1 /* 2 * Copyright (c) 2000-2003 Silicon Graphics, Inc. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of version 2 of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it would be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 11 * 12 * Further, this software is distributed without any warranty that it is 13 * free of the rightful claim of any third person regarding infringement 14 * or the like. Any license provided herein, whether implied or 15 * otherwise, applies only to this software file. Patent licenses, if 16 * any, provided herein do not apply to combinations of this program with 17 * other software, or any other product whatsoever. 18 * 19 * You should have received a copy of the GNU General Public License along 20 * with this program; if not, write the Free Software Foundation, Inc., 59 21 * Temple Place - Suite 330, Boston MA 02111-1307, USA. 22 * 23 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, 24 * Mountain View, CA 94043, or: 25 * 26 * http://www.sgi.com 27 * 28 * For further information regarding this notice, see: 29 * 30 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ 31 */ 32 33 #include "xfs.h" 34 #include "xfs_macros.h" 35 #include "xfs_types.h" 36 #include "xfs_inum.h" 37 #include "xfs_log.h" 38 #include "xfs_ag.h" 39 #include "xfs_sb.h" 40 #include "xfs_trans.h" 41 #include "xfs_dir.h" 42 #include "xfs_dir2.h" 43 #include "xfs_dmapi.h" 44 #include "xfs_mount.h" 45 #include "xfs_error.h" 46 #include "xfs_bmap_btree.h" 47 #include "xfs_alloc.h" 48 #include "xfs_attr_sf.h" 49 #include "xfs_dir_sf.h" 50 #include "xfs_dir2_sf.h" 51 #include "xfs_dinode.h" 52 #include "xfs_imap.h" 53 #include "xfs_inode_item.h" 54 #include "xfs_inode.h" 55 #include "xfs_ialloc_btree.h" 56 #include "xfs_ialloc.h" 57 #include "xfs_log_priv.h" 58 #include "xfs_buf_item.h" 59 #include "xfs_alloc_btree.h" 60 #include "xfs_log_recover.h" 61 #include "xfs_extfree_item.h" 62 #include "xfs_trans_priv.h" 63 #include "xfs_bit.h" 64 #include "xfs_quota.h" 65 #include "xfs_rw.h" 66 67 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *); 68 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t); 69 STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q, 70 xlog_recover_item_t *item); 71 #if defined(DEBUG) 72 STATIC void xlog_recover_check_summary(xlog_t *); 73 STATIC void xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int); 74 #else 75 #define xlog_recover_check_summary(log) 76 #define xlog_recover_check_ail(mp, lip, gen) 77 #endif 78 79 80 /* 81 * Sector aligned buffer routines for buffer create/read/write/access 82 */ 83 84 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \ 85 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \ 86 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) ) 87 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask) 88 89 xfs_buf_t * 90 xlog_get_bp( 91 xlog_t *log, 92 int num_bblks) 93 { 94 ASSERT(num_bblks > 0); 95 96 if (log->l_sectbb_log) { 97 if (num_bblks > 1) 98 num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1); 99 num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks); 100 } 101 return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp); 102 } 103 104 void 105 xlog_put_bp( 106 xfs_buf_t *bp) 107 { 108 xfs_buf_free(bp); 109 } 110 111 112 /* 113 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 114 */ 115 int 116 xlog_bread( 117 xlog_t *log, 118 xfs_daddr_t blk_no, 119 int nbblks, 120 xfs_buf_t *bp) 121 { 122 int error; 123 124 if (log->l_sectbb_log) { 125 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no); 126 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); 127 } 128 129 ASSERT(nbblks > 0); 130 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); 131 ASSERT(bp); 132 133 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 134 XFS_BUF_READ(bp); 135 XFS_BUF_BUSY(bp); 136 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); 137 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); 138 139 xfsbdstrat(log->l_mp, bp); 140 if ((error = xfs_iowait(bp))) 141 xfs_ioerror_alert("xlog_bread", log->l_mp, 142 bp, XFS_BUF_ADDR(bp)); 143 return error; 144 } 145 146 /* 147 * Write out the buffer at the given block for the given number of blocks. 148 * The buffer is kept locked across the write and is returned locked. 149 * This can only be used for synchronous log writes. 150 */ 151 int 152 xlog_bwrite( 153 xlog_t *log, 154 xfs_daddr_t blk_no, 155 int nbblks, 156 xfs_buf_t *bp) 157 { 158 int error; 159 160 if (log->l_sectbb_log) { 161 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no); 162 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); 163 } 164 165 ASSERT(nbblks > 0); 166 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); 167 168 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 169 XFS_BUF_ZEROFLAGS(bp); 170 XFS_BUF_BUSY(bp); 171 XFS_BUF_HOLD(bp); 172 XFS_BUF_PSEMA(bp, PRIBIO); 173 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); 174 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); 175 176 if ((error = xfs_bwrite(log->l_mp, bp))) 177 xfs_ioerror_alert("xlog_bwrite", log->l_mp, 178 bp, XFS_BUF_ADDR(bp)); 179 return error; 180 } 181 182 xfs_caddr_t 183 xlog_align( 184 xlog_t *log, 185 xfs_daddr_t blk_no, 186 int nbblks, 187 xfs_buf_t *bp) 188 { 189 xfs_caddr_t ptr; 190 191 if (!log->l_sectbb_log) 192 return XFS_BUF_PTR(bp); 193 194 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask); 195 ASSERT(XFS_BUF_SIZE(bp) >= 196 BBTOB(nbblks + (blk_no & log->l_sectbb_mask))); 197 return ptr; 198 } 199 200 #ifdef DEBUG 201 /* 202 * dump debug superblock and log record information 203 */ 204 STATIC void 205 xlog_header_check_dump( 206 xfs_mount_t *mp, 207 xlog_rec_header_t *head) 208 { 209 int b; 210 211 printk("%s: SB : uuid = ", __FUNCTION__); 212 for (b = 0; b < 16; b++) 213 printk("%02x",((unsigned char *)&mp->m_sb.sb_uuid)[b]); 214 printk(", fmt = %d\n", XLOG_FMT); 215 printk(" log : uuid = "); 216 for (b = 0; b < 16; b++) 217 printk("%02x",((unsigned char *)&head->h_fs_uuid)[b]); 218 printk(", fmt = %d\n", INT_GET(head->h_fmt, ARCH_CONVERT)); 219 } 220 #else 221 #define xlog_header_check_dump(mp, head) 222 #endif 223 224 /* 225 * check log record header for recovery 226 */ 227 STATIC int 228 xlog_header_check_recover( 229 xfs_mount_t *mp, 230 xlog_rec_header_t *head) 231 { 232 ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM); 233 234 /* 235 * IRIX doesn't write the h_fmt field and leaves it zeroed 236 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 237 * a dirty log created in IRIX. 238 */ 239 if (unlikely(INT_GET(head->h_fmt, ARCH_CONVERT) != XLOG_FMT)) { 240 xlog_warn( 241 "XFS: dirty log written in incompatible format - can't recover"); 242 xlog_header_check_dump(mp, head); 243 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 244 XFS_ERRLEVEL_HIGH, mp); 245 return XFS_ERROR(EFSCORRUPTED); 246 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 247 xlog_warn( 248 "XFS: dirty log entry has mismatched uuid - can't recover"); 249 xlog_header_check_dump(mp, head); 250 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 251 XFS_ERRLEVEL_HIGH, mp); 252 return XFS_ERROR(EFSCORRUPTED); 253 } 254 return 0; 255 } 256 257 /* 258 * read the head block of the log and check the header 259 */ 260 STATIC int 261 xlog_header_check_mount( 262 xfs_mount_t *mp, 263 xlog_rec_header_t *head) 264 { 265 ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM); 266 267 if (uuid_is_nil(&head->h_fs_uuid)) { 268 /* 269 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 270 * h_fs_uuid is nil, we assume this log was last mounted 271 * by IRIX and continue. 272 */ 273 xlog_warn("XFS: nil uuid in log - IRIX style log"); 274 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 275 xlog_warn("XFS: log has mismatched uuid - can't recover"); 276 xlog_header_check_dump(mp, head); 277 XFS_ERROR_REPORT("xlog_header_check_mount", 278 XFS_ERRLEVEL_HIGH, mp); 279 return XFS_ERROR(EFSCORRUPTED); 280 } 281 return 0; 282 } 283 284 STATIC void 285 xlog_recover_iodone( 286 struct xfs_buf *bp) 287 { 288 xfs_mount_t *mp; 289 290 ASSERT(XFS_BUF_FSPRIVATE(bp, void *)); 291 292 if (XFS_BUF_GETERROR(bp)) { 293 /* 294 * We're not going to bother about retrying 295 * this during recovery. One strike! 296 */ 297 mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *); 298 xfs_ioerror_alert("xlog_recover_iodone", 299 mp, bp, XFS_BUF_ADDR(bp)); 300 xfs_force_shutdown(mp, XFS_METADATA_IO_ERROR); 301 } 302 XFS_BUF_SET_FSPRIVATE(bp, NULL); 303 XFS_BUF_CLR_IODONE_FUNC(bp); 304 xfs_biodone(bp); 305 } 306 307 /* 308 * This routine finds (to an approximation) the first block in the physical 309 * log which contains the given cycle. It uses a binary search algorithm. 310 * Note that the algorithm can not be perfect because the disk will not 311 * necessarily be perfect. 312 */ 313 int 314 xlog_find_cycle_start( 315 xlog_t *log, 316 xfs_buf_t *bp, 317 xfs_daddr_t first_blk, 318 xfs_daddr_t *last_blk, 319 uint cycle) 320 { 321 xfs_caddr_t offset; 322 xfs_daddr_t mid_blk; 323 uint mid_cycle; 324 int error; 325 326 mid_blk = BLK_AVG(first_blk, *last_blk); 327 while (mid_blk != first_blk && mid_blk != *last_blk) { 328 if ((error = xlog_bread(log, mid_blk, 1, bp))) 329 return error; 330 offset = xlog_align(log, mid_blk, 1, bp); 331 mid_cycle = GET_CYCLE(offset, ARCH_CONVERT); 332 if (mid_cycle == cycle) { 333 *last_blk = mid_blk; 334 /* last_half_cycle == mid_cycle */ 335 } else { 336 first_blk = mid_blk; 337 /* first_half_cycle == mid_cycle */ 338 } 339 mid_blk = BLK_AVG(first_blk, *last_blk); 340 } 341 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) || 342 (mid_blk == *last_blk && mid_blk-1 == first_blk)); 343 344 return 0; 345 } 346 347 /* 348 * Check that the range of blocks does not contain the cycle number 349 * given. The scan needs to occur from front to back and the ptr into the 350 * region must be updated since a later routine will need to perform another 351 * test. If the region is completely good, we end up returning the same 352 * last block number. 353 * 354 * Set blkno to -1 if we encounter no errors. This is an invalid block number 355 * since we don't ever expect logs to get this large. 356 */ 357 STATIC int 358 xlog_find_verify_cycle( 359 xlog_t *log, 360 xfs_daddr_t start_blk, 361 int nbblks, 362 uint stop_on_cycle_no, 363 xfs_daddr_t *new_blk) 364 { 365 xfs_daddr_t i, j; 366 uint cycle; 367 xfs_buf_t *bp; 368 xfs_daddr_t bufblks; 369 xfs_caddr_t buf = NULL; 370 int error = 0; 371 372 bufblks = 1 << ffs(nbblks); 373 374 while (!(bp = xlog_get_bp(log, bufblks))) { 375 /* can't get enough memory to do everything in one big buffer */ 376 bufblks >>= 1; 377 if (bufblks <= log->l_sectbb_log) 378 return ENOMEM; 379 } 380 381 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 382 int bcount; 383 384 bcount = min(bufblks, (start_blk + nbblks - i)); 385 386 if ((error = xlog_bread(log, i, bcount, bp))) 387 goto out; 388 389 buf = xlog_align(log, i, bcount, bp); 390 for (j = 0; j < bcount; j++) { 391 cycle = GET_CYCLE(buf, ARCH_CONVERT); 392 if (cycle == stop_on_cycle_no) { 393 *new_blk = i+j; 394 goto out; 395 } 396 397 buf += BBSIZE; 398 } 399 } 400 401 *new_blk = -1; 402 403 out: 404 xlog_put_bp(bp); 405 return error; 406 } 407 408 /* 409 * Potentially backup over partial log record write. 410 * 411 * In the typical case, last_blk is the number of the block directly after 412 * a good log record. Therefore, we subtract one to get the block number 413 * of the last block in the given buffer. extra_bblks contains the number 414 * of blocks we would have read on a previous read. This happens when the 415 * last log record is split over the end of the physical log. 416 * 417 * extra_bblks is the number of blocks potentially verified on a previous 418 * call to this routine. 419 */ 420 STATIC int 421 xlog_find_verify_log_record( 422 xlog_t *log, 423 xfs_daddr_t start_blk, 424 xfs_daddr_t *last_blk, 425 int extra_bblks) 426 { 427 xfs_daddr_t i; 428 xfs_buf_t *bp; 429 xfs_caddr_t offset = NULL; 430 xlog_rec_header_t *head = NULL; 431 int error = 0; 432 int smallmem = 0; 433 int num_blks = *last_blk - start_blk; 434 int xhdrs; 435 436 ASSERT(start_blk != 0 || *last_blk != start_blk); 437 438 if (!(bp = xlog_get_bp(log, num_blks))) { 439 if (!(bp = xlog_get_bp(log, 1))) 440 return ENOMEM; 441 smallmem = 1; 442 } else { 443 if ((error = xlog_bread(log, start_blk, num_blks, bp))) 444 goto out; 445 offset = xlog_align(log, start_blk, num_blks, bp); 446 offset += ((num_blks - 1) << BBSHIFT); 447 } 448 449 for (i = (*last_blk) - 1; i >= 0; i--) { 450 if (i < start_blk) { 451 /* valid log record not found */ 452 xlog_warn( 453 "XFS: Log inconsistent (didn't find previous header)"); 454 ASSERT(0); 455 error = XFS_ERROR(EIO); 456 goto out; 457 } 458 459 if (smallmem) { 460 if ((error = xlog_bread(log, i, 1, bp))) 461 goto out; 462 offset = xlog_align(log, i, 1, bp); 463 } 464 465 head = (xlog_rec_header_t *)offset; 466 467 if (XLOG_HEADER_MAGIC_NUM == 468 INT_GET(head->h_magicno, ARCH_CONVERT)) 469 break; 470 471 if (!smallmem) 472 offset -= BBSIZE; 473 } 474 475 /* 476 * We hit the beginning of the physical log & still no header. Return 477 * to caller. If caller can handle a return of -1, then this routine 478 * will be called again for the end of the physical log. 479 */ 480 if (i == -1) { 481 error = -1; 482 goto out; 483 } 484 485 /* 486 * We have the final block of the good log (the first block 487 * of the log record _before_ the head. So we check the uuid. 488 */ 489 if ((error = xlog_header_check_mount(log->l_mp, head))) 490 goto out; 491 492 /* 493 * We may have found a log record header before we expected one. 494 * last_blk will be the 1st block # with a given cycle #. We may end 495 * up reading an entire log record. In this case, we don't want to 496 * reset last_blk. Only when last_blk points in the middle of a log 497 * record do we update last_blk. 498 */ 499 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 500 uint h_size = INT_GET(head->h_size, ARCH_CONVERT); 501 502 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 503 if (h_size % XLOG_HEADER_CYCLE_SIZE) 504 xhdrs++; 505 } else { 506 xhdrs = 1; 507 } 508 509 if (*last_blk - i + extra_bblks 510 != BTOBB(INT_GET(head->h_len, ARCH_CONVERT)) + xhdrs) 511 *last_blk = i; 512 513 out: 514 xlog_put_bp(bp); 515 return error; 516 } 517 518 /* 519 * Head is defined to be the point of the log where the next log write 520 * write could go. This means that incomplete LR writes at the end are 521 * eliminated when calculating the head. We aren't guaranteed that previous 522 * LR have complete transactions. We only know that a cycle number of 523 * current cycle number -1 won't be present in the log if we start writing 524 * from our current block number. 525 * 526 * last_blk contains the block number of the first block with a given 527 * cycle number. 528 * 529 * Return: zero if normal, non-zero if error. 530 */ 531 int 532 xlog_find_head( 533 xlog_t *log, 534 xfs_daddr_t *return_head_blk) 535 { 536 xfs_buf_t *bp; 537 xfs_caddr_t offset; 538 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 539 int num_scan_bblks; 540 uint first_half_cycle, last_half_cycle; 541 uint stop_on_cycle; 542 int error, log_bbnum = log->l_logBBsize; 543 544 /* Is the end of the log device zeroed? */ 545 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) { 546 *return_head_blk = first_blk; 547 548 /* Is the whole lot zeroed? */ 549 if (!first_blk) { 550 /* Linux XFS shouldn't generate totally zeroed logs - 551 * mkfs etc write a dummy unmount record to a fresh 552 * log so we can store the uuid in there 553 */ 554 xlog_warn("XFS: totally zeroed log"); 555 } 556 557 return 0; 558 } else if (error) { 559 xlog_warn("XFS: empty log check failed"); 560 return error; 561 } 562 563 first_blk = 0; /* get cycle # of 1st block */ 564 bp = xlog_get_bp(log, 1); 565 if (!bp) 566 return ENOMEM; 567 if ((error = xlog_bread(log, 0, 1, bp))) 568 goto bp_err; 569 offset = xlog_align(log, 0, 1, bp); 570 first_half_cycle = GET_CYCLE(offset, ARCH_CONVERT); 571 572 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 573 if ((error = xlog_bread(log, last_blk, 1, bp))) 574 goto bp_err; 575 offset = xlog_align(log, last_blk, 1, bp); 576 last_half_cycle = GET_CYCLE(offset, ARCH_CONVERT); 577 ASSERT(last_half_cycle != 0); 578 579 /* 580 * If the 1st half cycle number is equal to the last half cycle number, 581 * then the entire log is stamped with the same cycle number. In this 582 * case, head_blk can't be set to zero (which makes sense). The below 583 * math doesn't work out properly with head_blk equal to zero. Instead, 584 * we set it to log_bbnum which is an invalid block number, but this 585 * value makes the math correct. If head_blk doesn't changed through 586 * all the tests below, *head_blk is set to zero at the very end rather 587 * than log_bbnum. In a sense, log_bbnum and zero are the same block 588 * in a circular file. 589 */ 590 if (first_half_cycle == last_half_cycle) { 591 /* 592 * In this case we believe that the entire log should have 593 * cycle number last_half_cycle. We need to scan backwards 594 * from the end verifying that there are no holes still 595 * containing last_half_cycle - 1. If we find such a hole, 596 * then the start of that hole will be the new head. The 597 * simple case looks like 598 * x | x ... | x - 1 | x 599 * Another case that fits this picture would be 600 * x | x + 1 | x ... | x 601 * In this case the head really is somwhere at the end of the 602 * log, as one of the latest writes at the beginning was 603 * incomplete. 604 * One more case is 605 * x | x + 1 | x ... | x - 1 | x 606 * This is really the combination of the above two cases, and 607 * the head has to end up at the start of the x-1 hole at the 608 * end of the log. 609 * 610 * In the 256k log case, we will read from the beginning to the 611 * end of the log and search for cycle numbers equal to x-1. 612 * We don't worry about the x+1 blocks that we encounter, 613 * because we know that they cannot be the head since the log 614 * started with x. 615 */ 616 head_blk = log_bbnum; 617 stop_on_cycle = last_half_cycle - 1; 618 } else { 619 /* 620 * In this case we want to find the first block with cycle 621 * number matching last_half_cycle. We expect the log to be 622 * some variation on 623 * x + 1 ... | x ... 624 * The first block with cycle number x (last_half_cycle) will 625 * be where the new head belongs. First we do a binary search 626 * for the first occurrence of last_half_cycle. The binary 627 * search may not be totally accurate, so then we scan back 628 * from there looking for occurrences of last_half_cycle before 629 * us. If that backwards scan wraps around the beginning of 630 * the log, then we look for occurrences of last_half_cycle - 1 631 * at the end of the log. The cases we're looking for look 632 * like 633 * x + 1 ... | x | x + 1 | x ... 634 * ^ binary search stopped here 635 * or 636 * x + 1 ... | x ... | x - 1 | x 637 * <---------> less than scan distance 638 */ 639 stop_on_cycle = last_half_cycle; 640 if ((error = xlog_find_cycle_start(log, bp, first_blk, 641 &head_blk, last_half_cycle))) 642 goto bp_err; 643 } 644 645 /* 646 * Now validate the answer. Scan back some number of maximum possible 647 * blocks and make sure each one has the expected cycle number. The 648 * maximum is determined by the total possible amount of buffering 649 * in the in-core log. The following number can be made tighter if 650 * we actually look at the block size of the filesystem. 651 */ 652 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 653 if (head_blk >= num_scan_bblks) { 654 /* 655 * We are guaranteed that the entire check can be performed 656 * in one buffer. 657 */ 658 start_blk = head_blk - num_scan_bblks; 659 if ((error = xlog_find_verify_cycle(log, 660 start_blk, num_scan_bblks, 661 stop_on_cycle, &new_blk))) 662 goto bp_err; 663 if (new_blk != -1) 664 head_blk = new_blk; 665 } else { /* need to read 2 parts of log */ 666 /* 667 * We are going to scan backwards in the log in two parts. 668 * First we scan the physical end of the log. In this part 669 * of the log, we are looking for blocks with cycle number 670 * last_half_cycle - 1. 671 * If we find one, then we know that the log starts there, as 672 * we've found a hole that didn't get written in going around 673 * the end of the physical log. The simple case for this is 674 * x + 1 ... | x ... | x - 1 | x 675 * <---------> less than scan distance 676 * If all of the blocks at the end of the log have cycle number 677 * last_half_cycle, then we check the blocks at the start of 678 * the log looking for occurrences of last_half_cycle. If we 679 * find one, then our current estimate for the location of the 680 * first occurrence of last_half_cycle is wrong and we move 681 * back to the hole we've found. This case looks like 682 * x + 1 ... | x | x + 1 | x ... 683 * ^ binary search stopped here 684 * Another case we need to handle that only occurs in 256k 685 * logs is 686 * x + 1 ... | x ... | x+1 | x ... 687 * ^ binary search stops here 688 * In a 256k log, the scan at the end of the log will see the 689 * x + 1 blocks. We need to skip past those since that is 690 * certainly not the head of the log. By searching for 691 * last_half_cycle-1 we accomplish that. 692 */ 693 start_blk = log_bbnum - num_scan_bblks + head_blk; 694 ASSERT(head_blk <= INT_MAX && 695 (xfs_daddr_t) num_scan_bblks - head_blk >= 0); 696 if ((error = xlog_find_verify_cycle(log, start_blk, 697 num_scan_bblks - (int)head_blk, 698 (stop_on_cycle - 1), &new_blk))) 699 goto bp_err; 700 if (new_blk != -1) { 701 head_blk = new_blk; 702 goto bad_blk; 703 } 704 705 /* 706 * Scan beginning of log now. The last part of the physical 707 * log is good. This scan needs to verify that it doesn't find 708 * the last_half_cycle. 709 */ 710 start_blk = 0; 711 ASSERT(head_blk <= INT_MAX); 712 if ((error = xlog_find_verify_cycle(log, 713 start_blk, (int)head_blk, 714 stop_on_cycle, &new_blk))) 715 goto bp_err; 716 if (new_blk != -1) 717 head_blk = new_blk; 718 } 719 720 bad_blk: 721 /* 722 * Now we need to make sure head_blk is not pointing to a block in 723 * the middle of a log record. 724 */ 725 num_scan_bblks = XLOG_REC_SHIFT(log); 726 if (head_blk >= num_scan_bblks) { 727 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 728 729 /* start ptr at last block ptr before head_blk */ 730 if ((error = xlog_find_verify_log_record(log, start_blk, 731 &head_blk, 0)) == -1) { 732 error = XFS_ERROR(EIO); 733 goto bp_err; 734 } else if (error) 735 goto bp_err; 736 } else { 737 start_blk = 0; 738 ASSERT(head_blk <= INT_MAX); 739 if ((error = xlog_find_verify_log_record(log, start_blk, 740 &head_blk, 0)) == -1) { 741 /* We hit the beginning of the log during our search */ 742 start_blk = log_bbnum - num_scan_bblks + head_blk; 743 new_blk = log_bbnum; 744 ASSERT(start_blk <= INT_MAX && 745 (xfs_daddr_t) log_bbnum-start_blk >= 0); 746 ASSERT(head_blk <= INT_MAX); 747 if ((error = xlog_find_verify_log_record(log, 748 start_blk, &new_blk, 749 (int)head_blk)) == -1) { 750 error = XFS_ERROR(EIO); 751 goto bp_err; 752 } else if (error) 753 goto bp_err; 754 if (new_blk != log_bbnum) 755 head_blk = new_blk; 756 } else if (error) 757 goto bp_err; 758 } 759 760 xlog_put_bp(bp); 761 if (head_blk == log_bbnum) 762 *return_head_blk = 0; 763 else 764 *return_head_blk = head_blk; 765 /* 766 * When returning here, we have a good block number. Bad block 767 * means that during a previous crash, we didn't have a clean break 768 * from cycle number N to cycle number N-1. In this case, we need 769 * to find the first block with cycle number N-1. 770 */ 771 return 0; 772 773 bp_err: 774 xlog_put_bp(bp); 775 776 if (error) 777 xlog_warn("XFS: failed to find log head"); 778 return error; 779 } 780 781 /* 782 * Find the sync block number or the tail of the log. 783 * 784 * This will be the block number of the last record to have its 785 * associated buffers synced to disk. Every log record header has 786 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 787 * to get a sync block number. The only concern is to figure out which 788 * log record header to believe. 789 * 790 * The following algorithm uses the log record header with the largest 791 * lsn. The entire log record does not need to be valid. We only care 792 * that the header is valid. 793 * 794 * We could speed up search by using current head_blk buffer, but it is not 795 * available. 796 */ 797 int 798 xlog_find_tail( 799 xlog_t *log, 800 xfs_daddr_t *head_blk, 801 xfs_daddr_t *tail_blk, 802 int readonly) 803 { 804 xlog_rec_header_t *rhead; 805 xlog_op_header_t *op_head; 806 xfs_caddr_t offset = NULL; 807 xfs_buf_t *bp; 808 int error, i, found; 809 xfs_daddr_t umount_data_blk; 810 xfs_daddr_t after_umount_blk; 811 xfs_lsn_t tail_lsn; 812 int hblks; 813 814 found = 0; 815 816 /* 817 * Find previous log record 818 */ 819 if ((error = xlog_find_head(log, head_blk))) 820 return error; 821 822 bp = xlog_get_bp(log, 1); 823 if (!bp) 824 return ENOMEM; 825 if (*head_blk == 0) { /* special case */ 826 if ((error = xlog_bread(log, 0, 1, bp))) 827 goto bread_err; 828 offset = xlog_align(log, 0, 1, bp); 829 if (GET_CYCLE(offset, ARCH_CONVERT) == 0) { 830 *tail_blk = 0; 831 /* leave all other log inited values alone */ 832 goto exit; 833 } 834 } 835 836 /* 837 * Search backwards looking for log record header block 838 */ 839 ASSERT(*head_blk < INT_MAX); 840 for (i = (int)(*head_blk) - 1; i >= 0; i--) { 841 if ((error = xlog_bread(log, i, 1, bp))) 842 goto bread_err; 843 offset = xlog_align(log, i, 1, bp); 844 if (XLOG_HEADER_MAGIC_NUM == 845 INT_GET(*(uint *)offset, ARCH_CONVERT)) { 846 found = 1; 847 break; 848 } 849 } 850 /* 851 * If we haven't found the log record header block, start looking 852 * again from the end of the physical log. XXXmiken: There should be 853 * a check here to make sure we didn't search more than N blocks in 854 * the previous code. 855 */ 856 if (!found) { 857 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) { 858 if ((error = xlog_bread(log, i, 1, bp))) 859 goto bread_err; 860 offset = xlog_align(log, i, 1, bp); 861 if (XLOG_HEADER_MAGIC_NUM == 862 INT_GET(*(uint*)offset, ARCH_CONVERT)) { 863 found = 2; 864 break; 865 } 866 } 867 } 868 if (!found) { 869 xlog_warn("XFS: xlog_find_tail: couldn't find sync record"); 870 ASSERT(0); 871 return XFS_ERROR(EIO); 872 } 873 874 /* find blk_no of tail of log */ 875 rhead = (xlog_rec_header_t *)offset; 876 *tail_blk = BLOCK_LSN(INT_GET(rhead->h_tail_lsn, ARCH_CONVERT)); 877 878 /* 879 * Reset log values according to the state of the log when we 880 * crashed. In the case where head_blk == 0, we bump curr_cycle 881 * one because the next write starts a new cycle rather than 882 * continuing the cycle of the last good log record. At this 883 * point we have guaranteed that all partial log records have been 884 * accounted for. Therefore, we know that the last good log record 885 * written was complete and ended exactly on the end boundary 886 * of the physical log. 887 */ 888 log->l_prev_block = i; 889 log->l_curr_block = (int)*head_blk; 890 log->l_curr_cycle = INT_GET(rhead->h_cycle, ARCH_CONVERT); 891 if (found == 2) 892 log->l_curr_cycle++; 893 log->l_tail_lsn = INT_GET(rhead->h_tail_lsn, ARCH_CONVERT); 894 log->l_last_sync_lsn = INT_GET(rhead->h_lsn, ARCH_CONVERT); 895 log->l_grant_reserve_cycle = log->l_curr_cycle; 896 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block); 897 log->l_grant_write_cycle = log->l_curr_cycle; 898 log->l_grant_write_bytes = BBTOB(log->l_curr_block); 899 900 /* 901 * Look for unmount record. If we find it, then we know there 902 * was a clean unmount. Since 'i' could be the last block in 903 * the physical log, we convert to a log block before comparing 904 * to the head_blk. 905 * 906 * Save the current tail lsn to use to pass to 907 * xlog_clear_stale_blocks() below. We won't want to clear the 908 * unmount record if there is one, so we pass the lsn of the 909 * unmount record rather than the block after it. 910 */ 911 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 912 int h_size = INT_GET(rhead->h_size, ARCH_CONVERT); 913 int h_version = INT_GET(rhead->h_version, ARCH_CONVERT); 914 915 if ((h_version & XLOG_VERSION_2) && 916 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 917 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 918 if (h_size % XLOG_HEADER_CYCLE_SIZE) 919 hblks++; 920 } else { 921 hblks = 1; 922 } 923 } else { 924 hblks = 1; 925 } 926 after_umount_blk = (i + hblks + (int) 927 BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT))) % log->l_logBBsize; 928 tail_lsn = log->l_tail_lsn; 929 if (*head_blk == after_umount_blk && 930 INT_GET(rhead->h_num_logops, ARCH_CONVERT) == 1) { 931 umount_data_blk = (i + hblks) % log->l_logBBsize; 932 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) { 933 goto bread_err; 934 } 935 offset = xlog_align(log, umount_data_blk, 1, bp); 936 op_head = (xlog_op_header_t *)offset; 937 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 938 /* 939 * Set tail and last sync so that newly written 940 * log records will point recovery to after the 941 * current unmount record. 942 */ 943 ASSIGN_ANY_LSN_HOST(log->l_tail_lsn, log->l_curr_cycle, 944 after_umount_blk); 945 ASSIGN_ANY_LSN_HOST(log->l_last_sync_lsn, log->l_curr_cycle, 946 after_umount_blk); 947 *tail_blk = after_umount_blk; 948 } 949 } 950 951 /* 952 * Make sure that there are no blocks in front of the head 953 * with the same cycle number as the head. This can happen 954 * because we allow multiple outstanding log writes concurrently, 955 * and the later writes might make it out before earlier ones. 956 * 957 * We use the lsn from before modifying it so that we'll never 958 * overwrite the unmount record after a clean unmount. 959 * 960 * Do this only if we are going to recover the filesystem 961 * 962 * NOTE: This used to say "if (!readonly)" 963 * However on Linux, we can & do recover a read-only filesystem. 964 * We only skip recovery if NORECOVERY is specified on mount, 965 * in which case we would not be here. 966 * 967 * But... if the -device- itself is readonly, just skip this. 968 * We can't recover this device anyway, so it won't matter. 969 */ 970 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) { 971 error = xlog_clear_stale_blocks(log, tail_lsn); 972 } 973 974 bread_err: 975 exit: 976 xlog_put_bp(bp); 977 978 if (error) 979 xlog_warn("XFS: failed to locate log tail"); 980 return error; 981 } 982 983 /* 984 * Is the log zeroed at all? 985 * 986 * The last binary search should be changed to perform an X block read 987 * once X becomes small enough. You can then search linearly through 988 * the X blocks. This will cut down on the number of reads we need to do. 989 * 990 * If the log is partially zeroed, this routine will pass back the blkno 991 * of the first block with cycle number 0. It won't have a complete LR 992 * preceding it. 993 * 994 * Return: 995 * 0 => the log is completely written to 996 * -1 => use *blk_no as the first block of the log 997 * >0 => error has occurred 998 */ 999 int 1000 xlog_find_zeroed( 1001 xlog_t *log, 1002 xfs_daddr_t *blk_no) 1003 { 1004 xfs_buf_t *bp; 1005 xfs_caddr_t offset; 1006 uint first_cycle, last_cycle; 1007 xfs_daddr_t new_blk, last_blk, start_blk; 1008 xfs_daddr_t num_scan_bblks; 1009 int error, log_bbnum = log->l_logBBsize; 1010 1011 /* check totally zeroed log */ 1012 bp = xlog_get_bp(log, 1); 1013 if (!bp) 1014 return ENOMEM; 1015 if ((error = xlog_bread(log, 0, 1, bp))) 1016 goto bp_err; 1017 offset = xlog_align(log, 0, 1, bp); 1018 first_cycle = GET_CYCLE(offset, ARCH_CONVERT); 1019 if (first_cycle == 0) { /* completely zeroed log */ 1020 *blk_no = 0; 1021 xlog_put_bp(bp); 1022 return -1; 1023 } 1024 1025 /* check partially zeroed log */ 1026 if ((error = xlog_bread(log, log_bbnum-1, 1, bp))) 1027 goto bp_err; 1028 offset = xlog_align(log, log_bbnum-1, 1, bp); 1029 last_cycle = GET_CYCLE(offset, ARCH_CONVERT); 1030 if (last_cycle != 0) { /* log completely written to */ 1031 xlog_put_bp(bp); 1032 return 0; 1033 } else if (first_cycle != 1) { 1034 /* 1035 * If the cycle of the last block is zero, the cycle of 1036 * the first block must be 1. If it's not, maybe we're 1037 * not looking at a log... Bail out. 1038 */ 1039 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)"); 1040 return XFS_ERROR(EINVAL); 1041 } 1042 1043 /* we have a partially zeroed log */ 1044 last_blk = log_bbnum-1; 1045 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1046 goto bp_err; 1047 1048 /* 1049 * Validate the answer. Because there is no way to guarantee that 1050 * the entire log is made up of log records which are the same size, 1051 * we scan over the defined maximum blocks. At this point, the maximum 1052 * is not chosen to mean anything special. XXXmiken 1053 */ 1054 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1055 ASSERT(num_scan_bblks <= INT_MAX); 1056 1057 if (last_blk < num_scan_bblks) 1058 num_scan_bblks = last_blk; 1059 start_blk = last_blk - num_scan_bblks; 1060 1061 /* 1062 * We search for any instances of cycle number 0 that occur before 1063 * our current estimate of the head. What we're trying to detect is 1064 * 1 ... | 0 | 1 | 0... 1065 * ^ binary search ends here 1066 */ 1067 if ((error = xlog_find_verify_cycle(log, start_blk, 1068 (int)num_scan_bblks, 0, &new_blk))) 1069 goto bp_err; 1070 if (new_blk != -1) 1071 last_blk = new_blk; 1072 1073 /* 1074 * Potentially backup over partial log record write. We don't need 1075 * to search the end of the log because we know it is zero. 1076 */ 1077 if ((error = xlog_find_verify_log_record(log, start_blk, 1078 &last_blk, 0)) == -1) { 1079 error = XFS_ERROR(EIO); 1080 goto bp_err; 1081 } else if (error) 1082 goto bp_err; 1083 1084 *blk_no = last_blk; 1085 bp_err: 1086 xlog_put_bp(bp); 1087 if (error) 1088 return error; 1089 return -1; 1090 } 1091 1092 /* 1093 * These are simple subroutines used by xlog_clear_stale_blocks() below 1094 * to initialize a buffer full of empty log record headers and write 1095 * them into the log. 1096 */ 1097 STATIC void 1098 xlog_add_record( 1099 xlog_t *log, 1100 xfs_caddr_t buf, 1101 int cycle, 1102 int block, 1103 int tail_cycle, 1104 int tail_block) 1105 { 1106 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1107 1108 memset(buf, 0, BBSIZE); 1109 INT_SET(recp->h_magicno, ARCH_CONVERT, XLOG_HEADER_MAGIC_NUM); 1110 INT_SET(recp->h_cycle, ARCH_CONVERT, cycle); 1111 INT_SET(recp->h_version, ARCH_CONVERT, 1112 XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1); 1113 ASSIGN_ANY_LSN_DISK(recp->h_lsn, cycle, block); 1114 ASSIGN_ANY_LSN_DISK(recp->h_tail_lsn, tail_cycle, tail_block); 1115 INT_SET(recp->h_fmt, ARCH_CONVERT, XLOG_FMT); 1116 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1117 } 1118 1119 STATIC int 1120 xlog_write_log_records( 1121 xlog_t *log, 1122 int cycle, 1123 int start_block, 1124 int blocks, 1125 int tail_cycle, 1126 int tail_block) 1127 { 1128 xfs_caddr_t offset; 1129 xfs_buf_t *bp; 1130 int balign, ealign; 1131 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1); 1132 int end_block = start_block + blocks; 1133 int bufblks; 1134 int error = 0; 1135 int i, j = 0; 1136 1137 bufblks = 1 << ffs(blocks); 1138 while (!(bp = xlog_get_bp(log, bufblks))) { 1139 bufblks >>= 1; 1140 if (bufblks <= log->l_sectbb_log) 1141 return ENOMEM; 1142 } 1143 1144 /* We may need to do a read at the start to fill in part of 1145 * the buffer in the starting sector not covered by the first 1146 * write below. 1147 */ 1148 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block); 1149 if (balign != start_block) { 1150 if ((error = xlog_bread(log, start_block, 1, bp))) { 1151 xlog_put_bp(bp); 1152 return error; 1153 } 1154 j = start_block - balign; 1155 } 1156 1157 for (i = start_block; i < end_block; i += bufblks) { 1158 int bcount, endcount; 1159 1160 bcount = min(bufblks, end_block - start_block); 1161 endcount = bcount - j; 1162 1163 /* We may need to do a read at the end to fill in part of 1164 * the buffer in the final sector not covered by the write. 1165 * If this is the same sector as the above read, skip it. 1166 */ 1167 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block); 1168 if (j == 0 && (start_block + endcount > ealign)) { 1169 offset = XFS_BUF_PTR(bp); 1170 balign = BBTOB(ealign - start_block); 1171 XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb)); 1172 if ((error = xlog_bread(log, ealign, sectbb, bp))) 1173 break; 1174 XFS_BUF_SET_PTR(bp, offset, bufblks); 1175 } 1176 1177 offset = xlog_align(log, start_block, endcount, bp); 1178 for (; j < endcount; j++) { 1179 xlog_add_record(log, offset, cycle, i+j, 1180 tail_cycle, tail_block); 1181 offset += BBSIZE; 1182 } 1183 error = xlog_bwrite(log, start_block, endcount, bp); 1184 if (error) 1185 break; 1186 start_block += endcount; 1187 j = 0; 1188 } 1189 xlog_put_bp(bp); 1190 return error; 1191 } 1192 1193 /* 1194 * This routine is called to blow away any incomplete log writes out 1195 * in front of the log head. We do this so that we won't become confused 1196 * if we come up, write only a little bit more, and then crash again. 1197 * If we leave the partial log records out there, this situation could 1198 * cause us to think those partial writes are valid blocks since they 1199 * have the current cycle number. We get rid of them by overwriting them 1200 * with empty log records with the old cycle number rather than the 1201 * current one. 1202 * 1203 * The tail lsn is passed in rather than taken from 1204 * the log so that we will not write over the unmount record after a 1205 * clean unmount in a 512 block log. Doing so would leave the log without 1206 * any valid log records in it until a new one was written. If we crashed 1207 * during that time we would not be able to recover. 1208 */ 1209 STATIC int 1210 xlog_clear_stale_blocks( 1211 xlog_t *log, 1212 xfs_lsn_t tail_lsn) 1213 { 1214 int tail_cycle, head_cycle; 1215 int tail_block, head_block; 1216 int tail_distance, max_distance; 1217 int distance; 1218 int error; 1219 1220 tail_cycle = CYCLE_LSN(tail_lsn); 1221 tail_block = BLOCK_LSN(tail_lsn); 1222 head_cycle = log->l_curr_cycle; 1223 head_block = log->l_curr_block; 1224 1225 /* 1226 * Figure out the distance between the new head of the log 1227 * and the tail. We want to write over any blocks beyond the 1228 * head that we may have written just before the crash, but 1229 * we don't want to overwrite the tail of the log. 1230 */ 1231 if (head_cycle == tail_cycle) { 1232 /* 1233 * The tail is behind the head in the physical log, 1234 * so the distance from the head to the tail is the 1235 * distance from the head to the end of the log plus 1236 * the distance from the beginning of the log to the 1237 * tail. 1238 */ 1239 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1240 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1241 XFS_ERRLEVEL_LOW, log->l_mp); 1242 return XFS_ERROR(EFSCORRUPTED); 1243 } 1244 tail_distance = tail_block + (log->l_logBBsize - head_block); 1245 } else { 1246 /* 1247 * The head is behind the tail in the physical log, 1248 * so the distance from the head to the tail is just 1249 * the tail block minus the head block. 1250 */ 1251 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1252 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1253 XFS_ERRLEVEL_LOW, log->l_mp); 1254 return XFS_ERROR(EFSCORRUPTED); 1255 } 1256 tail_distance = tail_block - head_block; 1257 } 1258 1259 /* 1260 * If the head is right up against the tail, we can't clear 1261 * anything. 1262 */ 1263 if (tail_distance <= 0) { 1264 ASSERT(tail_distance == 0); 1265 return 0; 1266 } 1267 1268 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1269 /* 1270 * Take the smaller of the maximum amount of outstanding I/O 1271 * we could have and the distance to the tail to clear out. 1272 * We take the smaller so that we don't overwrite the tail and 1273 * we don't waste all day writing from the head to the tail 1274 * for no reason. 1275 */ 1276 max_distance = MIN(max_distance, tail_distance); 1277 1278 if ((head_block + max_distance) <= log->l_logBBsize) { 1279 /* 1280 * We can stomp all the blocks we need to without 1281 * wrapping around the end of the log. Just do it 1282 * in a single write. Use the cycle number of the 1283 * current cycle minus one so that the log will look like: 1284 * n ... | n - 1 ... 1285 */ 1286 error = xlog_write_log_records(log, (head_cycle - 1), 1287 head_block, max_distance, tail_cycle, 1288 tail_block); 1289 if (error) 1290 return error; 1291 } else { 1292 /* 1293 * We need to wrap around the end of the physical log in 1294 * order to clear all the blocks. Do it in two separate 1295 * I/Os. The first write should be from the head to the 1296 * end of the physical log, and it should use the current 1297 * cycle number minus one just like above. 1298 */ 1299 distance = log->l_logBBsize - head_block; 1300 error = xlog_write_log_records(log, (head_cycle - 1), 1301 head_block, distance, tail_cycle, 1302 tail_block); 1303 1304 if (error) 1305 return error; 1306 1307 /* 1308 * Now write the blocks at the start of the physical log. 1309 * This writes the remainder of the blocks we want to clear. 1310 * It uses the current cycle number since we're now on the 1311 * same cycle as the head so that we get: 1312 * n ... n ... | n - 1 ... 1313 * ^^^^^ blocks we're writing 1314 */ 1315 distance = max_distance - (log->l_logBBsize - head_block); 1316 error = xlog_write_log_records(log, head_cycle, 0, distance, 1317 tail_cycle, tail_block); 1318 if (error) 1319 return error; 1320 } 1321 1322 return 0; 1323 } 1324 1325 /****************************************************************************** 1326 * 1327 * Log recover routines 1328 * 1329 ****************************************************************************** 1330 */ 1331 1332 STATIC xlog_recover_t * 1333 xlog_recover_find_tid( 1334 xlog_recover_t *q, 1335 xlog_tid_t tid) 1336 { 1337 xlog_recover_t *p = q; 1338 1339 while (p != NULL) { 1340 if (p->r_log_tid == tid) 1341 break; 1342 p = p->r_next; 1343 } 1344 return p; 1345 } 1346 1347 STATIC void 1348 xlog_recover_put_hashq( 1349 xlog_recover_t **q, 1350 xlog_recover_t *trans) 1351 { 1352 trans->r_next = *q; 1353 *q = trans; 1354 } 1355 1356 STATIC void 1357 xlog_recover_add_item( 1358 xlog_recover_item_t **itemq) 1359 { 1360 xlog_recover_item_t *item; 1361 1362 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 1363 xlog_recover_insert_item_backq(itemq, item); 1364 } 1365 1366 STATIC int 1367 xlog_recover_add_to_cont_trans( 1368 xlog_recover_t *trans, 1369 xfs_caddr_t dp, 1370 int len) 1371 { 1372 xlog_recover_item_t *item; 1373 xfs_caddr_t ptr, old_ptr; 1374 int old_len; 1375 1376 item = trans->r_itemq; 1377 if (item == 0) { 1378 /* finish copying rest of trans header */ 1379 xlog_recover_add_item(&trans->r_itemq); 1380 ptr = (xfs_caddr_t) &trans->r_theader + 1381 sizeof(xfs_trans_header_t) - len; 1382 memcpy(ptr, dp, len); /* d, s, l */ 1383 return 0; 1384 } 1385 item = item->ri_prev; 1386 1387 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 1388 old_len = item->ri_buf[item->ri_cnt-1].i_len; 1389 1390 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0); 1391 memcpy(&ptr[old_len], dp, len); /* d, s, l */ 1392 item->ri_buf[item->ri_cnt-1].i_len += len; 1393 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 1394 return 0; 1395 } 1396 1397 /* 1398 * The next region to add is the start of a new region. It could be 1399 * a whole region or it could be the first part of a new region. Because 1400 * of this, the assumption here is that the type and size fields of all 1401 * format structures fit into the first 32 bits of the structure. 1402 * 1403 * This works because all regions must be 32 bit aligned. Therefore, we 1404 * either have both fields or we have neither field. In the case we have 1405 * neither field, the data part of the region is zero length. We only have 1406 * a log_op_header and can throw away the header since a new one will appear 1407 * later. If we have at least 4 bytes, then we can determine how many regions 1408 * will appear in the current log item. 1409 */ 1410 STATIC int 1411 xlog_recover_add_to_trans( 1412 xlog_recover_t *trans, 1413 xfs_caddr_t dp, 1414 int len) 1415 { 1416 xfs_inode_log_format_t *in_f; /* any will do */ 1417 xlog_recover_item_t *item; 1418 xfs_caddr_t ptr; 1419 1420 if (!len) 1421 return 0; 1422 item = trans->r_itemq; 1423 if (item == 0) { 1424 ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC); 1425 if (len == sizeof(xfs_trans_header_t)) 1426 xlog_recover_add_item(&trans->r_itemq); 1427 memcpy(&trans->r_theader, dp, len); /* d, s, l */ 1428 return 0; 1429 } 1430 1431 ptr = kmem_alloc(len, KM_SLEEP); 1432 memcpy(ptr, dp, len); 1433 in_f = (xfs_inode_log_format_t *)ptr; 1434 1435 if (item->ri_prev->ri_total != 0 && 1436 item->ri_prev->ri_total == item->ri_prev->ri_cnt) { 1437 xlog_recover_add_item(&trans->r_itemq); 1438 } 1439 item = trans->r_itemq; 1440 item = item->ri_prev; 1441 1442 if (item->ri_total == 0) { /* first region to be added */ 1443 item->ri_total = in_f->ilf_size; 1444 ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM); 1445 item->ri_buf = kmem_zalloc((item->ri_total * 1446 sizeof(xfs_log_iovec_t)), KM_SLEEP); 1447 } 1448 ASSERT(item->ri_total > item->ri_cnt); 1449 /* Description region is ri_buf[0] */ 1450 item->ri_buf[item->ri_cnt].i_addr = ptr; 1451 item->ri_buf[item->ri_cnt].i_len = len; 1452 item->ri_cnt++; 1453 return 0; 1454 } 1455 1456 STATIC void 1457 xlog_recover_new_tid( 1458 xlog_recover_t **q, 1459 xlog_tid_t tid, 1460 xfs_lsn_t lsn) 1461 { 1462 xlog_recover_t *trans; 1463 1464 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP); 1465 trans->r_log_tid = tid; 1466 trans->r_lsn = lsn; 1467 xlog_recover_put_hashq(q, trans); 1468 } 1469 1470 STATIC int 1471 xlog_recover_unlink_tid( 1472 xlog_recover_t **q, 1473 xlog_recover_t *trans) 1474 { 1475 xlog_recover_t *tp; 1476 int found = 0; 1477 1478 ASSERT(trans != 0); 1479 if (trans == *q) { 1480 *q = (*q)->r_next; 1481 } else { 1482 tp = *q; 1483 while (tp != 0) { 1484 if (tp->r_next == trans) { 1485 found = 1; 1486 break; 1487 } 1488 tp = tp->r_next; 1489 } 1490 if (!found) { 1491 xlog_warn( 1492 "XFS: xlog_recover_unlink_tid: trans not found"); 1493 ASSERT(0); 1494 return XFS_ERROR(EIO); 1495 } 1496 tp->r_next = tp->r_next->r_next; 1497 } 1498 return 0; 1499 } 1500 1501 STATIC void 1502 xlog_recover_insert_item_backq( 1503 xlog_recover_item_t **q, 1504 xlog_recover_item_t *item) 1505 { 1506 if (*q == 0) { 1507 item->ri_prev = item->ri_next = item; 1508 *q = item; 1509 } else { 1510 item->ri_next = *q; 1511 item->ri_prev = (*q)->ri_prev; 1512 (*q)->ri_prev = item; 1513 item->ri_prev->ri_next = item; 1514 } 1515 } 1516 1517 STATIC void 1518 xlog_recover_insert_item_frontq( 1519 xlog_recover_item_t **q, 1520 xlog_recover_item_t *item) 1521 { 1522 xlog_recover_insert_item_backq(q, item); 1523 *q = item; 1524 } 1525 1526 STATIC int 1527 xlog_recover_reorder_trans( 1528 xlog_t *log, 1529 xlog_recover_t *trans) 1530 { 1531 xlog_recover_item_t *first_item, *itemq, *itemq_next; 1532 xfs_buf_log_format_t *buf_f; 1533 xfs_buf_log_format_v1_t *obuf_f; 1534 ushort flags = 0; 1535 1536 first_item = itemq = trans->r_itemq; 1537 trans->r_itemq = NULL; 1538 do { 1539 itemq_next = itemq->ri_next; 1540 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr; 1541 switch (ITEM_TYPE(itemq)) { 1542 case XFS_LI_BUF: 1543 flags = buf_f->blf_flags; 1544 break; 1545 case XFS_LI_6_1_BUF: 1546 case XFS_LI_5_3_BUF: 1547 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 1548 flags = obuf_f->blf_flags; 1549 break; 1550 } 1551 1552 switch (ITEM_TYPE(itemq)) { 1553 case XFS_LI_BUF: 1554 case XFS_LI_6_1_BUF: 1555 case XFS_LI_5_3_BUF: 1556 if (!(flags & XFS_BLI_CANCEL)) { 1557 xlog_recover_insert_item_frontq(&trans->r_itemq, 1558 itemq); 1559 break; 1560 } 1561 case XFS_LI_INODE: 1562 case XFS_LI_6_1_INODE: 1563 case XFS_LI_5_3_INODE: 1564 case XFS_LI_DQUOT: 1565 case XFS_LI_QUOTAOFF: 1566 case XFS_LI_EFD: 1567 case XFS_LI_EFI: 1568 xlog_recover_insert_item_backq(&trans->r_itemq, itemq); 1569 break; 1570 default: 1571 xlog_warn( 1572 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation"); 1573 ASSERT(0); 1574 return XFS_ERROR(EIO); 1575 } 1576 itemq = itemq_next; 1577 } while (first_item != itemq); 1578 return 0; 1579 } 1580 1581 /* 1582 * Build up the table of buf cancel records so that we don't replay 1583 * cancelled data in the second pass. For buffer records that are 1584 * not cancel records, there is nothing to do here so we just return. 1585 * 1586 * If we get a cancel record which is already in the table, this indicates 1587 * that the buffer was cancelled multiple times. In order to ensure 1588 * that during pass 2 we keep the record in the table until we reach its 1589 * last occurrence in the log, we keep a reference count in the cancel 1590 * record in the table to tell us how many times we expect to see this 1591 * record during the second pass. 1592 */ 1593 STATIC void 1594 xlog_recover_do_buffer_pass1( 1595 xlog_t *log, 1596 xfs_buf_log_format_t *buf_f) 1597 { 1598 xfs_buf_cancel_t *bcp; 1599 xfs_buf_cancel_t *nextp; 1600 xfs_buf_cancel_t *prevp; 1601 xfs_buf_cancel_t **bucket; 1602 xfs_buf_log_format_v1_t *obuf_f; 1603 xfs_daddr_t blkno = 0; 1604 uint len = 0; 1605 ushort flags = 0; 1606 1607 switch (buf_f->blf_type) { 1608 case XFS_LI_BUF: 1609 blkno = buf_f->blf_blkno; 1610 len = buf_f->blf_len; 1611 flags = buf_f->blf_flags; 1612 break; 1613 case XFS_LI_6_1_BUF: 1614 case XFS_LI_5_3_BUF: 1615 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 1616 blkno = (xfs_daddr_t) obuf_f->blf_blkno; 1617 len = obuf_f->blf_len; 1618 flags = obuf_f->blf_flags; 1619 break; 1620 } 1621 1622 /* 1623 * If this isn't a cancel buffer item, then just return. 1624 */ 1625 if (!(flags & XFS_BLI_CANCEL)) 1626 return; 1627 1628 /* 1629 * Insert an xfs_buf_cancel record into the hash table of 1630 * them. If there is already an identical record, bump 1631 * its reference count. 1632 */ 1633 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % 1634 XLOG_BC_TABLE_SIZE]; 1635 /* 1636 * If the hash bucket is empty then just insert a new record into 1637 * the bucket. 1638 */ 1639 if (*bucket == NULL) { 1640 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), 1641 KM_SLEEP); 1642 bcp->bc_blkno = blkno; 1643 bcp->bc_len = len; 1644 bcp->bc_refcount = 1; 1645 bcp->bc_next = NULL; 1646 *bucket = bcp; 1647 return; 1648 } 1649 1650 /* 1651 * The hash bucket is not empty, so search for duplicates of our 1652 * record. If we find one them just bump its refcount. If not 1653 * then add us at the end of the list. 1654 */ 1655 prevp = NULL; 1656 nextp = *bucket; 1657 while (nextp != NULL) { 1658 if (nextp->bc_blkno == blkno && nextp->bc_len == len) { 1659 nextp->bc_refcount++; 1660 return; 1661 } 1662 prevp = nextp; 1663 nextp = nextp->bc_next; 1664 } 1665 ASSERT(prevp != NULL); 1666 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), 1667 KM_SLEEP); 1668 bcp->bc_blkno = blkno; 1669 bcp->bc_len = len; 1670 bcp->bc_refcount = 1; 1671 bcp->bc_next = NULL; 1672 prevp->bc_next = bcp; 1673 } 1674 1675 /* 1676 * Check to see whether the buffer being recovered has a corresponding 1677 * entry in the buffer cancel record table. If it does then return 1 1678 * so that it will be cancelled, otherwise return 0. If the buffer is 1679 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement 1680 * the refcount on the entry in the table and remove it from the table 1681 * if this is the last reference. 1682 * 1683 * We remove the cancel record from the table when we encounter its 1684 * last occurrence in the log so that if the same buffer is re-used 1685 * again after its last cancellation we actually replay the changes 1686 * made at that point. 1687 */ 1688 STATIC int 1689 xlog_check_buffer_cancelled( 1690 xlog_t *log, 1691 xfs_daddr_t blkno, 1692 uint len, 1693 ushort flags) 1694 { 1695 xfs_buf_cancel_t *bcp; 1696 xfs_buf_cancel_t *prevp; 1697 xfs_buf_cancel_t **bucket; 1698 1699 if (log->l_buf_cancel_table == NULL) { 1700 /* 1701 * There is nothing in the table built in pass one, 1702 * so this buffer must not be cancelled. 1703 */ 1704 ASSERT(!(flags & XFS_BLI_CANCEL)); 1705 return 0; 1706 } 1707 1708 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % 1709 XLOG_BC_TABLE_SIZE]; 1710 bcp = *bucket; 1711 if (bcp == NULL) { 1712 /* 1713 * There is no corresponding entry in the table built 1714 * in pass one, so this buffer has not been cancelled. 1715 */ 1716 ASSERT(!(flags & XFS_BLI_CANCEL)); 1717 return 0; 1718 } 1719 1720 /* 1721 * Search for an entry in the buffer cancel table that 1722 * matches our buffer. 1723 */ 1724 prevp = NULL; 1725 while (bcp != NULL) { 1726 if (bcp->bc_blkno == blkno && bcp->bc_len == len) { 1727 /* 1728 * We've go a match, so return 1 so that the 1729 * recovery of this buffer is cancelled. 1730 * If this buffer is actually a buffer cancel 1731 * log item, then decrement the refcount on the 1732 * one in the table and remove it if this is the 1733 * last reference. 1734 */ 1735 if (flags & XFS_BLI_CANCEL) { 1736 bcp->bc_refcount--; 1737 if (bcp->bc_refcount == 0) { 1738 if (prevp == NULL) { 1739 *bucket = bcp->bc_next; 1740 } else { 1741 prevp->bc_next = bcp->bc_next; 1742 } 1743 kmem_free(bcp, 1744 sizeof(xfs_buf_cancel_t)); 1745 } 1746 } 1747 return 1; 1748 } 1749 prevp = bcp; 1750 bcp = bcp->bc_next; 1751 } 1752 /* 1753 * We didn't find a corresponding entry in the table, so 1754 * return 0 so that the buffer is NOT cancelled. 1755 */ 1756 ASSERT(!(flags & XFS_BLI_CANCEL)); 1757 return 0; 1758 } 1759 1760 STATIC int 1761 xlog_recover_do_buffer_pass2( 1762 xlog_t *log, 1763 xfs_buf_log_format_t *buf_f) 1764 { 1765 xfs_buf_log_format_v1_t *obuf_f; 1766 xfs_daddr_t blkno = 0; 1767 ushort flags = 0; 1768 uint len = 0; 1769 1770 switch (buf_f->blf_type) { 1771 case XFS_LI_BUF: 1772 blkno = buf_f->blf_blkno; 1773 flags = buf_f->blf_flags; 1774 len = buf_f->blf_len; 1775 break; 1776 case XFS_LI_6_1_BUF: 1777 case XFS_LI_5_3_BUF: 1778 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 1779 blkno = (xfs_daddr_t) obuf_f->blf_blkno; 1780 flags = obuf_f->blf_flags; 1781 len = (xfs_daddr_t) obuf_f->blf_len; 1782 break; 1783 } 1784 1785 return xlog_check_buffer_cancelled(log, blkno, len, flags); 1786 } 1787 1788 /* 1789 * Perform recovery for a buffer full of inodes. In these buffers, 1790 * the only data which should be recovered is that which corresponds 1791 * to the di_next_unlinked pointers in the on disk inode structures. 1792 * The rest of the data for the inodes is always logged through the 1793 * inodes themselves rather than the inode buffer and is recovered 1794 * in xlog_recover_do_inode_trans(). 1795 * 1796 * The only time when buffers full of inodes are fully recovered is 1797 * when the buffer is full of newly allocated inodes. In this case 1798 * the buffer will not be marked as an inode buffer and so will be 1799 * sent to xlog_recover_do_reg_buffer() below during recovery. 1800 */ 1801 STATIC int 1802 xlog_recover_do_inode_buffer( 1803 xfs_mount_t *mp, 1804 xlog_recover_item_t *item, 1805 xfs_buf_t *bp, 1806 xfs_buf_log_format_t *buf_f) 1807 { 1808 int i; 1809 int item_index; 1810 int bit; 1811 int nbits; 1812 int reg_buf_offset; 1813 int reg_buf_bytes; 1814 int next_unlinked_offset; 1815 int inodes_per_buf; 1816 xfs_agino_t *logged_nextp; 1817 xfs_agino_t *buffer_nextp; 1818 xfs_buf_log_format_v1_t *obuf_f; 1819 unsigned int *data_map = NULL; 1820 unsigned int map_size = 0; 1821 1822 switch (buf_f->blf_type) { 1823 case XFS_LI_BUF: 1824 data_map = buf_f->blf_data_map; 1825 map_size = buf_f->blf_map_size; 1826 break; 1827 case XFS_LI_6_1_BUF: 1828 case XFS_LI_5_3_BUF: 1829 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 1830 data_map = obuf_f->blf_data_map; 1831 map_size = obuf_f->blf_map_size; 1832 break; 1833 } 1834 /* 1835 * Set the variables corresponding to the current region to 1836 * 0 so that we'll initialize them on the first pass through 1837 * the loop. 1838 */ 1839 reg_buf_offset = 0; 1840 reg_buf_bytes = 0; 1841 bit = 0; 1842 nbits = 0; 1843 item_index = 0; 1844 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog; 1845 for (i = 0; i < inodes_per_buf; i++) { 1846 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 1847 offsetof(xfs_dinode_t, di_next_unlinked); 1848 1849 while (next_unlinked_offset >= 1850 (reg_buf_offset + reg_buf_bytes)) { 1851 /* 1852 * The next di_next_unlinked field is beyond 1853 * the current logged region. Find the next 1854 * logged region that contains or is beyond 1855 * the current di_next_unlinked field. 1856 */ 1857 bit += nbits; 1858 bit = xfs_next_bit(data_map, map_size, bit); 1859 1860 /* 1861 * If there are no more logged regions in the 1862 * buffer, then we're done. 1863 */ 1864 if (bit == -1) { 1865 return 0; 1866 } 1867 1868 nbits = xfs_contig_bits(data_map, map_size, 1869 bit); 1870 ASSERT(nbits > 0); 1871 reg_buf_offset = bit << XFS_BLI_SHIFT; 1872 reg_buf_bytes = nbits << XFS_BLI_SHIFT; 1873 item_index++; 1874 } 1875 1876 /* 1877 * If the current logged region starts after the current 1878 * di_next_unlinked field, then move on to the next 1879 * di_next_unlinked field. 1880 */ 1881 if (next_unlinked_offset < reg_buf_offset) { 1882 continue; 1883 } 1884 1885 ASSERT(item->ri_buf[item_index].i_addr != NULL); 1886 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0); 1887 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp)); 1888 1889 /* 1890 * The current logged region contains a copy of the 1891 * current di_next_unlinked field. Extract its value 1892 * and copy it to the buffer copy. 1893 */ 1894 logged_nextp = (xfs_agino_t *) 1895 ((char *)(item->ri_buf[item_index].i_addr) + 1896 (next_unlinked_offset - reg_buf_offset)); 1897 if (unlikely(*logged_nextp == 0)) { 1898 xfs_fs_cmn_err(CE_ALERT, mp, 1899 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field", 1900 item, bp); 1901 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 1902 XFS_ERRLEVEL_LOW, mp); 1903 return XFS_ERROR(EFSCORRUPTED); 1904 } 1905 1906 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp, 1907 next_unlinked_offset); 1908 INT_SET(*buffer_nextp, ARCH_CONVERT, *logged_nextp); 1909 } 1910 1911 return 0; 1912 } 1913 1914 /* 1915 * Perform a 'normal' buffer recovery. Each logged region of the 1916 * buffer should be copied over the corresponding region in the 1917 * given buffer. The bitmap in the buf log format structure indicates 1918 * where to place the logged data. 1919 */ 1920 /*ARGSUSED*/ 1921 STATIC void 1922 xlog_recover_do_reg_buffer( 1923 xfs_mount_t *mp, 1924 xlog_recover_item_t *item, 1925 xfs_buf_t *bp, 1926 xfs_buf_log_format_t *buf_f) 1927 { 1928 int i; 1929 int bit; 1930 int nbits; 1931 xfs_buf_log_format_v1_t *obuf_f; 1932 unsigned int *data_map = NULL; 1933 unsigned int map_size = 0; 1934 int error; 1935 1936 switch (buf_f->blf_type) { 1937 case XFS_LI_BUF: 1938 data_map = buf_f->blf_data_map; 1939 map_size = buf_f->blf_map_size; 1940 break; 1941 case XFS_LI_6_1_BUF: 1942 case XFS_LI_5_3_BUF: 1943 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 1944 data_map = obuf_f->blf_data_map; 1945 map_size = obuf_f->blf_map_size; 1946 break; 1947 } 1948 bit = 0; 1949 i = 1; /* 0 is the buf format structure */ 1950 while (1) { 1951 bit = xfs_next_bit(data_map, map_size, bit); 1952 if (bit == -1) 1953 break; 1954 nbits = xfs_contig_bits(data_map, map_size, bit); 1955 ASSERT(nbits > 0); 1956 ASSERT(item->ri_buf[i].i_addr != 0); 1957 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0); 1958 ASSERT(XFS_BUF_COUNT(bp) >= 1959 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT)); 1960 1961 /* 1962 * Do a sanity check if this is a dquot buffer. Just checking 1963 * the first dquot in the buffer should do. XXXThis is 1964 * probably a good thing to do for other buf types also. 1965 */ 1966 error = 0; 1967 if (buf_f->blf_flags & (XFS_BLI_UDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) { 1968 error = xfs_qm_dqcheck((xfs_disk_dquot_t *) 1969 item->ri_buf[i].i_addr, 1970 -1, 0, XFS_QMOPT_DOWARN, 1971 "dquot_buf_recover"); 1972 } 1973 if (!error) 1974 memcpy(xfs_buf_offset(bp, 1975 (uint)bit << XFS_BLI_SHIFT), /* dest */ 1976 item->ri_buf[i].i_addr, /* source */ 1977 nbits<<XFS_BLI_SHIFT); /* length */ 1978 i++; 1979 bit += nbits; 1980 } 1981 1982 /* Shouldn't be any more regions */ 1983 ASSERT(i == item->ri_total); 1984 } 1985 1986 /* 1987 * Do some primitive error checking on ondisk dquot data structures. 1988 */ 1989 int 1990 xfs_qm_dqcheck( 1991 xfs_disk_dquot_t *ddq, 1992 xfs_dqid_t id, 1993 uint type, /* used only when IO_dorepair is true */ 1994 uint flags, 1995 char *str) 1996 { 1997 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq; 1998 int errs = 0; 1999 2000 /* 2001 * We can encounter an uninitialized dquot buffer for 2 reasons: 2002 * 1. If we crash while deleting the quotainode(s), and those blks got 2003 * used for user data. This is because we take the path of regular 2004 * file deletion; however, the size field of quotainodes is never 2005 * updated, so all the tricks that we play in itruncate_finish 2006 * don't quite matter. 2007 * 2008 * 2. We don't play the quota buffers when there's a quotaoff logitem. 2009 * But the allocation will be replayed so we'll end up with an 2010 * uninitialized quota block. 2011 * 2012 * This is all fine; things are still consistent, and we haven't lost 2013 * any quota information. Just don't complain about bad dquot blks. 2014 */ 2015 if (INT_GET(ddq->d_magic, ARCH_CONVERT) != XFS_DQUOT_MAGIC) { 2016 if (flags & XFS_QMOPT_DOWARN) 2017 cmn_err(CE_ALERT, 2018 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x", 2019 str, id, 2020 INT_GET(ddq->d_magic, ARCH_CONVERT), XFS_DQUOT_MAGIC); 2021 errs++; 2022 } 2023 if (INT_GET(ddq->d_version, ARCH_CONVERT) != XFS_DQUOT_VERSION) { 2024 if (flags & XFS_QMOPT_DOWARN) 2025 cmn_err(CE_ALERT, 2026 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x", 2027 str, id, 2028 INT_GET(ddq->d_magic, ARCH_CONVERT), XFS_DQUOT_VERSION); 2029 errs++; 2030 } 2031 2032 if (INT_GET(ddq->d_flags, ARCH_CONVERT) != XFS_DQ_USER && 2033 INT_GET(ddq->d_flags, ARCH_CONVERT) != XFS_DQ_GROUP) { 2034 if (flags & XFS_QMOPT_DOWARN) 2035 cmn_err(CE_ALERT, 2036 "%s : XFS dquot ID 0x%x, unknown flags 0x%x", 2037 str, id, INT_GET(ddq->d_flags, ARCH_CONVERT)); 2038 errs++; 2039 } 2040 2041 if (id != -1 && id != INT_GET(ddq->d_id, ARCH_CONVERT)) { 2042 if (flags & XFS_QMOPT_DOWARN) 2043 cmn_err(CE_ALERT, 2044 "%s : ondisk-dquot 0x%p, ID mismatch: " 2045 "0x%x expected, found id 0x%x", 2046 str, ddq, id, INT_GET(ddq->d_id, ARCH_CONVERT)); 2047 errs++; 2048 } 2049 2050 if (!errs && ddq->d_id) { 2051 if (INT_GET(ddq->d_blk_softlimit, ARCH_CONVERT) && 2052 INT_GET(ddq->d_bcount, ARCH_CONVERT) >= 2053 INT_GET(ddq->d_blk_softlimit, ARCH_CONVERT)) { 2054 if (!ddq->d_btimer) { 2055 if (flags & XFS_QMOPT_DOWARN) 2056 cmn_err(CE_ALERT, 2057 "%s : Dquot ID 0x%x (0x%p) " 2058 "BLK TIMER NOT STARTED", 2059 str, (int) 2060 INT_GET(ddq->d_id, ARCH_CONVERT), ddq); 2061 errs++; 2062 } 2063 } 2064 if (INT_GET(ddq->d_ino_softlimit, ARCH_CONVERT) && 2065 INT_GET(ddq->d_icount, ARCH_CONVERT) >= 2066 INT_GET(ddq->d_ino_softlimit, ARCH_CONVERT)) { 2067 if (!ddq->d_itimer) { 2068 if (flags & XFS_QMOPT_DOWARN) 2069 cmn_err(CE_ALERT, 2070 "%s : Dquot ID 0x%x (0x%p) " 2071 "INODE TIMER NOT STARTED", 2072 str, (int) 2073 INT_GET(ddq->d_id, ARCH_CONVERT), ddq); 2074 errs++; 2075 } 2076 } 2077 if (INT_GET(ddq->d_rtb_softlimit, ARCH_CONVERT) && 2078 INT_GET(ddq->d_rtbcount, ARCH_CONVERT) >= 2079 INT_GET(ddq->d_rtb_softlimit, ARCH_CONVERT)) { 2080 if (!ddq->d_rtbtimer) { 2081 if (flags & XFS_QMOPT_DOWARN) 2082 cmn_err(CE_ALERT, 2083 "%s : Dquot ID 0x%x (0x%p) " 2084 "RTBLK TIMER NOT STARTED", 2085 str, (int) 2086 INT_GET(ddq->d_id, ARCH_CONVERT), ddq); 2087 errs++; 2088 } 2089 } 2090 } 2091 2092 if (!errs || !(flags & XFS_QMOPT_DQREPAIR)) 2093 return errs; 2094 2095 if (flags & XFS_QMOPT_DOWARN) 2096 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id); 2097 2098 /* 2099 * Typically, a repair is only requested by quotacheck. 2100 */ 2101 ASSERT(id != -1); 2102 ASSERT(flags & XFS_QMOPT_DQREPAIR); 2103 memset(d, 0, sizeof(xfs_dqblk_t)); 2104 INT_SET(d->dd_diskdq.d_magic, ARCH_CONVERT, XFS_DQUOT_MAGIC); 2105 INT_SET(d->dd_diskdq.d_version, ARCH_CONVERT, XFS_DQUOT_VERSION); 2106 INT_SET(d->dd_diskdq.d_id, ARCH_CONVERT, id); 2107 INT_SET(d->dd_diskdq.d_flags, ARCH_CONVERT, type); 2108 2109 return errs; 2110 } 2111 2112 /* 2113 * Perform a dquot buffer recovery. 2114 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type 2115 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2116 * Else, treat it as a regular buffer and do recovery. 2117 */ 2118 STATIC void 2119 xlog_recover_do_dquot_buffer( 2120 xfs_mount_t *mp, 2121 xlog_t *log, 2122 xlog_recover_item_t *item, 2123 xfs_buf_t *bp, 2124 xfs_buf_log_format_t *buf_f) 2125 { 2126 uint type; 2127 2128 /* 2129 * Filesystems are required to send in quota flags at mount time. 2130 */ 2131 if (mp->m_qflags == 0) { 2132 return; 2133 } 2134 2135 type = 0; 2136 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF) 2137 type |= XFS_DQ_USER; 2138 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF) 2139 type |= XFS_DQ_GROUP; 2140 /* 2141 * This type of quotas was turned off, so ignore this buffer 2142 */ 2143 if (log->l_quotaoffs_flag & type) 2144 return; 2145 2146 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2147 } 2148 2149 /* 2150 * This routine replays a modification made to a buffer at runtime. 2151 * There are actually two types of buffer, regular and inode, which 2152 * are handled differently. Inode buffers are handled differently 2153 * in that we only recover a specific set of data from them, namely 2154 * the inode di_next_unlinked fields. This is because all other inode 2155 * data is actually logged via inode records and any data we replay 2156 * here which overlaps that may be stale. 2157 * 2158 * When meta-data buffers are freed at run time we log a buffer item 2159 * with the XFS_BLI_CANCEL bit set to indicate that previous copies 2160 * of the buffer in the log should not be replayed at recovery time. 2161 * This is so that if the blocks covered by the buffer are reused for 2162 * file data before we crash we don't end up replaying old, freed 2163 * meta-data into a user's file. 2164 * 2165 * To handle the cancellation of buffer log items, we make two passes 2166 * over the log during recovery. During the first we build a table of 2167 * those buffers which have been cancelled, and during the second we 2168 * only replay those buffers which do not have corresponding cancel 2169 * records in the table. See xlog_recover_do_buffer_pass[1,2] above 2170 * for more details on the implementation of the table of cancel records. 2171 */ 2172 STATIC int 2173 xlog_recover_do_buffer_trans( 2174 xlog_t *log, 2175 xlog_recover_item_t *item, 2176 int pass) 2177 { 2178 xfs_buf_log_format_t *buf_f; 2179 xfs_buf_log_format_v1_t *obuf_f; 2180 xfs_mount_t *mp; 2181 xfs_buf_t *bp; 2182 int error; 2183 int cancel; 2184 xfs_daddr_t blkno; 2185 int len; 2186 ushort flags; 2187 2188 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr; 2189 2190 if (pass == XLOG_RECOVER_PASS1) { 2191 /* 2192 * In this pass we're only looking for buf items 2193 * with the XFS_BLI_CANCEL bit set. 2194 */ 2195 xlog_recover_do_buffer_pass1(log, buf_f); 2196 return 0; 2197 } else { 2198 /* 2199 * In this pass we want to recover all the buffers 2200 * which have not been cancelled and are not 2201 * cancellation buffers themselves. The routine 2202 * we call here will tell us whether or not to 2203 * continue with the replay of this buffer. 2204 */ 2205 cancel = xlog_recover_do_buffer_pass2(log, buf_f); 2206 if (cancel) { 2207 return 0; 2208 } 2209 } 2210 switch (buf_f->blf_type) { 2211 case XFS_LI_BUF: 2212 blkno = buf_f->blf_blkno; 2213 len = buf_f->blf_len; 2214 flags = buf_f->blf_flags; 2215 break; 2216 case XFS_LI_6_1_BUF: 2217 case XFS_LI_5_3_BUF: 2218 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 2219 blkno = obuf_f->blf_blkno; 2220 len = obuf_f->blf_len; 2221 flags = obuf_f->blf_flags; 2222 break; 2223 default: 2224 xfs_fs_cmn_err(CE_ALERT, log->l_mp, 2225 "xfs_log_recover: unknown buffer type 0x%x, dev %s", 2226 buf_f->blf_type, XFS_BUFTARG_NAME(log->l_targ)); 2227 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans", 2228 XFS_ERRLEVEL_LOW, log->l_mp); 2229 return XFS_ERROR(EFSCORRUPTED); 2230 } 2231 2232 mp = log->l_mp; 2233 if (flags & XFS_BLI_INODE_BUF) { 2234 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len, 2235 XFS_BUF_LOCK); 2236 } else { 2237 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0); 2238 } 2239 if (XFS_BUF_ISERROR(bp)) { 2240 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp, 2241 bp, blkno); 2242 error = XFS_BUF_GETERROR(bp); 2243 xfs_buf_relse(bp); 2244 return error; 2245 } 2246 2247 error = 0; 2248 if (flags & XFS_BLI_INODE_BUF) { 2249 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2250 } else if (flags & (XFS_BLI_UDQUOT_BUF | XFS_BLI_GDQUOT_BUF)) { 2251 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2252 } else { 2253 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2254 } 2255 if (error) 2256 return XFS_ERROR(error); 2257 2258 /* 2259 * Perform delayed write on the buffer. Asynchronous writes will be 2260 * slower when taking into account all the buffers to be flushed. 2261 * 2262 * Also make sure that only inode buffers with good sizes stay in 2263 * the buffer cache. The kernel moves inodes in buffers of 1 block 2264 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode 2265 * buffers in the log can be a different size if the log was generated 2266 * by an older kernel using unclustered inode buffers or a newer kernel 2267 * running with a different inode cluster size. Regardless, if the 2268 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE) 2269 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep 2270 * the buffer out of the buffer cache so that the buffer won't 2271 * overlap with future reads of those inodes. 2272 */ 2273 if (XFS_DINODE_MAGIC == 2274 INT_GET(*((__uint16_t *)(xfs_buf_offset(bp, 0))), ARCH_CONVERT) && 2275 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize, 2276 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) { 2277 XFS_BUF_STALE(bp); 2278 error = xfs_bwrite(mp, bp); 2279 } else { 2280 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || 2281 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); 2282 XFS_BUF_SET_FSPRIVATE(bp, mp); 2283 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2284 xfs_bdwrite(mp, bp); 2285 } 2286 2287 return (error); 2288 } 2289 2290 STATIC int 2291 xlog_recover_do_inode_trans( 2292 xlog_t *log, 2293 xlog_recover_item_t *item, 2294 int pass) 2295 { 2296 xfs_inode_log_format_t *in_f; 2297 xfs_mount_t *mp; 2298 xfs_buf_t *bp; 2299 xfs_imap_t imap; 2300 xfs_dinode_t *dip; 2301 xfs_ino_t ino; 2302 int len; 2303 xfs_caddr_t src; 2304 xfs_caddr_t dest; 2305 int error; 2306 int attr_index; 2307 uint fields; 2308 xfs_dinode_core_t *dicp; 2309 2310 if (pass == XLOG_RECOVER_PASS1) { 2311 return 0; 2312 } 2313 2314 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr; 2315 ino = in_f->ilf_ino; 2316 mp = log->l_mp; 2317 if (ITEM_TYPE(item) == XFS_LI_INODE) { 2318 imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno; 2319 imap.im_len = in_f->ilf_len; 2320 imap.im_boffset = in_f->ilf_boffset; 2321 } else { 2322 /* 2323 * It's an old inode format record. We don't know where 2324 * its cluster is located on disk, and we can't allow 2325 * xfs_imap() to figure it out because the inode btrees 2326 * are not ready to be used. Therefore do not pass the 2327 * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give 2328 * us only the single block in which the inode lives 2329 * rather than its cluster, so we must make sure to 2330 * invalidate the buffer when we write it out below. 2331 */ 2332 imap.im_blkno = 0; 2333 xfs_imap(log->l_mp, NULL, ino, &imap, 0); 2334 } 2335 2336 /* 2337 * Inode buffers can be freed, look out for it, 2338 * and do not replay the inode. 2339 */ 2340 if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) 2341 return 0; 2342 2343 bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len, 2344 XFS_BUF_LOCK); 2345 if (XFS_BUF_ISERROR(bp)) { 2346 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp, 2347 bp, imap.im_blkno); 2348 error = XFS_BUF_GETERROR(bp); 2349 xfs_buf_relse(bp); 2350 return error; 2351 } 2352 error = 0; 2353 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 2354 dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 2355 2356 /* 2357 * Make sure the place we're flushing out to really looks 2358 * like an inode! 2359 */ 2360 if (unlikely(INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC)) { 2361 xfs_buf_relse(bp); 2362 xfs_fs_cmn_err(CE_ALERT, mp, 2363 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld", 2364 dip, bp, ino); 2365 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)", 2366 XFS_ERRLEVEL_LOW, mp); 2367 return XFS_ERROR(EFSCORRUPTED); 2368 } 2369 dicp = (xfs_dinode_core_t*)(item->ri_buf[1].i_addr); 2370 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { 2371 xfs_buf_relse(bp); 2372 xfs_fs_cmn_err(CE_ALERT, mp, 2373 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld", 2374 item, ino); 2375 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)", 2376 XFS_ERRLEVEL_LOW, mp); 2377 return XFS_ERROR(EFSCORRUPTED); 2378 } 2379 2380 /* Skip replay when the on disk inode is newer than the log one */ 2381 if (dicp->di_flushiter < 2382 INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)) { 2383 /* 2384 * Deal with the wrap case, DI_MAX_FLUSH is less 2385 * than smaller numbers 2386 */ 2387 if ((INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT) 2388 == DI_MAX_FLUSH) && 2389 (dicp->di_flushiter < (DI_MAX_FLUSH>>1))) { 2390 /* do nothing */ 2391 } else { 2392 xfs_buf_relse(bp); 2393 return 0; 2394 } 2395 } 2396 /* Take the opportunity to reset the flush iteration count */ 2397 dicp->di_flushiter = 0; 2398 2399 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) { 2400 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2401 (dicp->di_format != XFS_DINODE_FMT_BTREE)) { 2402 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)", 2403 XFS_ERRLEVEL_LOW, mp, dicp); 2404 xfs_buf_relse(bp); 2405 xfs_fs_cmn_err(CE_ALERT, mp, 2406 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2407 item, dip, bp, ino); 2408 return XFS_ERROR(EFSCORRUPTED); 2409 } 2410 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) { 2411 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2412 (dicp->di_format != XFS_DINODE_FMT_BTREE) && 2413 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { 2414 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)", 2415 XFS_ERRLEVEL_LOW, mp, dicp); 2416 xfs_buf_relse(bp); 2417 xfs_fs_cmn_err(CE_ALERT, mp, 2418 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2419 item, dip, bp, ino); 2420 return XFS_ERROR(EFSCORRUPTED); 2421 } 2422 } 2423 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ 2424 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)", 2425 XFS_ERRLEVEL_LOW, mp, dicp); 2426 xfs_buf_relse(bp); 2427 xfs_fs_cmn_err(CE_ALERT, mp, 2428 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", 2429 item, dip, bp, ino, 2430 dicp->di_nextents + dicp->di_anextents, 2431 dicp->di_nblocks); 2432 return XFS_ERROR(EFSCORRUPTED); 2433 } 2434 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { 2435 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)", 2436 XFS_ERRLEVEL_LOW, mp, dicp); 2437 xfs_buf_relse(bp); 2438 xfs_fs_cmn_err(CE_ALERT, mp, 2439 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x", 2440 item, dip, bp, ino, dicp->di_forkoff); 2441 return XFS_ERROR(EFSCORRUPTED); 2442 } 2443 if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) { 2444 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)", 2445 XFS_ERRLEVEL_LOW, mp, dicp); 2446 xfs_buf_relse(bp); 2447 xfs_fs_cmn_err(CE_ALERT, mp, 2448 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p", 2449 item->ri_buf[1].i_len, item); 2450 return XFS_ERROR(EFSCORRUPTED); 2451 } 2452 2453 /* The core is in in-core format */ 2454 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core, 2455 (xfs_dinode_core_t*)item->ri_buf[1].i_addr, -1); 2456 2457 /* the rest is in on-disk format */ 2458 if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) { 2459 memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t), 2460 item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t), 2461 item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t)); 2462 } 2463 2464 fields = in_f->ilf_fields; 2465 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { 2466 case XFS_ILOG_DEV: 2467 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, in_f->ilf_u.ilfu_rdev); 2468 2469 break; 2470 case XFS_ILOG_UUID: 2471 dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid; 2472 break; 2473 } 2474 2475 if (in_f->ilf_size == 2) 2476 goto write_inode_buffer; 2477 len = item->ri_buf[2].i_len; 2478 src = item->ri_buf[2].i_addr; 2479 ASSERT(in_f->ilf_size <= 4); 2480 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 2481 ASSERT(!(fields & XFS_ILOG_DFORK) || 2482 (len == in_f->ilf_dsize)); 2483 2484 switch (fields & XFS_ILOG_DFORK) { 2485 case XFS_ILOG_DDATA: 2486 case XFS_ILOG_DEXT: 2487 memcpy(&dip->di_u, src, len); 2488 break; 2489 2490 case XFS_ILOG_DBROOT: 2491 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len, 2492 &(dip->di_u.di_bmbt), 2493 XFS_DFORK_DSIZE(dip, mp)); 2494 break; 2495 2496 default: 2497 /* 2498 * There are no data fork flags set. 2499 */ 2500 ASSERT((fields & XFS_ILOG_DFORK) == 0); 2501 break; 2502 } 2503 2504 /* 2505 * If we logged any attribute data, recover it. There may or 2506 * may not have been any other non-core data logged in this 2507 * transaction. 2508 */ 2509 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 2510 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 2511 attr_index = 3; 2512 } else { 2513 attr_index = 2; 2514 } 2515 len = item->ri_buf[attr_index].i_len; 2516 src = item->ri_buf[attr_index].i_addr; 2517 ASSERT(len == in_f->ilf_asize); 2518 2519 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 2520 case XFS_ILOG_ADATA: 2521 case XFS_ILOG_AEXT: 2522 dest = XFS_DFORK_APTR(dip); 2523 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 2524 memcpy(dest, src, len); 2525 break; 2526 2527 case XFS_ILOG_ABROOT: 2528 dest = XFS_DFORK_APTR(dip); 2529 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len, 2530 (xfs_bmdr_block_t*)dest, 2531 XFS_DFORK_ASIZE(dip, mp)); 2532 break; 2533 2534 default: 2535 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag"); 2536 ASSERT(0); 2537 xfs_buf_relse(bp); 2538 return XFS_ERROR(EIO); 2539 } 2540 } 2541 2542 write_inode_buffer: 2543 if (ITEM_TYPE(item) == XFS_LI_INODE) { 2544 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || 2545 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); 2546 XFS_BUF_SET_FSPRIVATE(bp, mp); 2547 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2548 xfs_bdwrite(mp, bp); 2549 } else { 2550 XFS_BUF_STALE(bp); 2551 error = xfs_bwrite(mp, bp); 2552 } 2553 2554 return (error); 2555 } 2556 2557 /* 2558 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t 2559 * structure, so that we know not to do any dquot item or dquot buffer recovery, 2560 * of that type. 2561 */ 2562 STATIC int 2563 xlog_recover_do_quotaoff_trans( 2564 xlog_t *log, 2565 xlog_recover_item_t *item, 2566 int pass) 2567 { 2568 xfs_qoff_logformat_t *qoff_f; 2569 2570 if (pass == XLOG_RECOVER_PASS2) { 2571 return (0); 2572 } 2573 2574 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr; 2575 ASSERT(qoff_f); 2576 2577 /* 2578 * The logitem format's flag tells us if this was user quotaoff, 2579 * group quotaoff or both. 2580 */ 2581 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 2582 log->l_quotaoffs_flag |= XFS_DQ_USER; 2583 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 2584 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 2585 2586 return (0); 2587 } 2588 2589 /* 2590 * Recover a dquot record 2591 */ 2592 STATIC int 2593 xlog_recover_do_dquot_trans( 2594 xlog_t *log, 2595 xlog_recover_item_t *item, 2596 int pass) 2597 { 2598 xfs_mount_t *mp; 2599 xfs_buf_t *bp; 2600 struct xfs_disk_dquot *ddq, *recddq; 2601 int error; 2602 xfs_dq_logformat_t *dq_f; 2603 uint type; 2604 2605 if (pass == XLOG_RECOVER_PASS1) { 2606 return 0; 2607 } 2608 mp = log->l_mp; 2609 2610 /* 2611 * Filesystems are required to send in quota flags at mount time. 2612 */ 2613 if (mp->m_qflags == 0) 2614 return (0); 2615 2616 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr; 2617 ASSERT(recddq); 2618 /* 2619 * This type of quotas was turned off, so ignore this record. 2620 */ 2621 type = INT_GET(recddq->d_flags, ARCH_CONVERT) & 2622 (XFS_DQ_USER | XFS_DQ_GROUP); 2623 ASSERT(type); 2624 if (log->l_quotaoffs_flag & type) 2625 return (0); 2626 2627 /* 2628 * At this point we know that quota was _not_ turned off. 2629 * Since the mount flags are not indicating to us otherwise, this 2630 * must mean that quota is on, and the dquot needs to be replayed. 2631 * Remember that we may not have fully recovered the superblock yet, 2632 * so we can't do the usual trick of looking at the SB quota bits. 2633 * 2634 * The other possibility, of course, is that the quota subsystem was 2635 * removed since the last mount - ENOSYS. 2636 */ 2637 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr; 2638 ASSERT(dq_f); 2639 if ((error = xfs_qm_dqcheck(recddq, 2640 dq_f->qlf_id, 2641 0, XFS_QMOPT_DOWARN, 2642 "xlog_recover_do_dquot_trans (log copy)"))) { 2643 return XFS_ERROR(EIO); 2644 } 2645 ASSERT(dq_f->qlf_len == 1); 2646 2647 error = xfs_read_buf(mp, mp->m_ddev_targp, 2648 dq_f->qlf_blkno, 2649 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 2650 0, &bp); 2651 if (error) { 2652 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp, 2653 bp, dq_f->qlf_blkno); 2654 return error; 2655 } 2656 ASSERT(bp); 2657 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset); 2658 2659 /* 2660 * At least the magic num portion should be on disk because this 2661 * was among a chunk of dquots created earlier, and we did some 2662 * minimal initialization then. 2663 */ 2664 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2665 "xlog_recover_do_dquot_trans")) { 2666 xfs_buf_relse(bp); 2667 return XFS_ERROR(EIO); 2668 } 2669 2670 memcpy(ddq, recddq, item->ri_buf[1].i_len); 2671 2672 ASSERT(dq_f->qlf_size == 2); 2673 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || 2674 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); 2675 XFS_BUF_SET_FSPRIVATE(bp, mp); 2676 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2677 xfs_bdwrite(mp, bp); 2678 2679 return (0); 2680 } 2681 2682 /* 2683 * This routine is called to create an in-core extent free intent 2684 * item from the efi format structure which was logged on disk. 2685 * It allocates an in-core efi, copies the extents from the format 2686 * structure into it, and adds the efi to the AIL with the given 2687 * LSN. 2688 */ 2689 STATIC void 2690 xlog_recover_do_efi_trans( 2691 xlog_t *log, 2692 xlog_recover_item_t *item, 2693 xfs_lsn_t lsn, 2694 int pass) 2695 { 2696 xfs_mount_t *mp; 2697 xfs_efi_log_item_t *efip; 2698 xfs_efi_log_format_t *efi_formatp; 2699 SPLDECL(s); 2700 2701 if (pass == XLOG_RECOVER_PASS1) { 2702 return; 2703 } 2704 2705 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr; 2706 ASSERT(item->ri_buf[0].i_len == 2707 (sizeof(xfs_efi_log_format_t) + 2708 ((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t)))); 2709 2710 mp = log->l_mp; 2711 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 2712 memcpy((char *)&(efip->efi_format), (char *)efi_formatp, 2713 sizeof(xfs_efi_log_format_t) + 2714 ((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t))); 2715 efip->efi_next_extent = efi_formatp->efi_nextents; 2716 efip->efi_flags |= XFS_EFI_COMMITTED; 2717 2718 AIL_LOCK(mp,s); 2719 /* 2720 * xfs_trans_update_ail() drops the AIL lock. 2721 */ 2722 xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn, s); 2723 } 2724 2725 2726 /* 2727 * This routine is called when an efd format structure is found in 2728 * a committed transaction in the log. It's purpose is to cancel 2729 * the corresponding efi if it was still in the log. To do this 2730 * it searches the AIL for the efi with an id equal to that in the 2731 * efd format structure. If we find it, we remove the efi from the 2732 * AIL and free it. 2733 */ 2734 STATIC void 2735 xlog_recover_do_efd_trans( 2736 xlog_t *log, 2737 xlog_recover_item_t *item, 2738 int pass) 2739 { 2740 xfs_mount_t *mp; 2741 xfs_efd_log_format_t *efd_formatp; 2742 xfs_efi_log_item_t *efip = NULL; 2743 xfs_log_item_t *lip; 2744 int gen; 2745 int nexts; 2746 __uint64_t efi_id; 2747 SPLDECL(s); 2748 2749 if (pass == XLOG_RECOVER_PASS1) { 2750 return; 2751 } 2752 2753 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr; 2754 ASSERT(item->ri_buf[0].i_len == 2755 (sizeof(xfs_efd_log_format_t) + 2756 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_t)))); 2757 efi_id = efd_formatp->efd_efi_id; 2758 2759 /* 2760 * Search for the efi with the id in the efd format structure 2761 * in the AIL. 2762 */ 2763 mp = log->l_mp; 2764 AIL_LOCK(mp,s); 2765 lip = xfs_trans_first_ail(mp, &gen); 2766 while (lip != NULL) { 2767 if (lip->li_type == XFS_LI_EFI) { 2768 efip = (xfs_efi_log_item_t *)lip; 2769 if (efip->efi_format.efi_id == efi_id) { 2770 /* 2771 * xfs_trans_delete_ail() drops the 2772 * AIL lock. 2773 */ 2774 xfs_trans_delete_ail(mp, lip, s); 2775 break; 2776 } 2777 } 2778 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 2779 } 2780 if (lip == NULL) { 2781 AIL_UNLOCK(mp, s); 2782 } 2783 2784 /* 2785 * If we found it, then free it up. If it wasn't there, it 2786 * must have been overwritten in the log. Oh well. 2787 */ 2788 if (lip != NULL) { 2789 nexts = efip->efi_format.efi_nextents; 2790 if (nexts > XFS_EFI_MAX_FAST_EXTENTS) { 2791 kmem_free(lip, sizeof(xfs_efi_log_item_t) + 2792 ((nexts - 1) * sizeof(xfs_extent_t))); 2793 } else { 2794 kmem_zone_free(xfs_efi_zone, efip); 2795 } 2796 } 2797 } 2798 2799 /* 2800 * Perform the transaction 2801 * 2802 * If the transaction modifies a buffer or inode, do it now. Otherwise, 2803 * EFIs and EFDs get queued up by adding entries into the AIL for them. 2804 */ 2805 STATIC int 2806 xlog_recover_do_trans( 2807 xlog_t *log, 2808 xlog_recover_t *trans, 2809 int pass) 2810 { 2811 int error = 0; 2812 xlog_recover_item_t *item, *first_item; 2813 2814 if ((error = xlog_recover_reorder_trans(log, trans))) 2815 return error; 2816 first_item = item = trans->r_itemq; 2817 do { 2818 /* 2819 * we don't need to worry about the block number being 2820 * truncated in > 1 TB buffers because in user-land, 2821 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so 2822 * the blkno's will get through the user-mode buffer 2823 * cache properly. The only bad case is o32 kernels 2824 * where xfs_daddr_t is 32-bits but mount will warn us 2825 * off a > 1 TB filesystem before we get here. 2826 */ 2827 if ((ITEM_TYPE(item) == XFS_LI_BUF) || 2828 (ITEM_TYPE(item) == XFS_LI_6_1_BUF) || 2829 (ITEM_TYPE(item) == XFS_LI_5_3_BUF)) { 2830 if ((error = xlog_recover_do_buffer_trans(log, item, 2831 pass))) 2832 break; 2833 } else if ((ITEM_TYPE(item) == XFS_LI_INODE) || 2834 (ITEM_TYPE(item) == XFS_LI_6_1_INODE) || 2835 (ITEM_TYPE(item) == XFS_LI_5_3_INODE)) { 2836 if ((error = xlog_recover_do_inode_trans(log, item, 2837 pass))) 2838 break; 2839 } else if (ITEM_TYPE(item) == XFS_LI_EFI) { 2840 xlog_recover_do_efi_trans(log, item, trans->r_lsn, 2841 pass); 2842 } else if (ITEM_TYPE(item) == XFS_LI_EFD) { 2843 xlog_recover_do_efd_trans(log, item, pass); 2844 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) { 2845 if ((error = xlog_recover_do_dquot_trans(log, item, 2846 pass))) 2847 break; 2848 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) { 2849 if ((error = xlog_recover_do_quotaoff_trans(log, item, 2850 pass))) 2851 break; 2852 } else { 2853 xlog_warn("XFS: xlog_recover_do_trans"); 2854 ASSERT(0); 2855 error = XFS_ERROR(EIO); 2856 break; 2857 } 2858 item = item->ri_next; 2859 } while (first_item != item); 2860 2861 return error; 2862 } 2863 2864 /* 2865 * Free up any resources allocated by the transaction 2866 * 2867 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 2868 */ 2869 STATIC void 2870 xlog_recover_free_trans( 2871 xlog_recover_t *trans) 2872 { 2873 xlog_recover_item_t *first_item, *item, *free_item; 2874 int i; 2875 2876 item = first_item = trans->r_itemq; 2877 do { 2878 free_item = item; 2879 item = item->ri_next; 2880 /* Free the regions in the item. */ 2881 for (i = 0; i < free_item->ri_cnt; i++) { 2882 kmem_free(free_item->ri_buf[i].i_addr, 2883 free_item->ri_buf[i].i_len); 2884 } 2885 /* Free the item itself */ 2886 kmem_free(free_item->ri_buf, 2887 (free_item->ri_total * sizeof(xfs_log_iovec_t))); 2888 kmem_free(free_item, sizeof(xlog_recover_item_t)); 2889 } while (first_item != item); 2890 /* Free the transaction recover structure */ 2891 kmem_free(trans, sizeof(xlog_recover_t)); 2892 } 2893 2894 STATIC int 2895 xlog_recover_commit_trans( 2896 xlog_t *log, 2897 xlog_recover_t **q, 2898 xlog_recover_t *trans, 2899 int pass) 2900 { 2901 int error; 2902 2903 if ((error = xlog_recover_unlink_tid(q, trans))) 2904 return error; 2905 if ((error = xlog_recover_do_trans(log, trans, pass))) 2906 return error; 2907 xlog_recover_free_trans(trans); /* no error */ 2908 return 0; 2909 } 2910 2911 STATIC int 2912 xlog_recover_unmount_trans( 2913 xlog_recover_t *trans) 2914 { 2915 /* Do nothing now */ 2916 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR"); 2917 return 0; 2918 } 2919 2920 /* 2921 * There are two valid states of the r_state field. 0 indicates that the 2922 * transaction structure is in a normal state. We have either seen the 2923 * start of the transaction or the last operation we added was not a partial 2924 * operation. If the last operation we added to the transaction was a 2925 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 2926 * 2927 * NOTE: skip LRs with 0 data length. 2928 */ 2929 STATIC int 2930 xlog_recover_process_data( 2931 xlog_t *log, 2932 xlog_recover_t *rhash[], 2933 xlog_rec_header_t *rhead, 2934 xfs_caddr_t dp, 2935 int pass) 2936 { 2937 xfs_caddr_t lp; 2938 int num_logops; 2939 xlog_op_header_t *ohead; 2940 xlog_recover_t *trans; 2941 xlog_tid_t tid; 2942 int error; 2943 unsigned long hash; 2944 uint flags; 2945 2946 lp = dp + INT_GET(rhead->h_len, ARCH_CONVERT); 2947 num_logops = INT_GET(rhead->h_num_logops, ARCH_CONVERT); 2948 2949 /* check the log format matches our own - else we can't recover */ 2950 if (xlog_header_check_recover(log->l_mp, rhead)) 2951 return (XFS_ERROR(EIO)); 2952 2953 while ((dp < lp) && num_logops) { 2954 ASSERT(dp + sizeof(xlog_op_header_t) <= lp); 2955 ohead = (xlog_op_header_t *)dp; 2956 dp += sizeof(xlog_op_header_t); 2957 if (ohead->oh_clientid != XFS_TRANSACTION && 2958 ohead->oh_clientid != XFS_LOG) { 2959 xlog_warn( 2960 "XFS: xlog_recover_process_data: bad clientid"); 2961 ASSERT(0); 2962 return (XFS_ERROR(EIO)); 2963 } 2964 tid = INT_GET(ohead->oh_tid, ARCH_CONVERT); 2965 hash = XLOG_RHASH(tid); 2966 trans = xlog_recover_find_tid(rhash[hash], tid); 2967 if (trans == NULL) { /* not found; add new tid */ 2968 if (ohead->oh_flags & XLOG_START_TRANS) 2969 xlog_recover_new_tid(&rhash[hash], tid, 2970 INT_GET(rhead->h_lsn, ARCH_CONVERT)); 2971 } else { 2972 ASSERT(dp+INT_GET(ohead->oh_len, ARCH_CONVERT) <= lp); 2973 flags = ohead->oh_flags & ~XLOG_END_TRANS; 2974 if (flags & XLOG_WAS_CONT_TRANS) 2975 flags &= ~XLOG_CONTINUE_TRANS; 2976 switch (flags) { 2977 case XLOG_COMMIT_TRANS: 2978 error = xlog_recover_commit_trans(log, 2979 &rhash[hash], trans, pass); 2980 break; 2981 case XLOG_UNMOUNT_TRANS: 2982 error = xlog_recover_unmount_trans(trans); 2983 break; 2984 case XLOG_WAS_CONT_TRANS: 2985 error = xlog_recover_add_to_cont_trans(trans, 2986 dp, INT_GET(ohead->oh_len, 2987 ARCH_CONVERT)); 2988 break; 2989 case XLOG_START_TRANS: 2990 xlog_warn( 2991 "XFS: xlog_recover_process_data: bad transaction"); 2992 ASSERT(0); 2993 error = XFS_ERROR(EIO); 2994 break; 2995 case 0: 2996 case XLOG_CONTINUE_TRANS: 2997 error = xlog_recover_add_to_trans(trans, 2998 dp, INT_GET(ohead->oh_len, 2999 ARCH_CONVERT)); 3000 break; 3001 default: 3002 xlog_warn( 3003 "XFS: xlog_recover_process_data: bad flag"); 3004 ASSERT(0); 3005 error = XFS_ERROR(EIO); 3006 break; 3007 } 3008 if (error) 3009 return error; 3010 } 3011 dp += INT_GET(ohead->oh_len, ARCH_CONVERT); 3012 num_logops--; 3013 } 3014 return 0; 3015 } 3016 3017 /* 3018 * Process an extent free intent item that was recovered from 3019 * the log. We need to free the extents that it describes. 3020 */ 3021 STATIC void 3022 xlog_recover_process_efi( 3023 xfs_mount_t *mp, 3024 xfs_efi_log_item_t *efip) 3025 { 3026 xfs_efd_log_item_t *efdp; 3027 xfs_trans_t *tp; 3028 int i; 3029 xfs_extent_t *extp; 3030 xfs_fsblock_t startblock_fsb; 3031 3032 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED)); 3033 3034 /* 3035 * First check the validity of the extents described by the 3036 * EFI. If any are bad, then assume that all are bad and 3037 * just toss the EFI. 3038 */ 3039 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3040 extp = &(efip->efi_format.efi_extents[i]); 3041 startblock_fsb = XFS_BB_TO_FSB(mp, 3042 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 3043 if ((startblock_fsb == 0) || 3044 (extp->ext_len == 0) || 3045 (startblock_fsb >= mp->m_sb.sb_dblocks) || 3046 (extp->ext_len >= mp->m_sb.sb_agblocks)) { 3047 /* 3048 * This will pull the EFI from the AIL and 3049 * free the memory associated with it. 3050 */ 3051 xfs_efi_release(efip, efip->efi_format.efi_nextents); 3052 return; 3053 } 3054 } 3055 3056 tp = xfs_trans_alloc(mp, 0); 3057 xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0); 3058 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 3059 3060 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3061 extp = &(efip->efi_format.efi_extents[i]); 3062 xfs_free_extent(tp, extp->ext_start, extp->ext_len); 3063 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start, 3064 extp->ext_len); 3065 } 3066 3067 efip->efi_flags |= XFS_EFI_RECOVERED; 3068 xfs_trans_commit(tp, 0, NULL); 3069 } 3070 3071 /* 3072 * Verify that once we've encountered something other than an EFI 3073 * in the AIL that there are no more EFIs in the AIL. 3074 */ 3075 #if defined(DEBUG) 3076 STATIC void 3077 xlog_recover_check_ail( 3078 xfs_mount_t *mp, 3079 xfs_log_item_t *lip, 3080 int gen) 3081 { 3082 int orig_gen = gen; 3083 3084 do { 3085 ASSERT(lip->li_type != XFS_LI_EFI); 3086 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 3087 /* 3088 * The check will be bogus if we restart from the 3089 * beginning of the AIL, so ASSERT that we don't. 3090 * We never should since we're holding the AIL lock 3091 * the entire time. 3092 */ 3093 ASSERT(gen == orig_gen); 3094 } while (lip != NULL); 3095 } 3096 #endif /* DEBUG */ 3097 3098 /* 3099 * When this is called, all of the EFIs which did not have 3100 * corresponding EFDs should be in the AIL. What we do now 3101 * is free the extents associated with each one. 3102 * 3103 * Since we process the EFIs in normal transactions, they 3104 * will be removed at some point after the commit. This prevents 3105 * us from just walking down the list processing each one. 3106 * We'll use a flag in the EFI to skip those that we've already 3107 * processed and use the AIL iteration mechanism's generation 3108 * count to try to speed this up at least a bit. 3109 * 3110 * When we start, we know that the EFIs are the only things in 3111 * the AIL. As we process them, however, other items are added 3112 * to the AIL. Since everything added to the AIL must come after 3113 * everything already in the AIL, we stop processing as soon as 3114 * we see something other than an EFI in the AIL. 3115 */ 3116 STATIC void 3117 xlog_recover_process_efis( 3118 xlog_t *log) 3119 { 3120 xfs_log_item_t *lip; 3121 xfs_efi_log_item_t *efip; 3122 int gen; 3123 xfs_mount_t *mp; 3124 SPLDECL(s); 3125 3126 mp = log->l_mp; 3127 AIL_LOCK(mp,s); 3128 3129 lip = xfs_trans_first_ail(mp, &gen); 3130 while (lip != NULL) { 3131 /* 3132 * We're done when we see something other than an EFI. 3133 */ 3134 if (lip->li_type != XFS_LI_EFI) { 3135 xlog_recover_check_ail(mp, lip, gen); 3136 break; 3137 } 3138 3139 /* 3140 * Skip EFIs that we've already processed. 3141 */ 3142 efip = (xfs_efi_log_item_t *)lip; 3143 if (efip->efi_flags & XFS_EFI_RECOVERED) { 3144 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 3145 continue; 3146 } 3147 3148 AIL_UNLOCK(mp, s); 3149 xlog_recover_process_efi(mp, efip); 3150 AIL_LOCK(mp,s); 3151 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 3152 } 3153 AIL_UNLOCK(mp, s); 3154 } 3155 3156 /* 3157 * This routine performs a transaction to null out a bad inode pointer 3158 * in an agi unlinked inode hash bucket. 3159 */ 3160 STATIC void 3161 xlog_recover_clear_agi_bucket( 3162 xfs_mount_t *mp, 3163 xfs_agnumber_t agno, 3164 int bucket) 3165 { 3166 xfs_trans_t *tp; 3167 xfs_agi_t *agi; 3168 xfs_buf_t *agibp; 3169 int offset; 3170 int error; 3171 3172 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); 3173 xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0); 3174 3175 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 3176 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 3177 XFS_FSS_TO_BB(mp, 1), 0, &agibp); 3178 if (error) { 3179 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3180 return; 3181 } 3182 3183 agi = XFS_BUF_TO_AGI(agibp); 3184 if (INT_GET(agi->agi_magicnum, ARCH_CONVERT) != XFS_AGI_MAGIC) { 3185 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3186 return; 3187 } 3188 ASSERT(INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC); 3189 3190 INT_SET(agi->agi_unlinked[bucket], ARCH_CONVERT, NULLAGINO); 3191 offset = offsetof(xfs_agi_t, agi_unlinked) + 3192 (sizeof(xfs_agino_t) * bucket); 3193 xfs_trans_log_buf(tp, agibp, offset, 3194 (offset + sizeof(xfs_agino_t) - 1)); 3195 3196 (void) xfs_trans_commit(tp, 0, NULL); 3197 } 3198 3199 /* 3200 * xlog_iunlink_recover 3201 * 3202 * This is called during recovery to process any inodes which 3203 * we unlinked but not freed when the system crashed. These 3204 * inodes will be on the lists in the AGI blocks. What we do 3205 * here is scan all the AGIs and fully truncate and free any 3206 * inodes found on the lists. Each inode is removed from the 3207 * lists when it has been fully truncated and is freed. The 3208 * freeing of the inode and its removal from the list must be 3209 * atomic. 3210 */ 3211 void 3212 xlog_recover_process_iunlinks( 3213 xlog_t *log) 3214 { 3215 xfs_mount_t *mp; 3216 xfs_agnumber_t agno; 3217 xfs_agi_t *agi; 3218 xfs_buf_t *agibp; 3219 xfs_buf_t *ibp; 3220 xfs_dinode_t *dip; 3221 xfs_inode_t *ip; 3222 xfs_agino_t agino; 3223 xfs_ino_t ino; 3224 int bucket; 3225 int error; 3226 uint mp_dmevmask; 3227 3228 mp = log->l_mp; 3229 3230 /* 3231 * Prevent any DMAPI event from being sent while in this function. 3232 */ 3233 mp_dmevmask = mp->m_dmevmask; 3234 mp->m_dmevmask = 0; 3235 3236 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3237 /* 3238 * Find the agi for this ag. 3239 */ 3240 agibp = xfs_buf_read(mp->m_ddev_targp, 3241 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 3242 XFS_FSS_TO_BB(mp, 1), 0); 3243 if (XFS_BUF_ISERROR(agibp)) { 3244 xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)", 3245 log->l_mp, agibp, 3246 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp))); 3247 } 3248 agi = XFS_BUF_TO_AGI(agibp); 3249 ASSERT(XFS_AGI_MAGIC == 3250 INT_GET(agi->agi_magicnum, ARCH_CONVERT)); 3251 3252 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 3253 3254 agino = INT_GET(agi->agi_unlinked[bucket], ARCH_CONVERT); 3255 while (agino != NULLAGINO) { 3256 3257 /* 3258 * Release the agi buffer so that it can 3259 * be acquired in the normal course of the 3260 * transaction to truncate and free the inode. 3261 */ 3262 xfs_buf_relse(agibp); 3263 3264 ino = XFS_AGINO_TO_INO(mp, agno, agino); 3265 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0); 3266 ASSERT(error || (ip != NULL)); 3267 3268 if (!error) { 3269 /* 3270 * Get the on disk inode to find the 3271 * next inode in the bucket. 3272 */ 3273 error = xfs_itobp(mp, NULL, ip, &dip, 3274 &ibp, 0); 3275 ASSERT(error || (dip != NULL)); 3276 } 3277 3278 if (!error) { 3279 ASSERT(ip->i_d.di_nlink == 0); 3280 3281 /* setup for the next pass */ 3282 agino = INT_GET(dip->di_next_unlinked, 3283 ARCH_CONVERT); 3284 xfs_buf_relse(ibp); 3285 /* 3286 * Prevent any DMAPI event from 3287 * being sent when the 3288 * reference on the inode is 3289 * dropped. 3290 */ 3291 ip->i_d.di_dmevmask = 0; 3292 3293 /* 3294 * If this is a new inode, handle 3295 * it specially. Otherwise, 3296 * just drop our reference to the 3297 * inode. If there are no 3298 * other references, this will 3299 * send the inode to 3300 * xfs_inactive() which will 3301 * truncate the file and free 3302 * the inode. 3303 */ 3304 if (ip->i_d.di_mode == 0) 3305 xfs_iput_new(ip, 0); 3306 else 3307 VN_RELE(XFS_ITOV(ip)); 3308 } else { 3309 /* 3310 * We can't read in the inode 3311 * this bucket points to, or 3312 * this inode is messed up. Just 3313 * ditch this bucket of inodes. We 3314 * will lose some inodes and space, 3315 * but at least we won't hang. Call 3316 * xlog_recover_clear_agi_bucket() 3317 * to perform a transaction to clear 3318 * the inode pointer in the bucket. 3319 */ 3320 xlog_recover_clear_agi_bucket(mp, agno, 3321 bucket); 3322 3323 agino = NULLAGINO; 3324 } 3325 3326 /* 3327 * Reacquire the agibuffer and continue around 3328 * the loop. 3329 */ 3330 agibp = xfs_buf_read(mp->m_ddev_targp, 3331 XFS_AG_DADDR(mp, agno, 3332 XFS_AGI_DADDR(mp)), 3333 XFS_FSS_TO_BB(mp, 1), 0); 3334 if (XFS_BUF_ISERROR(agibp)) { 3335 xfs_ioerror_alert( 3336 "xlog_recover_process_iunlinks(#2)", 3337 log->l_mp, agibp, 3338 XFS_AG_DADDR(mp, agno, 3339 XFS_AGI_DADDR(mp))); 3340 } 3341 agi = XFS_BUF_TO_AGI(agibp); 3342 ASSERT(XFS_AGI_MAGIC == INT_GET( 3343 agi->agi_magicnum, ARCH_CONVERT)); 3344 } 3345 } 3346 3347 /* 3348 * Release the buffer for the current agi so we can 3349 * go on to the next one. 3350 */ 3351 xfs_buf_relse(agibp); 3352 } 3353 3354 mp->m_dmevmask = mp_dmevmask; 3355 } 3356 3357 3358 #ifdef DEBUG 3359 STATIC void 3360 xlog_pack_data_checksum( 3361 xlog_t *log, 3362 xlog_in_core_t *iclog, 3363 int size) 3364 { 3365 int i; 3366 uint *up; 3367 uint chksum = 0; 3368 3369 up = (uint *)iclog->ic_datap; 3370 /* divide length by 4 to get # words */ 3371 for (i = 0; i < (size >> 2); i++) { 3372 chksum ^= INT_GET(*up, ARCH_CONVERT); 3373 up++; 3374 } 3375 INT_SET(iclog->ic_header.h_chksum, ARCH_CONVERT, chksum); 3376 } 3377 #else 3378 #define xlog_pack_data_checksum(log, iclog, size) 3379 #endif 3380 3381 /* 3382 * Stamp cycle number in every block 3383 */ 3384 void 3385 xlog_pack_data( 3386 xlog_t *log, 3387 xlog_in_core_t *iclog, 3388 int roundoff) 3389 { 3390 int i, j, k; 3391 int size = iclog->ic_offset + roundoff; 3392 uint cycle_lsn; 3393 xfs_caddr_t dp; 3394 xlog_in_core_2_t *xhdr; 3395 3396 xlog_pack_data_checksum(log, iclog, size); 3397 3398 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 3399 3400 dp = iclog->ic_datap; 3401 for (i = 0; i < BTOBB(size) && 3402 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3403 iclog->ic_header.h_cycle_data[i] = *(uint *)dp; 3404 *(uint *)dp = cycle_lsn; 3405 dp += BBSIZE; 3406 } 3407 3408 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 3409 xhdr = (xlog_in_core_2_t *)&iclog->ic_header; 3410 for ( ; i < BTOBB(size); i++) { 3411 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3412 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3413 xhdr[j].hic_xheader.xh_cycle_data[k] = *(uint *)dp; 3414 *(uint *)dp = cycle_lsn; 3415 dp += BBSIZE; 3416 } 3417 3418 for (i = 1; i < log->l_iclog_heads; i++) { 3419 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 3420 } 3421 } 3422 } 3423 3424 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY) 3425 STATIC void 3426 xlog_unpack_data_checksum( 3427 xlog_rec_header_t *rhead, 3428 xfs_caddr_t dp, 3429 xlog_t *log) 3430 { 3431 uint *up = (uint *)dp; 3432 uint chksum = 0; 3433 int i; 3434 3435 /* divide length by 4 to get # words */ 3436 for (i=0; i < INT_GET(rhead->h_len, ARCH_CONVERT) >> 2; i++) { 3437 chksum ^= INT_GET(*up, ARCH_CONVERT); 3438 up++; 3439 } 3440 if (chksum != INT_GET(rhead->h_chksum, ARCH_CONVERT)) { 3441 if (rhead->h_chksum || 3442 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) { 3443 cmn_err(CE_DEBUG, 3444 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)", 3445 INT_GET(rhead->h_chksum, ARCH_CONVERT), chksum); 3446 cmn_err(CE_DEBUG, 3447 "XFS: Disregard message if filesystem was created with non-DEBUG kernel"); 3448 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 3449 cmn_err(CE_DEBUG, 3450 "XFS: LogR this is a LogV2 filesystem"); 3451 } 3452 log->l_flags |= XLOG_CHKSUM_MISMATCH; 3453 } 3454 } 3455 } 3456 #else 3457 #define xlog_unpack_data_checksum(rhead, dp, log) 3458 #endif 3459 3460 STATIC void 3461 xlog_unpack_data( 3462 xlog_rec_header_t *rhead, 3463 xfs_caddr_t dp, 3464 xlog_t *log) 3465 { 3466 int i, j, k; 3467 xlog_in_core_2_t *xhdr; 3468 3469 for (i = 0; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)) && 3470 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3471 *(uint *)dp = *(uint *)&rhead->h_cycle_data[i]; 3472 dp += BBSIZE; 3473 } 3474 3475 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 3476 xhdr = (xlog_in_core_2_t *)rhead; 3477 for ( ; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); i++) { 3478 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3479 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3480 *(uint *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 3481 dp += BBSIZE; 3482 } 3483 } 3484 3485 xlog_unpack_data_checksum(rhead, dp, log); 3486 } 3487 3488 STATIC int 3489 xlog_valid_rec_header( 3490 xlog_t *log, 3491 xlog_rec_header_t *rhead, 3492 xfs_daddr_t blkno) 3493 { 3494 int hlen; 3495 3496 if (unlikely( 3497 (INT_GET(rhead->h_magicno, ARCH_CONVERT) != 3498 XLOG_HEADER_MAGIC_NUM))) { 3499 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 3500 XFS_ERRLEVEL_LOW, log->l_mp); 3501 return XFS_ERROR(EFSCORRUPTED); 3502 } 3503 if (unlikely( 3504 (!rhead->h_version || 3505 (INT_GET(rhead->h_version, ARCH_CONVERT) & 3506 (~XLOG_VERSION_OKBITS)) != 0))) { 3507 xlog_warn("XFS: %s: unrecognised log version (%d).", 3508 __FUNCTION__, INT_GET(rhead->h_version, ARCH_CONVERT)); 3509 return XFS_ERROR(EIO); 3510 } 3511 3512 /* LR body must have data or it wouldn't have been written */ 3513 hlen = INT_GET(rhead->h_len, ARCH_CONVERT); 3514 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 3515 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 3516 XFS_ERRLEVEL_LOW, log->l_mp); 3517 return XFS_ERROR(EFSCORRUPTED); 3518 } 3519 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 3520 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 3521 XFS_ERRLEVEL_LOW, log->l_mp); 3522 return XFS_ERROR(EFSCORRUPTED); 3523 } 3524 return 0; 3525 } 3526 3527 /* 3528 * Read the log from tail to head and process the log records found. 3529 * Handle the two cases where the tail and head are in the same cycle 3530 * and where the active portion of the log wraps around the end of 3531 * the physical log separately. The pass parameter is passed through 3532 * to the routines called to process the data and is not looked at 3533 * here. 3534 */ 3535 STATIC int 3536 xlog_do_recovery_pass( 3537 xlog_t *log, 3538 xfs_daddr_t head_blk, 3539 xfs_daddr_t tail_blk, 3540 int pass) 3541 { 3542 xlog_rec_header_t *rhead; 3543 xfs_daddr_t blk_no; 3544 xfs_caddr_t bufaddr, offset; 3545 xfs_buf_t *hbp, *dbp; 3546 int error = 0, h_size; 3547 int bblks, split_bblks; 3548 int hblks, split_hblks, wrapped_hblks; 3549 xlog_recover_t *rhash[XLOG_RHASH_SIZE]; 3550 3551 ASSERT(head_blk != tail_blk); 3552 3553 /* 3554 * Read the header of the tail block and get the iclog buffer size from 3555 * h_size. Use this to tell how many sectors make up the log header. 3556 */ 3557 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 3558 /* 3559 * When using variable length iclogs, read first sector of 3560 * iclog header and extract the header size from it. Get a 3561 * new hbp that is the correct size. 3562 */ 3563 hbp = xlog_get_bp(log, 1); 3564 if (!hbp) 3565 return ENOMEM; 3566 if ((error = xlog_bread(log, tail_blk, 1, hbp))) 3567 goto bread_err1; 3568 offset = xlog_align(log, tail_blk, 1, hbp); 3569 rhead = (xlog_rec_header_t *)offset; 3570 error = xlog_valid_rec_header(log, rhead, tail_blk); 3571 if (error) 3572 goto bread_err1; 3573 h_size = INT_GET(rhead->h_size, ARCH_CONVERT); 3574 if ((INT_GET(rhead->h_version, ARCH_CONVERT) 3575 & XLOG_VERSION_2) && 3576 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 3577 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 3578 if (h_size % XLOG_HEADER_CYCLE_SIZE) 3579 hblks++; 3580 xlog_put_bp(hbp); 3581 hbp = xlog_get_bp(log, hblks); 3582 } else { 3583 hblks = 1; 3584 } 3585 } else { 3586 ASSERT(log->l_sectbb_log == 0); 3587 hblks = 1; 3588 hbp = xlog_get_bp(log, 1); 3589 h_size = XLOG_BIG_RECORD_BSIZE; 3590 } 3591 3592 if (!hbp) 3593 return ENOMEM; 3594 dbp = xlog_get_bp(log, BTOBB(h_size)); 3595 if (!dbp) { 3596 xlog_put_bp(hbp); 3597 return ENOMEM; 3598 } 3599 3600 memset(rhash, 0, sizeof(rhash)); 3601 if (tail_blk <= head_blk) { 3602 for (blk_no = tail_blk; blk_no < head_blk; ) { 3603 if ((error = xlog_bread(log, blk_no, hblks, hbp))) 3604 goto bread_err2; 3605 offset = xlog_align(log, blk_no, hblks, hbp); 3606 rhead = (xlog_rec_header_t *)offset; 3607 error = xlog_valid_rec_header(log, rhead, blk_no); 3608 if (error) 3609 goto bread_err2; 3610 3611 /* blocks in data section */ 3612 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); 3613 error = xlog_bread(log, blk_no + hblks, bblks, dbp); 3614 if (error) 3615 goto bread_err2; 3616 offset = xlog_align(log, blk_no + hblks, bblks, dbp); 3617 xlog_unpack_data(rhead, offset, log); 3618 if ((error = xlog_recover_process_data(log, 3619 rhash, rhead, offset, pass))) 3620 goto bread_err2; 3621 blk_no += bblks + hblks; 3622 } 3623 } else { 3624 /* 3625 * Perform recovery around the end of the physical log. 3626 * When the head is not on the same cycle number as the tail, 3627 * we can't do a sequential recovery as above. 3628 */ 3629 blk_no = tail_blk; 3630 while (blk_no < log->l_logBBsize) { 3631 /* 3632 * Check for header wrapping around physical end-of-log 3633 */ 3634 offset = NULL; 3635 split_hblks = 0; 3636 wrapped_hblks = 0; 3637 if (blk_no + hblks <= log->l_logBBsize) { 3638 /* Read header in one read */ 3639 error = xlog_bread(log, blk_no, hblks, hbp); 3640 if (error) 3641 goto bread_err2; 3642 offset = xlog_align(log, blk_no, hblks, hbp); 3643 } else { 3644 /* This LR is split across physical log end */ 3645 if (blk_no != log->l_logBBsize) { 3646 /* some data before physical log end */ 3647 ASSERT(blk_no <= INT_MAX); 3648 split_hblks = log->l_logBBsize - (int)blk_no; 3649 ASSERT(split_hblks > 0); 3650 if ((error = xlog_bread(log, blk_no, 3651 split_hblks, hbp))) 3652 goto bread_err2; 3653 offset = xlog_align(log, blk_no, 3654 split_hblks, hbp); 3655 } 3656 /* 3657 * Note: this black magic still works with 3658 * large sector sizes (non-512) only because: 3659 * - we increased the buffer size originally 3660 * by 1 sector giving us enough extra space 3661 * for the second read; 3662 * - the log start is guaranteed to be sector 3663 * aligned; 3664 * - we read the log end (LR header start) 3665 * _first_, then the log start (LR header end) 3666 * - order is important. 3667 */ 3668 bufaddr = XFS_BUF_PTR(hbp); 3669 XFS_BUF_SET_PTR(hbp, 3670 bufaddr + BBTOB(split_hblks), 3671 BBTOB(hblks - split_hblks)); 3672 wrapped_hblks = hblks - split_hblks; 3673 error = xlog_bread(log, 0, wrapped_hblks, hbp); 3674 if (error) 3675 goto bread_err2; 3676 XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks)); 3677 if (!offset) 3678 offset = xlog_align(log, 0, 3679 wrapped_hblks, hbp); 3680 } 3681 rhead = (xlog_rec_header_t *)offset; 3682 error = xlog_valid_rec_header(log, rhead, 3683 split_hblks ? blk_no : 0); 3684 if (error) 3685 goto bread_err2; 3686 3687 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); 3688 blk_no += hblks; 3689 3690 /* Read in data for log record */ 3691 if (blk_no + bblks <= log->l_logBBsize) { 3692 error = xlog_bread(log, blk_no, bblks, dbp); 3693 if (error) 3694 goto bread_err2; 3695 offset = xlog_align(log, blk_no, bblks, dbp); 3696 } else { 3697 /* This log record is split across the 3698 * physical end of log */ 3699 offset = NULL; 3700 split_bblks = 0; 3701 if (blk_no != log->l_logBBsize) { 3702 /* some data is before the physical 3703 * end of log */ 3704 ASSERT(!wrapped_hblks); 3705 ASSERT(blk_no <= INT_MAX); 3706 split_bblks = 3707 log->l_logBBsize - (int)blk_no; 3708 ASSERT(split_bblks > 0); 3709 if ((error = xlog_bread(log, blk_no, 3710 split_bblks, dbp))) 3711 goto bread_err2; 3712 offset = xlog_align(log, blk_no, 3713 split_bblks, dbp); 3714 } 3715 /* 3716 * Note: this black magic still works with 3717 * large sector sizes (non-512) only because: 3718 * - we increased the buffer size originally 3719 * by 1 sector giving us enough extra space 3720 * for the second read; 3721 * - the log start is guaranteed to be sector 3722 * aligned; 3723 * - we read the log end (LR header start) 3724 * _first_, then the log start (LR header end) 3725 * - order is important. 3726 */ 3727 bufaddr = XFS_BUF_PTR(dbp); 3728 XFS_BUF_SET_PTR(dbp, 3729 bufaddr + BBTOB(split_bblks), 3730 BBTOB(bblks - split_bblks)); 3731 if ((error = xlog_bread(log, wrapped_hblks, 3732 bblks - split_bblks, dbp))) 3733 goto bread_err2; 3734 XFS_BUF_SET_PTR(dbp, bufaddr, h_size); 3735 if (!offset) 3736 offset = xlog_align(log, wrapped_hblks, 3737 bblks - split_bblks, dbp); 3738 } 3739 xlog_unpack_data(rhead, offset, log); 3740 if ((error = xlog_recover_process_data(log, rhash, 3741 rhead, offset, pass))) 3742 goto bread_err2; 3743 blk_no += bblks; 3744 } 3745 3746 ASSERT(blk_no >= log->l_logBBsize); 3747 blk_no -= log->l_logBBsize; 3748 3749 /* read first part of physical log */ 3750 while (blk_no < head_blk) { 3751 if ((error = xlog_bread(log, blk_no, hblks, hbp))) 3752 goto bread_err2; 3753 offset = xlog_align(log, blk_no, hblks, hbp); 3754 rhead = (xlog_rec_header_t *)offset; 3755 error = xlog_valid_rec_header(log, rhead, blk_no); 3756 if (error) 3757 goto bread_err2; 3758 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); 3759 if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp))) 3760 goto bread_err2; 3761 offset = xlog_align(log, blk_no+hblks, bblks, dbp); 3762 xlog_unpack_data(rhead, offset, log); 3763 if ((error = xlog_recover_process_data(log, rhash, 3764 rhead, offset, pass))) 3765 goto bread_err2; 3766 blk_no += bblks + hblks; 3767 } 3768 } 3769 3770 bread_err2: 3771 xlog_put_bp(dbp); 3772 bread_err1: 3773 xlog_put_bp(hbp); 3774 return error; 3775 } 3776 3777 /* 3778 * Do the recovery of the log. We actually do this in two phases. 3779 * The two passes are necessary in order to implement the function 3780 * of cancelling a record written into the log. The first pass 3781 * determines those things which have been cancelled, and the 3782 * second pass replays log items normally except for those which 3783 * have been cancelled. The handling of the replay and cancellations 3784 * takes place in the log item type specific routines. 3785 * 3786 * The table of items which have cancel records in the log is allocated 3787 * and freed at this level, since only here do we know when all of 3788 * the log recovery has been completed. 3789 */ 3790 STATIC int 3791 xlog_do_log_recovery( 3792 xlog_t *log, 3793 xfs_daddr_t head_blk, 3794 xfs_daddr_t tail_blk) 3795 { 3796 int error; 3797 3798 ASSERT(head_blk != tail_blk); 3799 3800 /* 3801 * First do a pass to find all of the cancelled buf log items. 3802 * Store them in the buf_cancel_table for use in the second pass. 3803 */ 3804 log->l_buf_cancel_table = 3805 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE * 3806 sizeof(xfs_buf_cancel_t*), 3807 KM_SLEEP); 3808 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3809 XLOG_RECOVER_PASS1); 3810 if (error != 0) { 3811 kmem_free(log->l_buf_cancel_table, 3812 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*)); 3813 log->l_buf_cancel_table = NULL; 3814 return error; 3815 } 3816 /* 3817 * Then do a second pass to actually recover the items in the log. 3818 * When it is complete free the table of buf cancel items. 3819 */ 3820 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3821 XLOG_RECOVER_PASS2); 3822 #ifdef DEBUG 3823 { 3824 int i; 3825 3826 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3827 ASSERT(log->l_buf_cancel_table[i] == NULL); 3828 } 3829 #endif /* DEBUG */ 3830 3831 kmem_free(log->l_buf_cancel_table, 3832 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*)); 3833 log->l_buf_cancel_table = NULL; 3834 3835 return error; 3836 } 3837 3838 /* 3839 * Do the actual recovery 3840 */ 3841 STATIC int 3842 xlog_do_recover( 3843 xlog_t *log, 3844 xfs_daddr_t head_blk, 3845 xfs_daddr_t tail_blk) 3846 { 3847 int error; 3848 xfs_buf_t *bp; 3849 xfs_sb_t *sbp; 3850 3851 /* 3852 * First replay the images in the log. 3853 */ 3854 error = xlog_do_log_recovery(log, head_blk, tail_blk); 3855 if (error) { 3856 return error; 3857 } 3858 3859 XFS_bflush(log->l_mp->m_ddev_targp); 3860 3861 /* 3862 * If IO errors happened during recovery, bail out. 3863 */ 3864 if (XFS_FORCED_SHUTDOWN(log->l_mp)) { 3865 return (EIO); 3866 } 3867 3868 /* 3869 * We now update the tail_lsn since much of the recovery has completed 3870 * and there may be space available to use. If there were no extent 3871 * or iunlinks, we can free up the entire log and set the tail_lsn to 3872 * be the last_sync_lsn. This was set in xlog_find_tail to be the 3873 * lsn of the last known good LR on disk. If there are extent frees 3874 * or iunlinks they will have some entries in the AIL; so we look at 3875 * the AIL to determine how to set the tail_lsn. 3876 */ 3877 xlog_assign_tail_lsn(log->l_mp); 3878 3879 /* 3880 * Now that we've finished replaying all buffer and inode 3881 * updates, re-read in the superblock. 3882 */ 3883 bp = xfs_getsb(log->l_mp, 0); 3884 XFS_BUF_UNDONE(bp); 3885 XFS_BUF_READ(bp); 3886 xfsbdstrat(log->l_mp, bp); 3887 if ((error = xfs_iowait(bp))) { 3888 xfs_ioerror_alert("xlog_do_recover", 3889 log->l_mp, bp, XFS_BUF_ADDR(bp)); 3890 ASSERT(0); 3891 xfs_buf_relse(bp); 3892 return error; 3893 } 3894 3895 /* Convert superblock from on-disk format */ 3896 sbp = &log->l_mp->m_sb; 3897 xfs_xlatesb(XFS_BUF_TO_SBP(bp), sbp, 1, XFS_SB_ALL_BITS); 3898 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); 3899 ASSERT(XFS_SB_GOOD_VERSION(sbp)); 3900 xfs_buf_relse(bp); 3901 3902 xlog_recover_check_summary(log); 3903 3904 /* Normal transactions can now occur */ 3905 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 3906 return 0; 3907 } 3908 3909 /* 3910 * Perform recovery and re-initialize some log variables in xlog_find_tail. 3911 * 3912 * Return error or zero. 3913 */ 3914 int 3915 xlog_recover( 3916 xlog_t *log, 3917 int readonly) 3918 { 3919 xfs_daddr_t head_blk, tail_blk; 3920 int error; 3921 3922 /* find the tail of the log */ 3923 if ((error = xlog_find_tail(log, &head_blk, &tail_blk, readonly))) 3924 return error; 3925 3926 if (tail_blk != head_blk) { 3927 /* There used to be a comment here: 3928 * 3929 * disallow recovery on read-only mounts. note -- mount 3930 * checks for ENOSPC and turns it into an intelligent 3931 * error message. 3932 * ...but this is no longer true. Now, unless you specify 3933 * NORECOVERY (in which case this function would never be 3934 * called), we just go ahead and recover. We do this all 3935 * under the vfs layer, so we can get away with it unless 3936 * the device itself is read-only, in which case we fail. 3937 */ 3938 if ((error = xfs_dev_is_read_only(log->l_mp, 3939 "recovery required"))) { 3940 return error; 3941 } 3942 3943 cmn_err(CE_NOTE, 3944 "Starting XFS recovery on filesystem: %s (dev: %s)", 3945 log->l_mp->m_fsname, XFS_BUFTARG_NAME(log->l_targ)); 3946 3947 error = xlog_do_recover(log, head_blk, tail_blk); 3948 log->l_flags |= XLOG_RECOVERY_NEEDED; 3949 } 3950 return error; 3951 } 3952 3953 /* 3954 * In the first part of recovery we replay inodes and buffers and build 3955 * up the list of extent free items which need to be processed. Here 3956 * we process the extent free items and clean up the on disk unlinked 3957 * inode lists. This is separated from the first part of recovery so 3958 * that the root and real-time bitmap inodes can be read in from disk in 3959 * between the two stages. This is necessary so that we can free space 3960 * in the real-time portion of the file system. 3961 */ 3962 int 3963 xlog_recover_finish( 3964 xlog_t *log, 3965 int mfsi_flags) 3966 { 3967 /* 3968 * Now we're ready to do the transactions needed for the 3969 * rest of recovery. Start with completing all the extent 3970 * free intent records and then process the unlinked inode 3971 * lists. At this point, we essentially run in normal mode 3972 * except that we're still performing recovery actions 3973 * rather than accepting new requests. 3974 */ 3975 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 3976 xlog_recover_process_efis(log); 3977 /* 3978 * Sync the log to get all the EFIs out of the AIL. 3979 * This isn't absolutely necessary, but it helps in 3980 * case the unlink transactions would have problems 3981 * pushing the EFIs out of the way. 3982 */ 3983 xfs_log_force(log->l_mp, (xfs_lsn_t)0, 3984 (XFS_LOG_FORCE | XFS_LOG_SYNC)); 3985 3986 if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) { 3987 xlog_recover_process_iunlinks(log); 3988 } 3989 3990 xlog_recover_check_summary(log); 3991 3992 cmn_err(CE_NOTE, 3993 "Ending XFS recovery on filesystem: %s (dev: %s)", 3994 log->l_mp->m_fsname, XFS_BUFTARG_NAME(log->l_targ)); 3995 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 3996 } else { 3997 cmn_err(CE_DEBUG, 3998 "!Ending clean XFS mount for filesystem: %s", 3999 log->l_mp->m_fsname); 4000 } 4001 return 0; 4002 } 4003 4004 4005 #if defined(DEBUG) 4006 /* 4007 * Read all of the agf and agi counters and check that they 4008 * are consistent with the superblock counters. 4009 */ 4010 void 4011 xlog_recover_check_summary( 4012 xlog_t *log) 4013 { 4014 xfs_mount_t *mp; 4015 xfs_agf_t *agfp; 4016 xfs_agi_t *agip; 4017 xfs_buf_t *agfbp; 4018 xfs_buf_t *agibp; 4019 xfs_daddr_t agfdaddr; 4020 xfs_daddr_t agidaddr; 4021 xfs_buf_t *sbbp; 4022 #ifdef XFS_LOUD_RECOVERY 4023 xfs_sb_t *sbp; 4024 #endif 4025 xfs_agnumber_t agno; 4026 __uint64_t freeblks; 4027 __uint64_t itotal; 4028 __uint64_t ifree; 4029 4030 mp = log->l_mp; 4031 4032 freeblks = 0LL; 4033 itotal = 0LL; 4034 ifree = 0LL; 4035 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 4036 agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp)); 4037 agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr, 4038 XFS_FSS_TO_BB(mp, 1), 0); 4039 if (XFS_BUF_ISERROR(agfbp)) { 4040 xfs_ioerror_alert("xlog_recover_check_summary(agf)", 4041 mp, agfbp, agfdaddr); 4042 } 4043 agfp = XFS_BUF_TO_AGF(agfbp); 4044 ASSERT(XFS_AGF_MAGIC == 4045 INT_GET(agfp->agf_magicnum, ARCH_CONVERT)); 4046 ASSERT(XFS_AGF_GOOD_VERSION( 4047 INT_GET(agfp->agf_versionnum, ARCH_CONVERT))); 4048 ASSERT(INT_GET(agfp->agf_seqno, ARCH_CONVERT) == agno); 4049 4050 freeblks += INT_GET(agfp->agf_freeblks, ARCH_CONVERT) + 4051 INT_GET(agfp->agf_flcount, ARCH_CONVERT); 4052 xfs_buf_relse(agfbp); 4053 4054 agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); 4055 agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr, 4056 XFS_FSS_TO_BB(mp, 1), 0); 4057 if (XFS_BUF_ISERROR(agibp)) { 4058 xfs_ioerror_alert("xlog_recover_check_summary(agi)", 4059 mp, agibp, agidaddr); 4060 } 4061 agip = XFS_BUF_TO_AGI(agibp); 4062 ASSERT(XFS_AGI_MAGIC == 4063 INT_GET(agip->agi_magicnum, ARCH_CONVERT)); 4064 ASSERT(XFS_AGI_GOOD_VERSION( 4065 INT_GET(agip->agi_versionnum, ARCH_CONVERT))); 4066 ASSERT(INT_GET(agip->agi_seqno, ARCH_CONVERT) == agno); 4067 4068 itotal += INT_GET(agip->agi_count, ARCH_CONVERT); 4069 ifree += INT_GET(agip->agi_freecount, ARCH_CONVERT); 4070 xfs_buf_relse(agibp); 4071 } 4072 4073 sbbp = xfs_getsb(mp, 0); 4074 #ifdef XFS_LOUD_RECOVERY 4075 sbp = &mp->m_sb; 4076 xfs_xlatesb(XFS_BUF_TO_SBP(sbbp), sbp, 1, XFS_SB_ALL_BITS); 4077 cmn_err(CE_NOTE, 4078 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu", 4079 sbp->sb_icount, itotal); 4080 cmn_err(CE_NOTE, 4081 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu", 4082 sbp->sb_ifree, ifree); 4083 cmn_err(CE_NOTE, 4084 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu", 4085 sbp->sb_fdblocks, freeblks); 4086 #if 0 4087 /* 4088 * This is turned off until I account for the allocation 4089 * btree blocks which live in free space. 4090 */ 4091 ASSERT(sbp->sb_icount == itotal); 4092 ASSERT(sbp->sb_ifree == ifree); 4093 ASSERT(sbp->sb_fdblocks == freeblks); 4094 #endif 4095 #endif 4096 xfs_buf_relse(sbbp); 4097 } 4098 #endif /* DEBUG */ 4099