1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_da_format.h" 17 #include "xfs_da_btree.h" 18 #include "xfs_inode.h" 19 #include "xfs_trans.h" 20 #include "xfs_log.h" 21 #include "xfs_log_priv.h" 22 #include "xfs_log_recover.h" 23 #include "xfs_inode_item.h" 24 #include "xfs_extfree_item.h" 25 #include "xfs_trans_priv.h" 26 #include "xfs_alloc.h" 27 #include "xfs_ialloc.h" 28 #include "xfs_quota.h" 29 #include "xfs_cksum.h" 30 #include "xfs_trace.h" 31 #include "xfs_icache.h" 32 #include "xfs_bmap_btree.h" 33 #include "xfs_error.h" 34 #include "xfs_dir2.h" 35 #include "xfs_rmap_item.h" 36 #include "xfs_buf_item.h" 37 #include "xfs_refcount_item.h" 38 #include "xfs_bmap_item.h" 39 40 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) 41 42 STATIC int 43 xlog_find_zeroed( 44 struct xlog *, 45 xfs_daddr_t *); 46 STATIC int 47 xlog_clear_stale_blocks( 48 struct xlog *, 49 xfs_lsn_t); 50 #if defined(DEBUG) 51 STATIC void 52 xlog_recover_check_summary( 53 struct xlog *); 54 #else 55 #define xlog_recover_check_summary(log) 56 #endif 57 STATIC int 58 xlog_do_recovery_pass( 59 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *); 60 61 /* 62 * This structure is used during recovery to record the buf log items which 63 * have been canceled and should not be replayed. 64 */ 65 struct xfs_buf_cancel { 66 xfs_daddr_t bc_blkno; 67 uint bc_len; 68 int bc_refcount; 69 struct list_head bc_list; 70 }; 71 72 /* 73 * Sector aligned buffer routines for buffer create/read/write/access 74 */ 75 76 /* 77 * Verify the log-relative block number and length in basic blocks are valid for 78 * an operation involving the given XFS log buffer. Returns true if the fields 79 * are valid, false otherwise. 80 */ 81 static inline bool 82 xlog_verify_bp( 83 struct xlog *log, 84 xfs_daddr_t blk_no, 85 int bbcount) 86 { 87 if (blk_no < 0 || blk_no >= log->l_logBBsize) 88 return false; 89 if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize) 90 return false; 91 return true; 92 } 93 94 /* 95 * Allocate a buffer to hold log data. The buffer needs to be able 96 * to map to a range of nbblks basic blocks at any valid (basic 97 * block) offset within the log. 98 */ 99 STATIC xfs_buf_t * 100 xlog_get_bp( 101 struct xlog *log, 102 int nbblks) 103 { 104 struct xfs_buf *bp; 105 106 /* 107 * Pass log block 0 since we don't have an addr yet, buffer will be 108 * verified on read. 109 */ 110 if (!xlog_verify_bp(log, 0, nbblks)) { 111 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 112 nbblks); 113 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 114 return NULL; 115 } 116 117 /* 118 * We do log I/O in units of log sectors (a power-of-2 119 * multiple of the basic block size), so we round up the 120 * requested size to accommodate the basic blocks required 121 * for complete log sectors. 122 * 123 * In addition, the buffer may be used for a non-sector- 124 * aligned block offset, in which case an I/O of the 125 * requested size could extend beyond the end of the 126 * buffer. If the requested size is only 1 basic block it 127 * will never straddle a sector boundary, so this won't be 128 * an issue. Nor will this be a problem if the log I/O is 129 * done in basic blocks (sector size 1). But otherwise we 130 * extend the buffer by one extra log sector to ensure 131 * there's space to accommodate this possibility. 132 */ 133 if (nbblks > 1 && log->l_sectBBsize > 1) 134 nbblks += log->l_sectBBsize; 135 nbblks = round_up(nbblks, log->l_sectBBsize); 136 137 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0); 138 if (bp) 139 xfs_buf_unlock(bp); 140 return bp; 141 } 142 143 STATIC void 144 xlog_put_bp( 145 xfs_buf_t *bp) 146 { 147 xfs_buf_free(bp); 148 } 149 150 /* 151 * Return the address of the start of the given block number's data 152 * in a log buffer. The buffer covers a log sector-aligned region. 153 */ 154 STATIC char * 155 xlog_align( 156 struct xlog *log, 157 xfs_daddr_t blk_no, 158 int nbblks, 159 struct xfs_buf *bp) 160 { 161 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1); 162 163 ASSERT(offset + nbblks <= bp->b_length); 164 return bp->b_addr + BBTOB(offset); 165 } 166 167 168 /* 169 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 170 */ 171 STATIC int 172 xlog_bread_noalign( 173 struct xlog *log, 174 xfs_daddr_t blk_no, 175 int nbblks, 176 struct xfs_buf *bp) 177 { 178 int error; 179 180 if (!xlog_verify_bp(log, blk_no, nbblks)) { 181 xfs_warn(log->l_mp, 182 "Invalid log block/length (0x%llx, 0x%x) for buffer", 183 blk_no, nbblks); 184 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 185 return -EFSCORRUPTED; 186 } 187 188 blk_no = round_down(blk_no, log->l_sectBBsize); 189 nbblks = round_up(nbblks, log->l_sectBBsize); 190 191 ASSERT(nbblks > 0); 192 ASSERT(nbblks <= bp->b_length); 193 194 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 195 bp->b_flags |= XBF_READ; 196 bp->b_io_length = nbblks; 197 bp->b_error = 0; 198 199 error = xfs_buf_submit(bp); 200 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) 201 xfs_buf_ioerror_alert(bp, __func__); 202 return error; 203 } 204 205 STATIC int 206 xlog_bread( 207 struct xlog *log, 208 xfs_daddr_t blk_no, 209 int nbblks, 210 struct xfs_buf *bp, 211 char **offset) 212 { 213 int error; 214 215 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 216 if (error) 217 return error; 218 219 *offset = xlog_align(log, blk_no, nbblks, bp); 220 return 0; 221 } 222 223 /* 224 * Read at an offset into the buffer. Returns with the buffer in it's original 225 * state regardless of the result of the read. 226 */ 227 STATIC int 228 xlog_bread_offset( 229 struct xlog *log, 230 xfs_daddr_t blk_no, /* block to read from */ 231 int nbblks, /* blocks to read */ 232 struct xfs_buf *bp, 233 char *offset) 234 { 235 char *orig_offset = bp->b_addr; 236 int orig_len = BBTOB(bp->b_length); 237 int error, error2; 238 239 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks)); 240 if (error) 241 return error; 242 243 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 244 245 /* must reset buffer pointer even on error */ 246 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len); 247 if (error) 248 return error; 249 return error2; 250 } 251 252 /* 253 * Write out the buffer at the given block for the given number of blocks. 254 * The buffer is kept locked across the write and is returned locked. 255 * This can only be used for synchronous log writes. 256 */ 257 STATIC int 258 xlog_bwrite( 259 struct xlog *log, 260 xfs_daddr_t blk_no, 261 int nbblks, 262 struct xfs_buf *bp) 263 { 264 int error; 265 266 if (!xlog_verify_bp(log, blk_no, nbblks)) { 267 xfs_warn(log->l_mp, 268 "Invalid log block/length (0x%llx, 0x%x) for buffer", 269 blk_no, nbblks); 270 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 271 return -EFSCORRUPTED; 272 } 273 274 blk_no = round_down(blk_no, log->l_sectBBsize); 275 nbblks = round_up(nbblks, log->l_sectBBsize); 276 277 ASSERT(nbblks > 0); 278 ASSERT(nbblks <= bp->b_length); 279 280 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 281 xfs_buf_hold(bp); 282 xfs_buf_lock(bp); 283 bp->b_io_length = nbblks; 284 bp->b_error = 0; 285 286 error = xfs_bwrite(bp); 287 if (error) 288 xfs_buf_ioerror_alert(bp, __func__); 289 xfs_buf_relse(bp); 290 return error; 291 } 292 293 #ifdef DEBUG 294 /* 295 * dump debug superblock and log record information 296 */ 297 STATIC void 298 xlog_header_check_dump( 299 xfs_mount_t *mp, 300 xlog_rec_header_t *head) 301 { 302 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d", 303 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 304 xfs_debug(mp, " log : uuid = %pU, fmt = %d", 305 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 306 } 307 #else 308 #define xlog_header_check_dump(mp, head) 309 #endif 310 311 /* 312 * check log record header for recovery 313 */ 314 STATIC int 315 xlog_header_check_recover( 316 xfs_mount_t *mp, 317 xlog_rec_header_t *head) 318 { 319 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 320 321 /* 322 * IRIX doesn't write the h_fmt field and leaves it zeroed 323 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 324 * a dirty log created in IRIX. 325 */ 326 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) { 327 xfs_warn(mp, 328 "dirty log written in incompatible format - can't recover"); 329 xlog_header_check_dump(mp, head); 330 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 331 XFS_ERRLEVEL_HIGH, mp); 332 return -EFSCORRUPTED; 333 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 334 xfs_warn(mp, 335 "dirty log entry has mismatched uuid - can't recover"); 336 xlog_header_check_dump(mp, head); 337 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 338 XFS_ERRLEVEL_HIGH, mp); 339 return -EFSCORRUPTED; 340 } 341 return 0; 342 } 343 344 /* 345 * read the head block of the log and check the header 346 */ 347 STATIC int 348 xlog_header_check_mount( 349 xfs_mount_t *mp, 350 xlog_rec_header_t *head) 351 { 352 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 353 354 if (uuid_is_null(&head->h_fs_uuid)) { 355 /* 356 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 357 * h_fs_uuid is null, we assume this log was last mounted 358 * by IRIX and continue. 359 */ 360 xfs_warn(mp, "null uuid in log - IRIX style log"); 361 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 362 xfs_warn(mp, "log has mismatched uuid - can't recover"); 363 xlog_header_check_dump(mp, head); 364 XFS_ERROR_REPORT("xlog_header_check_mount", 365 XFS_ERRLEVEL_HIGH, mp); 366 return -EFSCORRUPTED; 367 } 368 return 0; 369 } 370 371 STATIC void 372 xlog_recover_iodone( 373 struct xfs_buf *bp) 374 { 375 if (bp->b_error) { 376 /* 377 * We're not going to bother about retrying 378 * this during recovery. One strike! 379 */ 380 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 381 xfs_buf_ioerror_alert(bp, __func__); 382 xfs_force_shutdown(bp->b_target->bt_mount, 383 SHUTDOWN_META_IO_ERROR); 384 } 385 } 386 387 /* 388 * On v5 supers, a bli could be attached to update the metadata LSN. 389 * Clean it up. 390 */ 391 if (bp->b_log_item) 392 xfs_buf_item_relse(bp); 393 ASSERT(bp->b_log_item == NULL); 394 395 bp->b_iodone = NULL; 396 xfs_buf_ioend(bp); 397 } 398 399 /* 400 * This routine finds (to an approximation) the first block in the physical 401 * log which contains the given cycle. It uses a binary search algorithm. 402 * Note that the algorithm can not be perfect because the disk will not 403 * necessarily be perfect. 404 */ 405 STATIC int 406 xlog_find_cycle_start( 407 struct xlog *log, 408 struct xfs_buf *bp, 409 xfs_daddr_t first_blk, 410 xfs_daddr_t *last_blk, 411 uint cycle) 412 { 413 char *offset; 414 xfs_daddr_t mid_blk; 415 xfs_daddr_t end_blk; 416 uint mid_cycle; 417 int error; 418 419 end_blk = *last_blk; 420 mid_blk = BLK_AVG(first_blk, end_blk); 421 while (mid_blk != first_blk && mid_blk != end_blk) { 422 error = xlog_bread(log, mid_blk, 1, bp, &offset); 423 if (error) 424 return error; 425 mid_cycle = xlog_get_cycle(offset); 426 if (mid_cycle == cycle) 427 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 428 else 429 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 430 mid_blk = BLK_AVG(first_blk, end_blk); 431 } 432 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 433 (mid_blk == end_blk && mid_blk-1 == first_blk)); 434 435 *last_blk = end_blk; 436 437 return 0; 438 } 439 440 /* 441 * Check that a range of blocks does not contain stop_on_cycle_no. 442 * Fill in *new_blk with the block offset where such a block is 443 * found, or with -1 (an invalid block number) if there is no such 444 * block in the range. The scan needs to occur from front to back 445 * and the pointer into the region must be updated since a later 446 * routine will need to perform another test. 447 */ 448 STATIC int 449 xlog_find_verify_cycle( 450 struct xlog *log, 451 xfs_daddr_t start_blk, 452 int nbblks, 453 uint stop_on_cycle_no, 454 xfs_daddr_t *new_blk) 455 { 456 xfs_daddr_t i, j; 457 uint cycle; 458 xfs_buf_t *bp; 459 xfs_daddr_t bufblks; 460 char *buf = NULL; 461 int error = 0; 462 463 /* 464 * Greedily allocate a buffer big enough to handle the full 465 * range of basic blocks we'll be examining. If that fails, 466 * try a smaller size. We need to be able to read at least 467 * a log sector, or we're out of luck. 468 */ 469 bufblks = 1 << ffs(nbblks); 470 while (bufblks > log->l_logBBsize) 471 bufblks >>= 1; 472 while (!(bp = xlog_get_bp(log, bufblks))) { 473 bufblks >>= 1; 474 if (bufblks < log->l_sectBBsize) 475 return -ENOMEM; 476 } 477 478 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 479 int bcount; 480 481 bcount = min(bufblks, (start_blk + nbblks - i)); 482 483 error = xlog_bread(log, i, bcount, bp, &buf); 484 if (error) 485 goto out; 486 487 for (j = 0; j < bcount; j++) { 488 cycle = xlog_get_cycle(buf); 489 if (cycle == stop_on_cycle_no) { 490 *new_blk = i+j; 491 goto out; 492 } 493 494 buf += BBSIZE; 495 } 496 } 497 498 *new_blk = -1; 499 500 out: 501 xlog_put_bp(bp); 502 return error; 503 } 504 505 /* 506 * Potentially backup over partial log record write. 507 * 508 * In the typical case, last_blk is the number of the block directly after 509 * a good log record. Therefore, we subtract one to get the block number 510 * of the last block in the given buffer. extra_bblks contains the number 511 * of blocks we would have read on a previous read. This happens when the 512 * last log record is split over the end of the physical log. 513 * 514 * extra_bblks is the number of blocks potentially verified on a previous 515 * call to this routine. 516 */ 517 STATIC int 518 xlog_find_verify_log_record( 519 struct xlog *log, 520 xfs_daddr_t start_blk, 521 xfs_daddr_t *last_blk, 522 int extra_bblks) 523 { 524 xfs_daddr_t i; 525 xfs_buf_t *bp; 526 char *offset = NULL; 527 xlog_rec_header_t *head = NULL; 528 int error = 0; 529 int smallmem = 0; 530 int num_blks = *last_blk - start_blk; 531 int xhdrs; 532 533 ASSERT(start_blk != 0 || *last_blk != start_blk); 534 535 if (!(bp = xlog_get_bp(log, num_blks))) { 536 if (!(bp = xlog_get_bp(log, 1))) 537 return -ENOMEM; 538 smallmem = 1; 539 } else { 540 error = xlog_bread(log, start_blk, num_blks, bp, &offset); 541 if (error) 542 goto out; 543 offset += ((num_blks - 1) << BBSHIFT); 544 } 545 546 for (i = (*last_blk) - 1; i >= 0; i--) { 547 if (i < start_blk) { 548 /* valid log record not found */ 549 xfs_warn(log->l_mp, 550 "Log inconsistent (didn't find previous header)"); 551 ASSERT(0); 552 error = -EIO; 553 goto out; 554 } 555 556 if (smallmem) { 557 error = xlog_bread(log, i, 1, bp, &offset); 558 if (error) 559 goto out; 560 } 561 562 head = (xlog_rec_header_t *)offset; 563 564 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 565 break; 566 567 if (!smallmem) 568 offset -= BBSIZE; 569 } 570 571 /* 572 * We hit the beginning of the physical log & still no header. Return 573 * to caller. If caller can handle a return of -1, then this routine 574 * will be called again for the end of the physical log. 575 */ 576 if (i == -1) { 577 error = 1; 578 goto out; 579 } 580 581 /* 582 * We have the final block of the good log (the first block 583 * of the log record _before_ the head. So we check the uuid. 584 */ 585 if ((error = xlog_header_check_mount(log->l_mp, head))) 586 goto out; 587 588 /* 589 * We may have found a log record header before we expected one. 590 * last_blk will be the 1st block # with a given cycle #. We may end 591 * up reading an entire log record. In this case, we don't want to 592 * reset last_blk. Only when last_blk points in the middle of a log 593 * record do we update last_blk. 594 */ 595 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 596 uint h_size = be32_to_cpu(head->h_size); 597 598 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 599 if (h_size % XLOG_HEADER_CYCLE_SIZE) 600 xhdrs++; 601 } else { 602 xhdrs = 1; 603 } 604 605 if (*last_blk - i + extra_bblks != 606 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 607 *last_blk = i; 608 609 out: 610 xlog_put_bp(bp); 611 return error; 612 } 613 614 /* 615 * Head is defined to be the point of the log where the next log write 616 * could go. This means that incomplete LR writes at the end are 617 * eliminated when calculating the head. We aren't guaranteed that previous 618 * LR have complete transactions. We only know that a cycle number of 619 * current cycle number -1 won't be present in the log if we start writing 620 * from our current block number. 621 * 622 * last_blk contains the block number of the first block with a given 623 * cycle number. 624 * 625 * Return: zero if normal, non-zero if error. 626 */ 627 STATIC int 628 xlog_find_head( 629 struct xlog *log, 630 xfs_daddr_t *return_head_blk) 631 { 632 xfs_buf_t *bp; 633 char *offset; 634 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 635 int num_scan_bblks; 636 uint first_half_cycle, last_half_cycle; 637 uint stop_on_cycle; 638 int error, log_bbnum = log->l_logBBsize; 639 640 /* Is the end of the log device zeroed? */ 641 error = xlog_find_zeroed(log, &first_blk); 642 if (error < 0) { 643 xfs_warn(log->l_mp, "empty log check failed"); 644 return error; 645 } 646 if (error == 1) { 647 *return_head_blk = first_blk; 648 649 /* Is the whole lot zeroed? */ 650 if (!first_blk) { 651 /* Linux XFS shouldn't generate totally zeroed logs - 652 * mkfs etc write a dummy unmount record to a fresh 653 * log so we can store the uuid in there 654 */ 655 xfs_warn(log->l_mp, "totally zeroed log"); 656 } 657 658 return 0; 659 } 660 661 first_blk = 0; /* get cycle # of 1st block */ 662 bp = xlog_get_bp(log, 1); 663 if (!bp) 664 return -ENOMEM; 665 666 error = xlog_bread(log, 0, 1, bp, &offset); 667 if (error) 668 goto bp_err; 669 670 first_half_cycle = xlog_get_cycle(offset); 671 672 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 673 error = xlog_bread(log, last_blk, 1, bp, &offset); 674 if (error) 675 goto bp_err; 676 677 last_half_cycle = xlog_get_cycle(offset); 678 ASSERT(last_half_cycle != 0); 679 680 /* 681 * If the 1st half cycle number is equal to the last half cycle number, 682 * then the entire log is stamped with the same cycle number. In this 683 * case, head_blk can't be set to zero (which makes sense). The below 684 * math doesn't work out properly with head_blk equal to zero. Instead, 685 * we set it to log_bbnum which is an invalid block number, but this 686 * value makes the math correct. If head_blk doesn't changed through 687 * all the tests below, *head_blk is set to zero at the very end rather 688 * than log_bbnum. In a sense, log_bbnum and zero are the same block 689 * in a circular file. 690 */ 691 if (first_half_cycle == last_half_cycle) { 692 /* 693 * In this case we believe that the entire log should have 694 * cycle number last_half_cycle. We need to scan backwards 695 * from the end verifying that there are no holes still 696 * containing last_half_cycle - 1. If we find such a hole, 697 * then the start of that hole will be the new head. The 698 * simple case looks like 699 * x | x ... | x - 1 | x 700 * Another case that fits this picture would be 701 * x | x + 1 | x ... | x 702 * In this case the head really is somewhere at the end of the 703 * log, as one of the latest writes at the beginning was 704 * incomplete. 705 * One more case is 706 * x | x + 1 | x ... | x - 1 | x 707 * This is really the combination of the above two cases, and 708 * the head has to end up at the start of the x-1 hole at the 709 * end of the log. 710 * 711 * In the 256k log case, we will read from the beginning to the 712 * end of the log and search for cycle numbers equal to x-1. 713 * We don't worry about the x+1 blocks that we encounter, 714 * because we know that they cannot be the head since the log 715 * started with x. 716 */ 717 head_blk = log_bbnum; 718 stop_on_cycle = last_half_cycle - 1; 719 } else { 720 /* 721 * In this case we want to find the first block with cycle 722 * number matching last_half_cycle. We expect the log to be 723 * some variation on 724 * x + 1 ... | x ... | x 725 * The first block with cycle number x (last_half_cycle) will 726 * be where the new head belongs. First we do a binary search 727 * for the first occurrence of last_half_cycle. The binary 728 * search may not be totally accurate, so then we scan back 729 * from there looking for occurrences of last_half_cycle before 730 * us. If that backwards scan wraps around the beginning of 731 * the log, then we look for occurrences of last_half_cycle - 1 732 * at the end of the log. The cases we're looking for look 733 * like 734 * v binary search stopped here 735 * x + 1 ... | x | x + 1 | x ... | x 736 * ^ but we want to locate this spot 737 * or 738 * <---------> less than scan distance 739 * x + 1 ... | x ... | x - 1 | x 740 * ^ we want to locate this spot 741 */ 742 stop_on_cycle = last_half_cycle; 743 if ((error = xlog_find_cycle_start(log, bp, first_blk, 744 &head_blk, last_half_cycle))) 745 goto bp_err; 746 } 747 748 /* 749 * Now validate the answer. Scan back some number of maximum possible 750 * blocks and make sure each one has the expected cycle number. The 751 * maximum is determined by the total possible amount of buffering 752 * in the in-core log. The following number can be made tighter if 753 * we actually look at the block size of the filesystem. 754 */ 755 num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log)); 756 if (head_blk >= num_scan_bblks) { 757 /* 758 * We are guaranteed that the entire check can be performed 759 * in one buffer. 760 */ 761 start_blk = head_blk - num_scan_bblks; 762 if ((error = xlog_find_verify_cycle(log, 763 start_blk, num_scan_bblks, 764 stop_on_cycle, &new_blk))) 765 goto bp_err; 766 if (new_blk != -1) 767 head_blk = new_blk; 768 } else { /* need to read 2 parts of log */ 769 /* 770 * We are going to scan backwards in the log in two parts. 771 * First we scan the physical end of the log. In this part 772 * of the log, we are looking for blocks with cycle number 773 * last_half_cycle - 1. 774 * If we find one, then we know that the log starts there, as 775 * we've found a hole that didn't get written in going around 776 * the end of the physical log. The simple case for this is 777 * x + 1 ... | x ... | x - 1 | x 778 * <---------> less than scan distance 779 * If all of the blocks at the end of the log have cycle number 780 * last_half_cycle, then we check the blocks at the start of 781 * the log looking for occurrences of last_half_cycle. If we 782 * find one, then our current estimate for the location of the 783 * first occurrence of last_half_cycle is wrong and we move 784 * back to the hole we've found. This case looks like 785 * x + 1 ... | x | x + 1 | x ... 786 * ^ binary search stopped here 787 * Another case we need to handle that only occurs in 256k 788 * logs is 789 * x + 1 ... | x ... | x+1 | x ... 790 * ^ binary search stops here 791 * In a 256k log, the scan at the end of the log will see the 792 * x + 1 blocks. We need to skip past those since that is 793 * certainly not the head of the log. By searching for 794 * last_half_cycle-1 we accomplish that. 795 */ 796 ASSERT(head_blk <= INT_MAX && 797 (xfs_daddr_t) num_scan_bblks >= head_blk); 798 start_blk = log_bbnum - (num_scan_bblks - head_blk); 799 if ((error = xlog_find_verify_cycle(log, start_blk, 800 num_scan_bblks - (int)head_blk, 801 (stop_on_cycle - 1), &new_blk))) 802 goto bp_err; 803 if (new_blk != -1) { 804 head_blk = new_blk; 805 goto validate_head; 806 } 807 808 /* 809 * Scan beginning of log now. The last part of the physical 810 * log is good. This scan needs to verify that it doesn't find 811 * the last_half_cycle. 812 */ 813 start_blk = 0; 814 ASSERT(head_blk <= INT_MAX); 815 if ((error = xlog_find_verify_cycle(log, 816 start_blk, (int)head_blk, 817 stop_on_cycle, &new_blk))) 818 goto bp_err; 819 if (new_blk != -1) 820 head_blk = new_blk; 821 } 822 823 validate_head: 824 /* 825 * Now we need to make sure head_blk is not pointing to a block in 826 * the middle of a log record. 827 */ 828 num_scan_bblks = XLOG_REC_SHIFT(log); 829 if (head_blk >= num_scan_bblks) { 830 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 831 832 /* start ptr at last block ptr before head_blk */ 833 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 834 if (error == 1) 835 error = -EIO; 836 if (error) 837 goto bp_err; 838 } else { 839 start_blk = 0; 840 ASSERT(head_blk <= INT_MAX); 841 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 842 if (error < 0) 843 goto bp_err; 844 if (error == 1) { 845 /* We hit the beginning of the log during our search */ 846 start_blk = log_bbnum - (num_scan_bblks - head_blk); 847 new_blk = log_bbnum; 848 ASSERT(start_blk <= INT_MAX && 849 (xfs_daddr_t) log_bbnum-start_blk >= 0); 850 ASSERT(head_blk <= INT_MAX); 851 error = xlog_find_verify_log_record(log, start_blk, 852 &new_blk, (int)head_blk); 853 if (error == 1) 854 error = -EIO; 855 if (error) 856 goto bp_err; 857 if (new_blk != log_bbnum) 858 head_blk = new_blk; 859 } else if (error) 860 goto bp_err; 861 } 862 863 xlog_put_bp(bp); 864 if (head_blk == log_bbnum) 865 *return_head_blk = 0; 866 else 867 *return_head_blk = head_blk; 868 /* 869 * When returning here, we have a good block number. Bad block 870 * means that during a previous crash, we didn't have a clean break 871 * from cycle number N to cycle number N-1. In this case, we need 872 * to find the first block with cycle number N-1. 873 */ 874 return 0; 875 876 bp_err: 877 xlog_put_bp(bp); 878 879 if (error) 880 xfs_warn(log->l_mp, "failed to find log head"); 881 return error; 882 } 883 884 /* 885 * Seek backwards in the log for log record headers. 886 * 887 * Given a starting log block, walk backwards until we find the provided number 888 * of records or hit the provided tail block. The return value is the number of 889 * records encountered or a negative error code. The log block and buffer 890 * pointer of the last record seen are returned in rblk and rhead respectively. 891 */ 892 STATIC int 893 xlog_rseek_logrec_hdr( 894 struct xlog *log, 895 xfs_daddr_t head_blk, 896 xfs_daddr_t tail_blk, 897 int count, 898 struct xfs_buf *bp, 899 xfs_daddr_t *rblk, 900 struct xlog_rec_header **rhead, 901 bool *wrapped) 902 { 903 int i; 904 int error; 905 int found = 0; 906 char *offset = NULL; 907 xfs_daddr_t end_blk; 908 909 *wrapped = false; 910 911 /* 912 * Walk backwards from the head block until we hit the tail or the first 913 * block in the log. 914 */ 915 end_blk = head_blk > tail_blk ? tail_blk : 0; 916 for (i = (int) head_blk - 1; i >= end_blk; i--) { 917 error = xlog_bread(log, i, 1, bp, &offset); 918 if (error) 919 goto out_error; 920 921 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 922 *rblk = i; 923 *rhead = (struct xlog_rec_header *) offset; 924 if (++found == count) 925 break; 926 } 927 } 928 929 /* 930 * If we haven't hit the tail block or the log record header count, 931 * start looking again from the end of the physical log. Note that 932 * callers can pass head == tail if the tail is not yet known. 933 */ 934 if (tail_blk >= head_blk && found != count) { 935 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) { 936 error = xlog_bread(log, i, 1, bp, &offset); 937 if (error) 938 goto out_error; 939 940 if (*(__be32 *)offset == 941 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 942 *wrapped = true; 943 *rblk = i; 944 *rhead = (struct xlog_rec_header *) offset; 945 if (++found == count) 946 break; 947 } 948 } 949 } 950 951 return found; 952 953 out_error: 954 return error; 955 } 956 957 /* 958 * Seek forward in the log for log record headers. 959 * 960 * Given head and tail blocks, walk forward from the tail block until we find 961 * the provided number of records or hit the head block. The return value is the 962 * number of records encountered or a negative error code. The log block and 963 * buffer pointer of the last record seen are returned in rblk and rhead 964 * respectively. 965 */ 966 STATIC int 967 xlog_seek_logrec_hdr( 968 struct xlog *log, 969 xfs_daddr_t head_blk, 970 xfs_daddr_t tail_blk, 971 int count, 972 struct xfs_buf *bp, 973 xfs_daddr_t *rblk, 974 struct xlog_rec_header **rhead, 975 bool *wrapped) 976 { 977 int i; 978 int error; 979 int found = 0; 980 char *offset = NULL; 981 xfs_daddr_t end_blk; 982 983 *wrapped = false; 984 985 /* 986 * Walk forward from the tail block until we hit the head or the last 987 * block in the log. 988 */ 989 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1; 990 for (i = (int) tail_blk; i <= end_blk; i++) { 991 error = xlog_bread(log, i, 1, bp, &offset); 992 if (error) 993 goto out_error; 994 995 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 996 *rblk = i; 997 *rhead = (struct xlog_rec_header *) offset; 998 if (++found == count) 999 break; 1000 } 1001 } 1002 1003 /* 1004 * If we haven't hit the head block or the log record header count, 1005 * start looking again from the start of the physical log. 1006 */ 1007 if (tail_blk > head_blk && found != count) { 1008 for (i = 0; i < (int) head_blk; i++) { 1009 error = xlog_bread(log, i, 1, bp, &offset); 1010 if (error) 1011 goto out_error; 1012 1013 if (*(__be32 *)offset == 1014 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 1015 *wrapped = true; 1016 *rblk = i; 1017 *rhead = (struct xlog_rec_header *) offset; 1018 if (++found == count) 1019 break; 1020 } 1021 } 1022 } 1023 1024 return found; 1025 1026 out_error: 1027 return error; 1028 } 1029 1030 /* 1031 * Calculate distance from head to tail (i.e., unused space in the log). 1032 */ 1033 static inline int 1034 xlog_tail_distance( 1035 struct xlog *log, 1036 xfs_daddr_t head_blk, 1037 xfs_daddr_t tail_blk) 1038 { 1039 if (head_blk < tail_blk) 1040 return tail_blk - head_blk; 1041 1042 return tail_blk + (log->l_logBBsize - head_blk); 1043 } 1044 1045 /* 1046 * Verify the log tail. This is particularly important when torn or incomplete 1047 * writes have been detected near the front of the log and the head has been 1048 * walked back accordingly. 1049 * 1050 * We also have to handle the case where the tail was pinned and the head 1051 * blocked behind the tail right before a crash. If the tail had been pushed 1052 * immediately prior to the crash and the subsequent checkpoint was only 1053 * partially written, it's possible it overwrote the last referenced tail in the 1054 * log with garbage. This is not a coherency problem because the tail must have 1055 * been pushed before it can be overwritten, but appears as log corruption to 1056 * recovery because we have no way to know the tail was updated if the 1057 * subsequent checkpoint didn't write successfully. 1058 * 1059 * Therefore, CRC check the log from tail to head. If a failure occurs and the 1060 * offending record is within max iclog bufs from the head, walk the tail 1061 * forward and retry until a valid tail is found or corruption is detected out 1062 * of the range of a possible overwrite. 1063 */ 1064 STATIC int 1065 xlog_verify_tail( 1066 struct xlog *log, 1067 xfs_daddr_t head_blk, 1068 xfs_daddr_t *tail_blk, 1069 int hsize) 1070 { 1071 struct xlog_rec_header *thead; 1072 struct xfs_buf *bp; 1073 xfs_daddr_t first_bad; 1074 int error = 0; 1075 bool wrapped; 1076 xfs_daddr_t tmp_tail; 1077 xfs_daddr_t orig_tail = *tail_blk; 1078 1079 bp = xlog_get_bp(log, 1); 1080 if (!bp) 1081 return -ENOMEM; 1082 1083 /* 1084 * Make sure the tail points to a record (returns positive count on 1085 * success). 1086 */ 1087 error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, bp, 1088 &tmp_tail, &thead, &wrapped); 1089 if (error < 0) 1090 goto out; 1091 if (*tail_blk != tmp_tail) 1092 *tail_blk = tmp_tail; 1093 1094 /* 1095 * Run a CRC check from the tail to the head. We can't just check 1096 * MAX_ICLOGS records past the tail because the tail may point to stale 1097 * blocks cleared during the search for the head/tail. These blocks are 1098 * overwritten with zero-length records and thus record count is not a 1099 * reliable indicator of the iclog state before a crash. 1100 */ 1101 first_bad = 0; 1102 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 1103 XLOG_RECOVER_CRCPASS, &first_bad); 1104 while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 1105 int tail_distance; 1106 1107 /* 1108 * Is corruption within range of the head? If so, retry from 1109 * the next record. Otherwise return an error. 1110 */ 1111 tail_distance = xlog_tail_distance(log, head_blk, first_bad); 1112 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize)) 1113 break; 1114 1115 /* skip to the next record; returns positive count on success */ 1116 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, bp, 1117 &tmp_tail, &thead, &wrapped); 1118 if (error < 0) 1119 goto out; 1120 1121 *tail_blk = tmp_tail; 1122 first_bad = 0; 1123 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 1124 XLOG_RECOVER_CRCPASS, &first_bad); 1125 } 1126 1127 if (!error && *tail_blk != orig_tail) 1128 xfs_warn(log->l_mp, 1129 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx", 1130 orig_tail, *tail_blk); 1131 out: 1132 xlog_put_bp(bp); 1133 return error; 1134 } 1135 1136 /* 1137 * Detect and trim torn writes from the head of the log. 1138 * 1139 * Storage without sector atomicity guarantees can result in torn writes in the 1140 * log in the event of a crash. Our only means to detect this scenario is via 1141 * CRC verification. While we can't always be certain that CRC verification 1142 * failure is due to a torn write vs. an unrelated corruption, we do know that 1143 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at 1144 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of 1145 * the log and treat failures in this range as torn writes as a matter of 1146 * policy. In the event of CRC failure, the head is walked back to the last good 1147 * record in the log and the tail is updated from that record and verified. 1148 */ 1149 STATIC int 1150 xlog_verify_head( 1151 struct xlog *log, 1152 xfs_daddr_t *head_blk, /* in/out: unverified head */ 1153 xfs_daddr_t *tail_blk, /* out: tail block */ 1154 struct xfs_buf *bp, 1155 xfs_daddr_t *rhead_blk, /* start blk of last record */ 1156 struct xlog_rec_header **rhead, /* ptr to last record */ 1157 bool *wrapped) /* last rec. wraps phys. log */ 1158 { 1159 struct xlog_rec_header *tmp_rhead; 1160 struct xfs_buf *tmp_bp; 1161 xfs_daddr_t first_bad; 1162 xfs_daddr_t tmp_rhead_blk; 1163 int found; 1164 int error; 1165 bool tmp_wrapped; 1166 1167 /* 1168 * Check the head of the log for torn writes. Search backwards from the 1169 * head until we hit the tail or the maximum number of log record I/Os 1170 * that could have been in flight at one time. Use a temporary buffer so 1171 * we don't trash the rhead/bp pointers from the caller. 1172 */ 1173 tmp_bp = xlog_get_bp(log, 1); 1174 if (!tmp_bp) 1175 return -ENOMEM; 1176 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk, 1177 XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk, 1178 &tmp_rhead, &tmp_wrapped); 1179 xlog_put_bp(tmp_bp); 1180 if (error < 0) 1181 return error; 1182 1183 /* 1184 * Now run a CRC verification pass over the records starting at the 1185 * block found above to the current head. If a CRC failure occurs, the 1186 * log block of the first bad record is saved in first_bad. 1187 */ 1188 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk, 1189 XLOG_RECOVER_CRCPASS, &first_bad); 1190 if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 1191 /* 1192 * We've hit a potential torn write. Reset the error and warn 1193 * about it. 1194 */ 1195 error = 0; 1196 xfs_warn(log->l_mp, 1197 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.", 1198 first_bad, *head_blk); 1199 1200 /* 1201 * Get the header block and buffer pointer for the last good 1202 * record before the bad record. 1203 * 1204 * Note that xlog_find_tail() clears the blocks at the new head 1205 * (i.e., the records with invalid CRC) if the cycle number 1206 * matches the the current cycle. 1207 */ 1208 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp, 1209 rhead_blk, rhead, wrapped); 1210 if (found < 0) 1211 return found; 1212 if (found == 0) /* XXX: right thing to do here? */ 1213 return -EIO; 1214 1215 /* 1216 * Reset the head block to the starting block of the first bad 1217 * log record and set the tail block based on the last good 1218 * record. 1219 * 1220 * Bail out if the updated head/tail match as this indicates 1221 * possible corruption outside of the acceptable 1222 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair... 1223 */ 1224 *head_blk = first_bad; 1225 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn)); 1226 if (*head_blk == *tail_blk) { 1227 ASSERT(0); 1228 return 0; 1229 } 1230 } 1231 if (error) 1232 return error; 1233 1234 return xlog_verify_tail(log, *head_blk, tail_blk, 1235 be32_to_cpu((*rhead)->h_size)); 1236 } 1237 1238 /* 1239 * We need to make sure we handle log wrapping properly, so we can't use the 1240 * calculated logbno directly. Make sure it wraps to the correct bno inside the 1241 * log. 1242 * 1243 * The log is limited to 32 bit sizes, so we use the appropriate modulus 1244 * operation here and cast it back to a 64 bit daddr on return. 1245 */ 1246 static inline xfs_daddr_t 1247 xlog_wrap_logbno( 1248 struct xlog *log, 1249 xfs_daddr_t bno) 1250 { 1251 int mod; 1252 1253 div_s64_rem(bno, log->l_logBBsize, &mod); 1254 return mod; 1255 } 1256 1257 /* 1258 * Check whether the head of the log points to an unmount record. In other 1259 * words, determine whether the log is clean. If so, update the in-core state 1260 * appropriately. 1261 */ 1262 static int 1263 xlog_check_unmount_rec( 1264 struct xlog *log, 1265 xfs_daddr_t *head_blk, 1266 xfs_daddr_t *tail_blk, 1267 struct xlog_rec_header *rhead, 1268 xfs_daddr_t rhead_blk, 1269 struct xfs_buf *bp, 1270 bool *clean) 1271 { 1272 struct xlog_op_header *op_head; 1273 xfs_daddr_t umount_data_blk; 1274 xfs_daddr_t after_umount_blk; 1275 int hblks; 1276 int error; 1277 char *offset; 1278 1279 *clean = false; 1280 1281 /* 1282 * Look for unmount record. If we find it, then we know there was a 1283 * clean unmount. Since 'i' could be the last block in the physical 1284 * log, we convert to a log block before comparing to the head_blk. 1285 * 1286 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks() 1287 * below. We won't want to clear the unmount record if there is one, so 1288 * we pass the lsn of the unmount record rather than the block after it. 1289 */ 1290 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1291 int h_size = be32_to_cpu(rhead->h_size); 1292 int h_version = be32_to_cpu(rhead->h_version); 1293 1294 if ((h_version & XLOG_VERSION_2) && 1295 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 1296 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 1297 if (h_size % XLOG_HEADER_CYCLE_SIZE) 1298 hblks++; 1299 } else { 1300 hblks = 1; 1301 } 1302 } else { 1303 hblks = 1; 1304 } 1305 1306 after_umount_blk = xlog_wrap_logbno(log, 1307 rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len))); 1308 1309 if (*head_blk == after_umount_blk && 1310 be32_to_cpu(rhead->h_num_logops) == 1) { 1311 umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks); 1312 error = xlog_bread(log, umount_data_blk, 1, bp, &offset); 1313 if (error) 1314 return error; 1315 1316 op_head = (struct xlog_op_header *)offset; 1317 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 1318 /* 1319 * Set tail and last sync so that newly written log 1320 * records will point recovery to after the current 1321 * unmount record. 1322 */ 1323 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1324 log->l_curr_cycle, after_umount_blk); 1325 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1326 log->l_curr_cycle, after_umount_blk); 1327 *tail_blk = after_umount_blk; 1328 1329 *clean = true; 1330 } 1331 } 1332 1333 return 0; 1334 } 1335 1336 static void 1337 xlog_set_state( 1338 struct xlog *log, 1339 xfs_daddr_t head_blk, 1340 struct xlog_rec_header *rhead, 1341 xfs_daddr_t rhead_blk, 1342 bool bump_cycle) 1343 { 1344 /* 1345 * Reset log values according to the state of the log when we 1346 * crashed. In the case where head_blk == 0, we bump curr_cycle 1347 * one because the next write starts a new cycle rather than 1348 * continuing the cycle of the last good log record. At this 1349 * point we have guaranteed that all partial log records have been 1350 * accounted for. Therefore, we know that the last good log record 1351 * written was complete and ended exactly on the end boundary 1352 * of the physical log. 1353 */ 1354 log->l_prev_block = rhead_blk; 1355 log->l_curr_block = (int)head_blk; 1356 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 1357 if (bump_cycle) 1358 log->l_curr_cycle++; 1359 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); 1360 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); 1361 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, 1362 BBTOB(log->l_curr_block)); 1363 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, 1364 BBTOB(log->l_curr_block)); 1365 } 1366 1367 /* 1368 * Find the sync block number or the tail of the log. 1369 * 1370 * This will be the block number of the last record to have its 1371 * associated buffers synced to disk. Every log record header has 1372 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 1373 * to get a sync block number. The only concern is to figure out which 1374 * log record header to believe. 1375 * 1376 * The following algorithm uses the log record header with the largest 1377 * lsn. The entire log record does not need to be valid. We only care 1378 * that the header is valid. 1379 * 1380 * We could speed up search by using current head_blk buffer, but it is not 1381 * available. 1382 */ 1383 STATIC int 1384 xlog_find_tail( 1385 struct xlog *log, 1386 xfs_daddr_t *head_blk, 1387 xfs_daddr_t *tail_blk) 1388 { 1389 xlog_rec_header_t *rhead; 1390 char *offset = NULL; 1391 xfs_buf_t *bp; 1392 int error; 1393 xfs_daddr_t rhead_blk; 1394 xfs_lsn_t tail_lsn; 1395 bool wrapped = false; 1396 bool clean = false; 1397 1398 /* 1399 * Find previous log record 1400 */ 1401 if ((error = xlog_find_head(log, head_blk))) 1402 return error; 1403 ASSERT(*head_blk < INT_MAX); 1404 1405 bp = xlog_get_bp(log, 1); 1406 if (!bp) 1407 return -ENOMEM; 1408 if (*head_blk == 0) { /* special case */ 1409 error = xlog_bread(log, 0, 1, bp, &offset); 1410 if (error) 1411 goto done; 1412 1413 if (xlog_get_cycle(offset) == 0) { 1414 *tail_blk = 0; 1415 /* leave all other log inited values alone */ 1416 goto done; 1417 } 1418 } 1419 1420 /* 1421 * Search backwards through the log looking for the log record header 1422 * block. This wraps all the way back around to the head so something is 1423 * seriously wrong if we can't find it. 1424 */ 1425 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp, 1426 &rhead_blk, &rhead, &wrapped); 1427 if (error < 0) 1428 return error; 1429 if (!error) { 1430 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); 1431 return -EIO; 1432 } 1433 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 1434 1435 /* 1436 * Set the log state based on the current head record. 1437 */ 1438 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped); 1439 tail_lsn = atomic64_read(&log->l_tail_lsn); 1440 1441 /* 1442 * Look for an unmount record at the head of the log. This sets the log 1443 * state to determine whether recovery is necessary. 1444 */ 1445 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead, 1446 rhead_blk, bp, &clean); 1447 if (error) 1448 goto done; 1449 1450 /* 1451 * Verify the log head if the log is not clean (e.g., we have anything 1452 * but an unmount record at the head). This uses CRC verification to 1453 * detect and trim torn writes. If discovered, CRC failures are 1454 * considered torn writes and the log head is trimmed accordingly. 1455 * 1456 * Note that we can only run CRC verification when the log is dirty 1457 * because there's no guarantee that the log data behind an unmount 1458 * record is compatible with the current architecture. 1459 */ 1460 if (!clean) { 1461 xfs_daddr_t orig_head = *head_blk; 1462 1463 error = xlog_verify_head(log, head_blk, tail_blk, bp, 1464 &rhead_blk, &rhead, &wrapped); 1465 if (error) 1466 goto done; 1467 1468 /* update in-core state again if the head changed */ 1469 if (*head_blk != orig_head) { 1470 xlog_set_state(log, *head_blk, rhead, rhead_blk, 1471 wrapped); 1472 tail_lsn = atomic64_read(&log->l_tail_lsn); 1473 error = xlog_check_unmount_rec(log, head_blk, tail_blk, 1474 rhead, rhead_blk, bp, 1475 &clean); 1476 if (error) 1477 goto done; 1478 } 1479 } 1480 1481 /* 1482 * Note that the unmount was clean. If the unmount was not clean, we 1483 * need to know this to rebuild the superblock counters from the perag 1484 * headers if we have a filesystem using non-persistent counters. 1485 */ 1486 if (clean) 1487 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 1488 1489 /* 1490 * Make sure that there are no blocks in front of the head 1491 * with the same cycle number as the head. This can happen 1492 * because we allow multiple outstanding log writes concurrently, 1493 * and the later writes might make it out before earlier ones. 1494 * 1495 * We use the lsn from before modifying it so that we'll never 1496 * overwrite the unmount record after a clean unmount. 1497 * 1498 * Do this only if we are going to recover the filesystem 1499 * 1500 * NOTE: This used to say "if (!readonly)" 1501 * However on Linux, we can & do recover a read-only filesystem. 1502 * We only skip recovery if NORECOVERY is specified on mount, 1503 * in which case we would not be here. 1504 * 1505 * But... if the -device- itself is readonly, just skip this. 1506 * We can't recover this device anyway, so it won't matter. 1507 */ 1508 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) 1509 error = xlog_clear_stale_blocks(log, tail_lsn); 1510 1511 done: 1512 xlog_put_bp(bp); 1513 1514 if (error) 1515 xfs_warn(log->l_mp, "failed to locate log tail"); 1516 return error; 1517 } 1518 1519 /* 1520 * Is the log zeroed at all? 1521 * 1522 * The last binary search should be changed to perform an X block read 1523 * once X becomes small enough. You can then search linearly through 1524 * the X blocks. This will cut down on the number of reads we need to do. 1525 * 1526 * If the log is partially zeroed, this routine will pass back the blkno 1527 * of the first block with cycle number 0. It won't have a complete LR 1528 * preceding it. 1529 * 1530 * Return: 1531 * 0 => the log is completely written to 1532 * 1 => use *blk_no as the first block of the log 1533 * <0 => error has occurred 1534 */ 1535 STATIC int 1536 xlog_find_zeroed( 1537 struct xlog *log, 1538 xfs_daddr_t *blk_no) 1539 { 1540 xfs_buf_t *bp; 1541 char *offset; 1542 uint first_cycle, last_cycle; 1543 xfs_daddr_t new_blk, last_blk, start_blk; 1544 xfs_daddr_t num_scan_bblks; 1545 int error, log_bbnum = log->l_logBBsize; 1546 1547 *blk_no = 0; 1548 1549 /* check totally zeroed log */ 1550 bp = xlog_get_bp(log, 1); 1551 if (!bp) 1552 return -ENOMEM; 1553 error = xlog_bread(log, 0, 1, bp, &offset); 1554 if (error) 1555 goto bp_err; 1556 1557 first_cycle = xlog_get_cycle(offset); 1558 if (first_cycle == 0) { /* completely zeroed log */ 1559 *blk_no = 0; 1560 xlog_put_bp(bp); 1561 return 1; 1562 } 1563 1564 /* check partially zeroed log */ 1565 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset); 1566 if (error) 1567 goto bp_err; 1568 1569 last_cycle = xlog_get_cycle(offset); 1570 if (last_cycle != 0) { /* log completely written to */ 1571 xlog_put_bp(bp); 1572 return 0; 1573 } 1574 1575 /* we have a partially zeroed log */ 1576 last_blk = log_bbnum-1; 1577 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1578 goto bp_err; 1579 1580 /* 1581 * Validate the answer. Because there is no way to guarantee that 1582 * the entire log is made up of log records which are the same size, 1583 * we scan over the defined maximum blocks. At this point, the maximum 1584 * is not chosen to mean anything special. XXXmiken 1585 */ 1586 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1587 ASSERT(num_scan_bblks <= INT_MAX); 1588 1589 if (last_blk < num_scan_bblks) 1590 num_scan_bblks = last_blk; 1591 start_blk = last_blk - num_scan_bblks; 1592 1593 /* 1594 * We search for any instances of cycle number 0 that occur before 1595 * our current estimate of the head. What we're trying to detect is 1596 * 1 ... | 0 | 1 | 0... 1597 * ^ binary search ends here 1598 */ 1599 if ((error = xlog_find_verify_cycle(log, start_blk, 1600 (int)num_scan_bblks, 0, &new_blk))) 1601 goto bp_err; 1602 if (new_blk != -1) 1603 last_blk = new_blk; 1604 1605 /* 1606 * Potentially backup over partial log record write. We don't need 1607 * to search the end of the log because we know it is zero. 1608 */ 1609 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0); 1610 if (error == 1) 1611 error = -EIO; 1612 if (error) 1613 goto bp_err; 1614 1615 *blk_no = last_blk; 1616 bp_err: 1617 xlog_put_bp(bp); 1618 if (error) 1619 return error; 1620 return 1; 1621 } 1622 1623 /* 1624 * These are simple subroutines used by xlog_clear_stale_blocks() below 1625 * to initialize a buffer full of empty log record headers and write 1626 * them into the log. 1627 */ 1628 STATIC void 1629 xlog_add_record( 1630 struct xlog *log, 1631 char *buf, 1632 int cycle, 1633 int block, 1634 int tail_cycle, 1635 int tail_block) 1636 { 1637 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1638 1639 memset(buf, 0, BBSIZE); 1640 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1641 recp->h_cycle = cpu_to_be32(cycle); 1642 recp->h_version = cpu_to_be32( 1643 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1644 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1645 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1646 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1647 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1648 } 1649 1650 STATIC int 1651 xlog_write_log_records( 1652 struct xlog *log, 1653 int cycle, 1654 int start_block, 1655 int blocks, 1656 int tail_cycle, 1657 int tail_block) 1658 { 1659 char *offset; 1660 xfs_buf_t *bp; 1661 int balign, ealign; 1662 int sectbb = log->l_sectBBsize; 1663 int end_block = start_block + blocks; 1664 int bufblks; 1665 int error = 0; 1666 int i, j = 0; 1667 1668 /* 1669 * Greedily allocate a buffer big enough to handle the full 1670 * range of basic blocks to be written. If that fails, try 1671 * a smaller size. We need to be able to write at least a 1672 * log sector, or we're out of luck. 1673 */ 1674 bufblks = 1 << ffs(blocks); 1675 while (bufblks > log->l_logBBsize) 1676 bufblks >>= 1; 1677 while (!(bp = xlog_get_bp(log, bufblks))) { 1678 bufblks >>= 1; 1679 if (bufblks < sectbb) 1680 return -ENOMEM; 1681 } 1682 1683 /* We may need to do a read at the start to fill in part of 1684 * the buffer in the starting sector not covered by the first 1685 * write below. 1686 */ 1687 balign = round_down(start_block, sectbb); 1688 if (balign != start_block) { 1689 error = xlog_bread_noalign(log, start_block, 1, bp); 1690 if (error) 1691 goto out_put_bp; 1692 1693 j = start_block - balign; 1694 } 1695 1696 for (i = start_block; i < end_block; i += bufblks) { 1697 int bcount, endcount; 1698 1699 bcount = min(bufblks, end_block - start_block); 1700 endcount = bcount - j; 1701 1702 /* We may need to do a read at the end to fill in part of 1703 * the buffer in the final sector not covered by the write. 1704 * If this is the same sector as the above read, skip it. 1705 */ 1706 ealign = round_down(end_block, sectbb); 1707 if (j == 0 && (start_block + endcount > ealign)) { 1708 offset = bp->b_addr + BBTOB(ealign - start_block); 1709 error = xlog_bread_offset(log, ealign, sectbb, 1710 bp, offset); 1711 if (error) 1712 break; 1713 1714 } 1715 1716 offset = xlog_align(log, start_block, endcount, bp); 1717 for (; j < endcount; j++) { 1718 xlog_add_record(log, offset, cycle, i+j, 1719 tail_cycle, tail_block); 1720 offset += BBSIZE; 1721 } 1722 error = xlog_bwrite(log, start_block, endcount, bp); 1723 if (error) 1724 break; 1725 start_block += endcount; 1726 j = 0; 1727 } 1728 1729 out_put_bp: 1730 xlog_put_bp(bp); 1731 return error; 1732 } 1733 1734 /* 1735 * This routine is called to blow away any incomplete log writes out 1736 * in front of the log head. We do this so that we won't become confused 1737 * if we come up, write only a little bit more, and then crash again. 1738 * If we leave the partial log records out there, this situation could 1739 * cause us to think those partial writes are valid blocks since they 1740 * have the current cycle number. We get rid of them by overwriting them 1741 * with empty log records with the old cycle number rather than the 1742 * current one. 1743 * 1744 * The tail lsn is passed in rather than taken from 1745 * the log so that we will not write over the unmount record after a 1746 * clean unmount in a 512 block log. Doing so would leave the log without 1747 * any valid log records in it until a new one was written. If we crashed 1748 * during that time we would not be able to recover. 1749 */ 1750 STATIC int 1751 xlog_clear_stale_blocks( 1752 struct xlog *log, 1753 xfs_lsn_t tail_lsn) 1754 { 1755 int tail_cycle, head_cycle; 1756 int tail_block, head_block; 1757 int tail_distance, max_distance; 1758 int distance; 1759 int error; 1760 1761 tail_cycle = CYCLE_LSN(tail_lsn); 1762 tail_block = BLOCK_LSN(tail_lsn); 1763 head_cycle = log->l_curr_cycle; 1764 head_block = log->l_curr_block; 1765 1766 /* 1767 * Figure out the distance between the new head of the log 1768 * and the tail. We want to write over any blocks beyond the 1769 * head that we may have written just before the crash, but 1770 * we don't want to overwrite the tail of the log. 1771 */ 1772 if (head_cycle == tail_cycle) { 1773 /* 1774 * The tail is behind the head in the physical log, 1775 * so the distance from the head to the tail is the 1776 * distance from the head to the end of the log plus 1777 * the distance from the beginning of the log to the 1778 * tail. 1779 */ 1780 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1781 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1782 XFS_ERRLEVEL_LOW, log->l_mp); 1783 return -EFSCORRUPTED; 1784 } 1785 tail_distance = tail_block + (log->l_logBBsize - head_block); 1786 } else { 1787 /* 1788 * The head is behind the tail in the physical log, 1789 * so the distance from the head to the tail is just 1790 * the tail block minus the head block. 1791 */ 1792 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1793 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1794 XFS_ERRLEVEL_LOW, log->l_mp); 1795 return -EFSCORRUPTED; 1796 } 1797 tail_distance = tail_block - head_block; 1798 } 1799 1800 /* 1801 * If the head is right up against the tail, we can't clear 1802 * anything. 1803 */ 1804 if (tail_distance <= 0) { 1805 ASSERT(tail_distance == 0); 1806 return 0; 1807 } 1808 1809 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1810 /* 1811 * Take the smaller of the maximum amount of outstanding I/O 1812 * we could have and the distance to the tail to clear out. 1813 * We take the smaller so that we don't overwrite the tail and 1814 * we don't waste all day writing from the head to the tail 1815 * for no reason. 1816 */ 1817 max_distance = min(max_distance, tail_distance); 1818 1819 if ((head_block + max_distance) <= log->l_logBBsize) { 1820 /* 1821 * We can stomp all the blocks we need to without 1822 * wrapping around the end of the log. Just do it 1823 * in a single write. Use the cycle number of the 1824 * current cycle minus one so that the log will look like: 1825 * n ... | n - 1 ... 1826 */ 1827 error = xlog_write_log_records(log, (head_cycle - 1), 1828 head_block, max_distance, tail_cycle, 1829 tail_block); 1830 if (error) 1831 return error; 1832 } else { 1833 /* 1834 * We need to wrap around the end of the physical log in 1835 * order to clear all the blocks. Do it in two separate 1836 * I/Os. The first write should be from the head to the 1837 * end of the physical log, and it should use the current 1838 * cycle number minus one just like above. 1839 */ 1840 distance = log->l_logBBsize - head_block; 1841 error = xlog_write_log_records(log, (head_cycle - 1), 1842 head_block, distance, tail_cycle, 1843 tail_block); 1844 1845 if (error) 1846 return error; 1847 1848 /* 1849 * Now write the blocks at the start of the physical log. 1850 * This writes the remainder of the blocks we want to clear. 1851 * It uses the current cycle number since we're now on the 1852 * same cycle as the head so that we get: 1853 * n ... n ... | n - 1 ... 1854 * ^^^^^ blocks we're writing 1855 */ 1856 distance = max_distance - (log->l_logBBsize - head_block); 1857 error = xlog_write_log_records(log, head_cycle, 0, distance, 1858 tail_cycle, tail_block); 1859 if (error) 1860 return error; 1861 } 1862 1863 return 0; 1864 } 1865 1866 /****************************************************************************** 1867 * 1868 * Log recover routines 1869 * 1870 ****************************************************************************** 1871 */ 1872 1873 /* 1874 * Sort the log items in the transaction. 1875 * 1876 * The ordering constraints are defined by the inode allocation and unlink 1877 * behaviour. The rules are: 1878 * 1879 * 1. Every item is only logged once in a given transaction. Hence it 1880 * represents the last logged state of the item. Hence ordering is 1881 * dependent on the order in which operations need to be performed so 1882 * required initial conditions are always met. 1883 * 1884 * 2. Cancelled buffers are recorded in pass 1 in a separate table and 1885 * there's nothing to replay from them so we can simply cull them 1886 * from the transaction. However, we can't do that until after we've 1887 * replayed all the other items because they may be dependent on the 1888 * cancelled buffer and replaying the cancelled buffer can remove it 1889 * form the cancelled buffer table. Hence they have tobe done last. 1890 * 1891 * 3. Inode allocation buffers must be replayed before inode items that 1892 * read the buffer and replay changes into it. For filesystems using the 1893 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get 1894 * treated the same as inode allocation buffers as they create and 1895 * initialise the buffers directly. 1896 * 1897 * 4. Inode unlink buffers must be replayed after inode items are replayed. 1898 * This ensures that inodes are completely flushed to the inode buffer 1899 * in a "free" state before we remove the unlinked inode list pointer. 1900 * 1901 * Hence the ordering needs to be inode allocation buffers first, inode items 1902 * second, inode unlink buffers third and cancelled buffers last. 1903 * 1904 * But there's a problem with that - we can't tell an inode allocation buffer 1905 * apart from a regular buffer, so we can't separate them. We can, however, 1906 * tell an inode unlink buffer from the others, and so we can separate them out 1907 * from all the other buffers and move them to last. 1908 * 1909 * Hence, 4 lists, in order from head to tail: 1910 * - buffer_list for all buffers except cancelled/inode unlink buffers 1911 * - item_list for all non-buffer items 1912 * - inode_buffer_list for inode unlink buffers 1913 * - cancel_list for the cancelled buffers 1914 * 1915 * Note that we add objects to the tail of the lists so that first-to-last 1916 * ordering is preserved within the lists. Adding objects to the head of the 1917 * list means when we traverse from the head we walk them in last-to-first 1918 * order. For cancelled buffers and inode unlink buffers this doesn't matter, 1919 * but for all other items there may be specific ordering that we need to 1920 * preserve. 1921 */ 1922 STATIC int 1923 xlog_recover_reorder_trans( 1924 struct xlog *log, 1925 struct xlog_recover *trans, 1926 int pass) 1927 { 1928 xlog_recover_item_t *item, *n; 1929 int error = 0; 1930 LIST_HEAD(sort_list); 1931 LIST_HEAD(cancel_list); 1932 LIST_HEAD(buffer_list); 1933 LIST_HEAD(inode_buffer_list); 1934 LIST_HEAD(inode_list); 1935 1936 list_splice_init(&trans->r_itemq, &sort_list); 1937 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1938 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1939 1940 switch (ITEM_TYPE(item)) { 1941 case XFS_LI_ICREATE: 1942 list_move_tail(&item->ri_list, &buffer_list); 1943 break; 1944 case XFS_LI_BUF: 1945 if (buf_f->blf_flags & XFS_BLF_CANCEL) { 1946 trace_xfs_log_recover_item_reorder_head(log, 1947 trans, item, pass); 1948 list_move(&item->ri_list, &cancel_list); 1949 break; 1950 } 1951 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 1952 list_move(&item->ri_list, &inode_buffer_list); 1953 break; 1954 } 1955 list_move_tail(&item->ri_list, &buffer_list); 1956 break; 1957 case XFS_LI_INODE: 1958 case XFS_LI_DQUOT: 1959 case XFS_LI_QUOTAOFF: 1960 case XFS_LI_EFD: 1961 case XFS_LI_EFI: 1962 case XFS_LI_RUI: 1963 case XFS_LI_RUD: 1964 case XFS_LI_CUI: 1965 case XFS_LI_CUD: 1966 case XFS_LI_BUI: 1967 case XFS_LI_BUD: 1968 trace_xfs_log_recover_item_reorder_tail(log, 1969 trans, item, pass); 1970 list_move_tail(&item->ri_list, &inode_list); 1971 break; 1972 default: 1973 xfs_warn(log->l_mp, 1974 "%s: unrecognized type of log operation", 1975 __func__); 1976 ASSERT(0); 1977 /* 1978 * return the remaining items back to the transaction 1979 * item list so they can be freed in caller. 1980 */ 1981 if (!list_empty(&sort_list)) 1982 list_splice_init(&sort_list, &trans->r_itemq); 1983 error = -EIO; 1984 goto out; 1985 } 1986 } 1987 out: 1988 ASSERT(list_empty(&sort_list)); 1989 if (!list_empty(&buffer_list)) 1990 list_splice(&buffer_list, &trans->r_itemq); 1991 if (!list_empty(&inode_list)) 1992 list_splice_tail(&inode_list, &trans->r_itemq); 1993 if (!list_empty(&inode_buffer_list)) 1994 list_splice_tail(&inode_buffer_list, &trans->r_itemq); 1995 if (!list_empty(&cancel_list)) 1996 list_splice_tail(&cancel_list, &trans->r_itemq); 1997 return error; 1998 } 1999 2000 /* 2001 * Build up the table of buf cancel records so that we don't replay 2002 * cancelled data in the second pass. For buffer records that are 2003 * not cancel records, there is nothing to do here so we just return. 2004 * 2005 * If we get a cancel record which is already in the table, this indicates 2006 * that the buffer was cancelled multiple times. In order to ensure 2007 * that during pass 2 we keep the record in the table until we reach its 2008 * last occurrence in the log, we keep a reference count in the cancel 2009 * record in the table to tell us how many times we expect to see this 2010 * record during the second pass. 2011 */ 2012 STATIC int 2013 xlog_recover_buffer_pass1( 2014 struct xlog *log, 2015 struct xlog_recover_item *item) 2016 { 2017 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2018 struct list_head *bucket; 2019 struct xfs_buf_cancel *bcp; 2020 2021 /* 2022 * If this isn't a cancel buffer item, then just return. 2023 */ 2024 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 2025 trace_xfs_log_recover_buf_not_cancel(log, buf_f); 2026 return 0; 2027 } 2028 2029 /* 2030 * Insert an xfs_buf_cancel record into the hash table of them. 2031 * If there is already an identical record, bump its reference count. 2032 */ 2033 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno); 2034 list_for_each_entry(bcp, bucket, bc_list) { 2035 if (bcp->bc_blkno == buf_f->blf_blkno && 2036 bcp->bc_len == buf_f->blf_len) { 2037 bcp->bc_refcount++; 2038 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f); 2039 return 0; 2040 } 2041 } 2042 2043 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP); 2044 bcp->bc_blkno = buf_f->blf_blkno; 2045 bcp->bc_len = buf_f->blf_len; 2046 bcp->bc_refcount = 1; 2047 list_add_tail(&bcp->bc_list, bucket); 2048 2049 trace_xfs_log_recover_buf_cancel_add(log, buf_f); 2050 return 0; 2051 } 2052 2053 /* 2054 * Check to see whether the buffer being recovered has a corresponding 2055 * entry in the buffer cancel record table. If it is, return the cancel 2056 * buffer structure to the caller. 2057 */ 2058 STATIC struct xfs_buf_cancel * 2059 xlog_peek_buffer_cancelled( 2060 struct xlog *log, 2061 xfs_daddr_t blkno, 2062 uint len, 2063 unsigned short flags) 2064 { 2065 struct list_head *bucket; 2066 struct xfs_buf_cancel *bcp; 2067 2068 if (!log->l_buf_cancel_table) { 2069 /* empty table means no cancelled buffers in the log */ 2070 ASSERT(!(flags & XFS_BLF_CANCEL)); 2071 return NULL; 2072 } 2073 2074 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); 2075 list_for_each_entry(bcp, bucket, bc_list) { 2076 if (bcp->bc_blkno == blkno && bcp->bc_len == len) 2077 return bcp; 2078 } 2079 2080 /* 2081 * We didn't find a corresponding entry in the table, so return 0 so 2082 * that the buffer is NOT cancelled. 2083 */ 2084 ASSERT(!(flags & XFS_BLF_CANCEL)); 2085 return NULL; 2086 } 2087 2088 /* 2089 * If the buffer is being cancelled then return 1 so that it will be cancelled, 2090 * otherwise return 0. If the buffer is actually a buffer cancel item 2091 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the 2092 * table and remove it from the table if this is the last reference. 2093 * 2094 * We remove the cancel record from the table when we encounter its last 2095 * occurrence in the log so that if the same buffer is re-used again after its 2096 * last cancellation we actually replay the changes made at that point. 2097 */ 2098 STATIC int 2099 xlog_check_buffer_cancelled( 2100 struct xlog *log, 2101 xfs_daddr_t blkno, 2102 uint len, 2103 unsigned short flags) 2104 { 2105 struct xfs_buf_cancel *bcp; 2106 2107 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags); 2108 if (!bcp) 2109 return 0; 2110 2111 /* 2112 * We've go a match, so return 1 so that the recovery of this buffer 2113 * is cancelled. If this buffer is actually a buffer cancel log 2114 * item, then decrement the refcount on the one in the table and 2115 * remove it if this is the last reference. 2116 */ 2117 if (flags & XFS_BLF_CANCEL) { 2118 if (--bcp->bc_refcount == 0) { 2119 list_del(&bcp->bc_list); 2120 kmem_free(bcp); 2121 } 2122 } 2123 return 1; 2124 } 2125 2126 /* 2127 * Perform recovery for a buffer full of inodes. In these buffers, the only 2128 * data which should be recovered is that which corresponds to the 2129 * di_next_unlinked pointers in the on disk inode structures. The rest of the 2130 * data for the inodes is always logged through the inodes themselves rather 2131 * than the inode buffer and is recovered in xlog_recover_inode_pass2(). 2132 * 2133 * The only time when buffers full of inodes are fully recovered is when the 2134 * buffer is full of newly allocated inodes. In this case the buffer will 2135 * not be marked as an inode buffer and so will be sent to 2136 * xlog_recover_do_reg_buffer() below during recovery. 2137 */ 2138 STATIC int 2139 xlog_recover_do_inode_buffer( 2140 struct xfs_mount *mp, 2141 xlog_recover_item_t *item, 2142 struct xfs_buf *bp, 2143 xfs_buf_log_format_t *buf_f) 2144 { 2145 int i; 2146 int item_index = 0; 2147 int bit = 0; 2148 int nbits = 0; 2149 int reg_buf_offset = 0; 2150 int reg_buf_bytes = 0; 2151 int next_unlinked_offset; 2152 int inodes_per_buf; 2153 xfs_agino_t *logged_nextp; 2154 xfs_agino_t *buffer_nextp; 2155 2156 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); 2157 2158 /* 2159 * Post recovery validation only works properly on CRC enabled 2160 * filesystems. 2161 */ 2162 if (xfs_sb_version_hascrc(&mp->m_sb)) 2163 bp->b_ops = &xfs_inode_buf_ops; 2164 2165 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog; 2166 for (i = 0; i < inodes_per_buf; i++) { 2167 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 2168 offsetof(xfs_dinode_t, di_next_unlinked); 2169 2170 while (next_unlinked_offset >= 2171 (reg_buf_offset + reg_buf_bytes)) { 2172 /* 2173 * The next di_next_unlinked field is beyond 2174 * the current logged region. Find the next 2175 * logged region that contains or is beyond 2176 * the current di_next_unlinked field. 2177 */ 2178 bit += nbits; 2179 bit = xfs_next_bit(buf_f->blf_data_map, 2180 buf_f->blf_map_size, bit); 2181 2182 /* 2183 * If there are no more logged regions in the 2184 * buffer, then we're done. 2185 */ 2186 if (bit == -1) 2187 return 0; 2188 2189 nbits = xfs_contig_bits(buf_f->blf_data_map, 2190 buf_f->blf_map_size, bit); 2191 ASSERT(nbits > 0); 2192 reg_buf_offset = bit << XFS_BLF_SHIFT; 2193 reg_buf_bytes = nbits << XFS_BLF_SHIFT; 2194 item_index++; 2195 } 2196 2197 /* 2198 * If the current logged region starts after the current 2199 * di_next_unlinked field, then move on to the next 2200 * di_next_unlinked field. 2201 */ 2202 if (next_unlinked_offset < reg_buf_offset) 2203 continue; 2204 2205 ASSERT(item->ri_buf[item_index].i_addr != NULL); 2206 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); 2207 ASSERT((reg_buf_offset + reg_buf_bytes) <= 2208 BBTOB(bp->b_io_length)); 2209 2210 /* 2211 * The current logged region contains a copy of the 2212 * current di_next_unlinked field. Extract its value 2213 * and copy it to the buffer copy. 2214 */ 2215 logged_nextp = item->ri_buf[item_index].i_addr + 2216 next_unlinked_offset - reg_buf_offset; 2217 if (unlikely(*logged_nextp == 0)) { 2218 xfs_alert(mp, 2219 "Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). " 2220 "Trying to replay bad (0) inode di_next_unlinked field.", 2221 item, bp); 2222 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 2223 XFS_ERRLEVEL_LOW, mp); 2224 return -EFSCORRUPTED; 2225 } 2226 2227 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset); 2228 *buffer_nextp = *logged_nextp; 2229 2230 /* 2231 * If necessary, recalculate the CRC in the on-disk inode. We 2232 * have to leave the inode in a consistent state for whoever 2233 * reads it next.... 2234 */ 2235 xfs_dinode_calc_crc(mp, 2236 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); 2237 2238 } 2239 2240 return 0; 2241 } 2242 2243 /* 2244 * V5 filesystems know the age of the buffer on disk being recovered. We can 2245 * have newer objects on disk than we are replaying, and so for these cases we 2246 * don't want to replay the current change as that will make the buffer contents 2247 * temporarily invalid on disk. 2248 * 2249 * The magic number might not match the buffer type we are going to recover 2250 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence 2251 * extract the LSN of the existing object in the buffer based on it's current 2252 * magic number. If we don't recognise the magic number in the buffer, then 2253 * return a LSN of -1 so that the caller knows it was an unrecognised block and 2254 * so can recover the buffer. 2255 * 2256 * Note: we cannot rely solely on magic number matches to determine that the 2257 * buffer has a valid LSN - we also need to verify that it belongs to this 2258 * filesystem, so we need to extract the object's LSN and compare it to that 2259 * which we read from the superblock. If the UUIDs don't match, then we've got a 2260 * stale metadata block from an old filesystem instance that we need to recover 2261 * over the top of. 2262 */ 2263 static xfs_lsn_t 2264 xlog_recover_get_buf_lsn( 2265 struct xfs_mount *mp, 2266 struct xfs_buf *bp) 2267 { 2268 uint32_t magic32; 2269 uint16_t magic16; 2270 uint16_t magicda; 2271 void *blk = bp->b_addr; 2272 uuid_t *uuid; 2273 xfs_lsn_t lsn = -1; 2274 2275 /* v4 filesystems always recover immediately */ 2276 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2277 goto recover_immediately; 2278 2279 magic32 = be32_to_cpu(*(__be32 *)blk); 2280 switch (magic32) { 2281 case XFS_ABTB_CRC_MAGIC: 2282 case XFS_ABTC_CRC_MAGIC: 2283 case XFS_ABTB_MAGIC: 2284 case XFS_ABTC_MAGIC: 2285 case XFS_RMAP_CRC_MAGIC: 2286 case XFS_REFC_CRC_MAGIC: 2287 case XFS_IBT_CRC_MAGIC: 2288 case XFS_IBT_MAGIC: { 2289 struct xfs_btree_block *btb = blk; 2290 2291 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn); 2292 uuid = &btb->bb_u.s.bb_uuid; 2293 break; 2294 } 2295 case XFS_BMAP_CRC_MAGIC: 2296 case XFS_BMAP_MAGIC: { 2297 struct xfs_btree_block *btb = blk; 2298 2299 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn); 2300 uuid = &btb->bb_u.l.bb_uuid; 2301 break; 2302 } 2303 case XFS_AGF_MAGIC: 2304 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn); 2305 uuid = &((struct xfs_agf *)blk)->agf_uuid; 2306 break; 2307 case XFS_AGFL_MAGIC: 2308 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn); 2309 uuid = &((struct xfs_agfl *)blk)->agfl_uuid; 2310 break; 2311 case XFS_AGI_MAGIC: 2312 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn); 2313 uuid = &((struct xfs_agi *)blk)->agi_uuid; 2314 break; 2315 case XFS_SYMLINK_MAGIC: 2316 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn); 2317 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid; 2318 break; 2319 case XFS_DIR3_BLOCK_MAGIC: 2320 case XFS_DIR3_DATA_MAGIC: 2321 case XFS_DIR3_FREE_MAGIC: 2322 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn); 2323 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid; 2324 break; 2325 case XFS_ATTR3_RMT_MAGIC: 2326 /* 2327 * Remote attr blocks are written synchronously, rather than 2328 * being logged. That means they do not contain a valid LSN 2329 * (i.e. transactionally ordered) in them, and hence any time we 2330 * see a buffer to replay over the top of a remote attribute 2331 * block we should simply do so. 2332 */ 2333 goto recover_immediately; 2334 case XFS_SB_MAGIC: 2335 /* 2336 * superblock uuids are magic. We may or may not have a 2337 * sb_meta_uuid on disk, but it will be set in the in-core 2338 * superblock. We set the uuid pointer for verification 2339 * according to the superblock feature mask to ensure we check 2340 * the relevant UUID in the superblock. 2341 */ 2342 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn); 2343 if (xfs_sb_version_hasmetauuid(&mp->m_sb)) 2344 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid; 2345 else 2346 uuid = &((struct xfs_dsb *)blk)->sb_uuid; 2347 break; 2348 default: 2349 break; 2350 } 2351 2352 if (lsn != (xfs_lsn_t)-1) { 2353 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid)) 2354 goto recover_immediately; 2355 return lsn; 2356 } 2357 2358 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic); 2359 switch (magicda) { 2360 case XFS_DIR3_LEAF1_MAGIC: 2361 case XFS_DIR3_LEAFN_MAGIC: 2362 case XFS_DA3_NODE_MAGIC: 2363 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn); 2364 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid; 2365 break; 2366 default: 2367 break; 2368 } 2369 2370 if (lsn != (xfs_lsn_t)-1) { 2371 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid)) 2372 goto recover_immediately; 2373 return lsn; 2374 } 2375 2376 /* 2377 * We do individual object checks on dquot and inode buffers as they 2378 * have their own individual LSN records. Also, we could have a stale 2379 * buffer here, so we have to at least recognise these buffer types. 2380 * 2381 * A notd complexity here is inode unlinked list processing - it logs 2382 * the inode directly in the buffer, but we don't know which inodes have 2383 * been modified, and there is no global buffer LSN. Hence we need to 2384 * recover all inode buffer types immediately. This problem will be 2385 * fixed by logical logging of the unlinked list modifications. 2386 */ 2387 magic16 = be16_to_cpu(*(__be16 *)blk); 2388 switch (magic16) { 2389 case XFS_DQUOT_MAGIC: 2390 case XFS_DINODE_MAGIC: 2391 goto recover_immediately; 2392 default: 2393 break; 2394 } 2395 2396 /* unknown buffer contents, recover immediately */ 2397 2398 recover_immediately: 2399 return (xfs_lsn_t)-1; 2400 2401 } 2402 2403 /* 2404 * Validate the recovered buffer is of the correct type and attach the 2405 * appropriate buffer operations to them for writeback. Magic numbers are in a 2406 * few places: 2407 * the first 16 bits of the buffer (inode buffer, dquot buffer), 2408 * the first 32 bits of the buffer (most blocks), 2409 * inside a struct xfs_da_blkinfo at the start of the buffer. 2410 */ 2411 static void 2412 xlog_recover_validate_buf_type( 2413 struct xfs_mount *mp, 2414 struct xfs_buf *bp, 2415 xfs_buf_log_format_t *buf_f, 2416 xfs_lsn_t current_lsn) 2417 { 2418 struct xfs_da_blkinfo *info = bp->b_addr; 2419 uint32_t magic32; 2420 uint16_t magic16; 2421 uint16_t magicda; 2422 char *warnmsg = NULL; 2423 2424 /* 2425 * We can only do post recovery validation on items on CRC enabled 2426 * fielsystems as we need to know when the buffer was written to be able 2427 * to determine if we should have replayed the item. If we replay old 2428 * metadata over a newer buffer, then it will enter a temporarily 2429 * inconsistent state resulting in verification failures. Hence for now 2430 * just avoid the verification stage for non-crc filesystems 2431 */ 2432 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2433 return; 2434 2435 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr); 2436 magic16 = be16_to_cpu(*(__be16*)bp->b_addr); 2437 magicda = be16_to_cpu(info->magic); 2438 switch (xfs_blft_from_flags(buf_f)) { 2439 case XFS_BLFT_BTREE_BUF: 2440 switch (magic32) { 2441 case XFS_ABTB_CRC_MAGIC: 2442 case XFS_ABTC_CRC_MAGIC: 2443 case XFS_ABTB_MAGIC: 2444 case XFS_ABTC_MAGIC: 2445 bp->b_ops = &xfs_allocbt_buf_ops; 2446 break; 2447 case XFS_IBT_CRC_MAGIC: 2448 case XFS_FIBT_CRC_MAGIC: 2449 case XFS_IBT_MAGIC: 2450 case XFS_FIBT_MAGIC: 2451 bp->b_ops = &xfs_inobt_buf_ops; 2452 break; 2453 case XFS_BMAP_CRC_MAGIC: 2454 case XFS_BMAP_MAGIC: 2455 bp->b_ops = &xfs_bmbt_buf_ops; 2456 break; 2457 case XFS_RMAP_CRC_MAGIC: 2458 bp->b_ops = &xfs_rmapbt_buf_ops; 2459 break; 2460 case XFS_REFC_CRC_MAGIC: 2461 bp->b_ops = &xfs_refcountbt_buf_ops; 2462 break; 2463 default: 2464 warnmsg = "Bad btree block magic!"; 2465 break; 2466 } 2467 break; 2468 case XFS_BLFT_AGF_BUF: 2469 if (magic32 != XFS_AGF_MAGIC) { 2470 warnmsg = "Bad AGF block magic!"; 2471 break; 2472 } 2473 bp->b_ops = &xfs_agf_buf_ops; 2474 break; 2475 case XFS_BLFT_AGFL_BUF: 2476 if (magic32 != XFS_AGFL_MAGIC) { 2477 warnmsg = "Bad AGFL block magic!"; 2478 break; 2479 } 2480 bp->b_ops = &xfs_agfl_buf_ops; 2481 break; 2482 case XFS_BLFT_AGI_BUF: 2483 if (magic32 != XFS_AGI_MAGIC) { 2484 warnmsg = "Bad AGI block magic!"; 2485 break; 2486 } 2487 bp->b_ops = &xfs_agi_buf_ops; 2488 break; 2489 case XFS_BLFT_UDQUOT_BUF: 2490 case XFS_BLFT_PDQUOT_BUF: 2491 case XFS_BLFT_GDQUOT_BUF: 2492 #ifdef CONFIG_XFS_QUOTA 2493 if (magic16 != XFS_DQUOT_MAGIC) { 2494 warnmsg = "Bad DQUOT block magic!"; 2495 break; 2496 } 2497 bp->b_ops = &xfs_dquot_buf_ops; 2498 #else 2499 xfs_alert(mp, 2500 "Trying to recover dquots without QUOTA support built in!"); 2501 ASSERT(0); 2502 #endif 2503 break; 2504 case XFS_BLFT_DINO_BUF: 2505 if (magic16 != XFS_DINODE_MAGIC) { 2506 warnmsg = "Bad INODE block magic!"; 2507 break; 2508 } 2509 bp->b_ops = &xfs_inode_buf_ops; 2510 break; 2511 case XFS_BLFT_SYMLINK_BUF: 2512 if (magic32 != XFS_SYMLINK_MAGIC) { 2513 warnmsg = "Bad symlink block magic!"; 2514 break; 2515 } 2516 bp->b_ops = &xfs_symlink_buf_ops; 2517 break; 2518 case XFS_BLFT_DIR_BLOCK_BUF: 2519 if (magic32 != XFS_DIR2_BLOCK_MAGIC && 2520 magic32 != XFS_DIR3_BLOCK_MAGIC) { 2521 warnmsg = "Bad dir block magic!"; 2522 break; 2523 } 2524 bp->b_ops = &xfs_dir3_block_buf_ops; 2525 break; 2526 case XFS_BLFT_DIR_DATA_BUF: 2527 if (magic32 != XFS_DIR2_DATA_MAGIC && 2528 magic32 != XFS_DIR3_DATA_MAGIC) { 2529 warnmsg = "Bad dir data magic!"; 2530 break; 2531 } 2532 bp->b_ops = &xfs_dir3_data_buf_ops; 2533 break; 2534 case XFS_BLFT_DIR_FREE_BUF: 2535 if (magic32 != XFS_DIR2_FREE_MAGIC && 2536 magic32 != XFS_DIR3_FREE_MAGIC) { 2537 warnmsg = "Bad dir3 free magic!"; 2538 break; 2539 } 2540 bp->b_ops = &xfs_dir3_free_buf_ops; 2541 break; 2542 case XFS_BLFT_DIR_LEAF1_BUF: 2543 if (magicda != XFS_DIR2_LEAF1_MAGIC && 2544 magicda != XFS_DIR3_LEAF1_MAGIC) { 2545 warnmsg = "Bad dir leaf1 magic!"; 2546 break; 2547 } 2548 bp->b_ops = &xfs_dir3_leaf1_buf_ops; 2549 break; 2550 case XFS_BLFT_DIR_LEAFN_BUF: 2551 if (magicda != XFS_DIR2_LEAFN_MAGIC && 2552 magicda != XFS_DIR3_LEAFN_MAGIC) { 2553 warnmsg = "Bad dir leafn magic!"; 2554 break; 2555 } 2556 bp->b_ops = &xfs_dir3_leafn_buf_ops; 2557 break; 2558 case XFS_BLFT_DA_NODE_BUF: 2559 if (magicda != XFS_DA_NODE_MAGIC && 2560 magicda != XFS_DA3_NODE_MAGIC) { 2561 warnmsg = "Bad da node magic!"; 2562 break; 2563 } 2564 bp->b_ops = &xfs_da3_node_buf_ops; 2565 break; 2566 case XFS_BLFT_ATTR_LEAF_BUF: 2567 if (magicda != XFS_ATTR_LEAF_MAGIC && 2568 magicda != XFS_ATTR3_LEAF_MAGIC) { 2569 warnmsg = "Bad attr leaf magic!"; 2570 break; 2571 } 2572 bp->b_ops = &xfs_attr3_leaf_buf_ops; 2573 break; 2574 case XFS_BLFT_ATTR_RMT_BUF: 2575 if (magic32 != XFS_ATTR3_RMT_MAGIC) { 2576 warnmsg = "Bad attr remote magic!"; 2577 break; 2578 } 2579 bp->b_ops = &xfs_attr3_rmt_buf_ops; 2580 break; 2581 case XFS_BLFT_SB_BUF: 2582 if (magic32 != XFS_SB_MAGIC) { 2583 warnmsg = "Bad SB block magic!"; 2584 break; 2585 } 2586 bp->b_ops = &xfs_sb_buf_ops; 2587 break; 2588 #ifdef CONFIG_XFS_RT 2589 case XFS_BLFT_RTBITMAP_BUF: 2590 case XFS_BLFT_RTSUMMARY_BUF: 2591 /* no magic numbers for verification of RT buffers */ 2592 bp->b_ops = &xfs_rtbuf_ops; 2593 break; 2594 #endif /* CONFIG_XFS_RT */ 2595 default: 2596 xfs_warn(mp, "Unknown buffer type %d!", 2597 xfs_blft_from_flags(buf_f)); 2598 break; 2599 } 2600 2601 /* 2602 * Nothing else to do in the case of a NULL current LSN as this means 2603 * the buffer is more recent than the change in the log and will be 2604 * skipped. 2605 */ 2606 if (current_lsn == NULLCOMMITLSN) 2607 return; 2608 2609 if (warnmsg) { 2610 xfs_warn(mp, warnmsg); 2611 ASSERT(0); 2612 } 2613 2614 /* 2615 * We must update the metadata LSN of the buffer as it is written out to 2616 * ensure that older transactions never replay over this one and corrupt 2617 * the buffer. This can occur if log recovery is interrupted at some 2618 * point after the current transaction completes, at which point a 2619 * subsequent mount starts recovery from the beginning. 2620 * 2621 * Write verifiers update the metadata LSN from log items attached to 2622 * the buffer. Therefore, initialize a bli purely to carry the LSN to 2623 * the verifier. We'll clean it up in our ->iodone() callback. 2624 */ 2625 if (bp->b_ops) { 2626 struct xfs_buf_log_item *bip; 2627 2628 ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone); 2629 bp->b_iodone = xlog_recover_iodone; 2630 xfs_buf_item_init(bp, mp); 2631 bip = bp->b_log_item; 2632 bip->bli_item.li_lsn = current_lsn; 2633 } 2634 } 2635 2636 /* 2637 * Perform a 'normal' buffer recovery. Each logged region of the 2638 * buffer should be copied over the corresponding region in the 2639 * given buffer. The bitmap in the buf log format structure indicates 2640 * where to place the logged data. 2641 */ 2642 STATIC void 2643 xlog_recover_do_reg_buffer( 2644 struct xfs_mount *mp, 2645 xlog_recover_item_t *item, 2646 struct xfs_buf *bp, 2647 xfs_buf_log_format_t *buf_f, 2648 xfs_lsn_t current_lsn) 2649 { 2650 int i; 2651 int bit; 2652 int nbits; 2653 xfs_failaddr_t fa; 2654 2655 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); 2656 2657 bit = 0; 2658 i = 1; /* 0 is the buf format structure */ 2659 while (1) { 2660 bit = xfs_next_bit(buf_f->blf_data_map, 2661 buf_f->blf_map_size, bit); 2662 if (bit == -1) 2663 break; 2664 nbits = xfs_contig_bits(buf_f->blf_data_map, 2665 buf_f->blf_map_size, bit); 2666 ASSERT(nbits > 0); 2667 ASSERT(item->ri_buf[i].i_addr != NULL); 2668 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); 2669 ASSERT(BBTOB(bp->b_io_length) >= 2670 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); 2671 2672 /* 2673 * The dirty regions logged in the buffer, even though 2674 * contiguous, may span multiple chunks. This is because the 2675 * dirty region may span a physical page boundary in a buffer 2676 * and hence be split into two separate vectors for writing into 2677 * the log. Hence we need to trim nbits back to the length of 2678 * the current region being copied out of the log. 2679 */ 2680 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT)) 2681 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT; 2682 2683 /* 2684 * Do a sanity check if this is a dquot buffer. Just checking 2685 * the first dquot in the buffer should do. XXXThis is 2686 * probably a good thing to do for other buf types also. 2687 */ 2688 fa = NULL; 2689 if (buf_f->blf_flags & 2690 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2691 if (item->ri_buf[i].i_addr == NULL) { 2692 xfs_alert(mp, 2693 "XFS: NULL dquot in %s.", __func__); 2694 goto next; 2695 } 2696 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) { 2697 xfs_alert(mp, 2698 "XFS: dquot too small (%d) in %s.", 2699 item->ri_buf[i].i_len, __func__); 2700 goto next; 2701 } 2702 fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr, 2703 -1, 0); 2704 if (fa) { 2705 xfs_alert(mp, 2706 "dquot corrupt at %pS trying to replay into block 0x%llx", 2707 fa, bp->b_bn); 2708 goto next; 2709 } 2710 } 2711 2712 memcpy(xfs_buf_offset(bp, 2713 (uint)bit << XFS_BLF_SHIFT), /* dest */ 2714 item->ri_buf[i].i_addr, /* source */ 2715 nbits<<XFS_BLF_SHIFT); /* length */ 2716 next: 2717 i++; 2718 bit += nbits; 2719 } 2720 2721 /* Shouldn't be any more regions */ 2722 ASSERT(i == item->ri_total); 2723 2724 xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn); 2725 } 2726 2727 /* 2728 * Perform a dquot buffer recovery. 2729 * Simple algorithm: if we have found a QUOTAOFF log item of the same type 2730 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2731 * Else, treat it as a regular buffer and do recovery. 2732 * 2733 * Return false if the buffer was tossed and true if we recovered the buffer to 2734 * indicate to the caller if the buffer needs writing. 2735 */ 2736 STATIC bool 2737 xlog_recover_do_dquot_buffer( 2738 struct xfs_mount *mp, 2739 struct xlog *log, 2740 struct xlog_recover_item *item, 2741 struct xfs_buf *bp, 2742 struct xfs_buf_log_format *buf_f) 2743 { 2744 uint type; 2745 2746 trace_xfs_log_recover_buf_dquot_buf(log, buf_f); 2747 2748 /* 2749 * Filesystems are required to send in quota flags at mount time. 2750 */ 2751 if (!mp->m_qflags) 2752 return false; 2753 2754 type = 0; 2755 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) 2756 type |= XFS_DQ_USER; 2757 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) 2758 type |= XFS_DQ_PROJ; 2759 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) 2760 type |= XFS_DQ_GROUP; 2761 /* 2762 * This type of quotas was turned off, so ignore this buffer 2763 */ 2764 if (log->l_quotaoffs_flag & type) 2765 return false; 2766 2767 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN); 2768 return true; 2769 } 2770 2771 /* 2772 * This routine replays a modification made to a buffer at runtime. 2773 * There are actually two types of buffer, regular and inode, which 2774 * are handled differently. Inode buffers are handled differently 2775 * in that we only recover a specific set of data from them, namely 2776 * the inode di_next_unlinked fields. This is because all other inode 2777 * data is actually logged via inode records and any data we replay 2778 * here which overlaps that may be stale. 2779 * 2780 * When meta-data buffers are freed at run time we log a buffer item 2781 * with the XFS_BLF_CANCEL bit set to indicate that previous copies 2782 * of the buffer in the log should not be replayed at recovery time. 2783 * This is so that if the blocks covered by the buffer are reused for 2784 * file data before we crash we don't end up replaying old, freed 2785 * meta-data into a user's file. 2786 * 2787 * To handle the cancellation of buffer log items, we make two passes 2788 * over the log during recovery. During the first we build a table of 2789 * those buffers which have been cancelled, and during the second we 2790 * only replay those buffers which do not have corresponding cancel 2791 * records in the table. See xlog_recover_buffer_pass[1,2] above 2792 * for more details on the implementation of the table of cancel records. 2793 */ 2794 STATIC int 2795 xlog_recover_buffer_pass2( 2796 struct xlog *log, 2797 struct list_head *buffer_list, 2798 struct xlog_recover_item *item, 2799 xfs_lsn_t current_lsn) 2800 { 2801 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2802 xfs_mount_t *mp = log->l_mp; 2803 xfs_buf_t *bp; 2804 int error; 2805 uint buf_flags; 2806 xfs_lsn_t lsn; 2807 2808 /* 2809 * In this pass we only want to recover all the buffers which have 2810 * not been cancelled and are not cancellation buffers themselves. 2811 */ 2812 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno, 2813 buf_f->blf_len, buf_f->blf_flags)) { 2814 trace_xfs_log_recover_buf_cancel(log, buf_f); 2815 return 0; 2816 } 2817 2818 trace_xfs_log_recover_buf_recover(log, buf_f); 2819 2820 buf_flags = 0; 2821 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) 2822 buf_flags |= XBF_UNMAPPED; 2823 2824 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, 2825 buf_flags, NULL); 2826 if (!bp) 2827 return -ENOMEM; 2828 error = bp->b_error; 2829 if (error) { 2830 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)"); 2831 goto out_release; 2832 } 2833 2834 /* 2835 * Recover the buffer only if we get an LSN from it and it's less than 2836 * the lsn of the transaction we are replaying. 2837 * 2838 * Note that we have to be extremely careful of readahead here. 2839 * Readahead does not attach verfiers to the buffers so if we don't 2840 * actually do any replay after readahead because of the LSN we found 2841 * in the buffer if more recent than that current transaction then we 2842 * need to attach the verifier directly. Failure to do so can lead to 2843 * future recovery actions (e.g. EFI and unlinked list recovery) can 2844 * operate on the buffers and they won't get the verifier attached. This 2845 * can lead to blocks on disk having the correct content but a stale 2846 * CRC. 2847 * 2848 * It is safe to assume these clean buffers are currently up to date. 2849 * If the buffer is dirtied by a later transaction being replayed, then 2850 * the verifier will be reset to match whatever recover turns that 2851 * buffer into. 2852 */ 2853 lsn = xlog_recover_get_buf_lsn(mp, bp); 2854 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 2855 trace_xfs_log_recover_buf_skip(log, buf_f); 2856 xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN); 2857 goto out_release; 2858 } 2859 2860 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 2861 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2862 if (error) 2863 goto out_release; 2864 } else if (buf_f->blf_flags & 2865 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2866 bool dirty; 2867 2868 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2869 if (!dirty) 2870 goto out_release; 2871 } else { 2872 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn); 2873 } 2874 2875 /* 2876 * Perform delayed write on the buffer. Asynchronous writes will be 2877 * slower when taking into account all the buffers to be flushed. 2878 * 2879 * Also make sure that only inode buffers with good sizes stay in 2880 * the buffer cache. The kernel moves inodes in buffers of 1 block 2881 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode 2882 * buffers in the log can be a different size if the log was generated 2883 * by an older kernel using unclustered inode buffers or a newer kernel 2884 * running with a different inode cluster size. Regardless, if the 2885 * the inode buffer size isn't max(blocksize, mp->m_inode_cluster_size) 2886 * for *our* value of mp->m_inode_cluster_size, then we need to keep 2887 * the buffer out of the buffer cache so that the buffer won't 2888 * overlap with future reads of those inodes. 2889 */ 2890 if (XFS_DINODE_MAGIC == 2891 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && 2892 (BBTOB(bp->b_io_length) != max(log->l_mp->m_sb.sb_blocksize, 2893 (uint32_t)log->l_mp->m_inode_cluster_size))) { 2894 xfs_buf_stale(bp); 2895 error = xfs_bwrite(bp); 2896 } else { 2897 ASSERT(bp->b_target->bt_mount == mp); 2898 bp->b_iodone = xlog_recover_iodone; 2899 xfs_buf_delwri_queue(bp, buffer_list); 2900 } 2901 2902 out_release: 2903 xfs_buf_relse(bp); 2904 return error; 2905 } 2906 2907 /* 2908 * Inode fork owner changes 2909 * 2910 * If we have been told that we have to reparent the inode fork, it's because an 2911 * extent swap operation on a CRC enabled filesystem has been done and we are 2912 * replaying it. We need to walk the BMBT of the appropriate fork and change the 2913 * owners of it. 2914 * 2915 * The complexity here is that we don't have an inode context to work with, so 2916 * after we've replayed the inode we need to instantiate one. This is where the 2917 * fun begins. 2918 * 2919 * We are in the middle of log recovery, so we can't run transactions. That 2920 * means we cannot use cache coherent inode instantiation via xfs_iget(), as 2921 * that will result in the corresponding iput() running the inode through 2922 * xfs_inactive(). If we've just replayed an inode core that changes the link 2923 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run 2924 * transactions (bad!). 2925 * 2926 * So, to avoid this, we instantiate an inode directly from the inode core we've 2927 * just recovered. We have the buffer still locked, and all we really need to 2928 * instantiate is the inode core and the forks being modified. We can do this 2929 * manually, then run the inode btree owner change, and then tear down the 2930 * xfs_inode without having to run any transactions at all. 2931 * 2932 * Also, because we don't have a transaction context available here but need to 2933 * gather all the buffers we modify for writeback so we pass the buffer_list 2934 * instead for the operation to use. 2935 */ 2936 2937 STATIC int 2938 xfs_recover_inode_owner_change( 2939 struct xfs_mount *mp, 2940 struct xfs_dinode *dip, 2941 struct xfs_inode_log_format *in_f, 2942 struct list_head *buffer_list) 2943 { 2944 struct xfs_inode *ip; 2945 int error; 2946 2947 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)); 2948 2949 ip = xfs_inode_alloc(mp, in_f->ilf_ino); 2950 if (!ip) 2951 return -ENOMEM; 2952 2953 /* instantiate the inode */ 2954 xfs_inode_from_disk(ip, dip); 2955 ASSERT(ip->i_d.di_version >= 3); 2956 2957 error = xfs_iformat_fork(ip, dip); 2958 if (error) 2959 goto out_free_ip; 2960 2961 if (!xfs_inode_verify_forks(ip)) { 2962 error = -EFSCORRUPTED; 2963 goto out_free_ip; 2964 } 2965 2966 if (in_f->ilf_fields & XFS_ILOG_DOWNER) { 2967 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT); 2968 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK, 2969 ip->i_ino, buffer_list); 2970 if (error) 2971 goto out_free_ip; 2972 } 2973 2974 if (in_f->ilf_fields & XFS_ILOG_AOWNER) { 2975 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT); 2976 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK, 2977 ip->i_ino, buffer_list); 2978 if (error) 2979 goto out_free_ip; 2980 } 2981 2982 out_free_ip: 2983 xfs_inode_free(ip); 2984 return error; 2985 } 2986 2987 STATIC int 2988 xlog_recover_inode_pass2( 2989 struct xlog *log, 2990 struct list_head *buffer_list, 2991 struct xlog_recover_item *item, 2992 xfs_lsn_t current_lsn) 2993 { 2994 struct xfs_inode_log_format *in_f; 2995 xfs_mount_t *mp = log->l_mp; 2996 xfs_buf_t *bp; 2997 xfs_dinode_t *dip; 2998 int len; 2999 char *src; 3000 char *dest; 3001 int error; 3002 int attr_index; 3003 uint fields; 3004 struct xfs_log_dinode *ldip; 3005 uint isize; 3006 int need_free = 0; 3007 3008 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { 3009 in_f = item->ri_buf[0].i_addr; 3010 } else { 3011 in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), KM_SLEEP); 3012 need_free = 1; 3013 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 3014 if (error) 3015 goto error; 3016 } 3017 3018 /* 3019 * Inode buffers can be freed, look out for it, 3020 * and do not replay the inode. 3021 */ 3022 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, 3023 in_f->ilf_len, 0)) { 3024 error = 0; 3025 trace_xfs_log_recover_inode_cancel(log, in_f); 3026 goto error; 3027 } 3028 trace_xfs_log_recover_inode_recover(log, in_f); 3029 3030 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0, 3031 &xfs_inode_buf_ops); 3032 if (!bp) { 3033 error = -ENOMEM; 3034 goto error; 3035 } 3036 error = bp->b_error; 3037 if (error) { 3038 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)"); 3039 goto out_release; 3040 } 3041 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 3042 dip = xfs_buf_offset(bp, in_f->ilf_boffset); 3043 3044 /* 3045 * Make sure the place we're flushing out to really looks 3046 * like an inode! 3047 */ 3048 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) { 3049 xfs_alert(mp, 3050 "%s: Bad inode magic number, dip = "PTR_FMT", dino bp = "PTR_FMT", ino = %Ld", 3051 __func__, dip, bp, in_f->ilf_ino); 3052 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)", 3053 XFS_ERRLEVEL_LOW, mp); 3054 error = -EFSCORRUPTED; 3055 goto out_release; 3056 } 3057 ldip = item->ri_buf[1].i_addr; 3058 if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) { 3059 xfs_alert(mp, 3060 "%s: Bad inode log record, rec ptr "PTR_FMT", ino %Ld", 3061 __func__, item, in_f->ilf_ino); 3062 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)", 3063 XFS_ERRLEVEL_LOW, mp); 3064 error = -EFSCORRUPTED; 3065 goto out_release; 3066 } 3067 3068 /* 3069 * If the inode has an LSN in it, recover the inode only if it's less 3070 * than the lsn of the transaction we are replaying. Note: we still 3071 * need to replay an owner change even though the inode is more recent 3072 * than the transaction as there is no guarantee that all the btree 3073 * blocks are more recent than this transaction, too. 3074 */ 3075 if (dip->di_version >= 3) { 3076 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn); 3077 3078 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 3079 trace_xfs_log_recover_inode_skip(log, in_f); 3080 error = 0; 3081 goto out_owner_change; 3082 } 3083 } 3084 3085 /* 3086 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes 3087 * are transactional and if ordering is necessary we can determine that 3088 * more accurately by the LSN field in the V3 inode core. Don't trust 3089 * the inode versions we might be changing them here - use the 3090 * superblock flag to determine whether we need to look at di_flushiter 3091 * to skip replay when the on disk inode is newer than the log one 3092 */ 3093 if (!xfs_sb_version_hascrc(&mp->m_sb) && 3094 ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) { 3095 /* 3096 * Deal with the wrap case, DI_MAX_FLUSH is less 3097 * than smaller numbers 3098 */ 3099 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && 3100 ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) { 3101 /* do nothing */ 3102 } else { 3103 trace_xfs_log_recover_inode_skip(log, in_f); 3104 error = 0; 3105 goto out_release; 3106 } 3107 } 3108 3109 /* Take the opportunity to reset the flush iteration count */ 3110 ldip->di_flushiter = 0; 3111 3112 if (unlikely(S_ISREG(ldip->di_mode))) { 3113 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) && 3114 (ldip->di_format != XFS_DINODE_FMT_BTREE)) { 3115 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)", 3116 XFS_ERRLEVEL_LOW, mp, ldip, 3117 sizeof(*ldip)); 3118 xfs_alert(mp, 3119 "%s: Bad regular inode log record, rec ptr "PTR_FMT", " 3120 "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld", 3121 __func__, item, dip, bp, in_f->ilf_ino); 3122 error = -EFSCORRUPTED; 3123 goto out_release; 3124 } 3125 } else if (unlikely(S_ISDIR(ldip->di_mode))) { 3126 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) && 3127 (ldip->di_format != XFS_DINODE_FMT_BTREE) && 3128 (ldip->di_format != XFS_DINODE_FMT_LOCAL)) { 3129 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)", 3130 XFS_ERRLEVEL_LOW, mp, ldip, 3131 sizeof(*ldip)); 3132 xfs_alert(mp, 3133 "%s: Bad dir inode log record, rec ptr "PTR_FMT", " 3134 "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld", 3135 __func__, item, dip, bp, in_f->ilf_ino); 3136 error = -EFSCORRUPTED; 3137 goto out_release; 3138 } 3139 } 3140 if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){ 3141 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)", 3142 XFS_ERRLEVEL_LOW, mp, ldip, 3143 sizeof(*ldip)); 3144 xfs_alert(mp, 3145 "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", " 3146 "dino bp "PTR_FMT", ino %Ld, total extents = %d, nblocks = %Ld", 3147 __func__, item, dip, bp, in_f->ilf_ino, 3148 ldip->di_nextents + ldip->di_anextents, 3149 ldip->di_nblocks); 3150 error = -EFSCORRUPTED; 3151 goto out_release; 3152 } 3153 if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) { 3154 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)", 3155 XFS_ERRLEVEL_LOW, mp, ldip, 3156 sizeof(*ldip)); 3157 xfs_alert(mp, 3158 "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", " 3159 "dino bp "PTR_FMT", ino %Ld, forkoff 0x%x", __func__, 3160 item, dip, bp, in_f->ilf_ino, ldip->di_forkoff); 3161 error = -EFSCORRUPTED; 3162 goto out_release; 3163 } 3164 isize = xfs_log_dinode_size(ldip->di_version); 3165 if (unlikely(item->ri_buf[1].i_len > isize)) { 3166 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)", 3167 XFS_ERRLEVEL_LOW, mp, ldip, 3168 sizeof(*ldip)); 3169 xfs_alert(mp, 3170 "%s: Bad inode log record length %d, rec ptr "PTR_FMT, 3171 __func__, item->ri_buf[1].i_len, item); 3172 error = -EFSCORRUPTED; 3173 goto out_release; 3174 } 3175 3176 /* recover the log dinode inode into the on disk inode */ 3177 xfs_log_dinode_to_disk(ldip, dip); 3178 3179 fields = in_f->ilf_fields; 3180 if (fields & XFS_ILOG_DEV) 3181 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); 3182 3183 if (in_f->ilf_size == 2) 3184 goto out_owner_change; 3185 len = item->ri_buf[2].i_len; 3186 src = item->ri_buf[2].i_addr; 3187 ASSERT(in_f->ilf_size <= 4); 3188 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 3189 ASSERT(!(fields & XFS_ILOG_DFORK) || 3190 (len == in_f->ilf_dsize)); 3191 3192 switch (fields & XFS_ILOG_DFORK) { 3193 case XFS_ILOG_DDATA: 3194 case XFS_ILOG_DEXT: 3195 memcpy(XFS_DFORK_DPTR(dip), src, len); 3196 break; 3197 3198 case XFS_ILOG_DBROOT: 3199 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, 3200 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), 3201 XFS_DFORK_DSIZE(dip, mp)); 3202 break; 3203 3204 default: 3205 /* 3206 * There are no data fork flags set. 3207 */ 3208 ASSERT((fields & XFS_ILOG_DFORK) == 0); 3209 break; 3210 } 3211 3212 /* 3213 * If we logged any attribute data, recover it. There may or 3214 * may not have been any other non-core data logged in this 3215 * transaction. 3216 */ 3217 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 3218 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 3219 attr_index = 3; 3220 } else { 3221 attr_index = 2; 3222 } 3223 len = item->ri_buf[attr_index].i_len; 3224 src = item->ri_buf[attr_index].i_addr; 3225 ASSERT(len == in_f->ilf_asize); 3226 3227 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 3228 case XFS_ILOG_ADATA: 3229 case XFS_ILOG_AEXT: 3230 dest = XFS_DFORK_APTR(dip); 3231 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 3232 memcpy(dest, src, len); 3233 break; 3234 3235 case XFS_ILOG_ABROOT: 3236 dest = XFS_DFORK_APTR(dip); 3237 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, 3238 len, (xfs_bmdr_block_t*)dest, 3239 XFS_DFORK_ASIZE(dip, mp)); 3240 break; 3241 3242 default: 3243 xfs_warn(log->l_mp, "%s: Invalid flag", __func__); 3244 ASSERT(0); 3245 error = -EIO; 3246 goto out_release; 3247 } 3248 } 3249 3250 out_owner_change: 3251 /* Recover the swapext owner change unless inode has been deleted */ 3252 if ((in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) && 3253 (dip->di_mode != 0)) 3254 error = xfs_recover_inode_owner_change(mp, dip, in_f, 3255 buffer_list); 3256 /* re-generate the checksum. */ 3257 xfs_dinode_calc_crc(log->l_mp, dip); 3258 3259 ASSERT(bp->b_target->bt_mount == mp); 3260 bp->b_iodone = xlog_recover_iodone; 3261 xfs_buf_delwri_queue(bp, buffer_list); 3262 3263 out_release: 3264 xfs_buf_relse(bp); 3265 error: 3266 if (need_free) 3267 kmem_free(in_f); 3268 return error; 3269 } 3270 3271 /* 3272 * Recover QUOTAOFF records. We simply make a note of it in the xlog 3273 * structure, so that we know not to do any dquot item or dquot buffer recovery, 3274 * of that type. 3275 */ 3276 STATIC int 3277 xlog_recover_quotaoff_pass1( 3278 struct xlog *log, 3279 struct xlog_recover_item *item) 3280 { 3281 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr; 3282 ASSERT(qoff_f); 3283 3284 /* 3285 * The logitem format's flag tells us if this was user quotaoff, 3286 * group/project quotaoff or both. 3287 */ 3288 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 3289 log->l_quotaoffs_flag |= XFS_DQ_USER; 3290 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 3291 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 3292 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 3293 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 3294 3295 return 0; 3296 } 3297 3298 /* 3299 * Recover a dquot record 3300 */ 3301 STATIC int 3302 xlog_recover_dquot_pass2( 3303 struct xlog *log, 3304 struct list_head *buffer_list, 3305 struct xlog_recover_item *item, 3306 xfs_lsn_t current_lsn) 3307 { 3308 xfs_mount_t *mp = log->l_mp; 3309 xfs_buf_t *bp; 3310 struct xfs_disk_dquot *ddq, *recddq; 3311 xfs_failaddr_t fa; 3312 int error; 3313 xfs_dq_logformat_t *dq_f; 3314 uint type; 3315 3316 3317 /* 3318 * Filesystems are required to send in quota flags at mount time. 3319 */ 3320 if (mp->m_qflags == 0) 3321 return 0; 3322 3323 recddq = item->ri_buf[1].i_addr; 3324 if (recddq == NULL) { 3325 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__); 3326 return -EIO; 3327 } 3328 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) { 3329 xfs_alert(log->l_mp, "dquot too small (%d) in %s.", 3330 item->ri_buf[1].i_len, __func__); 3331 return -EIO; 3332 } 3333 3334 /* 3335 * This type of quotas was turned off, so ignore this record. 3336 */ 3337 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 3338 ASSERT(type); 3339 if (log->l_quotaoffs_flag & type) 3340 return 0; 3341 3342 /* 3343 * At this point we know that quota was _not_ turned off. 3344 * Since the mount flags are not indicating to us otherwise, this 3345 * must mean that quota is on, and the dquot needs to be replayed. 3346 * Remember that we may not have fully recovered the superblock yet, 3347 * so we can't do the usual trick of looking at the SB quota bits. 3348 * 3349 * The other possibility, of course, is that the quota subsystem was 3350 * removed since the last mount - ENOSYS. 3351 */ 3352 dq_f = item->ri_buf[0].i_addr; 3353 ASSERT(dq_f); 3354 fa = xfs_dquot_verify(mp, recddq, dq_f->qlf_id, 0); 3355 if (fa) { 3356 xfs_alert(mp, "corrupt dquot ID 0x%x in log at %pS", 3357 dq_f->qlf_id, fa); 3358 return -EIO; 3359 } 3360 ASSERT(dq_f->qlf_len == 1); 3361 3362 /* 3363 * At this point we are assuming that the dquots have been allocated 3364 * and hence the buffer has valid dquots stamped in it. It should, 3365 * therefore, pass verifier validation. If the dquot is bad, then the 3366 * we'll return an error here, so we don't need to specifically check 3367 * the dquot in the buffer after the verifier has run. 3368 */ 3369 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno, 3370 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp, 3371 &xfs_dquot_buf_ops); 3372 if (error) 3373 return error; 3374 3375 ASSERT(bp); 3376 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset); 3377 3378 /* 3379 * If the dquot has an LSN in it, recover the dquot only if it's less 3380 * than the lsn of the transaction we are replaying. 3381 */ 3382 if (xfs_sb_version_hascrc(&mp->m_sb)) { 3383 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq; 3384 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn); 3385 3386 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 3387 goto out_release; 3388 } 3389 } 3390 3391 memcpy(ddq, recddq, item->ri_buf[1].i_len); 3392 if (xfs_sb_version_hascrc(&mp->m_sb)) { 3393 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk), 3394 XFS_DQUOT_CRC_OFF); 3395 } 3396 3397 ASSERT(dq_f->qlf_size == 2); 3398 ASSERT(bp->b_target->bt_mount == mp); 3399 bp->b_iodone = xlog_recover_iodone; 3400 xfs_buf_delwri_queue(bp, buffer_list); 3401 3402 out_release: 3403 xfs_buf_relse(bp); 3404 return 0; 3405 } 3406 3407 /* 3408 * This routine is called to create an in-core extent free intent 3409 * item from the efi format structure which was logged on disk. 3410 * It allocates an in-core efi, copies the extents from the format 3411 * structure into it, and adds the efi to the AIL with the given 3412 * LSN. 3413 */ 3414 STATIC int 3415 xlog_recover_efi_pass2( 3416 struct xlog *log, 3417 struct xlog_recover_item *item, 3418 xfs_lsn_t lsn) 3419 { 3420 int error; 3421 struct xfs_mount *mp = log->l_mp; 3422 struct xfs_efi_log_item *efip; 3423 struct xfs_efi_log_format *efi_formatp; 3424 3425 efi_formatp = item->ri_buf[0].i_addr; 3426 3427 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 3428 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); 3429 if (error) { 3430 xfs_efi_item_free(efip); 3431 return error; 3432 } 3433 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 3434 3435 spin_lock(&log->l_ailp->ail_lock); 3436 /* 3437 * The EFI has two references. One for the EFD and one for EFI to ensure 3438 * it makes it into the AIL. Insert the EFI into the AIL directly and 3439 * drop the EFI reference. Note that xfs_trans_ail_update() drops the 3440 * AIL lock. 3441 */ 3442 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn); 3443 xfs_efi_release(efip); 3444 return 0; 3445 } 3446 3447 3448 /* 3449 * This routine is called when an EFD format structure is found in a committed 3450 * transaction in the log. Its purpose is to cancel the corresponding EFI if it 3451 * was still in the log. To do this it searches the AIL for the EFI with an id 3452 * equal to that in the EFD format structure. If we find it we drop the EFD 3453 * reference, which removes the EFI from the AIL and frees it. 3454 */ 3455 STATIC int 3456 xlog_recover_efd_pass2( 3457 struct xlog *log, 3458 struct xlog_recover_item *item) 3459 { 3460 xfs_efd_log_format_t *efd_formatp; 3461 xfs_efi_log_item_t *efip = NULL; 3462 xfs_log_item_t *lip; 3463 uint64_t efi_id; 3464 struct xfs_ail_cursor cur; 3465 struct xfs_ail *ailp = log->l_ailp; 3466 3467 efd_formatp = item->ri_buf[0].i_addr; 3468 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 3469 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 3470 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 3471 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 3472 efi_id = efd_formatp->efd_efi_id; 3473 3474 /* 3475 * Search for the EFI with the id in the EFD format structure in the 3476 * AIL. 3477 */ 3478 spin_lock(&ailp->ail_lock); 3479 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3480 while (lip != NULL) { 3481 if (lip->li_type == XFS_LI_EFI) { 3482 efip = (xfs_efi_log_item_t *)lip; 3483 if (efip->efi_format.efi_id == efi_id) { 3484 /* 3485 * Drop the EFD reference to the EFI. This 3486 * removes the EFI from the AIL and frees it. 3487 */ 3488 spin_unlock(&ailp->ail_lock); 3489 xfs_efi_release(efip); 3490 spin_lock(&ailp->ail_lock); 3491 break; 3492 } 3493 } 3494 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3495 } 3496 3497 xfs_trans_ail_cursor_done(&cur); 3498 spin_unlock(&ailp->ail_lock); 3499 3500 return 0; 3501 } 3502 3503 /* 3504 * This routine is called to create an in-core extent rmap update 3505 * item from the rui format structure which was logged on disk. 3506 * It allocates an in-core rui, copies the extents from the format 3507 * structure into it, and adds the rui to the AIL with the given 3508 * LSN. 3509 */ 3510 STATIC int 3511 xlog_recover_rui_pass2( 3512 struct xlog *log, 3513 struct xlog_recover_item *item, 3514 xfs_lsn_t lsn) 3515 { 3516 int error; 3517 struct xfs_mount *mp = log->l_mp; 3518 struct xfs_rui_log_item *ruip; 3519 struct xfs_rui_log_format *rui_formatp; 3520 3521 rui_formatp = item->ri_buf[0].i_addr; 3522 3523 ruip = xfs_rui_init(mp, rui_formatp->rui_nextents); 3524 error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format); 3525 if (error) { 3526 xfs_rui_item_free(ruip); 3527 return error; 3528 } 3529 atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents); 3530 3531 spin_lock(&log->l_ailp->ail_lock); 3532 /* 3533 * The RUI has two references. One for the RUD and one for RUI to ensure 3534 * it makes it into the AIL. Insert the RUI into the AIL directly and 3535 * drop the RUI reference. Note that xfs_trans_ail_update() drops the 3536 * AIL lock. 3537 */ 3538 xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn); 3539 xfs_rui_release(ruip); 3540 return 0; 3541 } 3542 3543 3544 /* 3545 * This routine is called when an RUD format structure is found in a committed 3546 * transaction in the log. Its purpose is to cancel the corresponding RUI if it 3547 * was still in the log. To do this it searches the AIL for the RUI with an id 3548 * equal to that in the RUD format structure. If we find it we drop the RUD 3549 * reference, which removes the RUI from the AIL and frees it. 3550 */ 3551 STATIC int 3552 xlog_recover_rud_pass2( 3553 struct xlog *log, 3554 struct xlog_recover_item *item) 3555 { 3556 struct xfs_rud_log_format *rud_formatp; 3557 struct xfs_rui_log_item *ruip = NULL; 3558 struct xfs_log_item *lip; 3559 uint64_t rui_id; 3560 struct xfs_ail_cursor cur; 3561 struct xfs_ail *ailp = log->l_ailp; 3562 3563 rud_formatp = item->ri_buf[0].i_addr; 3564 ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format)); 3565 rui_id = rud_formatp->rud_rui_id; 3566 3567 /* 3568 * Search for the RUI with the id in the RUD format structure in the 3569 * AIL. 3570 */ 3571 spin_lock(&ailp->ail_lock); 3572 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3573 while (lip != NULL) { 3574 if (lip->li_type == XFS_LI_RUI) { 3575 ruip = (struct xfs_rui_log_item *)lip; 3576 if (ruip->rui_format.rui_id == rui_id) { 3577 /* 3578 * Drop the RUD reference to the RUI. This 3579 * removes the RUI from the AIL and frees it. 3580 */ 3581 spin_unlock(&ailp->ail_lock); 3582 xfs_rui_release(ruip); 3583 spin_lock(&ailp->ail_lock); 3584 break; 3585 } 3586 } 3587 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3588 } 3589 3590 xfs_trans_ail_cursor_done(&cur); 3591 spin_unlock(&ailp->ail_lock); 3592 3593 return 0; 3594 } 3595 3596 /* 3597 * Copy an CUI format buffer from the given buf, and into the destination 3598 * CUI format structure. The CUI/CUD items were designed not to need any 3599 * special alignment handling. 3600 */ 3601 static int 3602 xfs_cui_copy_format( 3603 struct xfs_log_iovec *buf, 3604 struct xfs_cui_log_format *dst_cui_fmt) 3605 { 3606 struct xfs_cui_log_format *src_cui_fmt; 3607 uint len; 3608 3609 src_cui_fmt = buf->i_addr; 3610 len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents); 3611 3612 if (buf->i_len == len) { 3613 memcpy(dst_cui_fmt, src_cui_fmt, len); 3614 return 0; 3615 } 3616 return -EFSCORRUPTED; 3617 } 3618 3619 /* 3620 * This routine is called to create an in-core extent refcount update 3621 * item from the cui format structure which was logged on disk. 3622 * It allocates an in-core cui, copies the extents from the format 3623 * structure into it, and adds the cui to the AIL with the given 3624 * LSN. 3625 */ 3626 STATIC int 3627 xlog_recover_cui_pass2( 3628 struct xlog *log, 3629 struct xlog_recover_item *item, 3630 xfs_lsn_t lsn) 3631 { 3632 int error; 3633 struct xfs_mount *mp = log->l_mp; 3634 struct xfs_cui_log_item *cuip; 3635 struct xfs_cui_log_format *cui_formatp; 3636 3637 cui_formatp = item->ri_buf[0].i_addr; 3638 3639 cuip = xfs_cui_init(mp, cui_formatp->cui_nextents); 3640 error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format); 3641 if (error) { 3642 xfs_cui_item_free(cuip); 3643 return error; 3644 } 3645 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents); 3646 3647 spin_lock(&log->l_ailp->ail_lock); 3648 /* 3649 * The CUI has two references. One for the CUD and one for CUI to ensure 3650 * it makes it into the AIL. Insert the CUI into the AIL directly and 3651 * drop the CUI reference. Note that xfs_trans_ail_update() drops the 3652 * AIL lock. 3653 */ 3654 xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn); 3655 xfs_cui_release(cuip); 3656 return 0; 3657 } 3658 3659 3660 /* 3661 * This routine is called when an CUD format structure is found in a committed 3662 * transaction in the log. Its purpose is to cancel the corresponding CUI if it 3663 * was still in the log. To do this it searches the AIL for the CUI with an id 3664 * equal to that in the CUD format structure. If we find it we drop the CUD 3665 * reference, which removes the CUI from the AIL and frees it. 3666 */ 3667 STATIC int 3668 xlog_recover_cud_pass2( 3669 struct xlog *log, 3670 struct xlog_recover_item *item) 3671 { 3672 struct xfs_cud_log_format *cud_formatp; 3673 struct xfs_cui_log_item *cuip = NULL; 3674 struct xfs_log_item *lip; 3675 uint64_t cui_id; 3676 struct xfs_ail_cursor cur; 3677 struct xfs_ail *ailp = log->l_ailp; 3678 3679 cud_formatp = item->ri_buf[0].i_addr; 3680 if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) 3681 return -EFSCORRUPTED; 3682 cui_id = cud_formatp->cud_cui_id; 3683 3684 /* 3685 * Search for the CUI with the id in the CUD format structure in the 3686 * AIL. 3687 */ 3688 spin_lock(&ailp->ail_lock); 3689 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3690 while (lip != NULL) { 3691 if (lip->li_type == XFS_LI_CUI) { 3692 cuip = (struct xfs_cui_log_item *)lip; 3693 if (cuip->cui_format.cui_id == cui_id) { 3694 /* 3695 * Drop the CUD reference to the CUI. This 3696 * removes the CUI from the AIL and frees it. 3697 */ 3698 spin_unlock(&ailp->ail_lock); 3699 xfs_cui_release(cuip); 3700 spin_lock(&ailp->ail_lock); 3701 break; 3702 } 3703 } 3704 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3705 } 3706 3707 xfs_trans_ail_cursor_done(&cur); 3708 spin_unlock(&ailp->ail_lock); 3709 3710 return 0; 3711 } 3712 3713 /* 3714 * Copy an BUI format buffer from the given buf, and into the destination 3715 * BUI format structure. The BUI/BUD items were designed not to need any 3716 * special alignment handling. 3717 */ 3718 static int 3719 xfs_bui_copy_format( 3720 struct xfs_log_iovec *buf, 3721 struct xfs_bui_log_format *dst_bui_fmt) 3722 { 3723 struct xfs_bui_log_format *src_bui_fmt; 3724 uint len; 3725 3726 src_bui_fmt = buf->i_addr; 3727 len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents); 3728 3729 if (buf->i_len == len) { 3730 memcpy(dst_bui_fmt, src_bui_fmt, len); 3731 return 0; 3732 } 3733 return -EFSCORRUPTED; 3734 } 3735 3736 /* 3737 * This routine is called to create an in-core extent bmap update 3738 * item from the bui format structure which was logged on disk. 3739 * It allocates an in-core bui, copies the extents from the format 3740 * structure into it, and adds the bui to the AIL with the given 3741 * LSN. 3742 */ 3743 STATIC int 3744 xlog_recover_bui_pass2( 3745 struct xlog *log, 3746 struct xlog_recover_item *item, 3747 xfs_lsn_t lsn) 3748 { 3749 int error; 3750 struct xfs_mount *mp = log->l_mp; 3751 struct xfs_bui_log_item *buip; 3752 struct xfs_bui_log_format *bui_formatp; 3753 3754 bui_formatp = item->ri_buf[0].i_addr; 3755 3756 if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS) 3757 return -EFSCORRUPTED; 3758 buip = xfs_bui_init(mp); 3759 error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format); 3760 if (error) { 3761 xfs_bui_item_free(buip); 3762 return error; 3763 } 3764 atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents); 3765 3766 spin_lock(&log->l_ailp->ail_lock); 3767 /* 3768 * The RUI has two references. One for the RUD and one for RUI to ensure 3769 * it makes it into the AIL. Insert the RUI into the AIL directly and 3770 * drop the RUI reference. Note that xfs_trans_ail_update() drops the 3771 * AIL lock. 3772 */ 3773 xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn); 3774 xfs_bui_release(buip); 3775 return 0; 3776 } 3777 3778 3779 /* 3780 * This routine is called when an BUD format structure is found in a committed 3781 * transaction in the log. Its purpose is to cancel the corresponding BUI if it 3782 * was still in the log. To do this it searches the AIL for the BUI with an id 3783 * equal to that in the BUD format structure. If we find it we drop the BUD 3784 * reference, which removes the BUI from the AIL and frees it. 3785 */ 3786 STATIC int 3787 xlog_recover_bud_pass2( 3788 struct xlog *log, 3789 struct xlog_recover_item *item) 3790 { 3791 struct xfs_bud_log_format *bud_formatp; 3792 struct xfs_bui_log_item *buip = NULL; 3793 struct xfs_log_item *lip; 3794 uint64_t bui_id; 3795 struct xfs_ail_cursor cur; 3796 struct xfs_ail *ailp = log->l_ailp; 3797 3798 bud_formatp = item->ri_buf[0].i_addr; 3799 if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format)) 3800 return -EFSCORRUPTED; 3801 bui_id = bud_formatp->bud_bui_id; 3802 3803 /* 3804 * Search for the BUI with the id in the BUD format structure in the 3805 * AIL. 3806 */ 3807 spin_lock(&ailp->ail_lock); 3808 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3809 while (lip != NULL) { 3810 if (lip->li_type == XFS_LI_BUI) { 3811 buip = (struct xfs_bui_log_item *)lip; 3812 if (buip->bui_format.bui_id == bui_id) { 3813 /* 3814 * Drop the BUD reference to the BUI. This 3815 * removes the BUI from the AIL and frees it. 3816 */ 3817 spin_unlock(&ailp->ail_lock); 3818 xfs_bui_release(buip); 3819 spin_lock(&ailp->ail_lock); 3820 break; 3821 } 3822 } 3823 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3824 } 3825 3826 xfs_trans_ail_cursor_done(&cur); 3827 spin_unlock(&ailp->ail_lock); 3828 3829 return 0; 3830 } 3831 3832 /* 3833 * This routine is called when an inode create format structure is found in a 3834 * committed transaction in the log. It's purpose is to initialise the inodes 3835 * being allocated on disk. This requires us to get inode cluster buffers that 3836 * match the range to be initialised, stamped with inode templates and written 3837 * by delayed write so that subsequent modifications will hit the cached buffer 3838 * and only need writing out at the end of recovery. 3839 */ 3840 STATIC int 3841 xlog_recover_do_icreate_pass2( 3842 struct xlog *log, 3843 struct list_head *buffer_list, 3844 xlog_recover_item_t *item) 3845 { 3846 struct xfs_mount *mp = log->l_mp; 3847 struct xfs_icreate_log *icl; 3848 xfs_agnumber_t agno; 3849 xfs_agblock_t agbno; 3850 unsigned int count; 3851 unsigned int isize; 3852 xfs_agblock_t length; 3853 int blks_per_cluster; 3854 int bb_per_cluster; 3855 int cancel_count; 3856 int nbufs; 3857 int i; 3858 3859 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr; 3860 if (icl->icl_type != XFS_LI_ICREATE) { 3861 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type"); 3862 return -EINVAL; 3863 } 3864 3865 if (icl->icl_size != 1) { 3866 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size"); 3867 return -EINVAL; 3868 } 3869 3870 agno = be32_to_cpu(icl->icl_ag); 3871 if (agno >= mp->m_sb.sb_agcount) { 3872 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno"); 3873 return -EINVAL; 3874 } 3875 agbno = be32_to_cpu(icl->icl_agbno); 3876 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) { 3877 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno"); 3878 return -EINVAL; 3879 } 3880 isize = be32_to_cpu(icl->icl_isize); 3881 if (isize != mp->m_sb.sb_inodesize) { 3882 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize"); 3883 return -EINVAL; 3884 } 3885 count = be32_to_cpu(icl->icl_count); 3886 if (!count) { 3887 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count"); 3888 return -EINVAL; 3889 } 3890 length = be32_to_cpu(icl->icl_length); 3891 if (!length || length >= mp->m_sb.sb_agblocks) { 3892 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length"); 3893 return -EINVAL; 3894 } 3895 3896 /* 3897 * The inode chunk is either full or sparse and we only support 3898 * m_ialloc_min_blks sized sparse allocations at this time. 3899 */ 3900 if (length != mp->m_ialloc_blks && 3901 length != mp->m_ialloc_min_blks) { 3902 xfs_warn(log->l_mp, 3903 "%s: unsupported chunk length", __FUNCTION__); 3904 return -EINVAL; 3905 } 3906 3907 /* verify inode count is consistent with extent length */ 3908 if ((count >> mp->m_sb.sb_inopblog) != length) { 3909 xfs_warn(log->l_mp, 3910 "%s: inconsistent inode count and chunk length", 3911 __FUNCTION__); 3912 return -EINVAL; 3913 } 3914 3915 /* 3916 * The icreate transaction can cover multiple cluster buffers and these 3917 * buffers could have been freed and reused. Check the individual 3918 * buffers for cancellation so we don't overwrite anything written after 3919 * a cancellation. 3920 */ 3921 blks_per_cluster = xfs_icluster_size_fsb(mp); 3922 bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster); 3923 nbufs = length / blks_per_cluster; 3924 for (i = 0, cancel_count = 0; i < nbufs; i++) { 3925 xfs_daddr_t daddr; 3926 3927 daddr = XFS_AGB_TO_DADDR(mp, agno, 3928 agbno + i * blks_per_cluster); 3929 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0)) 3930 cancel_count++; 3931 } 3932 3933 /* 3934 * We currently only use icreate for a single allocation at a time. This 3935 * means we should expect either all or none of the buffers to be 3936 * cancelled. Be conservative and skip replay if at least one buffer is 3937 * cancelled, but warn the user that something is awry if the buffers 3938 * are not consistent. 3939 * 3940 * XXX: This must be refined to only skip cancelled clusters once we use 3941 * icreate for multiple chunk allocations. 3942 */ 3943 ASSERT(!cancel_count || cancel_count == nbufs); 3944 if (cancel_count) { 3945 if (cancel_count != nbufs) 3946 xfs_warn(mp, 3947 "WARNING: partial inode chunk cancellation, skipped icreate."); 3948 trace_xfs_log_recover_icreate_cancel(log, icl); 3949 return 0; 3950 } 3951 3952 trace_xfs_log_recover_icreate_recover(log, icl); 3953 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno, 3954 length, be32_to_cpu(icl->icl_gen)); 3955 } 3956 3957 STATIC void 3958 xlog_recover_buffer_ra_pass2( 3959 struct xlog *log, 3960 struct xlog_recover_item *item) 3961 { 3962 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr; 3963 struct xfs_mount *mp = log->l_mp; 3964 3965 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno, 3966 buf_f->blf_len, buf_f->blf_flags)) { 3967 return; 3968 } 3969 3970 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno, 3971 buf_f->blf_len, NULL); 3972 } 3973 3974 STATIC void 3975 xlog_recover_inode_ra_pass2( 3976 struct xlog *log, 3977 struct xlog_recover_item *item) 3978 { 3979 struct xfs_inode_log_format ilf_buf; 3980 struct xfs_inode_log_format *ilfp; 3981 struct xfs_mount *mp = log->l_mp; 3982 int error; 3983 3984 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { 3985 ilfp = item->ri_buf[0].i_addr; 3986 } else { 3987 ilfp = &ilf_buf; 3988 memset(ilfp, 0, sizeof(*ilfp)); 3989 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp); 3990 if (error) 3991 return; 3992 } 3993 3994 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0)) 3995 return; 3996 3997 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno, 3998 ilfp->ilf_len, &xfs_inode_buf_ra_ops); 3999 } 4000 4001 STATIC void 4002 xlog_recover_dquot_ra_pass2( 4003 struct xlog *log, 4004 struct xlog_recover_item *item) 4005 { 4006 struct xfs_mount *mp = log->l_mp; 4007 struct xfs_disk_dquot *recddq; 4008 struct xfs_dq_logformat *dq_f; 4009 uint type; 4010 int len; 4011 4012 4013 if (mp->m_qflags == 0) 4014 return; 4015 4016 recddq = item->ri_buf[1].i_addr; 4017 if (recddq == NULL) 4018 return; 4019 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot)) 4020 return; 4021 4022 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 4023 ASSERT(type); 4024 if (log->l_quotaoffs_flag & type) 4025 return; 4026 4027 dq_f = item->ri_buf[0].i_addr; 4028 ASSERT(dq_f); 4029 ASSERT(dq_f->qlf_len == 1); 4030 4031 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len); 4032 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0)) 4033 return; 4034 4035 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len, 4036 &xfs_dquot_buf_ra_ops); 4037 } 4038 4039 STATIC void 4040 xlog_recover_ra_pass2( 4041 struct xlog *log, 4042 struct xlog_recover_item *item) 4043 { 4044 switch (ITEM_TYPE(item)) { 4045 case XFS_LI_BUF: 4046 xlog_recover_buffer_ra_pass2(log, item); 4047 break; 4048 case XFS_LI_INODE: 4049 xlog_recover_inode_ra_pass2(log, item); 4050 break; 4051 case XFS_LI_DQUOT: 4052 xlog_recover_dquot_ra_pass2(log, item); 4053 break; 4054 case XFS_LI_EFI: 4055 case XFS_LI_EFD: 4056 case XFS_LI_QUOTAOFF: 4057 case XFS_LI_RUI: 4058 case XFS_LI_RUD: 4059 case XFS_LI_CUI: 4060 case XFS_LI_CUD: 4061 case XFS_LI_BUI: 4062 case XFS_LI_BUD: 4063 default: 4064 break; 4065 } 4066 } 4067 4068 STATIC int 4069 xlog_recover_commit_pass1( 4070 struct xlog *log, 4071 struct xlog_recover *trans, 4072 struct xlog_recover_item *item) 4073 { 4074 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1); 4075 4076 switch (ITEM_TYPE(item)) { 4077 case XFS_LI_BUF: 4078 return xlog_recover_buffer_pass1(log, item); 4079 case XFS_LI_QUOTAOFF: 4080 return xlog_recover_quotaoff_pass1(log, item); 4081 case XFS_LI_INODE: 4082 case XFS_LI_EFI: 4083 case XFS_LI_EFD: 4084 case XFS_LI_DQUOT: 4085 case XFS_LI_ICREATE: 4086 case XFS_LI_RUI: 4087 case XFS_LI_RUD: 4088 case XFS_LI_CUI: 4089 case XFS_LI_CUD: 4090 case XFS_LI_BUI: 4091 case XFS_LI_BUD: 4092 /* nothing to do in pass 1 */ 4093 return 0; 4094 default: 4095 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 4096 __func__, ITEM_TYPE(item)); 4097 ASSERT(0); 4098 return -EIO; 4099 } 4100 } 4101 4102 STATIC int 4103 xlog_recover_commit_pass2( 4104 struct xlog *log, 4105 struct xlog_recover *trans, 4106 struct list_head *buffer_list, 4107 struct xlog_recover_item *item) 4108 { 4109 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2); 4110 4111 switch (ITEM_TYPE(item)) { 4112 case XFS_LI_BUF: 4113 return xlog_recover_buffer_pass2(log, buffer_list, item, 4114 trans->r_lsn); 4115 case XFS_LI_INODE: 4116 return xlog_recover_inode_pass2(log, buffer_list, item, 4117 trans->r_lsn); 4118 case XFS_LI_EFI: 4119 return xlog_recover_efi_pass2(log, item, trans->r_lsn); 4120 case XFS_LI_EFD: 4121 return xlog_recover_efd_pass2(log, item); 4122 case XFS_LI_RUI: 4123 return xlog_recover_rui_pass2(log, item, trans->r_lsn); 4124 case XFS_LI_RUD: 4125 return xlog_recover_rud_pass2(log, item); 4126 case XFS_LI_CUI: 4127 return xlog_recover_cui_pass2(log, item, trans->r_lsn); 4128 case XFS_LI_CUD: 4129 return xlog_recover_cud_pass2(log, item); 4130 case XFS_LI_BUI: 4131 return xlog_recover_bui_pass2(log, item, trans->r_lsn); 4132 case XFS_LI_BUD: 4133 return xlog_recover_bud_pass2(log, item); 4134 case XFS_LI_DQUOT: 4135 return xlog_recover_dquot_pass2(log, buffer_list, item, 4136 trans->r_lsn); 4137 case XFS_LI_ICREATE: 4138 return xlog_recover_do_icreate_pass2(log, buffer_list, item); 4139 case XFS_LI_QUOTAOFF: 4140 /* nothing to do in pass2 */ 4141 return 0; 4142 default: 4143 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 4144 __func__, ITEM_TYPE(item)); 4145 ASSERT(0); 4146 return -EIO; 4147 } 4148 } 4149 4150 STATIC int 4151 xlog_recover_items_pass2( 4152 struct xlog *log, 4153 struct xlog_recover *trans, 4154 struct list_head *buffer_list, 4155 struct list_head *item_list) 4156 { 4157 struct xlog_recover_item *item; 4158 int error = 0; 4159 4160 list_for_each_entry(item, item_list, ri_list) { 4161 error = xlog_recover_commit_pass2(log, trans, 4162 buffer_list, item); 4163 if (error) 4164 return error; 4165 } 4166 4167 return error; 4168 } 4169 4170 /* 4171 * Perform the transaction. 4172 * 4173 * If the transaction modifies a buffer or inode, do it now. Otherwise, 4174 * EFIs and EFDs get queued up by adding entries into the AIL for them. 4175 */ 4176 STATIC int 4177 xlog_recover_commit_trans( 4178 struct xlog *log, 4179 struct xlog_recover *trans, 4180 int pass, 4181 struct list_head *buffer_list) 4182 { 4183 int error = 0; 4184 int items_queued = 0; 4185 struct xlog_recover_item *item; 4186 struct xlog_recover_item *next; 4187 LIST_HEAD (ra_list); 4188 LIST_HEAD (done_list); 4189 4190 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100 4191 4192 hlist_del_init(&trans->r_list); 4193 4194 error = xlog_recover_reorder_trans(log, trans, pass); 4195 if (error) 4196 return error; 4197 4198 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) { 4199 switch (pass) { 4200 case XLOG_RECOVER_PASS1: 4201 error = xlog_recover_commit_pass1(log, trans, item); 4202 break; 4203 case XLOG_RECOVER_PASS2: 4204 xlog_recover_ra_pass2(log, item); 4205 list_move_tail(&item->ri_list, &ra_list); 4206 items_queued++; 4207 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) { 4208 error = xlog_recover_items_pass2(log, trans, 4209 buffer_list, &ra_list); 4210 list_splice_tail_init(&ra_list, &done_list); 4211 items_queued = 0; 4212 } 4213 4214 break; 4215 default: 4216 ASSERT(0); 4217 } 4218 4219 if (error) 4220 goto out; 4221 } 4222 4223 out: 4224 if (!list_empty(&ra_list)) { 4225 if (!error) 4226 error = xlog_recover_items_pass2(log, trans, 4227 buffer_list, &ra_list); 4228 list_splice_tail_init(&ra_list, &done_list); 4229 } 4230 4231 if (!list_empty(&done_list)) 4232 list_splice_init(&done_list, &trans->r_itemq); 4233 4234 return error; 4235 } 4236 4237 STATIC void 4238 xlog_recover_add_item( 4239 struct list_head *head) 4240 { 4241 xlog_recover_item_t *item; 4242 4243 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 4244 INIT_LIST_HEAD(&item->ri_list); 4245 list_add_tail(&item->ri_list, head); 4246 } 4247 4248 STATIC int 4249 xlog_recover_add_to_cont_trans( 4250 struct xlog *log, 4251 struct xlog_recover *trans, 4252 char *dp, 4253 int len) 4254 { 4255 xlog_recover_item_t *item; 4256 char *ptr, *old_ptr; 4257 int old_len; 4258 4259 /* 4260 * If the transaction is empty, the header was split across this and the 4261 * previous record. Copy the rest of the header. 4262 */ 4263 if (list_empty(&trans->r_itemq)) { 4264 ASSERT(len <= sizeof(struct xfs_trans_header)); 4265 if (len > sizeof(struct xfs_trans_header)) { 4266 xfs_warn(log->l_mp, "%s: bad header length", __func__); 4267 return -EIO; 4268 } 4269 4270 xlog_recover_add_item(&trans->r_itemq); 4271 ptr = (char *)&trans->r_theader + 4272 sizeof(struct xfs_trans_header) - len; 4273 memcpy(ptr, dp, len); 4274 return 0; 4275 } 4276 4277 /* take the tail entry */ 4278 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 4279 4280 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 4281 old_len = item->ri_buf[item->ri_cnt-1].i_len; 4282 4283 ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP); 4284 memcpy(&ptr[old_len], dp, len); 4285 item->ri_buf[item->ri_cnt-1].i_len += len; 4286 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 4287 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 4288 return 0; 4289 } 4290 4291 /* 4292 * The next region to add is the start of a new region. It could be 4293 * a whole region or it could be the first part of a new region. Because 4294 * of this, the assumption here is that the type and size fields of all 4295 * format structures fit into the first 32 bits of the structure. 4296 * 4297 * This works because all regions must be 32 bit aligned. Therefore, we 4298 * either have both fields or we have neither field. In the case we have 4299 * neither field, the data part of the region is zero length. We only have 4300 * a log_op_header and can throw away the header since a new one will appear 4301 * later. If we have at least 4 bytes, then we can determine how many regions 4302 * will appear in the current log item. 4303 */ 4304 STATIC int 4305 xlog_recover_add_to_trans( 4306 struct xlog *log, 4307 struct xlog_recover *trans, 4308 char *dp, 4309 int len) 4310 { 4311 struct xfs_inode_log_format *in_f; /* any will do */ 4312 xlog_recover_item_t *item; 4313 char *ptr; 4314 4315 if (!len) 4316 return 0; 4317 if (list_empty(&trans->r_itemq)) { 4318 /* we need to catch log corruptions here */ 4319 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 4320 xfs_warn(log->l_mp, "%s: bad header magic number", 4321 __func__); 4322 ASSERT(0); 4323 return -EIO; 4324 } 4325 4326 if (len > sizeof(struct xfs_trans_header)) { 4327 xfs_warn(log->l_mp, "%s: bad header length", __func__); 4328 ASSERT(0); 4329 return -EIO; 4330 } 4331 4332 /* 4333 * The transaction header can be arbitrarily split across op 4334 * records. If we don't have the whole thing here, copy what we 4335 * do have and handle the rest in the next record. 4336 */ 4337 if (len == sizeof(struct xfs_trans_header)) 4338 xlog_recover_add_item(&trans->r_itemq); 4339 memcpy(&trans->r_theader, dp, len); 4340 return 0; 4341 } 4342 4343 ptr = kmem_alloc(len, KM_SLEEP); 4344 memcpy(ptr, dp, len); 4345 in_f = (struct xfs_inode_log_format *)ptr; 4346 4347 /* take the tail entry */ 4348 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 4349 if (item->ri_total != 0 && 4350 item->ri_total == item->ri_cnt) { 4351 /* tail item is in use, get a new one */ 4352 xlog_recover_add_item(&trans->r_itemq); 4353 item = list_entry(trans->r_itemq.prev, 4354 xlog_recover_item_t, ri_list); 4355 } 4356 4357 if (item->ri_total == 0) { /* first region to be added */ 4358 if (in_f->ilf_size == 0 || 4359 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 4360 xfs_warn(log->l_mp, 4361 "bad number of regions (%d) in inode log format", 4362 in_f->ilf_size); 4363 ASSERT(0); 4364 kmem_free(ptr); 4365 return -EIO; 4366 } 4367 4368 item->ri_total = in_f->ilf_size; 4369 item->ri_buf = 4370 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 4371 KM_SLEEP); 4372 } 4373 ASSERT(item->ri_total > item->ri_cnt); 4374 /* Description region is ri_buf[0] */ 4375 item->ri_buf[item->ri_cnt].i_addr = ptr; 4376 item->ri_buf[item->ri_cnt].i_len = len; 4377 item->ri_cnt++; 4378 trace_xfs_log_recover_item_add(log, trans, item, 0); 4379 return 0; 4380 } 4381 4382 /* 4383 * Free up any resources allocated by the transaction 4384 * 4385 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 4386 */ 4387 STATIC void 4388 xlog_recover_free_trans( 4389 struct xlog_recover *trans) 4390 { 4391 xlog_recover_item_t *item, *n; 4392 int i; 4393 4394 hlist_del_init(&trans->r_list); 4395 4396 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 4397 /* Free the regions in the item. */ 4398 list_del(&item->ri_list); 4399 for (i = 0; i < item->ri_cnt; i++) 4400 kmem_free(item->ri_buf[i].i_addr); 4401 /* Free the item itself */ 4402 kmem_free(item->ri_buf); 4403 kmem_free(item); 4404 } 4405 /* Free the transaction recover structure */ 4406 kmem_free(trans); 4407 } 4408 4409 /* 4410 * On error or completion, trans is freed. 4411 */ 4412 STATIC int 4413 xlog_recovery_process_trans( 4414 struct xlog *log, 4415 struct xlog_recover *trans, 4416 char *dp, 4417 unsigned int len, 4418 unsigned int flags, 4419 int pass, 4420 struct list_head *buffer_list) 4421 { 4422 int error = 0; 4423 bool freeit = false; 4424 4425 /* mask off ophdr transaction container flags */ 4426 flags &= ~XLOG_END_TRANS; 4427 if (flags & XLOG_WAS_CONT_TRANS) 4428 flags &= ~XLOG_CONTINUE_TRANS; 4429 4430 /* 4431 * Callees must not free the trans structure. We'll decide if we need to 4432 * free it or not based on the operation being done and it's result. 4433 */ 4434 switch (flags) { 4435 /* expected flag values */ 4436 case 0: 4437 case XLOG_CONTINUE_TRANS: 4438 error = xlog_recover_add_to_trans(log, trans, dp, len); 4439 break; 4440 case XLOG_WAS_CONT_TRANS: 4441 error = xlog_recover_add_to_cont_trans(log, trans, dp, len); 4442 break; 4443 case XLOG_COMMIT_TRANS: 4444 error = xlog_recover_commit_trans(log, trans, pass, 4445 buffer_list); 4446 /* success or fail, we are now done with this transaction. */ 4447 freeit = true; 4448 break; 4449 4450 /* unexpected flag values */ 4451 case XLOG_UNMOUNT_TRANS: 4452 /* just skip trans */ 4453 xfs_warn(log->l_mp, "%s: Unmount LR", __func__); 4454 freeit = true; 4455 break; 4456 case XLOG_START_TRANS: 4457 default: 4458 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags); 4459 ASSERT(0); 4460 error = -EIO; 4461 break; 4462 } 4463 if (error || freeit) 4464 xlog_recover_free_trans(trans); 4465 return error; 4466 } 4467 4468 /* 4469 * Lookup the transaction recovery structure associated with the ID in the 4470 * current ophdr. If the transaction doesn't exist and the start flag is set in 4471 * the ophdr, then allocate a new transaction for future ID matches to find. 4472 * Either way, return what we found during the lookup - an existing transaction 4473 * or nothing. 4474 */ 4475 STATIC struct xlog_recover * 4476 xlog_recover_ophdr_to_trans( 4477 struct hlist_head rhash[], 4478 struct xlog_rec_header *rhead, 4479 struct xlog_op_header *ohead) 4480 { 4481 struct xlog_recover *trans; 4482 xlog_tid_t tid; 4483 struct hlist_head *rhp; 4484 4485 tid = be32_to_cpu(ohead->oh_tid); 4486 rhp = &rhash[XLOG_RHASH(tid)]; 4487 hlist_for_each_entry(trans, rhp, r_list) { 4488 if (trans->r_log_tid == tid) 4489 return trans; 4490 } 4491 4492 /* 4493 * skip over non-start transaction headers - we could be 4494 * processing slack space before the next transaction starts 4495 */ 4496 if (!(ohead->oh_flags & XLOG_START_TRANS)) 4497 return NULL; 4498 4499 ASSERT(be32_to_cpu(ohead->oh_len) == 0); 4500 4501 /* 4502 * This is a new transaction so allocate a new recovery container to 4503 * hold the recovery ops that will follow. 4504 */ 4505 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP); 4506 trans->r_log_tid = tid; 4507 trans->r_lsn = be64_to_cpu(rhead->h_lsn); 4508 INIT_LIST_HEAD(&trans->r_itemq); 4509 INIT_HLIST_NODE(&trans->r_list); 4510 hlist_add_head(&trans->r_list, rhp); 4511 4512 /* 4513 * Nothing more to do for this ophdr. Items to be added to this new 4514 * transaction will be in subsequent ophdr containers. 4515 */ 4516 return NULL; 4517 } 4518 4519 STATIC int 4520 xlog_recover_process_ophdr( 4521 struct xlog *log, 4522 struct hlist_head rhash[], 4523 struct xlog_rec_header *rhead, 4524 struct xlog_op_header *ohead, 4525 char *dp, 4526 char *end, 4527 int pass, 4528 struct list_head *buffer_list) 4529 { 4530 struct xlog_recover *trans; 4531 unsigned int len; 4532 int error; 4533 4534 /* Do we understand who wrote this op? */ 4535 if (ohead->oh_clientid != XFS_TRANSACTION && 4536 ohead->oh_clientid != XFS_LOG) { 4537 xfs_warn(log->l_mp, "%s: bad clientid 0x%x", 4538 __func__, ohead->oh_clientid); 4539 ASSERT(0); 4540 return -EIO; 4541 } 4542 4543 /* 4544 * Check the ophdr contains all the data it is supposed to contain. 4545 */ 4546 len = be32_to_cpu(ohead->oh_len); 4547 if (dp + len > end) { 4548 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len); 4549 WARN_ON(1); 4550 return -EIO; 4551 } 4552 4553 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead); 4554 if (!trans) { 4555 /* nothing to do, so skip over this ophdr */ 4556 return 0; 4557 } 4558 4559 /* 4560 * The recovered buffer queue is drained only once we know that all 4561 * recovery items for the current LSN have been processed. This is 4562 * required because: 4563 * 4564 * - Buffer write submission updates the metadata LSN of the buffer. 4565 * - Log recovery skips items with a metadata LSN >= the current LSN of 4566 * the recovery item. 4567 * - Separate recovery items against the same metadata buffer can share 4568 * a current LSN. I.e., consider that the LSN of a recovery item is 4569 * defined as the starting LSN of the first record in which its 4570 * transaction appears, that a record can hold multiple transactions, 4571 * and/or that a transaction can span multiple records. 4572 * 4573 * In other words, we are allowed to submit a buffer from log recovery 4574 * once per current LSN. Otherwise, we may incorrectly skip recovery 4575 * items and cause corruption. 4576 * 4577 * We don't know up front whether buffers are updated multiple times per 4578 * LSN. Therefore, track the current LSN of each commit log record as it 4579 * is processed and drain the queue when it changes. Use commit records 4580 * because they are ordered correctly by the logging code. 4581 */ 4582 if (log->l_recovery_lsn != trans->r_lsn && 4583 ohead->oh_flags & XLOG_COMMIT_TRANS) { 4584 error = xfs_buf_delwri_submit(buffer_list); 4585 if (error) 4586 return error; 4587 log->l_recovery_lsn = trans->r_lsn; 4588 } 4589 4590 return xlog_recovery_process_trans(log, trans, dp, len, 4591 ohead->oh_flags, pass, buffer_list); 4592 } 4593 4594 /* 4595 * There are two valid states of the r_state field. 0 indicates that the 4596 * transaction structure is in a normal state. We have either seen the 4597 * start of the transaction or the last operation we added was not a partial 4598 * operation. If the last operation we added to the transaction was a 4599 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 4600 * 4601 * NOTE: skip LRs with 0 data length. 4602 */ 4603 STATIC int 4604 xlog_recover_process_data( 4605 struct xlog *log, 4606 struct hlist_head rhash[], 4607 struct xlog_rec_header *rhead, 4608 char *dp, 4609 int pass, 4610 struct list_head *buffer_list) 4611 { 4612 struct xlog_op_header *ohead; 4613 char *end; 4614 int num_logops; 4615 int error; 4616 4617 end = dp + be32_to_cpu(rhead->h_len); 4618 num_logops = be32_to_cpu(rhead->h_num_logops); 4619 4620 /* check the log format matches our own - else we can't recover */ 4621 if (xlog_header_check_recover(log->l_mp, rhead)) 4622 return -EIO; 4623 4624 trace_xfs_log_recover_record(log, rhead, pass); 4625 while ((dp < end) && num_logops) { 4626 4627 ohead = (struct xlog_op_header *)dp; 4628 dp += sizeof(*ohead); 4629 ASSERT(dp <= end); 4630 4631 /* errors will abort recovery */ 4632 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead, 4633 dp, end, pass, buffer_list); 4634 if (error) 4635 return error; 4636 4637 dp += be32_to_cpu(ohead->oh_len); 4638 num_logops--; 4639 } 4640 return 0; 4641 } 4642 4643 /* Recover the EFI if necessary. */ 4644 STATIC int 4645 xlog_recover_process_efi( 4646 struct xfs_mount *mp, 4647 struct xfs_ail *ailp, 4648 struct xfs_log_item *lip) 4649 { 4650 struct xfs_efi_log_item *efip; 4651 int error; 4652 4653 /* 4654 * Skip EFIs that we've already processed. 4655 */ 4656 efip = container_of(lip, struct xfs_efi_log_item, efi_item); 4657 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) 4658 return 0; 4659 4660 spin_unlock(&ailp->ail_lock); 4661 error = xfs_efi_recover(mp, efip); 4662 spin_lock(&ailp->ail_lock); 4663 4664 return error; 4665 } 4666 4667 /* Release the EFI since we're cancelling everything. */ 4668 STATIC void 4669 xlog_recover_cancel_efi( 4670 struct xfs_mount *mp, 4671 struct xfs_ail *ailp, 4672 struct xfs_log_item *lip) 4673 { 4674 struct xfs_efi_log_item *efip; 4675 4676 efip = container_of(lip, struct xfs_efi_log_item, efi_item); 4677 4678 spin_unlock(&ailp->ail_lock); 4679 xfs_efi_release(efip); 4680 spin_lock(&ailp->ail_lock); 4681 } 4682 4683 /* Recover the RUI if necessary. */ 4684 STATIC int 4685 xlog_recover_process_rui( 4686 struct xfs_mount *mp, 4687 struct xfs_ail *ailp, 4688 struct xfs_log_item *lip) 4689 { 4690 struct xfs_rui_log_item *ruip; 4691 int error; 4692 4693 /* 4694 * Skip RUIs that we've already processed. 4695 */ 4696 ruip = container_of(lip, struct xfs_rui_log_item, rui_item); 4697 if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags)) 4698 return 0; 4699 4700 spin_unlock(&ailp->ail_lock); 4701 error = xfs_rui_recover(mp, ruip); 4702 spin_lock(&ailp->ail_lock); 4703 4704 return error; 4705 } 4706 4707 /* Release the RUI since we're cancelling everything. */ 4708 STATIC void 4709 xlog_recover_cancel_rui( 4710 struct xfs_mount *mp, 4711 struct xfs_ail *ailp, 4712 struct xfs_log_item *lip) 4713 { 4714 struct xfs_rui_log_item *ruip; 4715 4716 ruip = container_of(lip, struct xfs_rui_log_item, rui_item); 4717 4718 spin_unlock(&ailp->ail_lock); 4719 xfs_rui_release(ruip); 4720 spin_lock(&ailp->ail_lock); 4721 } 4722 4723 /* Recover the CUI if necessary. */ 4724 STATIC int 4725 xlog_recover_process_cui( 4726 struct xfs_trans *parent_tp, 4727 struct xfs_ail *ailp, 4728 struct xfs_log_item *lip) 4729 { 4730 struct xfs_cui_log_item *cuip; 4731 int error; 4732 4733 /* 4734 * Skip CUIs that we've already processed. 4735 */ 4736 cuip = container_of(lip, struct xfs_cui_log_item, cui_item); 4737 if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags)) 4738 return 0; 4739 4740 spin_unlock(&ailp->ail_lock); 4741 error = xfs_cui_recover(parent_tp, cuip); 4742 spin_lock(&ailp->ail_lock); 4743 4744 return error; 4745 } 4746 4747 /* Release the CUI since we're cancelling everything. */ 4748 STATIC void 4749 xlog_recover_cancel_cui( 4750 struct xfs_mount *mp, 4751 struct xfs_ail *ailp, 4752 struct xfs_log_item *lip) 4753 { 4754 struct xfs_cui_log_item *cuip; 4755 4756 cuip = container_of(lip, struct xfs_cui_log_item, cui_item); 4757 4758 spin_unlock(&ailp->ail_lock); 4759 xfs_cui_release(cuip); 4760 spin_lock(&ailp->ail_lock); 4761 } 4762 4763 /* Recover the BUI if necessary. */ 4764 STATIC int 4765 xlog_recover_process_bui( 4766 struct xfs_trans *parent_tp, 4767 struct xfs_ail *ailp, 4768 struct xfs_log_item *lip) 4769 { 4770 struct xfs_bui_log_item *buip; 4771 int error; 4772 4773 /* 4774 * Skip BUIs that we've already processed. 4775 */ 4776 buip = container_of(lip, struct xfs_bui_log_item, bui_item); 4777 if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags)) 4778 return 0; 4779 4780 spin_unlock(&ailp->ail_lock); 4781 error = xfs_bui_recover(parent_tp, buip); 4782 spin_lock(&ailp->ail_lock); 4783 4784 return error; 4785 } 4786 4787 /* Release the BUI since we're cancelling everything. */ 4788 STATIC void 4789 xlog_recover_cancel_bui( 4790 struct xfs_mount *mp, 4791 struct xfs_ail *ailp, 4792 struct xfs_log_item *lip) 4793 { 4794 struct xfs_bui_log_item *buip; 4795 4796 buip = container_of(lip, struct xfs_bui_log_item, bui_item); 4797 4798 spin_unlock(&ailp->ail_lock); 4799 xfs_bui_release(buip); 4800 spin_lock(&ailp->ail_lock); 4801 } 4802 4803 /* Is this log item a deferred action intent? */ 4804 static inline bool xlog_item_is_intent(struct xfs_log_item *lip) 4805 { 4806 switch (lip->li_type) { 4807 case XFS_LI_EFI: 4808 case XFS_LI_RUI: 4809 case XFS_LI_CUI: 4810 case XFS_LI_BUI: 4811 return true; 4812 default: 4813 return false; 4814 } 4815 } 4816 4817 /* Take all the collected deferred ops and finish them in order. */ 4818 static int 4819 xlog_finish_defer_ops( 4820 struct xfs_trans *parent_tp) 4821 { 4822 struct xfs_mount *mp = parent_tp->t_mountp; 4823 struct xfs_trans *tp; 4824 int64_t freeblks; 4825 uint resblks; 4826 int error; 4827 4828 /* 4829 * We're finishing the defer_ops that accumulated as a result of 4830 * recovering unfinished intent items during log recovery. We 4831 * reserve an itruncate transaction because it is the largest 4832 * permanent transaction type. Since we're the only user of the fs 4833 * right now, take 93% (15/16) of the available free blocks. Use 4834 * weird math to avoid a 64-bit division. 4835 */ 4836 freeblks = percpu_counter_sum(&mp->m_fdblocks); 4837 if (freeblks <= 0) 4838 return -ENOSPC; 4839 resblks = min_t(int64_t, UINT_MAX, freeblks); 4840 resblks = (resblks * 15) >> 4; 4841 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks, 4842 0, XFS_TRANS_RESERVE, &tp); 4843 if (error) 4844 return error; 4845 /* transfer all collected dfops to this transaction */ 4846 xfs_defer_move(tp, parent_tp); 4847 4848 return xfs_trans_commit(tp); 4849 } 4850 4851 /* 4852 * When this is called, all of the log intent items which did not have 4853 * corresponding log done items should be in the AIL. What we do now 4854 * is update the data structures associated with each one. 4855 * 4856 * Since we process the log intent items in normal transactions, they 4857 * will be removed at some point after the commit. This prevents us 4858 * from just walking down the list processing each one. We'll use a 4859 * flag in the intent item to skip those that we've already processed 4860 * and use the AIL iteration mechanism's generation count to try to 4861 * speed this up at least a bit. 4862 * 4863 * When we start, we know that the intents are the only things in the 4864 * AIL. As we process them, however, other items are added to the 4865 * AIL. 4866 */ 4867 STATIC int 4868 xlog_recover_process_intents( 4869 struct xlog *log) 4870 { 4871 struct xfs_trans *parent_tp; 4872 struct xfs_ail_cursor cur; 4873 struct xfs_log_item *lip; 4874 struct xfs_ail *ailp; 4875 int error; 4876 #if defined(DEBUG) || defined(XFS_WARN) 4877 xfs_lsn_t last_lsn; 4878 #endif 4879 4880 /* 4881 * The intent recovery handlers commit transactions to complete recovery 4882 * for individual intents, but any new deferred operations that are 4883 * queued during that process are held off until the very end. The 4884 * purpose of this transaction is to serve as a container for deferred 4885 * operations. Each intent recovery handler must transfer dfops here 4886 * before its local transaction commits, and we'll finish the entire 4887 * list below. 4888 */ 4889 error = xfs_trans_alloc_empty(log->l_mp, &parent_tp); 4890 if (error) 4891 return error; 4892 4893 ailp = log->l_ailp; 4894 spin_lock(&ailp->ail_lock); 4895 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 4896 #if defined(DEBUG) || defined(XFS_WARN) 4897 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block); 4898 #endif 4899 while (lip != NULL) { 4900 /* 4901 * We're done when we see something other than an intent. 4902 * There should be no intents left in the AIL now. 4903 */ 4904 if (!xlog_item_is_intent(lip)) { 4905 #ifdef DEBUG 4906 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 4907 ASSERT(!xlog_item_is_intent(lip)); 4908 #endif 4909 break; 4910 } 4911 4912 /* 4913 * We should never see a redo item with a LSN higher than 4914 * the last transaction we found in the log at the start 4915 * of recovery. 4916 */ 4917 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0); 4918 4919 /* 4920 * NOTE: If your intent processing routine can create more 4921 * deferred ops, you /must/ attach them to the dfops in this 4922 * routine or else those subsequent intents will get 4923 * replayed in the wrong order! 4924 */ 4925 switch (lip->li_type) { 4926 case XFS_LI_EFI: 4927 error = xlog_recover_process_efi(log->l_mp, ailp, lip); 4928 break; 4929 case XFS_LI_RUI: 4930 error = xlog_recover_process_rui(log->l_mp, ailp, lip); 4931 break; 4932 case XFS_LI_CUI: 4933 error = xlog_recover_process_cui(parent_tp, ailp, lip); 4934 break; 4935 case XFS_LI_BUI: 4936 error = xlog_recover_process_bui(parent_tp, ailp, lip); 4937 break; 4938 } 4939 if (error) 4940 goto out; 4941 lip = xfs_trans_ail_cursor_next(ailp, &cur); 4942 } 4943 out: 4944 xfs_trans_ail_cursor_done(&cur); 4945 spin_unlock(&ailp->ail_lock); 4946 if (!error) 4947 error = xlog_finish_defer_ops(parent_tp); 4948 xfs_trans_cancel(parent_tp); 4949 4950 return error; 4951 } 4952 4953 /* 4954 * A cancel occurs when the mount has failed and we're bailing out. 4955 * Release all pending log intent items so they don't pin the AIL. 4956 */ 4957 STATIC int 4958 xlog_recover_cancel_intents( 4959 struct xlog *log) 4960 { 4961 struct xfs_log_item *lip; 4962 int error = 0; 4963 struct xfs_ail_cursor cur; 4964 struct xfs_ail *ailp; 4965 4966 ailp = log->l_ailp; 4967 spin_lock(&ailp->ail_lock); 4968 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 4969 while (lip != NULL) { 4970 /* 4971 * We're done when we see something other than an intent. 4972 * There should be no intents left in the AIL now. 4973 */ 4974 if (!xlog_item_is_intent(lip)) { 4975 #ifdef DEBUG 4976 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 4977 ASSERT(!xlog_item_is_intent(lip)); 4978 #endif 4979 break; 4980 } 4981 4982 switch (lip->li_type) { 4983 case XFS_LI_EFI: 4984 xlog_recover_cancel_efi(log->l_mp, ailp, lip); 4985 break; 4986 case XFS_LI_RUI: 4987 xlog_recover_cancel_rui(log->l_mp, ailp, lip); 4988 break; 4989 case XFS_LI_CUI: 4990 xlog_recover_cancel_cui(log->l_mp, ailp, lip); 4991 break; 4992 case XFS_LI_BUI: 4993 xlog_recover_cancel_bui(log->l_mp, ailp, lip); 4994 break; 4995 } 4996 4997 lip = xfs_trans_ail_cursor_next(ailp, &cur); 4998 } 4999 5000 xfs_trans_ail_cursor_done(&cur); 5001 spin_unlock(&ailp->ail_lock); 5002 return error; 5003 } 5004 5005 /* 5006 * This routine performs a transaction to null out a bad inode pointer 5007 * in an agi unlinked inode hash bucket. 5008 */ 5009 STATIC void 5010 xlog_recover_clear_agi_bucket( 5011 xfs_mount_t *mp, 5012 xfs_agnumber_t agno, 5013 int bucket) 5014 { 5015 xfs_trans_t *tp; 5016 xfs_agi_t *agi; 5017 xfs_buf_t *agibp; 5018 int offset; 5019 int error; 5020 5021 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp); 5022 if (error) 5023 goto out_error; 5024 5025 error = xfs_read_agi(mp, tp, agno, &agibp); 5026 if (error) 5027 goto out_abort; 5028 5029 agi = XFS_BUF_TO_AGI(agibp); 5030 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 5031 offset = offsetof(xfs_agi_t, agi_unlinked) + 5032 (sizeof(xfs_agino_t) * bucket); 5033 xfs_trans_log_buf(tp, agibp, offset, 5034 (offset + sizeof(xfs_agino_t) - 1)); 5035 5036 error = xfs_trans_commit(tp); 5037 if (error) 5038 goto out_error; 5039 return; 5040 5041 out_abort: 5042 xfs_trans_cancel(tp); 5043 out_error: 5044 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); 5045 return; 5046 } 5047 5048 STATIC xfs_agino_t 5049 xlog_recover_process_one_iunlink( 5050 struct xfs_mount *mp, 5051 xfs_agnumber_t agno, 5052 xfs_agino_t agino, 5053 int bucket) 5054 { 5055 struct xfs_buf *ibp; 5056 struct xfs_dinode *dip; 5057 struct xfs_inode *ip; 5058 xfs_ino_t ino; 5059 int error; 5060 5061 ino = XFS_AGINO_TO_INO(mp, agno, agino); 5062 error = xfs_iget(mp, NULL, ino, 0, 0, &ip); 5063 if (error) 5064 goto fail; 5065 5066 /* 5067 * Get the on disk inode to find the next inode in the bucket. 5068 */ 5069 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0); 5070 if (error) 5071 goto fail_iput; 5072 5073 xfs_iflags_clear(ip, XFS_IRECOVERY); 5074 ASSERT(VFS_I(ip)->i_nlink == 0); 5075 ASSERT(VFS_I(ip)->i_mode != 0); 5076 5077 /* setup for the next pass */ 5078 agino = be32_to_cpu(dip->di_next_unlinked); 5079 xfs_buf_relse(ibp); 5080 5081 /* 5082 * Prevent any DMAPI event from being sent when the reference on 5083 * the inode is dropped. 5084 */ 5085 ip->i_d.di_dmevmask = 0; 5086 5087 xfs_irele(ip); 5088 return agino; 5089 5090 fail_iput: 5091 xfs_irele(ip); 5092 fail: 5093 /* 5094 * We can't read in the inode this bucket points to, or this inode 5095 * is messed up. Just ditch this bucket of inodes. We will lose 5096 * some inodes and space, but at least we won't hang. 5097 * 5098 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 5099 * clear the inode pointer in the bucket. 5100 */ 5101 xlog_recover_clear_agi_bucket(mp, agno, bucket); 5102 return NULLAGINO; 5103 } 5104 5105 /* 5106 * xlog_iunlink_recover 5107 * 5108 * This is called during recovery to process any inodes which 5109 * we unlinked but not freed when the system crashed. These 5110 * inodes will be on the lists in the AGI blocks. What we do 5111 * here is scan all the AGIs and fully truncate and free any 5112 * inodes found on the lists. Each inode is removed from the 5113 * lists when it has been fully truncated and is freed. The 5114 * freeing of the inode and its removal from the list must be 5115 * atomic. 5116 */ 5117 STATIC void 5118 xlog_recover_process_iunlinks( 5119 struct xlog *log) 5120 { 5121 xfs_mount_t *mp; 5122 xfs_agnumber_t agno; 5123 xfs_agi_t *agi; 5124 xfs_buf_t *agibp; 5125 xfs_agino_t agino; 5126 int bucket; 5127 int error; 5128 5129 mp = log->l_mp; 5130 5131 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 5132 /* 5133 * Find the agi for this ag. 5134 */ 5135 error = xfs_read_agi(mp, NULL, agno, &agibp); 5136 if (error) { 5137 /* 5138 * AGI is b0rked. Don't process it. 5139 * 5140 * We should probably mark the filesystem as corrupt 5141 * after we've recovered all the ag's we can.... 5142 */ 5143 continue; 5144 } 5145 /* 5146 * Unlock the buffer so that it can be acquired in the normal 5147 * course of the transaction to truncate and free each inode. 5148 * Because we are not racing with anyone else here for the AGI 5149 * buffer, we don't even need to hold it locked to read the 5150 * initial unlinked bucket entries out of the buffer. We keep 5151 * buffer reference though, so that it stays pinned in memory 5152 * while we need the buffer. 5153 */ 5154 agi = XFS_BUF_TO_AGI(agibp); 5155 xfs_buf_unlock(agibp); 5156 5157 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 5158 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 5159 while (agino != NULLAGINO) { 5160 agino = xlog_recover_process_one_iunlink(mp, 5161 agno, agino, bucket); 5162 } 5163 } 5164 xfs_buf_rele(agibp); 5165 } 5166 } 5167 5168 STATIC int 5169 xlog_unpack_data( 5170 struct xlog_rec_header *rhead, 5171 char *dp, 5172 struct xlog *log) 5173 { 5174 int i, j, k; 5175 5176 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 5177 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 5178 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 5179 dp += BBSIZE; 5180 } 5181 5182 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 5183 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 5184 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 5185 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 5186 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 5187 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 5188 dp += BBSIZE; 5189 } 5190 } 5191 5192 return 0; 5193 } 5194 5195 /* 5196 * CRC check, unpack and process a log record. 5197 */ 5198 STATIC int 5199 xlog_recover_process( 5200 struct xlog *log, 5201 struct hlist_head rhash[], 5202 struct xlog_rec_header *rhead, 5203 char *dp, 5204 int pass, 5205 struct list_head *buffer_list) 5206 { 5207 int error; 5208 __le32 old_crc = rhead->h_crc; 5209 __le32 crc; 5210 5211 5212 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); 5213 5214 /* 5215 * Nothing else to do if this is a CRC verification pass. Just return 5216 * if this a record with a non-zero crc. Unfortunately, mkfs always 5217 * sets old_crc to 0 so we must consider this valid even on v5 supers. 5218 * Otherwise, return EFSBADCRC on failure so the callers up the stack 5219 * know precisely what failed. 5220 */ 5221 if (pass == XLOG_RECOVER_CRCPASS) { 5222 if (old_crc && crc != old_crc) 5223 return -EFSBADCRC; 5224 return 0; 5225 } 5226 5227 /* 5228 * We're in the normal recovery path. Issue a warning if and only if the 5229 * CRC in the header is non-zero. This is an advisory warning and the 5230 * zero CRC check prevents warnings from being emitted when upgrading 5231 * the kernel from one that does not add CRCs by default. 5232 */ 5233 if (crc != old_crc) { 5234 if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) { 5235 xfs_alert(log->l_mp, 5236 "log record CRC mismatch: found 0x%x, expected 0x%x.", 5237 le32_to_cpu(old_crc), 5238 le32_to_cpu(crc)); 5239 xfs_hex_dump(dp, 32); 5240 } 5241 5242 /* 5243 * If the filesystem is CRC enabled, this mismatch becomes a 5244 * fatal log corruption failure. 5245 */ 5246 if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) 5247 return -EFSCORRUPTED; 5248 } 5249 5250 error = xlog_unpack_data(rhead, dp, log); 5251 if (error) 5252 return error; 5253 5254 return xlog_recover_process_data(log, rhash, rhead, dp, pass, 5255 buffer_list); 5256 } 5257 5258 STATIC int 5259 xlog_valid_rec_header( 5260 struct xlog *log, 5261 struct xlog_rec_header *rhead, 5262 xfs_daddr_t blkno) 5263 { 5264 int hlen; 5265 5266 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) { 5267 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 5268 XFS_ERRLEVEL_LOW, log->l_mp); 5269 return -EFSCORRUPTED; 5270 } 5271 if (unlikely( 5272 (!rhead->h_version || 5273 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { 5274 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", 5275 __func__, be32_to_cpu(rhead->h_version)); 5276 return -EIO; 5277 } 5278 5279 /* LR body must have data or it wouldn't have been written */ 5280 hlen = be32_to_cpu(rhead->h_len); 5281 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 5282 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 5283 XFS_ERRLEVEL_LOW, log->l_mp); 5284 return -EFSCORRUPTED; 5285 } 5286 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 5287 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 5288 XFS_ERRLEVEL_LOW, log->l_mp); 5289 return -EFSCORRUPTED; 5290 } 5291 return 0; 5292 } 5293 5294 /* 5295 * Read the log from tail to head and process the log records found. 5296 * Handle the two cases where the tail and head are in the same cycle 5297 * and where the active portion of the log wraps around the end of 5298 * the physical log separately. The pass parameter is passed through 5299 * to the routines called to process the data and is not looked at 5300 * here. 5301 */ 5302 STATIC int 5303 xlog_do_recovery_pass( 5304 struct xlog *log, 5305 xfs_daddr_t head_blk, 5306 xfs_daddr_t tail_blk, 5307 int pass, 5308 xfs_daddr_t *first_bad) /* out: first bad log rec */ 5309 { 5310 xlog_rec_header_t *rhead; 5311 xfs_daddr_t blk_no, rblk_no; 5312 xfs_daddr_t rhead_blk; 5313 char *offset; 5314 xfs_buf_t *hbp, *dbp; 5315 int error = 0, h_size, h_len; 5316 int error2 = 0; 5317 int bblks, split_bblks; 5318 int hblks, split_hblks, wrapped_hblks; 5319 int i; 5320 struct hlist_head rhash[XLOG_RHASH_SIZE]; 5321 LIST_HEAD (buffer_list); 5322 5323 ASSERT(head_blk != tail_blk); 5324 blk_no = rhead_blk = tail_blk; 5325 5326 for (i = 0; i < XLOG_RHASH_SIZE; i++) 5327 INIT_HLIST_HEAD(&rhash[i]); 5328 5329 /* 5330 * Read the header of the tail block and get the iclog buffer size from 5331 * h_size. Use this to tell how many sectors make up the log header. 5332 */ 5333 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 5334 /* 5335 * When using variable length iclogs, read first sector of 5336 * iclog header and extract the header size from it. Get a 5337 * new hbp that is the correct size. 5338 */ 5339 hbp = xlog_get_bp(log, 1); 5340 if (!hbp) 5341 return -ENOMEM; 5342 5343 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 5344 if (error) 5345 goto bread_err1; 5346 5347 rhead = (xlog_rec_header_t *)offset; 5348 error = xlog_valid_rec_header(log, rhead, tail_blk); 5349 if (error) 5350 goto bread_err1; 5351 5352 /* 5353 * xfsprogs has a bug where record length is based on lsunit but 5354 * h_size (iclog size) is hardcoded to 32k. Now that we 5355 * unconditionally CRC verify the unmount record, this means the 5356 * log buffer can be too small for the record and cause an 5357 * overrun. 5358 * 5359 * Detect this condition here. Use lsunit for the buffer size as 5360 * long as this looks like the mkfs case. Otherwise, return an 5361 * error to avoid a buffer overrun. 5362 */ 5363 h_size = be32_to_cpu(rhead->h_size); 5364 h_len = be32_to_cpu(rhead->h_len); 5365 if (h_len > h_size) { 5366 if (h_len <= log->l_mp->m_logbsize && 5367 be32_to_cpu(rhead->h_num_logops) == 1) { 5368 xfs_warn(log->l_mp, 5369 "invalid iclog size (%d bytes), using lsunit (%d bytes)", 5370 h_size, log->l_mp->m_logbsize); 5371 h_size = log->l_mp->m_logbsize; 5372 } else 5373 return -EFSCORRUPTED; 5374 } 5375 5376 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 5377 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 5378 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 5379 if (h_size % XLOG_HEADER_CYCLE_SIZE) 5380 hblks++; 5381 xlog_put_bp(hbp); 5382 hbp = xlog_get_bp(log, hblks); 5383 } else { 5384 hblks = 1; 5385 } 5386 } else { 5387 ASSERT(log->l_sectBBsize == 1); 5388 hblks = 1; 5389 hbp = xlog_get_bp(log, 1); 5390 h_size = XLOG_BIG_RECORD_BSIZE; 5391 } 5392 5393 if (!hbp) 5394 return -ENOMEM; 5395 dbp = xlog_get_bp(log, BTOBB(h_size)); 5396 if (!dbp) { 5397 xlog_put_bp(hbp); 5398 return -ENOMEM; 5399 } 5400 5401 memset(rhash, 0, sizeof(rhash)); 5402 if (tail_blk > head_blk) { 5403 /* 5404 * Perform recovery around the end of the physical log. 5405 * When the head is not on the same cycle number as the tail, 5406 * we can't do a sequential recovery. 5407 */ 5408 while (blk_no < log->l_logBBsize) { 5409 /* 5410 * Check for header wrapping around physical end-of-log 5411 */ 5412 offset = hbp->b_addr; 5413 split_hblks = 0; 5414 wrapped_hblks = 0; 5415 if (blk_no + hblks <= log->l_logBBsize) { 5416 /* Read header in one read */ 5417 error = xlog_bread(log, blk_no, hblks, hbp, 5418 &offset); 5419 if (error) 5420 goto bread_err2; 5421 } else { 5422 /* This LR is split across physical log end */ 5423 if (blk_no != log->l_logBBsize) { 5424 /* some data before physical log end */ 5425 ASSERT(blk_no <= INT_MAX); 5426 split_hblks = log->l_logBBsize - (int)blk_no; 5427 ASSERT(split_hblks > 0); 5428 error = xlog_bread(log, blk_no, 5429 split_hblks, hbp, 5430 &offset); 5431 if (error) 5432 goto bread_err2; 5433 } 5434 5435 /* 5436 * Note: this black magic still works with 5437 * large sector sizes (non-512) only because: 5438 * - we increased the buffer size originally 5439 * by 1 sector giving us enough extra space 5440 * for the second read; 5441 * - the log start is guaranteed to be sector 5442 * aligned; 5443 * - we read the log end (LR header start) 5444 * _first_, then the log start (LR header end) 5445 * - order is important. 5446 */ 5447 wrapped_hblks = hblks - split_hblks; 5448 error = xlog_bread_offset(log, 0, 5449 wrapped_hblks, hbp, 5450 offset + BBTOB(split_hblks)); 5451 if (error) 5452 goto bread_err2; 5453 } 5454 rhead = (xlog_rec_header_t *)offset; 5455 error = xlog_valid_rec_header(log, rhead, 5456 split_hblks ? blk_no : 0); 5457 if (error) 5458 goto bread_err2; 5459 5460 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 5461 blk_no += hblks; 5462 5463 /* 5464 * Read the log record data in multiple reads if it 5465 * wraps around the end of the log. Note that if the 5466 * header already wrapped, blk_no could point past the 5467 * end of the log. The record data is contiguous in 5468 * that case. 5469 */ 5470 if (blk_no + bblks <= log->l_logBBsize || 5471 blk_no >= log->l_logBBsize) { 5472 rblk_no = xlog_wrap_logbno(log, blk_no); 5473 error = xlog_bread(log, rblk_no, bblks, dbp, 5474 &offset); 5475 if (error) 5476 goto bread_err2; 5477 } else { 5478 /* This log record is split across the 5479 * physical end of log */ 5480 offset = dbp->b_addr; 5481 split_bblks = 0; 5482 if (blk_no != log->l_logBBsize) { 5483 /* some data is before the physical 5484 * end of log */ 5485 ASSERT(!wrapped_hblks); 5486 ASSERT(blk_no <= INT_MAX); 5487 split_bblks = 5488 log->l_logBBsize - (int)blk_no; 5489 ASSERT(split_bblks > 0); 5490 error = xlog_bread(log, blk_no, 5491 split_bblks, dbp, 5492 &offset); 5493 if (error) 5494 goto bread_err2; 5495 } 5496 5497 /* 5498 * Note: this black magic still works with 5499 * large sector sizes (non-512) only because: 5500 * - we increased the buffer size originally 5501 * by 1 sector giving us enough extra space 5502 * for the second read; 5503 * - the log start is guaranteed to be sector 5504 * aligned; 5505 * - we read the log end (LR header start) 5506 * _first_, then the log start (LR header end) 5507 * - order is important. 5508 */ 5509 error = xlog_bread_offset(log, 0, 5510 bblks - split_bblks, dbp, 5511 offset + BBTOB(split_bblks)); 5512 if (error) 5513 goto bread_err2; 5514 } 5515 5516 error = xlog_recover_process(log, rhash, rhead, offset, 5517 pass, &buffer_list); 5518 if (error) 5519 goto bread_err2; 5520 5521 blk_no += bblks; 5522 rhead_blk = blk_no; 5523 } 5524 5525 ASSERT(blk_no >= log->l_logBBsize); 5526 blk_no -= log->l_logBBsize; 5527 rhead_blk = blk_no; 5528 } 5529 5530 /* read first part of physical log */ 5531 while (blk_no < head_blk) { 5532 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 5533 if (error) 5534 goto bread_err2; 5535 5536 rhead = (xlog_rec_header_t *)offset; 5537 error = xlog_valid_rec_header(log, rhead, blk_no); 5538 if (error) 5539 goto bread_err2; 5540 5541 /* blocks in data section */ 5542 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 5543 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 5544 &offset); 5545 if (error) 5546 goto bread_err2; 5547 5548 error = xlog_recover_process(log, rhash, rhead, offset, pass, 5549 &buffer_list); 5550 if (error) 5551 goto bread_err2; 5552 5553 blk_no += bblks + hblks; 5554 rhead_blk = blk_no; 5555 } 5556 5557 bread_err2: 5558 xlog_put_bp(dbp); 5559 bread_err1: 5560 xlog_put_bp(hbp); 5561 5562 /* 5563 * Submit buffers that have been added from the last record processed, 5564 * regardless of error status. 5565 */ 5566 if (!list_empty(&buffer_list)) 5567 error2 = xfs_buf_delwri_submit(&buffer_list); 5568 5569 if (error && first_bad) 5570 *first_bad = rhead_blk; 5571 5572 /* 5573 * Transactions are freed at commit time but transactions without commit 5574 * records on disk are never committed. Free any that may be left in the 5575 * hash table. 5576 */ 5577 for (i = 0; i < XLOG_RHASH_SIZE; i++) { 5578 struct hlist_node *tmp; 5579 struct xlog_recover *trans; 5580 5581 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list) 5582 xlog_recover_free_trans(trans); 5583 } 5584 5585 return error ? error : error2; 5586 } 5587 5588 /* 5589 * Do the recovery of the log. We actually do this in two phases. 5590 * The two passes are necessary in order to implement the function 5591 * of cancelling a record written into the log. The first pass 5592 * determines those things which have been cancelled, and the 5593 * second pass replays log items normally except for those which 5594 * have been cancelled. The handling of the replay and cancellations 5595 * takes place in the log item type specific routines. 5596 * 5597 * The table of items which have cancel records in the log is allocated 5598 * and freed at this level, since only here do we know when all of 5599 * the log recovery has been completed. 5600 */ 5601 STATIC int 5602 xlog_do_log_recovery( 5603 struct xlog *log, 5604 xfs_daddr_t head_blk, 5605 xfs_daddr_t tail_blk) 5606 { 5607 int error, i; 5608 5609 ASSERT(head_blk != tail_blk); 5610 5611 /* 5612 * First do a pass to find all of the cancelled buf log items. 5613 * Store them in the buf_cancel_table for use in the second pass. 5614 */ 5615 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * 5616 sizeof(struct list_head), 5617 KM_SLEEP); 5618 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 5619 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); 5620 5621 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 5622 XLOG_RECOVER_PASS1, NULL); 5623 if (error != 0) { 5624 kmem_free(log->l_buf_cancel_table); 5625 log->l_buf_cancel_table = NULL; 5626 return error; 5627 } 5628 /* 5629 * Then do a second pass to actually recover the items in the log. 5630 * When it is complete free the table of buf cancel items. 5631 */ 5632 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 5633 XLOG_RECOVER_PASS2, NULL); 5634 #ifdef DEBUG 5635 if (!error) { 5636 int i; 5637 5638 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 5639 ASSERT(list_empty(&log->l_buf_cancel_table[i])); 5640 } 5641 #endif /* DEBUG */ 5642 5643 kmem_free(log->l_buf_cancel_table); 5644 log->l_buf_cancel_table = NULL; 5645 5646 return error; 5647 } 5648 5649 /* 5650 * Do the actual recovery 5651 */ 5652 STATIC int 5653 xlog_do_recover( 5654 struct xlog *log, 5655 xfs_daddr_t head_blk, 5656 xfs_daddr_t tail_blk) 5657 { 5658 struct xfs_mount *mp = log->l_mp; 5659 int error; 5660 xfs_buf_t *bp; 5661 xfs_sb_t *sbp; 5662 5663 trace_xfs_log_recover(log, head_blk, tail_blk); 5664 5665 /* 5666 * First replay the images in the log. 5667 */ 5668 error = xlog_do_log_recovery(log, head_blk, tail_blk); 5669 if (error) 5670 return error; 5671 5672 /* 5673 * If IO errors happened during recovery, bail out. 5674 */ 5675 if (XFS_FORCED_SHUTDOWN(mp)) { 5676 return -EIO; 5677 } 5678 5679 /* 5680 * We now update the tail_lsn since much of the recovery has completed 5681 * and there may be space available to use. If there were no extent 5682 * or iunlinks, we can free up the entire log and set the tail_lsn to 5683 * be the last_sync_lsn. This was set in xlog_find_tail to be the 5684 * lsn of the last known good LR on disk. If there are extent frees 5685 * or iunlinks they will have some entries in the AIL; so we look at 5686 * the AIL to determine how to set the tail_lsn. 5687 */ 5688 xlog_assign_tail_lsn(mp); 5689 5690 /* 5691 * Now that we've finished replaying all buffer and inode 5692 * updates, re-read in the superblock and reverify it. 5693 */ 5694 bp = xfs_getsb(mp, 0); 5695 bp->b_flags &= ~(XBF_DONE | XBF_ASYNC); 5696 ASSERT(!(bp->b_flags & XBF_WRITE)); 5697 bp->b_flags |= XBF_READ; 5698 bp->b_ops = &xfs_sb_buf_ops; 5699 5700 error = xfs_buf_submit(bp); 5701 if (error) { 5702 if (!XFS_FORCED_SHUTDOWN(mp)) { 5703 xfs_buf_ioerror_alert(bp, __func__); 5704 ASSERT(0); 5705 } 5706 xfs_buf_relse(bp); 5707 return error; 5708 } 5709 5710 /* Convert superblock from on-disk format */ 5711 sbp = &mp->m_sb; 5712 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 5713 xfs_buf_relse(bp); 5714 5715 /* re-initialise in-core superblock and geometry structures */ 5716 xfs_reinit_percpu_counters(mp); 5717 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 5718 if (error) { 5719 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error); 5720 return error; 5721 } 5722 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp); 5723 5724 xlog_recover_check_summary(log); 5725 5726 /* Normal transactions can now occur */ 5727 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 5728 return 0; 5729 } 5730 5731 /* 5732 * Perform recovery and re-initialize some log variables in xlog_find_tail. 5733 * 5734 * Return error or zero. 5735 */ 5736 int 5737 xlog_recover( 5738 struct xlog *log) 5739 { 5740 xfs_daddr_t head_blk, tail_blk; 5741 int error; 5742 5743 /* find the tail of the log */ 5744 error = xlog_find_tail(log, &head_blk, &tail_blk); 5745 if (error) 5746 return error; 5747 5748 /* 5749 * The superblock was read before the log was available and thus the LSN 5750 * could not be verified. Check the superblock LSN against the current 5751 * LSN now that it's known. 5752 */ 5753 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) && 5754 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn)) 5755 return -EINVAL; 5756 5757 if (tail_blk != head_blk) { 5758 /* There used to be a comment here: 5759 * 5760 * disallow recovery on read-only mounts. note -- mount 5761 * checks for ENOSPC and turns it into an intelligent 5762 * error message. 5763 * ...but this is no longer true. Now, unless you specify 5764 * NORECOVERY (in which case this function would never be 5765 * called), we just go ahead and recover. We do this all 5766 * under the vfs layer, so we can get away with it unless 5767 * the device itself is read-only, in which case we fail. 5768 */ 5769 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 5770 return error; 5771 } 5772 5773 /* 5774 * Version 5 superblock log feature mask validation. We know the 5775 * log is dirty so check if there are any unknown log features 5776 * in what we need to recover. If there are unknown features 5777 * (e.g. unsupported transactions, then simply reject the 5778 * attempt at recovery before touching anything. 5779 */ 5780 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 && 5781 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, 5782 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { 5783 xfs_warn(log->l_mp, 5784 "Superblock has unknown incompatible log features (0x%x) enabled.", 5785 (log->l_mp->m_sb.sb_features_log_incompat & 5786 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 5787 xfs_warn(log->l_mp, 5788 "The log can not be fully and/or safely recovered by this kernel."); 5789 xfs_warn(log->l_mp, 5790 "Please recover the log on a kernel that supports the unknown features."); 5791 return -EINVAL; 5792 } 5793 5794 /* 5795 * Delay log recovery if the debug hook is set. This is debug 5796 * instrumention to coordinate simulation of I/O failures with 5797 * log recovery. 5798 */ 5799 if (xfs_globals.log_recovery_delay) { 5800 xfs_notice(log->l_mp, 5801 "Delaying log recovery for %d seconds.", 5802 xfs_globals.log_recovery_delay); 5803 msleep(xfs_globals.log_recovery_delay * 1000); 5804 } 5805 5806 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", 5807 log->l_mp->m_logname ? log->l_mp->m_logname 5808 : "internal"); 5809 5810 error = xlog_do_recover(log, head_blk, tail_blk); 5811 log->l_flags |= XLOG_RECOVERY_NEEDED; 5812 } 5813 return error; 5814 } 5815 5816 /* 5817 * In the first part of recovery we replay inodes and buffers and build 5818 * up the list of extent free items which need to be processed. Here 5819 * we process the extent free items and clean up the on disk unlinked 5820 * inode lists. This is separated from the first part of recovery so 5821 * that the root and real-time bitmap inodes can be read in from disk in 5822 * between the two stages. This is necessary so that we can free space 5823 * in the real-time portion of the file system. 5824 */ 5825 int 5826 xlog_recover_finish( 5827 struct xlog *log) 5828 { 5829 /* 5830 * Now we're ready to do the transactions needed for the 5831 * rest of recovery. Start with completing all the extent 5832 * free intent records and then process the unlinked inode 5833 * lists. At this point, we essentially run in normal mode 5834 * except that we're still performing recovery actions 5835 * rather than accepting new requests. 5836 */ 5837 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 5838 int error; 5839 error = xlog_recover_process_intents(log); 5840 if (error) { 5841 xfs_alert(log->l_mp, "Failed to recover intents"); 5842 return error; 5843 } 5844 5845 /* 5846 * Sync the log to get all the intents out of the AIL. 5847 * This isn't absolutely necessary, but it helps in 5848 * case the unlink transactions would have problems 5849 * pushing the intents out of the way. 5850 */ 5851 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 5852 5853 xlog_recover_process_iunlinks(log); 5854 5855 xlog_recover_check_summary(log); 5856 5857 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", 5858 log->l_mp->m_logname ? log->l_mp->m_logname 5859 : "internal"); 5860 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 5861 } else { 5862 xfs_info(log->l_mp, "Ending clean mount"); 5863 } 5864 return 0; 5865 } 5866 5867 int 5868 xlog_recover_cancel( 5869 struct xlog *log) 5870 { 5871 int error = 0; 5872 5873 if (log->l_flags & XLOG_RECOVERY_NEEDED) 5874 error = xlog_recover_cancel_intents(log); 5875 5876 return error; 5877 } 5878 5879 #if defined(DEBUG) 5880 /* 5881 * Read all of the agf and agi counters and check that they 5882 * are consistent with the superblock counters. 5883 */ 5884 STATIC void 5885 xlog_recover_check_summary( 5886 struct xlog *log) 5887 { 5888 xfs_mount_t *mp; 5889 xfs_agf_t *agfp; 5890 xfs_buf_t *agfbp; 5891 xfs_buf_t *agibp; 5892 xfs_agnumber_t agno; 5893 uint64_t freeblks; 5894 uint64_t itotal; 5895 uint64_t ifree; 5896 int error; 5897 5898 mp = log->l_mp; 5899 5900 freeblks = 0LL; 5901 itotal = 0LL; 5902 ifree = 0LL; 5903 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 5904 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 5905 if (error) { 5906 xfs_alert(mp, "%s agf read failed agno %d error %d", 5907 __func__, agno, error); 5908 } else { 5909 agfp = XFS_BUF_TO_AGF(agfbp); 5910 freeblks += be32_to_cpu(agfp->agf_freeblks) + 5911 be32_to_cpu(agfp->agf_flcount); 5912 xfs_buf_relse(agfbp); 5913 } 5914 5915 error = xfs_read_agi(mp, NULL, agno, &agibp); 5916 if (error) { 5917 xfs_alert(mp, "%s agi read failed agno %d error %d", 5918 __func__, agno, error); 5919 } else { 5920 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 5921 5922 itotal += be32_to_cpu(agi->agi_count); 5923 ifree += be32_to_cpu(agi->agi_freecount); 5924 xfs_buf_relse(agibp); 5925 } 5926 } 5927 } 5928 #endif /* DEBUG */ 5929