xref: /openbmc/linux/fs/xfs/xfs_log_priv.h (revision e23feb16)
1 /*
2  * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #ifndef	__XFS_LOG_PRIV_H__
19 #define __XFS_LOG_PRIV_H__
20 
21 struct xfs_buf;
22 struct xlog;
23 struct xlog_ticket;
24 struct xfs_mount;
25 
26 /*
27  * Flags for log structure
28  */
29 #define XLOG_ACTIVE_RECOVERY	0x2	/* in the middle of recovery */
30 #define	XLOG_RECOVERY_NEEDED	0x4	/* log was recovered */
31 #define XLOG_IO_ERROR		0x8	/* log hit an I/O error, and being
32 					   shutdown */
33 #define XLOG_TAIL_WARN		0x10	/* log tail verify warning issued */
34 
35 /*
36  * get client id from packed copy.
37  *
38  * this hack is here because the xlog_pack code copies four bytes
39  * of xlog_op_header containing the fields oh_clientid, oh_flags
40  * and oh_res2 into the packed copy.
41  *
42  * later on this four byte chunk is treated as an int and the
43  * client id is pulled out.
44  *
45  * this has endian issues, of course.
46  */
47 static inline uint xlog_get_client_id(__be32 i)
48 {
49 	return be32_to_cpu(i) >> 24;
50 }
51 
52 /*
53  * In core log state
54  */
55 #define XLOG_STATE_ACTIVE    0x0001 /* Current IC log being written to */
56 #define XLOG_STATE_WANT_SYNC 0x0002 /* Want to sync this iclog; no more writes */
57 #define XLOG_STATE_SYNCING   0x0004 /* This IC log is syncing */
58 #define XLOG_STATE_DONE_SYNC 0x0008 /* Done syncing to disk */
59 #define XLOG_STATE_DO_CALLBACK \
60 			     0x0010 /* Process callback functions */
61 #define XLOG_STATE_CALLBACK  0x0020 /* Callback functions now */
62 #define XLOG_STATE_DIRTY     0x0040 /* Dirty IC log, not ready for ACTIVE status*/
63 #define XLOG_STATE_IOERROR   0x0080 /* IO error happened in sync'ing log */
64 #define XLOG_STATE_ALL	     0x7FFF /* All possible valid flags */
65 #define XLOG_STATE_NOTUSED   0x8000 /* This IC log not being used */
66 
67 /*
68  * Flags to log ticket
69  */
70 #define XLOG_TIC_INITED		0x1	/* has been initialized */
71 #define XLOG_TIC_PERM_RESERV	0x2	/* permanent reservation */
72 
73 #define XLOG_TIC_FLAGS \
74 	{ XLOG_TIC_INITED,	"XLOG_TIC_INITED" }, \
75 	{ XLOG_TIC_PERM_RESERV,	"XLOG_TIC_PERM_RESERV" }
76 
77 /*
78  * Below are states for covering allocation transactions.
79  * By covering, we mean changing the h_tail_lsn in the last on-disk
80  * log write such that no allocation transactions will be re-done during
81  * recovery after a system crash. Recovery starts at the last on-disk
82  * log write.
83  *
84  * These states are used to insert dummy log entries to cover
85  * space allocation transactions which can undo non-transactional changes
86  * after a crash. Writes to a file with space
87  * already allocated do not result in any transactions. Allocations
88  * might include space beyond the EOF. So if we just push the EOF a
89  * little, the last transaction for the file could contain the wrong
90  * size. If there is no file system activity, after an allocation
91  * transaction, and the system crashes, the allocation transaction
92  * will get replayed and the file will be truncated. This could
93  * be hours/days/... after the allocation occurred.
94  *
95  * The fix for this is to do two dummy transactions when the
96  * system is idle. We need two dummy transaction because the h_tail_lsn
97  * in the log record header needs to point beyond the last possible
98  * non-dummy transaction. The first dummy changes the h_tail_lsn to
99  * the first transaction before the dummy. The second dummy causes
100  * h_tail_lsn to point to the first dummy. Recovery starts at h_tail_lsn.
101  *
102  * These dummy transactions get committed when everything
103  * is idle (after there has been some activity).
104  *
105  * There are 5 states used to control this.
106  *
107  *  IDLE -- no logging has been done on the file system or
108  *		we are done covering previous transactions.
109  *  NEED -- logging has occurred and we need a dummy transaction
110  *		when the log becomes idle.
111  *  DONE -- we were in the NEED state and have committed a dummy
112  *		transaction.
113  *  NEED2 -- we detected that a dummy transaction has gone to the
114  *		on disk log with no other transactions.
115  *  DONE2 -- we committed a dummy transaction when in the NEED2 state.
116  *
117  * There are two places where we switch states:
118  *
119  * 1.) In xfs_sync, when we detect an idle log and are in NEED or NEED2.
120  *	We commit the dummy transaction and switch to DONE or DONE2,
121  *	respectively. In all other states, we don't do anything.
122  *
123  * 2.) When we finish writing the on-disk log (xlog_state_clean_log).
124  *
125  *	No matter what state we are in, if this isn't the dummy
126  *	transaction going out, the next state is NEED.
127  *	So, if we aren't in the DONE or DONE2 states, the next state
128  *	is NEED. We can't be finishing a write of the dummy record
129  *	unless it was committed and the state switched to DONE or DONE2.
130  *
131  *	If we are in the DONE state and this was a write of the
132  *		dummy transaction, we move to NEED2.
133  *
134  *	If we are in the DONE2 state and this was a write of the
135  *		dummy transaction, we move to IDLE.
136  *
137  *
138  * Writing only one dummy transaction can get appended to
139  * one file space allocation. When this happens, the log recovery
140  * code replays the space allocation and a file could be truncated.
141  * This is why we have the NEED2 and DONE2 states before going idle.
142  */
143 
144 #define XLOG_STATE_COVER_IDLE	0
145 #define XLOG_STATE_COVER_NEED	1
146 #define XLOG_STATE_COVER_DONE	2
147 #define XLOG_STATE_COVER_NEED2	3
148 #define XLOG_STATE_COVER_DONE2	4
149 
150 #define XLOG_COVER_OPS		5
151 
152 /* Ticket reservation region accounting */
153 #define XLOG_TIC_LEN_MAX	15
154 
155 /*
156  * Reservation region
157  * As would be stored in xfs_log_iovec but without the i_addr which
158  * we don't care about.
159  */
160 typedef struct xlog_res {
161 	uint	r_len;	/* region length		:4 */
162 	uint	r_type;	/* region's transaction type	:4 */
163 } xlog_res_t;
164 
165 typedef struct xlog_ticket {
166 	struct list_head   t_queue;	 /* reserve/write queue */
167 	struct task_struct *t_task;	 /* task that owns this ticket */
168 	xlog_tid_t	   t_tid;	 /* transaction identifier	 : 4  */
169 	atomic_t	   t_ref;	 /* ticket reference count       : 4  */
170 	int		   t_curr_res;	 /* current reservation in bytes : 4  */
171 	int		   t_unit_res;	 /* unit reservation in bytes    : 4  */
172 	char		   t_ocnt;	 /* original count		 : 1  */
173 	char		   t_cnt;	 /* current count		 : 1  */
174 	char		   t_clientid;	 /* who does this belong to;	 : 1  */
175 	char		   t_flags;	 /* properties of reservation	 : 1  */
176 	uint		   t_trans_type; /* transaction type             : 4  */
177 
178         /* reservation array fields */
179 	uint		   t_res_num;                    /* num in array : 4 */
180 	uint		   t_res_num_ophdrs;		 /* num op hdrs  : 4 */
181 	uint		   t_res_arr_sum;		 /* array sum    : 4 */
182 	uint		   t_res_o_flow;		 /* sum overflow : 4 */
183 	xlog_res_t	   t_res_arr[XLOG_TIC_LEN_MAX];  /* array of res : 8 * 15 */
184 } xlog_ticket_t;
185 
186 /*
187  * - A log record header is 512 bytes.  There is plenty of room to grow the
188  *	xlog_rec_header_t into the reserved space.
189  * - ic_data follows, so a write to disk can start at the beginning of
190  *	the iclog.
191  * - ic_forcewait is used to implement synchronous forcing of the iclog to disk.
192  * - ic_next is the pointer to the next iclog in the ring.
193  * - ic_bp is a pointer to the buffer used to write this incore log to disk.
194  * - ic_log is a pointer back to the global log structure.
195  * - ic_callback is a linked list of callback function/argument pairs to be
196  *	called after an iclog finishes writing.
197  * - ic_size is the full size of the header plus data.
198  * - ic_offset is the current number of bytes written to in this iclog.
199  * - ic_refcnt is bumped when someone is writing to the log.
200  * - ic_state is the state of the iclog.
201  *
202  * Because of cacheline contention on large machines, we need to separate
203  * various resources onto different cachelines. To start with, make the
204  * structure cacheline aligned. The following fields can be contended on
205  * by independent processes:
206  *
207  *	- ic_callback_*
208  *	- ic_refcnt
209  *	- fields protected by the global l_icloglock
210  *
211  * so we need to ensure that these fields are located in separate cachelines.
212  * We'll put all the read-only and l_icloglock fields in the first cacheline,
213  * and move everything else out to subsequent cachelines.
214  */
215 typedef struct xlog_in_core {
216 	wait_queue_head_t	ic_force_wait;
217 	wait_queue_head_t	ic_write_wait;
218 	struct xlog_in_core	*ic_next;
219 	struct xlog_in_core	*ic_prev;
220 	struct xfs_buf		*ic_bp;
221 	struct xlog		*ic_log;
222 	int			ic_size;
223 	int			ic_offset;
224 	int			ic_bwritecnt;
225 	unsigned short		ic_state;
226 	char			*ic_datap;	/* pointer to iclog data */
227 
228 	/* Callback structures need their own cacheline */
229 	spinlock_t		ic_callback_lock ____cacheline_aligned_in_smp;
230 	xfs_log_callback_t	*ic_callback;
231 	xfs_log_callback_t	**ic_callback_tail;
232 
233 	/* reference counts need their own cacheline */
234 	atomic_t		ic_refcnt ____cacheline_aligned_in_smp;
235 	xlog_in_core_2_t	*ic_data;
236 #define ic_header	ic_data->hic_header
237 } xlog_in_core_t;
238 
239 /*
240  * The CIL context is used to aggregate per-transaction details as well be
241  * passed to the iclog for checkpoint post-commit processing.  After being
242  * passed to the iclog, another context needs to be allocated for tracking the
243  * next set of transactions to be aggregated into a checkpoint.
244  */
245 struct xfs_cil;
246 
247 struct xfs_cil_ctx {
248 	struct xfs_cil		*cil;
249 	xfs_lsn_t		sequence;	/* chkpt sequence # */
250 	xfs_lsn_t		start_lsn;	/* first LSN of chkpt commit */
251 	xfs_lsn_t		commit_lsn;	/* chkpt commit record lsn */
252 	struct xlog_ticket	*ticket;	/* chkpt ticket */
253 	int			nvecs;		/* number of regions */
254 	int			space_used;	/* aggregate size of regions */
255 	struct list_head	busy_extents;	/* busy extents in chkpt */
256 	struct xfs_log_vec	*lv_chain;	/* logvecs being pushed */
257 	xfs_log_callback_t	log_cb;		/* completion callback hook. */
258 	struct list_head	committing;	/* ctx committing list */
259 };
260 
261 /*
262  * Committed Item List structure
263  *
264  * This structure is used to track log items that have been committed but not
265  * yet written into the log. It is used only when the delayed logging mount
266  * option is enabled.
267  *
268  * This structure tracks the list of committing checkpoint contexts so
269  * we can avoid the problem of having to hold out new transactions during a
270  * flush until we have a the commit record LSN of the checkpoint. We can
271  * traverse the list of committing contexts in xlog_cil_push_lsn() to find a
272  * sequence match and extract the commit LSN directly from there. If the
273  * checkpoint is still in the process of committing, we can block waiting for
274  * the commit LSN to be determined as well. This should make synchronous
275  * operations almost as efficient as the old logging methods.
276  */
277 struct xfs_cil {
278 	struct xlog		*xc_log;
279 	struct list_head	xc_cil;
280 	spinlock_t		xc_cil_lock;
281 
282 	struct rw_semaphore	xc_ctx_lock ____cacheline_aligned_in_smp;
283 	struct xfs_cil_ctx	*xc_ctx;
284 
285 	spinlock_t		xc_push_lock ____cacheline_aligned_in_smp;
286 	xfs_lsn_t		xc_push_seq;
287 	struct list_head	xc_committing;
288 	wait_queue_head_t	xc_commit_wait;
289 	xfs_lsn_t		xc_current_sequence;
290 	struct work_struct	xc_push_work;
291 } ____cacheline_aligned_in_smp;
292 
293 /*
294  * The amount of log space we allow the CIL to aggregate is difficult to size.
295  * Whatever we choose, we have to make sure we can get a reservation for the
296  * log space effectively, that it is large enough to capture sufficient
297  * relogging to reduce log buffer IO significantly, but it is not too large for
298  * the log or induces too much latency when writing out through the iclogs. We
299  * track both space consumed and the number of vectors in the checkpoint
300  * context, so we need to decide which to use for limiting.
301  *
302  * Every log buffer we write out during a push needs a header reserved, which
303  * is at least one sector and more for v2 logs. Hence we need a reservation of
304  * at least 512 bytes per 32k of log space just for the LR headers. That means
305  * 16KB of reservation per megabyte of delayed logging space we will consume,
306  * plus various headers.  The number of headers will vary based on the num of
307  * io vectors, so limiting on a specific number of vectors is going to result
308  * in transactions of varying size. IOWs, it is more consistent to track and
309  * limit space consumed in the log rather than by the number of objects being
310  * logged in order to prevent checkpoint ticket overruns.
311  *
312  * Further, use of static reservations through the log grant mechanism is
313  * problematic. It introduces a lot of complexity (e.g. reserve grant vs write
314  * grant) and a significant deadlock potential because regranting write space
315  * can block on log pushes. Hence if we have to regrant log space during a log
316  * push, we can deadlock.
317  *
318  * However, we can avoid this by use of a dynamic "reservation stealing"
319  * technique during transaction commit whereby unused reservation space in the
320  * transaction ticket is transferred to the CIL ctx commit ticket to cover the
321  * space needed by the checkpoint transaction. This means that we never need to
322  * specifically reserve space for the CIL checkpoint transaction, nor do we
323  * need to regrant space once the checkpoint completes. This also means the
324  * checkpoint transaction ticket is specific to the checkpoint context, rather
325  * than the CIL itself.
326  *
327  * With dynamic reservations, we can effectively make up arbitrary limits for
328  * the checkpoint size so long as they don't violate any other size rules.
329  * Recovery imposes a rule that no transaction exceed half the log, so we are
330  * limited by that.  Furthermore, the log transaction reservation subsystem
331  * tries to keep 25% of the log free, so we need to keep below that limit or we
332  * risk running out of free log space to start any new transactions.
333  *
334  * In order to keep background CIL push efficient, we will set a lower
335  * threshold at which background pushing is attempted without blocking current
336  * transaction commits.  A separate, higher bound defines when CIL pushes are
337  * enforced to ensure we stay within our maximum checkpoint size bounds.
338  * threshold, yet give us plenty of space for aggregation on large logs.
339  */
340 #define XLOG_CIL_SPACE_LIMIT(log)	(log->l_logsize >> 3)
341 
342 /*
343  * ticket grant locks, queues and accounting have their own cachlines
344  * as these are quite hot and can be operated on concurrently.
345  */
346 struct xlog_grant_head {
347 	spinlock_t		lock ____cacheline_aligned_in_smp;
348 	struct list_head	waiters;
349 	atomic64_t		grant;
350 };
351 
352 /*
353  * The reservation head lsn is not made up of a cycle number and block number.
354  * Instead, it uses a cycle number and byte number.  Logs don't expect to
355  * overflow 31 bits worth of byte offset, so using a byte number will mean
356  * that round off problems won't occur when releasing partial reservations.
357  */
358 struct xlog {
359 	/* The following fields don't need locking */
360 	struct xfs_mount	*l_mp;	        /* mount point */
361 	struct xfs_ail		*l_ailp;	/* AIL log is working with */
362 	struct xfs_cil		*l_cilp;	/* CIL log is working with */
363 	struct xfs_buf		*l_xbuf;        /* extra buffer for log
364 						 * wrapping */
365 	struct xfs_buftarg	*l_targ;        /* buftarg of log */
366 	struct delayed_work	l_work;		/* background flush work */
367 	uint			l_flags;
368 	uint			l_quotaoffs_flag; /* XFS_DQ_*, for QUOTAOFFs */
369 	struct list_head	*l_buf_cancel_table;
370 	int			l_iclog_hsize;  /* size of iclog header */
371 	int			l_iclog_heads;  /* # of iclog header sectors */
372 	uint			l_sectBBsize;   /* sector size in BBs (2^n) */
373 	int			l_iclog_size;	/* size of log in bytes */
374 	int			l_iclog_size_log; /* log power size of log */
375 	int			l_iclog_bufs;	/* number of iclog buffers */
376 	xfs_daddr_t		l_logBBstart;   /* start block of log */
377 	int			l_logsize;      /* size of log in bytes */
378 	int			l_logBBsize;    /* size of log in BB chunks */
379 
380 	/* The following block of fields are changed while holding icloglock */
381 	wait_queue_head_t	l_flush_wait ____cacheline_aligned_in_smp;
382 						/* waiting for iclog flush */
383 	int			l_covered_state;/* state of "covering disk
384 						 * log entries" */
385 	xlog_in_core_t		*l_iclog;       /* head log queue	*/
386 	spinlock_t		l_icloglock;    /* grab to change iclog state */
387 	int			l_curr_cycle;   /* Cycle number of log writes */
388 	int			l_prev_cycle;   /* Cycle number before last
389 						 * block increment */
390 	int			l_curr_block;   /* current logical log block */
391 	int			l_prev_block;   /* previous logical log block */
392 
393 	/*
394 	 * l_last_sync_lsn and l_tail_lsn are atomics so they can be set and
395 	 * read without needing to hold specific locks. To avoid operations
396 	 * contending with other hot objects, place each of them on a separate
397 	 * cacheline.
398 	 */
399 	/* lsn of last LR on disk */
400 	atomic64_t		l_last_sync_lsn ____cacheline_aligned_in_smp;
401 	/* lsn of 1st LR with unflushed * buffers */
402 	atomic64_t		l_tail_lsn ____cacheline_aligned_in_smp;
403 
404 	struct xlog_grant_head	l_reserve_head;
405 	struct xlog_grant_head	l_write_head;
406 
407 	/* The following field are used for debugging; need to hold icloglock */
408 #ifdef DEBUG
409 	char			*l_iclog_bak[XLOG_MAX_ICLOGS];
410 #endif
411 
412 };
413 
414 #define XLOG_BUF_CANCEL_BUCKET(log, blkno) \
415 	((log)->l_buf_cancel_table + ((__uint64_t)blkno % XLOG_BC_TABLE_SIZE))
416 
417 #define XLOG_FORCED_SHUTDOWN(log)	((log)->l_flags & XLOG_IO_ERROR)
418 
419 /* common routines */
420 extern int
421 xlog_recover(
422 	struct xlog		*log);
423 extern int
424 xlog_recover_finish(
425 	struct xlog		*log);
426 
427 extern __le32	 xlog_cksum(struct xlog *log, struct xlog_rec_header *rhead,
428 			    char *dp, int size);
429 
430 extern kmem_zone_t *xfs_log_ticket_zone;
431 struct xlog_ticket *
432 xlog_ticket_alloc(
433 	struct xlog	*log,
434 	int		unit_bytes,
435 	int		count,
436 	char		client,
437 	bool		permanent,
438 	xfs_km_flags_t	alloc_flags);
439 
440 
441 static inline void
442 xlog_write_adv_cnt(void **ptr, int *len, int *off, size_t bytes)
443 {
444 	*ptr += bytes;
445 	*len -= bytes;
446 	*off += bytes;
447 }
448 
449 void	xlog_print_tic_res(struct xfs_mount *mp, struct xlog_ticket *ticket);
450 int
451 xlog_write(
452 	struct xlog		*log,
453 	struct xfs_log_vec	*log_vector,
454 	struct xlog_ticket	*tic,
455 	xfs_lsn_t		*start_lsn,
456 	struct xlog_in_core	**commit_iclog,
457 	uint			flags);
458 
459 /*
460  * When we crack an atomic LSN, we sample it first so that the value will not
461  * change while we are cracking it into the component values. This means we
462  * will always get consistent component values to work from. This should always
463  * be used to sample and crack LSNs that are stored and updated in atomic
464  * variables.
465  */
466 static inline void
467 xlog_crack_atomic_lsn(atomic64_t *lsn, uint *cycle, uint *block)
468 {
469 	xfs_lsn_t val = atomic64_read(lsn);
470 
471 	*cycle = CYCLE_LSN(val);
472 	*block = BLOCK_LSN(val);
473 }
474 
475 /*
476  * Calculate and assign a value to an atomic LSN variable from component pieces.
477  */
478 static inline void
479 xlog_assign_atomic_lsn(atomic64_t *lsn, uint cycle, uint block)
480 {
481 	atomic64_set(lsn, xlog_assign_lsn(cycle, block));
482 }
483 
484 /*
485  * When we crack the grant head, we sample it first so that the value will not
486  * change while we are cracking it into the component values. This means we
487  * will always get consistent component values to work from.
488  */
489 static inline void
490 xlog_crack_grant_head_val(int64_t val, int *cycle, int *space)
491 {
492 	*cycle = val >> 32;
493 	*space = val & 0xffffffff;
494 }
495 
496 static inline void
497 xlog_crack_grant_head(atomic64_t *head, int *cycle, int *space)
498 {
499 	xlog_crack_grant_head_val(atomic64_read(head), cycle, space);
500 }
501 
502 static inline int64_t
503 xlog_assign_grant_head_val(int cycle, int space)
504 {
505 	return ((int64_t)cycle << 32) | space;
506 }
507 
508 static inline void
509 xlog_assign_grant_head(atomic64_t *head, int cycle, int space)
510 {
511 	atomic64_set(head, xlog_assign_grant_head_val(cycle, space));
512 }
513 
514 /*
515  * Committed Item List interfaces
516  */
517 int
518 xlog_cil_init(struct xlog *log);
519 void
520 xlog_cil_init_post_recovery(struct xlog *log);
521 void
522 xlog_cil_destroy(struct xlog *log);
523 
524 /*
525  * CIL force routines
526  */
527 xfs_lsn_t
528 xlog_cil_force_lsn(
529 	struct xlog *log,
530 	xfs_lsn_t sequence);
531 
532 static inline void
533 xlog_cil_force(struct xlog *log)
534 {
535 	xlog_cil_force_lsn(log, log->l_cilp->xc_current_sequence);
536 }
537 
538 /*
539  * Unmount record type is used as a pseudo transaction type for the ticket.
540  * It's value must be outside the range of XFS_TRANS_* values.
541  */
542 #define XLOG_UNMOUNT_REC_TYPE	(-1U)
543 
544 /*
545  * Wrapper function for waiting on a wait queue serialised against wakeups
546  * by a spinlock. This matches the semantics of all the wait queues used in the
547  * log code.
548  */
549 static inline void xlog_wait(wait_queue_head_t *wq, spinlock_t *lock)
550 {
551 	DECLARE_WAITQUEUE(wait, current);
552 
553 	add_wait_queue_exclusive(wq, &wait);
554 	__set_current_state(TASK_UNINTERRUPTIBLE);
555 	spin_unlock(lock);
556 	schedule();
557 	remove_wait_queue(wq, &wait);
558 }
559 
560 #endif	/* __XFS_LOG_PRIV_H__ */
561