1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_format.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_mount.h" 28 #include "xfs_error.h" 29 #include "xfs_bmap_btree.h" 30 #include "xfs_alloc_btree.h" 31 #include "xfs_ialloc_btree.h" 32 #include "xfs_btree.h" 33 #include "xfs_dinode.h" 34 #include "xfs_inode.h" 35 #include "xfs_inode_item.h" 36 #include "xfs_alloc.h" 37 #include "xfs_ialloc.h" 38 #include "xfs_log_priv.h" 39 #include "xfs_buf_item.h" 40 #include "xfs_log_recover.h" 41 #include "xfs_extfree_item.h" 42 #include "xfs_trans_priv.h" 43 #include "xfs_quota.h" 44 #include "xfs_cksum.h" 45 #include "xfs_trace.h" 46 #include "xfs_icache.h" 47 #include "xfs_icreate_item.h" 48 49 /* Need all the magic numbers and buffer ops structures from these headers */ 50 #include "xfs_symlink.h" 51 #include "xfs_da_btree.h" 52 #include "xfs_dir2_format.h" 53 #include "xfs_dir2.h" 54 #include "xfs_attr_leaf.h" 55 #include "xfs_attr_remote.h" 56 57 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) 58 59 STATIC int 60 xlog_find_zeroed( 61 struct xlog *, 62 xfs_daddr_t *); 63 STATIC int 64 xlog_clear_stale_blocks( 65 struct xlog *, 66 xfs_lsn_t); 67 #if defined(DEBUG) 68 STATIC void 69 xlog_recover_check_summary( 70 struct xlog *); 71 #else 72 #define xlog_recover_check_summary(log) 73 #endif 74 75 /* 76 * This structure is used during recovery to record the buf log items which 77 * have been canceled and should not be replayed. 78 */ 79 struct xfs_buf_cancel { 80 xfs_daddr_t bc_blkno; 81 uint bc_len; 82 int bc_refcount; 83 struct list_head bc_list; 84 }; 85 86 /* 87 * Sector aligned buffer routines for buffer create/read/write/access 88 */ 89 90 /* 91 * Verify the given count of basic blocks is valid number of blocks 92 * to specify for an operation involving the given XFS log buffer. 93 * Returns nonzero if the count is valid, 0 otherwise. 94 */ 95 96 static inline int 97 xlog_buf_bbcount_valid( 98 struct xlog *log, 99 int bbcount) 100 { 101 return bbcount > 0 && bbcount <= log->l_logBBsize; 102 } 103 104 /* 105 * Allocate a buffer to hold log data. The buffer needs to be able 106 * to map to a range of nbblks basic blocks at any valid (basic 107 * block) offset within the log. 108 */ 109 STATIC xfs_buf_t * 110 xlog_get_bp( 111 struct xlog *log, 112 int nbblks) 113 { 114 struct xfs_buf *bp; 115 116 if (!xlog_buf_bbcount_valid(log, nbblks)) { 117 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 118 nbblks); 119 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 120 return NULL; 121 } 122 123 /* 124 * We do log I/O in units of log sectors (a power-of-2 125 * multiple of the basic block size), so we round up the 126 * requested size to accommodate the basic blocks required 127 * for complete log sectors. 128 * 129 * In addition, the buffer may be used for a non-sector- 130 * aligned block offset, in which case an I/O of the 131 * requested size could extend beyond the end of the 132 * buffer. If the requested size is only 1 basic block it 133 * will never straddle a sector boundary, so this won't be 134 * an issue. Nor will this be a problem if the log I/O is 135 * done in basic blocks (sector size 1). But otherwise we 136 * extend the buffer by one extra log sector to ensure 137 * there's space to accommodate this possibility. 138 */ 139 if (nbblks > 1 && log->l_sectBBsize > 1) 140 nbblks += log->l_sectBBsize; 141 nbblks = round_up(nbblks, log->l_sectBBsize); 142 143 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0); 144 if (bp) 145 xfs_buf_unlock(bp); 146 return bp; 147 } 148 149 STATIC void 150 xlog_put_bp( 151 xfs_buf_t *bp) 152 { 153 xfs_buf_free(bp); 154 } 155 156 /* 157 * Return the address of the start of the given block number's data 158 * in a log buffer. The buffer covers a log sector-aligned region. 159 */ 160 STATIC xfs_caddr_t 161 xlog_align( 162 struct xlog *log, 163 xfs_daddr_t blk_no, 164 int nbblks, 165 struct xfs_buf *bp) 166 { 167 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1); 168 169 ASSERT(offset + nbblks <= bp->b_length); 170 return bp->b_addr + BBTOB(offset); 171 } 172 173 174 /* 175 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 176 */ 177 STATIC int 178 xlog_bread_noalign( 179 struct xlog *log, 180 xfs_daddr_t blk_no, 181 int nbblks, 182 struct xfs_buf *bp) 183 { 184 int error; 185 186 if (!xlog_buf_bbcount_valid(log, nbblks)) { 187 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 188 nbblks); 189 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 190 return EFSCORRUPTED; 191 } 192 193 blk_no = round_down(blk_no, log->l_sectBBsize); 194 nbblks = round_up(nbblks, log->l_sectBBsize); 195 196 ASSERT(nbblks > 0); 197 ASSERT(nbblks <= bp->b_length); 198 199 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 200 XFS_BUF_READ(bp); 201 bp->b_io_length = nbblks; 202 bp->b_error = 0; 203 204 xfsbdstrat(log->l_mp, bp); 205 error = xfs_buf_iowait(bp); 206 if (error) 207 xfs_buf_ioerror_alert(bp, __func__); 208 return error; 209 } 210 211 STATIC int 212 xlog_bread( 213 struct xlog *log, 214 xfs_daddr_t blk_no, 215 int nbblks, 216 struct xfs_buf *bp, 217 xfs_caddr_t *offset) 218 { 219 int error; 220 221 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 222 if (error) 223 return error; 224 225 *offset = xlog_align(log, blk_no, nbblks, bp); 226 return 0; 227 } 228 229 /* 230 * Read at an offset into the buffer. Returns with the buffer in it's original 231 * state regardless of the result of the read. 232 */ 233 STATIC int 234 xlog_bread_offset( 235 struct xlog *log, 236 xfs_daddr_t blk_no, /* block to read from */ 237 int nbblks, /* blocks to read */ 238 struct xfs_buf *bp, 239 xfs_caddr_t offset) 240 { 241 xfs_caddr_t orig_offset = bp->b_addr; 242 int orig_len = BBTOB(bp->b_length); 243 int error, error2; 244 245 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks)); 246 if (error) 247 return error; 248 249 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 250 251 /* must reset buffer pointer even on error */ 252 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len); 253 if (error) 254 return error; 255 return error2; 256 } 257 258 /* 259 * Write out the buffer at the given block for the given number of blocks. 260 * The buffer is kept locked across the write and is returned locked. 261 * This can only be used for synchronous log writes. 262 */ 263 STATIC int 264 xlog_bwrite( 265 struct xlog *log, 266 xfs_daddr_t blk_no, 267 int nbblks, 268 struct xfs_buf *bp) 269 { 270 int error; 271 272 if (!xlog_buf_bbcount_valid(log, nbblks)) { 273 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 274 nbblks); 275 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 276 return EFSCORRUPTED; 277 } 278 279 blk_no = round_down(blk_no, log->l_sectBBsize); 280 nbblks = round_up(nbblks, log->l_sectBBsize); 281 282 ASSERT(nbblks > 0); 283 ASSERT(nbblks <= bp->b_length); 284 285 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 286 XFS_BUF_ZEROFLAGS(bp); 287 xfs_buf_hold(bp); 288 xfs_buf_lock(bp); 289 bp->b_io_length = nbblks; 290 bp->b_error = 0; 291 292 error = xfs_bwrite(bp); 293 if (error) 294 xfs_buf_ioerror_alert(bp, __func__); 295 xfs_buf_relse(bp); 296 return error; 297 } 298 299 #ifdef DEBUG 300 /* 301 * dump debug superblock and log record information 302 */ 303 STATIC void 304 xlog_header_check_dump( 305 xfs_mount_t *mp, 306 xlog_rec_header_t *head) 307 { 308 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n", 309 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 310 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n", 311 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 312 } 313 #else 314 #define xlog_header_check_dump(mp, head) 315 #endif 316 317 /* 318 * check log record header for recovery 319 */ 320 STATIC int 321 xlog_header_check_recover( 322 xfs_mount_t *mp, 323 xlog_rec_header_t *head) 324 { 325 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 326 327 /* 328 * IRIX doesn't write the h_fmt field and leaves it zeroed 329 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 330 * a dirty log created in IRIX. 331 */ 332 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) { 333 xfs_warn(mp, 334 "dirty log written in incompatible format - can't recover"); 335 xlog_header_check_dump(mp, head); 336 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 337 XFS_ERRLEVEL_HIGH, mp); 338 return XFS_ERROR(EFSCORRUPTED); 339 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 340 xfs_warn(mp, 341 "dirty log entry has mismatched uuid - can't recover"); 342 xlog_header_check_dump(mp, head); 343 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 344 XFS_ERRLEVEL_HIGH, mp); 345 return XFS_ERROR(EFSCORRUPTED); 346 } 347 return 0; 348 } 349 350 /* 351 * read the head block of the log and check the header 352 */ 353 STATIC int 354 xlog_header_check_mount( 355 xfs_mount_t *mp, 356 xlog_rec_header_t *head) 357 { 358 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 359 360 if (uuid_is_nil(&head->h_fs_uuid)) { 361 /* 362 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 363 * h_fs_uuid is nil, we assume this log was last mounted 364 * by IRIX and continue. 365 */ 366 xfs_warn(mp, "nil uuid in log - IRIX style log"); 367 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 368 xfs_warn(mp, "log has mismatched uuid - can't recover"); 369 xlog_header_check_dump(mp, head); 370 XFS_ERROR_REPORT("xlog_header_check_mount", 371 XFS_ERRLEVEL_HIGH, mp); 372 return XFS_ERROR(EFSCORRUPTED); 373 } 374 return 0; 375 } 376 377 STATIC void 378 xlog_recover_iodone( 379 struct xfs_buf *bp) 380 { 381 if (bp->b_error) { 382 /* 383 * We're not going to bother about retrying 384 * this during recovery. One strike! 385 */ 386 xfs_buf_ioerror_alert(bp, __func__); 387 xfs_force_shutdown(bp->b_target->bt_mount, 388 SHUTDOWN_META_IO_ERROR); 389 } 390 bp->b_iodone = NULL; 391 xfs_buf_ioend(bp, 0); 392 } 393 394 /* 395 * This routine finds (to an approximation) the first block in the physical 396 * log which contains the given cycle. It uses a binary search algorithm. 397 * Note that the algorithm can not be perfect because the disk will not 398 * necessarily be perfect. 399 */ 400 STATIC int 401 xlog_find_cycle_start( 402 struct xlog *log, 403 struct xfs_buf *bp, 404 xfs_daddr_t first_blk, 405 xfs_daddr_t *last_blk, 406 uint cycle) 407 { 408 xfs_caddr_t offset; 409 xfs_daddr_t mid_blk; 410 xfs_daddr_t end_blk; 411 uint mid_cycle; 412 int error; 413 414 end_blk = *last_blk; 415 mid_blk = BLK_AVG(first_blk, end_blk); 416 while (mid_blk != first_blk && mid_blk != end_blk) { 417 error = xlog_bread(log, mid_blk, 1, bp, &offset); 418 if (error) 419 return error; 420 mid_cycle = xlog_get_cycle(offset); 421 if (mid_cycle == cycle) 422 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 423 else 424 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 425 mid_blk = BLK_AVG(first_blk, end_blk); 426 } 427 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 428 (mid_blk == end_blk && mid_blk-1 == first_blk)); 429 430 *last_blk = end_blk; 431 432 return 0; 433 } 434 435 /* 436 * Check that a range of blocks does not contain stop_on_cycle_no. 437 * Fill in *new_blk with the block offset where such a block is 438 * found, or with -1 (an invalid block number) if there is no such 439 * block in the range. The scan needs to occur from front to back 440 * and the pointer into the region must be updated since a later 441 * routine will need to perform another test. 442 */ 443 STATIC int 444 xlog_find_verify_cycle( 445 struct xlog *log, 446 xfs_daddr_t start_blk, 447 int nbblks, 448 uint stop_on_cycle_no, 449 xfs_daddr_t *new_blk) 450 { 451 xfs_daddr_t i, j; 452 uint cycle; 453 xfs_buf_t *bp; 454 xfs_daddr_t bufblks; 455 xfs_caddr_t buf = NULL; 456 int error = 0; 457 458 /* 459 * Greedily allocate a buffer big enough to handle the full 460 * range of basic blocks we'll be examining. If that fails, 461 * try a smaller size. We need to be able to read at least 462 * a log sector, or we're out of luck. 463 */ 464 bufblks = 1 << ffs(nbblks); 465 while (bufblks > log->l_logBBsize) 466 bufblks >>= 1; 467 while (!(bp = xlog_get_bp(log, bufblks))) { 468 bufblks >>= 1; 469 if (bufblks < log->l_sectBBsize) 470 return ENOMEM; 471 } 472 473 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 474 int bcount; 475 476 bcount = min(bufblks, (start_blk + nbblks - i)); 477 478 error = xlog_bread(log, i, bcount, bp, &buf); 479 if (error) 480 goto out; 481 482 for (j = 0; j < bcount; j++) { 483 cycle = xlog_get_cycle(buf); 484 if (cycle == stop_on_cycle_no) { 485 *new_blk = i+j; 486 goto out; 487 } 488 489 buf += BBSIZE; 490 } 491 } 492 493 *new_blk = -1; 494 495 out: 496 xlog_put_bp(bp); 497 return error; 498 } 499 500 /* 501 * Potentially backup over partial log record write. 502 * 503 * In the typical case, last_blk is the number of the block directly after 504 * a good log record. Therefore, we subtract one to get the block number 505 * of the last block in the given buffer. extra_bblks contains the number 506 * of blocks we would have read on a previous read. This happens when the 507 * last log record is split over the end of the physical log. 508 * 509 * extra_bblks is the number of blocks potentially verified on a previous 510 * call to this routine. 511 */ 512 STATIC int 513 xlog_find_verify_log_record( 514 struct xlog *log, 515 xfs_daddr_t start_blk, 516 xfs_daddr_t *last_blk, 517 int extra_bblks) 518 { 519 xfs_daddr_t i; 520 xfs_buf_t *bp; 521 xfs_caddr_t offset = NULL; 522 xlog_rec_header_t *head = NULL; 523 int error = 0; 524 int smallmem = 0; 525 int num_blks = *last_blk - start_blk; 526 int xhdrs; 527 528 ASSERT(start_blk != 0 || *last_blk != start_blk); 529 530 if (!(bp = xlog_get_bp(log, num_blks))) { 531 if (!(bp = xlog_get_bp(log, 1))) 532 return ENOMEM; 533 smallmem = 1; 534 } else { 535 error = xlog_bread(log, start_blk, num_blks, bp, &offset); 536 if (error) 537 goto out; 538 offset += ((num_blks - 1) << BBSHIFT); 539 } 540 541 for (i = (*last_blk) - 1; i >= 0; i--) { 542 if (i < start_blk) { 543 /* valid log record not found */ 544 xfs_warn(log->l_mp, 545 "Log inconsistent (didn't find previous header)"); 546 ASSERT(0); 547 error = XFS_ERROR(EIO); 548 goto out; 549 } 550 551 if (smallmem) { 552 error = xlog_bread(log, i, 1, bp, &offset); 553 if (error) 554 goto out; 555 } 556 557 head = (xlog_rec_header_t *)offset; 558 559 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 560 break; 561 562 if (!smallmem) 563 offset -= BBSIZE; 564 } 565 566 /* 567 * We hit the beginning of the physical log & still no header. Return 568 * to caller. If caller can handle a return of -1, then this routine 569 * will be called again for the end of the physical log. 570 */ 571 if (i == -1) { 572 error = -1; 573 goto out; 574 } 575 576 /* 577 * We have the final block of the good log (the first block 578 * of the log record _before_ the head. So we check the uuid. 579 */ 580 if ((error = xlog_header_check_mount(log->l_mp, head))) 581 goto out; 582 583 /* 584 * We may have found a log record header before we expected one. 585 * last_blk will be the 1st block # with a given cycle #. We may end 586 * up reading an entire log record. In this case, we don't want to 587 * reset last_blk. Only when last_blk points in the middle of a log 588 * record do we update last_blk. 589 */ 590 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 591 uint h_size = be32_to_cpu(head->h_size); 592 593 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 594 if (h_size % XLOG_HEADER_CYCLE_SIZE) 595 xhdrs++; 596 } else { 597 xhdrs = 1; 598 } 599 600 if (*last_blk - i + extra_bblks != 601 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 602 *last_blk = i; 603 604 out: 605 xlog_put_bp(bp); 606 return error; 607 } 608 609 /* 610 * Head is defined to be the point of the log where the next log write 611 * could go. This means that incomplete LR writes at the end are 612 * eliminated when calculating the head. We aren't guaranteed that previous 613 * LR have complete transactions. We only know that a cycle number of 614 * current cycle number -1 won't be present in the log if we start writing 615 * from our current block number. 616 * 617 * last_blk contains the block number of the first block with a given 618 * cycle number. 619 * 620 * Return: zero if normal, non-zero if error. 621 */ 622 STATIC int 623 xlog_find_head( 624 struct xlog *log, 625 xfs_daddr_t *return_head_blk) 626 { 627 xfs_buf_t *bp; 628 xfs_caddr_t offset; 629 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 630 int num_scan_bblks; 631 uint first_half_cycle, last_half_cycle; 632 uint stop_on_cycle; 633 int error, log_bbnum = log->l_logBBsize; 634 635 /* Is the end of the log device zeroed? */ 636 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) { 637 *return_head_blk = first_blk; 638 639 /* Is the whole lot zeroed? */ 640 if (!first_blk) { 641 /* Linux XFS shouldn't generate totally zeroed logs - 642 * mkfs etc write a dummy unmount record to a fresh 643 * log so we can store the uuid in there 644 */ 645 xfs_warn(log->l_mp, "totally zeroed log"); 646 } 647 648 return 0; 649 } else if (error) { 650 xfs_warn(log->l_mp, "empty log check failed"); 651 return error; 652 } 653 654 first_blk = 0; /* get cycle # of 1st block */ 655 bp = xlog_get_bp(log, 1); 656 if (!bp) 657 return ENOMEM; 658 659 error = xlog_bread(log, 0, 1, bp, &offset); 660 if (error) 661 goto bp_err; 662 663 first_half_cycle = xlog_get_cycle(offset); 664 665 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 666 error = xlog_bread(log, last_blk, 1, bp, &offset); 667 if (error) 668 goto bp_err; 669 670 last_half_cycle = xlog_get_cycle(offset); 671 ASSERT(last_half_cycle != 0); 672 673 /* 674 * If the 1st half cycle number is equal to the last half cycle number, 675 * then the entire log is stamped with the same cycle number. In this 676 * case, head_blk can't be set to zero (which makes sense). The below 677 * math doesn't work out properly with head_blk equal to zero. Instead, 678 * we set it to log_bbnum which is an invalid block number, but this 679 * value makes the math correct. If head_blk doesn't changed through 680 * all the tests below, *head_blk is set to zero at the very end rather 681 * than log_bbnum. In a sense, log_bbnum and zero are the same block 682 * in a circular file. 683 */ 684 if (first_half_cycle == last_half_cycle) { 685 /* 686 * In this case we believe that the entire log should have 687 * cycle number last_half_cycle. We need to scan backwards 688 * from the end verifying that there are no holes still 689 * containing last_half_cycle - 1. If we find such a hole, 690 * then the start of that hole will be the new head. The 691 * simple case looks like 692 * x | x ... | x - 1 | x 693 * Another case that fits this picture would be 694 * x | x + 1 | x ... | x 695 * In this case the head really is somewhere at the end of the 696 * log, as one of the latest writes at the beginning was 697 * incomplete. 698 * One more case is 699 * x | x + 1 | x ... | x - 1 | x 700 * This is really the combination of the above two cases, and 701 * the head has to end up at the start of the x-1 hole at the 702 * end of the log. 703 * 704 * In the 256k log case, we will read from the beginning to the 705 * end of the log and search for cycle numbers equal to x-1. 706 * We don't worry about the x+1 blocks that we encounter, 707 * because we know that they cannot be the head since the log 708 * started with x. 709 */ 710 head_blk = log_bbnum; 711 stop_on_cycle = last_half_cycle - 1; 712 } else { 713 /* 714 * In this case we want to find the first block with cycle 715 * number matching last_half_cycle. We expect the log to be 716 * some variation on 717 * x + 1 ... | x ... | x 718 * The first block with cycle number x (last_half_cycle) will 719 * be where the new head belongs. First we do a binary search 720 * for the first occurrence of last_half_cycle. The binary 721 * search may not be totally accurate, so then we scan back 722 * from there looking for occurrences of last_half_cycle before 723 * us. If that backwards scan wraps around the beginning of 724 * the log, then we look for occurrences of last_half_cycle - 1 725 * at the end of the log. The cases we're looking for look 726 * like 727 * v binary search stopped here 728 * x + 1 ... | x | x + 1 | x ... | x 729 * ^ but we want to locate this spot 730 * or 731 * <---------> less than scan distance 732 * x + 1 ... | x ... | x - 1 | x 733 * ^ we want to locate this spot 734 */ 735 stop_on_cycle = last_half_cycle; 736 if ((error = xlog_find_cycle_start(log, bp, first_blk, 737 &head_blk, last_half_cycle))) 738 goto bp_err; 739 } 740 741 /* 742 * Now validate the answer. Scan back some number of maximum possible 743 * blocks and make sure each one has the expected cycle number. The 744 * maximum is determined by the total possible amount of buffering 745 * in the in-core log. The following number can be made tighter if 746 * we actually look at the block size of the filesystem. 747 */ 748 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 749 if (head_blk >= num_scan_bblks) { 750 /* 751 * We are guaranteed that the entire check can be performed 752 * in one buffer. 753 */ 754 start_blk = head_blk - num_scan_bblks; 755 if ((error = xlog_find_verify_cycle(log, 756 start_blk, num_scan_bblks, 757 stop_on_cycle, &new_blk))) 758 goto bp_err; 759 if (new_blk != -1) 760 head_blk = new_blk; 761 } else { /* need to read 2 parts of log */ 762 /* 763 * We are going to scan backwards in the log in two parts. 764 * First we scan the physical end of the log. In this part 765 * of the log, we are looking for blocks with cycle number 766 * last_half_cycle - 1. 767 * If we find one, then we know that the log starts there, as 768 * we've found a hole that didn't get written in going around 769 * the end of the physical log. The simple case for this is 770 * x + 1 ... | x ... | x - 1 | x 771 * <---------> less than scan distance 772 * If all of the blocks at the end of the log have cycle number 773 * last_half_cycle, then we check the blocks at the start of 774 * the log looking for occurrences of last_half_cycle. If we 775 * find one, then our current estimate for the location of the 776 * first occurrence of last_half_cycle is wrong and we move 777 * back to the hole we've found. This case looks like 778 * x + 1 ... | x | x + 1 | x ... 779 * ^ binary search stopped here 780 * Another case we need to handle that only occurs in 256k 781 * logs is 782 * x + 1 ... | x ... | x+1 | x ... 783 * ^ binary search stops here 784 * In a 256k log, the scan at the end of the log will see the 785 * x + 1 blocks. We need to skip past those since that is 786 * certainly not the head of the log. By searching for 787 * last_half_cycle-1 we accomplish that. 788 */ 789 ASSERT(head_blk <= INT_MAX && 790 (xfs_daddr_t) num_scan_bblks >= head_blk); 791 start_blk = log_bbnum - (num_scan_bblks - head_blk); 792 if ((error = xlog_find_verify_cycle(log, start_blk, 793 num_scan_bblks - (int)head_blk, 794 (stop_on_cycle - 1), &new_blk))) 795 goto bp_err; 796 if (new_blk != -1) { 797 head_blk = new_blk; 798 goto validate_head; 799 } 800 801 /* 802 * Scan beginning of log now. The last part of the physical 803 * log is good. This scan needs to verify that it doesn't find 804 * the last_half_cycle. 805 */ 806 start_blk = 0; 807 ASSERT(head_blk <= INT_MAX); 808 if ((error = xlog_find_verify_cycle(log, 809 start_blk, (int)head_blk, 810 stop_on_cycle, &new_blk))) 811 goto bp_err; 812 if (new_blk != -1) 813 head_blk = new_blk; 814 } 815 816 validate_head: 817 /* 818 * Now we need to make sure head_blk is not pointing to a block in 819 * the middle of a log record. 820 */ 821 num_scan_bblks = XLOG_REC_SHIFT(log); 822 if (head_blk >= num_scan_bblks) { 823 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 824 825 /* start ptr at last block ptr before head_blk */ 826 if ((error = xlog_find_verify_log_record(log, start_blk, 827 &head_blk, 0)) == -1) { 828 error = XFS_ERROR(EIO); 829 goto bp_err; 830 } else if (error) 831 goto bp_err; 832 } else { 833 start_blk = 0; 834 ASSERT(head_blk <= INT_MAX); 835 if ((error = xlog_find_verify_log_record(log, start_blk, 836 &head_blk, 0)) == -1) { 837 /* We hit the beginning of the log during our search */ 838 start_blk = log_bbnum - (num_scan_bblks - head_blk); 839 new_blk = log_bbnum; 840 ASSERT(start_blk <= INT_MAX && 841 (xfs_daddr_t) log_bbnum-start_blk >= 0); 842 ASSERT(head_blk <= INT_MAX); 843 if ((error = xlog_find_verify_log_record(log, 844 start_blk, &new_blk, 845 (int)head_blk)) == -1) { 846 error = XFS_ERROR(EIO); 847 goto bp_err; 848 } else if (error) 849 goto bp_err; 850 if (new_blk != log_bbnum) 851 head_blk = new_blk; 852 } else if (error) 853 goto bp_err; 854 } 855 856 xlog_put_bp(bp); 857 if (head_blk == log_bbnum) 858 *return_head_blk = 0; 859 else 860 *return_head_blk = head_blk; 861 /* 862 * When returning here, we have a good block number. Bad block 863 * means that during a previous crash, we didn't have a clean break 864 * from cycle number N to cycle number N-1. In this case, we need 865 * to find the first block with cycle number N-1. 866 */ 867 return 0; 868 869 bp_err: 870 xlog_put_bp(bp); 871 872 if (error) 873 xfs_warn(log->l_mp, "failed to find log head"); 874 return error; 875 } 876 877 /* 878 * Find the sync block number or the tail of the log. 879 * 880 * This will be the block number of the last record to have its 881 * associated buffers synced to disk. Every log record header has 882 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 883 * to get a sync block number. The only concern is to figure out which 884 * log record header to believe. 885 * 886 * The following algorithm uses the log record header with the largest 887 * lsn. The entire log record does not need to be valid. We only care 888 * that the header is valid. 889 * 890 * We could speed up search by using current head_blk buffer, but it is not 891 * available. 892 */ 893 STATIC int 894 xlog_find_tail( 895 struct xlog *log, 896 xfs_daddr_t *head_blk, 897 xfs_daddr_t *tail_blk) 898 { 899 xlog_rec_header_t *rhead; 900 xlog_op_header_t *op_head; 901 xfs_caddr_t offset = NULL; 902 xfs_buf_t *bp; 903 int error, i, found; 904 xfs_daddr_t umount_data_blk; 905 xfs_daddr_t after_umount_blk; 906 xfs_lsn_t tail_lsn; 907 int hblks; 908 909 found = 0; 910 911 /* 912 * Find previous log record 913 */ 914 if ((error = xlog_find_head(log, head_blk))) 915 return error; 916 917 bp = xlog_get_bp(log, 1); 918 if (!bp) 919 return ENOMEM; 920 if (*head_blk == 0) { /* special case */ 921 error = xlog_bread(log, 0, 1, bp, &offset); 922 if (error) 923 goto done; 924 925 if (xlog_get_cycle(offset) == 0) { 926 *tail_blk = 0; 927 /* leave all other log inited values alone */ 928 goto done; 929 } 930 } 931 932 /* 933 * Search backwards looking for log record header block 934 */ 935 ASSERT(*head_blk < INT_MAX); 936 for (i = (int)(*head_blk) - 1; i >= 0; i--) { 937 error = xlog_bread(log, i, 1, bp, &offset); 938 if (error) 939 goto done; 940 941 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 942 found = 1; 943 break; 944 } 945 } 946 /* 947 * If we haven't found the log record header block, start looking 948 * again from the end of the physical log. XXXmiken: There should be 949 * a check here to make sure we didn't search more than N blocks in 950 * the previous code. 951 */ 952 if (!found) { 953 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) { 954 error = xlog_bread(log, i, 1, bp, &offset); 955 if (error) 956 goto done; 957 958 if (*(__be32 *)offset == 959 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 960 found = 2; 961 break; 962 } 963 } 964 } 965 if (!found) { 966 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); 967 xlog_put_bp(bp); 968 ASSERT(0); 969 return XFS_ERROR(EIO); 970 } 971 972 /* find blk_no of tail of log */ 973 rhead = (xlog_rec_header_t *)offset; 974 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 975 976 /* 977 * Reset log values according to the state of the log when we 978 * crashed. In the case where head_blk == 0, we bump curr_cycle 979 * one because the next write starts a new cycle rather than 980 * continuing the cycle of the last good log record. At this 981 * point we have guaranteed that all partial log records have been 982 * accounted for. Therefore, we know that the last good log record 983 * written was complete and ended exactly on the end boundary 984 * of the physical log. 985 */ 986 log->l_prev_block = i; 987 log->l_curr_block = (int)*head_blk; 988 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 989 if (found == 2) 990 log->l_curr_cycle++; 991 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); 992 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); 993 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, 994 BBTOB(log->l_curr_block)); 995 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, 996 BBTOB(log->l_curr_block)); 997 998 /* 999 * Look for unmount record. If we find it, then we know there 1000 * was a clean unmount. Since 'i' could be the last block in 1001 * the physical log, we convert to a log block before comparing 1002 * to the head_blk. 1003 * 1004 * Save the current tail lsn to use to pass to 1005 * xlog_clear_stale_blocks() below. We won't want to clear the 1006 * unmount record if there is one, so we pass the lsn of the 1007 * unmount record rather than the block after it. 1008 */ 1009 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1010 int h_size = be32_to_cpu(rhead->h_size); 1011 int h_version = be32_to_cpu(rhead->h_version); 1012 1013 if ((h_version & XLOG_VERSION_2) && 1014 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 1015 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 1016 if (h_size % XLOG_HEADER_CYCLE_SIZE) 1017 hblks++; 1018 } else { 1019 hblks = 1; 1020 } 1021 } else { 1022 hblks = 1; 1023 } 1024 after_umount_blk = (i + hblks + (int) 1025 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize; 1026 tail_lsn = atomic64_read(&log->l_tail_lsn); 1027 if (*head_blk == after_umount_blk && 1028 be32_to_cpu(rhead->h_num_logops) == 1) { 1029 umount_data_blk = (i + hblks) % log->l_logBBsize; 1030 error = xlog_bread(log, umount_data_blk, 1, bp, &offset); 1031 if (error) 1032 goto done; 1033 1034 op_head = (xlog_op_header_t *)offset; 1035 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 1036 /* 1037 * Set tail and last sync so that newly written 1038 * log records will point recovery to after the 1039 * current unmount record. 1040 */ 1041 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1042 log->l_curr_cycle, after_umount_blk); 1043 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1044 log->l_curr_cycle, after_umount_blk); 1045 *tail_blk = after_umount_blk; 1046 1047 /* 1048 * Note that the unmount was clean. If the unmount 1049 * was not clean, we need to know this to rebuild the 1050 * superblock counters from the perag headers if we 1051 * have a filesystem using non-persistent counters. 1052 */ 1053 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 1054 } 1055 } 1056 1057 /* 1058 * Make sure that there are no blocks in front of the head 1059 * with the same cycle number as the head. This can happen 1060 * because we allow multiple outstanding log writes concurrently, 1061 * and the later writes might make it out before earlier ones. 1062 * 1063 * We use the lsn from before modifying it so that we'll never 1064 * overwrite the unmount record after a clean unmount. 1065 * 1066 * Do this only if we are going to recover the filesystem 1067 * 1068 * NOTE: This used to say "if (!readonly)" 1069 * However on Linux, we can & do recover a read-only filesystem. 1070 * We only skip recovery if NORECOVERY is specified on mount, 1071 * in which case we would not be here. 1072 * 1073 * But... if the -device- itself is readonly, just skip this. 1074 * We can't recover this device anyway, so it won't matter. 1075 */ 1076 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) 1077 error = xlog_clear_stale_blocks(log, tail_lsn); 1078 1079 done: 1080 xlog_put_bp(bp); 1081 1082 if (error) 1083 xfs_warn(log->l_mp, "failed to locate log tail"); 1084 return error; 1085 } 1086 1087 /* 1088 * Is the log zeroed at all? 1089 * 1090 * The last binary search should be changed to perform an X block read 1091 * once X becomes small enough. You can then search linearly through 1092 * the X blocks. This will cut down on the number of reads we need to do. 1093 * 1094 * If the log is partially zeroed, this routine will pass back the blkno 1095 * of the first block with cycle number 0. It won't have a complete LR 1096 * preceding it. 1097 * 1098 * Return: 1099 * 0 => the log is completely written to 1100 * -1 => use *blk_no as the first block of the log 1101 * >0 => error has occurred 1102 */ 1103 STATIC int 1104 xlog_find_zeroed( 1105 struct xlog *log, 1106 xfs_daddr_t *blk_no) 1107 { 1108 xfs_buf_t *bp; 1109 xfs_caddr_t offset; 1110 uint first_cycle, last_cycle; 1111 xfs_daddr_t new_blk, last_blk, start_blk; 1112 xfs_daddr_t num_scan_bblks; 1113 int error, log_bbnum = log->l_logBBsize; 1114 1115 *blk_no = 0; 1116 1117 /* check totally zeroed log */ 1118 bp = xlog_get_bp(log, 1); 1119 if (!bp) 1120 return ENOMEM; 1121 error = xlog_bread(log, 0, 1, bp, &offset); 1122 if (error) 1123 goto bp_err; 1124 1125 first_cycle = xlog_get_cycle(offset); 1126 if (first_cycle == 0) { /* completely zeroed log */ 1127 *blk_no = 0; 1128 xlog_put_bp(bp); 1129 return -1; 1130 } 1131 1132 /* check partially zeroed log */ 1133 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset); 1134 if (error) 1135 goto bp_err; 1136 1137 last_cycle = xlog_get_cycle(offset); 1138 if (last_cycle != 0) { /* log completely written to */ 1139 xlog_put_bp(bp); 1140 return 0; 1141 } else if (first_cycle != 1) { 1142 /* 1143 * If the cycle of the last block is zero, the cycle of 1144 * the first block must be 1. If it's not, maybe we're 1145 * not looking at a log... Bail out. 1146 */ 1147 xfs_warn(log->l_mp, 1148 "Log inconsistent or not a log (last==0, first!=1)"); 1149 error = XFS_ERROR(EINVAL); 1150 goto bp_err; 1151 } 1152 1153 /* we have a partially zeroed log */ 1154 last_blk = log_bbnum-1; 1155 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1156 goto bp_err; 1157 1158 /* 1159 * Validate the answer. Because there is no way to guarantee that 1160 * the entire log is made up of log records which are the same size, 1161 * we scan over the defined maximum blocks. At this point, the maximum 1162 * is not chosen to mean anything special. XXXmiken 1163 */ 1164 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1165 ASSERT(num_scan_bblks <= INT_MAX); 1166 1167 if (last_blk < num_scan_bblks) 1168 num_scan_bblks = last_blk; 1169 start_blk = last_blk - num_scan_bblks; 1170 1171 /* 1172 * We search for any instances of cycle number 0 that occur before 1173 * our current estimate of the head. What we're trying to detect is 1174 * 1 ... | 0 | 1 | 0... 1175 * ^ binary search ends here 1176 */ 1177 if ((error = xlog_find_verify_cycle(log, start_blk, 1178 (int)num_scan_bblks, 0, &new_blk))) 1179 goto bp_err; 1180 if (new_blk != -1) 1181 last_blk = new_blk; 1182 1183 /* 1184 * Potentially backup over partial log record write. We don't need 1185 * to search the end of the log because we know it is zero. 1186 */ 1187 if ((error = xlog_find_verify_log_record(log, start_blk, 1188 &last_blk, 0)) == -1) { 1189 error = XFS_ERROR(EIO); 1190 goto bp_err; 1191 } else if (error) 1192 goto bp_err; 1193 1194 *blk_no = last_blk; 1195 bp_err: 1196 xlog_put_bp(bp); 1197 if (error) 1198 return error; 1199 return -1; 1200 } 1201 1202 /* 1203 * These are simple subroutines used by xlog_clear_stale_blocks() below 1204 * to initialize a buffer full of empty log record headers and write 1205 * them into the log. 1206 */ 1207 STATIC void 1208 xlog_add_record( 1209 struct xlog *log, 1210 xfs_caddr_t buf, 1211 int cycle, 1212 int block, 1213 int tail_cycle, 1214 int tail_block) 1215 { 1216 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1217 1218 memset(buf, 0, BBSIZE); 1219 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1220 recp->h_cycle = cpu_to_be32(cycle); 1221 recp->h_version = cpu_to_be32( 1222 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1223 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1224 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1225 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1226 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1227 } 1228 1229 STATIC int 1230 xlog_write_log_records( 1231 struct xlog *log, 1232 int cycle, 1233 int start_block, 1234 int blocks, 1235 int tail_cycle, 1236 int tail_block) 1237 { 1238 xfs_caddr_t offset; 1239 xfs_buf_t *bp; 1240 int balign, ealign; 1241 int sectbb = log->l_sectBBsize; 1242 int end_block = start_block + blocks; 1243 int bufblks; 1244 int error = 0; 1245 int i, j = 0; 1246 1247 /* 1248 * Greedily allocate a buffer big enough to handle the full 1249 * range of basic blocks to be written. If that fails, try 1250 * a smaller size. We need to be able to write at least a 1251 * log sector, or we're out of luck. 1252 */ 1253 bufblks = 1 << ffs(blocks); 1254 while (bufblks > log->l_logBBsize) 1255 bufblks >>= 1; 1256 while (!(bp = xlog_get_bp(log, bufblks))) { 1257 bufblks >>= 1; 1258 if (bufblks < sectbb) 1259 return ENOMEM; 1260 } 1261 1262 /* We may need to do a read at the start to fill in part of 1263 * the buffer in the starting sector not covered by the first 1264 * write below. 1265 */ 1266 balign = round_down(start_block, sectbb); 1267 if (balign != start_block) { 1268 error = xlog_bread_noalign(log, start_block, 1, bp); 1269 if (error) 1270 goto out_put_bp; 1271 1272 j = start_block - balign; 1273 } 1274 1275 for (i = start_block; i < end_block; i += bufblks) { 1276 int bcount, endcount; 1277 1278 bcount = min(bufblks, end_block - start_block); 1279 endcount = bcount - j; 1280 1281 /* We may need to do a read at the end to fill in part of 1282 * the buffer in the final sector not covered by the write. 1283 * If this is the same sector as the above read, skip it. 1284 */ 1285 ealign = round_down(end_block, sectbb); 1286 if (j == 0 && (start_block + endcount > ealign)) { 1287 offset = bp->b_addr + BBTOB(ealign - start_block); 1288 error = xlog_bread_offset(log, ealign, sectbb, 1289 bp, offset); 1290 if (error) 1291 break; 1292 1293 } 1294 1295 offset = xlog_align(log, start_block, endcount, bp); 1296 for (; j < endcount; j++) { 1297 xlog_add_record(log, offset, cycle, i+j, 1298 tail_cycle, tail_block); 1299 offset += BBSIZE; 1300 } 1301 error = xlog_bwrite(log, start_block, endcount, bp); 1302 if (error) 1303 break; 1304 start_block += endcount; 1305 j = 0; 1306 } 1307 1308 out_put_bp: 1309 xlog_put_bp(bp); 1310 return error; 1311 } 1312 1313 /* 1314 * This routine is called to blow away any incomplete log writes out 1315 * in front of the log head. We do this so that we won't become confused 1316 * if we come up, write only a little bit more, and then crash again. 1317 * If we leave the partial log records out there, this situation could 1318 * cause us to think those partial writes are valid blocks since they 1319 * have the current cycle number. We get rid of them by overwriting them 1320 * with empty log records with the old cycle number rather than the 1321 * current one. 1322 * 1323 * The tail lsn is passed in rather than taken from 1324 * the log so that we will not write over the unmount record after a 1325 * clean unmount in a 512 block log. Doing so would leave the log without 1326 * any valid log records in it until a new one was written. If we crashed 1327 * during that time we would not be able to recover. 1328 */ 1329 STATIC int 1330 xlog_clear_stale_blocks( 1331 struct xlog *log, 1332 xfs_lsn_t tail_lsn) 1333 { 1334 int tail_cycle, head_cycle; 1335 int tail_block, head_block; 1336 int tail_distance, max_distance; 1337 int distance; 1338 int error; 1339 1340 tail_cycle = CYCLE_LSN(tail_lsn); 1341 tail_block = BLOCK_LSN(tail_lsn); 1342 head_cycle = log->l_curr_cycle; 1343 head_block = log->l_curr_block; 1344 1345 /* 1346 * Figure out the distance between the new head of the log 1347 * and the tail. We want to write over any blocks beyond the 1348 * head that we may have written just before the crash, but 1349 * we don't want to overwrite the tail of the log. 1350 */ 1351 if (head_cycle == tail_cycle) { 1352 /* 1353 * The tail is behind the head in the physical log, 1354 * so the distance from the head to the tail is the 1355 * distance from the head to the end of the log plus 1356 * the distance from the beginning of the log to the 1357 * tail. 1358 */ 1359 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1360 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1361 XFS_ERRLEVEL_LOW, log->l_mp); 1362 return XFS_ERROR(EFSCORRUPTED); 1363 } 1364 tail_distance = tail_block + (log->l_logBBsize - head_block); 1365 } else { 1366 /* 1367 * The head is behind the tail in the physical log, 1368 * so the distance from the head to the tail is just 1369 * the tail block minus the head block. 1370 */ 1371 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1372 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1373 XFS_ERRLEVEL_LOW, log->l_mp); 1374 return XFS_ERROR(EFSCORRUPTED); 1375 } 1376 tail_distance = tail_block - head_block; 1377 } 1378 1379 /* 1380 * If the head is right up against the tail, we can't clear 1381 * anything. 1382 */ 1383 if (tail_distance <= 0) { 1384 ASSERT(tail_distance == 0); 1385 return 0; 1386 } 1387 1388 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1389 /* 1390 * Take the smaller of the maximum amount of outstanding I/O 1391 * we could have and the distance to the tail to clear out. 1392 * We take the smaller so that we don't overwrite the tail and 1393 * we don't waste all day writing from the head to the tail 1394 * for no reason. 1395 */ 1396 max_distance = MIN(max_distance, tail_distance); 1397 1398 if ((head_block + max_distance) <= log->l_logBBsize) { 1399 /* 1400 * We can stomp all the blocks we need to without 1401 * wrapping around the end of the log. Just do it 1402 * in a single write. Use the cycle number of the 1403 * current cycle minus one so that the log will look like: 1404 * n ... | n - 1 ... 1405 */ 1406 error = xlog_write_log_records(log, (head_cycle - 1), 1407 head_block, max_distance, tail_cycle, 1408 tail_block); 1409 if (error) 1410 return error; 1411 } else { 1412 /* 1413 * We need to wrap around the end of the physical log in 1414 * order to clear all the blocks. Do it in two separate 1415 * I/Os. The first write should be from the head to the 1416 * end of the physical log, and it should use the current 1417 * cycle number minus one just like above. 1418 */ 1419 distance = log->l_logBBsize - head_block; 1420 error = xlog_write_log_records(log, (head_cycle - 1), 1421 head_block, distance, tail_cycle, 1422 tail_block); 1423 1424 if (error) 1425 return error; 1426 1427 /* 1428 * Now write the blocks at the start of the physical log. 1429 * This writes the remainder of the blocks we want to clear. 1430 * It uses the current cycle number since we're now on the 1431 * same cycle as the head so that we get: 1432 * n ... n ... | n - 1 ... 1433 * ^^^^^ blocks we're writing 1434 */ 1435 distance = max_distance - (log->l_logBBsize - head_block); 1436 error = xlog_write_log_records(log, head_cycle, 0, distance, 1437 tail_cycle, tail_block); 1438 if (error) 1439 return error; 1440 } 1441 1442 return 0; 1443 } 1444 1445 /****************************************************************************** 1446 * 1447 * Log recover routines 1448 * 1449 ****************************************************************************** 1450 */ 1451 1452 STATIC xlog_recover_t * 1453 xlog_recover_find_tid( 1454 struct hlist_head *head, 1455 xlog_tid_t tid) 1456 { 1457 xlog_recover_t *trans; 1458 1459 hlist_for_each_entry(trans, head, r_list) { 1460 if (trans->r_log_tid == tid) 1461 return trans; 1462 } 1463 return NULL; 1464 } 1465 1466 STATIC void 1467 xlog_recover_new_tid( 1468 struct hlist_head *head, 1469 xlog_tid_t tid, 1470 xfs_lsn_t lsn) 1471 { 1472 xlog_recover_t *trans; 1473 1474 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP); 1475 trans->r_log_tid = tid; 1476 trans->r_lsn = lsn; 1477 INIT_LIST_HEAD(&trans->r_itemq); 1478 1479 INIT_HLIST_NODE(&trans->r_list); 1480 hlist_add_head(&trans->r_list, head); 1481 } 1482 1483 STATIC void 1484 xlog_recover_add_item( 1485 struct list_head *head) 1486 { 1487 xlog_recover_item_t *item; 1488 1489 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 1490 INIT_LIST_HEAD(&item->ri_list); 1491 list_add_tail(&item->ri_list, head); 1492 } 1493 1494 STATIC int 1495 xlog_recover_add_to_cont_trans( 1496 struct xlog *log, 1497 struct xlog_recover *trans, 1498 xfs_caddr_t dp, 1499 int len) 1500 { 1501 xlog_recover_item_t *item; 1502 xfs_caddr_t ptr, old_ptr; 1503 int old_len; 1504 1505 if (list_empty(&trans->r_itemq)) { 1506 /* finish copying rest of trans header */ 1507 xlog_recover_add_item(&trans->r_itemq); 1508 ptr = (xfs_caddr_t) &trans->r_theader + 1509 sizeof(xfs_trans_header_t) - len; 1510 memcpy(ptr, dp, len); /* d, s, l */ 1511 return 0; 1512 } 1513 /* take the tail entry */ 1514 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 1515 1516 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 1517 old_len = item->ri_buf[item->ri_cnt-1].i_len; 1518 1519 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP); 1520 memcpy(&ptr[old_len], dp, len); /* d, s, l */ 1521 item->ri_buf[item->ri_cnt-1].i_len += len; 1522 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 1523 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 1524 return 0; 1525 } 1526 1527 /* 1528 * The next region to add is the start of a new region. It could be 1529 * a whole region or it could be the first part of a new region. Because 1530 * of this, the assumption here is that the type and size fields of all 1531 * format structures fit into the first 32 bits of the structure. 1532 * 1533 * This works because all regions must be 32 bit aligned. Therefore, we 1534 * either have both fields or we have neither field. In the case we have 1535 * neither field, the data part of the region is zero length. We only have 1536 * a log_op_header and can throw away the header since a new one will appear 1537 * later. If we have at least 4 bytes, then we can determine how many regions 1538 * will appear in the current log item. 1539 */ 1540 STATIC int 1541 xlog_recover_add_to_trans( 1542 struct xlog *log, 1543 struct xlog_recover *trans, 1544 xfs_caddr_t dp, 1545 int len) 1546 { 1547 xfs_inode_log_format_t *in_f; /* any will do */ 1548 xlog_recover_item_t *item; 1549 xfs_caddr_t ptr; 1550 1551 if (!len) 1552 return 0; 1553 if (list_empty(&trans->r_itemq)) { 1554 /* we need to catch log corruptions here */ 1555 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 1556 xfs_warn(log->l_mp, "%s: bad header magic number", 1557 __func__); 1558 ASSERT(0); 1559 return XFS_ERROR(EIO); 1560 } 1561 if (len == sizeof(xfs_trans_header_t)) 1562 xlog_recover_add_item(&trans->r_itemq); 1563 memcpy(&trans->r_theader, dp, len); /* d, s, l */ 1564 return 0; 1565 } 1566 1567 ptr = kmem_alloc(len, KM_SLEEP); 1568 memcpy(ptr, dp, len); 1569 in_f = (xfs_inode_log_format_t *)ptr; 1570 1571 /* take the tail entry */ 1572 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 1573 if (item->ri_total != 0 && 1574 item->ri_total == item->ri_cnt) { 1575 /* tail item is in use, get a new one */ 1576 xlog_recover_add_item(&trans->r_itemq); 1577 item = list_entry(trans->r_itemq.prev, 1578 xlog_recover_item_t, ri_list); 1579 } 1580 1581 if (item->ri_total == 0) { /* first region to be added */ 1582 if (in_f->ilf_size == 0 || 1583 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 1584 xfs_warn(log->l_mp, 1585 "bad number of regions (%d) in inode log format", 1586 in_f->ilf_size); 1587 ASSERT(0); 1588 return XFS_ERROR(EIO); 1589 } 1590 1591 item->ri_total = in_f->ilf_size; 1592 item->ri_buf = 1593 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 1594 KM_SLEEP); 1595 } 1596 ASSERT(item->ri_total > item->ri_cnt); 1597 /* Description region is ri_buf[0] */ 1598 item->ri_buf[item->ri_cnt].i_addr = ptr; 1599 item->ri_buf[item->ri_cnt].i_len = len; 1600 item->ri_cnt++; 1601 trace_xfs_log_recover_item_add(log, trans, item, 0); 1602 return 0; 1603 } 1604 1605 /* 1606 * Sort the log items in the transaction. 1607 * 1608 * The ordering constraints are defined by the inode allocation and unlink 1609 * behaviour. The rules are: 1610 * 1611 * 1. Every item is only logged once in a given transaction. Hence it 1612 * represents the last logged state of the item. Hence ordering is 1613 * dependent on the order in which operations need to be performed so 1614 * required initial conditions are always met. 1615 * 1616 * 2. Cancelled buffers are recorded in pass 1 in a separate table and 1617 * there's nothing to replay from them so we can simply cull them 1618 * from the transaction. However, we can't do that until after we've 1619 * replayed all the other items because they may be dependent on the 1620 * cancelled buffer and replaying the cancelled buffer can remove it 1621 * form the cancelled buffer table. Hence they have tobe done last. 1622 * 1623 * 3. Inode allocation buffers must be replayed before inode items that 1624 * read the buffer and replay changes into it. For filesystems using the 1625 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get 1626 * treated the same as inode allocation buffers as they create and 1627 * initialise the buffers directly. 1628 * 1629 * 4. Inode unlink buffers must be replayed after inode items are replayed. 1630 * This ensures that inodes are completely flushed to the inode buffer 1631 * in a "free" state before we remove the unlinked inode list pointer. 1632 * 1633 * Hence the ordering needs to be inode allocation buffers first, inode items 1634 * second, inode unlink buffers third and cancelled buffers last. 1635 * 1636 * But there's a problem with that - we can't tell an inode allocation buffer 1637 * apart from a regular buffer, so we can't separate them. We can, however, 1638 * tell an inode unlink buffer from the others, and so we can separate them out 1639 * from all the other buffers and move them to last. 1640 * 1641 * Hence, 4 lists, in order from head to tail: 1642 * - buffer_list for all buffers except cancelled/inode unlink buffers 1643 * - item_list for all non-buffer items 1644 * - inode_buffer_list for inode unlink buffers 1645 * - cancel_list for the cancelled buffers 1646 * 1647 * Note that we add objects to the tail of the lists so that first-to-last 1648 * ordering is preserved within the lists. Adding objects to the head of the 1649 * list means when we traverse from the head we walk them in last-to-first 1650 * order. For cancelled buffers and inode unlink buffers this doesn't matter, 1651 * but for all other items there may be specific ordering that we need to 1652 * preserve. 1653 */ 1654 STATIC int 1655 xlog_recover_reorder_trans( 1656 struct xlog *log, 1657 struct xlog_recover *trans, 1658 int pass) 1659 { 1660 xlog_recover_item_t *item, *n; 1661 LIST_HEAD(sort_list); 1662 LIST_HEAD(cancel_list); 1663 LIST_HEAD(buffer_list); 1664 LIST_HEAD(inode_buffer_list); 1665 LIST_HEAD(inode_list); 1666 1667 list_splice_init(&trans->r_itemq, &sort_list); 1668 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1669 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1670 1671 switch (ITEM_TYPE(item)) { 1672 case XFS_LI_ICREATE: 1673 list_move_tail(&item->ri_list, &buffer_list); 1674 break; 1675 case XFS_LI_BUF: 1676 if (buf_f->blf_flags & XFS_BLF_CANCEL) { 1677 trace_xfs_log_recover_item_reorder_head(log, 1678 trans, item, pass); 1679 list_move(&item->ri_list, &cancel_list); 1680 break; 1681 } 1682 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 1683 list_move(&item->ri_list, &inode_buffer_list); 1684 break; 1685 } 1686 list_move_tail(&item->ri_list, &buffer_list); 1687 break; 1688 case XFS_LI_INODE: 1689 case XFS_LI_DQUOT: 1690 case XFS_LI_QUOTAOFF: 1691 case XFS_LI_EFD: 1692 case XFS_LI_EFI: 1693 trace_xfs_log_recover_item_reorder_tail(log, 1694 trans, item, pass); 1695 list_move_tail(&item->ri_list, &inode_list); 1696 break; 1697 default: 1698 xfs_warn(log->l_mp, 1699 "%s: unrecognized type of log operation", 1700 __func__); 1701 ASSERT(0); 1702 return XFS_ERROR(EIO); 1703 } 1704 } 1705 ASSERT(list_empty(&sort_list)); 1706 if (!list_empty(&buffer_list)) 1707 list_splice(&buffer_list, &trans->r_itemq); 1708 if (!list_empty(&inode_list)) 1709 list_splice_tail(&inode_list, &trans->r_itemq); 1710 if (!list_empty(&inode_buffer_list)) 1711 list_splice_tail(&inode_buffer_list, &trans->r_itemq); 1712 if (!list_empty(&cancel_list)) 1713 list_splice_tail(&cancel_list, &trans->r_itemq); 1714 return 0; 1715 } 1716 1717 /* 1718 * Build up the table of buf cancel records so that we don't replay 1719 * cancelled data in the second pass. For buffer records that are 1720 * not cancel records, there is nothing to do here so we just return. 1721 * 1722 * If we get a cancel record which is already in the table, this indicates 1723 * that the buffer was cancelled multiple times. In order to ensure 1724 * that during pass 2 we keep the record in the table until we reach its 1725 * last occurrence in the log, we keep a reference count in the cancel 1726 * record in the table to tell us how many times we expect to see this 1727 * record during the second pass. 1728 */ 1729 STATIC int 1730 xlog_recover_buffer_pass1( 1731 struct xlog *log, 1732 struct xlog_recover_item *item) 1733 { 1734 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1735 struct list_head *bucket; 1736 struct xfs_buf_cancel *bcp; 1737 1738 /* 1739 * If this isn't a cancel buffer item, then just return. 1740 */ 1741 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 1742 trace_xfs_log_recover_buf_not_cancel(log, buf_f); 1743 return 0; 1744 } 1745 1746 /* 1747 * Insert an xfs_buf_cancel record into the hash table of them. 1748 * If there is already an identical record, bump its reference count. 1749 */ 1750 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno); 1751 list_for_each_entry(bcp, bucket, bc_list) { 1752 if (bcp->bc_blkno == buf_f->blf_blkno && 1753 bcp->bc_len == buf_f->blf_len) { 1754 bcp->bc_refcount++; 1755 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f); 1756 return 0; 1757 } 1758 } 1759 1760 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP); 1761 bcp->bc_blkno = buf_f->blf_blkno; 1762 bcp->bc_len = buf_f->blf_len; 1763 bcp->bc_refcount = 1; 1764 list_add_tail(&bcp->bc_list, bucket); 1765 1766 trace_xfs_log_recover_buf_cancel_add(log, buf_f); 1767 return 0; 1768 } 1769 1770 /* 1771 * Check to see whether the buffer being recovered has a corresponding 1772 * entry in the buffer cancel record table. If it is, return the cancel 1773 * buffer structure to the caller. 1774 */ 1775 STATIC struct xfs_buf_cancel * 1776 xlog_peek_buffer_cancelled( 1777 struct xlog *log, 1778 xfs_daddr_t blkno, 1779 uint len, 1780 ushort flags) 1781 { 1782 struct list_head *bucket; 1783 struct xfs_buf_cancel *bcp; 1784 1785 if (!log->l_buf_cancel_table) { 1786 /* empty table means no cancelled buffers in the log */ 1787 ASSERT(!(flags & XFS_BLF_CANCEL)); 1788 return NULL; 1789 } 1790 1791 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); 1792 list_for_each_entry(bcp, bucket, bc_list) { 1793 if (bcp->bc_blkno == blkno && bcp->bc_len == len) 1794 return bcp; 1795 } 1796 1797 /* 1798 * We didn't find a corresponding entry in the table, so return 0 so 1799 * that the buffer is NOT cancelled. 1800 */ 1801 ASSERT(!(flags & XFS_BLF_CANCEL)); 1802 return NULL; 1803 } 1804 1805 /* 1806 * If the buffer is being cancelled then return 1 so that it will be cancelled, 1807 * otherwise return 0. If the buffer is actually a buffer cancel item 1808 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the 1809 * table and remove it from the table if this is the last reference. 1810 * 1811 * We remove the cancel record from the table when we encounter its last 1812 * occurrence in the log so that if the same buffer is re-used again after its 1813 * last cancellation we actually replay the changes made at that point. 1814 */ 1815 STATIC int 1816 xlog_check_buffer_cancelled( 1817 struct xlog *log, 1818 xfs_daddr_t blkno, 1819 uint len, 1820 ushort flags) 1821 { 1822 struct xfs_buf_cancel *bcp; 1823 1824 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags); 1825 if (!bcp) 1826 return 0; 1827 1828 /* 1829 * We've go a match, so return 1 so that the recovery of this buffer 1830 * is cancelled. If this buffer is actually a buffer cancel log 1831 * item, then decrement the refcount on the one in the table and 1832 * remove it if this is the last reference. 1833 */ 1834 if (flags & XFS_BLF_CANCEL) { 1835 if (--bcp->bc_refcount == 0) { 1836 list_del(&bcp->bc_list); 1837 kmem_free(bcp); 1838 } 1839 } 1840 return 1; 1841 } 1842 1843 /* 1844 * Perform recovery for a buffer full of inodes. In these buffers, the only 1845 * data which should be recovered is that which corresponds to the 1846 * di_next_unlinked pointers in the on disk inode structures. The rest of the 1847 * data for the inodes is always logged through the inodes themselves rather 1848 * than the inode buffer and is recovered in xlog_recover_inode_pass2(). 1849 * 1850 * The only time when buffers full of inodes are fully recovered is when the 1851 * buffer is full of newly allocated inodes. In this case the buffer will 1852 * not be marked as an inode buffer and so will be sent to 1853 * xlog_recover_do_reg_buffer() below during recovery. 1854 */ 1855 STATIC int 1856 xlog_recover_do_inode_buffer( 1857 struct xfs_mount *mp, 1858 xlog_recover_item_t *item, 1859 struct xfs_buf *bp, 1860 xfs_buf_log_format_t *buf_f) 1861 { 1862 int i; 1863 int item_index = 0; 1864 int bit = 0; 1865 int nbits = 0; 1866 int reg_buf_offset = 0; 1867 int reg_buf_bytes = 0; 1868 int next_unlinked_offset; 1869 int inodes_per_buf; 1870 xfs_agino_t *logged_nextp; 1871 xfs_agino_t *buffer_nextp; 1872 1873 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); 1874 1875 /* 1876 * Post recovery validation only works properly on CRC enabled 1877 * filesystems. 1878 */ 1879 if (xfs_sb_version_hascrc(&mp->m_sb)) 1880 bp->b_ops = &xfs_inode_buf_ops; 1881 1882 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog; 1883 for (i = 0; i < inodes_per_buf; i++) { 1884 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 1885 offsetof(xfs_dinode_t, di_next_unlinked); 1886 1887 while (next_unlinked_offset >= 1888 (reg_buf_offset + reg_buf_bytes)) { 1889 /* 1890 * The next di_next_unlinked field is beyond 1891 * the current logged region. Find the next 1892 * logged region that contains or is beyond 1893 * the current di_next_unlinked field. 1894 */ 1895 bit += nbits; 1896 bit = xfs_next_bit(buf_f->blf_data_map, 1897 buf_f->blf_map_size, bit); 1898 1899 /* 1900 * If there are no more logged regions in the 1901 * buffer, then we're done. 1902 */ 1903 if (bit == -1) 1904 return 0; 1905 1906 nbits = xfs_contig_bits(buf_f->blf_data_map, 1907 buf_f->blf_map_size, bit); 1908 ASSERT(nbits > 0); 1909 reg_buf_offset = bit << XFS_BLF_SHIFT; 1910 reg_buf_bytes = nbits << XFS_BLF_SHIFT; 1911 item_index++; 1912 } 1913 1914 /* 1915 * If the current logged region starts after the current 1916 * di_next_unlinked field, then move on to the next 1917 * di_next_unlinked field. 1918 */ 1919 if (next_unlinked_offset < reg_buf_offset) 1920 continue; 1921 1922 ASSERT(item->ri_buf[item_index].i_addr != NULL); 1923 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); 1924 ASSERT((reg_buf_offset + reg_buf_bytes) <= 1925 BBTOB(bp->b_io_length)); 1926 1927 /* 1928 * The current logged region contains a copy of the 1929 * current di_next_unlinked field. Extract its value 1930 * and copy it to the buffer copy. 1931 */ 1932 logged_nextp = item->ri_buf[item_index].i_addr + 1933 next_unlinked_offset - reg_buf_offset; 1934 if (unlikely(*logged_nextp == 0)) { 1935 xfs_alert(mp, 1936 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). " 1937 "Trying to replay bad (0) inode di_next_unlinked field.", 1938 item, bp); 1939 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 1940 XFS_ERRLEVEL_LOW, mp); 1941 return XFS_ERROR(EFSCORRUPTED); 1942 } 1943 1944 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp, 1945 next_unlinked_offset); 1946 *buffer_nextp = *logged_nextp; 1947 1948 /* 1949 * If necessary, recalculate the CRC in the on-disk inode. We 1950 * have to leave the inode in a consistent state for whoever 1951 * reads it next.... 1952 */ 1953 xfs_dinode_calc_crc(mp, (struct xfs_dinode *) 1954 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); 1955 1956 } 1957 1958 return 0; 1959 } 1960 1961 /* 1962 * V5 filesystems know the age of the buffer on disk being recovered. We can 1963 * have newer objects on disk than we are replaying, and so for these cases we 1964 * don't want to replay the current change as that will make the buffer contents 1965 * temporarily invalid on disk. 1966 * 1967 * The magic number might not match the buffer type we are going to recover 1968 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence 1969 * extract the LSN of the existing object in the buffer based on it's current 1970 * magic number. If we don't recognise the magic number in the buffer, then 1971 * return a LSN of -1 so that the caller knows it was an unrecognised block and 1972 * so can recover the buffer. 1973 * 1974 * Note: we cannot rely solely on magic number matches to determine that the 1975 * buffer has a valid LSN - we also need to verify that it belongs to this 1976 * filesystem, so we need to extract the object's LSN and compare it to that 1977 * which we read from the superblock. If the UUIDs don't match, then we've got a 1978 * stale metadata block from an old filesystem instance that we need to recover 1979 * over the top of. 1980 */ 1981 static xfs_lsn_t 1982 xlog_recover_get_buf_lsn( 1983 struct xfs_mount *mp, 1984 struct xfs_buf *bp) 1985 { 1986 __uint32_t magic32; 1987 __uint16_t magic16; 1988 __uint16_t magicda; 1989 void *blk = bp->b_addr; 1990 uuid_t *uuid; 1991 xfs_lsn_t lsn = -1; 1992 1993 /* v4 filesystems always recover immediately */ 1994 if (!xfs_sb_version_hascrc(&mp->m_sb)) 1995 goto recover_immediately; 1996 1997 magic32 = be32_to_cpu(*(__be32 *)blk); 1998 switch (magic32) { 1999 case XFS_ABTB_CRC_MAGIC: 2000 case XFS_ABTC_CRC_MAGIC: 2001 case XFS_ABTB_MAGIC: 2002 case XFS_ABTC_MAGIC: 2003 case XFS_IBT_CRC_MAGIC: 2004 case XFS_IBT_MAGIC: { 2005 struct xfs_btree_block *btb = blk; 2006 2007 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn); 2008 uuid = &btb->bb_u.s.bb_uuid; 2009 break; 2010 } 2011 case XFS_BMAP_CRC_MAGIC: 2012 case XFS_BMAP_MAGIC: { 2013 struct xfs_btree_block *btb = blk; 2014 2015 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn); 2016 uuid = &btb->bb_u.l.bb_uuid; 2017 break; 2018 } 2019 case XFS_AGF_MAGIC: 2020 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn); 2021 uuid = &((struct xfs_agf *)blk)->agf_uuid; 2022 break; 2023 case XFS_AGFL_MAGIC: 2024 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn); 2025 uuid = &((struct xfs_agfl *)blk)->agfl_uuid; 2026 break; 2027 case XFS_AGI_MAGIC: 2028 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn); 2029 uuid = &((struct xfs_agi *)blk)->agi_uuid; 2030 break; 2031 case XFS_SYMLINK_MAGIC: 2032 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn); 2033 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid; 2034 break; 2035 case XFS_DIR3_BLOCK_MAGIC: 2036 case XFS_DIR3_DATA_MAGIC: 2037 case XFS_DIR3_FREE_MAGIC: 2038 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn); 2039 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid; 2040 break; 2041 case XFS_ATTR3_RMT_MAGIC: 2042 lsn = be64_to_cpu(((struct xfs_attr3_rmt_hdr *)blk)->rm_lsn); 2043 uuid = &((struct xfs_attr3_rmt_hdr *)blk)->rm_uuid; 2044 break; 2045 case XFS_SB_MAGIC: 2046 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn); 2047 uuid = &((struct xfs_dsb *)blk)->sb_uuid; 2048 break; 2049 default: 2050 break; 2051 } 2052 2053 if (lsn != (xfs_lsn_t)-1) { 2054 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid)) 2055 goto recover_immediately; 2056 return lsn; 2057 } 2058 2059 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic); 2060 switch (magicda) { 2061 case XFS_DIR3_LEAF1_MAGIC: 2062 case XFS_DIR3_LEAFN_MAGIC: 2063 case XFS_DA3_NODE_MAGIC: 2064 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn); 2065 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid; 2066 break; 2067 default: 2068 break; 2069 } 2070 2071 if (lsn != (xfs_lsn_t)-1) { 2072 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid)) 2073 goto recover_immediately; 2074 return lsn; 2075 } 2076 2077 /* 2078 * We do individual object checks on dquot and inode buffers as they 2079 * have their own individual LSN records. Also, we could have a stale 2080 * buffer here, so we have to at least recognise these buffer types. 2081 * 2082 * A notd complexity here is inode unlinked list processing - it logs 2083 * the inode directly in the buffer, but we don't know which inodes have 2084 * been modified, and there is no global buffer LSN. Hence we need to 2085 * recover all inode buffer types immediately. This problem will be 2086 * fixed by logical logging of the unlinked list modifications. 2087 */ 2088 magic16 = be16_to_cpu(*(__be16 *)blk); 2089 switch (magic16) { 2090 case XFS_DQUOT_MAGIC: 2091 case XFS_DINODE_MAGIC: 2092 goto recover_immediately; 2093 default: 2094 break; 2095 } 2096 2097 /* unknown buffer contents, recover immediately */ 2098 2099 recover_immediately: 2100 return (xfs_lsn_t)-1; 2101 2102 } 2103 2104 /* 2105 * Validate the recovered buffer is of the correct type and attach the 2106 * appropriate buffer operations to them for writeback. Magic numbers are in a 2107 * few places: 2108 * the first 16 bits of the buffer (inode buffer, dquot buffer), 2109 * the first 32 bits of the buffer (most blocks), 2110 * inside a struct xfs_da_blkinfo at the start of the buffer. 2111 */ 2112 static void 2113 xlog_recover_validate_buf_type( 2114 struct xfs_mount *mp, 2115 struct xfs_buf *bp, 2116 xfs_buf_log_format_t *buf_f) 2117 { 2118 struct xfs_da_blkinfo *info = bp->b_addr; 2119 __uint32_t magic32; 2120 __uint16_t magic16; 2121 __uint16_t magicda; 2122 2123 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr); 2124 magic16 = be16_to_cpu(*(__be16*)bp->b_addr); 2125 magicda = be16_to_cpu(info->magic); 2126 switch (xfs_blft_from_flags(buf_f)) { 2127 case XFS_BLFT_BTREE_BUF: 2128 switch (magic32) { 2129 case XFS_ABTB_CRC_MAGIC: 2130 case XFS_ABTC_CRC_MAGIC: 2131 case XFS_ABTB_MAGIC: 2132 case XFS_ABTC_MAGIC: 2133 bp->b_ops = &xfs_allocbt_buf_ops; 2134 break; 2135 case XFS_IBT_CRC_MAGIC: 2136 case XFS_IBT_MAGIC: 2137 bp->b_ops = &xfs_inobt_buf_ops; 2138 break; 2139 case XFS_BMAP_CRC_MAGIC: 2140 case XFS_BMAP_MAGIC: 2141 bp->b_ops = &xfs_bmbt_buf_ops; 2142 break; 2143 default: 2144 xfs_warn(mp, "Bad btree block magic!"); 2145 ASSERT(0); 2146 break; 2147 } 2148 break; 2149 case XFS_BLFT_AGF_BUF: 2150 if (magic32 != XFS_AGF_MAGIC) { 2151 xfs_warn(mp, "Bad AGF block magic!"); 2152 ASSERT(0); 2153 break; 2154 } 2155 bp->b_ops = &xfs_agf_buf_ops; 2156 break; 2157 case XFS_BLFT_AGFL_BUF: 2158 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2159 break; 2160 if (magic32 != XFS_AGFL_MAGIC) { 2161 xfs_warn(mp, "Bad AGFL block magic!"); 2162 ASSERT(0); 2163 break; 2164 } 2165 bp->b_ops = &xfs_agfl_buf_ops; 2166 break; 2167 case XFS_BLFT_AGI_BUF: 2168 if (magic32 != XFS_AGI_MAGIC) { 2169 xfs_warn(mp, "Bad AGI block magic!"); 2170 ASSERT(0); 2171 break; 2172 } 2173 bp->b_ops = &xfs_agi_buf_ops; 2174 break; 2175 case XFS_BLFT_UDQUOT_BUF: 2176 case XFS_BLFT_PDQUOT_BUF: 2177 case XFS_BLFT_GDQUOT_BUF: 2178 #ifdef CONFIG_XFS_QUOTA 2179 if (magic16 != XFS_DQUOT_MAGIC) { 2180 xfs_warn(mp, "Bad DQUOT block magic!"); 2181 ASSERT(0); 2182 break; 2183 } 2184 bp->b_ops = &xfs_dquot_buf_ops; 2185 #else 2186 xfs_alert(mp, 2187 "Trying to recover dquots without QUOTA support built in!"); 2188 ASSERT(0); 2189 #endif 2190 break; 2191 case XFS_BLFT_DINO_BUF: 2192 /* 2193 * we get here with inode allocation buffers, not buffers that 2194 * track unlinked list changes. 2195 */ 2196 if (magic16 != XFS_DINODE_MAGIC) { 2197 xfs_warn(mp, "Bad INODE block magic!"); 2198 ASSERT(0); 2199 break; 2200 } 2201 bp->b_ops = &xfs_inode_buf_ops; 2202 break; 2203 case XFS_BLFT_SYMLINK_BUF: 2204 if (magic32 != XFS_SYMLINK_MAGIC) { 2205 xfs_warn(mp, "Bad symlink block magic!"); 2206 ASSERT(0); 2207 break; 2208 } 2209 bp->b_ops = &xfs_symlink_buf_ops; 2210 break; 2211 case XFS_BLFT_DIR_BLOCK_BUF: 2212 if (magic32 != XFS_DIR2_BLOCK_MAGIC && 2213 magic32 != XFS_DIR3_BLOCK_MAGIC) { 2214 xfs_warn(mp, "Bad dir block magic!"); 2215 ASSERT(0); 2216 break; 2217 } 2218 bp->b_ops = &xfs_dir3_block_buf_ops; 2219 break; 2220 case XFS_BLFT_DIR_DATA_BUF: 2221 if (magic32 != XFS_DIR2_DATA_MAGIC && 2222 magic32 != XFS_DIR3_DATA_MAGIC) { 2223 xfs_warn(mp, "Bad dir data magic!"); 2224 ASSERT(0); 2225 break; 2226 } 2227 bp->b_ops = &xfs_dir3_data_buf_ops; 2228 break; 2229 case XFS_BLFT_DIR_FREE_BUF: 2230 if (magic32 != XFS_DIR2_FREE_MAGIC && 2231 magic32 != XFS_DIR3_FREE_MAGIC) { 2232 xfs_warn(mp, "Bad dir3 free magic!"); 2233 ASSERT(0); 2234 break; 2235 } 2236 bp->b_ops = &xfs_dir3_free_buf_ops; 2237 break; 2238 case XFS_BLFT_DIR_LEAF1_BUF: 2239 if (magicda != XFS_DIR2_LEAF1_MAGIC && 2240 magicda != XFS_DIR3_LEAF1_MAGIC) { 2241 xfs_warn(mp, "Bad dir leaf1 magic!"); 2242 ASSERT(0); 2243 break; 2244 } 2245 bp->b_ops = &xfs_dir3_leaf1_buf_ops; 2246 break; 2247 case XFS_BLFT_DIR_LEAFN_BUF: 2248 if (magicda != XFS_DIR2_LEAFN_MAGIC && 2249 magicda != XFS_DIR3_LEAFN_MAGIC) { 2250 xfs_warn(mp, "Bad dir leafn magic!"); 2251 ASSERT(0); 2252 break; 2253 } 2254 bp->b_ops = &xfs_dir3_leafn_buf_ops; 2255 break; 2256 case XFS_BLFT_DA_NODE_BUF: 2257 if (magicda != XFS_DA_NODE_MAGIC && 2258 magicda != XFS_DA3_NODE_MAGIC) { 2259 xfs_warn(mp, "Bad da node magic!"); 2260 ASSERT(0); 2261 break; 2262 } 2263 bp->b_ops = &xfs_da3_node_buf_ops; 2264 break; 2265 case XFS_BLFT_ATTR_LEAF_BUF: 2266 if (magicda != XFS_ATTR_LEAF_MAGIC && 2267 magicda != XFS_ATTR3_LEAF_MAGIC) { 2268 xfs_warn(mp, "Bad attr leaf magic!"); 2269 ASSERT(0); 2270 break; 2271 } 2272 bp->b_ops = &xfs_attr3_leaf_buf_ops; 2273 break; 2274 case XFS_BLFT_ATTR_RMT_BUF: 2275 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2276 break; 2277 if (magic32 != XFS_ATTR3_RMT_MAGIC) { 2278 xfs_warn(mp, "Bad attr remote magic!"); 2279 ASSERT(0); 2280 break; 2281 } 2282 bp->b_ops = &xfs_attr3_rmt_buf_ops; 2283 break; 2284 case XFS_BLFT_SB_BUF: 2285 if (magic32 != XFS_SB_MAGIC) { 2286 xfs_warn(mp, "Bad SB block magic!"); 2287 ASSERT(0); 2288 break; 2289 } 2290 bp->b_ops = &xfs_sb_buf_ops; 2291 break; 2292 default: 2293 xfs_warn(mp, "Unknown buffer type %d!", 2294 xfs_blft_from_flags(buf_f)); 2295 break; 2296 } 2297 } 2298 2299 /* 2300 * Perform a 'normal' buffer recovery. Each logged region of the 2301 * buffer should be copied over the corresponding region in the 2302 * given buffer. The bitmap in the buf log format structure indicates 2303 * where to place the logged data. 2304 */ 2305 STATIC void 2306 xlog_recover_do_reg_buffer( 2307 struct xfs_mount *mp, 2308 xlog_recover_item_t *item, 2309 struct xfs_buf *bp, 2310 xfs_buf_log_format_t *buf_f) 2311 { 2312 int i; 2313 int bit; 2314 int nbits; 2315 int error; 2316 2317 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); 2318 2319 bit = 0; 2320 i = 1; /* 0 is the buf format structure */ 2321 while (1) { 2322 bit = xfs_next_bit(buf_f->blf_data_map, 2323 buf_f->blf_map_size, bit); 2324 if (bit == -1) 2325 break; 2326 nbits = xfs_contig_bits(buf_f->blf_data_map, 2327 buf_f->blf_map_size, bit); 2328 ASSERT(nbits > 0); 2329 ASSERT(item->ri_buf[i].i_addr != NULL); 2330 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); 2331 ASSERT(BBTOB(bp->b_io_length) >= 2332 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); 2333 2334 /* 2335 * The dirty regions logged in the buffer, even though 2336 * contiguous, may span multiple chunks. This is because the 2337 * dirty region may span a physical page boundary in a buffer 2338 * and hence be split into two separate vectors for writing into 2339 * the log. Hence we need to trim nbits back to the length of 2340 * the current region being copied out of the log. 2341 */ 2342 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT)) 2343 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT; 2344 2345 /* 2346 * Do a sanity check if this is a dquot buffer. Just checking 2347 * the first dquot in the buffer should do. XXXThis is 2348 * probably a good thing to do for other buf types also. 2349 */ 2350 error = 0; 2351 if (buf_f->blf_flags & 2352 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2353 if (item->ri_buf[i].i_addr == NULL) { 2354 xfs_alert(mp, 2355 "XFS: NULL dquot in %s.", __func__); 2356 goto next; 2357 } 2358 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) { 2359 xfs_alert(mp, 2360 "XFS: dquot too small (%d) in %s.", 2361 item->ri_buf[i].i_len, __func__); 2362 goto next; 2363 } 2364 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr, 2365 -1, 0, XFS_QMOPT_DOWARN, 2366 "dquot_buf_recover"); 2367 if (error) 2368 goto next; 2369 } 2370 2371 memcpy(xfs_buf_offset(bp, 2372 (uint)bit << XFS_BLF_SHIFT), /* dest */ 2373 item->ri_buf[i].i_addr, /* source */ 2374 nbits<<XFS_BLF_SHIFT); /* length */ 2375 next: 2376 i++; 2377 bit += nbits; 2378 } 2379 2380 /* Shouldn't be any more regions */ 2381 ASSERT(i == item->ri_total); 2382 2383 /* 2384 * We can only do post recovery validation on items on CRC enabled 2385 * fielsystems as we need to know when the buffer was written to be able 2386 * to determine if we should have replayed the item. If we replay old 2387 * metadata over a newer buffer, then it will enter a temporarily 2388 * inconsistent state resulting in verification failures. Hence for now 2389 * just avoid the verification stage for non-crc filesystems 2390 */ 2391 if (xfs_sb_version_hascrc(&mp->m_sb)) 2392 xlog_recover_validate_buf_type(mp, bp, buf_f); 2393 } 2394 2395 /* 2396 * Do some primitive error checking on ondisk dquot data structures. 2397 */ 2398 int 2399 xfs_qm_dqcheck( 2400 struct xfs_mount *mp, 2401 xfs_disk_dquot_t *ddq, 2402 xfs_dqid_t id, 2403 uint type, /* used only when IO_dorepair is true */ 2404 uint flags, 2405 char *str) 2406 { 2407 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq; 2408 int errs = 0; 2409 2410 /* 2411 * We can encounter an uninitialized dquot buffer for 2 reasons: 2412 * 1. If we crash while deleting the quotainode(s), and those blks got 2413 * used for user data. This is because we take the path of regular 2414 * file deletion; however, the size field of quotainodes is never 2415 * updated, so all the tricks that we play in itruncate_finish 2416 * don't quite matter. 2417 * 2418 * 2. We don't play the quota buffers when there's a quotaoff logitem. 2419 * But the allocation will be replayed so we'll end up with an 2420 * uninitialized quota block. 2421 * 2422 * This is all fine; things are still consistent, and we haven't lost 2423 * any quota information. Just don't complain about bad dquot blks. 2424 */ 2425 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) { 2426 if (flags & XFS_QMOPT_DOWARN) 2427 xfs_alert(mp, 2428 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x", 2429 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC); 2430 errs++; 2431 } 2432 if (ddq->d_version != XFS_DQUOT_VERSION) { 2433 if (flags & XFS_QMOPT_DOWARN) 2434 xfs_alert(mp, 2435 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x", 2436 str, id, ddq->d_version, XFS_DQUOT_VERSION); 2437 errs++; 2438 } 2439 2440 if (ddq->d_flags != XFS_DQ_USER && 2441 ddq->d_flags != XFS_DQ_PROJ && 2442 ddq->d_flags != XFS_DQ_GROUP) { 2443 if (flags & XFS_QMOPT_DOWARN) 2444 xfs_alert(mp, 2445 "%s : XFS dquot ID 0x%x, unknown flags 0x%x", 2446 str, id, ddq->d_flags); 2447 errs++; 2448 } 2449 2450 if (id != -1 && id != be32_to_cpu(ddq->d_id)) { 2451 if (flags & XFS_QMOPT_DOWARN) 2452 xfs_alert(mp, 2453 "%s : ondisk-dquot 0x%p, ID mismatch: " 2454 "0x%x expected, found id 0x%x", 2455 str, ddq, id, be32_to_cpu(ddq->d_id)); 2456 errs++; 2457 } 2458 2459 if (!errs && ddq->d_id) { 2460 if (ddq->d_blk_softlimit && 2461 be64_to_cpu(ddq->d_bcount) > 2462 be64_to_cpu(ddq->d_blk_softlimit)) { 2463 if (!ddq->d_btimer) { 2464 if (flags & XFS_QMOPT_DOWARN) 2465 xfs_alert(mp, 2466 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED", 2467 str, (int)be32_to_cpu(ddq->d_id), ddq); 2468 errs++; 2469 } 2470 } 2471 if (ddq->d_ino_softlimit && 2472 be64_to_cpu(ddq->d_icount) > 2473 be64_to_cpu(ddq->d_ino_softlimit)) { 2474 if (!ddq->d_itimer) { 2475 if (flags & XFS_QMOPT_DOWARN) 2476 xfs_alert(mp, 2477 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED", 2478 str, (int)be32_to_cpu(ddq->d_id), ddq); 2479 errs++; 2480 } 2481 } 2482 if (ddq->d_rtb_softlimit && 2483 be64_to_cpu(ddq->d_rtbcount) > 2484 be64_to_cpu(ddq->d_rtb_softlimit)) { 2485 if (!ddq->d_rtbtimer) { 2486 if (flags & XFS_QMOPT_DOWARN) 2487 xfs_alert(mp, 2488 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED", 2489 str, (int)be32_to_cpu(ddq->d_id), ddq); 2490 errs++; 2491 } 2492 } 2493 } 2494 2495 if (!errs || !(flags & XFS_QMOPT_DQREPAIR)) 2496 return errs; 2497 2498 if (flags & XFS_QMOPT_DOWARN) 2499 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id); 2500 2501 /* 2502 * Typically, a repair is only requested by quotacheck. 2503 */ 2504 ASSERT(id != -1); 2505 ASSERT(flags & XFS_QMOPT_DQREPAIR); 2506 memset(d, 0, sizeof(xfs_dqblk_t)); 2507 2508 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC); 2509 d->dd_diskdq.d_version = XFS_DQUOT_VERSION; 2510 d->dd_diskdq.d_flags = type; 2511 d->dd_diskdq.d_id = cpu_to_be32(id); 2512 2513 if (xfs_sb_version_hascrc(&mp->m_sb)) { 2514 uuid_copy(&d->dd_uuid, &mp->m_sb.sb_uuid); 2515 xfs_update_cksum((char *)d, sizeof(struct xfs_dqblk), 2516 XFS_DQUOT_CRC_OFF); 2517 } 2518 2519 return errs; 2520 } 2521 2522 /* 2523 * Perform a dquot buffer recovery. 2524 * Simple algorithm: if we have found a QUOTAOFF log item of the same type 2525 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2526 * Else, treat it as a regular buffer and do recovery. 2527 */ 2528 STATIC void 2529 xlog_recover_do_dquot_buffer( 2530 struct xfs_mount *mp, 2531 struct xlog *log, 2532 struct xlog_recover_item *item, 2533 struct xfs_buf *bp, 2534 struct xfs_buf_log_format *buf_f) 2535 { 2536 uint type; 2537 2538 trace_xfs_log_recover_buf_dquot_buf(log, buf_f); 2539 2540 /* 2541 * Filesystems are required to send in quota flags at mount time. 2542 */ 2543 if (mp->m_qflags == 0) { 2544 return; 2545 } 2546 2547 type = 0; 2548 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) 2549 type |= XFS_DQ_USER; 2550 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) 2551 type |= XFS_DQ_PROJ; 2552 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) 2553 type |= XFS_DQ_GROUP; 2554 /* 2555 * This type of quotas was turned off, so ignore this buffer 2556 */ 2557 if (log->l_quotaoffs_flag & type) 2558 return; 2559 2560 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2561 } 2562 2563 /* 2564 * This routine replays a modification made to a buffer at runtime. 2565 * There are actually two types of buffer, regular and inode, which 2566 * are handled differently. Inode buffers are handled differently 2567 * in that we only recover a specific set of data from them, namely 2568 * the inode di_next_unlinked fields. This is because all other inode 2569 * data is actually logged via inode records and any data we replay 2570 * here which overlaps that may be stale. 2571 * 2572 * When meta-data buffers are freed at run time we log a buffer item 2573 * with the XFS_BLF_CANCEL bit set to indicate that previous copies 2574 * of the buffer in the log should not be replayed at recovery time. 2575 * This is so that if the blocks covered by the buffer are reused for 2576 * file data before we crash we don't end up replaying old, freed 2577 * meta-data into a user's file. 2578 * 2579 * To handle the cancellation of buffer log items, we make two passes 2580 * over the log during recovery. During the first we build a table of 2581 * those buffers which have been cancelled, and during the second we 2582 * only replay those buffers which do not have corresponding cancel 2583 * records in the table. See xlog_recover_buffer_pass[1,2] above 2584 * for more details on the implementation of the table of cancel records. 2585 */ 2586 STATIC int 2587 xlog_recover_buffer_pass2( 2588 struct xlog *log, 2589 struct list_head *buffer_list, 2590 struct xlog_recover_item *item, 2591 xfs_lsn_t current_lsn) 2592 { 2593 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2594 xfs_mount_t *mp = log->l_mp; 2595 xfs_buf_t *bp; 2596 int error; 2597 uint buf_flags; 2598 xfs_lsn_t lsn; 2599 2600 /* 2601 * In this pass we only want to recover all the buffers which have 2602 * not been cancelled and are not cancellation buffers themselves. 2603 */ 2604 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno, 2605 buf_f->blf_len, buf_f->blf_flags)) { 2606 trace_xfs_log_recover_buf_cancel(log, buf_f); 2607 return 0; 2608 } 2609 2610 trace_xfs_log_recover_buf_recover(log, buf_f); 2611 2612 buf_flags = 0; 2613 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) 2614 buf_flags |= XBF_UNMAPPED; 2615 2616 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, 2617 buf_flags, NULL); 2618 if (!bp) 2619 return XFS_ERROR(ENOMEM); 2620 error = bp->b_error; 2621 if (error) { 2622 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)"); 2623 goto out_release; 2624 } 2625 2626 /* 2627 * recover the buffer only if we get an LSN from it and it's less than 2628 * the lsn of the transaction we are replaying. 2629 */ 2630 lsn = xlog_recover_get_buf_lsn(mp, bp); 2631 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) 2632 goto out_release; 2633 2634 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 2635 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2636 } else if (buf_f->blf_flags & 2637 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2638 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2639 } else { 2640 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2641 } 2642 if (error) 2643 goto out_release; 2644 2645 /* 2646 * Perform delayed write on the buffer. Asynchronous writes will be 2647 * slower when taking into account all the buffers to be flushed. 2648 * 2649 * Also make sure that only inode buffers with good sizes stay in 2650 * the buffer cache. The kernel moves inodes in buffers of 1 block 2651 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode 2652 * buffers in the log can be a different size if the log was generated 2653 * by an older kernel using unclustered inode buffers or a newer kernel 2654 * running with a different inode cluster size. Regardless, if the 2655 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE) 2656 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep 2657 * the buffer out of the buffer cache so that the buffer won't 2658 * overlap with future reads of those inodes. 2659 */ 2660 if (XFS_DINODE_MAGIC == 2661 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && 2662 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize, 2663 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) { 2664 xfs_buf_stale(bp); 2665 error = xfs_bwrite(bp); 2666 } else { 2667 ASSERT(bp->b_target->bt_mount == mp); 2668 bp->b_iodone = xlog_recover_iodone; 2669 xfs_buf_delwri_queue(bp, buffer_list); 2670 } 2671 2672 out_release: 2673 xfs_buf_relse(bp); 2674 return error; 2675 } 2676 2677 /* 2678 * Inode fork owner changes 2679 * 2680 * If we have been told that we have to reparent the inode fork, it's because an 2681 * extent swap operation on a CRC enabled filesystem has been done and we are 2682 * replaying it. We need to walk the BMBT of the appropriate fork and change the 2683 * owners of it. 2684 * 2685 * The complexity here is that we don't have an inode context to work with, so 2686 * after we've replayed the inode we need to instantiate one. This is where the 2687 * fun begins. 2688 * 2689 * We are in the middle of log recovery, so we can't run transactions. That 2690 * means we cannot use cache coherent inode instantiation via xfs_iget(), as 2691 * that will result in the corresponding iput() running the inode through 2692 * xfs_inactive(). If we've just replayed an inode core that changes the link 2693 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run 2694 * transactions (bad!). 2695 * 2696 * So, to avoid this, we instantiate an inode directly from the inode core we've 2697 * just recovered. We have the buffer still locked, and all we really need to 2698 * instantiate is the inode core and the forks being modified. We can do this 2699 * manually, then run the inode btree owner change, and then tear down the 2700 * xfs_inode without having to run any transactions at all. 2701 * 2702 * Also, because we don't have a transaction context available here but need to 2703 * gather all the buffers we modify for writeback so we pass the buffer_list 2704 * instead for the operation to use. 2705 */ 2706 2707 STATIC int 2708 xfs_recover_inode_owner_change( 2709 struct xfs_mount *mp, 2710 struct xfs_dinode *dip, 2711 struct xfs_inode_log_format *in_f, 2712 struct list_head *buffer_list) 2713 { 2714 struct xfs_inode *ip; 2715 int error; 2716 2717 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)); 2718 2719 ip = xfs_inode_alloc(mp, in_f->ilf_ino); 2720 if (!ip) 2721 return ENOMEM; 2722 2723 /* instantiate the inode */ 2724 xfs_dinode_from_disk(&ip->i_d, dip); 2725 ASSERT(ip->i_d.di_version >= 3); 2726 2727 error = xfs_iformat_fork(ip, dip); 2728 if (error) 2729 goto out_free_ip; 2730 2731 2732 if (in_f->ilf_fields & XFS_ILOG_DOWNER) { 2733 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT); 2734 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK, 2735 ip->i_ino, buffer_list); 2736 if (error) 2737 goto out_free_ip; 2738 } 2739 2740 if (in_f->ilf_fields & XFS_ILOG_AOWNER) { 2741 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT); 2742 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK, 2743 ip->i_ino, buffer_list); 2744 if (error) 2745 goto out_free_ip; 2746 } 2747 2748 out_free_ip: 2749 xfs_inode_free(ip); 2750 return error; 2751 } 2752 2753 STATIC int 2754 xlog_recover_inode_pass2( 2755 struct xlog *log, 2756 struct list_head *buffer_list, 2757 struct xlog_recover_item *item, 2758 xfs_lsn_t current_lsn) 2759 { 2760 xfs_inode_log_format_t *in_f; 2761 xfs_mount_t *mp = log->l_mp; 2762 xfs_buf_t *bp; 2763 xfs_dinode_t *dip; 2764 int len; 2765 xfs_caddr_t src; 2766 xfs_caddr_t dest; 2767 int error; 2768 int attr_index; 2769 uint fields; 2770 xfs_icdinode_t *dicp; 2771 uint isize; 2772 int need_free = 0; 2773 2774 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) { 2775 in_f = item->ri_buf[0].i_addr; 2776 } else { 2777 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP); 2778 need_free = 1; 2779 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 2780 if (error) 2781 goto error; 2782 } 2783 2784 /* 2785 * Inode buffers can be freed, look out for it, 2786 * and do not replay the inode. 2787 */ 2788 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, 2789 in_f->ilf_len, 0)) { 2790 error = 0; 2791 trace_xfs_log_recover_inode_cancel(log, in_f); 2792 goto error; 2793 } 2794 trace_xfs_log_recover_inode_recover(log, in_f); 2795 2796 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0, 2797 &xfs_inode_buf_ops); 2798 if (!bp) { 2799 error = ENOMEM; 2800 goto error; 2801 } 2802 error = bp->b_error; 2803 if (error) { 2804 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)"); 2805 goto out_release; 2806 } 2807 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 2808 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset); 2809 2810 /* 2811 * Make sure the place we're flushing out to really looks 2812 * like an inode! 2813 */ 2814 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) { 2815 xfs_alert(mp, 2816 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld", 2817 __func__, dip, bp, in_f->ilf_ino); 2818 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)", 2819 XFS_ERRLEVEL_LOW, mp); 2820 error = EFSCORRUPTED; 2821 goto out_release; 2822 } 2823 dicp = item->ri_buf[1].i_addr; 2824 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { 2825 xfs_alert(mp, 2826 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld", 2827 __func__, item, in_f->ilf_ino); 2828 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)", 2829 XFS_ERRLEVEL_LOW, mp); 2830 error = EFSCORRUPTED; 2831 goto out_release; 2832 } 2833 2834 /* 2835 * If the inode has an LSN in it, recover the inode only if it's less 2836 * than the lsn of the transaction we are replaying. Note: we still 2837 * need to replay an owner change even though the inode is more recent 2838 * than the transaction as there is no guarantee that all the btree 2839 * blocks are more recent than this transaction, too. 2840 */ 2841 if (dip->di_version >= 3) { 2842 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn); 2843 2844 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 2845 trace_xfs_log_recover_inode_skip(log, in_f); 2846 error = 0; 2847 goto out_owner_change; 2848 } 2849 } 2850 2851 /* 2852 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes 2853 * are transactional and if ordering is necessary we can determine that 2854 * more accurately by the LSN field in the V3 inode core. Don't trust 2855 * the inode versions we might be changing them here - use the 2856 * superblock flag to determine whether we need to look at di_flushiter 2857 * to skip replay when the on disk inode is newer than the log one 2858 */ 2859 if (!xfs_sb_version_hascrc(&mp->m_sb) && 2860 dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) { 2861 /* 2862 * Deal with the wrap case, DI_MAX_FLUSH is less 2863 * than smaller numbers 2864 */ 2865 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && 2866 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) { 2867 /* do nothing */ 2868 } else { 2869 trace_xfs_log_recover_inode_skip(log, in_f); 2870 error = 0; 2871 goto out_release; 2872 } 2873 } 2874 2875 /* Take the opportunity to reset the flush iteration count */ 2876 dicp->di_flushiter = 0; 2877 2878 if (unlikely(S_ISREG(dicp->di_mode))) { 2879 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2880 (dicp->di_format != XFS_DINODE_FMT_BTREE)) { 2881 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)", 2882 XFS_ERRLEVEL_LOW, mp, dicp); 2883 xfs_alert(mp, 2884 "%s: Bad regular inode log record, rec ptr 0x%p, " 2885 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2886 __func__, item, dip, bp, in_f->ilf_ino); 2887 error = EFSCORRUPTED; 2888 goto out_release; 2889 } 2890 } else if (unlikely(S_ISDIR(dicp->di_mode))) { 2891 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2892 (dicp->di_format != XFS_DINODE_FMT_BTREE) && 2893 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { 2894 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)", 2895 XFS_ERRLEVEL_LOW, mp, dicp); 2896 xfs_alert(mp, 2897 "%s: Bad dir inode log record, rec ptr 0x%p, " 2898 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2899 __func__, item, dip, bp, in_f->ilf_ino); 2900 error = EFSCORRUPTED; 2901 goto out_release; 2902 } 2903 } 2904 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ 2905 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)", 2906 XFS_ERRLEVEL_LOW, mp, dicp); 2907 xfs_alert(mp, 2908 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 2909 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", 2910 __func__, item, dip, bp, in_f->ilf_ino, 2911 dicp->di_nextents + dicp->di_anextents, 2912 dicp->di_nblocks); 2913 error = EFSCORRUPTED; 2914 goto out_release; 2915 } 2916 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { 2917 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)", 2918 XFS_ERRLEVEL_LOW, mp, dicp); 2919 xfs_alert(mp, 2920 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 2921 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__, 2922 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff); 2923 error = EFSCORRUPTED; 2924 goto out_release; 2925 } 2926 isize = xfs_icdinode_size(dicp->di_version); 2927 if (unlikely(item->ri_buf[1].i_len > isize)) { 2928 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)", 2929 XFS_ERRLEVEL_LOW, mp, dicp); 2930 xfs_alert(mp, 2931 "%s: Bad inode log record length %d, rec ptr 0x%p", 2932 __func__, item->ri_buf[1].i_len, item); 2933 error = EFSCORRUPTED; 2934 goto out_release; 2935 } 2936 2937 /* The core is in in-core format */ 2938 xfs_dinode_to_disk(dip, dicp); 2939 2940 /* the rest is in on-disk format */ 2941 if (item->ri_buf[1].i_len > isize) { 2942 memcpy((char *)dip + isize, 2943 item->ri_buf[1].i_addr + isize, 2944 item->ri_buf[1].i_len - isize); 2945 } 2946 2947 fields = in_f->ilf_fields; 2948 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { 2949 case XFS_ILOG_DEV: 2950 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); 2951 break; 2952 case XFS_ILOG_UUID: 2953 memcpy(XFS_DFORK_DPTR(dip), 2954 &in_f->ilf_u.ilfu_uuid, 2955 sizeof(uuid_t)); 2956 break; 2957 } 2958 2959 if (in_f->ilf_size == 2) 2960 goto out_owner_change; 2961 len = item->ri_buf[2].i_len; 2962 src = item->ri_buf[2].i_addr; 2963 ASSERT(in_f->ilf_size <= 4); 2964 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 2965 ASSERT(!(fields & XFS_ILOG_DFORK) || 2966 (len == in_f->ilf_dsize)); 2967 2968 switch (fields & XFS_ILOG_DFORK) { 2969 case XFS_ILOG_DDATA: 2970 case XFS_ILOG_DEXT: 2971 memcpy(XFS_DFORK_DPTR(dip), src, len); 2972 break; 2973 2974 case XFS_ILOG_DBROOT: 2975 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, 2976 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), 2977 XFS_DFORK_DSIZE(dip, mp)); 2978 break; 2979 2980 default: 2981 /* 2982 * There are no data fork flags set. 2983 */ 2984 ASSERT((fields & XFS_ILOG_DFORK) == 0); 2985 break; 2986 } 2987 2988 /* 2989 * If we logged any attribute data, recover it. There may or 2990 * may not have been any other non-core data logged in this 2991 * transaction. 2992 */ 2993 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 2994 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 2995 attr_index = 3; 2996 } else { 2997 attr_index = 2; 2998 } 2999 len = item->ri_buf[attr_index].i_len; 3000 src = item->ri_buf[attr_index].i_addr; 3001 ASSERT(len == in_f->ilf_asize); 3002 3003 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 3004 case XFS_ILOG_ADATA: 3005 case XFS_ILOG_AEXT: 3006 dest = XFS_DFORK_APTR(dip); 3007 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 3008 memcpy(dest, src, len); 3009 break; 3010 3011 case XFS_ILOG_ABROOT: 3012 dest = XFS_DFORK_APTR(dip); 3013 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, 3014 len, (xfs_bmdr_block_t*)dest, 3015 XFS_DFORK_ASIZE(dip, mp)); 3016 break; 3017 3018 default: 3019 xfs_warn(log->l_mp, "%s: Invalid flag", __func__); 3020 ASSERT(0); 3021 error = EIO; 3022 goto out_release; 3023 } 3024 } 3025 3026 out_owner_change: 3027 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) 3028 error = xfs_recover_inode_owner_change(mp, dip, in_f, 3029 buffer_list); 3030 /* re-generate the checksum. */ 3031 xfs_dinode_calc_crc(log->l_mp, dip); 3032 3033 ASSERT(bp->b_target->bt_mount == mp); 3034 bp->b_iodone = xlog_recover_iodone; 3035 xfs_buf_delwri_queue(bp, buffer_list); 3036 3037 out_release: 3038 xfs_buf_relse(bp); 3039 error: 3040 if (need_free) 3041 kmem_free(in_f); 3042 return XFS_ERROR(error); 3043 } 3044 3045 /* 3046 * Recover QUOTAOFF records. We simply make a note of it in the xlog 3047 * structure, so that we know not to do any dquot item or dquot buffer recovery, 3048 * of that type. 3049 */ 3050 STATIC int 3051 xlog_recover_quotaoff_pass1( 3052 struct xlog *log, 3053 struct xlog_recover_item *item) 3054 { 3055 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr; 3056 ASSERT(qoff_f); 3057 3058 /* 3059 * The logitem format's flag tells us if this was user quotaoff, 3060 * group/project quotaoff or both. 3061 */ 3062 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 3063 log->l_quotaoffs_flag |= XFS_DQ_USER; 3064 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 3065 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 3066 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 3067 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 3068 3069 return (0); 3070 } 3071 3072 /* 3073 * Recover a dquot record 3074 */ 3075 STATIC int 3076 xlog_recover_dquot_pass2( 3077 struct xlog *log, 3078 struct list_head *buffer_list, 3079 struct xlog_recover_item *item, 3080 xfs_lsn_t current_lsn) 3081 { 3082 xfs_mount_t *mp = log->l_mp; 3083 xfs_buf_t *bp; 3084 struct xfs_disk_dquot *ddq, *recddq; 3085 int error; 3086 xfs_dq_logformat_t *dq_f; 3087 uint type; 3088 3089 3090 /* 3091 * Filesystems are required to send in quota flags at mount time. 3092 */ 3093 if (mp->m_qflags == 0) 3094 return (0); 3095 3096 recddq = item->ri_buf[1].i_addr; 3097 if (recddq == NULL) { 3098 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__); 3099 return XFS_ERROR(EIO); 3100 } 3101 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) { 3102 xfs_alert(log->l_mp, "dquot too small (%d) in %s.", 3103 item->ri_buf[1].i_len, __func__); 3104 return XFS_ERROR(EIO); 3105 } 3106 3107 /* 3108 * This type of quotas was turned off, so ignore this record. 3109 */ 3110 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 3111 ASSERT(type); 3112 if (log->l_quotaoffs_flag & type) 3113 return (0); 3114 3115 /* 3116 * At this point we know that quota was _not_ turned off. 3117 * Since the mount flags are not indicating to us otherwise, this 3118 * must mean that quota is on, and the dquot needs to be replayed. 3119 * Remember that we may not have fully recovered the superblock yet, 3120 * so we can't do the usual trick of looking at the SB quota bits. 3121 * 3122 * The other possibility, of course, is that the quota subsystem was 3123 * removed since the last mount - ENOSYS. 3124 */ 3125 dq_f = item->ri_buf[0].i_addr; 3126 ASSERT(dq_f); 3127 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 3128 "xlog_recover_dquot_pass2 (log copy)"); 3129 if (error) 3130 return XFS_ERROR(EIO); 3131 ASSERT(dq_f->qlf_len == 1); 3132 3133 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno, 3134 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp, 3135 NULL); 3136 if (error) 3137 return error; 3138 3139 ASSERT(bp); 3140 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset); 3141 3142 /* 3143 * At least the magic num portion should be on disk because this 3144 * was among a chunk of dquots created earlier, and we did some 3145 * minimal initialization then. 3146 */ 3147 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 3148 "xlog_recover_dquot_pass2"); 3149 if (error) { 3150 xfs_buf_relse(bp); 3151 return XFS_ERROR(EIO); 3152 } 3153 3154 /* 3155 * If the dquot has an LSN in it, recover the dquot only if it's less 3156 * than the lsn of the transaction we are replaying. 3157 */ 3158 if (xfs_sb_version_hascrc(&mp->m_sb)) { 3159 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq; 3160 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn); 3161 3162 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 3163 goto out_release; 3164 } 3165 } 3166 3167 memcpy(ddq, recddq, item->ri_buf[1].i_len); 3168 if (xfs_sb_version_hascrc(&mp->m_sb)) { 3169 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk), 3170 XFS_DQUOT_CRC_OFF); 3171 } 3172 3173 ASSERT(dq_f->qlf_size == 2); 3174 ASSERT(bp->b_target->bt_mount == mp); 3175 bp->b_iodone = xlog_recover_iodone; 3176 xfs_buf_delwri_queue(bp, buffer_list); 3177 3178 out_release: 3179 xfs_buf_relse(bp); 3180 return 0; 3181 } 3182 3183 /* 3184 * This routine is called to create an in-core extent free intent 3185 * item from the efi format structure which was logged on disk. 3186 * It allocates an in-core efi, copies the extents from the format 3187 * structure into it, and adds the efi to the AIL with the given 3188 * LSN. 3189 */ 3190 STATIC int 3191 xlog_recover_efi_pass2( 3192 struct xlog *log, 3193 struct xlog_recover_item *item, 3194 xfs_lsn_t lsn) 3195 { 3196 int error; 3197 xfs_mount_t *mp = log->l_mp; 3198 xfs_efi_log_item_t *efip; 3199 xfs_efi_log_format_t *efi_formatp; 3200 3201 efi_formatp = item->ri_buf[0].i_addr; 3202 3203 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 3204 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]), 3205 &(efip->efi_format)))) { 3206 xfs_efi_item_free(efip); 3207 return error; 3208 } 3209 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 3210 3211 spin_lock(&log->l_ailp->xa_lock); 3212 /* 3213 * xfs_trans_ail_update() drops the AIL lock. 3214 */ 3215 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn); 3216 return 0; 3217 } 3218 3219 3220 /* 3221 * This routine is called when an efd format structure is found in 3222 * a committed transaction in the log. It's purpose is to cancel 3223 * the corresponding efi if it was still in the log. To do this 3224 * it searches the AIL for the efi with an id equal to that in the 3225 * efd format structure. If we find it, we remove the efi from the 3226 * AIL and free it. 3227 */ 3228 STATIC int 3229 xlog_recover_efd_pass2( 3230 struct xlog *log, 3231 struct xlog_recover_item *item) 3232 { 3233 xfs_efd_log_format_t *efd_formatp; 3234 xfs_efi_log_item_t *efip = NULL; 3235 xfs_log_item_t *lip; 3236 __uint64_t efi_id; 3237 struct xfs_ail_cursor cur; 3238 struct xfs_ail *ailp = log->l_ailp; 3239 3240 efd_formatp = item->ri_buf[0].i_addr; 3241 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 3242 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 3243 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 3244 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 3245 efi_id = efd_formatp->efd_efi_id; 3246 3247 /* 3248 * Search for the efi with the id in the efd format structure 3249 * in the AIL. 3250 */ 3251 spin_lock(&ailp->xa_lock); 3252 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3253 while (lip != NULL) { 3254 if (lip->li_type == XFS_LI_EFI) { 3255 efip = (xfs_efi_log_item_t *)lip; 3256 if (efip->efi_format.efi_id == efi_id) { 3257 /* 3258 * xfs_trans_ail_delete() drops the 3259 * AIL lock. 3260 */ 3261 xfs_trans_ail_delete(ailp, lip, 3262 SHUTDOWN_CORRUPT_INCORE); 3263 xfs_efi_item_free(efip); 3264 spin_lock(&ailp->xa_lock); 3265 break; 3266 } 3267 } 3268 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3269 } 3270 xfs_trans_ail_cursor_done(ailp, &cur); 3271 spin_unlock(&ailp->xa_lock); 3272 3273 return 0; 3274 } 3275 3276 /* 3277 * This routine is called when an inode create format structure is found in a 3278 * committed transaction in the log. It's purpose is to initialise the inodes 3279 * being allocated on disk. This requires us to get inode cluster buffers that 3280 * match the range to be intialised, stamped with inode templates and written 3281 * by delayed write so that subsequent modifications will hit the cached buffer 3282 * and only need writing out at the end of recovery. 3283 */ 3284 STATIC int 3285 xlog_recover_do_icreate_pass2( 3286 struct xlog *log, 3287 struct list_head *buffer_list, 3288 xlog_recover_item_t *item) 3289 { 3290 struct xfs_mount *mp = log->l_mp; 3291 struct xfs_icreate_log *icl; 3292 xfs_agnumber_t agno; 3293 xfs_agblock_t agbno; 3294 unsigned int count; 3295 unsigned int isize; 3296 xfs_agblock_t length; 3297 3298 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr; 3299 if (icl->icl_type != XFS_LI_ICREATE) { 3300 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type"); 3301 return EINVAL; 3302 } 3303 3304 if (icl->icl_size != 1) { 3305 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size"); 3306 return EINVAL; 3307 } 3308 3309 agno = be32_to_cpu(icl->icl_ag); 3310 if (agno >= mp->m_sb.sb_agcount) { 3311 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno"); 3312 return EINVAL; 3313 } 3314 agbno = be32_to_cpu(icl->icl_agbno); 3315 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) { 3316 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno"); 3317 return EINVAL; 3318 } 3319 isize = be32_to_cpu(icl->icl_isize); 3320 if (isize != mp->m_sb.sb_inodesize) { 3321 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize"); 3322 return EINVAL; 3323 } 3324 count = be32_to_cpu(icl->icl_count); 3325 if (!count) { 3326 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count"); 3327 return EINVAL; 3328 } 3329 length = be32_to_cpu(icl->icl_length); 3330 if (!length || length >= mp->m_sb.sb_agblocks) { 3331 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length"); 3332 return EINVAL; 3333 } 3334 3335 /* existing allocation is fixed value */ 3336 ASSERT(count == XFS_IALLOC_INODES(mp)); 3337 ASSERT(length == XFS_IALLOC_BLOCKS(mp)); 3338 if (count != XFS_IALLOC_INODES(mp) || 3339 length != XFS_IALLOC_BLOCKS(mp)) { 3340 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2"); 3341 return EINVAL; 3342 } 3343 3344 /* 3345 * Inode buffers can be freed. Do not replay the inode initialisation as 3346 * we could be overwriting something written after this inode buffer was 3347 * cancelled. 3348 * 3349 * XXX: we need to iterate all buffers and only init those that are not 3350 * cancelled. I think that a more fine grained factoring of 3351 * xfs_ialloc_inode_init may be appropriate here to enable this to be 3352 * done easily. 3353 */ 3354 if (xlog_check_buffer_cancelled(log, 3355 XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0)) 3356 return 0; 3357 3358 xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length, 3359 be32_to_cpu(icl->icl_gen)); 3360 return 0; 3361 } 3362 3363 /* 3364 * Free up any resources allocated by the transaction 3365 * 3366 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 3367 */ 3368 STATIC void 3369 xlog_recover_free_trans( 3370 struct xlog_recover *trans) 3371 { 3372 xlog_recover_item_t *item, *n; 3373 int i; 3374 3375 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 3376 /* Free the regions in the item. */ 3377 list_del(&item->ri_list); 3378 for (i = 0; i < item->ri_cnt; i++) 3379 kmem_free(item->ri_buf[i].i_addr); 3380 /* Free the item itself */ 3381 kmem_free(item->ri_buf); 3382 kmem_free(item); 3383 } 3384 /* Free the transaction recover structure */ 3385 kmem_free(trans); 3386 } 3387 3388 STATIC void 3389 xlog_recover_buffer_ra_pass2( 3390 struct xlog *log, 3391 struct xlog_recover_item *item) 3392 { 3393 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr; 3394 struct xfs_mount *mp = log->l_mp; 3395 3396 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno, 3397 buf_f->blf_len, buf_f->blf_flags)) { 3398 return; 3399 } 3400 3401 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno, 3402 buf_f->blf_len, NULL); 3403 } 3404 3405 STATIC void 3406 xlog_recover_inode_ra_pass2( 3407 struct xlog *log, 3408 struct xlog_recover_item *item) 3409 { 3410 struct xfs_inode_log_format ilf_buf; 3411 struct xfs_inode_log_format *ilfp; 3412 struct xfs_mount *mp = log->l_mp; 3413 int error; 3414 3415 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { 3416 ilfp = item->ri_buf[0].i_addr; 3417 } else { 3418 ilfp = &ilf_buf; 3419 memset(ilfp, 0, sizeof(*ilfp)); 3420 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp); 3421 if (error) 3422 return; 3423 } 3424 3425 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0)) 3426 return; 3427 3428 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno, 3429 ilfp->ilf_len, &xfs_inode_buf_ra_ops); 3430 } 3431 3432 STATIC void 3433 xlog_recover_dquot_ra_pass2( 3434 struct xlog *log, 3435 struct xlog_recover_item *item) 3436 { 3437 struct xfs_mount *mp = log->l_mp; 3438 struct xfs_disk_dquot *recddq; 3439 struct xfs_dq_logformat *dq_f; 3440 uint type; 3441 3442 3443 if (mp->m_qflags == 0) 3444 return; 3445 3446 recddq = item->ri_buf[1].i_addr; 3447 if (recddq == NULL) 3448 return; 3449 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot)) 3450 return; 3451 3452 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 3453 ASSERT(type); 3454 if (log->l_quotaoffs_flag & type) 3455 return; 3456 3457 dq_f = item->ri_buf[0].i_addr; 3458 ASSERT(dq_f); 3459 ASSERT(dq_f->qlf_len == 1); 3460 3461 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, 3462 XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL); 3463 } 3464 3465 STATIC void 3466 xlog_recover_ra_pass2( 3467 struct xlog *log, 3468 struct xlog_recover_item *item) 3469 { 3470 switch (ITEM_TYPE(item)) { 3471 case XFS_LI_BUF: 3472 xlog_recover_buffer_ra_pass2(log, item); 3473 break; 3474 case XFS_LI_INODE: 3475 xlog_recover_inode_ra_pass2(log, item); 3476 break; 3477 case XFS_LI_DQUOT: 3478 xlog_recover_dquot_ra_pass2(log, item); 3479 break; 3480 case XFS_LI_EFI: 3481 case XFS_LI_EFD: 3482 case XFS_LI_QUOTAOFF: 3483 default: 3484 break; 3485 } 3486 } 3487 3488 STATIC int 3489 xlog_recover_commit_pass1( 3490 struct xlog *log, 3491 struct xlog_recover *trans, 3492 struct xlog_recover_item *item) 3493 { 3494 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1); 3495 3496 switch (ITEM_TYPE(item)) { 3497 case XFS_LI_BUF: 3498 return xlog_recover_buffer_pass1(log, item); 3499 case XFS_LI_QUOTAOFF: 3500 return xlog_recover_quotaoff_pass1(log, item); 3501 case XFS_LI_INODE: 3502 case XFS_LI_EFI: 3503 case XFS_LI_EFD: 3504 case XFS_LI_DQUOT: 3505 case XFS_LI_ICREATE: 3506 /* nothing to do in pass 1 */ 3507 return 0; 3508 default: 3509 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 3510 __func__, ITEM_TYPE(item)); 3511 ASSERT(0); 3512 return XFS_ERROR(EIO); 3513 } 3514 } 3515 3516 STATIC int 3517 xlog_recover_commit_pass2( 3518 struct xlog *log, 3519 struct xlog_recover *trans, 3520 struct list_head *buffer_list, 3521 struct xlog_recover_item *item) 3522 { 3523 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2); 3524 3525 switch (ITEM_TYPE(item)) { 3526 case XFS_LI_BUF: 3527 return xlog_recover_buffer_pass2(log, buffer_list, item, 3528 trans->r_lsn); 3529 case XFS_LI_INODE: 3530 return xlog_recover_inode_pass2(log, buffer_list, item, 3531 trans->r_lsn); 3532 case XFS_LI_EFI: 3533 return xlog_recover_efi_pass2(log, item, trans->r_lsn); 3534 case XFS_LI_EFD: 3535 return xlog_recover_efd_pass2(log, item); 3536 case XFS_LI_DQUOT: 3537 return xlog_recover_dquot_pass2(log, buffer_list, item, 3538 trans->r_lsn); 3539 case XFS_LI_ICREATE: 3540 return xlog_recover_do_icreate_pass2(log, buffer_list, item); 3541 case XFS_LI_QUOTAOFF: 3542 /* nothing to do in pass2 */ 3543 return 0; 3544 default: 3545 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 3546 __func__, ITEM_TYPE(item)); 3547 ASSERT(0); 3548 return XFS_ERROR(EIO); 3549 } 3550 } 3551 3552 STATIC int 3553 xlog_recover_items_pass2( 3554 struct xlog *log, 3555 struct xlog_recover *trans, 3556 struct list_head *buffer_list, 3557 struct list_head *item_list) 3558 { 3559 struct xlog_recover_item *item; 3560 int error = 0; 3561 3562 list_for_each_entry(item, item_list, ri_list) { 3563 error = xlog_recover_commit_pass2(log, trans, 3564 buffer_list, item); 3565 if (error) 3566 return error; 3567 } 3568 3569 return error; 3570 } 3571 3572 /* 3573 * Perform the transaction. 3574 * 3575 * If the transaction modifies a buffer or inode, do it now. Otherwise, 3576 * EFIs and EFDs get queued up by adding entries into the AIL for them. 3577 */ 3578 STATIC int 3579 xlog_recover_commit_trans( 3580 struct xlog *log, 3581 struct xlog_recover *trans, 3582 int pass) 3583 { 3584 int error = 0; 3585 int error2; 3586 int items_queued = 0; 3587 struct xlog_recover_item *item; 3588 struct xlog_recover_item *next; 3589 LIST_HEAD (buffer_list); 3590 LIST_HEAD (ra_list); 3591 LIST_HEAD (done_list); 3592 3593 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100 3594 3595 hlist_del(&trans->r_list); 3596 3597 error = xlog_recover_reorder_trans(log, trans, pass); 3598 if (error) 3599 return error; 3600 3601 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) { 3602 switch (pass) { 3603 case XLOG_RECOVER_PASS1: 3604 error = xlog_recover_commit_pass1(log, trans, item); 3605 break; 3606 case XLOG_RECOVER_PASS2: 3607 xlog_recover_ra_pass2(log, item); 3608 list_move_tail(&item->ri_list, &ra_list); 3609 items_queued++; 3610 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) { 3611 error = xlog_recover_items_pass2(log, trans, 3612 &buffer_list, &ra_list); 3613 list_splice_tail_init(&ra_list, &done_list); 3614 items_queued = 0; 3615 } 3616 3617 break; 3618 default: 3619 ASSERT(0); 3620 } 3621 3622 if (error) 3623 goto out; 3624 } 3625 3626 out: 3627 if (!list_empty(&ra_list)) { 3628 if (!error) 3629 error = xlog_recover_items_pass2(log, trans, 3630 &buffer_list, &ra_list); 3631 list_splice_tail_init(&ra_list, &done_list); 3632 } 3633 3634 if (!list_empty(&done_list)) 3635 list_splice_init(&done_list, &trans->r_itemq); 3636 3637 xlog_recover_free_trans(trans); 3638 3639 error2 = xfs_buf_delwri_submit(&buffer_list); 3640 return error ? error : error2; 3641 } 3642 3643 STATIC int 3644 xlog_recover_unmount_trans( 3645 struct xlog *log, 3646 struct xlog_recover *trans) 3647 { 3648 /* Do nothing now */ 3649 xfs_warn(log->l_mp, "%s: Unmount LR", __func__); 3650 return 0; 3651 } 3652 3653 /* 3654 * There are two valid states of the r_state field. 0 indicates that the 3655 * transaction structure is in a normal state. We have either seen the 3656 * start of the transaction or the last operation we added was not a partial 3657 * operation. If the last operation we added to the transaction was a 3658 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 3659 * 3660 * NOTE: skip LRs with 0 data length. 3661 */ 3662 STATIC int 3663 xlog_recover_process_data( 3664 struct xlog *log, 3665 struct hlist_head rhash[], 3666 struct xlog_rec_header *rhead, 3667 xfs_caddr_t dp, 3668 int pass) 3669 { 3670 xfs_caddr_t lp; 3671 int num_logops; 3672 xlog_op_header_t *ohead; 3673 xlog_recover_t *trans; 3674 xlog_tid_t tid; 3675 int error; 3676 unsigned long hash; 3677 uint flags; 3678 3679 lp = dp + be32_to_cpu(rhead->h_len); 3680 num_logops = be32_to_cpu(rhead->h_num_logops); 3681 3682 /* check the log format matches our own - else we can't recover */ 3683 if (xlog_header_check_recover(log->l_mp, rhead)) 3684 return (XFS_ERROR(EIO)); 3685 3686 while ((dp < lp) && num_logops) { 3687 ASSERT(dp + sizeof(xlog_op_header_t) <= lp); 3688 ohead = (xlog_op_header_t *)dp; 3689 dp += sizeof(xlog_op_header_t); 3690 if (ohead->oh_clientid != XFS_TRANSACTION && 3691 ohead->oh_clientid != XFS_LOG) { 3692 xfs_warn(log->l_mp, "%s: bad clientid 0x%x", 3693 __func__, ohead->oh_clientid); 3694 ASSERT(0); 3695 return (XFS_ERROR(EIO)); 3696 } 3697 tid = be32_to_cpu(ohead->oh_tid); 3698 hash = XLOG_RHASH(tid); 3699 trans = xlog_recover_find_tid(&rhash[hash], tid); 3700 if (trans == NULL) { /* not found; add new tid */ 3701 if (ohead->oh_flags & XLOG_START_TRANS) 3702 xlog_recover_new_tid(&rhash[hash], tid, 3703 be64_to_cpu(rhead->h_lsn)); 3704 } else { 3705 if (dp + be32_to_cpu(ohead->oh_len) > lp) { 3706 xfs_warn(log->l_mp, "%s: bad length 0x%x", 3707 __func__, be32_to_cpu(ohead->oh_len)); 3708 WARN_ON(1); 3709 return (XFS_ERROR(EIO)); 3710 } 3711 flags = ohead->oh_flags & ~XLOG_END_TRANS; 3712 if (flags & XLOG_WAS_CONT_TRANS) 3713 flags &= ~XLOG_CONTINUE_TRANS; 3714 switch (flags) { 3715 case XLOG_COMMIT_TRANS: 3716 error = xlog_recover_commit_trans(log, 3717 trans, pass); 3718 break; 3719 case XLOG_UNMOUNT_TRANS: 3720 error = xlog_recover_unmount_trans(log, trans); 3721 break; 3722 case XLOG_WAS_CONT_TRANS: 3723 error = xlog_recover_add_to_cont_trans(log, 3724 trans, dp, 3725 be32_to_cpu(ohead->oh_len)); 3726 break; 3727 case XLOG_START_TRANS: 3728 xfs_warn(log->l_mp, "%s: bad transaction", 3729 __func__); 3730 ASSERT(0); 3731 error = XFS_ERROR(EIO); 3732 break; 3733 case 0: 3734 case XLOG_CONTINUE_TRANS: 3735 error = xlog_recover_add_to_trans(log, trans, 3736 dp, be32_to_cpu(ohead->oh_len)); 3737 break; 3738 default: 3739 xfs_warn(log->l_mp, "%s: bad flag 0x%x", 3740 __func__, flags); 3741 ASSERT(0); 3742 error = XFS_ERROR(EIO); 3743 break; 3744 } 3745 if (error) 3746 return error; 3747 } 3748 dp += be32_to_cpu(ohead->oh_len); 3749 num_logops--; 3750 } 3751 return 0; 3752 } 3753 3754 /* 3755 * Process an extent free intent item that was recovered from 3756 * the log. We need to free the extents that it describes. 3757 */ 3758 STATIC int 3759 xlog_recover_process_efi( 3760 xfs_mount_t *mp, 3761 xfs_efi_log_item_t *efip) 3762 { 3763 xfs_efd_log_item_t *efdp; 3764 xfs_trans_t *tp; 3765 int i; 3766 int error = 0; 3767 xfs_extent_t *extp; 3768 xfs_fsblock_t startblock_fsb; 3769 3770 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)); 3771 3772 /* 3773 * First check the validity of the extents described by the 3774 * EFI. If any are bad, then assume that all are bad and 3775 * just toss the EFI. 3776 */ 3777 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3778 extp = &(efip->efi_format.efi_extents[i]); 3779 startblock_fsb = XFS_BB_TO_FSB(mp, 3780 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 3781 if ((startblock_fsb == 0) || 3782 (extp->ext_len == 0) || 3783 (startblock_fsb >= mp->m_sb.sb_dblocks) || 3784 (extp->ext_len >= mp->m_sb.sb_agblocks)) { 3785 /* 3786 * This will pull the EFI from the AIL and 3787 * free the memory associated with it. 3788 */ 3789 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); 3790 xfs_efi_release(efip, efip->efi_format.efi_nextents); 3791 return XFS_ERROR(EIO); 3792 } 3793 } 3794 3795 tp = xfs_trans_alloc(mp, 0); 3796 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0); 3797 if (error) 3798 goto abort_error; 3799 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 3800 3801 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3802 extp = &(efip->efi_format.efi_extents[i]); 3803 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len); 3804 if (error) 3805 goto abort_error; 3806 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start, 3807 extp->ext_len); 3808 } 3809 3810 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); 3811 error = xfs_trans_commit(tp, 0); 3812 return error; 3813 3814 abort_error: 3815 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3816 return error; 3817 } 3818 3819 /* 3820 * When this is called, all of the EFIs which did not have 3821 * corresponding EFDs should be in the AIL. What we do now 3822 * is free the extents associated with each one. 3823 * 3824 * Since we process the EFIs in normal transactions, they 3825 * will be removed at some point after the commit. This prevents 3826 * us from just walking down the list processing each one. 3827 * We'll use a flag in the EFI to skip those that we've already 3828 * processed and use the AIL iteration mechanism's generation 3829 * count to try to speed this up at least a bit. 3830 * 3831 * When we start, we know that the EFIs are the only things in 3832 * the AIL. As we process them, however, other items are added 3833 * to the AIL. Since everything added to the AIL must come after 3834 * everything already in the AIL, we stop processing as soon as 3835 * we see something other than an EFI in the AIL. 3836 */ 3837 STATIC int 3838 xlog_recover_process_efis( 3839 struct xlog *log) 3840 { 3841 xfs_log_item_t *lip; 3842 xfs_efi_log_item_t *efip; 3843 int error = 0; 3844 struct xfs_ail_cursor cur; 3845 struct xfs_ail *ailp; 3846 3847 ailp = log->l_ailp; 3848 spin_lock(&ailp->xa_lock); 3849 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3850 while (lip != NULL) { 3851 /* 3852 * We're done when we see something other than an EFI. 3853 * There should be no EFIs left in the AIL now. 3854 */ 3855 if (lip->li_type != XFS_LI_EFI) { 3856 #ifdef DEBUG 3857 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 3858 ASSERT(lip->li_type != XFS_LI_EFI); 3859 #endif 3860 break; 3861 } 3862 3863 /* 3864 * Skip EFIs that we've already processed. 3865 */ 3866 efip = (xfs_efi_log_item_t *)lip; 3867 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) { 3868 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3869 continue; 3870 } 3871 3872 spin_unlock(&ailp->xa_lock); 3873 error = xlog_recover_process_efi(log->l_mp, efip); 3874 spin_lock(&ailp->xa_lock); 3875 if (error) 3876 goto out; 3877 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3878 } 3879 out: 3880 xfs_trans_ail_cursor_done(ailp, &cur); 3881 spin_unlock(&ailp->xa_lock); 3882 return error; 3883 } 3884 3885 /* 3886 * This routine performs a transaction to null out a bad inode pointer 3887 * in an agi unlinked inode hash bucket. 3888 */ 3889 STATIC void 3890 xlog_recover_clear_agi_bucket( 3891 xfs_mount_t *mp, 3892 xfs_agnumber_t agno, 3893 int bucket) 3894 { 3895 xfs_trans_t *tp; 3896 xfs_agi_t *agi; 3897 xfs_buf_t *agibp; 3898 int offset; 3899 int error; 3900 3901 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); 3902 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0); 3903 if (error) 3904 goto out_abort; 3905 3906 error = xfs_read_agi(mp, tp, agno, &agibp); 3907 if (error) 3908 goto out_abort; 3909 3910 agi = XFS_BUF_TO_AGI(agibp); 3911 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 3912 offset = offsetof(xfs_agi_t, agi_unlinked) + 3913 (sizeof(xfs_agino_t) * bucket); 3914 xfs_trans_log_buf(tp, agibp, offset, 3915 (offset + sizeof(xfs_agino_t) - 1)); 3916 3917 error = xfs_trans_commit(tp, 0); 3918 if (error) 3919 goto out_error; 3920 return; 3921 3922 out_abort: 3923 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3924 out_error: 3925 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); 3926 return; 3927 } 3928 3929 STATIC xfs_agino_t 3930 xlog_recover_process_one_iunlink( 3931 struct xfs_mount *mp, 3932 xfs_agnumber_t agno, 3933 xfs_agino_t agino, 3934 int bucket) 3935 { 3936 struct xfs_buf *ibp; 3937 struct xfs_dinode *dip; 3938 struct xfs_inode *ip; 3939 xfs_ino_t ino; 3940 int error; 3941 3942 ino = XFS_AGINO_TO_INO(mp, agno, agino); 3943 error = xfs_iget(mp, NULL, ino, 0, 0, &ip); 3944 if (error) 3945 goto fail; 3946 3947 /* 3948 * Get the on disk inode to find the next inode in the bucket. 3949 */ 3950 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0); 3951 if (error) 3952 goto fail_iput; 3953 3954 ASSERT(ip->i_d.di_nlink == 0); 3955 ASSERT(ip->i_d.di_mode != 0); 3956 3957 /* setup for the next pass */ 3958 agino = be32_to_cpu(dip->di_next_unlinked); 3959 xfs_buf_relse(ibp); 3960 3961 /* 3962 * Prevent any DMAPI event from being sent when the reference on 3963 * the inode is dropped. 3964 */ 3965 ip->i_d.di_dmevmask = 0; 3966 3967 IRELE(ip); 3968 return agino; 3969 3970 fail_iput: 3971 IRELE(ip); 3972 fail: 3973 /* 3974 * We can't read in the inode this bucket points to, or this inode 3975 * is messed up. Just ditch this bucket of inodes. We will lose 3976 * some inodes and space, but at least we won't hang. 3977 * 3978 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 3979 * clear the inode pointer in the bucket. 3980 */ 3981 xlog_recover_clear_agi_bucket(mp, agno, bucket); 3982 return NULLAGINO; 3983 } 3984 3985 /* 3986 * xlog_iunlink_recover 3987 * 3988 * This is called during recovery to process any inodes which 3989 * we unlinked but not freed when the system crashed. These 3990 * inodes will be on the lists in the AGI blocks. What we do 3991 * here is scan all the AGIs and fully truncate and free any 3992 * inodes found on the lists. Each inode is removed from the 3993 * lists when it has been fully truncated and is freed. The 3994 * freeing of the inode and its removal from the list must be 3995 * atomic. 3996 */ 3997 STATIC void 3998 xlog_recover_process_iunlinks( 3999 struct xlog *log) 4000 { 4001 xfs_mount_t *mp; 4002 xfs_agnumber_t agno; 4003 xfs_agi_t *agi; 4004 xfs_buf_t *agibp; 4005 xfs_agino_t agino; 4006 int bucket; 4007 int error; 4008 uint mp_dmevmask; 4009 4010 mp = log->l_mp; 4011 4012 /* 4013 * Prevent any DMAPI event from being sent while in this function. 4014 */ 4015 mp_dmevmask = mp->m_dmevmask; 4016 mp->m_dmevmask = 0; 4017 4018 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 4019 /* 4020 * Find the agi for this ag. 4021 */ 4022 error = xfs_read_agi(mp, NULL, agno, &agibp); 4023 if (error) { 4024 /* 4025 * AGI is b0rked. Don't process it. 4026 * 4027 * We should probably mark the filesystem as corrupt 4028 * after we've recovered all the ag's we can.... 4029 */ 4030 continue; 4031 } 4032 /* 4033 * Unlock the buffer so that it can be acquired in the normal 4034 * course of the transaction to truncate and free each inode. 4035 * Because we are not racing with anyone else here for the AGI 4036 * buffer, we don't even need to hold it locked to read the 4037 * initial unlinked bucket entries out of the buffer. We keep 4038 * buffer reference though, so that it stays pinned in memory 4039 * while we need the buffer. 4040 */ 4041 agi = XFS_BUF_TO_AGI(agibp); 4042 xfs_buf_unlock(agibp); 4043 4044 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 4045 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 4046 while (agino != NULLAGINO) { 4047 agino = xlog_recover_process_one_iunlink(mp, 4048 agno, agino, bucket); 4049 } 4050 } 4051 xfs_buf_rele(agibp); 4052 } 4053 4054 mp->m_dmevmask = mp_dmevmask; 4055 } 4056 4057 /* 4058 * Upack the log buffer data and crc check it. If the check fails, issue a 4059 * warning if and only if the CRC in the header is non-zero. This makes the 4060 * check an advisory warning, and the zero CRC check will prevent failure 4061 * warnings from being emitted when upgrading the kernel from one that does not 4062 * add CRCs by default. 4063 * 4064 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log 4065 * corruption failure 4066 */ 4067 STATIC int 4068 xlog_unpack_data_crc( 4069 struct xlog_rec_header *rhead, 4070 xfs_caddr_t dp, 4071 struct xlog *log) 4072 { 4073 __le32 crc; 4074 4075 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); 4076 if (crc != rhead->h_crc) { 4077 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) { 4078 xfs_alert(log->l_mp, 4079 "log record CRC mismatch: found 0x%x, expected 0x%x.\n", 4080 le32_to_cpu(rhead->h_crc), 4081 le32_to_cpu(crc)); 4082 xfs_hex_dump(dp, 32); 4083 } 4084 4085 /* 4086 * If we've detected a log record corruption, then we can't 4087 * recover past this point. Abort recovery if we are enforcing 4088 * CRC protection by punting an error back up the stack. 4089 */ 4090 if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) 4091 return EFSCORRUPTED; 4092 } 4093 4094 return 0; 4095 } 4096 4097 STATIC int 4098 xlog_unpack_data( 4099 struct xlog_rec_header *rhead, 4100 xfs_caddr_t dp, 4101 struct xlog *log) 4102 { 4103 int i, j, k; 4104 int error; 4105 4106 error = xlog_unpack_data_crc(rhead, dp, log); 4107 if (error) 4108 return error; 4109 4110 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 4111 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 4112 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 4113 dp += BBSIZE; 4114 } 4115 4116 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 4117 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 4118 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 4119 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 4120 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 4121 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 4122 dp += BBSIZE; 4123 } 4124 } 4125 4126 return 0; 4127 } 4128 4129 STATIC int 4130 xlog_valid_rec_header( 4131 struct xlog *log, 4132 struct xlog_rec_header *rhead, 4133 xfs_daddr_t blkno) 4134 { 4135 int hlen; 4136 4137 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) { 4138 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 4139 XFS_ERRLEVEL_LOW, log->l_mp); 4140 return XFS_ERROR(EFSCORRUPTED); 4141 } 4142 if (unlikely( 4143 (!rhead->h_version || 4144 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { 4145 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", 4146 __func__, be32_to_cpu(rhead->h_version)); 4147 return XFS_ERROR(EIO); 4148 } 4149 4150 /* LR body must have data or it wouldn't have been written */ 4151 hlen = be32_to_cpu(rhead->h_len); 4152 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 4153 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 4154 XFS_ERRLEVEL_LOW, log->l_mp); 4155 return XFS_ERROR(EFSCORRUPTED); 4156 } 4157 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 4158 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 4159 XFS_ERRLEVEL_LOW, log->l_mp); 4160 return XFS_ERROR(EFSCORRUPTED); 4161 } 4162 return 0; 4163 } 4164 4165 /* 4166 * Read the log from tail to head and process the log records found. 4167 * Handle the two cases where the tail and head are in the same cycle 4168 * and where the active portion of the log wraps around the end of 4169 * the physical log separately. The pass parameter is passed through 4170 * to the routines called to process the data and is not looked at 4171 * here. 4172 */ 4173 STATIC int 4174 xlog_do_recovery_pass( 4175 struct xlog *log, 4176 xfs_daddr_t head_blk, 4177 xfs_daddr_t tail_blk, 4178 int pass) 4179 { 4180 xlog_rec_header_t *rhead; 4181 xfs_daddr_t blk_no; 4182 xfs_caddr_t offset; 4183 xfs_buf_t *hbp, *dbp; 4184 int error = 0, h_size; 4185 int bblks, split_bblks; 4186 int hblks, split_hblks, wrapped_hblks; 4187 struct hlist_head rhash[XLOG_RHASH_SIZE]; 4188 4189 ASSERT(head_blk != tail_blk); 4190 4191 /* 4192 * Read the header of the tail block and get the iclog buffer size from 4193 * h_size. Use this to tell how many sectors make up the log header. 4194 */ 4195 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 4196 /* 4197 * When using variable length iclogs, read first sector of 4198 * iclog header and extract the header size from it. Get a 4199 * new hbp that is the correct size. 4200 */ 4201 hbp = xlog_get_bp(log, 1); 4202 if (!hbp) 4203 return ENOMEM; 4204 4205 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 4206 if (error) 4207 goto bread_err1; 4208 4209 rhead = (xlog_rec_header_t *)offset; 4210 error = xlog_valid_rec_header(log, rhead, tail_blk); 4211 if (error) 4212 goto bread_err1; 4213 h_size = be32_to_cpu(rhead->h_size); 4214 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 4215 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 4216 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 4217 if (h_size % XLOG_HEADER_CYCLE_SIZE) 4218 hblks++; 4219 xlog_put_bp(hbp); 4220 hbp = xlog_get_bp(log, hblks); 4221 } else { 4222 hblks = 1; 4223 } 4224 } else { 4225 ASSERT(log->l_sectBBsize == 1); 4226 hblks = 1; 4227 hbp = xlog_get_bp(log, 1); 4228 h_size = XLOG_BIG_RECORD_BSIZE; 4229 } 4230 4231 if (!hbp) 4232 return ENOMEM; 4233 dbp = xlog_get_bp(log, BTOBB(h_size)); 4234 if (!dbp) { 4235 xlog_put_bp(hbp); 4236 return ENOMEM; 4237 } 4238 4239 memset(rhash, 0, sizeof(rhash)); 4240 if (tail_blk <= head_blk) { 4241 for (blk_no = tail_blk; blk_no < head_blk; ) { 4242 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 4243 if (error) 4244 goto bread_err2; 4245 4246 rhead = (xlog_rec_header_t *)offset; 4247 error = xlog_valid_rec_header(log, rhead, blk_no); 4248 if (error) 4249 goto bread_err2; 4250 4251 /* blocks in data section */ 4252 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 4253 error = xlog_bread(log, blk_no + hblks, bblks, dbp, 4254 &offset); 4255 if (error) 4256 goto bread_err2; 4257 4258 error = xlog_unpack_data(rhead, offset, log); 4259 if (error) 4260 goto bread_err2; 4261 4262 error = xlog_recover_process_data(log, 4263 rhash, rhead, offset, pass); 4264 if (error) 4265 goto bread_err2; 4266 blk_no += bblks + hblks; 4267 } 4268 } else { 4269 /* 4270 * Perform recovery around the end of the physical log. 4271 * When the head is not on the same cycle number as the tail, 4272 * we can't do a sequential recovery as above. 4273 */ 4274 blk_no = tail_blk; 4275 while (blk_no < log->l_logBBsize) { 4276 /* 4277 * Check for header wrapping around physical end-of-log 4278 */ 4279 offset = hbp->b_addr; 4280 split_hblks = 0; 4281 wrapped_hblks = 0; 4282 if (blk_no + hblks <= log->l_logBBsize) { 4283 /* Read header in one read */ 4284 error = xlog_bread(log, blk_no, hblks, hbp, 4285 &offset); 4286 if (error) 4287 goto bread_err2; 4288 } else { 4289 /* This LR is split across physical log end */ 4290 if (blk_no != log->l_logBBsize) { 4291 /* some data before physical log end */ 4292 ASSERT(blk_no <= INT_MAX); 4293 split_hblks = log->l_logBBsize - (int)blk_no; 4294 ASSERT(split_hblks > 0); 4295 error = xlog_bread(log, blk_no, 4296 split_hblks, hbp, 4297 &offset); 4298 if (error) 4299 goto bread_err2; 4300 } 4301 4302 /* 4303 * Note: this black magic still works with 4304 * large sector sizes (non-512) only because: 4305 * - we increased the buffer size originally 4306 * by 1 sector giving us enough extra space 4307 * for the second read; 4308 * - the log start is guaranteed to be sector 4309 * aligned; 4310 * - we read the log end (LR header start) 4311 * _first_, then the log start (LR header end) 4312 * - order is important. 4313 */ 4314 wrapped_hblks = hblks - split_hblks; 4315 error = xlog_bread_offset(log, 0, 4316 wrapped_hblks, hbp, 4317 offset + BBTOB(split_hblks)); 4318 if (error) 4319 goto bread_err2; 4320 } 4321 rhead = (xlog_rec_header_t *)offset; 4322 error = xlog_valid_rec_header(log, rhead, 4323 split_hblks ? blk_no : 0); 4324 if (error) 4325 goto bread_err2; 4326 4327 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 4328 blk_no += hblks; 4329 4330 /* Read in data for log record */ 4331 if (blk_no + bblks <= log->l_logBBsize) { 4332 error = xlog_bread(log, blk_no, bblks, dbp, 4333 &offset); 4334 if (error) 4335 goto bread_err2; 4336 } else { 4337 /* This log record is split across the 4338 * physical end of log */ 4339 offset = dbp->b_addr; 4340 split_bblks = 0; 4341 if (blk_no != log->l_logBBsize) { 4342 /* some data is before the physical 4343 * end of log */ 4344 ASSERT(!wrapped_hblks); 4345 ASSERT(blk_no <= INT_MAX); 4346 split_bblks = 4347 log->l_logBBsize - (int)blk_no; 4348 ASSERT(split_bblks > 0); 4349 error = xlog_bread(log, blk_no, 4350 split_bblks, dbp, 4351 &offset); 4352 if (error) 4353 goto bread_err2; 4354 } 4355 4356 /* 4357 * Note: this black magic still works with 4358 * large sector sizes (non-512) only because: 4359 * - we increased the buffer size originally 4360 * by 1 sector giving us enough extra space 4361 * for the second read; 4362 * - the log start is guaranteed to be sector 4363 * aligned; 4364 * - we read the log end (LR header start) 4365 * _first_, then the log start (LR header end) 4366 * - order is important. 4367 */ 4368 error = xlog_bread_offset(log, 0, 4369 bblks - split_bblks, dbp, 4370 offset + BBTOB(split_bblks)); 4371 if (error) 4372 goto bread_err2; 4373 } 4374 4375 error = xlog_unpack_data(rhead, offset, log); 4376 if (error) 4377 goto bread_err2; 4378 4379 error = xlog_recover_process_data(log, rhash, 4380 rhead, offset, pass); 4381 if (error) 4382 goto bread_err2; 4383 blk_no += bblks; 4384 } 4385 4386 ASSERT(blk_no >= log->l_logBBsize); 4387 blk_no -= log->l_logBBsize; 4388 4389 /* read first part of physical log */ 4390 while (blk_no < head_blk) { 4391 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 4392 if (error) 4393 goto bread_err2; 4394 4395 rhead = (xlog_rec_header_t *)offset; 4396 error = xlog_valid_rec_header(log, rhead, blk_no); 4397 if (error) 4398 goto bread_err2; 4399 4400 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 4401 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 4402 &offset); 4403 if (error) 4404 goto bread_err2; 4405 4406 error = xlog_unpack_data(rhead, offset, log); 4407 if (error) 4408 goto bread_err2; 4409 4410 error = xlog_recover_process_data(log, rhash, 4411 rhead, offset, pass); 4412 if (error) 4413 goto bread_err2; 4414 blk_no += bblks + hblks; 4415 } 4416 } 4417 4418 bread_err2: 4419 xlog_put_bp(dbp); 4420 bread_err1: 4421 xlog_put_bp(hbp); 4422 return error; 4423 } 4424 4425 /* 4426 * Do the recovery of the log. We actually do this in two phases. 4427 * The two passes are necessary in order to implement the function 4428 * of cancelling a record written into the log. The first pass 4429 * determines those things which have been cancelled, and the 4430 * second pass replays log items normally except for those which 4431 * have been cancelled. The handling of the replay and cancellations 4432 * takes place in the log item type specific routines. 4433 * 4434 * The table of items which have cancel records in the log is allocated 4435 * and freed at this level, since only here do we know when all of 4436 * the log recovery has been completed. 4437 */ 4438 STATIC int 4439 xlog_do_log_recovery( 4440 struct xlog *log, 4441 xfs_daddr_t head_blk, 4442 xfs_daddr_t tail_blk) 4443 { 4444 int error, i; 4445 4446 ASSERT(head_blk != tail_blk); 4447 4448 /* 4449 * First do a pass to find all of the cancelled buf log items. 4450 * Store them in the buf_cancel_table for use in the second pass. 4451 */ 4452 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * 4453 sizeof(struct list_head), 4454 KM_SLEEP); 4455 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 4456 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); 4457 4458 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 4459 XLOG_RECOVER_PASS1); 4460 if (error != 0) { 4461 kmem_free(log->l_buf_cancel_table); 4462 log->l_buf_cancel_table = NULL; 4463 return error; 4464 } 4465 /* 4466 * Then do a second pass to actually recover the items in the log. 4467 * When it is complete free the table of buf cancel items. 4468 */ 4469 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 4470 XLOG_RECOVER_PASS2); 4471 #ifdef DEBUG 4472 if (!error) { 4473 int i; 4474 4475 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 4476 ASSERT(list_empty(&log->l_buf_cancel_table[i])); 4477 } 4478 #endif /* DEBUG */ 4479 4480 kmem_free(log->l_buf_cancel_table); 4481 log->l_buf_cancel_table = NULL; 4482 4483 return error; 4484 } 4485 4486 /* 4487 * Do the actual recovery 4488 */ 4489 STATIC int 4490 xlog_do_recover( 4491 struct xlog *log, 4492 xfs_daddr_t head_blk, 4493 xfs_daddr_t tail_blk) 4494 { 4495 int error; 4496 xfs_buf_t *bp; 4497 xfs_sb_t *sbp; 4498 4499 /* 4500 * First replay the images in the log. 4501 */ 4502 error = xlog_do_log_recovery(log, head_blk, tail_blk); 4503 if (error) 4504 return error; 4505 4506 /* 4507 * If IO errors happened during recovery, bail out. 4508 */ 4509 if (XFS_FORCED_SHUTDOWN(log->l_mp)) { 4510 return (EIO); 4511 } 4512 4513 /* 4514 * We now update the tail_lsn since much of the recovery has completed 4515 * and there may be space available to use. If there were no extent 4516 * or iunlinks, we can free up the entire log and set the tail_lsn to 4517 * be the last_sync_lsn. This was set in xlog_find_tail to be the 4518 * lsn of the last known good LR on disk. If there are extent frees 4519 * or iunlinks they will have some entries in the AIL; so we look at 4520 * the AIL to determine how to set the tail_lsn. 4521 */ 4522 xlog_assign_tail_lsn(log->l_mp); 4523 4524 /* 4525 * Now that we've finished replaying all buffer and inode 4526 * updates, re-read in the superblock and reverify it. 4527 */ 4528 bp = xfs_getsb(log->l_mp, 0); 4529 XFS_BUF_UNDONE(bp); 4530 ASSERT(!(XFS_BUF_ISWRITE(bp))); 4531 XFS_BUF_READ(bp); 4532 XFS_BUF_UNASYNC(bp); 4533 bp->b_ops = &xfs_sb_buf_ops; 4534 xfsbdstrat(log->l_mp, bp); 4535 error = xfs_buf_iowait(bp); 4536 if (error) { 4537 xfs_buf_ioerror_alert(bp, __func__); 4538 ASSERT(0); 4539 xfs_buf_relse(bp); 4540 return error; 4541 } 4542 4543 /* Convert superblock from on-disk format */ 4544 sbp = &log->l_mp->m_sb; 4545 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 4546 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); 4547 ASSERT(xfs_sb_good_version(sbp)); 4548 xfs_buf_relse(bp); 4549 4550 /* We've re-read the superblock so re-initialize per-cpu counters */ 4551 xfs_icsb_reinit_counters(log->l_mp); 4552 4553 xlog_recover_check_summary(log); 4554 4555 /* Normal transactions can now occur */ 4556 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 4557 return 0; 4558 } 4559 4560 /* 4561 * Perform recovery and re-initialize some log variables in xlog_find_tail. 4562 * 4563 * Return error or zero. 4564 */ 4565 int 4566 xlog_recover( 4567 struct xlog *log) 4568 { 4569 xfs_daddr_t head_blk, tail_blk; 4570 int error; 4571 4572 /* find the tail of the log */ 4573 if ((error = xlog_find_tail(log, &head_blk, &tail_blk))) 4574 return error; 4575 4576 if (tail_blk != head_blk) { 4577 /* There used to be a comment here: 4578 * 4579 * disallow recovery on read-only mounts. note -- mount 4580 * checks for ENOSPC and turns it into an intelligent 4581 * error message. 4582 * ...but this is no longer true. Now, unless you specify 4583 * NORECOVERY (in which case this function would never be 4584 * called), we just go ahead and recover. We do this all 4585 * under the vfs layer, so we can get away with it unless 4586 * the device itself is read-only, in which case we fail. 4587 */ 4588 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 4589 return error; 4590 } 4591 4592 /* 4593 * Version 5 superblock log feature mask validation. We know the 4594 * log is dirty so check if there are any unknown log features 4595 * in what we need to recover. If there are unknown features 4596 * (e.g. unsupported transactions, then simply reject the 4597 * attempt at recovery before touching anything. 4598 */ 4599 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 && 4600 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, 4601 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { 4602 xfs_warn(log->l_mp, 4603 "Superblock has unknown incompatible log features (0x%x) enabled.\n" 4604 "The log can not be fully and/or safely recovered by this kernel.\n" 4605 "Please recover the log on a kernel that supports the unknown features.", 4606 (log->l_mp->m_sb.sb_features_log_incompat & 4607 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 4608 return EINVAL; 4609 } 4610 4611 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", 4612 log->l_mp->m_logname ? log->l_mp->m_logname 4613 : "internal"); 4614 4615 error = xlog_do_recover(log, head_blk, tail_blk); 4616 log->l_flags |= XLOG_RECOVERY_NEEDED; 4617 } 4618 return error; 4619 } 4620 4621 /* 4622 * In the first part of recovery we replay inodes and buffers and build 4623 * up the list of extent free items which need to be processed. Here 4624 * we process the extent free items and clean up the on disk unlinked 4625 * inode lists. This is separated from the first part of recovery so 4626 * that the root and real-time bitmap inodes can be read in from disk in 4627 * between the two stages. This is necessary so that we can free space 4628 * in the real-time portion of the file system. 4629 */ 4630 int 4631 xlog_recover_finish( 4632 struct xlog *log) 4633 { 4634 /* 4635 * Now we're ready to do the transactions needed for the 4636 * rest of recovery. Start with completing all the extent 4637 * free intent records and then process the unlinked inode 4638 * lists. At this point, we essentially run in normal mode 4639 * except that we're still performing recovery actions 4640 * rather than accepting new requests. 4641 */ 4642 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 4643 int error; 4644 error = xlog_recover_process_efis(log); 4645 if (error) { 4646 xfs_alert(log->l_mp, "Failed to recover EFIs"); 4647 return error; 4648 } 4649 /* 4650 * Sync the log to get all the EFIs out of the AIL. 4651 * This isn't absolutely necessary, but it helps in 4652 * case the unlink transactions would have problems 4653 * pushing the EFIs out of the way. 4654 */ 4655 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 4656 4657 xlog_recover_process_iunlinks(log); 4658 4659 xlog_recover_check_summary(log); 4660 4661 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", 4662 log->l_mp->m_logname ? log->l_mp->m_logname 4663 : "internal"); 4664 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 4665 } else { 4666 xfs_info(log->l_mp, "Ending clean mount"); 4667 } 4668 return 0; 4669 } 4670 4671 4672 #if defined(DEBUG) 4673 /* 4674 * Read all of the agf and agi counters and check that they 4675 * are consistent with the superblock counters. 4676 */ 4677 void 4678 xlog_recover_check_summary( 4679 struct xlog *log) 4680 { 4681 xfs_mount_t *mp; 4682 xfs_agf_t *agfp; 4683 xfs_buf_t *agfbp; 4684 xfs_buf_t *agibp; 4685 xfs_agnumber_t agno; 4686 __uint64_t freeblks; 4687 __uint64_t itotal; 4688 __uint64_t ifree; 4689 int error; 4690 4691 mp = log->l_mp; 4692 4693 freeblks = 0LL; 4694 itotal = 0LL; 4695 ifree = 0LL; 4696 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 4697 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 4698 if (error) { 4699 xfs_alert(mp, "%s agf read failed agno %d error %d", 4700 __func__, agno, error); 4701 } else { 4702 agfp = XFS_BUF_TO_AGF(agfbp); 4703 freeblks += be32_to_cpu(agfp->agf_freeblks) + 4704 be32_to_cpu(agfp->agf_flcount); 4705 xfs_buf_relse(agfbp); 4706 } 4707 4708 error = xfs_read_agi(mp, NULL, agno, &agibp); 4709 if (error) { 4710 xfs_alert(mp, "%s agi read failed agno %d error %d", 4711 __func__, agno, error); 4712 } else { 4713 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 4714 4715 itotal += be32_to_cpu(agi->agi_count); 4716 ifree += be32_to_cpu(agi->agi_freecount); 4717 xfs_buf_relse(agibp); 4718 } 4719 } 4720 } 4721 #endif /* DEBUG */ 4722