1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_trans.h" 18 #include "xfs_log.h" 19 #include "xfs_log_priv.h" 20 #include "xfs_log_recover.h" 21 #include "xfs_inode_item.h" 22 #include "xfs_extfree_item.h" 23 #include "xfs_trans_priv.h" 24 #include "xfs_alloc.h" 25 #include "xfs_ialloc.h" 26 #include "xfs_quota.h" 27 #include "xfs_trace.h" 28 #include "xfs_icache.h" 29 #include "xfs_bmap_btree.h" 30 #include "xfs_error.h" 31 #include "xfs_dir2.h" 32 #include "xfs_rmap_item.h" 33 #include "xfs_buf_item.h" 34 #include "xfs_refcount_item.h" 35 #include "xfs_bmap_item.h" 36 37 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) 38 39 STATIC int 40 xlog_find_zeroed( 41 struct xlog *, 42 xfs_daddr_t *); 43 STATIC int 44 xlog_clear_stale_blocks( 45 struct xlog *, 46 xfs_lsn_t); 47 #if defined(DEBUG) 48 STATIC void 49 xlog_recover_check_summary( 50 struct xlog *); 51 #else 52 #define xlog_recover_check_summary(log) 53 #endif 54 STATIC int 55 xlog_do_recovery_pass( 56 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *); 57 58 /* 59 * This structure is used during recovery to record the buf log items which 60 * have been canceled and should not be replayed. 61 */ 62 struct xfs_buf_cancel { 63 xfs_daddr_t bc_blkno; 64 uint bc_len; 65 int bc_refcount; 66 struct list_head bc_list; 67 }; 68 69 /* 70 * Sector aligned buffer routines for buffer create/read/write/access 71 */ 72 73 /* 74 * Verify the log-relative block number and length in basic blocks are valid for 75 * an operation involving the given XFS log buffer. Returns true if the fields 76 * are valid, false otherwise. 77 */ 78 static inline bool 79 xlog_verify_bno( 80 struct xlog *log, 81 xfs_daddr_t blk_no, 82 int bbcount) 83 { 84 if (blk_no < 0 || blk_no >= log->l_logBBsize) 85 return false; 86 if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize) 87 return false; 88 return true; 89 } 90 91 /* 92 * Allocate a buffer to hold log data. The buffer needs to be able to map to 93 * a range of nbblks basic blocks at any valid offset within the log. 94 */ 95 static char * 96 xlog_alloc_buffer( 97 struct xlog *log, 98 int nbblks) 99 { 100 int align_mask = xfs_buftarg_dma_alignment(log->l_targ); 101 102 /* 103 * Pass log block 0 since we don't have an addr yet, buffer will be 104 * verified on read. 105 */ 106 if (!xlog_verify_bno(log, 0, nbblks)) { 107 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 108 nbblks); 109 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 110 return NULL; 111 } 112 113 /* 114 * We do log I/O in units of log sectors (a power-of-2 multiple of the 115 * basic block size), so we round up the requested size to accommodate 116 * the basic blocks required for complete log sectors. 117 * 118 * In addition, the buffer may be used for a non-sector-aligned block 119 * offset, in which case an I/O of the requested size could extend 120 * beyond the end of the buffer. If the requested size is only 1 basic 121 * block it will never straddle a sector boundary, so this won't be an 122 * issue. Nor will this be a problem if the log I/O is done in basic 123 * blocks (sector size 1). But otherwise we extend the buffer by one 124 * extra log sector to ensure there's space to accommodate this 125 * possibility. 126 */ 127 if (nbblks > 1 && log->l_sectBBsize > 1) 128 nbblks += log->l_sectBBsize; 129 nbblks = round_up(nbblks, log->l_sectBBsize); 130 return kmem_alloc_io(BBTOB(nbblks), align_mask, KM_MAYFAIL); 131 } 132 133 /* 134 * Return the address of the start of the given block number's data 135 * in a log buffer. The buffer covers a log sector-aligned region. 136 */ 137 static inline unsigned int 138 xlog_align( 139 struct xlog *log, 140 xfs_daddr_t blk_no) 141 { 142 return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1)); 143 } 144 145 static int 146 xlog_do_io( 147 struct xlog *log, 148 xfs_daddr_t blk_no, 149 unsigned int nbblks, 150 char *data, 151 unsigned int op) 152 { 153 int error; 154 155 if (!xlog_verify_bno(log, blk_no, nbblks)) { 156 xfs_warn(log->l_mp, 157 "Invalid log block/length (0x%llx, 0x%x) for buffer", 158 blk_no, nbblks); 159 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 160 return -EFSCORRUPTED; 161 } 162 163 blk_no = round_down(blk_no, log->l_sectBBsize); 164 nbblks = round_up(nbblks, log->l_sectBBsize); 165 ASSERT(nbblks > 0); 166 167 error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no, 168 BBTOB(nbblks), data, op); 169 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) { 170 xfs_alert(log->l_mp, 171 "log recovery %s I/O error at daddr 0x%llx len %d error %d", 172 op == REQ_OP_WRITE ? "write" : "read", 173 blk_no, nbblks, error); 174 } 175 return error; 176 } 177 178 STATIC int 179 xlog_bread_noalign( 180 struct xlog *log, 181 xfs_daddr_t blk_no, 182 int nbblks, 183 char *data) 184 { 185 return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ); 186 } 187 188 STATIC int 189 xlog_bread( 190 struct xlog *log, 191 xfs_daddr_t blk_no, 192 int nbblks, 193 char *data, 194 char **offset) 195 { 196 int error; 197 198 error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ); 199 if (!error) 200 *offset = data + xlog_align(log, blk_no); 201 return error; 202 } 203 204 STATIC int 205 xlog_bwrite( 206 struct xlog *log, 207 xfs_daddr_t blk_no, 208 int nbblks, 209 char *data) 210 { 211 return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE); 212 } 213 214 #ifdef DEBUG 215 /* 216 * dump debug superblock and log record information 217 */ 218 STATIC void 219 xlog_header_check_dump( 220 xfs_mount_t *mp, 221 xlog_rec_header_t *head) 222 { 223 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d", 224 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 225 xfs_debug(mp, " log : uuid = %pU, fmt = %d", 226 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 227 } 228 #else 229 #define xlog_header_check_dump(mp, head) 230 #endif 231 232 /* 233 * check log record header for recovery 234 */ 235 STATIC int 236 xlog_header_check_recover( 237 xfs_mount_t *mp, 238 xlog_rec_header_t *head) 239 { 240 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 241 242 /* 243 * IRIX doesn't write the h_fmt field and leaves it zeroed 244 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 245 * a dirty log created in IRIX. 246 */ 247 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) { 248 xfs_warn(mp, 249 "dirty log written in incompatible format - can't recover"); 250 xlog_header_check_dump(mp, head); 251 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 252 XFS_ERRLEVEL_HIGH, mp); 253 return -EFSCORRUPTED; 254 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 255 xfs_warn(mp, 256 "dirty log entry has mismatched uuid - can't recover"); 257 xlog_header_check_dump(mp, head); 258 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 259 XFS_ERRLEVEL_HIGH, mp); 260 return -EFSCORRUPTED; 261 } 262 return 0; 263 } 264 265 /* 266 * read the head block of the log and check the header 267 */ 268 STATIC int 269 xlog_header_check_mount( 270 xfs_mount_t *mp, 271 xlog_rec_header_t *head) 272 { 273 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 274 275 if (uuid_is_null(&head->h_fs_uuid)) { 276 /* 277 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 278 * h_fs_uuid is null, we assume this log was last mounted 279 * by IRIX and continue. 280 */ 281 xfs_warn(mp, "null uuid in log - IRIX style log"); 282 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 283 xfs_warn(mp, "log has mismatched uuid - can't recover"); 284 xlog_header_check_dump(mp, head); 285 XFS_ERROR_REPORT("xlog_header_check_mount", 286 XFS_ERRLEVEL_HIGH, mp); 287 return -EFSCORRUPTED; 288 } 289 return 0; 290 } 291 292 STATIC void 293 xlog_recover_iodone( 294 struct xfs_buf *bp) 295 { 296 if (bp->b_error) { 297 /* 298 * We're not going to bother about retrying 299 * this during recovery. One strike! 300 */ 301 if (!XFS_FORCED_SHUTDOWN(bp->b_mount)) { 302 xfs_buf_ioerror_alert(bp, __func__); 303 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR); 304 } 305 } 306 307 /* 308 * On v5 supers, a bli could be attached to update the metadata LSN. 309 * Clean it up. 310 */ 311 if (bp->b_log_item) 312 xfs_buf_item_relse(bp); 313 ASSERT(bp->b_log_item == NULL); 314 315 bp->b_iodone = NULL; 316 xfs_buf_ioend(bp); 317 } 318 319 /* 320 * This routine finds (to an approximation) the first block in the physical 321 * log which contains the given cycle. It uses a binary search algorithm. 322 * Note that the algorithm can not be perfect because the disk will not 323 * necessarily be perfect. 324 */ 325 STATIC int 326 xlog_find_cycle_start( 327 struct xlog *log, 328 char *buffer, 329 xfs_daddr_t first_blk, 330 xfs_daddr_t *last_blk, 331 uint cycle) 332 { 333 char *offset; 334 xfs_daddr_t mid_blk; 335 xfs_daddr_t end_blk; 336 uint mid_cycle; 337 int error; 338 339 end_blk = *last_blk; 340 mid_blk = BLK_AVG(first_blk, end_blk); 341 while (mid_blk != first_blk && mid_blk != end_blk) { 342 error = xlog_bread(log, mid_blk, 1, buffer, &offset); 343 if (error) 344 return error; 345 mid_cycle = xlog_get_cycle(offset); 346 if (mid_cycle == cycle) 347 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 348 else 349 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 350 mid_blk = BLK_AVG(first_blk, end_blk); 351 } 352 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 353 (mid_blk == end_blk && mid_blk-1 == first_blk)); 354 355 *last_blk = end_blk; 356 357 return 0; 358 } 359 360 /* 361 * Check that a range of blocks does not contain stop_on_cycle_no. 362 * Fill in *new_blk with the block offset where such a block is 363 * found, or with -1 (an invalid block number) if there is no such 364 * block in the range. The scan needs to occur from front to back 365 * and the pointer into the region must be updated since a later 366 * routine will need to perform another test. 367 */ 368 STATIC int 369 xlog_find_verify_cycle( 370 struct xlog *log, 371 xfs_daddr_t start_blk, 372 int nbblks, 373 uint stop_on_cycle_no, 374 xfs_daddr_t *new_blk) 375 { 376 xfs_daddr_t i, j; 377 uint cycle; 378 char *buffer; 379 xfs_daddr_t bufblks; 380 char *buf = NULL; 381 int error = 0; 382 383 /* 384 * Greedily allocate a buffer big enough to handle the full 385 * range of basic blocks we'll be examining. If that fails, 386 * try a smaller size. We need to be able to read at least 387 * a log sector, or we're out of luck. 388 */ 389 bufblks = 1 << ffs(nbblks); 390 while (bufblks > log->l_logBBsize) 391 bufblks >>= 1; 392 while (!(buffer = xlog_alloc_buffer(log, bufblks))) { 393 bufblks >>= 1; 394 if (bufblks < log->l_sectBBsize) 395 return -ENOMEM; 396 } 397 398 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 399 int bcount; 400 401 bcount = min(bufblks, (start_blk + nbblks - i)); 402 403 error = xlog_bread(log, i, bcount, buffer, &buf); 404 if (error) 405 goto out; 406 407 for (j = 0; j < bcount; j++) { 408 cycle = xlog_get_cycle(buf); 409 if (cycle == stop_on_cycle_no) { 410 *new_blk = i+j; 411 goto out; 412 } 413 414 buf += BBSIZE; 415 } 416 } 417 418 *new_blk = -1; 419 420 out: 421 kmem_free(buffer); 422 return error; 423 } 424 425 /* 426 * Potentially backup over partial log record write. 427 * 428 * In the typical case, last_blk is the number of the block directly after 429 * a good log record. Therefore, we subtract one to get the block number 430 * of the last block in the given buffer. extra_bblks contains the number 431 * of blocks we would have read on a previous read. This happens when the 432 * last log record is split over the end of the physical log. 433 * 434 * extra_bblks is the number of blocks potentially verified on a previous 435 * call to this routine. 436 */ 437 STATIC int 438 xlog_find_verify_log_record( 439 struct xlog *log, 440 xfs_daddr_t start_blk, 441 xfs_daddr_t *last_blk, 442 int extra_bblks) 443 { 444 xfs_daddr_t i; 445 char *buffer; 446 char *offset = NULL; 447 xlog_rec_header_t *head = NULL; 448 int error = 0; 449 int smallmem = 0; 450 int num_blks = *last_blk - start_blk; 451 int xhdrs; 452 453 ASSERT(start_blk != 0 || *last_blk != start_blk); 454 455 buffer = xlog_alloc_buffer(log, num_blks); 456 if (!buffer) { 457 buffer = xlog_alloc_buffer(log, 1); 458 if (!buffer) 459 return -ENOMEM; 460 smallmem = 1; 461 } else { 462 error = xlog_bread(log, start_blk, num_blks, buffer, &offset); 463 if (error) 464 goto out; 465 offset += ((num_blks - 1) << BBSHIFT); 466 } 467 468 for (i = (*last_blk) - 1; i >= 0; i--) { 469 if (i < start_blk) { 470 /* valid log record not found */ 471 xfs_warn(log->l_mp, 472 "Log inconsistent (didn't find previous header)"); 473 ASSERT(0); 474 error = -EIO; 475 goto out; 476 } 477 478 if (smallmem) { 479 error = xlog_bread(log, i, 1, buffer, &offset); 480 if (error) 481 goto out; 482 } 483 484 head = (xlog_rec_header_t *)offset; 485 486 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 487 break; 488 489 if (!smallmem) 490 offset -= BBSIZE; 491 } 492 493 /* 494 * We hit the beginning of the physical log & still no header. Return 495 * to caller. If caller can handle a return of -1, then this routine 496 * will be called again for the end of the physical log. 497 */ 498 if (i == -1) { 499 error = 1; 500 goto out; 501 } 502 503 /* 504 * We have the final block of the good log (the first block 505 * of the log record _before_ the head. So we check the uuid. 506 */ 507 if ((error = xlog_header_check_mount(log->l_mp, head))) 508 goto out; 509 510 /* 511 * We may have found a log record header before we expected one. 512 * last_blk will be the 1st block # with a given cycle #. We may end 513 * up reading an entire log record. In this case, we don't want to 514 * reset last_blk. Only when last_blk points in the middle of a log 515 * record do we update last_blk. 516 */ 517 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 518 uint h_size = be32_to_cpu(head->h_size); 519 520 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 521 if (h_size % XLOG_HEADER_CYCLE_SIZE) 522 xhdrs++; 523 } else { 524 xhdrs = 1; 525 } 526 527 if (*last_blk - i + extra_bblks != 528 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 529 *last_blk = i; 530 531 out: 532 kmem_free(buffer); 533 return error; 534 } 535 536 /* 537 * Head is defined to be the point of the log where the next log write 538 * could go. This means that incomplete LR writes at the end are 539 * eliminated when calculating the head. We aren't guaranteed that previous 540 * LR have complete transactions. We only know that a cycle number of 541 * current cycle number -1 won't be present in the log if we start writing 542 * from our current block number. 543 * 544 * last_blk contains the block number of the first block with a given 545 * cycle number. 546 * 547 * Return: zero if normal, non-zero if error. 548 */ 549 STATIC int 550 xlog_find_head( 551 struct xlog *log, 552 xfs_daddr_t *return_head_blk) 553 { 554 char *buffer; 555 char *offset; 556 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 557 int num_scan_bblks; 558 uint first_half_cycle, last_half_cycle; 559 uint stop_on_cycle; 560 int error, log_bbnum = log->l_logBBsize; 561 562 /* Is the end of the log device zeroed? */ 563 error = xlog_find_zeroed(log, &first_blk); 564 if (error < 0) { 565 xfs_warn(log->l_mp, "empty log check failed"); 566 return error; 567 } 568 if (error == 1) { 569 *return_head_blk = first_blk; 570 571 /* Is the whole lot zeroed? */ 572 if (!first_blk) { 573 /* Linux XFS shouldn't generate totally zeroed logs - 574 * mkfs etc write a dummy unmount record to a fresh 575 * log so we can store the uuid in there 576 */ 577 xfs_warn(log->l_mp, "totally zeroed log"); 578 } 579 580 return 0; 581 } 582 583 first_blk = 0; /* get cycle # of 1st block */ 584 buffer = xlog_alloc_buffer(log, 1); 585 if (!buffer) 586 return -ENOMEM; 587 588 error = xlog_bread(log, 0, 1, buffer, &offset); 589 if (error) 590 goto out_free_buffer; 591 592 first_half_cycle = xlog_get_cycle(offset); 593 594 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 595 error = xlog_bread(log, last_blk, 1, buffer, &offset); 596 if (error) 597 goto out_free_buffer; 598 599 last_half_cycle = xlog_get_cycle(offset); 600 ASSERT(last_half_cycle != 0); 601 602 /* 603 * If the 1st half cycle number is equal to the last half cycle number, 604 * then the entire log is stamped with the same cycle number. In this 605 * case, head_blk can't be set to zero (which makes sense). The below 606 * math doesn't work out properly with head_blk equal to zero. Instead, 607 * we set it to log_bbnum which is an invalid block number, but this 608 * value makes the math correct. If head_blk doesn't changed through 609 * all the tests below, *head_blk is set to zero at the very end rather 610 * than log_bbnum. In a sense, log_bbnum and zero are the same block 611 * in a circular file. 612 */ 613 if (first_half_cycle == last_half_cycle) { 614 /* 615 * In this case we believe that the entire log should have 616 * cycle number last_half_cycle. We need to scan backwards 617 * from the end verifying that there are no holes still 618 * containing last_half_cycle - 1. If we find such a hole, 619 * then the start of that hole will be the new head. The 620 * simple case looks like 621 * x | x ... | x - 1 | x 622 * Another case that fits this picture would be 623 * x | x + 1 | x ... | x 624 * In this case the head really is somewhere at the end of the 625 * log, as one of the latest writes at the beginning was 626 * incomplete. 627 * One more case is 628 * x | x + 1 | x ... | x - 1 | x 629 * This is really the combination of the above two cases, and 630 * the head has to end up at the start of the x-1 hole at the 631 * end of the log. 632 * 633 * In the 256k log case, we will read from the beginning to the 634 * end of the log and search for cycle numbers equal to x-1. 635 * We don't worry about the x+1 blocks that we encounter, 636 * because we know that they cannot be the head since the log 637 * started with x. 638 */ 639 head_blk = log_bbnum; 640 stop_on_cycle = last_half_cycle - 1; 641 } else { 642 /* 643 * In this case we want to find the first block with cycle 644 * number matching last_half_cycle. We expect the log to be 645 * some variation on 646 * x + 1 ... | x ... | x 647 * The first block with cycle number x (last_half_cycle) will 648 * be where the new head belongs. First we do a binary search 649 * for the first occurrence of last_half_cycle. The binary 650 * search may not be totally accurate, so then we scan back 651 * from there looking for occurrences of last_half_cycle before 652 * us. If that backwards scan wraps around the beginning of 653 * the log, then we look for occurrences of last_half_cycle - 1 654 * at the end of the log. The cases we're looking for look 655 * like 656 * v binary search stopped here 657 * x + 1 ... | x | x + 1 | x ... | x 658 * ^ but we want to locate this spot 659 * or 660 * <---------> less than scan distance 661 * x + 1 ... | x ... | x - 1 | x 662 * ^ we want to locate this spot 663 */ 664 stop_on_cycle = last_half_cycle; 665 error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk, 666 last_half_cycle); 667 if (error) 668 goto out_free_buffer; 669 } 670 671 /* 672 * Now validate the answer. Scan back some number of maximum possible 673 * blocks and make sure each one has the expected cycle number. The 674 * maximum is determined by the total possible amount of buffering 675 * in the in-core log. The following number can be made tighter if 676 * we actually look at the block size of the filesystem. 677 */ 678 num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log)); 679 if (head_blk >= num_scan_bblks) { 680 /* 681 * We are guaranteed that the entire check can be performed 682 * in one buffer. 683 */ 684 start_blk = head_blk - num_scan_bblks; 685 if ((error = xlog_find_verify_cycle(log, 686 start_blk, num_scan_bblks, 687 stop_on_cycle, &new_blk))) 688 goto out_free_buffer; 689 if (new_blk != -1) 690 head_blk = new_blk; 691 } else { /* need to read 2 parts of log */ 692 /* 693 * We are going to scan backwards in the log in two parts. 694 * First we scan the physical end of the log. In this part 695 * of the log, we are looking for blocks with cycle number 696 * last_half_cycle - 1. 697 * If we find one, then we know that the log starts there, as 698 * we've found a hole that didn't get written in going around 699 * the end of the physical log. The simple case for this is 700 * x + 1 ... | x ... | x - 1 | x 701 * <---------> less than scan distance 702 * If all of the blocks at the end of the log have cycle number 703 * last_half_cycle, then we check the blocks at the start of 704 * the log looking for occurrences of last_half_cycle. If we 705 * find one, then our current estimate for the location of the 706 * first occurrence of last_half_cycle is wrong and we move 707 * back to the hole we've found. This case looks like 708 * x + 1 ... | x | x + 1 | x ... 709 * ^ binary search stopped here 710 * Another case we need to handle that only occurs in 256k 711 * logs is 712 * x + 1 ... | x ... | x+1 | x ... 713 * ^ binary search stops here 714 * In a 256k log, the scan at the end of the log will see the 715 * x + 1 blocks. We need to skip past those since that is 716 * certainly not the head of the log. By searching for 717 * last_half_cycle-1 we accomplish that. 718 */ 719 ASSERT(head_blk <= INT_MAX && 720 (xfs_daddr_t) num_scan_bblks >= head_blk); 721 start_blk = log_bbnum - (num_scan_bblks - head_blk); 722 if ((error = xlog_find_verify_cycle(log, start_blk, 723 num_scan_bblks - (int)head_blk, 724 (stop_on_cycle - 1), &new_blk))) 725 goto out_free_buffer; 726 if (new_blk != -1) { 727 head_blk = new_blk; 728 goto validate_head; 729 } 730 731 /* 732 * Scan beginning of log now. The last part of the physical 733 * log is good. This scan needs to verify that it doesn't find 734 * the last_half_cycle. 735 */ 736 start_blk = 0; 737 ASSERT(head_blk <= INT_MAX); 738 if ((error = xlog_find_verify_cycle(log, 739 start_blk, (int)head_blk, 740 stop_on_cycle, &new_blk))) 741 goto out_free_buffer; 742 if (new_blk != -1) 743 head_blk = new_blk; 744 } 745 746 validate_head: 747 /* 748 * Now we need to make sure head_blk is not pointing to a block in 749 * the middle of a log record. 750 */ 751 num_scan_bblks = XLOG_REC_SHIFT(log); 752 if (head_blk >= num_scan_bblks) { 753 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 754 755 /* start ptr at last block ptr before head_blk */ 756 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 757 if (error == 1) 758 error = -EIO; 759 if (error) 760 goto out_free_buffer; 761 } else { 762 start_blk = 0; 763 ASSERT(head_blk <= INT_MAX); 764 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 765 if (error < 0) 766 goto out_free_buffer; 767 if (error == 1) { 768 /* We hit the beginning of the log during our search */ 769 start_blk = log_bbnum - (num_scan_bblks - head_blk); 770 new_blk = log_bbnum; 771 ASSERT(start_blk <= INT_MAX && 772 (xfs_daddr_t) log_bbnum-start_blk >= 0); 773 ASSERT(head_blk <= INT_MAX); 774 error = xlog_find_verify_log_record(log, start_blk, 775 &new_blk, (int)head_blk); 776 if (error == 1) 777 error = -EIO; 778 if (error) 779 goto out_free_buffer; 780 if (new_blk != log_bbnum) 781 head_blk = new_blk; 782 } else if (error) 783 goto out_free_buffer; 784 } 785 786 kmem_free(buffer); 787 if (head_blk == log_bbnum) 788 *return_head_blk = 0; 789 else 790 *return_head_blk = head_blk; 791 /* 792 * When returning here, we have a good block number. Bad block 793 * means that during a previous crash, we didn't have a clean break 794 * from cycle number N to cycle number N-1. In this case, we need 795 * to find the first block with cycle number N-1. 796 */ 797 return 0; 798 799 out_free_buffer: 800 kmem_free(buffer); 801 if (error) 802 xfs_warn(log->l_mp, "failed to find log head"); 803 return error; 804 } 805 806 /* 807 * Seek backwards in the log for log record headers. 808 * 809 * Given a starting log block, walk backwards until we find the provided number 810 * of records or hit the provided tail block. The return value is the number of 811 * records encountered or a negative error code. The log block and buffer 812 * pointer of the last record seen are returned in rblk and rhead respectively. 813 */ 814 STATIC int 815 xlog_rseek_logrec_hdr( 816 struct xlog *log, 817 xfs_daddr_t head_blk, 818 xfs_daddr_t tail_blk, 819 int count, 820 char *buffer, 821 xfs_daddr_t *rblk, 822 struct xlog_rec_header **rhead, 823 bool *wrapped) 824 { 825 int i; 826 int error; 827 int found = 0; 828 char *offset = NULL; 829 xfs_daddr_t end_blk; 830 831 *wrapped = false; 832 833 /* 834 * Walk backwards from the head block until we hit the tail or the first 835 * block in the log. 836 */ 837 end_blk = head_blk > tail_blk ? tail_blk : 0; 838 for (i = (int) head_blk - 1; i >= end_blk; i--) { 839 error = xlog_bread(log, i, 1, buffer, &offset); 840 if (error) 841 goto out_error; 842 843 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 844 *rblk = i; 845 *rhead = (struct xlog_rec_header *) offset; 846 if (++found == count) 847 break; 848 } 849 } 850 851 /* 852 * If we haven't hit the tail block or the log record header count, 853 * start looking again from the end of the physical log. Note that 854 * callers can pass head == tail if the tail is not yet known. 855 */ 856 if (tail_blk >= head_blk && found != count) { 857 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) { 858 error = xlog_bread(log, i, 1, buffer, &offset); 859 if (error) 860 goto out_error; 861 862 if (*(__be32 *)offset == 863 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 864 *wrapped = true; 865 *rblk = i; 866 *rhead = (struct xlog_rec_header *) offset; 867 if (++found == count) 868 break; 869 } 870 } 871 } 872 873 return found; 874 875 out_error: 876 return error; 877 } 878 879 /* 880 * Seek forward in the log for log record headers. 881 * 882 * Given head and tail blocks, walk forward from the tail block until we find 883 * the provided number of records or hit the head block. The return value is the 884 * number of records encountered or a negative error code. The log block and 885 * buffer pointer of the last record seen are returned in rblk and rhead 886 * respectively. 887 */ 888 STATIC int 889 xlog_seek_logrec_hdr( 890 struct xlog *log, 891 xfs_daddr_t head_blk, 892 xfs_daddr_t tail_blk, 893 int count, 894 char *buffer, 895 xfs_daddr_t *rblk, 896 struct xlog_rec_header **rhead, 897 bool *wrapped) 898 { 899 int i; 900 int error; 901 int found = 0; 902 char *offset = NULL; 903 xfs_daddr_t end_blk; 904 905 *wrapped = false; 906 907 /* 908 * Walk forward from the tail block until we hit the head or the last 909 * block in the log. 910 */ 911 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1; 912 for (i = (int) tail_blk; i <= end_blk; i++) { 913 error = xlog_bread(log, i, 1, buffer, &offset); 914 if (error) 915 goto out_error; 916 917 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 918 *rblk = i; 919 *rhead = (struct xlog_rec_header *) offset; 920 if (++found == count) 921 break; 922 } 923 } 924 925 /* 926 * If we haven't hit the head block or the log record header count, 927 * start looking again from the start of the physical log. 928 */ 929 if (tail_blk > head_blk && found != count) { 930 for (i = 0; i < (int) head_blk; i++) { 931 error = xlog_bread(log, i, 1, buffer, &offset); 932 if (error) 933 goto out_error; 934 935 if (*(__be32 *)offset == 936 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 937 *wrapped = true; 938 *rblk = i; 939 *rhead = (struct xlog_rec_header *) offset; 940 if (++found == count) 941 break; 942 } 943 } 944 } 945 946 return found; 947 948 out_error: 949 return error; 950 } 951 952 /* 953 * Calculate distance from head to tail (i.e., unused space in the log). 954 */ 955 static inline int 956 xlog_tail_distance( 957 struct xlog *log, 958 xfs_daddr_t head_blk, 959 xfs_daddr_t tail_blk) 960 { 961 if (head_blk < tail_blk) 962 return tail_blk - head_blk; 963 964 return tail_blk + (log->l_logBBsize - head_blk); 965 } 966 967 /* 968 * Verify the log tail. This is particularly important when torn or incomplete 969 * writes have been detected near the front of the log and the head has been 970 * walked back accordingly. 971 * 972 * We also have to handle the case where the tail was pinned and the head 973 * blocked behind the tail right before a crash. If the tail had been pushed 974 * immediately prior to the crash and the subsequent checkpoint was only 975 * partially written, it's possible it overwrote the last referenced tail in the 976 * log with garbage. This is not a coherency problem because the tail must have 977 * been pushed before it can be overwritten, but appears as log corruption to 978 * recovery because we have no way to know the tail was updated if the 979 * subsequent checkpoint didn't write successfully. 980 * 981 * Therefore, CRC check the log from tail to head. If a failure occurs and the 982 * offending record is within max iclog bufs from the head, walk the tail 983 * forward and retry until a valid tail is found or corruption is detected out 984 * of the range of a possible overwrite. 985 */ 986 STATIC int 987 xlog_verify_tail( 988 struct xlog *log, 989 xfs_daddr_t head_blk, 990 xfs_daddr_t *tail_blk, 991 int hsize) 992 { 993 struct xlog_rec_header *thead; 994 char *buffer; 995 xfs_daddr_t first_bad; 996 int error = 0; 997 bool wrapped; 998 xfs_daddr_t tmp_tail; 999 xfs_daddr_t orig_tail = *tail_blk; 1000 1001 buffer = xlog_alloc_buffer(log, 1); 1002 if (!buffer) 1003 return -ENOMEM; 1004 1005 /* 1006 * Make sure the tail points to a record (returns positive count on 1007 * success). 1008 */ 1009 error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer, 1010 &tmp_tail, &thead, &wrapped); 1011 if (error < 0) 1012 goto out; 1013 if (*tail_blk != tmp_tail) 1014 *tail_blk = tmp_tail; 1015 1016 /* 1017 * Run a CRC check from the tail to the head. We can't just check 1018 * MAX_ICLOGS records past the tail because the tail may point to stale 1019 * blocks cleared during the search for the head/tail. These blocks are 1020 * overwritten with zero-length records and thus record count is not a 1021 * reliable indicator of the iclog state before a crash. 1022 */ 1023 first_bad = 0; 1024 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 1025 XLOG_RECOVER_CRCPASS, &first_bad); 1026 while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 1027 int tail_distance; 1028 1029 /* 1030 * Is corruption within range of the head? If so, retry from 1031 * the next record. Otherwise return an error. 1032 */ 1033 tail_distance = xlog_tail_distance(log, head_blk, first_bad); 1034 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize)) 1035 break; 1036 1037 /* skip to the next record; returns positive count on success */ 1038 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, 1039 buffer, &tmp_tail, &thead, &wrapped); 1040 if (error < 0) 1041 goto out; 1042 1043 *tail_blk = tmp_tail; 1044 first_bad = 0; 1045 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 1046 XLOG_RECOVER_CRCPASS, &first_bad); 1047 } 1048 1049 if (!error && *tail_blk != orig_tail) 1050 xfs_warn(log->l_mp, 1051 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx", 1052 orig_tail, *tail_blk); 1053 out: 1054 kmem_free(buffer); 1055 return error; 1056 } 1057 1058 /* 1059 * Detect and trim torn writes from the head of the log. 1060 * 1061 * Storage without sector atomicity guarantees can result in torn writes in the 1062 * log in the event of a crash. Our only means to detect this scenario is via 1063 * CRC verification. While we can't always be certain that CRC verification 1064 * failure is due to a torn write vs. an unrelated corruption, we do know that 1065 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at 1066 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of 1067 * the log and treat failures in this range as torn writes as a matter of 1068 * policy. In the event of CRC failure, the head is walked back to the last good 1069 * record in the log and the tail is updated from that record and verified. 1070 */ 1071 STATIC int 1072 xlog_verify_head( 1073 struct xlog *log, 1074 xfs_daddr_t *head_blk, /* in/out: unverified head */ 1075 xfs_daddr_t *tail_blk, /* out: tail block */ 1076 char *buffer, 1077 xfs_daddr_t *rhead_blk, /* start blk of last record */ 1078 struct xlog_rec_header **rhead, /* ptr to last record */ 1079 bool *wrapped) /* last rec. wraps phys. log */ 1080 { 1081 struct xlog_rec_header *tmp_rhead; 1082 char *tmp_buffer; 1083 xfs_daddr_t first_bad; 1084 xfs_daddr_t tmp_rhead_blk; 1085 int found; 1086 int error; 1087 bool tmp_wrapped; 1088 1089 /* 1090 * Check the head of the log for torn writes. Search backwards from the 1091 * head until we hit the tail or the maximum number of log record I/Os 1092 * that could have been in flight at one time. Use a temporary buffer so 1093 * we don't trash the rhead/buffer pointers from the caller. 1094 */ 1095 tmp_buffer = xlog_alloc_buffer(log, 1); 1096 if (!tmp_buffer) 1097 return -ENOMEM; 1098 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk, 1099 XLOG_MAX_ICLOGS, tmp_buffer, 1100 &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped); 1101 kmem_free(tmp_buffer); 1102 if (error < 0) 1103 return error; 1104 1105 /* 1106 * Now run a CRC verification pass over the records starting at the 1107 * block found above to the current head. If a CRC failure occurs, the 1108 * log block of the first bad record is saved in first_bad. 1109 */ 1110 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk, 1111 XLOG_RECOVER_CRCPASS, &first_bad); 1112 if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 1113 /* 1114 * We've hit a potential torn write. Reset the error and warn 1115 * about it. 1116 */ 1117 error = 0; 1118 xfs_warn(log->l_mp, 1119 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.", 1120 first_bad, *head_blk); 1121 1122 /* 1123 * Get the header block and buffer pointer for the last good 1124 * record before the bad record. 1125 * 1126 * Note that xlog_find_tail() clears the blocks at the new head 1127 * (i.e., the records with invalid CRC) if the cycle number 1128 * matches the the current cycle. 1129 */ 1130 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, 1131 buffer, rhead_blk, rhead, wrapped); 1132 if (found < 0) 1133 return found; 1134 if (found == 0) /* XXX: right thing to do here? */ 1135 return -EIO; 1136 1137 /* 1138 * Reset the head block to the starting block of the first bad 1139 * log record and set the tail block based on the last good 1140 * record. 1141 * 1142 * Bail out if the updated head/tail match as this indicates 1143 * possible corruption outside of the acceptable 1144 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair... 1145 */ 1146 *head_blk = first_bad; 1147 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn)); 1148 if (*head_blk == *tail_blk) { 1149 ASSERT(0); 1150 return 0; 1151 } 1152 } 1153 if (error) 1154 return error; 1155 1156 return xlog_verify_tail(log, *head_blk, tail_blk, 1157 be32_to_cpu((*rhead)->h_size)); 1158 } 1159 1160 /* 1161 * We need to make sure we handle log wrapping properly, so we can't use the 1162 * calculated logbno directly. Make sure it wraps to the correct bno inside the 1163 * log. 1164 * 1165 * The log is limited to 32 bit sizes, so we use the appropriate modulus 1166 * operation here and cast it back to a 64 bit daddr on return. 1167 */ 1168 static inline xfs_daddr_t 1169 xlog_wrap_logbno( 1170 struct xlog *log, 1171 xfs_daddr_t bno) 1172 { 1173 int mod; 1174 1175 div_s64_rem(bno, log->l_logBBsize, &mod); 1176 return mod; 1177 } 1178 1179 /* 1180 * Check whether the head of the log points to an unmount record. In other 1181 * words, determine whether the log is clean. If so, update the in-core state 1182 * appropriately. 1183 */ 1184 static int 1185 xlog_check_unmount_rec( 1186 struct xlog *log, 1187 xfs_daddr_t *head_blk, 1188 xfs_daddr_t *tail_blk, 1189 struct xlog_rec_header *rhead, 1190 xfs_daddr_t rhead_blk, 1191 char *buffer, 1192 bool *clean) 1193 { 1194 struct xlog_op_header *op_head; 1195 xfs_daddr_t umount_data_blk; 1196 xfs_daddr_t after_umount_blk; 1197 int hblks; 1198 int error; 1199 char *offset; 1200 1201 *clean = false; 1202 1203 /* 1204 * Look for unmount record. If we find it, then we know there was a 1205 * clean unmount. Since 'i' could be the last block in the physical 1206 * log, we convert to a log block before comparing to the head_blk. 1207 * 1208 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks() 1209 * below. We won't want to clear the unmount record if there is one, so 1210 * we pass the lsn of the unmount record rather than the block after it. 1211 */ 1212 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1213 int h_size = be32_to_cpu(rhead->h_size); 1214 int h_version = be32_to_cpu(rhead->h_version); 1215 1216 if ((h_version & XLOG_VERSION_2) && 1217 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 1218 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 1219 if (h_size % XLOG_HEADER_CYCLE_SIZE) 1220 hblks++; 1221 } else { 1222 hblks = 1; 1223 } 1224 } else { 1225 hblks = 1; 1226 } 1227 1228 after_umount_blk = xlog_wrap_logbno(log, 1229 rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len))); 1230 1231 if (*head_blk == after_umount_blk && 1232 be32_to_cpu(rhead->h_num_logops) == 1) { 1233 umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks); 1234 error = xlog_bread(log, umount_data_blk, 1, buffer, &offset); 1235 if (error) 1236 return error; 1237 1238 op_head = (struct xlog_op_header *)offset; 1239 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 1240 /* 1241 * Set tail and last sync so that newly written log 1242 * records will point recovery to after the current 1243 * unmount record. 1244 */ 1245 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1246 log->l_curr_cycle, after_umount_blk); 1247 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1248 log->l_curr_cycle, after_umount_blk); 1249 *tail_blk = after_umount_blk; 1250 1251 *clean = true; 1252 } 1253 } 1254 1255 return 0; 1256 } 1257 1258 static void 1259 xlog_set_state( 1260 struct xlog *log, 1261 xfs_daddr_t head_blk, 1262 struct xlog_rec_header *rhead, 1263 xfs_daddr_t rhead_blk, 1264 bool bump_cycle) 1265 { 1266 /* 1267 * Reset log values according to the state of the log when we 1268 * crashed. In the case where head_blk == 0, we bump curr_cycle 1269 * one because the next write starts a new cycle rather than 1270 * continuing the cycle of the last good log record. At this 1271 * point we have guaranteed that all partial log records have been 1272 * accounted for. Therefore, we know that the last good log record 1273 * written was complete and ended exactly on the end boundary 1274 * of the physical log. 1275 */ 1276 log->l_prev_block = rhead_blk; 1277 log->l_curr_block = (int)head_blk; 1278 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 1279 if (bump_cycle) 1280 log->l_curr_cycle++; 1281 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); 1282 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); 1283 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, 1284 BBTOB(log->l_curr_block)); 1285 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, 1286 BBTOB(log->l_curr_block)); 1287 } 1288 1289 /* 1290 * Find the sync block number or the tail of the log. 1291 * 1292 * This will be the block number of the last record to have its 1293 * associated buffers synced to disk. Every log record header has 1294 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 1295 * to get a sync block number. The only concern is to figure out which 1296 * log record header to believe. 1297 * 1298 * The following algorithm uses the log record header with the largest 1299 * lsn. The entire log record does not need to be valid. We only care 1300 * that the header is valid. 1301 * 1302 * We could speed up search by using current head_blk buffer, but it is not 1303 * available. 1304 */ 1305 STATIC int 1306 xlog_find_tail( 1307 struct xlog *log, 1308 xfs_daddr_t *head_blk, 1309 xfs_daddr_t *tail_blk) 1310 { 1311 xlog_rec_header_t *rhead; 1312 char *offset = NULL; 1313 char *buffer; 1314 int error; 1315 xfs_daddr_t rhead_blk; 1316 xfs_lsn_t tail_lsn; 1317 bool wrapped = false; 1318 bool clean = false; 1319 1320 /* 1321 * Find previous log record 1322 */ 1323 if ((error = xlog_find_head(log, head_blk))) 1324 return error; 1325 ASSERT(*head_blk < INT_MAX); 1326 1327 buffer = xlog_alloc_buffer(log, 1); 1328 if (!buffer) 1329 return -ENOMEM; 1330 if (*head_blk == 0) { /* special case */ 1331 error = xlog_bread(log, 0, 1, buffer, &offset); 1332 if (error) 1333 goto done; 1334 1335 if (xlog_get_cycle(offset) == 0) { 1336 *tail_blk = 0; 1337 /* leave all other log inited values alone */ 1338 goto done; 1339 } 1340 } 1341 1342 /* 1343 * Search backwards through the log looking for the log record header 1344 * block. This wraps all the way back around to the head so something is 1345 * seriously wrong if we can't find it. 1346 */ 1347 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer, 1348 &rhead_blk, &rhead, &wrapped); 1349 if (error < 0) 1350 return error; 1351 if (!error) { 1352 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); 1353 return -EIO; 1354 } 1355 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 1356 1357 /* 1358 * Set the log state based on the current head record. 1359 */ 1360 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped); 1361 tail_lsn = atomic64_read(&log->l_tail_lsn); 1362 1363 /* 1364 * Look for an unmount record at the head of the log. This sets the log 1365 * state to determine whether recovery is necessary. 1366 */ 1367 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead, 1368 rhead_blk, buffer, &clean); 1369 if (error) 1370 goto done; 1371 1372 /* 1373 * Verify the log head if the log is not clean (e.g., we have anything 1374 * but an unmount record at the head). This uses CRC verification to 1375 * detect and trim torn writes. If discovered, CRC failures are 1376 * considered torn writes and the log head is trimmed accordingly. 1377 * 1378 * Note that we can only run CRC verification when the log is dirty 1379 * because there's no guarantee that the log data behind an unmount 1380 * record is compatible with the current architecture. 1381 */ 1382 if (!clean) { 1383 xfs_daddr_t orig_head = *head_blk; 1384 1385 error = xlog_verify_head(log, head_blk, tail_blk, buffer, 1386 &rhead_blk, &rhead, &wrapped); 1387 if (error) 1388 goto done; 1389 1390 /* update in-core state again if the head changed */ 1391 if (*head_blk != orig_head) { 1392 xlog_set_state(log, *head_blk, rhead, rhead_blk, 1393 wrapped); 1394 tail_lsn = atomic64_read(&log->l_tail_lsn); 1395 error = xlog_check_unmount_rec(log, head_blk, tail_blk, 1396 rhead, rhead_blk, buffer, 1397 &clean); 1398 if (error) 1399 goto done; 1400 } 1401 } 1402 1403 /* 1404 * Note that the unmount was clean. If the unmount was not clean, we 1405 * need to know this to rebuild the superblock counters from the perag 1406 * headers if we have a filesystem using non-persistent counters. 1407 */ 1408 if (clean) 1409 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 1410 1411 /* 1412 * Make sure that there are no blocks in front of the head 1413 * with the same cycle number as the head. This can happen 1414 * because we allow multiple outstanding log writes concurrently, 1415 * and the later writes might make it out before earlier ones. 1416 * 1417 * We use the lsn from before modifying it so that we'll never 1418 * overwrite the unmount record after a clean unmount. 1419 * 1420 * Do this only if we are going to recover the filesystem 1421 * 1422 * NOTE: This used to say "if (!readonly)" 1423 * However on Linux, we can & do recover a read-only filesystem. 1424 * We only skip recovery if NORECOVERY is specified on mount, 1425 * in which case we would not be here. 1426 * 1427 * But... if the -device- itself is readonly, just skip this. 1428 * We can't recover this device anyway, so it won't matter. 1429 */ 1430 if (!xfs_readonly_buftarg(log->l_targ)) 1431 error = xlog_clear_stale_blocks(log, tail_lsn); 1432 1433 done: 1434 kmem_free(buffer); 1435 1436 if (error) 1437 xfs_warn(log->l_mp, "failed to locate log tail"); 1438 return error; 1439 } 1440 1441 /* 1442 * Is the log zeroed at all? 1443 * 1444 * The last binary search should be changed to perform an X block read 1445 * once X becomes small enough. You can then search linearly through 1446 * the X blocks. This will cut down on the number of reads we need to do. 1447 * 1448 * If the log is partially zeroed, this routine will pass back the blkno 1449 * of the first block with cycle number 0. It won't have a complete LR 1450 * preceding it. 1451 * 1452 * Return: 1453 * 0 => the log is completely written to 1454 * 1 => use *blk_no as the first block of the log 1455 * <0 => error has occurred 1456 */ 1457 STATIC int 1458 xlog_find_zeroed( 1459 struct xlog *log, 1460 xfs_daddr_t *blk_no) 1461 { 1462 char *buffer; 1463 char *offset; 1464 uint first_cycle, last_cycle; 1465 xfs_daddr_t new_blk, last_blk, start_blk; 1466 xfs_daddr_t num_scan_bblks; 1467 int error, log_bbnum = log->l_logBBsize; 1468 1469 *blk_no = 0; 1470 1471 /* check totally zeroed log */ 1472 buffer = xlog_alloc_buffer(log, 1); 1473 if (!buffer) 1474 return -ENOMEM; 1475 error = xlog_bread(log, 0, 1, buffer, &offset); 1476 if (error) 1477 goto out_free_buffer; 1478 1479 first_cycle = xlog_get_cycle(offset); 1480 if (first_cycle == 0) { /* completely zeroed log */ 1481 *blk_no = 0; 1482 kmem_free(buffer); 1483 return 1; 1484 } 1485 1486 /* check partially zeroed log */ 1487 error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset); 1488 if (error) 1489 goto out_free_buffer; 1490 1491 last_cycle = xlog_get_cycle(offset); 1492 if (last_cycle != 0) { /* log completely written to */ 1493 kmem_free(buffer); 1494 return 0; 1495 } 1496 1497 /* we have a partially zeroed log */ 1498 last_blk = log_bbnum-1; 1499 error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0); 1500 if (error) 1501 goto out_free_buffer; 1502 1503 /* 1504 * Validate the answer. Because there is no way to guarantee that 1505 * the entire log is made up of log records which are the same size, 1506 * we scan over the defined maximum blocks. At this point, the maximum 1507 * is not chosen to mean anything special. XXXmiken 1508 */ 1509 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1510 ASSERT(num_scan_bblks <= INT_MAX); 1511 1512 if (last_blk < num_scan_bblks) 1513 num_scan_bblks = last_blk; 1514 start_blk = last_blk - num_scan_bblks; 1515 1516 /* 1517 * We search for any instances of cycle number 0 that occur before 1518 * our current estimate of the head. What we're trying to detect is 1519 * 1 ... | 0 | 1 | 0... 1520 * ^ binary search ends here 1521 */ 1522 if ((error = xlog_find_verify_cycle(log, start_blk, 1523 (int)num_scan_bblks, 0, &new_blk))) 1524 goto out_free_buffer; 1525 if (new_blk != -1) 1526 last_blk = new_blk; 1527 1528 /* 1529 * Potentially backup over partial log record write. We don't need 1530 * to search the end of the log because we know it is zero. 1531 */ 1532 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0); 1533 if (error == 1) 1534 error = -EIO; 1535 if (error) 1536 goto out_free_buffer; 1537 1538 *blk_no = last_blk; 1539 out_free_buffer: 1540 kmem_free(buffer); 1541 if (error) 1542 return error; 1543 return 1; 1544 } 1545 1546 /* 1547 * These are simple subroutines used by xlog_clear_stale_blocks() below 1548 * to initialize a buffer full of empty log record headers and write 1549 * them into the log. 1550 */ 1551 STATIC void 1552 xlog_add_record( 1553 struct xlog *log, 1554 char *buf, 1555 int cycle, 1556 int block, 1557 int tail_cycle, 1558 int tail_block) 1559 { 1560 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1561 1562 memset(buf, 0, BBSIZE); 1563 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1564 recp->h_cycle = cpu_to_be32(cycle); 1565 recp->h_version = cpu_to_be32( 1566 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1567 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1568 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1569 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1570 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1571 } 1572 1573 STATIC int 1574 xlog_write_log_records( 1575 struct xlog *log, 1576 int cycle, 1577 int start_block, 1578 int blocks, 1579 int tail_cycle, 1580 int tail_block) 1581 { 1582 char *offset; 1583 char *buffer; 1584 int balign, ealign; 1585 int sectbb = log->l_sectBBsize; 1586 int end_block = start_block + blocks; 1587 int bufblks; 1588 int error = 0; 1589 int i, j = 0; 1590 1591 /* 1592 * Greedily allocate a buffer big enough to handle the full 1593 * range of basic blocks to be written. If that fails, try 1594 * a smaller size. We need to be able to write at least a 1595 * log sector, or we're out of luck. 1596 */ 1597 bufblks = 1 << ffs(blocks); 1598 while (bufblks > log->l_logBBsize) 1599 bufblks >>= 1; 1600 while (!(buffer = xlog_alloc_buffer(log, bufblks))) { 1601 bufblks >>= 1; 1602 if (bufblks < sectbb) 1603 return -ENOMEM; 1604 } 1605 1606 /* We may need to do a read at the start to fill in part of 1607 * the buffer in the starting sector not covered by the first 1608 * write below. 1609 */ 1610 balign = round_down(start_block, sectbb); 1611 if (balign != start_block) { 1612 error = xlog_bread_noalign(log, start_block, 1, buffer); 1613 if (error) 1614 goto out_free_buffer; 1615 1616 j = start_block - balign; 1617 } 1618 1619 for (i = start_block; i < end_block; i += bufblks) { 1620 int bcount, endcount; 1621 1622 bcount = min(bufblks, end_block - start_block); 1623 endcount = bcount - j; 1624 1625 /* We may need to do a read at the end to fill in part of 1626 * the buffer in the final sector not covered by the write. 1627 * If this is the same sector as the above read, skip it. 1628 */ 1629 ealign = round_down(end_block, sectbb); 1630 if (j == 0 && (start_block + endcount > ealign)) { 1631 error = xlog_bread_noalign(log, ealign, sectbb, 1632 buffer + BBTOB(ealign - start_block)); 1633 if (error) 1634 break; 1635 1636 } 1637 1638 offset = buffer + xlog_align(log, start_block); 1639 for (; j < endcount; j++) { 1640 xlog_add_record(log, offset, cycle, i+j, 1641 tail_cycle, tail_block); 1642 offset += BBSIZE; 1643 } 1644 error = xlog_bwrite(log, start_block, endcount, buffer); 1645 if (error) 1646 break; 1647 start_block += endcount; 1648 j = 0; 1649 } 1650 1651 out_free_buffer: 1652 kmem_free(buffer); 1653 return error; 1654 } 1655 1656 /* 1657 * This routine is called to blow away any incomplete log writes out 1658 * in front of the log head. We do this so that we won't become confused 1659 * if we come up, write only a little bit more, and then crash again. 1660 * If we leave the partial log records out there, this situation could 1661 * cause us to think those partial writes are valid blocks since they 1662 * have the current cycle number. We get rid of them by overwriting them 1663 * with empty log records with the old cycle number rather than the 1664 * current one. 1665 * 1666 * The tail lsn is passed in rather than taken from 1667 * the log so that we will not write over the unmount record after a 1668 * clean unmount in a 512 block log. Doing so would leave the log without 1669 * any valid log records in it until a new one was written. If we crashed 1670 * during that time we would not be able to recover. 1671 */ 1672 STATIC int 1673 xlog_clear_stale_blocks( 1674 struct xlog *log, 1675 xfs_lsn_t tail_lsn) 1676 { 1677 int tail_cycle, head_cycle; 1678 int tail_block, head_block; 1679 int tail_distance, max_distance; 1680 int distance; 1681 int error; 1682 1683 tail_cycle = CYCLE_LSN(tail_lsn); 1684 tail_block = BLOCK_LSN(tail_lsn); 1685 head_cycle = log->l_curr_cycle; 1686 head_block = log->l_curr_block; 1687 1688 /* 1689 * Figure out the distance between the new head of the log 1690 * and the tail. We want to write over any blocks beyond the 1691 * head that we may have written just before the crash, but 1692 * we don't want to overwrite the tail of the log. 1693 */ 1694 if (head_cycle == tail_cycle) { 1695 /* 1696 * The tail is behind the head in the physical log, 1697 * so the distance from the head to the tail is the 1698 * distance from the head to the end of the log plus 1699 * the distance from the beginning of the log to the 1700 * tail. 1701 */ 1702 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1703 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1704 XFS_ERRLEVEL_LOW, log->l_mp); 1705 return -EFSCORRUPTED; 1706 } 1707 tail_distance = tail_block + (log->l_logBBsize - head_block); 1708 } else { 1709 /* 1710 * The head is behind the tail in the physical log, 1711 * so the distance from the head to the tail is just 1712 * the tail block minus the head block. 1713 */ 1714 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1715 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1716 XFS_ERRLEVEL_LOW, log->l_mp); 1717 return -EFSCORRUPTED; 1718 } 1719 tail_distance = tail_block - head_block; 1720 } 1721 1722 /* 1723 * If the head is right up against the tail, we can't clear 1724 * anything. 1725 */ 1726 if (tail_distance <= 0) { 1727 ASSERT(tail_distance == 0); 1728 return 0; 1729 } 1730 1731 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1732 /* 1733 * Take the smaller of the maximum amount of outstanding I/O 1734 * we could have and the distance to the tail to clear out. 1735 * We take the smaller so that we don't overwrite the tail and 1736 * we don't waste all day writing from the head to the tail 1737 * for no reason. 1738 */ 1739 max_distance = min(max_distance, tail_distance); 1740 1741 if ((head_block + max_distance) <= log->l_logBBsize) { 1742 /* 1743 * We can stomp all the blocks we need to without 1744 * wrapping around the end of the log. Just do it 1745 * in a single write. Use the cycle number of the 1746 * current cycle minus one so that the log will look like: 1747 * n ... | n - 1 ... 1748 */ 1749 error = xlog_write_log_records(log, (head_cycle - 1), 1750 head_block, max_distance, tail_cycle, 1751 tail_block); 1752 if (error) 1753 return error; 1754 } else { 1755 /* 1756 * We need to wrap around the end of the physical log in 1757 * order to clear all the blocks. Do it in two separate 1758 * I/Os. The first write should be from the head to the 1759 * end of the physical log, and it should use the current 1760 * cycle number minus one just like above. 1761 */ 1762 distance = log->l_logBBsize - head_block; 1763 error = xlog_write_log_records(log, (head_cycle - 1), 1764 head_block, distance, tail_cycle, 1765 tail_block); 1766 1767 if (error) 1768 return error; 1769 1770 /* 1771 * Now write the blocks at the start of the physical log. 1772 * This writes the remainder of the blocks we want to clear. 1773 * It uses the current cycle number since we're now on the 1774 * same cycle as the head so that we get: 1775 * n ... n ... | n - 1 ... 1776 * ^^^^^ blocks we're writing 1777 */ 1778 distance = max_distance - (log->l_logBBsize - head_block); 1779 error = xlog_write_log_records(log, head_cycle, 0, distance, 1780 tail_cycle, tail_block); 1781 if (error) 1782 return error; 1783 } 1784 1785 return 0; 1786 } 1787 1788 /****************************************************************************** 1789 * 1790 * Log recover routines 1791 * 1792 ****************************************************************************** 1793 */ 1794 1795 /* 1796 * Sort the log items in the transaction. 1797 * 1798 * The ordering constraints are defined by the inode allocation and unlink 1799 * behaviour. The rules are: 1800 * 1801 * 1. Every item is only logged once in a given transaction. Hence it 1802 * represents the last logged state of the item. Hence ordering is 1803 * dependent on the order in which operations need to be performed so 1804 * required initial conditions are always met. 1805 * 1806 * 2. Cancelled buffers are recorded in pass 1 in a separate table and 1807 * there's nothing to replay from them so we can simply cull them 1808 * from the transaction. However, we can't do that until after we've 1809 * replayed all the other items because they may be dependent on the 1810 * cancelled buffer and replaying the cancelled buffer can remove it 1811 * form the cancelled buffer table. Hence they have tobe done last. 1812 * 1813 * 3. Inode allocation buffers must be replayed before inode items that 1814 * read the buffer and replay changes into it. For filesystems using the 1815 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get 1816 * treated the same as inode allocation buffers as they create and 1817 * initialise the buffers directly. 1818 * 1819 * 4. Inode unlink buffers must be replayed after inode items are replayed. 1820 * This ensures that inodes are completely flushed to the inode buffer 1821 * in a "free" state before we remove the unlinked inode list pointer. 1822 * 1823 * Hence the ordering needs to be inode allocation buffers first, inode items 1824 * second, inode unlink buffers third and cancelled buffers last. 1825 * 1826 * But there's a problem with that - we can't tell an inode allocation buffer 1827 * apart from a regular buffer, so we can't separate them. We can, however, 1828 * tell an inode unlink buffer from the others, and so we can separate them out 1829 * from all the other buffers and move them to last. 1830 * 1831 * Hence, 4 lists, in order from head to tail: 1832 * - buffer_list for all buffers except cancelled/inode unlink buffers 1833 * - item_list for all non-buffer items 1834 * - inode_buffer_list for inode unlink buffers 1835 * - cancel_list for the cancelled buffers 1836 * 1837 * Note that we add objects to the tail of the lists so that first-to-last 1838 * ordering is preserved within the lists. Adding objects to the head of the 1839 * list means when we traverse from the head we walk them in last-to-first 1840 * order. For cancelled buffers and inode unlink buffers this doesn't matter, 1841 * but for all other items there may be specific ordering that we need to 1842 * preserve. 1843 */ 1844 STATIC int 1845 xlog_recover_reorder_trans( 1846 struct xlog *log, 1847 struct xlog_recover *trans, 1848 int pass) 1849 { 1850 xlog_recover_item_t *item, *n; 1851 int error = 0; 1852 LIST_HEAD(sort_list); 1853 LIST_HEAD(cancel_list); 1854 LIST_HEAD(buffer_list); 1855 LIST_HEAD(inode_buffer_list); 1856 LIST_HEAD(inode_list); 1857 1858 list_splice_init(&trans->r_itemq, &sort_list); 1859 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1860 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1861 1862 switch (ITEM_TYPE(item)) { 1863 case XFS_LI_ICREATE: 1864 list_move_tail(&item->ri_list, &buffer_list); 1865 break; 1866 case XFS_LI_BUF: 1867 if (buf_f->blf_flags & XFS_BLF_CANCEL) { 1868 trace_xfs_log_recover_item_reorder_head(log, 1869 trans, item, pass); 1870 list_move(&item->ri_list, &cancel_list); 1871 break; 1872 } 1873 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 1874 list_move(&item->ri_list, &inode_buffer_list); 1875 break; 1876 } 1877 list_move_tail(&item->ri_list, &buffer_list); 1878 break; 1879 case XFS_LI_INODE: 1880 case XFS_LI_DQUOT: 1881 case XFS_LI_QUOTAOFF: 1882 case XFS_LI_EFD: 1883 case XFS_LI_EFI: 1884 case XFS_LI_RUI: 1885 case XFS_LI_RUD: 1886 case XFS_LI_CUI: 1887 case XFS_LI_CUD: 1888 case XFS_LI_BUI: 1889 case XFS_LI_BUD: 1890 trace_xfs_log_recover_item_reorder_tail(log, 1891 trans, item, pass); 1892 list_move_tail(&item->ri_list, &inode_list); 1893 break; 1894 default: 1895 xfs_warn(log->l_mp, 1896 "%s: unrecognized type of log operation", 1897 __func__); 1898 ASSERT(0); 1899 /* 1900 * return the remaining items back to the transaction 1901 * item list so they can be freed in caller. 1902 */ 1903 if (!list_empty(&sort_list)) 1904 list_splice_init(&sort_list, &trans->r_itemq); 1905 error = -EIO; 1906 goto out; 1907 } 1908 } 1909 out: 1910 ASSERT(list_empty(&sort_list)); 1911 if (!list_empty(&buffer_list)) 1912 list_splice(&buffer_list, &trans->r_itemq); 1913 if (!list_empty(&inode_list)) 1914 list_splice_tail(&inode_list, &trans->r_itemq); 1915 if (!list_empty(&inode_buffer_list)) 1916 list_splice_tail(&inode_buffer_list, &trans->r_itemq); 1917 if (!list_empty(&cancel_list)) 1918 list_splice_tail(&cancel_list, &trans->r_itemq); 1919 return error; 1920 } 1921 1922 /* 1923 * Build up the table of buf cancel records so that we don't replay 1924 * cancelled data in the second pass. For buffer records that are 1925 * not cancel records, there is nothing to do here so we just return. 1926 * 1927 * If we get a cancel record which is already in the table, this indicates 1928 * that the buffer was cancelled multiple times. In order to ensure 1929 * that during pass 2 we keep the record in the table until we reach its 1930 * last occurrence in the log, we keep a reference count in the cancel 1931 * record in the table to tell us how many times we expect to see this 1932 * record during the second pass. 1933 */ 1934 STATIC int 1935 xlog_recover_buffer_pass1( 1936 struct xlog *log, 1937 struct xlog_recover_item *item) 1938 { 1939 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1940 struct list_head *bucket; 1941 struct xfs_buf_cancel *bcp; 1942 1943 /* 1944 * If this isn't a cancel buffer item, then just return. 1945 */ 1946 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 1947 trace_xfs_log_recover_buf_not_cancel(log, buf_f); 1948 return 0; 1949 } 1950 1951 /* 1952 * Insert an xfs_buf_cancel record into the hash table of them. 1953 * If there is already an identical record, bump its reference count. 1954 */ 1955 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno); 1956 list_for_each_entry(bcp, bucket, bc_list) { 1957 if (bcp->bc_blkno == buf_f->blf_blkno && 1958 bcp->bc_len == buf_f->blf_len) { 1959 bcp->bc_refcount++; 1960 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f); 1961 return 0; 1962 } 1963 } 1964 1965 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), 0); 1966 bcp->bc_blkno = buf_f->blf_blkno; 1967 bcp->bc_len = buf_f->blf_len; 1968 bcp->bc_refcount = 1; 1969 list_add_tail(&bcp->bc_list, bucket); 1970 1971 trace_xfs_log_recover_buf_cancel_add(log, buf_f); 1972 return 0; 1973 } 1974 1975 /* 1976 * Check to see whether the buffer being recovered has a corresponding 1977 * entry in the buffer cancel record table. If it is, return the cancel 1978 * buffer structure to the caller. 1979 */ 1980 STATIC struct xfs_buf_cancel * 1981 xlog_peek_buffer_cancelled( 1982 struct xlog *log, 1983 xfs_daddr_t blkno, 1984 uint len, 1985 unsigned short flags) 1986 { 1987 struct list_head *bucket; 1988 struct xfs_buf_cancel *bcp; 1989 1990 if (!log->l_buf_cancel_table) { 1991 /* empty table means no cancelled buffers in the log */ 1992 ASSERT(!(flags & XFS_BLF_CANCEL)); 1993 return NULL; 1994 } 1995 1996 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); 1997 list_for_each_entry(bcp, bucket, bc_list) { 1998 if (bcp->bc_blkno == blkno && bcp->bc_len == len) 1999 return bcp; 2000 } 2001 2002 /* 2003 * We didn't find a corresponding entry in the table, so return 0 so 2004 * that the buffer is NOT cancelled. 2005 */ 2006 ASSERT(!(flags & XFS_BLF_CANCEL)); 2007 return NULL; 2008 } 2009 2010 /* 2011 * If the buffer is being cancelled then return 1 so that it will be cancelled, 2012 * otherwise return 0. If the buffer is actually a buffer cancel item 2013 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the 2014 * table and remove it from the table if this is the last reference. 2015 * 2016 * We remove the cancel record from the table when we encounter its last 2017 * occurrence in the log so that if the same buffer is re-used again after its 2018 * last cancellation we actually replay the changes made at that point. 2019 */ 2020 STATIC int 2021 xlog_check_buffer_cancelled( 2022 struct xlog *log, 2023 xfs_daddr_t blkno, 2024 uint len, 2025 unsigned short flags) 2026 { 2027 struct xfs_buf_cancel *bcp; 2028 2029 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags); 2030 if (!bcp) 2031 return 0; 2032 2033 /* 2034 * We've go a match, so return 1 so that the recovery of this buffer 2035 * is cancelled. If this buffer is actually a buffer cancel log 2036 * item, then decrement the refcount on the one in the table and 2037 * remove it if this is the last reference. 2038 */ 2039 if (flags & XFS_BLF_CANCEL) { 2040 if (--bcp->bc_refcount == 0) { 2041 list_del(&bcp->bc_list); 2042 kmem_free(bcp); 2043 } 2044 } 2045 return 1; 2046 } 2047 2048 /* 2049 * Perform recovery for a buffer full of inodes. In these buffers, the only 2050 * data which should be recovered is that which corresponds to the 2051 * di_next_unlinked pointers in the on disk inode structures. The rest of the 2052 * data for the inodes is always logged through the inodes themselves rather 2053 * than the inode buffer and is recovered in xlog_recover_inode_pass2(). 2054 * 2055 * The only time when buffers full of inodes are fully recovered is when the 2056 * buffer is full of newly allocated inodes. In this case the buffer will 2057 * not be marked as an inode buffer and so will be sent to 2058 * xlog_recover_do_reg_buffer() below during recovery. 2059 */ 2060 STATIC int 2061 xlog_recover_do_inode_buffer( 2062 struct xfs_mount *mp, 2063 xlog_recover_item_t *item, 2064 struct xfs_buf *bp, 2065 xfs_buf_log_format_t *buf_f) 2066 { 2067 int i; 2068 int item_index = 0; 2069 int bit = 0; 2070 int nbits = 0; 2071 int reg_buf_offset = 0; 2072 int reg_buf_bytes = 0; 2073 int next_unlinked_offset; 2074 int inodes_per_buf; 2075 xfs_agino_t *logged_nextp; 2076 xfs_agino_t *buffer_nextp; 2077 2078 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); 2079 2080 /* 2081 * Post recovery validation only works properly on CRC enabled 2082 * filesystems. 2083 */ 2084 if (xfs_sb_version_hascrc(&mp->m_sb)) 2085 bp->b_ops = &xfs_inode_buf_ops; 2086 2087 inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog; 2088 for (i = 0; i < inodes_per_buf; i++) { 2089 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 2090 offsetof(xfs_dinode_t, di_next_unlinked); 2091 2092 while (next_unlinked_offset >= 2093 (reg_buf_offset + reg_buf_bytes)) { 2094 /* 2095 * The next di_next_unlinked field is beyond 2096 * the current logged region. Find the next 2097 * logged region that contains or is beyond 2098 * the current di_next_unlinked field. 2099 */ 2100 bit += nbits; 2101 bit = xfs_next_bit(buf_f->blf_data_map, 2102 buf_f->blf_map_size, bit); 2103 2104 /* 2105 * If there are no more logged regions in the 2106 * buffer, then we're done. 2107 */ 2108 if (bit == -1) 2109 return 0; 2110 2111 nbits = xfs_contig_bits(buf_f->blf_data_map, 2112 buf_f->blf_map_size, bit); 2113 ASSERT(nbits > 0); 2114 reg_buf_offset = bit << XFS_BLF_SHIFT; 2115 reg_buf_bytes = nbits << XFS_BLF_SHIFT; 2116 item_index++; 2117 } 2118 2119 /* 2120 * If the current logged region starts after the current 2121 * di_next_unlinked field, then move on to the next 2122 * di_next_unlinked field. 2123 */ 2124 if (next_unlinked_offset < reg_buf_offset) 2125 continue; 2126 2127 ASSERT(item->ri_buf[item_index].i_addr != NULL); 2128 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); 2129 ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length)); 2130 2131 /* 2132 * The current logged region contains a copy of the 2133 * current di_next_unlinked field. Extract its value 2134 * and copy it to the buffer copy. 2135 */ 2136 logged_nextp = item->ri_buf[item_index].i_addr + 2137 next_unlinked_offset - reg_buf_offset; 2138 if (unlikely(*logged_nextp == 0)) { 2139 xfs_alert(mp, 2140 "Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). " 2141 "Trying to replay bad (0) inode di_next_unlinked field.", 2142 item, bp); 2143 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 2144 XFS_ERRLEVEL_LOW, mp); 2145 return -EFSCORRUPTED; 2146 } 2147 2148 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset); 2149 *buffer_nextp = *logged_nextp; 2150 2151 /* 2152 * If necessary, recalculate the CRC in the on-disk inode. We 2153 * have to leave the inode in a consistent state for whoever 2154 * reads it next.... 2155 */ 2156 xfs_dinode_calc_crc(mp, 2157 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); 2158 2159 } 2160 2161 return 0; 2162 } 2163 2164 /* 2165 * V5 filesystems know the age of the buffer on disk being recovered. We can 2166 * have newer objects on disk than we are replaying, and so for these cases we 2167 * don't want to replay the current change as that will make the buffer contents 2168 * temporarily invalid on disk. 2169 * 2170 * The magic number might not match the buffer type we are going to recover 2171 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence 2172 * extract the LSN of the existing object in the buffer based on it's current 2173 * magic number. If we don't recognise the magic number in the buffer, then 2174 * return a LSN of -1 so that the caller knows it was an unrecognised block and 2175 * so can recover the buffer. 2176 * 2177 * Note: we cannot rely solely on magic number matches to determine that the 2178 * buffer has a valid LSN - we also need to verify that it belongs to this 2179 * filesystem, so we need to extract the object's LSN and compare it to that 2180 * which we read from the superblock. If the UUIDs don't match, then we've got a 2181 * stale metadata block from an old filesystem instance that we need to recover 2182 * over the top of. 2183 */ 2184 static xfs_lsn_t 2185 xlog_recover_get_buf_lsn( 2186 struct xfs_mount *mp, 2187 struct xfs_buf *bp) 2188 { 2189 uint32_t magic32; 2190 uint16_t magic16; 2191 uint16_t magicda; 2192 void *blk = bp->b_addr; 2193 uuid_t *uuid; 2194 xfs_lsn_t lsn = -1; 2195 2196 /* v4 filesystems always recover immediately */ 2197 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2198 goto recover_immediately; 2199 2200 magic32 = be32_to_cpu(*(__be32 *)blk); 2201 switch (magic32) { 2202 case XFS_ABTB_CRC_MAGIC: 2203 case XFS_ABTC_CRC_MAGIC: 2204 case XFS_ABTB_MAGIC: 2205 case XFS_ABTC_MAGIC: 2206 case XFS_RMAP_CRC_MAGIC: 2207 case XFS_REFC_CRC_MAGIC: 2208 case XFS_IBT_CRC_MAGIC: 2209 case XFS_IBT_MAGIC: { 2210 struct xfs_btree_block *btb = blk; 2211 2212 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn); 2213 uuid = &btb->bb_u.s.bb_uuid; 2214 break; 2215 } 2216 case XFS_BMAP_CRC_MAGIC: 2217 case XFS_BMAP_MAGIC: { 2218 struct xfs_btree_block *btb = blk; 2219 2220 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn); 2221 uuid = &btb->bb_u.l.bb_uuid; 2222 break; 2223 } 2224 case XFS_AGF_MAGIC: 2225 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn); 2226 uuid = &((struct xfs_agf *)blk)->agf_uuid; 2227 break; 2228 case XFS_AGFL_MAGIC: 2229 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn); 2230 uuid = &((struct xfs_agfl *)blk)->agfl_uuid; 2231 break; 2232 case XFS_AGI_MAGIC: 2233 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn); 2234 uuid = &((struct xfs_agi *)blk)->agi_uuid; 2235 break; 2236 case XFS_SYMLINK_MAGIC: 2237 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn); 2238 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid; 2239 break; 2240 case XFS_DIR3_BLOCK_MAGIC: 2241 case XFS_DIR3_DATA_MAGIC: 2242 case XFS_DIR3_FREE_MAGIC: 2243 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn); 2244 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid; 2245 break; 2246 case XFS_ATTR3_RMT_MAGIC: 2247 /* 2248 * Remote attr blocks are written synchronously, rather than 2249 * being logged. That means they do not contain a valid LSN 2250 * (i.e. transactionally ordered) in them, and hence any time we 2251 * see a buffer to replay over the top of a remote attribute 2252 * block we should simply do so. 2253 */ 2254 goto recover_immediately; 2255 case XFS_SB_MAGIC: 2256 /* 2257 * superblock uuids are magic. We may or may not have a 2258 * sb_meta_uuid on disk, but it will be set in the in-core 2259 * superblock. We set the uuid pointer for verification 2260 * according to the superblock feature mask to ensure we check 2261 * the relevant UUID in the superblock. 2262 */ 2263 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn); 2264 if (xfs_sb_version_hasmetauuid(&mp->m_sb)) 2265 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid; 2266 else 2267 uuid = &((struct xfs_dsb *)blk)->sb_uuid; 2268 break; 2269 default: 2270 break; 2271 } 2272 2273 if (lsn != (xfs_lsn_t)-1) { 2274 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid)) 2275 goto recover_immediately; 2276 return lsn; 2277 } 2278 2279 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic); 2280 switch (magicda) { 2281 case XFS_DIR3_LEAF1_MAGIC: 2282 case XFS_DIR3_LEAFN_MAGIC: 2283 case XFS_DA3_NODE_MAGIC: 2284 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn); 2285 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid; 2286 break; 2287 default: 2288 break; 2289 } 2290 2291 if (lsn != (xfs_lsn_t)-1) { 2292 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid)) 2293 goto recover_immediately; 2294 return lsn; 2295 } 2296 2297 /* 2298 * We do individual object checks on dquot and inode buffers as they 2299 * have their own individual LSN records. Also, we could have a stale 2300 * buffer here, so we have to at least recognise these buffer types. 2301 * 2302 * A notd complexity here is inode unlinked list processing - it logs 2303 * the inode directly in the buffer, but we don't know which inodes have 2304 * been modified, and there is no global buffer LSN. Hence we need to 2305 * recover all inode buffer types immediately. This problem will be 2306 * fixed by logical logging of the unlinked list modifications. 2307 */ 2308 magic16 = be16_to_cpu(*(__be16 *)blk); 2309 switch (magic16) { 2310 case XFS_DQUOT_MAGIC: 2311 case XFS_DINODE_MAGIC: 2312 goto recover_immediately; 2313 default: 2314 break; 2315 } 2316 2317 /* unknown buffer contents, recover immediately */ 2318 2319 recover_immediately: 2320 return (xfs_lsn_t)-1; 2321 2322 } 2323 2324 /* 2325 * Validate the recovered buffer is of the correct type and attach the 2326 * appropriate buffer operations to them for writeback. Magic numbers are in a 2327 * few places: 2328 * the first 16 bits of the buffer (inode buffer, dquot buffer), 2329 * the first 32 bits of the buffer (most blocks), 2330 * inside a struct xfs_da_blkinfo at the start of the buffer. 2331 */ 2332 static void 2333 xlog_recover_validate_buf_type( 2334 struct xfs_mount *mp, 2335 struct xfs_buf *bp, 2336 xfs_buf_log_format_t *buf_f, 2337 xfs_lsn_t current_lsn) 2338 { 2339 struct xfs_da_blkinfo *info = bp->b_addr; 2340 uint32_t magic32; 2341 uint16_t magic16; 2342 uint16_t magicda; 2343 char *warnmsg = NULL; 2344 2345 /* 2346 * We can only do post recovery validation on items on CRC enabled 2347 * fielsystems as we need to know when the buffer was written to be able 2348 * to determine if we should have replayed the item. If we replay old 2349 * metadata over a newer buffer, then it will enter a temporarily 2350 * inconsistent state resulting in verification failures. Hence for now 2351 * just avoid the verification stage for non-crc filesystems 2352 */ 2353 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2354 return; 2355 2356 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr); 2357 magic16 = be16_to_cpu(*(__be16*)bp->b_addr); 2358 magicda = be16_to_cpu(info->magic); 2359 switch (xfs_blft_from_flags(buf_f)) { 2360 case XFS_BLFT_BTREE_BUF: 2361 switch (magic32) { 2362 case XFS_ABTB_CRC_MAGIC: 2363 case XFS_ABTB_MAGIC: 2364 bp->b_ops = &xfs_bnobt_buf_ops; 2365 break; 2366 case XFS_ABTC_CRC_MAGIC: 2367 case XFS_ABTC_MAGIC: 2368 bp->b_ops = &xfs_cntbt_buf_ops; 2369 break; 2370 case XFS_IBT_CRC_MAGIC: 2371 case XFS_IBT_MAGIC: 2372 bp->b_ops = &xfs_inobt_buf_ops; 2373 break; 2374 case XFS_FIBT_CRC_MAGIC: 2375 case XFS_FIBT_MAGIC: 2376 bp->b_ops = &xfs_finobt_buf_ops; 2377 break; 2378 case XFS_BMAP_CRC_MAGIC: 2379 case XFS_BMAP_MAGIC: 2380 bp->b_ops = &xfs_bmbt_buf_ops; 2381 break; 2382 case XFS_RMAP_CRC_MAGIC: 2383 bp->b_ops = &xfs_rmapbt_buf_ops; 2384 break; 2385 case XFS_REFC_CRC_MAGIC: 2386 bp->b_ops = &xfs_refcountbt_buf_ops; 2387 break; 2388 default: 2389 warnmsg = "Bad btree block magic!"; 2390 break; 2391 } 2392 break; 2393 case XFS_BLFT_AGF_BUF: 2394 if (magic32 != XFS_AGF_MAGIC) { 2395 warnmsg = "Bad AGF block magic!"; 2396 break; 2397 } 2398 bp->b_ops = &xfs_agf_buf_ops; 2399 break; 2400 case XFS_BLFT_AGFL_BUF: 2401 if (magic32 != XFS_AGFL_MAGIC) { 2402 warnmsg = "Bad AGFL block magic!"; 2403 break; 2404 } 2405 bp->b_ops = &xfs_agfl_buf_ops; 2406 break; 2407 case XFS_BLFT_AGI_BUF: 2408 if (magic32 != XFS_AGI_MAGIC) { 2409 warnmsg = "Bad AGI block magic!"; 2410 break; 2411 } 2412 bp->b_ops = &xfs_agi_buf_ops; 2413 break; 2414 case XFS_BLFT_UDQUOT_BUF: 2415 case XFS_BLFT_PDQUOT_BUF: 2416 case XFS_BLFT_GDQUOT_BUF: 2417 #ifdef CONFIG_XFS_QUOTA 2418 if (magic16 != XFS_DQUOT_MAGIC) { 2419 warnmsg = "Bad DQUOT block magic!"; 2420 break; 2421 } 2422 bp->b_ops = &xfs_dquot_buf_ops; 2423 #else 2424 xfs_alert(mp, 2425 "Trying to recover dquots without QUOTA support built in!"); 2426 ASSERT(0); 2427 #endif 2428 break; 2429 case XFS_BLFT_DINO_BUF: 2430 if (magic16 != XFS_DINODE_MAGIC) { 2431 warnmsg = "Bad INODE block magic!"; 2432 break; 2433 } 2434 bp->b_ops = &xfs_inode_buf_ops; 2435 break; 2436 case XFS_BLFT_SYMLINK_BUF: 2437 if (magic32 != XFS_SYMLINK_MAGIC) { 2438 warnmsg = "Bad symlink block magic!"; 2439 break; 2440 } 2441 bp->b_ops = &xfs_symlink_buf_ops; 2442 break; 2443 case XFS_BLFT_DIR_BLOCK_BUF: 2444 if (magic32 != XFS_DIR2_BLOCK_MAGIC && 2445 magic32 != XFS_DIR3_BLOCK_MAGIC) { 2446 warnmsg = "Bad dir block magic!"; 2447 break; 2448 } 2449 bp->b_ops = &xfs_dir3_block_buf_ops; 2450 break; 2451 case XFS_BLFT_DIR_DATA_BUF: 2452 if (magic32 != XFS_DIR2_DATA_MAGIC && 2453 magic32 != XFS_DIR3_DATA_MAGIC) { 2454 warnmsg = "Bad dir data magic!"; 2455 break; 2456 } 2457 bp->b_ops = &xfs_dir3_data_buf_ops; 2458 break; 2459 case XFS_BLFT_DIR_FREE_BUF: 2460 if (magic32 != XFS_DIR2_FREE_MAGIC && 2461 magic32 != XFS_DIR3_FREE_MAGIC) { 2462 warnmsg = "Bad dir3 free magic!"; 2463 break; 2464 } 2465 bp->b_ops = &xfs_dir3_free_buf_ops; 2466 break; 2467 case XFS_BLFT_DIR_LEAF1_BUF: 2468 if (magicda != XFS_DIR2_LEAF1_MAGIC && 2469 magicda != XFS_DIR3_LEAF1_MAGIC) { 2470 warnmsg = "Bad dir leaf1 magic!"; 2471 break; 2472 } 2473 bp->b_ops = &xfs_dir3_leaf1_buf_ops; 2474 break; 2475 case XFS_BLFT_DIR_LEAFN_BUF: 2476 if (magicda != XFS_DIR2_LEAFN_MAGIC && 2477 magicda != XFS_DIR3_LEAFN_MAGIC) { 2478 warnmsg = "Bad dir leafn magic!"; 2479 break; 2480 } 2481 bp->b_ops = &xfs_dir3_leafn_buf_ops; 2482 break; 2483 case XFS_BLFT_DA_NODE_BUF: 2484 if (magicda != XFS_DA_NODE_MAGIC && 2485 magicda != XFS_DA3_NODE_MAGIC) { 2486 warnmsg = "Bad da node magic!"; 2487 break; 2488 } 2489 bp->b_ops = &xfs_da3_node_buf_ops; 2490 break; 2491 case XFS_BLFT_ATTR_LEAF_BUF: 2492 if (magicda != XFS_ATTR_LEAF_MAGIC && 2493 magicda != XFS_ATTR3_LEAF_MAGIC) { 2494 warnmsg = "Bad attr leaf magic!"; 2495 break; 2496 } 2497 bp->b_ops = &xfs_attr3_leaf_buf_ops; 2498 break; 2499 case XFS_BLFT_ATTR_RMT_BUF: 2500 if (magic32 != XFS_ATTR3_RMT_MAGIC) { 2501 warnmsg = "Bad attr remote magic!"; 2502 break; 2503 } 2504 bp->b_ops = &xfs_attr3_rmt_buf_ops; 2505 break; 2506 case XFS_BLFT_SB_BUF: 2507 if (magic32 != XFS_SB_MAGIC) { 2508 warnmsg = "Bad SB block magic!"; 2509 break; 2510 } 2511 bp->b_ops = &xfs_sb_buf_ops; 2512 break; 2513 #ifdef CONFIG_XFS_RT 2514 case XFS_BLFT_RTBITMAP_BUF: 2515 case XFS_BLFT_RTSUMMARY_BUF: 2516 /* no magic numbers for verification of RT buffers */ 2517 bp->b_ops = &xfs_rtbuf_ops; 2518 break; 2519 #endif /* CONFIG_XFS_RT */ 2520 default: 2521 xfs_warn(mp, "Unknown buffer type %d!", 2522 xfs_blft_from_flags(buf_f)); 2523 break; 2524 } 2525 2526 /* 2527 * Nothing else to do in the case of a NULL current LSN as this means 2528 * the buffer is more recent than the change in the log and will be 2529 * skipped. 2530 */ 2531 if (current_lsn == NULLCOMMITLSN) 2532 return; 2533 2534 if (warnmsg) { 2535 xfs_warn(mp, warnmsg); 2536 ASSERT(0); 2537 } 2538 2539 /* 2540 * We must update the metadata LSN of the buffer as it is written out to 2541 * ensure that older transactions never replay over this one and corrupt 2542 * the buffer. This can occur if log recovery is interrupted at some 2543 * point after the current transaction completes, at which point a 2544 * subsequent mount starts recovery from the beginning. 2545 * 2546 * Write verifiers update the metadata LSN from log items attached to 2547 * the buffer. Therefore, initialize a bli purely to carry the LSN to 2548 * the verifier. We'll clean it up in our ->iodone() callback. 2549 */ 2550 if (bp->b_ops) { 2551 struct xfs_buf_log_item *bip; 2552 2553 ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone); 2554 bp->b_iodone = xlog_recover_iodone; 2555 xfs_buf_item_init(bp, mp); 2556 bip = bp->b_log_item; 2557 bip->bli_item.li_lsn = current_lsn; 2558 } 2559 } 2560 2561 /* 2562 * Perform a 'normal' buffer recovery. Each logged region of the 2563 * buffer should be copied over the corresponding region in the 2564 * given buffer. The bitmap in the buf log format structure indicates 2565 * where to place the logged data. 2566 */ 2567 STATIC void 2568 xlog_recover_do_reg_buffer( 2569 struct xfs_mount *mp, 2570 xlog_recover_item_t *item, 2571 struct xfs_buf *bp, 2572 xfs_buf_log_format_t *buf_f, 2573 xfs_lsn_t current_lsn) 2574 { 2575 int i; 2576 int bit; 2577 int nbits; 2578 xfs_failaddr_t fa; 2579 2580 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); 2581 2582 bit = 0; 2583 i = 1; /* 0 is the buf format structure */ 2584 while (1) { 2585 bit = xfs_next_bit(buf_f->blf_data_map, 2586 buf_f->blf_map_size, bit); 2587 if (bit == -1) 2588 break; 2589 nbits = xfs_contig_bits(buf_f->blf_data_map, 2590 buf_f->blf_map_size, bit); 2591 ASSERT(nbits > 0); 2592 ASSERT(item->ri_buf[i].i_addr != NULL); 2593 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); 2594 ASSERT(BBTOB(bp->b_length) >= 2595 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); 2596 2597 /* 2598 * The dirty regions logged in the buffer, even though 2599 * contiguous, may span multiple chunks. This is because the 2600 * dirty region may span a physical page boundary in a buffer 2601 * and hence be split into two separate vectors for writing into 2602 * the log. Hence we need to trim nbits back to the length of 2603 * the current region being copied out of the log. 2604 */ 2605 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT)) 2606 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT; 2607 2608 /* 2609 * Do a sanity check if this is a dquot buffer. Just checking 2610 * the first dquot in the buffer should do. XXXThis is 2611 * probably a good thing to do for other buf types also. 2612 */ 2613 fa = NULL; 2614 if (buf_f->blf_flags & 2615 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2616 if (item->ri_buf[i].i_addr == NULL) { 2617 xfs_alert(mp, 2618 "XFS: NULL dquot in %s.", __func__); 2619 goto next; 2620 } 2621 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) { 2622 xfs_alert(mp, 2623 "XFS: dquot too small (%d) in %s.", 2624 item->ri_buf[i].i_len, __func__); 2625 goto next; 2626 } 2627 fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr, 2628 -1, 0); 2629 if (fa) { 2630 xfs_alert(mp, 2631 "dquot corrupt at %pS trying to replay into block 0x%llx", 2632 fa, bp->b_bn); 2633 goto next; 2634 } 2635 } 2636 2637 memcpy(xfs_buf_offset(bp, 2638 (uint)bit << XFS_BLF_SHIFT), /* dest */ 2639 item->ri_buf[i].i_addr, /* source */ 2640 nbits<<XFS_BLF_SHIFT); /* length */ 2641 next: 2642 i++; 2643 bit += nbits; 2644 } 2645 2646 /* Shouldn't be any more regions */ 2647 ASSERT(i == item->ri_total); 2648 2649 xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn); 2650 } 2651 2652 /* 2653 * Perform a dquot buffer recovery. 2654 * Simple algorithm: if we have found a QUOTAOFF log item of the same type 2655 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2656 * Else, treat it as a regular buffer and do recovery. 2657 * 2658 * Return false if the buffer was tossed and true if we recovered the buffer to 2659 * indicate to the caller if the buffer needs writing. 2660 */ 2661 STATIC bool 2662 xlog_recover_do_dquot_buffer( 2663 struct xfs_mount *mp, 2664 struct xlog *log, 2665 struct xlog_recover_item *item, 2666 struct xfs_buf *bp, 2667 struct xfs_buf_log_format *buf_f) 2668 { 2669 uint type; 2670 2671 trace_xfs_log_recover_buf_dquot_buf(log, buf_f); 2672 2673 /* 2674 * Filesystems are required to send in quota flags at mount time. 2675 */ 2676 if (!mp->m_qflags) 2677 return false; 2678 2679 type = 0; 2680 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) 2681 type |= XFS_DQ_USER; 2682 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) 2683 type |= XFS_DQ_PROJ; 2684 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) 2685 type |= XFS_DQ_GROUP; 2686 /* 2687 * This type of quotas was turned off, so ignore this buffer 2688 */ 2689 if (log->l_quotaoffs_flag & type) 2690 return false; 2691 2692 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN); 2693 return true; 2694 } 2695 2696 /* 2697 * This routine replays a modification made to a buffer at runtime. 2698 * There are actually two types of buffer, regular and inode, which 2699 * are handled differently. Inode buffers are handled differently 2700 * in that we only recover a specific set of data from them, namely 2701 * the inode di_next_unlinked fields. This is because all other inode 2702 * data is actually logged via inode records and any data we replay 2703 * here which overlaps that may be stale. 2704 * 2705 * When meta-data buffers are freed at run time we log a buffer item 2706 * with the XFS_BLF_CANCEL bit set to indicate that previous copies 2707 * of the buffer in the log should not be replayed at recovery time. 2708 * This is so that if the blocks covered by the buffer are reused for 2709 * file data before we crash we don't end up replaying old, freed 2710 * meta-data into a user's file. 2711 * 2712 * To handle the cancellation of buffer log items, we make two passes 2713 * over the log during recovery. During the first we build a table of 2714 * those buffers which have been cancelled, and during the second we 2715 * only replay those buffers which do not have corresponding cancel 2716 * records in the table. See xlog_recover_buffer_pass[1,2] above 2717 * for more details on the implementation of the table of cancel records. 2718 */ 2719 STATIC int 2720 xlog_recover_buffer_pass2( 2721 struct xlog *log, 2722 struct list_head *buffer_list, 2723 struct xlog_recover_item *item, 2724 xfs_lsn_t current_lsn) 2725 { 2726 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2727 xfs_mount_t *mp = log->l_mp; 2728 xfs_buf_t *bp; 2729 int error; 2730 uint buf_flags; 2731 xfs_lsn_t lsn; 2732 2733 /* 2734 * In this pass we only want to recover all the buffers which have 2735 * not been cancelled and are not cancellation buffers themselves. 2736 */ 2737 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno, 2738 buf_f->blf_len, buf_f->blf_flags)) { 2739 trace_xfs_log_recover_buf_cancel(log, buf_f); 2740 return 0; 2741 } 2742 2743 trace_xfs_log_recover_buf_recover(log, buf_f); 2744 2745 buf_flags = 0; 2746 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) 2747 buf_flags |= XBF_UNMAPPED; 2748 2749 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, 2750 buf_flags, NULL); 2751 if (!bp) 2752 return -ENOMEM; 2753 error = bp->b_error; 2754 if (error) { 2755 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)"); 2756 goto out_release; 2757 } 2758 2759 /* 2760 * Recover the buffer only if we get an LSN from it and it's less than 2761 * the lsn of the transaction we are replaying. 2762 * 2763 * Note that we have to be extremely careful of readahead here. 2764 * Readahead does not attach verfiers to the buffers so if we don't 2765 * actually do any replay after readahead because of the LSN we found 2766 * in the buffer if more recent than that current transaction then we 2767 * need to attach the verifier directly. Failure to do so can lead to 2768 * future recovery actions (e.g. EFI and unlinked list recovery) can 2769 * operate on the buffers and they won't get the verifier attached. This 2770 * can lead to blocks on disk having the correct content but a stale 2771 * CRC. 2772 * 2773 * It is safe to assume these clean buffers are currently up to date. 2774 * If the buffer is dirtied by a later transaction being replayed, then 2775 * the verifier will be reset to match whatever recover turns that 2776 * buffer into. 2777 */ 2778 lsn = xlog_recover_get_buf_lsn(mp, bp); 2779 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 2780 trace_xfs_log_recover_buf_skip(log, buf_f); 2781 xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN); 2782 goto out_release; 2783 } 2784 2785 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 2786 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2787 if (error) 2788 goto out_release; 2789 } else if (buf_f->blf_flags & 2790 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2791 bool dirty; 2792 2793 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2794 if (!dirty) 2795 goto out_release; 2796 } else { 2797 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn); 2798 } 2799 2800 /* 2801 * Perform delayed write on the buffer. Asynchronous writes will be 2802 * slower when taking into account all the buffers to be flushed. 2803 * 2804 * Also make sure that only inode buffers with good sizes stay in 2805 * the buffer cache. The kernel moves inodes in buffers of 1 block 2806 * or inode_cluster_size bytes, whichever is bigger. The inode 2807 * buffers in the log can be a different size if the log was generated 2808 * by an older kernel using unclustered inode buffers or a newer kernel 2809 * running with a different inode cluster size. Regardless, if the 2810 * the inode buffer size isn't max(blocksize, inode_cluster_size) 2811 * for *our* value of inode_cluster_size, then we need to keep 2812 * the buffer out of the buffer cache so that the buffer won't 2813 * overlap with future reads of those inodes. 2814 */ 2815 if (XFS_DINODE_MAGIC == 2816 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && 2817 (BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) { 2818 xfs_buf_stale(bp); 2819 error = xfs_bwrite(bp); 2820 } else { 2821 ASSERT(bp->b_mount == mp); 2822 bp->b_iodone = xlog_recover_iodone; 2823 xfs_buf_delwri_queue(bp, buffer_list); 2824 } 2825 2826 out_release: 2827 xfs_buf_relse(bp); 2828 return error; 2829 } 2830 2831 /* 2832 * Inode fork owner changes 2833 * 2834 * If we have been told that we have to reparent the inode fork, it's because an 2835 * extent swap operation on a CRC enabled filesystem has been done and we are 2836 * replaying it. We need to walk the BMBT of the appropriate fork and change the 2837 * owners of it. 2838 * 2839 * The complexity here is that we don't have an inode context to work with, so 2840 * after we've replayed the inode we need to instantiate one. This is where the 2841 * fun begins. 2842 * 2843 * We are in the middle of log recovery, so we can't run transactions. That 2844 * means we cannot use cache coherent inode instantiation via xfs_iget(), as 2845 * that will result in the corresponding iput() running the inode through 2846 * xfs_inactive(). If we've just replayed an inode core that changes the link 2847 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run 2848 * transactions (bad!). 2849 * 2850 * So, to avoid this, we instantiate an inode directly from the inode core we've 2851 * just recovered. We have the buffer still locked, and all we really need to 2852 * instantiate is the inode core and the forks being modified. We can do this 2853 * manually, then run the inode btree owner change, and then tear down the 2854 * xfs_inode without having to run any transactions at all. 2855 * 2856 * Also, because we don't have a transaction context available here but need to 2857 * gather all the buffers we modify for writeback so we pass the buffer_list 2858 * instead for the operation to use. 2859 */ 2860 2861 STATIC int 2862 xfs_recover_inode_owner_change( 2863 struct xfs_mount *mp, 2864 struct xfs_dinode *dip, 2865 struct xfs_inode_log_format *in_f, 2866 struct list_head *buffer_list) 2867 { 2868 struct xfs_inode *ip; 2869 int error; 2870 2871 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)); 2872 2873 ip = xfs_inode_alloc(mp, in_f->ilf_ino); 2874 if (!ip) 2875 return -ENOMEM; 2876 2877 /* instantiate the inode */ 2878 xfs_inode_from_disk(ip, dip); 2879 ASSERT(ip->i_d.di_version >= 3); 2880 2881 error = xfs_iformat_fork(ip, dip); 2882 if (error) 2883 goto out_free_ip; 2884 2885 if (!xfs_inode_verify_forks(ip)) { 2886 error = -EFSCORRUPTED; 2887 goto out_free_ip; 2888 } 2889 2890 if (in_f->ilf_fields & XFS_ILOG_DOWNER) { 2891 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT); 2892 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK, 2893 ip->i_ino, buffer_list); 2894 if (error) 2895 goto out_free_ip; 2896 } 2897 2898 if (in_f->ilf_fields & XFS_ILOG_AOWNER) { 2899 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT); 2900 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK, 2901 ip->i_ino, buffer_list); 2902 if (error) 2903 goto out_free_ip; 2904 } 2905 2906 out_free_ip: 2907 xfs_inode_free(ip); 2908 return error; 2909 } 2910 2911 STATIC int 2912 xlog_recover_inode_pass2( 2913 struct xlog *log, 2914 struct list_head *buffer_list, 2915 struct xlog_recover_item *item, 2916 xfs_lsn_t current_lsn) 2917 { 2918 struct xfs_inode_log_format *in_f; 2919 xfs_mount_t *mp = log->l_mp; 2920 xfs_buf_t *bp; 2921 xfs_dinode_t *dip; 2922 int len; 2923 char *src; 2924 char *dest; 2925 int error; 2926 int attr_index; 2927 uint fields; 2928 struct xfs_log_dinode *ldip; 2929 uint isize; 2930 int need_free = 0; 2931 2932 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { 2933 in_f = item->ri_buf[0].i_addr; 2934 } else { 2935 in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), 0); 2936 need_free = 1; 2937 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 2938 if (error) 2939 goto error; 2940 } 2941 2942 /* 2943 * Inode buffers can be freed, look out for it, 2944 * and do not replay the inode. 2945 */ 2946 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, 2947 in_f->ilf_len, 0)) { 2948 error = 0; 2949 trace_xfs_log_recover_inode_cancel(log, in_f); 2950 goto error; 2951 } 2952 trace_xfs_log_recover_inode_recover(log, in_f); 2953 2954 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0, 2955 &xfs_inode_buf_ops); 2956 if (!bp) { 2957 error = -ENOMEM; 2958 goto error; 2959 } 2960 error = bp->b_error; 2961 if (error) { 2962 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)"); 2963 goto out_release; 2964 } 2965 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 2966 dip = xfs_buf_offset(bp, in_f->ilf_boffset); 2967 2968 /* 2969 * Make sure the place we're flushing out to really looks 2970 * like an inode! 2971 */ 2972 if (unlikely(!xfs_verify_magic16(bp, dip->di_magic))) { 2973 xfs_alert(mp, 2974 "%s: Bad inode magic number, dip = "PTR_FMT", dino bp = "PTR_FMT", ino = %Ld", 2975 __func__, dip, bp, in_f->ilf_ino); 2976 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)", 2977 XFS_ERRLEVEL_LOW, mp); 2978 error = -EFSCORRUPTED; 2979 goto out_release; 2980 } 2981 ldip = item->ri_buf[1].i_addr; 2982 if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) { 2983 xfs_alert(mp, 2984 "%s: Bad inode log record, rec ptr "PTR_FMT", ino %Ld", 2985 __func__, item, in_f->ilf_ino); 2986 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)", 2987 XFS_ERRLEVEL_LOW, mp); 2988 error = -EFSCORRUPTED; 2989 goto out_release; 2990 } 2991 2992 /* 2993 * If the inode has an LSN in it, recover the inode only if it's less 2994 * than the lsn of the transaction we are replaying. Note: we still 2995 * need to replay an owner change even though the inode is more recent 2996 * than the transaction as there is no guarantee that all the btree 2997 * blocks are more recent than this transaction, too. 2998 */ 2999 if (dip->di_version >= 3) { 3000 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn); 3001 3002 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 3003 trace_xfs_log_recover_inode_skip(log, in_f); 3004 error = 0; 3005 goto out_owner_change; 3006 } 3007 } 3008 3009 /* 3010 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes 3011 * are transactional and if ordering is necessary we can determine that 3012 * more accurately by the LSN field in the V3 inode core. Don't trust 3013 * the inode versions we might be changing them here - use the 3014 * superblock flag to determine whether we need to look at di_flushiter 3015 * to skip replay when the on disk inode is newer than the log one 3016 */ 3017 if (!xfs_sb_version_hascrc(&mp->m_sb) && 3018 ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) { 3019 /* 3020 * Deal with the wrap case, DI_MAX_FLUSH is less 3021 * than smaller numbers 3022 */ 3023 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && 3024 ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) { 3025 /* do nothing */ 3026 } else { 3027 trace_xfs_log_recover_inode_skip(log, in_f); 3028 error = 0; 3029 goto out_release; 3030 } 3031 } 3032 3033 /* Take the opportunity to reset the flush iteration count */ 3034 ldip->di_flushiter = 0; 3035 3036 if (unlikely(S_ISREG(ldip->di_mode))) { 3037 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) && 3038 (ldip->di_format != XFS_DINODE_FMT_BTREE)) { 3039 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)", 3040 XFS_ERRLEVEL_LOW, mp, ldip, 3041 sizeof(*ldip)); 3042 xfs_alert(mp, 3043 "%s: Bad regular inode log record, rec ptr "PTR_FMT", " 3044 "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld", 3045 __func__, item, dip, bp, in_f->ilf_ino); 3046 error = -EFSCORRUPTED; 3047 goto out_release; 3048 } 3049 } else if (unlikely(S_ISDIR(ldip->di_mode))) { 3050 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) && 3051 (ldip->di_format != XFS_DINODE_FMT_BTREE) && 3052 (ldip->di_format != XFS_DINODE_FMT_LOCAL)) { 3053 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)", 3054 XFS_ERRLEVEL_LOW, mp, ldip, 3055 sizeof(*ldip)); 3056 xfs_alert(mp, 3057 "%s: Bad dir inode log record, rec ptr "PTR_FMT", " 3058 "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld", 3059 __func__, item, dip, bp, in_f->ilf_ino); 3060 error = -EFSCORRUPTED; 3061 goto out_release; 3062 } 3063 } 3064 if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){ 3065 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)", 3066 XFS_ERRLEVEL_LOW, mp, ldip, 3067 sizeof(*ldip)); 3068 xfs_alert(mp, 3069 "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", " 3070 "dino bp "PTR_FMT", ino %Ld, total extents = %d, nblocks = %Ld", 3071 __func__, item, dip, bp, in_f->ilf_ino, 3072 ldip->di_nextents + ldip->di_anextents, 3073 ldip->di_nblocks); 3074 error = -EFSCORRUPTED; 3075 goto out_release; 3076 } 3077 if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) { 3078 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)", 3079 XFS_ERRLEVEL_LOW, mp, ldip, 3080 sizeof(*ldip)); 3081 xfs_alert(mp, 3082 "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", " 3083 "dino bp "PTR_FMT", ino %Ld, forkoff 0x%x", __func__, 3084 item, dip, bp, in_f->ilf_ino, ldip->di_forkoff); 3085 error = -EFSCORRUPTED; 3086 goto out_release; 3087 } 3088 isize = xfs_log_dinode_size(ldip->di_version); 3089 if (unlikely(item->ri_buf[1].i_len > isize)) { 3090 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)", 3091 XFS_ERRLEVEL_LOW, mp, ldip, 3092 sizeof(*ldip)); 3093 xfs_alert(mp, 3094 "%s: Bad inode log record length %d, rec ptr "PTR_FMT, 3095 __func__, item->ri_buf[1].i_len, item); 3096 error = -EFSCORRUPTED; 3097 goto out_release; 3098 } 3099 3100 /* recover the log dinode inode into the on disk inode */ 3101 xfs_log_dinode_to_disk(ldip, dip); 3102 3103 fields = in_f->ilf_fields; 3104 if (fields & XFS_ILOG_DEV) 3105 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); 3106 3107 if (in_f->ilf_size == 2) 3108 goto out_owner_change; 3109 len = item->ri_buf[2].i_len; 3110 src = item->ri_buf[2].i_addr; 3111 ASSERT(in_f->ilf_size <= 4); 3112 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 3113 ASSERT(!(fields & XFS_ILOG_DFORK) || 3114 (len == in_f->ilf_dsize)); 3115 3116 switch (fields & XFS_ILOG_DFORK) { 3117 case XFS_ILOG_DDATA: 3118 case XFS_ILOG_DEXT: 3119 memcpy(XFS_DFORK_DPTR(dip), src, len); 3120 break; 3121 3122 case XFS_ILOG_DBROOT: 3123 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, 3124 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), 3125 XFS_DFORK_DSIZE(dip, mp)); 3126 break; 3127 3128 default: 3129 /* 3130 * There are no data fork flags set. 3131 */ 3132 ASSERT((fields & XFS_ILOG_DFORK) == 0); 3133 break; 3134 } 3135 3136 /* 3137 * If we logged any attribute data, recover it. There may or 3138 * may not have been any other non-core data logged in this 3139 * transaction. 3140 */ 3141 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 3142 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 3143 attr_index = 3; 3144 } else { 3145 attr_index = 2; 3146 } 3147 len = item->ri_buf[attr_index].i_len; 3148 src = item->ri_buf[attr_index].i_addr; 3149 ASSERT(len == in_f->ilf_asize); 3150 3151 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 3152 case XFS_ILOG_ADATA: 3153 case XFS_ILOG_AEXT: 3154 dest = XFS_DFORK_APTR(dip); 3155 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 3156 memcpy(dest, src, len); 3157 break; 3158 3159 case XFS_ILOG_ABROOT: 3160 dest = XFS_DFORK_APTR(dip); 3161 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, 3162 len, (xfs_bmdr_block_t*)dest, 3163 XFS_DFORK_ASIZE(dip, mp)); 3164 break; 3165 3166 default: 3167 xfs_warn(log->l_mp, "%s: Invalid flag", __func__); 3168 ASSERT(0); 3169 error = -EIO; 3170 goto out_release; 3171 } 3172 } 3173 3174 out_owner_change: 3175 /* Recover the swapext owner change unless inode has been deleted */ 3176 if ((in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) && 3177 (dip->di_mode != 0)) 3178 error = xfs_recover_inode_owner_change(mp, dip, in_f, 3179 buffer_list); 3180 /* re-generate the checksum. */ 3181 xfs_dinode_calc_crc(log->l_mp, dip); 3182 3183 ASSERT(bp->b_mount == mp); 3184 bp->b_iodone = xlog_recover_iodone; 3185 xfs_buf_delwri_queue(bp, buffer_list); 3186 3187 out_release: 3188 xfs_buf_relse(bp); 3189 error: 3190 if (need_free) 3191 kmem_free(in_f); 3192 return error; 3193 } 3194 3195 /* 3196 * Recover QUOTAOFF records. We simply make a note of it in the xlog 3197 * structure, so that we know not to do any dquot item or dquot buffer recovery, 3198 * of that type. 3199 */ 3200 STATIC int 3201 xlog_recover_quotaoff_pass1( 3202 struct xlog *log, 3203 struct xlog_recover_item *item) 3204 { 3205 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr; 3206 ASSERT(qoff_f); 3207 3208 /* 3209 * The logitem format's flag tells us if this was user quotaoff, 3210 * group/project quotaoff or both. 3211 */ 3212 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 3213 log->l_quotaoffs_flag |= XFS_DQ_USER; 3214 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 3215 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 3216 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 3217 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 3218 3219 return 0; 3220 } 3221 3222 /* 3223 * Recover a dquot record 3224 */ 3225 STATIC int 3226 xlog_recover_dquot_pass2( 3227 struct xlog *log, 3228 struct list_head *buffer_list, 3229 struct xlog_recover_item *item, 3230 xfs_lsn_t current_lsn) 3231 { 3232 xfs_mount_t *mp = log->l_mp; 3233 xfs_buf_t *bp; 3234 struct xfs_disk_dquot *ddq, *recddq; 3235 xfs_failaddr_t fa; 3236 int error; 3237 xfs_dq_logformat_t *dq_f; 3238 uint type; 3239 3240 3241 /* 3242 * Filesystems are required to send in quota flags at mount time. 3243 */ 3244 if (mp->m_qflags == 0) 3245 return 0; 3246 3247 recddq = item->ri_buf[1].i_addr; 3248 if (recddq == NULL) { 3249 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__); 3250 return -EIO; 3251 } 3252 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) { 3253 xfs_alert(log->l_mp, "dquot too small (%d) in %s.", 3254 item->ri_buf[1].i_len, __func__); 3255 return -EIO; 3256 } 3257 3258 /* 3259 * This type of quotas was turned off, so ignore this record. 3260 */ 3261 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 3262 ASSERT(type); 3263 if (log->l_quotaoffs_flag & type) 3264 return 0; 3265 3266 /* 3267 * At this point we know that quota was _not_ turned off. 3268 * Since the mount flags are not indicating to us otherwise, this 3269 * must mean that quota is on, and the dquot needs to be replayed. 3270 * Remember that we may not have fully recovered the superblock yet, 3271 * so we can't do the usual trick of looking at the SB quota bits. 3272 * 3273 * The other possibility, of course, is that the quota subsystem was 3274 * removed since the last mount - ENOSYS. 3275 */ 3276 dq_f = item->ri_buf[0].i_addr; 3277 ASSERT(dq_f); 3278 fa = xfs_dquot_verify(mp, recddq, dq_f->qlf_id, 0); 3279 if (fa) { 3280 xfs_alert(mp, "corrupt dquot ID 0x%x in log at %pS", 3281 dq_f->qlf_id, fa); 3282 return -EIO; 3283 } 3284 ASSERT(dq_f->qlf_len == 1); 3285 3286 /* 3287 * At this point we are assuming that the dquots have been allocated 3288 * and hence the buffer has valid dquots stamped in it. It should, 3289 * therefore, pass verifier validation. If the dquot is bad, then the 3290 * we'll return an error here, so we don't need to specifically check 3291 * the dquot in the buffer after the verifier has run. 3292 */ 3293 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno, 3294 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp, 3295 &xfs_dquot_buf_ops); 3296 if (error) 3297 return error; 3298 3299 ASSERT(bp); 3300 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset); 3301 3302 /* 3303 * If the dquot has an LSN in it, recover the dquot only if it's less 3304 * than the lsn of the transaction we are replaying. 3305 */ 3306 if (xfs_sb_version_hascrc(&mp->m_sb)) { 3307 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq; 3308 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn); 3309 3310 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 3311 goto out_release; 3312 } 3313 } 3314 3315 memcpy(ddq, recddq, item->ri_buf[1].i_len); 3316 if (xfs_sb_version_hascrc(&mp->m_sb)) { 3317 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk), 3318 XFS_DQUOT_CRC_OFF); 3319 } 3320 3321 ASSERT(dq_f->qlf_size == 2); 3322 ASSERT(bp->b_mount == mp); 3323 bp->b_iodone = xlog_recover_iodone; 3324 xfs_buf_delwri_queue(bp, buffer_list); 3325 3326 out_release: 3327 xfs_buf_relse(bp); 3328 return 0; 3329 } 3330 3331 /* 3332 * This routine is called to create an in-core extent free intent 3333 * item from the efi format structure which was logged on disk. 3334 * It allocates an in-core efi, copies the extents from the format 3335 * structure into it, and adds the efi to the AIL with the given 3336 * LSN. 3337 */ 3338 STATIC int 3339 xlog_recover_efi_pass2( 3340 struct xlog *log, 3341 struct xlog_recover_item *item, 3342 xfs_lsn_t lsn) 3343 { 3344 int error; 3345 struct xfs_mount *mp = log->l_mp; 3346 struct xfs_efi_log_item *efip; 3347 struct xfs_efi_log_format *efi_formatp; 3348 3349 efi_formatp = item->ri_buf[0].i_addr; 3350 3351 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 3352 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); 3353 if (error) { 3354 xfs_efi_item_free(efip); 3355 return error; 3356 } 3357 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 3358 3359 spin_lock(&log->l_ailp->ail_lock); 3360 /* 3361 * The EFI has two references. One for the EFD and one for EFI to ensure 3362 * it makes it into the AIL. Insert the EFI into the AIL directly and 3363 * drop the EFI reference. Note that xfs_trans_ail_update() drops the 3364 * AIL lock. 3365 */ 3366 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn); 3367 xfs_efi_release(efip); 3368 return 0; 3369 } 3370 3371 3372 /* 3373 * This routine is called when an EFD format structure is found in a committed 3374 * transaction in the log. Its purpose is to cancel the corresponding EFI if it 3375 * was still in the log. To do this it searches the AIL for the EFI with an id 3376 * equal to that in the EFD format structure. If we find it we drop the EFD 3377 * reference, which removes the EFI from the AIL and frees it. 3378 */ 3379 STATIC int 3380 xlog_recover_efd_pass2( 3381 struct xlog *log, 3382 struct xlog_recover_item *item) 3383 { 3384 xfs_efd_log_format_t *efd_formatp; 3385 xfs_efi_log_item_t *efip = NULL; 3386 struct xfs_log_item *lip; 3387 uint64_t efi_id; 3388 struct xfs_ail_cursor cur; 3389 struct xfs_ail *ailp = log->l_ailp; 3390 3391 efd_formatp = item->ri_buf[0].i_addr; 3392 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 3393 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 3394 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 3395 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 3396 efi_id = efd_formatp->efd_efi_id; 3397 3398 /* 3399 * Search for the EFI with the id in the EFD format structure in the 3400 * AIL. 3401 */ 3402 spin_lock(&ailp->ail_lock); 3403 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3404 while (lip != NULL) { 3405 if (lip->li_type == XFS_LI_EFI) { 3406 efip = (xfs_efi_log_item_t *)lip; 3407 if (efip->efi_format.efi_id == efi_id) { 3408 /* 3409 * Drop the EFD reference to the EFI. This 3410 * removes the EFI from the AIL and frees it. 3411 */ 3412 spin_unlock(&ailp->ail_lock); 3413 xfs_efi_release(efip); 3414 spin_lock(&ailp->ail_lock); 3415 break; 3416 } 3417 } 3418 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3419 } 3420 3421 xfs_trans_ail_cursor_done(&cur); 3422 spin_unlock(&ailp->ail_lock); 3423 3424 return 0; 3425 } 3426 3427 /* 3428 * This routine is called to create an in-core extent rmap update 3429 * item from the rui format structure which was logged on disk. 3430 * It allocates an in-core rui, copies the extents from the format 3431 * structure into it, and adds the rui to the AIL with the given 3432 * LSN. 3433 */ 3434 STATIC int 3435 xlog_recover_rui_pass2( 3436 struct xlog *log, 3437 struct xlog_recover_item *item, 3438 xfs_lsn_t lsn) 3439 { 3440 int error; 3441 struct xfs_mount *mp = log->l_mp; 3442 struct xfs_rui_log_item *ruip; 3443 struct xfs_rui_log_format *rui_formatp; 3444 3445 rui_formatp = item->ri_buf[0].i_addr; 3446 3447 ruip = xfs_rui_init(mp, rui_formatp->rui_nextents); 3448 error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format); 3449 if (error) { 3450 xfs_rui_item_free(ruip); 3451 return error; 3452 } 3453 atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents); 3454 3455 spin_lock(&log->l_ailp->ail_lock); 3456 /* 3457 * The RUI has two references. One for the RUD and one for RUI to ensure 3458 * it makes it into the AIL. Insert the RUI into the AIL directly and 3459 * drop the RUI reference. Note that xfs_trans_ail_update() drops the 3460 * AIL lock. 3461 */ 3462 xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn); 3463 xfs_rui_release(ruip); 3464 return 0; 3465 } 3466 3467 3468 /* 3469 * This routine is called when an RUD format structure is found in a committed 3470 * transaction in the log. Its purpose is to cancel the corresponding RUI if it 3471 * was still in the log. To do this it searches the AIL for the RUI with an id 3472 * equal to that in the RUD format structure. If we find it we drop the RUD 3473 * reference, which removes the RUI from the AIL and frees it. 3474 */ 3475 STATIC int 3476 xlog_recover_rud_pass2( 3477 struct xlog *log, 3478 struct xlog_recover_item *item) 3479 { 3480 struct xfs_rud_log_format *rud_formatp; 3481 struct xfs_rui_log_item *ruip = NULL; 3482 struct xfs_log_item *lip; 3483 uint64_t rui_id; 3484 struct xfs_ail_cursor cur; 3485 struct xfs_ail *ailp = log->l_ailp; 3486 3487 rud_formatp = item->ri_buf[0].i_addr; 3488 ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format)); 3489 rui_id = rud_formatp->rud_rui_id; 3490 3491 /* 3492 * Search for the RUI with the id in the RUD format structure in the 3493 * AIL. 3494 */ 3495 spin_lock(&ailp->ail_lock); 3496 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3497 while (lip != NULL) { 3498 if (lip->li_type == XFS_LI_RUI) { 3499 ruip = (struct xfs_rui_log_item *)lip; 3500 if (ruip->rui_format.rui_id == rui_id) { 3501 /* 3502 * Drop the RUD reference to the RUI. This 3503 * removes the RUI from the AIL and frees it. 3504 */ 3505 spin_unlock(&ailp->ail_lock); 3506 xfs_rui_release(ruip); 3507 spin_lock(&ailp->ail_lock); 3508 break; 3509 } 3510 } 3511 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3512 } 3513 3514 xfs_trans_ail_cursor_done(&cur); 3515 spin_unlock(&ailp->ail_lock); 3516 3517 return 0; 3518 } 3519 3520 /* 3521 * Copy an CUI format buffer from the given buf, and into the destination 3522 * CUI format structure. The CUI/CUD items were designed not to need any 3523 * special alignment handling. 3524 */ 3525 static int 3526 xfs_cui_copy_format( 3527 struct xfs_log_iovec *buf, 3528 struct xfs_cui_log_format *dst_cui_fmt) 3529 { 3530 struct xfs_cui_log_format *src_cui_fmt; 3531 uint len; 3532 3533 src_cui_fmt = buf->i_addr; 3534 len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents); 3535 3536 if (buf->i_len == len) { 3537 memcpy(dst_cui_fmt, src_cui_fmt, len); 3538 return 0; 3539 } 3540 return -EFSCORRUPTED; 3541 } 3542 3543 /* 3544 * This routine is called to create an in-core extent refcount update 3545 * item from the cui format structure which was logged on disk. 3546 * It allocates an in-core cui, copies the extents from the format 3547 * structure into it, and adds the cui to the AIL with the given 3548 * LSN. 3549 */ 3550 STATIC int 3551 xlog_recover_cui_pass2( 3552 struct xlog *log, 3553 struct xlog_recover_item *item, 3554 xfs_lsn_t lsn) 3555 { 3556 int error; 3557 struct xfs_mount *mp = log->l_mp; 3558 struct xfs_cui_log_item *cuip; 3559 struct xfs_cui_log_format *cui_formatp; 3560 3561 cui_formatp = item->ri_buf[0].i_addr; 3562 3563 cuip = xfs_cui_init(mp, cui_formatp->cui_nextents); 3564 error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format); 3565 if (error) { 3566 xfs_cui_item_free(cuip); 3567 return error; 3568 } 3569 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents); 3570 3571 spin_lock(&log->l_ailp->ail_lock); 3572 /* 3573 * The CUI has two references. One for the CUD and one for CUI to ensure 3574 * it makes it into the AIL. Insert the CUI into the AIL directly and 3575 * drop the CUI reference. Note that xfs_trans_ail_update() drops the 3576 * AIL lock. 3577 */ 3578 xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn); 3579 xfs_cui_release(cuip); 3580 return 0; 3581 } 3582 3583 3584 /* 3585 * This routine is called when an CUD format structure is found in a committed 3586 * transaction in the log. Its purpose is to cancel the corresponding CUI if it 3587 * was still in the log. To do this it searches the AIL for the CUI with an id 3588 * equal to that in the CUD format structure. If we find it we drop the CUD 3589 * reference, which removes the CUI from the AIL and frees it. 3590 */ 3591 STATIC int 3592 xlog_recover_cud_pass2( 3593 struct xlog *log, 3594 struct xlog_recover_item *item) 3595 { 3596 struct xfs_cud_log_format *cud_formatp; 3597 struct xfs_cui_log_item *cuip = NULL; 3598 struct xfs_log_item *lip; 3599 uint64_t cui_id; 3600 struct xfs_ail_cursor cur; 3601 struct xfs_ail *ailp = log->l_ailp; 3602 3603 cud_formatp = item->ri_buf[0].i_addr; 3604 if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) 3605 return -EFSCORRUPTED; 3606 cui_id = cud_formatp->cud_cui_id; 3607 3608 /* 3609 * Search for the CUI with the id in the CUD format structure in the 3610 * AIL. 3611 */ 3612 spin_lock(&ailp->ail_lock); 3613 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3614 while (lip != NULL) { 3615 if (lip->li_type == XFS_LI_CUI) { 3616 cuip = (struct xfs_cui_log_item *)lip; 3617 if (cuip->cui_format.cui_id == cui_id) { 3618 /* 3619 * Drop the CUD reference to the CUI. This 3620 * removes the CUI from the AIL and frees it. 3621 */ 3622 spin_unlock(&ailp->ail_lock); 3623 xfs_cui_release(cuip); 3624 spin_lock(&ailp->ail_lock); 3625 break; 3626 } 3627 } 3628 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3629 } 3630 3631 xfs_trans_ail_cursor_done(&cur); 3632 spin_unlock(&ailp->ail_lock); 3633 3634 return 0; 3635 } 3636 3637 /* 3638 * Copy an BUI format buffer from the given buf, and into the destination 3639 * BUI format structure. The BUI/BUD items were designed not to need any 3640 * special alignment handling. 3641 */ 3642 static int 3643 xfs_bui_copy_format( 3644 struct xfs_log_iovec *buf, 3645 struct xfs_bui_log_format *dst_bui_fmt) 3646 { 3647 struct xfs_bui_log_format *src_bui_fmt; 3648 uint len; 3649 3650 src_bui_fmt = buf->i_addr; 3651 len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents); 3652 3653 if (buf->i_len == len) { 3654 memcpy(dst_bui_fmt, src_bui_fmt, len); 3655 return 0; 3656 } 3657 return -EFSCORRUPTED; 3658 } 3659 3660 /* 3661 * This routine is called to create an in-core extent bmap update 3662 * item from the bui format structure which was logged on disk. 3663 * It allocates an in-core bui, copies the extents from the format 3664 * structure into it, and adds the bui to the AIL with the given 3665 * LSN. 3666 */ 3667 STATIC int 3668 xlog_recover_bui_pass2( 3669 struct xlog *log, 3670 struct xlog_recover_item *item, 3671 xfs_lsn_t lsn) 3672 { 3673 int error; 3674 struct xfs_mount *mp = log->l_mp; 3675 struct xfs_bui_log_item *buip; 3676 struct xfs_bui_log_format *bui_formatp; 3677 3678 bui_formatp = item->ri_buf[0].i_addr; 3679 3680 if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS) 3681 return -EFSCORRUPTED; 3682 buip = xfs_bui_init(mp); 3683 error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format); 3684 if (error) { 3685 xfs_bui_item_free(buip); 3686 return error; 3687 } 3688 atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents); 3689 3690 spin_lock(&log->l_ailp->ail_lock); 3691 /* 3692 * The RUI has two references. One for the RUD and one for RUI to ensure 3693 * it makes it into the AIL. Insert the RUI into the AIL directly and 3694 * drop the RUI reference. Note that xfs_trans_ail_update() drops the 3695 * AIL lock. 3696 */ 3697 xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn); 3698 xfs_bui_release(buip); 3699 return 0; 3700 } 3701 3702 3703 /* 3704 * This routine is called when an BUD format structure is found in a committed 3705 * transaction in the log. Its purpose is to cancel the corresponding BUI if it 3706 * was still in the log. To do this it searches the AIL for the BUI with an id 3707 * equal to that in the BUD format structure. If we find it we drop the BUD 3708 * reference, which removes the BUI from the AIL and frees it. 3709 */ 3710 STATIC int 3711 xlog_recover_bud_pass2( 3712 struct xlog *log, 3713 struct xlog_recover_item *item) 3714 { 3715 struct xfs_bud_log_format *bud_formatp; 3716 struct xfs_bui_log_item *buip = NULL; 3717 struct xfs_log_item *lip; 3718 uint64_t bui_id; 3719 struct xfs_ail_cursor cur; 3720 struct xfs_ail *ailp = log->l_ailp; 3721 3722 bud_formatp = item->ri_buf[0].i_addr; 3723 if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format)) 3724 return -EFSCORRUPTED; 3725 bui_id = bud_formatp->bud_bui_id; 3726 3727 /* 3728 * Search for the BUI with the id in the BUD format structure in the 3729 * AIL. 3730 */ 3731 spin_lock(&ailp->ail_lock); 3732 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3733 while (lip != NULL) { 3734 if (lip->li_type == XFS_LI_BUI) { 3735 buip = (struct xfs_bui_log_item *)lip; 3736 if (buip->bui_format.bui_id == bui_id) { 3737 /* 3738 * Drop the BUD reference to the BUI. This 3739 * removes the BUI from the AIL and frees it. 3740 */ 3741 spin_unlock(&ailp->ail_lock); 3742 xfs_bui_release(buip); 3743 spin_lock(&ailp->ail_lock); 3744 break; 3745 } 3746 } 3747 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3748 } 3749 3750 xfs_trans_ail_cursor_done(&cur); 3751 spin_unlock(&ailp->ail_lock); 3752 3753 return 0; 3754 } 3755 3756 /* 3757 * This routine is called when an inode create format structure is found in a 3758 * committed transaction in the log. It's purpose is to initialise the inodes 3759 * being allocated on disk. This requires us to get inode cluster buffers that 3760 * match the range to be initialised, stamped with inode templates and written 3761 * by delayed write so that subsequent modifications will hit the cached buffer 3762 * and only need writing out at the end of recovery. 3763 */ 3764 STATIC int 3765 xlog_recover_do_icreate_pass2( 3766 struct xlog *log, 3767 struct list_head *buffer_list, 3768 xlog_recover_item_t *item) 3769 { 3770 struct xfs_mount *mp = log->l_mp; 3771 struct xfs_icreate_log *icl; 3772 struct xfs_ino_geometry *igeo = M_IGEO(mp); 3773 xfs_agnumber_t agno; 3774 xfs_agblock_t agbno; 3775 unsigned int count; 3776 unsigned int isize; 3777 xfs_agblock_t length; 3778 int bb_per_cluster; 3779 int cancel_count; 3780 int nbufs; 3781 int i; 3782 3783 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr; 3784 if (icl->icl_type != XFS_LI_ICREATE) { 3785 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type"); 3786 return -EINVAL; 3787 } 3788 3789 if (icl->icl_size != 1) { 3790 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size"); 3791 return -EINVAL; 3792 } 3793 3794 agno = be32_to_cpu(icl->icl_ag); 3795 if (agno >= mp->m_sb.sb_agcount) { 3796 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno"); 3797 return -EINVAL; 3798 } 3799 agbno = be32_to_cpu(icl->icl_agbno); 3800 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) { 3801 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno"); 3802 return -EINVAL; 3803 } 3804 isize = be32_to_cpu(icl->icl_isize); 3805 if (isize != mp->m_sb.sb_inodesize) { 3806 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize"); 3807 return -EINVAL; 3808 } 3809 count = be32_to_cpu(icl->icl_count); 3810 if (!count) { 3811 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count"); 3812 return -EINVAL; 3813 } 3814 length = be32_to_cpu(icl->icl_length); 3815 if (!length || length >= mp->m_sb.sb_agblocks) { 3816 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length"); 3817 return -EINVAL; 3818 } 3819 3820 /* 3821 * The inode chunk is either full or sparse and we only support 3822 * m_ino_geo.ialloc_min_blks sized sparse allocations at this time. 3823 */ 3824 if (length != igeo->ialloc_blks && 3825 length != igeo->ialloc_min_blks) { 3826 xfs_warn(log->l_mp, 3827 "%s: unsupported chunk length", __FUNCTION__); 3828 return -EINVAL; 3829 } 3830 3831 /* verify inode count is consistent with extent length */ 3832 if ((count >> mp->m_sb.sb_inopblog) != length) { 3833 xfs_warn(log->l_mp, 3834 "%s: inconsistent inode count and chunk length", 3835 __FUNCTION__); 3836 return -EINVAL; 3837 } 3838 3839 /* 3840 * The icreate transaction can cover multiple cluster buffers and these 3841 * buffers could have been freed and reused. Check the individual 3842 * buffers for cancellation so we don't overwrite anything written after 3843 * a cancellation. 3844 */ 3845 bb_per_cluster = XFS_FSB_TO_BB(mp, igeo->blocks_per_cluster); 3846 nbufs = length / igeo->blocks_per_cluster; 3847 for (i = 0, cancel_count = 0; i < nbufs; i++) { 3848 xfs_daddr_t daddr; 3849 3850 daddr = XFS_AGB_TO_DADDR(mp, agno, 3851 agbno + i * igeo->blocks_per_cluster); 3852 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0)) 3853 cancel_count++; 3854 } 3855 3856 /* 3857 * We currently only use icreate for a single allocation at a time. This 3858 * means we should expect either all or none of the buffers to be 3859 * cancelled. Be conservative and skip replay if at least one buffer is 3860 * cancelled, but warn the user that something is awry if the buffers 3861 * are not consistent. 3862 * 3863 * XXX: This must be refined to only skip cancelled clusters once we use 3864 * icreate for multiple chunk allocations. 3865 */ 3866 ASSERT(!cancel_count || cancel_count == nbufs); 3867 if (cancel_count) { 3868 if (cancel_count != nbufs) 3869 xfs_warn(mp, 3870 "WARNING: partial inode chunk cancellation, skipped icreate."); 3871 trace_xfs_log_recover_icreate_cancel(log, icl); 3872 return 0; 3873 } 3874 3875 trace_xfs_log_recover_icreate_recover(log, icl); 3876 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno, 3877 length, be32_to_cpu(icl->icl_gen)); 3878 } 3879 3880 STATIC void 3881 xlog_recover_buffer_ra_pass2( 3882 struct xlog *log, 3883 struct xlog_recover_item *item) 3884 { 3885 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr; 3886 struct xfs_mount *mp = log->l_mp; 3887 3888 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno, 3889 buf_f->blf_len, buf_f->blf_flags)) { 3890 return; 3891 } 3892 3893 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno, 3894 buf_f->blf_len, NULL); 3895 } 3896 3897 STATIC void 3898 xlog_recover_inode_ra_pass2( 3899 struct xlog *log, 3900 struct xlog_recover_item *item) 3901 { 3902 struct xfs_inode_log_format ilf_buf; 3903 struct xfs_inode_log_format *ilfp; 3904 struct xfs_mount *mp = log->l_mp; 3905 int error; 3906 3907 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { 3908 ilfp = item->ri_buf[0].i_addr; 3909 } else { 3910 ilfp = &ilf_buf; 3911 memset(ilfp, 0, sizeof(*ilfp)); 3912 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp); 3913 if (error) 3914 return; 3915 } 3916 3917 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0)) 3918 return; 3919 3920 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno, 3921 ilfp->ilf_len, &xfs_inode_buf_ra_ops); 3922 } 3923 3924 STATIC void 3925 xlog_recover_dquot_ra_pass2( 3926 struct xlog *log, 3927 struct xlog_recover_item *item) 3928 { 3929 struct xfs_mount *mp = log->l_mp; 3930 struct xfs_disk_dquot *recddq; 3931 struct xfs_dq_logformat *dq_f; 3932 uint type; 3933 int len; 3934 3935 3936 if (mp->m_qflags == 0) 3937 return; 3938 3939 recddq = item->ri_buf[1].i_addr; 3940 if (recddq == NULL) 3941 return; 3942 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot)) 3943 return; 3944 3945 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 3946 ASSERT(type); 3947 if (log->l_quotaoffs_flag & type) 3948 return; 3949 3950 dq_f = item->ri_buf[0].i_addr; 3951 ASSERT(dq_f); 3952 ASSERT(dq_f->qlf_len == 1); 3953 3954 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len); 3955 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0)) 3956 return; 3957 3958 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len, 3959 &xfs_dquot_buf_ra_ops); 3960 } 3961 3962 STATIC void 3963 xlog_recover_ra_pass2( 3964 struct xlog *log, 3965 struct xlog_recover_item *item) 3966 { 3967 switch (ITEM_TYPE(item)) { 3968 case XFS_LI_BUF: 3969 xlog_recover_buffer_ra_pass2(log, item); 3970 break; 3971 case XFS_LI_INODE: 3972 xlog_recover_inode_ra_pass2(log, item); 3973 break; 3974 case XFS_LI_DQUOT: 3975 xlog_recover_dquot_ra_pass2(log, item); 3976 break; 3977 case XFS_LI_EFI: 3978 case XFS_LI_EFD: 3979 case XFS_LI_QUOTAOFF: 3980 case XFS_LI_RUI: 3981 case XFS_LI_RUD: 3982 case XFS_LI_CUI: 3983 case XFS_LI_CUD: 3984 case XFS_LI_BUI: 3985 case XFS_LI_BUD: 3986 default: 3987 break; 3988 } 3989 } 3990 3991 STATIC int 3992 xlog_recover_commit_pass1( 3993 struct xlog *log, 3994 struct xlog_recover *trans, 3995 struct xlog_recover_item *item) 3996 { 3997 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1); 3998 3999 switch (ITEM_TYPE(item)) { 4000 case XFS_LI_BUF: 4001 return xlog_recover_buffer_pass1(log, item); 4002 case XFS_LI_QUOTAOFF: 4003 return xlog_recover_quotaoff_pass1(log, item); 4004 case XFS_LI_INODE: 4005 case XFS_LI_EFI: 4006 case XFS_LI_EFD: 4007 case XFS_LI_DQUOT: 4008 case XFS_LI_ICREATE: 4009 case XFS_LI_RUI: 4010 case XFS_LI_RUD: 4011 case XFS_LI_CUI: 4012 case XFS_LI_CUD: 4013 case XFS_LI_BUI: 4014 case XFS_LI_BUD: 4015 /* nothing to do in pass 1 */ 4016 return 0; 4017 default: 4018 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 4019 __func__, ITEM_TYPE(item)); 4020 ASSERT(0); 4021 return -EIO; 4022 } 4023 } 4024 4025 STATIC int 4026 xlog_recover_commit_pass2( 4027 struct xlog *log, 4028 struct xlog_recover *trans, 4029 struct list_head *buffer_list, 4030 struct xlog_recover_item *item) 4031 { 4032 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2); 4033 4034 switch (ITEM_TYPE(item)) { 4035 case XFS_LI_BUF: 4036 return xlog_recover_buffer_pass2(log, buffer_list, item, 4037 trans->r_lsn); 4038 case XFS_LI_INODE: 4039 return xlog_recover_inode_pass2(log, buffer_list, item, 4040 trans->r_lsn); 4041 case XFS_LI_EFI: 4042 return xlog_recover_efi_pass2(log, item, trans->r_lsn); 4043 case XFS_LI_EFD: 4044 return xlog_recover_efd_pass2(log, item); 4045 case XFS_LI_RUI: 4046 return xlog_recover_rui_pass2(log, item, trans->r_lsn); 4047 case XFS_LI_RUD: 4048 return xlog_recover_rud_pass2(log, item); 4049 case XFS_LI_CUI: 4050 return xlog_recover_cui_pass2(log, item, trans->r_lsn); 4051 case XFS_LI_CUD: 4052 return xlog_recover_cud_pass2(log, item); 4053 case XFS_LI_BUI: 4054 return xlog_recover_bui_pass2(log, item, trans->r_lsn); 4055 case XFS_LI_BUD: 4056 return xlog_recover_bud_pass2(log, item); 4057 case XFS_LI_DQUOT: 4058 return xlog_recover_dquot_pass2(log, buffer_list, item, 4059 trans->r_lsn); 4060 case XFS_LI_ICREATE: 4061 return xlog_recover_do_icreate_pass2(log, buffer_list, item); 4062 case XFS_LI_QUOTAOFF: 4063 /* nothing to do in pass2 */ 4064 return 0; 4065 default: 4066 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 4067 __func__, ITEM_TYPE(item)); 4068 ASSERT(0); 4069 return -EIO; 4070 } 4071 } 4072 4073 STATIC int 4074 xlog_recover_items_pass2( 4075 struct xlog *log, 4076 struct xlog_recover *trans, 4077 struct list_head *buffer_list, 4078 struct list_head *item_list) 4079 { 4080 struct xlog_recover_item *item; 4081 int error = 0; 4082 4083 list_for_each_entry(item, item_list, ri_list) { 4084 error = xlog_recover_commit_pass2(log, trans, 4085 buffer_list, item); 4086 if (error) 4087 return error; 4088 } 4089 4090 return error; 4091 } 4092 4093 /* 4094 * Perform the transaction. 4095 * 4096 * If the transaction modifies a buffer or inode, do it now. Otherwise, 4097 * EFIs and EFDs get queued up by adding entries into the AIL for them. 4098 */ 4099 STATIC int 4100 xlog_recover_commit_trans( 4101 struct xlog *log, 4102 struct xlog_recover *trans, 4103 int pass, 4104 struct list_head *buffer_list) 4105 { 4106 int error = 0; 4107 int items_queued = 0; 4108 struct xlog_recover_item *item; 4109 struct xlog_recover_item *next; 4110 LIST_HEAD (ra_list); 4111 LIST_HEAD (done_list); 4112 4113 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100 4114 4115 hlist_del_init(&trans->r_list); 4116 4117 error = xlog_recover_reorder_trans(log, trans, pass); 4118 if (error) 4119 return error; 4120 4121 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) { 4122 switch (pass) { 4123 case XLOG_RECOVER_PASS1: 4124 error = xlog_recover_commit_pass1(log, trans, item); 4125 break; 4126 case XLOG_RECOVER_PASS2: 4127 xlog_recover_ra_pass2(log, item); 4128 list_move_tail(&item->ri_list, &ra_list); 4129 items_queued++; 4130 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) { 4131 error = xlog_recover_items_pass2(log, trans, 4132 buffer_list, &ra_list); 4133 list_splice_tail_init(&ra_list, &done_list); 4134 items_queued = 0; 4135 } 4136 4137 break; 4138 default: 4139 ASSERT(0); 4140 } 4141 4142 if (error) 4143 goto out; 4144 } 4145 4146 out: 4147 if (!list_empty(&ra_list)) { 4148 if (!error) 4149 error = xlog_recover_items_pass2(log, trans, 4150 buffer_list, &ra_list); 4151 list_splice_tail_init(&ra_list, &done_list); 4152 } 4153 4154 if (!list_empty(&done_list)) 4155 list_splice_init(&done_list, &trans->r_itemq); 4156 4157 return error; 4158 } 4159 4160 STATIC void 4161 xlog_recover_add_item( 4162 struct list_head *head) 4163 { 4164 xlog_recover_item_t *item; 4165 4166 item = kmem_zalloc(sizeof(xlog_recover_item_t), 0); 4167 INIT_LIST_HEAD(&item->ri_list); 4168 list_add_tail(&item->ri_list, head); 4169 } 4170 4171 STATIC int 4172 xlog_recover_add_to_cont_trans( 4173 struct xlog *log, 4174 struct xlog_recover *trans, 4175 char *dp, 4176 int len) 4177 { 4178 xlog_recover_item_t *item; 4179 char *ptr, *old_ptr; 4180 int old_len; 4181 4182 /* 4183 * If the transaction is empty, the header was split across this and the 4184 * previous record. Copy the rest of the header. 4185 */ 4186 if (list_empty(&trans->r_itemq)) { 4187 ASSERT(len <= sizeof(struct xfs_trans_header)); 4188 if (len > sizeof(struct xfs_trans_header)) { 4189 xfs_warn(log->l_mp, "%s: bad header length", __func__); 4190 return -EIO; 4191 } 4192 4193 xlog_recover_add_item(&trans->r_itemq); 4194 ptr = (char *)&trans->r_theader + 4195 sizeof(struct xfs_trans_header) - len; 4196 memcpy(ptr, dp, len); 4197 return 0; 4198 } 4199 4200 /* take the tail entry */ 4201 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 4202 4203 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 4204 old_len = item->ri_buf[item->ri_cnt-1].i_len; 4205 4206 ptr = kmem_realloc(old_ptr, len + old_len, 0); 4207 memcpy(&ptr[old_len], dp, len); 4208 item->ri_buf[item->ri_cnt-1].i_len += len; 4209 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 4210 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 4211 return 0; 4212 } 4213 4214 /* 4215 * The next region to add is the start of a new region. It could be 4216 * a whole region or it could be the first part of a new region. Because 4217 * of this, the assumption here is that the type and size fields of all 4218 * format structures fit into the first 32 bits of the structure. 4219 * 4220 * This works because all regions must be 32 bit aligned. Therefore, we 4221 * either have both fields or we have neither field. In the case we have 4222 * neither field, the data part of the region is zero length. We only have 4223 * a log_op_header and can throw away the header since a new one will appear 4224 * later. If we have at least 4 bytes, then we can determine how many regions 4225 * will appear in the current log item. 4226 */ 4227 STATIC int 4228 xlog_recover_add_to_trans( 4229 struct xlog *log, 4230 struct xlog_recover *trans, 4231 char *dp, 4232 int len) 4233 { 4234 struct xfs_inode_log_format *in_f; /* any will do */ 4235 xlog_recover_item_t *item; 4236 char *ptr; 4237 4238 if (!len) 4239 return 0; 4240 if (list_empty(&trans->r_itemq)) { 4241 /* we need to catch log corruptions here */ 4242 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 4243 xfs_warn(log->l_mp, "%s: bad header magic number", 4244 __func__); 4245 ASSERT(0); 4246 return -EIO; 4247 } 4248 4249 if (len > sizeof(struct xfs_trans_header)) { 4250 xfs_warn(log->l_mp, "%s: bad header length", __func__); 4251 ASSERT(0); 4252 return -EIO; 4253 } 4254 4255 /* 4256 * The transaction header can be arbitrarily split across op 4257 * records. If we don't have the whole thing here, copy what we 4258 * do have and handle the rest in the next record. 4259 */ 4260 if (len == sizeof(struct xfs_trans_header)) 4261 xlog_recover_add_item(&trans->r_itemq); 4262 memcpy(&trans->r_theader, dp, len); 4263 return 0; 4264 } 4265 4266 ptr = kmem_alloc(len, 0); 4267 memcpy(ptr, dp, len); 4268 in_f = (struct xfs_inode_log_format *)ptr; 4269 4270 /* take the tail entry */ 4271 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 4272 if (item->ri_total != 0 && 4273 item->ri_total == item->ri_cnt) { 4274 /* tail item is in use, get a new one */ 4275 xlog_recover_add_item(&trans->r_itemq); 4276 item = list_entry(trans->r_itemq.prev, 4277 xlog_recover_item_t, ri_list); 4278 } 4279 4280 if (item->ri_total == 0) { /* first region to be added */ 4281 if (in_f->ilf_size == 0 || 4282 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 4283 xfs_warn(log->l_mp, 4284 "bad number of regions (%d) in inode log format", 4285 in_f->ilf_size); 4286 ASSERT(0); 4287 kmem_free(ptr); 4288 return -EIO; 4289 } 4290 4291 item->ri_total = in_f->ilf_size; 4292 item->ri_buf = 4293 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 4294 0); 4295 } 4296 ASSERT(item->ri_total > item->ri_cnt); 4297 /* Description region is ri_buf[0] */ 4298 item->ri_buf[item->ri_cnt].i_addr = ptr; 4299 item->ri_buf[item->ri_cnt].i_len = len; 4300 item->ri_cnt++; 4301 trace_xfs_log_recover_item_add(log, trans, item, 0); 4302 return 0; 4303 } 4304 4305 /* 4306 * Free up any resources allocated by the transaction 4307 * 4308 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 4309 */ 4310 STATIC void 4311 xlog_recover_free_trans( 4312 struct xlog_recover *trans) 4313 { 4314 xlog_recover_item_t *item, *n; 4315 int i; 4316 4317 hlist_del_init(&trans->r_list); 4318 4319 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 4320 /* Free the regions in the item. */ 4321 list_del(&item->ri_list); 4322 for (i = 0; i < item->ri_cnt; i++) 4323 kmem_free(item->ri_buf[i].i_addr); 4324 /* Free the item itself */ 4325 kmem_free(item->ri_buf); 4326 kmem_free(item); 4327 } 4328 /* Free the transaction recover structure */ 4329 kmem_free(trans); 4330 } 4331 4332 /* 4333 * On error or completion, trans is freed. 4334 */ 4335 STATIC int 4336 xlog_recovery_process_trans( 4337 struct xlog *log, 4338 struct xlog_recover *trans, 4339 char *dp, 4340 unsigned int len, 4341 unsigned int flags, 4342 int pass, 4343 struct list_head *buffer_list) 4344 { 4345 int error = 0; 4346 bool freeit = false; 4347 4348 /* mask off ophdr transaction container flags */ 4349 flags &= ~XLOG_END_TRANS; 4350 if (flags & XLOG_WAS_CONT_TRANS) 4351 flags &= ~XLOG_CONTINUE_TRANS; 4352 4353 /* 4354 * Callees must not free the trans structure. We'll decide if we need to 4355 * free it or not based on the operation being done and it's result. 4356 */ 4357 switch (flags) { 4358 /* expected flag values */ 4359 case 0: 4360 case XLOG_CONTINUE_TRANS: 4361 error = xlog_recover_add_to_trans(log, trans, dp, len); 4362 break; 4363 case XLOG_WAS_CONT_TRANS: 4364 error = xlog_recover_add_to_cont_trans(log, trans, dp, len); 4365 break; 4366 case XLOG_COMMIT_TRANS: 4367 error = xlog_recover_commit_trans(log, trans, pass, 4368 buffer_list); 4369 /* success or fail, we are now done with this transaction. */ 4370 freeit = true; 4371 break; 4372 4373 /* unexpected flag values */ 4374 case XLOG_UNMOUNT_TRANS: 4375 /* just skip trans */ 4376 xfs_warn(log->l_mp, "%s: Unmount LR", __func__); 4377 freeit = true; 4378 break; 4379 case XLOG_START_TRANS: 4380 default: 4381 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags); 4382 ASSERT(0); 4383 error = -EIO; 4384 break; 4385 } 4386 if (error || freeit) 4387 xlog_recover_free_trans(trans); 4388 return error; 4389 } 4390 4391 /* 4392 * Lookup the transaction recovery structure associated with the ID in the 4393 * current ophdr. If the transaction doesn't exist and the start flag is set in 4394 * the ophdr, then allocate a new transaction for future ID matches to find. 4395 * Either way, return what we found during the lookup - an existing transaction 4396 * or nothing. 4397 */ 4398 STATIC struct xlog_recover * 4399 xlog_recover_ophdr_to_trans( 4400 struct hlist_head rhash[], 4401 struct xlog_rec_header *rhead, 4402 struct xlog_op_header *ohead) 4403 { 4404 struct xlog_recover *trans; 4405 xlog_tid_t tid; 4406 struct hlist_head *rhp; 4407 4408 tid = be32_to_cpu(ohead->oh_tid); 4409 rhp = &rhash[XLOG_RHASH(tid)]; 4410 hlist_for_each_entry(trans, rhp, r_list) { 4411 if (trans->r_log_tid == tid) 4412 return trans; 4413 } 4414 4415 /* 4416 * skip over non-start transaction headers - we could be 4417 * processing slack space before the next transaction starts 4418 */ 4419 if (!(ohead->oh_flags & XLOG_START_TRANS)) 4420 return NULL; 4421 4422 ASSERT(be32_to_cpu(ohead->oh_len) == 0); 4423 4424 /* 4425 * This is a new transaction so allocate a new recovery container to 4426 * hold the recovery ops that will follow. 4427 */ 4428 trans = kmem_zalloc(sizeof(struct xlog_recover), 0); 4429 trans->r_log_tid = tid; 4430 trans->r_lsn = be64_to_cpu(rhead->h_lsn); 4431 INIT_LIST_HEAD(&trans->r_itemq); 4432 INIT_HLIST_NODE(&trans->r_list); 4433 hlist_add_head(&trans->r_list, rhp); 4434 4435 /* 4436 * Nothing more to do for this ophdr. Items to be added to this new 4437 * transaction will be in subsequent ophdr containers. 4438 */ 4439 return NULL; 4440 } 4441 4442 STATIC int 4443 xlog_recover_process_ophdr( 4444 struct xlog *log, 4445 struct hlist_head rhash[], 4446 struct xlog_rec_header *rhead, 4447 struct xlog_op_header *ohead, 4448 char *dp, 4449 char *end, 4450 int pass, 4451 struct list_head *buffer_list) 4452 { 4453 struct xlog_recover *trans; 4454 unsigned int len; 4455 int error; 4456 4457 /* Do we understand who wrote this op? */ 4458 if (ohead->oh_clientid != XFS_TRANSACTION && 4459 ohead->oh_clientid != XFS_LOG) { 4460 xfs_warn(log->l_mp, "%s: bad clientid 0x%x", 4461 __func__, ohead->oh_clientid); 4462 ASSERT(0); 4463 return -EIO; 4464 } 4465 4466 /* 4467 * Check the ophdr contains all the data it is supposed to contain. 4468 */ 4469 len = be32_to_cpu(ohead->oh_len); 4470 if (dp + len > end) { 4471 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len); 4472 WARN_ON(1); 4473 return -EIO; 4474 } 4475 4476 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead); 4477 if (!trans) { 4478 /* nothing to do, so skip over this ophdr */ 4479 return 0; 4480 } 4481 4482 /* 4483 * The recovered buffer queue is drained only once we know that all 4484 * recovery items for the current LSN have been processed. This is 4485 * required because: 4486 * 4487 * - Buffer write submission updates the metadata LSN of the buffer. 4488 * - Log recovery skips items with a metadata LSN >= the current LSN of 4489 * the recovery item. 4490 * - Separate recovery items against the same metadata buffer can share 4491 * a current LSN. I.e., consider that the LSN of a recovery item is 4492 * defined as the starting LSN of the first record in which its 4493 * transaction appears, that a record can hold multiple transactions, 4494 * and/or that a transaction can span multiple records. 4495 * 4496 * In other words, we are allowed to submit a buffer from log recovery 4497 * once per current LSN. Otherwise, we may incorrectly skip recovery 4498 * items and cause corruption. 4499 * 4500 * We don't know up front whether buffers are updated multiple times per 4501 * LSN. Therefore, track the current LSN of each commit log record as it 4502 * is processed and drain the queue when it changes. Use commit records 4503 * because they are ordered correctly by the logging code. 4504 */ 4505 if (log->l_recovery_lsn != trans->r_lsn && 4506 ohead->oh_flags & XLOG_COMMIT_TRANS) { 4507 error = xfs_buf_delwri_submit(buffer_list); 4508 if (error) 4509 return error; 4510 log->l_recovery_lsn = trans->r_lsn; 4511 } 4512 4513 return xlog_recovery_process_trans(log, trans, dp, len, 4514 ohead->oh_flags, pass, buffer_list); 4515 } 4516 4517 /* 4518 * There are two valid states of the r_state field. 0 indicates that the 4519 * transaction structure is in a normal state. We have either seen the 4520 * start of the transaction or the last operation we added was not a partial 4521 * operation. If the last operation we added to the transaction was a 4522 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 4523 * 4524 * NOTE: skip LRs with 0 data length. 4525 */ 4526 STATIC int 4527 xlog_recover_process_data( 4528 struct xlog *log, 4529 struct hlist_head rhash[], 4530 struct xlog_rec_header *rhead, 4531 char *dp, 4532 int pass, 4533 struct list_head *buffer_list) 4534 { 4535 struct xlog_op_header *ohead; 4536 char *end; 4537 int num_logops; 4538 int error; 4539 4540 end = dp + be32_to_cpu(rhead->h_len); 4541 num_logops = be32_to_cpu(rhead->h_num_logops); 4542 4543 /* check the log format matches our own - else we can't recover */ 4544 if (xlog_header_check_recover(log->l_mp, rhead)) 4545 return -EIO; 4546 4547 trace_xfs_log_recover_record(log, rhead, pass); 4548 while ((dp < end) && num_logops) { 4549 4550 ohead = (struct xlog_op_header *)dp; 4551 dp += sizeof(*ohead); 4552 ASSERT(dp <= end); 4553 4554 /* errors will abort recovery */ 4555 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead, 4556 dp, end, pass, buffer_list); 4557 if (error) 4558 return error; 4559 4560 dp += be32_to_cpu(ohead->oh_len); 4561 num_logops--; 4562 } 4563 return 0; 4564 } 4565 4566 /* Recover the EFI if necessary. */ 4567 STATIC int 4568 xlog_recover_process_efi( 4569 struct xfs_mount *mp, 4570 struct xfs_ail *ailp, 4571 struct xfs_log_item *lip) 4572 { 4573 struct xfs_efi_log_item *efip; 4574 int error; 4575 4576 /* 4577 * Skip EFIs that we've already processed. 4578 */ 4579 efip = container_of(lip, struct xfs_efi_log_item, efi_item); 4580 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) 4581 return 0; 4582 4583 spin_unlock(&ailp->ail_lock); 4584 error = xfs_efi_recover(mp, efip); 4585 spin_lock(&ailp->ail_lock); 4586 4587 return error; 4588 } 4589 4590 /* Release the EFI since we're cancelling everything. */ 4591 STATIC void 4592 xlog_recover_cancel_efi( 4593 struct xfs_mount *mp, 4594 struct xfs_ail *ailp, 4595 struct xfs_log_item *lip) 4596 { 4597 struct xfs_efi_log_item *efip; 4598 4599 efip = container_of(lip, struct xfs_efi_log_item, efi_item); 4600 4601 spin_unlock(&ailp->ail_lock); 4602 xfs_efi_release(efip); 4603 spin_lock(&ailp->ail_lock); 4604 } 4605 4606 /* Recover the RUI if necessary. */ 4607 STATIC int 4608 xlog_recover_process_rui( 4609 struct xfs_mount *mp, 4610 struct xfs_ail *ailp, 4611 struct xfs_log_item *lip) 4612 { 4613 struct xfs_rui_log_item *ruip; 4614 int error; 4615 4616 /* 4617 * Skip RUIs that we've already processed. 4618 */ 4619 ruip = container_of(lip, struct xfs_rui_log_item, rui_item); 4620 if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags)) 4621 return 0; 4622 4623 spin_unlock(&ailp->ail_lock); 4624 error = xfs_rui_recover(mp, ruip); 4625 spin_lock(&ailp->ail_lock); 4626 4627 return error; 4628 } 4629 4630 /* Release the RUI since we're cancelling everything. */ 4631 STATIC void 4632 xlog_recover_cancel_rui( 4633 struct xfs_mount *mp, 4634 struct xfs_ail *ailp, 4635 struct xfs_log_item *lip) 4636 { 4637 struct xfs_rui_log_item *ruip; 4638 4639 ruip = container_of(lip, struct xfs_rui_log_item, rui_item); 4640 4641 spin_unlock(&ailp->ail_lock); 4642 xfs_rui_release(ruip); 4643 spin_lock(&ailp->ail_lock); 4644 } 4645 4646 /* Recover the CUI if necessary. */ 4647 STATIC int 4648 xlog_recover_process_cui( 4649 struct xfs_trans *parent_tp, 4650 struct xfs_ail *ailp, 4651 struct xfs_log_item *lip) 4652 { 4653 struct xfs_cui_log_item *cuip; 4654 int error; 4655 4656 /* 4657 * Skip CUIs that we've already processed. 4658 */ 4659 cuip = container_of(lip, struct xfs_cui_log_item, cui_item); 4660 if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags)) 4661 return 0; 4662 4663 spin_unlock(&ailp->ail_lock); 4664 error = xfs_cui_recover(parent_tp, cuip); 4665 spin_lock(&ailp->ail_lock); 4666 4667 return error; 4668 } 4669 4670 /* Release the CUI since we're cancelling everything. */ 4671 STATIC void 4672 xlog_recover_cancel_cui( 4673 struct xfs_mount *mp, 4674 struct xfs_ail *ailp, 4675 struct xfs_log_item *lip) 4676 { 4677 struct xfs_cui_log_item *cuip; 4678 4679 cuip = container_of(lip, struct xfs_cui_log_item, cui_item); 4680 4681 spin_unlock(&ailp->ail_lock); 4682 xfs_cui_release(cuip); 4683 spin_lock(&ailp->ail_lock); 4684 } 4685 4686 /* Recover the BUI if necessary. */ 4687 STATIC int 4688 xlog_recover_process_bui( 4689 struct xfs_trans *parent_tp, 4690 struct xfs_ail *ailp, 4691 struct xfs_log_item *lip) 4692 { 4693 struct xfs_bui_log_item *buip; 4694 int error; 4695 4696 /* 4697 * Skip BUIs that we've already processed. 4698 */ 4699 buip = container_of(lip, struct xfs_bui_log_item, bui_item); 4700 if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags)) 4701 return 0; 4702 4703 spin_unlock(&ailp->ail_lock); 4704 error = xfs_bui_recover(parent_tp, buip); 4705 spin_lock(&ailp->ail_lock); 4706 4707 return error; 4708 } 4709 4710 /* Release the BUI since we're cancelling everything. */ 4711 STATIC void 4712 xlog_recover_cancel_bui( 4713 struct xfs_mount *mp, 4714 struct xfs_ail *ailp, 4715 struct xfs_log_item *lip) 4716 { 4717 struct xfs_bui_log_item *buip; 4718 4719 buip = container_of(lip, struct xfs_bui_log_item, bui_item); 4720 4721 spin_unlock(&ailp->ail_lock); 4722 xfs_bui_release(buip); 4723 spin_lock(&ailp->ail_lock); 4724 } 4725 4726 /* Is this log item a deferred action intent? */ 4727 static inline bool xlog_item_is_intent(struct xfs_log_item *lip) 4728 { 4729 switch (lip->li_type) { 4730 case XFS_LI_EFI: 4731 case XFS_LI_RUI: 4732 case XFS_LI_CUI: 4733 case XFS_LI_BUI: 4734 return true; 4735 default: 4736 return false; 4737 } 4738 } 4739 4740 /* Take all the collected deferred ops and finish them in order. */ 4741 static int 4742 xlog_finish_defer_ops( 4743 struct xfs_trans *parent_tp) 4744 { 4745 struct xfs_mount *mp = parent_tp->t_mountp; 4746 struct xfs_trans *tp; 4747 int64_t freeblks; 4748 uint resblks; 4749 int error; 4750 4751 /* 4752 * We're finishing the defer_ops that accumulated as a result of 4753 * recovering unfinished intent items during log recovery. We 4754 * reserve an itruncate transaction because it is the largest 4755 * permanent transaction type. Since we're the only user of the fs 4756 * right now, take 93% (15/16) of the available free blocks. Use 4757 * weird math to avoid a 64-bit division. 4758 */ 4759 freeblks = percpu_counter_sum(&mp->m_fdblocks); 4760 if (freeblks <= 0) 4761 return -ENOSPC; 4762 resblks = min_t(int64_t, UINT_MAX, freeblks); 4763 resblks = (resblks * 15) >> 4; 4764 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks, 4765 0, XFS_TRANS_RESERVE, &tp); 4766 if (error) 4767 return error; 4768 /* transfer all collected dfops to this transaction */ 4769 xfs_defer_move(tp, parent_tp); 4770 4771 return xfs_trans_commit(tp); 4772 } 4773 4774 /* 4775 * When this is called, all of the log intent items which did not have 4776 * corresponding log done items should be in the AIL. What we do now 4777 * is update the data structures associated with each one. 4778 * 4779 * Since we process the log intent items in normal transactions, they 4780 * will be removed at some point after the commit. This prevents us 4781 * from just walking down the list processing each one. We'll use a 4782 * flag in the intent item to skip those that we've already processed 4783 * and use the AIL iteration mechanism's generation count to try to 4784 * speed this up at least a bit. 4785 * 4786 * When we start, we know that the intents are the only things in the 4787 * AIL. As we process them, however, other items are added to the 4788 * AIL. 4789 */ 4790 STATIC int 4791 xlog_recover_process_intents( 4792 struct xlog *log) 4793 { 4794 struct xfs_trans *parent_tp; 4795 struct xfs_ail_cursor cur; 4796 struct xfs_log_item *lip; 4797 struct xfs_ail *ailp; 4798 int error; 4799 #if defined(DEBUG) || defined(XFS_WARN) 4800 xfs_lsn_t last_lsn; 4801 #endif 4802 4803 /* 4804 * The intent recovery handlers commit transactions to complete recovery 4805 * for individual intents, but any new deferred operations that are 4806 * queued during that process are held off until the very end. The 4807 * purpose of this transaction is to serve as a container for deferred 4808 * operations. Each intent recovery handler must transfer dfops here 4809 * before its local transaction commits, and we'll finish the entire 4810 * list below. 4811 */ 4812 error = xfs_trans_alloc_empty(log->l_mp, &parent_tp); 4813 if (error) 4814 return error; 4815 4816 ailp = log->l_ailp; 4817 spin_lock(&ailp->ail_lock); 4818 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 4819 #if defined(DEBUG) || defined(XFS_WARN) 4820 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block); 4821 #endif 4822 while (lip != NULL) { 4823 /* 4824 * We're done when we see something other than an intent. 4825 * There should be no intents left in the AIL now. 4826 */ 4827 if (!xlog_item_is_intent(lip)) { 4828 #ifdef DEBUG 4829 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 4830 ASSERT(!xlog_item_is_intent(lip)); 4831 #endif 4832 break; 4833 } 4834 4835 /* 4836 * We should never see a redo item with a LSN higher than 4837 * the last transaction we found in the log at the start 4838 * of recovery. 4839 */ 4840 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0); 4841 4842 /* 4843 * NOTE: If your intent processing routine can create more 4844 * deferred ops, you /must/ attach them to the dfops in this 4845 * routine or else those subsequent intents will get 4846 * replayed in the wrong order! 4847 */ 4848 switch (lip->li_type) { 4849 case XFS_LI_EFI: 4850 error = xlog_recover_process_efi(log->l_mp, ailp, lip); 4851 break; 4852 case XFS_LI_RUI: 4853 error = xlog_recover_process_rui(log->l_mp, ailp, lip); 4854 break; 4855 case XFS_LI_CUI: 4856 error = xlog_recover_process_cui(parent_tp, ailp, lip); 4857 break; 4858 case XFS_LI_BUI: 4859 error = xlog_recover_process_bui(parent_tp, ailp, lip); 4860 break; 4861 } 4862 if (error) 4863 goto out; 4864 lip = xfs_trans_ail_cursor_next(ailp, &cur); 4865 } 4866 out: 4867 xfs_trans_ail_cursor_done(&cur); 4868 spin_unlock(&ailp->ail_lock); 4869 if (!error) 4870 error = xlog_finish_defer_ops(parent_tp); 4871 xfs_trans_cancel(parent_tp); 4872 4873 return error; 4874 } 4875 4876 /* 4877 * A cancel occurs when the mount has failed and we're bailing out. 4878 * Release all pending log intent items so they don't pin the AIL. 4879 */ 4880 STATIC void 4881 xlog_recover_cancel_intents( 4882 struct xlog *log) 4883 { 4884 struct xfs_log_item *lip; 4885 struct xfs_ail_cursor cur; 4886 struct xfs_ail *ailp; 4887 4888 ailp = log->l_ailp; 4889 spin_lock(&ailp->ail_lock); 4890 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 4891 while (lip != NULL) { 4892 /* 4893 * We're done when we see something other than an intent. 4894 * There should be no intents left in the AIL now. 4895 */ 4896 if (!xlog_item_is_intent(lip)) { 4897 #ifdef DEBUG 4898 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 4899 ASSERT(!xlog_item_is_intent(lip)); 4900 #endif 4901 break; 4902 } 4903 4904 switch (lip->li_type) { 4905 case XFS_LI_EFI: 4906 xlog_recover_cancel_efi(log->l_mp, ailp, lip); 4907 break; 4908 case XFS_LI_RUI: 4909 xlog_recover_cancel_rui(log->l_mp, ailp, lip); 4910 break; 4911 case XFS_LI_CUI: 4912 xlog_recover_cancel_cui(log->l_mp, ailp, lip); 4913 break; 4914 case XFS_LI_BUI: 4915 xlog_recover_cancel_bui(log->l_mp, ailp, lip); 4916 break; 4917 } 4918 4919 lip = xfs_trans_ail_cursor_next(ailp, &cur); 4920 } 4921 4922 xfs_trans_ail_cursor_done(&cur); 4923 spin_unlock(&ailp->ail_lock); 4924 } 4925 4926 /* 4927 * This routine performs a transaction to null out a bad inode pointer 4928 * in an agi unlinked inode hash bucket. 4929 */ 4930 STATIC void 4931 xlog_recover_clear_agi_bucket( 4932 xfs_mount_t *mp, 4933 xfs_agnumber_t agno, 4934 int bucket) 4935 { 4936 xfs_trans_t *tp; 4937 xfs_agi_t *agi; 4938 xfs_buf_t *agibp; 4939 int offset; 4940 int error; 4941 4942 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp); 4943 if (error) 4944 goto out_error; 4945 4946 error = xfs_read_agi(mp, tp, agno, &agibp); 4947 if (error) 4948 goto out_abort; 4949 4950 agi = XFS_BUF_TO_AGI(agibp); 4951 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 4952 offset = offsetof(xfs_agi_t, agi_unlinked) + 4953 (sizeof(xfs_agino_t) * bucket); 4954 xfs_trans_log_buf(tp, agibp, offset, 4955 (offset + sizeof(xfs_agino_t) - 1)); 4956 4957 error = xfs_trans_commit(tp); 4958 if (error) 4959 goto out_error; 4960 return; 4961 4962 out_abort: 4963 xfs_trans_cancel(tp); 4964 out_error: 4965 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); 4966 return; 4967 } 4968 4969 STATIC xfs_agino_t 4970 xlog_recover_process_one_iunlink( 4971 struct xfs_mount *mp, 4972 xfs_agnumber_t agno, 4973 xfs_agino_t agino, 4974 int bucket) 4975 { 4976 struct xfs_buf *ibp; 4977 struct xfs_dinode *dip; 4978 struct xfs_inode *ip; 4979 xfs_ino_t ino; 4980 int error; 4981 4982 ino = XFS_AGINO_TO_INO(mp, agno, agino); 4983 error = xfs_iget(mp, NULL, ino, 0, 0, &ip); 4984 if (error) 4985 goto fail; 4986 4987 /* 4988 * Get the on disk inode to find the next inode in the bucket. 4989 */ 4990 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0); 4991 if (error) 4992 goto fail_iput; 4993 4994 xfs_iflags_clear(ip, XFS_IRECOVERY); 4995 ASSERT(VFS_I(ip)->i_nlink == 0); 4996 ASSERT(VFS_I(ip)->i_mode != 0); 4997 4998 /* setup for the next pass */ 4999 agino = be32_to_cpu(dip->di_next_unlinked); 5000 xfs_buf_relse(ibp); 5001 5002 /* 5003 * Prevent any DMAPI event from being sent when the reference on 5004 * the inode is dropped. 5005 */ 5006 ip->i_d.di_dmevmask = 0; 5007 5008 xfs_irele(ip); 5009 return agino; 5010 5011 fail_iput: 5012 xfs_irele(ip); 5013 fail: 5014 /* 5015 * We can't read in the inode this bucket points to, or this inode 5016 * is messed up. Just ditch this bucket of inodes. We will lose 5017 * some inodes and space, but at least we won't hang. 5018 * 5019 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 5020 * clear the inode pointer in the bucket. 5021 */ 5022 xlog_recover_clear_agi_bucket(mp, agno, bucket); 5023 return NULLAGINO; 5024 } 5025 5026 /* 5027 * Recover AGI unlinked lists 5028 * 5029 * This is called during recovery to process any inodes which we unlinked but 5030 * not freed when the system crashed. These inodes will be on the lists in the 5031 * AGI blocks. What we do here is scan all the AGIs and fully truncate and free 5032 * any inodes found on the lists. Each inode is removed from the lists when it 5033 * has been fully truncated and is freed. The freeing of the inode and its 5034 * removal from the list must be atomic. 5035 * 5036 * If everything we touch in the agi processing loop is already in memory, this 5037 * loop can hold the cpu for a long time. It runs without lock contention, 5038 * memory allocation contention, the need wait for IO, etc, and so will run 5039 * until we either run out of inodes to process, run low on memory or we run out 5040 * of log space. 5041 * 5042 * This behaviour is bad for latency on single CPU and non-preemptible kernels, 5043 * and can prevent other filesytem work (such as CIL pushes) from running. This 5044 * can lead to deadlocks if the recovery process runs out of log reservation 5045 * space. Hence we need to yield the CPU when there is other kernel work 5046 * scheduled on this CPU to ensure other scheduled work can run without undue 5047 * latency. 5048 */ 5049 STATIC void 5050 xlog_recover_process_iunlinks( 5051 struct xlog *log) 5052 { 5053 xfs_mount_t *mp; 5054 xfs_agnumber_t agno; 5055 xfs_agi_t *agi; 5056 xfs_buf_t *agibp; 5057 xfs_agino_t agino; 5058 int bucket; 5059 int error; 5060 5061 mp = log->l_mp; 5062 5063 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 5064 /* 5065 * Find the agi for this ag. 5066 */ 5067 error = xfs_read_agi(mp, NULL, agno, &agibp); 5068 if (error) { 5069 /* 5070 * AGI is b0rked. Don't process it. 5071 * 5072 * We should probably mark the filesystem as corrupt 5073 * after we've recovered all the ag's we can.... 5074 */ 5075 continue; 5076 } 5077 /* 5078 * Unlock the buffer so that it can be acquired in the normal 5079 * course of the transaction to truncate and free each inode. 5080 * Because we are not racing with anyone else here for the AGI 5081 * buffer, we don't even need to hold it locked to read the 5082 * initial unlinked bucket entries out of the buffer. We keep 5083 * buffer reference though, so that it stays pinned in memory 5084 * while we need the buffer. 5085 */ 5086 agi = XFS_BUF_TO_AGI(agibp); 5087 xfs_buf_unlock(agibp); 5088 5089 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 5090 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 5091 while (agino != NULLAGINO) { 5092 agino = xlog_recover_process_one_iunlink(mp, 5093 agno, agino, bucket); 5094 cond_resched(); 5095 } 5096 } 5097 xfs_buf_rele(agibp); 5098 } 5099 } 5100 5101 STATIC void 5102 xlog_unpack_data( 5103 struct xlog_rec_header *rhead, 5104 char *dp, 5105 struct xlog *log) 5106 { 5107 int i, j, k; 5108 5109 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 5110 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 5111 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 5112 dp += BBSIZE; 5113 } 5114 5115 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 5116 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 5117 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 5118 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 5119 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 5120 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 5121 dp += BBSIZE; 5122 } 5123 } 5124 } 5125 5126 /* 5127 * CRC check, unpack and process a log record. 5128 */ 5129 STATIC int 5130 xlog_recover_process( 5131 struct xlog *log, 5132 struct hlist_head rhash[], 5133 struct xlog_rec_header *rhead, 5134 char *dp, 5135 int pass, 5136 struct list_head *buffer_list) 5137 { 5138 __le32 old_crc = rhead->h_crc; 5139 __le32 crc; 5140 5141 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); 5142 5143 /* 5144 * Nothing else to do if this is a CRC verification pass. Just return 5145 * if this a record with a non-zero crc. Unfortunately, mkfs always 5146 * sets old_crc to 0 so we must consider this valid even on v5 supers. 5147 * Otherwise, return EFSBADCRC on failure so the callers up the stack 5148 * know precisely what failed. 5149 */ 5150 if (pass == XLOG_RECOVER_CRCPASS) { 5151 if (old_crc && crc != old_crc) 5152 return -EFSBADCRC; 5153 return 0; 5154 } 5155 5156 /* 5157 * We're in the normal recovery path. Issue a warning if and only if the 5158 * CRC in the header is non-zero. This is an advisory warning and the 5159 * zero CRC check prevents warnings from being emitted when upgrading 5160 * the kernel from one that does not add CRCs by default. 5161 */ 5162 if (crc != old_crc) { 5163 if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) { 5164 xfs_alert(log->l_mp, 5165 "log record CRC mismatch: found 0x%x, expected 0x%x.", 5166 le32_to_cpu(old_crc), 5167 le32_to_cpu(crc)); 5168 xfs_hex_dump(dp, 32); 5169 } 5170 5171 /* 5172 * If the filesystem is CRC enabled, this mismatch becomes a 5173 * fatal log corruption failure. 5174 */ 5175 if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) 5176 return -EFSCORRUPTED; 5177 } 5178 5179 xlog_unpack_data(rhead, dp, log); 5180 5181 return xlog_recover_process_data(log, rhash, rhead, dp, pass, 5182 buffer_list); 5183 } 5184 5185 STATIC int 5186 xlog_valid_rec_header( 5187 struct xlog *log, 5188 struct xlog_rec_header *rhead, 5189 xfs_daddr_t blkno) 5190 { 5191 int hlen; 5192 5193 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) { 5194 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 5195 XFS_ERRLEVEL_LOW, log->l_mp); 5196 return -EFSCORRUPTED; 5197 } 5198 if (unlikely( 5199 (!rhead->h_version || 5200 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { 5201 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", 5202 __func__, be32_to_cpu(rhead->h_version)); 5203 return -EIO; 5204 } 5205 5206 /* LR body must have data or it wouldn't have been written */ 5207 hlen = be32_to_cpu(rhead->h_len); 5208 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 5209 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 5210 XFS_ERRLEVEL_LOW, log->l_mp); 5211 return -EFSCORRUPTED; 5212 } 5213 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 5214 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 5215 XFS_ERRLEVEL_LOW, log->l_mp); 5216 return -EFSCORRUPTED; 5217 } 5218 return 0; 5219 } 5220 5221 /* 5222 * Read the log from tail to head and process the log records found. 5223 * Handle the two cases where the tail and head are in the same cycle 5224 * and where the active portion of the log wraps around the end of 5225 * the physical log separately. The pass parameter is passed through 5226 * to the routines called to process the data and is not looked at 5227 * here. 5228 */ 5229 STATIC int 5230 xlog_do_recovery_pass( 5231 struct xlog *log, 5232 xfs_daddr_t head_blk, 5233 xfs_daddr_t tail_blk, 5234 int pass, 5235 xfs_daddr_t *first_bad) /* out: first bad log rec */ 5236 { 5237 xlog_rec_header_t *rhead; 5238 xfs_daddr_t blk_no, rblk_no; 5239 xfs_daddr_t rhead_blk; 5240 char *offset; 5241 char *hbp, *dbp; 5242 int error = 0, h_size, h_len; 5243 int error2 = 0; 5244 int bblks, split_bblks; 5245 int hblks, split_hblks, wrapped_hblks; 5246 int i; 5247 struct hlist_head rhash[XLOG_RHASH_SIZE]; 5248 LIST_HEAD (buffer_list); 5249 5250 ASSERT(head_blk != tail_blk); 5251 blk_no = rhead_blk = tail_blk; 5252 5253 for (i = 0; i < XLOG_RHASH_SIZE; i++) 5254 INIT_HLIST_HEAD(&rhash[i]); 5255 5256 /* 5257 * Read the header of the tail block and get the iclog buffer size from 5258 * h_size. Use this to tell how many sectors make up the log header. 5259 */ 5260 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 5261 /* 5262 * When using variable length iclogs, read first sector of 5263 * iclog header and extract the header size from it. Get a 5264 * new hbp that is the correct size. 5265 */ 5266 hbp = xlog_alloc_buffer(log, 1); 5267 if (!hbp) 5268 return -ENOMEM; 5269 5270 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 5271 if (error) 5272 goto bread_err1; 5273 5274 rhead = (xlog_rec_header_t *)offset; 5275 error = xlog_valid_rec_header(log, rhead, tail_blk); 5276 if (error) 5277 goto bread_err1; 5278 5279 /* 5280 * xfsprogs has a bug where record length is based on lsunit but 5281 * h_size (iclog size) is hardcoded to 32k. Now that we 5282 * unconditionally CRC verify the unmount record, this means the 5283 * log buffer can be too small for the record and cause an 5284 * overrun. 5285 * 5286 * Detect this condition here. Use lsunit for the buffer size as 5287 * long as this looks like the mkfs case. Otherwise, return an 5288 * error to avoid a buffer overrun. 5289 */ 5290 h_size = be32_to_cpu(rhead->h_size); 5291 h_len = be32_to_cpu(rhead->h_len); 5292 if (h_len > h_size) { 5293 if (h_len <= log->l_mp->m_logbsize && 5294 be32_to_cpu(rhead->h_num_logops) == 1) { 5295 xfs_warn(log->l_mp, 5296 "invalid iclog size (%d bytes), using lsunit (%d bytes)", 5297 h_size, log->l_mp->m_logbsize); 5298 h_size = log->l_mp->m_logbsize; 5299 } else 5300 return -EFSCORRUPTED; 5301 } 5302 5303 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 5304 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 5305 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 5306 if (h_size % XLOG_HEADER_CYCLE_SIZE) 5307 hblks++; 5308 kmem_free(hbp); 5309 hbp = xlog_alloc_buffer(log, hblks); 5310 } else { 5311 hblks = 1; 5312 } 5313 } else { 5314 ASSERT(log->l_sectBBsize == 1); 5315 hblks = 1; 5316 hbp = xlog_alloc_buffer(log, 1); 5317 h_size = XLOG_BIG_RECORD_BSIZE; 5318 } 5319 5320 if (!hbp) 5321 return -ENOMEM; 5322 dbp = xlog_alloc_buffer(log, BTOBB(h_size)); 5323 if (!dbp) { 5324 kmem_free(hbp); 5325 return -ENOMEM; 5326 } 5327 5328 memset(rhash, 0, sizeof(rhash)); 5329 if (tail_blk > head_blk) { 5330 /* 5331 * Perform recovery around the end of the physical log. 5332 * When the head is not on the same cycle number as the tail, 5333 * we can't do a sequential recovery. 5334 */ 5335 while (blk_no < log->l_logBBsize) { 5336 /* 5337 * Check for header wrapping around physical end-of-log 5338 */ 5339 offset = hbp; 5340 split_hblks = 0; 5341 wrapped_hblks = 0; 5342 if (blk_no + hblks <= log->l_logBBsize) { 5343 /* Read header in one read */ 5344 error = xlog_bread(log, blk_no, hblks, hbp, 5345 &offset); 5346 if (error) 5347 goto bread_err2; 5348 } else { 5349 /* This LR is split across physical log end */ 5350 if (blk_no != log->l_logBBsize) { 5351 /* some data before physical log end */ 5352 ASSERT(blk_no <= INT_MAX); 5353 split_hblks = log->l_logBBsize - (int)blk_no; 5354 ASSERT(split_hblks > 0); 5355 error = xlog_bread(log, blk_no, 5356 split_hblks, hbp, 5357 &offset); 5358 if (error) 5359 goto bread_err2; 5360 } 5361 5362 /* 5363 * Note: this black magic still works with 5364 * large sector sizes (non-512) only because: 5365 * - we increased the buffer size originally 5366 * by 1 sector giving us enough extra space 5367 * for the second read; 5368 * - the log start is guaranteed to be sector 5369 * aligned; 5370 * - we read the log end (LR header start) 5371 * _first_, then the log start (LR header end) 5372 * - order is important. 5373 */ 5374 wrapped_hblks = hblks - split_hblks; 5375 error = xlog_bread_noalign(log, 0, 5376 wrapped_hblks, 5377 offset + BBTOB(split_hblks)); 5378 if (error) 5379 goto bread_err2; 5380 } 5381 rhead = (xlog_rec_header_t *)offset; 5382 error = xlog_valid_rec_header(log, rhead, 5383 split_hblks ? blk_no : 0); 5384 if (error) 5385 goto bread_err2; 5386 5387 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 5388 blk_no += hblks; 5389 5390 /* 5391 * Read the log record data in multiple reads if it 5392 * wraps around the end of the log. Note that if the 5393 * header already wrapped, blk_no could point past the 5394 * end of the log. The record data is contiguous in 5395 * that case. 5396 */ 5397 if (blk_no + bblks <= log->l_logBBsize || 5398 blk_no >= log->l_logBBsize) { 5399 rblk_no = xlog_wrap_logbno(log, blk_no); 5400 error = xlog_bread(log, rblk_no, bblks, dbp, 5401 &offset); 5402 if (error) 5403 goto bread_err2; 5404 } else { 5405 /* This log record is split across the 5406 * physical end of log */ 5407 offset = dbp; 5408 split_bblks = 0; 5409 if (blk_no != log->l_logBBsize) { 5410 /* some data is before the physical 5411 * end of log */ 5412 ASSERT(!wrapped_hblks); 5413 ASSERT(blk_no <= INT_MAX); 5414 split_bblks = 5415 log->l_logBBsize - (int)blk_no; 5416 ASSERT(split_bblks > 0); 5417 error = xlog_bread(log, blk_no, 5418 split_bblks, dbp, 5419 &offset); 5420 if (error) 5421 goto bread_err2; 5422 } 5423 5424 /* 5425 * Note: this black magic still works with 5426 * large sector sizes (non-512) only because: 5427 * - we increased the buffer size originally 5428 * by 1 sector giving us enough extra space 5429 * for the second read; 5430 * - the log start is guaranteed to be sector 5431 * aligned; 5432 * - we read the log end (LR header start) 5433 * _first_, then the log start (LR header end) 5434 * - order is important. 5435 */ 5436 error = xlog_bread_noalign(log, 0, 5437 bblks - split_bblks, 5438 offset + BBTOB(split_bblks)); 5439 if (error) 5440 goto bread_err2; 5441 } 5442 5443 error = xlog_recover_process(log, rhash, rhead, offset, 5444 pass, &buffer_list); 5445 if (error) 5446 goto bread_err2; 5447 5448 blk_no += bblks; 5449 rhead_blk = blk_no; 5450 } 5451 5452 ASSERT(blk_no >= log->l_logBBsize); 5453 blk_no -= log->l_logBBsize; 5454 rhead_blk = blk_no; 5455 } 5456 5457 /* read first part of physical log */ 5458 while (blk_no < head_blk) { 5459 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 5460 if (error) 5461 goto bread_err2; 5462 5463 rhead = (xlog_rec_header_t *)offset; 5464 error = xlog_valid_rec_header(log, rhead, blk_no); 5465 if (error) 5466 goto bread_err2; 5467 5468 /* blocks in data section */ 5469 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 5470 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 5471 &offset); 5472 if (error) 5473 goto bread_err2; 5474 5475 error = xlog_recover_process(log, rhash, rhead, offset, pass, 5476 &buffer_list); 5477 if (error) 5478 goto bread_err2; 5479 5480 blk_no += bblks + hblks; 5481 rhead_blk = blk_no; 5482 } 5483 5484 bread_err2: 5485 kmem_free(dbp); 5486 bread_err1: 5487 kmem_free(hbp); 5488 5489 /* 5490 * Submit buffers that have been added from the last record processed, 5491 * regardless of error status. 5492 */ 5493 if (!list_empty(&buffer_list)) 5494 error2 = xfs_buf_delwri_submit(&buffer_list); 5495 5496 if (error && first_bad) 5497 *first_bad = rhead_blk; 5498 5499 /* 5500 * Transactions are freed at commit time but transactions without commit 5501 * records on disk are never committed. Free any that may be left in the 5502 * hash table. 5503 */ 5504 for (i = 0; i < XLOG_RHASH_SIZE; i++) { 5505 struct hlist_node *tmp; 5506 struct xlog_recover *trans; 5507 5508 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list) 5509 xlog_recover_free_trans(trans); 5510 } 5511 5512 return error ? error : error2; 5513 } 5514 5515 /* 5516 * Do the recovery of the log. We actually do this in two phases. 5517 * The two passes are necessary in order to implement the function 5518 * of cancelling a record written into the log. The first pass 5519 * determines those things which have been cancelled, and the 5520 * second pass replays log items normally except for those which 5521 * have been cancelled. The handling of the replay and cancellations 5522 * takes place in the log item type specific routines. 5523 * 5524 * The table of items which have cancel records in the log is allocated 5525 * and freed at this level, since only here do we know when all of 5526 * the log recovery has been completed. 5527 */ 5528 STATIC int 5529 xlog_do_log_recovery( 5530 struct xlog *log, 5531 xfs_daddr_t head_blk, 5532 xfs_daddr_t tail_blk) 5533 { 5534 int error, i; 5535 5536 ASSERT(head_blk != tail_blk); 5537 5538 /* 5539 * First do a pass to find all of the cancelled buf log items. 5540 * Store them in the buf_cancel_table for use in the second pass. 5541 */ 5542 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * 5543 sizeof(struct list_head), 5544 0); 5545 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 5546 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); 5547 5548 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 5549 XLOG_RECOVER_PASS1, NULL); 5550 if (error != 0) { 5551 kmem_free(log->l_buf_cancel_table); 5552 log->l_buf_cancel_table = NULL; 5553 return error; 5554 } 5555 /* 5556 * Then do a second pass to actually recover the items in the log. 5557 * When it is complete free the table of buf cancel items. 5558 */ 5559 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 5560 XLOG_RECOVER_PASS2, NULL); 5561 #ifdef DEBUG 5562 if (!error) { 5563 int i; 5564 5565 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 5566 ASSERT(list_empty(&log->l_buf_cancel_table[i])); 5567 } 5568 #endif /* DEBUG */ 5569 5570 kmem_free(log->l_buf_cancel_table); 5571 log->l_buf_cancel_table = NULL; 5572 5573 return error; 5574 } 5575 5576 /* 5577 * Do the actual recovery 5578 */ 5579 STATIC int 5580 xlog_do_recover( 5581 struct xlog *log, 5582 xfs_daddr_t head_blk, 5583 xfs_daddr_t tail_blk) 5584 { 5585 struct xfs_mount *mp = log->l_mp; 5586 int error; 5587 xfs_buf_t *bp; 5588 xfs_sb_t *sbp; 5589 5590 trace_xfs_log_recover(log, head_blk, tail_blk); 5591 5592 /* 5593 * First replay the images in the log. 5594 */ 5595 error = xlog_do_log_recovery(log, head_blk, tail_blk); 5596 if (error) 5597 return error; 5598 5599 /* 5600 * If IO errors happened during recovery, bail out. 5601 */ 5602 if (XFS_FORCED_SHUTDOWN(mp)) { 5603 return -EIO; 5604 } 5605 5606 /* 5607 * We now update the tail_lsn since much of the recovery has completed 5608 * and there may be space available to use. If there were no extent 5609 * or iunlinks, we can free up the entire log and set the tail_lsn to 5610 * be the last_sync_lsn. This was set in xlog_find_tail to be the 5611 * lsn of the last known good LR on disk. If there are extent frees 5612 * or iunlinks they will have some entries in the AIL; so we look at 5613 * the AIL to determine how to set the tail_lsn. 5614 */ 5615 xlog_assign_tail_lsn(mp); 5616 5617 /* 5618 * Now that we've finished replaying all buffer and inode 5619 * updates, re-read in the superblock and reverify it. 5620 */ 5621 bp = xfs_getsb(mp); 5622 bp->b_flags &= ~(XBF_DONE | XBF_ASYNC); 5623 ASSERT(!(bp->b_flags & XBF_WRITE)); 5624 bp->b_flags |= XBF_READ; 5625 bp->b_ops = &xfs_sb_buf_ops; 5626 5627 error = xfs_buf_submit(bp); 5628 if (error) { 5629 if (!XFS_FORCED_SHUTDOWN(mp)) { 5630 xfs_buf_ioerror_alert(bp, __func__); 5631 ASSERT(0); 5632 } 5633 xfs_buf_relse(bp); 5634 return error; 5635 } 5636 5637 /* Convert superblock from on-disk format */ 5638 sbp = &mp->m_sb; 5639 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 5640 xfs_buf_relse(bp); 5641 5642 /* re-initialise in-core superblock and geometry structures */ 5643 xfs_reinit_percpu_counters(mp); 5644 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 5645 if (error) { 5646 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error); 5647 return error; 5648 } 5649 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp); 5650 5651 xlog_recover_check_summary(log); 5652 5653 /* Normal transactions can now occur */ 5654 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 5655 return 0; 5656 } 5657 5658 /* 5659 * Perform recovery and re-initialize some log variables in xlog_find_tail. 5660 * 5661 * Return error or zero. 5662 */ 5663 int 5664 xlog_recover( 5665 struct xlog *log) 5666 { 5667 xfs_daddr_t head_blk, tail_blk; 5668 int error; 5669 5670 /* find the tail of the log */ 5671 error = xlog_find_tail(log, &head_blk, &tail_blk); 5672 if (error) 5673 return error; 5674 5675 /* 5676 * The superblock was read before the log was available and thus the LSN 5677 * could not be verified. Check the superblock LSN against the current 5678 * LSN now that it's known. 5679 */ 5680 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) && 5681 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn)) 5682 return -EINVAL; 5683 5684 if (tail_blk != head_blk) { 5685 /* There used to be a comment here: 5686 * 5687 * disallow recovery on read-only mounts. note -- mount 5688 * checks for ENOSPC and turns it into an intelligent 5689 * error message. 5690 * ...but this is no longer true. Now, unless you specify 5691 * NORECOVERY (in which case this function would never be 5692 * called), we just go ahead and recover. We do this all 5693 * under the vfs layer, so we can get away with it unless 5694 * the device itself is read-only, in which case we fail. 5695 */ 5696 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 5697 return error; 5698 } 5699 5700 /* 5701 * Version 5 superblock log feature mask validation. We know the 5702 * log is dirty so check if there are any unknown log features 5703 * in what we need to recover. If there are unknown features 5704 * (e.g. unsupported transactions, then simply reject the 5705 * attempt at recovery before touching anything. 5706 */ 5707 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 && 5708 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, 5709 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { 5710 xfs_warn(log->l_mp, 5711 "Superblock has unknown incompatible log features (0x%x) enabled.", 5712 (log->l_mp->m_sb.sb_features_log_incompat & 5713 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 5714 xfs_warn(log->l_mp, 5715 "The log can not be fully and/or safely recovered by this kernel."); 5716 xfs_warn(log->l_mp, 5717 "Please recover the log on a kernel that supports the unknown features."); 5718 return -EINVAL; 5719 } 5720 5721 /* 5722 * Delay log recovery if the debug hook is set. This is debug 5723 * instrumention to coordinate simulation of I/O failures with 5724 * log recovery. 5725 */ 5726 if (xfs_globals.log_recovery_delay) { 5727 xfs_notice(log->l_mp, 5728 "Delaying log recovery for %d seconds.", 5729 xfs_globals.log_recovery_delay); 5730 msleep(xfs_globals.log_recovery_delay * 1000); 5731 } 5732 5733 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", 5734 log->l_mp->m_logname ? log->l_mp->m_logname 5735 : "internal"); 5736 5737 error = xlog_do_recover(log, head_blk, tail_blk); 5738 log->l_flags |= XLOG_RECOVERY_NEEDED; 5739 } 5740 return error; 5741 } 5742 5743 /* 5744 * In the first part of recovery we replay inodes and buffers and build 5745 * up the list of extent free items which need to be processed. Here 5746 * we process the extent free items and clean up the on disk unlinked 5747 * inode lists. This is separated from the first part of recovery so 5748 * that the root and real-time bitmap inodes can be read in from disk in 5749 * between the two stages. This is necessary so that we can free space 5750 * in the real-time portion of the file system. 5751 */ 5752 int 5753 xlog_recover_finish( 5754 struct xlog *log) 5755 { 5756 /* 5757 * Now we're ready to do the transactions needed for the 5758 * rest of recovery. Start with completing all the extent 5759 * free intent records and then process the unlinked inode 5760 * lists. At this point, we essentially run in normal mode 5761 * except that we're still performing recovery actions 5762 * rather than accepting new requests. 5763 */ 5764 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 5765 int error; 5766 error = xlog_recover_process_intents(log); 5767 if (error) { 5768 xfs_alert(log->l_mp, "Failed to recover intents"); 5769 return error; 5770 } 5771 5772 /* 5773 * Sync the log to get all the intents out of the AIL. 5774 * This isn't absolutely necessary, but it helps in 5775 * case the unlink transactions would have problems 5776 * pushing the intents out of the way. 5777 */ 5778 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 5779 5780 xlog_recover_process_iunlinks(log); 5781 5782 xlog_recover_check_summary(log); 5783 5784 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", 5785 log->l_mp->m_logname ? log->l_mp->m_logname 5786 : "internal"); 5787 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 5788 } else { 5789 xfs_info(log->l_mp, "Ending clean mount"); 5790 } 5791 return 0; 5792 } 5793 5794 void 5795 xlog_recover_cancel( 5796 struct xlog *log) 5797 { 5798 if (log->l_flags & XLOG_RECOVERY_NEEDED) 5799 xlog_recover_cancel_intents(log); 5800 } 5801 5802 #if defined(DEBUG) 5803 /* 5804 * Read all of the agf and agi counters and check that they 5805 * are consistent with the superblock counters. 5806 */ 5807 STATIC void 5808 xlog_recover_check_summary( 5809 struct xlog *log) 5810 { 5811 xfs_mount_t *mp; 5812 xfs_agf_t *agfp; 5813 xfs_buf_t *agfbp; 5814 xfs_buf_t *agibp; 5815 xfs_agnumber_t agno; 5816 uint64_t freeblks; 5817 uint64_t itotal; 5818 uint64_t ifree; 5819 int error; 5820 5821 mp = log->l_mp; 5822 5823 freeblks = 0LL; 5824 itotal = 0LL; 5825 ifree = 0LL; 5826 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 5827 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 5828 if (error) { 5829 xfs_alert(mp, "%s agf read failed agno %d error %d", 5830 __func__, agno, error); 5831 } else { 5832 agfp = XFS_BUF_TO_AGF(agfbp); 5833 freeblks += be32_to_cpu(agfp->agf_freeblks) + 5834 be32_to_cpu(agfp->agf_flcount); 5835 xfs_buf_relse(agfbp); 5836 } 5837 5838 error = xfs_read_agi(mp, NULL, agno, &agibp); 5839 if (error) { 5840 xfs_alert(mp, "%s agi read failed agno %d error %d", 5841 __func__, agno, error); 5842 } else { 5843 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 5844 5845 itotal += be32_to_cpu(agi->agi_count); 5846 ifree += be32_to_cpu(agi->agi_freecount); 5847 xfs_buf_relse(agibp); 5848 } 5849 } 5850 } 5851 #endif /* DEBUG */ 5852