1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_sb.h" 26 #include "xfs_mount.h" 27 #include "xfs_da_format.h" 28 #include "xfs_da_btree.h" 29 #include "xfs_inode.h" 30 #include "xfs_trans.h" 31 #include "xfs_log.h" 32 #include "xfs_log_priv.h" 33 #include "xfs_log_recover.h" 34 #include "xfs_inode_item.h" 35 #include "xfs_extfree_item.h" 36 #include "xfs_trans_priv.h" 37 #include "xfs_alloc.h" 38 #include "xfs_ialloc.h" 39 #include "xfs_quota.h" 40 #include "xfs_cksum.h" 41 #include "xfs_trace.h" 42 #include "xfs_icache.h" 43 #include "xfs_bmap_btree.h" 44 #include "xfs_error.h" 45 #include "xfs_dir2.h" 46 #include "xfs_rmap_item.h" 47 #include "xfs_buf_item.h" 48 #include "xfs_refcount_item.h" 49 #include "xfs_bmap_item.h" 50 51 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) 52 53 STATIC int 54 xlog_find_zeroed( 55 struct xlog *, 56 xfs_daddr_t *); 57 STATIC int 58 xlog_clear_stale_blocks( 59 struct xlog *, 60 xfs_lsn_t); 61 #if defined(DEBUG) 62 STATIC void 63 xlog_recover_check_summary( 64 struct xlog *); 65 #else 66 #define xlog_recover_check_summary(log) 67 #endif 68 STATIC int 69 xlog_do_recovery_pass( 70 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *); 71 72 /* 73 * This structure is used during recovery to record the buf log items which 74 * have been canceled and should not be replayed. 75 */ 76 struct xfs_buf_cancel { 77 xfs_daddr_t bc_blkno; 78 uint bc_len; 79 int bc_refcount; 80 struct list_head bc_list; 81 }; 82 83 /* 84 * Sector aligned buffer routines for buffer create/read/write/access 85 */ 86 87 /* 88 * Verify the given count of basic blocks is valid number of blocks 89 * to specify for an operation involving the given XFS log buffer. 90 * Returns nonzero if the count is valid, 0 otherwise. 91 */ 92 93 static inline int 94 xlog_buf_bbcount_valid( 95 struct xlog *log, 96 int bbcount) 97 { 98 return bbcount > 0 && bbcount <= log->l_logBBsize; 99 } 100 101 /* 102 * Allocate a buffer to hold log data. The buffer needs to be able 103 * to map to a range of nbblks basic blocks at any valid (basic 104 * block) offset within the log. 105 */ 106 STATIC xfs_buf_t * 107 xlog_get_bp( 108 struct xlog *log, 109 int nbblks) 110 { 111 struct xfs_buf *bp; 112 113 if (!xlog_buf_bbcount_valid(log, nbblks)) { 114 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 115 nbblks); 116 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 117 return NULL; 118 } 119 120 /* 121 * We do log I/O in units of log sectors (a power-of-2 122 * multiple of the basic block size), so we round up the 123 * requested size to accommodate the basic blocks required 124 * for complete log sectors. 125 * 126 * In addition, the buffer may be used for a non-sector- 127 * aligned block offset, in which case an I/O of the 128 * requested size could extend beyond the end of the 129 * buffer. If the requested size is only 1 basic block it 130 * will never straddle a sector boundary, so this won't be 131 * an issue. Nor will this be a problem if the log I/O is 132 * done in basic blocks (sector size 1). But otherwise we 133 * extend the buffer by one extra log sector to ensure 134 * there's space to accommodate this possibility. 135 */ 136 if (nbblks > 1 && log->l_sectBBsize > 1) 137 nbblks += log->l_sectBBsize; 138 nbblks = round_up(nbblks, log->l_sectBBsize); 139 140 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0); 141 if (bp) 142 xfs_buf_unlock(bp); 143 return bp; 144 } 145 146 STATIC void 147 xlog_put_bp( 148 xfs_buf_t *bp) 149 { 150 xfs_buf_free(bp); 151 } 152 153 /* 154 * Return the address of the start of the given block number's data 155 * in a log buffer. The buffer covers a log sector-aligned region. 156 */ 157 STATIC char * 158 xlog_align( 159 struct xlog *log, 160 xfs_daddr_t blk_no, 161 int nbblks, 162 struct xfs_buf *bp) 163 { 164 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1); 165 166 ASSERT(offset + nbblks <= bp->b_length); 167 return bp->b_addr + BBTOB(offset); 168 } 169 170 171 /* 172 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 173 */ 174 STATIC int 175 xlog_bread_noalign( 176 struct xlog *log, 177 xfs_daddr_t blk_no, 178 int nbblks, 179 struct xfs_buf *bp) 180 { 181 int error; 182 183 if (!xlog_buf_bbcount_valid(log, nbblks)) { 184 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 185 nbblks); 186 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 187 return -EFSCORRUPTED; 188 } 189 190 blk_no = round_down(blk_no, log->l_sectBBsize); 191 nbblks = round_up(nbblks, log->l_sectBBsize); 192 193 ASSERT(nbblks > 0); 194 ASSERT(nbblks <= bp->b_length); 195 196 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 197 bp->b_flags |= XBF_READ; 198 bp->b_io_length = nbblks; 199 bp->b_error = 0; 200 201 error = xfs_buf_submit_wait(bp); 202 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) 203 xfs_buf_ioerror_alert(bp, __func__); 204 return error; 205 } 206 207 STATIC int 208 xlog_bread( 209 struct xlog *log, 210 xfs_daddr_t blk_no, 211 int nbblks, 212 struct xfs_buf *bp, 213 char **offset) 214 { 215 int error; 216 217 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 218 if (error) 219 return error; 220 221 *offset = xlog_align(log, blk_no, nbblks, bp); 222 return 0; 223 } 224 225 /* 226 * Read at an offset into the buffer. Returns with the buffer in it's original 227 * state regardless of the result of the read. 228 */ 229 STATIC int 230 xlog_bread_offset( 231 struct xlog *log, 232 xfs_daddr_t blk_no, /* block to read from */ 233 int nbblks, /* blocks to read */ 234 struct xfs_buf *bp, 235 char *offset) 236 { 237 char *orig_offset = bp->b_addr; 238 int orig_len = BBTOB(bp->b_length); 239 int error, error2; 240 241 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks)); 242 if (error) 243 return error; 244 245 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 246 247 /* must reset buffer pointer even on error */ 248 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len); 249 if (error) 250 return error; 251 return error2; 252 } 253 254 /* 255 * Write out the buffer at the given block for the given number of blocks. 256 * The buffer is kept locked across the write and is returned locked. 257 * This can only be used for synchronous log writes. 258 */ 259 STATIC int 260 xlog_bwrite( 261 struct xlog *log, 262 xfs_daddr_t blk_no, 263 int nbblks, 264 struct xfs_buf *bp) 265 { 266 int error; 267 268 if (!xlog_buf_bbcount_valid(log, nbblks)) { 269 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 270 nbblks); 271 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 272 return -EFSCORRUPTED; 273 } 274 275 blk_no = round_down(blk_no, log->l_sectBBsize); 276 nbblks = round_up(nbblks, log->l_sectBBsize); 277 278 ASSERT(nbblks > 0); 279 ASSERT(nbblks <= bp->b_length); 280 281 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 282 xfs_buf_hold(bp); 283 xfs_buf_lock(bp); 284 bp->b_io_length = nbblks; 285 bp->b_error = 0; 286 287 error = xfs_bwrite(bp); 288 if (error) 289 xfs_buf_ioerror_alert(bp, __func__); 290 xfs_buf_relse(bp); 291 return error; 292 } 293 294 #ifdef DEBUG 295 /* 296 * dump debug superblock and log record information 297 */ 298 STATIC void 299 xlog_header_check_dump( 300 xfs_mount_t *mp, 301 xlog_rec_header_t *head) 302 { 303 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d", 304 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 305 xfs_debug(mp, " log : uuid = %pU, fmt = %d", 306 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 307 } 308 #else 309 #define xlog_header_check_dump(mp, head) 310 #endif 311 312 /* 313 * check log record header for recovery 314 */ 315 STATIC int 316 xlog_header_check_recover( 317 xfs_mount_t *mp, 318 xlog_rec_header_t *head) 319 { 320 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 321 322 /* 323 * IRIX doesn't write the h_fmt field and leaves it zeroed 324 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 325 * a dirty log created in IRIX. 326 */ 327 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) { 328 xfs_warn(mp, 329 "dirty log written in incompatible format - can't recover"); 330 xlog_header_check_dump(mp, head); 331 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 332 XFS_ERRLEVEL_HIGH, mp); 333 return -EFSCORRUPTED; 334 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 335 xfs_warn(mp, 336 "dirty log entry has mismatched uuid - can't recover"); 337 xlog_header_check_dump(mp, head); 338 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 339 XFS_ERRLEVEL_HIGH, mp); 340 return -EFSCORRUPTED; 341 } 342 return 0; 343 } 344 345 /* 346 * read the head block of the log and check the header 347 */ 348 STATIC int 349 xlog_header_check_mount( 350 xfs_mount_t *mp, 351 xlog_rec_header_t *head) 352 { 353 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 354 355 if (uuid_is_null(&head->h_fs_uuid)) { 356 /* 357 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 358 * h_fs_uuid is null, we assume this log was last mounted 359 * by IRIX and continue. 360 */ 361 xfs_warn(mp, "null uuid in log - IRIX style log"); 362 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 363 xfs_warn(mp, "log has mismatched uuid - can't recover"); 364 xlog_header_check_dump(mp, head); 365 XFS_ERROR_REPORT("xlog_header_check_mount", 366 XFS_ERRLEVEL_HIGH, mp); 367 return -EFSCORRUPTED; 368 } 369 return 0; 370 } 371 372 STATIC void 373 xlog_recover_iodone( 374 struct xfs_buf *bp) 375 { 376 if (bp->b_error) { 377 /* 378 * We're not going to bother about retrying 379 * this during recovery. One strike! 380 */ 381 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 382 xfs_buf_ioerror_alert(bp, __func__); 383 xfs_force_shutdown(bp->b_target->bt_mount, 384 SHUTDOWN_META_IO_ERROR); 385 } 386 } 387 388 /* 389 * On v5 supers, a bli could be attached to update the metadata LSN. 390 * Clean it up. 391 */ 392 if (bp->b_fspriv) 393 xfs_buf_item_relse(bp); 394 ASSERT(bp->b_fspriv == NULL); 395 396 bp->b_iodone = NULL; 397 xfs_buf_ioend(bp); 398 } 399 400 /* 401 * This routine finds (to an approximation) the first block in the physical 402 * log which contains the given cycle. It uses a binary search algorithm. 403 * Note that the algorithm can not be perfect because the disk will not 404 * necessarily be perfect. 405 */ 406 STATIC int 407 xlog_find_cycle_start( 408 struct xlog *log, 409 struct xfs_buf *bp, 410 xfs_daddr_t first_blk, 411 xfs_daddr_t *last_blk, 412 uint cycle) 413 { 414 char *offset; 415 xfs_daddr_t mid_blk; 416 xfs_daddr_t end_blk; 417 uint mid_cycle; 418 int error; 419 420 end_blk = *last_blk; 421 mid_blk = BLK_AVG(first_blk, end_blk); 422 while (mid_blk != first_blk && mid_blk != end_blk) { 423 error = xlog_bread(log, mid_blk, 1, bp, &offset); 424 if (error) 425 return error; 426 mid_cycle = xlog_get_cycle(offset); 427 if (mid_cycle == cycle) 428 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 429 else 430 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 431 mid_blk = BLK_AVG(first_blk, end_blk); 432 } 433 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 434 (mid_blk == end_blk && mid_blk-1 == first_blk)); 435 436 *last_blk = end_blk; 437 438 return 0; 439 } 440 441 /* 442 * Check that a range of blocks does not contain stop_on_cycle_no. 443 * Fill in *new_blk with the block offset where such a block is 444 * found, or with -1 (an invalid block number) if there is no such 445 * block in the range. The scan needs to occur from front to back 446 * and the pointer into the region must be updated since a later 447 * routine will need to perform another test. 448 */ 449 STATIC int 450 xlog_find_verify_cycle( 451 struct xlog *log, 452 xfs_daddr_t start_blk, 453 int nbblks, 454 uint stop_on_cycle_no, 455 xfs_daddr_t *new_blk) 456 { 457 xfs_daddr_t i, j; 458 uint cycle; 459 xfs_buf_t *bp; 460 xfs_daddr_t bufblks; 461 char *buf = NULL; 462 int error = 0; 463 464 /* 465 * Greedily allocate a buffer big enough to handle the full 466 * range of basic blocks we'll be examining. If that fails, 467 * try a smaller size. We need to be able to read at least 468 * a log sector, or we're out of luck. 469 */ 470 bufblks = 1 << ffs(nbblks); 471 while (bufblks > log->l_logBBsize) 472 bufblks >>= 1; 473 while (!(bp = xlog_get_bp(log, bufblks))) { 474 bufblks >>= 1; 475 if (bufblks < log->l_sectBBsize) 476 return -ENOMEM; 477 } 478 479 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 480 int bcount; 481 482 bcount = min(bufblks, (start_blk + nbblks - i)); 483 484 error = xlog_bread(log, i, bcount, bp, &buf); 485 if (error) 486 goto out; 487 488 for (j = 0; j < bcount; j++) { 489 cycle = xlog_get_cycle(buf); 490 if (cycle == stop_on_cycle_no) { 491 *new_blk = i+j; 492 goto out; 493 } 494 495 buf += BBSIZE; 496 } 497 } 498 499 *new_blk = -1; 500 501 out: 502 xlog_put_bp(bp); 503 return error; 504 } 505 506 /* 507 * Potentially backup over partial log record write. 508 * 509 * In the typical case, last_blk is the number of the block directly after 510 * a good log record. Therefore, we subtract one to get the block number 511 * of the last block in the given buffer. extra_bblks contains the number 512 * of blocks we would have read on a previous read. This happens when the 513 * last log record is split over the end of the physical log. 514 * 515 * extra_bblks is the number of blocks potentially verified on a previous 516 * call to this routine. 517 */ 518 STATIC int 519 xlog_find_verify_log_record( 520 struct xlog *log, 521 xfs_daddr_t start_blk, 522 xfs_daddr_t *last_blk, 523 int extra_bblks) 524 { 525 xfs_daddr_t i; 526 xfs_buf_t *bp; 527 char *offset = NULL; 528 xlog_rec_header_t *head = NULL; 529 int error = 0; 530 int smallmem = 0; 531 int num_blks = *last_blk - start_blk; 532 int xhdrs; 533 534 ASSERT(start_blk != 0 || *last_blk != start_blk); 535 536 if (!(bp = xlog_get_bp(log, num_blks))) { 537 if (!(bp = xlog_get_bp(log, 1))) 538 return -ENOMEM; 539 smallmem = 1; 540 } else { 541 error = xlog_bread(log, start_blk, num_blks, bp, &offset); 542 if (error) 543 goto out; 544 offset += ((num_blks - 1) << BBSHIFT); 545 } 546 547 for (i = (*last_blk) - 1; i >= 0; i--) { 548 if (i < start_blk) { 549 /* valid log record not found */ 550 xfs_warn(log->l_mp, 551 "Log inconsistent (didn't find previous header)"); 552 ASSERT(0); 553 error = -EIO; 554 goto out; 555 } 556 557 if (smallmem) { 558 error = xlog_bread(log, i, 1, bp, &offset); 559 if (error) 560 goto out; 561 } 562 563 head = (xlog_rec_header_t *)offset; 564 565 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 566 break; 567 568 if (!smallmem) 569 offset -= BBSIZE; 570 } 571 572 /* 573 * We hit the beginning of the physical log & still no header. Return 574 * to caller. If caller can handle a return of -1, then this routine 575 * will be called again for the end of the physical log. 576 */ 577 if (i == -1) { 578 error = 1; 579 goto out; 580 } 581 582 /* 583 * We have the final block of the good log (the first block 584 * of the log record _before_ the head. So we check the uuid. 585 */ 586 if ((error = xlog_header_check_mount(log->l_mp, head))) 587 goto out; 588 589 /* 590 * We may have found a log record header before we expected one. 591 * last_blk will be the 1st block # with a given cycle #. We may end 592 * up reading an entire log record. In this case, we don't want to 593 * reset last_blk. Only when last_blk points in the middle of a log 594 * record do we update last_blk. 595 */ 596 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 597 uint h_size = be32_to_cpu(head->h_size); 598 599 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 600 if (h_size % XLOG_HEADER_CYCLE_SIZE) 601 xhdrs++; 602 } else { 603 xhdrs = 1; 604 } 605 606 if (*last_blk - i + extra_bblks != 607 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 608 *last_blk = i; 609 610 out: 611 xlog_put_bp(bp); 612 return error; 613 } 614 615 /* 616 * Head is defined to be the point of the log where the next log write 617 * could go. This means that incomplete LR writes at the end are 618 * eliminated when calculating the head. We aren't guaranteed that previous 619 * LR have complete transactions. We only know that a cycle number of 620 * current cycle number -1 won't be present in the log if we start writing 621 * from our current block number. 622 * 623 * last_blk contains the block number of the first block with a given 624 * cycle number. 625 * 626 * Return: zero if normal, non-zero if error. 627 */ 628 STATIC int 629 xlog_find_head( 630 struct xlog *log, 631 xfs_daddr_t *return_head_blk) 632 { 633 xfs_buf_t *bp; 634 char *offset; 635 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 636 int num_scan_bblks; 637 uint first_half_cycle, last_half_cycle; 638 uint stop_on_cycle; 639 int error, log_bbnum = log->l_logBBsize; 640 641 /* Is the end of the log device zeroed? */ 642 error = xlog_find_zeroed(log, &first_blk); 643 if (error < 0) { 644 xfs_warn(log->l_mp, "empty log check failed"); 645 return error; 646 } 647 if (error == 1) { 648 *return_head_blk = first_blk; 649 650 /* Is the whole lot zeroed? */ 651 if (!first_blk) { 652 /* Linux XFS shouldn't generate totally zeroed logs - 653 * mkfs etc write a dummy unmount record to a fresh 654 * log so we can store the uuid in there 655 */ 656 xfs_warn(log->l_mp, "totally zeroed log"); 657 } 658 659 return 0; 660 } 661 662 first_blk = 0; /* get cycle # of 1st block */ 663 bp = xlog_get_bp(log, 1); 664 if (!bp) 665 return -ENOMEM; 666 667 error = xlog_bread(log, 0, 1, bp, &offset); 668 if (error) 669 goto bp_err; 670 671 first_half_cycle = xlog_get_cycle(offset); 672 673 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 674 error = xlog_bread(log, last_blk, 1, bp, &offset); 675 if (error) 676 goto bp_err; 677 678 last_half_cycle = xlog_get_cycle(offset); 679 ASSERT(last_half_cycle != 0); 680 681 /* 682 * If the 1st half cycle number is equal to the last half cycle number, 683 * then the entire log is stamped with the same cycle number. In this 684 * case, head_blk can't be set to zero (which makes sense). The below 685 * math doesn't work out properly with head_blk equal to zero. Instead, 686 * we set it to log_bbnum which is an invalid block number, but this 687 * value makes the math correct. If head_blk doesn't changed through 688 * all the tests below, *head_blk is set to zero at the very end rather 689 * than log_bbnum. In a sense, log_bbnum and zero are the same block 690 * in a circular file. 691 */ 692 if (first_half_cycle == last_half_cycle) { 693 /* 694 * In this case we believe that the entire log should have 695 * cycle number last_half_cycle. We need to scan backwards 696 * from the end verifying that there are no holes still 697 * containing last_half_cycle - 1. If we find such a hole, 698 * then the start of that hole will be the new head. The 699 * simple case looks like 700 * x | x ... | x - 1 | x 701 * Another case that fits this picture would be 702 * x | x + 1 | x ... | x 703 * In this case the head really is somewhere at the end of the 704 * log, as one of the latest writes at the beginning was 705 * incomplete. 706 * One more case is 707 * x | x + 1 | x ... | x - 1 | x 708 * This is really the combination of the above two cases, and 709 * the head has to end up at the start of the x-1 hole at the 710 * end of the log. 711 * 712 * In the 256k log case, we will read from the beginning to the 713 * end of the log and search for cycle numbers equal to x-1. 714 * We don't worry about the x+1 blocks that we encounter, 715 * because we know that they cannot be the head since the log 716 * started with x. 717 */ 718 head_blk = log_bbnum; 719 stop_on_cycle = last_half_cycle - 1; 720 } else { 721 /* 722 * In this case we want to find the first block with cycle 723 * number matching last_half_cycle. We expect the log to be 724 * some variation on 725 * x + 1 ... | x ... | x 726 * The first block with cycle number x (last_half_cycle) will 727 * be where the new head belongs. First we do a binary search 728 * for the first occurrence of last_half_cycle. The binary 729 * search may not be totally accurate, so then we scan back 730 * from there looking for occurrences of last_half_cycle before 731 * us. If that backwards scan wraps around the beginning of 732 * the log, then we look for occurrences of last_half_cycle - 1 733 * at the end of the log. The cases we're looking for look 734 * like 735 * v binary search stopped here 736 * x + 1 ... | x | x + 1 | x ... | x 737 * ^ but we want to locate this spot 738 * or 739 * <---------> less than scan distance 740 * x + 1 ... | x ... | x - 1 | x 741 * ^ we want to locate this spot 742 */ 743 stop_on_cycle = last_half_cycle; 744 if ((error = xlog_find_cycle_start(log, bp, first_blk, 745 &head_blk, last_half_cycle))) 746 goto bp_err; 747 } 748 749 /* 750 * Now validate the answer. Scan back some number of maximum possible 751 * blocks and make sure each one has the expected cycle number. The 752 * maximum is determined by the total possible amount of buffering 753 * in the in-core log. The following number can be made tighter if 754 * we actually look at the block size of the filesystem. 755 */ 756 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 757 if (head_blk >= num_scan_bblks) { 758 /* 759 * We are guaranteed that the entire check can be performed 760 * in one buffer. 761 */ 762 start_blk = head_blk - num_scan_bblks; 763 if ((error = xlog_find_verify_cycle(log, 764 start_blk, num_scan_bblks, 765 stop_on_cycle, &new_blk))) 766 goto bp_err; 767 if (new_blk != -1) 768 head_blk = new_blk; 769 } else { /* need to read 2 parts of log */ 770 /* 771 * We are going to scan backwards in the log in two parts. 772 * First we scan the physical end of the log. In this part 773 * of the log, we are looking for blocks with cycle number 774 * last_half_cycle - 1. 775 * If we find one, then we know that the log starts there, as 776 * we've found a hole that didn't get written in going around 777 * the end of the physical log. The simple case for this is 778 * x + 1 ... | x ... | x - 1 | x 779 * <---------> less than scan distance 780 * If all of the blocks at the end of the log have cycle number 781 * last_half_cycle, then we check the blocks at the start of 782 * the log looking for occurrences of last_half_cycle. If we 783 * find one, then our current estimate for the location of the 784 * first occurrence of last_half_cycle is wrong and we move 785 * back to the hole we've found. This case looks like 786 * x + 1 ... | x | x + 1 | x ... 787 * ^ binary search stopped here 788 * Another case we need to handle that only occurs in 256k 789 * logs is 790 * x + 1 ... | x ... | x+1 | x ... 791 * ^ binary search stops here 792 * In a 256k log, the scan at the end of the log will see the 793 * x + 1 blocks. We need to skip past those since that is 794 * certainly not the head of the log. By searching for 795 * last_half_cycle-1 we accomplish that. 796 */ 797 ASSERT(head_blk <= INT_MAX && 798 (xfs_daddr_t) num_scan_bblks >= head_blk); 799 start_blk = log_bbnum - (num_scan_bblks - head_blk); 800 if ((error = xlog_find_verify_cycle(log, start_blk, 801 num_scan_bblks - (int)head_blk, 802 (stop_on_cycle - 1), &new_blk))) 803 goto bp_err; 804 if (new_blk != -1) { 805 head_blk = new_blk; 806 goto validate_head; 807 } 808 809 /* 810 * Scan beginning of log now. The last part of the physical 811 * log is good. This scan needs to verify that it doesn't find 812 * the last_half_cycle. 813 */ 814 start_blk = 0; 815 ASSERT(head_blk <= INT_MAX); 816 if ((error = xlog_find_verify_cycle(log, 817 start_blk, (int)head_blk, 818 stop_on_cycle, &new_blk))) 819 goto bp_err; 820 if (new_blk != -1) 821 head_blk = new_blk; 822 } 823 824 validate_head: 825 /* 826 * Now we need to make sure head_blk is not pointing to a block in 827 * the middle of a log record. 828 */ 829 num_scan_bblks = XLOG_REC_SHIFT(log); 830 if (head_blk >= num_scan_bblks) { 831 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 832 833 /* start ptr at last block ptr before head_blk */ 834 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 835 if (error == 1) 836 error = -EIO; 837 if (error) 838 goto bp_err; 839 } else { 840 start_blk = 0; 841 ASSERT(head_blk <= INT_MAX); 842 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 843 if (error < 0) 844 goto bp_err; 845 if (error == 1) { 846 /* We hit the beginning of the log during our search */ 847 start_blk = log_bbnum - (num_scan_bblks - head_blk); 848 new_blk = log_bbnum; 849 ASSERT(start_blk <= INT_MAX && 850 (xfs_daddr_t) log_bbnum-start_blk >= 0); 851 ASSERT(head_blk <= INT_MAX); 852 error = xlog_find_verify_log_record(log, start_blk, 853 &new_blk, (int)head_blk); 854 if (error == 1) 855 error = -EIO; 856 if (error) 857 goto bp_err; 858 if (new_blk != log_bbnum) 859 head_blk = new_blk; 860 } else if (error) 861 goto bp_err; 862 } 863 864 xlog_put_bp(bp); 865 if (head_blk == log_bbnum) 866 *return_head_blk = 0; 867 else 868 *return_head_blk = head_blk; 869 /* 870 * When returning here, we have a good block number. Bad block 871 * means that during a previous crash, we didn't have a clean break 872 * from cycle number N to cycle number N-1. In this case, we need 873 * to find the first block with cycle number N-1. 874 */ 875 return 0; 876 877 bp_err: 878 xlog_put_bp(bp); 879 880 if (error) 881 xfs_warn(log->l_mp, "failed to find log head"); 882 return error; 883 } 884 885 /* 886 * Seek backwards in the log for log record headers. 887 * 888 * Given a starting log block, walk backwards until we find the provided number 889 * of records or hit the provided tail block. The return value is the number of 890 * records encountered or a negative error code. The log block and buffer 891 * pointer of the last record seen are returned in rblk and rhead respectively. 892 */ 893 STATIC int 894 xlog_rseek_logrec_hdr( 895 struct xlog *log, 896 xfs_daddr_t head_blk, 897 xfs_daddr_t tail_blk, 898 int count, 899 struct xfs_buf *bp, 900 xfs_daddr_t *rblk, 901 struct xlog_rec_header **rhead, 902 bool *wrapped) 903 { 904 int i; 905 int error; 906 int found = 0; 907 char *offset = NULL; 908 xfs_daddr_t end_blk; 909 910 *wrapped = false; 911 912 /* 913 * Walk backwards from the head block until we hit the tail or the first 914 * block in the log. 915 */ 916 end_blk = head_blk > tail_blk ? tail_blk : 0; 917 for (i = (int) head_blk - 1; i >= end_blk; i--) { 918 error = xlog_bread(log, i, 1, bp, &offset); 919 if (error) 920 goto out_error; 921 922 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 923 *rblk = i; 924 *rhead = (struct xlog_rec_header *) offset; 925 if (++found == count) 926 break; 927 } 928 } 929 930 /* 931 * If we haven't hit the tail block or the log record header count, 932 * start looking again from the end of the physical log. Note that 933 * callers can pass head == tail if the tail is not yet known. 934 */ 935 if (tail_blk >= head_blk && found != count) { 936 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) { 937 error = xlog_bread(log, i, 1, bp, &offset); 938 if (error) 939 goto out_error; 940 941 if (*(__be32 *)offset == 942 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 943 *wrapped = true; 944 *rblk = i; 945 *rhead = (struct xlog_rec_header *) offset; 946 if (++found == count) 947 break; 948 } 949 } 950 } 951 952 return found; 953 954 out_error: 955 return error; 956 } 957 958 /* 959 * Seek forward in the log for log record headers. 960 * 961 * Given head and tail blocks, walk forward from the tail block until we find 962 * the provided number of records or hit the head block. The return value is the 963 * number of records encountered or a negative error code. The log block and 964 * buffer pointer of the last record seen are returned in rblk and rhead 965 * respectively. 966 */ 967 STATIC int 968 xlog_seek_logrec_hdr( 969 struct xlog *log, 970 xfs_daddr_t head_blk, 971 xfs_daddr_t tail_blk, 972 int count, 973 struct xfs_buf *bp, 974 xfs_daddr_t *rblk, 975 struct xlog_rec_header **rhead, 976 bool *wrapped) 977 { 978 int i; 979 int error; 980 int found = 0; 981 char *offset = NULL; 982 xfs_daddr_t end_blk; 983 984 *wrapped = false; 985 986 /* 987 * Walk forward from the tail block until we hit the head or the last 988 * block in the log. 989 */ 990 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1; 991 for (i = (int) tail_blk; i <= end_blk; i++) { 992 error = xlog_bread(log, i, 1, bp, &offset); 993 if (error) 994 goto out_error; 995 996 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 997 *rblk = i; 998 *rhead = (struct xlog_rec_header *) offset; 999 if (++found == count) 1000 break; 1001 } 1002 } 1003 1004 /* 1005 * If we haven't hit the head block or the log record header count, 1006 * start looking again from the start of the physical log. 1007 */ 1008 if (tail_blk > head_blk && found != count) { 1009 for (i = 0; i < (int) head_blk; i++) { 1010 error = xlog_bread(log, i, 1, bp, &offset); 1011 if (error) 1012 goto out_error; 1013 1014 if (*(__be32 *)offset == 1015 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 1016 *wrapped = true; 1017 *rblk = i; 1018 *rhead = (struct xlog_rec_header *) offset; 1019 if (++found == count) 1020 break; 1021 } 1022 } 1023 } 1024 1025 return found; 1026 1027 out_error: 1028 return error; 1029 } 1030 1031 /* 1032 * Calculate distance from head to tail (i.e., unused space in the log). 1033 */ 1034 static inline int 1035 xlog_tail_distance( 1036 struct xlog *log, 1037 xfs_daddr_t head_blk, 1038 xfs_daddr_t tail_blk) 1039 { 1040 if (head_blk < tail_blk) 1041 return tail_blk - head_blk; 1042 1043 return tail_blk + (log->l_logBBsize - head_blk); 1044 } 1045 1046 /* 1047 * Verify the log tail. This is particularly important when torn or incomplete 1048 * writes have been detected near the front of the log and the head has been 1049 * walked back accordingly. 1050 * 1051 * We also have to handle the case where the tail was pinned and the head 1052 * blocked behind the tail right before a crash. If the tail had been pushed 1053 * immediately prior to the crash and the subsequent checkpoint was only 1054 * partially written, it's possible it overwrote the last referenced tail in the 1055 * log with garbage. This is not a coherency problem because the tail must have 1056 * been pushed before it can be overwritten, but appears as log corruption to 1057 * recovery because we have no way to know the tail was updated if the 1058 * subsequent checkpoint didn't write successfully. 1059 * 1060 * Therefore, CRC check the log from tail to head. If a failure occurs and the 1061 * offending record is within max iclog bufs from the head, walk the tail 1062 * forward and retry until a valid tail is found or corruption is detected out 1063 * of the range of a possible overwrite. 1064 */ 1065 STATIC int 1066 xlog_verify_tail( 1067 struct xlog *log, 1068 xfs_daddr_t head_blk, 1069 xfs_daddr_t *tail_blk, 1070 int hsize) 1071 { 1072 struct xlog_rec_header *thead; 1073 struct xfs_buf *bp; 1074 xfs_daddr_t first_bad; 1075 int error = 0; 1076 bool wrapped; 1077 xfs_daddr_t tmp_tail; 1078 xfs_daddr_t orig_tail = *tail_blk; 1079 1080 bp = xlog_get_bp(log, 1); 1081 if (!bp) 1082 return -ENOMEM; 1083 1084 /* 1085 * Make sure the tail points to a record (returns positive count on 1086 * success). 1087 */ 1088 error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, bp, 1089 &tmp_tail, &thead, &wrapped); 1090 if (error < 0) 1091 goto out; 1092 if (*tail_blk != tmp_tail) 1093 *tail_blk = tmp_tail; 1094 1095 /* 1096 * Run a CRC check from the tail to the head. We can't just check 1097 * MAX_ICLOGS records past the tail because the tail may point to stale 1098 * blocks cleared during the search for the head/tail. These blocks are 1099 * overwritten with zero-length records and thus record count is not a 1100 * reliable indicator of the iclog state before a crash. 1101 */ 1102 first_bad = 0; 1103 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 1104 XLOG_RECOVER_CRCPASS, &first_bad); 1105 while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 1106 int tail_distance; 1107 1108 /* 1109 * Is corruption within range of the head? If so, retry from 1110 * the next record. Otherwise return an error. 1111 */ 1112 tail_distance = xlog_tail_distance(log, head_blk, first_bad); 1113 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize)) 1114 break; 1115 1116 /* skip to the next record; returns positive count on success */ 1117 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, bp, 1118 &tmp_tail, &thead, &wrapped); 1119 if (error < 0) 1120 goto out; 1121 1122 *tail_blk = tmp_tail; 1123 first_bad = 0; 1124 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 1125 XLOG_RECOVER_CRCPASS, &first_bad); 1126 } 1127 1128 if (!error && *tail_blk != orig_tail) 1129 xfs_warn(log->l_mp, 1130 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx", 1131 orig_tail, *tail_blk); 1132 out: 1133 xlog_put_bp(bp); 1134 return error; 1135 } 1136 1137 /* 1138 * Detect and trim torn writes from the head of the log. 1139 * 1140 * Storage without sector atomicity guarantees can result in torn writes in the 1141 * log in the event of a crash. Our only means to detect this scenario is via 1142 * CRC verification. While we can't always be certain that CRC verification 1143 * failure is due to a torn write vs. an unrelated corruption, we do know that 1144 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at 1145 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of 1146 * the log and treat failures in this range as torn writes as a matter of 1147 * policy. In the event of CRC failure, the head is walked back to the last good 1148 * record in the log and the tail is updated from that record and verified. 1149 */ 1150 STATIC int 1151 xlog_verify_head( 1152 struct xlog *log, 1153 xfs_daddr_t *head_blk, /* in/out: unverified head */ 1154 xfs_daddr_t *tail_blk, /* out: tail block */ 1155 struct xfs_buf *bp, 1156 xfs_daddr_t *rhead_blk, /* start blk of last record */ 1157 struct xlog_rec_header **rhead, /* ptr to last record */ 1158 bool *wrapped) /* last rec. wraps phys. log */ 1159 { 1160 struct xlog_rec_header *tmp_rhead; 1161 struct xfs_buf *tmp_bp; 1162 xfs_daddr_t first_bad; 1163 xfs_daddr_t tmp_rhead_blk; 1164 int found; 1165 int error; 1166 bool tmp_wrapped; 1167 1168 /* 1169 * Check the head of the log for torn writes. Search backwards from the 1170 * head until we hit the tail or the maximum number of log record I/Os 1171 * that could have been in flight at one time. Use a temporary buffer so 1172 * we don't trash the rhead/bp pointers from the caller. 1173 */ 1174 tmp_bp = xlog_get_bp(log, 1); 1175 if (!tmp_bp) 1176 return -ENOMEM; 1177 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk, 1178 XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk, 1179 &tmp_rhead, &tmp_wrapped); 1180 xlog_put_bp(tmp_bp); 1181 if (error < 0) 1182 return error; 1183 1184 /* 1185 * Now run a CRC verification pass over the records starting at the 1186 * block found above to the current head. If a CRC failure occurs, the 1187 * log block of the first bad record is saved in first_bad. 1188 */ 1189 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk, 1190 XLOG_RECOVER_CRCPASS, &first_bad); 1191 if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 1192 /* 1193 * We've hit a potential torn write. Reset the error and warn 1194 * about it. 1195 */ 1196 error = 0; 1197 xfs_warn(log->l_mp, 1198 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.", 1199 first_bad, *head_blk); 1200 1201 /* 1202 * Get the header block and buffer pointer for the last good 1203 * record before the bad record. 1204 * 1205 * Note that xlog_find_tail() clears the blocks at the new head 1206 * (i.e., the records with invalid CRC) if the cycle number 1207 * matches the the current cycle. 1208 */ 1209 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp, 1210 rhead_blk, rhead, wrapped); 1211 if (found < 0) 1212 return found; 1213 if (found == 0) /* XXX: right thing to do here? */ 1214 return -EIO; 1215 1216 /* 1217 * Reset the head block to the starting block of the first bad 1218 * log record and set the tail block based on the last good 1219 * record. 1220 * 1221 * Bail out if the updated head/tail match as this indicates 1222 * possible corruption outside of the acceptable 1223 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair... 1224 */ 1225 *head_blk = first_bad; 1226 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn)); 1227 if (*head_blk == *tail_blk) { 1228 ASSERT(0); 1229 return 0; 1230 } 1231 } 1232 if (error) 1233 return error; 1234 1235 return xlog_verify_tail(log, *head_blk, tail_blk, 1236 be32_to_cpu((*rhead)->h_size)); 1237 } 1238 1239 /* 1240 * Check whether the head of the log points to an unmount record. In other 1241 * words, determine whether the log is clean. If so, update the in-core state 1242 * appropriately. 1243 */ 1244 static int 1245 xlog_check_unmount_rec( 1246 struct xlog *log, 1247 xfs_daddr_t *head_blk, 1248 xfs_daddr_t *tail_blk, 1249 struct xlog_rec_header *rhead, 1250 xfs_daddr_t rhead_blk, 1251 struct xfs_buf *bp, 1252 bool *clean) 1253 { 1254 struct xlog_op_header *op_head; 1255 xfs_daddr_t umount_data_blk; 1256 xfs_daddr_t after_umount_blk; 1257 int hblks; 1258 int error; 1259 char *offset; 1260 1261 *clean = false; 1262 1263 /* 1264 * Look for unmount record. If we find it, then we know there was a 1265 * clean unmount. Since 'i' could be the last block in the physical 1266 * log, we convert to a log block before comparing to the head_blk. 1267 * 1268 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks() 1269 * below. We won't want to clear the unmount record if there is one, so 1270 * we pass the lsn of the unmount record rather than the block after it. 1271 */ 1272 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1273 int h_size = be32_to_cpu(rhead->h_size); 1274 int h_version = be32_to_cpu(rhead->h_version); 1275 1276 if ((h_version & XLOG_VERSION_2) && 1277 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 1278 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 1279 if (h_size % XLOG_HEADER_CYCLE_SIZE) 1280 hblks++; 1281 } else { 1282 hblks = 1; 1283 } 1284 } else { 1285 hblks = 1; 1286 } 1287 after_umount_blk = rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)); 1288 after_umount_blk = do_mod(after_umount_blk, log->l_logBBsize); 1289 if (*head_blk == after_umount_blk && 1290 be32_to_cpu(rhead->h_num_logops) == 1) { 1291 umount_data_blk = rhead_blk + hblks; 1292 umount_data_blk = do_mod(umount_data_blk, log->l_logBBsize); 1293 error = xlog_bread(log, umount_data_blk, 1, bp, &offset); 1294 if (error) 1295 return error; 1296 1297 op_head = (struct xlog_op_header *)offset; 1298 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 1299 /* 1300 * Set tail and last sync so that newly written log 1301 * records will point recovery to after the current 1302 * unmount record. 1303 */ 1304 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1305 log->l_curr_cycle, after_umount_blk); 1306 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1307 log->l_curr_cycle, after_umount_blk); 1308 *tail_blk = after_umount_blk; 1309 1310 *clean = true; 1311 } 1312 } 1313 1314 return 0; 1315 } 1316 1317 static void 1318 xlog_set_state( 1319 struct xlog *log, 1320 xfs_daddr_t head_blk, 1321 struct xlog_rec_header *rhead, 1322 xfs_daddr_t rhead_blk, 1323 bool bump_cycle) 1324 { 1325 /* 1326 * Reset log values according to the state of the log when we 1327 * crashed. In the case where head_blk == 0, we bump curr_cycle 1328 * one because the next write starts a new cycle rather than 1329 * continuing the cycle of the last good log record. At this 1330 * point we have guaranteed that all partial log records have been 1331 * accounted for. Therefore, we know that the last good log record 1332 * written was complete and ended exactly on the end boundary 1333 * of the physical log. 1334 */ 1335 log->l_prev_block = rhead_blk; 1336 log->l_curr_block = (int)head_blk; 1337 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 1338 if (bump_cycle) 1339 log->l_curr_cycle++; 1340 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); 1341 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); 1342 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, 1343 BBTOB(log->l_curr_block)); 1344 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, 1345 BBTOB(log->l_curr_block)); 1346 } 1347 1348 /* 1349 * Find the sync block number or the tail of the log. 1350 * 1351 * This will be the block number of the last record to have its 1352 * associated buffers synced to disk. Every log record header has 1353 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 1354 * to get a sync block number. The only concern is to figure out which 1355 * log record header to believe. 1356 * 1357 * The following algorithm uses the log record header with the largest 1358 * lsn. The entire log record does not need to be valid. We only care 1359 * that the header is valid. 1360 * 1361 * We could speed up search by using current head_blk buffer, but it is not 1362 * available. 1363 */ 1364 STATIC int 1365 xlog_find_tail( 1366 struct xlog *log, 1367 xfs_daddr_t *head_blk, 1368 xfs_daddr_t *tail_blk) 1369 { 1370 xlog_rec_header_t *rhead; 1371 char *offset = NULL; 1372 xfs_buf_t *bp; 1373 int error; 1374 xfs_daddr_t rhead_blk; 1375 xfs_lsn_t tail_lsn; 1376 bool wrapped = false; 1377 bool clean = false; 1378 1379 /* 1380 * Find previous log record 1381 */ 1382 if ((error = xlog_find_head(log, head_blk))) 1383 return error; 1384 ASSERT(*head_blk < INT_MAX); 1385 1386 bp = xlog_get_bp(log, 1); 1387 if (!bp) 1388 return -ENOMEM; 1389 if (*head_blk == 0) { /* special case */ 1390 error = xlog_bread(log, 0, 1, bp, &offset); 1391 if (error) 1392 goto done; 1393 1394 if (xlog_get_cycle(offset) == 0) { 1395 *tail_blk = 0; 1396 /* leave all other log inited values alone */ 1397 goto done; 1398 } 1399 } 1400 1401 /* 1402 * Search backwards through the log looking for the log record header 1403 * block. This wraps all the way back around to the head so something is 1404 * seriously wrong if we can't find it. 1405 */ 1406 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp, 1407 &rhead_blk, &rhead, &wrapped); 1408 if (error < 0) 1409 return error; 1410 if (!error) { 1411 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); 1412 return -EIO; 1413 } 1414 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 1415 1416 /* 1417 * Set the log state based on the current head record. 1418 */ 1419 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped); 1420 tail_lsn = atomic64_read(&log->l_tail_lsn); 1421 1422 /* 1423 * Look for an unmount record at the head of the log. This sets the log 1424 * state to determine whether recovery is necessary. 1425 */ 1426 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead, 1427 rhead_blk, bp, &clean); 1428 if (error) 1429 goto done; 1430 1431 /* 1432 * Verify the log head if the log is not clean (e.g., we have anything 1433 * but an unmount record at the head). This uses CRC verification to 1434 * detect and trim torn writes. If discovered, CRC failures are 1435 * considered torn writes and the log head is trimmed accordingly. 1436 * 1437 * Note that we can only run CRC verification when the log is dirty 1438 * because there's no guarantee that the log data behind an unmount 1439 * record is compatible with the current architecture. 1440 */ 1441 if (!clean) { 1442 xfs_daddr_t orig_head = *head_blk; 1443 1444 error = xlog_verify_head(log, head_blk, tail_blk, bp, 1445 &rhead_blk, &rhead, &wrapped); 1446 if (error) 1447 goto done; 1448 1449 /* update in-core state again if the head changed */ 1450 if (*head_blk != orig_head) { 1451 xlog_set_state(log, *head_blk, rhead, rhead_blk, 1452 wrapped); 1453 tail_lsn = atomic64_read(&log->l_tail_lsn); 1454 error = xlog_check_unmount_rec(log, head_blk, tail_blk, 1455 rhead, rhead_blk, bp, 1456 &clean); 1457 if (error) 1458 goto done; 1459 } 1460 } 1461 1462 /* 1463 * Note that the unmount was clean. If the unmount was not clean, we 1464 * need to know this to rebuild the superblock counters from the perag 1465 * headers if we have a filesystem using non-persistent counters. 1466 */ 1467 if (clean) 1468 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 1469 1470 /* 1471 * Make sure that there are no blocks in front of the head 1472 * with the same cycle number as the head. This can happen 1473 * because we allow multiple outstanding log writes concurrently, 1474 * and the later writes might make it out before earlier ones. 1475 * 1476 * We use the lsn from before modifying it so that we'll never 1477 * overwrite the unmount record after a clean unmount. 1478 * 1479 * Do this only if we are going to recover the filesystem 1480 * 1481 * NOTE: This used to say "if (!readonly)" 1482 * However on Linux, we can & do recover a read-only filesystem. 1483 * We only skip recovery if NORECOVERY is specified on mount, 1484 * in which case we would not be here. 1485 * 1486 * But... if the -device- itself is readonly, just skip this. 1487 * We can't recover this device anyway, so it won't matter. 1488 */ 1489 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) 1490 error = xlog_clear_stale_blocks(log, tail_lsn); 1491 1492 done: 1493 xlog_put_bp(bp); 1494 1495 if (error) 1496 xfs_warn(log->l_mp, "failed to locate log tail"); 1497 return error; 1498 } 1499 1500 /* 1501 * Is the log zeroed at all? 1502 * 1503 * The last binary search should be changed to perform an X block read 1504 * once X becomes small enough. You can then search linearly through 1505 * the X blocks. This will cut down on the number of reads we need to do. 1506 * 1507 * If the log is partially zeroed, this routine will pass back the blkno 1508 * of the first block with cycle number 0. It won't have a complete LR 1509 * preceding it. 1510 * 1511 * Return: 1512 * 0 => the log is completely written to 1513 * 1 => use *blk_no as the first block of the log 1514 * <0 => error has occurred 1515 */ 1516 STATIC int 1517 xlog_find_zeroed( 1518 struct xlog *log, 1519 xfs_daddr_t *blk_no) 1520 { 1521 xfs_buf_t *bp; 1522 char *offset; 1523 uint first_cycle, last_cycle; 1524 xfs_daddr_t new_blk, last_blk, start_blk; 1525 xfs_daddr_t num_scan_bblks; 1526 int error, log_bbnum = log->l_logBBsize; 1527 1528 *blk_no = 0; 1529 1530 /* check totally zeroed log */ 1531 bp = xlog_get_bp(log, 1); 1532 if (!bp) 1533 return -ENOMEM; 1534 error = xlog_bread(log, 0, 1, bp, &offset); 1535 if (error) 1536 goto bp_err; 1537 1538 first_cycle = xlog_get_cycle(offset); 1539 if (first_cycle == 0) { /* completely zeroed log */ 1540 *blk_no = 0; 1541 xlog_put_bp(bp); 1542 return 1; 1543 } 1544 1545 /* check partially zeroed log */ 1546 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset); 1547 if (error) 1548 goto bp_err; 1549 1550 last_cycle = xlog_get_cycle(offset); 1551 if (last_cycle != 0) { /* log completely written to */ 1552 xlog_put_bp(bp); 1553 return 0; 1554 } else if (first_cycle != 1) { 1555 /* 1556 * If the cycle of the last block is zero, the cycle of 1557 * the first block must be 1. If it's not, maybe we're 1558 * not looking at a log... Bail out. 1559 */ 1560 xfs_warn(log->l_mp, 1561 "Log inconsistent or not a log (last==0, first!=1)"); 1562 error = -EINVAL; 1563 goto bp_err; 1564 } 1565 1566 /* we have a partially zeroed log */ 1567 last_blk = log_bbnum-1; 1568 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1569 goto bp_err; 1570 1571 /* 1572 * Validate the answer. Because there is no way to guarantee that 1573 * the entire log is made up of log records which are the same size, 1574 * we scan over the defined maximum blocks. At this point, the maximum 1575 * is not chosen to mean anything special. XXXmiken 1576 */ 1577 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1578 ASSERT(num_scan_bblks <= INT_MAX); 1579 1580 if (last_blk < num_scan_bblks) 1581 num_scan_bblks = last_blk; 1582 start_blk = last_blk - num_scan_bblks; 1583 1584 /* 1585 * We search for any instances of cycle number 0 that occur before 1586 * our current estimate of the head. What we're trying to detect is 1587 * 1 ... | 0 | 1 | 0... 1588 * ^ binary search ends here 1589 */ 1590 if ((error = xlog_find_verify_cycle(log, start_blk, 1591 (int)num_scan_bblks, 0, &new_blk))) 1592 goto bp_err; 1593 if (new_blk != -1) 1594 last_blk = new_blk; 1595 1596 /* 1597 * Potentially backup over partial log record write. We don't need 1598 * to search the end of the log because we know it is zero. 1599 */ 1600 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0); 1601 if (error == 1) 1602 error = -EIO; 1603 if (error) 1604 goto bp_err; 1605 1606 *blk_no = last_blk; 1607 bp_err: 1608 xlog_put_bp(bp); 1609 if (error) 1610 return error; 1611 return 1; 1612 } 1613 1614 /* 1615 * These are simple subroutines used by xlog_clear_stale_blocks() below 1616 * to initialize a buffer full of empty log record headers and write 1617 * them into the log. 1618 */ 1619 STATIC void 1620 xlog_add_record( 1621 struct xlog *log, 1622 char *buf, 1623 int cycle, 1624 int block, 1625 int tail_cycle, 1626 int tail_block) 1627 { 1628 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1629 1630 memset(buf, 0, BBSIZE); 1631 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1632 recp->h_cycle = cpu_to_be32(cycle); 1633 recp->h_version = cpu_to_be32( 1634 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1635 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1636 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1637 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1638 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1639 } 1640 1641 STATIC int 1642 xlog_write_log_records( 1643 struct xlog *log, 1644 int cycle, 1645 int start_block, 1646 int blocks, 1647 int tail_cycle, 1648 int tail_block) 1649 { 1650 char *offset; 1651 xfs_buf_t *bp; 1652 int balign, ealign; 1653 int sectbb = log->l_sectBBsize; 1654 int end_block = start_block + blocks; 1655 int bufblks; 1656 int error = 0; 1657 int i, j = 0; 1658 1659 /* 1660 * Greedily allocate a buffer big enough to handle the full 1661 * range of basic blocks to be written. If that fails, try 1662 * a smaller size. We need to be able to write at least a 1663 * log sector, or we're out of luck. 1664 */ 1665 bufblks = 1 << ffs(blocks); 1666 while (bufblks > log->l_logBBsize) 1667 bufblks >>= 1; 1668 while (!(bp = xlog_get_bp(log, bufblks))) { 1669 bufblks >>= 1; 1670 if (bufblks < sectbb) 1671 return -ENOMEM; 1672 } 1673 1674 /* We may need to do a read at the start to fill in part of 1675 * the buffer in the starting sector not covered by the first 1676 * write below. 1677 */ 1678 balign = round_down(start_block, sectbb); 1679 if (balign != start_block) { 1680 error = xlog_bread_noalign(log, start_block, 1, bp); 1681 if (error) 1682 goto out_put_bp; 1683 1684 j = start_block - balign; 1685 } 1686 1687 for (i = start_block; i < end_block; i += bufblks) { 1688 int bcount, endcount; 1689 1690 bcount = min(bufblks, end_block - start_block); 1691 endcount = bcount - j; 1692 1693 /* We may need to do a read at the end to fill in part of 1694 * the buffer in the final sector not covered by the write. 1695 * If this is the same sector as the above read, skip it. 1696 */ 1697 ealign = round_down(end_block, sectbb); 1698 if (j == 0 && (start_block + endcount > ealign)) { 1699 offset = bp->b_addr + BBTOB(ealign - start_block); 1700 error = xlog_bread_offset(log, ealign, sectbb, 1701 bp, offset); 1702 if (error) 1703 break; 1704 1705 } 1706 1707 offset = xlog_align(log, start_block, endcount, bp); 1708 for (; j < endcount; j++) { 1709 xlog_add_record(log, offset, cycle, i+j, 1710 tail_cycle, tail_block); 1711 offset += BBSIZE; 1712 } 1713 error = xlog_bwrite(log, start_block, endcount, bp); 1714 if (error) 1715 break; 1716 start_block += endcount; 1717 j = 0; 1718 } 1719 1720 out_put_bp: 1721 xlog_put_bp(bp); 1722 return error; 1723 } 1724 1725 /* 1726 * This routine is called to blow away any incomplete log writes out 1727 * in front of the log head. We do this so that we won't become confused 1728 * if we come up, write only a little bit more, and then crash again. 1729 * If we leave the partial log records out there, this situation could 1730 * cause us to think those partial writes are valid blocks since they 1731 * have the current cycle number. We get rid of them by overwriting them 1732 * with empty log records with the old cycle number rather than the 1733 * current one. 1734 * 1735 * The tail lsn is passed in rather than taken from 1736 * the log so that we will not write over the unmount record after a 1737 * clean unmount in a 512 block log. Doing so would leave the log without 1738 * any valid log records in it until a new one was written. If we crashed 1739 * during that time we would not be able to recover. 1740 */ 1741 STATIC int 1742 xlog_clear_stale_blocks( 1743 struct xlog *log, 1744 xfs_lsn_t tail_lsn) 1745 { 1746 int tail_cycle, head_cycle; 1747 int tail_block, head_block; 1748 int tail_distance, max_distance; 1749 int distance; 1750 int error; 1751 1752 tail_cycle = CYCLE_LSN(tail_lsn); 1753 tail_block = BLOCK_LSN(tail_lsn); 1754 head_cycle = log->l_curr_cycle; 1755 head_block = log->l_curr_block; 1756 1757 /* 1758 * Figure out the distance between the new head of the log 1759 * and the tail. We want to write over any blocks beyond the 1760 * head that we may have written just before the crash, but 1761 * we don't want to overwrite the tail of the log. 1762 */ 1763 if (head_cycle == tail_cycle) { 1764 /* 1765 * The tail is behind the head in the physical log, 1766 * so the distance from the head to the tail is the 1767 * distance from the head to the end of the log plus 1768 * the distance from the beginning of the log to the 1769 * tail. 1770 */ 1771 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1772 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1773 XFS_ERRLEVEL_LOW, log->l_mp); 1774 return -EFSCORRUPTED; 1775 } 1776 tail_distance = tail_block + (log->l_logBBsize - head_block); 1777 } else { 1778 /* 1779 * The head is behind the tail in the physical log, 1780 * so the distance from the head to the tail is just 1781 * the tail block minus the head block. 1782 */ 1783 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1784 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1785 XFS_ERRLEVEL_LOW, log->l_mp); 1786 return -EFSCORRUPTED; 1787 } 1788 tail_distance = tail_block - head_block; 1789 } 1790 1791 /* 1792 * If the head is right up against the tail, we can't clear 1793 * anything. 1794 */ 1795 if (tail_distance <= 0) { 1796 ASSERT(tail_distance == 0); 1797 return 0; 1798 } 1799 1800 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1801 /* 1802 * Take the smaller of the maximum amount of outstanding I/O 1803 * we could have and the distance to the tail to clear out. 1804 * We take the smaller so that we don't overwrite the tail and 1805 * we don't waste all day writing from the head to the tail 1806 * for no reason. 1807 */ 1808 max_distance = MIN(max_distance, tail_distance); 1809 1810 if ((head_block + max_distance) <= log->l_logBBsize) { 1811 /* 1812 * We can stomp all the blocks we need to without 1813 * wrapping around the end of the log. Just do it 1814 * in a single write. Use the cycle number of the 1815 * current cycle minus one so that the log will look like: 1816 * n ... | n - 1 ... 1817 */ 1818 error = xlog_write_log_records(log, (head_cycle - 1), 1819 head_block, max_distance, tail_cycle, 1820 tail_block); 1821 if (error) 1822 return error; 1823 } else { 1824 /* 1825 * We need to wrap around the end of the physical log in 1826 * order to clear all the blocks. Do it in two separate 1827 * I/Os. The first write should be from the head to the 1828 * end of the physical log, and it should use the current 1829 * cycle number minus one just like above. 1830 */ 1831 distance = log->l_logBBsize - head_block; 1832 error = xlog_write_log_records(log, (head_cycle - 1), 1833 head_block, distance, tail_cycle, 1834 tail_block); 1835 1836 if (error) 1837 return error; 1838 1839 /* 1840 * Now write the blocks at the start of the physical log. 1841 * This writes the remainder of the blocks we want to clear. 1842 * It uses the current cycle number since we're now on the 1843 * same cycle as the head so that we get: 1844 * n ... n ... | n - 1 ... 1845 * ^^^^^ blocks we're writing 1846 */ 1847 distance = max_distance - (log->l_logBBsize - head_block); 1848 error = xlog_write_log_records(log, head_cycle, 0, distance, 1849 tail_cycle, tail_block); 1850 if (error) 1851 return error; 1852 } 1853 1854 return 0; 1855 } 1856 1857 /****************************************************************************** 1858 * 1859 * Log recover routines 1860 * 1861 ****************************************************************************** 1862 */ 1863 1864 /* 1865 * Sort the log items in the transaction. 1866 * 1867 * The ordering constraints are defined by the inode allocation and unlink 1868 * behaviour. The rules are: 1869 * 1870 * 1. Every item is only logged once in a given transaction. Hence it 1871 * represents the last logged state of the item. Hence ordering is 1872 * dependent on the order in which operations need to be performed so 1873 * required initial conditions are always met. 1874 * 1875 * 2. Cancelled buffers are recorded in pass 1 in a separate table and 1876 * there's nothing to replay from them so we can simply cull them 1877 * from the transaction. However, we can't do that until after we've 1878 * replayed all the other items because they may be dependent on the 1879 * cancelled buffer and replaying the cancelled buffer can remove it 1880 * form the cancelled buffer table. Hence they have tobe done last. 1881 * 1882 * 3. Inode allocation buffers must be replayed before inode items that 1883 * read the buffer and replay changes into it. For filesystems using the 1884 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get 1885 * treated the same as inode allocation buffers as they create and 1886 * initialise the buffers directly. 1887 * 1888 * 4. Inode unlink buffers must be replayed after inode items are replayed. 1889 * This ensures that inodes are completely flushed to the inode buffer 1890 * in a "free" state before we remove the unlinked inode list pointer. 1891 * 1892 * Hence the ordering needs to be inode allocation buffers first, inode items 1893 * second, inode unlink buffers third and cancelled buffers last. 1894 * 1895 * But there's a problem with that - we can't tell an inode allocation buffer 1896 * apart from a regular buffer, so we can't separate them. We can, however, 1897 * tell an inode unlink buffer from the others, and so we can separate them out 1898 * from all the other buffers and move them to last. 1899 * 1900 * Hence, 4 lists, in order from head to tail: 1901 * - buffer_list for all buffers except cancelled/inode unlink buffers 1902 * - item_list for all non-buffer items 1903 * - inode_buffer_list for inode unlink buffers 1904 * - cancel_list for the cancelled buffers 1905 * 1906 * Note that we add objects to the tail of the lists so that first-to-last 1907 * ordering is preserved within the lists. Adding objects to the head of the 1908 * list means when we traverse from the head we walk them in last-to-first 1909 * order. For cancelled buffers and inode unlink buffers this doesn't matter, 1910 * but for all other items there may be specific ordering that we need to 1911 * preserve. 1912 */ 1913 STATIC int 1914 xlog_recover_reorder_trans( 1915 struct xlog *log, 1916 struct xlog_recover *trans, 1917 int pass) 1918 { 1919 xlog_recover_item_t *item, *n; 1920 int error = 0; 1921 LIST_HEAD(sort_list); 1922 LIST_HEAD(cancel_list); 1923 LIST_HEAD(buffer_list); 1924 LIST_HEAD(inode_buffer_list); 1925 LIST_HEAD(inode_list); 1926 1927 list_splice_init(&trans->r_itemq, &sort_list); 1928 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1929 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1930 1931 switch (ITEM_TYPE(item)) { 1932 case XFS_LI_ICREATE: 1933 list_move_tail(&item->ri_list, &buffer_list); 1934 break; 1935 case XFS_LI_BUF: 1936 if (buf_f->blf_flags & XFS_BLF_CANCEL) { 1937 trace_xfs_log_recover_item_reorder_head(log, 1938 trans, item, pass); 1939 list_move(&item->ri_list, &cancel_list); 1940 break; 1941 } 1942 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 1943 list_move(&item->ri_list, &inode_buffer_list); 1944 break; 1945 } 1946 list_move_tail(&item->ri_list, &buffer_list); 1947 break; 1948 case XFS_LI_INODE: 1949 case XFS_LI_DQUOT: 1950 case XFS_LI_QUOTAOFF: 1951 case XFS_LI_EFD: 1952 case XFS_LI_EFI: 1953 case XFS_LI_RUI: 1954 case XFS_LI_RUD: 1955 case XFS_LI_CUI: 1956 case XFS_LI_CUD: 1957 case XFS_LI_BUI: 1958 case XFS_LI_BUD: 1959 trace_xfs_log_recover_item_reorder_tail(log, 1960 trans, item, pass); 1961 list_move_tail(&item->ri_list, &inode_list); 1962 break; 1963 default: 1964 xfs_warn(log->l_mp, 1965 "%s: unrecognized type of log operation", 1966 __func__); 1967 ASSERT(0); 1968 /* 1969 * return the remaining items back to the transaction 1970 * item list so they can be freed in caller. 1971 */ 1972 if (!list_empty(&sort_list)) 1973 list_splice_init(&sort_list, &trans->r_itemq); 1974 error = -EIO; 1975 goto out; 1976 } 1977 } 1978 out: 1979 ASSERT(list_empty(&sort_list)); 1980 if (!list_empty(&buffer_list)) 1981 list_splice(&buffer_list, &trans->r_itemq); 1982 if (!list_empty(&inode_list)) 1983 list_splice_tail(&inode_list, &trans->r_itemq); 1984 if (!list_empty(&inode_buffer_list)) 1985 list_splice_tail(&inode_buffer_list, &trans->r_itemq); 1986 if (!list_empty(&cancel_list)) 1987 list_splice_tail(&cancel_list, &trans->r_itemq); 1988 return error; 1989 } 1990 1991 /* 1992 * Build up the table of buf cancel records so that we don't replay 1993 * cancelled data in the second pass. For buffer records that are 1994 * not cancel records, there is nothing to do here so we just return. 1995 * 1996 * If we get a cancel record which is already in the table, this indicates 1997 * that the buffer was cancelled multiple times. In order to ensure 1998 * that during pass 2 we keep the record in the table until we reach its 1999 * last occurrence in the log, we keep a reference count in the cancel 2000 * record in the table to tell us how many times we expect to see this 2001 * record during the second pass. 2002 */ 2003 STATIC int 2004 xlog_recover_buffer_pass1( 2005 struct xlog *log, 2006 struct xlog_recover_item *item) 2007 { 2008 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2009 struct list_head *bucket; 2010 struct xfs_buf_cancel *bcp; 2011 2012 /* 2013 * If this isn't a cancel buffer item, then just return. 2014 */ 2015 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 2016 trace_xfs_log_recover_buf_not_cancel(log, buf_f); 2017 return 0; 2018 } 2019 2020 /* 2021 * Insert an xfs_buf_cancel record into the hash table of them. 2022 * If there is already an identical record, bump its reference count. 2023 */ 2024 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno); 2025 list_for_each_entry(bcp, bucket, bc_list) { 2026 if (bcp->bc_blkno == buf_f->blf_blkno && 2027 bcp->bc_len == buf_f->blf_len) { 2028 bcp->bc_refcount++; 2029 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f); 2030 return 0; 2031 } 2032 } 2033 2034 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP); 2035 bcp->bc_blkno = buf_f->blf_blkno; 2036 bcp->bc_len = buf_f->blf_len; 2037 bcp->bc_refcount = 1; 2038 list_add_tail(&bcp->bc_list, bucket); 2039 2040 trace_xfs_log_recover_buf_cancel_add(log, buf_f); 2041 return 0; 2042 } 2043 2044 /* 2045 * Check to see whether the buffer being recovered has a corresponding 2046 * entry in the buffer cancel record table. If it is, return the cancel 2047 * buffer structure to the caller. 2048 */ 2049 STATIC struct xfs_buf_cancel * 2050 xlog_peek_buffer_cancelled( 2051 struct xlog *log, 2052 xfs_daddr_t blkno, 2053 uint len, 2054 unsigned short flags) 2055 { 2056 struct list_head *bucket; 2057 struct xfs_buf_cancel *bcp; 2058 2059 if (!log->l_buf_cancel_table) { 2060 /* empty table means no cancelled buffers in the log */ 2061 ASSERT(!(flags & XFS_BLF_CANCEL)); 2062 return NULL; 2063 } 2064 2065 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); 2066 list_for_each_entry(bcp, bucket, bc_list) { 2067 if (bcp->bc_blkno == blkno && bcp->bc_len == len) 2068 return bcp; 2069 } 2070 2071 /* 2072 * We didn't find a corresponding entry in the table, so return 0 so 2073 * that the buffer is NOT cancelled. 2074 */ 2075 ASSERT(!(flags & XFS_BLF_CANCEL)); 2076 return NULL; 2077 } 2078 2079 /* 2080 * If the buffer is being cancelled then return 1 so that it will be cancelled, 2081 * otherwise return 0. If the buffer is actually a buffer cancel item 2082 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the 2083 * table and remove it from the table if this is the last reference. 2084 * 2085 * We remove the cancel record from the table when we encounter its last 2086 * occurrence in the log so that if the same buffer is re-used again after its 2087 * last cancellation we actually replay the changes made at that point. 2088 */ 2089 STATIC int 2090 xlog_check_buffer_cancelled( 2091 struct xlog *log, 2092 xfs_daddr_t blkno, 2093 uint len, 2094 unsigned short flags) 2095 { 2096 struct xfs_buf_cancel *bcp; 2097 2098 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags); 2099 if (!bcp) 2100 return 0; 2101 2102 /* 2103 * We've go a match, so return 1 so that the recovery of this buffer 2104 * is cancelled. If this buffer is actually a buffer cancel log 2105 * item, then decrement the refcount on the one in the table and 2106 * remove it if this is the last reference. 2107 */ 2108 if (flags & XFS_BLF_CANCEL) { 2109 if (--bcp->bc_refcount == 0) { 2110 list_del(&bcp->bc_list); 2111 kmem_free(bcp); 2112 } 2113 } 2114 return 1; 2115 } 2116 2117 /* 2118 * Perform recovery for a buffer full of inodes. In these buffers, the only 2119 * data which should be recovered is that which corresponds to the 2120 * di_next_unlinked pointers in the on disk inode structures. The rest of the 2121 * data for the inodes is always logged through the inodes themselves rather 2122 * than the inode buffer and is recovered in xlog_recover_inode_pass2(). 2123 * 2124 * The only time when buffers full of inodes are fully recovered is when the 2125 * buffer is full of newly allocated inodes. In this case the buffer will 2126 * not be marked as an inode buffer and so will be sent to 2127 * xlog_recover_do_reg_buffer() below during recovery. 2128 */ 2129 STATIC int 2130 xlog_recover_do_inode_buffer( 2131 struct xfs_mount *mp, 2132 xlog_recover_item_t *item, 2133 struct xfs_buf *bp, 2134 xfs_buf_log_format_t *buf_f) 2135 { 2136 int i; 2137 int item_index = 0; 2138 int bit = 0; 2139 int nbits = 0; 2140 int reg_buf_offset = 0; 2141 int reg_buf_bytes = 0; 2142 int next_unlinked_offset; 2143 int inodes_per_buf; 2144 xfs_agino_t *logged_nextp; 2145 xfs_agino_t *buffer_nextp; 2146 2147 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); 2148 2149 /* 2150 * Post recovery validation only works properly on CRC enabled 2151 * filesystems. 2152 */ 2153 if (xfs_sb_version_hascrc(&mp->m_sb)) 2154 bp->b_ops = &xfs_inode_buf_ops; 2155 2156 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog; 2157 for (i = 0; i < inodes_per_buf; i++) { 2158 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 2159 offsetof(xfs_dinode_t, di_next_unlinked); 2160 2161 while (next_unlinked_offset >= 2162 (reg_buf_offset + reg_buf_bytes)) { 2163 /* 2164 * The next di_next_unlinked field is beyond 2165 * the current logged region. Find the next 2166 * logged region that contains or is beyond 2167 * the current di_next_unlinked field. 2168 */ 2169 bit += nbits; 2170 bit = xfs_next_bit(buf_f->blf_data_map, 2171 buf_f->blf_map_size, bit); 2172 2173 /* 2174 * If there are no more logged regions in the 2175 * buffer, then we're done. 2176 */ 2177 if (bit == -1) 2178 return 0; 2179 2180 nbits = xfs_contig_bits(buf_f->blf_data_map, 2181 buf_f->blf_map_size, bit); 2182 ASSERT(nbits > 0); 2183 reg_buf_offset = bit << XFS_BLF_SHIFT; 2184 reg_buf_bytes = nbits << XFS_BLF_SHIFT; 2185 item_index++; 2186 } 2187 2188 /* 2189 * If the current logged region starts after the current 2190 * di_next_unlinked field, then move on to the next 2191 * di_next_unlinked field. 2192 */ 2193 if (next_unlinked_offset < reg_buf_offset) 2194 continue; 2195 2196 ASSERT(item->ri_buf[item_index].i_addr != NULL); 2197 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); 2198 ASSERT((reg_buf_offset + reg_buf_bytes) <= 2199 BBTOB(bp->b_io_length)); 2200 2201 /* 2202 * The current logged region contains a copy of the 2203 * current di_next_unlinked field. Extract its value 2204 * and copy it to the buffer copy. 2205 */ 2206 logged_nextp = item->ri_buf[item_index].i_addr + 2207 next_unlinked_offset - reg_buf_offset; 2208 if (unlikely(*logged_nextp == 0)) { 2209 xfs_alert(mp, 2210 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). " 2211 "Trying to replay bad (0) inode di_next_unlinked field.", 2212 item, bp); 2213 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 2214 XFS_ERRLEVEL_LOW, mp); 2215 return -EFSCORRUPTED; 2216 } 2217 2218 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset); 2219 *buffer_nextp = *logged_nextp; 2220 2221 /* 2222 * If necessary, recalculate the CRC in the on-disk inode. We 2223 * have to leave the inode in a consistent state for whoever 2224 * reads it next.... 2225 */ 2226 xfs_dinode_calc_crc(mp, 2227 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); 2228 2229 } 2230 2231 return 0; 2232 } 2233 2234 /* 2235 * V5 filesystems know the age of the buffer on disk being recovered. We can 2236 * have newer objects on disk than we are replaying, and so for these cases we 2237 * don't want to replay the current change as that will make the buffer contents 2238 * temporarily invalid on disk. 2239 * 2240 * The magic number might not match the buffer type we are going to recover 2241 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence 2242 * extract the LSN of the existing object in the buffer based on it's current 2243 * magic number. If we don't recognise the magic number in the buffer, then 2244 * return a LSN of -1 so that the caller knows it was an unrecognised block and 2245 * so can recover the buffer. 2246 * 2247 * Note: we cannot rely solely on magic number matches to determine that the 2248 * buffer has a valid LSN - we also need to verify that it belongs to this 2249 * filesystem, so we need to extract the object's LSN and compare it to that 2250 * which we read from the superblock. If the UUIDs don't match, then we've got a 2251 * stale metadata block from an old filesystem instance that we need to recover 2252 * over the top of. 2253 */ 2254 static xfs_lsn_t 2255 xlog_recover_get_buf_lsn( 2256 struct xfs_mount *mp, 2257 struct xfs_buf *bp) 2258 { 2259 uint32_t magic32; 2260 uint16_t magic16; 2261 uint16_t magicda; 2262 void *blk = bp->b_addr; 2263 uuid_t *uuid; 2264 xfs_lsn_t lsn = -1; 2265 2266 /* v4 filesystems always recover immediately */ 2267 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2268 goto recover_immediately; 2269 2270 magic32 = be32_to_cpu(*(__be32 *)blk); 2271 switch (magic32) { 2272 case XFS_ABTB_CRC_MAGIC: 2273 case XFS_ABTC_CRC_MAGIC: 2274 case XFS_ABTB_MAGIC: 2275 case XFS_ABTC_MAGIC: 2276 case XFS_RMAP_CRC_MAGIC: 2277 case XFS_REFC_CRC_MAGIC: 2278 case XFS_IBT_CRC_MAGIC: 2279 case XFS_IBT_MAGIC: { 2280 struct xfs_btree_block *btb = blk; 2281 2282 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn); 2283 uuid = &btb->bb_u.s.bb_uuid; 2284 break; 2285 } 2286 case XFS_BMAP_CRC_MAGIC: 2287 case XFS_BMAP_MAGIC: { 2288 struct xfs_btree_block *btb = blk; 2289 2290 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn); 2291 uuid = &btb->bb_u.l.bb_uuid; 2292 break; 2293 } 2294 case XFS_AGF_MAGIC: 2295 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn); 2296 uuid = &((struct xfs_agf *)blk)->agf_uuid; 2297 break; 2298 case XFS_AGFL_MAGIC: 2299 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn); 2300 uuid = &((struct xfs_agfl *)blk)->agfl_uuid; 2301 break; 2302 case XFS_AGI_MAGIC: 2303 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn); 2304 uuid = &((struct xfs_agi *)blk)->agi_uuid; 2305 break; 2306 case XFS_SYMLINK_MAGIC: 2307 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn); 2308 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid; 2309 break; 2310 case XFS_DIR3_BLOCK_MAGIC: 2311 case XFS_DIR3_DATA_MAGIC: 2312 case XFS_DIR3_FREE_MAGIC: 2313 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn); 2314 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid; 2315 break; 2316 case XFS_ATTR3_RMT_MAGIC: 2317 /* 2318 * Remote attr blocks are written synchronously, rather than 2319 * being logged. That means they do not contain a valid LSN 2320 * (i.e. transactionally ordered) in them, and hence any time we 2321 * see a buffer to replay over the top of a remote attribute 2322 * block we should simply do so. 2323 */ 2324 goto recover_immediately; 2325 case XFS_SB_MAGIC: 2326 /* 2327 * superblock uuids are magic. We may or may not have a 2328 * sb_meta_uuid on disk, but it will be set in the in-core 2329 * superblock. We set the uuid pointer for verification 2330 * according to the superblock feature mask to ensure we check 2331 * the relevant UUID in the superblock. 2332 */ 2333 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn); 2334 if (xfs_sb_version_hasmetauuid(&mp->m_sb)) 2335 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid; 2336 else 2337 uuid = &((struct xfs_dsb *)blk)->sb_uuid; 2338 break; 2339 default: 2340 break; 2341 } 2342 2343 if (lsn != (xfs_lsn_t)-1) { 2344 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid)) 2345 goto recover_immediately; 2346 return lsn; 2347 } 2348 2349 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic); 2350 switch (magicda) { 2351 case XFS_DIR3_LEAF1_MAGIC: 2352 case XFS_DIR3_LEAFN_MAGIC: 2353 case XFS_DA3_NODE_MAGIC: 2354 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn); 2355 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid; 2356 break; 2357 default: 2358 break; 2359 } 2360 2361 if (lsn != (xfs_lsn_t)-1) { 2362 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid)) 2363 goto recover_immediately; 2364 return lsn; 2365 } 2366 2367 /* 2368 * We do individual object checks on dquot and inode buffers as they 2369 * have their own individual LSN records. Also, we could have a stale 2370 * buffer here, so we have to at least recognise these buffer types. 2371 * 2372 * A notd complexity here is inode unlinked list processing - it logs 2373 * the inode directly in the buffer, but we don't know which inodes have 2374 * been modified, and there is no global buffer LSN. Hence we need to 2375 * recover all inode buffer types immediately. This problem will be 2376 * fixed by logical logging of the unlinked list modifications. 2377 */ 2378 magic16 = be16_to_cpu(*(__be16 *)blk); 2379 switch (magic16) { 2380 case XFS_DQUOT_MAGIC: 2381 case XFS_DINODE_MAGIC: 2382 goto recover_immediately; 2383 default: 2384 break; 2385 } 2386 2387 /* unknown buffer contents, recover immediately */ 2388 2389 recover_immediately: 2390 return (xfs_lsn_t)-1; 2391 2392 } 2393 2394 /* 2395 * Validate the recovered buffer is of the correct type and attach the 2396 * appropriate buffer operations to them for writeback. Magic numbers are in a 2397 * few places: 2398 * the first 16 bits of the buffer (inode buffer, dquot buffer), 2399 * the first 32 bits of the buffer (most blocks), 2400 * inside a struct xfs_da_blkinfo at the start of the buffer. 2401 */ 2402 static void 2403 xlog_recover_validate_buf_type( 2404 struct xfs_mount *mp, 2405 struct xfs_buf *bp, 2406 xfs_buf_log_format_t *buf_f, 2407 xfs_lsn_t current_lsn) 2408 { 2409 struct xfs_da_blkinfo *info = bp->b_addr; 2410 uint32_t magic32; 2411 uint16_t magic16; 2412 uint16_t magicda; 2413 char *warnmsg = NULL; 2414 2415 /* 2416 * We can only do post recovery validation on items on CRC enabled 2417 * fielsystems as we need to know when the buffer was written to be able 2418 * to determine if we should have replayed the item. If we replay old 2419 * metadata over a newer buffer, then it will enter a temporarily 2420 * inconsistent state resulting in verification failures. Hence for now 2421 * just avoid the verification stage for non-crc filesystems 2422 */ 2423 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2424 return; 2425 2426 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr); 2427 magic16 = be16_to_cpu(*(__be16*)bp->b_addr); 2428 magicda = be16_to_cpu(info->magic); 2429 switch (xfs_blft_from_flags(buf_f)) { 2430 case XFS_BLFT_BTREE_BUF: 2431 switch (magic32) { 2432 case XFS_ABTB_CRC_MAGIC: 2433 case XFS_ABTC_CRC_MAGIC: 2434 case XFS_ABTB_MAGIC: 2435 case XFS_ABTC_MAGIC: 2436 bp->b_ops = &xfs_allocbt_buf_ops; 2437 break; 2438 case XFS_IBT_CRC_MAGIC: 2439 case XFS_FIBT_CRC_MAGIC: 2440 case XFS_IBT_MAGIC: 2441 case XFS_FIBT_MAGIC: 2442 bp->b_ops = &xfs_inobt_buf_ops; 2443 break; 2444 case XFS_BMAP_CRC_MAGIC: 2445 case XFS_BMAP_MAGIC: 2446 bp->b_ops = &xfs_bmbt_buf_ops; 2447 break; 2448 case XFS_RMAP_CRC_MAGIC: 2449 bp->b_ops = &xfs_rmapbt_buf_ops; 2450 break; 2451 case XFS_REFC_CRC_MAGIC: 2452 bp->b_ops = &xfs_refcountbt_buf_ops; 2453 break; 2454 default: 2455 warnmsg = "Bad btree block magic!"; 2456 break; 2457 } 2458 break; 2459 case XFS_BLFT_AGF_BUF: 2460 if (magic32 != XFS_AGF_MAGIC) { 2461 warnmsg = "Bad AGF block magic!"; 2462 break; 2463 } 2464 bp->b_ops = &xfs_agf_buf_ops; 2465 break; 2466 case XFS_BLFT_AGFL_BUF: 2467 if (magic32 != XFS_AGFL_MAGIC) { 2468 warnmsg = "Bad AGFL block magic!"; 2469 break; 2470 } 2471 bp->b_ops = &xfs_agfl_buf_ops; 2472 break; 2473 case XFS_BLFT_AGI_BUF: 2474 if (magic32 != XFS_AGI_MAGIC) { 2475 warnmsg = "Bad AGI block magic!"; 2476 break; 2477 } 2478 bp->b_ops = &xfs_agi_buf_ops; 2479 break; 2480 case XFS_BLFT_UDQUOT_BUF: 2481 case XFS_BLFT_PDQUOT_BUF: 2482 case XFS_BLFT_GDQUOT_BUF: 2483 #ifdef CONFIG_XFS_QUOTA 2484 if (magic16 != XFS_DQUOT_MAGIC) { 2485 warnmsg = "Bad DQUOT block magic!"; 2486 break; 2487 } 2488 bp->b_ops = &xfs_dquot_buf_ops; 2489 #else 2490 xfs_alert(mp, 2491 "Trying to recover dquots without QUOTA support built in!"); 2492 ASSERT(0); 2493 #endif 2494 break; 2495 case XFS_BLFT_DINO_BUF: 2496 if (magic16 != XFS_DINODE_MAGIC) { 2497 warnmsg = "Bad INODE block magic!"; 2498 break; 2499 } 2500 bp->b_ops = &xfs_inode_buf_ops; 2501 break; 2502 case XFS_BLFT_SYMLINK_BUF: 2503 if (magic32 != XFS_SYMLINK_MAGIC) { 2504 warnmsg = "Bad symlink block magic!"; 2505 break; 2506 } 2507 bp->b_ops = &xfs_symlink_buf_ops; 2508 break; 2509 case XFS_BLFT_DIR_BLOCK_BUF: 2510 if (magic32 != XFS_DIR2_BLOCK_MAGIC && 2511 magic32 != XFS_DIR3_BLOCK_MAGIC) { 2512 warnmsg = "Bad dir block magic!"; 2513 break; 2514 } 2515 bp->b_ops = &xfs_dir3_block_buf_ops; 2516 break; 2517 case XFS_BLFT_DIR_DATA_BUF: 2518 if (magic32 != XFS_DIR2_DATA_MAGIC && 2519 magic32 != XFS_DIR3_DATA_MAGIC) { 2520 warnmsg = "Bad dir data magic!"; 2521 break; 2522 } 2523 bp->b_ops = &xfs_dir3_data_buf_ops; 2524 break; 2525 case XFS_BLFT_DIR_FREE_BUF: 2526 if (magic32 != XFS_DIR2_FREE_MAGIC && 2527 magic32 != XFS_DIR3_FREE_MAGIC) { 2528 warnmsg = "Bad dir3 free magic!"; 2529 break; 2530 } 2531 bp->b_ops = &xfs_dir3_free_buf_ops; 2532 break; 2533 case XFS_BLFT_DIR_LEAF1_BUF: 2534 if (magicda != XFS_DIR2_LEAF1_MAGIC && 2535 magicda != XFS_DIR3_LEAF1_MAGIC) { 2536 warnmsg = "Bad dir leaf1 magic!"; 2537 break; 2538 } 2539 bp->b_ops = &xfs_dir3_leaf1_buf_ops; 2540 break; 2541 case XFS_BLFT_DIR_LEAFN_BUF: 2542 if (magicda != XFS_DIR2_LEAFN_MAGIC && 2543 magicda != XFS_DIR3_LEAFN_MAGIC) { 2544 warnmsg = "Bad dir leafn magic!"; 2545 break; 2546 } 2547 bp->b_ops = &xfs_dir3_leafn_buf_ops; 2548 break; 2549 case XFS_BLFT_DA_NODE_BUF: 2550 if (magicda != XFS_DA_NODE_MAGIC && 2551 magicda != XFS_DA3_NODE_MAGIC) { 2552 warnmsg = "Bad da node magic!"; 2553 break; 2554 } 2555 bp->b_ops = &xfs_da3_node_buf_ops; 2556 break; 2557 case XFS_BLFT_ATTR_LEAF_BUF: 2558 if (magicda != XFS_ATTR_LEAF_MAGIC && 2559 magicda != XFS_ATTR3_LEAF_MAGIC) { 2560 warnmsg = "Bad attr leaf magic!"; 2561 break; 2562 } 2563 bp->b_ops = &xfs_attr3_leaf_buf_ops; 2564 break; 2565 case XFS_BLFT_ATTR_RMT_BUF: 2566 if (magic32 != XFS_ATTR3_RMT_MAGIC) { 2567 warnmsg = "Bad attr remote magic!"; 2568 break; 2569 } 2570 bp->b_ops = &xfs_attr3_rmt_buf_ops; 2571 break; 2572 case XFS_BLFT_SB_BUF: 2573 if (magic32 != XFS_SB_MAGIC) { 2574 warnmsg = "Bad SB block magic!"; 2575 break; 2576 } 2577 bp->b_ops = &xfs_sb_buf_ops; 2578 break; 2579 #ifdef CONFIG_XFS_RT 2580 case XFS_BLFT_RTBITMAP_BUF: 2581 case XFS_BLFT_RTSUMMARY_BUF: 2582 /* no magic numbers for verification of RT buffers */ 2583 bp->b_ops = &xfs_rtbuf_ops; 2584 break; 2585 #endif /* CONFIG_XFS_RT */ 2586 default: 2587 xfs_warn(mp, "Unknown buffer type %d!", 2588 xfs_blft_from_flags(buf_f)); 2589 break; 2590 } 2591 2592 /* 2593 * Nothing else to do in the case of a NULL current LSN as this means 2594 * the buffer is more recent than the change in the log and will be 2595 * skipped. 2596 */ 2597 if (current_lsn == NULLCOMMITLSN) 2598 return; 2599 2600 if (warnmsg) { 2601 xfs_warn(mp, warnmsg); 2602 ASSERT(0); 2603 } 2604 2605 /* 2606 * We must update the metadata LSN of the buffer as it is written out to 2607 * ensure that older transactions never replay over this one and corrupt 2608 * the buffer. This can occur if log recovery is interrupted at some 2609 * point after the current transaction completes, at which point a 2610 * subsequent mount starts recovery from the beginning. 2611 * 2612 * Write verifiers update the metadata LSN from log items attached to 2613 * the buffer. Therefore, initialize a bli purely to carry the LSN to 2614 * the verifier. We'll clean it up in our ->iodone() callback. 2615 */ 2616 if (bp->b_ops) { 2617 struct xfs_buf_log_item *bip; 2618 2619 ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone); 2620 bp->b_iodone = xlog_recover_iodone; 2621 xfs_buf_item_init(bp, mp); 2622 bip = bp->b_fspriv; 2623 bip->bli_item.li_lsn = current_lsn; 2624 } 2625 } 2626 2627 /* 2628 * Perform a 'normal' buffer recovery. Each logged region of the 2629 * buffer should be copied over the corresponding region in the 2630 * given buffer. The bitmap in the buf log format structure indicates 2631 * where to place the logged data. 2632 */ 2633 STATIC void 2634 xlog_recover_do_reg_buffer( 2635 struct xfs_mount *mp, 2636 xlog_recover_item_t *item, 2637 struct xfs_buf *bp, 2638 xfs_buf_log_format_t *buf_f, 2639 xfs_lsn_t current_lsn) 2640 { 2641 int i; 2642 int bit; 2643 int nbits; 2644 int error; 2645 2646 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); 2647 2648 bit = 0; 2649 i = 1; /* 0 is the buf format structure */ 2650 while (1) { 2651 bit = xfs_next_bit(buf_f->blf_data_map, 2652 buf_f->blf_map_size, bit); 2653 if (bit == -1) 2654 break; 2655 nbits = xfs_contig_bits(buf_f->blf_data_map, 2656 buf_f->blf_map_size, bit); 2657 ASSERT(nbits > 0); 2658 ASSERT(item->ri_buf[i].i_addr != NULL); 2659 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); 2660 ASSERT(BBTOB(bp->b_io_length) >= 2661 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); 2662 2663 /* 2664 * The dirty regions logged in the buffer, even though 2665 * contiguous, may span multiple chunks. This is because the 2666 * dirty region may span a physical page boundary in a buffer 2667 * and hence be split into two separate vectors for writing into 2668 * the log. Hence we need to trim nbits back to the length of 2669 * the current region being copied out of the log. 2670 */ 2671 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT)) 2672 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT; 2673 2674 /* 2675 * Do a sanity check if this is a dquot buffer. Just checking 2676 * the first dquot in the buffer should do. XXXThis is 2677 * probably a good thing to do for other buf types also. 2678 */ 2679 error = 0; 2680 if (buf_f->blf_flags & 2681 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2682 if (item->ri_buf[i].i_addr == NULL) { 2683 xfs_alert(mp, 2684 "XFS: NULL dquot in %s.", __func__); 2685 goto next; 2686 } 2687 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) { 2688 xfs_alert(mp, 2689 "XFS: dquot too small (%d) in %s.", 2690 item->ri_buf[i].i_len, __func__); 2691 goto next; 2692 } 2693 error = xfs_dqcheck(mp, item->ri_buf[i].i_addr, 2694 -1, 0, XFS_QMOPT_DOWARN, 2695 "dquot_buf_recover"); 2696 if (error) 2697 goto next; 2698 } 2699 2700 memcpy(xfs_buf_offset(bp, 2701 (uint)bit << XFS_BLF_SHIFT), /* dest */ 2702 item->ri_buf[i].i_addr, /* source */ 2703 nbits<<XFS_BLF_SHIFT); /* length */ 2704 next: 2705 i++; 2706 bit += nbits; 2707 } 2708 2709 /* Shouldn't be any more regions */ 2710 ASSERT(i == item->ri_total); 2711 2712 xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn); 2713 } 2714 2715 /* 2716 * Perform a dquot buffer recovery. 2717 * Simple algorithm: if we have found a QUOTAOFF log item of the same type 2718 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2719 * Else, treat it as a regular buffer and do recovery. 2720 * 2721 * Return false if the buffer was tossed and true if we recovered the buffer to 2722 * indicate to the caller if the buffer needs writing. 2723 */ 2724 STATIC bool 2725 xlog_recover_do_dquot_buffer( 2726 struct xfs_mount *mp, 2727 struct xlog *log, 2728 struct xlog_recover_item *item, 2729 struct xfs_buf *bp, 2730 struct xfs_buf_log_format *buf_f) 2731 { 2732 uint type; 2733 2734 trace_xfs_log_recover_buf_dquot_buf(log, buf_f); 2735 2736 /* 2737 * Filesystems are required to send in quota flags at mount time. 2738 */ 2739 if (!mp->m_qflags) 2740 return false; 2741 2742 type = 0; 2743 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) 2744 type |= XFS_DQ_USER; 2745 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) 2746 type |= XFS_DQ_PROJ; 2747 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) 2748 type |= XFS_DQ_GROUP; 2749 /* 2750 * This type of quotas was turned off, so ignore this buffer 2751 */ 2752 if (log->l_quotaoffs_flag & type) 2753 return false; 2754 2755 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN); 2756 return true; 2757 } 2758 2759 /* 2760 * This routine replays a modification made to a buffer at runtime. 2761 * There are actually two types of buffer, regular and inode, which 2762 * are handled differently. Inode buffers are handled differently 2763 * in that we only recover a specific set of data from them, namely 2764 * the inode di_next_unlinked fields. This is because all other inode 2765 * data is actually logged via inode records and any data we replay 2766 * here which overlaps that may be stale. 2767 * 2768 * When meta-data buffers are freed at run time we log a buffer item 2769 * with the XFS_BLF_CANCEL bit set to indicate that previous copies 2770 * of the buffer in the log should not be replayed at recovery time. 2771 * This is so that if the blocks covered by the buffer are reused for 2772 * file data before we crash we don't end up replaying old, freed 2773 * meta-data into a user's file. 2774 * 2775 * To handle the cancellation of buffer log items, we make two passes 2776 * over the log during recovery. During the first we build a table of 2777 * those buffers which have been cancelled, and during the second we 2778 * only replay those buffers which do not have corresponding cancel 2779 * records in the table. See xlog_recover_buffer_pass[1,2] above 2780 * for more details on the implementation of the table of cancel records. 2781 */ 2782 STATIC int 2783 xlog_recover_buffer_pass2( 2784 struct xlog *log, 2785 struct list_head *buffer_list, 2786 struct xlog_recover_item *item, 2787 xfs_lsn_t current_lsn) 2788 { 2789 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2790 xfs_mount_t *mp = log->l_mp; 2791 xfs_buf_t *bp; 2792 int error; 2793 uint buf_flags; 2794 xfs_lsn_t lsn; 2795 2796 /* 2797 * In this pass we only want to recover all the buffers which have 2798 * not been cancelled and are not cancellation buffers themselves. 2799 */ 2800 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno, 2801 buf_f->blf_len, buf_f->blf_flags)) { 2802 trace_xfs_log_recover_buf_cancel(log, buf_f); 2803 return 0; 2804 } 2805 2806 trace_xfs_log_recover_buf_recover(log, buf_f); 2807 2808 buf_flags = 0; 2809 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) 2810 buf_flags |= XBF_UNMAPPED; 2811 2812 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, 2813 buf_flags, NULL); 2814 if (!bp) 2815 return -ENOMEM; 2816 error = bp->b_error; 2817 if (error) { 2818 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)"); 2819 goto out_release; 2820 } 2821 2822 /* 2823 * Recover the buffer only if we get an LSN from it and it's less than 2824 * the lsn of the transaction we are replaying. 2825 * 2826 * Note that we have to be extremely careful of readahead here. 2827 * Readahead does not attach verfiers to the buffers so if we don't 2828 * actually do any replay after readahead because of the LSN we found 2829 * in the buffer if more recent than that current transaction then we 2830 * need to attach the verifier directly. Failure to do so can lead to 2831 * future recovery actions (e.g. EFI and unlinked list recovery) can 2832 * operate on the buffers and they won't get the verifier attached. This 2833 * can lead to blocks on disk having the correct content but a stale 2834 * CRC. 2835 * 2836 * It is safe to assume these clean buffers are currently up to date. 2837 * If the buffer is dirtied by a later transaction being replayed, then 2838 * the verifier will be reset to match whatever recover turns that 2839 * buffer into. 2840 */ 2841 lsn = xlog_recover_get_buf_lsn(mp, bp); 2842 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 2843 trace_xfs_log_recover_buf_skip(log, buf_f); 2844 xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN); 2845 goto out_release; 2846 } 2847 2848 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 2849 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2850 if (error) 2851 goto out_release; 2852 } else if (buf_f->blf_flags & 2853 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2854 bool dirty; 2855 2856 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2857 if (!dirty) 2858 goto out_release; 2859 } else { 2860 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn); 2861 } 2862 2863 /* 2864 * Perform delayed write on the buffer. Asynchronous writes will be 2865 * slower when taking into account all the buffers to be flushed. 2866 * 2867 * Also make sure that only inode buffers with good sizes stay in 2868 * the buffer cache. The kernel moves inodes in buffers of 1 block 2869 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode 2870 * buffers in the log can be a different size if the log was generated 2871 * by an older kernel using unclustered inode buffers or a newer kernel 2872 * running with a different inode cluster size. Regardless, if the 2873 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size) 2874 * for *our* value of mp->m_inode_cluster_size, then we need to keep 2875 * the buffer out of the buffer cache so that the buffer won't 2876 * overlap with future reads of those inodes. 2877 */ 2878 if (XFS_DINODE_MAGIC == 2879 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && 2880 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize, 2881 (uint32_t)log->l_mp->m_inode_cluster_size))) { 2882 xfs_buf_stale(bp); 2883 error = xfs_bwrite(bp); 2884 } else { 2885 ASSERT(bp->b_target->bt_mount == mp); 2886 bp->b_iodone = xlog_recover_iodone; 2887 xfs_buf_delwri_queue(bp, buffer_list); 2888 } 2889 2890 out_release: 2891 xfs_buf_relse(bp); 2892 return error; 2893 } 2894 2895 /* 2896 * Inode fork owner changes 2897 * 2898 * If we have been told that we have to reparent the inode fork, it's because an 2899 * extent swap operation on a CRC enabled filesystem has been done and we are 2900 * replaying it. We need to walk the BMBT of the appropriate fork and change the 2901 * owners of it. 2902 * 2903 * The complexity here is that we don't have an inode context to work with, so 2904 * after we've replayed the inode we need to instantiate one. This is where the 2905 * fun begins. 2906 * 2907 * We are in the middle of log recovery, so we can't run transactions. That 2908 * means we cannot use cache coherent inode instantiation via xfs_iget(), as 2909 * that will result in the corresponding iput() running the inode through 2910 * xfs_inactive(). If we've just replayed an inode core that changes the link 2911 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run 2912 * transactions (bad!). 2913 * 2914 * So, to avoid this, we instantiate an inode directly from the inode core we've 2915 * just recovered. We have the buffer still locked, and all we really need to 2916 * instantiate is the inode core and the forks being modified. We can do this 2917 * manually, then run the inode btree owner change, and then tear down the 2918 * xfs_inode without having to run any transactions at all. 2919 * 2920 * Also, because we don't have a transaction context available here but need to 2921 * gather all the buffers we modify for writeback so we pass the buffer_list 2922 * instead for the operation to use. 2923 */ 2924 2925 STATIC int 2926 xfs_recover_inode_owner_change( 2927 struct xfs_mount *mp, 2928 struct xfs_dinode *dip, 2929 struct xfs_inode_log_format *in_f, 2930 struct list_head *buffer_list) 2931 { 2932 struct xfs_inode *ip; 2933 int error; 2934 2935 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)); 2936 2937 ip = xfs_inode_alloc(mp, in_f->ilf_ino); 2938 if (!ip) 2939 return -ENOMEM; 2940 2941 /* instantiate the inode */ 2942 xfs_inode_from_disk(ip, dip); 2943 ASSERT(ip->i_d.di_version >= 3); 2944 2945 error = xfs_iformat_fork(ip, dip); 2946 if (error) 2947 goto out_free_ip; 2948 2949 2950 if (in_f->ilf_fields & XFS_ILOG_DOWNER) { 2951 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT); 2952 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK, 2953 ip->i_ino, buffer_list); 2954 if (error) 2955 goto out_free_ip; 2956 } 2957 2958 if (in_f->ilf_fields & XFS_ILOG_AOWNER) { 2959 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT); 2960 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK, 2961 ip->i_ino, buffer_list); 2962 if (error) 2963 goto out_free_ip; 2964 } 2965 2966 out_free_ip: 2967 xfs_inode_free(ip); 2968 return error; 2969 } 2970 2971 STATIC int 2972 xlog_recover_inode_pass2( 2973 struct xlog *log, 2974 struct list_head *buffer_list, 2975 struct xlog_recover_item *item, 2976 xfs_lsn_t current_lsn) 2977 { 2978 xfs_inode_log_format_t *in_f; 2979 xfs_mount_t *mp = log->l_mp; 2980 xfs_buf_t *bp; 2981 xfs_dinode_t *dip; 2982 int len; 2983 char *src; 2984 char *dest; 2985 int error; 2986 int attr_index; 2987 uint fields; 2988 struct xfs_log_dinode *ldip; 2989 uint isize; 2990 int need_free = 0; 2991 2992 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) { 2993 in_f = item->ri_buf[0].i_addr; 2994 } else { 2995 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP); 2996 need_free = 1; 2997 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 2998 if (error) 2999 goto error; 3000 } 3001 3002 /* 3003 * Inode buffers can be freed, look out for it, 3004 * and do not replay the inode. 3005 */ 3006 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, 3007 in_f->ilf_len, 0)) { 3008 error = 0; 3009 trace_xfs_log_recover_inode_cancel(log, in_f); 3010 goto error; 3011 } 3012 trace_xfs_log_recover_inode_recover(log, in_f); 3013 3014 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0, 3015 &xfs_inode_buf_ops); 3016 if (!bp) { 3017 error = -ENOMEM; 3018 goto error; 3019 } 3020 error = bp->b_error; 3021 if (error) { 3022 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)"); 3023 goto out_release; 3024 } 3025 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 3026 dip = xfs_buf_offset(bp, in_f->ilf_boffset); 3027 3028 /* 3029 * Make sure the place we're flushing out to really looks 3030 * like an inode! 3031 */ 3032 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) { 3033 xfs_alert(mp, 3034 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld", 3035 __func__, dip, bp, in_f->ilf_ino); 3036 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)", 3037 XFS_ERRLEVEL_LOW, mp); 3038 error = -EFSCORRUPTED; 3039 goto out_release; 3040 } 3041 ldip = item->ri_buf[1].i_addr; 3042 if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) { 3043 xfs_alert(mp, 3044 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld", 3045 __func__, item, in_f->ilf_ino); 3046 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)", 3047 XFS_ERRLEVEL_LOW, mp); 3048 error = -EFSCORRUPTED; 3049 goto out_release; 3050 } 3051 3052 /* 3053 * If the inode has an LSN in it, recover the inode only if it's less 3054 * than the lsn of the transaction we are replaying. Note: we still 3055 * need to replay an owner change even though the inode is more recent 3056 * than the transaction as there is no guarantee that all the btree 3057 * blocks are more recent than this transaction, too. 3058 */ 3059 if (dip->di_version >= 3) { 3060 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn); 3061 3062 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 3063 trace_xfs_log_recover_inode_skip(log, in_f); 3064 error = 0; 3065 goto out_owner_change; 3066 } 3067 } 3068 3069 /* 3070 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes 3071 * are transactional and if ordering is necessary we can determine that 3072 * more accurately by the LSN field in the V3 inode core. Don't trust 3073 * the inode versions we might be changing them here - use the 3074 * superblock flag to determine whether we need to look at di_flushiter 3075 * to skip replay when the on disk inode is newer than the log one 3076 */ 3077 if (!xfs_sb_version_hascrc(&mp->m_sb) && 3078 ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) { 3079 /* 3080 * Deal with the wrap case, DI_MAX_FLUSH is less 3081 * than smaller numbers 3082 */ 3083 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && 3084 ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) { 3085 /* do nothing */ 3086 } else { 3087 trace_xfs_log_recover_inode_skip(log, in_f); 3088 error = 0; 3089 goto out_release; 3090 } 3091 } 3092 3093 /* Take the opportunity to reset the flush iteration count */ 3094 ldip->di_flushiter = 0; 3095 3096 if (unlikely(S_ISREG(ldip->di_mode))) { 3097 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) && 3098 (ldip->di_format != XFS_DINODE_FMT_BTREE)) { 3099 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)", 3100 XFS_ERRLEVEL_LOW, mp, ldip); 3101 xfs_alert(mp, 3102 "%s: Bad regular inode log record, rec ptr 0x%p, " 3103 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 3104 __func__, item, dip, bp, in_f->ilf_ino); 3105 error = -EFSCORRUPTED; 3106 goto out_release; 3107 } 3108 } else if (unlikely(S_ISDIR(ldip->di_mode))) { 3109 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) && 3110 (ldip->di_format != XFS_DINODE_FMT_BTREE) && 3111 (ldip->di_format != XFS_DINODE_FMT_LOCAL)) { 3112 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)", 3113 XFS_ERRLEVEL_LOW, mp, ldip); 3114 xfs_alert(mp, 3115 "%s: Bad dir inode log record, rec ptr 0x%p, " 3116 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 3117 __func__, item, dip, bp, in_f->ilf_ino); 3118 error = -EFSCORRUPTED; 3119 goto out_release; 3120 } 3121 } 3122 if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){ 3123 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)", 3124 XFS_ERRLEVEL_LOW, mp, ldip); 3125 xfs_alert(mp, 3126 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 3127 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", 3128 __func__, item, dip, bp, in_f->ilf_ino, 3129 ldip->di_nextents + ldip->di_anextents, 3130 ldip->di_nblocks); 3131 error = -EFSCORRUPTED; 3132 goto out_release; 3133 } 3134 if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) { 3135 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)", 3136 XFS_ERRLEVEL_LOW, mp, ldip); 3137 xfs_alert(mp, 3138 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 3139 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__, 3140 item, dip, bp, in_f->ilf_ino, ldip->di_forkoff); 3141 error = -EFSCORRUPTED; 3142 goto out_release; 3143 } 3144 isize = xfs_log_dinode_size(ldip->di_version); 3145 if (unlikely(item->ri_buf[1].i_len > isize)) { 3146 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)", 3147 XFS_ERRLEVEL_LOW, mp, ldip); 3148 xfs_alert(mp, 3149 "%s: Bad inode log record length %d, rec ptr 0x%p", 3150 __func__, item->ri_buf[1].i_len, item); 3151 error = -EFSCORRUPTED; 3152 goto out_release; 3153 } 3154 3155 /* recover the log dinode inode into the on disk inode */ 3156 xfs_log_dinode_to_disk(ldip, dip); 3157 3158 /* the rest is in on-disk format */ 3159 if (item->ri_buf[1].i_len > isize) { 3160 memcpy((char *)dip + isize, 3161 item->ri_buf[1].i_addr + isize, 3162 item->ri_buf[1].i_len - isize); 3163 } 3164 3165 fields = in_f->ilf_fields; 3166 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { 3167 case XFS_ILOG_DEV: 3168 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); 3169 break; 3170 case XFS_ILOG_UUID: 3171 memcpy(XFS_DFORK_DPTR(dip), 3172 &in_f->ilf_u.ilfu_uuid, 3173 sizeof(uuid_t)); 3174 break; 3175 } 3176 3177 if (in_f->ilf_size == 2) 3178 goto out_owner_change; 3179 len = item->ri_buf[2].i_len; 3180 src = item->ri_buf[2].i_addr; 3181 ASSERT(in_f->ilf_size <= 4); 3182 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 3183 ASSERT(!(fields & XFS_ILOG_DFORK) || 3184 (len == in_f->ilf_dsize)); 3185 3186 switch (fields & XFS_ILOG_DFORK) { 3187 case XFS_ILOG_DDATA: 3188 case XFS_ILOG_DEXT: 3189 memcpy(XFS_DFORK_DPTR(dip), src, len); 3190 break; 3191 3192 case XFS_ILOG_DBROOT: 3193 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, 3194 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), 3195 XFS_DFORK_DSIZE(dip, mp)); 3196 break; 3197 3198 default: 3199 /* 3200 * There are no data fork flags set. 3201 */ 3202 ASSERT((fields & XFS_ILOG_DFORK) == 0); 3203 break; 3204 } 3205 3206 /* 3207 * If we logged any attribute data, recover it. There may or 3208 * may not have been any other non-core data logged in this 3209 * transaction. 3210 */ 3211 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 3212 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 3213 attr_index = 3; 3214 } else { 3215 attr_index = 2; 3216 } 3217 len = item->ri_buf[attr_index].i_len; 3218 src = item->ri_buf[attr_index].i_addr; 3219 ASSERT(len == in_f->ilf_asize); 3220 3221 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 3222 case XFS_ILOG_ADATA: 3223 case XFS_ILOG_AEXT: 3224 dest = XFS_DFORK_APTR(dip); 3225 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 3226 memcpy(dest, src, len); 3227 break; 3228 3229 case XFS_ILOG_ABROOT: 3230 dest = XFS_DFORK_APTR(dip); 3231 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, 3232 len, (xfs_bmdr_block_t*)dest, 3233 XFS_DFORK_ASIZE(dip, mp)); 3234 break; 3235 3236 default: 3237 xfs_warn(log->l_mp, "%s: Invalid flag", __func__); 3238 ASSERT(0); 3239 error = -EIO; 3240 goto out_release; 3241 } 3242 } 3243 3244 out_owner_change: 3245 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) 3246 error = xfs_recover_inode_owner_change(mp, dip, in_f, 3247 buffer_list); 3248 /* re-generate the checksum. */ 3249 xfs_dinode_calc_crc(log->l_mp, dip); 3250 3251 ASSERT(bp->b_target->bt_mount == mp); 3252 bp->b_iodone = xlog_recover_iodone; 3253 xfs_buf_delwri_queue(bp, buffer_list); 3254 3255 out_release: 3256 xfs_buf_relse(bp); 3257 error: 3258 if (need_free) 3259 kmem_free(in_f); 3260 return error; 3261 } 3262 3263 /* 3264 * Recover QUOTAOFF records. We simply make a note of it in the xlog 3265 * structure, so that we know not to do any dquot item or dquot buffer recovery, 3266 * of that type. 3267 */ 3268 STATIC int 3269 xlog_recover_quotaoff_pass1( 3270 struct xlog *log, 3271 struct xlog_recover_item *item) 3272 { 3273 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr; 3274 ASSERT(qoff_f); 3275 3276 /* 3277 * The logitem format's flag tells us if this was user quotaoff, 3278 * group/project quotaoff or both. 3279 */ 3280 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 3281 log->l_quotaoffs_flag |= XFS_DQ_USER; 3282 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 3283 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 3284 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 3285 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 3286 3287 return 0; 3288 } 3289 3290 /* 3291 * Recover a dquot record 3292 */ 3293 STATIC int 3294 xlog_recover_dquot_pass2( 3295 struct xlog *log, 3296 struct list_head *buffer_list, 3297 struct xlog_recover_item *item, 3298 xfs_lsn_t current_lsn) 3299 { 3300 xfs_mount_t *mp = log->l_mp; 3301 xfs_buf_t *bp; 3302 struct xfs_disk_dquot *ddq, *recddq; 3303 int error; 3304 xfs_dq_logformat_t *dq_f; 3305 uint type; 3306 3307 3308 /* 3309 * Filesystems are required to send in quota flags at mount time. 3310 */ 3311 if (mp->m_qflags == 0) 3312 return 0; 3313 3314 recddq = item->ri_buf[1].i_addr; 3315 if (recddq == NULL) { 3316 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__); 3317 return -EIO; 3318 } 3319 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) { 3320 xfs_alert(log->l_mp, "dquot too small (%d) in %s.", 3321 item->ri_buf[1].i_len, __func__); 3322 return -EIO; 3323 } 3324 3325 /* 3326 * This type of quotas was turned off, so ignore this record. 3327 */ 3328 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 3329 ASSERT(type); 3330 if (log->l_quotaoffs_flag & type) 3331 return 0; 3332 3333 /* 3334 * At this point we know that quota was _not_ turned off. 3335 * Since the mount flags are not indicating to us otherwise, this 3336 * must mean that quota is on, and the dquot needs to be replayed. 3337 * Remember that we may not have fully recovered the superblock yet, 3338 * so we can't do the usual trick of looking at the SB quota bits. 3339 * 3340 * The other possibility, of course, is that the quota subsystem was 3341 * removed since the last mount - ENOSYS. 3342 */ 3343 dq_f = item->ri_buf[0].i_addr; 3344 ASSERT(dq_f); 3345 error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 3346 "xlog_recover_dquot_pass2 (log copy)"); 3347 if (error) 3348 return -EIO; 3349 ASSERT(dq_f->qlf_len == 1); 3350 3351 /* 3352 * At this point we are assuming that the dquots have been allocated 3353 * and hence the buffer has valid dquots stamped in it. It should, 3354 * therefore, pass verifier validation. If the dquot is bad, then the 3355 * we'll return an error here, so we don't need to specifically check 3356 * the dquot in the buffer after the verifier has run. 3357 */ 3358 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno, 3359 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp, 3360 &xfs_dquot_buf_ops); 3361 if (error) 3362 return error; 3363 3364 ASSERT(bp); 3365 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset); 3366 3367 /* 3368 * If the dquot has an LSN in it, recover the dquot only if it's less 3369 * than the lsn of the transaction we are replaying. 3370 */ 3371 if (xfs_sb_version_hascrc(&mp->m_sb)) { 3372 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq; 3373 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn); 3374 3375 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 3376 goto out_release; 3377 } 3378 } 3379 3380 memcpy(ddq, recddq, item->ri_buf[1].i_len); 3381 if (xfs_sb_version_hascrc(&mp->m_sb)) { 3382 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk), 3383 XFS_DQUOT_CRC_OFF); 3384 } 3385 3386 ASSERT(dq_f->qlf_size == 2); 3387 ASSERT(bp->b_target->bt_mount == mp); 3388 bp->b_iodone = xlog_recover_iodone; 3389 xfs_buf_delwri_queue(bp, buffer_list); 3390 3391 out_release: 3392 xfs_buf_relse(bp); 3393 return 0; 3394 } 3395 3396 /* 3397 * This routine is called to create an in-core extent free intent 3398 * item from the efi format structure which was logged on disk. 3399 * It allocates an in-core efi, copies the extents from the format 3400 * structure into it, and adds the efi to the AIL with the given 3401 * LSN. 3402 */ 3403 STATIC int 3404 xlog_recover_efi_pass2( 3405 struct xlog *log, 3406 struct xlog_recover_item *item, 3407 xfs_lsn_t lsn) 3408 { 3409 int error; 3410 struct xfs_mount *mp = log->l_mp; 3411 struct xfs_efi_log_item *efip; 3412 struct xfs_efi_log_format *efi_formatp; 3413 3414 efi_formatp = item->ri_buf[0].i_addr; 3415 3416 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 3417 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); 3418 if (error) { 3419 xfs_efi_item_free(efip); 3420 return error; 3421 } 3422 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 3423 3424 spin_lock(&log->l_ailp->xa_lock); 3425 /* 3426 * The EFI has two references. One for the EFD and one for EFI to ensure 3427 * it makes it into the AIL. Insert the EFI into the AIL directly and 3428 * drop the EFI reference. Note that xfs_trans_ail_update() drops the 3429 * AIL lock. 3430 */ 3431 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn); 3432 xfs_efi_release(efip); 3433 return 0; 3434 } 3435 3436 3437 /* 3438 * This routine is called when an EFD format structure is found in a committed 3439 * transaction in the log. Its purpose is to cancel the corresponding EFI if it 3440 * was still in the log. To do this it searches the AIL for the EFI with an id 3441 * equal to that in the EFD format structure. If we find it we drop the EFD 3442 * reference, which removes the EFI from the AIL and frees it. 3443 */ 3444 STATIC int 3445 xlog_recover_efd_pass2( 3446 struct xlog *log, 3447 struct xlog_recover_item *item) 3448 { 3449 xfs_efd_log_format_t *efd_formatp; 3450 xfs_efi_log_item_t *efip = NULL; 3451 xfs_log_item_t *lip; 3452 uint64_t efi_id; 3453 struct xfs_ail_cursor cur; 3454 struct xfs_ail *ailp = log->l_ailp; 3455 3456 efd_formatp = item->ri_buf[0].i_addr; 3457 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 3458 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 3459 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 3460 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 3461 efi_id = efd_formatp->efd_efi_id; 3462 3463 /* 3464 * Search for the EFI with the id in the EFD format structure in the 3465 * AIL. 3466 */ 3467 spin_lock(&ailp->xa_lock); 3468 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3469 while (lip != NULL) { 3470 if (lip->li_type == XFS_LI_EFI) { 3471 efip = (xfs_efi_log_item_t *)lip; 3472 if (efip->efi_format.efi_id == efi_id) { 3473 /* 3474 * Drop the EFD reference to the EFI. This 3475 * removes the EFI from the AIL and frees it. 3476 */ 3477 spin_unlock(&ailp->xa_lock); 3478 xfs_efi_release(efip); 3479 spin_lock(&ailp->xa_lock); 3480 break; 3481 } 3482 } 3483 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3484 } 3485 3486 xfs_trans_ail_cursor_done(&cur); 3487 spin_unlock(&ailp->xa_lock); 3488 3489 return 0; 3490 } 3491 3492 /* 3493 * This routine is called to create an in-core extent rmap update 3494 * item from the rui format structure which was logged on disk. 3495 * It allocates an in-core rui, copies the extents from the format 3496 * structure into it, and adds the rui to the AIL with the given 3497 * LSN. 3498 */ 3499 STATIC int 3500 xlog_recover_rui_pass2( 3501 struct xlog *log, 3502 struct xlog_recover_item *item, 3503 xfs_lsn_t lsn) 3504 { 3505 int error; 3506 struct xfs_mount *mp = log->l_mp; 3507 struct xfs_rui_log_item *ruip; 3508 struct xfs_rui_log_format *rui_formatp; 3509 3510 rui_formatp = item->ri_buf[0].i_addr; 3511 3512 ruip = xfs_rui_init(mp, rui_formatp->rui_nextents); 3513 error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format); 3514 if (error) { 3515 xfs_rui_item_free(ruip); 3516 return error; 3517 } 3518 atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents); 3519 3520 spin_lock(&log->l_ailp->xa_lock); 3521 /* 3522 * The RUI has two references. One for the RUD and one for RUI to ensure 3523 * it makes it into the AIL. Insert the RUI into the AIL directly and 3524 * drop the RUI reference. Note that xfs_trans_ail_update() drops the 3525 * AIL lock. 3526 */ 3527 xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn); 3528 xfs_rui_release(ruip); 3529 return 0; 3530 } 3531 3532 3533 /* 3534 * This routine is called when an RUD format structure is found in a committed 3535 * transaction in the log. Its purpose is to cancel the corresponding RUI if it 3536 * was still in the log. To do this it searches the AIL for the RUI with an id 3537 * equal to that in the RUD format structure. If we find it we drop the RUD 3538 * reference, which removes the RUI from the AIL and frees it. 3539 */ 3540 STATIC int 3541 xlog_recover_rud_pass2( 3542 struct xlog *log, 3543 struct xlog_recover_item *item) 3544 { 3545 struct xfs_rud_log_format *rud_formatp; 3546 struct xfs_rui_log_item *ruip = NULL; 3547 struct xfs_log_item *lip; 3548 uint64_t rui_id; 3549 struct xfs_ail_cursor cur; 3550 struct xfs_ail *ailp = log->l_ailp; 3551 3552 rud_formatp = item->ri_buf[0].i_addr; 3553 ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format)); 3554 rui_id = rud_formatp->rud_rui_id; 3555 3556 /* 3557 * Search for the RUI with the id in the RUD format structure in the 3558 * AIL. 3559 */ 3560 spin_lock(&ailp->xa_lock); 3561 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3562 while (lip != NULL) { 3563 if (lip->li_type == XFS_LI_RUI) { 3564 ruip = (struct xfs_rui_log_item *)lip; 3565 if (ruip->rui_format.rui_id == rui_id) { 3566 /* 3567 * Drop the RUD reference to the RUI. This 3568 * removes the RUI from the AIL and frees it. 3569 */ 3570 spin_unlock(&ailp->xa_lock); 3571 xfs_rui_release(ruip); 3572 spin_lock(&ailp->xa_lock); 3573 break; 3574 } 3575 } 3576 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3577 } 3578 3579 xfs_trans_ail_cursor_done(&cur); 3580 spin_unlock(&ailp->xa_lock); 3581 3582 return 0; 3583 } 3584 3585 /* 3586 * Copy an CUI format buffer from the given buf, and into the destination 3587 * CUI format structure. The CUI/CUD items were designed not to need any 3588 * special alignment handling. 3589 */ 3590 static int 3591 xfs_cui_copy_format( 3592 struct xfs_log_iovec *buf, 3593 struct xfs_cui_log_format *dst_cui_fmt) 3594 { 3595 struct xfs_cui_log_format *src_cui_fmt; 3596 uint len; 3597 3598 src_cui_fmt = buf->i_addr; 3599 len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents); 3600 3601 if (buf->i_len == len) { 3602 memcpy(dst_cui_fmt, src_cui_fmt, len); 3603 return 0; 3604 } 3605 return -EFSCORRUPTED; 3606 } 3607 3608 /* 3609 * This routine is called to create an in-core extent refcount update 3610 * item from the cui format structure which was logged on disk. 3611 * It allocates an in-core cui, copies the extents from the format 3612 * structure into it, and adds the cui to the AIL with the given 3613 * LSN. 3614 */ 3615 STATIC int 3616 xlog_recover_cui_pass2( 3617 struct xlog *log, 3618 struct xlog_recover_item *item, 3619 xfs_lsn_t lsn) 3620 { 3621 int error; 3622 struct xfs_mount *mp = log->l_mp; 3623 struct xfs_cui_log_item *cuip; 3624 struct xfs_cui_log_format *cui_formatp; 3625 3626 cui_formatp = item->ri_buf[0].i_addr; 3627 3628 cuip = xfs_cui_init(mp, cui_formatp->cui_nextents); 3629 error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format); 3630 if (error) { 3631 xfs_cui_item_free(cuip); 3632 return error; 3633 } 3634 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents); 3635 3636 spin_lock(&log->l_ailp->xa_lock); 3637 /* 3638 * The CUI has two references. One for the CUD and one for CUI to ensure 3639 * it makes it into the AIL. Insert the CUI into the AIL directly and 3640 * drop the CUI reference. Note that xfs_trans_ail_update() drops the 3641 * AIL lock. 3642 */ 3643 xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn); 3644 xfs_cui_release(cuip); 3645 return 0; 3646 } 3647 3648 3649 /* 3650 * This routine is called when an CUD format structure is found in a committed 3651 * transaction in the log. Its purpose is to cancel the corresponding CUI if it 3652 * was still in the log. To do this it searches the AIL for the CUI with an id 3653 * equal to that in the CUD format structure. If we find it we drop the CUD 3654 * reference, which removes the CUI from the AIL and frees it. 3655 */ 3656 STATIC int 3657 xlog_recover_cud_pass2( 3658 struct xlog *log, 3659 struct xlog_recover_item *item) 3660 { 3661 struct xfs_cud_log_format *cud_formatp; 3662 struct xfs_cui_log_item *cuip = NULL; 3663 struct xfs_log_item *lip; 3664 uint64_t cui_id; 3665 struct xfs_ail_cursor cur; 3666 struct xfs_ail *ailp = log->l_ailp; 3667 3668 cud_formatp = item->ri_buf[0].i_addr; 3669 if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) 3670 return -EFSCORRUPTED; 3671 cui_id = cud_formatp->cud_cui_id; 3672 3673 /* 3674 * Search for the CUI with the id in the CUD format structure in the 3675 * AIL. 3676 */ 3677 spin_lock(&ailp->xa_lock); 3678 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3679 while (lip != NULL) { 3680 if (lip->li_type == XFS_LI_CUI) { 3681 cuip = (struct xfs_cui_log_item *)lip; 3682 if (cuip->cui_format.cui_id == cui_id) { 3683 /* 3684 * Drop the CUD reference to the CUI. This 3685 * removes the CUI from the AIL and frees it. 3686 */ 3687 spin_unlock(&ailp->xa_lock); 3688 xfs_cui_release(cuip); 3689 spin_lock(&ailp->xa_lock); 3690 break; 3691 } 3692 } 3693 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3694 } 3695 3696 xfs_trans_ail_cursor_done(&cur); 3697 spin_unlock(&ailp->xa_lock); 3698 3699 return 0; 3700 } 3701 3702 /* 3703 * Copy an BUI format buffer from the given buf, and into the destination 3704 * BUI format structure. The BUI/BUD items were designed not to need any 3705 * special alignment handling. 3706 */ 3707 static int 3708 xfs_bui_copy_format( 3709 struct xfs_log_iovec *buf, 3710 struct xfs_bui_log_format *dst_bui_fmt) 3711 { 3712 struct xfs_bui_log_format *src_bui_fmt; 3713 uint len; 3714 3715 src_bui_fmt = buf->i_addr; 3716 len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents); 3717 3718 if (buf->i_len == len) { 3719 memcpy(dst_bui_fmt, src_bui_fmt, len); 3720 return 0; 3721 } 3722 return -EFSCORRUPTED; 3723 } 3724 3725 /* 3726 * This routine is called to create an in-core extent bmap update 3727 * item from the bui format structure which was logged on disk. 3728 * It allocates an in-core bui, copies the extents from the format 3729 * structure into it, and adds the bui to the AIL with the given 3730 * LSN. 3731 */ 3732 STATIC int 3733 xlog_recover_bui_pass2( 3734 struct xlog *log, 3735 struct xlog_recover_item *item, 3736 xfs_lsn_t lsn) 3737 { 3738 int error; 3739 struct xfs_mount *mp = log->l_mp; 3740 struct xfs_bui_log_item *buip; 3741 struct xfs_bui_log_format *bui_formatp; 3742 3743 bui_formatp = item->ri_buf[0].i_addr; 3744 3745 if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS) 3746 return -EFSCORRUPTED; 3747 buip = xfs_bui_init(mp); 3748 error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format); 3749 if (error) { 3750 xfs_bui_item_free(buip); 3751 return error; 3752 } 3753 atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents); 3754 3755 spin_lock(&log->l_ailp->xa_lock); 3756 /* 3757 * The RUI has two references. One for the RUD and one for RUI to ensure 3758 * it makes it into the AIL. Insert the RUI into the AIL directly and 3759 * drop the RUI reference. Note that xfs_trans_ail_update() drops the 3760 * AIL lock. 3761 */ 3762 xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn); 3763 xfs_bui_release(buip); 3764 return 0; 3765 } 3766 3767 3768 /* 3769 * This routine is called when an BUD format structure is found in a committed 3770 * transaction in the log. Its purpose is to cancel the corresponding BUI if it 3771 * was still in the log. To do this it searches the AIL for the BUI with an id 3772 * equal to that in the BUD format structure. If we find it we drop the BUD 3773 * reference, which removes the BUI from the AIL and frees it. 3774 */ 3775 STATIC int 3776 xlog_recover_bud_pass2( 3777 struct xlog *log, 3778 struct xlog_recover_item *item) 3779 { 3780 struct xfs_bud_log_format *bud_formatp; 3781 struct xfs_bui_log_item *buip = NULL; 3782 struct xfs_log_item *lip; 3783 uint64_t bui_id; 3784 struct xfs_ail_cursor cur; 3785 struct xfs_ail *ailp = log->l_ailp; 3786 3787 bud_formatp = item->ri_buf[0].i_addr; 3788 if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format)) 3789 return -EFSCORRUPTED; 3790 bui_id = bud_formatp->bud_bui_id; 3791 3792 /* 3793 * Search for the BUI with the id in the BUD format structure in the 3794 * AIL. 3795 */ 3796 spin_lock(&ailp->xa_lock); 3797 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3798 while (lip != NULL) { 3799 if (lip->li_type == XFS_LI_BUI) { 3800 buip = (struct xfs_bui_log_item *)lip; 3801 if (buip->bui_format.bui_id == bui_id) { 3802 /* 3803 * Drop the BUD reference to the BUI. This 3804 * removes the BUI from the AIL and frees it. 3805 */ 3806 spin_unlock(&ailp->xa_lock); 3807 xfs_bui_release(buip); 3808 spin_lock(&ailp->xa_lock); 3809 break; 3810 } 3811 } 3812 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3813 } 3814 3815 xfs_trans_ail_cursor_done(&cur); 3816 spin_unlock(&ailp->xa_lock); 3817 3818 return 0; 3819 } 3820 3821 /* 3822 * This routine is called when an inode create format structure is found in a 3823 * committed transaction in the log. It's purpose is to initialise the inodes 3824 * being allocated on disk. This requires us to get inode cluster buffers that 3825 * match the range to be initialised, stamped with inode templates and written 3826 * by delayed write so that subsequent modifications will hit the cached buffer 3827 * and only need writing out at the end of recovery. 3828 */ 3829 STATIC int 3830 xlog_recover_do_icreate_pass2( 3831 struct xlog *log, 3832 struct list_head *buffer_list, 3833 xlog_recover_item_t *item) 3834 { 3835 struct xfs_mount *mp = log->l_mp; 3836 struct xfs_icreate_log *icl; 3837 xfs_agnumber_t agno; 3838 xfs_agblock_t agbno; 3839 unsigned int count; 3840 unsigned int isize; 3841 xfs_agblock_t length; 3842 int blks_per_cluster; 3843 int bb_per_cluster; 3844 int cancel_count; 3845 int nbufs; 3846 int i; 3847 3848 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr; 3849 if (icl->icl_type != XFS_LI_ICREATE) { 3850 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type"); 3851 return -EINVAL; 3852 } 3853 3854 if (icl->icl_size != 1) { 3855 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size"); 3856 return -EINVAL; 3857 } 3858 3859 agno = be32_to_cpu(icl->icl_ag); 3860 if (agno >= mp->m_sb.sb_agcount) { 3861 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno"); 3862 return -EINVAL; 3863 } 3864 agbno = be32_to_cpu(icl->icl_agbno); 3865 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) { 3866 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno"); 3867 return -EINVAL; 3868 } 3869 isize = be32_to_cpu(icl->icl_isize); 3870 if (isize != mp->m_sb.sb_inodesize) { 3871 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize"); 3872 return -EINVAL; 3873 } 3874 count = be32_to_cpu(icl->icl_count); 3875 if (!count) { 3876 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count"); 3877 return -EINVAL; 3878 } 3879 length = be32_to_cpu(icl->icl_length); 3880 if (!length || length >= mp->m_sb.sb_agblocks) { 3881 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length"); 3882 return -EINVAL; 3883 } 3884 3885 /* 3886 * The inode chunk is either full or sparse and we only support 3887 * m_ialloc_min_blks sized sparse allocations at this time. 3888 */ 3889 if (length != mp->m_ialloc_blks && 3890 length != mp->m_ialloc_min_blks) { 3891 xfs_warn(log->l_mp, 3892 "%s: unsupported chunk length", __FUNCTION__); 3893 return -EINVAL; 3894 } 3895 3896 /* verify inode count is consistent with extent length */ 3897 if ((count >> mp->m_sb.sb_inopblog) != length) { 3898 xfs_warn(log->l_mp, 3899 "%s: inconsistent inode count and chunk length", 3900 __FUNCTION__); 3901 return -EINVAL; 3902 } 3903 3904 /* 3905 * The icreate transaction can cover multiple cluster buffers and these 3906 * buffers could have been freed and reused. Check the individual 3907 * buffers for cancellation so we don't overwrite anything written after 3908 * a cancellation. 3909 */ 3910 blks_per_cluster = xfs_icluster_size_fsb(mp); 3911 bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster); 3912 nbufs = length / blks_per_cluster; 3913 for (i = 0, cancel_count = 0; i < nbufs; i++) { 3914 xfs_daddr_t daddr; 3915 3916 daddr = XFS_AGB_TO_DADDR(mp, agno, 3917 agbno + i * blks_per_cluster); 3918 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0)) 3919 cancel_count++; 3920 } 3921 3922 /* 3923 * We currently only use icreate for a single allocation at a time. This 3924 * means we should expect either all or none of the buffers to be 3925 * cancelled. Be conservative and skip replay if at least one buffer is 3926 * cancelled, but warn the user that something is awry if the buffers 3927 * are not consistent. 3928 * 3929 * XXX: This must be refined to only skip cancelled clusters once we use 3930 * icreate for multiple chunk allocations. 3931 */ 3932 ASSERT(!cancel_count || cancel_count == nbufs); 3933 if (cancel_count) { 3934 if (cancel_count != nbufs) 3935 xfs_warn(mp, 3936 "WARNING: partial inode chunk cancellation, skipped icreate."); 3937 trace_xfs_log_recover_icreate_cancel(log, icl); 3938 return 0; 3939 } 3940 3941 trace_xfs_log_recover_icreate_recover(log, icl); 3942 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno, 3943 length, be32_to_cpu(icl->icl_gen)); 3944 } 3945 3946 STATIC void 3947 xlog_recover_buffer_ra_pass2( 3948 struct xlog *log, 3949 struct xlog_recover_item *item) 3950 { 3951 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr; 3952 struct xfs_mount *mp = log->l_mp; 3953 3954 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno, 3955 buf_f->blf_len, buf_f->blf_flags)) { 3956 return; 3957 } 3958 3959 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno, 3960 buf_f->blf_len, NULL); 3961 } 3962 3963 STATIC void 3964 xlog_recover_inode_ra_pass2( 3965 struct xlog *log, 3966 struct xlog_recover_item *item) 3967 { 3968 struct xfs_inode_log_format ilf_buf; 3969 struct xfs_inode_log_format *ilfp; 3970 struct xfs_mount *mp = log->l_mp; 3971 int error; 3972 3973 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { 3974 ilfp = item->ri_buf[0].i_addr; 3975 } else { 3976 ilfp = &ilf_buf; 3977 memset(ilfp, 0, sizeof(*ilfp)); 3978 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp); 3979 if (error) 3980 return; 3981 } 3982 3983 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0)) 3984 return; 3985 3986 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno, 3987 ilfp->ilf_len, &xfs_inode_buf_ra_ops); 3988 } 3989 3990 STATIC void 3991 xlog_recover_dquot_ra_pass2( 3992 struct xlog *log, 3993 struct xlog_recover_item *item) 3994 { 3995 struct xfs_mount *mp = log->l_mp; 3996 struct xfs_disk_dquot *recddq; 3997 struct xfs_dq_logformat *dq_f; 3998 uint type; 3999 int len; 4000 4001 4002 if (mp->m_qflags == 0) 4003 return; 4004 4005 recddq = item->ri_buf[1].i_addr; 4006 if (recddq == NULL) 4007 return; 4008 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot)) 4009 return; 4010 4011 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 4012 ASSERT(type); 4013 if (log->l_quotaoffs_flag & type) 4014 return; 4015 4016 dq_f = item->ri_buf[0].i_addr; 4017 ASSERT(dq_f); 4018 ASSERT(dq_f->qlf_len == 1); 4019 4020 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len); 4021 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0)) 4022 return; 4023 4024 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len, 4025 &xfs_dquot_buf_ra_ops); 4026 } 4027 4028 STATIC void 4029 xlog_recover_ra_pass2( 4030 struct xlog *log, 4031 struct xlog_recover_item *item) 4032 { 4033 switch (ITEM_TYPE(item)) { 4034 case XFS_LI_BUF: 4035 xlog_recover_buffer_ra_pass2(log, item); 4036 break; 4037 case XFS_LI_INODE: 4038 xlog_recover_inode_ra_pass2(log, item); 4039 break; 4040 case XFS_LI_DQUOT: 4041 xlog_recover_dquot_ra_pass2(log, item); 4042 break; 4043 case XFS_LI_EFI: 4044 case XFS_LI_EFD: 4045 case XFS_LI_QUOTAOFF: 4046 case XFS_LI_RUI: 4047 case XFS_LI_RUD: 4048 case XFS_LI_CUI: 4049 case XFS_LI_CUD: 4050 case XFS_LI_BUI: 4051 case XFS_LI_BUD: 4052 default: 4053 break; 4054 } 4055 } 4056 4057 STATIC int 4058 xlog_recover_commit_pass1( 4059 struct xlog *log, 4060 struct xlog_recover *trans, 4061 struct xlog_recover_item *item) 4062 { 4063 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1); 4064 4065 switch (ITEM_TYPE(item)) { 4066 case XFS_LI_BUF: 4067 return xlog_recover_buffer_pass1(log, item); 4068 case XFS_LI_QUOTAOFF: 4069 return xlog_recover_quotaoff_pass1(log, item); 4070 case XFS_LI_INODE: 4071 case XFS_LI_EFI: 4072 case XFS_LI_EFD: 4073 case XFS_LI_DQUOT: 4074 case XFS_LI_ICREATE: 4075 case XFS_LI_RUI: 4076 case XFS_LI_RUD: 4077 case XFS_LI_CUI: 4078 case XFS_LI_CUD: 4079 case XFS_LI_BUI: 4080 case XFS_LI_BUD: 4081 /* nothing to do in pass 1 */ 4082 return 0; 4083 default: 4084 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 4085 __func__, ITEM_TYPE(item)); 4086 ASSERT(0); 4087 return -EIO; 4088 } 4089 } 4090 4091 STATIC int 4092 xlog_recover_commit_pass2( 4093 struct xlog *log, 4094 struct xlog_recover *trans, 4095 struct list_head *buffer_list, 4096 struct xlog_recover_item *item) 4097 { 4098 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2); 4099 4100 switch (ITEM_TYPE(item)) { 4101 case XFS_LI_BUF: 4102 return xlog_recover_buffer_pass2(log, buffer_list, item, 4103 trans->r_lsn); 4104 case XFS_LI_INODE: 4105 return xlog_recover_inode_pass2(log, buffer_list, item, 4106 trans->r_lsn); 4107 case XFS_LI_EFI: 4108 return xlog_recover_efi_pass2(log, item, trans->r_lsn); 4109 case XFS_LI_EFD: 4110 return xlog_recover_efd_pass2(log, item); 4111 case XFS_LI_RUI: 4112 return xlog_recover_rui_pass2(log, item, trans->r_lsn); 4113 case XFS_LI_RUD: 4114 return xlog_recover_rud_pass2(log, item); 4115 case XFS_LI_CUI: 4116 return xlog_recover_cui_pass2(log, item, trans->r_lsn); 4117 case XFS_LI_CUD: 4118 return xlog_recover_cud_pass2(log, item); 4119 case XFS_LI_BUI: 4120 return xlog_recover_bui_pass2(log, item, trans->r_lsn); 4121 case XFS_LI_BUD: 4122 return xlog_recover_bud_pass2(log, item); 4123 case XFS_LI_DQUOT: 4124 return xlog_recover_dquot_pass2(log, buffer_list, item, 4125 trans->r_lsn); 4126 case XFS_LI_ICREATE: 4127 return xlog_recover_do_icreate_pass2(log, buffer_list, item); 4128 case XFS_LI_QUOTAOFF: 4129 /* nothing to do in pass2 */ 4130 return 0; 4131 default: 4132 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 4133 __func__, ITEM_TYPE(item)); 4134 ASSERT(0); 4135 return -EIO; 4136 } 4137 } 4138 4139 STATIC int 4140 xlog_recover_items_pass2( 4141 struct xlog *log, 4142 struct xlog_recover *trans, 4143 struct list_head *buffer_list, 4144 struct list_head *item_list) 4145 { 4146 struct xlog_recover_item *item; 4147 int error = 0; 4148 4149 list_for_each_entry(item, item_list, ri_list) { 4150 error = xlog_recover_commit_pass2(log, trans, 4151 buffer_list, item); 4152 if (error) 4153 return error; 4154 } 4155 4156 return error; 4157 } 4158 4159 /* 4160 * Perform the transaction. 4161 * 4162 * If the transaction modifies a buffer or inode, do it now. Otherwise, 4163 * EFIs and EFDs get queued up by adding entries into the AIL for them. 4164 */ 4165 STATIC int 4166 xlog_recover_commit_trans( 4167 struct xlog *log, 4168 struct xlog_recover *trans, 4169 int pass, 4170 struct list_head *buffer_list) 4171 { 4172 int error = 0; 4173 int items_queued = 0; 4174 struct xlog_recover_item *item; 4175 struct xlog_recover_item *next; 4176 LIST_HEAD (ra_list); 4177 LIST_HEAD (done_list); 4178 4179 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100 4180 4181 hlist_del_init(&trans->r_list); 4182 4183 error = xlog_recover_reorder_trans(log, trans, pass); 4184 if (error) 4185 return error; 4186 4187 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) { 4188 switch (pass) { 4189 case XLOG_RECOVER_PASS1: 4190 error = xlog_recover_commit_pass1(log, trans, item); 4191 break; 4192 case XLOG_RECOVER_PASS2: 4193 xlog_recover_ra_pass2(log, item); 4194 list_move_tail(&item->ri_list, &ra_list); 4195 items_queued++; 4196 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) { 4197 error = xlog_recover_items_pass2(log, trans, 4198 buffer_list, &ra_list); 4199 list_splice_tail_init(&ra_list, &done_list); 4200 items_queued = 0; 4201 } 4202 4203 break; 4204 default: 4205 ASSERT(0); 4206 } 4207 4208 if (error) 4209 goto out; 4210 } 4211 4212 out: 4213 if (!list_empty(&ra_list)) { 4214 if (!error) 4215 error = xlog_recover_items_pass2(log, trans, 4216 buffer_list, &ra_list); 4217 list_splice_tail_init(&ra_list, &done_list); 4218 } 4219 4220 if (!list_empty(&done_list)) 4221 list_splice_init(&done_list, &trans->r_itemq); 4222 4223 return error; 4224 } 4225 4226 STATIC void 4227 xlog_recover_add_item( 4228 struct list_head *head) 4229 { 4230 xlog_recover_item_t *item; 4231 4232 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 4233 INIT_LIST_HEAD(&item->ri_list); 4234 list_add_tail(&item->ri_list, head); 4235 } 4236 4237 STATIC int 4238 xlog_recover_add_to_cont_trans( 4239 struct xlog *log, 4240 struct xlog_recover *trans, 4241 char *dp, 4242 int len) 4243 { 4244 xlog_recover_item_t *item; 4245 char *ptr, *old_ptr; 4246 int old_len; 4247 4248 /* 4249 * If the transaction is empty, the header was split across this and the 4250 * previous record. Copy the rest of the header. 4251 */ 4252 if (list_empty(&trans->r_itemq)) { 4253 ASSERT(len <= sizeof(struct xfs_trans_header)); 4254 if (len > sizeof(struct xfs_trans_header)) { 4255 xfs_warn(log->l_mp, "%s: bad header length", __func__); 4256 return -EIO; 4257 } 4258 4259 xlog_recover_add_item(&trans->r_itemq); 4260 ptr = (char *)&trans->r_theader + 4261 sizeof(struct xfs_trans_header) - len; 4262 memcpy(ptr, dp, len); 4263 return 0; 4264 } 4265 4266 /* take the tail entry */ 4267 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 4268 4269 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 4270 old_len = item->ri_buf[item->ri_cnt-1].i_len; 4271 4272 ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP); 4273 memcpy(&ptr[old_len], dp, len); 4274 item->ri_buf[item->ri_cnt-1].i_len += len; 4275 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 4276 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 4277 return 0; 4278 } 4279 4280 /* 4281 * The next region to add is the start of a new region. It could be 4282 * a whole region or it could be the first part of a new region. Because 4283 * of this, the assumption here is that the type and size fields of all 4284 * format structures fit into the first 32 bits of the structure. 4285 * 4286 * This works because all regions must be 32 bit aligned. Therefore, we 4287 * either have both fields or we have neither field. In the case we have 4288 * neither field, the data part of the region is zero length. We only have 4289 * a log_op_header and can throw away the header since a new one will appear 4290 * later. If we have at least 4 bytes, then we can determine how many regions 4291 * will appear in the current log item. 4292 */ 4293 STATIC int 4294 xlog_recover_add_to_trans( 4295 struct xlog *log, 4296 struct xlog_recover *trans, 4297 char *dp, 4298 int len) 4299 { 4300 xfs_inode_log_format_t *in_f; /* any will do */ 4301 xlog_recover_item_t *item; 4302 char *ptr; 4303 4304 if (!len) 4305 return 0; 4306 if (list_empty(&trans->r_itemq)) { 4307 /* we need to catch log corruptions here */ 4308 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 4309 xfs_warn(log->l_mp, "%s: bad header magic number", 4310 __func__); 4311 ASSERT(0); 4312 return -EIO; 4313 } 4314 4315 if (len > sizeof(struct xfs_trans_header)) { 4316 xfs_warn(log->l_mp, "%s: bad header length", __func__); 4317 ASSERT(0); 4318 return -EIO; 4319 } 4320 4321 /* 4322 * The transaction header can be arbitrarily split across op 4323 * records. If we don't have the whole thing here, copy what we 4324 * do have and handle the rest in the next record. 4325 */ 4326 if (len == sizeof(struct xfs_trans_header)) 4327 xlog_recover_add_item(&trans->r_itemq); 4328 memcpy(&trans->r_theader, dp, len); 4329 return 0; 4330 } 4331 4332 ptr = kmem_alloc(len, KM_SLEEP); 4333 memcpy(ptr, dp, len); 4334 in_f = (xfs_inode_log_format_t *)ptr; 4335 4336 /* take the tail entry */ 4337 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 4338 if (item->ri_total != 0 && 4339 item->ri_total == item->ri_cnt) { 4340 /* tail item is in use, get a new one */ 4341 xlog_recover_add_item(&trans->r_itemq); 4342 item = list_entry(trans->r_itemq.prev, 4343 xlog_recover_item_t, ri_list); 4344 } 4345 4346 if (item->ri_total == 0) { /* first region to be added */ 4347 if (in_f->ilf_size == 0 || 4348 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 4349 xfs_warn(log->l_mp, 4350 "bad number of regions (%d) in inode log format", 4351 in_f->ilf_size); 4352 ASSERT(0); 4353 kmem_free(ptr); 4354 return -EIO; 4355 } 4356 4357 item->ri_total = in_f->ilf_size; 4358 item->ri_buf = 4359 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 4360 KM_SLEEP); 4361 } 4362 ASSERT(item->ri_total > item->ri_cnt); 4363 /* Description region is ri_buf[0] */ 4364 item->ri_buf[item->ri_cnt].i_addr = ptr; 4365 item->ri_buf[item->ri_cnt].i_len = len; 4366 item->ri_cnt++; 4367 trace_xfs_log_recover_item_add(log, trans, item, 0); 4368 return 0; 4369 } 4370 4371 /* 4372 * Free up any resources allocated by the transaction 4373 * 4374 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 4375 */ 4376 STATIC void 4377 xlog_recover_free_trans( 4378 struct xlog_recover *trans) 4379 { 4380 xlog_recover_item_t *item, *n; 4381 int i; 4382 4383 hlist_del_init(&trans->r_list); 4384 4385 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 4386 /* Free the regions in the item. */ 4387 list_del(&item->ri_list); 4388 for (i = 0; i < item->ri_cnt; i++) 4389 kmem_free(item->ri_buf[i].i_addr); 4390 /* Free the item itself */ 4391 kmem_free(item->ri_buf); 4392 kmem_free(item); 4393 } 4394 /* Free the transaction recover structure */ 4395 kmem_free(trans); 4396 } 4397 4398 /* 4399 * On error or completion, trans is freed. 4400 */ 4401 STATIC int 4402 xlog_recovery_process_trans( 4403 struct xlog *log, 4404 struct xlog_recover *trans, 4405 char *dp, 4406 unsigned int len, 4407 unsigned int flags, 4408 int pass, 4409 struct list_head *buffer_list) 4410 { 4411 int error = 0; 4412 bool freeit = false; 4413 4414 /* mask off ophdr transaction container flags */ 4415 flags &= ~XLOG_END_TRANS; 4416 if (flags & XLOG_WAS_CONT_TRANS) 4417 flags &= ~XLOG_CONTINUE_TRANS; 4418 4419 /* 4420 * Callees must not free the trans structure. We'll decide if we need to 4421 * free it or not based on the operation being done and it's result. 4422 */ 4423 switch (flags) { 4424 /* expected flag values */ 4425 case 0: 4426 case XLOG_CONTINUE_TRANS: 4427 error = xlog_recover_add_to_trans(log, trans, dp, len); 4428 break; 4429 case XLOG_WAS_CONT_TRANS: 4430 error = xlog_recover_add_to_cont_trans(log, trans, dp, len); 4431 break; 4432 case XLOG_COMMIT_TRANS: 4433 error = xlog_recover_commit_trans(log, trans, pass, 4434 buffer_list); 4435 /* success or fail, we are now done with this transaction. */ 4436 freeit = true; 4437 break; 4438 4439 /* unexpected flag values */ 4440 case XLOG_UNMOUNT_TRANS: 4441 /* just skip trans */ 4442 xfs_warn(log->l_mp, "%s: Unmount LR", __func__); 4443 freeit = true; 4444 break; 4445 case XLOG_START_TRANS: 4446 default: 4447 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags); 4448 ASSERT(0); 4449 error = -EIO; 4450 break; 4451 } 4452 if (error || freeit) 4453 xlog_recover_free_trans(trans); 4454 return error; 4455 } 4456 4457 /* 4458 * Lookup the transaction recovery structure associated with the ID in the 4459 * current ophdr. If the transaction doesn't exist and the start flag is set in 4460 * the ophdr, then allocate a new transaction for future ID matches to find. 4461 * Either way, return what we found during the lookup - an existing transaction 4462 * or nothing. 4463 */ 4464 STATIC struct xlog_recover * 4465 xlog_recover_ophdr_to_trans( 4466 struct hlist_head rhash[], 4467 struct xlog_rec_header *rhead, 4468 struct xlog_op_header *ohead) 4469 { 4470 struct xlog_recover *trans; 4471 xlog_tid_t tid; 4472 struct hlist_head *rhp; 4473 4474 tid = be32_to_cpu(ohead->oh_tid); 4475 rhp = &rhash[XLOG_RHASH(tid)]; 4476 hlist_for_each_entry(trans, rhp, r_list) { 4477 if (trans->r_log_tid == tid) 4478 return trans; 4479 } 4480 4481 /* 4482 * skip over non-start transaction headers - we could be 4483 * processing slack space before the next transaction starts 4484 */ 4485 if (!(ohead->oh_flags & XLOG_START_TRANS)) 4486 return NULL; 4487 4488 ASSERT(be32_to_cpu(ohead->oh_len) == 0); 4489 4490 /* 4491 * This is a new transaction so allocate a new recovery container to 4492 * hold the recovery ops that will follow. 4493 */ 4494 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP); 4495 trans->r_log_tid = tid; 4496 trans->r_lsn = be64_to_cpu(rhead->h_lsn); 4497 INIT_LIST_HEAD(&trans->r_itemq); 4498 INIT_HLIST_NODE(&trans->r_list); 4499 hlist_add_head(&trans->r_list, rhp); 4500 4501 /* 4502 * Nothing more to do for this ophdr. Items to be added to this new 4503 * transaction will be in subsequent ophdr containers. 4504 */ 4505 return NULL; 4506 } 4507 4508 STATIC int 4509 xlog_recover_process_ophdr( 4510 struct xlog *log, 4511 struct hlist_head rhash[], 4512 struct xlog_rec_header *rhead, 4513 struct xlog_op_header *ohead, 4514 char *dp, 4515 char *end, 4516 int pass, 4517 struct list_head *buffer_list) 4518 { 4519 struct xlog_recover *trans; 4520 unsigned int len; 4521 int error; 4522 4523 /* Do we understand who wrote this op? */ 4524 if (ohead->oh_clientid != XFS_TRANSACTION && 4525 ohead->oh_clientid != XFS_LOG) { 4526 xfs_warn(log->l_mp, "%s: bad clientid 0x%x", 4527 __func__, ohead->oh_clientid); 4528 ASSERT(0); 4529 return -EIO; 4530 } 4531 4532 /* 4533 * Check the ophdr contains all the data it is supposed to contain. 4534 */ 4535 len = be32_to_cpu(ohead->oh_len); 4536 if (dp + len > end) { 4537 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len); 4538 WARN_ON(1); 4539 return -EIO; 4540 } 4541 4542 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead); 4543 if (!trans) { 4544 /* nothing to do, so skip over this ophdr */ 4545 return 0; 4546 } 4547 4548 /* 4549 * The recovered buffer queue is drained only once we know that all 4550 * recovery items for the current LSN have been processed. This is 4551 * required because: 4552 * 4553 * - Buffer write submission updates the metadata LSN of the buffer. 4554 * - Log recovery skips items with a metadata LSN >= the current LSN of 4555 * the recovery item. 4556 * - Separate recovery items against the same metadata buffer can share 4557 * a current LSN. I.e., consider that the LSN of a recovery item is 4558 * defined as the starting LSN of the first record in which its 4559 * transaction appears, that a record can hold multiple transactions, 4560 * and/or that a transaction can span multiple records. 4561 * 4562 * In other words, we are allowed to submit a buffer from log recovery 4563 * once per current LSN. Otherwise, we may incorrectly skip recovery 4564 * items and cause corruption. 4565 * 4566 * We don't know up front whether buffers are updated multiple times per 4567 * LSN. Therefore, track the current LSN of each commit log record as it 4568 * is processed and drain the queue when it changes. Use commit records 4569 * because they are ordered correctly by the logging code. 4570 */ 4571 if (log->l_recovery_lsn != trans->r_lsn && 4572 ohead->oh_flags & XLOG_COMMIT_TRANS) { 4573 error = xfs_buf_delwri_submit(buffer_list); 4574 if (error) 4575 return error; 4576 log->l_recovery_lsn = trans->r_lsn; 4577 } 4578 4579 return xlog_recovery_process_trans(log, trans, dp, len, 4580 ohead->oh_flags, pass, buffer_list); 4581 } 4582 4583 /* 4584 * There are two valid states of the r_state field. 0 indicates that the 4585 * transaction structure is in a normal state. We have either seen the 4586 * start of the transaction or the last operation we added was not a partial 4587 * operation. If the last operation we added to the transaction was a 4588 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 4589 * 4590 * NOTE: skip LRs with 0 data length. 4591 */ 4592 STATIC int 4593 xlog_recover_process_data( 4594 struct xlog *log, 4595 struct hlist_head rhash[], 4596 struct xlog_rec_header *rhead, 4597 char *dp, 4598 int pass, 4599 struct list_head *buffer_list) 4600 { 4601 struct xlog_op_header *ohead; 4602 char *end; 4603 int num_logops; 4604 int error; 4605 4606 end = dp + be32_to_cpu(rhead->h_len); 4607 num_logops = be32_to_cpu(rhead->h_num_logops); 4608 4609 /* check the log format matches our own - else we can't recover */ 4610 if (xlog_header_check_recover(log->l_mp, rhead)) 4611 return -EIO; 4612 4613 trace_xfs_log_recover_record(log, rhead, pass); 4614 while ((dp < end) && num_logops) { 4615 4616 ohead = (struct xlog_op_header *)dp; 4617 dp += sizeof(*ohead); 4618 ASSERT(dp <= end); 4619 4620 /* errors will abort recovery */ 4621 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead, 4622 dp, end, pass, buffer_list); 4623 if (error) 4624 return error; 4625 4626 dp += be32_to_cpu(ohead->oh_len); 4627 num_logops--; 4628 } 4629 return 0; 4630 } 4631 4632 /* Recover the EFI if necessary. */ 4633 STATIC int 4634 xlog_recover_process_efi( 4635 struct xfs_mount *mp, 4636 struct xfs_ail *ailp, 4637 struct xfs_log_item *lip) 4638 { 4639 struct xfs_efi_log_item *efip; 4640 int error; 4641 4642 /* 4643 * Skip EFIs that we've already processed. 4644 */ 4645 efip = container_of(lip, struct xfs_efi_log_item, efi_item); 4646 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) 4647 return 0; 4648 4649 spin_unlock(&ailp->xa_lock); 4650 error = xfs_efi_recover(mp, efip); 4651 spin_lock(&ailp->xa_lock); 4652 4653 return error; 4654 } 4655 4656 /* Release the EFI since we're cancelling everything. */ 4657 STATIC void 4658 xlog_recover_cancel_efi( 4659 struct xfs_mount *mp, 4660 struct xfs_ail *ailp, 4661 struct xfs_log_item *lip) 4662 { 4663 struct xfs_efi_log_item *efip; 4664 4665 efip = container_of(lip, struct xfs_efi_log_item, efi_item); 4666 4667 spin_unlock(&ailp->xa_lock); 4668 xfs_efi_release(efip); 4669 spin_lock(&ailp->xa_lock); 4670 } 4671 4672 /* Recover the RUI if necessary. */ 4673 STATIC int 4674 xlog_recover_process_rui( 4675 struct xfs_mount *mp, 4676 struct xfs_ail *ailp, 4677 struct xfs_log_item *lip) 4678 { 4679 struct xfs_rui_log_item *ruip; 4680 int error; 4681 4682 /* 4683 * Skip RUIs that we've already processed. 4684 */ 4685 ruip = container_of(lip, struct xfs_rui_log_item, rui_item); 4686 if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags)) 4687 return 0; 4688 4689 spin_unlock(&ailp->xa_lock); 4690 error = xfs_rui_recover(mp, ruip); 4691 spin_lock(&ailp->xa_lock); 4692 4693 return error; 4694 } 4695 4696 /* Release the RUI since we're cancelling everything. */ 4697 STATIC void 4698 xlog_recover_cancel_rui( 4699 struct xfs_mount *mp, 4700 struct xfs_ail *ailp, 4701 struct xfs_log_item *lip) 4702 { 4703 struct xfs_rui_log_item *ruip; 4704 4705 ruip = container_of(lip, struct xfs_rui_log_item, rui_item); 4706 4707 spin_unlock(&ailp->xa_lock); 4708 xfs_rui_release(ruip); 4709 spin_lock(&ailp->xa_lock); 4710 } 4711 4712 /* Recover the CUI if necessary. */ 4713 STATIC int 4714 xlog_recover_process_cui( 4715 struct xfs_mount *mp, 4716 struct xfs_ail *ailp, 4717 struct xfs_log_item *lip) 4718 { 4719 struct xfs_cui_log_item *cuip; 4720 int error; 4721 4722 /* 4723 * Skip CUIs that we've already processed. 4724 */ 4725 cuip = container_of(lip, struct xfs_cui_log_item, cui_item); 4726 if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags)) 4727 return 0; 4728 4729 spin_unlock(&ailp->xa_lock); 4730 error = xfs_cui_recover(mp, cuip); 4731 spin_lock(&ailp->xa_lock); 4732 4733 return error; 4734 } 4735 4736 /* Release the CUI since we're cancelling everything. */ 4737 STATIC void 4738 xlog_recover_cancel_cui( 4739 struct xfs_mount *mp, 4740 struct xfs_ail *ailp, 4741 struct xfs_log_item *lip) 4742 { 4743 struct xfs_cui_log_item *cuip; 4744 4745 cuip = container_of(lip, struct xfs_cui_log_item, cui_item); 4746 4747 spin_unlock(&ailp->xa_lock); 4748 xfs_cui_release(cuip); 4749 spin_lock(&ailp->xa_lock); 4750 } 4751 4752 /* Recover the BUI if necessary. */ 4753 STATIC int 4754 xlog_recover_process_bui( 4755 struct xfs_mount *mp, 4756 struct xfs_ail *ailp, 4757 struct xfs_log_item *lip) 4758 { 4759 struct xfs_bui_log_item *buip; 4760 int error; 4761 4762 /* 4763 * Skip BUIs that we've already processed. 4764 */ 4765 buip = container_of(lip, struct xfs_bui_log_item, bui_item); 4766 if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags)) 4767 return 0; 4768 4769 spin_unlock(&ailp->xa_lock); 4770 error = xfs_bui_recover(mp, buip); 4771 spin_lock(&ailp->xa_lock); 4772 4773 return error; 4774 } 4775 4776 /* Release the BUI since we're cancelling everything. */ 4777 STATIC void 4778 xlog_recover_cancel_bui( 4779 struct xfs_mount *mp, 4780 struct xfs_ail *ailp, 4781 struct xfs_log_item *lip) 4782 { 4783 struct xfs_bui_log_item *buip; 4784 4785 buip = container_of(lip, struct xfs_bui_log_item, bui_item); 4786 4787 spin_unlock(&ailp->xa_lock); 4788 xfs_bui_release(buip); 4789 spin_lock(&ailp->xa_lock); 4790 } 4791 4792 /* Is this log item a deferred action intent? */ 4793 static inline bool xlog_item_is_intent(struct xfs_log_item *lip) 4794 { 4795 switch (lip->li_type) { 4796 case XFS_LI_EFI: 4797 case XFS_LI_RUI: 4798 case XFS_LI_CUI: 4799 case XFS_LI_BUI: 4800 return true; 4801 default: 4802 return false; 4803 } 4804 } 4805 4806 /* 4807 * When this is called, all of the log intent items which did not have 4808 * corresponding log done items should be in the AIL. What we do now 4809 * is update the data structures associated with each one. 4810 * 4811 * Since we process the log intent items in normal transactions, they 4812 * will be removed at some point after the commit. This prevents us 4813 * from just walking down the list processing each one. We'll use a 4814 * flag in the intent item to skip those that we've already processed 4815 * and use the AIL iteration mechanism's generation count to try to 4816 * speed this up at least a bit. 4817 * 4818 * When we start, we know that the intents are the only things in the 4819 * AIL. As we process them, however, other items are added to the 4820 * AIL. 4821 */ 4822 STATIC int 4823 xlog_recover_process_intents( 4824 struct xlog *log) 4825 { 4826 struct xfs_log_item *lip; 4827 int error = 0; 4828 struct xfs_ail_cursor cur; 4829 struct xfs_ail *ailp; 4830 #if defined(DEBUG) || defined(XFS_WARN) 4831 xfs_lsn_t last_lsn; 4832 #endif 4833 4834 ailp = log->l_ailp; 4835 spin_lock(&ailp->xa_lock); 4836 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 4837 #if defined(DEBUG) || defined(XFS_WARN) 4838 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block); 4839 #endif 4840 while (lip != NULL) { 4841 /* 4842 * We're done when we see something other than an intent. 4843 * There should be no intents left in the AIL now. 4844 */ 4845 if (!xlog_item_is_intent(lip)) { 4846 #ifdef DEBUG 4847 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 4848 ASSERT(!xlog_item_is_intent(lip)); 4849 #endif 4850 break; 4851 } 4852 4853 /* 4854 * We should never see a redo item with a LSN higher than 4855 * the last transaction we found in the log at the start 4856 * of recovery. 4857 */ 4858 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0); 4859 4860 switch (lip->li_type) { 4861 case XFS_LI_EFI: 4862 error = xlog_recover_process_efi(log->l_mp, ailp, lip); 4863 break; 4864 case XFS_LI_RUI: 4865 error = xlog_recover_process_rui(log->l_mp, ailp, lip); 4866 break; 4867 case XFS_LI_CUI: 4868 error = xlog_recover_process_cui(log->l_mp, ailp, lip); 4869 break; 4870 case XFS_LI_BUI: 4871 error = xlog_recover_process_bui(log->l_mp, ailp, lip); 4872 break; 4873 } 4874 if (error) 4875 goto out; 4876 lip = xfs_trans_ail_cursor_next(ailp, &cur); 4877 } 4878 out: 4879 xfs_trans_ail_cursor_done(&cur); 4880 spin_unlock(&ailp->xa_lock); 4881 return error; 4882 } 4883 4884 /* 4885 * A cancel occurs when the mount has failed and we're bailing out. 4886 * Release all pending log intent items so they don't pin the AIL. 4887 */ 4888 STATIC int 4889 xlog_recover_cancel_intents( 4890 struct xlog *log) 4891 { 4892 struct xfs_log_item *lip; 4893 int error = 0; 4894 struct xfs_ail_cursor cur; 4895 struct xfs_ail *ailp; 4896 4897 ailp = log->l_ailp; 4898 spin_lock(&ailp->xa_lock); 4899 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 4900 while (lip != NULL) { 4901 /* 4902 * We're done when we see something other than an intent. 4903 * There should be no intents left in the AIL now. 4904 */ 4905 if (!xlog_item_is_intent(lip)) { 4906 #ifdef DEBUG 4907 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 4908 ASSERT(!xlog_item_is_intent(lip)); 4909 #endif 4910 break; 4911 } 4912 4913 switch (lip->li_type) { 4914 case XFS_LI_EFI: 4915 xlog_recover_cancel_efi(log->l_mp, ailp, lip); 4916 break; 4917 case XFS_LI_RUI: 4918 xlog_recover_cancel_rui(log->l_mp, ailp, lip); 4919 break; 4920 case XFS_LI_CUI: 4921 xlog_recover_cancel_cui(log->l_mp, ailp, lip); 4922 break; 4923 case XFS_LI_BUI: 4924 xlog_recover_cancel_bui(log->l_mp, ailp, lip); 4925 break; 4926 } 4927 4928 lip = xfs_trans_ail_cursor_next(ailp, &cur); 4929 } 4930 4931 xfs_trans_ail_cursor_done(&cur); 4932 spin_unlock(&ailp->xa_lock); 4933 return error; 4934 } 4935 4936 /* 4937 * This routine performs a transaction to null out a bad inode pointer 4938 * in an agi unlinked inode hash bucket. 4939 */ 4940 STATIC void 4941 xlog_recover_clear_agi_bucket( 4942 xfs_mount_t *mp, 4943 xfs_agnumber_t agno, 4944 int bucket) 4945 { 4946 xfs_trans_t *tp; 4947 xfs_agi_t *agi; 4948 xfs_buf_t *agibp; 4949 int offset; 4950 int error; 4951 4952 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp); 4953 if (error) 4954 goto out_error; 4955 4956 error = xfs_read_agi(mp, tp, agno, &agibp); 4957 if (error) 4958 goto out_abort; 4959 4960 agi = XFS_BUF_TO_AGI(agibp); 4961 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 4962 offset = offsetof(xfs_agi_t, agi_unlinked) + 4963 (sizeof(xfs_agino_t) * bucket); 4964 xfs_trans_log_buf(tp, agibp, offset, 4965 (offset + sizeof(xfs_agino_t) - 1)); 4966 4967 error = xfs_trans_commit(tp); 4968 if (error) 4969 goto out_error; 4970 return; 4971 4972 out_abort: 4973 xfs_trans_cancel(tp); 4974 out_error: 4975 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); 4976 return; 4977 } 4978 4979 STATIC xfs_agino_t 4980 xlog_recover_process_one_iunlink( 4981 struct xfs_mount *mp, 4982 xfs_agnumber_t agno, 4983 xfs_agino_t agino, 4984 int bucket) 4985 { 4986 struct xfs_buf *ibp; 4987 struct xfs_dinode *dip; 4988 struct xfs_inode *ip; 4989 xfs_ino_t ino; 4990 int error; 4991 4992 ino = XFS_AGINO_TO_INO(mp, agno, agino); 4993 error = xfs_iget(mp, NULL, ino, 0, 0, &ip); 4994 if (error) 4995 goto fail; 4996 4997 /* 4998 * Get the on disk inode to find the next inode in the bucket. 4999 */ 5000 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0); 5001 if (error) 5002 goto fail_iput; 5003 5004 xfs_iflags_clear(ip, XFS_IRECOVERY); 5005 ASSERT(VFS_I(ip)->i_nlink == 0); 5006 ASSERT(VFS_I(ip)->i_mode != 0); 5007 5008 /* setup for the next pass */ 5009 agino = be32_to_cpu(dip->di_next_unlinked); 5010 xfs_buf_relse(ibp); 5011 5012 /* 5013 * Prevent any DMAPI event from being sent when the reference on 5014 * the inode is dropped. 5015 */ 5016 ip->i_d.di_dmevmask = 0; 5017 5018 IRELE(ip); 5019 return agino; 5020 5021 fail_iput: 5022 IRELE(ip); 5023 fail: 5024 /* 5025 * We can't read in the inode this bucket points to, or this inode 5026 * is messed up. Just ditch this bucket of inodes. We will lose 5027 * some inodes and space, but at least we won't hang. 5028 * 5029 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 5030 * clear the inode pointer in the bucket. 5031 */ 5032 xlog_recover_clear_agi_bucket(mp, agno, bucket); 5033 return NULLAGINO; 5034 } 5035 5036 /* 5037 * xlog_iunlink_recover 5038 * 5039 * This is called during recovery to process any inodes which 5040 * we unlinked but not freed when the system crashed. These 5041 * inodes will be on the lists in the AGI blocks. What we do 5042 * here is scan all the AGIs and fully truncate and free any 5043 * inodes found on the lists. Each inode is removed from the 5044 * lists when it has been fully truncated and is freed. The 5045 * freeing of the inode and its removal from the list must be 5046 * atomic. 5047 */ 5048 STATIC void 5049 xlog_recover_process_iunlinks( 5050 struct xlog *log) 5051 { 5052 xfs_mount_t *mp; 5053 xfs_agnumber_t agno; 5054 xfs_agi_t *agi; 5055 xfs_buf_t *agibp; 5056 xfs_agino_t agino; 5057 int bucket; 5058 int error; 5059 uint mp_dmevmask; 5060 5061 mp = log->l_mp; 5062 5063 /* 5064 * Prevent any DMAPI event from being sent while in this function. 5065 */ 5066 mp_dmevmask = mp->m_dmevmask; 5067 mp->m_dmevmask = 0; 5068 5069 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 5070 /* 5071 * Find the agi for this ag. 5072 */ 5073 error = xfs_read_agi(mp, NULL, agno, &agibp); 5074 if (error) { 5075 /* 5076 * AGI is b0rked. Don't process it. 5077 * 5078 * We should probably mark the filesystem as corrupt 5079 * after we've recovered all the ag's we can.... 5080 */ 5081 continue; 5082 } 5083 /* 5084 * Unlock the buffer so that it can be acquired in the normal 5085 * course of the transaction to truncate and free each inode. 5086 * Because we are not racing with anyone else here for the AGI 5087 * buffer, we don't even need to hold it locked to read the 5088 * initial unlinked bucket entries out of the buffer. We keep 5089 * buffer reference though, so that it stays pinned in memory 5090 * while we need the buffer. 5091 */ 5092 agi = XFS_BUF_TO_AGI(agibp); 5093 xfs_buf_unlock(agibp); 5094 5095 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 5096 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 5097 while (agino != NULLAGINO) { 5098 agino = xlog_recover_process_one_iunlink(mp, 5099 agno, agino, bucket); 5100 } 5101 } 5102 xfs_buf_rele(agibp); 5103 } 5104 5105 mp->m_dmevmask = mp_dmevmask; 5106 } 5107 5108 STATIC int 5109 xlog_unpack_data( 5110 struct xlog_rec_header *rhead, 5111 char *dp, 5112 struct xlog *log) 5113 { 5114 int i, j, k; 5115 5116 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 5117 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 5118 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 5119 dp += BBSIZE; 5120 } 5121 5122 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 5123 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 5124 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 5125 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 5126 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 5127 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 5128 dp += BBSIZE; 5129 } 5130 } 5131 5132 return 0; 5133 } 5134 5135 /* 5136 * CRC check, unpack and process a log record. 5137 */ 5138 STATIC int 5139 xlog_recover_process( 5140 struct xlog *log, 5141 struct hlist_head rhash[], 5142 struct xlog_rec_header *rhead, 5143 char *dp, 5144 int pass, 5145 struct list_head *buffer_list) 5146 { 5147 int error; 5148 __le32 old_crc = rhead->h_crc; 5149 __le32 crc; 5150 5151 5152 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); 5153 5154 /* 5155 * Nothing else to do if this is a CRC verification pass. Just return 5156 * if this a record with a non-zero crc. Unfortunately, mkfs always 5157 * sets old_crc to 0 so we must consider this valid even on v5 supers. 5158 * Otherwise, return EFSBADCRC on failure so the callers up the stack 5159 * know precisely what failed. 5160 */ 5161 if (pass == XLOG_RECOVER_CRCPASS) { 5162 if (old_crc && crc != old_crc) 5163 return -EFSBADCRC; 5164 return 0; 5165 } 5166 5167 /* 5168 * We're in the normal recovery path. Issue a warning if and only if the 5169 * CRC in the header is non-zero. This is an advisory warning and the 5170 * zero CRC check prevents warnings from being emitted when upgrading 5171 * the kernel from one that does not add CRCs by default. 5172 */ 5173 if (crc != old_crc) { 5174 if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) { 5175 xfs_alert(log->l_mp, 5176 "log record CRC mismatch: found 0x%x, expected 0x%x.", 5177 le32_to_cpu(old_crc), 5178 le32_to_cpu(crc)); 5179 xfs_hex_dump(dp, 32); 5180 } 5181 5182 /* 5183 * If the filesystem is CRC enabled, this mismatch becomes a 5184 * fatal log corruption failure. 5185 */ 5186 if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) 5187 return -EFSCORRUPTED; 5188 } 5189 5190 error = xlog_unpack_data(rhead, dp, log); 5191 if (error) 5192 return error; 5193 5194 return xlog_recover_process_data(log, rhash, rhead, dp, pass, 5195 buffer_list); 5196 } 5197 5198 STATIC int 5199 xlog_valid_rec_header( 5200 struct xlog *log, 5201 struct xlog_rec_header *rhead, 5202 xfs_daddr_t blkno) 5203 { 5204 int hlen; 5205 5206 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) { 5207 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 5208 XFS_ERRLEVEL_LOW, log->l_mp); 5209 return -EFSCORRUPTED; 5210 } 5211 if (unlikely( 5212 (!rhead->h_version || 5213 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { 5214 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", 5215 __func__, be32_to_cpu(rhead->h_version)); 5216 return -EIO; 5217 } 5218 5219 /* LR body must have data or it wouldn't have been written */ 5220 hlen = be32_to_cpu(rhead->h_len); 5221 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 5222 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 5223 XFS_ERRLEVEL_LOW, log->l_mp); 5224 return -EFSCORRUPTED; 5225 } 5226 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 5227 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 5228 XFS_ERRLEVEL_LOW, log->l_mp); 5229 return -EFSCORRUPTED; 5230 } 5231 return 0; 5232 } 5233 5234 /* 5235 * Read the log from tail to head and process the log records found. 5236 * Handle the two cases where the tail and head are in the same cycle 5237 * and where the active portion of the log wraps around the end of 5238 * the physical log separately. The pass parameter is passed through 5239 * to the routines called to process the data and is not looked at 5240 * here. 5241 */ 5242 STATIC int 5243 xlog_do_recovery_pass( 5244 struct xlog *log, 5245 xfs_daddr_t head_blk, 5246 xfs_daddr_t tail_blk, 5247 int pass, 5248 xfs_daddr_t *first_bad) /* out: first bad log rec */ 5249 { 5250 xlog_rec_header_t *rhead; 5251 xfs_daddr_t blk_no, rblk_no; 5252 xfs_daddr_t rhead_blk; 5253 char *offset; 5254 xfs_buf_t *hbp, *dbp; 5255 int error = 0, h_size, h_len; 5256 int error2 = 0; 5257 int bblks, split_bblks; 5258 int hblks, split_hblks, wrapped_hblks; 5259 int i; 5260 struct hlist_head rhash[XLOG_RHASH_SIZE]; 5261 LIST_HEAD (buffer_list); 5262 5263 ASSERT(head_blk != tail_blk); 5264 blk_no = rhead_blk = tail_blk; 5265 5266 for (i = 0; i < XLOG_RHASH_SIZE; i++) 5267 INIT_HLIST_HEAD(&rhash[i]); 5268 5269 /* 5270 * Read the header of the tail block and get the iclog buffer size from 5271 * h_size. Use this to tell how many sectors make up the log header. 5272 */ 5273 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 5274 /* 5275 * When using variable length iclogs, read first sector of 5276 * iclog header and extract the header size from it. Get a 5277 * new hbp that is the correct size. 5278 */ 5279 hbp = xlog_get_bp(log, 1); 5280 if (!hbp) 5281 return -ENOMEM; 5282 5283 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 5284 if (error) 5285 goto bread_err1; 5286 5287 rhead = (xlog_rec_header_t *)offset; 5288 error = xlog_valid_rec_header(log, rhead, tail_blk); 5289 if (error) 5290 goto bread_err1; 5291 5292 /* 5293 * xfsprogs has a bug where record length is based on lsunit but 5294 * h_size (iclog size) is hardcoded to 32k. Now that we 5295 * unconditionally CRC verify the unmount record, this means the 5296 * log buffer can be too small for the record and cause an 5297 * overrun. 5298 * 5299 * Detect this condition here. Use lsunit for the buffer size as 5300 * long as this looks like the mkfs case. Otherwise, return an 5301 * error to avoid a buffer overrun. 5302 */ 5303 h_size = be32_to_cpu(rhead->h_size); 5304 h_len = be32_to_cpu(rhead->h_len); 5305 if (h_len > h_size) { 5306 if (h_len <= log->l_mp->m_logbsize && 5307 be32_to_cpu(rhead->h_num_logops) == 1) { 5308 xfs_warn(log->l_mp, 5309 "invalid iclog size (%d bytes), using lsunit (%d bytes)", 5310 h_size, log->l_mp->m_logbsize); 5311 h_size = log->l_mp->m_logbsize; 5312 } else 5313 return -EFSCORRUPTED; 5314 } 5315 5316 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 5317 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 5318 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 5319 if (h_size % XLOG_HEADER_CYCLE_SIZE) 5320 hblks++; 5321 xlog_put_bp(hbp); 5322 hbp = xlog_get_bp(log, hblks); 5323 } else { 5324 hblks = 1; 5325 } 5326 } else { 5327 ASSERT(log->l_sectBBsize == 1); 5328 hblks = 1; 5329 hbp = xlog_get_bp(log, 1); 5330 h_size = XLOG_BIG_RECORD_BSIZE; 5331 } 5332 5333 if (!hbp) 5334 return -ENOMEM; 5335 dbp = xlog_get_bp(log, BTOBB(h_size)); 5336 if (!dbp) { 5337 xlog_put_bp(hbp); 5338 return -ENOMEM; 5339 } 5340 5341 memset(rhash, 0, sizeof(rhash)); 5342 if (tail_blk > head_blk) { 5343 /* 5344 * Perform recovery around the end of the physical log. 5345 * When the head is not on the same cycle number as the tail, 5346 * we can't do a sequential recovery. 5347 */ 5348 while (blk_no < log->l_logBBsize) { 5349 /* 5350 * Check for header wrapping around physical end-of-log 5351 */ 5352 offset = hbp->b_addr; 5353 split_hblks = 0; 5354 wrapped_hblks = 0; 5355 if (blk_no + hblks <= log->l_logBBsize) { 5356 /* Read header in one read */ 5357 error = xlog_bread(log, blk_no, hblks, hbp, 5358 &offset); 5359 if (error) 5360 goto bread_err2; 5361 } else { 5362 /* This LR is split across physical log end */ 5363 if (blk_no != log->l_logBBsize) { 5364 /* some data before physical log end */ 5365 ASSERT(blk_no <= INT_MAX); 5366 split_hblks = log->l_logBBsize - (int)blk_no; 5367 ASSERT(split_hblks > 0); 5368 error = xlog_bread(log, blk_no, 5369 split_hblks, hbp, 5370 &offset); 5371 if (error) 5372 goto bread_err2; 5373 } 5374 5375 /* 5376 * Note: this black magic still works with 5377 * large sector sizes (non-512) only because: 5378 * - we increased the buffer size originally 5379 * by 1 sector giving us enough extra space 5380 * for the second read; 5381 * - the log start is guaranteed to be sector 5382 * aligned; 5383 * - we read the log end (LR header start) 5384 * _first_, then the log start (LR header end) 5385 * - order is important. 5386 */ 5387 wrapped_hblks = hblks - split_hblks; 5388 error = xlog_bread_offset(log, 0, 5389 wrapped_hblks, hbp, 5390 offset + BBTOB(split_hblks)); 5391 if (error) 5392 goto bread_err2; 5393 } 5394 rhead = (xlog_rec_header_t *)offset; 5395 error = xlog_valid_rec_header(log, rhead, 5396 split_hblks ? blk_no : 0); 5397 if (error) 5398 goto bread_err2; 5399 5400 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 5401 blk_no += hblks; 5402 5403 /* 5404 * Read the log record data in multiple reads if it 5405 * wraps around the end of the log. Note that if the 5406 * header already wrapped, blk_no could point past the 5407 * end of the log. The record data is contiguous in 5408 * that case. 5409 */ 5410 if (blk_no + bblks <= log->l_logBBsize || 5411 blk_no >= log->l_logBBsize) { 5412 /* mod blk_no in case the header wrapped and 5413 * pushed it beyond the end of the log */ 5414 rblk_no = do_mod(blk_no, log->l_logBBsize); 5415 error = xlog_bread(log, rblk_no, bblks, dbp, 5416 &offset); 5417 if (error) 5418 goto bread_err2; 5419 } else { 5420 /* This log record is split across the 5421 * physical end of log */ 5422 offset = dbp->b_addr; 5423 split_bblks = 0; 5424 if (blk_no != log->l_logBBsize) { 5425 /* some data is before the physical 5426 * end of log */ 5427 ASSERT(!wrapped_hblks); 5428 ASSERT(blk_no <= INT_MAX); 5429 split_bblks = 5430 log->l_logBBsize - (int)blk_no; 5431 ASSERT(split_bblks > 0); 5432 error = xlog_bread(log, blk_no, 5433 split_bblks, dbp, 5434 &offset); 5435 if (error) 5436 goto bread_err2; 5437 } 5438 5439 /* 5440 * Note: this black magic still works with 5441 * large sector sizes (non-512) only because: 5442 * - we increased the buffer size originally 5443 * by 1 sector giving us enough extra space 5444 * for the second read; 5445 * - the log start is guaranteed to be sector 5446 * aligned; 5447 * - we read the log end (LR header start) 5448 * _first_, then the log start (LR header end) 5449 * - order is important. 5450 */ 5451 error = xlog_bread_offset(log, 0, 5452 bblks - split_bblks, dbp, 5453 offset + BBTOB(split_bblks)); 5454 if (error) 5455 goto bread_err2; 5456 } 5457 5458 error = xlog_recover_process(log, rhash, rhead, offset, 5459 pass, &buffer_list); 5460 if (error) 5461 goto bread_err2; 5462 5463 blk_no += bblks; 5464 rhead_blk = blk_no; 5465 } 5466 5467 ASSERT(blk_no >= log->l_logBBsize); 5468 blk_no -= log->l_logBBsize; 5469 rhead_blk = blk_no; 5470 } 5471 5472 /* read first part of physical log */ 5473 while (blk_no < head_blk) { 5474 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 5475 if (error) 5476 goto bread_err2; 5477 5478 rhead = (xlog_rec_header_t *)offset; 5479 error = xlog_valid_rec_header(log, rhead, blk_no); 5480 if (error) 5481 goto bread_err2; 5482 5483 /* blocks in data section */ 5484 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 5485 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 5486 &offset); 5487 if (error) 5488 goto bread_err2; 5489 5490 error = xlog_recover_process(log, rhash, rhead, offset, pass, 5491 &buffer_list); 5492 if (error) 5493 goto bread_err2; 5494 5495 blk_no += bblks + hblks; 5496 rhead_blk = blk_no; 5497 } 5498 5499 bread_err2: 5500 xlog_put_bp(dbp); 5501 bread_err1: 5502 xlog_put_bp(hbp); 5503 5504 /* 5505 * Submit buffers that have been added from the last record processed, 5506 * regardless of error status. 5507 */ 5508 if (!list_empty(&buffer_list)) 5509 error2 = xfs_buf_delwri_submit(&buffer_list); 5510 5511 if (error && first_bad) 5512 *first_bad = rhead_blk; 5513 5514 /* 5515 * Transactions are freed at commit time but transactions without commit 5516 * records on disk are never committed. Free any that may be left in the 5517 * hash table. 5518 */ 5519 for (i = 0; i < XLOG_RHASH_SIZE; i++) { 5520 struct hlist_node *tmp; 5521 struct xlog_recover *trans; 5522 5523 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list) 5524 xlog_recover_free_trans(trans); 5525 } 5526 5527 return error ? error : error2; 5528 } 5529 5530 /* 5531 * Do the recovery of the log. We actually do this in two phases. 5532 * The two passes are necessary in order to implement the function 5533 * of cancelling a record written into the log. The first pass 5534 * determines those things which have been cancelled, and the 5535 * second pass replays log items normally except for those which 5536 * have been cancelled. The handling of the replay and cancellations 5537 * takes place in the log item type specific routines. 5538 * 5539 * The table of items which have cancel records in the log is allocated 5540 * and freed at this level, since only here do we know when all of 5541 * the log recovery has been completed. 5542 */ 5543 STATIC int 5544 xlog_do_log_recovery( 5545 struct xlog *log, 5546 xfs_daddr_t head_blk, 5547 xfs_daddr_t tail_blk) 5548 { 5549 int error, i; 5550 5551 ASSERT(head_blk != tail_blk); 5552 5553 /* 5554 * First do a pass to find all of the cancelled buf log items. 5555 * Store them in the buf_cancel_table for use in the second pass. 5556 */ 5557 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * 5558 sizeof(struct list_head), 5559 KM_SLEEP); 5560 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 5561 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); 5562 5563 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 5564 XLOG_RECOVER_PASS1, NULL); 5565 if (error != 0) { 5566 kmem_free(log->l_buf_cancel_table); 5567 log->l_buf_cancel_table = NULL; 5568 return error; 5569 } 5570 /* 5571 * Then do a second pass to actually recover the items in the log. 5572 * When it is complete free the table of buf cancel items. 5573 */ 5574 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 5575 XLOG_RECOVER_PASS2, NULL); 5576 #ifdef DEBUG 5577 if (!error) { 5578 int i; 5579 5580 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 5581 ASSERT(list_empty(&log->l_buf_cancel_table[i])); 5582 } 5583 #endif /* DEBUG */ 5584 5585 kmem_free(log->l_buf_cancel_table); 5586 log->l_buf_cancel_table = NULL; 5587 5588 return error; 5589 } 5590 5591 /* 5592 * Do the actual recovery 5593 */ 5594 STATIC int 5595 xlog_do_recover( 5596 struct xlog *log, 5597 xfs_daddr_t head_blk, 5598 xfs_daddr_t tail_blk) 5599 { 5600 struct xfs_mount *mp = log->l_mp; 5601 int error; 5602 xfs_buf_t *bp; 5603 xfs_sb_t *sbp; 5604 5605 trace_xfs_log_recover(log, head_blk, tail_blk); 5606 5607 /* 5608 * First replay the images in the log. 5609 */ 5610 error = xlog_do_log_recovery(log, head_blk, tail_blk); 5611 if (error) 5612 return error; 5613 5614 /* 5615 * If IO errors happened during recovery, bail out. 5616 */ 5617 if (XFS_FORCED_SHUTDOWN(mp)) { 5618 return -EIO; 5619 } 5620 5621 /* 5622 * We now update the tail_lsn since much of the recovery has completed 5623 * and there may be space available to use. If there were no extent 5624 * or iunlinks, we can free up the entire log and set the tail_lsn to 5625 * be the last_sync_lsn. This was set in xlog_find_tail to be the 5626 * lsn of the last known good LR on disk. If there are extent frees 5627 * or iunlinks they will have some entries in the AIL; so we look at 5628 * the AIL to determine how to set the tail_lsn. 5629 */ 5630 xlog_assign_tail_lsn(mp); 5631 5632 /* 5633 * Now that we've finished replaying all buffer and inode 5634 * updates, re-read in the superblock and reverify it. 5635 */ 5636 bp = xfs_getsb(mp, 0); 5637 bp->b_flags &= ~(XBF_DONE | XBF_ASYNC); 5638 ASSERT(!(bp->b_flags & XBF_WRITE)); 5639 bp->b_flags |= XBF_READ; 5640 bp->b_ops = &xfs_sb_buf_ops; 5641 5642 error = xfs_buf_submit_wait(bp); 5643 if (error) { 5644 if (!XFS_FORCED_SHUTDOWN(mp)) { 5645 xfs_buf_ioerror_alert(bp, __func__); 5646 ASSERT(0); 5647 } 5648 xfs_buf_relse(bp); 5649 return error; 5650 } 5651 5652 /* Convert superblock from on-disk format */ 5653 sbp = &mp->m_sb; 5654 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 5655 xfs_buf_relse(bp); 5656 5657 /* re-initialise in-core superblock and geometry structures */ 5658 xfs_reinit_percpu_counters(mp); 5659 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 5660 if (error) { 5661 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error); 5662 return error; 5663 } 5664 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp); 5665 5666 xlog_recover_check_summary(log); 5667 5668 /* Normal transactions can now occur */ 5669 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 5670 return 0; 5671 } 5672 5673 /* 5674 * Perform recovery and re-initialize some log variables in xlog_find_tail. 5675 * 5676 * Return error or zero. 5677 */ 5678 int 5679 xlog_recover( 5680 struct xlog *log) 5681 { 5682 xfs_daddr_t head_blk, tail_blk; 5683 int error; 5684 5685 /* find the tail of the log */ 5686 error = xlog_find_tail(log, &head_blk, &tail_blk); 5687 if (error) 5688 return error; 5689 5690 /* 5691 * The superblock was read before the log was available and thus the LSN 5692 * could not be verified. Check the superblock LSN against the current 5693 * LSN now that it's known. 5694 */ 5695 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) && 5696 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn)) 5697 return -EINVAL; 5698 5699 if (tail_blk != head_blk) { 5700 /* There used to be a comment here: 5701 * 5702 * disallow recovery on read-only mounts. note -- mount 5703 * checks for ENOSPC and turns it into an intelligent 5704 * error message. 5705 * ...but this is no longer true. Now, unless you specify 5706 * NORECOVERY (in which case this function would never be 5707 * called), we just go ahead and recover. We do this all 5708 * under the vfs layer, so we can get away with it unless 5709 * the device itself is read-only, in which case we fail. 5710 */ 5711 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 5712 return error; 5713 } 5714 5715 /* 5716 * Version 5 superblock log feature mask validation. We know the 5717 * log is dirty so check if there are any unknown log features 5718 * in what we need to recover. If there are unknown features 5719 * (e.g. unsupported transactions, then simply reject the 5720 * attempt at recovery before touching anything. 5721 */ 5722 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 && 5723 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, 5724 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { 5725 xfs_warn(log->l_mp, 5726 "Superblock has unknown incompatible log features (0x%x) enabled.", 5727 (log->l_mp->m_sb.sb_features_log_incompat & 5728 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 5729 xfs_warn(log->l_mp, 5730 "The log can not be fully and/or safely recovered by this kernel."); 5731 xfs_warn(log->l_mp, 5732 "Please recover the log on a kernel that supports the unknown features."); 5733 return -EINVAL; 5734 } 5735 5736 /* 5737 * Delay log recovery if the debug hook is set. This is debug 5738 * instrumention to coordinate simulation of I/O failures with 5739 * log recovery. 5740 */ 5741 if (xfs_globals.log_recovery_delay) { 5742 xfs_notice(log->l_mp, 5743 "Delaying log recovery for %d seconds.", 5744 xfs_globals.log_recovery_delay); 5745 msleep(xfs_globals.log_recovery_delay * 1000); 5746 } 5747 5748 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", 5749 log->l_mp->m_logname ? log->l_mp->m_logname 5750 : "internal"); 5751 5752 error = xlog_do_recover(log, head_blk, tail_blk); 5753 log->l_flags |= XLOG_RECOVERY_NEEDED; 5754 } 5755 return error; 5756 } 5757 5758 /* 5759 * In the first part of recovery we replay inodes and buffers and build 5760 * up the list of extent free items which need to be processed. Here 5761 * we process the extent free items and clean up the on disk unlinked 5762 * inode lists. This is separated from the first part of recovery so 5763 * that the root and real-time bitmap inodes can be read in from disk in 5764 * between the two stages. This is necessary so that we can free space 5765 * in the real-time portion of the file system. 5766 */ 5767 int 5768 xlog_recover_finish( 5769 struct xlog *log) 5770 { 5771 /* 5772 * Now we're ready to do the transactions needed for the 5773 * rest of recovery. Start with completing all the extent 5774 * free intent records and then process the unlinked inode 5775 * lists. At this point, we essentially run in normal mode 5776 * except that we're still performing recovery actions 5777 * rather than accepting new requests. 5778 */ 5779 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 5780 int error; 5781 error = xlog_recover_process_intents(log); 5782 if (error) { 5783 xfs_alert(log->l_mp, "Failed to recover intents"); 5784 return error; 5785 } 5786 5787 /* 5788 * Sync the log to get all the intents out of the AIL. 5789 * This isn't absolutely necessary, but it helps in 5790 * case the unlink transactions would have problems 5791 * pushing the intents out of the way. 5792 */ 5793 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 5794 5795 xlog_recover_process_iunlinks(log); 5796 5797 xlog_recover_check_summary(log); 5798 5799 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", 5800 log->l_mp->m_logname ? log->l_mp->m_logname 5801 : "internal"); 5802 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 5803 } else { 5804 xfs_info(log->l_mp, "Ending clean mount"); 5805 } 5806 return 0; 5807 } 5808 5809 int 5810 xlog_recover_cancel( 5811 struct xlog *log) 5812 { 5813 int error = 0; 5814 5815 if (log->l_flags & XLOG_RECOVERY_NEEDED) 5816 error = xlog_recover_cancel_intents(log); 5817 5818 return error; 5819 } 5820 5821 #if defined(DEBUG) 5822 /* 5823 * Read all of the agf and agi counters and check that they 5824 * are consistent with the superblock counters. 5825 */ 5826 void 5827 xlog_recover_check_summary( 5828 struct xlog *log) 5829 { 5830 xfs_mount_t *mp; 5831 xfs_agf_t *agfp; 5832 xfs_buf_t *agfbp; 5833 xfs_buf_t *agibp; 5834 xfs_agnumber_t agno; 5835 uint64_t freeblks; 5836 uint64_t itotal; 5837 uint64_t ifree; 5838 int error; 5839 5840 mp = log->l_mp; 5841 5842 freeblks = 0LL; 5843 itotal = 0LL; 5844 ifree = 0LL; 5845 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 5846 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 5847 if (error) { 5848 xfs_alert(mp, "%s agf read failed agno %d error %d", 5849 __func__, agno, error); 5850 } else { 5851 agfp = XFS_BUF_TO_AGF(agfbp); 5852 freeblks += be32_to_cpu(agfp->agf_freeblks) + 5853 be32_to_cpu(agfp->agf_flcount); 5854 xfs_buf_relse(agfbp); 5855 } 5856 5857 error = xfs_read_agi(mp, NULL, agno, &agibp); 5858 if (error) { 5859 xfs_alert(mp, "%s agi read failed agno %d error %d", 5860 __func__, agno, error); 5861 } else { 5862 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 5863 5864 itotal += be32_to_cpu(agi->agi_count); 5865 ifree += be32_to_cpu(agi->agi_freecount); 5866 xfs_buf_relse(agibp); 5867 } 5868 } 5869 } 5870 #endif /* DEBUG */ 5871