xref: /openbmc/linux/fs/xfs/xfs_log_recover.c (revision 2791f47d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_trans.h"
18 #include "xfs_log.h"
19 #include "xfs_log_priv.h"
20 #include "xfs_log_recover.h"
21 #include "xfs_trans_priv.h"
22 #include "xfs_alloc.h"
23 #include "xfs_ialloc.h"
24 #include "xfs_trace.h"
25 #include "xfs_icache.h"
26 #include "xfs_error.h"
27 #include "xfs_buf_item.h"
28 
29 #define BLK_AVG(blk1, blk2)	((blk1+blk2) >> 1)
30 
31 STATIC int
32 xlog_find_zeroed(
33 	struct xlog	*,
34 	xfs_daddr_t	*);
35 STATIC int
36 xlog_clear_stale_blocks(
37 	struct xlog	*,
38 	xfs_lsn_t);
39 #if defined(DEBUG)
40 STATIC void
41 xlog_recover_check_summary(
42 	struct xlog *);
43 #else
44 #define	xlog_recover_check_summary(log)
45 #endif
46 STATIC int
47 xlog_do_recovery_pass(
48         struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
49 
50 /*
51  * Sector aligned buffer routines for buffer create/read/write/access
52  */
53 
54 /*
55  * Verify the log-relative block number and length in basic blocks are valid for
56  * an operation involving the given XFS log buffer. Returns true if the fields
57  * are valid, false otherwise.
58  */
59 static inline bool
60 xlog_verify_bno(
61 	struct xlog	*log,
62 	xfs_daddr_t	blk_no,
63 	int		bbcount)
64 {
65 	if (blk_no < 0 || blk_no >= log->l_logBBsize)
66 		return false;
67 	if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
68 		return false;
69 	return true;
70 }
71 
72 /*
73  * Allocate a buffer to hold log data.  The buffer needs to be able to map to
74  * a range of nbblks basic blocks at any valid offset within the log.
75  */
76 static char *
77 xlog_alloc_buffer(
78 	struct xlog	*log,
79 	int		nbblks)
80 {
81 	int align_mask = xfs_buftarg_dma_alignment(log->l_targ);
82 
83 	/*
84 	 * Pass log block 0 since we don't have an addr yet, buffer will be
85 	 * verified on read.
86 	 */
87 	if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) {
88 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
89 			nbblks);
90 		return NULL;
91 	}
92 
93 	/*
94 	 * We do log I/O in units of log sectors (a power-of-2 multiple of the
95 	 * basic block size), so we round up the requested size to accommodate
96 	 * the basic blocks required for complete log sectors.
97 	 *
98 	 * In addition, the buffer may be used for a non-sector-aligned block
99 	 * offset, in which case an I/O of the requested size could extend
100 	 * beyond the end of the buffer.  If the requested size is only 1 basic
101 	 * block it will never straddle a sector boundary, so this won't be an
102 	 * issue.  Nor will this be a problem if the log I/O is done in basic
103 	 * blocks (sector size 1).  But otherwise we extend the buffer by one
104 	 * extra log sector to ensure there's space to accommodate this
105 	 * possibility.
106 	 */
107 	if (nbblks > 1 && log->l_sectBBsize > 1)
108 		nbblks += log->l_sectBBsize;
109 	nbblks = round_up(nbblks, log->l_sectBBsize);
110 	return kmem_alloc_io(BBTOB(nbblks), align_mask, KM_MAYFAIL | KM_ZERO);
111 }
112 
113 /*
114  * Return the address of the start of the given block number's data
115  * in a log buffer.  The buffer covers a log sector-aligned region.
116  */
117 static inline unsigned int
118 xlog_align(
119 	struct xlog	*log,
120 	xfs_daddr_t	blk_no)
121 {
122 	return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1));
123 }
124 
125 static int
126 xlog_do_io(
127 	struct xlog		*log,
128 	xfs_daddr_t		blk_no,
129 	unsigned int		nbblks,
130 	char			*data,
131 	unsigned int		op)
132 {
133 	int			error;
134 
135 	if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) {
136 		xfs_warn(log->l_mp,
137 			 "Invalid log block/length (0x%llx, 0x%x) for buffer",
138 			 blk_no, nbblks);
139 		return -EFSCORRUPTED;
140 	}
141 
142 	blk_no = round_down(blk_no, log->l_sectBBsize);
143 	nbblks = round_up(nbblks, log->l_sectBBsize);
144 	ASSERT(nbblks > 0);
145 
146 	error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no,
147 			BBTOB(nbblks), data, op);
148 	if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) {
149 		xfs_alert(log->l_mp,
150 			  "log recovery %s I/O error at daddr 0x%llx len %d error %d",
151 			  op == REQ_OP_WRITE ? "write" : "read",
152 			  blk_no, nbblks, error);
153 	}
154 	return error;
155 }
156 
157 STATIC int
158 xlog_bread_noalign(
159 	struct xlog	*log,
160 	xfs_daddr_t	blk_no,
161 	int		nbblks,
162 	char		*data)
163 {
164 	return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
165 }
166 
167 STATIC int
168 xlog_bread(
169 	struct xlog	*log,
170 	xfs_daddr_t	blk_no,
171 	int		nbblks,
172 	char		*data,
173 	char		**offset)
174 {
175 	int		error;
176 
177 	error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
178 	if (!error)
179 		*offset = data + xlog_align(log, blk_no);
180 	return error;
181 }
182 
183 STATIC int
184 xlog_bwrite(
185 	struct xlog	*log,
186 	xfs_daddr_t	blk_no,
187 	int		nbblks,
188 	char		*data)
189 {
190 	return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE);
191 }
192 
193 #ifdef DEBUG
194 /*
195  * dump debug superblock and log record information
196  */
197 STATIC void
198 xlog_header_check_dump(
199 	xfs_mount_t		*mp,
200 	xlog_rec_header_t	*head)
201 {
202 	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
203 		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
204 	xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
205 		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
206 }
207 #else
208 #define xlog_header_check_dump(mp, head)
209 #endif
210 
211 /*
212  * check log record header for recovery
213  */
214 STATIC int
215 xlog_header_check_recover(
216 	xfs_mount_t		*mp,
217 	xlog_rec_header_t	*head)
218 {
219 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
220 
221 	/*
222 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
223 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
224 	 * a dirty log created in IRIX.
225 	 */
226 	if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) {
227 		xfs_warn(mp,
228 	"dirty log written in incompatible format - can't recover");
229 		xlog_header_check_dump(mp, head);
230 		return -EFSCORRUPTED;
231 	}
232 	if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
233 					   &head->h_fs_uuid))) {
234 		xfs_warn(mp,
235 	"dirty log entry has mismatched uuid - can't recover");
236 		xlog_header_check_dump(mp, head);
237 		return -EFSCORRUPTED;
238 	}
239 	return 0;
240 }
241 
242 /*
243  * read the head block of the log and check the header
244  */
245 STATIC int
246 xlog_header_check_mount(
247 	xfs_mount_t		*mp,
248 	xlog_rec_header_t	*head)
249 {
250 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
251 
252 	if (uuid_is_null(&head->h_fs_uuid)) {
253 		/*
254 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
255 		 * h_fs_uuid is null, we assume this log was last mounted
256 		 * by IRIX and continue.
257 		 */
258 		xfs_warn(mp, "null uuid in log - IRIX style log");
259 	} else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
260 						  &head->h_fs_uuid))) {
261 		xfs_warn(mp, "log has mismatched uuid - can't recover");
262 		xlog_header_check_dump(mp, head);
263 		return -EFSCORRUPTED;
264 	}
265 	return 0;
266 }
267 
268 /*
269  * This routine finds (to an approximation) the first block in the physical
270  * log which contains the given cycle.  It uses a binary search algorithm.
271  * Note that the algorithm can not be perfect because the disk will not
272  * necessarily be perfect.
273  */
274 STATIC int
275 xlog_find_cycle_start(
276 	struct xlog	*log,
277 	char		*buffer,
278 	xfs_daddr_t	first_blk,
279 	xfs_daddr_t	*last_blk,
280 	uint		cycle)
281 {
282 	char		*offset;
283 	xfs_daddr_t	mid_blk;
284 	xfs_daddr_t	end_blk;
285 	uint		mid_cycle;
286 	int		error;
287 
288 	end_blk = *last_blk;
289 	mid_blk = BLK_AVG(first_blk, end_blk);
290 	while (mid_blk != first_blk && mid_blk != end_blk) {
291 		error = xlog_bread(log, mid_blk, 1, buffer, &offset);
292 		if (error)
293 			return error;
294 		mid_cycle = xlog_get_cycle(offset);
295 		if (mid_cycle == cycle)
296 			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
297 		else
298 			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
299 		mid_blk = BLK_AVG(first_blk, end_blk);
300 	}
301 	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
302 	       (mid_blk == end_blk && mid_blk-1 == first_blk));
303 
304 	*last_blk = end_blk;
305 
306 	return 0;
307 }
308 
309 /*
310  * Check that a range of blocks does not contain stop_on_cycle_no.
311  * Fill in *new_blk with the block offset where such a block is
312  * found, or with -1 (an invalid block number) if there is no such
313  * block in the range.  The scan needs to occur from front to back
314  * and the pointer into the region must be updated since a later
315  * routine will need to perform another test.
316  */
317 STATIC int
318 xlog_find_verify_cycle(
319 	struct xlog	*log,
320 	xfs_daddr_t	start_blk,
321 	int		nbblks,
322 	uint		stop_on_cycle_no,
323 	xfs_daddr_t	*new_blk)
324 {
325 	xfs_daddr_t	i, j;
326 	uint		cycle;
327 	char		*buffer;
328 	xfs_daddr_t	bufblks;
329 	char		*buf = NULL;
330 	int		error = 0;
331 
332 	/*
333 	 * Greedily allocate a buffer big enough to handle the full
334 	 * range of basic blocks we'll be examining.  If that fails,
335 	 * try a smaller size.  We need to be able to read at least
336 	 * a log sector, or we're out of luck.
337 	 */
338 	bufblks = 1 << ffs(nbblks);
339 	while (bufblks > log->l_logBBsize)
340 		bufblks >>= 1;
341 	while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
342 		bufblks >>= 1;
343 		if (bufblks < log->l_sectBBsize)
344 			return -ENOMEM;
345 	}
346 
347 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
348 		int	bcount;
349 
350 		bcount = min(bufblks, (start_blk + nbblks - i));
351 
352 		error = xlog_bread(log, i, bcount, buffer, &buf);
353 		if (error)
354 			goto out;
355 
356 		for (j = 0; j < bcount; j++) {
357 			cycle = xlog_get_cycle(buf);
358 			if (cycle == stop_on_cycle_no) {
359 				*new_blk = i+j;
360 				goto out;
361 			}
362 
363 			buf += BBSIZE;
364 		}
365 	}
366 
367 	*new_blk = -1;
368 
369 out:
370 	kmem_free(buffer);
371 	return error;
372 }
373 
374 /*
375  * Potentially backup over partial log record write.
376  *
377  * In the typical case, last_blk is the number of the block directly after
378  * a good log record.  Therefore, we subtract one to get the block number
379  * of the last block in the given buffer.  extra_bblks contains the number
380  * of blocks we would have read on a previous read.  This happens when the
381  * last log record is split over the end of the physical log.
382  *
383  * extra_bblks is the number of blocks potentially verified on a previous
384  * call to this routine.
385  */
386 STATIC int
387 xlog_find_verify_log_record(
388 	struct xlog		*log,
389 	xfs_daddr_t		start_blk,
390 	xfs_daddr_t		*last_blk,
391 	int			extra_bblks)
392 {
393 	xfs_daddr_t		i;
394 	char			*buffer;
395 	char			*offset = NULL;
396 	xlog_rec_header_t	*head = NULL;
397 	int			error = 0;
398 	int			smallmem = 0;
399 	int			num_blks = *last_blk - start_blk;
400 	int			xhdrs;
401 
402 	ASSERT(start_blk != 0 || *last_blk != start_blk);
403 
404 	buffer = xlog_alloc_buffer(log, num_blks);
405 	if (!buffer) {
406 		buffer = xlog_alloc_buffer(log, 1);
407 		if (!buffer)
408 			return -ENOMEM;
409 		smallmem = 1;
410 	} else {
411 		error = xlog_bread(log, start_blk, num_blks, buffer, &offset);
412 		if (error)
413 			goto out;
414 		offset += ((num_blks - 1) << BBSHIFT);
415 	}
416 
417 	for (i = (*last_blk) - 1; i >= 0; i--) {
418 		if (i < start_blk) {
419 			/* valid log record not found */
420 			xfs_warn(log->l_mp,
421 		"Log inconsistent (didn't find previous header)");
422 			ASSERT(0);
423 			error = -EFSCORRUPTED;
424 			goto out;
425 		}
426 
427 		if (smallmem) {
428 			error = xlog_bread(log, i, 1, buffer, &offset);
429 			if (error)
430 				goto out;
431 		}
432 
433 		head = (xlog_rec_header_t *)offset;
434 
435 		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
436 			break;
437 
438 		if (!smallmem)
439 			offset -= BBSIZE;
440 	}
441 
442 	/*
443 	 * We hit the beginning of the physical log & still no header.  Return
444 	 * to caller.  If caller can handle a return of -1, then this routine
445 	 * will be called again for the end of the physical log.
446 	 */
447 	if (i == -1) {
448 		error = 1;
449 		goto out;
450 	}
451 
452 	/*
453 	 * We have the final block of the good log (the first block
454 	 * of the log record _before_ the head. So we check the uuid.
455 	 */
456 	if ((error = xlog_header_check_mount(log->l_mp, head)))
457 		goto out;
458 
459 	/*
460 	 * We may have found a log record header before we expected one.
461 	 * last_blk will be the 1st block # with a given cycle #.  We may end
462 	 * up reading an entire log record.  In this case, we don't want to
463 	 * reset last_blk.  Only when last_blk points in the middle of a log
464 	 * record do we update last_blk.
465 	 */
466 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
467 		uint	h_size = be32_to_cpu(head->h_size);
468 
469 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
470 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
471 			xhdrs++;
472 	} else {
473 		xhdrs = 1;
474 	}
475 
476 	if (*last_blk - i + extra_bblks !=
477 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
478 		*last_blk = i;
479 
480 out:
481 	kmem_free(buffer);
482 	return error;
483 }
484 
485 /*
486  * Head is defined to be the point of the log where the next log write
487  * could go.  This means that incomplete LR writes at the end are
488  * eliminated when calculating the head.  We aren't guaranteed that previous
489  * LR have complete transactions.  We only know that a cycle number of
490  * current cycle number -1 won't be present in the log if we start writing
491  * from our current block number.
492  *
493  * last_blk contains the block number of the first block with a given
494  * cycle number.
495  *
496  * Return: zero if normal, non-zero if error.
497  */
498 STATIC int
499 xlog_find_head(
500 	struct xlog	*log,
501 	xfs_daddr_t	*return_head_blk)
502 {
503 	char		*buffer;
504 	char		*offset;
505 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
506 	int		num_scan_bblks;
507 	uint		first_half_cycle, last_half_cycle;
508 	uint		stop_on_cycle;
509 	int		error, log_bbnum = log->l_logBBsize;
510 
511 	/* Is the end of the log device zeroed? */
512 	error = xlog_find_zeroed(log, &first_blk);
513 	if (error < 0) {
514 		xfs_warn(log->l_mp, "empty log check failed");
515 		return error;
516 	}
517 	if (error == 1) {
518 		*return_head_blk = first_blk;
519 
520 		/* Is the whole lot zeroed? */
521 		if (!first_blk) {
522 			/* Linux XFS shouldn't generate totally zeroed logs -
523 			 * mkfs etc write a dummy unmount record to a fresh
524 			 * log so we can store the uuid in there
525 			 */
526 			xfs_warn(log->l_mp, "totally zeroed log");
527 		}
528 
529 		return 0;
530 	}
531 
532 	first_blk = 0;			/* get cycle # of 1st block */
533 	buffer = xlog_alloc_buffer(log, 1);
534 	if (!buffer)
535 		return -ENOMEM;
536 
537 	error = xlog_bread(log, 0, 1, buffer, &offset);
538 	if (error)
539 		goto out_free_buffer;
540 
541 	first_half_cycle = xlog_get_cycle(offset);
542 
543 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
544 	error = xlog_bread(log, last_blk, 1, buffer, &offset);
545 	if (error)
546 		goto out_free_buffer;
547 
548 	last_half_cycle = xlog_get_cycle(offset);
549 	ASSERT(last_half_cycle != 0);
550 
551 	/*
552 	 * If the 1st half cycle number is equal to the last half cycle number,
553 	 * then the entire log is stamped with the same cycle number.  In this
554 	 * case, head_blk can't be set to zero (which makes sense).  The below
555 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
556 	 * we set it to log_bbnum which is an invalid block number, but this
557 	 * value makes the math correct.  If head_blk doesn't changed through
558 	 * all the tests below, *head_blk is set to zero at the very end rather
559 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
560 	 * in a circular file.
561 	 */
562 	if (first_half_cycle == last_half_cycle) {
563 		/*
564 		 * In this case we believe that the entire log should have
565 		 * cycle number last_half_cycle.  We need to scan backwards
566 		 * from the end verifying that there are no holes still
567 		 * containing last_half_cycle - 1.  If we find such a hole,
568 		 * then the start of that hole will be the new head.  The
569 		 * simple case looks like
570 		 *        x | x ... | x - 1 | x
571 		 * Another case that fits this picture would be
572 		 *        x | x + 1 | x ... | x
573 		 * In this case the head really is somewhere at the end of the
574 		 * log, as one of the latest writes at the beginning was
575 		 * incomplete.
576 		 * One more case is
577 		 *        x | x + 1 | x ... | x - 1 | x
578 		 * This is really the combination of the above two cases, and
579 		 * the head has to end up at the start of the x-1 hole at the
580 		 * end of the log.
581 		 *
582 		 * In the 256k log case, we will read from the beginning to the
583 		 * end of the log and search for cycle numbers equal to x-1.
584 		 * We don't worry about the x+1 blocks that we encounter,
585 		 * because we know that they cannot be the head since the log
586 		 * started with x.
587 		 */
588 		head_blk = log_bbnum;
589 		stop_on_cycle = last_half_cycle - 1;
590 	} else {
591 		/*
592 		 * In this case we want to find the first block with cycle
593 		 * number matching last_half_cycle.  We expect the log to be
594 		 * some variation on
595 		 *        x + 1 ... | x ... | x
596 		 * The first block with cycle number x (last_half_cycle) will
597 		 * be where the new head belongs.  First we do a binary search
598 		 * for the first occurrence of last_half_cycle.  The binary
599 		 * search may not be totally accurate, so then we scan back
600 		 * from there looking for occurrences of last_half_cycle before
601 		 * us.  If that backwards scan wraps around the beginning of
602 		 * the log, then we look for occurrences of last_half_cycle - 1
603 		 * at the end of the log.  The cases we're looking for look
604 		 * like
605 		 *                               v binary search stopped here
606 		 *        x + 1 ... | x | x + 1 | x ... | x
607 		 *                   ^ but we want to locate this spot
608 		 * or
609 		 *        <---------> less than scan distance
610 		 *        x + 1 ... | x ... | x - 1 | x
611 		 *                           ^ we want to locate this spot
612 		 */
613 		stop_on_cycle = last_half_cycle;
614 		error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk,
615 				last_half_cycle);
616 		if (error)
617 			goto out_free_buffer;
618 	}
619 
620 	/*
621 	 * Now validate the answer.  Scan back some number of maximum possible
622 	 * blocks and make sure each one has the expected cycle number.  The
623 	 * maximum is determined by the total possible amount of buffering
624 	 * in the in-core log.  The following number can be made tighter if
625 	 * we actually look at the block size of the filesystem.
626 	 */
627 	num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
628 	if (head_blk >= num_scan_bblks) {
629 		/*
630 		 * We are guaranteed that the entire check can be performed
631 		 * in one buffer.
632 		 */
633 		start_blk = head_blk - num_scan_bblks;
634 		if ((error = xlog_find_verify_cycle(log,
635 						start_blk, num_scan_bblks,
636 						stop_on_cycle, &new_blk)))
637 			goto out_free_buffer;
638 		if (new_blk != -1)
639 			head_blk = new_blk;
640 	} else {		/* need to read 2 parts of log */
641 		/*
642 		 * We are going to scan backwards in the log in two parts.
643 		 * First we scan the physical end of the log.  In this part
644 		 * of the log, we are looking for blocks with cycle number
645 		 * last_half_cycle - 1.
646 		 * If we find one, then we know that the log starts there, as
647 		 * we've found a hole that didn't get written in going around
648 		 * the end of the physical log.  The simple case for this is
649 		 *        x + 1 ... | x ... | x - 1 | x
650 		 *        <---------> less than scan distance
651 		 * If all of the blocks at the end of the log have cycle number
652 		 * last_half_cycle, then we check the blocks at the start of
653 		 * the log looking for occurrences of last_half_cycle.  If we
654 		 * find one, then our current estimate for the location of the
655 		 * first occurrence of last_half_cycle is wrong and we move
656 		 * back to the hole we've found.  This case looks like
657 		 *        x + 1 ... | x | x + 1 | x ...
658 		 *                               ^ binary search stopped here
659 		 * Another case we need to handle that only occurs in 256k
660 		 * logs is
661 		 *        x + 1 ... | x ... | x+1 | x ...
662 		 *                   ^ binary search stops here
663 		 * In a 256k log, the scan at the end of the log will see the
664 		 * x + 1 blocks.  We need to skip past those since that is
665 		 * certainly not the head of the log.  By searching for
666 		 * last_half_cycle-1 we accomplish that.
667 		 */
668 		ASSERT(head_blk <= INT_MAX &&
669 			(xfs_daddr_t) num_scan_bblks >= head_blk);
670 		start_blk = log_bbnum - (num_scan_bblks - head_blk);
671 		if ((error = xlog_find_verify_cycle(log, start_blk,
672 					num_scan_bblks - (int)head_blk,
673 					(stop_on_cycle - 1), &new_blk)))
674 			goto out_free_buffer;
675 		if (new_blk != -1) {
676 			head_blk = new_blk;
677 			goto validate_head;
678 		}
679 
680 		/*
681 		 * Scan beginning of log now.  The last part of the physical
682 		 * log is good.  This scan needs to verify that it doesn't find
683 		 * the last_half_cycle.
684 		 */
685 		start_blk = 0;
686 		ASSERT(head_blk <= INT_MAX);
687 		if ((error = xlog_find_verify_cycle(log,
688 					start_blk, (int)head_blk,
689 					stop_on_cycle, &new_blk)))
690 			goto out_free_buffer;
691 		if (new_blk != -1)
692 			head_blk = new_blk;
693 	}
694 
695 validate_head:
696 	/*
697 	 * Now we need to make sure head_blk is not pointing to a block in
698 	 * the middle of a log record.
699 	 */
700 	num_scan_bblks = XLOG_REC_SHIFT(log);
701 	if (head_blk >= num_scan_bblks) {
702 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
703 
704 		/* start ptr at last block ptr before head_blk */
705 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
706 		if (error == 1)
707 			error = -EIO;
708 		if (error)
709 			goto out_free_buffer;
710 	} else {
711 		start_blk = 0;
712 		ASSERT(head_blk <= INT_MAX);
713 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
714 		if (error < 0)
715 			goto out_free_buffer;
716 		if (error == 1) {
717 			/* We hit the beginning of the log during our search */
718 			start_blk = log_bbnum - (num_scan_bblks - head_blk);
719 			new_blk = log_bbnum;
720 			ASSERT(start_blk <= INT_MAX &&
721 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
722 			ASSERT(head_blk <= INT_MAX);
723 			error = xlog_find_verify_log_record(log, start_blk,
724 							&new_blk, (int)head_blk);
725 			if (error == 1)
726 				error = -EIO;
727 			if (error)
728 				goto out_free_buffer;
729 			if (new_blk != log_bbnum)
730 				head_blk = new_blk;
731 		} else if (error)
732 			goto out_free_buffer;
733 	}
734 
735 	kmem_free(buffer);
736 	if (head_blk == log_bbnum)
737 		*return_head_blk = 0;
738 	else
739 		*return_head_blk = head_blk;
740 	/*
741 	 * When returning here, we have a good block number.  Bad block
742 	 * means that during a previous crash, we didn't have a clean break
743 	 * from cycle number N to cycle number N-1.  In this case, we need
744 	 * to find the first block with cycle number N-1.
745 	 */
746 	return 0;
747 
748 out_free_buffer:
749 	kmem_free(buffer);
750 	if (error)
751 		xfs_warn(log->l_mp, "failed to find log head");
752 	return error;
753 }
754 
755 /*
756  * Seek backwards in the log for log record headers.
757  *
758  * Given a starting log block, walk backwards until we find the provided number
759  * of records or hit the provided tail block. The return value is the number of
760  * records encountered or a negative error code. The log block and buffer
761  * pointer of the last record seen are returned in rblk and rhead respectively.
762  */
763 STATIC int
764 xlog_rseek_logrec_hdr(
765 	struct xlog		*log,
766 	xfs_daddr_t		head_blk,
767 	xfs_daddr_t		tail_blk,
768 	int			count,
769 	char			*buffer,
770 	xfs_daddr_t		*rblk,
771 	struct xlog_rec_header	**rhead,
772 	bool			*wrapped)
773 {
774 	int			i;
775 	int			error;
776 	int			found = 0;
777 	char			*offset = NULL;
778 	xfs_daddr_t		end_blk;
779 
780 	*wrapped = false;
781 
782 	/*
783 	 * Walk backwards from the head block until we hit the tail or the first
784 	 * block in the log.
785 	 */
786 	end_blk = head_blk > tail_blk ? tail_blk : 0;
787 	for (i = (int) head_blk - 1; i >= end_blk; i--) {
788 		error = xlog_bread(log, i, 1, buffer, &offset);
789 		if (error)
790 			goto out_error;
791 
792 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
793 			*rblk = i;
794 			*rhead = (struct xlog_rec_header *) offset;
795 			if (++found == count)
796 				break;
797 		}
798 	}
799 
800 	/*
801 	 * If we haven't hit the tail block or the log record header count,
802 	 * start looking again from the end of the physical log. Note that
803 	 * callers can pass head == tail if the tail is not yet known.
804 	 */
805 	if (tail_blk >= head_blk && found != count) {
806 		for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
807 			error = xlog_bread(log, i, 1, buffer, &offset);
808 			if (error)
809 				goto out_error;
810 
811 			if (*(__be32 *)offset ==
812 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
813 				*wrapped = true;
814 				*rblk = i;
815 				*rhead = (struct xlog_rec_header *) offset;
816 				if (++found == count)
817 					break;
818 			}
819 		}
820 	}
821 
822 	return found;
823 
824 out_error:
825 	return error;
826 }
827 
828 /*
829  * Seek forward in the log for log record headers.
830  *
831  * Given head and tail blocks, walk forward from the tail block until we find
832  * the provided number of records or hit the head block. The return value is the
833  * number of records encountered or a negative error code. The log block and
834  * buffer pointer of the last record seen are returned in rblk and rhead
835  * respectively.
836  */
837 STATIC int
838 xlog_seek_logrec_hdr(
839 	struct xlog		*log,
840 	xfs_daddr_t		head_blk,
841 	xfs_daddr_t		tail_blk,
842 	int			count,
843 	char			*buffer,
844 	xfs_daddr_t		*rblk,
845 	struct xlog_rec_header	**rhead,
846 	bool			*wrapped)
847 {
848 	int			i;
849 	int			error;
850 	int			found = 0;
851 	char			*offset = NULL;
852 	xfs_daddr_t		end_blk;
853 
854 	*wrapped = false;
855 
856 	/*
857 	 * Walk forward from the tail block until we hit the head or the last
858 	 * block in the log.
859 	 */
860 	end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
861 	for (i = (int) tail_blk; i <= end_blk; i++) {
862 		error = xlog_bread(log, i, 1, buffer, &offset);
863 		if (error)
864 			goto out_error;
865 
866 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
867 			*rblk = i;
868 			*rhead = (struct xlog_rec_header *) offset;
869 			if (++found == count)
870 				break;
871 		}
872 	}
873 
874 	/*
875 	 * If we haven't hit the head block or the log record header count,
876 	 * start looking again from the start of the physical log.
877 	 */
878 	if (tail_blk > head_blk && found != count) {
879 		for (i = 0; i < (int) head_blk; i++) {
880 			error = xlog_bread(log, i, 1, buffer, &offset);
881 			if (error)
882 				goto out_error;
883 
884 			if (*(__be32 *)offset ==
885 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
886 				*wrapped = true;
887 				*rblk = i;
888 				*rhead = (struct xlog_rec_header *) offset;
889 				if (++found == count)
890 					break;
891 			}
892 		}
893 	}
894 
895 	return found;
896 
897 out_error:
898 	return error;
899 }
900 
901 /*
902  * Calculate distance from head to tail (i.e., unused space in the log).
903  */
904 static inline int
905 xlog_tail_distance(
906 	struct xlog	*log,
907 	xfs_daddr_t	head_blk,
908 	xfs_daddr_t	tail_blk)
909 {
910 	if (head_blk < tail_blk)
911 		return tail_blk - head_blk;
912 
913 	return tail_blk + (log->l_logBBsize - head_blk);
914 }
915 
916 /*
917  * Verify the log tail. This is particularly important when torn or incomplete
918  * writes have been detected near the front of the log and the head has been
919  * walked back accordingly.
920  *
921  * We also have to handle the case where the tail was pinned and the head
922  * blocked behind the tail right before a crash. If the tail had been pushed
923  * immediately prior to the crash and the subsequent checkpoint was only
924  * partially written, it's possible it overwrote the last referenced tail in the
925  * log with garbage. This is not a coherency problem because the tail must have
926  * been pushed before it can be overwritten, but appears as log corruption to
927  * recovery because we have no way to know the tail was updated if the
928  * subsequent checkpoint didn't write successfully.
929  *
930  * Therefore, CRC check the log from tail to head. If a failure occurs and the
931  * offending record is within max iclog bufs from the head, walk the tail
932  * forward and retry until a valid tail is found or corruption is detected out
933  * of the range of a possible overwrite.
934  */
935 STATIC int
936 xlog_verify_tail(
937 	struct xlog		*log,
938 	xfs_daddr_t		head_blk,
939 	xfs_daddr_t		*tail_blk,
940 	int			hsize)
941 {
942 	struct xlog_rec_header	*thead;
943 	char			*buffer;
944 	xfs_daddr_t		first_bad;
945 	int			error = 0;
946 	bool			wrapped;
947 	xfs_daddr_t		tmp_tail;
948 	xfs_daddr_t		orig_tail = *tail_blk;
949 
950 	buffer = xlog_alloc_buffer(log, 1);
951 	if (!buffer)
952 		return -ENOMEM;
953 
954 	/*
955 	 * Make sure the tail points to a record (returns positive count on
956 	 * success).
957 	 */
958 	error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer,
959 			&tmp_tail, &thead, &wrapped);
960 	if (error < 0)
961 		goto out;
962 	if (*tail_blk != tmp_tail)
963 		*tail_blk = tmp_tail;
964 
965 	/*
966 	 * Run a CRC check from the tail to the head. We can't just check
967 	 * MAX_ICLOGS records past the tail because the tail may point to stale
968 	 * blocks cleared during the search for the head/tail. These blocks are
969 	 * overwritten with zero-length records and thus record count is not a
970 	 * reliable indicator of the iclog state before a crash.
971 	 */
972 	first_bad = 0;
973 	error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
974 				      XLOG_RECOVER_CRCPASS, &first_bad);
975 	while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
976 		int	tail_distance;
977 
978 		/*
979 		 * Is corruption within range of the head? If so, retry from
980 		 * the next record. Otherwise return an error.
981 		 */
982 		tail_distance = xlog_tail_distance(log, head_blk, first_bad);
983 		if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
984 			break;
985 
986 		/* skip to the next record; returns positive count on success */
987 		error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2,
988 				buffer, &tmp_tail, &thead, &wrapped);
989 		if (error < 0)
990 			goto out;
991 
992 		*tail_blk = tmp_tail;
993 		first_bad = 0;
994 		error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
995 					      XLOG_RECOVER_CRCPASS, &first_bad);
996 	}
997 
998 	if (!error && *tail_blk != orig_tail)
999 		xfs_warn(log->l_mp,
1000 		"Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1001 			 orig_tail, *tail_blk);
1002 out:
1003 	kmem_free(buffer);
1004 	return error;
1005 }
1006 
1007 /*
1008  * Detect and trim torn writes from the head of the log.
1009  *
1010  * Storage without sector atomicity guarantees can result in torn writes in the
1011  * log in the event of a crash. Our only means to detect this scenario is via
1012  * CRC verification. While we can't always be certain that CRC verification
1013  * failure is due to a torn write vs. an unrelated corruption, we do know that
1014  * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1015  * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1016  * the log and treat failures in this range as torn writes as a matter of
1017  * policy. In the event of CRC failure, the head is walked back to the last good
1018  * record in the log and the tail is updated from that record and verified.
1019  */
1020 STATIC int
1021 xlog_verify_head(
1022 	struct xlog		*log,
1023 	xfs_daddr_t		*head_blk,	/* in/out: unverified head */
1024 	xfs_daddr_t		*tail_blk,	/* out: tail block */
1025 	char			*buffer,
1026 	xfs_daddr_t		*rhead_blk,	/* start blk of last record */
1027 	struct xlog_rec_header	**rhead,	/* ptr to last record */
1028 	bool			*wrapped)	/* last rec. wraps phys. log */
1029 {
1030 	struct xlog_rec_header	*tmp_rhead;
1031 	char			*tmp_buffer;
1032 	xfs_daddr_t		first_bad;
1033 	xfs_daddr_t		tmp_rhead_blk;
1034 	int			found;
1035 	int			error;
1036 	bool			tmp_wrapped;
1037 
1038 	/*
1039 	 * Check the head of the log for torn writes. Search backwards from the
1040 	 * head until we hit the tail or the maximum number of log record I/Os
1041 	 * that could have been in flight at one time. Use a temporary buffer so
1042 	 * we don't trash the rhead/buffer pointers from the caller.
1043 	 */
1044 	tmp_buffer = xlog_alloc_buffer(log, 1);
1045 	if (!tmp_buffer)
1046 		return -ENOMEM;
1047 	error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1048 				      XLOG_MAX_ICLOGS, tmp_buffer,
1049 				      &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped);
1050 	kmem_free(tmp_buffer);
1051 	if (error < 0)
1052 		return error;
1053 
1054 	/*
1055 	 * Now run a CRC verification pass over the records starting at the
1056 	 * block found above to the current head. If a CRC failure occurs, the
1057 	 * log block of the first bad record is saved in first_bad.
1058 	 */
1059 	error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1060 				      XLOG_RECOVER_CRCPASS, &first_bad);
1061 	if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1062 		/*
1063 		 * We've hit a potential torn write. Reset the error and warn
1064 		 * about it.
1065 		 */
1066 		error = 0;
1067 		xfs_warn(log->l_mp,
1068 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1069 			 first_bad, *head_blk);
1070 
1071 		/*
1072 		 * Get the header block and buffer pointer for the last good
1073 		 * record before the bad record.
1074 		 *
1075 		 * Note that xlog_find_tail() clears the blocks at the new head
1076 		 * (i.e., the records with invalid CRC) if the cycle number
1077 		 * matches the current cycle.
1078 		 */
1079 		found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1,
1080 				buffer, rhead_blk, rhead, wrapped);
1081 		if (found < 0)
1082 			return found;
1083 		if (found == 0)		/* XXX: right thing to do here? */
1084 			return -EIO;
1085 
1086 		/*
1087 		 * Reset the head block to the starting block of the first bad
1088 		 * log record and set the tail block based on the last good
1089 		 * record.
1090 		 *
1091 		 * Bail out if the updated head/tail match as this indicates
1092 		 * possible corruption outside of the acceptable
1093 		 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1094 		 */
1095 		*head_blk = first_bad;
1096 		*tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1097 		if (*head_blk == *tail_blk) {
1098 			ASSERT(0);
1099 			return 0;
1100 		}
1101 	}
1102 	if (error)
1103 		return error;
1104 
1105 	return xlog_verify_tail(log, *head_blk, tail_blk,
1106 				be32_to_cpu((*rhead)->h_size));
1107 }
1108 
1109 /*
1110  * We need to make sure we handle log wrapping properly, so we can't use the
1111  * calculated logbno directly. Make sure it wraps to the correct bno inside the
1112  * log.
1113  *
1114  * The log is limited to 32 bit sizes, so we use the appropriate modulus
1115  * operation here and cast it back to a 64 bit daddr on return.
1116  */
1117 static inline xfs_daddr_t
1118 xlog_wrap_logbno(
1119 	struct xlog		*log,
1120 	xfs_daddr_t		bno)
1121 {
1122 	int			mod;
1123 
1124 	div_s64_rem(bno, log->l_logBBsize, &mod);
1125 	return mod;
1126 }
1127 
1128 /*
1129  * Check whether the head of the log points to an unmount record. In other
1130  * words, determine whether the log is clean. If so, update the in-core state
1131  * appropriately.
1132  */
1133 static int
1134 xlog_check_unmount_rec(
1135 	struct xlog		*log,
1136 	xfs_daddr_t		*head_blk,
1137 	xfs_daddr_t		*tail_blk,
1138 	struct xlog_rec_header	*rhead,
1139 	xfs_daddr_t		rhead_blk,
1140 	char			*buffer,
1141 	bool			*clean)
1142 {
1143 	struct xlog_op_header	*op_head;
1144 	xfs_daddr_t		umount_data_blk;
1145 	xfs_daddr_t		after_umount_blk;
1146 	int			hblks;
1147 	int			error;
1148 	char			*offset;
1149 
1150 	*clean = false;
1151 
1152 	/*
1153 	 * Look for unmount record. If we find it, then we know there was a
1154 	 * clean unmount. Since 'i' could be the last block in the physical
1155 	 * log, we convert to a log block before comparing to the head_blk.
1156 	 *
1157 	 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1158 	 * below. We won't want to clear the unmount record if there is one, so
1159 	 * we pass the lsn of the unmount record rather than the block after it.
1160 	 */
1161 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1162 		int	h_size = be32_to_cpu(rhead->h_size);
1163 		int	h_version = be32_to_cpu(rhead->h_version);
1164 
1165 		if ((h_version & XLOG_VERSION_2) &&
1166 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1167 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1168 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
1169 				hblks++;
1170 		} else {
1171 			hblks = 1;
1172 		}
1173 	} else {
1174 		hblks = 1;
1175 	}
1176 
1177 	after_umount_blk = xlog_wrap_logbno(log,
1178 			rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
1179 
1180 	if (*head_blk == after_umount_blk &&
1181 	    be32_to_cpu(rhead->h_num_logops) == 1) {
1182 		umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
1183 		error = xlog_bread(log, umount_data_blk, 1, buffer, &offset);
1184 		if (error)
1185 			return error;
1186 
1187 		op_head = (struct xlog_op_header *)offset;
1188 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1189 			/*
1190 			 * Set tail and last sync so that newly written log
1191 			 * records will point recovery to after the current
1192 			 * unmount record.
1193 			 */
1194 			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1195 					log->l_curr_cycle, after_umount_blk);
1196 			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1197 					log->l_curr_cycle, after_umount_blk);
1198 			*tail_blk = after_umount_blk;
1199 
1200 			*clean = true;
1201 		}
1202 	}
1203 
1204 	return 0;
1205 }
1206 
1207 static void
1208 xlog_set_state(
1209 	struct xlog		*log,
1210 	xfs_daddr_t		head_blk,
1211 	struct xlog_rec_header	*rhead,
1212 	xfs_daddr_t		rhead_blk,
1213 	bool			bump_cycle)
1214 {
1215 	/*
1216 	 * Reset log values according to the state of the log when we
1217 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
1218 	 * one because the next write starts a new cycle rather than
1219 	 * continuing the cycle of the last good log record.  At this
1220 	 * point we have guaranteed that all partial log records have been
1221 	 * accounted for.  Therefore, we know that the last good log record
1222 	 * written was complete and ended exactly on the end boundary
1223 	 * of the physical log.
1224 	 */
1225 	log->l_prev_block = rhead_blk;
1226 	log->l_curr_block = (int)head_blk;
1227 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1228 	if (bump_cycle)
1229 		log->l_curr_cycle++;
1230 	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1231 	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1232 	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1233 					BBTOB(log->l_curr_block));
1234 	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1235 					BBTOB(log->l_curr_block));
1236 }
1237 
1238 /*
1239  * Find the sync block number or the tail of the log.
1240  *
1241  * This will be the block number of the last record to have its
1242  * associated buffers synced to disk.  Every log record header has
1243  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
1244  * to get a sync block number.  The only concern is to figure out which
1245  * log record header to believe.
1246  *
1247  * The following algorithm uses the log record header with the largest
1248  * lsn.  The entire log record does not need to be valid.  We only care
1249  * that the header is valid.
1250  *
1251  * We could speed up search by using current head_blk buffer, but it is not
1252  * available.
1253  */
1254 STATIC int
1255 xlog_find_tail(
1256 	struct xlog		*log,
1257 	xfs_daddr_t		*head_blk,
1258 	xfs_daddr_t		*tail_blk)
1259 {
1260 	xlog_rec_header_t	*rhead;
1261 	char			*offset = NULL;
1262 	char			*buffer;
1263 	int			error;
1264 	xfs_daddr_t		rhead_blk;
1265 	xfs_lsn_t		tail_lsn;
1266 	bool			wrapped = false;
1267 	bool			clean = false;
1268 
1269 	/*
1270 	 * Find previous log record
1271 	 */
1272 	if ((error = xlog_find_head(log, head_blk)))
1273 		return error;
1274 	ASSERT(*head_blk < INT_MAX);
1275 
1276 	buffer = xlog_alloc_buffer(log, 1);
1277 	if (!buffer)
1278 		return -ENOMEM;
1279 	if (*head_blk == 0) {				/* special case */
1280 		error = xlog_bread(log, 0, 1, buffer, &offset);
1281 		if (error)
1282 			goto done;
1283 
1284 		if (xlog_get_cycle(offset) == 0) {
1285 			*tail_blk = 0;
1286 			/* leave all other log inited values alone */
1287 			goto done;
1288 		}
1289 	}
1290 
1291 	/*
1292 	 * Search backwards through the log looking for the log record header
1293 	 * block. This wraps all the way back around to the head so something is
1294 	 * seriously wrong if we can't find it.
1295 	 */
1296 	error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer,
1297 				      &rhead_blk, &rhead, &wrapped);
1298 	if (error < 0)
1299 		goto done;
1300 	if (!error) {
1301 		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1302 		error = -EFSCORRUPTED;
1303 		goto done;
1304 	}
1305 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1306 
1307 	/*
1308 	 * Set the log state based on the current head record.
1309 	 */
1310 	xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1311 	tail_lsn = atomic64_read(&log->l_tail_lsn);
1312 
1313 	/*
1314 	 * Look for an unmount record at the head of the log. This sets the log
1315 	 * state to determine whether recovery is necessary.
1316 	 */
1317 	error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1318 				       rhead_blk, buffer, &clean);
1319 	if (error)
1320 		goto done;
1321 
1322 	/*
1323 	 * Verify the log head if the log is not clean (e.g., we have anything
1324 	 * but an unmount record at the head). This uses CRC verification to
1325 	 * detect and trim torn writes. If discovered, CRC failures are
1326 	 * considered torn writes and the log head is trimmed accordingly.
1327 	 *
1328 	 * Note that we can only run CRC verification when the log is dirty
1329 	 * because there's no guarantee that the log data behind an unmount
1330 	 * record is compatible with the current architecture.
1331 	 */
1332 	if (!clean) {
1333 		xfs_daddr_t	orig_head = *head_blk;
1334 
1335 		error = xlog_verify_head(log, head_blk, tail_blk, buffer,
1336 					 &rhead_blk, &rhead, &wrapped);
1337 		if (error)
1338 			goto done;
1339 
1340 		/* update in-core state again if the head changed */
1341 		if (*head_blk != orig_head) {
1342 			xlog_set_state(log, *head_blk, rhead, rhead_blk,
1343 				       wrapped);
1344 			tail_lsn = atomic64_read(&log->l_tail_lsn);
1345 			error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1346 						       rhead, rhead_blk, buffer,
1347 						       &clean);
1348 			if (error)
1349 				goto done;
1350 		}
1351 	}
1352 
1353 	/*
1354 	 * Note that the unmount was clean. If the unmount was not clean, we
1355 	 * need to know this to rebuild the superblock counters from the perag
1356 	 * headers if we have a filesystem using non-persistent counters.
1357 	 */
1358 	if (clean)
1359 		log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1360 
1361 	/*
1362 	 * Make sure that there are no blocks in front of the head
1363 	 * with the same cycle number as the head.  This can happen
1364 	 * because we allow multiple outstanding log writes concurrently,
1365 	 * and the later writes might make it out before earlier ones.
1366 	 *
1367 	 * We use the lsn from before modifying it so that we'll never
1368 	 * overwrite the unmount record after a clean unmount.
1369 	 *
1370 	 * Do this only if we are going to recover the filesystem
1371 	 *
1372 	 * NOTE: This used to say "if (!readonly)"
1373 	 * However on Linux, we can & do recover a read-only filesystem.
1374 	 * We only skip recovery if NORECOVERY is specified on mount,
1375 	 * in which case we would not be here.
1376 	 *
1377 	 * But... if the -device- itself is readonly, just skip this.
1378 	 * We can't recover this device anyway, so it won't matter.
1379 	 */
1380 	if (!xfs_readonly_buftarg(log->l_targ))
1381 		error = xlog_clear_stale_blocks(log, tail_lsn);
1382 
1383 done:
1384 	kmem_free(buffer);
1385 
1386 	if (error)
1387 		xfs_warn(log->l_mp, "failed to locate log tail");
1388 	return error;
1389 }
1390 
1391 /*
1392  * Is the log zeroed at all?
1393  *
1394  * The last binary search should be changed to perform an X block read
1395  * once X becomes small enough.  You can then search linearly through
1396  * the X blocks.  This will cut down on the number of reads we need to do.
1397  *
1398  * If the log is partially zeroed, this routine will pass back the blkno
1399  * of the first block with cycle number 0.  It won't have a complete LR
1400  * preceding it.
1401  *
1402  * Return:
1403  *	0  => the log is completely written to
1404  *	1 => use *blk_no as the first block of the log
1405  *	<0 => error has occurred
1406  */
1407 STATIC int
1408 xlog_find_zeroed(
1409 	struct xlog	*log,
1410 	xfs_daddr_t	*blk_no)
1411 {
1412 	char		*buffer;
1413 	char		*offset;
1414 	uint	        first_cycle, last_cycle;
1415 	xfs_daddr_t	new_blk, last_blk, start_blk;
1416 	xfs_daddr_t     num_scan_bblks;
1417 	int	        error, log_bbnum = log->l_logBBsize;
1418 
1419 	*blk_no = 0;
1420 
1421 	/* check totally zeroed log */
1422 	buffer = xlog_alloc_buffer(log, 1);
1423 	if (!buffer)
1424 		return -ENOMEM;
1425 	error = xlog_bread(log, 0, 1, buffer, &offset);
1426 	if (error)
1427 		goto out_free_buffer;
1428 
1429 	first_cycle = xlog_get_cycle(offset);
1430 	if (first_cycle == 0) {		/* completely zeroed log */
1431 		*blk_no = 0;
1432 		kmem_free(buffer);
1433 		return 1;
1434 	}
1435 
1436 	/* check partially zeroed log */
1437 	error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset);
1438 	if (error)
1439 		goto out_free_buffer;
1440 
1441 	last_cycle = xlog_get_cycle(offset);
1442 	if (last_cycle != 0) {		/* log completely written to */
1443 		kmem_free(buffer);
1444 		return 0;
1445 	}
1446 
1447 	/* we have a partially zeroed log */
1448 	last_blk = log_bbnum-1;
1449 	error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0);
1450 	if (error)
1451 		goto out_free_buffer;
1452 
1453 	/*
1454 	 * Validate the answer.  Because there is no way to guarantee that
1455 	 * the entire log is made up of log records which are the same size,
1456 	 * we scan over the defined maximum blocks.  At this point, the maximum
1457 	 * is not chosen to mean anything special.   XXXmiken
1458 	 */
1459 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1460 	ASSERT(num_scan_bblks <= INT_MAX);
1461 
1462 	if (last_blk < num_scan_bblks)
1463 		num_scan_bblks = last_blk;
1464 	start_blk = last_blk - num_scan_bblks;
1465 
1466 	/*
1467 	 * We search for any instances of cycle number 0 that occur before
1468 	 * our current estimate of the head.  What we're trying to detect is
1469 	 *        1 ... | 0 | 1 | 0...
1470 	 *                       ^ binary search ends here
1471 	 */
1472 	if ((error = xlog_find_verify_cycle(log, start_blk,
1473 					 (int)num_scan_bblks, 0, &new_blk)))
1474 		goto out_free_buffer;
1475 	if (new_blk != -1)
1476 		last_blk = new_blk;
1477 
1478 	/*
1479 	 * Potentially backup over partial log record write.  We don't need
1480 	 * to search the end of the log because we know it is zero.
1481 	 */
1482 	error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1483 	if (error == 1)
1484 		error = -EIO;
1485 	if (error)
1486 		goto out_free_buffer;
1487 
1488 	*blk_no = last_blk;
1489 out_free_buffer:
1490 	kmem_free(buffer);
1491 	if (error)
1492 		return error;
1493 	return 1;
1494 }
1495 
1496 /*
1497  * These are simple subroutines used by xlog_clear_stale_blocks() below
1498  * to initialize a buffer full of empty log record headers and write
1499  * them into the log.
1500  */
1501 STATIC void
1502 xlog_add_record(
1503 	struct xlog		*log,
1504 	char			*buf,
1505 	int			cycle,
1506 	int			block,
1507 	int			tail_cycle,
1508 	int			tail_block)
1509 {
1510 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1511 
1512 	memset(buf, 0, BBSIZE);
1513 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1514 	recp->h_cycle = cpu_to_be32(cycle);
1515 	recp->h_version = cpu_to_be32(
1516 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1517 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1518 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1519 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1520 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1521 }
1522 
1523 STATIC int
1524 xlog_write_log_records(
1525 	struct xlog	*log,
1526 	int		cycle,
1527 	int		start_block,
1528 	int		blocks,
1529 	int		tail_cycle,
1530 	int		tail_block)
1531 {
1532 	char		*offset;
1533 	char		*buffer;
1534 	int		balign, ealign;
1535 	int		sectbb = log->l_sectBBsize;
1536 	int		end_block = start_block + blocks;
1537 	int		bufblks;
1538 	int		error = 0;
1539 	int		i, j = 0;
1540 
1541 	/*
1542 	 * Greedily allocate a buffer big enough to handle the full
1543 	 * range of basic blocks to be written.  If that fails, try
1544 	 * a smaller size.  We need to be able to write at least a
1545 	 * log sector, or we're out of luck.
1546 	 */
1547 	bufblks = 1 << ffs(blocks);
1548 	while (bufblks > log->l_logBBsize)
1549 		bufblks >>= 1;
1550 	while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
1551 		bufblks >>= 1;
1552 		if (bufblks < sectbb)
1553 			return -ENOMEM;
1554 	}
1555 
1556 	/* We may need to do a read at the start to fill in part of
1557 	 * the buffer in the starting sector not covered by the first
1558 	 * write below.
1559 	 */
1560 	balign = round_down(start_block, sectbb);
1561 	if (balign != start_block) {
1562 		error = xlog_bread_noalign(log, start_block, 1, buffer);
1563 		if (error)
1564 			goto out_free_buffer;
1565 
1566 		j = start_block - balign;
1567 	}
1568 
1569 	for (i = start_block; i < end_block; i += bufblks) {
1570 		int		bcount, endcount;
1571 
1572 		bcount = min(bufblks, end_block - start_block);
1573 		endcount = bcount - j;
1574 
1575 		/* We may need to do a read at the end to fill in part of
1576 		 * the buffer in the final sector not covered by the write.
1577 		 * If this is the same sector as the above read, skip it.
1578 		 */
1579 		ealign = round_down(end_block, sectbb);
1580 		if (j == 0 && (start_block + endcount > ealign)) {
1581 			error = xlog_bread_noalign(log, ealign, sectbb,
1582 					buffer + BBTOB(ealign - start_block));
1583 			if (error)
1584 				break;
1585 
1586 		}
1587 
1588 		offset = buffer + xlog_align(log, start_block);
1589 		for (; j < endcount; j++) {
1590 			xlog_add_record(log, offset, cycle, i+j,
1591 					tail_cycle, tail_block);
1592 			offset += BBSIZE;
1593 		}
1594 		error = xlog_bwrite(log, start_block, endcount, buffer);
1595 		if (error)
1596 			break;
1597 		start_block += endcount;
1598 		j = 0;
1599 	}
1600 
1601 out_free_buffer:
1602 	kmem_free(buffer);
1603 	return error;
1604 }
1605 
1606 /*
1607  * This routine is called to blow away any incomplete log writes out
1608  * in front of the log head.  We do this so that we won't become confused
1609  * if we come up, write only a little bit more, and then crash again.
1610  * If we leave the partial log records out there, this situation could
1611  * cause us to think those partial writes are valid blocks since they
1612  * have the current cycle number.  We get rid of them by overwriting them
1613  * with empty log records with the old cycle number rather than the
1614  * current one.
1615  *
1616  * The tail lsn is passed in rather than taken from
1617  * the log so that we will not write over the unmount record after a
1618  * clean unmount in a 512 block log.  Doing so would leave the log without
1619  * any valid log records in it until a new one was written.  If we crashed
1620  * during that time we would not be able to recover.
1621  */
1622 STATIC int
1623 xlog_clear_stale_blocks(
1624 	struct xlog	*log,
1625 	xfs_lsn_t	tail_lsn)
1626 {
1627 	int		tail_cycle, head_cycle;
1628 	int		tail_block, head_block;
1629 	int		tail_distance, max_distance;
1630 	int		distance;
1631 	int		error;
1632 
1633 	tail_cycle = CYCLE_LSN(tail_lsn);
1634 	tail_block = BLOCK_LSN(tail_lsn);
1635 	head_cycle = log->l_curr_cycle;
1636 	head_block = log->l_curr_block;
1637 
1638 	/*
1639 	 * Figure out the distance between the new head of the log
1640 	 * and the tail.  We want to write over any blocks beyond the
1641 	 * head that we may have written just before the crash, but
1642 	 * we don't want to overwrite the tail of the log.
1643 	 */
1644 	if (head_cycle == tail_cycle) {
1645 		/*
1646 		 * The tail is behind the head in the physical log,
1647 		 * so the distance from the head to the tail is the
1648 		 * distance from the head to the end of the log plus
1649 		 * the distance from the beginning of the log to the
1650 		 * tail.
1651 		 */
1652 		if (XFS_IS_CORRUPT(log->l_mp,
1653 				   head_block < tail_block ||
1654 				   head_block >= log->l_logBBsize))
1655 			return -EFSCORRUPTED;
1656 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1657 	} else {
1658 		/*
1659 		 * The head is behind the tail in the physical log,
1660 		 * so the distance from the head to the tail is just
1661 		 * the tail block minus the head block.
1662 		 */
1663 		if (XFS_IS_CORRUPT(log->l_mp,
1664 				   head_block >= tail_block ||
1665 				   head_cycle != tail_cycle + 1))
1666 			return -EFSCORRUPTED;
1667 		tail_distance = tail_block - head_block;
1668 	}
1669 
1670 	/*
1671 	 * If the head is right up against the tail, we can't clear
1672 	 * anything.
1673 	 */
1674 	if (tail_distance <= 0) {
1675 		ASSERT(tail_distance == 0);
1676 		return 0;
1677 	}
1678 
1679 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1680 	/*
1681 	 * Take the smaller of the maximum amount of outstanding I/O
1682 	 * we could have and the distance to the tail to clear out.
1683 	 * We take the smaller so that we don't overwrite the tail and
1684 	 * we don't waste all day writing from the head to the tail
1685 	 * for no reason.
1686 	 */
1687 	max_distance = min(max_distance, tail_distance);
1688 
1689 	if ((head_block + max_distance) <= log->l_logBBsize) {
1690 		/*
1691 		 * We can stomp all the blocks we need to without
1692 		 * wrapping around the end of the log.  Just do it
1693 		 * in a single write.  Use the cycle number of the
1694 		 * current cycle minus one so that the log will look like:
1695 		 *     n ... | n - 1 ...
1696 		 */
1697 		error = xlog_write_log_records(log, (head_cycle - 1),
1698 				head_block, max_distance, tail_cycle,
1699 				tail_block);
1700 		if (error)
1701 			return error;
1702 	} else {
1703 		/*
1704 		 * We need to wrap around the end of the physical log in
1705 		 * order to clear all the blocks.  Do it in two separate
1706 		 * I/Os.  The first write should be from the head to the
1707 		 * end of the physical log, and it should use the current
1708 		 * cycle number minus one just like above.
1709 		 */
1710 		distance = log->l_logBBsize - head_block;
1711 		error = xlog_write_log_records(log, (head_cycle - 1),
1712 				head_block, distance, tail_cycle,
1713 				tail_block);
1714 
1715 		if (error)
1716 			return error;
1717 
1718 		/*
1719 		 * Now write the blocks at the start of the physical log.
1720 		 * This writes the remainder of the blocks we want to clear.
1721 		 * It uses the current cycle number since we're now on the
1722 		 * same cycle as the head so that we get:
1723 		 *    n ... n ... | n - 1 ...
1724 		 *    ^^^^^ blocks we're writing
1725 		 */
1726 		distance = max_distance - (log->l_logBBsize - head_block);
1727 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1728 				tail_cycle, tail_block);
1729 		if (error)
1730 			return error;
1731 	}
1732 
1733 	return 0;
1734 }
1735 
1736 /*
1737  * Release the recovered intent item in the AIL that matches the given intent
1738  * type and intent id.
1739  */
1740 void
1741 xlog_recover_release_intent(
1742 	struct xlog		*log,
1743 	unsigned short		intent_type,
1744 	uint64_t		intent_id)
1745 {
1746 	struct xfs_ail_cursor	cur;
1747 	struct xfs_log_item	*lip;
1748 	struct xfs_ail		*ailp = log->l_ailp;
1749 
1750 	spin_lock(&ailp->ail_lock);
1751 	for (lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); lip != NULL;
1752 	     lip = xfs_trans_ail_cursor_next(ailp, &cur)) {
1753 		if (lip->li_type != intent_type)
1754 			continue;
1755 		if (!lip->li_ops->iop_match(lip, intent_id))
1756 			continue;
1757 
1758 		spin_unlock(&ailp->ail_lock);
1759 		lip->li_ops->iop_release(lip);
1760 		spin_lock(&ailp->ail_lock);
1761 		break;
1762 	}
1763 
1764 	xfs_trans_ail_cursor_done(&cur);
1765 	spin_unlock(&ailp->ail_lock);
1766 }
1767 
1768 /******************************************************************************
1769  *
1770  *		Log recover routines
1771  *
1772  ******************************************************************************
1773  */
1774 static const struct xlog_recover_item_ops *xlog_recover_item_ops[] = {
1775 	&xlog_buf_item_ops,
1776 	&xlog_inode_item_ops,
1777 	&xlog_dquot_item_ops,
1778 	&xlog_quotaoff_item_ops,
1779 	&xlog_icreate_item_ops,
1780 	&xlog_efi_item_ops,
1781 	&xlog_efd_item_ops,
1782 	&xlog_rui_item_ops,
1783 	&xlog_rud_item_ops,
1784 	&xlog_cui_item_ops,
1785 	&xlog_cud_item_ops,
1786 	&xlog_bui_item_ops,
1787 	&xlog_bud_item_ops,
1788 };
1789 
1790 static const struct xlog_recover_item_ops *
1791 xlog_find_item_ops(
1792 	struct xlog_recover_item		*item)
1793 {
1794 	unsigned int				i;
1795 
1796 	for (i = 0; i < ARRAY_SIZE(xlog_recover_item_ops); i++)
1797 		if (ITEM_TYPE(item) == xlog_recover_item_ops[i]->item_type)
1798 			return xlog_recover_item_ops[i];
1799 
1800 	return NULL;
1801 }
1802 
1803 /*
1804  * Sort the log items in the transaction.
1805  *
1806  * The ordering constraints are defined by the inode allocation and unlink
1807  * behaviour. The rules are:
1808  *
1809  *	1. Every item is only logged once in a given transaction. Hence it
1810  *	   represents the last logged state of the item. Hence ordering is
1811  *	   dependent on the order in which operations need to be performed so
1812  *	   required initial conditions are always met.
1813  *
1814  *	2. Cancelled buffers are recorded in pass 1 in a separate table and
1815  *	   there's nothing to replay from them so we can simply cull them
1816  *	   from the transaction. However, we can't do that until after we've
1817  *	   replayed all the other items because they may be dependent on the
1818  *	   cancelled buffer and replaying the cancelled buffer can remove it
1819  *	   form the cancelled buffer table. Hence they have tobe done last.
1820  *
1821  *	3. Inode allocation buffers must be replayed before inode items that
1822  *	   read the buffer and replay changes into it. For filesystems using the
1823  *	   ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1824  *	   treated the same as inode allocation buffers as they create and
1825  *	   initialise the buffers directly.
1826  *
1827  *	4. Inode unlink buffers must be replayed after inode items are replayed.
1828  *	   This ensures that inodes are completely flushed to the inode buffer
1829  *	   in a "free" state before we remove the unlinked inode list pointer.
1830  *
1831  * Hence the ordering needs to be inode allocation buffers first, inode items
1832  * second, inode unlink buffers third and cancelled buffers last.
1833  *
1834  * But there's a problem with that - we can't tell an inode allocation buffer
1835  * apart from a regular buffer, so we can't separate them. We can, however,
1836  * tell an inode unlink buffer from the others, and so we can separate them out
1837  * from all the other buffers and move them to last.
1838  *
1839  * Hence, 4 lists, in order from head to tail:
1840  *	- buffer_list for all buffers except cancelled/inode unlink buffers
1841  *	- item_list for all non-buffer items
1842  *	- inode_buffer_list for inode unlink buffers
1843  *	- cancel_list for the cancelled buffers
1844  *
1845  * Note that we add objects to the tail of the lists so that first-to-last
1846  * ordering is preserved within the lists. Adding objects to the head of the
1847  * list means when we traverse from the head we walk them in last-to-first
1848  * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1849  * but for all other items there may be specific ordering that we need to
1850  * preserve.
1851  */
1852 STATIC int
1853 xlog_recover_reorder_trans(
1854 	struct xlog		*log,
1855 	struct xlog_recover	*trans,
1856 	int			pass)
1857 {
1858 	struct xlog_recover_item *item, *n;
1859 	int			error = 0;
1860 	LIST_HEAD(sort_list);
1861 	LIST_HEAD(cancel_list);
1862 	LIST_HEAD(buffer_list);
1863 	LIST_HEAD(inode_buffer_list);
1864 	LIST_HEAD(item_list);
1865 
1866 	list_splice_init(&trans->r_itemq, &sort_list);
1867 	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1868 		enum xlog_recover_reorder	fate = XLOG_REORDER_ITEM_LIST;
1869 
1870 		item->ri_ops = xlog_find_item_ops(item);
1871 		if (!item->ri_ops) {
1872 			xfs_warn(log->l_mp,
1873 				"%s: unrecognized type of log operation (%d)",
1874 				__func__, ITEM_TYPE(item));
1875 			ASSERT(0);
1876 			/*
1877 			 * return the remaining items back to the transaction
1878 			 * item list so they can be freed in caller.
1879 			 */
1880 			if (!list_empty(&sort_list))
1881 				list_splice_init(&sort_list, &trans->r_itemq);
1882 			error = -EFSCORRUPTED;
1883 			break;
1884 		}
1885 
1886 		if (item->ri_ops->reorder)
1887 			fate = item->ri_ops->reorder(item);
1888 
1889 		switch (fate) {
1890 		case XLOG_REORDER_BUFFER_LIST:
1891 			list_move_tail(&item->ri_list, &buffer_list);
1892 			break;
1893 		case XLOG_REORDER_CANCEL_LIST:
1894 			trace_xfs_log_recover_item_reorder_head(log,
1895 					trans, item, pass);
1896 			list_move(&item->ri_list, &cancel_list);
1897 			break;
1898 		case XLOG_REORDER_INODE_BUFFER_LIST:
1899 			list_move(&item->ri_list, &inode_buffer_list);
1900 			break;
1901 		case XLOG_REORDER_ITEM_LIST:
1902 			trace_xfs_log_recover_item_reorder_tail(log,
1903 							trans, item, pass);
1904 			list_move_tail(&item->ri_list, &item_list);
1905 			break;
1906 		}
1907 	}
1908 
1909 	ASSERT(list_empty(&sort_list));
1910 	if (!list_empty(&buffer_list))
1911 		list_splice(&buffer_list, &trans->r_itemq);
1912 	if (!list_empty(&item_list))
1913 		list_splice_tail(&item_list, &trans->r_itemq);
1914 	if (!list_empty(&inode_buffer_list))
1915 		list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1916 	if (!list_empty(&cancel_list))
1917 		list_splice_tail(&cancel_list, &trans->r_itemq);
1918 	return error;
1919 }
1920 
1921 void
1922 xlog_buf_readahead(
1923 	struct xlog		*log,
1924 	xfs_daddr_t		blkno,
1925 	uint			len,
1926 	const struct xfs_buf_ops *ops)
1927 {
1928 	if (!xlog_is_buffer_cancelled(log, blkno, len))
1929 		xfs_buf_readahead(log->l_mp->m_ddev_targp, blkno, len, ops);
1930 }
1931 
1932 STATIC int
1933 xlog_recover_items_pass2(
1934 	struct xlog                     *log,
1935 	struct xlog_recover             *trans,
1936 	struct list_head                *buffer_list,
1937 	struct list_head                *item_list)
1938 {
1939 	struct xlog_recover_item	*item;
1940 	int				error = 0;
1941 
1942 	list_for_each_entry(item, item_list, ri_list) {
1943 		trace_xfs_log_recover_item_recover(log, trans, item,
1944 				XLOG_RECOVER_PASS2);
1945 
1946 		if (item->ri_ops->commit_pass2)
1947 			error = item->ri_ops->commit_pass2(log, buffer_list,
1948 					item, trans->r_lsn);
1949 		if (error)
1950 			return error;
1951 	}
1952 
1953 	return error;
1954 }
1955 
1956 /*
1957  * Perform the transaction.
1958  *
1959  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
1960  * EFIs and EFDs get queued up by adding entries into the AIL for them.
1961  */
1962 STATIC int
1963 xlog_recover_commit_trans(
1964 	struct xlog		*log,
1965 	struct xlog_recover	*trans,
1966 	int			pass,
1967 	struct list_head	*buffer_list)
1968 {
1969 	int				error = 0;
1970 	int				items_queued = 0;
1971 	struct xlog_recover_item	*item;
1972 	struct xlog_recover_item	*next;
1973 	LIST_HEAD			(ra_list);
1974 	LIST_HEAD			(done_list);
1975 
1976 	#define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
1977 
1978 	hlist_del_init(&trans->r_list);
1979 
1980 	error = xlog_recover_reorder_trans(log, trans, pass);
1981 	if (error)
1982 		return error;
1983 
1984 	list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
1985 		trace_xfs_log_recover_item_recover(log, trans, item, pass);
1986 
1987 		switch (pass) {
1988 		case XLOG_RECOVER_PASS1:
1989 			if (item->ri_ops->commit_pass1)
1990 				error = item->ri_ops->commit_pass1(log, item);
1991 			break;
1992 		case XLOG_RECOVER_PASS2:
1993 			if (item->ri_ops->ra_pass2)
1994 				item->ri_ops->ra_pass2(log, item);
1995 			list_move_tail(&item->ri_list, &ra_list);
1996 			items_queued++;
1997 			if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
1998 				error = xlog_recover_items_pass2(log, trans,
1999 						buffer_list, &ra_list);
2000 				list_splice_tail_init(&ra_list, &done_list);
2001 				items_queued = 0;
2002 			}
2003 
2004 			break;
2005 		default:
2006 			ASSERT(0);
2007 		}
2008 
2009 		if (error)
2010 			goto out;
2011 	}
2012 
2013 out:
2014 	if (!list_empty(&ra_list)) {
2015 		if (!error)
2016 			error = xlog_recover_items_pass2(log, trans,
2017 					buffer_list, &ra_list);
2018 		list_splice_tail_init(&ra_list, &done_list);
2019 	}
2020 
2021 	if (!list_empty(&done_list))
2022 		list_splice_init(&done_list, &trans->r_itemq);
2023 
2024 	return error;
2025 }
2026 
2027 STATIC void
2028 xlog_recover_add_item(
2029 	struct list_head	*head)
2030 {
2031 	struct xlog_recover_item *item;
2032 
2033 	item = kmem_zalloc(sizeof(struct xlog_recover_item), 0);
2034 	INIT_LIST_HEAD(&item->ri_list);
2035 	list_add_tail(&item->ri_list, head);
2036 }
2037 
2038 STATIC int
2039 xlog_recover_add_to_cont_trans(
2040 	struct xlog		*log,
2041 	struct xlog_recover	*trans,
2042 	char			*dp,
2043 	int			len)
2044 {
2045 	struct xlog_recover_item *item;
2046 	char			*ptr, *old_ptr;
2047 	int			old_len;
2048 
2049 	/*
2050 	 * If the transaction is empty, the header was split across this and the
2051 	 * previous record. Copy the rest of the header.
2052 	 */
2053 	if (list_empty(&trans->r_itemq)) {
2054 		ASSERT(len <= sizeof(struct xfs_trans_header));
2055 		if (len > sizeof(struct xfs_trans_header)) {
2056 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
2057 			return -EFSCORRUPTED;
2058 		}
2059 
2060 		xlog_recover_add_item(&trans->r_itemq);
2061 		ptr = (char *)&trans->r_theader +
2062 				sizeof(struct xfs_trans_header) - len;
2063 		memcpy(ptr, dp, len);
2064 		return 0;
2065 	}
2066 
2067 	/* take the tail entry */
2068 	item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
2069 			  ri_list);
2070 
2071 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
2072 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
2073 
2074 	ptr = krealloc(old_ptr, len + old_len, GFP_KERNEL | __GFP_NOFAIL);
2075 	memcpy(&ptr[old_len], dp, len);
2076 	item->ri_buf[item->ri_cnt-1].i_len += len;
2077 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
2078 	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
2079 	return 0;
2080 }
2081 
2082 /*
2083  * The next region to add is the start of a new region.  It could be
2084  * a whole region or it could be the first part of a new region.  Because
2085  * of this, the assumption here is that the type and size fields of all
2086  * format structures fit into the first 32 bits of the structure.
2087  *
2088  * This works because all regions must be 32 bit aligned.  Therefore, we
2089  * either have both fields or we have neither field.  In the case we have
2090  * neither field, the data part of the region is zero length.  We only have
2091  * a log_op_header and can throw away the header since a new one will appear
2092  * later.  If we have at least 4 bytes, then we can determine how many regions
2093  * will appear in the current log item.
2094  */
2095 STATIC int
2096 xlog_recover_add_to_trans(
2097 	struct xlog		*log,
2098 	struct xlog_recover	*trans,
2099 	char			*dp,
2100 	int			len)
2101 {
2102 	struct xfs_inode_log_format	*in_f;			/* any will do */
2103 	struct xlog_recover_item *item;
2104 	char			*ptr;
2105 
2106 	if (!len)
2107 		return 0;
2108 	if (list_empty(&trans->r_itemq)) {
2109 		/* we need to catch log corruptions here */
2110 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
2111 			xfs_warn(log->l_mp, "%s: bad header magic number",
2112 				__func__);
2113 			ASSERT(0);
2114 			return -EFSCORRUPTED;
2115 		}
2116 
2117 		if (len > sizeof(struct xfs_trans_header)) {
2118 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
2119 			ASSERT(0);
2120 			return -EFSCORRUPTED;
2121 		}
2122 
2123 		/*
2124 		 * The transaction header can be arbitrarily split across op
2125 		 * records. If we don't have the whole thing here, copy what we
2126 		 * do have and handle the rest in the next record.
2127 		 */
2128 		if (len == sizeof(struct xfs_trans_header))
2129 			xlog_recover_add_item(&trans->r_itemq);
2130 		memcpy(&trans->r_theader, dp, len);
2131 		return 0;
2132 	}
2133 
2134 	ptr = kmem_alloc(len, 0);
2135 	memcpy(ptr, dp, len);
2136 	in_f = (struct xfs_inode_log_format *)ptr;
2137 
2138 	/* take the tail entry */
2139 	item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
2140 			  ri_list);
2141 	if (item->ri_total != 0 &&
2142 	     item->ri_total == item->ri_cnt) {
2143 		/* tail item is in use, get a new one */
2144 		xlog_recover_add_item(&trans->r_itemq);
2145 		item = list_entry(trans->r_itemq.prev,
2146 					struct xlog_recover_item, ri_list);
2147 	}
2148 
2149 	if (item->ri_total == 0) {		/* first region to be added */
2150 		if (in_f->ilf_size == 0 ||
2151 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
2152 			xfs_warn(log->l_mp,
2153 		"bad number of regions (%d) in inode log format",
2154 				  in_f->ilf_size);
2155 			ASSERT(0);
2156 			kmem_free(ptr);
2157 			return -EFSCORRUPTED;
2158 		}
2159 
2160 		item->ri_total = in_f->ilf_size;
2161 		item->ri_buf =
2162 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
2163 				    0);
2164 	}
2165 
2166 	if (item->ri_total <= item->ri_cnt) {
2167 		xfs_warn(log->l_mp,
2168 	"log item region count (%d) overflowed size (%d)",
2169 				item->ri_cnt, item->ri_total);
2170 		ASSERT(0);
2171 		kmem_free(ptr);
2172 		return -EFSCORRUPTED;
2173 	}
2174 
2175 	/* Description region is ri_buf[0] */
2176 	item->ri_buf[item->ri_cnt].i_addr = ptr;
2177 	item->ri_buf[item->ri_cnt].i_len  = len;
2178 	item->ri_cnt++;
2179 	trace_xfs_log_recover_item_add(log, trans, item, 0);
2180 	return 0;
2181 }
2182 
2183 /*
2184  * Free up any resources allocated by the transaction
2185  *
2186  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2187  */
2188 STATIC void
2189 xlog_recover_free_trans(
2190 	struct xlog_recover	*trans)
2191 {
2192 	struct xlog_recover_item *item, *n;
2193 	int			i;
2194 
2195 	hlist_del_init(&trans->r_list);
2196 
2197 	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2198 		/* Free the regions in the item. */
2199 		list_del(&item->ri_list);
2200 		for (i = 0; i < item->ri_cnt; i++)
2201 			kmem_free(item->ri_buf[i].i_addr);
2202 		/* Free the item itself */
2203 		kmem_free(item->ri_buf);
2204 		kmem_free(item);
2205 	}
2206 	/* Free the transaction recover structure */
2207 	kmem_free(trans);
2208 }
2209 
2210 /*
2211  * On error or completion, trans is freed.
2212  */
2213 STATIC int
2214 xlog_recovery_process_trans(
2215 	struct xlog		*log,
2216 	struct xlog_recover	*trans,
2217 	char			*dp,
2218 	unsigned int		len,
2219 	unsigned int		flags,
2220 	int			pass,
2221 	struct list_head	*buffer_list)
2222 {
2223 	int			error = 0;
2224 	bool			freeit = false;
2225 
2226 	/* mask off ophdr transaction container flags */
2227 	flags &= ~XLOG_END_TRANS;
2228 	if (flags & XLOG_WAS_CONT_TRANS)
2229 		flags &= ~XLOG_CONTINUE_TRANS;
2230 
2231 	/*
2232 	 * Callees must not free the trans structure. We'll decide if we need to
2233 	 * free it or not based on the operation being done and it's result.
2234 	 */
2235 	switch (flags) {
2236 	/* expected flag values */
2237 	case 0:
2238 	case XLOG_CONTINUE_TRANS:
2239 		error = xlog_recover_add_to_trans(log, trans, dp, len);
2240 		break;
2241 	case XLOG_WAS_CONT_TRANS:
2242 		error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
2243 		break;
2244 	case XLOG_COMMIT_TRANS:
2245 		error = xlog_recover_commit_trans(log, trans, pass,
2246 						  buffer_list);
2247 		/* success or fail, we are now done with this transaction. */
2248 		freeit = true;
2249 		break;
2250 
2251 	/* unexpected flag values */
2252 	case XLOG_UNMOUNT_TRANS:
2253 		/* just skip trans */
2254 		xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2255 		freeit = true;
2256 		break;
2257 	case XLOG_START_TRANS:
2258 	default:
2259 		xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
2260 		ASSERT(0);
2261 		error = -EFSCORRUPTED;
2262 		break;
2263 	}
2264 	if (error || freeit)
2265 		xlog_recover_free_trans(trans);
2266 	return error;
2267 }
2268 
2269 /*
2270  * Lookup the transaction recovery structure associated with the ID in the
2271  * current ophdr. If the transaction doesn't exist and the start flag is set in
2272  * the ophdr, then allocate a new transaction for future ID matches to find.
2273  * Either way, return what we found during the lookup - an existing transaction
2274  * or nothing.
2275  */
2276 STATIC struct xlog_recover *
2277 xlog_recover_ophdr_to_trans(
2278 	struct hlist_head	rhash[],
2279 	struct xlog_rec_header	*rhead,
2280 	struct xlog_op_header	*ohead)
2281 {
2282 	struct xlog_recover	*trans;
2283 	xlog_tid_t		tid;
2284 	struct hlist_head	*rhp;
2285 
2286 	tid = be32_to_cpu(ohead->oh_tid);
2287 	rhp = &rhash[XLOG_RHASH(tid)];
2288 	hlist_for_each_entry(trans, rhp, r_list) {
2289 		if (trans->r_log_tid == tid)
2290 			return trans;
2291 	}
2292 
2293 	/*
2294 	 * skip over non-start transaction headers - we could be
2295 	 * processing slack space before the next transaction starts
2296 	 */
2297 	if (!(ohead->oh_flags & XLOG_START_TRANS))
2298 		return NULL;
2299 
2300 	ASSERT(be32_to_cpu(ohead->oh_len) == 0);
2301 
2302 	/*
2303 	 * This is a new transaction so allocate a new recovery container to
2304 	 * hold the recovery ops that will follow.
2305 	 */
2306 	trans = kmem_zalloc(sizeof(struct xlog_recover), 0);
2307 	trans->r_log_tid = tid;
2308 	trans->r_lsn = be64_to_cpu(rhead->h_lsn);
2309 	INIT_LIST_HEAD(&trans->r_itemq);
2310 	INIT_HLIST_NODE(&trans->r_list);
2311 	hlist_add_head(&trans->r_list, rhp);
2312 
2313 	/*
2314 	 * Nothing more to do for this ophdr. Items to be added to this new
2315 	 * transaction will be in subsequent ophdr containers.
2316 	 */
2317 	return NULL;
2318 }
2319 
2320 STATIC int
2321 xlog_recover_process_ophdr(
2322 	struct xlog		*log,
2323 	struct hlist_head	rhash[],
2324 	struct xlog_rec_header	*rhead,
2325 	struct xlog_op_header	*ohead,
2326 	char			*dp,
2327 	char			*end,
2328 	int			pass,
2329 	struct list_head	*buffer_list)
2330 {
2331 	struct xlog_recover	*trans;
2332 	unsigned int		len;
2333 	int			error;
2334 
2335 	/* Do we understand who wrote this op? */
2336 	if (ohead->oh_clientid != XFS_TRANSACTION &&
2337 	    ohead->oh_clientid != XFS_LOG) {
2338 		xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2339 			__func__, ohead->oh_clientid);
2340 		ASSERT(0);
2341 		return -EFSCORRUPTED;
2342 	}
2343 
2344 	/*
2345 	 * Check the ophdr contains all the data it is supposed to contain.
2346 	 */
2347 	len = be32_to_cpu(ohead->oh_len);
2348 	if (dp + len > end) {
2349 		xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
2350 		WARN_ON(1);
2351 		return -EFSCORRUPTED;
2352 	}
2353 
2354 	trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
2355 	if (!trans) {
2356 		/* nothing to do, so skip over this ophdr */
2357 		return 0;
2358 	}
2359 
2360 	/*
2361 	 * The recovered buffer queue is drained only once we know that all
2362 	 * recovery items for the current LSN have been processed. This is
2363 	 * required because:
2364 	 *
2365 	 * - Buffer write submission updates the metadata LSN of the buffer.
2366 	 * - Log recovery skips items with a metadata LSN >= the current LSN of
2367 	 *   the recovery item.
2368 	 * - Separate recovery items against the same metadata buffer can share
2369 	 *   a current LSN. I.e., consider that the LSN of a recovery item is
2370 	 *   defined as the starting LSN of the first record in which its
2371 	 *   transaction appears, that a record can hold multiple transactions,
2372 	 *   and/or that a transaction can span multiple records.
2373 	 *
2374 	 * In other words, we are allowed to submit a buffer from log recovery
2375 	 * once per current LSN. Otherwise, we may incorrectly skip recovery
2376 	 * items and cause corruption.
2377 	 *
2378 	 * We don't know up front whether buffers are updated multiple times per
2379 	 * LSN. Therefore, track the current LSN of each commit log record as it
2380 	 * is processed and drain the queue when it changes. Use commit records
2381 	 * because they are ordered correctly by the logging code.
2382 	 */
2383 	if (log->l_recovery_lsn != trans->r_lsn &&
2384 	    ohead->oh_flags & XLOG_COMMIT_TRANS) {
2385 		error = xfs_buf_delwri_submit(buffer_list);
2386 		if (error)
2387 			return error;
2388 		log->l_recovery_lsn = trans->r_lsn;
2389 	}
2390 
2391 	return xlog_recovery_process_trans(log, trans, dp, len,
2392 					   ohead->oh_flags, pass, buffer_list);
2393 }
2394 
2395 /*
2396  * There are two valid states of the r_state field.  0 indicates that the
2397  * transaction structure is in a normal state.  We have either seen the
2398  * start of the transaction or the last operation we added was not a partial
2399  * operation.  If the last operation we added to the transaction was a
2400  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2401  *
2402  * NOTE: skip LRs with 0 data length.
2403  */
2404 STATIC int
2405 xlog_recover_process_data(
2406 	struct xlog		*log,
2407 	struct hlist_head	rhash[],
2408 	struct xlog_rec_header	*rhead,
2409 	char			*dp,
2410 	int			pass,
2411 	struct list_head	*buffer_list)
2412 {
2413 	struct xlog_op_header	*ohead;
2414 	char			*end;
2415 	int			num_logops;
2416 	int			error;
2417 
2418 	end = dp + be32_to_cpu(rhead->h_len);
2419 	num_logops = be32_to_cpu(rhead->h_num_logops);
2420 
2421 	/* check the log format matches our own - else we can't recover */
2422 	if (xlog_header_check_recover(log->l_mp, rhead))
2423 		return -EIO;
2424 
2425 	trace_xfs_log_recover_record(log, rhead, pass);
2426 	while ((dp < end) && num_logops) {
2427 
2428 		ohead = (struct xlog_op_header *)dp;
2429 		dp += sizeof(*ohead);
2430 		ASSERT(dp <= end);
2431 
2432 		/* errors will abort recovery */
2433 		error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
2434 						   dp, end, pass, buffer_list);
2435 		if (error)
2436 			return error;
2437 
2438 		dp += be32_to_cpu(ohead->oh_len);
2439 		num_logops--;
2440 	}
2441 	return 0;
2442 }
2443 
2444 /* Take all the collected deferred ops and finish them in order. */
2445 static int
2446 xlog_finish_defer_ops(
2447 	struct xfs_trans	*parent_tp)
2448 {
2449 	struct xfs_mount	*mp = parent_tp->t_mountp;
2450 	struct xfs_trans	*tp;
2451 	int64_t			freeblks;
2452 	uint			resblks;
2453 	int			error;
2454 
2455 	/*
2456 	 * We're finishing the defer_ops that accumulated as a result of
2457 	 * recovering unfinished intent items during log recovery.  We
2458 	 * reserve an itruncate transaction because it is the largest
2459 	 * permanent transaction type.  Since we're the only user of the fs
2460 	 * right now, take 93% (15/16) of the available free blocks.  Use
2461 	 * weird math to avoid a 64-bit division.
2462 	 */
2463 	freeblks = percpu_counter_sum(&mp->m_fdblocks);
2464 	if (freeblks <= 0)
2465 		return -ENOSPC;
2466 	resblks = min_t(int64_t, UINT_MAX, freeblks);
2467 	resblks = (resblks * 15) >> 4;
2468 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks,
2469 			0, XFS_TRANS_RESERVE, &tp);
2470 	if (error)
2471 		return error;
2472 	/* transfer all collected dfops to this transaction */
2473 	xfs_defer_move(tp, parent_tp);
2474 
2475 	return xfs_trans_commit(tp);
2476 }
2477 
2478 /* Is this log item a deferred action intent? */
2479 static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
2480 {
2481 	return lip->li_ops->iop_recover != NULL &&
2482 	       lip->li_ops->iop_match != NULL;
2483 }
2484 
2485 /*
2486  * When this is called, all of the log intent items which did not have
2487  * corresponding log done items should be in the AIL.  What we do now
2488  * is update the data structures associated with each one.
2489  *
2490  * Since we process the log intent items in normal transactions, they
2491  * will be removed at some point after the commit.  This prevents us
2492  * from just walking down the list processing each one.  We'll use a
2493  * flag in the intent item to skip those that we've already processed
2494  * and use the AIL iteration mechanism's generation count to try to
2495  * speed this up at least a bit.
2496  *
2497  * When we start, we know that the intents are the only things in the
2498  * AIL.  As we process them, however, other items are added to the
2499  * AIL.
2500  */
2501 STATIC int
2502 xlog_recover_process_intents(
2503 	struct xlog		*log)
2504 {
2505 	struct xfs_trans	*parent_tp;
2506 	struct xfs_ail_cursor	cur;
2507 	struct xfs_log_item	*lip;
2508 	struct xfs_ail		*ailp;
2509 	int			error;
2510 #if defined(DEBUG) || defined(XFS_WARN)
2511 	xfs_lsn_t		last_lsn;
2512 #endif
2513 
2514 	/*
2515 	 * The intent recovery handlers commit transactions to complete recovery
2516 	 * for individual intents, but any new deferred operations that are
2517 	 * queued during that process are held off until the very end. The
2518 	 * purpose of this transaction is to serve as a container for deferred
2519 	 * operations. Each intent recovery handler must transfer dfops here
2520 	 * before its local transaction commits, and we'll finish the entire
2521 	 * list below.
2522 	 */
2523 	error = xfs_trans_alloc_empty(log->l_mp, &parent_tp);
2524 	if (error)
2525 		return error;
2526 
2527 	ailp = log->l_ailp;
2528 	spin_lock(&ailp->ail_lock);
2529 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2530 #if defined(DEBUG) || defined(XFS_WARN)
2531 	last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
2532 #endif
2533 	while (lip != NULL) {
2534 		/*
2535 		 * We're done when we see something other than an intent.
2536 		 * There should be no intents left in the AIL now.
2537 		 */
2538 		if (!xlog_item_is_intent(lip)) {
2539 #ifdef DEBUG
2540 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
2541 				ASSERT(!xlog_item_is_intent(lip));
2542 #endif
2543 			break;
2544 		}
2545 
2546 		/*
2547 		 * We should never see a redo item with a LSN higher than
2548 		 * the last transaction we found in the log at the start
2549 		 * of recovery.
2550 		 */
2551 		ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
2552 
2553 		/*
2554 		 * NOTE: If your intent processing routine can create more
2555 		 * deferred ops, you /must/ attach them to the transaction in
2556 		 * this routine or else those subsequent intents will get
2557 		 * replayed in the wrong order!
2558 		 */
2559 		if (!test_and_set_bit(XFS_LI_RECOVERED, &lip->li_flags)) {
2560 			spin_unlock(&ailp->ail_lock);
2561 			error = lip->li_ops->iop_recover(lip, parent_tp);
2562 			spin_lock(&ailp->ail_lock);
2563 		}
2564 		if (error)
2565 			goto out;
2566 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
2567 	}
2568 out:
2569 	xfs_trans_ail_cursor_done(&cur);
2570 	spin_unlock(&ailp->ail_lock);
2571 	if (!error)
2572 		error = xlog_finish_defer_ops(parent_tp);
2573 	xfs_trans_cancel(parent_tp);
2574 
2575 	return error;
2576 }
2577 
2578 /*
2579  * A cancel occurs when the mount has failed and we're bailing out.
2580  * Release all pending log intent items so they don't pin the AIL.
2581  */
2582 STATIC void
2583 xlog_recover_cancel_intents(
2584 	struct xlog		*log)
2585 {
2586 	struct xfs_log_item	*lip;
2587 	struct xfs_ail_cursor	cur;
2588 	struct xfs_ail		*ailp;
2589 
2590 	ailp = log->l_ailp;
2591 	spin_lock(&ailp->ail_lock);
2592 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2593 	while (lip != NULL) {
2594 		/*
2595 		 * We're done when we see something other than an intent.
2596 		 * There should be no intents left in the AIL now.
2597 		 */
2598 		if (!xlog_item_is_intent(lip)) {
2599 #ifdef DEBUG
2600 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
2601 				ASSERT(!xlog_item_is_intent(lip));
2602 #endif
2603 			break;
2604 		}
2605 
2606 		spin_unlock(&ailp->ail_lock);
2607 		lip->li_ops->iop_release(lip);
2608 		spin_lock(&ailp->ail_lock);
2609 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
2610 	}
2611 
2612 	xfs_trans_ail_cursor_done(&cur);
2613 	spin_unlock(&ailp->ail_lock);
2614 }
2615 
2616 /*
2617  * This routine performs a transaction to null out a bad inode pointer
2618  * in an agi unlinked inode hash bucket.
2619  */
2620 STATIC void
2621 xlog_recover_clear_agi_bucket(
2622 	xfs_mount_t	*mp,
2623 	xfs_agnumber_t	agno,
2624 	int		bucket)
2625 {
2626 	xfs_trans_t	*tp;
2627 	xfs_agi_t	*agi;
2628 	xfs_buf_t	*agibp;
2629 	int		offset;
2630 	int		error;
2631 
2632 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
2633 	if (error)
2634 		goto out_error;
2635 
2636 	error = xfs_read_agi(mp, tp, agno, &agibp);
2637 	if (error)
2638 		goto out_abort;
2639 
2640 	agi = agibp->b_addr;
2641 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
2642 	offset = offsetof(xfs_agi_t, agi_unlinked) +
2643 		 (sizeof(xfs_agino_t) * bucket);
2644 	xfs_trans_log_buf(tp, agibp, offset,
2645 			  (offset + sizeof(xfs_agino_t) - 1));
2646 
2647 	error = xfs_trans_commit(tp);
2648 	if (error)
2649 		goto out_error;
2650 	return;
2651 
2652 out_abort:
2653 	xfs_trans_cancel(tp);
2654 out_error:
2655 	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
2656 	return;
2657 }
2658 
2659 STATIC xfs_agino_t
2660 xlog_recover_process_one_iunlink(
2661 	struct xfs_mount		*mp,
2662 	xfs_agnumber_t			agno,
2663 	xfs_agino_t			agino,
2664 	int				bucket)
2665 {
2666 	struct xfs_buf			*ibp;
2667 	struct xfs_dinode		*dip;
2668 	struct xfs_inode		*ip;
2669 	xfs_ino_t			ino;
2670 	int				error;
2671 
2672 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
2673 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
2674 	if (error)
2675 		goto fail;
2676 
2677 	/*
2678 	 * Get the on disk inode to find the next inode in the bucket.
2679 	 */
2680 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0);
2681 	if (error)
2682 		goto fail_iput;
2683 
2684 	xfs_iflags_clear(ip, XFS_IRECOVERY);
2685 	ASSERT(VFS_I(ip)->i_nlink == 0);
2686 	ASSERT(VFS_I(ip)->i_mode != 0);
2687 
2688 	/* setup for the next pass */
2689 	agino = be32_to_cpu(dip->di_next_unlinked);
2690 	xfs_buf_relse(ibp);
2691 
2692 	/*
2693 	 * Prevent any DMAPI event from being sent when the reference on
2694 	 * the inode is dropped.
2695 	 */
2696 	ip->i_d.di_dmevmask = 0;
2697 
2698 	xfs_irele(ip);
2699 	return agino;
2700 
2701  fail_iput:
2702 	xfs_irele(ip);
2703  fail:
2704 	/*
2705 	 * We can't read in the inode this bucket points to, or this inode
2706 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
2707 	 * some inodes and space, but at least we won't hang.
2708 	 *
2709 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
2710 	 * clear the inode pointer in the bucket.
2711 	 */
2712 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
2713 	return NULLAGINO;
2714 }
2715 
2716 /*
2717  * Recover AGI unlinked lists
2718  *
2719  * This is called during recovery to process any inodes which we unlinked but
2720  * not freed when the system crashed.  These inodes will be on the lists in the
2721  * AGI blocks. What we do here is scan all the AGIs and fully truncate and free
2722  * any inodes found on the lists. Each inode is removed from the lists when it
2723  * has been fully truncated and is freed. The freeing of the inode and its
2724  * removal from the list must be atomic.
2725  *
2726  * If everything we touch in the agi processing loop is already in memory, this
2727  * loop can hold the cpu for a long time. It runs without lock contention,
2728  * memory allocation contention, the need wait for IO, etc, and so will run
2729  * until we either run out of inodes to process, run low on memory or we run out
2730  * of log space.
2731  *
2732  * This behaviour is bad for latency on single CPU and non-preemptible kernels,
2733  * and can prevent other filesytem work (such as CIL pushes) from running. This
2734  * can lead to deadlocks if the recovery process runs out of log reservation
2735  * space. Hence we need to yield the CPU when there is other kernel work
2736  * scheduled on this CPU to ensure other scheduled work can run without undue
2737  * latency.
2738  */
2739 STATIC void
2740 xlog_recover_process_iunlinks(
2741 	struct xlog	*log)
2742 {
2743 	xfs_mount_t	*mp;
2744 	xfs_agnumber_t	agno;
2745 	xfs_agi_t	*agi;
2746 	xfs_buf_t	*agibp;
2747 	xfs_agino_t	agino;
2748 	int		bucket;
2749 	int		error;
2750 
2751 	mp = log->l_mp;
2752 
2753 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
2754 		/*
2755 		 * Find the agi for this ag.
2756 		 */
2757 		error = xfs_read_agi(mp, NULL, agno, &agibp);
2758 		if (error) {
2759 			/*
2760 			 * AGI is b0rked. Don't process it.
2761 			 *
2762 			 * We should probably mark the filesystem as corrupt
2763 			 * after we've recovered all the ag's we can....
2764 			 */
2765 			continue;
2766 		}
2767 		/*
2768 		 * Unlock the buffer so that it can be acquired in the normal
2769 		 * course of the transaction to truncate and free each inode.
2770 		 * Because we are not racing with anyone else here for the AGI
2771 		 * buffer, we don't even need to hold it locked to read the
2772 		 * initial unlinked bucket entries out of the buffer. We keep
2773 		 * buffer reference though, so that it stays pinned in memory
2774 		 * while we need the buffer.
2775 		 */
2776 		agi = agibp->b_addr;
2777 		xfs_buf_unlock(agibp);
2778 
2779 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
2780 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
2781 			while (agino != NULLAGINO) {
2782 				agino = xlog_recover_process_one_iunlink(mp,
2783 							agno, agino, bucket);
2784 				cond_resched();
2785 			}
2786 		}
2787 		xfs_buf_rele(agibp);
2788 	}
2789 }
2790 
2791 STATIC void
2792 xlog_unpack_data(
2793 	struct xlog_rec_header	*rhead,
2794 	char			*dp,
2795 	struct xlog		*log)
2796 {
2797 	int			i, j, k;
2798 
2799 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
2800 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
2801 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
2802 		dp += BBSIZE;
2803 	}
2804 
2805 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
2806 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
2807 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
2808 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
2809 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
2810 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
2811 			dp += BBSIZE;
2812 		}
2813 	}
2814 }
2815 
2816 /*
2817  * CRC check, unpack and process a log record.
2818  */
2819 STATIC int
2820 xlog_recover_process(
2821 	struct xlog		*log,
2822 	struct hlist_head	rhash[],
2823 	struct xlog_rec_header	*rhead,
2824 	char			*dp,
2825 	int			pass,
2826 	struct list_head	*buffer_list)
2827 {
2828 	__le32			old_crc = rhead->h_crc;
2829 	__le32			crc;
2830 
2831 	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
2832 
2833 	/*
2834 	 * Nothing else to do if this is a CRC verification pass. Just return
2835 	 * if this a record with a non-zero crc. Unfortunately, mkfs always
2836 	 * sets old_crc to 0 so we must consider this valid even on v5 supers.
2837 	 * Otherwise, return EFSBADCRC on failure so the callers up the stack
2838 	 * know precisely what failed.
2839 	 */
2840 	if (pass == XLOG_RECOVER_CRCPASS) {
2841 		if (old_crc && crc != old_crc)
2842 			return -EFSBADCRC;
2843 		return 0;
2844 	}
2845 
2846 	/*
2847 	 * We're in the normal recovery path. Issue a warning if and only if the
2848 	 * CRC in the header is non-zero. This is an advisory warning and the
2849 	 * zero CRC check prevents warnings from being emitted when upgrading
2850 	 * the kernel from one that does not add CRCs by default.
2851 	 */
2852 	if (crc != old_crc) {
2853 		if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
2854 			xfs_alert(log->l_mp,
2855 		"log record CRC mismatch: found 0x%x, expected 0x%x.",
2856 					le32_to_cpu(old_crc),
2857 					le32_to_cpu(crc));
2858 			xfs_hex_dump(dp, 32);
2859 		}
2860 
2861 		/*
2862 		 * If the filesystem is CRC enabled, this mismatch becomes a
2863 		 * fatal log corruption failure.
2864 		 */
2865 		if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
2866 			XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
2867 			return -EFSCORRUPTED;
2868 		}
2869 	}
2870 
2871 	xlog_unpack_data(rhead, dp, log);
2872 
2873 	return xlog_recover_process_data(log, rhash, rhead, dp, pass,
2874 					 buffer_list);
2875 }
2876 
2877 STATIC int
2878 xlog_valid_rec_header(
2879 	struct xlog		*log,
2880 	struct xlog_rec_header	*rhead,
2881 	xfs_daddr_t		blkno)
2882 {
2883 	int			hlen;
2884 
2885 	if (XFS_IS_CORRUPT(log->l_mp,
2886 			   rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)))
2887 		return -EFSCORRUPTED;
2888 	if (XFS_IS_CORRUPT(log->l_mp,
2889 			   (!rhead->h_version ||
2890 			   (be32_to_cpu(rhead->h_version) &
2891 			    (~XLOG_VERSION_OKBITS))))) {
2892 		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
2893 			__func__, be32_to_cpu(rhead->h_version));
2894 		return -EFSCORRUPTED;
2895 	}
2896 
2897 	/* LR body must have data or it wouldn't have been written */
2898 	hlen = be32_to_cpu(rhead->h_len);
2899 	if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > INT_MAX))
2900 		return -EFSCORRUPTED;
2901 	if (XFS_IS_CORRUPT(log->l_mp,
2902 			   blkno > log->l_logBBsize || blkno > INT_MAX))
2903 		return -EFSCORRUPTED;
2904 	return 0;
2905 }
2906 
2907 /*
2908  * Read the log from tail to head and process the log records found.
2909  * Handle the two cases where the tail and head are in the same cycle
2910  * and where the active portion of the log wraps around the end of
2911  * the physical log separately.  The pass parameter is passed through
2912  * to the routines called to process the data and is not looked at
2913  * here.
2914  */
2915 STATIC int
2916 xlog_do_recovery_pass(
2917 	struct xlog		*log,
2918 	xfs_daddr_t		head_blk,
2919 	xfs_daddr_t		tail_blk,
2920 	int			pass,
2921 	xfs_daddr_t		*first_bad)	/* out: first bad log rec */
2922 {
2923 	xlog_rec_header_t	*rhead;
2924 	xfs_daddr_t		blk_no, rblk_no;
2925 	xfs_daddr_t		rhead_blk;
2926 	char			*offset;
2927 	char			*hbp, *dbp;
2928 	int			error = 0, h_size, h_len;
2929 	int			error2 = 0;
2930 	int			bblks, split_bblks;
2931 	int			hblks, split_hblks, wrapped_hblks;
2932 	int			i;
2933 	struct hlist_head	rhash[XLOG_RHASH_SIZE];
2934 	LIST_HEAD		(buffer_list);
2935 
2936 	ASSERT(head_blk != tail_blk);
2937 	blk_no = rhead_blk = tail_blk;
2938 
2939 	for (i = 0; i < XLOG_RHASH_SIZE; i++)
2940 		INIT_HLIST_HEAD(&rhash[i]);
2941 
2942 	/*
2943 	 * Read the header of the tail block and get the iclog buffer size from
2944 	 * h_size.  Use this to tell how many sectors make up the log header.
2945 	 */
2946 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
2947 		/*
2948 		 * When using variable length iclogs, read first sector of
2949 		 * iclog header and extract the header size from it.  Get a
2950 		 * new hbp that is the correct size.
2951 		 */
2952 		hbp = xlog_alloc_buffer(log, 1);
2953 		if (!hbp)
2954 			return -ENOMEM;
2955 
2956 		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
2957 		if (error)
2958 			goto bread_err1;
2959 
2960 		rhead = (xlog_rec_header_t *)offset;
2961 		error = xlog_valid_rec_header(log, rhead, tail_blk);
2962 		if (error)
2963 			goto bread_err1;
2964 
2965 		/*
2966 		 * xfsprogs has a bug where record length is based on lsunit but
2967 		 * h_size (iclog size) is hardcoded to 32k. Now that we
2968 		 * unconditionally CRC verify the unmount record, this means the
2969 		 * log buffer can be too small for the record and cause an
2970 		 * overrun.
2971 		 *
2972 		 * Detect this condition here. Use lsunit for the buffer size as
2973 		 * long as this looks like the mkfs case. Otherwise, return an
2974 		 * error to avoid a buffer overrun.
2975 		 */
2976 		h_size = be32_to_cpu(rhead->h_size);
2977 		h_len = be32_to_cpu(rhead->h_len);
2978 		if (h_len > h_size) {
2979 			if (h_len <= log->l_mp->m_logbsize &&
2980 			    be32_to_cpu(rhead->h_num_logops) == 1) {
2981 				xfs_warn(log->l_mp,
2982 		"invalid iclog size (%d bytes), using lsunit (%d bytes)",
2983 					 h_size, log->l_mp->m_logbsize);
2984 				h_size = log->l_mp->m_logbsize;
2985 			} else {
2986 				XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW,
2987 						log->l_mp);
2988 				error = -EFSCORRUPTED;
2989 				goto bread_err1;
2990 			}
2991 		}
2992 
2993 		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
2994 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
2995 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
2996 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
2997 				hblks++;
2998 			kmem_free(hbp);
2999 			hbp = xlog_alloc_buffer(log, hblks);
3000 		} else {
3001 			hblks = 1;
3002 		}
3003 	} else {
3004 		ASSERT(log->l_sectBBsize == 1);
3005 		hblks = 1;
3006 		hbp = xlog_alloc_buffer(log, 1);
3007 		h_size = XLOG_BIG_RECORD_BSIZE;
3008 	}
3009 
3010 	if (!hbp)
3011 		return -ENOMEM;
3012 	dbp = xlog_alloc_buffer(log, BTOBB(h_size));
3013 	if (!dbp) {
3014 		kmem_free(hbp);
3015 		return -ENOMEM;
3016 	}
3017 
3018 	memset(rhash, 0, sizeof(rhash));
3019 	if (tail_blk > head_blk) {
3020 		/*
3021 		 * Perform recovery around the end of the physical log.
3022 		 * When the head is not on the same cycle number as the tail,
3023 		 * we can't do a sequential recovery.
3024 		 */
3025 		while (blk_no < log->l_logBBsize) {
3026 			/*
3027 			 * Check for header wrapping around physical end-of-log
3028 			 */
3029 			offset = hbp;
3030 			split_hblks = 0;
3031 			wrapped_hblks = 0;
3032 			if (blk_no + hblks <= log->l_logBBsize) {
3033 				/* Read header in one read */
3034 				error = xlog_bread(log, blk_no, hblks, hbp,
3035 						   &offset);
3036 				if (error)
3037 					goto bread_err2;
3038 			} else {
3039 				/* This LR is split across physical log end */
3040 				if (blk_no != log->l_logBBsize) {
3041 					/* some data before physical log end */
3042 					ASSERT(blk_no <= INT_MAX);
3043 					split_hblks = log->l_logBBsize - (int)blk_no;
3044 					ASSERT(split_hblks > 0);
3045 					error = xlog_bread(log, blk_no,
3046 							   split_hblks, hbp,
3047 							   &offset);
3048 					if (error)
3049 						goto bread_err2;
3050 				}
3051 
3052 				/*
3053 				 * Note: this black magic still works with
3054 				 * large sector sizes (non-512) only because:
3055 				 * - we increased the buffer size originally
3056 				 *   by 1 sector giving us enough extra space
3057 				 *   for the second read;
3058 				 * - the log start is guaranteed to be sector
3059 				 *   aligned;
3060 				 * - we read the log end (LR header start)
3061 				 *   _first_, then the log start (LR header end)
3062 				 *   - order is important.
3063 				 */
3064 				wrapped_hblks = hblks - split_hblks;
3065 				error = xlog_bread_noalign(log, 0,
3066 						wrapped_hblks,
3067 						offset + BBTOB(split_hblks));
3068 				if (error)
3069 					goto bread_err2;
3070 			}
3071 			rhead = (xlog_rec_header_t *)offset;
3072 			error = xlog_valid_rec_header(log, rhead,
3073 						split_hblks ? blk_no : 0);
3074 			if (error)
3075 				goto bread_err2;
3076 
3077 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3078 			blk_no += hblks;
3079 
3080 			/*
3081 			 * Read the log record data in multiple reads if it
3082 			 * wraps around the end of the log. Note that if the
3083 			 * header already wrapped, blk_no could point past the
3084 			 * end of the log. The record data is contiguous in
3085 			 * that case.
3086 			 */
3087 			if (blk_no + bblks <= log->l_logBBsize ||
3088 			    blk_no >= log->l_logBBsize) {
3089 				rblk_no = xlog_wrap_logbno(log, blk_no);
3090 				error = xlog_bread(log, rblk_no, bblks, dbp,
3091 						   &offset);
3092 				if (error)
3093 					goto bread_err2;
3094 			} else {
3095 				/* This log record is split across the
3096 				 * physical end of log */
3097 				offset = dbp;
3098 				split_bblks = 0;
3099 				if (blk_no != log->l_logBBsize) {
3100 					/* some data is before the physical
3101 					 * end of log */
3102 					ASSERT(!wrapped_hblks);
3103 					ASSERT(blk_no <= INT_MAX);
3104 					split_bblks =
3105 						log->l_logBBsize - (int)blk_no;
3106 					ASSERT(split_bblks > 0);
3107 					error = xlog_bread(log, blk_no,
3108 							split_bblks, dbp,
3109 							&offset);
3110 					if (error)
3111 						goto bread_err2;
3112 				}
3113 
3114 				/*
3115 				 * Note: this black magic still works with
3116 				 * large sector sizes (non-512) only because:
3117 				 * - we increased the buffer size originally
3118 				 *   by 1 sector giving us enough extra space
3119 				 *   for the second read;
3120 				 * - the log start is guaranteed to be sector
3121 				 *   aligned;
3122 				 * - we read the log end (LR header start)
3123 				 *   _first_, then the log start (LR header end)
3124 				 *   - order is important.
3125 				 */
3126 				error = xlog_bread_noalign(log, 0,
3127 						bblks - split_bblks,
3128 						offset + BBTOB(split_bblks));
3129 				if (error)
3130 					goto bread_err2;
3131 			}
3132 
3133 			error = xlog_recover_process(log, rhash, rhead, offset,
3134 						     pass, &buffer_list);
3135 			if (error)
3136 				goto bread_err2;
3137 
3138 			blk_no += bblks;
3139 			rhead_blk = blk_no;
3140 		}
3141 
3142 		ASSERT(blk_no >= log->l_logBBsize);
3143 		blk_no -= log->l_logBBsize;
3144 		rhead_blk = blk_no;
3145 	}
3146 
3147 	/* read first part of physical log */
3148 	while (blk_no < head_blk) {
3149 		error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3150 		if (error)
3151 			goto bread_err2;
3152 
3153 		rhead = (xlog_rec_header_t *)offset;
3154 		error = xlog_valid_rec_header(log, rhead, blk_no);
3155 		if (error)
3156 			goto bread_err2;
3157 
3158 		/* blocks in data section */
3159 		bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3160 		error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3161 				   &offset);
3162 		if (error)
3163 			goto bread_err2;
3164 
3165 		error = xlog_recover_process(log, rhash, rhead, offset, pass,
3166 					     &buffer_list);
3167 		if (error)
3168 			goto bread_err2;
3169 
3170 		blk_no += bblks + hblks;
3171 		rhead_blk = blk_no;
3172 	}
3173 
3174  bread_err2:
3175 	kmem_free(dbp);
3176  bread_err1:
3177 	kmem_free(hbp);
3178 
3179 	/*
3180 	 * Submit buffers that have been added from the last record processed,
3181 	 * regardless of error status.
3182 	 */
3183 	if (!list_empty(&buffer_list))
3184 		error2 = xfs_buf_delwri_submit(&buffer_list);
3185 
3186 	if (error && first_bad)
3187 		*first_bad = rhead_blk;
3188 
3189 	/*
3190 	 * Transactions are freed at commit time but transactions without commit
3191 	 * records on disk are never committed. Free any that may be left in the
3192 	 * hash table.
3193 	 */
3194 	for (i = 0; i < XLOG_RHASH_SIZE; i++) {
3195 		struct hlist_node	*tmp;
3196 		struct xlog_recover	*trans;
3197 
3198 		hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
3199 			xlog_recover_free_trans(trans);
3200 	}
3201 
3202 	return error ? error : error2;
3203 }
3204 
3205 /*
3206  * Do the recovery of the log.  We actually do this in two phases.
3207  * The two passes are necessary in order to implement the function
3208  * of cancelling a record written into the log.  The first pass
3209  * determines those things which have been cancelled, and the
3210  * second pass replays log items normally except for those which
3211  * have been cancelled.  The handling of the replay and cancellations
3212  * takes place in the log item type specific routines.
3213  *
3214  * The table of items which have cancel records in the log is allocated
3215  * and freed at this level, since only here do we know when all of
3216  * the log recovery has been completed.
3217  */
3218 STATIC int
3219 xlog_do_log_recovery(
3220 	struct xlog	*log,
3221 	xfs_daddr_t	head_blk,
3222 	xfs_daddr_t	tail_blk)
3223 {
3224 	int		error, i;
3225 
3226 	ASSERT(head_blk != tail_blk);
3227 
3228 	/*
3229 	 * First do a pass to find all of the cancelled buf log items.
3230 	 * Store them in the buf_cancel_table for use in the second pass.
3231 	 */
3232 	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3233 						 sizeof(struct list_head),
3234 						 0);
3235 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3236 		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3237 
3238 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3239 				      XLOG_RECOVER_PASS1, NULL);
3240 	if (error != 0) {
3241 		kmem_free(log->l_buf_cancel_table);
3242 		log->l_buf_cancel_table = NULL;
3243 		return error;
3244 	}
3245 	/*
3246 	 * Then do a second pass to actually recover the items in the log.
3247 	 * When it is complete free the table of buf cancel items.
3248 	 */
3249 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3250 				      XLOG_RECOVER_PASS2, NULL);
3251 #ifdef DEBUG
3252 	if (!error) {
3253 		int	i;
3254 
3255 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3256 			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3257 	}
3258 #endif	/* DEBUG */
3259 
3260 	kmem_free(log->l_buf_cancel_table);
3261 	log->l_buf_cancel_table = NULL;
3262 
3263 	return error;
3264 }
3265 
3266 /*
3267  * Do the actual recovery
3268  */
3269 STATIC int
3270 xlog_do_recover(
3271 	struct xlog		*log,
3272 	xfs_daddr_t		head_blk,
3273 	xfs_daddr_t		tail_blk)
3274 {
3275 	struct xfs_mount	*mp = log->l_mp;
3276 	struct xfs_buf		*bp = mp->m_sb_bp;
3277 	struct xfs_sb		*sbp = &mp->m_sb;
3278 	int			error;
3279 
3280 	trace_xfs_log_recover(log, head_blk, tail_blk);
3281 
3282 	/*
3283 	 * First replay the images in the log.
3284 	 */
3285 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
3286 	if (error)
3287 		return error;
3288 
3289 	/*
3290 	 * If IO errors happened during recovery, bail out.
3291 	 */
3292 	if (XFS_FORCED_SHUTDOWN(mp))
3293 		return -EIO;
3294 
3295 	/*
3296 	 * We now update the tail_lsn since much of the recovery has completed
3297 	 * and there may be space available to use.  If there were no extent
3298 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
3299 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3300 	 * lsn of the last known good LR on disk.  If there are extent frees
3301 	 * or iunlinks they will have some entries in the AIL; so we look at
3302 	 * the AIL to determine how to set the tail_lsn.
3303 	 */
3304 	xlog_assign_tail_lsn(mp);
3305 
3306 	/*
3307 	 * Now that we've finished replaying all buffer and inode updates,
3308 	 * re-read the superblock and reverify it.
3309 	 */
3310 	xfs_buf_lock(bp);
3311 	xfs_buf_hold(bp);
3312 	error = _xfs_buf_read(bp, XBF_READ);
3313 	if (error) {
3314 		if (!XFS_FORCED_SHUTDOWN(mp)) {
3315 			xfs_buf_ioerror_alert(bp, __this_address);
3316 			ASSERT(0);
3317 		}
3318 		xfs_buf_relse(bp);
3319 		return error;
3320 	}
3321 
3322 	/* Convert superblock from on-disk format */
3323 	xfs_sb_from_disk(sbp, bp->b_addr);
3324 	xfs_buf_relse(bp);
3325 
3326 	/* re-initialise in-core superblock and geometry structures */
3327 	xfs_reinit_percpu_counters(mp);
3328 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
3329 	if (error) {
3330 		xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
3331 		return error;
3332 	}
3333 	mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
3334 
3335 	xlog_recover_check_summary(log);
3336 
3337 	/* Normal transactions can now occur */
3338 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3339 	return 0;
3340 }
3341 
3342 /*
3343  * Perform recovery and re-initialize some log variables in xlog_find_tail.
3344  *
3345  * Return error or zero.
3346  */
3347 int
3348 xlog_recover(
3349 	struct xlog	*log)
3350 {
3351 	xfs_daddr_t	head_blk, tail_blk;
3352 	int		error;
3353 
3354 	/* find the tail of the log */
3355 	error = xlog_find_tail(log, &head_blk, &tail_blk);
3356 	if (error)
3357 		return error;
3358 
3359 	/*
3360 	 * The superblock was read before the log was available and thus the LSN
3361 	 * could not be verified. Check the superblock LSN against the current
3362 	 * LSN now that it's known.
3363 	 */
3364 	if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
3365 	    !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
3366 		return -EINVAL;
3367 
3368 	if (tail_blk != head_blk) {
3369 		/* There used to be a comment here:
3370 		 *
3371 		 * disallow recovery on read-only mounts.  note -- mount
3372 		 * checks for ENOSPC and turns it into an intelligent
3373 		 * error message.
3374 		 * ...but this is no longer true.  Now, unless you specify
3375 		 * NORECOVERY (in which case this function would never be
3376 		 * called), we just go ahead and recover.  We do this all
3377 		 * under the vfs layer, so we can get away with it unless
3378 		 * the device itself is read-only, in which case we fail.
3379 		 */
3380 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3381 			return error;
3382 		}
3383 
3384 		/*
3385 		 * Version 5 superblock log feature mask validation. We know the
3386 		 * log is dirty so check if there are any unknown log features
3387 		 * in what we need to recover. If there are unknown features
3388 		 * (e.g. unsupported transactions, then simply reject the
3389 		 * attempt at recovery before touching anything.
3390 		 */
3391 		if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
3392 		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
3393 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
3394 			xfs_warn(log->l_mp,
3395 "Superblock has unknown incompatible log features (0x%x) enabled.",
3396 				(log->l_mp->m_sb.sb_features_log_incompat &
3397 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
3398 			xfs_warn(log->l_mp,
3399 "The log can not be fully and/or safely recovered by this kernel.");
3400 			xfs_warn(log->l_mp,
3401 "Please recover the log on a kernel that supports the unknown features.");
3402 			return -EINVAL;
3403 		}
3404 
3405 		/*
3406 		 * Delay log recovery if the debug hook is set. This is debug
3407 		 * instrumention to coordinate simulation of I/O failures with
3408 		 * log recovery.
3409 		 */
3410 		if (xfs_globals.log_recovery_delay) {
3411 			xfs_notice(log->l_mp,
3412 				"Delaying log recovery for %d seconds.",
3413 				xfs_globals.log_recovery_delay);
3414 			msleep(xfs_globals.log_recovery_delay * 1000);
3415 		}
3416 
3417 		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3418 				log->l_mp->m_logname ? log->l_mp->m_logname
3419 						     : "internal");
3420 
3421 		error = xlog_do_recover(log, head_blk, tail_blk);
3422 		log->l_flags |= XLOG_RECOVERY_NEEDED;
3423 	}
3424 	return error;
3425 }
3426 
3427 /*
3428  * In the first part of recovery we replay inodes and buffers and build
3429  * up the list of extent free items which need to be processed.  Here
3430  * we process the extent free items and clean up the on disk unlinked
3431  * inode lists.  This is separated from the first part of recovery so
3432  * that the root and real-time bitmap inodes can be read in from disk in
3433  * between the two stages.  This is necessary so that we can free space
3434  * in the real-time portion of the file system.
3435  */
3436 int
3437 xlog_recover_finish(
3438 	struct xlog	*log)
3439 {
3440 	/*
3441 	 * Now we're ready to do the transactions needed for the
3442 	 * rest of recovery.  Start with completing all the extent
3443 	 * free intent records and then process the unlinked inode
3444 	 * lists.  At this point, we essentially run in normal mode
3445 	 * except that we're still performing recovery actions
3446 	 * rather than accepting new requests.
3447 	 */
3448 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3449 		int	error;
3450 		error = xlog_recover_process_intents(log);
3451 		if (error) {
3452 			xfs_alert(log->l_mp, "Failed to recover intents");
3453 			return error;
3454 		}
3455 
3456 		/*
3457 		 * Sync the log to get all the intents out of the AIL.
3458 		 * This isn't absolutely necessary, but it helps in
3459 		 * case the unlink transactions would have problems
3460 		 * pushing the intents out of the way.
3461 		 */
3462 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3463 
3464 		xlog_recover_process_iunlinks(log);
3465 
3466 		xlog_recover_check_summary(log);
3467 
3468 		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
3469 				log->l_mp->m_logname ? log->l_mp->m_logname
3470 						     : "internal");
3471 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3472 	} else {
3473 		xfs_info(log->l_mp, "Ending clean mount");
3474 	}
3475 	return 0;
3476 }
3477 
3478 void
3479 xlog_recover_cancel(
3480 	struct xlog	*log)
3481 {
3482 	if (log->l_flags & XLOG_RECOVERY_NEEDED)
3483 		xlog_recover_cancel_intents(log);
3484 }
3485 
3486 #if defined(DEBUG)
3487 /*
3488  * Read all of the agf and agi counters and check that they
3489  * are consistent with the superblock counters.
3490  */
3491 STATIC void
3492 xlog_recover_check_summary(
3493 	struct xlog	*log)
3494 {
3495 	xfs_mount_t	*mp;
3496 	xfs_buf_t	*agfbp;
3497 	xfs_buf_t	*agibp;
3498 	xfs_agnumber_t	agno;
3499 	uint64_t	freeblks;
3500 	uint64_t	itotal;
3501 	uint64_t	ifree;
3502 	int		error;
3503 
3504 	mp = log->l_mp;
3505 
3506 	freeblks = 0LL;
3507 	itotal = 0LL;
3508 	ifree = 0LL;
3509 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3510 		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3511 		if (error) {
3512 			xfs_alert(mp, "%s agf read failed agno %d error %d",
3513 						__func__, agno, error);
3514 		} else {
3515 			struct xfs_agf	*agfp = agfbp->b_addr;
3516 
3517 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
3518 				    be32_to_cpu(agfp->agf_flcount);
3519 			xfs_buf_relse(agfbp);
3520 		}
3521 
3522 		error = xfs_read_agi(mp, NULL, agno, &agibp);
3523 		if (error) {
3524 			xfs_alert(mp, "%s agi read failed agno %d error %d",
3525 						__func__, agno, error);
3526 		} else {
3527 			struct xfs_agi	*agi = agibp->b_addr;
3528 
3529 			itotal += be32_to_cpu(agi->agi_count);
3530 			ifree += be32_to_cpu(agi->agi_freecount);
3531 			xfs_buf_relse(agibp);
3532 		}
3533 	}
3534 }
3535 #endif /* DEBUG */
3536