1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_trans.h" 18 #include "xfs_log.h" 19 #include "xfs_log_priv.h" 20 #include "xfs_log_recover.h" 21 #include "xfs_trans_priv.h" 22 #include "xfs_alloc.h" 23 #include "xfs_ialloc.h" 24 #include "xfs_trace.h" 25 #include "xfs_icache.h" 26 #include "xfs_error.h" 27 #include "xfs_buf_item.h" 28 29 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) 30 31 STATIC int 32 xlog_find_zeroed( 33 struct xlog *, 34 xfs_daddr_t *); 35 STATIC int 36 xlog_clear_stale_blocks( 37 struct xlog *, 38 xfs_lsn_t); 39 #if defined(DEBUG) 40 STATIC void 41 xlog_recover_check_summary( 42 struct xlog *); 43 #else 44 #define xlog_recover_check_summary(log) 45 #endif 46 STATIC int 47 xlog_do_recovery_pass( 48 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *); 49 50 /* 51 * Sector aligned buffer routines for buffer create/read/write/access 52 */ 53 54 /* 55 * Verify the log-relative block number and length in basic blocks are valid for 56 * an operation involving the given XFS log buffer. Returns true if the fields 57 * are valid, false otherwise. 58 */ 59 static inline bool 60 xlog_verify_bno( 61 struct xlog *log, 62 xfs_daddr_t blk_no, 63 int bbcount) 64 { 65 if (blk_no < 0 || blk_no >= log->l_logBBsize) 66 return false; 67 if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize) 68 return false; 69 return true; 70 } 71 72 /* 73 * Allocate a buffer to hold log data. The buffer needs to be able to map to 74 * a range of nbblks basic blocks at any valid offset within the log. 75 */ 76 static char * 77 xlog_alloc_buffer( 78 struct xlog *log, 79 int nbblks) 80 { 81 int align_mask = xfs_buftarg_dma_alignment(log->l_targ); 82 83 /* 84 * Pass log block 0 since we don't have an addr yet, buffer will be 85 * verified on read. 86 */ 87 if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) { 88 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 89 nbblks); 90 return NULL; 91 } 92 93 /* 94 * We do log I/O in units of log sectors (a power-of-2 multiple of the 95 * basic block size), so we round up the requested size to accommodate 96 * the basic blocks required for complete log sectors. 97 * 98 * In addition, the buffer may be used for a non-sector-aligned block 99 * offset, in which case an I/O of the requested size could extend 100 * beyond the end of the buffer. If the requested size is only 1 basic 101 * block it will never straddle a sector boundary, so this won't be an 102 * issue. Nor will this be a problem if the log I/O is done in basic 103 * blocks (sector size 1). But otherwise we extend the buffer by one 104 * extra log sector to ensure there's space to accommodate this 105 * possibility. 106 */ 107 if (nbblks > 1 && log->l_sectBBsize > 1) 108 nbblks += log->l_sectBBsize; 109 nbblks = round_up(nbblks, log->l_sectBBsize); 110 return kmem_alloc_io(BBTOB(nbblks), align_mask, KM_MAYFAIL | KM_ZERO); 111 } 112 113 /* 114 * Return the address of the start of the given block number's data 115 * in a log buffer. The buffer covers a log sector-aligned region. 116 */ 117 static inline unsigned int 118 xlog_align( 119 struct xlog *log, 120 xfs_daddr_t blk_no) 121 { 122 return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1)); 123 } 124 125 static int 126 xlog_do_io( 127 struct xlog *log, 128 xfs_daddr_t blk_no, 129 unsigned int nbblks, 130 char *data, 131 unsigned int op) 132 { 133 int error; 134 135 if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) { 136 xfs_warn(log->l_mp, 137 "Invalid log block/length (0x%llx, 0x%x) for buffer", 138 blk_no, nbblks); 139 return -EFSCORRUPTED; 140 } 141 142 blk_no = round_down(blk_no, log->l_sectBBsize); 143 nbblks = round_up(nbblks, log->l_sectBBsize); 144 ASSERT(nbblks > 0); 145 146 error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no, 147 BBTOB(nbblks), data, op); 148 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) { 149 xfs_alert(log->l_mp, 150 "log recovery %s I/O error at daddr 0x%llx len %d error %d", 151 op == REQ_OP_WRITE ? "write" : "read", 152 blk_no, nbblks, error); 153 } 154 return error; 155 } 156 157 STATIC int 158 xlog_bread_noalign( 159 struct xlog *log, 160 xfs_daddr_t blk_no, 161 int nbblks, 162 char *data) 163 { 164 return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ); 165 } 166 167 STATIC int 168 xlog_bread( 169 struct xlog *log, 170 xfs_daddr_t blk_no, 171 int nbblks, 172 char *data, 173 char **offset) 174 { 175 int error; 176 177 error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ); 178 if (!error) 179 *offset = data + xlog_align(log, blk_no); 180 return error; 181 } 182 183 STATIC int 184 xlog_bwrite( 185 struct xlog *log, 186 xfs_daddr_t blk_no, 187 int nbblks, 188 char *data) 189 { 190 return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE); 191 } 192 193 #ifdef DEBUG 194 /* 195 * dump debug superblock and log record information 196 */ 197 STATIC void 198 xlog_header_check_dump( 199 xfs_mount_t *mp, 200 xlog_rec_header_t *head) 201 { 202 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d", 203 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 204 xfs_debug(mp, " log : uuid = %pU, fmt = %d", 205 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 206 } 207 #else 208 #define xlog_header_check_dump(mp, head) 209 #endif 210 211 /* 212 * check log record header for recovery 213 */ 214 STATIC int 215 xlog_header_check_recover( 216 xfs_mount_t *mp, 217 xlog_rec_header_t *head) 218 { 219 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 220 221 /* 222 * IRIX doesn't write the h_fmt field and leaves it zeroed 223 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 224 * a dirty log created in IRIX. 225 */ 226 if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) { 227 xfs_warn(mp, 228 "dirty log written in incompatible format - can't recover"); 229 xlog_header_check_dump(mp, head); 230 return -EFSCORRUPTED; 231 } 232 if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid, 233 &head->h_fs_uuid))) { 234 xfs_warn(mp, 235 "dirty log entry has mismatched uuid - can't recover"); 236 xlog_header_check_dump(mp, head); 237 return -EFSCORRUPTED; 238 } 239 return 0; 240 } 241 242 /* 243 * read the head block of the log and check the header 244 */ 245 STATIC int 246 xlog_header_check_mount( 247 xfs_mount_t *mp, 248 xlog_rec_header_t *head) 249 { 250 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 251 252 if (uuid_is_null(&head->h_fs_uuid)) { 253 /* 254 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 255 * h_fs_uuid is null, we assume this log was last mounted 256 * by IRIX and continue. 257 */ 258 xfs_warn(mp, "null uuid in log - IRIX style log"); 259 } else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid, 260 &head->h_fs_uuid))) { 261 xfs_warn(mp, "log has mismatched uuid - can't recover"); 262 xlog_header_check_dump(mp, head); 263 return -EFSCORRUPTED; 264 } 265 return 0; 266 } 267 268 void 269 xlog_recover_iodone( 270 struct xfs_buf *bp) 271 { 272 if (bp->b_error) { 273 /* 274 * We're not going to bother about retrying 275 * this during recovery. One strike! 276 */ 277 if (!XFS_FORCED_SHUTDOWN(bp->b_mount)) { 278 xfs_buf_ioerror_alert(bp, __this_address); 279 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR); 280 } 281 } 282 283 /* 284 * On v5 supers, a bli could be attached to update the metadata LSN. 285 * Clean it up. 286 */ 287 if (bp->b_log_item) 288 xfs_buf_item_relse(bp); 289 ASSERT(bp->b_log_item == NULL); 290 bp->b_flags &= ~_XBF_LOGRECOVERY; 291 xfs_buf_ioend_finish(bp); 292 } 293 294 /* 295 * This routine finds (to an approximation) the first block in the physical 296 * log which contains the given cycle. It uses a binary search algorithm. 297 * Note that the algorithm can not be perfect because the disk will not 298 * necessarily be perfect. 299 */ 300 STATIC int 301 xlog_find_cycle_start( 302 struct xlog *log, 303 char *buffer, 304 xfs_daddr_t first_blk, 305 xfs_daddr_t *last_blk, 306 uint cycle) 307 { 308 char *offset; 309 xfs_daddr_t mid_blk; 310 xfs_daddr_t end_blk; 311 uint mid_cycle; 312 int error; 313 314 end_blk = *last_blk; 315 mid_blk = BLK_AVG(first_blk, end_blk); 316 while (mid_blk != first_blk && mid_blk != end_blk) { 317 error = xlog_bread(log, mid_blk, 1, buffer, &offset); 318 if (error) 319 return error; 320 mid_cycle = xlog_get_cycle(offset); 321 if (mid_cycle == cycle) 322 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 323 else 324 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 325 mid_blk = BLK_AVG(first_blk, end_blk); 326 } 327 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 328 (mid_blk == end_blk && mid_blk-1 == first_blk)); 329 330 *last_blk = end_blk; 331 332 return 0; 333 } 334 335 /* 336 * Check that a range of blocks does not contain stop_on_cycle_no. 337 * Fill in *new_blk with the block offset where such a block is 338 * found, or with -1 (an invalid block number) if there is no such 339 * block in the range. The scan needs to occur from front to back 340 * and the pointer into the region must be updated since a later 341 * routine will need to perform another test. 342 */ 343 STATIC int 344 xlog_find_verify_cycle( 345 struct xlog *log, 346 xfs_daddr_t start_blk, 347 int nbblks, 348 uint stop_on_cycle_no, 349 xfs_daddr_t *new_blk) 350 { 351 xfs_daddr_t i, j; 352 uint cycle; 353 char *buffer; 354 xfs_daddr_t bufblks; 355 char *buf = NULL; 356 int error = 0; 357 358 /* 359 * Greedily allocate a buffer big enough to handle the full 360 * range of basic blocks we'll be examining. If that fails, 361 * try a smaller size. We need to be able to read at least 362 * a log sector, or we're out of luck. 363 */ 364 bufblks = 1 << ffs(nbblks); 365 while (bufblks > log->l_logBBsize) 366 bufblks >>= 1; 367 while (!(buffer = xlog_alloc_buffer(log, bufblks))) { 368 bufblks >>= 1; 369 if (bufblks < log->l_sectBBsize) 370 return -ENOMEM; 371 } 372 373 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 374 int bcount; 375 376 bcount = min(bufblks, (start_blk + nbblks - i)); 377 378 error = xlog_bread(log, i, bcount, buffer, &buf); 379 if (error) 380 goto out; 381 382 for (j = 0; j < bcount; j++) { 383 cycle = xlog_get_cycle(buf); 384 if (cycle == stop_on_cycle_no) { 385 *new_blk = i+j; 386 goto out; 387 } 388 389 buf += BBSIZE; 390 } 391 } 392 393 *new_blk = -1; 394 395 out: 396 kmem_free(buffer); 397 return error; 398 } 399 400 /* 401 * Potentially backup over partial log record write. 402 * 403 * In the typical case, last_blk is the number of the block directly after 404 * a good log record. Therefore, we subtract one to get the block number 405 * of the last block in the given buffer. extra_bblks contains the number 406 * of blocks we would have read on a previous read. This happens when the 407 * last log record is split over the end of the physical log. 408 * 409 * extra_bblks is the number of blocks potentially verified on a previous 410 * call to this routine. 411 */ 412 STATIC int 413 xlog_find_verify_log_record( 414 struct xlog *log, 415 xfs_daddr_t start_blk, 416 xfs_daddr_t *last_blk, 417 int extra_bblks) 418 { 419 xfs_daddr_t i; 420 char *buffer; 421 char *offset = NULL; 422 xlog_rec_header_t *head = NULL; 423 int error = 0; 424 int smallmem = 0; 425 int num_blks = *last_blk - start_blk; 426 int xhdrs; 427 428 ASSERT(start_blk != 0 || *last_blk != start_blk); 429 430 buffer = xlog_alloc_buffer(log, num_blks); 431 if (!buffer) { 432 buffer = xlog_alloc_buffer(log, 1); 433 if (!buffer) 434 return -ENOMEM; 435 smallmem = 1; 436 } else { 437 error = xlog_bread(log, start_blk, num_blks, buffer, &offset); 438 if (error) 439 goto out; 440 offset += ((num_blks - 1) << BBSHIFT); 441 } 442 443 for (i = (*last_blk) - 1; i >= 0; i--) { 444 if (i < start_blk) { 445 /* valid log record not found */ 446 xfs_warn(log->l_mp, 447 "Log inconsistent (didn't find previous header)"); 448 ASSERT(0); 449 error = -EFSCORRUPTED; 450 goto out; 451 } 452 453 if (smallmem) { 454 error = xlog_bread(log, i, 1, buffer, &offset); 455 if (error) 456 goto out; 457 } 458 459 head = (xlog_rec_header_t *)offset; 460 461 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 462 break; 463 464 if (!smallmem) 465 offset -= BBSIZE; 466 } 467 468 /* 469 * We hit the beginning of the physical log & still no header. Return 470 * to caller. If caller can handle a return of -1, then this routine 471 * will be called again for the end of the physical log. 472 */ 473 if (i == -1) { 474 error = 1; 475 goto out; 476 } 477 478 /* 479 * We have the final block of the good log (the first block 480 * of the log record _before_ the head. So we check the uuid. 481 */ 482 if ((error = xlog_header_check_mount(log->l_mp, head))) 483 goto out; 484 485 /* 486 * We may have found a log record header before we expected one. 487 * last_blk will be the 1st block # with a given cycle #. We may end 488 * up reading an entire log record. In this case, we don't want to 489 * reset last_blk. Only when last_blk points in the middle of a log 490 * record do we update last_blk. 491 */ 492 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 493 uint h_size = be32_to_cpu(head->h_size); 494 495 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 496 if (h_size % XLOG_HEADER_CYCLE_SIZE) 497 xhdrs++; 498 } else { 499 xhdrs = 1; 500 } 501 502 if (*last_blk - i + extra_bblks != 503 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 504 *last_blk = i; 505 506 out: 507 kmem_free(buffer); 508 return error; 509 } 510 511 /* 512 * Head is defined to be the point of the log where the next log write 513 * could go. This means that incomplete LR writes at the end are 514 * eliminated when calculating the head. We aren't guaranteed that previous 515 * LR have complete transactions. We only know that a cycle number of 516 * current cycle number -1 won't be present in the log if we start writing 517 * from our current block number. 518 * 519 * last_blk contains the block number of the first block with a given 520 * cycle number. 521 * 522 * Return: zero if normal, non-zero if error. 523 */ 524 STATIC int 525 xlog_find_head( 526 struct xlog *log, 527 xfs_daddr_t *return_head_blk) 528 { 529 char *buffer; 530 char *offset; 531 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 532 int num_scan_bblks; 533 uint first_half_cycle, last_half_cycle; 534 uint stop_on_cycle; 535 int error, log_bbnum = log->l_logBBsize; 536 537 /* Is the end of the log device zeroed? */ 538 error = xlog_find_zeroed(log, &first_blk); 539 if (error < 0) { 540 xfs_warn(log->l_mp, "empty log check failed"); 541 return error; 542 } 543 if (error == 1) { 544 *return_head_blk = first_blk; 545 546 /* Is the whole lot zeroed? */ 547 if (!first_blk) { 548 /* Linux XFS shouldn't generate totally zeroed logs - 549 * mkfs etc write a dummy unmount record to a fresh 550 * log so we can store the uuid in there 551 */ 552 xfs_warn(log->l_mp, "totally zeroed log"); 553 } 554 555 return 0; 556 } 557 558 first_blk = 0; /* get cycle # of 1st block */ 559 buffer = xlog_alloc_buffer(log, 1); 560 if (!buffer) 561 return -ENOMEM; 562 563 error = xlog_bread(log, 0, 1, buffer, &offset); 564 if (error) 565 goto out_free_buffer; 566 567 first_half_cycle = xlog_get_cycle(offset); 568 569 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 570 error = xlog_bread(log, last_blk, 1, buffer, &offset); 571 if (error) 572 goto out_free_buffer; 573 574 last_half_cycle = xlog_get_cycle(offset); 575 ASSERT(last_half_cycle != 0); 576 577 /* 578 * If the 1st half cycle number is equal to the last half cycle number, 579 * then the entire log is stamped with the same cycle number. In this 580 * case, head_blk can't be set to zero (which makes sense). The below 581 * math doesn't work out properly with head_blk equal to zero. Instead, 582 * we set it to log_bbnum which is an invalid block number, but this 583 * value makes the math correct. If head_blk doesn't changed through 584 * all the tests below, *head_blk is set to zero at the very end rather 585 * than log_bbnum. In a sense, log_bbnum and zero are the same block 586 * in a circular file. 587 */ 588 if (first_half_cycle == last_half_cycle) { 589 /* 590 * In this case we believe that the entire log should have 591 * cycle number last_half_cycle. We need to scan backwards 592 * from the end verifying that there are no holes still 593 * containing last_half_cycle - 1. If we find such a hole, 594 * then the start of that hole will be the new head. The 595 * simple case looks like 596 * x | x ... | x - 1 | x 597 * Another case that fits this picture would be 598 * x | x + 1 | x ... | x 599 * In this case the head really is somewhere at the end of the 600 * log, as one of the latest writes at the beginning was 601 * incomplete. 602 * One more case is 603 * x | x + 1 | x ... | x - 1 | x 604 * This is really the combination of the above two cases, and 605 * the head has to end up at the start of the x-1 hole at the 606 * end of the log. 607 * 608 * In the 256k log case, we will read from the beginning to the 609 * end of the log and search for cycle numbers equal to x-1. 610 * We don't worry about the x+1 blocks that we encounter, 611 * because we know that they cannot be the head since the log 612 * started with x. 613 */ 614 head_blk = log_bbnum; 615 stop_on_cycle = last_half_cycle - 1; 616 } else { 617 /* 618 * In this case we want to find the first block with cycle 619 * number matching last_half_cycle. We expect the log to be 620 * some variation on 621 * x + 1 ... | x ... | x 622 * The first block with cycle number x (last_half_cycle) will 623 * be where the new head belongs. First we do a binary search 624 * for the first occurrence of last_half_cycle. The binary 625 * search may not be totally accurate, so then we scan back 626 * from there looking for occurrences of last_half_cycle before 627 * us. If that backwards scan wraps around the beginning of 628 * the log, then we look for occurrences of last_half_cycle - 1 629 * at the end of the log. The cases we're looking for look 630 * like 631 * v binary search stopped here 632 * x + 1 ... | x | x + 1 | x ... | x 633 * ^ but we want to locate this spot 634 * or 635 * <---------> less than scan distance 636 * x + 1 ... | x ... | x - 1 | x 637 * ^ we want to locate this spot 638 */ 639 stop_on_cycle = last_half_cycle; 640 error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk, 641 last_half_cycle); 642 if (error) 643 goto out_free_buffer; 644 } 645 646 /* 647 * Now validate the answer. Scan back some number of maximum possible 648 * blocks and make sure each one has the expected cycle number. The 649 * maximum is determined by the total possible amount of buffering 650 * in the in-core log. The following number can be made tighter if 651 * we actually look at the block size of the filesystem. 652 */ 653 num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log)); 654 if (head_blk >= num_scan_bblks) { 655 /* 656 * We are guaranteed that the entire check can be performed 657 * in one buffer. 658 */ 659 start_blk = head_blk - num_scan_bblks; 660 if ((error = xlog_find_verify_cycle(log, 661 start_blk, num_scan_bblks, 662 stop_on_cycle, &new_blk))) 663 goto out_free_buffer; 664 if (new_blk != -1) 665 head_blk = new_blk; 666 } else { /* need to read 2 parts of log */ 667 /* 668 * We are going to scan backwards in the log in two parts. 669 * First we scan the physical end of the log. In this part 670 * of the log, we are looking for blocks with cycle number 671 * last_half_cycle - 1. 672 * If we find one, then we know that the log starts there, as 673 * we've found a hole that didn't get written in going around 674 * the end of the physical log. The simple case for this is 675 * x + 1 ... | x ... | x - 1 | x 676 * <---------> less than scan distance 677 * If all of the blocks at the end of the log have cycle number 678 * last_half_cycle, then we check the blocks at the start of 679 * the log looking for occurrences of last_half_cycle. If we 680 * find one, then our current estimate for the location of the 681 * first occurrence of last_half_cycle is wrong and we move 682 * back to the hole we've found. This case looks like 683 * x + 1 ... | x | x + 1 | x ... 684 * ^ binary search stopped here 685 * Another case we need to handle that only occurs in 256k 686 * logs is 687 * x + 1 ... | x ... | x+1 | x ... 688 * ^ binary search stops here 689 * In a 256k log, the scan at the end of the log will see the 690 * x + 1 blocks. We need to skip past those since that is 691 * certainly not the head of the log. By searching for 692 * last_half_cycle-1 we accomplish that. 693 */ 694 ASSERT(head_blk <= INT_MAX && 695 (xfs_daddr_t) num_scan_bblks >= head_blk); 696 start_blk = log_bbnum - (num_scan_bblks - head_blk); 697 if ((error = xlog_find_verify_cycle(log, start_blk, 698 num_scan_bblks - (int)head_blk, 699 (stop_on_cycle - 1), &new_blk))) 700 goto out_free_buffer; 701 if (new_blk != -1) { 702 head_blk = new_blk; 703 goto validate_head; 704 } 705 706 /* 707 * Scan beginning of log now. The last part of the physical 708 * log is good. This scan needs to verify that it doesn't find 709 * the last_half_cycle. 710 */ 711 start_blk = 0; 712 ASSERT(head_blk <= INT_MAX); 713 if ((error = xlog_find_verify_cycle(log, 714 start_blk, (int)head_blk, 715 stop_on_cycle, &new_blk))) 716 goto out_free_buffer; 717 if (new_blk != -1) 718 head_blk = new_blk; 719 } 720 721 validate_head: 722 /* 723 * Now we need to make sure head_blk is not pointing to a block in 724 * the middle of a log record. 725 */ 726 num_scan_bblks = XLOG_REC_SHIFT(log); 727 if (head_blk >= num_scan_bblks) { 728 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 729 730 /* start ptr at last block ptr before head_blk */ 731 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 732 if (error == 1) 733 error = -EIO; 734 if (error) 735 goto out_free_buffer; 736 } else { 737 start_blk = 0; 738 ASSERT(head_blk <= INT_MAX); 739 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 740 if (error < 0) 741 goto out_free_buffer; 742 if (error == 1) { 743 /* We hit the beginning of the log during our search */ 744 start_blk = log_bbnum - (num_scan_bblks - head_blk); 745 new_blk = log_bbnum; 746 ASSERT(start_blk <= INT_MAX && 747 (xfs_daddr_t) log_bbnum-start_blk >= 0); 748 ASSERT(head_blk <= INT_MAX); 749 error = xlog_find_verify_log_record(log, start_blk, 750 &new_blk, (int)head_blk); 751 if (error == 1) 752 error = -EIO; 753 if (error) 754 goto out_free_buffer; 755 if (new_blk != log_bbnum) 756 head_blk = new_blk; 757 } else if (error) 758 goto out_free_buffer; 759 } 760 761 kmem_free(buffer); 762 if (head_blk == log_bbnum) 763 *return_head_blk = 0; 764 else 765 *return_head_blk = head_blk; 766 /* 767 * When returning here, we have a good block number. Bad block 768 * means that during a previous crash, we didn't have a clean break 769 * from cycle number N to cycle number N-1. In this case, we need 770 * to find the first block with cycle number N-1. 771 */ 772 return 0; 773 774 out_free_buffer: 775 kmem_free(buffer); 776 if (error) 777 xfs_warn(log->l_mp, "failed to find log head"); 778 return error; 779 } 780 781 /* 782 * Seek backwards in the log for log record headers. 783 * 784 * Given a starting log block, walk backwards until we find the provided number 785 * of records or hit the provided tail block. The return value is the number of 786 * records encountered or a negative error code. The log block and buffer 787 * pointer of the last record seen are returned in rblk and rhead respectively. 788 */ 789 STATIC int 790 xlog_rseek_logrec_hdr( 791 struct xlog *log, 792 xfs_daddr_t head_blk, 793 xfs_daddr_t tail_blk, 794 int count, 795 char *buffer, 796 xfs_daddr_t *rblk, 797 struct xlog_rec_header **rhead, 798 bool *wrapped) 799 { 800 int i; 801 int error; 802 int found = 0; 803 char *offset = NULL; 804 xfs_daddr_t end_blk; 805 806 *wrapped = false; 807 808 /* 809 * Walk backwards from the head block until we hit the tail or the first 810 * block in the log. 811 */ 812 end_blk = head_blk > tail_blk ? tail_blk : 0; 813 for (i = (int) head_blk - 1; i >= end_blk; i--) { 814 error = xlog_bread(log, i, 1, buffer, &offset); 815 if (error) 816 goto out_error; 817 818 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 819 *rblk = i; 820 *rhead = (struct xlog_rec_header *) offset; 821 if (++found == count) 822 break; 823 } 824 } 825 826 /* 827 * If we haven't hit the tail block or the log record header count, 828 * start looking again from the end of the physical log. Note that 829 * callers can pass head == tail if the tail is not yet known. 830 */ 831 if (tail_blk >= head_blk && found != count) { 832 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) { 833 error = xlog_bread(log, i, 1, buffer, &offset); 834 if (error) 835 goto out_error; 836 837 if (*(__be32 *)offset == 838 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 839 *wrapped = true; 840 *rblk = i; 841 *rhead = (struct xlog_rec_header *) offset; 842 if (++found == count) 843 break; 844 } 845 } 846 } 847 848 return found; 849 850 out_error: 851 return error; 852 } 853 854 /* 855 * Seek forward in the log for log record headers. 856 * 857 * Given head and tail blocks, walk forward from the tail block until we find 858 * the provided number of records or hit the head block. The return value is the 859 * number of records encountered or a negative error code. The log block and 860 * buffer pointer of the last record seen are returned in rblk and rhead 861 * respectively. 862 */ 863 STATIC int 864 xlog_seek_logrec_hdr( 865 struct xlog *log, 866 xfs_daddr_t head_blk, 867 xfs_daddr_t tail_blk, 868 int count, 869 char *buffer, 870 xfs_daddr_t *rblk, 871 struct xlog_rec_header **rhead, 872 bool *wrapped) 873 { 874 int i; 875 int error; 876 int found = 0; 877 char *offset = NULL; 878 xfs_daddr_t end_blk; 879 880 *wrapped = false; 881 882 /* 883 * Walk forward from the tail block until we hit the head or the last 884 * block in the log. 885 */ 886 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1; 887 for (i = (int) tail_blk; i <= end_blk; i++) { 888 error = xlog_bread(log, i, 1, buffer, &offset); 889 if (error) 890 goto out_error; 891 892 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 893 *rblk = i; 894 *rhead = (struct xlog_rec_header *) offset; 895 if (++found == count) 896 break; 897 } 898 } 899 900 /* 901 * If we haven't hit the head block or the log record header count, 902 * start looking again from the start of the physical log. 903 */ 904 if (tail_blk > head_blk && found != count) { 905 for (i = 0; i < (int) head_blk; i++) { 906 error = xlog_bread(log, i, 1, buffer, &offset); 907 if (error) 908 goto out_error; 909 910 if (*(__be32 *)offset == 911 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 912 *wrapped = true; 913 *rblk = i; 914 *rhead = (struct xlog_rec_header *) offset; 915 if (++found == count) 916 break; 917 } 918 } 919 } 920 921 return found; 922 923 out_error: 924 return error; 925 } 926 927 /* 928 * Calculate distance from head to tail (i.e., unused space in the log). 929 */ 930 static inline int 931 xlog_tail_distance( 932 struct xlog *log, 933 xfs_daddr_t head_blk, 934 xfs_daddr_t tail_blk) 935 { 936 if (head_blk < tail_blk) 937 return tail_blk - head_blk; 938 939 return tail_blk + (log->l_logBBsize - head_blk); 940 } 941 942 /* 943 * Verify the log tail. This is particularly important when torn or incomplete 944 * writes have been detected near the front of the log and the head has been 945 * walked back accordingly. 946 * 947 * We also have to handle the case where the tail was pinned and the head 948 * blocked behind the tail right before a crash. If the tail had been pushed 949 * immediately prior to the crash and the subsequent checkpoint was only 950 * partially written, it's possible it overwrote the last referenced tail in the 951 * log with garbage. This is not a coherency problem because the tail must have 952 * been pushed before it can be overwritten, but appears as log corruption to 953 * recovery because we have no way to know the tail was updated if the 954 * subsequent checkpoint didn't write successfully. 955 * 956 * Therefore, CRC check the log from tail to head. If a failure occurs and the 957 * offending record is within max iclog bufs from the head, walk the tail 958 * forward and retry until a valid tail is found or corruption is detected out 959 * of the range of a possible overwrite. 960 */ 961 STATIC int 962 xlog_verify_tail( 963 struct xlog *log, 964 xfs_daddr_t head_blk, 965 xfs_daddr_t *tail_blk, 966 int hsize) 967 { 968 struct xlog_rec_header *thead; 969 char *buffer; 970 xfs_daddr_t first_bad; 971 int error = 0; 972 bool wrapped; 973 xfs_daddr_t tmp_tail; 974 xfs_daddr_t orig_tail = *tail_blk; 975 976 buffer = xlog_alloc_buffer(log, 1); 977 if (!buffer) 978 return -ENOMEM; 979 980 /* 981 * Make sure the tail points to a record (returns positive count on 982 * success). 983 */ 984 error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer, 985 &tmp_tail, &thead, &wrapped); 986 if (error < 0) 987 goto out; 988 if (*tail_blk != tmp_tail) 989 *tail_blk = tmp_tail; 990 991 /* 992 * Run a CRC check from the tail to the head. We can't just check 993 * MAX_ICLOGS records past the tail because the tail may point to stale 994 * blocks cleared during the search for the head/tail. These blocks are 995 * overwritten with zero-length records and thus record count is not a 996 * reliable indicator of the iclog state before a crash. 997 */ 998 first_bad = 0; 999 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 1000 XLOG_RECOVER_CRCPASS, &first_bad); 1001 while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 1002 int tail_distance; 1003 1004 /* 1005 * Is corruption within range of the head? If so, retry from 1006 * the next record. Otherwise return an error. 1007 */ 1008 tail_distance = xlog_tail_distance(log, head_blk, first_bad); 1009 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize)) 1010 break; 1011 1012 /* skip to the next record; returns positive count on success */ 1013 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, 1014 buffer, &tmp_tail, &thead, &wrapped); 1015 if (error < 0) 1016 goto out; 1017 1018 *tail_blk = tmp_tail; 1019 first_bad = 0; 1020 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 1021 XLOG_RECOVER_CRCPASS, &first_bad); 1022 } 1023 1024 if (!error && *tail_blk != orig_tail) 1025 xfs_warn(log->l_mp, 1026 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx", 1027 orig_tail, *tail_blk); 1028 out: 1029 kmem_free(buffer); 1030 return error; 1031 } 1032 1033 /* 1034 * Detect and trim torn writes from the head of the log. 1035 * 1036 * Storage without sector atomicity guarantees can result in torn writes in the 1037 * log in the event of a crash. Our only means to detect this scenario is via 1038 * CRC verification. While we can't always be certain that CRC verification 1039 * failure is due to a torn write vs. an unrelated corruption, we do know that 1040 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at 1041 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of 1042 * the log and treat failures in this range as torn writes as a matter of 1043 * policy. In the event of CRC failure, the head is walked back to the last good 1044 * record in the log and the tail is updated from that record and verified. 1045 */ 1046 STATIC int 1047 xlog_verify_head( 1048 struct xlog *log, 1049 xfs_daddr_t *head_blk, /* in/out: unverified head */ 1050 xfs_daddr_t *tail_blk, /* out: tail block */ 1051 char *buffer, 1052 xfs_daddr_t *rhead_blk, /* start blk of last record */ 1053 struct xlog_rec_header **rhead, /* ptr to last record */ 1054 bool *wrapped) /* last rec. wraps phys. log */ 1055 { 1056 struct xlog_rec_header *tmp_rhead; 1057 char *tmp_buffer; 1058 xfs_daddr_t first_bad; 1059 xfs_daddr_t tmp_rhead_blk; 1060 int found; 1061 int error; 1062 bool tmp_wrapped; 1063 1064 /* 1065 * Check the head of the log for torn writes. Search backwards from the 1066 * head until we hit the tail or the maximum number of log record I/Os 1067 * that could have been in flight at one time. Use a temporary buffer so 1068 * we don't trash the rhead/buffer pointers from the caller. 1069 */ 1070 tmp_buffer = xlog_alloc_buffer(log, 1); 1071 if (!tmp_buffer) 1072 return -ENOMEM; 1073 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk, 1074 XLOG_MAX_ICLOGS, tmp_buffer, 1075 &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped); 1076 kmem_free(tmp_buffer); 1077 if (error < 0) 1078 return error; 1079 1080 /* 1081 * Now run a CRC verification pass over the records starting at the 1082 * block found above to the current head. If a CRC failure occurs, the 1083 * log block of the first bad record is saved in first_bad. 1084 */ 1085 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk, 1086 XLOG_RECOVER_CRCPASS, &first_bad); 1087 if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 1088 /* 1089 * We've hit a potential torn write. Reset the error and warn 1090 * about it. 1091 */ 1092 error = 0; 1093 xfs_warn(log->l_mp, 1094 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.", 1095 first_bad, *head_blk); 1096 1097 /* 1098 * Get the header block and buffer pointer for the last good 1099 * record before the bad record. 1100 * 1101 * Note that xlog_find_tail() clears the blocks at the new head 1102 * (i.e., the records with invalid CRC) if the cycle number 1103 * matches the current cycle. 1104 */ 1105 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, 1106 buffer, rhead_blk, rhead, wrapped); 1107 if (found < 0) 1108 return found; 1109 if (found == 0) /* XXX: right thing to do here? */ 1110 return -EIO; 1111 1112 /* 1113 * Reset the head block to the starting block of the first bad 1114 * log record and set the tail block based on the last good 1115 * record. 1116 * 1117 * Bail out if the updated head/tail match as this indicates 1118 * possible corruption outside of the acceptable 1119 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair... 1120 */ 1121 *head_blk = first_bad; 1122 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn)); 1123 if (*head_blk == *tail_blk) { 1124 ASSERT(0); 1125 return 0; 1126 } 1127 } 1128 if (error) 1129 return error; 1130 1131 return xlog_verify_tail(log, *head_blk, tail_blk, 1132 be32_to_cpu((*rhead)->h_size)); 1133 } 1134 1135 /* 1136 * We need to make sure we handle log wrapping properly, so we can't use the 1137 * calculated logbno directly. Make sure it wraps to the correct bno inside the 1138 * log. 1139 * 1140 * The log is limited to 32 bit sizes, so we use the appropriate modulus 1141 * operation here and cast it back to a 64 bit daddr on return. 1142 */ 1143 static inline xfs_daddr_t 1144 xlog_wrap_logbno( 1145 struct xlog *log, 1146 xfs_daddr_t bno) 1147 { 1148 int mod; 1149 1150 div_s64_rem(bno, log->l_logBBsize, &mod); 1151 return mod; 1152 } 1153 1154 /* 1155 * Check whether the head of the log points to an unmount record. In other 1156 * words, determine whether the log is clean. If so, update the in-core state 1157 * appropriately. 1158 */ 1159 static int 1160 xlog_check_unmount_rec( 1161 struct xlog *log, 1162 xfs_daddr_t *head_blk, 1163 xfs_daddr_t *tail_blk, 1164 struct xlog_rec_header *rhead, 1165 xfs_daddr_t rhead_blk, 1166 char *buffer, 1167 bool *clean) 1168 { 1169 struct xlog_op_header *op_head; 1170 xfs_daddr_t umount_data_blk; 1171 xfs_daddr_t after_umount_blk; 1172 int hblks; 1173 int error; 1174 char *offset; 1175 1176 *clean = false; 1177 1178 /* 1179 * Look for unmount record. If we find it, then we know there was a 1180 * clean unmount. Since 'i' could be the last block in the physical 1181 * log, we convert to a log block before comparing to the head_blk. 1182 * 1183 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks() 1184 * below. We won't want to clear the unmount record if there is one, so 1185 * we pass the lsn of the unmount record rather than the block after it. 1186 */ 1187 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1188 int h_size = be32_to_cpu(rhead->h_size); 1189 int h_version = be32_to_cpu(rhead->h_version); 1190 1191 if ((h_version & XLOG_VERSION_2) && 1192 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 1193 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 1194 if (h_size % XLOG_HEADER_CYCLE_SIZE) 1195 hblks++; 1196 } else { 1197 hblks = 1; 1198 } 1199 } else { 1200 hblks = 1; 1201 } 1202 1203 after_umount_blk = xlog_wrap_logbno(log, 1204 rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len))); 1205 1206 if (*head_blk == after_umount_blk && 1207 be32_to_cpu(rhead->h_num_logops) == 1) { 1208 umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks); 1209 error = xlog_bread(log, umount_data_blk, 1, buffer, &offset); 1210 if (error) 1211 return error; 1212 1213 op_head = (struct xlog_op_header *)offset; 1214 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 1215 /* 1216 * Set tail and last sync so that newly written log 1217 * records will point recovery to after the current 1218 * unmount record. 1219 */ 1220 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1221 log->l_curr_cycle, after_umount_blk); 1222 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1223 log->l_curr_cycle, after_umount_blk); 1224 *tail_blk = after_umount_blk; 1225 1226 *clean = true; 1227 } 1228 } 1229 1230 return 0; 1231 } 1232 1233 static void 1234 xlog_set_state( 1235 struct xlog *log, 1236 xfs_daddr_t head_blk, 1237 struct xlog_rec_header *rhead, 1238 xfs_daddr_t rhead_blk, 1239 bool bump_cycle) 1240 { 1241 /* 1242 * Reset log values according to the state of the log when we 1243 * crashed. In the case where head_blk == 0, we bump curr_cycle 1244 * one because the next write starts a new cycle rather than 1245 * continuing the cycle of the last good log record. At this 1246 * point we have guaranteed that all partial log records have been 1247 * accounted for. Therefore, we know that the last good log record 1248 * written was complete and ended exactly on the end boundary 1249 * of the physical log. 1250 */ 1251 log->l_prev_block = rhead_blk; 1252 log->l_curr_block = (int)head_blk; 1253 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 1254 if (bump_cycle) 1255 log->l_curr_cycle++; 1256 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); 1257 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); 1258 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, 1259 BBTOB(log->l_curr_block)); 1260 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, 1261 BBTOB(log->l_curr_block)); 1262 } 1263 1264 /* 1265 * Find the sync block number or the tail of the log. 1266 * 1267 * This will be the block number of the last record to have its 1268 * associated buffers synced to disk. Every log record header has 1269 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 1270 * to get a sync block number. The only concern is to figure out which 1271 * log record header to believe. 1272 * 1273 * The following algorithm uses the log record header with the largest 1274 * lsn. The entire log record does not need to be valid. We only care 1275 * that the header is valid. 1276 * 1277 * We could speed up search by using current head_blk buffer, but it is not 1278 * available. 1279 */ 1280 STATIC int 1281 xlog_find_tail( 1282 struct xlog *log, 1283 xfs_daddr_t *head_blk, 1284 xfs_daddr_t *tail_blk) 1285 { 1286 xlog_rec_header_t *rhead; 1287 char *offset = NULL; 1288 char *buffer; 1289 int error; 1290 xfs_daddr_t rhead_blk; 1291 xfs_lsn_t tail_lsn; 1292 bool wrapped = false; 1293 bool clean = false; 1294 1295 /* 1296 * Find previous log record 1297 */ 1298 if ((error = xlog_find_head(log, head_blk))) 1299 return error; 1300 ASSERT(*head_blk < INT_MAX); 1301 1302 buffer = xlog_alloc_buffer(log, 1); 1303 if (!buffer) 1304 return -ENOMEM; 1305 if (*head_blk == 0) { /* special case */ 1306 error = xlog_bread(log, 0, 1, buffer, &offset); 1307 if (error) 1308 goto done; 1309 1310 if (xlog_get_cycle(offset) == 0) { 1311 *tail_blk = 0; 1312 /* leave all other log inited values alone */ 1313 goto done; 1314 } 1315 } 1316 1317 /* 1318 * Search backwards through the log looking for the log record header 1319 * block. This wraps all the way back around to the head so something is 1320 * seriously wrong if we can't find it. 1321 */ 1322 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer, 1323 &rhead_blk, &rhead, &wrapped); 1324 if (error < 0) 1325 goto done; 1326 if (!error) { 1327 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); 1328 error = -EFSCORRUPTED; 1329 goto done; 1330 } 1331 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 1332 1333 /* 1334 * Set the log state based on the current head record. 1335 */ 1336 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped); 1337 tail_lsn = atomic64_read(&log->l_tail_lsn); 1338 1339 /* 1340 * Look for an unmount record at the head of the log. This sets the log 1341 * state to determine whether recovery is necessary. 1342 */ 1343 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead, 1344 rhead_blk, buffer, &clean); 1345 if (error) 1346 goto done; 1347 1348 /* 1349 * Verify the log head if the log is not clean (e.g., we have anything 1350 * but an unmount record at the head). This uses CRC verification to 1351 * detect and trim torn writes. If discovered, CRC failures are 1352 * considered torn writes and the log head is trimmed accordingly. 1353 * 1354 * Note that we can only run CRC verification when the log is dirty 1355 * because there's no guarantee that the log data behind an unmount 1356 * record is compatible with the current architecture. 1357 */ 1358 if (!clean) { 1359 xfs_daddr_t orig_head = *head_blk; 1360 1361 error = xlog_verify_head(log, head_blk, tail_blk, buffer, 1362 &rhead_blk, &rhead, &wrapped); 1363 if (error) 1364 goto done; 1365 1366 /* update in-core state again if the head changed */ 1367 if (*head_blk != orig_head) { 1368 xlog_set_state(log, *head_blk, rhead, rhead_blk, 1369 wrapped); 1370 tail_lsn = atomic64_read(&log->l_tail_lsn); 1371 error = xlog_check_unmount_rec(log, head_blk, tail_blk, 1372 rhead, rhead_blk, buffer, 1373 &clean); 1374 if (error) 1375 goto done; 1376 } 1377 } 1378 1379 /* 1380 * Note that the unmount was clean. If the unmount was not clean, we 1381 * need to know this to rebuild the superblock counters from the perag 1382 * headers if we have a filesystem using non-persistent counters. 1383 */ 1384 if (clean) 1385 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 1386 1387 /* 1388 * Make sure that there are no blocks in front of the head 1389 * with the same cycle number as the head. This can happen 1390 * because we allow multiple outstanding log writes concurrently, 1391 * and the later writes might make it out before earlier ones. 1392 * 1393 * We use the lsn from before modifying it so that we'll never 1394 * overwrite the unmount record after a clean unmount. 1395 * 1396 * Do this only if we are going to recover the filesystem 1397 * 1398 * NOTE: This used to say "if (!readonly)" 1399 * However on Linux, we can & do recover a read-only filesystem. 1400 * We only skip recovery if NORECOVERY is specified on mount, 1401 * in which case we would not be here. 1402 * 1403 * But... if the -device- itself is readonly, just skip this. 1404 * We can't recover this device anyway, so it won't matter. 1405 */ 1406 if (!xfs_readonly_buftarg(log->l_targ)) 1407 error = xlog_clear_stale_blocks(log, tail_lsn); 1408 1409 done: 1410 kmem_free(buffer); 1411 1412 if (error) 1413 xfs_warn(log->l_mp, "failed to locate log tail"); 1414 return error; 1415 } 1416 1417 /* 1418 * Is the log zeroed at all? 1419 * 1420 * The last binary search should be changed to perform an X block read 1421 * once X becomes small enough. You can then search linearly through 1422 * the X blocks. This will cut down on the number of reads we need to do. 1423 * 1424 * If the log is partially zeroed, this routine will pass back the blkno 1425 * of the first block with cycle number 0. It won't have a complete LR 1426 * preceding it. 1427 * 1428 * Return: 1429 * 0 => the log is completely written to 1430 * 1 => use *blk_no as the first block of the log 1431 * <0 => error has occurred 1432 */ 1433 STATIC int 1434 xlog_find_zeroed( 1435 struct xlog *log, 1436 xfs_daddr_t *blk_no) 1437 { 1438 char *buffer; 1439 char *offset; 1440 uint first_cycle, last_cycle; 1441 xfs_daddr_t new_blk, last_blk, start_blk; 1442 xfs_daddr_t num_scan_bblks; 1443 int error, log_bbnum = log->l_logBBsize; 1444 1445 *blk_no = 0; 1446 1447 /* check totally zeroed log */ 1448 buffer = xlog_alloc_buffer(log, 1); 1449 if (!buffer) 1450 return -ENOMEM; 1451 error = xlog_bread(log, 0, 1, buffer, &offset); 1452 if (error) 1453 goto out_free_buffer; 1454 1455 first_cycle = xlog_get_cycle(offset); 1456 if (first_cycle == 0) { /* completely zeroed log */ 1457 *blk_no = 0; 1458 kmem_free(buffer); 1459 return 1; 1460 } 1461 1462 /* check partially zeroed log */ 1463 error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset); 1464 if (error) 1465 goto out_free_buffer; 1466 1467 last_cycle = xlog_get_cycle(offset); 1468 if (last_cycle != 0) { /* log completely written to */ 1469 kmem_free(buffer); 1470 return 0; 1471 } 1472 1473 /* we have a partially zeroed log */ 1474 last_blk = log_bbnum-1; 1475 error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0); 1476 if (error) 1477 goto out_free_buffer; 1478 1479 /* 1480 * Validate the answer. Because there is no way to guarantee that 1481 * the entire log is made up of log records which are the same size, 1482 * we scan over the defined maximum blocks. At this point, the maximum 1483 * is not chosen to mean anything special. XXXmiken 1484 */ 1485 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1486 ASSERT(num_scan_bblks <= INT_MAX); 1487 1488 if (last_blk < num_scan_bblks) 1489 num_scan_bblks = last_blk; 1490 start_blk = last_blk - num_scan_bblks; 1491 1492 /* 1493 * We search for any instances of cycle number 0 that occur before 1494 * our current estimate of the head. What we're trying to detect is 1495 * 1 ... | 0 | 1 | 0... 1496 * ^ binary search ends here 1497 */ 1498 if ((error = xlog_find_verify_cycle(log, start_blk, 1499 (int)num_scan_bblks, 0, &new_blk))) 1500 goto out_free_buffer; 1501 if (new_blk != -1) 1502 last_blk = new_blk; 1503 1504 /* 1505 * Potentially backup over partial log record write. We don't need 1506 * to search the end of the log because we know it is zero. 1507 */ 1508 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0); 1509 if (error == 1) 1510 error = -EIO; 1511 if (error) 1512 goto out_free_buffer; 1513 1514 *blk_no = last_blk; 1515 out_free_buffer: 1516 kmem_free(buffer); 1517 if (error) 1518 return error; 1519 return 1; 1520 } 1521 1522 /* 1523 * These are simple subroutines used by xlog_clear_stale_blocks() below 1524 * to initialize a buffer full of empty log record headers and write 1525 * them into the log. 1526 */ 1527 STATIC void 1528 xlog_add_record( 1529 struct xlog *log, 1530 char *buf, 1531 int cycle, 1532 int block, 1533 int tail_cycle, 1534 int tail_block) 1535 { 1536 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1537 1538 memset(buf, 0, BBSIZE); 1539 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1540 recp->h_cycle = cpu_to_be32(cycle); 1541 recp->h_version = cpu_to_be32( 1542 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1543 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1544 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1545 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1546 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1547 } 1548 1549 STATIC int 1550 xlog_write_log_records( 1551 struct xlog *log, 1552 int cycle, 1553 int start_block, 1554 int blocks, 1555 int tail_cycle, 1556 int tail_block) 1557 { 1558 char *offset; 1559 char *buffer; 1560 int balign, ealign; 1561 int sectbb = log->l_sectBBsize; 1562 int end_block = start_block + blocks; 1563 int bufblks; 1564 int error = 0; 1565 int i, j = 0; 1566 1567 /* 1568 * Greedily allocate a buffer big enough to handle the full 1569 * range of basic blocks to be written. If that fails, try 1570 * a smaller size. We need to be able to write at least a 1571 * log sector, or we're out of luck. 1572 */ 1573 bufblks = 1 << ffs(blocks); 1574 while (bufblks > log->l_logBBsize) 1575 bufblks >>= 1; 1576 while (!(buffer = xlog_alloc_buffer(log, bufblks))) { 1577 bufblks >>= 1; 1578 if (bufblks < sectbb) 1579 return -ENOMEM; 1580 } 1581 1582 /* We may need to do a read at the start to fill in part of 1583 * the buffer in the starting sector not covered by the first 1584 * write below. 1585 */ 1586 balign = round_down(start_block, sectbb); 1587 if (balign != start_block) { 1588 error = xlog_bread_noalign(log, start_block, 1, buffer); 1589 if (error) 1590 goto out_free_buffer; 1591 1592 j = start_block - balign; 1593 } 1594 1595 for (i = start_block; i < end_block; i += bufblks) { 1596 int bcount, endcount; 1597 1598 bcount = min(bufblks, end_block - start_block); 1599 endcount = bcount - j; 1600 1601 /* We may need to do a read at the end to fill in part of 1602 * the buffer in the final sector not covered by the write. 1603 * If this is the same sector as the above read, skip it. 1604 */ 1605 ealign = round_down(end_block, sectbb); 1606 if (j == 0 && (start_block + endcount > ealign)) { 1607 error = xlog_bread_noalign(log, ealign, sectbb, 1608 buffer + BBTOB(ealign - start_block)); 1609 if (error) 1610 break; 1611 1612 } 1613 1614 offset = buffer + xlog_align(log, start_block); 1615 for (; j < endcount; j++) { 1616 xlog_add_record(log, offset, cycle, i+j, 1617 tail_cycle, tail_block); 1618 offset += BBSIZE; 1619 } 1620 error = xlog_bwrite(log, start_block, endcount, buffer); 1621 if (error) 1622 break; 1623 start_block += endcount; 1624 j = 0; 1625 } 1626 1627 out_free_buffer: 1628 kmem_free(buffer); 1629 return error; 1630 } 1631 1632 /* 1633 * This routine is called to blow away any incomplete log writes out 1634 * in front of the log head. We do this so that we won't become confused 1635 * if we come up, write only a little bit more, and then crash again. 1636 * If we leave the partial log records out there, this situation could 1637 * cause us to think those partial writes are valid blocks since they 1638 * have the current cycle number. We get rid of them by overwriting them 1639 * with empty log records with the old cycle number rather than the 1640 * current one. 1641 * 1642 * The tail lsn is passed in rather than taken from 1643 * the log so that we will not write over the unmount record after a 1644 * clean unmount in a 512 block log. Doing so would leave the log without 1645 * any valid log records in it until a new one was written. If we crashed 1646 * during that time we would not be able to recover. 1647 */ 1648 STATIC int 1649 xlog_clear_stale_blocks( 1650 struct xlog *log, 1651 xfs_lsn_t tail_lsn) 1652 { 1653 int tail_cycle, head_cycle; 1654 int tail_block, head_block; 1655 int tail_distance, max_distance; 1656 int distance; 1657 int error; 1658 1659 tail_cycle = CYCLE_LSN(tail_lsn); 1660 tail_block = BLOCK_LSN(tail_lsn); 1661 head_cycle = log->l_curr_cycle; 1662 head_block = log->l_curr_block; 1663 1664 /* 1665 * Figure out the distance between the new head of the log 1666 * and the tail. We want to write over any blocks beyond the 1667 * head that we may have written just before the crash, but 1668 * we don't want to overwrite the tail of the log. 1669 */ 1670 if (head_cycle == tail_cycle) { 1671 /* 1672 * The tail is behind the head in the physical log, 1673 * so the distance from the head to the tail is the 1674 * distance from the head to the end of the log plus 1675 * the distance from the beginning of the log to the 1676 * tail. 1677 */ 1678 if (XFS_IS_CORRUPT(log->l_mp, 1679 head_block < tail_block || 1680 head_block >= log->l_logBBsize)) 1681 return -EFSCORRUPTED; 1682 tail_distance = tail_block + (log->l_logBBsize - head_block); 1683 } else { 1684 /* 1685 * The head is behind the tail in the physical log, 1686 * so the distance from the head to the tail is just 1687 * the tail block minus the head block. 1688 */ 1689 if (XFS_IS_CORRUPT(log->l_mp, 1690 head_block >= tail_block || 1691 head_cycle != tail_cycle + 1)) 1692 return -EFSCORRUPTED; 1693 tail_distance = tail_block - head_block; 1694 } 1695 1696 /* 1697 * If the head is right up against the tail, we can't clear 1698 * anything. 1699 */ 1700 if (tail_distance <= 0) { 1701 ASSERT(tail_distance == 0); 1702 return 0; 1703 } 1704 1705 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1706 /* 1707 * Take the smaller of the maximum amount of outstanding I/O 1708 * we could have and the distance to the tail to clear out. 1709 * We take the smaller so that we don't overwrite the tail and 1710 * we don't waste all day writing from the head to the tail 1711 * for no reason. 1712 */ 1713 max_distance = min(max_distance, tail_distance); 1714 1715 if ((head_block + max_distance) <= log->l_logBBsize) { 1716 /* 1717 * We can stomp all the blocks we need to without 1718 * wrapping around the end of the log. Just do it 1719 * in a single write. Use the cycle number of the 1720 * current cycle minus one so that the log will look like: 1721 * n ... | n - 1 ... 1722 */ 1723 error = xlog_write_log_records(log, (head_cycle - 1), 1724 head_block, max_distance, tail_cycle, 1725 tail_block); 1726 if (error) 1727 return error; 1728 } else { 1729 /* 1730 * We need to wrap around the end of the physical log in 1731 * order to clear all the blocks. Do it in two separate 1732 * I/Os. The first write should be from the head to the 1733 * end of the physical log, and it should use the current 1734 * cycle number minus one just like above. 1735 */ 1736 distance = log->l_logBBsize - head_block; 1737 error = xlog_write_log_records(log, (head_cycle - 1), 1738 head_block, distance, tail_cycle, 1739 tail_block); 1740 1741 if (error) 1742 return error; 1743 1744 /* 1745 * Now write the blocks at the start of the physical log. 1746 * This writes the remainder of the blocks we want to clear. 1747 * It uses the current cycle number since we're now on the 1748 * same cycle as the head so that we get: 1749 * n ... n ... | n - 1 ... 1750 * ^^^^^ blocks we're writing 1751 */ 1752 distance = max_distance - (log->l_logBBsize - head_block); 1753 error = xlog_write_log_records(log, head_cycle, 0, distance, 1754 tail_cycle, tail_block); 1755 if (error) 1756 return error; 1757 } 1758 1759 return 0; 1760 } 1761 1762 /* 1763 * Release the recovered intent item in the AIL that matches the given intent 1764 * type and intent id. 1765 */ 1766 void 1767 xlog_recover_release_intent( 1768 struct xlog *log, 1769 unsigned short intent_type, 1770 uint64_t intent_id) 1771 { 1772 struct xfs_ail_cursor cur; 1773 struct xfs_log_item *lip; 1774 struct xfs_ail *ailp = log->l_ailp; 1775 1776 spin_lock(&ailp->ail_lock); 1777 for (lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); lip != NULL; 1778 lip = xfs_trans_ail_cursor_next(ailp, &cur)) { 1779 if (lip->li_type != intent_type) 1780 continue; 1781 if (!lip->li_ops->iop_match(lip, intent_id)) 1782 continue; 1783 1784 spin_unlock(&ailp->ail_lock); 1785 lip->li_ops->iop_release(lip); 1786 spin_lock(&ailp->ail_lock); 1787 break; 1788 } 1789 1790 xfs_trans_ail_cursor_done(&cur); 1791 spin_unlock(&ailp->ail_lock); 1792 } 1793 1794 /****************************************************************************** 1795 * 1796 * Log recover routines 1797 * 1798 ****************************************************************************** 1799 */ 1800 static const struct xlog_recover_item_ops *xlog_recover_item_ops[] = { 1801 &xlog_buf_item_ops, 1802 &xlog_inode_item_ops, 1803 &xlog_dquot_item_ops, 1804 &xlog_quotaoff_item_ops, 1805 &xlog_icreate_item_ops, 1806 &xlog_efi_item_ops, 1807 &xlog_efd_item_ops, 1808 &xlog_rui_item_ops, 1809 &xlog_rud_item_ops, 1810 &xlog_cui_item_ops, 1811 &xlog_cud_item_ops, 1812 &xlog_bui_item_ops, 1813 &xlog_bud_item_ops, 1814 }; 1815 1816 static const struct xlog_recover_item_ops * 1817 xlog_find_item_ops( 1818 struct xlog_recover_item *item) 1819 { 1820 unsigned int i; 1821 1822 for (i = 0; i < ARRAY_SIZE(xlog_recover_item_ops); i++) 1823 if (ITEM_TYPE(item) == xlog_recover_item_ops[i]->item_type) 1824 return xlog_recover_item_ops[i]; 1825 1826 return NULL; 1827 } 1828 1829 /* 1830 * Sort the log items in the transaction. 1831 * 1832 * The ordering constraints are defined by the inode allocation and unlink 1833 * behaviour. The rules are: 1834 * 1835 * 1. Every item is only logged once in a given transaction. Hence it 1836 * represents the last logged state of the item. Hence ordering is 1837 * dependent on the order in which operations need to be performed so 1838 * required initial conditions are always met. 1839 * 1840 * 2. Cancelled buffers are recorded in pass 1 in a separate table and 1841 * there's nothing to replay from them so we can simply cull them 1842 * from the transaction. However, we can't do that until after we've 1843 * replayed all the other items because they may be dependent on the 1844 * cancelled buffer and replaying the cancelled buffer can remove it 1845 * form the cancelled buffer table. Hence they have tobe done last. 1846 * 1847 * 3. Inode allocation buffers must be replayed before inode items that 1848 * read the buffer and replay changes into it. For filesystems using the 1849 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get 1850 * treated the same as inode allocation buffers as they create and 1851 * initialise the buffers directly. 1852 * 1853 * 4. Inode unlink buffers must be replayed after inode items are replayed. 1854 * This ensures that inodes are completely flushed to the inode buffer 1855 * in a "free" state before we remove the unlinked inode list pointer. 1856 * 1857 * Hence the ordering needs to be inode allocation buffers first, inode items 1858 * second, inode unlink buffers third and cancelled buffers last. 1859 * 1860 * But there's a problem with that - we can't tell an inode allocation buffer 1861 * apart from a regular buffer, so we can't separate them. We can, however, 1862 * tell an inode unlink buffer from the others, and so we can separate them out 1863 * from all the other buffers and move them to last. 1864 * 1865 * Hence, 4 lists, in order from head to tail: 1866 * - buffer_list for all buffers except cancelled/inode unlink buffers 1867 * - item_list for all non-buffer items 1868 * - inode_buffer_list for inode unlink buffers 1869 * - cancel_list for the cancelled buffers 1870 * 1871 * Note that we add objects to the tail of the lists so that first-to-last 1872 * ordering is preserved within the lists. Adding objects to the head of the 1873 * list means when we traverse from the head we walk them in last-to-first 1874 * order. For cancelled buffers and inode unlink buffers this doesn't matter, 1875 * but for all other items there may be specific ordering that we need to 1876 * preserve. 1877 */ 1878 STATIC int 1879 xlog_recover_reorder_trans( 1880 struct xlog *log, 1881 struct xlog_recover *trans, 1882 int pass) 1883 { 1884 struct xlog_recover_item *item, *n; 1885 int error = 0; 1886 LIST_HEAD(sort_list); 1887 LIST_HEAD(cancel_list); 1888 LIST_HEAD(buffer_list); 1889 LIST_HEAD(inode_buffer_list); 1890 LIST_HEAD(item_list); 1891 1892 list_splice_init(&trans->r_itemq, &sort_list); 1893 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1894 enum xlog_recover_reorder fate = XLOG_REORDER_ITEM_LIST; 1895 1896 item->ri_ops = xlog_find_item_ops(item); 1897 if (!item->ri_ops) { 1898 xfs_warn(log->l_mp, 1899 "%s: unrecognized type of log operation (%d)", 1900 __func__, ITEM_TYPE(item)); 1901 ASSERT(0); 1902 /* 1903 * return the remaining items back to the transaction 1904 * item list so they can be freed in caller. 1905 */ 1906 if (!list_empty(&sort_list)) 1907 list_splice_init(&sort_list, &trans->r_itemq); 1908 error = -EFSCORRUPTED; 1909 break; 1910 } 1911 1912 if (item->ri_ops->reorder) 1913 fate = item->ri_ops->reorder(item); 1914 1915 switch (fate) { 1916 case XLOG_REORDER_BUFFER_LIST: 1917 list_move_tail(&item->ri_list, &buffer_list); 1918 break; 1919 case XLOG_REORDER_CANCEL_LIST: 1920 trace_xfs_log_recover_item_reorder_head(log, 1921 trans, item, pass); 1922 list_move(&item->ri_list, &cancel_list); 1923 break; 1924 case XLOG_REORDER_INODE_BUFFER_LIST: 1925 list_move(&item->ri_list, &inode_buffer_list); 1926 break; 1927 case XLOG_REORDER_ITEM_LIST: 1928 trace_xfs_log_recover_item_reorder_tail(log, 1929 trans, item, pass); 1930 list_move_tail(&item->ri_list, &item_list); 1931 break; 1932 } 1933 } 1934 1935 ASSERT(list_empty(&sort_list)); 1936 if (!list_empty(&buffer_list)) 1937 list_splice(&buffer_list, &trans->r_itemq); 1938 if (!list_empty(&item_list)) 1939 list_splice_tail(&item_list, &trans->r_itemq); 1940 if (!list_empty(&inode_buffer_list)) 1941 list_splice_tail(&inode_buffer_list, &trans->r_itemq); 1942 if (!list_empty(&cancel_list)) 1943 list_splice_tail(&cancel_list, &trans->r_itemq); 1944 return error; 1945 } 1946 1947 void 1948 xlog_buf_readahead( 1949 struct xlog *log, 1950 xfs_daddr_t blkno, 1951 uint len, 1952 const struct xfs_buf_ops *ops) 1953 { 1954 if (!xlog_is_buffer_cancelled(log, blkno, len)) 1955 xfs_buf_readahead(log->l_mp->m_ddev_targp, blkno, len, ops); 1956 } 1957 1958 STATIC int 1959 xlog_recover_items_pass2( 1960 struct xlog *log, 1961 struct xlog_recover *trans, 1962 struct list_head *buffer_list, 1963 struct list_head *item_list) 1964 { 1965 struct xlog_recover_item *item; 1966 int error = 0; 1967 1968 list_for_each_entry(item, item_list, ri_list) { 1969 trace_xfs_log_recover_item_recover(log, trans, item, 1970 XLOG_RECOVER_PASS2); 1971 1972 if (item->ri_ops->commit_pass2) 1973 error = item->ri_ops->commit_pass2(log, buffer_list, 1974 item, trans->r_lsn); 1975 if (error) 1976 return error; 1977 } 1978 1979 return error; 1980 } 1981 1982 /* 1983 * Perform the transaction. 1984 * 1985 * If the transaction modifies a buffer or inode, do it now. Otherwise, 1986 * EFIs and EFDs get queued up by adding entries into the AIL for them. 1987 */ 1988 STATIC int 1989 xlog_recover_commit_trans( 1990 struct xlog *log, 1991 struct xlog_recover *trans, 1992 int pass, 1993 struct list_head *buffer_list) 1994 { 1995 int error = 0; 1996 int items_queued = 0; 1997 struct xlog_recover_item *item; 1998 struct xlog_recover_item *next; 1999 LIST_HEAD (ra_list); 2000 LIST_HEAD (done_list); 2001 2002 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100 2003 2004 hlist_del_init(&trans->r_list); 2005 2006 error = xlog_recover_reorder_trans(log, trans, pass); 2007 if (error) 2008 return error; 2009 2010 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) { 2011 trace_xfs_log_recover_item_recover(log, trans, item, pass); 2012 2013 switch (pass) { 2014 case XLOG_RECOVER_PASS1: 2015 if (item->ri_ops->commit_pass1) 2016 error = item->ri_ops->commit_pass1(log, item); 2017 break; 2018 case XLOG_RECOVER_PASS2: 2019 if (item->ri_ops->ra_pass2) 2020 item->ri_ops->ra_pass2(log, item); 2021 list_move_tail(&item->ri_list, &ra_list); 2022 items_queued++; 2023 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) { 2024 error = xlog_recover_items_pass2(log, trans, 2025 buffer_list, &ra_list); 2026 list_splice_tail_init(&ra_list, &done_list); 2027 items_queued = 0; 2028 } 2029 2030 break; 2031 default: 2032 ASSERT(0); 2033 } 2034 2035 if (error) 2036 goto out; 2037 } 2038 2039 out: 2040 if (!list_empty(&ra_list)) { 2041 if (!error) 2042 error = xlog_recover_items_pass2(log, trans, 2043 buffer_list, &ra_list); 2044 list_splice_tail_init(&ra_list, &done_list); 2045 } 2046 2047 if (!list_empty(&done_list)) 2048 list_splice_init(&done_list, &trans->r_itemq); 2049 2050 return error; 2051 } 2052 2053 STATIC void 2054 xlog_recover_add_item( 2055 struct list_head *head) 2056 { 2057 struct xlog_recover_item *item; 2058 2059 item = kmem_zalloc(sizeof(struct xlog_recover_item), 0); 2060 INIT_LIST_HEAD(&item->ri_list); 2061 list_add_tail(&item->ri_list, head); 2062 } 2063 2064 STATIC int 2065 xlog_recover_add_to_cont_trans( 2066 struct xlog *log, 2067 struct xlog_recover *trans, 2068 char *dp, 2069 int len) 2070 { 2071 struct xlog_recover_item *item; 2072 char *ptr, *old_ptr; 2073 int old_len; 2074 2075 /* 2076 * If the transaction is empty, the header was split across this and the 2077 * previous record. Copy the rest of the header. 2078 */ 2079 if (list_empty(&trans->r_itemq)) { 2080 ASSERT(len <= sizeof(struct xfs_trans_header)); 2081 if (len > sizeof(struct xfs_trans_header)) { 2082 xfs_warn(log->l_mp, "%s: bad header length", __func__); 2083 return -EFSCORRUPTED; 2084 } 2085 2086 xlog_recover_add_item(&trans->r_itemq); 2087 ptr = (char *)&trans->r_theader + 2088 sizeof(struct xfs_trans_header) - len; 2089 memcpy(ptr, dp, len); 2090 return 0; 2091 } 2092 2093 /* take the tail entry */ 2094 item = list_entry(trans->r_itemq.prev, struct xlog_recover_item, 2095 ri_list); 2096 2097 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 2098 old_len = item->ri_buf[item->ri_cnt-1].i_len; 2099 2100 ptr = kmem_realloc(old_ptr, len + old_len, 0); 2101 memcpy(&ptr[old_len], dp, len); 2102 item->ri_buf[item->ri_cnt-1].i_len += len; 2103 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 2104 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 2105 return 0; 2106 } 2107 2108 /* 2109 * The next region to add is the start of a new region. It could be 2110 * a whole region or it could be the first part of a new region. Because 2111 * of this, the assumption here is that the type and size fields of all 2112 * format structures fit into the first 32 bits of the structure. 2113 * 2114 * This works because all regions must be 32 bit aligned. Therefore, we 2115 * either have both fields or we have neither field. In the case we have 2116 * neither field, the data part of the region is zero length. We only have 2117 * a log_op_header and can throw away the header since a new one will appear 2118 * later. If we have at least 4 bytes, then we can determine how many regions 2119 * will appear in the current log item. 2120 */ 2121 STATIC int 2122 xlog_recover_add_to_trans( 2123 struct xlog *log, 2124 struct xlog_recover *trans, 2125 char *dp, 2126 int len) 2127 { 2128 struct xfs_inode_log_format *in_f; /* any will do */ 2129 struct xlog_recover_item *item; 2130 char *ptr; 2131 2132 if (!len) 2133 return 0; 2134 if (list_empty(&trans->r_itemq)) { 2135 /* we need to catch log corruptions here */ 2136 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 2137 xfs_warn(log->l_mp, "%s: bad header magic number", 2138 __func__); 2139 ASSERT(0); 2140 return -EFSCORRUPTED; 2141 } 2142 2143 if (len > sizeof(struct xfs_trans_header)) { 2144 xfs_warn(log->l_mp, "%s: bad header length", __func__); 2145 ASSERT(0); 2146 return -EFSCORRUPTED; 2147 } 2148 2149 /* 2150 * The transaction header can be arbitrarily split across op 2151 * records. If we don't have the whole thing here, copy what we 2152 * do have and handle the rest in the next record. 2153 */ 2154 if (len == sizeof(struct xfs_trans_header)) 2155 xlog_recover_add_item(&trans->r_itemq); 2156 memcpy(&trans->r_theader, dp, len); 2157 return 0; 2158 } 2159 2160 ptr = kmem_alloc(len, 0); 2161 memcpy(ptr, dp, len); 2162 in_f = (struct xfs_inode_log_format *)ptr; 2163 2164 /* take the tail entry */ 2165 item = list_entry(trans->r_itemq.prev, struct xlog_recover_item, 2166 ri_list); 2167 if (item->ri_total != 0 && 2168 item->ri_total == item->ri_cnt) { 2169 /* tail item is in use, get a new one */ 2170 xlog_recover_add_item(&trans->r_itemq); 2171 item = list_entry(trans->r_itemq.prev, 2172 struct xlog_recover_item, ri_list); 2173 } 2174 2175 if (item->ri_total == 0) { /* first region to be added */ 2176 if (in_f->ilf_size == 0 || 2177 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 2178 xfs_warn(log->l_mp, 2179 "bad number of regions (%d) in inode log format", 2180 in_f->ilf_size); 2181 ASSERT(0); 2182 kmem_free(ptr); 2183 return -EFSCORRUPTED; 2184 } 2185 2186 item->ri_total = in_f->ilf_size; 2187 item->ri_buf = 2188 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 2189 0); 2190 } 2191 2192 if (item->ri_total <= item->ri_cnt) { 2193 xfs_warn(log->l_mp, 2194 "log item region count (%d) overflowed size (%d)", 2195 item->ri_cnt, item->ri_total); 2196 ASSERT(0); 2197 kmem_free(ptr); 2198 return -EFSCORRUPTED; 2199 } 2200 2201 /* Description region is ri_buf[0] */ 2202 item->ri_buf[item->ri_cnt].i_addr = ptr; 2203 item->ri_buf[item->ri_cnt].i_len = len; 2204 item->ri_cnt++; 2205 trace_xfs_log_recover_item_add(log, trans, item, 0); 2206 return 0; 2207 } 2208 2209 /* 2210 * Free up any resources allocated by the transaction 2211 * 2212 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 2213 */ 2214 STATIC void 2215 xlog_recover_free_trans( 2216 struct xlog_recover *trans) 2217 { 2218 struct xlog_recover_item *item, *n; 2219 int i; 2220 2221 hlist_del_init(&trans->r_list); 2222 2223 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 2224 /* Free the regions in the item. */ 2225 list_del(&item->ri_list); 2226 for (i = 0; i < item->ri_cnt; i++) 2227 kmem_free(item->ri_buf[i].i_addr); 2228 /* Free the item itself */ 2229 kmem_free(item->ri_buf); 2230 kmem_free(item); 2231 } 2232 /* Free the transaction recover structure */ 2233 kmem_free(trans); 2234 } 2235 2236 /* 2237 * On error or completion, trans is freed. 2238 */ 2239 STATIC int 2240 xlog_recovery_process_trans( 2241 struct xlog *log, 2242 struct xlog_recover *trans, 2243 char *dp, 2244 unsigned int len, 2245 unsigned int flags, 2246 int pass, 2247 struct list_head *buffer_list) 2248 { 2249 int error = 0; 2250 bool freeit = false; 2251 2252 /* mask off ophdr transaction container flags */ 2253 flags &= ~XLOG_END_TRANS; 2254 if (flags & XLOG_WAS_CONT_TRANS) 2255 flags &= ~XLOG_CONTINUE_TRANS; 2256 2257 /* 2258 * Callees must not free the trans structure. We'll decide if we need to 2259 * free it or not based on the operation being done and it's result. 2260 */ 2261 switch (flags) { 2262 /* expected flag values */ 2263 case 0: 2264 case XLOG_CONTINUE_TRANS: 2265 error = xlog_recover_add_to_trans(log, trans, dp, len); 2266 break; 2267 case XLOG_WAS_CONT_TRANS: 2268 error = xlog_recover_add_to_cont_trans(log, trans, dp, len); 2269 break; 2270 case XLOG_COMMIT_TRANS: 2271 error = xlog_recover_commit_trans(log, trans, pass, 2272 buffer_list); 2273 /* success or fail, we are now done with this transaction. */ 2274 freeit = true; 2275 break; 2276 2277 /* unexpected flag values */ 2278 case XLOG_UNMOUNT_TRANS: 2279 /* just skip trans */ 2280 xfs_warn(log->l_mp, "%s: Unmount LR", __func__); 2281 freeit = true; 2282 break; 2283 case XLOG_START_TRANS: 2284 default: 2285 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags); 2286 ASSERT(0); 2287 error = -EFSCORRUPTED; 2288 break; 2289 } 2290 if (error || freeit) 2291 xlog_recover_free_trans(trans); 2292 return error; 2293 } 2294 2295 /* 2296 * Lookup the transaction recovery structure associated with the ID in the 2297 * current ophdr. If the transaction doesn't exist and the start flag is set in 2298 * the ophdr, then allocate a new transaction for future ID matches to find. 2299 * Either way, return what we found during the lookup - an existing transaction 2300 * or nothing. 2301 */ 2302 STATIC struct xlog_recover * 2303 xlog_recover_ophdr_to_trans( 2304 struct hlist_head rhash[], 2305 struct xlog_rec_header *rhead, 2306 struct xlog_op_header *ohead) 2307 { 2308 struct xlog_recover *trans; 2309 xlog_tid_t tid; 2310 struct hlist_head *rhp; 2311 2312 tid = be32_to_cpu(ohead->oh_tid); 2313 rhp = &rhash[XLOG_RHASH(tid)]; 2314 hlist_for_each_entry(trans, rhp, r_list) { 2315 if (trans->r_log_tid == tid) 2316 return trans; 2317 } 2318 2319 /* 2320 * skip over non-start transaction headers - we could be 2321 * processing slack space before the next transaction starts 2322 */ 2323 if (!(ohead->oh_flags & XLOG_START_TRANS)) 2324 return NULL; 2325 2326 ASSERT(be32_to_cpu(ohead->oh_len) == 0); 2327 2328 /* 2329 * This is a new transaction so allocate a new recovery container to 2330 * hold the recovery ops that will follow. 2331 */ 2332 trans = kmem_zalloc(sizeof(struct xlog_recover), 0); 2333 trans->r_log_tid = tid; 2334 trans->r_lsn = be64_to_cpu(rhead->h_lsn); 2335 INIT_LIST_HEAD(&trans->r_itemq); 2336 INIT_HLIST_NODE(&trans->r_list); 2337 hlist_add_head(&trans->r_list, rhp); 2338 2339 /* 2340 * Nothing more to do for this ophdr. Items to be added to this new 2341 * transaction will be in subsequent ophdr containers. 2342 */ 2343 return NULL; 2344 } 2345 2346 STATIC int 2347 xlog_recover_process_ophdr( 2348 struct xlog *log, 2349 struct hlist_head rhash[], 2350 struct xlog_rec_header *rhead, 2351 struct xlog_op_header *ohead, 2352 char *dp, 2353 char *end, 2354 int pass, 2355 struct list_head *buffer_list) 2356 { 2357 struct xlog_recover *trans; 2358 unsigned int len; 2359 int error; 2360 2361 /* Do we understand who wrote this op? */ 2362 if (ohead->oh_clientid != XFS_TRANSACTION && 2363 ohead->oh_clientid != XFS_LOG) { 2364 xfs_warn(log->l_mp, "%s: bad clientid 0x%x", 2365 __func__, ohead->oh_clientid); 2366 ASSERT(0); 2367 return -EFSCORRUPTED; 2368 } 2369 2370 /* 2371 * Check the ophdr contains all the data it is supposed to contain. 2372 */ 2373 len = be32_to_cpu(ohead->oh_len); 2374 if (dp + len > end) { 2375 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len); 2376 WARN_ON(1); 2377 return -EFSCORRUPTED; 2378 } 2379 2380 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead); 2381 if (!trans) { 2382 /* nothing to do, so skip over this ophdr */ 2383 return 0; 2384 } 2385 2386 /* 2387 * The recovered buffer queue is drained only once we know that all 2388 * recovery items for the current LSN have been processed. This is 2389 * required because: 2390 * 2391 * - Buffer write submission updates the metadata LSN of the buffer. 2392 * - Log recovery skips items with a metadata LSN >= the current LSN of 2393 * the recovery item. 2394 * - Separate recovery items against the same metadata buffer can share 2395 * a current LSN. I.e., consider that the LSN of a recovery item is 2396 * defined as the starting LSN of the first record in which its 2397 * transaction appears, that a record can hold multiple transactions, 2398 * and/or that a transaction can span multiple records. 2399 * 2400 * In other words, we are allowed to submit a buffer from log recovery 2401 * once per current LSN. Otherwise, we may incorrectly skip recovery 2402 * items and cause corruption. 2403 * 2404 * We don't know up front whether buffers are updated multiple times per 2405 * LSN. Therefore, track the current LSN of each commit log record as it 2406 * is processed and drain the queue when it changes. Use commit records 2407 * because they are ordered correctly by the logging code. 2408 */ 2409 if (log->l_recovery_lsn != trans->r_lsn && 2410 ohead->oh_flags & XLOG_COMMIT_TRANS) { 2411 error = xfs_buf_delwri_submit(buffer_list); 2412 if (error) 2413 return error; 2414 log->l_recovery_lsn = trans->r_lsn; 2415 } 2416 2417 return xlog_recovery_process_trans(log, trans, dp, len, 2418 ohead->oh_flags, pass, buffer_list); 2419 } 2420 2421 /* 2422 * There are two valid states of the r_state field. 0 indicates that the 2423 * transaction structure is in a normal state. We have either seen the 2424 * start of the transaction or the last operation we added was not a partial 2425 * operation. If the last operation we added to the transaction was a 2426 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 2427 * 2428 * NOTE: skip LRs with 0 data length. 2429 */ 2430 STATIC int 2431 xlog_recover_process_data( 2432 struct xlog *log, 2433 struct hlist_head rhash[], 2434 struct xlog_rec_header *rhead, 2435 char *dp, 2436 int pass, 2437 struct list_head *buffer_list) 2438 { 2439 struct xlog_op_header *ohead; 2440 char *end; 2441 int num_logops; 2442 int error; 2443 2444 end = dp + be32_to_cpu(rhead->h_len); 2445 num_logops = be32_to_cpu(rhead->h_num_logops); 2446 2447 /* check the log format matches our own - else we can't recover */ 2448 if (xlog_header_check_recover(log->l_mp, rhead)) 2449 return -EIO; 2450 2451 trace_xfs_log_recover_record(log, rhead, pass); 2452 while ((dp < end) && num_logops) { 2453 2454 ohead = (struct xlog_op_header *)dp; 2455 dp += sizeof(*ohead); 2456 ASSERT(dp <= end); 2457 2458 /* errors will abort recovery */ 2459 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead, 2460 dp, end, pass, buffer_list); 2461 if (error) 2462 return error; 2463 2464 dp += be32_to_cpu(ohead->oh_len); 2465 num_logops--; 2466 } 2467 return 0; 2468 } 2469 2470 /* Take all the collected deferred ops and finish them in order. */ 2471 static int 2472 xlog_finish_defer_ops( 2473 struct xfs_trans *parent_tp) 2474 { 2475 struct xfs_mount *mp = parent_tp->t_mountp; 2476 struct xfs_trans *tp; 2477 int64_t freeblks; 2478 uint resblks; 2479 int error; 2480 2481 /* 2482 * We're finishing the defer_ops that accumulated as a result of 2483 * recovering unfinished intent items during log recovery. We 2484 * reserve an itruncate transaction because it is the largest 2485 * permanent transaction type. Since we're the only user of the fs 2486 * right now, take 93% (15/16) of the available free blocks. Use 2487 * weird math to avoid a 64-bit division. 2488 */ 2489 freeblks = percpu_counter_sum(&mp->m_fdblocks); 2490 if (freeblks <= 0) 2491 return -ENOSPC; 2492 resblks = min_t(int64_t, UINT_MAX, freeblks); 2493 resblks = (resblks * 15) >> 4; 2494 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks, 2495 0, XFS_TRANS_RESERVE, &tp); 2496 if (error) 2497 return error; 2498 /* transfer all collected dfops to this transaction */ 2499 xfs_defer_move(tp, parent_tp); 2500 2501 return xfs_trans_commit(tp); 2502 } 2503 2504 /* Is this log item a deferred action intent? */ 2505 static inline bool xlog_item_is_intent(struct xfs_log_item *lip) 2506 { 2507 return lip->li_ops->iop_recover != NULL && 2508 lip->li_ops->iop_match != NULL; 2509 } 2510 2511 /* 2512 * When this is called, all of the log intent items which did not have 2513 * corresponding log done items should be in the AIL. What we do now 2514 * is update the data structures associated with each one. 2515 * 2516 * Since we process the log intent items in normal transactions, they 2517 * will be removed at some point after the commit. This prevents us 2518 * from just walking down the list processing each one. We'll use a 2519 * flag in the intent item to skip those that we've already processed 2520 * and use the AIL iteration mechanism's generation count to try to 2521 * speed this up at least a bit. 2522 * 2523 * When we start, we know that the intents are the only things in the 2524 * AIL. As we process them, however, other items are added to the 2525 * AIL. 2526 */ 2527 STATIC int 2528 xlog_recover_process_intents( 2529 struct xlog *log) 2530 { 2531 struct xfs_trans *parent_tp; 2532 struct xfs_ail_cursor cur; 2533 struct xfs_log_item *lip; 2534 struct xfs_ail *ailp; 2535 int error; 2536 #if defined(DEBUG) || defined(XFS_WARN) 2537 xfs_lsn_t last_lsn; 2538 #endif 2539 2540 /* 2541 * The intent recovery handlers commit transactions to complete recovery 2542 * for individual intents, but any new deferred operations that are 2543 * queued during that process are held off until the very end. The 2544 * purpose of this transaction is to serve as a container for deferred 2545 * operations. Each intent recovery handler must transfer dfops here 2546 * before its local transaction commits, and we'll finish the entire 2547 * list below. 2548 */ 2549 error = xfs_trans_alloc_empty(log->l_mp, &parent_tp); 2550 if (error) 2551 return error; 2552 2553 ailp = log->l_ailp; 2554 spin_lock(&ailp->ail_lock); 2555 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 2556 #if defined(DEBUG) || defined(XFS_WARN) 2557 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block); 2558 #endif 2559 while (lip != NULL) { 2560 /* 2561 * We're done when we see something other than an intent. 2562 * There should be no intents left in the AIL now. 2563 */ 2564 if (!xlog_item_is_intent(lip)) { 2565 #ifdef DEBUG 2566 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 2567 ASSERT(!xlog_item_is_intent(lip)); 2568 #endif 2569 break; 2570 } 2571 2572 /* 2573 * We should never see a redo item with a LSN higher than 2574 * the last transaction we found in the log at the start 2575 * of recovery. 2576 */ 2577 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0); 2578 2579 /* 2580 * NOTE: If your intent processing routine can create more 2581 * deferred ops, you /must/ attach them to the transaction in 2582 * this routine or else those subsequent intents will get 2583 * replayed in the wrong order! 2584 */ 2585 if (!test_and_set_bit(XFS_LI_RECOVERED, &lip->li_flags)) { 2586 spin_unlock(&ailp->ail_lock); 2587 error = lip->li_ops->iop_recover(lip, parent_tp); 2588 spin_lock(&ailp->ail_lock); 2589 } 2590 if (error) 2591 goto out; 2592 lip = xfs_trans_ail_cursor_next(ailp, &cur); 2593 } 2594 out: 2595 xfs_trans_ail_cursor_done(&cur); 2596 spin_unlock(&ailp->ail_lock); 2597 if (!error) 2598 error = xlog_finish_defer_ops(parent_tp); 2599 xfs_trans_cancel(parent_tp); 2600 2601 return error; 2602 } 2603 2604 /* 2605 * A cancel occurs when the mount has failed and we're bailing out. 2606 * Release all pending log intent items so they don't pin the AIL. 2607 */ 2608 STATIC void 2609 xlog_recover_cancel_intents( 2610 struct xlog *log) 2611 { 2612 struct xfs_log_item *lip; 2613 struct xfs_ail_cursor cur; 2614 struct xfs_ail *ailp; 2615 2616 ailp = log->l_ailp; 2617 spin_lock(&ailp->ail_lock); 2618 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 2619 while (lip != NULL) { 2620 /* 2621 * We're done when we see something other than an intent. 2622 * There should be no intents left in the AIL now. 2623 */ 2624 if (!xlog_item_is_intent(lip)) { 2625 #ifdef DEBUG 2626 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 2627 ASSERT(!xlog_item_is_intent(lip)); 2628 #endif 2629 break; 2630 } 2631 2632 spin_unlock(&ailp->ail_lock); 2633 lip->li_ops->iop_release(lip); 2634 spin_lock(&ailp->ail_lock); 2635 lip = xfs_trans_ail_cursor_next(ailp, &cur); 2636 } 2637 2638 xfs_trans_ail_cursor_done(&cur); 2639 spin_unlock(&ailp->ail_lock); 2640 } 2641 2642 /* 2643 * This routine performs a transaction to null out a bad inode pointer 2644 * in an agi unlinked inode hash bucket. 2645 */ 2646 STATIC void 2647 xlog_recover_clear_agi_bucket( 2648 xfs_mount_t *mp, 2649 xfs_agnumber_t agno, 2650 int bucket) 2651 { 2652 xfs_trans_t *tp; 2653 xfs_agi_t *agi; 2654 xfs_buf_t *agibp; 2655 int offset; 2656 int error; 2657 2658 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp); 2659 if (error) 2660 goto out_error; 2661 2662 error = xfs_read_agi(mp, tp, agno, &agibp); 2663 if (error) 2664 goto out_abort; 2665 2666 agi = agibp->b_addr; 2667 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 2668 offset = offsetof(xfs_agi_t, agi_unlinked) + 2669 (sizeof(xfs_agino_t) * bucket); 2670 xfs_trans_log_buf(tp, agibp, offset, 2671 (offset + sizeof(xfs_agino_t) - 1)); 2672 2673 error = xfs_trans_commit(tp); 2674 if (error) 2675 goto out_error; 2676 return; 2677 2678 out_abort: 2679 xfs_trans_cancel(tp); 2680 out_error: 2681 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); 2682 return; 2683 } 2684 2685 STATIC xfs_agino_t 2686 xlog_recover_process_one_iunlink( 2687 struct xfs_mount *mp, 2688 xfs_agnumber_t agno, 2689 xfs_agino_t agino, 2690 int bucket) 2691 { 2692 struct xfs_buf *ibp; 2693 struct xfs_dinode *dip; 2694 struct xfs_inode *ip; 2695 xfs_ino_t ino; 2696 int error; 2697 2698 ino = XFS_AGINO_TO_INO(mp, agno, agino); 2699 error = xfs_iget(mp, NULL, ino, 0, 0, &ip); 2700 if (error) 2701 goto fail; 2702 2703 /* 2704 * Get the on disk inode to find the next inode in the bucket. 2705 */ 2706 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0); 2707 if (error) 2708 goto fail_iput; 2709 2710 xfs_iflags_clear(ip, XFS_IRECOVERY); 2711 ASSERT(VFS_I(ip)->i_nlink == 0); 2712 ASSERT(VFS_I(ip)->i_mode != 0); 2713 2714 /* setup for the next pass */ 2715 agino = be32_to_cpu(dip->di_next_unlinked); 2716 xfs_buf_relse(ibp); 2717 2718 /* 2719 * Prevent any DMAPI event from being sent when the reference on 2720 * the inode is dropped. 2721 */ 2722 ip->i_d.di_dmevmask = 0; 2723 2724 xfs_irele(ip); 2725 return agino; 2726 2727 fail_iput: 2728 xfs_irele(ip); 2729 fail: 2730 /* 2731 * We can't read in the inode this bucket points to, or this inode 2732 * is messed up. Just ditch this bucket of inodes. We will lose 2733 * some inodes and space, but at least we won't hang. 2734 * 2735 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 2736 * clear the inode pointer in the bucket. 2737 */ 2738 xlog_recover_clear_agi_bucket(mp, agno, bucket); 2739 return NULLAGINO; 2740 } 2741 2742 /* 2743 * Recover AGI unlinked lists 2744 * 2745 * This is called during recovery to process any inodes which we unlinked but 2746 * not freed when the system crashed. These inodes will be on the lists in the 2747 * AGI blocks. What we do here is scan all the AGIs and fully truncate and free 2748 * any inodes found on the lists. Each inode is removed from the lists when it 2749 * has been fully truncated and is freed. The freeing of the inode and its 2750 * removal from the list must be atomic. 2751 * 2752 * If everything we touch in the agi processing loop is already in memory, this 2753 * loop can hold the cpu for a long time. It runs without lock contention, 2754 * memory allocation contention, the need wait for IO, etc, and so will run 2755 * until we either run out of inodes to process, run low on memory or we run out 2756 * of log space. 2757 * 2758 * This behaviour is bad for latency on single CPU and non-preemptible kernels, 2759 * and can prevent other filesytem work (such as CIL pushes) from running. This 2760 * can lead to deadlocks if the recovery process runs out of log reservation 2761 * space. Hence we need to yield the CPU when there is other kernel work 2762 * scheduled on this CPU to ensure other scheduled work can run without undue 2763 * latency. 2764 */ 2765 STATIC void 2766 xlog_recover_process_iunlinks( 2767 struct xlog *log) 2768 { 2769 xfs_mount_t *mp; 2770 xfs_agnumber_t agno; 2771 xfs_agi_t *agi; 2772 xfs_buf_t *agibp; 2773 xfs_agino_t agino; 2774 int bucket; 2775 int error; 2776 2777 mp = log->l_mp; 2778 2779 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 2780 /* 2781 * Find the agi for this ag. 2782 */ 2783 error = xfs_read_agi(mp, NULL, agno, &agibp); 2784 if (error) { 2785 /* 2786 * AGI is b0rked. Don't process it. 2787 * 2788 * We should probably mark the filesystem as corrupt 2789 * after we've recovered all the ag's we can.... 2790 */ 2791 continue; 2792 } 2793 /* 2794 * Unlock the buffer so that it can be acquired in the normal 2795 * course of the transaction to truncate and free each inode. 2796 * Because we are not racing with anyone else here for the AGI 2797 * buffer, we don't even need to hold it locked to read the 2798 * initial unlinked bucket entries out of the buffer. We keep 2799 * buffer reference though, so that it stays pinned in memory 2800 * while we need the buffer. 2801 */ 2802 agi = agibp->b_addr; 2803 xfs_buf_unlock(agibp); 2804 2805 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 2806 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 2807 while (agino != NULLAGINO) { 2808 agino = xlog_recover_process_one_iunlink(mp, 2809 agno, agino, bucket); 2810 cond_resched(); 2811 } 2812 } 2813 xfs_buf_rele(agibp); 2814 } 2815 } 2816 2817 STATIC void 2818 xlog_unpack_data( 2819 struct xlog_rec_header *rhead, 2820 char *dp, 2821 struct xlog *log) 2822 { 2823 int i, j, k; 2824 2825 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 2826 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 2827 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 2828 dp += BBSIZE; 2829 } 2830 2831 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 2832 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 2833 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 2834 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 2835 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 2836 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 2837 dp += BBSIZE; 2838 } 2839 } 2840 } 2841 2842 /* 2843 * CRC check, unpack and process a log record. 2844 */ 2845 STATIC int 2846 xlog_recover_process( 2847 struct xlog *log, 2848 struct hlist_head rhash[], 2849 struct xlog_rec_header *rhead, 2850 char *dp, 2851 int pass, 2852 struct list_head *buffer_list) 2853 { 2854 __le32 old_crc = rhead->h_crc; 2855 __le32 crc; 2856 2857 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); 2858 2859 /* 2860 * Nothing else to do if this is a CRC verification pass. Just return 2861 * if this a record with a non-zero crc. Unfortunately, mkfs always 2862 * sets old_crc to 0 so we must consider this valid even on v5 supers. 2863 * Otherwise, return EFSBADCRC on failure so the callers up the stack 2864 * know precisely what failed. 2865 */ 2866 if (pass == XLOG_RECOVER_CRCPASS) { 2867 if (old_crc && crc != old_crc) 2868 return -EFSBADCRC; 2869 return 0; 2870 } 2871 2872 /* 2873 * We're in the normal recovery path. Issue a warning if and only if the 2874 * CRC in the header is non-zero. This is an advisory warning and the 2875 * zero CRC check prevents warnings from being emitted when upgrading 2876 * the kernel from one that does not add CRCs by default. 2877 */ 2878 if (crc != old_crc) { 2879 if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) { 2880 xfs_alert(log->l_mp, 2881 "log record CRC mismatch: found 0x%x, expected 0x%x.", 2882 le32_to_cpu(old_crc), 2883 le32_to_cpu(crc)); 2884 xfs_hex_dump(dp, 32); 2885 } 2886 2887 /* 2888 * If the filesystem is CRC enabled, this mismatch becomes a 2889 * fatal log corruption failure. 2890 */ 2891 if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) { 2892 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp); 2893 return -EFSCORRUPTED; 2894 } 2895 } 2896 2897 xlog_unpack_data(rhead, dp, log); 2898 2899 return xlog_recover_process_data(log, rhash, rhead, dp, pass, 2900 buffer_list); 2901 } 2902 2903 STATIC int 2904 xlog_valid_rec_header( 2905 struct xlog *log, 2906 struct xlog_rec_header *rhead, 2907 xfs_daddr_t blkno) 2908 { 2909 int hlen; 2910 2911 if (XFS_IS_CORRUPT(log->l_mp, 2912 rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) 2913 return -EFSCORRUPTED; 2914 if (XFS_IS_CORRUPT(log->l_mp, 2915 (!rhead->h_version || 2916 (be32_to_cpu(rhead->h_version) & 2917 (~XLOG_VERSION_OKBITS))))) { 2918 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", 2919 __func__, be32_to_cpu(rhead->h_version)); 2920 return -EFSCORRUPTED; 2921 } 2922 2923 /* LR body must have data or it wouldn't have been written */ 2924 hlen = be32_to_cpu(rhead->h_len); 2925 if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > INT_MAX)) 2926 return -EFSCORRUPTED; 2927 if (XFS_IS_CORRUPT(log->l_mp, 2928 blkno > log->l_logBBsize || blkno > INT_MAX)) 2929 return -EFSCORRUPTED; 2930 return 0; 2931 } 2932 2933 /* 2934 * Read the log from tail to head and process the log records found. 2935 * Handle the two cases where the tail and head are in the same cycle 2936 * and where the active portion of the log wraps around the end of 2937 * the physical log separately. The pass parameter is passed through 2938 * to the routines called to process the data and is not looked at 2939 * here. 2940 */ 2941 STATIC int 2942 xlog_do_recovery_pass( 2943 struct xlog *log, 2944 xfs_daddr_t head_blk, 2945 xfs_daddr_t tail_blk, 2946 int pass, 2947 xfs_daddr_t *first_bad) /* out: first bad log rec */ 2948 { 2949 xlog_rec_header_t *rhead; 2950 xfs_daddr_t blk_no, rblk_no; 2951 xfs_daddr_t rhead_blk; 2952 char *offset; 2953 char *hbp, *dbp; 2954 int error = 0, h_size, h_len; 2955 int error2 = 0; 2956 int bblks, split_bblks; 2957 int hblks, split_hblks, wrapped_hblks; 2958 int i; 2959 struct hlist_head rhash[XLOG_RHASH_SIZE]; 2960 LIST_HEAD (buffer_list); 2961 2962 ASSERT(head_blk != tail_blk); 2963 blk_no = rhead_blk = tail_blk; 2964 2965 for (i = 0; i < XLOG_RHASH_SIZE; i++) 2966 INIT_HLIST_HEAD(&rhash[i]); 2967 2968 /* 2969 * Read the header of the tail block and get the iclog buffer size from 2970 * h_size. Use this to tell how many sectors make up the log header. 2971 */ 2972 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 2973 /* 2974 * When using variable length iclogs, read first sector of 2975 * iclog header and extract the header size from it. Get a 2976 * new hbp that is the correct size. 2977 */ 2978 hbp = xlog_alloc_buffer(log, 1); 2979 if (!hbp) 2980 return -ENOMEM; 2981 2982 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 2983 if (error) 2984 goto bread_err1; 2985 2986 rhead = (xlog_rec_header_t *)offset; 2987 error = xlog_valid_rec_header(log, rhead, tail_blk); 2988 if (error) 2989 goto bread_err1; 2990 2991 /* 2992 * xfsprogs has a bug where record length is based on lsunit but 2993 * h_size (iclog size) is hardcoded to 32k. Now that we 2994 * unconditionally CRC verify the unmount record, this means the 2995 * log buffer can be too small for the record and cause an 2996 * overrun. 2997 * 2998 * Detect this condition here. Use lsunit for the buffer size as 2999 * long as this looks like the mkfs case. Otherwise, return an 3000 * error to avoid a buffer overrun. 3001 */ 3002 h_size = be32_to_cpu(rhead->h_size); 3003 h_len = be32_to_cpu(rhead->h_len); 3004 if (h_len > h_size) { 3005 if (h_len <= log->l_mp->m_logbsize && 3006 be32_to_cpu(rhead->h_num_logops) == 1) { 3007 xfs_warn(log->l_mp, 3008 "invalid iclog size (%d bytes), using lsunit (%d bytes)", 3009 h_size, log->l_mp->m_logbsize); 3010 h_size = log->l_mp->m_logbsize; 3011 } else { 3012 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, 3013 log->l_mp); 3014 error = -EFSCORRUPTED; 3015 goto bread_err1; 3016 } 3017 } 3018 3019 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 3020 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 3021 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 3022 if (h_size % XLOG_HEADER_CYCLE_SIZE) 3023 hblks++; 3024 kmem_free(hbp); 3025 hbp = xlog_alloc_buffer(log, hblks); 3026 } else { 3027 hblks = 1; 3028 } 3029 } else { 3030 ASSERT(log->l_sectBBsize == 1); 3031 hblks = 1; 3032 hbp = xlog_alloc_buffer(log, 1); 3033 h_size = XLOG_BIG_RECORD_BSIZE; 3034 } 3035 3036 if (!hbp) 3037 return -ENOMEM; 3038 dbp = xlog_alloc_buffer(log, BTOBB(h_size)); 3039 if (!dbp) { 3040 kmem_free(hbp); 3041 return -ENOMEM; 3042 } 3043 3044 memset(rhash, 0, sizeof(rhash)); 3045 if (tail_blk > head_blk) { 3046 /* 3047 * Perform recovery around the end of the physical log. 3048 * When the head is not on the same cycle number as the tail, 3049 * we can't do a sequential recovery. 3050 */ 3051 while (blk_no < log->l_logBBsize) { 3052 /* 3053 * Check for header wrapping around physical end-of-log 3054 */ 3055 offset = hbp; 3056 split_hblks = 0; 3057 wrapped_hblks = 0; 3058 if (blk_no + hblks <= log->l_logBBsize) { 3059 /* Read header in one read */ 3060 error = xlog_bread(log, blk_no, hblks, hbp, 3061 &offset); 3062 if (error) 3063 goto bread_err2; 3064 } else { 3065 /* This LR is split across physical log end */ 3066 if (blk_no != log->l_logBBsize) { 3067 /* some data before physical log end */ 3068 ASSERT(blk_no <= INT_MAX); 3069 split_hblks = log->l_logBBsize - (int)blk_no; 3070 ASSERT(split_hblks > 0); 3071 error = xlog_bread(log, blk_no, 3072 split_hblks, hbp, 3073 &offset); 3074 if (error) 3075 goto bread_err2; 3076 } 3077 3078 /* 3079 * Note: this black magic still works with 3080 * large sector sizes (non-512) only because: 3081 * - we increased the buffer size originally 3082 * by 1 sector giving us enough extra space 3083 * for the second read; 3084 * - the log start is guaranteed to be sector 3085 * aligned; 3086 * - we read the log end (LR header start) 3087 * _first_, then the log start (LR header end) 3088 * - order is important. 3089 */ 3090 wrapped_hblks = hblks - split_hblks; 3091 error = xlog_bread_noalign(log, 0, 3092 wrapped_hblks, 3093 offset + BBTOB(split_hblks)); 3094 if (error) 3095 goto bread_err2; 3096 } 3097 rhead = (xlog_rec_header_t *)offset; 3098 error = xlog_valid_rec_header(log, rhead, 3099 split_hblks ? blk_no : 0); 3100 if (error) 3101 goto bread_err2; 3102 3103 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3104 blk_no += hblks; 3105 3106 /* 3107 * Read the log record data in multiple reads if it 3108 * wraps around the end of the log. Note that if the 3109 * header already wrapped, blk_no could point past the 3110 * end of the log. The record data is contiguous in 3111 * that case. 3112 */ 3113 if (blk_no + bblks <= log->l_logBBsize || 3114 blk_no >= log->l_logBBsize) { 3115 rblk_no = xlog_wrap_logbno(log, blk_no); 3116 error = xlog_bread(log, rblk_no, bblks, dbp, 3117 &offset); 3118 if (error) 3119 goto bread_err2; 3120 } else { 3121 /* This log record is split across the 3122 * physical end of log */ 3123 offset = dbp; 3124 split_bblks = 0; 3125 if (blk_no != log->l_logBBsize) { 3126 /* some data is before the physical 3127 * end of log */ 3128 ASSERT(!wrapped_hblks); 3129 ASSERT(blk_no <= INT_MAX); 3130 split_bblks = 3131 log->l_logBBsize - (int)blk_no; 3132 ASSERT(split_bblks > 0); 3133 error = xlog_bread(log, blk_no, 3134 split_bblks, dbp, 3135 &offset); 3136 if (error) 3137 goto bread_err2; 3138 } 3139 3140 /* 3141 * Note: this black magic still works with 3142 * large sector sizes (non-512) only because: 3143 * - we increased the buffer size originally 3144 * by 1 sector giving us enough extra space 3145 * for the second read; 3146 * - the log start is guaranteed to be sector 3147 * aligned; 3148 * - we read the log end (LR header start) 3149 * _first_, then the log start (LR header end) 3150 * - order is important. 3151 */ 3152 error = xlog_bread_noalign(log, 0, 3153 bblks - split_bblks, 3154 offset + BBTOB(split_bblks)); 3155 if (error) 3156 goto bread_err2; 3157 } 3158 3159 error = xlog_recover_process(log, rhash, rhead, offset, 3160 pass, &buffer_list); 3161 if (error) 3162 goto bread_err2; 3163 3164 blk_no += bblks; 3165 rhead_blk = blk_no; 3166 } 3167 3168 ASSERT(blk_no >= log->l_logBBsize); 3169 blk_no -= log->l_logBBsize; 3170 rhead_blk = blk_no; 3171 } 3172 3173 /* read first part of physical log */ 3174 while (blk_no < head_blk) { 3175 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 3176 if (error) 3177 goto bread_err2; 3178 3179 rhead = (xlog_rec_header_t *)offset; 3180 error = xlog_valid_rec_header(log, rhead, blk_no); 3181 if (error) 3182 goto bread_err2; 3183 3184 /* blocks in data section */ 3185 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3186 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 3187 &offset); 3188 if (error) 3189 goto bread_err2; 3190 3191 error = xlog_recover_process(log, rhash, rhead, offset, pass, 3192 &buffer_list); 3193 if (error) 3194 goto bread_err2; 3195 3196 blk_no += bblks + hblks; 3197 rhead_blk = blk_no; 3198 } 3199 3200 bread_err2: 3201 kmem_free(dbp); 3202 bread_err1: 3203 kmem_free(hbp); 3204 3205 /* 3206 * Submit buffers that have been added from the last record processed, 3207 * regardless of error status. 3208 */ 3209 if (!list_empty(&buffer_list)) 3210 error2 = xfs_buf_delwri_submit(&buffer_list); 3211 3212 if (error && first_bad) 3213 *first_bad = rhead_blk; 3214 3215 /* 3216 * Transactions are freed at commit time but transactions without commit 3217 * records on disk are never committed. Free any that may be left in the 3218 * hash table. 3219 */ 3220 for (i = 0; i < XLOG_RHASH_SIZE; i++) { 3221 struct hlist_node *tmp; 3222 struct xlog_recover *trans; 3223 3224 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list) 3225 xlog_recover_free_trans(trans); 3226 } 3227 3228 return error ? error : error2; 3229 } 3230 3231 /* 3232 * Do the recovery of the log. We actually do this in two phases. 3233 * The two passes are necessary in order to implement the function 3234 * of cancelling a record written into the log. The first pass 3235 * determines those things which have been cancelled, and the 3236 * second pass replays log items normally except for those which 3237 * have been cancelled. The handling of the replay and cancellations 3238 * takes place in the log item type specific routines. 3239 * 3240 * The table of items which have cancel records in the log is allocated 3241 * and freed at this level, since only here do we know when all of 3242 * the log recovery has been completed. 3243 */ 3244 STATIC int 3245 xlog_do_log_recovery( 3246 struct xlog *log, 3247 xfs_daddr_t head_blk, 3248 xfs_daddr_t tail_blk) 3249 { 3250 int error, i; 3251 3252 ASSERT(head_blk != tail_blk); 3253 3254 /* 3255 * First do a pass to find all of the cancelled buf log items. 3256 * Store them in the buf_cancel_table for use in the second pass. 3257 */ 3258 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * 3259 sizeof(struct list_head), 3260 0); 3261 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3262 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); 3263 3264 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3265 XLOG_RECOVER_PASS1, NULL); 3266 if (error != 0) { 3267 kmem_free(log->l_buf_cancel_table); 3268 log->l_buf_cancel_table = NULL; 3269 return error; 3270 } 3271 /* 3272 * Then do a second pass to actually recover the items in the log. 3273 * When it is complete free the table of buf cancel items. 3274 */ 3275 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3276 XLOG_RECOVER_PASS2, NULL); 3277 #ifdef DEBUG 3278 if (!error) { 3279 int i; 3280 3281 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3282 ASSERT(list_empty(&log->l_buf_cancel_table[i])); 3283 } 3284 #endif /* DEBUG */ 3285 3286 kmem_free(log->l_buf_cancel_table); 3287 log->l_buf_cancel_table = NULL; 3288 3289 return error; 3290 } 3291 3292 /* 3293 * Do the actual recovery 3294 */ 3295 STATIC int 3296 xlog_do_recover( 3297 struct xlog *log, 3298 xfs_daddr_t head_blk, 3299 xfs_daddr_t tail_blk) 3300 { 3301 struct xfs_mount *mp = log->l_mp; 3302 int error; 3303 xfs_buf_t *bp; 3304 xfs_sb_t *sbp; 3305 3306 trace_xfs_log_recover(log, head_blk, tail_blk); 3307 3308 /* 3309 * First replay the images in the log. 3310 */ 3311 error = xlog_do_log_recovery(log, head_blk, tail_blk); 3312 if (error) 3313 return error; 3314 3315 /* 3316 * If IO errors happened during recovery, bail out. 3317 */ 3318 if (XFS_FORCED_SHUTDOWN(mp)) { 3319 return -EIO; 3320 } 3321 3322 /* 3323 * We now update the tail_lsn since much of the recovery has completed 3324 * and there may be space available to use. If there were no extent 3325 * or iunlinks, we can free up the entire log and set the tail_lsn to 3326 * be the last_sync_lsn. This was set in xlog_find_tail to be the 3327 * lsn of the last known good LR on disk. If there are extent frees 3328 * or iunlinks they will have some entries in the AIL; so we look at 3329 * the AIL to determine how to set the tail_lsn. 3330 */ 3331 xlog_assign_tail_lsn(mp); 3332 3333 /* 3334 * Now that we've finished replaying all buffer and inode 3335 * updates, re-read in the superblock and reverify it. 3336 */ 3337 bp = xfs_getsb(mp); 3338 bp->b_flags &= ~(XBF_DONE | XBF_ASYNC); 3339 ASSERT(!(bp->b_flags & XBF_WRITE)); 3340 bp->b_flags |= XBF_READ; 3341 bp->b_ops = &xfs_sb_buf_ops; 3342 3343 error = xfs_buf_submit(bp); 3344 if (error) { 3345 if (!XFS_FORCED_SHUTDOWN(mp)) { 3346 xfs_buf_ioerror_alert(bp, __this_address); 3347 ASSERT(0); 3348 } 3349 xfs_buf_relse(bp); 3350 return error; 3351 } 3352 3353 /* Convert superblock from on-disk format */ 3354 sbp = &mp->m_sb; 3355 xfs_sb_from_disk(sbp, bp->b_addr); 3356 xfs_buf_relse(bp); 3357 3358 /* re-initialise in-core superblock and geometry structures */ 3359 xfs_reinit_percpu_counters(mp); 3360 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 3361 if (error) { 3362 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error); 3363 return error; 3364 } 3365 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp); 3366 3367 xlog_recover_check_summary(log); 3368 3369 /* Normal transactions can now occur */ 3370 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 3371 return 0; 3372 } 3373 3374 /* 3375 * Perform recovery and re-initialize some log variables in xlog_find_tail. 3376 * 3377 * Return error or zero. 3378 */ 3379 int 3380 xlog_recover( 3381 struct xlog *log) 3382 { 3383 xfs_daddr_t head_blk, tail_blk; 3384 int error; 3385 3386 /* find the tail of the log */ 3387 error = xlog_find_tail(log, &head_blk, &tail_blk); 3388 if (error) 3389 return error; 3390 3391 /* 3392 * The superblock was read before the log was available and thus the LSN 3393 * could not be verified. Check the superblock LSN against the current 3394 * LSN now that it's known. 3395 */ 3396 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) && 3397 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn)) 3398 return -EINVAL; 3399 3400 if (tail_blk != head_blk) { 3401 /* There used to be a comment here: 3402 * 3403 * disallow recovery on read-only mounts. note -- mount 3404 * checks for ENOSPC and turns it into an intelligent 3405 * error message. 3406 * ...but this is no longer true. Now, unless you specify 3407 * NORECOVERY (in which case this function would never be 3408 * called), we just go ahead and recover. We do this all 3409 * under the vfs layer, so we can get away with it unless 3410 * the device itself is read-only, in which case we fail. 3411 */ 3412 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 3413 return error; 3414 } 3415 3416 /* 3417 * Version 5 superblock log feature mask validation. We know the 3418 * log is dirty so check if there are any unknown log features 3419 * in what we need to recover. If there are unknown features 3420 * (e.g. unsupported transactions, then simply reject the 3421 * attempt at recovery before touching anything. 3422 */ 3423 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 && 3424 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, 3425 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { 3426 xfs_warn(log->l_mp, 3427 "Superblock has unknown incompatible log features (0x%x) enabled.", 3428 (log->l_mp->m_sb.sb_features_log_incompat & 3429 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 3430 xfs_warn(log->l_mp, 3431 "The log can not be fully and/or safely recovered by this kernel."); 3432 xfs_warn(log->l_mp, 3433 "Please recover the log on a kernel that supports the unknown features."); 3434 return -EINVAL; 3435 } 3436 3437 /* 3438 * Delay log recovery if the debug hook is set. This is debug 3439 * instrumention to coordinate simulation of I/O failures with 3440 * log recovery. 3441 */ 3442 if (xfs_globals.log_recovery_delay) { 3443 xfs_notice(log->l_mp, 3444 "Delaying log recovery for %d seconds.", 3445 xfs_globals.log_recovery_delay); 3446 msleep(xfs_globals.log_recovery_delay * 1000); 3447 } 3448 3449 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", 3450 log->l_mp->m_logname ? log->l_mp->m_logname 3451 : "internal"); 3452 3453 error = xlog_do_recover(log, head_blk, tail_blk); 3454 log->l_flags |= XLOG_RECOVERY_NEEDED; 3455 } 3456 return error; 3457 } 3458 3459 /* 3460 * In the first part of recovery we replay inodes and buffers and build 3461 * up the list of extent free items which need to be processed. Here 3462 * we process the extent free items and clean up the on disk unlinked 3463 * inode lists. This is separated from the first part of recovery so 3464 * that the root and real-time bitmap inodes can be read in from disk in 3465 * between the two stages. This is necessary so that we can free space 3466 * in the real-time portion of the file system. 3467 */ 3468 int 3469 xlog_recover_finish( 3470 struct xlog *log) 3471 { 3472 /* 3473 * Now we're ready to do the transactions needed for the 3474 * rest of recovery. Start with completing all the extent 3475 * free intent records and then process the unlinked inode 3476 * lists. At this point, we essentially run in normal mode 3477 * except that we're still performing recovery actions 3478 * rather than accepting new requests. 3479 */ 3480 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 3481 int error; 3482 error = xlog_recover_process_intents(log); 3483 if (error) { 3484 xfs_alert(log->l_mp, "Failed to recover intents"); 3485 return error; 3486 } 3487 3488 /* 3489 * Sync the log to get all the intents out of the AIL. 3490 * This isn't absolutely necessary, but it helps in 3491 * case the unlink transactions would have problems 3492 * pushing the intents out of the way. 3493 */ 3494 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 3495 3496 xlog_recover_process_iunlinks(log); 3497 3498 xlog_recover_check_summary(log); 3499 3500 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", 3501 log->l_mp->m_logname ? log->l_mp->m_logname 3502 : "internal"); 3503 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 3504 } else { 3505 xfs_info(log->l_mp, "Ending clean mount"); 3506 } 3507 return 0; 3508 } 3509 3510 void 3511 xlog_recover_cancel( 3512 struct xlog *log) 3513 { 3514 if (log->l_flags & XLOG_RECOVERY_NEEDED) 3515 xlog_recover_cancel_intents(log); 3516 } 3517 3518 #if defined(DEBUG) 3519 /* 3520 * Read all of the agf and agi counters and check that they 3521 * are consistent with the superblock counters. 3522 */ 3523 STATIC void 3524 xlog_recover_check_summary( 3525 struct xlog *log) 3526 { 3527 xfs_mount_t *mp; 3528 xfs_buf_t *agfbp; 3529 xfs_buf_t *agibp; 3530 xfs_agnumber_t agno; 3531 uint64_t freeblks; 3532 uint64_t itotal; 3533 uint64_t ifree; 3534 int error; 3535 3536 mp = log->l_mp; 3537 3538 freeblks = 0LL; 3539 itotal = 0LL; 3540 ifree = 0LL; 3541 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3542 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 3543 if (error) { 3544 xfs_alert(mp, "%s agf read failed agno %d error %d", 3545 __func__, agno, error); 3546 } else { 3547 struct xfs_agf *agfp = agfbp->b_addr; 3548 3549 freeblks += be32_to_cpu(agfp->agf_freeblks) + 3550 be32_to_cpu(agfp->agf_flcount); 3551 xfs_buf_relse(agfbp); 3552 } 3553 3554 error = xfs_read_agi(mp, NULL, agno, &agibp); 3555 if (error) { 3556 xfs_alert(mp, "%s agi read failed agno %d error %d", 3557 __func__, agno, error); 3558 } else { 3559 struct xfs_agi *agi = agibp->b_addr; 3560 3561 itotal += be32_to_cpu(agi->agi_count); 3562 ifree += be32_to_cpu(agi->agi_freecount); 3563 xfs_buf_relse(agibp); 3564 } 3565 } 3566 } 3567 #endif /* DEBUG */ 3568