 5065 * Find the agi for this ag. 5066 */ 5067 error = xfs_read_agi(mp, NULL, agno, &agibp); 5068 if (error) { 5069 /* 5070 * AGI is b0rked. Don't process it. 5071 * 5072 * We should probably mark the filesystem as corrupt 5073 * after we've recovered all the ag's we can.... 5074 */ 5075 continue; 5076 } 5077 /* 5078 * Unlock the buffer so that it can be acquired in the normal 5079 * course of the transaction to truncate and free each inode. 5080 * Because we are not racing with anyone else here for the AGI 5081 * buffer, we don't even need to hold it locked to read the 5082 * initial unlinked bucket entries out of the buffer. We keep 5083 * buffer reference though, so that it stays pinned in memory 5084 * while we need the buffer. 5085 */ 5086 agi = XFS_BUF_TO_AGI(agibp); 5087 xfs_buf_unlock(agibp); 5088 5089 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 5090 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 5091 while (agino != NULLAGINO) { 5092 agino = xlog_recover_process_one_iunlink(mp, 5093 agno, agino, bucket); 5094 cond_resched(); 5095 } 5096 } 5097 xfs_buf_rele(agibp); 5098 } 5099 } 5100 5101 STATIC void 5102 xlog_unpack_data( 5103 struct xlog_rec_header *rhead, 5104 char *dp, 5105 struct xlog *log) 5106 { 5107 int i, j, k; 5108 5109 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 5110 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 5111 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 5112 dp += BBSIZE; 5113 } 5114 5115 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 5116 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 5117 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 5118 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 5119 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 5120 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 5121 dp += BBSIZE; 5122 } 5123 } 5124 } 5125 5126 /* 5127 * CRC check, unpack and process a log record. 5128 */ 5129 STATIC int 5130 xlog_recover_process( 5131 struct xlog *log, 5132 struct hlist_head rhash[], 5133 struct xlog_rec_header *rhead, 5134 char *dp, 5135 int pass, 5136 struct list_head *buffer_list) 5137 { 5138 __le32 old_crc = rhead->h_crc; 5139 __le32 crc; 5140 5141 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); 5142 5143 /* 5144 * Nothing else to do if this is a CRC verification pass. Just return 5145 * if this a record with a non-zero crc. Unfortunately, mkfs always 5146 * sets old_crc to 0 so we must consider this valid even on v5 supers. 5147 * Otherwise, return EFSBADCRC on failure so the callers up the stack 5148 * know precisely what failed. 5149 */ 5150 if (pass == XLOG_RECOVER_CRCPASS) { 5151 if (old_crc && crc != old_crc) 5152 return -EFSBADCRC; 5153 return 0; 5154 } 5155 5156 /* 5157 * We're in the normal recovery path. Issue a warning if and only if the 5158 * CRC in the header is non-zero. This is an advisory warning and the 5159 * zero CRC check prevents warnings from being emitted when upgrading 5160 * the kernel from one that does not add CRCs by default. 5161 */ 5162 if (crc != old_crc) { 5163 if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) { 5164 xfs_alert(log->l_mp, 5165 "log record CRC mismatch: found 0x%x, expected 0x%x.", 5166 le32_to_cpu(old_crc), 5167 le32_to_cpu(crc)); 5168 xfs_hex_dump(dp, 32); 5169 } 5170 5171 /* 5172 * If the filesystem is CRC enabled, this mismatch becomes a 5173 * fatal log corruption failure. 5174 */ 5175 if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) { 5176 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp); 5177 return -EFSCORRUPTED; 5178 } 5179 } 5180 5181 xlog_unpack_data(rhead, dp, log); 5182 5183 return xlog_recover_process_data(log, rhash, rhead, dp, pass, 5184 buffer_list); 5185 } 5186 5187 STATIC int 5188 xlog_valid_rec_header( 5189 struct xlog *log, 5190 struct xlog_rec_header *rhead, 5191 xfs_daddr_t blkno) 5192 { 5193 int hlen; 5194 5195 if (XFS_IS_CORRUPT(log->l_mp, 5196 rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) 5197 return -EFSCORRUPTED; 5198 if (XFS_IS_CORRUPT(log->l_mp, 5199 (!rhead->h_version || 5200 (be32_to_cpu(rhead->h_version) & 5201 (~XLOG_VERSION_OKBITS))))) { 5202 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", 5203 __func__, be32_to_cpu(rhead->h_version)); 5204 return -EFSCORRUPTED; 5205 } 5206 5207 /* LR body must have data or it wouldn't have been written */ 5208 hlen = be32_to_cpu(rhead->h_len); 5209 if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > INT_MAX)) 5210 return -EFSCORRUPTED; 5211 if (XFS_IS_CORRUPT(log->l_mp, 5212 blkno > log->l_logBBsize || blkno > INT_MAX)) 5213 return -EFSCORRUPTED; 5214 return 0; 5215 } 5216 5217 /* 5218 * Read the log from tail to head and process the log records found. 5219 * Handle the two cases where the tail and head are in the same cycle 5220 * and where the active portion of the log wraps around the end of 5221 * the physical log separately. The pass parameter is passed through 5222 * to the routines called to process the data and is not looked at 5223 * here. 5224 */ 5225 STATIC int 5226 xlog_do_recovery_pass( 5227 struct xlog *log, 5228 xfs_daddr_t head_blk, 5229 xfs_daddr_t tail_blk, 5230 int pass, 5231 xfs_daddr_t *first_bad) /* out: first bad log rec */ 5232 { 5233 xlog_rec_header_t *rhead; 5234 xfs_daddr_t blk_no, rblk_no; 5235 xfs_daddr_t rhead_blk; 5236 char *offset; 5237 char *hbp, *dbp; 5238 int error = 0, h_size, h_len; 5239 int error2 = 0; 5240 int bblks, split_bblks; 5241 int hblks, split_hblks, wrapped_hblks; 5242 int i; 5243 struct hlist_head rhash[XLOG_RHASH_SIZE]; 5244 LIST_HEAD (buffer_list); 5245 5246 ASSERT(head_blk != tail_blk); 5247 blk_no = rhead_blk = tail_blk; 5248 5249 for (i = 0; i < XLOG_RHASH_SIZE; i++) 5250 INIT_HLIST_HEAD(&rhash[i]); 5251 5252 /* 5253 * Read the header of the tail block and get the iclog buffer size from 5254 * h_size. Use this to tell how many sectors make up the log header. 5255 */ 5256 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 5257 /* 5258 * When using variable length iclogs, read first sector of 5259 * iclog header and extract the header size from it. Get a 5260 * new hbp that is the correct size. 5261 */ 5262 hbp = xlog_alloc_buffer(log, 1); 5263 if (!hbp) 5264 return -ENOMEM; 5265 5266 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 5267 if (error) 5268 goto bread_err1; 5269 5270 rhead = (xlog_rec_header_t *)offset; 5271 error = xlog_valid_rec_header(log, rhead, tail_blk); 5272 if (error) 5273 goto bread_err1; 5274 5275 /* 5276 * xfsprogs has a bug where record length is based on lsunit but 5277 * h_size (iclog size) is hardcoded to 32k. Now that we 5278 * unconditionally CRC verify the unmount record, this means the 5279 * log buffer can be too small for the record and cause an 5280 * overrun. 5281 * 5282 * Detect this condition here. Use lsunit for the buffer size as 5283 * long as this looks like the mkfs case. Otherwise, return an 5284 * error to avoid a buffer overrun. 5285 */ 5286 h_size = be32_to_cpu(rhead->h_size); 5287 h_len = be32_to_cpu(rhead->h_len); 5288 if (h_len > h_size) { 5289 if (h_len <= log->l_mp->m_logbsize && 5290 be32_to_cpu(rhead->h_num_logops) == 1) { 5291 xfs_warn(log->l_mp, 5292 "invalid iclog size (%d bytes), using lsunit (%d bytes)", 5293 h_size, log->l_mp->m_logbsize); 5294 h_size = log->l_mp->m_logbsize; 5295 } else { 5296 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, 5297 log->l_mp); 5298 error = -EFSCORRUPTED; 5299 goto bread_err1; 5300 } 5301 } 5302 5303 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 5304 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 5305 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 5306 if (h_size % XLOG_HEADER_CYCLE_SIZE) 5307 hblks++; 5308 kmem_free(hbp); 5309 hbp = xlog_alloc_buffer(log, hblks); 5310 } else { 5311 hblks = 1; 5312 } 5313 } else { 5314 ASSERT(log->l_sectBBsize == 1); 5315 hblks = 1; 5316 hbp = xlog_alloc_buffer(log, 1); 5317 h_size = XLOG_BIG_RECORD_BSIZE; 5318 } 5319 5320 if (!hbp) 5321 return -ENOMEM; 5322 dbp = xlog_alloc_buffer(log, BTOBB(h_size)); 5323 if (!dbp) { 5324 kmem_free(hbp); 5325 return -ENOMEM; 5326 } 5327 5328 memset(rhash, 0, sizeof(rhash)); 5329 if (tail_blk > head_blk) { 5330 /* 5331 * Perform recovery around the end of the physical log. 5332 * When the head is not on the same cycle number as the tail, 5333 * we can't do a sequential recovery. 5334 */ 5335 while (blk_no < log->l_logBBsize) { 5336 /* 5337 * Check for header wrapping around physical end-of-log 5338 */ 5339 offset = hbp; 5340 split_hblks = 0; 5341 wrapped_hblks = 0; 5342 if (blk_no + hblks <= log->l_logBBsize) { 5343 /* Read header in one read */ 5344 error = xlog_bread(log, blk_no, hblks, hbp, 5345 &offset); 5346 if (error) 5347 goto bread_err2; 5348 } else { 5349 /* This LR is split across physical log end */ 5350 if (blk_no != log->l_logBBsize) { 5351 /* some data before physical log end */ 5352 ASSERT(blk_no <= INT_MAX); 5353 split_hblks = log->l_logBBsize - (int)blk_no; 5354 ASSERT(split_hblks > 0); 5355 error = xlog_bread(log, blk_no, 5356 split_hblks, hbp, 5357 &offset); 5358 if (error) 5359 goto bread_err2; 5360 } 5361 5362 /* 5363 * Note: this black magic still works with 5364 * large sector sizes (non-512) only because: 5365 * - we increased the buffer size originally 5366 * by 1 sector giving us enough extra space 5367 * for the second read; 5368 * - the log start is guaranteed to be sector 5369 * aligned; 5370 * - we read the log end (LR header start) 5371 * _first_, then the log start (LR header end) 5372 * - order is important. 5373 */ 5374 wrapped_hblks = hblks - split_hblks; 5375 error = xlog_bread_noalign(log, 0, 5376 wrapped_hblks, 5377 offset + BBTOB(split_hblks)); 5378 if (error) 5379 goto bread_err2; 5380 } 5381 rhead = (xlog_rec_header_t *)offset; 5382 error = xlog_valid_rec_header(log, rhead, 5383 split_hblks ? blk_no : 0); 5384 if (error) 5385 goto bread_err2; 5386 5387 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 5388 blk_no += hblks; 5389 5390 /* 5391 * Read the log record data in multiple reads if it 5392 * wraps around the end of the log. Note that if the 5393 * header already wrapped, blk_no could point past the 5394 * end of the log. The record data is contiguous in 5395 * that case. 5396 */ 5397 if (blk_no + bblks <= log->l_logBBsize || 5398 blk_no >= log->l_logBBsize) { 5399 rblk_no = xlog_wrap_logbno(log, blk_no); 5400 error = xlog_bread(log, rblk_no, bblks, dbp, 5401 &offset); 5402 if (error) 5403 goto bread_err2; 5404 } else { 5405 /* This log record is split across the 5406 * physical end of log */ 5407 offset = dbp; 5408 split_bblks = 0; 5409 if (blk_no != log->l_logBBsize) { 5410 /* some data is before the physical 5411 * end of log */ 5412 ASSERT(!wrapped_hblks); 5413 ASSERT(blk_no <= INT_MAX); 5414 split_bblks = 5415 log->l_logBBsize - (int)blk_no; 5416 ASSERT(split_bblks > 0); 5417 error = xlog_bread(log, blk_no, 5418 split_bblks, dbp, 5419 &offset); 5420 if (error) 5421 goto bread_err2; 5422 } 5423 5424 /* 5425 * Note: this black magic still works with 5426 * large sector sizes (non-512) only because: 5427 * - we increased the buffer size originally 5428 * by 1 sector giving us enough extra space 5429 * for the second read; 5430 * - the log start is guaranteed to be sector 5431 * aligned; 5432 * - we read the log end (LR header start) 5433 * _first_, then the log start (LR header end) 5434 * - order is important. 5435 */ 5436 error = xlog_bread_noalign(log, 0, 5437 bblks - split_bblks, 5438 offset + BBTOB(split_bblks)); 5439 if (error) 5440 goto bread_err2; 5441 } 5442 5443 error = xlog_recover_process(log, rhash, rhead, offset, 5444 pass, &buffer_list); 5445 if (error) 5446 goto bread_err2; 5447 5448 blk_no += bblks; 5449 rhead_blk = blk_no; 5450 } 5451 5452 ASSERT(blk_no >= log->l_logBBsize); 5453 blk_no -= log->l_logBBsize; 5454 rhead_blk = blk_no; 5455 } 5456 5457 /* read first part of physical log */ 5458 while (blk_no < head_blk) { 5459 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 5460 if (error) 5461 goto bread_err2; 5462 5463 rhead = (xlog_rec_header_t *)offset; 5464 error = xlog_valid_rec_header(log, rhead, blk_no); 5465 if (error) 5466 goto bread_err2; 5467 5468 /* blocks in data section */ 5469 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 5470 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 5471 &offset); 5472 if (error) 5473 goto bread_err2; 5474 5475 error = xlog_recover_process(log, rhash, rhead, offset, pass, 5476 &buffer_list); 5477 if (error) 5478 goto bread_err2; 5479 5480 blk_no += bblks + hblks; 5481 rhead_blk = blk_no; 5482 } 5483 5484 bread_err2: 5485 kmem_free(dbp); 5486 bread_err1: 5487 kmem_free(hbp); 5488 5489 /* 5490 * Submit buffers that have been added from the last record processed, 5491 * regardless of error status. 5492 */ 5493 if (!list_empty(&buffer_list)) 5494 error2 = xfs_buf_delwri_submit(&buffer_list); 5495 5496 if (error && first_bad) 5497 *first_bad = rhead_blk; 5498 5499 /* 5500 * Transactions are freed at commit time but transactions without commit 5501 * records on disk are never committed. Free any that may be left in the 5502 * hash table. 5503 */ 5504 for (i = 0; i < XLOG_RHASH_SIZE; i++) { 5505 struct hlist_node *tmp; 5506 struct xlog_recover *trans; 5507 5508 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list) 5509 xlog_recover_free_trans(trans); 5510 } 5511 5512 return error ? error : error2; 5513 } 5514 5515 /* 5516 * Do the recovery of the log. We actually do this in two phases. 5517 * The two passes are necessary in order to implement the function 5518 * of cancelling a record written into the log. The first pass 5519 * determines those things which have been cancelled, and the 5520 * second pass replays log items normally except for those which 5521 * have been cancelled. The handling of the replay and cancellations 5522 * takes place in the log item type specific routines. 5523 * 5524 * The table of items which have cancel records in the log is allocated 5525 * and freed at this level, since only here do we know when all of 5526 * the log recovery has been completed. 5527 */ 5528 STATIC int 5529 xlog_do_log_recovery( 5530 struct xlog *log, 5531 xfs_daddr_t head_blk, 5532 xfs_daddr_t tail_blk) 5533 { 5534 int error, i; 5535 5536 ASSERT(head_blk != tail_blk); 5537 5538 /* 5539 * First do a pass to find all of the cancelled buf log items. 5540 * Store them in the buf_cancel_table for use in the second pass. 5541 */ 5542 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * 5543 sizeof(struct list_head), 5544 0); 5545 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 5546 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); 5547 5548 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 5549 XLOG_RECOVER_PASS1, NULL); 5550 if (error != 0) { 5551 kmem_free(log->l_buf_cancel_table); 5552 log->l_buf_cancel_table = NULL; 5553 return error; 5554 } 5555 /* 5556 * Then do a second pass to actually recover the items in the log. 5557 * When it is complete free the table of buf cancel items. 5558 */ 5559 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 5560 XLOG_RECOVER_PASS2, NULL); 5561 #ifdef DEBUG 5562 if (!error) { 5563 int i; 5564 5565 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 5566 ASSERT(list_empty(&log->l_buf_cancel_table[i])); 5567 } 5568 #endif /* DEBUG */ 5569 5570 kmem_free(log->l_buf_cancel_table); 5571 log->l_buf_cancel_table = NULL; 5572 5573 return error; 5574 } 5575 5576 /* 5577 * Do the actual recovery 5578 */ 5579 STATIC int 5580 xlog_do_recover( 5581 struct xlog *log, 5582 xfs_daddr_t head_blk, 5583 xfs_daddr_t tail_blk) 5584 { 5585 struct xfs_mount *mp = log->l_mp; 5586 int error; 5587 xfs_buf_t *bp; 5588 xfs_sb_t *sbp; 5589 5590 trace_xfs_log_recover(log, head_blk, tail_blk); 5591 5592 /* 5593 * First replay the images in the log. 5594 */ 5595 error = xlog_do_log_recovery(log, head_blk, tail_blk); 5596 if (error) 5597 return error; 5598 5599 /* 5600 * If IO errors happened during recovery, bail out. 5601 */ 5602 if (XFS_FORCED_SHUTDOWN(mp)) { 5603 return -EIO; 5604 } 5605 5606 /* 5607 * We now update the tail_lsn since much of the recovery has completed 5608 * and there may be space available to use. If there were no extent 5609 * or iunlinks, we can free up the entire log and set the tail_lsn to 5610 * be the last_sync_lsn. This was set in xlog_find_tail to be the 5611 * lsn of the last known good LR on disk. If there are extent frees 5612 * or iunlinks they will have some entries in the AIL; so we look at 5613 * the AIL to determine how to set the tail_lsn. 5614 */ 5615 xlog_assign_tail_lsn(mp); 5616 5617 /* 5618 * Now that we've finished replaying all buffer and inode 5619 * updates, re-read in the superblock and reverify it. 5620 */ 5621 bp = xfs_getsb(mp); 5622 bp->b_flags &= ~(XBF_DONE | XBF_ASYNC); 5623 ASSERT(!(bp->b_flags & XBF_WRITE)); 5624 bp->b_flags |= XBF_READ; 5625 bp->b_ops = &xfs_sb_buf_ops; 5626 5627 error = xfs_buf_submit(bp); 5628 if (error) { 5629 if (!XFS_FORCED_SHUTDOWN(mp)) { 5630 xfs_buf_ioerror_alert(bp, __this_address); 5631 ASSERT(0); 5632 } 5633 xfs_buf_relse(bp); 5634 return error; 5635 } 5636 5637 /* Convert superblock from on-disk format */ 5638 sbp = &mp->m_sb; 5639 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 5640 xfs_buf_relse(bp); 5641 5642 /* re-initialise in-core superblock and geometry structures */ 5643 xfs_reinit_percpu_counters(mp); 5644 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 5645 if (error) { 5646 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error); 5647 return error; 5648 } 5649 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp); 5650 5651 xlog_recover_check_summary(log); 5652 5653 /* Normal transactions can now occur */ 5654 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 5655 return 0; 5656 } 5657 5658 /* 5659 * Perform recovery and re-initialize some log variables in xlog_find_tail. 5660 * 5661 * Return error or zero. 5662 */ 5663 int 5664 xlog_recover( 5665 struct xlog *log) 5666 { 5667 xfs_daddr_t head_blk, tail_blk; 5668 int error; 5669 5670 /* find the tail of the log */ 5671 error = xlog_find_tail(log, &head_blk, &tail_blk); 5672 if (error) 5673 return error; 5674 5675 /* 5676 * The superblock was read before the log was available and thus the LSN 5677 * could not be verified. Check the superblock LSN against the current 5678 * LSN now that it's known. 5679 */ 5680 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) && 5681 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn)) 5682 return -EINVAL; 5683 5684 if (tail_blk != head_blk) { 5685 /* There used to be a comment here: 5686 * 5687 * disallow recovery on read-only mounts. note -- mount 5688 * checks for ENOSPC and turns it into an intelligent 5689 * error message. 5690 * ...but this is no longer true. Now, unless you specify 5691 * NORECOVERY (in which case this function would never be 5692 * called), we just go ahead and recover. We do this all 5693 * under the vfs layer, so we can get away with it unless 5694 * the device itself is read-only, in which case we fail. 5695 */ 5696 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 5697 return error; 5698 } 5699 5700 /* 5701 * Version 5 superblock log feature mask validation. We know the 5702 * log is dirty so check if there are any unknown log features 5703 * in what we need to recover. If there are unknown features 5704 * (e.g. unsupported transactions, then simply reject the 5705 * attempt at recovery before touching anything. 5706 */ 5707 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 && 5708 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, 5709 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { 5710 xfs_warn(log->l_mp, 5711 "Superblock has unknown incompatible log features (0x%x) enabled.", 5712 (log->l_mp->m_sb.sb_features_log_incompat & 5713 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 5714 xfs_warn(log->l_mp, 5715 "The log can not be fully and/or safely recovered by this kernel."); 5716 xfs_warn(log->l_mp, 5717 "Please recover the log on a kernel that supports the unknown features."); 5718 return -EINVAL; 5719 } 5720 5721 /* 5722 * Delay log recovery if the debug hook is set. This is debug 5723 * instrumention to coordinate simulation of I/O failures with 5724 * log recovery. 5725 */ 5726 if (xfs_globals.log_recovery_delay) { 5727 xfs_notice(log->l_mp, 5728 "Delaying log recovery for %d seconds.", 5729 xfs_globals.log_recovery_delay); 5730 msleep(xfs_globals.log_recovery_delay * 1000); 5731 } 5732 5733 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", 5734 log->l_mp->m_logname ? log->l_mp->m_logname 5735 : "internal"); 5736 5737 error = xlog_do_recover(log, head_blk, tail_blk); 5738 log->l_flags |= XLOG_RECOVERY_NEEDED; 5739 } 5740 return error; 5741 } 5742 5743 /* 5744 * In the first part of recovery we replay inodes and buffers and build 5745 * up the list of extent free items which need to be processed. Here 5746 * we process the extent free items and clean up the on disk unlinked 5747 * inode lists. This is separated from the first part of recovery so 5748 * that the root and real-time bitmap inodes can be read in from disk in 5749 * between the two stages. This is necessary so that we can free space 5750 * in the real-time portion of the file system. 5751 */ 5752 int 5753 xlog_recover_finish( 5754 struct xlog *log) 5755 { 5756 /* 5757 * Now we're ready to do the transactions needed for the 5758 * rest of recovery. Start with completing all the extent 5759 * free intent records and then process the unlinked inode 5760 * lists. At this point, we essentially run in normal mode 5761 * except that we're still performing recovery actions 5762 * rather than accepting new requests. 5763 */ 5764 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 5765 int error; 5766 error = xlog_recover_process_intents(log); 5767 if (error) { 5768 xfs_alert(log->l_mp, "Failed to recover intents"); 5769 return error; 5770 } 5771 5772 /* 5773 * Sync the log to get all the intents out of the AIL. 5774 * This isn't absolutely necessary, but it helps in 5775 * case the unlink transactions would have problems 5776 * pushing the intents out of the way. 5777 */ 5778 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 5779 5780 xlog_recover_process_iunlinks(log); 5781 5782 xlog_recover_check_summary(log); 5783 5784 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", 5785 log->l_mp->m_logname ? log->l_mp->m_logname 5786 : "internal"); 5787 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 5788 } else { 5789 xfs_info(log->l_mp, "Ending clean mount"); 5790 } 5791 return 0; 5792 } 5793 5794 void 5795 xlog_recover_cancel( 5796 struct xlog *log) 5797 { 5798 if (log->l_flags & XLOG_RECOVERY_NEEDED) 5799 xlog_recover_cancel_intents(log); 5800 } 5801 5802 #if defined(DEBUG) 5803 /* 5804 * Read all of the agf and agi counters and check that they 5805 * are consistent with the superblock counters. 5806 */ 5807 STATIC void 5808 xlog_recover_check_summary( 5809 struct xlog *log) 5810 { 5811 xfs_mount_t *mp; 5812 xfs_agf_t *agfp; 5813 xfs_buf_t *agfbp; 5814 xfs_buf_t *agibp; 5815 xfs_agnumber_t agno; 5816 uint64_t freeblks; 5817 uint64_t itotal; 5818 uint64_t ifree; 5819 int error; 5820 5821 mp = log->l_mp; 5822 5823 freeblks = 0LL; 5824 itotal = 0LL; 5825 ifree = 0LL; 5826 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 5827 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 5828 if (error) { 5829 xfs_alert(mp, "%s agf read failed agno %d error %d", 5830 __func__, agno, error); 5831 } else { 5832 agfp = XFS_BUF_TO_AGF(agfbp); 5833 freeblks += be32_to_cpu(agfp->agf_freeblks) + 5834 be32_to_cpu(agfp->agf_flcount); 5835 xfs_buf_relse(agfbp); 5836 } 5837 5838 error = xfs_read_agi(mp, NULL, agno, &agibp); 5839 if (error) { 5840 xfs_alert(mp, "%s agi read failed agno %d error %d", 5841 __func__, agno, error); 5842 } else { 5843 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 5844 5845 itotal += be32_to_cpu(agi->agi_count); 5846 ifree += be32_to_cpu(agi->agi_freecount); 5847 xfs_buf_relse(agibp); 5848 } 5849 } 5850 } 5851 #endif /* DEBUG */ 5852