1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_sb.h" 26 #include "xfs_mount.h" 27 #include "xfs_defer.h" 28 #include "xfs_da_format.h" 29 #include "xfs_da_btree.h" 30 #include "xfs_inode.h" 31 #include "xfs_trans.h" 32 #include "xfs_log.h" 33 #include "xfs_log_priv.h" 34 #include "xfs_log_recover.h" 35 #include "xfs_inode_item.h" 36 #include "xfs_extfree_item.h" 37 #include "xfs_trans_priv.h" 38 #include "xfs_alloc.h" 39 #include "xfs_ialloc.h" 40 #include "xfs_quota.h" 41 #include "xfs_cksum.h" 42 #include "xfs_trace.h" 43 #include "xfs_icache.h" 44 #include "xfs_bmap_btree.h" 45 #include "xfs_error.h" 46 #include "xfs_dir2.h" 47 #include "xfs_rmap_item.h" 48 #include "xfs_buf_item.h" 49 #include "xfs_refcount_item.h" 50 #include "xfs_bmap_item.h" 51 52 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) 53 54 STATIC int 55 xlog_find_zeroed( 56 struct xlog *, 57 xfs_daddr_t *); 58 STATIC int 59 xlog_clear_stale_blocks( 60 struct xlog *, 61 xfs_lsn_t); 62 #if defined(DEBUG) 63 STATIC void 64 xlog_recover_check_summary( 65 struct xlog *); 66 #else 67 #define xlog_recover_check_summary(log) 68 #endif 69 STATIC int 70 xlog_do_recovery_pass( 71 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *); 72 73 /* 74 * This structure is used during recovery to record the buf log items which 75 * have been canceled and should not be replayed. 76 */ 77 struct xfs_buf_cancel { 78 xfs_daddr_t bc_blkno; 79 uint bc_len; 80 int bc_refcount; 81 struct list_head bc_list; 82 }; 83 84 /* 85 * Sector aligned buffer routines for buffer create/read/write/access 86 */ 87 88 /* 89 * Verify the log-relative block number and length in basic blocks are valid for 90 * an operation involving the given XFS log buffer. Returns true if the fields 91 * are valid, false otherwise. 92 */ 93 static inline bool 94 xlog_verify_bp( 95 struct xlog *log, 96 xfs_daddr_t blk_no, 97 int bbcount) 98 { 99 if (blk_no < 0 || blk_no >= log->l_logBBsize) 100 return false; 101 if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize) 102 return false; 103 return true; 104 } 105 106 /* 107 * Allocate a buffer to hold log data. The buffer needs to be able 108 * to map to a range of nbblks basic blocks at any valid (basic 109 * block) offset within the log. 110 */ 111 STATIC xfs_buf_t * 112 xlog_get_bp( 113 struct xlog *log, 114 int nbblks) 115 { 116 struct xfs_buf *bp; 117 118 /* 119 * Pass log block 0 since we don't have an addr yet, buffer will be 120 * verified on read. 121 */ 122 if (!xlog_verify_bp(log, 0, nbblks)) { 123 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 124 nbblks); 125 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 126 return NULL; 127 } 128 129 /* 130 * We do log I/O in units of log sectors (a power-of-2 131 * multiple of the basic block size), so we round up the 132 * requested size to accommodate the basic blocks required 133 * for complete log sectors. 134 * 135 * In addition, the buffer may be used for a non-sector- 136 * aligned block offset, in which case an I/O of the 137 * requested size could extend beyond the end of the 138 * buffer. If the requested size is only 1 basic block it 139 * will never straddle a sector boundary, so this won't be 140 * an issue. Nor will this be a problem if the log I/O is 141 * done in basic blocks (sector size 1). But otherwise we 142 * extend the buffer by one extra log sector to ensure 143 * there's space to accommodate this possibility. 144 */ 145 if (nbblks > 1 && log->l_sectBBsize > 1) 146 nbblks += log->l_sectBBsize; 147 nbblks = round_up(nbblks, log->l_sectBBsize); 148 149 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0); 150 if (bp) 151 xfs_buf_unlock(bp); 152 return bp; 153 } 154 155 STATIC void 156 xlog_put_bp( 157 xfs_buf_t *bp) 158 { 159 xfs_buf_free(bp); 160 } 161 162 /* 163 * Return the address of the start of the given block number's data 164 * in a log buffer. The buffer covers a log sector-aligned region. 165 */ 166 STATIC char * 167 xlog_align( 168 struct xlog *log, 169 xfs_daddr_t blk_no, 170 int nbblks, 171 struct xfs_buf *bp) 172 { 173 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1); 174 175 ASSERT(offset + nbblks <= bp->b_length); 176 return bp->b_addr + BBTOB(offset); 177 } 178 179 180 /* 181 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 182 */ 183 STATIC int 184 xlog_bread_noalign( 185 struct xlog *log, 186 xfs_daddr_t blk_no, 187 int nbblks, 188 struct xfs_buf *bp) 189 { 190 int error; 191 192 if (!xlog_verify_bp(log, blk_no, nbblks)) { 193 xfs_warn(log->l_mp, 194 "Invalid log block/length (0x%llx, 0x%x) for buffer", 195 blk_no, nbblks); 196 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 197 return -EFSCORRUPTED; 198 } 199 200 blk_no = round_down(blk_no, log->l_sectBBsize); 201 nbblks = round_up(nbblks, log->l_sectBBsize); 202 203 ASSERT(nbblks > 0); 204 ASSERT(nbblks <= bp->b_length); 205 206 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 207 bp->b_flags |= XBF_READ; 208 bp->b_io_length = nbblks; 209 bp->b_error = 0; 210 211 error = xfs_buf_submit_wait(bp); 212 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) 213 xfs_buf_ioerror_alert(bp, __func__); 214 return error; 215 } 216 217 STATIC int 218 xlog_bread( 219 struct xlog *log, 220 xfs_daddr_t blk_no, 221 int nbblks, 222 struct xfs_buf *bp, 223 char **offset) 224 { 225 int error; 226 227 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 228 if (error) 229 return error; 230 231 *offset = xlog_align(log, blk_no, nbblks, bp); 232 return 0; 233 } 234 235 /* 236 * Read at an offset into the buffer. Returns with the buffer in it's original 237 * state regardless of the result of the read. 238 */ 239 STATIC int 240 xlog_bread_offset( 241 struct xlog *log, 242 xfs_daddr_t blk_no, /* block to read from */ 243 int nbblks, /* blocks to read */ 244 struct xfs_buf *bp, 245 char *offset) 246 { 247 char *orig_offset = bp->b_addr; 248 int orig_len = BBTOB(bp->b_length); 249 int error, error2; 250 251 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks)); 252 if (error) 253 return error; 254 255 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 256 257 /* must reset buffer pointer even on error */ 258 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len); 259 if (error) 260 return error; 261 return error2; 262 } 263 264 /* 265 * Write out the buffer at the given block for the given number of blocks. 266 * The buffer is kept locked across the write and is returned locked. 267 * This can only be used for synchronous log writes. 268 */ 269 STATIC int 270 xlog_bwrite( 271 struct xlog *log, 272 xfs_daddr_t blk_no, 273 int nbblks, 274 struct xfs_buf *bp) 275 { 276 int error; 277 278 if (!xlog_verify_bp(log, blk_no, nbblks)) { 279 xfs_warn(log->l_mp, 280 "Invalid log block/length (0x%llx, 0x%x) for buffer", 281 blk_no, nbblks); 282 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 283 return -EFSCORRUPTED; 284 } 285 286 blk_no = round_down(blk_no, log->l_sectBBsize); 287 nbblks = round_up(nbblks, log->l_sectBBsize); 288 289 ASSERT(nbblks > 0); 290 ASSERT(nbblks <= bp->b_length); 291 292 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 293 xfs_buf_hold(bp); 294 xfs_buf_lock(bp); 295 bp->b_io_length = nbblks; 296 bp->b_error = 0; 297 298 error = xfs_bwrite(bp); 299 if (error) 300 xfs_buf_ioerror_alert(bp, __func__); 301 xfs_buf_relse(bp); 302 return error; 303 } 304 305 #ifdef DEBUG 306 /* 307 * dump debug superblock and log record information 308 */ 309 STATIC void 310 xlog_header_check_dump( 311 xfs_mount_t *mp, 312 xlog_rec_header_t *head) 313 { 314 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d", 315 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 316 xfs_debug(mp, " log : uuid = %pU, fmt = %d", 317 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 318 } 319 #else 320 #define xlog_header_check_dump(mp, head) 321 #endif 322 323 /* 324 * check log record header for recovery 325 */ 326 STATIC int 327 xlog_header_check_recover( 328 xfs_mount_t *mp, 329 xlog_rec_header_t *head) 330 { 331 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 332 333 /* 334 * IRIX doesn't write the h_fmt field and leaves it zeroed 335 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 336 * a dirty log created in IRIX. 337 */ 338 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) { 339 xfs_warn(mp, 340 "dirty log written in incompatible format - can't recover"); 341 xlog_header_check_dump(mp, head); 342 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 343 XFS_ERRLEVEL_HIGH, mp); 344 return -EFSCORRUPTED; 345 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 346 xfs_warn(mp, 347 "dirty log entry has mismatched uuid - can't recover"); 348 xlog_header_check_dump(mp, head); 349 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 350 XFS_ERRLEVEL_HIGH, mp); 351 return -EFSCORRUPTED; 352 } 353 return 0; 354 } 355 356 /* 357 * read the head block of the log and check the header 358 */ 359 STATIC int 360 xlog_header_check_mount( 361 xfs_mount_t *mp, 362 xlog_rec_header_t *head) 363 { 364 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 365 366 if (uuid_is_null(&head->h_fs_uuid)) { 367 /* 368 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 369 * h_fs_uuid is null, we assume this log was last mounted 370 * by IRIX and continue. 371 */ 372 xfs_warn(mp, "null uuid in log - IRIX style log"); 373 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 374 xfs_warn(mp, "log has mismatched uuid - can't recover"); 375 xlog_header_check_dump(mp, head); 376 XFS_ERROR_REPORT("xlog_header_check_mount", 377 XFS_ERRLEVEL_HIGH, mp); 378 return -EFSCORRUPTED; 379 } 380 return 0; 381 } 382 383 STATIC void 384 xlog_recover_iodone( 385 struct xfs_buf *bp) 386 { 387 if (bp->b_error) { 388 /* 389 * We're not going to bother about retrying 390 * this during recovery. One strike! 391 */ 392 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 393 xfs_buf_ioerror_alert(bp, __func__); 394 xfs_force_shutdown(bp->b_target->bt_mount, 395 SHUTDOWN_META_IO_ERROR); 396 } 397 } 398 399 /* 400 * On v5 supers, a bli could be attached to update the metadata LSN. 401 * Clean it up. 402 */ 403 if (bp->b_fspriv) 404 xfs_buf_item_relse(bp); 405 ASSERT(bp->b_fspriv == NULL); 406 407 bp->b_iodone = NULL; 408 xfs_buf_ioend(bp); 409 } 410 411 /* 412 * This routine finds (to an approximation) the first block in the physical 413 * log which contains the given cycle. It uses a binary search algorithm. 414 * Note that the algorithm can not be perfect because the disk will not 415 * necessarily be perfect. 416 */ 417 STATIC int 418 xlog_find_cycle_start( 419 struct xlog *log, 420 struct xfs_buf *bp, 421 xfs_daddr_t first_blk, 422 xfs_daddr_t *last_blk, 423 uint cycle) 424 { 425 char *offset; 426 xfs_daddr_t mid_blk; 427 xfs_daddr_t end_blk; 428 uint mid_cycle; 429 int error; 430 431 end_blk = *last_blk; 432 mid_blk = BLK_AVG(first_blk, end_blk); 433 while (mid_blk != first_blk && mid_blk != end_blk) { 434 error = xlog_bread(log, mid_blk, 1, bp, &offset); 435 if (error) 436 return error; 437 mid_cycle = xlog_get_cycle(offset); 438 if (mid_cycle == cycle) 439 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 440 else 441 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 442 mid_blk = BLK_AVG(first_blk, end_blk); 443 } 444 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 445 (mid_blk == end_blk && mid_blk-1 == first_blk)); 446 447 *last_blk = end_blk; 448 449 return 0; 450 } 451 452 /* 453 * Check that a range of blocks does not contain stop_on_cycle_no. 454 * Fill in *new_blk with the block offset where such a block is 455 * found, or with -1 (an invalid block number) if there is no such 456 * block in the range. The scan needs to occur from front to back 457 * and the pointer into the region must be updated since a later 458 * routine will need to perform another test. 459 */ 460 STATIC int 461 xlog_find_verify_cycle( 462 struct xlog *log, 463 xfs_daddr_t start_blk, 464 int nbblks, 465 uint stop_on_cycle_no, 466 xfs_daddr_t *new_blk) 467 { 468 xfs_daddr_t i, j; 469 uint cycle; 470 xfs_buf_t *bp; 471 xfs_daddr_t bufblks; 472 char *buf = NULL; 473 int error = 0; 474 475 /* 476 * Greedily allocate a buffer big enough to handle the full 477 * range of basic blocks we'll be examining. If that fails, 478 * try a smaller size. We need to be able to read at least 479 * a log sector, or we're out of luck. 480 */ 481 bufblks = 1 << ffs(nbblks); 482 while (bufblks > log->l_logBBsize) 483 bufblks >>= 1; 484 while (!(bp = xlog_get_bp(log, bufblks))) { 485 bufblks >>= 1; 486 if (bufblks < log->l_sectBBsize) 487 return -ENOMEM; 488 } 489 490 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 491 int bcount; 492 493 bcount = min(bufblks, (start_blk + nbblks - i)); 494 495 error = xlog_bread(log, i, bcount, bp, &buf); 496 if (error) 497 goto out; 498 499 for (j = 0; j < bcount; j++) { 500 cycle = xlog_get_cycle(buf); 501 if (cycle == stop_on_cycle_no) { 502 *new_blk = i+j; 503 goto out; 504 } 505 506 buf += BBSIZE; 507 } 508 } 509 510 *new_blk = -1; 511 512 out: 513 xlog_put_bp(bp); 514 return error; 515 } 516 517 /* 518 * Potentially backup over partial log record write. 519 * 520 * In the typical case, last_blk is the number of the block directly after 521 * a good log record. Therefore, we subtract one to get the block number 522 * of the last block in the given buffer. extra_bblks contains the number 523 * of blocks we would have read on a previous read. This happens when the 524 * last log record is split over the end of the physical log. 525 * 526 * extra_bblks is the number of blocks potentially verified on a previous 527 * call to this routine. 528 */ 529 STATIC int 530 xlog_find_verify_log_record( 531 struct xlog *log, 532 xfs_daddr_t start_blk, 533 xfs_daddr_t *last_blk, 534 int extra_bblks) 535 { 536 xfs_daddr_t i; 537 xfs_buf_t *bp; 538 char *offset = NULL; 539 xlog_rec_header_t *head = NULL; 540 int error = 0; 541 int smallmem = 0; 542 int num_blks = *last_blk - start_blk; 543 int xhdrs; 544 545 ASSERT(start_blk != 0 || *last_blk != start_blk); 546 547 if (!(bp = xlog_get_bp(log, num_blks))) { 548 if (!(bp = xlog_get_bp(log, 1))) 549 return -ENOMEM; 550 smallmem = 1; 551 } else { 552 error = xlog_bread(log, start_blk, num_blks, bp, &offset); 553 if (error) 554 goto out; 555 offset += ((num_blks - 1) << BBSHIFT); 556 } 557 558 for (i = (*last_blk) - 1; i >= 0; i--) { 559 if (i < start_blk) { 560 /* valid log record not found */ 561 xfs_warn(log->l_mp, 562 "Log inconsistent (didn't find previous header)"); 563 ASSERT(0); 564 error = -EIO; 565 goto out; 566 } 567 568 if (smallmem) { 569 error = xlog_bread(log, i, 1, bp, &offset); 570 if (error) 571 goto out; 572 } 573 574 head = (xlog_rec_header_t *)offset; 575 576 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 577 break; 578 579 if (!smallmem) 580 offset -= BBSIZE; 581 } 582 583 /* 584 * We hit the beginning of the physical log & still no header. Return 585 * to caller. If caller can handle a return of -1, then this routine 586 * will be called again for the end of the physical log. 587 */ 588 if (i == -1) { 589 error = 1; 590 goto out; 591 } 592 593 /* 594 * We have the final block of the good log (the first block 595 * of the log record _before_ the head. So we check the uuid. 596 */ 597 if ((error = xlog_header_check_mount(log->l_mp, head))) 598 goto out; 599 600 /* 601 * We may have found a log record header before we expected one. 602 * last_blk will be the 1st block # with a given cycle #. We may end 603 * up reading an entire log record. In this case, we don't want to 604 * reset last_blk. Only when last_blk points in the middle of a log 605 * record do we update last_blk. 606 */ 607 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 608 uint h_size = be32_to_cpu(head->h_size); 609 610 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 611 if (h_size % XLOG_HEADER_CYCLE_SIZE) 612 xhdrs++; 613 } else { 614 xhdrs = 1; 615 } 616 617 if (*last_blk - i + extra_bblks != 618 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 619 *last_blk = i; 620 621 out: 622 xlog_put_bp(bp); 623 return error; 624 } 625 626 /* 627 * Head is defined to be the point of the log where the next log write 628 * could go. This means that incomplete LR writes at the end are 629 * eliminated when calculating the head. We aren't guaranteed that previous 630 * LR have complete transactions. We only know that a cycle number of 631 * current cycle number -1 won't be present in the log if we start writing 632 * from our current block number. 633 * 634 * last_blk contains the block number of the first block with a given 635 * cycle number. 636 * 637 * Return: zero if normal, non-zero if error. 638 */ 639 STATIC int 640 xlog_find_head( 641 struct xlog *log, 642 xfs_daddr_t *return_head_blk) 643 { 644 xfs_buf_t *bp; 645 char *offset; 646 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 647 int num_scan_bblks; 648 uint first_half_cycle, last_half_cycle; 649 uint stop_on_cycle; 650 int error, log_bbnum = log->l_logBBsize; 651 652 /* Is the end of the log device zeroed? */ 653 error = xlog_find_zeroed(log, &first_blk); 654 if (error < 0) { 655 xfs_warn(log->l_mp, "empty log check failed"); 656 return error; 657 } 658 if (error == 1) { 659 *return_head_blk = first_blk; 660 661 /* Is the whole lot zeroed? */ 662 if (!first_blk) { 663 /* Linux XFS shouldn't generate totally zeroed logs - 664 * mkfs etc write a dummy unmount record to a fresh 665 * log so we can store the uuid in there 666 */ 667 xfs_warn(log->l_mp, "totally zeroed log"); 668 } 669 670 return 0; 671 } 672 673 first_blk = 0; /* get cycle # of 1st block */ 674 bp = xlog_get_bp(log, 1); 675 if (!bp) 676 return -ENOMEM; 677 678 error = xlog_bread(log, 0, 1, bp, &offset); 679 if (error) 680 goto bp_err; 681 682 first_half_cycle = xlog_get_cycle(offset); 683 684 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 685 error = xlog_bread(log, last_blk, 1, bp, &offset); 686 if (error) 687 goto bp_err; 688 689 last_half_cycle = xlog_get_cycle(offset); 690 ASSERT(last_half_cycle != 0); 691 692 /* 693 * If the 1st half cycle number is equal to the last half cycle number, 694 * then the entire log is stamped with the same cycle number. In this 695 * case, head_blk can't be set to zero (which makes sense). The below 696 * math doesn't work out properly with head_blk equal to zero. Instead, 697 * we set it to log_bbnum which is an invalid block number, but this 698 * value makes the math correct. If head_blk doesn't changed through 699 * all the tests below, *head_blk is set to zero at the very end rather 700 * than log_bbnum. In a sense, log_bbnum and zero are the same block 701 * in a circular file. 702 */ 703 if (first_half_cycle == last_half_cycle) { 704 /* 705 * In this case we believe that the entire log should have 706 * cycle number last_half_cycle. We need to scan backwards 707 * from the end verifying that there are no holes still 708 * containing last_half_cycle - 1. If we find such a hole, 709 * then the start of that hole will be the new head. The 710 * simple case looks like 711 * x | x ... | x - 1 | x 712 * Another case that fits this picture would be 713 * x | x + 1 | x ... | x 714 * In this case the head really is somewhere at the end of the 715 * log, as one of the latest writes at the beginning was 716 * incomplete. 717 * One more case is 718 * x | x + 1 | x ... | x - 1 | x 719 * This is really the combination of the above two cases, and 720 * the head has to end up at the start of the x-1 hole at the 721 * end of the log. 722 * 723 * In the 256k log case, we will read from the beginning to the 724 * end of the log and search for cycle numbers equal to x-1. 725 * We don't worry about the x+1 blocks that we encounter, 726 * because we know that they cannot be the head since the log 727 * started with x. 728 */ 729 head_blk = log_bbnum; 730 stop_on_cycle = last_half_cycle - 1; 731 } else { 732 /* 733 * In this case we want to find the first block with cycle 734 * number matching last_half_cycle. We expect the log to be 735 * some variation on 736 * x + 1 ... | x ... | x 737 * The first block with cycle number x (last_half_cycle) will 738 * be where the new head belongs. First we do a binary search 739 * for the first occurrence of last_half_cycle. The binary 740 * search may not be totally accurate, so then we scan back 741 * from there looking for occurrences of last_half_cycle before 742 * us. If that backwards scan wraps around the beginning of 743 * the log, then we look for occurrences of last_half_cycle - 1 744 * at the end of the log. The cases we're looking for look 745 * like 746 * v binary search stopped here 747 * x + 1 ... | x | x + 1 | x ... | x 748 * ^ but we want to locate this spot 749 * or 750 * <---------> less than scan distance 751 * x + 1 ... | x ... | x - 1 | x 752 * ^ we want to locate this spot 753 */ 754 stop_on_cycle = last_half_cycle; 755 if ((error = xlog_find_cycle_start(log, bp, first_blk, 756 &head_blk, last_half_cycle))) 757 goto bp_err; 758 } 759 760 /* 761 * Now validate the answer. Scan back some number of maximum possible 762 * blocks and make sure each one has the expected cycle number. The 763 * maximum is determined by the total possible amount of buffering 764 * in the in-core log. The following number can be made tighter if 765 * we actually look at the block size of the filesystem. 766 */ 767 num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log)); 768 if (head_blk >= num_scan_bblks) { 769 /* 770 * We are guaranteed that the entire check can be performed 771 * in one buffer. 772 */ 773 start_blk = head_blk - num_scan_bblks; 774 if ((error = xlog_find_verify_cycle(log, 775 start_blk, num_scan_bblks, 776 stop_on_cycle, &new_blk))) 777 goto bp_err; 778 if (new_blk != -1) 779 head_blk = new_blk; 780 } else { /* need to read 2 parts of log */ 781 /* 782 * We are going to scan backwards in the log in two parts. 783 * First we scan the physical end of the log. In this part 784 * of the log, we are looking for blocks with cycle number 785 * last_half_cycle - 1. 786 * If we find one, then we know that the log starts there, as 787 * we've found a hole that didn't get written in going around 788 * the end of the physical log. The simple case for this is 789 * x + 1 ... | x ... | x - 1 | x 790 * <---------> less than scan distance 791 * If all of the blocks at the end of the log have cycle number 792 * last_half_cycle, then we check the blocks at the start of 793 * the log looking for occurrences of last_half_cycle. If we 794 * find one, then our current estimate for the location of the 795 * first occurrence of last_half_cycle is wrong and we move 796 * back to the hole we've found. This case looks like 797 * x + 1 ... | x | x + 1 | x ... 798 * ^ binary search stopped here 799 * Another case we need to handle that only occurs in 256k 800 * logs is 801 * x + 1 ... | x ... | x+1 | x ... 802 * ^ binary search stops here 803 * In a 256k log, the scan at the end of the log will see the 804 * x + 1 blocks. We need to skip past those since that is 805 * certainly not the head of the log. By searching for 806 * last_half_cycle-1 we accomplish that. 807 */ 808 ASSERT(head_blk <= INT_MAX && 809 (xfs_daddr_t) num_scan_bblks >= head_blk); 810 start_blk = log_bbnum - (num_scan_bblks - head_blk); 811 if ((error = xlog_find_verify_cycle(log, start_blk, 812 num_scan_bblks - (int)head_blk, 813 (stop_on_cycle - 1), &new_blk))) 814 goto bp_err; 815 if (new_blk != -1) { 816 head_blk = new_blk; 817 goto validate_head; 818 } 819 820 /* 821 * Scan beginning of log now. The last part of the physical 822 * log is good. This scan needs to verify that it doesn't find 823 * the last_half_cycle. 824 */ 825 start_blk = 0; 826 ASSERT(head_blk <= INT_MAX); 827 if ((error = xlog_find_verify_cycle(log, 828 start_blk, (int)head_blk, 829 stop_on_cycle, &new_blk))) 830 goto bp_err; 831 if (new_blk != -1) 832 head_blk = new_blk; 833 } 834 835 validate_head: 836 /* 837 * Now we need to make sure head_blk is not pointing to a block in 838 * the middle of a log record. 839 */ 840 num_scan_bblks = XLOG_REC_SHIFT(log); 841 if (head_blk >= num_scan_bblks) { 842 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 843 844 /* start ptr at last block ptr before head_blk */ 845 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 846 if (error == 1) 847 error = -EIO; 848 if (error) 849 goto bp_err; 850 } else { 851 start_blk = 0; 852 ASSERT(head_blk <= INT_MAX); 853 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 854 if (error < 0) 855 goto bp_err; 856 if (error == 1) { 857 /* We hit the beginning of the log during our search */ 858 start_blk = log_bbnum - (num_scan_bblks - head_blk); 859 new_blk = log_bbnum; 860 ASSERT(start_blk <= INT_MAX && 861 (xfs_daddr_t) log_bbnum-start_blk >= 0); 862 ASSERT(head_blk <= INT_MAX); 863 error = xlog_find_verify_log_record(log, start_blk, 864 &new_blk, (int)head_blk); 865 if (error == 1) 866 error = -EIO; 867 if (error) 868 goto bp_err; 869 if (new_blk != log_bbnum) 870 head_blk = new_blk; 871 } else if (error) 872 goto bp_err; 873 } 874 875 xlog_put_bp(bp); 876 if (head_blk == log_bbnum) 877 *return_head_blk = 0; 878 else 879 *return_head_blk = head_blk; 880 /* 881 * When returning here, we have a good block number. Bad block 882 * means that during a previous crash, we didn't have a clean break 883 * from cycle number N to cycle number N-1. In this case, we need 884 * to find the first block with cycle number N-1. 885 */ 886 return 0; 887 888 bp_err: 889 xlog_put_bp(bp); 890 891 if (error) 892 xfs_warn(log->l_mp, "failed to find log head"); 893 return error; 894 } 895 896 /* 897 * Seek backwards in the log for log record headers. 898 * 899 * Given a starting log block, walk backwards until we find the provided number 900 * of records or hit the provided tail block. The return value is the number of 901 * records encountered or a negative error code. The log block and buffer 902 * pointer of the last record seen are returned in rblk and rhead respectively. 903 */ 904 STATIC int 905 xlog_rseek_logrec_hdr( 906 struct xlog *log, 907 xfs_daddr_t head_blk, 908 xfs_daddr_t tail_blk, 909 int count, 910 struct xfs_buf *bp, 911 xfs_daddr_t *rblk, 912 struct xlog_rec_header **rhead, 913 bool *wrapped) 914 { 915 int i; 916 int error; 917 int found = 0; 918 char *offset = NULL; 919 xfs_daddr_t end_blk; 920 921 *wrapped = false; 922 923 /* 924 * Walk backwards from the head block until we hit the tail or the first 925 * block in the log. 926 */ 927 end_blk = head_blk > tail_blk ? tail_blk : 0; 928 for (i = (int) head_blk - 1; i >= end_blk; i--) { 929 error = xlog_bread(log, i, 1, bp, &offset); 930 if (error) 931 goto out_error; 932 933 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 934 *rblk = i; 935 *rhead = (struct xlog_rec_header *) offset; 936 if (++found == count) 937 break; 938 } 939 } 940 941 /* 942 * If we haven't hit the tail block or the log record header count, 943 * start looking again from the end of the physical log. Note that 944 * callers can pass head == tail if the tail is not yet known. 945 */ 946 if (tail_blk >= head_blk && found != count) { 947 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) { 948 error = xlog_bread(log, i, 1, bp, &offset); 949 if (error) 950 goto out_error; 951 952 if (*(__be32 *)offset == 953 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 954 *wrapped = true; 955 *rblk = i; 956 *rhead = (struct xlog_rec_header *) offset; 957 if (++found == count) 958 break; 959 } 960 } 961 } 962 963 return found; 964 965 out_error: 966 return error; 967 } 968 969 /* 970 * Seek forward in the log for log record headers. 971 * 972 * Given head and tail blocks, walk forward from the tail block until we find 973 * the provided number of records or hit the head block. The return value is the 974 * number of records encountered or a negative error code. The log block and 975 * buffer pointer of the last record seen are returned in rblk and rhead 976 * respectively. 977 */ 978 STATIC int 979 xlog_seek_logrec_hdr( 980 struct xlog *log, 981 xfs_daddr_t head_blk, 982 xfs_daddr_t tail_blk, 983 int count, 984 struct xfs_buf *bp, 985 xfs_daddr_t *rblk, 986 struct xlog_rec_header **rhead, 987 bool *wrapped) 988 { 989 int i; 990 int error; 991 int found = 0; 992 char *offset = NULL; 993 xfs_daddr_t end_blk; 994 995 *wrapped = false; 996 997 /* 998 * Walk forward from the tail block until we hit the head or the last 999 * block in the log. 1000 */ 1001 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1; 1002 for (i = (int) tail_blk; i <= end_blk; i++) { 1003 error = xlog_bread(log, i, 1, bp, &offset); 1004 if (error) 1005 goto out_error; 1006 1007 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 1008 *rblk = i; 1009 *rhead = (struct xlog_rec_header *) offset; 1010 if (++found == count) 1011 break; 1012 } 1013 } 1014 1015 /* 1016 * If we haven't hit the head block or the log record header count, 1017 * start looking again from the start of the physical log. 1018 */ 1019 if (tail_blk > head_blk && found != count) { 1020 for (i = 0; i < (int) head_blk; i++) { 1021 error = xlog_bread(log, i, 1, bp, &offset); 1022 if (error) 1023 goto out_error; 1024 1025 if (*(__be32 *)offset == 1026 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 1027 *wrapped = true; 1028 *rblk = i; 1029 *rhead = (struct xlog_rec_header *) offset; 1030 if (++found == count) 1031 break; 1032 } 1033 } 1034 } 1035 1036 return found; 1037 1038 out_error: 1039 return error; 1040 } 1041 1042 /* 1043 * Calculate distance from head to tail (i.e., unused space in the log). 1044 */ 1045 static inline int 1046 xlog_tail_distance( 1047 struct xlog *log, 1048 xfs_daddr_t head_blk, 1049 xfs_daddr_t tail_blk) 1050 { 1051 if (head_blk < tail_blk) 1052 return tail_blk - head_blk; 1053 1054 return tail_blk + (log->l_logBBsize - head_blk); 1055 } 1056 1057 /* 1058 * Verify the log tail. This is particularly important when torn or incomplete 1059 * writes have been detected near the front of the log and the head has been 1060 * walked back accordingly. 1061 * 1062 * We also have to handle the case where the tail was pinned and the head 1063 * blocked behind the tail right before a crash. If the tail had been pushed 1064 * immediately prior to the crash and the subsequent checkpoint was only 1065 * partially written, it's possible it overwrote the last referenced tail in the 1066 * log with garbage. This is not a coherency problem because the tail must have 1067 * been pushed before it can be overwritten, but appears as log corruption to 1068 * recovery because we have no way to know the tail was updated if the 1069 * subsequent checkpoint didn't write successfully. 1070 * 1071 * Therefore, CRC check the log from tail to head. If a failure occurs and the 1072 * offending record is within max iclog bufs from the head, walk the tail 1073 * forward and retry until a valid tail is found or corruption is detected out 1074 * of the range of a possible overwrite. 1075 */ 1076 STATIC int 1077 xlog_verify_tail( 1078 struct xlog *log, 1079 xfs_daddr_t head_blk, 1080 xfs_daddr_t *tail_blk, 1081 int hsize) 1082 { 1083 struct xlog_rec_header *thead; 1084 struct xfs_buf *bp; 1085 xfs_daddr_t first_bad; 1086 int error = 0; 1087 bool wrapped; 1088 xfs_daddr_t tmp_tail; 1089 xfs_daddr_t orig_tail = *tail_blk; 1090 1091 bp = xlog_get_bp(log, 1); 1092 if (!bp) 1093 return -ENOMEM; 1094 1095 /* 1096 * Make sure the tail points to a record (returns positive count on 1097 * success). 1098 */ 1099 error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, bp, 1100 &tmp_tail, &thead, &wrapped); 1101 if (error < 0) 1102 goto out; 1103 if (*tail_blk != tmp_tail) 1104 *tail_blk = tmp_tail; 1105 1106 /* 1107 * Run a CRC check from the tail to the head. We can't just check 1108 * MAX_ICLOGS records past the tail because the tail may point to stale 1109 * blocks cleared during the search for the head/tail. These blocks are 1110 * overwritten with zero-length records and thus record count is not a 1111 * reliable indicator of the iclog state before a crash. 1112 */ 1113 first_bad = 0; 1114 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 1115 XLOG_RECOVER_CRCPASS, &first_bad); 1116 while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 1117 int tail_distance; 1118 1119 /* 1120 * Is corruption within range of the head? If so, retry from 1121 * the next record. Otherwise return an error. 1122 */ 1123 tail_distance = xlog_tail_distance(log, head_blk, first_bad); 1124 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize)) 1125 break; 1126 1127 /* skip to the next record; returns positive count on success */ 1128 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, bp, 1129 &tmp_tail, &thead, &wrapped); 1130 if (error < 0) 1131 goto out; 1132 1133 *tail_blk = tmp_tail; 1134 first_bad = 0; 1135 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 1136 XLOG_RECOVER_CRCPASS, &first_bad); 1137 } 1138 1139 if (!error && *tail_blk != orig_tail) 1140 xfs_warn(log->l_mp, 1141 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx", 1142 orig_tail, *tail_blk); 1143 out: 1144 xlog_put_bp(bp); 1145 return error; 1146 } 1147 1148 /* 1149 * Detect and trim torn writes from the head of the log. 1150 * 1151 * Storage without sector atomicity guarantees can result in torn writes in the 1152 * log in the event of a crash. Our only means to detect this scenario is via 1153 * CRC verification. While we can't always be certain that CRC verification 1154 * failure is due to a torn write vs. an unrelated corruption, we do know that 1155 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at 1156 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of 1157 * the log and treat failures in this range as torn writes as a matter of 1158 * policy. In the event of CRC failure, the head is walked back to the last good 1159 * record in the log and the tail is updated from that record and verified. 1160 */ 1161 STATIC int 1162 xlog_verify_head( 1163 struct xlog *log, 1164 xfs_daddr_t *head_blk, /* in/out: unverified head */ 1165 xfs_daddr_t *tail_blk, /* out: tail block */ 1166 struct xfs_buf *bp, 1167 xfs_daddr_t *rhead_blk, /* start blk of last record */ 1168 struct xlog_rec_header **rhead, /* ptr to last record */ 1169 bool *wrapped) /* last rec. wraps phys. log */ 1170 { 1171 struct xlog_rec_header *tmp_rhead; 1172 struct xfs_buf *tmp_bp; 1173 xfs_daddr_t first_bad; 1174 xfs_daddr_t tmp_rhead_blk; 1175 int found; 1176 int error; 1177 bool tmp_wrapped; 1178 1179 /* 1180 * Check the head of the log for torn writes. Search backwards from the 1181 * head until we hit the tail or the maximum number of log record I/Os 1182 * that could have been in flight at one time. Use a temporary buffer so 1183 * we don't trash the rhead/bp pointers from the caller. 1184 */ 1185 tmp_bp = xlog_get_bp(log, 1); 1186 if (!tmp_bp) 1187 return -ENOMEM; 1188 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk, 1189 XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk, 1190 &tmp_rhead, &tmp_wrapped); 1191 xlog_put_bp(tmp_bp); 1192 if (error < 0) 1193 return error; 1194 1195 /* 1196 * Now run a CRC verification pass over the records starting at the 1197 * block found above to the current head. If a CRC failure occurs, the 1198 * log block of the first bad record is saved in first_bad. 1199 */ 1200 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk, 1201 XLOG_RECOVER_CRCPASS, &first_bad); 1202 if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 1203 /* 1204 * We've hit a potential torn write. Reset the error and warn 1205 * about it. 1206 */ 1207 error = 0; 1208 xfs_warn(log->l_mp, 1209 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.", 1210 first_bad, *head_blk); 1211 1212 /* 1213 * Get the header block and buffer pointer for the last good 1214 * record before the bad record. 1215 * 1216 * Note that xlog_find_tail() clears the blocks at the new head 1217 * (i.e., the records with invalid CRC) if the cycle number 1218 * matches the the current cycle. 1219 */ 1220 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp, 1221 rhead_blk, rhead, wrapped); 1222 if (found < 0) 1223 return found; 1224 if (found == 0) /* XXX: right thing to do here? */ 1225 return -EIO; 1226 1227 /* 1228 * Reset the head block to the starting block of the first bad 1229 * log record and set the tail block based on the last good 1230 * record. 1231 * 1232 * Bail out if the updated head/tail match as this indicates 1233 * possible corruption outside of the acceptable 1234 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair... 1235 */ 1236 *head_blk = first_bad; 1237 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn)); 1238 if (*head_blk == *tail_blk) { 1239 ASSERT(0); 1240 return 0; 1241 } 1242 } 1243 if (error) 1244 return error; 1245 1246 return xlog_verify_tail(log, *head_blk, tail_blk, 1247 be32_to_cpu((*rhead)->h_size)); 1248 } 1249 1250 /* 1251 * Check whether the head of the log points to an unmount record. In other 1252 * words, determine whether the log is clean. If so, update the in-core state 1253 * appropriately. 1254 */ 1255 static int 1256 xlog_check_unmount_rec( 1257 struct xlog *log, 1258 xfs_daddr_t *head_blk, 1259 xfs_daddr_t *tail_blk, 1260 struct xlog_rec_header *rhead, 1261 xfs_daddr_t rhead_blk, 1262 struct xfs_buf *bp, 1263 bool *clean) 1264 { 1265 struct xlog_op_header *op_head; 1266 xfs_daddr_t umount_data_blk; 1267 xfs_daddr_t after_umount_blk; 1268 int hblks; 1269 int error; 1270 char *offset; 1271 1272 *clean = false; 1273 1274 /* 1275 * Look for unmount record. If we find it, then we know there was a 1276 * clean unmount. Since 'i' could be the last block in the physical 1277 * log, we convert to a log block before comparing to the head_blk. 1278 * 1279 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks() 1280 * below. We won't want to clear the unmount record if there is one, so 1281 * we pass the lsn of the unmount record rather than the block after it. 1282 */ 1283 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1284 int h_size = be32_to_cpu(rhead->h_size); 1285 int h_version = be32_to_cpu(rhead->h_version); 1286 1287 if ((h_version & XLOG_VERSION_2) && 1288 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 1289 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 1290 if (h_size % XLOG_HEADER_CYCLE_SIZE) 1291 hblks++; 1292 } else { 1293 hblks = 1; 1294 } 1295 } else { 1296 hblks = 1; 1297 } 1298 after_umount_blk = rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)); 1299 after_umount_blk = do_mod(after_umount_blk, log->l_logBBsize); 1300 if (*head_blk == after_umount_blk && 1301 be32_to_cpu(rhead->h_num_logops) == 1) { 1302 umount_data_blk = rhead_blk + hblks; 1303 umount_data_blk = do_mod(umount_data_blk, log->l_logBBsize); 1304 error = xlog_bread(log, umount_data_blk, 1, bp, &offset); 1305 if (error) 1306 return error; 1307 1308 op_head = (struct xlog_op_header *)offset; 1309 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 1310 /* 1311 * Set tail and last sync so that newly written log 1312 * records will point recovery to after the current 1313 * unmount record. 1314 */ 1315 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1316 log->l_curr_cycle, after_umount_blk); 1317 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1318 log->l_curr_cycle, after_umount_blk); 1319 *tail_blk = after_umount_blk; 1320 1321 *clean = true; 1322 } 1323 } 1324 1325 return 0; 1326 } 1327 1328 static void 1329 xlog_set_state( 1330 struct xlog *log, 1331 xfs_daddr_t head_blk, 1332 struct xlog_rec_header *rhead, 1333 xfs_daddr_t rhead_blk, 1334 bool bump_cycle) 1335 { 1336 /* 1337 * Reset log values according to the state of the log when we 1338 * crashed. In the case where head_blk == 0, we bump curr_cycle 1339 * one because the next write starts a new cycle rather than 1340 * continuing the cycle of the last good log record. At this 1341 * point we have guaranteed that all partial log records have been 1342 * accounted for. Therefore, we know that the last good log record 1343 * written was complete and ended exactly on the end boundary 1344 * of the physical log. 1345 */ 1346 log->l_prev_block = rhead_blk; 1347 log->l_curr_block = (int)head_blk; 1348 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 1349 if (bump_cycle) 1350 log->l_curr_cycle++; 1351 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); 1352 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); 1353 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, 1354 BBTOB(log->l_curr_block)); 1355 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, 1356 BBTOB(log->l_curr_block)); 1357 } 1358 1359 /* 1360 * Find the sync block number or the tail of the log. 1361 * 1362 * This will be the block number of the last record to have its 1363 * associated buffers synced to disk. Every log record header has 1364 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 1365 * to get a sync block number. The only concern is to figure out which 1366 * log record header to believe. 1367 * 1368 * The following algorithm uses the log record header with the largest 1369 * lsn. The entire log record does not need to be valid. We only care 1370 * that the header is valid. 1371 * 1372 * We could speed up search by using current head_blk buffer, but it is not 1373 * available. 1374 */ 1375 STATIC int 1376 xlog_find_tail( 1377 struct xlog *log, 1378 xfs_daddr_t *head_blk, 1379 xfs_daddr_t *tail_blk) 1380 { 1381 xlog_rec_header_t *rhead; 1382 char *offset = NULL; 1383 xfs_buf_t *bp; 1384 int error; 1385 xfs_daddr_t rhead_blk; 1386 xfs_lsn_t tail_lsn; 1387 bool wrapped = false; 1388 bool clean = false; 1389 1390 /* 1391 * Find previous log record 1392 */ 1393 if ((error = xlog_find_head(log, head_blk))) 1394 return error; 1395 ASSERT(*head_blk < INT_MAX); 1396 1397 bp = xlog_get_bp(log, 1); 1398 if (!bp) 1399 return -ENOMEM; 1400 if (*head_blk == 0) { /* special case */ 1401 error = xlog_bread(log, 0, 1, bp, &offset); 1402 if (error) 1403 goto done; 1404 1405 if (xlog_get_cycle(offset) == 0) { 1406 *tail_blk = 0; 1407 /* leave all other log inited values alone */ 1408 goto done; 1409 } 1410 } 1411 1412 /* 1413 * Search backwards through the log looking for the log record header 1414 * block. This wraps all the way back around to the head so something is 1415 * seriously wrong if we can't find it. 1416 */ 1417 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp, 1418 &rhead_blk, &rhead, &wrapped); 1419 if (error < 0) 1420 return error; 1421 if (!error) { 1422 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); 1423 return -EIO; 1424 } 1425 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 1426 1427 /* 1428 * Set the log state based on the current head record. 1429 */ 1430 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped); 1431 tail_lsn = atomic64_read(&log->l_tail_lsn); 1432 1433 /* 1434 * Look for an unmount record at the head of the log. This sets the log 1435 * state to determine whether recovery is necessary. 1436 */ 1437 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead, 1438 rhead_blk, bp, &clean); 1439 if (error) 1440 goto done; 1441 1442 /* 1443 * Verify the log head if the log is not clean (e.g., we have anything 1444 * but an unmount record at the head). This uses CRC verification to 1445 * detect and trim torn writes. If discovered, CRC failures are 1446 * considered torn writes and the log head is trimmed accordingly. 1447 * 1448 * Note that we can only run CRC verification when the log is dirty 1449 * because there's no guarantee that the log data behind an unmount 1450 * record is compatible with the current architecture. 1451 */ 1452 if (!clean) { 1453 xfs_daddr_t orig_head = *head_blk; 1454 1455 error = xlog_verify_head(log, head_blk, tail_blk, bp, 1456 &rhead_blk, &rhead, &wrapped); 1457 if (error) 1458 goto done; 1459 1460 /* update in-core state again if the head changed */ 1461 if (*head_blk != orig_head) { 1462 xlog_set_state(log, *head_blk, rhead, rhead_blk, 1463 wrapped); 1464 tail_lsn = atomic64_read(&log->l_tail_lsn); 1465 error = xlog_check_unmount_rec(log, head_blk, tail_blk, 1466 rhead, rhead_blk, bp, 1467 &clean); 1468 if (error) 1469 goto done; 1470 } 1471 } 1472 1473 /* 1474 * Note that the unmount was clean. If the unmount was not clean, we 1475 * need to know this to rebuild the superblock counters from the perag 1476 * headers if we have a filesystem using non-persistent counters. 1477 */ 1478 if (clean) 1479 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 1480 1481 /* 1482 * Make sure that there are no blocks in front of the head 1483 * with the same cycle number as the head. This can happen 1484 * because we allow multiple outstanding log writes concurrently, 1485 * and the later writes might make it out before earlier ones. 1486 * 1487 * We use the lsn from before modifying it so that we'll never 1488 * overwrite the unmount record after a clean unmount. 1489 * 1490 * Do this only if we are going to recover the filesystem 1491 * 1492 * NOTE: This used to say "if (!readonly)" 1493 * However on Linux, we can & do recover a read-only filesystem. 1494 * We only skip recovery if NORECOVERY is specified on mount, 1495 * in which case we would not be here. 1496 * 1497 * But... if the -device- itself is readonly, just skip this. 1498 * We can't recover this device anyway, so it won't matter. 1499 */ 1500 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) 1501 error = xlog_clear_stale_blocks(log, tail_lsn); 1502 1503 done: 1504 xlog_put_bp(bp); 1505 1506 if (error) 1507 xfs_warn(log->l_mp, "failed to locate log tail"); 1508 return error; 1509 } 1510 1511 /* 1512 * Is the log zeroed at all? 1513 * 1514 * The last binary search should be changed to perform an X block read 1515 * once X becomes small enough. You can then search linearly through 1516 * the X blocks. This will cut down on the number of reads we need to do. 1517 * 1518 * If the log is partially zeroed, this routine will pass back the blkno 1519 * of the first block with cycle number 0. It won't have a complete LR 1520 * preceding it. 1521 * 1522 * Return: 1523 * 0 => the log is completely written to 1524 * 1 => use *blk_no as the first block of the log 1525 * <0 => error has occurred 1526 */ 1527 STATIC int 1528 xlog_find_zeroed( 1529 struct xlog *log, 1530 xfs_daddr_t *blk_no) 1531 { 1532 xfs_buf_t *bp; 1533 char *offset; 1534 uint first_cycle, last_cycle; 1535 xfs_daddr_t new_blk, last_blk, start_blk; 1536 xfs_daddr_t num_scan_bblks; 1537 int error, log_bbnum = log->l_logBBsize; 1538 1539 *blk_no = 0; 1540 1541 /* check totally zeroed log */ 1542 bp = xlog_get_bp(log, 1); 1543 if (!bp) 1544 return -ENOMEM; 1545 error = xlog_bread(log, 0, 1, bp, &offset); 1546 if (error) 1547 goto bp_err; 1548 1549 first_cycle = xlog_get_cycle(offset); 1550 if (first_cycle == 0) { /* completely zeroed log */ 1551 *blk_no = 0; 1552 xlog_put_bp(bp); 1553 return 1; 1554 } 1555 1556 /* check partially zeroed log */ 1557 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset); 1558 if (error) 1559 goto bp_err; 1560 1561 last_cycle = xlog_get_cycle(offset); 1562 if (last_cycle != 0) { /* log completely written to */ 1563 xlog_put_bp(bp); 1564 return 0; 1565 } else if (first_cycle != 1) { 1566 /* 1567 * If the cycle of the last block is zero, the cycle of 1568 * the first block must be 1. If it's not, maybe we're 1569 * not looking at a log... Bail out. 1570 */ 1571 xfs_warn(log->l_mp, 1572 "Log inconsistent or not a log (last==0, first!=1)"); 1573 error = -EINVAL; 1574 goto bp_err; 1575 } 1576 1577 /* we have a partially zeroed log */ 1578 last_blk = log_bbnum-1; 1579 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1580 goto bp_err; 1581 1582 /* 1583 * Validate the answer. Because there is no way to guarantee that 1584 * the entire log is made up of log records which are the same size, 1585 * we scan over the defined maximum blocks. At this point, the maximum 1586 * is not chosen to mean anything special. XXXmiken 1587 */ 1588 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1589 ASSERT(num_scan_bblks <= INT_MAX); 1590 1591 if (last_blk < num_scan_bblks) 1592 num_scan_bblks = last_blk; 1593 start_blk = last_blk - num_scan_bblks; 1594 1595 /* 1596 * We search for any instances of cycle number 0 that occur before 1597 * our current estimate of the head. What we're trying to detect is 1598 * 1 ... | 0 | 1 | 0... 1599 * ^ binary search ends here 1600 */ 1601 if ((error = xlog_find_verify_cycle(log, start_blk, 1602 (int)num_scan_bblks, 0, &new_blk))) 1603 goto bp_err; 1604 if (new_blk != -1) 1605 last_blk = new_blk; 1606 1607 /* 1608 * Potentially backup over partial log record write. We don't need 1609 * to search the end of the log because we know it is zero. 1610 */ 1611 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0); 1612 if (error == 1) 1613 error = -EIO; 1614 if (error) 1615 goto bp_err; 1616 1617 *blk_no = last_blk; 1618 bp_err: 1619 xlog_put_bp(bp); 1620 if (error) 1621 return error; 1622 return 1; 1623 } 1624 1625 /* 1626 * These are simple subroutines used by xlog_clear_stale_blocks() below 1627 * to initialize a buffer full of empty log record headers and write 1628 * them into the log. 1629 */ 1630 STATIC void 1631 xlog_add_record( 1632 struct xlog *log, 1633 char *buf, 1634 int cycle, 1635 int block, 1636 int tail_cycle, 1637 int tail_block) 1638 { 1639 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1640 1641 memset(buf, 0, BBSIZE); 1642 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1643 recp->h_cycle = cpu_to_be32(cycle); 1644 recp->h_version = cpu_to_be32( 1645 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1646 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1647 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1648 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1649 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1650 } 1651 1652 STATIC int 1653 xlog_write_log_records( 1654 struct xlog *log, 1655 int cycle, 1656 int start_block, 1657 int blocks, 1658 int tail_cycle, 1659 int tail_block) 1660 { 1661 char *offset; 1662 xfs_buf_t *bp; 1663 int balign, ealign; 1664 int sectbb = log->l_sectBBsize; 1665 int end_block = start_block + blocks; 1666 int bufblks; 1667 int error = 0; 1668 int i, j = 0; 1669 1670 /* 1671 * Greedily allocate a buffer big enough to handle the full 1672 * range of basic blocks to be written. If that fails, try 1673 * a smaller size. We need to be able to write at least a 1674 * log sector, or we're out of luck. 1675 */ 1676 bufblks = 1 << ffs(blocks); 1677 while (bufblks > log->l_logBBsize) 1678 bufblks >>= 1; 1679 while (!(bp = xlog_get_bp(log, bufblks))) { 1680 bufblks >>= 1; 1681 if (bufblks < sectbb) 1682 return -ENOMEM; 1683 } 1684 1685 /* We may need to do a read at the start to fill in part of 1686 * the buffer in the starting sector not covered by the first 1687 * write below. 1688 */ 1689 balign = round_down(start_block, sectbb); 1690 if (balign != start_block) { 1691 error = xlog_bread_noalign(log, start_block, 1, bp); 1692 if (error) 1693 goto out_put_bp; 1694 1695 j = start_block - balign; 1696 } 1697 1698 for (i = start_block; i < end_block; i += bufblks) { 1699 int bcount, endcount; 1700 1701 bcount = min(bufblks, end_block - start_block); 1702 endcount = bcount - j; 1703 1704 /* We may need to do a read at the end to fill in part of 1705 * the buffer in the final sector not covered by the write. 1706 * If this is the same sector as the above read, skip it. 1707 */ 1708 ealign = round_down(end_block, sectbb); 1709 if (j == 0 && (start_block + endcount > ealign)) { 1710 offset = bp->b_addr + BBTOB(ealign - start_block); 1711 error = xlog_bread_offset(log, ealign, sectbb, 1712 bp, offset); 1713 if (error) 1714 break; 1715 1716 } 1717 1718 offset = xlog_align(log, start_block, endcount, bp); 1719 for (; j < endcount; j++) { 1720 xlog_add_record(log, offset, cycle, i+j, 1721 tail_cycle, tail_block); 1722 offset += BBSIZE; 1723 } 1724 error = xlog_bwrite(log, start_block, endcount, bp); 1725 if (error) 1726 break; 1727 start_block += endcount; 1728 j = 0; 1729 } 1730 1731 out_put_bp: 1732 xlog_put_bp(bp); 1733 return error; 1734 } 1735 1736 /* 1737 * This routine is called to blow away any incomplete log writes out 1738 * in front of the log head. We do this so that we won't become confused 1739 * if we come up, write only a little bit more, and then crash again. 1740 * If we leave the partial log records out there, this situation could 1741 * cause us to think those partial writes are valid blocks since they 1742 * have the current cycle number. We get rid of them by overwriting them 1743 * with empty log records with the old cycle number rather than the 1744 * current one. 1745 * 1746 * The tail lsn is passed in rather than taken from 1747 * the log so that we will not write over the unmount record after a 1748 * clean unmount in a 512 block log. Doing so would leave the log without 1749 * any valid log records in it until a new one was written. If we crashed 1750 * during that time we would not be able to recover. 1751 */ 1752 STATIC int 1753 xlog_clear_stale_blocks( 1754 struct xlog *log, 1755 xfs_lsn_t tail_lsn) 1756 { 1757 int tail_cycle, head_cycle; 1758 int tail_block, head_block; 1759 int tail_distance, max_distance; 1760 int distance; 1761 int error; 1762 1763 tail_cycle = CYCLE_LSN(tail_lsn); 1764 tail_block = BLOCK_LSN(tail_lsn); 1765 head_cycle = log->l_curr_cycle; 1766 head_block = log->l_curr_block; 1767 1768 /* 1769 * Figure out the distance between the new head of the log 1770 * and the tail. We want to write over any blocks beyond the 1771 * head that we may have written just before the crash, but 1772 * we don't want to overwrite the tail of the log. 1773 */ 1774 if (head_cycle == tail_cycle) { 1775 /* 1776 * The tail is behind the head in the physical log, 1777 * so the distance from the head to the tail is the 1778 * distance from the head to the end of the log plus 1779 * the distance from the beginning of the log to the 1780 * tail. 1781 */ 1782 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1783 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1784 XFS_ERRLEVEL_LOW, log->l_mp); 1785 return -EFSCORRUPTED; 1786 } 1787 tail_distance = tail_block + (log->l_logBBsize - head_block); 1788 } else { 1789 /* 1790 * The head is behind the tail in the physical log, 1791 * so the distance from the head to the tail is just 1792 * the tail block minus the head block. 1793 */ 1794 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1795 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1796 XFS_ERRLEVEL_LOW, log->l_mp); 1797 return -EFSCORRUPTED; 1798 } 1799 tail_distance = tail_block - head_block; 1800 } 1801 1802 /* 1803 * If the head is right up against the tail, we can't clear 1804 * anything. 1805 */ 1806 if (tail_distance <= 0) { 1807 ASSERT(tail_distance == 0); 1808 return 0; 1809 } 1810 1811 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1812 /* 1813 * Take the smaller of the maximum amount of outstanding I/O 1814 * we could have and the distance to the tail to clear out. 1815 * We take the smaller so that we don't overwrite the tail and 1816 * we don't waste all day writing from the head to the tail 1817 * for no reason. 1818 */ 1819 max_distance = MIN(max_distance, tail_distance); 1820 1821 if ((head_block + max_distance) <= log->l_logBBsize) { 1822 /* 1823 * We can stomp all the blocks we need to without 1824 * wrapping around the end of the log. Just do it 1825 * in a single write. Use the cycle number of the 1826 * current cycle minus one so that the log will look like: 1827 * n ... | n - 1 ... 1828 */ 1829 error = xlog_write_log_records(log, (head_cycle - 1), 1830 head_block, max_distance, tail_cycle, 1831 tail_block); 1832 if (error) 1833 return error; 1834 } else { 1835 /* 1836 * We need to wrap around the end of the physical log in 1837 * order to clear all the blocks. Do it in two separate 1838 * I/Os. The first write should be from the head to the 1839 * end of the physical log, and it should use the current 1840 * cycle number minus one just like above. 1841 */ 1842 distance = log->l_logBBsize - head_block; 1843 error = xlog_write_log_records(log, (head_cycle - 1), 1844 head_block, distance, tail_cycle, 1845 tail_block); 1846 1847 if (error) 1848 return error; 1849 1850 /* 1851 * Now write the blocks at the start of the physical log. 1852 * This writes the remainder of the blocks we want to clear. 1853 * It uses the current cycle number since we're now on the 1854 * same cycle as the head so that we get: 1855 * n ... n ... | n - 1 ... 1856 * ^^^^^ blocks we're writing 1857 */ 1858 distance = max_distance - (log->l_logBBsize - head_block); 1859 error = xlog_write_log_records(log, head_cycle, 0, distance, 1860 tail_cycle, tail_block); 1861 if (error) 1862 return error; 1863 } 1864 1865 return 0; 1866 } 1867 1868 /****************************************************************************** 1869 * 1870 * Log recover routines 1871 * 1872 ****************************************************************************** 1873 */ 1874 1875 /* 1876 * Sort the log items in the transaction. 1877 * 1878 * The ordering constraints are defined by the inode allocation and unlink 1879 * behaviour. The rules are: 1880 * 1881 * 1. Every item is only logged once in a given transaction. Hence it 1882 * represents the last logged state of the item. Hence ordering is 1883 * dependent on the order in which operations need to be performed so 1884 * required initial conditions are always met. 1885 * 1886 * 2. Cancelled buffers are recorded in pass 1 in a separate table and 1887 * there's nothing to replay from them so we can simply cull them 1888 * from the transaction. However, we can't do that until after we've 1889 * replayed all the other items because they may be dependent on the 1890 * cancelled buffer and replaying the cancelled buffer can remove it 1891 * form the cancelled buffer table. Hence they have tobe done last. 1892 * 1893 * 3. Inode allocation buffers must be replayed before inode items that 1894 * read the buffer and replay changes into it. For filesystems using the 1895 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get 1896 * treated the same as inode allocation buffers as they create and 1897 * initialise the buffers directly. 1898 * 1899 * 4. Inode unlink buffers must be replayed after inode items are replayed. 1900 * This ensures that inodes are completely flushed to the inode buffer 1901 * in a "free" state before we remove the unlinked inode list pointer. 1902 * 1903 * Hence the ordering needs to be inode allocation buffers first, inode items 1904 * second, inode unlink buffers third and cancelled buffers last. 1905 * 1906 * But there's a problem with that - we can't tell an inode allocation buffer 1907 * apart from a regular buffer, so we can't separate them. We can, however, 1908 * tell an inode unlink buffer from the others, and so we can separate them out 1909 * from all the other buffers and move them to last. 1910 * 1911 * Hence, 4 lists, in order from head to tail: 1912 * - buffer_list for all buffers except cancelled/inode unlink buffers 1913 * - item_list for all non-buffer items 1914 * - inode_buffer_list for inode unlink buffers 1915 * - cancel_list for the cancelled buffers 1916 * 1917 * Note that we add objects to the tail of the lists so that first-to-last 1918 * ordering is preserved within the lists. Adding objects to the head of the 1919 * list means when we traverse from the head we walk them in last-to-first 1920 * order. For cancelled buffers and inode unlink buffers this doesn't matter, 1921 * but for all other items there may be specific ordering that we need to 1922 * preserve. 1923 */ 1924 STATIC int 1925 xlog_recover_reorder_trans( 1926 struct xlog *log, 1927 struct xlog_recover *trans, 1928 int pass) 1929 { 1930 xlog_recover_item_t *item, *n; 1931 int error = 0; 1932 LIST_HEAD(sort_list); 1933 LIST_HEAD(cancel_list); 1934 LIST_HEAD(buffer_list); 1935 LIST_HEAD(inode_buffer_list); 1936 LIST_HEAD(inode_list); 1937 1938 list_splice_init(&trans->r_itemq, &sort_list); 1939 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1940 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1941 1942 switch (ITEM_TYPE(item)) { 1943 case XFS_LI_ICREATE: 1944 list_move_tail(&item->ri_list, &buffer_list); 1945 break; 1946 case XFS_LI_BUF: 1947 if (buf_f->blf_flags & XFS_BLF_CANCEL) { 1948 trace_xfs_log_recover_item_reorder_head(log, 1949 trans, item, pass); 1950 list_move(&item->ri_list, &cancel_list); 1951 break; 1952 } 1953 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 1954 list_move(&item->ri_list, &inode_buffer_list); 1955 break; 1956 } 1957 list_move_tail(&item->ri_list, &buffer_list); 1958 break; 1959 case XFS_LI_INODE: 1960 case XFS_LI_DQUOT: 1961 case XFS_LI_QUOTAOFF: 1962 case XFS_LI_EFD: 1963 case XFS_LI_EFI: 1964 case XFS_LI_RUI: 1965 case XFS_LI_RUD: 1966 case XFS_LI_CUI: 1967 case XFS_LI_CUD: 1968 case XFS_LI_BUI: 1969 case XFS_LI_BUD: 1970 trace_xfs_log_recover_item_reorder_tail(log, 1971 trans, item, pass); 1972 list_move_tail(&item->ri_list, &inode_list); 1973 break; 1974 default: 1975 xfs_warn(log->l_mp, 1976 "%s: unrecognized type of log operation", 1977 __func__); 1978 ASSERT(0); 1979 /* 1980 * return the remaining items back to the transaction 1981 * item list so they can be freed in caller. 1982 */ 1983 if (!list_empty(&sort_list)) 1984 list_splice_init(&sort_list, &trans->r_itemq); 1985 error = -EIO; 1986 goto out; 1987 } 1988 } 1989 out: 1990 ASSERT(list_empty(&sort_list)); 1991 if (!list_empty(&buffer_list)) 1992 list_splice(&buffer_list, &trans->r_itemq); 1993 if (!list_empty(&inode_list)) 1994 list_splice_tail(&inode_list, &trans->r_itemq); 1995 if (!list_empty(&inode_buffer_list)) 1996 list_splice_tail(&inode_buffer_list, &trans->r_itemq); 1997 if (!list_empty(&cancel_list)) 1998 list_splice_tail(&cancel_list, &trans->r_itemq); 1999 return error; 2000 } 2001 2002 /* 2003 * Build up the table of buf cancel records so that we don't replay 2004 * cancelled data in the second pass. For buffer records that are 2005 * not cancel records, there is nothing to do here so we just return. 2006 * 2007 * If we get a cancel record which is already in the table, this indicates 2008 * that the buffer was cancelled multiple times. In order to ensure 2009 * that during pass 2 we keep the record in the table until we reach its 2010 * last occurrence in the log, we keep a reference count in the cancel 2011 * record in the table to tell us how many times we expect to see this 2012 * record during the second pass. 2013 */ 2014 STATIC int 2015 xlog_recover_buffer_pass1( 2016 struct xlog *log, 2017 struct xlog_recover_item *item) 2018 { 2019 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2020 struct list_head *bucket; 2021 struct xfs_buf_cancel *bcp; 2022 2023 /* 2024 * If this isn't a cancel buffer item, then just return. 2025 */ 2026 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 2027 trace_xfs_log_recover_buf_not_cancel(log, buf_f); 2028 return 0; 2029 } 2030 2031 /* 2032 * Insert an xfs_buf_cancel record into the hash table of them. 2033 * If there is already an identical record, bump its reference count. 2034 */ 2035 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno); 2036 list_for_each_entry(bcp, bucket, bc_list) { 2037 if (bcp->bc_blkno == buf_f->blf_blkno && 2038 bcp->bc_len == buf_f->blf_len) { 2039 bcp->bc_refcount++; 2040 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f); 2041 return 0; 2042 } 2043 } 2044 2045 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP); 2046 bcp->bc_blkno = buf_f->blf_blkno; 2047 bcp->bc_len = buf_f->blf_len; 2048 bcp->bc_refcount = 1; 2049 list_add_tail(&bcp->bc_list, bucket); 2050 2051 trace_xfs_log_recover_buf_cancel_add(log, buf_f); 2052 return 0; 2053 } 2054 2055 /* 2056 * Check to see whether the buffer being recovered has a corresponding 2057 * entry in the buffer cancel record table. If it is, return the cancel 2058 * buffer structure to the caller. 2059 */ 2060 STATIC struct xfs_buf_cancel * 2061 xlog_peek_buffer_cancelled( 2062 struct xlog *log, 2063 xfs_daddr_t blkno, 2064 uint len, 2065 unsigned short flags) 2066 { 2067 struct list_head *bucket; 2068 struct xfs_buf_cancel *bcp; 2069 2070 if (!log->l_buf_cancel_table) { 2071 /* empty table means no cancelled buffers in the log */ 2072 ASSERT(!(flags & XFS_BLF_CANCEL)); 2073 return NULL; 2074 } 2075 2076 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); 2077 list_for_each_entry(bcp, bucket, bc_list) { 2078 if (bcp->bc_blkno == blkno && bcp->bc_len == len) 2079 return bcp; 2080 } 2081 2082 /* 2083 * We didn't find a corresponding entry in the table, so return 0 so 2084 * that the buffer is NOT cancelled. 2085 */ 2086 ASSERT(!(flags & XFS_BLF_CANCEL)); 2087 return NULL; 2088 } 2089 2090 /* 2091 * If the buffer is being cancelled then return 1 so that it will be cancelled, 2092 * otherwise return 0. If the buffer is actually a buffer cancel item 2093 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the 2094 * table and remove it from the table if this is the last reference. 2095 * 2096 * We remove the cancel record from the table when we encounter its last 2097 * occurrence in the log so that if the same buffer is re-used again after its 2098 * last cancellation we actually replay the changes made at that point. 2099 */ 2100 STATIC int 2101 xlog_check_buffer_cancelled( 2102 struct xlog *log, 2103 xfs_daddr_t blkno, 2104 uint len, 2105 unsigned short flags) 2106 { 2107 struct xfs_buf_cancel *bcp; 2108 2109 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags); 2110 if (!bcp) 2111 return 0; 2112 2113 /* 2114 * We've go a match, so return 1 so that the recovery of this buffer 2115 * is cancelled. If this buffer is actually a buffer cancel log 2116 * item, then decrement the refcount on the one in the table and 2117 * remove it if this is the last reference. 2118 */ 2119 if (flags & XFS_BLF_CANCEL) { 2120 if (--bcp->bc_refcount == 0) { 2121 list_del(&bcp->bc_list); 2122 kmem_free(bcp); 2123 } 2124 } 2125 return 1; 2126 } 2127 2128 /* 2129 * Perform recovery for a buffer full of inodes. In these buffers, the only 2130 * data which should be recovered is that which corresponds to the 2131 * di_next_unlinked pointers in the on disk inode structures. The rest of the 2132 * data for the inodes is always logged through the inodes themselves rather 2133 * than the inode buffer and is recovered in xlog_recover_inode_pass2(). 2134 * 2135 * The only time when buffers full of inodes are fully recovered is when the 2136 * buffer is full of newly allocated inodes. In this case the buffer will 2137 * not be marked as an inode buffer and so will be sent to 2138 * xlog_recover_do_reg_buffer() below during recovery. 2139 */ 2140 STATIC int 2141 xlog_recover_do_inode_buffer( 2142 struct xfs_mount *mp, 2143 xlog_recover_item_t *item, 2144 struct xfs_buf *bp, 2145 xfs_buf_log_format_t *buf_f) 2146 { 2147 int i; 2148 int item_index = 0; 2149 int bit = 0; 2150 int nbits = 0; 2151 int reg_buf_offset = 0; 2152 int reg_buf_bytes = 0; 2153 int next_unlinked_offset; 2154 int inodes_per_buf; 2155 xfs_agino_t *logged_nextp; 2156 xfs_agino_t *buffer_nextp; 2157 2158 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); 2159 2160 /* 2161 * Post recovery validation only works properly on CRC enabled 2162 * filesystems. 2163 */ 2164 if (xfs_sb_version_hascrc(&mp->m_sb)) 2165 bp->b_ops = &xfs_inode_buf_ops; 2166 2167 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog; 2168 for (i = 0; i < inodes_per_buf; i++) { 2169 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 2170 offsetof(xfs_dinode_t, di_next_unlinked); 2171 2172 while (next_unlinked_offset >= 2173 (reg_buf_offset + reg_buf_bytes)) { 2174 /* 2175 * The next di_next_unlinked field is beyond 2176 * the current logged region. Find the next 2177 * logged region that contains or is beyond 2178 * the current di_next_unlinked field. 2179 */ 2180 bit += nbits; 2181 bit = xfs_next_bit(buf_f->blf_data_map, 2182 buf_f->blf_map_size, bit); 2183 2184 /* 2185 * If there are no more logged regions in the 2186 * buffer, then we're done. 2187 */ 2188 if (bit == -1) 2189 return 0; 2190 2191 nbits = xfs_contig_bits(buf_f->blf_data_map, 2192 buf_f->blf_map_size, bit); 2193 ASSERT(nbits > 0); 2194 reg_buf_offset = bit << XFS_BLF_SHIFT; 2195 reg_buf_bytes = nbits << XFS_BLF_SHIFT; 2196 item_index++; 2197 } 2198 2199 /* 2200 * If the current logged region starts after the current 2201 * di_next_unlinked field, then move on to the next 2202 * di_next_unlinked field. 2203 */ 2204 if (next_unlinked_offset < reg_buf_offset) 2205 continue; 2206 2207 ASSERT(item->ri_buf[item_index].i_addr != NULL); 2208 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); 2209 ASSERT((reg_buf_offset + reg_buf_bytes) <= 2210 BBTOB(bp->b_io_length)); 2211 2212 /* 2213 * The current logged region contains a copy of the 2214 * current di_next_unlinked field. Extract its value 2215 * and copy it to the buffer copy. 2216 */ 2217 logged_nextp = item->ri_buf[item_index].i_addr + 2218 next_unlinked_offset - reg_buf_offset; 2219 if (unlikely(*logged_nextp == 0)) { 2220 xfs_alert(mp, 2221 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). " 2222 "Trying to replay bad (0) inode di_next_unlinked field.", 2223 item, bp); 2224 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 2225 XFS_ERRLEVEL_LOW, mp); 2226 return -EFSCORRUPTED; 2227 } 2228 2229 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset); 2230 *buffer_nextp = *logged_nextp; 2231 2232 /* 2233 * If necessary, recalculate the CRC in the on-disk inode. We 2234 * have to leave the inode in a consistent state for whoever 2235 * reads it next.... 2236 */ 2237 xfs_dinode_calc_crc(mp, 2238 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); 2239 2240 } 2241 2242 return 0; 2243 } 2244 2245 /* 2246 * V5 filesystems know the age of the buffer on disk being recovered. We can 2247 * have newer objects on disk than we are replaying, and so for these cases we 2248 * don't want to replay the current change as that will make the buffer contents 2249 * temporarily invalid on disk. 2250 * 2251 * The magic number might not match the buffer type we are going to recover 2252 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence 2253 * extract the LSN of the existing object in the buffer based on it's current 2254 * magic number. If we don't recognise the magic number in the buffer, then 2255 * return a LSN of -1 so that the caller knows it was an unrecognised block and 2256 * so can recover the buffer. 2257 * 2258 * Note: we cannot rely solely on magic number matches to determine that the 2259 * buffer has a valid LSN - we also need to verify that it belongs to this 2260 * filesystem, so we need to extract the object's LSN and compare it to that 2261 * which we read from the superblock. If the UUIDs don't match, then we've got a 2262 * stale metadata block from an old filesystem instance that we need to recover 2263 * over the top of. 2264 */ 2265 static xfs_lsn_t 2266 xlog_recover_get_buf_lsn( 2267 struct xfs_mount *mp, 2268 struct xfs_buf *bp) 2269 { 2270 uint32_t magic32; 2271 uint16_t magic16; 2272 uint16_t magicda; 2273 void *blk = bp->b_addr; 2274 uuid_t *uuid; 2275 xfs_lsn_t lsn = -1; 2276 2277 /* v4 filesystems always recover immediately */ 2278 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2279 goto recover_immediately; 2280 2281 magic32 = be32_to_cpu(*(__be32 *)blk); 2282 switch (magic32) { 2283 case XFS_ABTB_CRC_MAGIC: 2284 case XFS_ABTC_CRC_MAGIC: 2285 case XFS_ABTB_MAGIC: 2286 case XFS_ABTC_MAGIC: 2287 case XFS_RMAP_CRC_MAGIC: 2288 case XFS_REFC_CRC_MAGIC: 2289 case XFS_IBT_CRC_MAGIC: 2290 case XFS_IBT_MAGIC: { 2291 struct xfs_btree_block *btb = blk; 2292 2293 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn); 2294 uuid = &btb->bb_u.s.bb_uuid; 2295 break; 2296 } 2297 case XFS_BMAP_CRC_MAGIC: 2298 case XFS_BMAP_MAGIC: { 2299 struct xfs_btree_block *btb = blk; 2300 2301 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn); 2302 uuid = &btb->bb_u.l.bb_uuid; 2303 break; 2304 } 2305 case XFS_AGF_MAGIC: 2306 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn); 2307 uuid = &((struct xfs_agf *)blk)->agf_uuid; 2308 break; 2309 case XFS_AGFL_MAGIC: 2310 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn); 2311 uuid = &((struct xfs_agfl *)blk)->agfl_uuid; 2312 break; 2313 case XFS_AGI_MAGIC: 2314 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn); 2315 uuid = &((struct xfs_agi *)blk)->agi_uuid; 2316 break; 2317 case XFS_SYMLINK_MAGIC: 2318 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn); 2319 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid; 2320 break; 2321 case XFS_DIR3_BLOCK_MAGIC: 2322 case XFS_DIR3_DATA_MAGIC: 2323 case XFS_DIR3_FREE_MAGIC: 2324 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn); 2325 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid; 2326 break; 2327 case XFS_ATTR3_RMT_MAGIC: 2328 /* 2329 * Remote attr blocks are written synchronously, rather than 2330 * being logged. That means they do not contain a valid LSN 2331 * (i.e. transactionally ordered) in them, and hence any time we 2332 * see a buffer to replay over the top of a remote attribute 2333 * block we should simply do so. 2334 */ 2335 goto recover_immediately; 2336 case XFS_SB_MAGIC: 2337 /* 2338 * superblock uuids are magic. We may or may not have a 2339 * sb_meta_uuid on disk, but it will be set in the in-core 2340 * superblock. We set the uuid pointer for verification 2341 * according to the superblock feature mask to ensure we check 2342 * the relevant UUID in the superblock. 2343 */ 2344 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn); 2345 if (xfs_sb_version_hasmetauuid(&mp->m_sb)) 2346 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid; 2347 else 2348 uuid = &((struct xfs_dsb *)blk)->sb_uuid; 2349 break; 2350 default: 2351 break; 2352 } 2353 2354 if (lsn != (xfs_lsn_t)-1) { 2355 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid)) 2356 goto recover_immediately; 2357 return lsn; 2358 } 2359 2360 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic); 2361 switch (magicda) { 2362 case XFS_DIR3_LEAF1_MAGIC: 2363 case XFS_DIR3_LEAFN_MAGIC: 2364 case XFS_DA3_NODE_MAGIC: 2365 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn); 2366 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid; 2367 break; 2368 default: 2369 break; 2370 } 2371 2372 if (lsn != (xfs_lsn_t)-1) { 2373 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid)) 2374 goto recover_immediately; 2375 return lsn; 2376 } 2377 2378 /* 2379 * We do individual object checks on dquot and inode buffers as they 2380 * have their own individual LSN records. Also, we could have a stale 2381 * buffer here, so we have to at least recognise these buffer types. 2382 * 2383 * A notd complexity here is inode unlinked list processing - it logs 2384 * the inode directly in the buffer, but we don't know which inodes have 2385 * been modified, and there is no global buffer LSN. Hence we need to 2386 * recover all inode buffer types immediately. This problem will be 2387 * fixed by logical logging of the unlinked list modifications. 2388 */ 2389 magic16 = be16_to_cpu(*(__be16 *)blk); 2390 switch (magic16) { 2391 case XFS_DQUOT_MAGIC: 2392 case XFS_DINODE_MAGIC: 2393 goto recover_immediately; 2394 default: 2395 break; 2396 } 2397 2398 /* unknown buffer contents, recover immediately */ 2399 2400 recover_immediately: 2401 return (xfs_lsn_t)-1; 2402 2403 } 2404 2405 /* 2406 * Validate the recovered buffer is of the correct type and attach the 2407 * appropriate buffer operations to them for writeback. Magic numbers are in a 2408 * few places: 2409 * the first 16 bits of the buffer (inode buffer, dquot buffer), 2410 * the first 32 bits of the buffer (most blocks), 2411 * inside a struct xfs_da_blkinfo at the start of the buffer. 2412 */ 2413 static void 2414 xlog_recover_validate_buf_type( 2415 struct xfs_mount *mp, 2416 struct xfs_buf *bp, 2417 xfs_buf_log_format_t *buf_f, 2418 xfs_lsn_t current_lsn) 2419 { 2420 struct xfs_da_blkinfo *info = bp->b_addr; 2421 uint32_t magic32; 2422 uint16_t magic16; 2423 uint16_t magicda; 2424 char *warnmsg = NULL; 2425 2426 /* 2427 * We can only do post recovery validation on items on CRC enabled 2428 * fielsystems as we need to know when the buffer was written to be able 2429 * to determine if we should have replayed the item. If we replay old 2430 * metadata over a newer buffer, then it will enter a temporarily 2431 * inconsistent state resulting in verification failures. Hence for now 2432 * just avoid the verification stage for non-crc filesystems 2433 */ 2434 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2435 return; 2436 2437 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr); 2438 magic16 = be16_to_cpu(*(__be16*)bp->b_addr); 2439 magicda = be16_to_cpu(info->magic); 2440 switch (xfs_blft_from_flags(buf_f)) { 2441 case XFS_BLFT_BTREE_BUF: 2442 switch (magic32) { 2443 case XFS_ABTB_CRC_MAGIC: 2444 case XFS_ABTC_CRC_MAGIC: 2445 case XFS_ABTB_MAGIC: 2446 case XFS_ABTC_MAGIC: 2447 bp->b_ops = &xfs_allocbt_buf_ops; 2448 break; 2449 case XFS_IBT_CRC_MAGIC: 2450 case XFS_FIBT_CRC_MAGIC: 2451 case XFS_IBT_MAGIC: 2452 case XFS_FIBT_MAGIC: 2453 bp->b_ops = &xfs_inobt_buf_ops; 2454 break; 2455 case XFS_BMAP_CRC_MAGIC: 2456 case XFS_BMAP_MAGIC: 2457 bp->b_ops = &xfs_bmbt_buf_ops; 2458 break; 2459 case XFS_RMAP_CRC_MAGIC: 2460 bp->b_ops = &xfs_rmapbt_buf_ops; 2461 break; 2462 case XFS_REFC_CRC_MAGIC: 2463 bp->b_ops = &xfs_refcountbt_buf_ops; 2464 break; 2465 default: 2466 warnmsg = "Bad btree block magic!"; 2467 break; 2468 } 2469 break; 2470 case XFS_BLFT_AGF_BUF: 2471 if (magic32 != XFS_AGF_MAGIC) { 2472 warnmsg = "Bad AGF block magic!"; 2473 break; 2474 } 2475 bp->b_ops = &xfs_agf_buf_ops; 2476 break; 2477 case XFS_BLFT_AGFL_BUF: 2478 if (magic32 != XFS_AGFL_MAGIC) { 2479 warnmsg = "Bad AGFL block magic!"; 2480 break; 2481 } 2482 bp->b_ops = &xfs_agfl_buf_ops; 2483 break; 2484 case XFS_BLFT_AGI_BUF: 2485 if (magic32 != XFS_AGI_MAGIC) { 2486 warnmsg = "Bad AGI block magic!"; 2487 break; 2488 } 2489 bp->b_ops = &xfs_agi_buf_ops; 2490 break; 2491 case XFS_BLFT_UDQUOT_BUF: 2492 case XFS_BLFT_PDQUOT_BUF: 2493 case XFS_BLFT_GDQUOT_BUF: 2494 #ifdef CONFIG_XFS_QUOTA 2495 if (magic16 != XFS_DQUOT_MAGIC) { 2496 warnmsg = "Bad DQUOT block magic!"; 2497 break; 2498 } 2499 bp->b_ops = &xfs_dquot_buf_ops; 2500 #else 2501 xfs_alert(mp, 2502 "Trying to recover dquots without QUOTA support built in!"); 2503 ASSERT(0); 2504 #endif 2505 break; 2506 case XFS_BLFT_DINO_BUF: 2507 if (magic16 != XFS_DINODE_MAGIC) { 2508 warnmsg = "Bad INODE block magic!"; 2509 break; 2510 } 2511 bp->b_ops = &xfs_inode_buf_ops; 2512 break; 2513 case XFS_BLFT_SYMLINK_BUF: 2514 if (magic32 != XFS_SYMLINK_MAGIC) { 2515 warnmsg = "Bad symlink block magic!"; 2516 break; 2517 } 2518 bp->b_ops = &xfs_symlink_buf_ops; 2519 break; 2520 case XFS_BLFT_DIR_BLOCK_BUF: 2521 if (magic32 != XFS_DIR2_BLOCK_MAGIC && 2522 magic32 != XFS_DIR3_BLOCK_MAGIC) { 2523 warnmsg = "Bad dir block magic!"; 2524 break; 2525 } 2526 bp->b_ops = &xfs_dir3_block_buf_ops; 2527 break; 2528 case XFS_BLFT_DIR_DATA_BUF: 2529 if (magic32 != XFS_DIR2_DATA_MAGIC && 2530 magic32 != XFS_DIR3_DATA_MAGIC) { 2531 warnmsg = "Bad dir data magic!"; 2532 break; 2533 } 2534 bp->b_ops = &xfs_dir3_data_buf_ops; 2535 break; 2536 case XFS_BLFT_DIR_FREE_BUF: 2537 if (magic32 != XFS_DIR2_FREE_MAGIC && 2538 magic32 != XFS_DIR3_FREE_MAGIC) { 2539 warnmsg = "Bad dir3 free magic!"; 2540 break; 2541 } 2542 bp->b_ops = &xfs_dir3_free_buf_ops; 2543 break; 2544 case XFS_BLFT_DIR_LEAF1_BUF: 2545 if (magicda != XFS_DIR2_LEAF1_MAGIC && 2546 magicda != XFS_DIR3_LEAF1_MAGIC) { 2547 warnmsg = "Bad dir leaf1 magic!"; 2548 break; 2549 } 2550 bp->b_ops = &xfs_dir3_leaf1_buf_ops; 2551 break; 2552 case XFS_BLFT_DIR_LEAFN_BUF: 2553 if (magicda != XFS_DIR2_LEAFN_MAGIC && 2554 magicda != XFS_DIR3_LEAFN_MAGIC) { 2555 warnmsg = "Bad dir leafn magic!"; 2556 break; 2557 } 2558 bp->b_ops = &xfs_dir3_leafn_buf_ops; 2559 break; 2560 case XFS_BLFT_DA_NODE_BUF: 2561 if (magicda != XFS_DA_NODE_MAGIC && 2562 magicda != XFS_DA3_NODE_MAGIC) { 2563 warnmsg = "Bad da node magic!"; 2564 break; 2565 } 2566 bp->b_ops = &xfs_da3_node_buf_ops; 2567 break; 2568 case XFS_BLFT_ATTR_LEAF_BUF: 2569 if (magicda != XFS_ATTR_LEAF_MAGIC && 2570 magicda != XFS_ATTR3_LEAF_MAGIC) { 2571 warnmsg = "Bad attr leaf magic!"; 2572 break; 2573 } 2574 bp->b_ops = &xfs_attr3_leaf_buf_ops; 2575 break; 2576 case XFS_BLFT_ATTR_RMT_BUF: 2577 if (magic32 != XFS_ATTR3_RMT_MAGIC) { 2578 warnmsg = "Bad attr remote magic!"; 2579 break; 2580 } 2581 bp->b_ops = &xfs_attr3_rmt_buf_ops; 2582 break; 2583 case XFS_BLFT_SB_BUF: 2584 if (magic32 != XFS_SB_MAGIC) { 2585 warnmsg = "Bad SB block magic!"; 2586 break; 2587 } 2588 bp->b_ops = &xfs_sb_buf_ops; 2589 break; 2590 #ifdef CONFIG_XFS_RT 2591 case XFS_BLFT_RTBITMAP_BUF: 2592 case XFS_BLFT_RTSUMMARY_BUF: 2593 /* no magic numbers for verification of RT buffers */ 2594 bp->b_ops = &xfs_rtbuf_ops; 2595 break; 2596 #endif /* CONFIG_XFS_RT */ 2597 default: 2598 xfs_warn(mp, "Unknown buffer type %d!", 2599 xfs_blft_from_flags(buf_f)); 2600 break; 2601 } 2602 2603 /* 2604 * Nothing else to do in the case of a NULL current LSN as this means 2605 * the buffer is more recent than the change in the log and will be 2606 * skipped. 2607 */ 2608 if (current_lsn == NULLCOMMITLSN) 2609 return; 2610 2611 if (warnmsg) { 2612 xfs_warn(mp, warnmsg); 2613 ASSERT(0); 2614 } 2615 2616 /* 2617 * We must update the metadata LSN of the buffer as it is written out to 2618 * ensure that older transactions never replay over this one and corrupt 2619 * the buffer. This can occur if log recovery is interrupted at some 2620 * point after the current transaction completes, at which point a 2621 * subsequent mount starts recovery from the beginning. 2622 * 2623 * Write verifiers update the metadata LSN from log items attached to 2624 * the buffer. Therefore, initialize a bli purely to carry the LSN to 2625 * the verifier. We'll clean it up in our ->iodone() callback. 2626 */ 2627 if (bp->b_ops) { 2628 struct xfs_buf_log_item *bip; 2629 2630 ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone); 2631 bp->b_iodone = xlog_recover_iodone; 2632 xfs_buf_item_init(bp, mp); 2633 bip = bp->b_fspriv; 2634 bip->bli_item.li_lsn = current_lsn; 2635 } 2636 } 2637 2638 /* 2639 * Perform a 'normal' buffer recovery. Each logged region of the 2640 * buffer should be copied over the corresponding region in the 2641 * given buffer. The bitmap in the buf log format structure indicates 2642 * where to place the logged data. 2643 */ 2644 STATIC void 2645 xlog_recover_do_reg_buffer( 2646 struct xfs_mount *mp, 2647 xlog_recover_item_t *item, 2648 struct xfs_buf *bp, 2649 xfs_buf_log_format_t *buf_f, 2650 xfs_lsn_t current_lsn) 2651 { 2652 int i; 2653 int bit; 2654 int nbits; 2655 int error; 2656 2657 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); 2658 2659 bit = 0; 2660 i = 1; /* 0 is the buf format structure */ 2661 while (1) { 2662 bit = xfs_next_bit(buf_f->blf_data_map, 2663 buf_f->blf_map_size, bit); 2664 if (bit == -1) 2665 break; 2666 nbits = xfs_contig_bits(buf_f->blf_data_map, 2667 buf_f->blf_map_size, bit); 2668 ASSERT(nbits > 0); 2669 ASSERT(item->ri_buf[i].i_addr != NULL); 2670 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); 2671 ASSERT(BBTOB(bp->b_io_length) >= 2672 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); 2673 2674 /* 2675 * The dirty regions logged in the buffer, even though 2676 * contiguous, may span multiple chunks. This is because the 2677 * dirty region may span a physical page boundary in a buffer 2678 * and hence be split into two separate vectors for writing into 2679 * the log. Hence we need to trim nbits back to the length of 2680 * the current region being copied out of the log. 2681 */ 2682 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT)) 2683 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT; 2684 2685 /* 2686 * Do a sanity check if this is a dquot buffer. Just checking 2687 * the first dquot in the buffer should do. XXXThis is 2688 * probably a good thing to do for other buf types also. 2689 */ 2690 error = 0; 2691 if (buf_f->blf_flags & 2692 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2693 if (item->ri_buf[i].i_addr == NULL) { 2694 xfs_alert(mp, 2695 "XFS: NULL dquot in %s.", __func__); 2696 goto next; 2697 } 2698 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) { 2699 xfs_alert(mp, 2700 "XFS: dquot too small (%d) in %s.", 2701 item->ri_buf[i].i_len, __func__); 2702 goto next; 2703 } 2704 error = xfs_dqcheck(mp, item->ri_buf[i].i_addr, 2705 -1, 0, XFS_QMOPT_DOWARN, 2706 "dquot_buf_recover"); 2707 if (error) 2708 goto next; 2709 } 2710 2711 memcpy(xfs_buf_offset(bp, 2712 (uint)bit << XFS_BLF_SHIFT), /* dest */ 2713 item->ri_buf[i].i_addr, /* source */ 2714 nbits<<XFS_BLF_SHIFT); /* length */ 2715 next: 2716 i++; 2717 bit += nbits; 2718 } 2719 2720 /* Shouldn't be any more regions */ 2721 ASSERT(i == item->ri_total); 2722 2723 xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn); 2724 } 2725 2726 /* 2727 * Perform a dquot buffer recovery. 2728 * Simple algorithm: if we have found a QUOTAOFF log item of the same type 2729 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2730 * Else, treat it as a regular buffer and do recovery. 2731 * 2732 * Return false if the buffer was tossed and true if we recovered the buffer to 2733 * indicate to the caller if the buffer needs writing. 2734 */ 2735 STATIC bool 2736 xlog_recover_do_dquot_buffer( 2737 struct xfs_mount *mp, 2738 struct xlog *log, 2739 struct xlog_recover_item *item, 2740 struct xfs_buf *bp, 2741 struct xfs_buf_log_format *buf_f) 2742 { 2743 uint type; 2744 2745 trace_xfs_log_recover_buf_dquot_buf(log, buf_f); 2746 2747 /* 2748 * Filesystems are required to send in quota flags at mount time. 2749 */ 2750 if (!mp->m_qflags) 2751 return false; 2752 2753 type = 0; 2754 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) 2755 type |= XFS_DQ_USER; 2756 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) 2757 type |= XFS_DQ_PROJ; 2758 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) 2759 type |= XFS_DQ_GROUP; 2760 /* 2761 * This type of quotas was turned off, so ignore this buffer 2762 */ 2763 if (log->l_quotaoffs_flag & type) 2764 return false; 2765 2766 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN); 2767 return true; 2768 } 2769 2770 /* 2771 * This routine replays a modification made to a buffer at runtime. 2772 * There are actually two types of buffer, regular and inode, which 2773 * are handled differently. Inode buffers are handled differently 2774 * in that we only recover a specific set of data from them, namely 2775 * the inode di_next_unlinked fields. This is because all other inode 2776 * data is actually logged via inode records and any data we replay 2777 * here which overlaps that may be stale. 2778 * 2779 * When meta-data buffers are freed at run time we log a buffer item 2780 * with the XFS_BLF_CANCEL bit set to indicate that previous copies 2781 * of the buffer in the log should not be replayed at recovery time. 2782 * This is so that if the blocks covered by the buffer are reused for 2783 * file data before we crash we don't end up replaying old, freed 2784 * meta-data into a user's file. 2785 * 2786 * To handle the cancellation of buffer log items, we make two passes 2787 * over the log during recovery. During the first we build a table of 2788 * those buffers which have been cancelled, and during the second we 2789 * only replay those buffers which do not have corresponding cancel 2790 * records in the table. See xlog_recover_buffer_pass[1,2] above 2791 * for more details on the implementation of the table of cancel records. 2792 */ 2793 STATIC int 2794 xlog_recover_buffer_pass2( 2795 struct xlog *log, 2796 struct list_head *buffer_list, 2797 struct xlog_recover_item *item, 2798 xfs_lsn_t current_lsn) 2799 { 2800 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2801 xfs_mount_t *mp = log->l_mp; 2802 xfs_buf_t *bp; 2803 int error; 2804 uint buf_flags; 2805 xfs_lsn_t lsn; 2806 2807 /* 2808 * In this pass we only want to recover all the buffers which have 2809 * not been cancelled and are not cancellation buffers themselves. 2810 */ 2811 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno, 2812 buf_f->blf_len, buf_f->blf_flags)) { 2813 trace_xfs_log_recover_buf_cancel(log, buf_f); 2814 return 0; 2815 } 2816 2817 trace_xfs_log_recover_buf_recover(log, buf_f); 2818 2819 buf_flags = 0; 2820 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) 2821 buf_flags |= XBF_UNMAPPED; 2822 2823 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, 2824 buf_flags, NULL); 2825 if (!bp) 2826 return -ENOMEM; 2827 error = bp->b_error; 2828 if (error) { 2829 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)"); 2830 goto out_release; 2831 } 2832 2833 /* 2834 * Recover the buffer only if we get an LSN from it and it's less than 2835 * the lsn of the transaction we are replaying. 2836 * 2837 * Note that we have to be extremely careful of readahead here. 2838 * Readahead does not attach verfiers to the buffers so if we don't 2839 * actually do any replay after readahead because of the LSN we found 2840 * in the buffer if more recent than that current transaction then we 2841 * need to attach the verifier directly. Failure to do so can lead to 2842 * future recovery actions (e.g. EFI and unlinked list recovery) can 2843 * operate on the buffers and they won't get the verifier attached. This 2844 * can lead to blocks on disk having the correct content but a stale 2845 * CRC. 2846 * 2847 * It is safe to assume these clean buffers are currently up to date. 2848 * If the buffer is dirtied by a later transaction being replayed, then 2849 * the verifier will be reset to match whatever recover turns that 2850 * buffer into. 2851 */ 2852 lsn = xlog_recover_get_buf_lsn(mp, bp); 2853 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 2854 trace_xfs_log_recover_buf_skip(log, buf_f); 2855 xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN); 2856 goto out_release; 2857 } 2858 2859 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 2860 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2861 if (error) 2862 goto out_release; 2863 } else if (buf_f->blf_flags & 2864 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2865 bool dirty; 2866 2867 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2868 if (!dirty) 2869 goto out_release; 2870 } else { 2871 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn); 2872 } 2873 2874 /* 2875 * Perform delayed write on the buffer. Asynchronous writes will be 2876 * slower when taking into account all the buffers to be flushed. 2877 * 2878 * Also make sure that only inode buffers with good sizes stay in 2879 * the buffer cache. The kernel moves inodes in buffers of 1 block 2880 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode 2881 * buffers in the log can be a different size if the log was generated 2882 * by an older kernel using unclustered inode buffers or a newer kernel 2883 * running with a different inode cluster size. Regardless, if the 2884 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size) 2885 * for *our* value of mp->m_inode_cluster_size, then we need to keep 2886 * the buffer out of the buffer cache so that the buffer won't 2887 * overlap with future reads of those inodes. 2888 */ 2889 if (XFS_DINODE_MAGIC == 2890 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && 2891 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize, 2892 (uint32_t)log->l_mp->m_inode_cluster_size))) { 2893 xfs_buf_stale(bp); 2894 error = xfs_bwrite(bp); 2895 } else { 2896 ASSERT(bp->b_target->bt_mount == mp); 2897 bp->b_iodone = xlog_recover_iodone; 2898 xfs_buf_delwri_queue(bp, buffer_list); 2899 } 2900 2901 out_release: 2902 xfs_buf_relse(bp); 2903 return error; 2904 } 2905 2906 /* 2907 * Inode fork owner changes 2908 * 2909 * If we have been told that we have to reparent the inode fork, it's because an 2910 * extent swap operation on a CRC enabled filesystem has been done and we are 2911 * replaying it. We need to walk the BMBT of the appropriate fork and change the 2912 * owners of it. 2913 * 2914 * The complexity here is that we don't have an inode context to work with, so 2915 * after we've replayed the inode we need to instantiate one. This is where the 2916 * fun begins. 2917 * 2918 * We are in the middle of log recovery, so we can't run transactions. That 2919 * means we cannot use cache coherent inode instantiation via xfs_iget(), as 2920 * that will result in the corresponding iput() running the inode through 2921 * xfs_inactive(). If we've just replayed an inode core that changes the link 2922 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run 2923 * transactions (bad!). 2924 * 2925 * So, to avoid this, we instantiate an inode directly from the inode core we've 2926 * just recovered. We have the buffer still locked, and all we really need to 2927 * instantiate is the inode core and the forks being modified. We can do this 2928 * manually, then run the inode btree owner change, and then tear down the 2929 * xfs_inode without having to run any transactions at all. 2930 * 2931 * Also, because we don't have a transaction context available here but need to 2932 * gather all the buffers we modify for writeback so we pass the buffer_list 2933 * instead for the operation to use. 2934 */ 2935 2936 STATIC int 2937 xfs_recover_inode_owner_change( 2938 struct xfs_mount *mp, 2939 struct xfs_dinode *dip, 2940 struct xfs_inode_log_format *in_f, 2941 struct list_head *buffer_list) 2942 { 2943 struct xfs_inode *ip; 2944 int error; 2945 2946 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)); 2947 2948 ip = xfs_inode_alloc(mp, in_f->ilf_ino); 2949 if (!ip) 2950 return -ENOMEM; 2951 2952 /* instantiate the inode */ 2953 xfs_inode_from_disk(ip, dip); 2954 ASSERT(ip->i_d.di_version >= 3); 2955 2956 error = xfs_iformat_fork(ip, dip); 2957 if (error) 2958 goto out_free_ip; 2959 2960 2961 if (in_f->ilf_fields & XFS_ILOG_DOWNER) { 2962 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT); 2963 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK, 2964 ip->i_ino, buffer_list); 2965 if (error) 2966 goto out_free_ip; 2967 } 2968 2969 if (in_f->ilf_fields & XFS_ILOG_AOWNER) { 2970 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT); 2971 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK, 2972 ip->i_ino, buffer_list); 2973 if (error) 2974 goto out_free_ip; 2975 } 2976 2977 out_free_ip: 2978 xfs_inode_free(ip); 2979 return error; 2980 } 2981 2982 STATIC int 2983 xlog_recover_inode_pass2( 2984 struct xlog *log, 2985 struct list_head *buffer_list, 2986 struct xlog_recover_item *item, 2987 xfs_lsn_t current_lsn) 2988 { 2989 struct xfs_inode_log_format *in_f; 2990 xfs_mount_t *mp = log->l_mp; 2991 xfs_buf_t *bp; 2992 xfs_dinode_t *dip; 2993 int len; 2994 char *src; 2995 char *dest; 2996 int error; 2997 int attr_index; 2998 uint fields; 2999 struct xfs_log_dinode *ldip; 3000 uint isize; 3001 int need_free = 0; 3002 3003 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { 3004 in_f = item->ri_buf[0].i_addr; 3005 } else { 3006 in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), KM_SLEEP); 3007 need_free = 1; 3008 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 3009 if (error) 3010 goto error; 3011 } 3012 3013 /* 3014 * Inode buffers can be freed, look out for it, 3015 * and do not replay the inode. 3016 */ 3017 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, 3018 in_f->ilf_len, 0)) { 3019 error = 0; 3020 trace_xfs_log_recover_inode_cancel(log, in_f); 3021 goto error; 3022 } 3023 trace_xfs_log_recover_inode_recover(log, in_f); 3024 3025 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0, 3026 &xfs_inode_buf_ops); 3027 if (!bp) { 3028 error = -ENOMEM; 3029 goto error; 3030 } 3031 error = bp->b_error; 3032 if (error) { 3033 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)"); 3034 goto out_release; 3035 } 3036 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 3037 dip = xfs_buf_offset(bp, in_f->ilf_boffset); 3038 3039 /* 3040 * Make sure the place we're flushing out to really looks 3041 * like an inode! 3042 */ 3043 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) { 3044 xfs_alert(mp, 3045 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld", 3046 __func__, dip, bp, in_f->ilf_ino); 3047 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)", 3048 XFS_ERRLEVEL_LOW, mp); 3049 error = -EFSCORRUPTED; 3050 goto out_release; 3051 } 3052 ldip = item->ri_buf[1].i_addr; 3053 if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) { 3054 xfs_alert(mp, 3055 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld", 3056 __func__, item, in_f->ilf_ino); 3057 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)", 3058 XFS_ERRLEVEL_LOW, mp); 3059 error = -EFSCORRUPTED; 3060 goto out_release; 3061 } 3062 3063 /* 3064 * If the inode has an LSN in it, recover the inode only if it's less 3065 * than the lsn of the transaction we are replaying. Note: we still 3066 * need to replay an owner change even though the inode is more recent 3067 * than the transaction as there is no guarantee that all the btree 3068 * blocks are more recent than this transaction, too. 3069 */ 3070 if (dip->di_version >= 3) { 3071 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn); 3072 3073 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 3074 trace_xfs_log_recover_inode_skip(log, in_f); 3075 error = 0; 3076 goto out_owner_change; 3077 } 3078 } 3079 3080 /* 3081 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes 3082 * are transactional and if ordering is necessary we can determine that 3083 * more accurately by the LSN field in the V3 inode core. Don't trust 3084 * the inode versions we might be changing them here - use the 3085 * superblock flag to determine whether we need to look at di_flushiter 3086 * to skip replay when the on disk inode is newer than the log one 3087 */ 3088 if (!xfs_sb_version_hascrc(&mp->m_sb) && 3089 ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) { 3090 /* 3091 * Deal with the wrap case, DI_MAX_FLUSH is less 3092 * than smaller numbers 3093 */ 3094 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && 3095 ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) { 3096 /* do nothing */ 3097 } else { 3098 trace_xfs_log_recover_inode_skip(log, in_f); 3099 error = 0; 3100 goto out_release; 3101 } 3102 } 3103 3104 /* Take the opportunity to reset the flush iteration count */ 3105 ldip->di_flushiter = 0; 3106 3107 if (unlikely(S_ISREG(ldip->di_mode))) { 3108 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) && 3109 (ldip->di_format != XFS_DINODE_FMT_BTREE)) { 3110 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)", 3111 XFS_ERRLEVEL_LOW, mp, ldip); 3112 xfs_alert(mp, 3113 "%s: Bad regular inode log record, rec ptr 0x%p, " 3114 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 3115 __func__, item, dip, bp, in_f->ilf_ino); 3116 error = -EFSCORRUPTED; 3117 goto out_release; 3118 } 3119 } else if (unlikely(S_ISDIR(ldip->di_mode))) { 3120 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) && 3121 (ldip->di_format != XFS_DINODE_FMT_BTREE) && 3122 (ldip->di_format != XFS_DINODE_FMT_LOCAL)) { 3123 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)", 3124 XFS_ERRLEVEL_LOW, mp, ldip); 3125 xfs_alert(mp, 3126 "%s: Bad dir inode log record, rec ptr 0x%p, " 3127 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 3128 __func__, item, dip, bp, in_f->ilf_ino); 3129 error = -EFSCORRUPTED; 3130 goto out_release; 3131 } 3132 } 3133 if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){ 3134 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)", 3135 XFS_ERRLEVEL_LOW, mp, ldip); 3136 xfs_alert(mp, 3137 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 3138 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", 3139 __func__, item, dip, bp, in_f->ilf_ino, 3140 ldip->di_nextents + ldip->di_anextents, 3141 ldip->di_nblocks); 3142 error = -EFSCORRUPTED; 3143 goto out_release; 3144 } 3145 if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) { 3146 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)", 3147 XFS_ERRLEVEL_LOW, mp, ldip); 3148 xfs_alert(mp, 3149 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 3150 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__, 3151 item, dip, bp, in_f->ilf_ino, ldip->di_forkoff); 3152 error = -EFSCORRUPTED; 3153 goto out_release; 3154 } 3155 isize = xfs_log_dinode_size(ldip->di_version); 3156 if (unlikely(item->ri_buf[1].i_len > isize)) { 3157 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)", 3158 XFS_ERRLEVEL_LOW, mp, ldip); 3159 xfs_alert(mp, 3160 "%s: Bad inode log record length %d, rec ptr 0x%p", 3161 __func__, item->ri_buf[1].i_len, item); 3162 error = -EFSCORRUPTED; 3163 goto out_release; 3164 } 3165 3166 /* recover the log dinode inode into the on disk inode */ 3167 xfs_log_dinode_to_disk(ldip, dip); 3168 3169 /* the rest is in on-disk format */ 3170 if (item->ri_buf[1].i_len > isize) { 3171 memcpy((char *)dip + isize, 3172 item->ri_buf[1].i_addr + isize, 3173 item->ri_buf[1].i_len - isize); 3174 } 3175 3176 fields = in_f->ilf_fields; 3177 if (fields & XFS_ILOG_DEV) 3178 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); 3179 3180 if (in_f->ilf_size == 2) 3181 goto out_owner_change; 3182 len = item->ri_buf[2].i_len; 3183 src = item->ri_buf[2].i_addr; 3184 ASSERT(in_f->ilf_size <= 4); 3185 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 3186 ASSERT(!(fields & XFS_ILOG_DFORK) || 3187 (len == in_f->ilf_dsize)); 3188 3189 switch (fields & XFS_ILOG_DFORK) { 3190 case XFS_ILOG_DDATA: 3191 case XFS_ILOG_DEXT: 3192 memcpy(XFS_DFORK_DPTR(dip), src, len); 3193 break; 3194 3195 case XFS_ILOG_DBROOT: 3196 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, 3197 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), 3198 XFS_DFORK_DSIZE(dip, mp)); 3199 break; 3200 3201 default: 3202 /* 3203 * There are no data fork flags set. 3204 */ 3205 ASSERT((fields & XFS_ILOG_DFORK) == 0); 3206 break; 3207 } 3208 3209 /* 3210 * If we logged any attribute data, recover it. There may or 3211 * may not have been any other non-core data logged in this 3212 * transaction. 3213 */ 3214 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 3215 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 3216 attr_index = 3; 3217 } else { 3218 attr_index = 2; 3219 } 3220 len = item->ri_buf[attr_index].i_len; 3221 src = item->ri_buf[attr_index].i_addr; 3222 ASSERT(len == in_f->ilf_asize); 3223 3224 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 3225 case XFS_ILOG_ADATA: 3226 case XFS_ILOG_AEXT: 3227 dest = XFS_DFORK_APTR(dip); 3228 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 3229 memcpy(dest, src, len); 3230 break; 3231 3232 case XFS_ILOG_ABROOT: 3233 dest = XFS_DFORK_APTR(dip); 3234 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, 3235 len, (xfs_bmdr_block_t*)dest, 3236 XFS_DFORK_ASIZE(dip, mp)); 3237 break; 3238 3239 default: 3240 xfs_warn(log->l_mp, "%s: Invalid flag", __func__); 3241 ASSERT(0); 3242 error = -EIO; 3243 goto out_release; 3244 } 3245 } 3246 3247 out_owner_change: 3248 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) 3249 error = xfs_recover_inode_owner_change(mp, dip, in_f, 3250 buffer_list); 3251 /* re-generate the checksum. */ 3252 xfs_dinode_calc_crc(log->l_mp, dip); 3253 3254 ASSERT(bp->b_target->bt_mount == mp); 3255 bp->b_iodone = xlog_recover_iodone; 3256 xfs_buf_delwri_queue(bp, buffer_list); 3257 3258 out_release: 3259 xfs_buf_relse(bp); 3260 error: 3261 if (need_free) 3262 kmem_free(in_f); 3263 return error; 3264 } 3265 3266 /* 3267 * Recover QUOTAOFF records. We simply make a note of it in the xlog 3268 * structure, so that we know not to do any dquot item or dquot buffer recovery, 3269 * of that type. 3270 */ 3271 STATIC int 3272 xlog_recover_quotaoff_pass1( 3273 struct xlog *log, 3274 struct xlog_recover_item *item) 3275 { 3276 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr; 3277 ASSERT(qoff_f); 3278 3279 /* 3280 * The logitem format's flag tells us if this was user quotaoff, 3281 * group/project quotaoff or both. 3282 */ 3283 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 3284 log->l_quotaoffs_flag |= XFS_DQ_USER; 3285 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 3286 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 3287 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 3288 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 3289 3290 return 0; 3291 } 3292 3293 /* 3294 * Recover a dquot record 3295 */ 3296 STATIC int 3297 xlog_recover_dquot_pass2( 3298 struct xlog *log, 3299 struct list_head *buffer_list, 3300 struct xlog_recover_item *item, 3301 xfs_lsn_t current_lsn) 3302 { 3303 xfs_mount_t *mp = log->l_mp; 3304 xfs_buf_t *bp; 3305 struct xfs_disk_dquot *ddq, *recddq; 3306 int error; 3307 xfs_dq_logformat_t *dq_f; 3308 uint type; 3309 3310 3311 /* 3312 * Filesystems are required to send in quota flags at mount time. 3313 */ 3314 if (mp->m_qflags == 0) 3315 return 0; 3316 3317 recddq = item->ri_buf[1].i_addr; 3318 if (recddq == NULL) { 3319 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__); 3320 return -EIO; 3321 } 3322 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) { 3323 xfs_alert(log->l_mp, "dquot too small (%d) in %s.", 3324 item->ri_buf[1].i_len, __func__); 3325 return -EIO; 3326 } 3327 3328 /* 3329 * This type of quotas was turned off, so ignore this record. 3330 */ 3331 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 3332 ASSERT(type); 3333 if (log->l_quotaoffs_flag & type) 3334 return 0; 3335 3336 /* 3337 * At this point we know that quota was _not_ turned off. 3338 * Since the mount flags are not indicating to us otherwise, this 3339 * must mean that quota is on, and the dquot needs to be replayed. 3340 * Remember that we may not have fully recovered the superblock yet, 3341 * so we can't do the usual trick of looking at the SB quota bits. 3342 * 3343 * The other possibility, of course, is that the quota subsystem was 3344 * removed since the last mount - ENOSYS. 3345 */ 3346 dq_f = item->ri_buf[0].i_addr; 3347 ASSERT(dq_f); 3348 error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 3349 "xlog_recover_dquot_pass2 (log copy)"); 3350 if (error) 3351 return -EIO; 3352 ASSERT(dq_f->qlf_len == 1); 3353 3354 /* 3355 * At this point we are assuming that the dquots have been allocated 3356 * and hence the buffer has valid dquots stamped in it. It should, 3357 * therefore, pass verifier validation. If the dquot is bad, then the 3358 * we'll return an error here, so we don't need to specifically check 3359 * the dquot in the buffer after the verifier has run. 3360 */ 3361 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno, 3362 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp, 3363 &xfs_dquot_buf_ops); 3364 if (error) 3365 return error; 3366 3367 ASSERT(bp); 3368 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset); 3369 3370 /* 3371 * If the dquot has an LSN in it, recover the dquot only if it's less 3372 * than the lsn of the transaction we are replaying. 3373 */ 3374 if (xfs_sb_version_hascrc(&mp->m_sb)) { 3375 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq; 3376 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn); 3377 3378 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 3379 goto out_release; 3380 } 3381 } 3382 3383 memcpy(ddq, recddq, item->ri_buf[1].i_len); 3384 if (xfs_sb_version_hascrc(&mp->m_sb)) { 3385 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk), 3386 XFS_DQUOT_CRC_OFF); 3387 } 3388 3389 ASSERT(dq_f->qlf_size == 2); 3390 ASSERT(bp->b_target->bt_mount == mp); 3391 bp->b_iodone = xlog_recover_iodone; 3392 xfs_buf_delwri_queue(bp, buffer_list); 3393 3394 out_release: 3395 xfs_buf_relse(bp); 3396 return 0; 3397 } 3398 3399 /* 3400 * This routine is called to create an in-core extent free intent 3401 * item from the efi format structure which was logged on disk. 3402 * It allocates an in-core efi, copies the extents from the format 3403 * structure into it, and adds the efi to the AIL with the given 3404 * LSN. 3405 */ 3406 STATIC int 3407 xlog_recover_efi_pass2( 3408 struct xlog *log, 3409 struct xlog_recover_item *item, 3410 xfs_lsn_t lsn) 3411 { 3412 int error; 3413 struct xfs_mount *mp = log->l_mp; 3414 struct xfs_efi_log_item *efip; 3415 struct xfs_efi_log_format *efi_formatp; 3416 3417 efi_formatp = item->ri_buf[0].i_addr; 3418 3419 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 3420 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); 3421 if (error) { 3422 xfs_efi_item_free(efip); 3423 return error; 3424 } 3425 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 3426 3427 spin_lock(&log->l_ailp->xa_lock); 3428 /* 3429 * The EFI has two references. One for the EFD and one for EFI to ensure 3430 * it makes it into the AIL. Insert the EFI into the AIL directly and 3431 * drop the EFI reference. Note that xfs_trans_ail_update() drops the 3432 * AIL lock. 3433 */ 3434 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn); 3435 xfs_efi_release(efip); 3436 return 0; 3437 } 3438 3439 3440 /* 3441 * This routine is called when an EFD format structure is found in a committed 3442 * transaction in the log. Its purpose is to cancel the corresponding EFI if it 3443 * was still in the log. To do this it searches the AIL for the EFI with an id 3444 * equal to that in the EFD format structure. If we find it we drop the EFD 3445 * reference, which removes the EFI from the AIL and frees it. 3446 */ 3447 STATIC int 3448 xlog_recover_efd_pass2( 3449 struct xlog *log, 3450 struct xlog_recover_item *item) 3451 { 3452 xfs_efd_log_format_t *efd_formatp; 3453 xfs_efi_log_item_t *efip = NULL; 3454 xfs_log_item_t *lip; 3455 uint64_t efi_id; 3456 struct xfs_ail_cursor cur; 3457 struct xfs_ail *ailp = log->l_ailp; 3458 3459 efd_formatp = item->ri_buf[0].i_addr; 3460 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 3461 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 3462 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 3463 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 3464 efi_id = efd_formatp->efd_efi_id; 3465 3466 /* 3467 * Search for the EFI with the id in the EFD format structure in the 3468 * AIL. 3469 */ 3470 spin_lock(&ailp->xa_lock); 3471 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3472 while (lip != NULL) { 3473 if (lip->li_type == XFS_LI_EFI) { 3474 efip = (xfs_efi_log_item_t *)lip; 3475 if (efip->efi_format.efi_id == efi_id) { 3476 /* 3477 * Drop the EFD reference to the EFI. This 3478 * removes the EFI from the AIL and frees it. 3479 */ 3480 spin_unlock(&ailp->xa_lock); 3481 xfs_efi_release(efip); 3482 spin_lock(&ailp->xa_lock); 3483 break; 3484 } 3485 } 3486 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3487 } 3488 3489 xfs_trans_ail_cursor_done(&cur); 3490 spin_unlock(&ailp->xa_lock); 3491 3492 return 0; 3493 } 3494 3495 /* 3496 * This routine is called to create an in-core extent rmap update 3497 * item from the rui format structure which was logged on disk. 3498 * It allocates an in-core rui, copies the extents from the format 3499 * structure into it, and adds the rui to the AIL with the given 3500 * LSN. 3501 */ 3502 STATIC int 3503 xlog_recover_rui_pass2( 3504 struct xlog *log, 3505 struct xlog_recover_item *item, 3506 xfs_lsn_t lsn) 3507 { 3508 int error; 3509 struct xfs_mount *mp = log->l_mp; 3510 struct xfs_rui_log_item *ruip; 3511 struct xfs_rui_log_format *rui_formatp; 3512 3513 rui_formatp = item->ri_buf[0].i_addr; 3514 3515 ruip = xfs_rui_init(mp, rui_formatp->rui_nextents); 3516 error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format); 3517 if (error) { 3518 xfs_rui_item_free(ruip); 3519 return error; 3520 } 3521 atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents); 3522 3523 spin_lock(&log->l_ailp->xa_lock); 3524 /* 3525 * The RUI has two references. One for the RUD and one for RUI to ensure 3526 * it makes it into the AIL. Insert the RUI into the AIL directly and 3527 * drop the RUI reference. Note that xfs_trans_ail_update() drops the 3528 * AIL lock. 3529 */ 3530 xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn); 3531 xfs_rui_release(ruip); 3532 return 0; 3533 } 3534 3535 3536 /* 3537 * This routine is called when an RUD format structure is found in a committed 3538 * transaction in the log. Its purpose is to cancel the corresponding RUI if it 3539 * was still in the log. To do this it searches the AIL for the RUI with an id 3540 * equal to that in the RUD format structure. If we find it we drop the RUD 3541 * reference, which removes the RUI from the AIL and frees it. 3542 */ 3543 STATIC int 3544 xlog_recover_rud_pass2( 3545 struct xlog *log, 3546 struct xlog_recover_item *item) 3547 { 3548 struct xfs_rud_log_format *rud_formatp; 3549 struct xfs_rui_log_item *ruip = NULL; 3550 struct xfs_log_item *lip; 3551 uint64_t rui_id; 3552 struct xfs_ail_cursor cur; 3553 struct xfs_ail *ailp = log->l_ailp; 3554 3555 rud_formatp = item->ri_buf[0].i_addr; 3556 ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format)); 3557 rui_id = rud_formatp->rud_rui_id; 3558 3559 /* 3560 * Search for the RUI with the id in the RUD format structure in the 3561 * AIL. 3562 */ 3563 spin_lock(&ailp->xa_lock); 3564 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3565 while (lip != NULL) { 3566 if (lip->li_type == XFS_LI_RUI) { 3567 ruip = (struct xfs_rui_log_item *)lip; 3568 if (ruip->rui_format.rui_id == rui_id) { 3569 /* 3570 * Drop the RUD reference to the RUI. This 3571 * removes the RUI from the AIL and frees it. 3572 */ 3573 spin_unlock(&ailp->xa_lock); 3574 xfs_rui_release(ruip); 3575 spin_lock(&ailp->xa_lock); 3576 break; 3577 } 3578 } 3579 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3580 } 3581 3582 xfs_trans_ail_cursor_done(&cur); 3583 spin_unlock(&ailp->xa_lock); 3584 3585 return 0; 3586 } 3587 3588 /* 3589 * Copy an CUI format buffer from the given buf, and into the destination 3590 * CUI format structure. The CUI/CUD items were designed not to need any 3591 * special alignment handling. 3592 */ 3593 static int 3594 xfs_cui_copy_format( 3595 struct xfs_log_iovec *buf, 3596 struct xfs_cui_log_format *dst_cui_fmt) 3597 { 3598 struct xfs_cui_log_format *src_cui_fmt; 3599 uint len; 3600 3601 src_cui_fmt = buf->i_addr; 3602 len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents); 3603 3604 if (buf->i_len == len) { 3605 memcpy(dst_cui_fmt, src_cui_fmt, len); 3606 return 0; 3607 } 3608 return -EFSCORRUPTED; 3609 } 3610 3611 /* 3612 * This routine is called to create an in-core extent refcount update 3613 * item from the cui format structure which was logged on disk. 3614 * It allocates an in-core cui, copies the extents from the format 3615 * structure into it, and adds the cui to the AIL with the given 3616 * LSN. 3617 */ 3618 STATIC int 3619 xlog_recover_cui_pass2( 3620 struct xlog *log, 3621 struct xlog_recover_item *item, 3622 xfs_lsn_t lsn) 3623 { 3624 int error; 3625 struct xfs_mount *mp = log->l_mp; 3626 struct xfs_cui_log_item *cuip; 3627 struct xfs_cui_log_format *cui_formatp; 3628 3629 cui_formatp = item->ri_buf[0].i_addr; 3630 3631 cuip = xfs_cui_init(mp, cui_formatp->cui_nextents); 3632 error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format); 3633 if (error) { 3634 xfs_cui_item_free(cuip); 3635 return error; 3636 } 3637 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents); 3638 3639 spin_lock(&log->l_ailp->xa_lock); 3640 /* 3641 * The CUI has two references. One for the CUD and one for CUI to ensure 3642 * it makes it into the AIL. Insert the CUI into the AIL directly and 3643 * drop the CUI reference. Note that xfs_trans_ail_update() drops the 3644 * AIL lock. 3645 */ 3646 xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn); 3647 xfs_cui_release(cuip); 3648 return 0; 3649 } 3650 3651 3652 /* 3653 * This routine is called when an CUD format structure is found in a committed 3654 * transaction in the log. Its purpose is to cancel the corresponding CUI if it 3655 * was still in the log. To do this it searches the AIL for the CUI with an id 3656 * equal to that in the CUD format structure. If we find it we drop the CUD 3657 * reference, which removes the CUI from the AIL and frees it. 3658 */ 3659 STATIC int 3660 xlog_recover_cud_pass2( 3661 struct xlog *log, 3662 struct xlog_recover_item *item) 3663 { 3664 struct xfs_cud_log_format *cud_formatp; 3665 struct xfs_cui_log_item *cuip = NULL; 3666 struct xfs_log_item *lip; 3667 uint64_t cui_id; 3668 struct xfs_ail_cursor cur; 3669 struct xfs_ail *ailp = log->l_ailp; 3670 3671 cud_formatp = item->ri_buf[0].i_addr; 3672 if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) 3673 return -EFSCORRUPTED; 3674 cui_id = cud_formatp->cud_cui_id; 3675 3676 /* 3677 * Search for the CUI with the id in the CUD format structure in the 3678 * AIL. 3679 */ 3680 spin_lock(&ailp->xa_lock); 3681 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3682 while (lip != NULL) { 3683 if (lip->li_type == XFS_LI_CUI) { 3684 cuip = (struct xfs_cui_log_item *)lip; 3685 if (cuip->cui_format.cui_id == cui_id) { 3686 /* 3687 * Drop the CUD reference to the CUI. This 3688 * removes the CUI from the AIL and frees it. 3689 */ 3690 spin_unlock(&ailp->xa_lock); 3691 xfs_cui_release(cuip); 3692 spin_lock(&ailp->xa_lock); 3693 break; 3694 } 3695 } 3696 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3697 } 3698 3699 xfs_trans_ail_cursor_done(&cur); 3700 spin_unlock(&ailp->xa_lock); 3701 3702 return 0; 3703 } 3704 3705 /* 3706 * Copy an BUI format buffer from the given buf, and into the destination 3707 * BUI format structure. The BUI/BUD items were designed not to need any 3708 * special alignment handling. 3709 */ 3710 static int 3711 xfs_bui_copy_format( 3712 struct xfs_log_iovec *buf, 3713 struct xfs_bui_log_format *dst_bui_fmt) 3714 { 3715 struct xfs_bui_log_format *src_bui_fmt; 3716 uint len; 3717 3718 src_bui_fmt = buf->i_addr; 3719 len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents); 3720 3721 if (buf->i_len == len) { 3722 memcpy(dst_bui_fmt, src_bui_fmt, len); 3723 return 0; 3724 } 3725 return -EFSCORRUPTED; 3726 } 3727 3728 /* 3729 * This routine is called to create an in-core extent bmap update 3730 * item from the bui format structure which was logged on disk. 3731 * It allocates an in-core bui, copies the extents from the format 3732 * structure into it, and adds the bui to the AIL with the given 3733 * LSN. 3734 */ 3735 STATIC int 3736 xlog_recover_bui_pass2( 3737 struct xlog *log, 3738 struct xlog_recover_item *item, 3739 xfs_lsn_t lsn) 3740 { 3741 int error; 3742 struct xfs_mount *mp = log->l_mp; 3743 struct xfs_bui_log_item *buip; 3744 struct xfs_bui_log_format *bui_formatp; 3745 3746 bui_formatp = item->ri_buf[0].i_addr; 3747 3748 if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS) 3749 return -EFSCORRUPTED; 3750 buip = xfs_bui_init(mp); 3751 error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format); 3752 if (error) { 3753 xfs_bui_item_free(buip); 3754 return error; 3755 } 3756 atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents); 3757 3758 spin_lock(&log->l_ailp->xa_lock); 3759 /* 3760 * The RUI has two references. One for the RUD and one for RUI to ensure 3761 * it makes it into the AIL. Insert the RUI into the AIL directly and 3762 * drop the RUI reference. Note that xfs_trans_ail_update() drops the 3763 * AIL lock. 3764 */ 3765 xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn); 3766 xfs_bui_release(buip); 3767 return 0; 3768 } 3769 3770 3771 /* 3772 * This routine is called when an BUD format structure is found in a committed 3773 * transaction in the log. Its purpose is to cancel the corresponding BUI if it 3774 * was still in the log. To do this it searches the AIL for the BUI with an id 3775 * equal to that in the BUD format structure. If we find it we drop the BUD 3776 * reference, which removes the BUI from the AIL and frees it. 3777 */ 3778 STATIC int 3779 xlog_recover_bud_pass2( 3780 struct xlog *log, 3781 struct xlog_recover_item *item) 3782 { 3783 struct xfs_bud_log_format *bud_formatp; 3784 struct xfs_bui_log_item *buip = NULL; 3785 struct xfs_log_item *lip; 3786 uint64_t bui_id; 3787 struct xfs_ail_cursor cur; 3788 struct xfs_ail *ailp = log->l_ailp; 3789 3790 bud_formatp = item->ri_buf[0].i_addr; 3791 if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format)) 3792 return -EFSCORRUPTED; 3793 bui_id = bud_formatp->bud_bui_id; 3794 3795 /* 3796 * Search for the BUI with the id in the BUD format structure in the 3797 * AIL. 3798 */ 3799 spin_lock(&ailp->xa_lock); 3800 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3801 while (lip != NULL) { 3802 if (lip->li_type == XFS_LI_BUI) { 3803 buip = (struct xfs_bui_log_item *)lip; 3804 if (buip->bui_format.bui_id == bui_id) { 3805 /* 3806 * Drop the BUD reference to the BUI. This 3807 * removes the BUI from the AIL and frees it. 3808 */ 3809 spin_unlock(&ailp->xa_lock); 3810 xfs_bui_release(buip); 3811 spin_lock(&ailp->xa_lock); 3812 break; 3813 } 3814 } 3815 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3816 } 3817 3818 xfs_trans_ail_cursor_done(&cur); 3819 spin_unlock(&ailp->xa_lock); 3820 3821 return 0; 3822 } 3823 3824 /* 3825 * This routine is called when an inode create format structure is found in a 3826 * committed transaction in the log. It's purpose is to initialise the inodes 3827 * being allocated on disk. This requires us to get inode cluster buffers that 3828 * match the range to be initialised, stamped with inode templates and written 3829 * by delayed write so that subsequent modifications will hit the cached buffer 3830 * and only need writing out at the end of recovery. 3831 */ 3832 STATIC int 3833 xlog_recover_do_icreate_pass2( 3834 struct xlog *log, 3835 struct list_head *buffer_list, 3836 xlog_recover_item_t *item) 3837 { 3838 struct xfs_mount *mp = log->l_mp; 3839 struct xfs_icreate_log *icl; 3840 xfs_agnumber_t agno; 3841 xfs_agblock_t agbno; 3842 unsigned int count; 3843 unsigned int isize; 3844 xfs_agblock_t length; 3845 int blks_per_cluster; 3846 int bb_per_cluster; 3847 int cancel_count; 3848 int nbufs; 3849 int i; 3850 3851 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr; 3852 if (icl->icl_type != XFS_LI_ICREATE) { 3853 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type"); 3854 return -EINVAL; 3855 } 3856 3857 if (icl->icl_size != 1) { 3858 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size"); 3859 return -EINVAL; 3860 } 3861 3862 agno = be32_to_cpu(icl->icl_ag); 3863 if (agno >= mp->m_sb.sb_agcount) { 3864 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno"); 3865 return -EINVAL; 3866 } 3867 agbno = be32_to_cpu(icl->icl_agbno); 3868 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) { 3869 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno"); 3870 return -EINVAL; 3871 } 3872 isize = be32_to_cpu(icl->icl_isize); 3873 if (isize != mp->m_sb.sb_inodesize) { 3874 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize"); 3875 return -EINVAL; 3876 } 3877 count = be32_to_cpu(icl->icl_count); 3878 if (!count) { 3879 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count"); 3880 return -EINVAL; 3881 } 3882 length = be32_to_cpu(icl->icl_length); 3883 if (!length || length >= mp->m_sb.sb_agblocks) { 3884 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length"); 3885 return -EINVAL; 3886 } 3887 3888 /* 3889 * The inode chunk is either full or sparse and we only support 3890 * m_ialloc_min_blks sized sparse allocations at this time. 3891 */ 3892 if (length != mp->m_ialloc_blks && 3893 length != mp->m_ialloc_min_blks) { 3894 xfs_warn(log->l_mp, 3895 "%s: unsupported chunk length", __FUNCTION__); 3896 return -EINVAL; 3897 } 3898 3899 /* verify inode count is consistent with extent length */ 3900 if ((count >> mp->m_sb.sb_inopblog) != length) { 3901 xfs_warn(log->l_mp, 3902 "%s: inconsistent inode count and chunk length", 3903 __FUNCTION__); 3904 return -EINVAL; 3905 } 3906 3907 /* 3908 * The icreate transaction can cover multiple cluster buffers and these 3909 * buffers could have been freed and reused. Check the individual 3910 * buffers for cancellation so we don't overwrite anything written after 3911 * a cancellation. 3912 */ 3913 blks_per_cluster = xfs_icluster_size_fsb(mp); 3914 bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster); 3915 nbufs = length / blks_per_cluster; 3916 for (i = 0, cancel_count = 0; i < nbufs; i++) { 3917 xfs_daddr_t daddr; 3918 3919 daddr = XFS_AGB_TO_DADDR(mp, agno, 3920 agbno + i * blks_per_cluster); 3921 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0)) 3922 cancel_count++; 3923 } 3924 3925 /* 3926 * We currently only use icreate for a single allocation at a time. This 3927 * means we should expect either all or none of the buffers to be 3928 * cancelled. Be conservative and skip replay if at least one buffer is 3929 * cancelled, but warn the user that something is awry if the buffers 3930 * are not consistent. 3931 * 3932 * XXX: This must be refined to only skip cancelled clusters once we use 3933 * icreate for multiple chunk allocations. 3934 */ 3935 ASSERT(!cancel_count || cancel_count == nbufs); 3936 if (cancel_count) { 3937 if (cancel_count != nbufs) 3938 xfs_warn(mp, 3939 "WARNING: partial inode chunk cancellation, skipped icreate."); 3940 trace_xfs_log_recover_icreate_cancel(log, icl); 3941 return 0; 3942 } 3943 3944 trace_xfs_log_recover_icreate_recover(log, icl); 3945 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno, 3946 length, be32_to_cpu(icl->icl_gen)); 3947 } 3948 3949 STATIC void 3950 xlog_recover_buffer_ra_pass2( 3951 struct xlog *log, 3952 struct xlog_recover_item *item) 3953 { 3954 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr; 3955 struct xfs_mount *mp = log->l_mp; 3956 3957 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno, 3958 buf_f->blf_len, buf_f->blf_flags)) { 3959 return; 3960 } 3961 3962 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno, 3963 buf_f->blf_len, NULL); 3964 } 3965 3966 STATIC void 3967 xlog_recover_inode_ra_pass2( 3968 struct xlog *log, 3969 struct xlog_recover_item *item) 3970 { 3971 struct xfs_inode_log_format ilf_buf; 3972 struct xfs_inode_log_format *ilfp; 3973 struct xfs_mount *mp = log->l_mp; 3974 int error; 3975 3976 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { 3977 ilfp = item->ri_buf[0].i_addr; 3978 } else { 3979 ilfp = &ilf_buf; 3980 memset(ilfp, 0, sizeof(*ilfp)); 3981 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp); 3982 if (error) 3983 return; 3984 } 3985 3986 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0)) 3987 return; 3988 3989 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno, 3990 ilfp->ilf_len, &xfs_inode_buf_ra_ops); 3991 } 3992 3993 STATIC void 3994 xlog_recover_dquot_ra_pass2( 3995 struct xlog *log, 3996 struct xlog_recover_item *item) 3997 { 3998 struct xfs_mount *mp = log->l_mp; 3999 struct xfs_disk_dquot *recddq; 4000 struct xfs_dq_logformat *dq_f; 4001 uint type; 4002 int len; 4003 4004 4005 if (mp->m_qflags == 0) 4006 return; 4007 4008 recddq = item->ri_buf[1].i_addr; 4009 if (recddq == NULL) 4010 return; 4011 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot)) 4012 return; 4013 4014 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 4015 ASSERT(type); 4016 if (log->l_quotaoffs_flag & type) 4017 return; 4018 4019 dq_f = item->ri_buf[0].i_addr; 4020 ASSERT(dq_f); 4021 ASSERT(dq_f->qlf_len == 1); 4022 4023 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len); 4024 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0)) 4025 return; 4026 4027 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len, 4028 &xfs_dquot_buf_ra_ops); 4029 } 4030 4031 STATIC void 4032 xlog_recover_ra_pass2( 4033 struct xlog *log, 4034 struct xlog_recover_item *item) 4035 { 4036 switch (ITEM_TYPE(item)) { 4037 case XFS_LI_BUF: 4038 xlog_recover_buffer_ra_pass2(log, item); 4039 break; 4040 case XFS_LI_INODE: 4041 xlog_recover_inode_ra_pass2(log, item); 4042 break; 4043 case XFS_LI_DQUOT: 4044 xlog_recover_dquot_ra_pass2(log, item); 4045 break; 4046 case XFS_LI_EFI: 4047 case XFS_LI_EFD: 4048 case XFS_LI_QUOTAOFF: 4049 case XFS_LI_RUI: 4050 case XFS_LI_RUD: 4051 case XFS_LI_CUI: 4052 case XFS_LI_CUD: 4053 case XFS_LI_BUI: 4054 case XFS_LI_BUD: 4055 default: 4056 break; 4057 } 4058 } 4059 4060 STATIC int 4061 xlog_recover_commit_pass1( 4062 struct xlog *log, 4063 struct xlog_recover *trans, 4064 struct xlog_recover_item *item) 4065 { 4066 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1); 4067 4068 switch (ITEM_TYPE(item)) { 4069 case XFS_LI_BUF: 4070 return xlog_recover_buffer_pass1(log, item); 4071 case XFS_LI_QUOTAOFF: 4072 return xlog_recover_quotaoff_pass1(log, item); 4073 case XFS_LI_INODE: 4074 case XFS_LI_EFI: 4075 case XFS_LI_EFD: 4076 case XFS_LI_DQUOT: 4077 case XFS_LI_ICREATE: 4078 case XFS_LI_RUI: 4079 case XFS_LI_RUD: 4080 case XFS_LI_CUI: 4081 case XFS_LI_CUD: 4082 case XFS_LI_BUI: 4083 case XFS_LI_BUD: 4084 /* nothing to do in pass 1 */ 4085 return 0; 4086 default: 4087 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 4088 __func__, ITEM_TYPE(item)); 4089 ASSERT(0); 4090 return -EIO; 4091 } 4092 } 4093 4094 STATIC int 4095 xlog_recover_commit_pass2( 4096 struct xlog *log, 4097 struct xlog_recover *trans, 4098 struct list_head *buffer_list, 4099 struct xlog_recover_item *item) 4100 { 4101 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2); 4102 4103 switch (ITEM_TYPE(item)) { 4104 case XFS_LI_BUF: 4105 return xlog_recover_buffer_pass2(log, buffer_list, item, 4106 trans->r_lsn); 4107 case XFS_LI_INODE: 4108 return xlog_recover_inode_pass2(log, buffer_list, item, 4109 trans->r_lsn); 4110 case XFS_LI_EFI: 4111 return xlog_recover_efi_pass2(log, item, trans->r_lsn); 4112 case XFS_LI_EFD: 4113 return xlog_recover_efd_pass2(log, item); 4114 case XFS_LI_RUI: 4115 return xlog_recover_rui_pass2(log, item, trans->r_lsn); 4116 case XFS_LI_RUD: 4117 return xlog_recover_rud_pass2(log, item); 4118 case XFS_LI_CUI: 4119 return xlog_recover_cui_pass2(log, item, trans->r_lsn); 4120 case XFS_LI_CUD: 4121 return xlog_recover_cud_pass2(log, item); 4122 case XFS_LI_BUI: 4123 return xlog_recover_bui_pass2(log, item, trans->r_lsn); 4124 case XFS_LI_BUD: 4125 return xlog_recover_bud_pass2(log, item); 4126 case XFS_LI_DQUOT: 4127 return xlog_recover_dquot_pass2(log, buffer_list, item, 4128 trans->r_lsn); 4129 case XFS_LI_ICREATE: 4130 return xlog_recover_do_icreate_pass2(log, buffer_list, item); 4131 case XFS_LI_QUOTAOFF: 4132 /* nothing to do in pass2 */ 4133 return 0; 4134 default: 4135 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 4136 __func__, ITEM_TYPE(item)); 4137 ASSERT(0); 4138 return -EIO; 4139 } 4140 } 4141 4142 STATIC int 4143 xlog_recover_items_pass2( 4144 struct xlog *log, 4145 struct xlog_recover *trans, 4146 struct list_head *buffer_list, 4147 struct list_head *item_list) 4148 { 4149 struct xlog_recover_item *item; 4150 int error = 0; 4151 4152 list_for_each_entry(item, item_list, ri_list) { 4153 error = xlog_recover_commit_pass2(log, trans, 4154 buffer_list, item); 4155 if (error) 4156 return error; 4157 } 4158 4159 return error; 4160 } 4161 4162 /* 4163 * Perform the transaction. 4164 * 4165 * If the transaction modifies a buffer or inode, do it now. Otherwise, 4166 * EFIs and EFDs get queued up by adding entries into the AIL for them. 4167 */ 4168 STATIC int 4169 xlog_recover_commit_trans( 4170 struct xlog *log, 4171 struct xlog_recover *trans, 4172 int pass, 4173 struct list_head *buffer_list) 4174 { 4175 int error = 0; 4176 int items_queued = 0; 4177 struct xlog_recover_item *item; 4178 struct xlog_recover_item *next; 4179 LIST_HEAD (ra_list); 4180 LIST_HEAD (done_list); 4181 4182 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100 4183 4184 hlist_del_init(&trans->r_list); 4185 4186 error = xlog_recover_reorder_trans(log, trans, pass); 4187 if (error) 4188 return error; 4189 4190 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) { 4191 switch (pass) { 4192 case XLOG_RECOVER_PASS1: 4193 error = xlog_recover_commit_pass1(log, trans, item); 4194 break; 4195 case XLOG_RECOVER_PASS2: 4196 xlog_recover_ra_pass2(log, item); 4197 list_move_tail(&item->ri_list, &ra_list); 4198 items_queued++; 4199 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) { 4200 error = xlog_recover_items_pass2(log, trans, 4201 buffer_list, &ra_list); 4202 list_splice_tail_init(&ra_list, &done_list); 4203 items_queued = 0; 4204 } 4205 4206 break; 4207 default: 4208 ASSERT(0); 4209 } 4210 4211 if (error) 4212 goto out; 4213 } 4214 4215 out: 4216 if (!list_empty(&ra_list)) { 4217 if (!error) 4218 error = xlog_recover_items_pass2(log, trans, 4219 buffer_list, &ra_list); 4220 list_splice_tail_init(&ra_list, &done_list); 4221 } 4222 4223 if (!list_empty(&done_list)) 4224 list_splice_init(&done_list, &trans->r_itemq); 4225 4226 return error; 4227 } 4228 4229 STATIC void 4230 xlog_recover_add_item( 4231 struct list_head *head) 4232 { 4233 xlog_recover_item_t *item; 4234 4235 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 4236 INIT_LIST_HEAD(&item->ri_list); 4237 list_add_tail(&item->ri_list, head); 4238 } 4239 4240 STATIC int 4241 xlog_recover_add_to_cont_trans( 4242 struct xlog *log, 4243 struct xlog_recover *trans, 4244 char *dp, 4245 int len) 4246 { 4247 xlog_recover_item_t *item; 4248 char *ptr, *old_ptr; 4249 int old_len; 4250 4251 /* 4252 * If the transaction is empty, the header was split across this and the 4253 * previous record. Copy the rest of the header. 4254 */ 4255 if (list_empty(&trans->r_itemq)) { 4256 ASSERT(len <= sizeof(struct xfs_trans_header)); 4257 if (len > sizeof(struct xfs_trans_header)) { 4258 xfs_warn(log->l_mp, "%s: bad header length", __func__); 4259 return -EIO; 4260 } 4261 4262 xlog_recover_add_item(&trans->r_itemq); 4263 ptr = (char *)&trans->r_theader + 4264 sizeof(struct xfs_trans_header) - len; 4265 memcpy(ptr, dp, len); 4266 return 0; 4267 } 4268 4269 /* take the tail entry */ 4270 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 4271 4272 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 4273 old_len = item->ri_buf[item->ri_cnt-1].i_len; 4274 4275 ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP); 4276 memcpy(&ptr[old_len], dp, len); 4277 item->ri_buf[item->ri_cnt-1].i_len += len; 4278 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 4279 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 4280 return 0; 4281 } 4282 4283 /* 4284 * The next region to add is the start of a new region. It could be 4285 * a whole region or it could be the first part of a new region. Because 4286 * of this, the assumption here is that the type and size fields of all 4287 * format structures fit into the first 32 bits of the structure. 4288 * 4289 * This works because all regions must be 32 bit aligned. Therefore, we 4290 * either have both fields or we have neither field. In the case we have 4291 * neither field, the data part of the region is zero length. We only have 4292 * a log_op_header and can throw away the header since a new one will appear 4293 * later. If we have at least 4 bytes, then we can determine how many regions 4294 * will appear in the current log item. 4295 */ 4296 STATIC int 4297 xlog_recover_add_to_trans( 4298 struct xlog *log, 4299 struct xlog_recover *trans, 4300 char *dp, 4301 int len) 4302 { 4303 struct xfs_inode_log_format *in_f; /* any will do */ 4304 xlog_recover_item_t *item; 4305 char *ptr; 4306 4307 if (!len) 4308 return 0; 4309 if (list_empty(&trans->r_itemq)) { 4310 /* we need to catch log corruptions here */ 4311 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 4312 xfs_warn(log->l_mp, "%s: bad header magic number", 4313 __func__); 4314 ASSERT(0); 4315 return -EIO; 4316 } 4317 4318 if (len > sizeof(struct xfs_trans_header)) { 4319 xfs_warn(log->l_mp, "%s: bad header length", __func__); 4320 ASSERT(0); 4321 return -EIO; 4322 } 4323 4324 /* 4325 * The transaction header can be arbitrarily split across op 4326 * records. If we don't have the whole thing here, copy what we 4327 * do have and handle the rest in the next record. 4328 */ 4329 if (len == sizeof(struct xfs_trans_header)) 4330 xlog_recover_add_item(&trans->r_itemq); 4331 memcpy(&trans->r_theader, dp, len); 4332 return 0; 4333 } 4334 4335 ptr = kmem_alloc(len, KM_SLEEP); 4336 memcpy(ptr, dp, len); 4337 in_f = (struct xfs_inode_log_format *)ptr; 4338 4339 /* take the tail entry */ 4340 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 4341 if (item->ri_total != 0 && 4342 item->ri_total == item->ri_cnt) { 4343 /* tail item is in use, get a new one */ 4344 xlog_recover_add_item(&trans->r_itemq); 4345 item = list_entry(trans->r_itemq.prev, 4346 xlog_recover_item_t, ri_list); 4347 } 4348 4349 if (item->ri_total == 0) { /* first region to be added */ 4350 if (in_f->ilf_size == 0 || 4351 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 4352 xfs_warn(log->l_mp, 4353 "bad number of regions (%d) in inode log format", 4354 in_f->ilf_size); 4355 ASSERT(0); 4356 kmem_free(ptr); 4357 return -EIO; 4358 } 4359 4360 item->ri_total = in_f->ilf_size; 4361 item->ri_buf = 4362 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 4363 KM_SLEEP); 4364 } 4365 ASSERT(item->ri_total > item->ri_cnt); 4366 /* Description region is ri_buf[0] */ 4367 item->ri_buf[item->ri_cnt].i_addr = ptr; 4368 item->ri_buf[item->ri_cnt].i_len = len; 4369 item->ri_cnt++; 4370 trace_xfs_log_recover_item_add(log, trans, item, 0); 4371 return 0; 4372 } 4373 4374 /* 4375 * Free up any resources allocated by the transaction 4376 * 4377 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 4378 */ 4379 STATIC void 4380 xlog_recover_free_trans( 4381 struct xlog_recover *trans) 4382 { 4383 xlog_recover_item_t *item, *n; 4384 int i; 4385 4386 hlist_del_init(&trans->r_list); 4387 4388 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 4389 /* Free the regions in the item. */ 4390 list_del(&item->ri_list); 4391 for (i = 0; i < item->ri_cnt; i++) 4392 kmem_free(item->ri_buf[i].i_addr); 4393 /* Free the item itself */ 4394 kmem_free(item->ri_buf); 4395 kmem_free(item); 4396 } 4397 /* Free the transaction recover structure */ 4398 kmem_free(trans); 4399 } 4400 4401 /* 4402 * On error or completion, trans is freed. 4403 */ 4404 STATIC int 4405 xlog_recovery_process_trans( 4406 struct xlog *log, 4407 struct xlog_recover *trans, 4408 char *dp, 4409 unsigned int len, 4410 unsigned int flags, 4411 int pass, 4412 struct list_head *buffer_list) 4413 { 4414 int error = 0; 4415 bool freeit = false; 4416 4417 /* mask off ophdr transaction container flags */ 4418 flags &= ~XLOG_END_TRANS; 4419 if (flags & XLOG_WAS_CONT_TRANS) 4420 flags &= ~XLOG_CONTINUE_TRANS; 4421 4422 /* 4423 * Callees must not free the trans structure. We'll decide if we need to 4424 * free it or not based on the operation being done and it's result. 4425 */ 4426 switch (flags) { 4427 /* expected flag values */ 4428 case 0: 4429 case XLOG_CONTINUE_TRANS: 4430 error = xlog_recover_add_to_trans(log, trans, dp, len); 4431 break; 4432 case XLOG_WAS_CONT_TRANS: 4433 error = xlog_recover_add_to_cont_trans(log, trans, dp, len); 4434 break; 4435 case XLOG_COMMIT_TRANS: 4436 error = xlog_recover_commit_trans(log, trans, pass, 4437 buffer_list); 4438 /* success or fail, we are now done with this transaction. */ 4439 freeit = true; 4440 break; 4441 4442 /* unexpected flag values */ 4443 case XLOG_UNMOUNT_TRANS: 4444 /* just skip trans */ 4445 xfs_warn(log->l_mp, "%s: Unmount LR", __func__); 4446 freeit = true; 4447 break; 4448 case XLOG_START_TRANS: 4449 default: 4450 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags); 4451 ASSERT(0); 4452 error = -EIO; 4453 break; 4454 } 4455 if (error || freeit) 4456 xlog_recover_free_trans(trans); 4457 return error; 4458 } 4459 4460 /* 4461 * Lookup the transaction recovery structure associated with the ID in the 4462 * current ophdr. If the transaction doesn't exist and the start flag is set in 4463 * the ophdr, then allocate a new transaction for future ID matches to find. 4464 * Either way, return what we found during the lookup - an existing transaction 4465 * or nothing. 4466 */ 4467 STATIC struct xlog_recover * 4468 xlog_recover_ophdr_to_trans( 4469 struct hlist_head rhash[], 4470 struct xlog_rec_header *rhead, 4471 struct xlog_op_header *ohead) 4472 { 4473 struct xlog_recover *trans; 4474 xlog_tid_t tid; 4475 struct hlist_head *rhp; 4476 4477 tid = be32_to_cpu(ohead->oh_tid); 4478 rhp = &rhash[XLOG_RHASH(tid)]; 4479 hlist_for_each_entry(trans, rhp, r_list) { 4480 if (trans->r_log_tid == tid) 4481 return trans; 4482 } 4483 4484 /* 4485 * skip over non-start transaction headers - we could be 4486 * processing slack space before the next transaction starts 4487 */ 4488 if (!(ohead->oh_flags & XLOG_START_TRANS)) 4489 return NULL; 4490 4491 ASSERT(be32_to_cpu(ohead->oh_len) == 0); 4492 4493 /* 4494 * This is a new transaction so allocate a new recovery container to 4495 * hold the recovery ops that will follow. 4496 */ 4497 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP); 4498 trans->r_log_tid = tid; 4499 trans->r_lsn = be64_to_cpu(rhead->h_lsn); 4500 INIT_LIST_HEAD(&trans->r_itemq); 4501 INIT_HLIST_NODE(&trans->r_list); 4502 hlist_add_head(&trans->r_list, rhp); 4503 4504 /* 4505 * Nothing more to do for this ophdr. Items to be added to this new 4506 * transaction will be in subsequent ophdr containers. 4507 */ 4508 return NULL; 4509 } 4510 4511 STATIC int 4512 xlog_recover_process_ophdr( 4513 struct xlog *log, 4514 struct hlist_head rhash[], 4515 struct xlog_rec_header *rhead, 4516 struct xlog_op_header *ohead, 4517 char *dp, 4518 char *end, 4519 int pass, 4520 struct list_head *buffer_list) 4521 { 4522 struct xlog_recover *trans; 4523 unsigned int len; 4524 int error; 4525 4526 /* Do we understand who wrote this op? */ 4527 if (ohead->oh_clientid != XFS_TRANSACTION && 4528 ohead->oh_clientid != XFS_LOG) { 4529 xfs_warn(log->l_mp, "%s: bad clientid 0x%x", 4530 __func__, ohead->oh_clientid); 4531 ASSERT(0); 4532 return -EIO; 4533 } 4534 4535 /* 4536 * Check the ophdr contains all the data it is supposed to contain. 4537 */ 4538 len = be32_to_cpu(ohead->oh_len); 4539 if (dp + len > end) { 4540 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len); 4541 WARN_ON(1); 4542 return -EIO; 4543 } 4544 4545 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead); 4546 if (!trans) { 4547 /* nothing to do, so skip over this ophdr */ 4548 return 0; 4549 } 4550 4551 /* 4552 * The recovered buffer queue is drained only once we know that all 4553 * recovery items for the current LSN have been processed. This is 4554 * required because: 4555 * 4556 * - Buffer write submission updates the metadata LSN of the buffer. 4557 * - Log recovery skips items with a metadata LSN >= the current LSN of 4558 * the recovery item. 4559 * - Separate recovery items against the same metadata buffer can share 4560 * a current LSN. I.e., consider that the LSN of a recovery item is 4561 * defined as the starting LSN of the first record in which its 4562 * transaction appears, that a record can hold multiple transactions, 4563 * and/or that a transaction can span multiple records. 4564 * 4565 * In other words, we are allowed to submit a buffer from log recovery 4566 * once per current LSN. Otherwise, we may incorrectly skip recovery 4567 * items and cause corruption. 4568 * 4569 * We don't know up front whether buffers are updated multiple times per 4570 * LSN. Therefore, track the current LSN of each commit log record as it 4571 * is processed and drain the queue when it changes. Use commit records 4572 * because they are ordered correctly by the logging code. 4573 */ 4574 if (log->l_recovery_lsn != trans->r_lsn && 4575 ohead->oh_flags & XLOG_COMMIT_TRANS) { 4576 error = xfs_buf_delwri_submit(buffer_list); 4577 if (error) 4578 return error; 4579 log->l_recovery_lsn = trans->r_lsn; 4580 } 4581 4582 return xlog_recovery_process_trans(log, trans, dp, len, 4583 ohead->oh_flags, pass, buffer_list); 4584 } 4585 4586 /* 4587 * There are two valid states of the r_state field. 0 indicates that the 4588 * transaction structure is in a normal state. We have either seen the 4589 * start of the transaction or the last operation we added was not a partial 4590 * operation. If the last operation we added to the transaction was a 4591 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 4592 * 4593 * NOTE: skip LRs with 0 data length. 4594 */ 4595 STATIC int 4596 xlog_recover_process_data( 4597 struct xlog *log, 4598 struct hlist_head rhash[], 4599 struct xlog_rec_header *rhead, 4600 char *dp, 4601 int pass, 4602 struct list_head *buffer_list) 4603 { 4604 struct xlog_op_header *ohead; 4605 char *end; 4606 int num_logops; 4607 int error; 4608 4609 end = dp + be32_to_cpu(rhead->h_len); 4610 num_logops = be32_to_cpu(rhead->h_num_logops); 4611 4612 /* check the log format matches our own - else we can't recover */ 4613 if (xlog_header_check_recover(log->l_mp, rhead)) 4614 return -EIO; 4615 4616 trace_xfs_log_recover_record(log, rhead, pass); 4617 while ((dp < end) && num_logops) { 4618 4619 ohead = (struct xlog_op_header *)dp; 4620 dp += sizeof(*ohead); 4621 ASSERT(dp <= end); 4622 4623 /* errors will abort recovery */ 4624 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead, 4625 dp, end, pass, buffer_list); 4626 if (error) 4627 return error; 4628 4629 dp += be32_to_cpu(ohead->oh_len); 4630 num_logops--; 4631 } 4632 return 0; 4633 } 4634 4635 /* Recover the EFI if necessary. */ 4636 STATIC int 4637 xlog_recover_process_efi( 4638 struct xfs_mount *mp, 4639 struct xfs_ail *ailp, 4640 struct xfs_log_item *lip) 4641 { 4642 struct xfs_efi_log_item *efip; 4643 int error; 4644 4645 /* 4646 * Skip EFIs that we've already processed. 4647 */ 4648 efip = container_of(lip, struct xfs_efi_log_item, efi_item); 4649 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) 4650 return 0; 4651 4652 spin_unlock(&ailp->xa_lock); 4653 error = xfs_efi_recover(mp, efip); 4654 spin_lock(&ailp->xa_lock); 4655 4656 return error; 4657 } 4658 4659 /* Release the EFI since we're cancelling everything. */ 4660 STATIC void 4661 xlog_recover_cancel_efi( 4662 struct xfs_mount *mp, 4663 struct xfs_ail *ailp, 4664 struct xfs_log_item *lip) 4665 { 4666 struct xfs_efi_log_item *efip; 4667 4668 efip = container_of(lip, struct xfs_efi_log_item, efi_item); 4669 4670 spin_unlock(&ailp->xa_lock); 4671 xfs_efi_release(efip); 4672 spin_lock(&ailp->xa_lock); 4673 } 4674 4675 /* Recover the RUI if necessary. */ 4676 STATIC int 4677 xlog_recover_process_rui( 4678 struct xfs_mount *mp, 4679 struct xfs_ail *ailp, 4680 struct xfs_log_item *lip) 4681 { 4682 struct xfs_rui_log_item *ruip; 4683 int error; 4684 4685 /* 4686 * Skip RUIs that we've already processed. 4687 */ 4688 ruip = container_of(lip, struct xfs_rui_log_item, rui_item); 4689 if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags)) 4690 return 0; 4691 4692 spin_unlock(&ailp->xa_lock); 4693 error = xfs_rui_recover(mp, ruip); 4694 spin_lock(&ailp->xa_lock); 4695 4696 return error; 4697 } 4698 4699 /* Release the RUI since we're cancelling everything. */ 4700 STATIC void 4701 xlog_recover_cancel_rui( 4702 struct xfs_mount *mp, 4703 struct xfs_ail *ailp, 4704 struct xfs_log_item *lip) 4705 { 4706 struct xfs_rui_log_item *ruip; 4707 4708 ruip = container_of(lip, struct xfs_rui_log_item, rui_item); 4709 4710 spin_unlock(&ailp->xa_lock); 4711 xfs_rui_release(ruip); 4712 spin_lock(&ailp->xa_lock); 4713 } 4714 4715 /* Recover the CUI if necessary. */ 4716 STATIC int 4717 xlog_recover_process_cui( 4718 struct xfs_mount *mp, 4719 struct xfs_ail *ailp, 4720 struct xfs_log_item *lip, 4721 struct xfs_defer_ops *dfops) 4722 { 4723 struct xfs_cui_log_item *cuip; 4724 int error; 4725 4726 /* 4727 * Skip CUIs that we've already processed. 4728 */ 4729 cuip = container_of(lip, struct xfs_cui_log_item, cui_item); 4730 if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags)) 4731 return 0; 4732 4733 spin_unlock(&ailp->xa_lock); 4734 error = xfs_cui_recover(mp, cuip, dfops); 4735 spin_lock(&ailp->xa_lock); 4736 4737 return error; 4738 } 4739 4740 /* Release the CUI since we're cancelling everything. */ 4741 STATIC void 4742 xlog_recover_cancel_cui( 4743 struct xfs_mount *mp, 4744 struct xfs_ail *ailp, 4745 struct xfs_log_item *lip) 4746 { 4747 struct xfs_cui_log_item *cuip; 4748 4749 cuip = container_of(lip, struct xfs_cui_log_item, cui_item); 4750 4751 spin_unlock(&ailp->xa_lock); 4752 xfs_cui_release(cuip); 4753 spin_lock(&ailp->xa_lock); 4754 } 4755 4756 /* Recover the BUI if necessary. */ 4757 STATIC int 4758 xlog_recover_process_bui( 4759 struct xfs_mount *mp, 4760 struct xfs_ail *ailp, 4761 struct xfs_log_item *lip, 4762 struct xfs_defer_ops *dfops) 4763 { 4764 struct xfs_bui_log_item *buip; 4765 int error; 4766 4767 /* 4768 * Skip BUIs that we've already processed. 4769 */ 4770 buip = container_of(lip, struct xfs_bui_log_item, bui_item); 4771 if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags)) 4772 return 0; 4773 4774 spin_unlock(&ailp->xa_lock); 4775 error = xfs_bui_recover(mp, buip, dfops); 4776 spin_lock(&ailp->xa_lock); 4777 4778 return error; 4779 } 4780 4781 /* Release the BUI since we're cancelling everything. */ 4782 STATIC void 4783 xlog_recover_cancel_bui( 4784 struct xfs_mount *mp, 4785 struct xfs_ail *ailp, 4786 struct xfs_log_item *lip) 4787 { 4788 struct xfs_bui_log_item *buip; 4789 4790 buip = container_of(lip, struct xfs_bui_log_item, bui_item); 4791 4792 spin_unlock(&ailp->xa_lock); 4793 xfs_bui_release(buip); 4794 spin_lock(&ailp->xa_lock); 4795 } 4796 4797 /* Is this log item a deferred action intent? */ 4798 static inline bool xlog_item_is_intent(struct xfs_log_item *lip) 4799 { 4800 switch (lip->li_type) { 4801 case XFS_LI_EFI: 4802 case XFS_LI_RUI: 4803 case XFS_LI_CUI: 4804 case XFS_LI_BUI: 4805 return true; 4806 default: 4807 return false; 4808 } 4809 } 4810 4811 /* Take all the collected deferred ops and finish them in order. */ 4812 static int 4813 xlog_finish_defer_ops( 4814 struct xfs_mount *mp, 4815 struct xfs_defer_ops *dfops) 4816 { 4817 struct xfs_trans *tp; 4818 int64_t freeblks; 4819 uint resblks; 4820 int error; 4821 4822 /* 4823 * We're finishing the defer_ops that accumulated as a result of 4824 * recovering unfinished intent items during log recovery. We 4825 * reserve an itruncate transaction because it is the largest 4826 * permanent transaction type. Since we're the only user of the fs 4827 * right now, take 93% (15/16) of the available free blocks. Use 4828 * weird math to avoid a 64-bit division. 4829 */ 4830 freeblks = percpu_counter_sum(&mp->m_fdblocks); 4831 if (freeblks <= 0) 4832 return -ENOSPC; 4833 resblks = min_t(int64_t, UINT_MAX, freeblks); 4834 resblks = (resblks * 15) >> 4; 4835 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks, 4836 0, XFS_TRANS_RESERVE, &tp); 4837 if (error) 4838 return error; 4839 4840 error = xfs_defer_finish(&tp, dfops); 4841 if (error) 4842 goto out_cancel; 4843 4844 return xfs_trans_commit(tp); 4845 4846 out_cancel: 4847 xfs_trans_cancel(tp); 4848 return error; 4849 } 4850 4851 /* 4852 * When this is called, all of the log intent items which did not have 4853 * corresponding log done items should be in the AIL. What we do now 4854 * is update the data structures associated with each one. 4855 * 4856 * Since we process the log intent items in normal transactions, they 4857 * will be removed at some point after the commit. This prevents us 4858 * from just walking down the list processing each one. We'll use a 4859 * flag in the intent item to skip those that we've already processed 4860 * and use the AIL iteration mechanism's generation count to try to 4861 * speed this up at least a bit. 4862 * 4863 * When we start, we know that the intents are the only things in the 4864 * AIL. As we process them, however, other items are added to the 4865 * AIL. 4866 */ 4867 STATIC int 4868 xlog_recover_process_intents( 4869 struct xlog *log) 4870 { 4871 struct xfs_defer_ops dfops; 4872 struct xfs_ail_cursor cur; 4873 struct xfs_log_item *lip; 4874 struct xfs_ail *ailp; 4875 xfs_fsblock_t firstfsb; 4876 int error = 0; 4877 #if defined(DEBUG) || defined(XFS_WARN) 4878 xfs_lsn_t last_lsn; 4879 #endif 4880 4881 ailp = log->l_ailp; 4882 spin_lock(&ailp->xa_lock); 4883 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 4884 #if defined(DEBUG) || defined(XFS_WARN) 4885 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block); 4886 #endif 4887 xfs_defer_init(&dfops, &firstfsb); 4888 while (lip != NULL) { 4889 /* 4890 * We're done when we see something other than an intent. 4891 * There should be no intents left in the AIL now. 4892 */ 4893 if (!xlog_item_is_intent(lip)) { 4894 #ifdef DEBUG 4895 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 4896 ASSERT(!xlog_item_is_intent(lip)); 4897 #endif 4898 break; 4899 } 4900 4901 /* 4902 * We should never see a redo item with a LSN higher than 4903 * the last transaction we found in the log at the start 4904 * of recovery. 4905 */ 4906 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0); 4907 4908 /* 4909 * NOTE: If your intent processing routine can create more 4910 * deferred ops, you /must/ attach them to the dfops in this 4911 * routine or else those subsequent intents will get 4912 * replayed in the wrong order! 4913 */ 4914 switch (lip->li_type) { 4915 case XFS_LI_EFI: 4916 error = xlog_recover_process_efi(log->l_mp, ailp, lip); 4917 break; 4918 case XFS_LI_RUI: 4919 error = xlog_recover_process_rui(log->l_mp, ailp, lip); 4920 break; 4921 case XFS_LI_CUI: 4922 error = xlog_recover_process_cui(log->l_mp, ailp, lip, 4923 &dfops); 4924 break; 4925 case XFS_LI_BUI: 4926 error = xlog_recover_process_bui(log->l_mp, ailp, lip, 4927 &dfops); 4928 break; 4929 } 4930 if (error) 4931 goto out; 4932 lip = xfs_trans_ail_cursor_next(ailp, &cur); 4933 } 4934 out: 4935 xfs_trans_ail_cursor_done(&cur); 4936 spin_unlock(&ailp->xa_lock); 4937 if (error) 4938 xfs_defer_cancel(&dfops); 4939 else 4940 error = xlog_finish_defer_ops(log->l_mp, &dfops); 4941 4942 return error; 4943 } 4944 4945 /* 4946 * A cancel occurs when the mount has failed and we're bailing out. 4947 * Release all pending log intent items so they don't pin the AIL. 4948 */ 4949 STATIC int 4950 xlog_recover_cancel_intents( 4951 struct xlog *log) 4952 { 4953 struct xfs_log_item *lip; 4954 int error = 0; 4955 struct xfs_ail_cursor cur; 4956 struct xfs_ail *ailp; 4957 4958 ailp = log->l_ailp; 4959 spin_lock(&ailp->xa_lock); 4960 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 4961 while (lip != NULL) { 4962 /* 4963 * We're done when we see something other than an intent. 4964 * There should be no intents left in the AIL now. 4965 */ 4966 if (!xlog_item_is_intent(lip)) { 4967 #ifdef DEBUG 4968 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 4969 ASSERT(!xlog_item_is_intent(lip)); 4970 #endif 4971 break; 4972 } 4973 4974 switch (lip->li_type) { 4975 case XFS_LI_EFI: 4976 xlog_recover_cancel_efi(log->l_mp, ailp, lip); 4977 break; 4978 case XFS_LI_RUI: 4979 xlog_recover_cancel_rui(log->l_mp, ailp, lip); 4980 break; 4981 case XFS_LI_CUI: 4982 xlog_recover_cancel_cui(log->l_mp, ailp, lip); 4983 break; 4984 case XFS_LI_BUI: 4985 xlog_recover_cancel_bui(log->l_mp, ailp, lip); 4986 break; 4987 } 4988 4989 lip = xfs_trans_ail_cursor_next(ailp, &cur); 4990 } 4991 4992 xfs_trans_ail_cursor_done(&cur); 4993 spin_unlock(&ailp->xa_lock); 4994 return error; 4995 } 4996 4997 /* 4998 * This routine performs a transaction to null out a bad inode pointer 4999 * in an agi unlinked inode hash bucket. 5000 */ 5001 STATIC void 5002 xlog_recover_clear_agi_bucket( 5003 xfs_mount_t *mp, 5004 xfs_agnumber_t agno, 5005 int bucket) 5006 { 5007 xfs_trans_t *tp; 5008 xfs_agi_t *agi; 5009 xfs_buf_t *agibp; 5010 int offset; 5011 int error; 5012 5013 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp); 5014 if (error) 5015 goto out_error; 5016 5017 error = xfs_read_agi(mp, tp, agno, &agibp); 5018 if (error) 5019 goto out_abort; 5020 5021 agi = XFS_BUF_TO_AGI(agibp); 5022 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 5023 offset = offsetof(xfs_agi_t, agi_unlinked) + 5024 (sizeof(xfs_agino_t) * bucket); 5025 xfs_trans_log_buf(tp, agibp, offset, 5026 (offset + sizeof(xfs_agino_t) - 1)); 5027 5028 error = xfs_trans_commit(tp); 5029 if (error) 5030 goto out_error; 5031 return; 5032 5033 out_abort: 5034 xfs_trans_cancel(tp); 5035 out_error: 5036 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); 5037 return; 5038 } 5039 5040 STATIC xfs_agino_t 5041 xlog_recover_process_one_iunlink( 5042 struct xfs_mount *mp, 5043 xfs_agnumber_t agno, 5044 xfs_agino_t agino, 5045 int bucket) 5046 { 5047 struct xfs_buf *ibp; 5048 struct xfs_dinode *dip; 5049 struct xfs_inode *ip; 5050 xfs_ino_t ino; 5051 int error; 5052 5053 ino = XFS_AGINO_TO_INO(mp, agno, agino); 5054 error = xfs_iget(mp, NULL, ino, 0, 0, &ip); 5055 if (error) 5056 goto fail; 5057 5058 /* 5059 * Get the on disk inode to find the next inode in the bucket. 5060 */ 5061 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0); 5062 if (error) 5063 goto fail_iput; 5064 5065 xfs_iflags_clear(ip, XFS_IRECOVERY); 5066 ASSERT(VFS_I(ip)->i_nlink == 0); 5067 ASSERT(VFS_I(ip)->i_mode != 0); 5068 5069 /* setup for the next pass */ 5070 agino = be32_to_cpu(dip->di_next_unlinked); 5071 xfs_buf_relse(ibp); 5072 5073 /* 5074 * Prevent any DMAPI event from being sent when the reference on 5075 * the inode is dropped. 5076 */ 5077 ip->i_d.di_dmevmask = 0; 5078 5079 IRELE(ip); 5080 return agino; 5081 5082 fail_iput: 5083 IRELE(ip); 5084 fail: 5085 /* 5086 * We can't read in the inode this bucket points to, or this inode 5087 * is messed up. Just ditch this bucket of inodes. We will lose 5088 * some inodes and space, but at least we won't hang. 5089 * 5090 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 5091 * clear the inode pointer in the bucket. 5092 */ 5093 xlog_recover_clear_agi_bucket(mp, agno, bucket); 5094 return NULLAGINO; 5095 } 5096 5097 /* 5098 * xlog_iunlink_recover 5099 * 5100 * This is called during recovery to process any inodes which 5101 * we unlinked but not freed when the system crashed. These 5102 * inodes will be on the lists in the AGI blocks. What we do 5103 * here is scan all the AGIs and fully truncate and free any 5104 * inodes found on the lists. Each inode is removed from the 5105 * lists when it has been fully truncated and is freed. The 5106 * freeing of the inode and its removal from the list must be 5107 * atomic. 5108 */ 5109 STATIC void 5110 xlog_recover_process_iunlinks( 5111 struct xlog *log) 5112 { 5113 xfs_mount_t *mp; 5114 xfs_agnumber_t agno; 5115 xfs_agi_t *agi; 5116 xfs_buf_t *agibp; 5117 xfs_agino_t agino; 5118 int bucket; 5119 int error; 5120 uint mp_dmevmask; 5121 5122 mp = log->l_mp; 5123 5124 /* 5125 * Prevent any DMAPI event from being sent while in this function. 5126 */ 5127 mp_dmevmask = mp->m_dmevmask; 5128 mp->m_dmevmask = 0; 5129 5130 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 5131 /* 5132 * Find the agi for this ag. 5133 */ 5134 error = xfs_read_agi(mp, NULL, agno, &agibp); 5135 if (error) { 5136 /* 5137 * AGI is b0rked. Don't process it. 5138 * 5139 * We should probably mark the filesystem as corrupt 5140 * after we've recovered all the ag's we can.... 5141 */ 5142 continue; 5143 } 5144 /* 5145 * Unlock the buffer so that it can be acquired in the normal 5146 * course of the transaction to truncate and free each inode. 5147 * Because we are not racing with anyone else here for the AGI 5148 * buffer, we don't even need to hold it locked to read the 5149 * initial unlinked bucket entries out of the buffer. We keep 5150 * buffer reference though, so that it stays pinned in memory 5151 * while we need the buffer. 5152 */ 5153 agi = XFS_BUF_TO_AGI(agibp); 5154 xfs_buf_unlock(agibp); 5155 5156 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 5157 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 5158 while (agino != NULLAGINO) { 5159 agino = xlog_recover_process_one_iunlink(mp, 5160 agno, agino, bucket); 5161 } 5162 } 5163 xfs_buf_rele(agibp); 5164 } 5165 5166 mp->m_dmevmask = mp_dmevmask; 5167 } 5168 5169 STATIC int 5170 xlog_unpack_data( 5171 struct xlog_rec_header *rhead, 5172 char *dp, 5173 struct xlog *log) 5174 { 5175 int i, j, k; 5176 5177 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 5178 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 5179 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 5180 dp += BBSIZE; 5181 } 5182 5183 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 5184 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 5185 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 5186 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 5187 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 5188 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 5189 dp += BBSIZE; 5190 } 5191 } 5192 5193 return 0; 5194 } 5195 5196 /* 5197 * CRC check, unpack and process a log record. 5198 */ 5199 STATIC int 5200 xlog_recover_process( 5201 struct xlog *log, 5202 struct hlist_head rhash[], 5203 struct xlog_rec_header *rhead, 5204 char *dp, 5205 int pass, 5206 struct list_head *buffer_list) 5207 { 5208 int error; 5209 __le32 old_crc = rhead->h_crc; 5210 __le32 crc; 5211 5212 5213 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); 5214 5215 /* 5216 * Nothing else to do if this is a CRC verification pass. Just return 5217 * if this a record with a non-zero crc. Unfortunately, mkfs always 5218 * sets old_crc to 0 so we must consider this valid even on v5 supers. 5219 * Otherwise, return EFSBADCRC on failure so the callers up the stack 5220 * know precisely what failed. 5221 */ 5222 if (pass == XLOG_RECOVER_CRCPASS) { 5223 if (old_crc && crc != old_crc) 5224 return -EFSBADCRC; 5225 return 0; 5226 } 5227 5228 /* 5229 * We're in the normal recovery path. Issue a warning if and only if the 5230 * CRC in the header is non-zero. This is an advisory warning and the 5231 * zero CRC check prevents warnings from being emitted when upgrading 5232 * the kernel from one that does not add CRCs by default. 5233 */ 5234 if (crc != old_crc) { 5235 if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) { 5236 xfs_alert(log->l_mp, 5237 "log record CRC mismatch: found 0x%x, expected 0x%x.", 5238 le32_to_cpu(old_crc), 5239 le32_to_cpu(crc)); 5240 xfs_hex_dump(dp, 32); 5241 } 5242 5243 /* 5244 * If the filesystem is CRC enabled, this mismatch becomes a 5245 * fatal log corruption failure. 5246 */ 5247 if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) 5248 return -EFSCORRUPTED; 5249 } 5250 5251 error = xlog_unpack_data(rhead, dp, log); 5252 if (error) 5253 return error; 5254 5255 return xlog_recover_process_data(log, rhash, rhead, dp, pass, 5256 buffer_list); 5257 } 5258 5259 STATIC int 5260 xlog_valid_rec_header( 5261 struct xlog *log, 5262 struct xlog_rec_header *rhead, 5263 xfs_daddr_t blkno) 5264 { 5265 int hlen; 5266 5267 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) { 5268 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 5269 XFS_ERRLEVEL_LOW, log->l_mp); 5270 return -EFSCORRUPTED; 5271 } 5272 if (unlikely( 5273 (!rhead->h_version || 5274 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { 5275 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", 5276 __func__, be32_to_cpu(rhead->h_version)); 5277 return -EIO; 5278 } 5279 5280 /* LR body must have data or it wouldn't have been written */ 5281 hlen = be32_to_cpu(rhead->h_len); 5282 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 5283 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 5284 XFS_ERRLEVEL_LOW, log->l_mp); 5285 return -EFSCORRUPTED; 5286 } 5287 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 5288 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 5289 XFS_ERRLEVEL_LOW, log->l_mp); 5290 return -EFSCORRUPTED; 5291 } 5292 return 0; 5293 } 5294 5295 /* 5296 * Read the log from tail to head and process the log records found. 5297 * Handle the two cases where the tail and head are in the same cycle 5298 * and where the active portion of the log wraps around the end of 5299 * the physical log separately. The pass parameter is passed through 5300 * to the routines called to process the data and is not looked at 5301 * here. 5302 */ 5303 STATIC int 5304 xlog_do_recovery_pass( 5305 struct xlog *log, 5306 xfs_daddr_t head_blk, 5307 xfs_daddr_t tail_blk, 5308 int pass, 5309 xfs_daddr_t *first_bad) /* out: first bad log rec */ 5310 { 5311 xlog_rec_header_t *rhead; 5312 xfs_daddr_t blk_no, rblk_no; 5313 xfs_daddr_t rhead_blk; 5314 char *offset; 5315 xfs_buf_t *hbp, *dbp; 5316 int error = 0, h_size, h_len; 5317 int error2 = 0; 5318 int bblks, split_bblks; 5319 int hblks, split_hblks, wrapped_hblks; 5320 int i; 5321 struct hlist_head rhash[XLOG_RHASH_SIZE]; 5322 LIST_HEAD (buffer_list); 5323 5324 ASSERT(head_blk != tail_blk); 5325 blk_no = rhead_blk = tail_blk; 5326 5327 for (i = 0; i < XLOG_RHASH_SIZE; i++) 5328 INIT_HLIST_HEAD(&rhash[i]); 5329 5330 /* 5331 * Read the header of the tail block and get the iclog buffer size from 5332 * h_size. Use this to tell how many sectors make up the log header. 5333 */ 5334 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 5335 /* 5336 * When using variable length iclogs, read first sector of 5337 * iclog header and extract the header size from it. Get a 5338 * new hbp that is the correct size. 5339 */ 5340 hbp = xlog_get_bp(log, 1); 5341 if (!hbp) 5342 return -ENOMEM; 5343 5344 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 5345 if (error) 5346 goto bread_err1; 5347 5348 rhead = (xlog_rec_header_t *)offset; 5349 error = xlog_valid_rec_header(log, rhead, tail_blk); 5350 if (error) 5351 goto bread_err1; 5352 5353 /* 5354 * xfsprogs has a bug where record length is based on lsunit but 5355 * h_size (iclog size) is hardcoded to 32k. Now that we 5356 * unconditionally CRC verify the unmount record, this means the 5357 * log buffer can be too small for the record and cause an 5358 * overrun. 5359 * 5360 * Detect this condition here. Use lsunit for the buffer size as 5361 * long as this looks like the mkfs case. Otherwise, return an 5362 * error to avoid a buffer overrun. 5363 */ 5364 h_size = be32_to_cpu(rhead->h_size); 5365 h_len = be32_to_cpu(rhead->h_len); 5366 if (h_len > h_size) { 5367 if (h_len <= log->l_mp->m_logbsize && 5368 be32_to_cpu(rhead->h_num_logops) == 1) { 5369 xfs_warn(log->l_mp, 5370 "invalid iclog size (%d bytes), using lsunit (%d bytes)", 5371 h_size, log->l_mp->m_logbsize); 5372 h_size = log->l_mp->m_logbsize; 5373 } else 5374 return -EFSCORRUPTED; 5375 } 5376 5377 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 5378 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 5379 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 5380 if (h_size % XLOG_HEADER_CYCLE_SIZE) 5381 hblks++; 5382 xlog_put_bp(hbp); 5383 hbp = xlog_get_bp(log, hblks); 5384 } else { 5385 hblks = 1; 5386 } 5387 } else { 5388 ASSERT(log->l_sectBBsize == 1); 5389 hblks = 1; 5390 hbp = xlog_get_bp(log, 1); 5391 h_size = XLOG_BIG_RECORD_BSIZE; 5392 } 5393 5394 if (!hbp) 5395 return -ENOMEM; 5396 dbp = xlog_get_bp(log, BTOBB(h_size)); 5397 if (!dbp) { 5398 xlog_put_bp(hbp); 5399 return -ENOMEM; 5400 } 5401 5402 memset(rhash, 0, sizeof(rhash)); 5403 if (tail_blk > head_blk) { 5404 /* 5405 * Perform recovery around the end of the physical log. 5406 * When the head is not on the same cycle number as the tail, 5407 * we can't do a sequential recovery. 5408 */ 5409 while (blk_no < log->l_logBBsize) { 5410 /* 5411 * Check for header wrapping around physical end-of-log 5412 */ 5413 offset = hbp->b_addr; 5414 split_hblks = 0; 5415 wrapped_hblks = 0; 5416 if (blk_no + hblks <= log->l_logBBsize) { 5417 /* Read header in one read */ 5418 error = xlog_bread(log, blk_no, hblks, hbp, 5419 &offset); 5420 if (error) 5421 goto bread_err2; 5422 } else { 5423 /* This LR is split across physical log end */ 5424 if (blk_no != log->l_logBBsize) { 5425 /* some data before physical log end */ 5426 ASSERT(blk_no <= INT_MAX); 5427 split_hblks = log->l_logBBsize - (int)blk_no; 5428 ASSERT(split_hblks > 0); 5429 error = xlog_bread(log, blk_no, 5430 split_hblks, hbp, 5431 &offset); 5432 if (error) 5433 goto bread_err2; 5434 } 5435 5436 /* 5437 * Note: this black magic still works with 5438 * large sector sizes (non-512) only because: 5439 * - we increased the buffer size originally 5440 * by 1 sector giving us enough extra space 5441 * for the second read; 5442 * - the log start is guaranteed to be sector 5443 * aligned; 5444 * - we read the log end (LR header start) 5445 * _first_, then the log start (LR header end) 5446 * - order is important. 5447 */ 5448 wrapped_hblks = hblks - split_hblks; 5449 error = xlog_bread_offset(log, 0, 5450 wrapped_hblks, hbp, 5451 offset + BBTOB(split_hblks)); 5452 if (error) 5453 goto bread_err2; 5454 } 5455 rhead = (xlog_rec_header_t *)offset; 5456 error = xlog_valid_rec_header(log, rhead, 5457 split_hblks ? blk_no : 0); 5458 if (error) 5459 goto bread_err2; 5460 5461 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 5462 blk_no += hblks; 5463 5464 /* 5465 * Read the log record data in multiple reads if it 5466 * wraps around the end of the log. Note that if the 5467 * header already wrapped, blk_no could point past the 5468 * end of the log. The record data is contiguous in 5469 * that case. 5470 */ 5471 if (blk_no + bblks <= log->l_logBBsize || 5472 blk_no >= log->l_logBBsize) { 5473 /* mod blk_no in case the header wrapped and 5474 * pushed it beyond the end of the log */ 5475 rblk_no = do_mod(blk_no, log->l_logBBsize); 5476 error = xlog_bread(log, rblk_no, bblks, dbp, 5477 &offset); 5478 if (error) 5479 goto bread_err2; 5480 } else { 5481 /* This log record is split across the 5482 * physical end of log */ 5483 offset = dbp->b_addr; 5484 split_bblks = 0; 5485 if (blk_no != log->l_logBBsize) { 5486 /* some data is before the physical 5487 * end of log */ 5488 ASSERT(!wrapped_hblks); 5489 ASSERT(blk_no <= INT_MAX); 5490 split_bblks = 5491 log->l_logBBsize - (int)blk_no; 5492 ASSERT(split_bblks > 0); 5493 error = xlog_bread(log, blk_no, 5494 split_bblks, dbp, 5495 &offset); 5496 if (error) 5497 goto bread_err2; 5498 } 5499 5500 /* 5501 * Note: this black magic still works with 5502 * large sector sizes (non-512) only because: 5503 * - we increased the buffer size originally 5504 * by 1 sector giving us enough extra space 5505 * for the second read; 5506 * - the log start is guaranteed to be sector 5507 * aligned; 5508 * - we read the log end (LR header start) 5509 * _first_, then the log start (LR header end) 5510 * - order is important. 5511 */ 5512 error = xlog_bread_offset(log, 0, 5513 bblks - split_bblks, dbp, 5514 offset + BBTOB(split_bblks)); 5515 if (error) 5516 goto bread_err2; 5517 } 5518 5519 error = xlog_recover_process(log, rhash, rhead, offset, 5520 pass, &buffer_list); 5521 if (error) 5522 goto bread_err2; 5523 5524 blk_no += bblks; 5525 rhead_blk = blk_no; 5526 } 5527 5528 ASSERT(blk_no >= log->l_logBBsize); 5529 blk_no -= log->l_logBBsize; 5530 rhead_blk = blk_no; 5531 } 5532 5533 /* read first part of physical log */ 5534 while (blk_no < head_blk) { 5535 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 5536 if (error) 5537 goto bread_err2; 5538 5539 rhead = (xlog_rec_header_t *)offset; 5540 error = xlog_valid_rec_header(log, rhead, blk_no); 5541 if (error) 5542 goto bread_err2; 5543 5544 /* blocks in data section */ 5545 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 5546 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 5547 &offset); 5548 if (error) 5549 goto bread_err2; 5550 5551 error = xlog_recover_process(log, rhash, rhead, offset, pass, 5552 &buffer_list); 5553 if (error) 5554 goto bread_err2; 5555 5556 blk_no += bblks + hblks; 5557 rhead_blk = blk_no; 5558 } 5559 5560 bread_err2: 5561 xlog_put_bp(dbp); 5562 bread_err1: 5563 xlog_put_bp(hbp); 5564 5565 /* 5566 * Submit buffers that have been added from the last record processed, 5567 * regardless of error status. 5568 */ 5569 if (!list_empty(&buffer_list)) 5570 error2 = xfs_buf_delwri_submit(&buffer_list); 5571 5572 if (error && first_bad) 5573 *first_bad = rhead_blk; 5574 5575 /* 5576 * Transactions are freed at commit time but transactions without commit 5577 * records on disk are never committed. Free any that may be left in the 5578 * hash table. 5579 */ 5580 for (i = 0; i < XLOG_RHASH_SIZE; i++) { 5581 struct hlist_node *tmp; 5582 struct xlog_recover *trans; 5583 5584 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list) 5585 xlog_recover_free_trans(trans); 5586 } 5587 5588 return error ? error : error2; 5589 } 5590 5591 /* 5592 * Do the recovery of the log. We actually do this in two phases. 5593 * The two passes are necessary in order to implement the function 5594 * of cancelling a record written into the log. The first pass 5595 * determines those things which have been cancelled, and the 5596 * second pass replays log items normally except for those which 5597 * have been cancelled. The handling of the replay and cancellations 5598 * takes place in the log item type specific routines. 5599 * 5600 * The table of items which have cancel records in the log is allocated 5601 * and freed at this level, since only here do we know when all of 5602 * the log recovery has been completed. 5603 */ 5604 STATIC int 5605 xlog_do_log_recovery( 5606 struct xlog *log, 5607 xfs_daddr_t head_blk, 5608 xfs_daddr_t tail_blk) 5609 { 5610 int error, i; 5611 5612 ASSERT(head_blk != tail_blk); 5613 5614 /* 5615 * First do a pass to find all of the cancelled buf log items. 5616 * Store them in the buf_cancel_table for use in the second pass. 5617 */ 5618 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * 5619 sizeof(struct list_head), 5620 KM_SLEEP); 5621 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 5622 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); 5623 5624 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 5625 XLOG_RECOVER_PASS1, NULL); 5626 if (error != 0) { 5627 kmem_free(log->l_buf_cancel_table); 5628 log->l_buf_cancel_table = NULL; 5629 return error; 5630 } 5631 /* 5632 * Then do a second pass to actually recover the items in the log. 5633 * When it is complete free the table of buf cancel items. 5634 */ 5635 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 5636 XLOG_RECOVER_PASS2, NULL); 5637 #ifdef DEBUG 5638 if (!error) { 5639 int i; 5640 5641 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 5642 ASSERT(list_empty(&log->l_buf_cancel_table[i])); 5643 } 5644 #endif /* DEBUG */ 5645 5646 kmem_free(log->l_buf_cancel_table); 5647 log->l_buf_cancel_table = NULL; 5648 5649 return error; 5650 } 5651 5652 /* 5653 * Do the actual recovery 5654 */ 5655 STATIC int 5656 xlog_do_recover( 5657 struct xlog *log, 5658 xfs_daddr_t head_blk, 5659 xfs_daddr_t tail_blk) 5660 { 5661 struct xfs_mount *mp = log->l_mp; 5662 int error; 5663 xfs_buf_t *bp; 5664 xfs_sb_t *sbp; 5665 5666 trace_xfs_log_recover(log, head_blk, tail_blk); 5667 5668 /* 5669 * First replay the images in the log. 5670 */ 5671 error = xlog_do_log_recovery(log, head_blk, tail_blk); 5672 if (error) 5673 return error; 5674 5675 /* 5676 * If IO errors happened during recovery, bail out. 5677 */ 5678 if (XFS_FORCED_SHUTDOWN(mp)) { 5679 return -EIO; 5680 } 5681 5682 /* 5683 * We now update the tail_lsn since much of the recovery has completed 5684 * and there may be space available to use. If there were no extent 5685 * or iunlinks, we can free up the entire log and set the tail_lsn to 5686 * be the last_sync_lsn. This was set in xlog_find_tail to be the 5687 * lsn of the last known good LR on disk. If there are extent frees 5688 * or iunlinks they will have some entries in the AIL; so we look at 5689 * the AIL to determine how to set the tail_lsn. 5690 */ 5691 xlog_assign_tail_lsn(mp); 5692 5693 /* 5694 * Now that we've finished replaying all buffer and inode 5695 * updates, re-read in the superblock and reverify it. 5696 */ 5697 bp = xfs_getsb(mp, 0); 5698 bp->b_flags &= ~(XBF_DONE | XBF_ASYNC); 5699 ASSERT(!(bp->b_flags & XBF_WRITE)); 5700 bp->b_flags |= XBF_READ; 5701 bp->b_ops = &xfs_sb_buf_ops; 5702 5703 error = xfs_buf_submit_wait(bp); 5704 if (error) { 5705 if (!XFS_FORCED_SHUTDOWN(mp)) { 5706 xfs_buf_ioerror_alert(bp, __func__); 5707 ASSERT(0); 5708 } 5709 xfs_buf_relse(bp); 5710 return error; 5711 } 5712 5713 /* Convert superblock from on-disk format */ 5714 sbp = &mp->m_sb; 5715 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 5716 xfs_buf_relse(bp); 5717 5718 /* re-initialise in-core superblock and geometry structures */ 5719 xfs_reinit_percpu_counters(mp); 5720 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 5721 if (error) { 5722 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error); 5723 return error; 5724 } 5725 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp); 5726 5727 xlog_recover_check_summary(log); 5728 5729 /* Normal transactions can now occur */ 5730 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 5731 return 0; 5732 } 5733 5734 /* 5735 * Perform recovery and re-initialize some log variables in xlog_find_tail. 5736 * 5737 * Return error or zero. 5738 */ 5739 int 5740 xlog_recover( 5741 struct xlog *log) 5742 { 5743 xfs_daddr_t head_blk, tail_blk; 5744 int error; 5745 5746 /* find the tail of the log */ 5747 error = xlog_find_tail(log, &head_blk, &tail_blk); 5748 if (error) 5749 return error; 5750 5751 /* 5752 * The superblock was read before the log was available and thus the LSN 5753 * could not be verified. Check the superblock LSN against the current 5754 * LSN now that it's known. 5755 */ 5756 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) && 5757 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn)) 5758 return -EINVAL; 5759 5760 if (tail_blk != head_blk) { 5761 /* There used to be a comment here: 5762 * 5763 * disallow recovery on read-only mounts. note -- mount 5764 * checks for ENOSPC and turns it into an intelligent 5765 * error message. 5766 * ...but this is no longer true. Now, unless you specify 5767 * NORECOVERY (in which case this function would never be 5768 * called), we just go ahead and recover. We do this all 5769 * under the vfs layer, so we can get away with it unless 5770 * the device itself is read-only, in which case we fail. 5771 */ 5772 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 5773 return error; 5774 } 5775 5776 /* 5777 * Version 5 superblock log feature mask validation. We know the 5778 * log is dirty so check if there are any unknown log features 5779 * in what we need to recover. If there are unknown features 5780 * (e.g. unsupported transactions, then simply reject the 5781 * attempt at recovery before touching anything. 5782 */ 5783 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 && 5784 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, 5785 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { 5786 xfs_warn(log->l_mp, 5787 "Superblock has unknown incompatible log features (0x%x) enabled.", 5788 (log->l_mp->m_sb.sb_features_log_incompat & 5789 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 5790 xfs_warn(log->l_mp, 5791 "The log can not be fully and/or safely recovered by this kernel."); 5792 xfs_warn(log->l_mp, 5793 "Please recover the log on a kernel that supports the unknown features."); 5794 return -EINVAL; 5795 } 5796 5797 /* 5798 * Delay log recovery if the debug hook is set. This is debug 5799 * instrumention to coordinate simulation of I/O failures with 5800 * log recovery. 5801 */ 5802 if (xfs_globals.log_recovery_delay) { 5803 xfs_notice(log->l_mp, 5804 "Delaying log recovery for %d seconds.", 5805 xfs_globals.log_recovery_delay); 5806 msleep(xfs_globals.log_recovery_delay * 1000); 5807 } 5808 5809 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", 5810 log->l_mp->m_logname ? log->l_mp->m_logname 5811 : "internal"); 5812 5813 error = xlog_do_recover(log, head_blk, tail_blk); 5814 log->l_flags |= XLOG_RECOVERY_NEEDED; 5815 } 5816 return error; 5817 } 5818 5819 /* 5820 * In the first part of recovery we replay inodes and buffers and build 5821 * up the list of extent free items which need to be processed. Here 5822 * we process the extent free items and clean up the on disk unlinked 5823 * inode lists. This is separated from the first part of recovery so 5824 * that the root and real-time bitmap inodes can be read in from disk in 5825 * between the two stages. This is necessary so that we can free space 5826 * in the real-time portion of the file system. 5827 */ 5828 int 5829 xlog_recover_finish( 5830 struct xlog *log) 5831 { 5832 /* 5833 * Now we're ready to do the transactions needed for the 5834 * rest of recovery. Start with completing all the extent 5835 * free intent records and then process the unlinked inode 5836 * lists. At this point, we essentially run in normal mode 5837 * except that we're still performing recovery actions 5838 * rather than accepting new requests. 5839 */ 5840 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 5841 int error; 5842 error = xlog_recover_process_intents(log); 5843 if (error) { 5844 xfs_alert(log->l_mp, "Failed to recover intents"); 5845 return error; 5846 } 5847 5848 /* 5849 * Sync the log to get all the intents out of the AIL. 5850 * This isn't absolutely necessary, but it helps in 5851 * case the unlink transactions would have problems 5852 * pushing the intents out of the way. 5853 */ 5854 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 5855 5856 xlog_recover_process_iunlinks(log); 5857 5858 xlog_recover_check_summary(log); 5859 5860 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", 5861 log->l_mp->m_logname ? log->l_mp->m_logname 5862 : "internal"); 5863 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 5864 } else { 5865 xfs_info(log->l_mp, "Ending clean mount"); 5866 } 5867 return 0; 5868 } 5869 5870 int 5871 xlog_recover_cancel( 5872 struct xlog *log) 5873 { 5874 int error = 0; 5875 5876 if (log->l_flags & XLOG_RECOVERY_NEEDED) 5877 error = xlog_recover_cancel_intents(log); 5878 5879 return error; 5880 } 5881 5882 #if defined(DEBUG) 5883 /* 5884 * Read all of the agf and agi counters and check that they 5885 * are consistent with the superblock counters. 5886 */ 5887 STATIC void 5888 xlog_recover_check_summary( 5889 struct xlog *log) 5890 { 5891 xfs_mount_t *mp; 5892 xfs_agf_t *agfp; 5893 xfs_buf_t *agfbp; 5894 xfs_buf_t *agibp; 5895 xfs_agnumber_t agno; 5896 uint64_t freeblks; 5897 uint64_t itotal; 5898 uint64_t ifree; 5899 int error; 5900 5901 mp = log->l_mp; 5902 5903 freeblks = 0LL; 5904 itotal = 0LL; 5905 ifree = 0LL; 5906 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 5907 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 5908 if (error) { 5909 xfs_alert(mp, "%s agf read failed agno %d error %d", 5910 __func__, agno, error); 5911 } else { 5912 agfp = XFS_BUF_TO_AGF(agfbp); 5913 freeblks += be32_to_cpu(agfp->agf_freeblks) + 5914 be32_to_cpu(agfp->agf_flcount); 5915 xfs_buf_relse(agfbp); 5916 } 5917 5918 error = xfs_read_agi(mp, NULL, agno, &agibp); 5919 if (error) { 5920 xfs_alert(mp, "%s agi read failed agno %d error %d", 5921 __func__, agno, error); 5922 } else { 5923 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 5924 5925 itotal += be32_to_cpu(agi->agi_count); 5926 ifree += be32_to_cpu(agi->agi_freecount); 5927 xfs_buf_relse(agibp); 5928 } 5929 } 5930 } 5931 #endif /* DEBUG */ 5932