xref: /openbmc/linux/fs/xfs/xfs_log_priv.h (revision bcda5fd3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #ifndef	__XFS_LOG_PRIV_H__
7 #define __XFS_LOG_PRIV_H__
8 
9 struct xfs_buf;
10 struct xlog;
11 struct xlog_ticket;
12 struct xfs_mount;
13 
14 /*
15  * Flags for log structure
16  */
17 #define XLOG_ACTIVE_RECOVERY	0x2	/* in the middle of recovery */
18 #define	XLOG_RECOVERY_NEEDED	0x4	/* log was recovered */
19 #define XLOG_IO_ERROR		0x8	/* log hit an I/O error, and being
20 					   shutdown */
21 #define XLOG_TAIL_WARN		0x10	/* log tail verify warning issued */
22 
23 /*
24  * get client id from packed copy.
25  *
26  * this hack is here because the xlog_pack code copies four bytes
27  * of xlog_op_header containing the fields oh_clientid, oh_flags
28  * and oh_res2 into the packed copy.
29  *
30  * later on this four byte chunk is treated as an int and the
31  * client id is pulled out.
32  *
33  * this has endian issues, of course.
34  */
35 static inline uint xlog_get_client_id(__be32 i)
36 {
37 	return be32_to_cpu(i) >> 24;
38 }
39 
40 /*
41  * In core log state
42  */
43 enum xlog_iclog_state {
44 	XLOG_STATE_ACTIVE,	/* Current IC log being written to */
45 	XLOG_STATE_WANT_SYNC,	/* Want to sync this iclog; no more writes */
46 	XLOG_STATE_SYNCING,	/* This IC log is syncing */
47 	XLOG_STATE_DONE_SYNC,	/* Done syncing to disk */
48 	XLOG_STATE_CALLBACK,	/* Callback functions now */
49 	XLOG_STATE_DIRTY,	/* Dirty IC log, not ready for ACTIVE status */
50 	XLOG_STATE_IOERROR,	/* IO error happened in sync'ing log */
51 };
52 
53 #define XLOG_STATE_STRINGS \
54 	{ XLOG_STATE_ACTIVE,	"XLOG_STATE_ACTIVE" }, \
55 	{ XLOG_STATE_WANT_SYNC,	"XLOG_STATE_WANT_SYNC" }, \
56 	{ XLOG_STATE_SYNCING,	"XLOG_STATE_SYNCING" }, \
57 	{ XLOG_STATE_DONE_SYNC,	"XLOG_STATE_DONE_SYNC" }, \
58 	{ XLOG_STATE_CALLBACK,	"XLOG_STATE_CALLBACK" }, \
59 	{ XLOG_STATE_DIRTY,	"XLOG_STATE_DIRTY" }, \
60 	{ XLOG_STATE_IOERROR,	"XLOG_STATE_IOERROR" }
61 
62 /*
63  * In core log flags
64  */
65 #define XLOG_ICL_NEED_FLUSH	(1 << 0)	/* iclog needs REQ_PREFLUSH */
66 #define XLOG_ICL_NEED_FUA	(1 << 1)	/* iclog needs REQ_FUA */
67 
68 #define XLOG_ICL_STRINGS \
69 	{ XLOG_ICL_NEED_FLUSH,	"XLOG_ICL_NEED_FLUSH" }, \
70 	{ XLOG_ICL_NEED_FUA,	"XLOG_ICL_NEED_FUA" }
71 
72 
73 /*
74  * Log ticket flags
75  */
76 #define XLOG_TIC_PERM_RESERV	0x1	/* permanent reservation */
77 
78 #define XLOG_TIC_FLAGS \
79 	{ XLOG_TIC_PERM_RESERV,	"XLOG_TIC_PERM_RESERV" }
80 
81 /*
82  * Below are states for covering allocation transactions.
83  * By covering, we mean changing the h_tail_lsn in the last on-disk
84  * log write such that no allocation transactions will be re-done during
85  * recovery after a system crash. Recovery starts at the last on-disk
86  * log write.
87  *
88  * These states are used to insert dummy log entries to cover
89  * space allocation transactions which can undo non-transactional changes
90  * after a crash. Writes to a file with space
91  * already allocated do not result in any transactions. Allocations
92  * might include space beyond the EOF. So if we just push the EOF a
93  * little, the last transaction for the file could contain the wrong
94  * size. If there is no file system activity, after an allocation
95  * transaction, and the system crashes, the allocation transaction
96  * will get replayed and the file will be truncated. This could
97  * be hours/days/... after the allocation occurred.
98  *
99  * The fix for this is to do two dummy transactions when the
100  * system is idle. We need two dummy transaction because the h_tail_lsn
101  * in the log record header needs to point beyond the last possible
102  * non-dummy transaction. The first dummy changes the h_tail_lsn to
103  * the first transaction before the dummy. The second dummy causes
104  * h_tail_lsn to point to the first dummy. Recovery starts at h_tail_lsn.
105  *
106  * These dummy transactions get committed when everything
107  * is idle (after there has been some activity).
108  *
109  * There are 5 states used to control this.
110  *
111  *  IDLE -- no logging has been done on the file system or
112  *		we are done covering previous transactions.
113  *  NEED -- logging has occurred and we need a dummy transaction
114  *		when the log becomes idle.
115  *  DONE -- we were in the NEED state and have committed a dummy
116  *		transaction.
117  *  NEED2 -- we detected that a dummy transaction has gone to the
118  *		on disk log with no other transactions.
119  *  DONE2 -- we committed a dummy transaction when in the NEED2 state.
120  *
121  * There are two places where we switch states:
122  *
123  * 1.) In xfs_sync, when we detect an idle log and are in NEED or NEED2.
124  *	We commit the dummy transaction and switch to DONE or DONE2,
125  *	respectively. In all other states, we don't do anything.
126  *
127  * 2.) When we finish writing the on-disk log (xlog_state_clean_log).
128  *
129  *	No matter what state we are in, if this isn't the dummy
130  *	transaction going out, the next state is NEED.
131  *	So, if we aren't in the DONE or DONE2 states, the next state
132  *	is NEED. We can't be finishing a write of the dummy record
133  *	unless it was committed and the state switched to DONE or DONE2.
134  *
135  *	If we are in the DONE state and this was a write of the
136  *		dummy transaction, we move to NEED2.
137  *
138  *	If we are in the DONE2 state and this was a write of the
139  *		dummy transaction, we move to IDLE.
140  *
141  *
142  * Writing only one dummy transaction can get appended to
143  * one file space allocation. When this happens, the log recovery
144  * code replays the space allocation and a file could be truncated.
145  * This is why we have the NEED2 and DONE2 states before going idle.
146  */
147 
148 #define XLOG_STATE_COVER_IDLE	0
149 #define XLOG_STATE_COVER_NEED	1
150 #define XLOG_STATE_COVER_DONE	2
151 #define XLOG_STATE_COVER_NEED2	3
152 #define XLOG_STATE_COVER_DONE2	4
153 
154 #define XLOG_COVER_OPS		5
155 
156 /* Ticket reservation region accounting */
157 #define XLOG_TIC_LEN_MAX	15
158 
159 /*
160  * Reservation region
161  * As would be stored in xfs_log_iovec but without the i_addr which
162  * we don't care about.
163  */
164 typedef struct xlog_res {
165 	uint	r_len;	/* region length		:4 */
166 	uint	r_type;	/* region's transaction type	:4 */
167 } xlog_res_t;
168 
169 typedef struct xlog_ticket {
170 	struct list_head   t_queue;	 /* reserve/write queue */
171 	struct task_struct *t_task;	 /* task that owns this ticket */
172 	xlog_tid_t	   t_tid;	 /* transaction identifier	 : 4  */
173 	atomic_t	   t_ref;	 /* ticket reference count       : 4  */
174 	int		   t_curr_res;	 /* current reservation in bytes : 4  */
175 	int		   t_unit_res;	 /* unit reservation in bytes    : 4  */
176 	char		   t_ocnt;	 /* original count		 : 1  */
177 	char		   t_cnt;	 /* current count		 : 1  */
178 	char		   t_clientid;	 /* who does this belong to;	 : 1  */
179 	char		   t_flags;	 /* properties of reservation	 : 1  */
180 
181         /* reservation array fields */
182 	uint		   t_res_num;                    /* num in array : 4 */
183 	uint		   t_res_num_ophdrs;		 /* num op hdrs  : 4 */
184 	uint		   t_res_arr_sum;		 /* array sum    : 4 */
185 	uint		   t_res_o_flow;		 /* sum overflow : 4 */
186 	xlog_res_t	   t_res_arr[XLOG_TIC_LEN_MAX];  /* array of res : 8 * 15 */
187 } xlog_ticket_t;
188 
189 /*
190  * - A log record header is 512 bytes.  There is plenty of room to grow the
191  *	xlog_rec_header_t into the reserved space.
192  * - ic_data follows, so a write to disk can start at the beginning of
193  *	the iclog.
194  * - ic_forcewait is used to implement synchronous forcing of the iclog to disk.
195  * - ic_next is the pointer to the next iclog in the ring.
196  * - ic_log is a pointer back to the global log structure.
197  * - ic_size is the full size of the log buffer, minus the cycle headers.
198  * - ic_offset is the current number of bytes written to in this iclog.
199  * - ic_refcnt is bumped when someone is writing to the log.
200  * - ic_state is the state of the iclog.
201  *
202  * Because of cacheline contention on large machines, we need to separate
203  * various resources onto different cachelines. To start with, make the
204  * structure cacheline aligned. The following fields can be contended on
205  * by independent processes:
206  *
207  *	- ic_callbacks
208  *	- ic_refcnt
209  *	- fields protected by the global l_icloglock
210  *
211  * so we need to ensure that these fields are located in separate cachelines.
212  * We'll put all the read-only and l_icloglock fields in the first cacheline,
213  * and move everything else out to subsequent cachelines.
214  */
215 typedef struct xlog_in_core {
216 	wait_queue_head_t	ic_force_wait;
217 	wait_queue_head_t	ic_write_wait;
218 	struct xlog_in_core	*ic_next;
219 	struct xlog_in_core	*ic_prev;
220 	struct xlog		*ic_log;
221 	u32			ic_size;
222 	u32			ic_offset;
223 	enum xlog_iclog_state	ic_state;
224 	unsigned int		ic_flags;
225 	char			*ic_datap;	/* pointer to iclog data */
226 	struct list_head	ic_callbacks;
227 
228 	/* reference counts need their own cacheline */
229 	atomic_t		ic_refcnt ____cacheline_aligned_in_smp;
230 	xlog_in_core_2_t	*ic_data;
231 #define ic_header	ic_data->hic_header
232 #ifdef DEBUG
233 	bool			ic_fail_crc : 1;
234 #endif
235 	struct semaphore	ic_sema;
236 	struct work_struct	ic_end_io_work;
237 	struct bio		ic_bio;
238 	struct bio_vec		ic_bvec[];
239 } xlog_in_core_t;
240 
241 /*
242  * The CIL context is used to aggregate per-transaction details as well be
243  * passed to the iclog for checkpoint post-commit processing.  After being
244  * passed to the iclog, another context needs to be allocated for tracking the
245  * next set of transactions to be aggregated into a checkpoint.
246  */
247 struct xfs_cil;
248 
249 struct xfs_cil_ctx {
250 	struct xfs_cil		*cil;
251 	xfs_csn_t		sequence;	/* chkpt sequence # */
252 	xfs_lsn_t		start_lsn;	/* first LSN of chkpt commit */
253 	xfs_lsn_t		commit_lsn;	/* chkpt commit record lsn */
254 	struct xlog_ticket	*ticket;	/* chkpt ticket */
255 	int			nvecs;		/* number of regions */
256 	int			space_used;	/* aggregate size of regions */
257 	struct list_head	busy_extents;	/* busy extents in chkpt */
258 	struct xfs_log_vec	*lv_chain;	/* logvecs being pushed */
259 	struct list_head	iclog_entry;
260 	struct list_head	committing;	/* ctx committing list */
261 	struct work_struct	discard_endio_work;
262 };
263 
264 /*
265  * Committed Item List structure
266  *
267  * This structure is used to track log items that have been committed but not
268  * yet written into the log. It is used only when the delayed logging mount
269  * option is enabled.
270  *
271  * This structure tracks the list of committing checkpoint contexts so
272  * we can avoid the problem of having to hold out new transactions during a
273  * flush until we have a the commit record LSN of the checkpoint. We can
274  * traverse the list of committing contexts in xlog_cil_push_lsn() to find a
275  * sequence match and extract the commit LSN directly from there. If the
276  * checkpoint is still in the process of committing, we can block waiting for
277  * the commit LSN to be determined as well. This should make synchronous
278  * operations almost as efficient as the old logging methods.
279  */
280 struct xfs_cil {
281 	struct xlog		*xc_log;
282 	struct list_head	xc_cil;
283 	spinlock_t		xc_cil_lock;
284 
285 	struct rw_semaphore	xc_ctx_lock ____cacheline_aligned_in_smp;
286 	struct xfs_cil_ctx	*xc_ctx;
287 
288 	spinlock_t		xc_push_lock ____cacheline_aligned_in_smp;
289 	xfs_csn_t		xc_push_seq;
290 	struct list_head	xc_committing;
291 	wait_queue_head_t	xc_commit_wait;
292 	xfs_csn_t		xc_current_sequence;
293 	struct work_struct	xc_push_work;
294 	wait_queue_head_t	xc_push_wait;	/* background push throttle */
295 } ____cacheline_aligned_in_smp;
296 
297 /*
298  * The amount of log space we allow the CIL to aggregate is difficult to size.
299  * Whatever we choose, we have to make sure we can get a reservation for the
300  * log space effectively, that it is large enough to capture sufficient
301  * relogging to reduce log buffer IO significantly, but it is not too large for
302  * the log or induces too much latency when writing out through the iclogs. We
303  * track both space consumed and the number of vectors in the checkpoint
304  * context, so we need to decide which to use for limiting.
305  *
306  * Every log buffer we write out during a push needs a header reserved, which
307  * is at least one sector and more for v2 logs. Hence we need a reservation of
308  * at least 512 bytes per 32k of log space just for the LR headers. That means
309  * 16KB of reservation per megabyte of delayed logging space we will consume,
310  * plus various headers.  The number of headers will vary based on the num of
311  * io vectors, so limiting on a specific number of vectors is going to result
312  * in transactions of varying size. IOWs, it is more consistent to track and
313  * limit space consumed in the log rather than by the number of objects being
314  * logged in order to prevent checkpoint ticket overruns.
315  *
316  * Further, use of static reservations through the log grant mechanism is
317  * problematic. It introduces a lot of complexity (e.g. reserve grant vs write
318  * grant) and a significant deadlock potential because regranting write space
319  * can block on log pushes. Hence if we have to regrant log space during a log
320  * push, we can deadlock.
321  *
322  * However, we can avoid this by use of a dynamic "reservation stealing"
323  * technique during transaction commit whereby unused reservation space in the
324  * transaction ticket is transferred to the CIL ctx commit ticket to cover the
325  * space needed by the checkpoint transaction. This means that we never need to
326  * specifically reserve space for the CIL checkpoint transaction, nor do we
327  * need to regrant space once the checkpoint completes. This also means the
328  * checkpoint transaction ticket is specific to the checkpoint context, rather
329  * than the CIL itself.
330  *
331  * With dynamic reservations, we can effectively make up arbitrary limits for
332  * the checkpoint size so long as they don't violate any other size rules.
333  * Recovery imposes a rule that no transaction exceed half the log, so we are
334  * limited by that.  Furthermore, the log transaction reservation subsystem
335  * tries to keep 25% of the log free, so we need to keep below that limit or we
336  * risk running out of free log space to start any new transactions.
337  *
338  * In order to keep background CIL push efficient, we only need to ensure the
339  * CIL is large enough to maintain sufficient in-memory relogging to avoid
340  * repeated physical writes of frequently modified metadata. If we allow the CIL
341  * to grow to a substantial fraction of the log, then we may be pinning hundreds
342  * of megabytes of metadata in memory until the CIL flushes. This can cause
343  * issues when we are running low on memory - pinned memory cannot be reclaimed,
344  * and the CIL consumes a lot of memory. Hence we need to set an upper physical
345  * size limit for the CIL that limits the maximum amount of memory pinned by the
346  * CIL but does not limit performance by reducing relogging efficiency
347  * significantly.
348  *
349  * As such, the CIL push threshold ends up being the smaller of two thresholds:
350  * - a threshold large enough that it allows CIL to be pushed and progress to be
351  *   made without excessive blocking of incoming transaction commits. This is
352  *   defined to be 12.5% of the log space - half the 25% push threshold of the
353  *   AIL.
354  * - small enough that it doesn't pin excessive amounts of memory but maintains
355  *   close to peak relogging efficiency. This is defined to be 16x the iclog
356  *   buffer window (32MB) as measurements have shown this to be roughly the
357  *   point of diminishing performance increases under highly concurrent
358  *   modification workloads.
359  *
360  * To prevent the CIL from overflowing upper commit size bounds, we introduce a
361  * new threshold at which we block committing transactions until the background
362  * CIL commit commences and switches to a new context. While this is not a hard
363  * limit, it forces the process committing a transaction to the CIL to block and
364  * yeild the CPU, giving the CIL push work a chance to be scheduled and start
365  * work. This prevents a process running lots of transactions from overfilling
366  * the CIL because it is not yielding the CPU. We set the blocking limit at
367  * twice the background push space threshold so we keep in line with the AIL
368  * push thresholds.
369  *
370  * Note: this is not a -hard- limit as blocking is applied after the transaction
371  * is inserted into the CIL and the push has been triggered. It is largely a
372  * throttling mechanism that allows the CIL push to be scheduled and run. A hard
373  * limit will be difficult to implement without introducing global serialisation
374  * in the CIL commit fast path, and it's not at all clear that we actually need
375  * such hard limits given the ~7 years we've run without a hard limit before
376  * finding the first situation where a checkpoint size overflow actually
377  * occurred. Hence the simple throttle, and an ASSERT check to tell us that
378  * we've overrun the max size.
379  */
380 #define XLOG_CIL_SPACE_LIMIT(log)	\
381 	min_t(int, (log)->l_logsize >> 3, BBTOB(XLOG_TOTAL_REC_SHIFT(log)) << 4)
382 
383 #define XLOG_CIL_BLOCKING_SPACE_LIMIT(log)	\
384 	(XLOG_CIL_SPACE_LIMIT(log) * 2)
385 
386 /*
387  * ticket grant locks, queues and accounting have their own cachlines
388  * as these are quite hot and can be operated on concurrently.
389  */
390 struct xlog_grant_head {
391 	spinlock_t		lock ____cacheline_aligned_in_smp;
392 	struct list_head	waiters;
393 	atomic64_t		grant;
394 };
395 
396 /*
397  * The reservation head lsn is not made up of a cycle number and block number.
398  * Instead, it uses a cycle number and byte number.  Logs don't expect to
399  * overflow 31 bits worth of byte offset, so using a byte number will mean
400  * that round off problems won't occur when releasing partial reservations.
401  */
402 struct xlog {
403 	/* The following fields don't need locking */
404 	struct xfs_mount	*l_mp;	        /* mount point */
405 	struct xfs_ail		*l_ailp;	/* AIL log is working with */
406 	struct xfs_cil		*l_cilp;	/* CIL log is working with */
407 	struct xfs_buftarg	*l_targ;        /* buftarg of log */
408 	struct workqueue_struct	*l_ioend_workqueue; /* for I/O completions */
409 	struct delayed_work	l_work;		/* background flush work */
410 	uint			l_flags;
411 	uint			l_quotaoffs_flag; /* XFS_DQ_*, for QUOTAOFFs */
412 	struct list_head	*l_buf_cancel_table;
413 	int			l_iclog_hsize;  /* size of iclog header */
414 	int			l_iclog_heads;  /* # of iclog header sectors */
415 	uint			l_sectBBsize;   /* sector size in BBs (2^n) */
416 	int			l_iclog_size;	/* size of log in bytes */
417 	int			l_iclog_bufs;	/* number of iclog buffers */
418 	xfs_daddr_t		l_logBBstart;   /* start block of log */
419 	int			l_logsize;      /* size of log in bytes */
420 	int			l_logBBsize;    /* size of log in BB chunks */
421 
422 	/* The following block of fields are changed while holding icloglock */
423 	wait_queue_head_t	l_flush_wait ____cacheline_aligned_in_smp;
424 						/* waiting for iclog flush */
425 	int			l_covered_state;/* state of "covering disk
426 						 * log entries" */
427 	xlog_in_core_t		*l_iclog;       /* head log queue	*/
428 	spinlock_t		l_icloglock;    /* grab to change iclog state */
429 	int			l_curr_cycle;   /* Cycle number of log writes */
430 	int			l_prev_cycle;   /* Cycle number before last
431 						 * block increment */
432 	int			l_curr_block;   /* current logical log block */
433 	int			l_prev_block;   /* previous logical log block */
434 
435 	/*
436 	 * l_last_sync_lsn and l_tail_lsn are atomics so they can be set and
437 	 * read without needing to hold specific locks. To avoid operations
438 	 * contending with other hot objects, place each of them on a separate
439 	 * cacheline.
440 	 */
441 	/* lsn of last LR on disk */
442 	atomic64_t		l_last_sync_lsn ____cacheline_aligned_in_smp;
443 	/* lsn of 1st LR with unflushed * buffers */
444 	atomic64_t		l_tail_lsn ____cacheline_aligned_in_smp;
445 
446 	struct xlog_grant_head	l_reserve_head;
447 	struct xlog_grant_head	l_write_head;
448 
449 	struct xfs_kobj		l_kobj;
450 
451 	/* The following field are used for debugging; need to hold icloglock */
452 #ifdef DEBUG
453 	void			*l_iclog_bak[XLOG_MAX_ICLOGS];
454 #endif
455 	/* log recovery lsn tracking (for buffer submission */
456 	xfs_lsn_t		l_recovery_lsn;
457 
458 	uint32_t		l_iclog_roundoff;/* padding roundoff */
459 };
460 
461 #define XLOG_BUF_CANCEL_BUCKET(log, blkno) \
462 	((log)->l_buf_cancel_table + ((uint64_t)blkno % XLOG_BC_TABLE_SIZE))
463 
464 #define XLOG_FORCED_SHUTDOWN(log) \
465 	(unlikely((log)->l_flags & XLOG_IO_ERROR))
466 
467 /* common routines */
468 extern int
469 xlog_recover(
470 	struct xlog		*log);
471 extern int
472 xlog_recover_finish(
473 	struct xlog		*log);
474 extern void
475 xlog_recover_cancel(struct xlog *);
476 
477 extern __le32	 xlog_cksum(struct xlog *log, struct xlog_rec_header *rhead,
478 			    char *dp, int size);
479 
480 extern kmem_zone_t *xfs_log_ticket_zone;
481 struct xlog_ticket *
482 xlog_ticket_alloc(
483 	struct xlog	*log,
484 	int		unit_bytes,
485 	int		count,
486 	char		client,
487 	bool		permanent);
488 
489 static inline void
490 xlog_write_adv_cnt(void **ptr, int *len, int *off, size_t bytes)
491 {
492 	*ptr += bytes;
493 	*len -= bytes;
494 	*off += bytes;
495 }
496 
497 void	xlog_print_tic_res(struct xfs_mount *mp, struct xlog_ticket *ticket);
498 void	xlog_print_trans(struct xfs_trans *);
499 int	xlog_write(struct xlog *log, struct xfs_log_vec *log_vector,
500 		struct xlog_ticket *tic, xfs_lsn_t *start_lsn,
501 		struct xlog_in_core **commit_iclog, uint optype);
502 int	xlog_commit_record(struct xlog *log, struct xlog_ticket *ticket,
503 		struct xlog_in_core **iclog, xfs_lsn_t *lsn);
504 void	xfs_log_ticket_ungrant(struct xlog *log, struct xlog_ticket *ticket);
505 void	xfs_log_ticket_regrant(struct xlog *log, struct xlog_ticket *ticket);
506 
507 int xlog_state_release_iclog(struct xlog *log, struct xlog_in_core *iclog,
508 		xfs_lsn_t log_tail_lsn);
509 
510 /*
511  * When we crack an atomic LSN, we sample it first so that the value will not
512  * change while we are cracking it into the component values. This means we
513  * will always get consistent component values to work from. This should always
514  * be used to sample and crack LSNs that are stored and updated in atomic
515  * variables.
516  */
517 static inline void
518 xlog_crack_atomic_lsn(atomic64_t *lsn, uint *cycle, uint *block)
519 {
520 	xfs_lsn_t val = atomic64_read(lsn);
521 
522 	*cycle = CYCLE_LSN(val);
523 	*block = BLOCK_LSN(val);
524 }
525 
526 /*
527  * Calculate and assign a value to an atomic LSN variable from component pieces.
528  */
529 static inline void
530 xlog_assign_atomic_lsn(atomic64_t *lsn, uint cycle, uint block)
531 {
532 	atomic64_set(lsn, xlog_assign_lsn(cycle, block));
533 }
534 
535 /*
536  * When we crack the grant head, we sample it first so that the value will not
537  * change while we are cracking it into the component values. This means we
538  * will always get consistent component values to work from.
539  */
540 static inline void
541 xlog_crack_grant_head_val(int64_t val, int *cycle, int *space)
542 {
543 	*cycle = val >> 32;
544 	*space = val & 0xffffffff;
545 }
546 
547 static inline void
548 xlog_crack_grant_head(atomic64_t *head, int *cycle, int *space)
549 {
550 	xlog_crack_grant_head_val(atomic64_read(head), cycle, space);
551 }
552 
553 static inline int64_t
554 xlog_assign_grant_head_val(int cycle, int space)
555 {
556 	return ((int64_t)cycle << 32) | space;
557 }
558 
559 static inline void
560 xlog_assign_grant_head(atomic64_t *head, int cycle, int space)
561 {
562 	atomic64_set(head, xlog_assign_grant_head_val(cycle, space));
563 }
564 
565 /*
566  * Committed Item List interfaces
567  */
568 int	xlog_cil_init(struct xlog *log);
569 void	xlog_cil_init_post_recovery(struct xlog *log);
570 void	xlog_cil_destroy(struct xlog *log);
571 bool	xlog_cil_empty(struct xlog *log);
572 void	xlog_cil_commit(struct xlog *log, struct xfs_trans *tp,
573 			xfs_csn_t *commit_seq, bool regrant);
574 
575 /*
576  * CIL force routines
577  */
578 xfs_lsn_t xlog_cil_force_seq(struct xlog *log, xfs_csn_t sequence);
579 
580 static inline void
581 xlog_cil_force(struct xlog *log)
582 {
583 	xlog_cil_force_seq(log, log->l_cilp->xc_current_sequence);
584 }
585 
586 /*
587  * Wrapper function for waiting on a wait queue serialised against wakeups
588  * by a spinlock. This matches the semantics of all the wait queues used in the
589  * log code.
590  */
591 static inline void
592 xlog_wait(
593 	struct wait_queue_head	*wq,
594 	struct spinlock		*lock)
595 		__releases(lock)
596 {
597 	DECLARE_WAITQUEUE(wait, current);
598 
599 	add_wait_queue_exclusive(wq, &wait);
600 	__set_current_state(TASK_UNINTERRUPTIBLE);
601 	spin_unlock(lock);
602 	schedule();
603 	remove_wait_queue(wq, &wait);
604 }
605 
606 int xlog_wait_on_iclog(struct xlog_in_core *iclog);
607 
608 /*
609  * The LSN is valid so long as it is behind the current LSN. If it isn't, this
610  * means that the next log record that includes this metadata could have a
611  * smaller LSN. In turn, this means that the modification in the log would not
612  * replay.
613  */
614 static inline bool
615 xlog_valid_lsn(
616 	struct xlog	*log,
617 	xfs_lsn_t	lsn)
618 {
619 	int		cur_cycle;
620 	int		cur_block;
621 	bool		valid = true;
622 
623 	/*
624 	 * First, sample the current lsn without locking to avoid added
625 	 * contention from metadata I/O. The current cycle and block are updated
626 	 * (in xlog_state_switch_iclogs()) and read here in a particular order
627 	 * to avoid false negatives (e.g., thinking the metadata LSN is valid
628 	 * when it is not).
629 	 *
630 	 * The current block is always rewound before the cycle is bumped in
631 	 * xlog_state_switch_iclogs() to ensure the current LSN is never seen in
632 	 * a transiently forward state. Instead, we can see the LSN in a
633 	 * transiently behind state if we happen to race with a cycle wrap.
634 	 */
635 	cur_cycle = READ_ONCE(log->l_curr_cycle);
636 	smp_rmb();
637 	cur_block = READ_ONCE(log->l_curr_block);
638 
639 	if ((CYCLE_LSN(lsn) > cur_cycle) ||
640 	    (CYCLE_LSN(lsn) == cur_cycle && BLOCK_LSN(lsn) > cur_block)) {
641 		/*
642 		 * If the metadata LSN appears invalid, it's possible the check
643 		 * above raced with a wrap to the next log cycle. Grab the lock
644 		 * to check for sure.
645 		 */
646 		spin_lock(&log->l_icloglock);
647 		cur_cycle = log->l_curr_cycle;
648 		cur_block = log->l_curr_block;
649 		spin_unlock(&log->l_icloglock);
650 
651 		if ((CYCLE_LSN(lsn) > cur_cycle) ||
652 		    (CYCLE_LSN(lsn) == cur_cycle && BLOCK_LSN(lsn) > cur_block))
653 			valid = false;
654 	}
655 
656 	return valid;
657 }
658 
659 #endif	/* __XFS_LOG_PRIV_H__ */
660